repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
sho-87/python-machine-learning
CNN/mw/11_eeg_mw_realtime_subject.py
1
14737
from __future__ import print_function import os import time import numpy as np import theano import theano.tensor as T import lasagne import matplotlib.pyplot as plt from tqdm import tqdm from mpl_toolkits.axes_grid1 import make_axes_locatable from lasagne.layers import InputLayer, Conv1DLayer, Pool1DLayer from lasagne.regularization import regularize_network_params, l2 VERBOSE = False GRID_SEARCH = False def bootstrap(data, labels, boot_type="downsample"): print("Bootstrapping data...") ot_class = 0 mw_class = 1 ot_idx = np.where(labels == ot_class) mw_idx = np.where(labels == mw_class) # Get OT examples ot_data = data[ot_idx] ot_labels = labels[ot_idx] print(" - OT (class: {}) | Data: {} | Labels: {}".format(ot_class, ot_data.shape, ot_labels.shape)) # Get MW examples mw_data = data[mw_idx] mw_labels = labels[mw_idx] print(" - MW (class: {}) | Data: {} | Labels: {}".format(mw_class, mw_data.shape, mw_labels.shape)) # Set majority and minority classes if ot_data.shape[0] > mw_data.shape[0]: maj_class, maj_data, maj_labels = ot_class, ot_data, ot_labels min_class, min_data, min_labels = mw_class, mw_data, mw_labels else: maj_class, maj_data, maj_labels = mw_class, mw_data, mw_labels min_class, min_data, min_labels = ot_class, ot_data, ot_labels print(" - Majority class: {} (N = {}) | Minority class: {} (N = {})".format(maj_class, maj_data.shape[0], min_class, min_data.shape[0])) # Upsample minority class if boot_type == "upsample": print("Upsampling minority class...") num_to_boot = maj_data.shape[0] - min_data.shape[0] print(" - Number to upsample: {}".format(num_to_boot)) bootstrap_idx = np.random.randint(min_data.shape[0], size=num_to_boot) min_data_boot = min_data[bootstrap_idx] min_labels_boot = min_labels[bootstrap_idx] final_data = np.concatenate((data, min_data_boot), axis=0) final_labels = np.concatenate((labels, min_labels_boot), axis=0) elif boot_type == "downsample": print("Downsampling majority class...") # Resample N = number of minority examples num_to_boot = min_data.shape[0] bootstrap_idx = np.random.randint(maj_data.shape[0], size=num_to_boot) maj_data_boot = maj_data[bootstrap_idx] maj_labels_boot = maj_labels[bootstrap_idx] final_data = np.concatenate((maj_data_boot, min_data), axis=0) final_labels = np.concatenate((maj_labels_boot, min_labels), axis=0) print("Final class balance: {} ({}) - {} ({})".format( maj_class, len(np.where(final_labels==maj_class)[0]), min_class, len(np.where(final_labels==min_class)[0]))) return final_data, final_labels # Load EEG data base_dir = os.path.abspath(os.path.join(os.path.join(os.path.dirname(__file__), os.pardir), os.pardir)) data_dir = os.path.join(base_dir, "data") data = np.load(os.path.join(data_dir, 'all_data_6_2d_full_30ch.npy')) data = data.transpose(0,2,1) # Equivalent to dimshuffle data_labels = np.load(os.path.join(data_dir, 'all_data_6_2d_full_30ch_labels.npy')) subject_list = data_labels[:,0] subject_list = np.repeat(subject_list, data.shape[1]) data_labels = data_labels[:,1] data_labels = data_labels.repeat(data.shape[1]) # Repeat each label temp_arrays = [] for i in range(data.shape[0]): temp_arrays.append(data[i,:]) data = np.concatenate(temp_arrays) # Stack the 2D arrays vertically del temp_arrays data = data.reshape(-1, 1, 30) # Add extra channel for depth # Electrode Order (30 channels) electrode_order = ('Fp1','Fp2','Fz', 'F4','F8','FC6', 'C4','T8','CP6', 'P4','P8','P10', 'O2','Oz','O1', 'P9','P3','P7', 'CP5','C3','T7', 'FC5','F7','F3', 'FC1','FC2','Cz', 'CP1','CP2','Pz') # Significantly improves gradient descent data = data*1e5 # Increase size of values # Remove 1 subject (#19) as test set data test_data = data[np.where(subject_list == 19)] test_labels = data_labels[np.where(subject_list == 19)] data = data[np.where(subject_list != 19)] data_labels = data_labels[np.where(subject_list != 19)] # Up/downsample the data to balance classes data, data_labels = bootstrap(data, data_labels, "downsample") # Create train, validation, test sets rng = np.random.RandomState(5347) # Set random seed indices = rng.permutation(data.shape[0]) split_train = 0.8 split_train = int(round(data.shape[0]*split_train)) train_idx = indices[:split_train] val_idx = indices[split_train:] train_data = data[train_idx,:] train_labels = data_labels[train_idx] val_data = data[val_idx,:] val_labels = data_labels[val_idx] def build_cnn(k_width=5, input_var=None): # Input layer, as usual: l_in = InputLayer(shape=(None, 1, 30), input_var=input_var) l_conv1 = Conv1DLayer(incoming = l_in, num_filters = 16, filter_size = k_width, stride = 1, pad = 'same', W = lasagne.init.Normal(std = 0.02), nonlinearity = lasagne.nonlinearities.very_leaky_rectify) l_pool1 = Pool1DLayer(incoming = l_conv1, pool_size = 2, stride = 2) l_drop1 = lasagne.layers.dropout(l_pool1, p=.2) l_fc = lasagne.layers.DenseLayer( l_drop1, num_units=512, nonlinearity=lasagne.nonlinearities.rectify) l_drop2 = lasagne.layers.dropout(l_fc, p=.2) l_out = lasagne.layers.DenseLayer( l_drop2, num_units=2, nonlinearity=lasagne.nonlinearities.softmax) return l_out # ############################# Batch iterator ############################### # This is just a simple helper function iterating over training data in # mini-batches of a particular size, optionally in random order. It assumes # data is available as numpy arrays. For big datasets, you could load numpy # arrays as memory-mapped files (np.load(..., mmap_mode='r')), or write your # own custom data iteration function. For small datasets, you can also copy # them to GPU at once for slightly improved performance. This would involve # several changes in the main program, though, and is not demonstrated here. # Notice that this function returns only mini-batches of size `batchsize`. # If the size of the data is not a multiple of `batchsize`, it will not # return the last (remaining) mini-batch. def iterate_minibatches(inputs, targets, batchsize, shuffle=False): assert len(inputs) == len(targets) if shuffle: indices = np.arange(len(inputs)) np.random.shuffle(indices) # tqdm() can be removed if no visual progress bar is needed for start_idx in tqdm(range(0, len(inputs) - batchsize + 1, batchsize)): if shuffle: excerpt = indices[start_idx:start_idx + batchsize] else: excerpt = slice(start_idx, start_idx + batchsize) yield inputs[excerpt], targets[excerpt] def main(model='cnn', batch_size=500, num_epochs=500, k_width=5): # Prepare Theano variables for inputs and targets input_var = T.tensor3('inputs') target_var = T.ivector('targets') network = build_cnn(k_width, input_var) # Create a loss expression for training, i.e., a scalar objective we want # to minimize (for our multi-class problem, it is the cross-entropy loss): prediction = lasagne.layers.get_output(network) loss = lasagne.objectives.categorical_crossentropy(prediction, target_var) loss = loss.mean() # We could add some weight decay as well here, see lasagne.regularization. l2_reg = regularize_network_params(network, l2) loss += l2_reg * 0.00001 train_acc = T.mean(T.eq(T.argmax(prediction, axis=1), target_var), dtype=theano.config.floatX) # Create update expressions for training params = lasagne.layers.get_all_params(network, trainable=True) updates = lasagne.updates.nesterov_momentum(loss, params, learning_rate=0.1) #updates = lasagne.updates.adam(loss, params, learning_rate=0.1) # Create a loss expression for validation/testing. The crucial difference # here is that we do a deterministic forward pass through the network, # disabling dropout layers. test_prediction = lasagne.layers.get_output(network, deterministic=True) test_loss = lasagne.objectives.categorical_crossentropy(test_prediction, target_var) test_loss = test_loss.mean() # As a bonus, also create an expression for the classification accuracy: test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), target_var), dtype=theano.config.floatX) # Compile a function performing a training step on a mini-batch (by giving # the updates dictionary) and returning the corresponding training loss: train_fn = theano.function([input_var, target_var], [loss, train_acc], updates=updates) # Compile a second function computing the validation loss and accuracy: val_fn = theano.function([input_var, target_var], [test_loss, test_acc]) training_hist = [] val_hist = [] print("Starting training...") # We iterate over epochs: for epoch in range(num_epochs): # In each epoch, we do a full pass over the training data: print("Training epoch {}...".format(epoch+1)) train_err = 0 train_acc = 0 train_batches = 0 start_time = time.time() for batch in iterate_minibatches(train_data, train_labels, batch_size, shuffle=True): inputs, targets = batch err, acc = train_fn(inputs, targets) train_err += err train_acc += acc train_batches += 1 if VERBOSE: print("Epoch: {} | Mini-batch: {}/{} | Elapsed time: {:.2f}s".format( epoch+1, train_batches, train_data.shape[0]/batch_size, time.time()-start_time)) training_hist.append(train_err / train_batches) # And a full pass over the validation data: print("Validating epoch...") val_err = 0 val_acc = 0 val_batches = 0 for batch in iterate_minibatches(val_data, val_labels, batch_size, shuffle=False): inputs, targets = batch err, acc = val_fn(inputs, targets) val_err += err val_acc += acc val_batches += 1 val_hist.append(val_err / val_batches) # Then we print the results for this epoch: print("Epoch {} of {} took {:.3f}s".format( epoch + 1, num_epochs, time.time() - start_time)) print(" training loss:\t\t{:.6f}".format(train_err / train_batches)) print(" training accuracy:\t\t{:.2f} %".format( train_acc / train_batches * 100)) print(" validation loss:\t\t{:.6f}".format(val_err / val_batches)) print(" validation accuracy:\t\t{:.2f} %".format( val_acc / val_batches * 100)) # After training, we compute and print the test predictions/error: test_err = 0 test_acc = 0 test_batches = 0 for batch in iterate_minibatches(test_data, test_labels, batch_size, shuffle=False): inputs, targets = batch err, acc = val_fn(inputs, targets) test_err += err test_acc += acc test_batches += 1 test_perc = (test_acc / test_batches) * 100 print("Final results:") print(" test loss:\t\t\t{:.6f}".format(test_err / test_batches)) print(" test accuracy:\t\t{:.2f} %".format(test_perc)) # Plot learning plt.plot(range(1, num_epochs+1), training_hist, label="Training") plt.plot(range(1, num_epochs+1), val_hist, label="Validation") plt.grid(True) plt.title("Training Curve\nKernel size: (1,{}) - Test acc: {:.2f}%".format(k_width, test_perc)) plt.xlim(1, num_epochs+1) plt.xlabel("Epoch #") plt.ylabel("Loss") plt.legend(loc='best') plt.show() # Optionally, you could now dump the network weights to a file like this: # np.savez('model.npz', *lasagne.layers.get_all_param_values(network)) # # And load them again later on like this: # with np.load('model.npz') as f: # param_values = [f['arr_%d' % i] for i in range(len(f.files))] # lasagne.layers.set_all_param_values(network, param_values) return test_perc if GRID_SEARCH: # Set filter sizes to search across (odd size only) search_widths = range(3, 30, 4) # Across spatial domain (electrodes) # Preallocate accuracy grid grid_accuracy = np.empty((1, len(search_widths))) num_kernels = grid_accuracy.size cur_kernel = 0 for i, w in enumerate(search_widths): # Train with current kernel size cur_kernel += 1 print("***** Kernel {}/{} | Size: (1,{}) *****".format(cur_kernel, num_kernels, w)) cur_test_acc = main(batch_size=2000, num_epochs=20, k_width=w) grid_accuracy[0, i] = cur_test_acc # Show accuracy heatmap fig, ax = plt.subplots(figsize=(10, 10)) heatmap = ax.imshow(grid_accuracy, cmap = plt.cm.bone, interpolation = 'mitchell') divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.2) cb = plt.colorbar(heatmap, orientation='vertical', cax=cax) cb.ax.set_title('Test Acc (%)', {'fontsize': 10, 'horizontalalignment': 'left'}) ax.grid(True) ax.set_xlabel('Kernel Width', weight='bold') ax.xaxis.set_label_position('top') ax.xaxis.tick_top() ax.set_xticks(range(grid_accuracy.shape[1])) # X element position ax.set_xticklabels(search_widths) # Labels for X axis ax.get_yaxis().set_visible(False) plt.show() # Get highest accuracy and associated kernel size: best_idx = np.unravel_index(grid_accuracy.argmax(), grid_accuracy.shape) print("Highest accuracy: {:.2f}%".format(np.max(grid_accuracy))) print("Best kernel size: (1,{})".format(search_widths[best_idx[1]])) # Highest search accuracy: NA # Best kernel size: NA # Train model using ideal kernel size over more epochs cur_test_acc = main(batch_size=2000, num_epochs=100, k_width=search_widths[best_idx[1]]) # Final test accuracy: NA else: cur_test_acc = main(batch_size=2000, num_epochs=100, k_width=11) # 51.31%
mit
bsipocz/bokeh
bokeh/mpl_helpers.py
11
5408
"Helpers function for mpl module." #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import import numpy as np from itertools import cycle, islice from scipy import interpolate, signal from .models import GlyphRenderer #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- def convert_color(mplcolor): "Converts mpl color formats to Bokeh color formats." charmap = dict(b="blue", g="green", r="red", c="cyan", m="magenta", y="yellow", k="black", w="white") if mplcolor in charmap: return charmap[mplcolor] try: colorfloat = float(mplcolor) if 0 <= colorfloat <= 1.0: # This is a grayscale value return tuple([int(255 * colorfloat)] * 3) except: pass if isinstance(mplcolor, tuple): # These will be floats in the range 0..1 return int(255 * mplcolor[0]), int(255 * mplcolor[1]), int(255 * mplcolor[2]) return mplcolor def convert_dashes(dash): """ Converts a Matplotlib dash specification bokeh.properties.DashPattern supports the matplotlib named dash styles, but not the little shorthand characters. This function takes care of mapping those. """ mpl_dash_map = { "-": "solid", "--": "dashed", ":": "dotted", "-.": "dashdot", } # If the value doesn't exist in the map, then just return the value back. return mpl_dash_map.get(dash, dash) def delete_last_col(x): "Just delete the last column of the array." x = np.delete(x, (-1), axis=1) return x def get_props_cycled(col, prop, fx=lambda x: x): """ We need to cycle the `get.property` list (where property can be colors, line_width, etc) as matplotlib does. We use itertools tools for do this cycling ans slice manipulation. Parameters: col: matplotlib collection object prop: property we want to get from matplotlib collection fx: funtion (optional) to transform the elements from list obtained after the property call. Deafults to identity function. """ n = len(col.get_paths()) t_prop = [fx(x) for x in prop] sliced = islice(cycle(t_prop), None, n) return list(sliced) def is_ax_end(r): "Check if the 'name' (if it exists) in the Glyph's datasource is 'ax_end'" if isinstance(r, GlyphRenderer): try: if r.data_source.data["name"] == "ax_end": return True except KeyError: return False else: return False def xkcd_line(x, y, xlim=None, ylim=None, mag=1.0, f1=30, f2=0.001, f3=5): """ Mimic a hand-drawn line from (x, y) data Source: http://jakevdp.github.io/blog/2012/10/07/xkcd-style-plots-in-matplotlib/ Parameters ---------- x, y : array_like arrays to be modified xlim, ylim : data range the assumed plot range for the modification. If not specified, they will be guessed from the data mag : float magnitude of distortions f1, f2, f3 : int, float, int filtering parameters. f1 gives the size of the window, f2 gives the high-frequency cutoff, f3 gives the size of the filter Returns ------- x, y : ndarrays The modified lines """ x = np.asarray(x) y = np.asarray(y) # get limits for rescaling if xlim is None: xlim = (x.min(), x.max()) if ylim is None: ylim = (y.min(), y.max()) if xlim[1] == xlim[0]: xlim = ylim if ylim[1] == ylim[0]: ylim = xlim # scale the data x_scaled = (x - xlim[0]) * 1. / (xlim[1] - xlim[0]) y_scaled = (y - ylim[0]) * 1. / (ylim[1] - ylim[0]) # compute the total distance along the path dx = x_scaled[1:] - x_scaled[:-1] dy = y_scaled[1:] - y_scaled[:-1] dist_tot = np.sum(np.sqrt(dx * dx + dy * dy)) # number of interpolated points is proportional to the distance Nu = int(200 * dist_tot) u = np.arange(-1, Nu + 1) * 1. / (Nu - 1) # interpolate curve at sampled points k = min(3, len(x) - 1) res = interpolate.splprep([x_scaled, y_scaled], s=0, k=k) x_int, y_int = interpolate.splev(u, res[0]) # we'll perturb perpendicular to the drawn line dx = x_int[2:] - x_int[:-2] dy = y_int[2:] - y_int[:-2] dist = np.sqrt(dx * dx + dy * dy) # create a filtered perturbation coeffs = mag * np.random.normal(0, 0.01, len(x_int) - 2) b = signal.firwin(f1, f2 * dist_tot, window=('kaiser', f3)) response = signal.lfilter(b, 1, coeffs) x_int[1:-1] += response * dy / dist y_int[1:-1] += response * dx / dist # un-scale data x_int = x_int[1:-1] * (xlim[1] - xlim[0]) + xlim[0] y_int = y_int[1:-1] * (ylim[1] - ylim[0]) + ylim[0] return x_int, y_int
bsd-3-clause
boomsbloom/dtm-fmri
DTM/for_gensim/lib/python2.7/site-packages/matplotlib/tests/test_pickle.py
1
8253
from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six from matplotlib.externals.six.moves import cPickle as pickle from matplotlib.externals.six.moves import xrange from io import BytesIO from nose.tools import assert_equal, assert_not_equal import numpy as np from matplotlib.testing.decorators import cleanup, image_comparison import matplotlib.pyplot as plt import matplotlib.transforms as mtransforms def depth_getter(obj, current_depth=0, depth_stack=None, nest_info='top level object'): """ Returns a dictionary mapping: id(obj): (shallowest_depth, obj, nest_info) for the given object (and its subordinates). This, in conjunction with recursive_pickle, can be used to debug pickling issues, although finding others is sometimes a case of trial and error. """ if depth_stack is None: depth_stack = {} if id(obj) in depth_stack: stack = depth_stack[id(obj)] if stack[0] > current_depth: del depth_stack[id(obj)] else: return depth_stack depth_stack[id(obj)] = (current_depth, obj, nest_info) if isinstance(obj, (list, tuple)): for i, item in enumerate(obj): depth_getter(item, current_depth=current_depth + 1, depth_stack=depth_stack, nest_info=('list/tuple item #%s in ' '(%s)' % (i, nest_info))) else: if isinstance(obj, dict): state = obj elif hasattr(obj, '__getstate__'): state = obj.__getstate__() if not isinstance(state, dict): state = {} elif hasattr(obj, '__dict__'): state = obj.__dict__ else: state = {} for key, value in six.iteritems(state): depth_getter(value, current_depth=current_depth + 1, depth_stack=depth_stack, nest_info=('attribute "%s" in ' '(%s)' % (key, nest_info))) return depth_stack def recursive_pickle(top_obj): """ Recursively pickle all of the given objects subordinates, starting with the deepest first. **Very** handy for debugging pickling issues, but also very slow (as it literally pickles each object in turn). Handles circular object references gracefully. """ objs = depth_getter(top_obj) # sort by depth then by nest_info objs = sorted(six.itervalues(objs), key=lambda val: (-val[0], val[2])) for _, obj, location in objs: try: pickle.dump(obj, BytesIO(), pickle.HIGHEST_PROTOCOL) except Exception as err: print(obj) print('Failed to pickle %s. \n Type: %s. Traceback ' 'follows:' % (location, type(obj))) raise @cleanup def test_simple(): fig = plt.figure() # un-comment to debug # recursive_pickle(fig) pickle.dump(fig, BytesIO(), pickle.HIGHEST_PROTOCOL) ax = plt.subplot(121) pickle.dump(ax, BytesIO(), pickle.HIGHEST_PROTOCOL) ax = plt.axes(projection='polar') plt.plot(list(xrange(10)), label='foobar') plt.legend() # Uncomment to debug any unpicklable objects. This is slow so is not # uncommented by default. # recursive_pickle(fig) pickle.dump(ax, BytesIO(), pickle.HIGHEST_PROTOCOL) # ax = plt.subplot(121, projection='hammer') # recursive_pickle(ax, 'figure') # pickle.dump(ax, BytesIO(), pickle.HIGHEST_PROTOCOL) plt.figure() plt.bar(left=list(xrange(10)), height=list(xrange(10))) pickle.dump(plt.gca(), BytesIO(), pickle.HIGHEST_PROTOCOL) fig = plt.figure() ax = plt.axes() plt.plot(list(xrange(10))) ax.set_yscale('log') pickle.dump(fig, BytesIO(), pickle.HIGHEST_PROTOCOL) @cleanup @image_comparison(baseline_images=['multi_pickle'], extensions=['png'], remove_text=True) def test_complete(): fig = plt.figure('Figure with a label?', figsize=(10, 6)) plt.suptitle('Can you fit any more in a figure?') # make some arbitrary data x, y = np.arange(8), np.arange(10) data = u = v = np.linspace(0, 10, 80).reshape(10, 8) v = np.sin(v * -0.6) plt.subplot(3, 3, 1) plt.plot(list(xrange(10))) plt.subplot(3, 3, 2) plt.contourf(data, hatches=['//', 'ooo']) plt.colorbar() plt.subplot(3, 3, 3) plt.pcolormesh(data) plt.subplot(3, 3, 4) plt.imshow(data) plt.subplot(3, 3, 5) plt.pcolor(data) ax = plt.subplot(3, 3, 6) ax.set_xlim(0, 7) ax.set_ylim(0, 9) plt.streamplot(x, y, u, v) ax = plt.subplot(3, 3, 7) ax.set_xlim(0, 7) ax.set_ylim(0, 9) plt.quiver(x, y, u, v) plt.subplot(3, 3, 8) plt.scatter(x, x**2, label='$x^2$') plt.legend(loc='upper left') plt.subplot(3, 3, 9) plt.errorbar(x, x * -0.5, xerr=0.2, yerr=0.4) ###### plotting is done, now test its pickle-ability ######### # Uncomment to debug any unpicklable objects. This is slow (~200 seconds). # recursive_pickle(fig) result_fh = BytesIO() pickle.dump(fig, result_fh, pickle.HIGHEST_PROTOCOL) plt.close('all') # make doubly sure that there are no figures left assert_equal(plt._pylab_helpers.Gcf.figs, {}) # wind back the fh and load in the figure result_fh.seek(0) fig = pickle.load(result_fh) # make sure there is now a figure manager assert_not_equal(plt._pylab_helpers.Gcf.figs, {}) assert_equal(fig.get_label(), 'Figure with a label?') @cleanup def test_no_pyplot(): # tests pickle-ability of a figure not created with pyplot from matplotlib.backends.backend_pdf import FigureCanvasPdf as fc from matplotlib.figure import Figure fig = Figure() _ = fc(fig) ax = fig.add_subplot(1, 1, 1) ax.plot([1, 2, 3], [1, 2, 3]) pickle.dump(fig, BytesIO(), pickle.HIGHEST_PROTOCOL) @cleanup def test_renderer(): from matplotlib.backends.backend_agg import RendererAgg renderer = RendererAgg(10, 20, 30) pickle.dump(renderer, BytesIO()) @cleanup def test_image(): # Prior to v1.4.0 the Image would cache data which was not picklable # once it had been drawn. from matplotlib.backends.backend_agg import new_figure_manager manager = new_figure_manager(1000) fig = manager.canvas.figure ax = fig.add_subplot(1, 1, 1) ax.imshow(np.arange(12).reshape(3, 4)) manager.canvas.draw() pickle.dump(fig, BytesIO()) @cleanup def test_grid(): from matplotlib.backends.backend_agg import new_figure_manager manager = new_figure_manager(1000) fig = manager.canvas.figure ax = fig.add_subplot(1, 1, 1) ax.grid() # Drawing the grid triggers instance methods to be attached # to the Line2D object (_lineFunc). manager.canvas.draw() pickle.dump(ax, BytesIO()) @cleanup def test_polar(): ax = plt.subplot(111, polar=True) fig = plt.gcf() result = BytesIO() pf = pickle.dumps(fig) pickle.loads(pf) plt.draw() class TransformBlob(object): def __init__(self): self.identity = mtransforms.IdentityTransform() self.identity2 = mtransforms.IdentityTransform() # Force use of the more complex composition. self.composite = mtransforms.CompositeGenericTransform( self.identity, self.identity2) # Check parent -> child links of TransformWrapper. self.wrapper = mtransforms.TransformWrapper(self.composite) # Check child -> parent links of TransformWrapper. self.composite2 = mtransforms.CompositeGenericTransform( self.wrapper, self.identity) def test_transform(): obj = TransformBlob() pf = pickle.dumps(obj) del obj obj = pickle.loads(pf) # Check parent -> child links of TransformWrapper. assert_equal(obj.wrapper._child, obj.composite) # Check child -> parent links of TransformWrapper. assert_equal(list(obj.wrapper._parents.values()), [obj.composite2]) if __name__ == '__main__': import nose nose.runmodule(argv=['-s'])
mit
gpfreitas/bokeh
bokeh/sampledata/periodic_table.py
45
1542
''' This module provides the periodic table as a data set. It exposes an attribute 'elements' which is a pandas dataframe with the following fields elements['atomic Number'] (units: g/cm^3) elements['symbol'] elements['name'] elements['atomic mass'] (units: amu) elements['CPK'] (convention for molecular modeling color) elements['electronic configuration'] elements['electronegativity'] (units: Pauling) elements['atomic radius'] (units: pm) elements['ionic radius'] (units: pm) elements['van der waals radius'] (units: pm) elements['ionization enerygy'] (units: kJ/mol) elements['electron affinity'] (units: kJ/mol) elements['phase'] (standard state: solid, liquid, gas) elements['bonding type'] elements['melting point'] (units: K) elements['boiling point'] (units: K) elements['density'] (units: g/cm^3) elements['type'] (see below) elements['year discovered'] elements['group'] elements['period'] element types: actinoid, alkali metal, alkaline earth metal, halogen, lanthanoid, metal, metalloid, noble gas, nonmetal, transition metalloid ''' from __future__ import absolute_import from os.path import dirname, join try: import pandas as pd except ImportError as e: raise RuntimeError("elements data requires pandas (http://pandas.pydata.org) to be installed") elements = pd.read_csv(join(dirname(__file__), 'elements.csv'))
bsd-3-clause
hamid-omid/search_relevance
xgbFunctions.py
1
6347
''' Required functions for xgb.py __Author__: Ali Narimani __Version__: 2.1 ''' from sklearn.base import BaseEstimator, TransformerMixin from sklearn.metrics import mean_squared_error, make_scorer import re from nltk.stem.porter import * ### Keys: Snow = True # stemmer choice #### if Snow: from nltk.stem.snowball import SnowballStemmer #0.003 improvement but takes twice as long as PorterStemmer stemmer = SnowballStemmer('english') else: stemmer = PorterStemmer() def DeepClean(word): word = word.replace('kholerhighland', 'kohler highline') word = word.replace('smart', ' smart ') word = word.replace('residential', ' residential ') word = word.replace('whirlpool', ' whirlpool ') word = word.replace('alexandrea',' alexandria ') word = word.replace('bicycle',' bicycle ') word = word.replace('non',' non ') word = word.replace('replacement',' replacement') word = word.replace('mowerectrical', 'mow electrical') word = word.replace('dishwaaher', 'dishwasher') word = word.replace('fairfield',' fairfield ') word = word.replace('hooverwindtunnel','hoover windtunnel') word = word.replace('airconditionerwith','airconditioner with ') word = word.replace('pfistersaxton', 'pfister saxton') word = word.replace('eglimgton','ellington') word = word.replace('chrome', ' chrome ') word = word.replace('foot', ' foot ') word = word.replace('samsung', ' samsung ') word = word.replace('galvanised', ' galvanised ') word = word.replace('exhaust', ' exhaust ') word = word.replace('reprobramable', 'reprogramable') word = word.replace('rackcloset', 'rack closet ') word = word.replace('hamptonbay', ' hampton bay ') word = word.replace('cadet', ' cadet ') word = word.replace('weatherstripping', 'weather stripping') word = word.replace('poyurethane', 'polyurethane') word = word.replace('refrigeratorators','refrigerator') word = word.replace('baxksplash','backsplash') word = word.replace('inches',' inch ') word = word.replace('conditioner',' conditioner ') word = word.replace('landscasping',' landscaping ') word = word.replace('discontinuedbrown',' discontinued brown ') word = word.replace('drywall',' drywall ') word = word.replace('carpet', ' carpet ') word = word.replace('less', ' less ') word = word.replace('tub', ' tub') word = word.replace('tubs', ' tub ') word = word.replace('marble',' marble ') word = word.replace('replaclacemt',' replacement ') word = word.replace('non',' non ') word = word.replace('soundfroofing', 'sound proofing') return word def str_stem(s): if isinstance(s, str): s = s.lower() s = DeepClean(s) s = re.sub(r"(\w)\.([A-Z])", r"\1 \2", s) s = re.sub(r"([0-9]+)( *)(inches|inch|in|')\.?", r"\1in. ", s) s = re.sub(r"([0-9]+)( *)(foot|feet|ft|'')\.?", r"\1ft. ", s) s = re.sub(r"([0-9]+)( *)(pounds|pound|lbs|lb)\.?", r"\1lb. ", s) s = s.replace(" x "," xby ") s = s.replace("*"," xby ") s = s.replace(" by "," xby") s = s.replace("x0"," xby 0") s = s.replace("x1"," xby 1") s = s.replace("x2"," xby 2") s = s.replace("x3"," xby 3") s = s.replace("x4"," xby 4") s = s.replace("x5"," xby 5") s = s.replace("x6"," xby 6") s = s.replace("x7"," xby 7") s = s.replace("x8"," xby 8") s = s.replace("x9"," xby 9") s = s.replace("0x","0 xby ") s = s.replace("1x","1 xby ") s = s.replace("2x","2 xby ") s = s.replace("3x","3 xby ") s = s.replace("4x","4 xby ") s = s.replace("5x","5 xby ") s = s.replace("6x","6 xby ") s = s.replace("7x","7 xby ") s = s.replace("8x","8 xby ") s = s.replace("9x","9 xby ") s = re.sub(r"([0-9]+)( *)(square|sq) ?\.?(feet|foot|ft)\.?", r"\1sq.ft. ", s) s = re.sub(r"([0-9]+)( *)(gallons|gallon|gal)\.?", r"\1gal. ", s) s = re.sub(r"([0-9]+)( *)(ounces|ounce|oz)\.?", r"\1oz. ", s) s = re.sub(r"([0-9]+)( *)(centimeters|cm)\.?", r"\1cm. ", s) s = re.sub(r"([0-9]+)( *)(milimeters|mm)\.?", r"\1mm. ", s) s = re.sub(r"([0-9]+)( *)(degrees|degree)\.?", r"\1deg. ", s) s = re.sub(r"([0-9]+)( *)(volts|volt)\.?", r"\1volt. ", s) s = re.sub(r"([0-9]+)( *)(watts|watt)\.?", r"\1watt. ", s) s = re.sub(r"([0-9]+)( *)(amperes|ampere|amps|amp)\.?", r"\1amp. ", s) s = s.replace("whirpool","whirlpool") s = s.replace("whirlpoolga", "whirlpool") s = s.replace("whirlpoolstainless","whirlpool stainless") s = s.replace(" "," ") s = (" ").join([stemmer.stem(z) for z in s.split(" ")]) if s == '': s = 'null' return s.lower() else: return "null" def str_common_word(str1, str2): words, cnt = str1.split(), 0 for word in words: if str2.find(word)>=0: cnt+=1 return cnt def str_whole_word(str1, str2, i_): cnt = 0 while i_ < len(str2): i_ = str2.find(str1, i_) if i_ == -1: return cnt else: cnt += 1 i_ += len(str1) return cnt def jaccard(a, b): a = set(a.split()) b = set(b.split()) c = a.intersection(b) return float(len(c)) / (len(a) + len(b) - len(c)) class cust_regression_vals(BaseEstimator, TransformerMixin): def fit(self, x, y=None): return self def transform(self, hd_searches): d_col_drops=['id','relevance','search_term','product_title','product_description','attr','brand','Synonym',\ 'material','color'] hd_searches = hd_searches.drop(d_col_drops,axis=1).values return hd_searches class cust_txt_col(BaseEstimator, TransformerMixin): def __init__(self, key): self.key = key def fit(self, x, y=None): return self def transform(self, data_dict): return data_dict[self.key].apply(str) def fmean_squared_error(ground_truth, predictions): fmean_squared_error_ = mean_squared_error(ground_truth, predictions)**0.5 return fmean_squared_error_ RMSE = make_scorer(fmean_squared_error, greater_is_better=False)
mit
bzero/networkx
examples/multigraph/chess_masters.py
54
5146
#!/usr/bin/env python """ An example of the MultiDiGraph clas The function chess_pgn_graph reads a collection of chess matches stored in the specified PGN file (PGN ="Portable Game Notation") Here the (compressed) default file --- chess_masters_WCC.pgn.bz2 --- contains all 685 World Chess Championship matches from 1886 - 1985. (data from http://chessproblem.my-free-games.com/chess/games/Download-PGN.php) The chess_pgn_graph() function returns a MultiDiGraph with multiple edges. Each node is the last name of a chess master. Each edge is directed from white to black and contains selected game info. The key statement in chess_pgn_graph below is G.add_edge(white, black, game_info) where game_info is a dict describing each game. """ # Copyright (C) 2006-2010 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import networkx as nx # tag names specifying what game info should be # stored in the dict on each digraph edge game_details=["Event", "Date", "Result", "ECO", "Site"] def chess_pgn_graph(pgn_file="chess_masters_WCC.pgn.bz2"): """Read chess games in pgn format in pgn_file. Filenames ending in .gz or .bz2 will be uncompressed. Return the MultiDiGraph of players connected by a chess game. Edges contain game data in a dict. """ import bz2 G=nx.MultiDiGraph() game={} datafile = bz2.BZ2File(pgn_file) lines = (line.decode().rstrip('\r\n') for line in datafile) for line in lines: if line.startswith('['): tag,value=line[1:-1].split(' ',1) game[str(tag)]=value.strip('"') else: # empty line after tag set indicates # we finished reading game info if game: white=game.pop('White') black=game.pop('Black') G.add_edge(white, black, **game) game={} return G if __name__ == '__main__': import networkx as nx G=chess_pgn_graph() ngames=G.number_of_edges() nplayers=G.number_of_nodes() print("Loaded %d chess games between %d players\n"\ % (ngames,nplayers)) # identify connected components # of the undirected version Gcc=list(nx.connected_component_subgraphs(G.to_undirected())) if len(Gcc)>1: print("Note the disconnected component consisting of:") print(Gcc[1].nodes()) # find all games with B97 opening (as described in ECO) openings=set([game_info['ECO'] for (white,black,game_info) in G.edges(data=True)]) print("\nFrom a total of %d different openings,"%len(openings)) print('the following games used the Sicilian opening') print('with the Najdorff 7...Qb6 "Poisoned Pawn" variation.\n') for (white,black,game_info) in G.edges(data=True): if game_info['ECO']=='B97': print(white,"vs",black) for k,v in game_info.items(): print(" ",k,": ",v) print("\n") try: import matplotlib.pyplot as plt except ImportError: import sys print("Matplotlib needed for drawing. Skipping") sys.exit(0) # make new undirected graph H without multi-edges H=nx.Graph(G) # edge width is proportional number of games played edgewidth=[] for (u,v,d) in H.edges(data=True): edgewidth.append(len(G.get_edge_data(u,v))) # node size is proportional to number of games won wins=dict.fromkeys(G.nodes(),0.0) for (u,v,d) in G.edges(data=True): r=d['Result'].split('-') if r[0]=='1': wins[u]+=1.0 elif r[0]=='1/2': wins[u]+=0.5 wins[v]+=0.5 else: wins[v]+=1.0 try: pos=nx.graphviz_layout(H) except: pos=nx.spring_layout(H,iterations=20) plt.rcParams['text.usetex'] = False plt.figure(figsize=(8,8)) nx.draw_networkx_edges(H,pos,alpha=0.3,width=edgewidth, edge_color='m') nodesize=[wins[v]*50 for v in H] nx.draw_networkx_nodes(H,pos,node_size=nodesize,node_color='w',alpha=0.4) nx.draw_networkx_edges(H,pos,alpha=0.4,node_size=0,width=1,edge_color='k') nx.draw_networkx_labels(H,pos,fontsize=14) font = {'fontname' : 'Helvetica', 'color' : 'k', 'fontweight' : 'bold', 'fontsize' : 14} plt.title("World Chess Championship Games: 1886 - 1985", font) # change font and write text (using data coordinates) font = {'fontname' : 'Helvetica', 'color' : 'r', 'fontweight' : 'bold', 'fontsize' : 14} plt.text(0.5, 0.97, "edge width = # games played", horizontalalignment='center', transform=plt.gca().transAxes) plt.text(0.5, 0.94, "node size = # games won", horizontalalignment='center', transform=plt.gca().transAxes) plt.axis('off') plt.savefig("chess_masters.png",dpi=75) print("Wrote chess_masters.png") plt.show() # display
bsd-3-clause
joernhees/scikit-learn
examples/model_selection/plot_confusion_matrix.py
63
3231
""" ================ Confusion matrix ================ Example of confusion matrix usage to evaluate the quality of the output of a classifier on the iris data set. The diagonal elements represent the number of points for which the predicted label is equal to the true label, while off-diagonal elements are those that are mislabeled by the classifier. The higher the diagonal values of the confusion matrix the better, indicating many correct predictions. The figures show the confusion matrix with and without normalization by class support size (number of elements in each class). This kind of normalization can be interesting in case of class imbalance to have a more visual interpretation of which class is being misclassified. Here the results are not as good as they could be as our choice for the regularization parameter C was not the best. In real life applications this parameter is usually chosen using :ref:`grid_search`. """ print(__doc__) import itertools import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target class_names = iris.target_names # Split the data into a training set and a test set X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Run classifier, using a model that is too regularized (C too low) to see # the impact on the results classifier = svm.SVC(kernel='linear', C=0.01) y_pred = classifier.fit(X_train, y_train).predict(X_test) def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') # Compute confusion matrix cnf_matrix = confusion_matrix(y_test, y_pred) np.set_printoptions(precision=2) # Plot non-normalized confusion matrix plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion matrix, without normalization') # Plot normalized confusion matrix plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True, title='Normalized confusion matrix') plt.show()
bsd-3-clause
shikhardb/scikit-learn
sklearn/tests/test_learning_curve.py
225
10791
# Author: Alexander Fabisch <[email protected]> # # License: BSD 3 clause import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import warnings from sklearn.base import BaseEstimator from sklearn.learning_curve import learning_curve, validation_curve from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.datasets import make_classification from sklearn.cross_validation import KFold from sklearn.linear_model import PassiveAggressiveClassifier class MockImprovingEstimator(BaseEstimator): """Dummy classifier to test the learning curve""" def __init__(self, n_max_train_sizes): self.n_max_train_sizes = n_max_train_sizes self.train_sizes = 0 self.X_subset = None def fit(self, X_subset, y_subset=None): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, Y=None): # training score becomes worse (2 -> 1), test error better (0 -> 1) if self._is_training_data(X): return 2. - float(self.train_sizes) / self.n_max_train_sizes else: return float(self.train_sizes) / self.n_max_train_sizes def _is_training_data(self, X): return X is self.X_subset class MockIncrementalImprovingEstimator(MockImprovingEstimator): """Dummy classifier that provides partial_fit""" def __init__(self, n_max_train_sizes): super(MockIncrementalImprovingEstimator, self).__init__(n_max_train_sizes) self.x = None def _is_training_data(self, X): return self.x in X def partial_fit(self, X, y=None, **params): self.train_sizes += X.shape[0] self.x = X[0] class MockEstimatorWithParameter(BaseEstimator): """Dummy classifier to test the validation curve""" def __init__(self, param=0.5): self.X_subset = None self.param = param def fit(self, X_subset, y_subset): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, y=None): return self.param if self._is_training_data(X) else 1 - self.param def _is_training_data(self, X): return X is self.X_subset def test_learning_curve(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) with warnings.catch_warnings(record=True) as w: train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_equal(train_scores.shape, (10, 3)) assert_equal(test_scores.shape, (10, 3)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_verbose(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) old_stdout = sys.stdout sys.stdout = StringIO() try: train_sizes, train_scores, test_scores = \ learning_curve(estimator, X, y, cv=3, verbose=1) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[learning_curve]" in out) def test_learning_curve_incremental_learning_not_possible(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) # The mockup does not have partial_fit() estimator = MockImprovingEstimator(1) assert_raises(ValueError, learning_curve, estimator, X, y, exploit_incremental_learning=True) def test_learning_curve_incremental_learning(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_incremental_learning_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_batch_and_incremental_learning_are_equal(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) train_sizes = np.linspace(0.2, 1.0, 5) estimator = PassiveAggressiveClassifier(n_iter=1, shuffle=False) train_sizes_inc, train_scores_inc, test_scores_inc = \ learning_curve( estimator, X, y, train_sizes=train_sizes, cv=3, exploit_incremental_learning=True) train_sizes_batch, train_scores_batch, test_scores_batch = \ learning_curve( estimator, X, y, cv=3, train_sizes=train_sizes, exploit_incremental_learning=False) assert_array_equal(train_sizes_inc, train_sizes_batch) assert_array_almost_equal(train_scores_inc.mean(axis=1), train_scores_batch.mean(axis=1)) assert_array_almost_equal(test_scores_inc.mean(axis=1), test_scores_batch.mean(axis=1)) def test_learning_curve_n_sample_range_out_of_bounds(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.0, 1.0]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.1, 1.1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 20]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[1, 21]) def test_learning_curve_remove_duplicate_sample_sizes(): X, y = make_classification(n_samples=3, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(2) train_sizes, _, _ = assert_warns( RuntimeWarning, learning_curve, estimator, X, y, cv=3, train_sizes=np.linspace(0.33, 1.0, 3)) assert_array_equal(train_sizes, [1, 2]) def test_learning_curve_with_boolean_indices(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) cv = KFold(n=30, n_folds=3) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_validation_curve(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) param_range = np.linspace(0, 1, 10) with warnings.catch_warnings(record=True) as w: train_scores, test_scores = validation_curve( MockEstimatorWithParameter(), X, y, param_name="param", param_range=param_range, cv=2 ) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_array_almost_equal(train_scores.mean(axis=1), param_range) assert_array_almost_equal(test_scores.mean(axis=1), 1 - param_range)
bsd-3-clause
youngmp/park_and_ermentrout_2016
trb2simple_dat/fourier_approx.py
2
4130
""" Plot data and compute Fourier coefficients Youngmin Park [email protected] (Thank you Mario for the help and inspiration) TODO: 1. Let user choose coefficients up to x% of the L2 norm 2. Add code to write coefficients to file """ try: import matplotlib.pylab as mp matplotlib_module = True except ImportError: print "You must have matplotlib installed to generate plots" matplotlib_module = False try: import numpy as np #np.random.seed(0) numpy_module = True except ImportError: print "You must have numpy installed to run this script" numpy_module = False try: from scipy.optimize import brentq scipy_module = True except ImportError: print "You must have numpy installed to run this script" scipy_module = False def manual_ift(bc,freqc,idxc,N): """ manual inverse fourier transform bc: nonzero output from np.fft.fft ffreqc: corresponding freq. component idxc: corresponding index of freq. component """ # define domain n = np.linspace(0,N-1,N) tot = 0 c = 0 # counter # for select k, compute value at each n for k in idxc: tot += np.real(bc[c])*np.cos(k*2*np.pi*n/N) - np.imag(bc[c])*np.sin(k*2*np.pi*n/N) c += 1 return tot def manual_ift_sin(bc,freqc,idxc,N): """ manual inverse fourier transform for sine terms only bc: nonzero output from np.fft.fft ffreqc: corresponding freq. component idxc: corresponding index of freq. component """ # define domain n = np.linspace(0,N-1,N) tot = 0 c = 0 # counter # for select k, compute value at each n for k in idxc: #print np.imag(bc[c]) tot += np.imag(bc[c])*np.sin(k*2*np.pi*n/N) #print k,np.imag(bc[c]),'sin' c += 1 return tot def manual_ift_cos(bc,freqc,idxc,N): """ manual inverse fourier transform for cosine terms only bc: nonzero output from np.fft.fft ffreqc: corresponding freq. component idxc: corresponding index of freq. component """ # define domain n = np.linspace(0,N-1,N) tot = 0 c = 0 # counter # for select k, compute value at each n for k in idxc: tot += np.real(bc[c])*np.cos(k*2*np.pi*n/N) #print k,np.real(bc[c]),'cos' c += 1 return tot def amp_cutoff(x,n,fcoeff): # goal: find ideal x s.t. sum(coeff_array_idx) = n """ fcoeff: output from np.fft.fft x: cutoff for magnitude of fourier coefficient n: desired number of fourier coefficients """ coeff_array_idx = np.absolute(fcoeff) > x return sum(coeff_array_idx) - n def main(): # load/define data dat = np.loadtxt("fourier/hfun.gm_0.5.dat") dat = dat[:,1] #dat2 = np.sin(np.linspace(0,10,N)) #dom = np.linspace(0,1000,1000) N = len(dat) dom = np.linspace(0,N,N) #print np.shape(dat), np.shape(dat2) # get Fourier transform and frequencies fcoeff = np.fft.fft(dat) ffreq = np.fft.fftfreq(dat.size) # find cutoff x for desired number of coefficients n = 5 # desired # of coefficients x = brentq(amp_cutoff,0,np.amax(np.abs(fcoeff)),args=(n,fcoeff)) # array corresponding to desired coefficients coeff_array_idx = np.absolute(fcoeff) > x # build list of desired coefficients b = fcoeff*coeff_array_idx # extract corresponding frequencies freq = ffreq*coeff_array_idx # build lits of only desired coeff & freq bc = fcoeff[coeff_array_idx]/N freqc = ffreq[coeff_array_idx] idxc = np.nonzero(coeff_array_idx)[0] #print bc # come back to time domain c = np.fft.ifft(b) # or c2 = manual_ift(bc,freqc,idxc,N) # for sine/cosine component only: c3 = manual_ift_sin(bc,freqc,idxc,N) c4 = manual_ift_cos(bc,freqc,idxc,N) # add option to write coefficients to file if True: pass if matplotlib_module: mp.figure() mp.plot(dat) mp.plot(c4-c3) #mp.plot(c) #mp.plot(c2) #mp.plot(c3) #mp.plot(c4) mp.show() if __name__ == "__main__": main()
bsd-2-clause
martinjrobins/paper_crowding
src/parameter_sweep.py
1
5811
#!/usr/bin/python import os import subprocess from __builtin__ import range import threading from math import pi import numpy import csv import matplotlib import matplotlib.pyplot as plt import matplotlib.cm as cm import mayavi.mlab as mlab k_b = 1.3806488e-23 diameter = 5e-9 T = 300.0 viscosity = 8.9e-4 D = k_b*T/(3.0*pi*viscosity*diameter); time = 1e-6 nout = 500 run_dir = "/scratch/robinsonm/git/paper_crowding" #run_dir = "/home/mrobins/git/paper_crowding" data_dir = "/mi/share/scratch/robinsonm/data/crowding/self_crowding" #data_dir = "/home/mrobins/tmp" def run(k_s, sl_div_diam, vol_ratio): new_dir = str(k_s)+"_"+str(sl_div_diam)+"_"+str(vol_ratio) print "creating subdir ",new_dir if not os.path.exists(data_dir + "/" + new_dir): os.makedirs(data_dir + "/" + new_dir) subprocess.call([run_dir+"/self_crowding",data_dir + "/" + new_dir, str(time),str(nout),str(k_s),str(sl_div_diam),str(vol_ratio)]) def run_sweep(): k_s_sweep = [10**(x-5) for x in range(10)] print "k_s = ",k_s_sweep sl_div_diam_sweep = [5.0*(x+1)/1000 for x in range(20)] print "sl_div_diam = ",sl_div_diam_sweep vol_ratio_sweep = [5.0*(x+1)/100 for x in range(10)] print "vol_ratio = ",vol_ratio_sweep params = [] for k_s in k_s_sweep: for sl_div_diam in sl_div_diam_sweep: for vol_ratio in vol_ratio_sweep: params.append((k_s,sl_div_diam,vol_ratio)) n_cpu = 4 num_its = int(len(params)/n_cpu) for i in range(num_its): threads = [threading.Thread(target = run, args = params[i*n_cpu+j]) for j in range(n_cpu)] for thread in threads: thread.start() for thread in threads: thread.join() def calc_average_rdf(k_s, sl_div_diam, vol_ratio): subdir = str(k_s)+"_"+str(sl_div_diam)+"_"+str(vol_ratio) dir = data_dir + "/" + subdir print "reducing dir ",dir data = numpy.zeros((100,2,400)) for i in range(100,500): data[:,:,i-100] = numpy.loadtxt(dir+ "/rdf%05d.csv"%i, delimiter=',', usecols = (0,1)) return numpy.average(data, 2) def reduce(k_s, sl_div_diam, vol_ratio): subdir = str(k_s)+"_"+str(sl_div_diam)+"_"+str(vol_ratio) dir = data_dir + "/" + subdir print "reducing dir ",dir data = numpy.loadtxt(dir+ "/" + 'msd.csv', delimiter=',') valid_range = data[20:,:] t = valid_range[:,1] msd = valid_range[:,2] #flux = valid_range[:,3] A = numpy.array([t,numpy.ones(len(t))]) msd_fit = numpy.linalg.lstsq(A.T, msd)[0] #flux_fit = numpy.linalg.lstsq(A.T, flux)[0] rdf = numpy.zeros((100,2,400)) for i in range(100,500): rdf[:,:,i-100] = numpy.loadtxt(dir+ "/rdf%05d.csv"%i, delimiter=',', usecols = (0,1)) numpy.savetxt(dir+ "/rdf_average.csv", numpy.average(rdf,2), delimiter=',') return msd_fit[0]/6.0 def reduce_sweep(): k_s_sweep = [10**(x-5) for x in range(10)] print "k_s = ",k_s_sweep sl_div_diam_sweep = [5.0*(x+1)/1000 for x in range(20)] print "sl_div_diam = ",sl_div_diam_sweep vol_ratio_sweep = [5.0*(x+1)/100 for x in range(10)] print "vol_ratio = ",vol_ratio_sweep params = [] Dmsd = numpy.zeros((10,20,10)) with open(data_dir + "/D_row.csv", 'wb') as csvfile: writer = csv.writer(csvfile, delimiter=',', quotechar='#') for k_s,i in zip(k_s_sweep,range(10)): for sl_div_diam,j in zip(sl_div_diam_sweep,range(20)): for vol_ratio,k in zip(vol_ratio_sweep,range(10)): Dmsd[i,j,k] = reduce(k_s,sl_div_diam,vol_ratio) writer.writerow((k_s,sl_div_diam,vol_ratio,Dmsd[i,j,k])) numpy.save(data_dir + "/D_numpy.npy", Dmsd) def showDsweep(): k_s_sweep = [10**(x-5) for x in range(10)] sl_div_diam_sweep = [5.0*(x+1)/1000 for x in range(20)] vol_ratio_sweep = [5.0*(x+1)/100 for x in range(10)] Dmsd = numpy.load(data_dir + "/D_numpy.npy") kDa = 1.660538921e-30; mass = 40.0*kDa; viscosity = 8.9e-4; diameter = 5e-9; T = 300.0; Dbase = k_b*T/(3.0*numpy.pi*viscosity*diameter); Dmsd = Dmsd/Dbase mlab.figure(1, size=(800, 800), fgcolor=(1, 1, 1), bgcolor=(0.5, 0.5, 0.5)) mlab.clf() contours = numpy.arange(0.01,2,0.2).tolist() obj = mlab.contour3d(Dmsd,contours=contours,transparent=True,vmin=contours[0],vmax=contours[-1]) outline = mlab.outline(color=(.7, .7, .7),extent=(0,10,0,20,0,10)) axes = mlab.axes(outline, color=(.7, .7, .7), nb_labels = 5, ranges=(k_s_sweep[0], k_s_sweep[-1], sl_div_diam_sweep[0], sl_div_diam_sweep[-1], vol_ratio_sweep[0], vol_ratio_sweep[-1]), xlabel='spring stiffness', ylabel='step length', zlabel='volume ratio') mlab.colorbar(obj,title='D',nb_labels=5) mlab.show() def plots(): k_s_sweep = [10**(x-5) for x in range(10)] sl_div_diam_sweep = [5.0*(x+1)/1000 for x in range(20)] sl_div_diam_sweep.reverse() vol_ratio = 0.3 plt.figure(figsize=(6,4.5)) for k_s,i in zip(k_s_sweep,range(10)): plt.clf() for sl_div_diam,j in zip(sl_div_diam_sweep,range(20)): subdir = str(k_s)+"_"+str(sl_div_diam)+"_"+str(vol_ratio) dir = data_dir + "/" + subdir rdf = numpy.loadtxt(dir+ "/rdf_average.csv", delimiter=',', usecols = (0,1)) plt.plot(rdf[:,0],rdf[:,1],label="step = %f"%(sl_div_diam),color=(1-j/20.0, 1-j/20.0, 1.0)) plt.xlabel('$r$') plt.ylabel('RDF') print "saving file /rdf_%f.pdf"%(k_s) plt.savefig(data_dir + "/rdf_%f.pdf"%(k_s)) if __name__ == '__main__': #reduce_sweep() plots()
gpl-2.0
goerz/mgplottools
mgplottools/mpl.py
1
16768
""" Support routines for matplotlib plotting. The module also contains a standard palette of colors (`colors` module dictionary) and line styles (`ls` module dictionary). For the colors, it is recommended to set up the color cycle by hand in your matplotlibrc file. Alternatively, you can call >>> mgplottools.mpl.set_color_cycle() in order to enforce the use of the module color palette at runtime. For the linestyles (which are encoded as "dashes"), you may use a cyclic iterator while plotting: >>> ls_cycle = mgplottools.mpl.new_ls_cycle() >>> ax.plot(linspace(0, 10, 100), linspace(0, 10, 100), >>> dashes=next(ls_cycle)) You must create a new cycle object each time your want to restart the cycle (e.g. for a new panel) """ from __future__ import print_function, absolute_import from itertools import cycle import matplotlib import matplotlib.figure import numpy as np import os from matplotlib.ticker import AutoMinorLocator, FormatStrFormatter cm2inch = 0.39370079 # colors colors = { "white" : (255, 255, 255), #ffffff "black" : (0, 0, 0), #000000 "blue" : (55, 126, 184), #377eb8 "orange" : (255, 127, 0), #ff7f00 "red" : (228, 26, 28), #e41a1c "green" : (77, 175, 74), #4daf4a "purple" : (152, 78, 163), #984ea3 "brown" : (166, 86, 40), #a65628 "pink" : (247, 129, 191), #f781bf "yellow" : (210, 210, 21), #d2d215 "lightred" : (251, 154, 153), #fb9a99 "lightblue" : (166, 206, 227), #a6cee3 "lightorange" : (253, 191, 111), #fdbf6f "lightgreen" : (178, 223, 138), #b2df8a "lightpurple" : (202, 178, 214), #cab2d6 "grey" : (153, 153, 153), #999999 } def get_color(name, alpha=0.0, format='web'): """ Return color for the given color name, depending on `format`. If format is 'rgb', return (r,g,b) tuple ( values in [0,1) ) If format is 'rgba', return (r,g,b,a) tuple ( values in [0,1) ), where a is the given alpha value If format is 'web', return rgb hex string (with '#' prefix) """ r, g, b = colors[name.lower()] if format == 'web': return "#%02x%02x%02x" % (r, g, b) if format == 'rgb': return (r, g, b) elif format == 'rgba': return (r, g, b, alpha) def set_color_cycle(color_cycle=None): """ Set the automatic matplotlib color cycle to the given array of color names. `color_cycle` must be an array of color names that appear in the module `color` dictionary. It defaults to ["blue", "orange", "red", "green", "purple", "brown", "pink", "yellow", "lightred", "lightblue", "lightorange", "lightgreen", "lightpurple"] """ if color_cycle is None: color_cycle = ["blue", "orange", "red", "green", "purple", "brown", "pink", "yellow", "lightred", "lightblue", "lightorange", "lightgreen", "lightpurple"] matplotlib.rc('axes', color_cycle=[get_color(cname) for cname in color_cycle]) # line styles ls = { "solid" : (None, None), "dashed" : (4,1.5), "long-dashed" : (8,1), "double-dashed" : (3,1,3,2.5), "dash-dotted" : (5,1,1,1), "dot-dot-dashed" : (1,1,1,1,7,1), "dash-dash-dotted" : (4,1,4,1,1,1), "dotted" : (1,1), "double-dotted" : (1,1,1,3), } def new_ls_cycle(ls_cycle=None): """ Return a cyclic iterator of linestyles (dashes) ls_cycle must be an array of line style names that appear in the module `ls` dictionary. It defaults to ["solid", "dashed", "long-dashed", "dash-dotted", "dash-dash-dotted", "dot-dot-dashed", "double-dashed", "dotted", "double-dotted"] Use as: >>> ls_cycle = mgplottools.mpl.new_ls_cycle() >>> ax.plot(linspace(0, 10, 100), linspace(0, 10, 100), >>> dashes=next(ls_cycle)) """ if ls_cycle is None: ls_cycle = ["solid", "dashed", "long-dashed", "dash-dotted", "dash-dash-dotted", "dot-dot-dashed", "double-dashed", "dotted", "double-dotted"] return cycle([ls[l] for l in ls_cycle]) # utilities def new_figure(fig_width, fig_height, size_in_cm=True, style=None, no_backend=False, quiet=False, **kwargs): """ Return a new matplotlib figure of the specified size (in cm by default) Information about the matplotlib backend, settings and the figure will be printed on STDOUT, unless `quiet=True` is given. The remaining kwargs are passed to the Figure init routine Arguments --------- fig_width: float total width of figure canvas, in cm (or inches if `size_in_cm=False` fig_height: float total height of figure canvas, in cm (or inches if `size_in_cm=False` size_in_cm: boolean, optional give as False to indicate that `fig_width` and `fig_height` are in inches instead of cm style: string or array of strings, optional A style file to overwrite or ammend the matplotlibrc file. For matplotlib version >=1.4, the style sheet feature will be used, see <http://matplotlib.org/users/style_sheets.html> In older versions of matplotlib, `style` must a filename or URL string; the contents of the file will be merged with the matplotlibrc settings no_backend: boolean, optional If given as True, skip the use of the pyplot entirely, creating the figure in a purely object-oriented way. quiet: boolean, optional Notes ----- You may use the figure as follows, assuming the pyplot is used (`no_backend=False`) >>> import matplotlib >>> matplotlib.use('PDF') # backend ('PDF' for pdf, 'Agg' for png) >>> fig = mgplottools.mpl.new_figure(10, 4) >>> pos = [0.05, 0.05, 0.9, 0.9] # left, bottom offset, width, height >>> ax = fig.add_axes(pos) >>> ax.plot(linspace(0, 10, 100), linspace(0, 10, 100)) >>> fig.savefig('out.pdf', format='pdf') Alternatively, for a GUI backend, instead of `fig.savefig()`, you can display all created figures using `fig.show()` -- it is set up as an alias to matplotlib.pyplot.show(). If you want to do any interactive plotting in ipython (i.e. manipulating the plot after its creation), make sure to load the %matplotlib or %pylab magic functions. Also, you must use pyplot >>> import matplotlib.pyplot as plt Do not use `plt.ion()`, which does not work in ipython. Simply create a figure, then call `plt.show()` and `plt.draw()` If not using a backend (`no_backend=True`, bypassing the pyplot state machine), you must create the canvas manually. Consider using the `show_fig`, `write_pdf`, `write_eps`, and `write_png` routines """ if (no_backend): from matplotlib.figure import Figure as figure backend = "N/A" using_pyplot = False else: using_pyplot = True from matplotlib.pyplot import figure backend = matplotlib.get_backend().lower() if not quiet: print("Using backend: %s" % backend) print("Using maplotlibrc: %s" % matplotlib.matplotlib_fname()) if style is not None: try: import matplotlib.style as mpl_style mpl_style.use(style) if not quiet: print("Using style: %s" % style) except ImportError: if not quiet: print("The style package was added to matplotlib in version " \ "1.4. It is not available in your release.\n") print("Using fall-back implementation") try: from matplotlib import rc_params_from_file rc = rc_params_from_file(style, use_default_template=False) matplotlib.rcParams.update(rc) except: print("Style '%s' not found" % style) except ValueError as e: print("Error loading style %s: %s" % (style, e)) if size_in_cm: if not quiet: print("Figure height: %s cm" % fig_height) print("Figure width : %s cm" % fig_width) fig = figure(figsize=(fig_width*cm2inch, fig_height*cm2inch), **kwargs) else: if not quiet: print("Figure height: %s cm" % (fig_height / cm2inch)) print("Figure width : %s cm" % (fig_width / cm2inch)) fig = figure(figsize=(fig_width, fig_height), **kwargs) if using_pyplot: # replace fig.show() with matplotlib.pyplot.show() from matplotlib.pyplot import show fig.show = show return fig def set_axis(ax, which_axis, start, stop, step=None, range=None, minor=0, format=None, label=None, labelpad=None, tickpad=None, label_coords=None, ticklabels=None, logscale=False, drop_ticklabels=None): """ Format the x or y axis of the given axes object Parameters ---------- ax: instance of matplotlib.axes.Axes Axes instance in which to set the x or y axis which_axis: str Either 'x', or 'y' start: float value for first tick on the axis (and start of axis, unless range is given stop: float value for last tick on the axis (and stop of axis, unless range is given) step: float step between major ticks. If not given, use automatic ticks. Must not be given if logscale=True range: tuple The minimum and maximum value of the axis. If not given, [start, stop] minor: Number of subdivisions of the interval between major ticks; e.g., minor=2 will place a single minor tick midway between major ticks. format: str Format string to use for tick labels. Will be chosen automatically if not given label: str Axis-label labelpad: float spacing in points between the label and the axis. Use label_coords for more control tickpad: float spacing in points between the ticklabel and the axes. label_coords: tuple (x,y) exact position of the axis label, in the axes relative coordinate system ticklabels: array of strings, boolean If given, labels for the major tick marks. Alternatively, if given as a boolean value "False", suppress labels logscale: set the given axis to use log scale drop_ticklabels: list of tick label indices to make invisible. Note that for logscale plots, there may be spurious tick labels, so some trial and error is required. """ if which_axis == 'x': axis = ax.xaxis if logscale: ax.set_xscale('log') elif which_axis == 'y': axis = ax.yaxis if logscale: ax.set_yscale('log') else: raise ValueError('which_axis must be either "x", or "y"') if step is not None: if not logscale: axis.set_ticks(np.arange(float(start), float(stop) + float(step)/2.0, float(step))) else: raise ValueError('step must not be given in conjuction with ' 'logscale=True') if format is not None: majorFormatter = FormatStrFormatter(format) axis.set_major_formatter(majorFormatter) if minor > 0: minorLocator = AutoMinorLocator(minor) axis.set_minor_locator(minorLocator) if range is None: range = [start, stop] if which_axis == 'x': ax.set_xlim(range) if label is not None: ax.set_xlabel(label, labelpad=labelpad) if ticklabels is not None: try: ax.set_xticklabels([str(v) for v in ticklabels]) except TypeError: if not ticklabels: ax.set_xticklabels([]) elif which_axis == 'y': ax.set_ylim(range) if label is not None: ax.set_ylabel(label, labelpad=labelpad) if ticklabels is not None: try: ax.set_yticklabels([str(v) for v in ticklabels]) except TypeError: if not ticklabels: ax.set_yticklabels([]) if label_coords is not None: axis.set_label_coords(*label_coords) if drop_ticklabels is not None: labels = axis.get_ticklabels() for index in drop_ticklabels: labels[index].set_visible(False) if tickpad is not None: ax.tick_params(axis=which_axis, pad=tickpad) def show_fig(fig): """ Display the given figure in a custom Qt4 window. This is independent from the pyplot framework and thus works for figures that were created with `no_backend=True`. However, after calling this routine, an existing pyplot backend will be permanently changed and may be dysfunctional. Since interactively showing the figure can change its size, we attempt to restore the original size on exit from the routine. """ from PyQt4.QtCore import Qt from PyQt4.QtGui import QMainWindow, QWidget, QVBoxLayout, QApplication # TODO: make interactive # http://stackoverflow.com/questions/22729206/matplotlib-show-figure-again # # See # https://github.com/eliben/code-for-blog/blob/master/2009/qt_mpl_bars.py # for further examples of GUI programming class AppForm(QMainWindow): def __init__(self, fig): parent = None QMainWindow.__init__(self, parent) self.create_main_frame(fig) self.on_draw() def create_main_frame(self, fig): from matplotlib.backends.backend_qt4agg import ( FigureCanvasQTAgg as FigureCanvas, NavigationToolbar2QT as NavigationToolbar) self.main_frame = QWidget() self.fig = fig self.canvas = FigureCanvas(self.fig) self.canvas.setParent(self.main_frame) self.canvas.setFocusPolicy(Qt.StrongFocus) self.canvas.setFocus() self.mpl_toolbar = NavigationToolbar(self.canvas, self.main_frame) self.canvas.mpl_connect('key_press_event', self.on_key_press) vbox = QVBoxLayout() vbox.addWidget(self.canvas) # the matplotlib canvas vbox.addWidget(self.mpl_toolbar) self.main_frame.setLayout(vbox) self.setCentralWidget(self.main_frame) def on_draw(self): self.canvas.draw() def on_key_press(self, event): from matplotlib.backend_bases import key_press_handler print('you pressed', event.key) # implement the default mpl key press events described at # http://matplotlib.org/users/navigation_toolbar.html key_press_handler(event, self.canvas, self.mpl_toolbar) w = fig.get_figwidth() h = fig.get_figheight() app = QApplication([]) form = AppForm(fig) form.show() app.exec_() fig.set_figwidth(w) fig.set_figheight(h) def write_pdf(fig, outfile, dpi=72): """ Write a pdf of the given figure, indendent of the pyplot backend. However, if the figure was created from pyplot, an existing pyplot backend will be permanently changed and may be dysfunctional. """ from matplotlib.backends.backend_pdf \ import FigureCanvasPdf as FigureCanvas canvas = FigureCanvas(fig) canvas.print_figure(outfile, dpi=dpi) def write_png(fig, outfile, dpi=72): """ Write a png of the given figure, indendent of the pyplot backend. However, if the figure was created from pyplot, an existing pyplot backend will be permanently changed and may be dysfunctional. """ from matplotlib.backends.backend_agg \ import FigureCanvasAgg as FigureCanvas canvas = FigureCanvas(fig) canvas.print_figure(outfile, dpi=dpi) def write_eps(fig, outfile, dpi=72): """ Write a eps of the given figure, indendent of the pyplot backend. However, if the figure was created from pyplot, an existing pyplot backend will be permanently changed and may be dysfunctional. """ from matplotlib.backends.backend_ps \ import FigureCanvasPS as FigureCanvas canvas = FigureCanvas(fig) canvas.print_figure(outfile, dpi=dpi) def write_figure(fig, outfile, dpi=72): """ Write out a figure to the given outfile, either in pdf, eps, or png format depending on the extension of outfile. This works independently of the pyplot backend; however, it may disable any existing pyplot backend. """ format = os.path.splitext(outfile)[1][1:].lower() writer = { 'pdf': write_pdf, 'eps': write_eps, 'png': write_eps } writer[format](fig, outfile, dpi)
gpl-3.0
raincoatrun/basemap
examples/hires.py
4
1615
from __future__ import print_function from mpl_toolkits.basemap import Basemap import numpy as np import matplotlib.pyplot as plt import pickle, time # create figure with aqua background (will be oceans) fig = plt.figure() # create Basemap instance. Use 'high' resolution coastlines. t1 = time.clock() #m = Basemap(llcrnrlon=-10.5,llcrnrlat=49.5,urcrnrlon=3.5,urcrnrlat=59.5, # resolution='h',projection='tmerc',lon_0=-4,lat_0=0) m = Basemap(width=920000,height=1100000, resolution='f',projection='tmerc',lon_0=-4.2,lat_0=54.6) # make sure countries and rivers are loaded m.drawcountries() m.drawrivers() print(time.clock()-t1,' secs to create original Basemap instance') # pickle the class instance. pickle.dump(m,open('map.pickle','wb'),-1) # clear the figure plt.clf() # read pickle back in and plot it again (should be much faster). t1 = time.clock() m2 = pickle.load(open('map.pickle','rb')) # draw coastlines and fill continents. m.drawcoastlines() # fill continents and lakes m.fillcontinents(color='coral',lake_color='aqua') # draw political boundaries. m.drawcountries(linewidth=1) # fill map projection region light blue (this will # paint ocean areas same color as lakes). m.drawmapboundary(fill_color='aqua') # draw major rivers. m.drawrivers(color='b') print(time.clock()-t1,' secs to plot using using a pickled Basemap instance') # draw parallels circles = np.arange(48,65,2).tolist() m.drawparallels(circles,labels=[1,1,0,0]) # draw meridians meridians = np.arange(-12,13,2) m.drawmeridians(meridians,labels=[0,0,1,1]) plt.title("High-Res British Isles",y=1.04) plt.show()
gpl-2.0
dannyjacobs/PRISim
main/interferometer_array_theory_units_figures_producer.py
1
233172
import numpy as NP import copy from astropy.io import fits from astropy.io import ascii from astropy import coordinates as coord from astropy.coordinates import Galactic, FK5 from astropy import units import astropy.cosmology as CP import scipy.constants as FCNST from scipy import interpolate import matplotlib.pyplot as PLT import matplotlib.colors as PLTC import matplotlib.cm as CM from matplotlib.ticker import FuncFormatter import healpy as HP from mwapy.pb import primary_beam as MWAPB import geometry as GEOM import interferometry as RI import catalog as SM import constants as CNST import my_DSP_modules as DSP import my_operations as OPS import primary_beams as PB import baseline_delay_horizon as DLY import lookup_operations as LKP import ipdb as PDB # 01) Plot pointings information # 02) Plot power patterns for snapshots # 03) Plot foreground models with power pattern contours for snapshots # 04) Plot delay maps on sky for baselines of different orientations # 05) Plot FHD data and simulations on all baselines combined # 06) Plot FHD data to simulation ratio on all baselines combined # 07) Plot uncertainties in FHD data to simulation ratio on all baselines combined # 08) Plot ratio of differences between FHD data and simulation to expected error on all baselines combined # 09) Plot histogram of fractional differences between FHD data and simulation # 10) Plot noiseless delay spectra from simulations for diffuse, compact and all-sky models # 11) Plot noiseless delay spectra for all sky models broken down by baseline orientation # 12) Plot delay spectra on northward and eastward baselines along with delay maps and sky models (with and without power pattern contours) # 13) Plot EoR window foreground contamination when baselines are selectively removed # 14) Plot delay spectra before and after baselines are selectively removed # 15) Plot Fourier space # 16) Plot average thermal noise in simulations and data as a function of baseline length # 17) Plot delay spectra of the MWA tile power pattern using a uniform sky model # 18) Plot delay spectra of the all-sky model with dipole, MWA tile, and HERA dish antenna shapes # 19) Plot delay spectrum of uniform sky model with a uniform power pattern plot_01 = False plot_02 = False plot_03 = False plot_04 = False plot_05 = True plot_06 = False plot_07 = False plot_08 = False plot_09 = False plot_10 = False plot_11 = False plot_12 = False plot_13 = False plot_14 = False plot_15 = False plot_16 = False plot_17 = False plot_18 = False plot_19 = False # PLT.ioff() PLT.ion() project_MWA = True project_HERA = False project_beams = False project_drift_scan = False project_global_EoR = False if project_MWA: project_dir = 'project_MWA' if project_HERA: project_dir = 'project_HERA' if project_beams: project_dir = 'project_beams' if project_drift_scan: project_dir = 'project_drift_scan' if project_global_EoR: project_dir = 'project_global_EoR' telescope_id = 'custom' element_size = 0.74 element_shape = 'delta' phased_array = True if (telescope_id == 'mwa') or (telescope_id == 'mwa_dipole'): element_size = 0.74 element_shape = 'dipole' elif telescope_id == 'vla': element_size = 25.0 element_shape = 'dish' elif telescope_id == 'gmrt': element_size = 45.0 element_shape = 'dish' elif telescope_id == 'hera': element_size = 14.0 element_shape = 'dish' elif telescope_id == 'custom': if (element_shape is None) or (element_size is None): raise ValueError('Both antenna element shape and size must be specified for the custom telescope type.') elif element_size <= 0.0: raise ValueError('Antenna element size must be positive.') else: raise ValueError('telescope ID must be specified.') if telescope_id == 'custom': if element_shape == 'delta': telescope_id = 'delta' else: telescope_id = '{0:.1f}m_{1:}'.format(element_size, element_shape) if phased_array: telescope_id = telescope_id + '_array' telescope_str = telescope_id+'_' ground_plane = 0.3 # height of antenna element above ground plane if ground_plane is None: ground_plane_str = 'no_ground_' else: if ground_plane > 0.0: ground_plane_str = '{0:.1f}m_ground_'.format(ground_plane) else: raise ValueError('Height of antenna element above ground plane must be positive.') delayerr = 0.05 # delay error rms in ns if delayerr is None: delayerr_str = '' delayerr = 0.0 elif delayerr < 0.0: raise ValueError('delayerr must be non-negative.') else: delayerr_str = 'derr_{0:.3f}ns'.format(delayerr) delayerr *= 1e-9 gainerr = None # Gain error rms in dB if gainerr is None: gainerr_str = '' gainerr = 0.0 elif gainerr < 0.0: raise ValueError('gainerr must be non-negative.') else: gainerr_str = '_gerr_{0:.2f}dB'.format(gainerr) nrand = 1 # Number of random realizations if nrand is None: nrandom_str = '' nrand = 1 elif nrand < 1: raise ValueError('nrandom must be positive') else: nrandom_str = '_nrand_{0:0d}_'.format(nrand) if (delayerr_str == '') and (gainerr_str == ''): nrand = 1 nrandom_str = '' delaygain_err_str = delayerr_str + gainerr_str + nrandom_str if project_MWA: delaygain_err_str = '' latitude = -26.701 antenna_file = '/data3/t_nithyanandan/project_MWA/MWA_128T_antenna_locations_MNRAS_2012_Beardsley_et_al.txt' max_bl_length = 200.0 # Maximum baseline length (in m) ant_locs = NP.loadtxt(antenna_file, skiprows=6, comments='#', usecols=(0,1,2,3)) ref_bl, ref_bl_id = RI.baseline_generator(ant_locs[:,1:], ant_id=ant_locs[:,0].astype(int).astype(str), auto=False, conjugate=False) ref_bl_length = NP.sqrt(NP.sum(ref_bl**2, axis=1)) ref_bl_orientation = NP.angle(ref_bl[:,0] + 1j * ref_bl[:,1], deg=True) neg_ref_bl_orientation_ind = ref_bl_orientation < 0.0 ref_bl[neg_ref_bl_orientation_ind,:] = -1.0 * ref_bl[neg_ref_bl_orientation_ind,:] ref_bl_orientation = NP.angle(ref_bl[:,0] + 1j * ref_bl[:,1], deg=True) sortind = NP.argsort(ref_bl_length, kind='mergesort') ref_bl = ref_bl[sortind,:] ref_bl_length = ref_bl_length[sortind] ref_bl_orientation = ref_bl_orientation[sortind] ref_bl_id = ref_bl_id[sortind] n_bins_baseline_orientation = 4 nmax_baselines = 2048 ref_bl = ref_bl[:nmax_baselines,:] ref_bl_length = ref_bl_length[:nmax_baselines] ref_bl_id = ref_bl_id[:nmax_baselines] ref_bl_orientation = ref_bl_orientation[:nmax_baselines] total_baselines = ref_bl_length.size Tsys = 95.0 # System temperature in K freq = 185.0e6 # center frequency in Hz wavelength = FCNST.c / freq # in meters redshift = CNST.rest_freq_HI / freq - 1 oversampling_factor = 2.0 n_sky_sectors = 1 sky_sector = None # if None, use all sky sector. Accepted values are None, 0, 1, 2, or 3 if sky_sector is None: sky_sector_str = '_all_sky_' n_sky_sectors = 1 sky_sector = 0 else: sky_sector_str = '_sky_sector_{0:0d}_'.format(sky_sector) n_bl_chunks = 32 baseline_chunk_size = 64 baseline_bin_indices = range(0,total_baselines,baseline_chunk_size) bl_chunk = range(len(baseline_bin_indices)) bl_chunk = bl_chunk[:n_bl_chunks] truncated_ref_bl = NP.copy(ref_bl) truncated_ref_bl_id = NP.copy(ref_bl_id) truncated_ref_bl_length = NP.sqrt(NP.sum(truncated_ref_bl[:,:2]**2, axis=1)) # truncated_ref_bl_length = NP.copy(ref_bl_length) truncated_ref_bl_orientation = NP.copy(ref_bl_orientation) truncated_total_baselines = truncated_ref_bl_length.size if max_bl_length is not None: truncated_ref_bl_ind = ref_bl_length <= max_bl_length truncated_ref_bl = truncated_ref_bl[truncated_ref_bl_ind,:] truncated_ref_bl_id = truncated_ref_bl_id[truncated_ref_bl_ind] truncated_ref_bl_orientation = truncated_ref_bl_orientation[truncated_ref_bl_ind] truncated_ref_bl_length = truncated_ref_bl_length[truncated_ref_bl_ind] truncated_total_baselines = truncated_ref_bl_length.size bl_orientation_str = ['South-East', 'East', 'North-East', 'North'] spindex_rms = 0.0 spindex_seed = None spindex_seed_str = '' if spindex_rms > 0.0: spindex_rms_str = '{0:.1f}'.format(spindex_rms) else: spindex_rms = 0.0 if spindex_seed is not None: spindex_seed_str = '{0:0d}_'.format(spindex_seed) use_alt_spindex = False alt_spindex_rms = 0.3 alt_spindex_seed = 95 alt_spindex_seed_str = '' if alt_spindex_rms > 0.0: alt_spindex_rms_str = '{0:.1f}'.format(alt_spindex_rms) else: alt_spindex_rms = 0.0 if alt_spindex_seed is not None: alt_spindex_seed_str = '{0:0d}_'.format(alt_spindex_seed) nside = 64 use_GSM = True use_DSM = False use_CSM = False use_NVSS = False use_SUMSS = False use_MSS = False use_GLEAM = False use_PS = False obs_mode = 'custom' avg_drifts = False beam_switch = False snapshot_type_str = '' if avg_drifts: snapshot_type_str = 'drift_averaged_' if beam_switch: snapshot_type_str = 'beam_switches_' freq_resolution = 80e3 # in kHz nchan = 384 bpass_shape = 'bhw' max_abs_delay = 1.5 # in micro seconds coarse_channel_resolution = 1.28e6 # in Hz bw = nchan * freq_resolution dsm_base_freq = 408e6 # Haslam map frequency csm_base_freq = 1.420e9 # NVSS frequency dsm_dalpha = 0.7/2 # Spread in spectral index in Haslam map csm_dalpha = 0.7/2 # Spread in spectral index in NVSS csm_jacobian_spindex = NP.abs(csm_dalpha * NP.log(freq/csm_base_freq)) dsm_jacobian_spindex = NP.abs(dsm_dalpha * NP.log(freq/dsm_base_freq)) if use_GSM: fg_str = 'asm' elif use_DSM: fg_str = 'dsm' elif use_CSM: fg_str = 'csm' elif use_SUMSS: fg_str = 'sumss' elif use_GLEAM: fg_str = 'gleam' elif use_PS: fg_str = 'point' elif use_NVSS: fg_str = 'nvss' else: fg_str = 'other' roifile = '/data3/t_nithyanandan/'+project_dir+'/roi_info_'+telescope_str+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+delaygain_err_str+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+'.fits' roi = RI.ROI_parameters(init_file=roifile) telescope = roi.telescope if (telescope['shape'] == 'dipole') or (telescope['shape'] == 'delta'): A_eff = (0.5*wavelength)**2 if (telescope_id == 'mwa') or phased_array: A_eff *= 16 if telescope['shape'] == 'dish': A_eff = NP.pi * (0.5*element_size)**2 pc = NP.asarray([0.0, 0.0, 1.0]).reshape(1,-1) pc_coords = 'dircos' h = 0.7 # Hubble constant coefficient cosmodel100 = CP.FlatLambdaCDM(H0=100.0, Om0=0.27) # Using H0 = 100 km/s/Mpc cosmodel = CP.FlatLambdaCDM(H0=h*100.0, Om0=0.27) # Using H0 = h * 100 km/s/Mpc dr_z = (FCNST.c/1e3) * bw * (1+redshift)**2 / CNST.rest_freq_HI / cosmodel100.H0.value / cosmodel100.efunc(redshift) # in Mpc/h r_z = cosmodel100.comoving_transverse_distance(redshift).value # in Mpc/h volfactor1 = A_eff / wavelength**2 / bw volfactor2 = r_z**2 * dr_z / bw Jy2K = wavelength**2 * CNST.Jy / (2*FCNST.k) mJy2mK = NP.copy(Jy2K) Jy2mK = 1e3 * Jy2K mK2Jy = 1/Jy2mK mK2mJy = 1/mJy2mK K2Jy = 1/Jy2K dspec_min = None dspec_max = None def kprll(eta, z): return 2 * NP.pi * eta * cosmodel100.H0.value * CNST.rest_freq_HI * cosmodel100.efunc(z) / FCNST.c / (1+z)**2 * 1e3 def kperp(u, z): return 2 * NP.pi * u / cosmodel100.comoving_transverse_distance(z).value ########################################## if plot_01: # 01) Plot pointings information pointing_file = '/data3/t_nithyanandan/project_MWA/Aug23_obsinfo.txt' pointing_info_from_file = NP.loadtxt(pointing_file, comments='#', usecols=(1,2,3), delimiter=',') obs_id = NP.loadtxt(pointing_file, comments='#', usecols=(0,), delimiter=',', dtype=str) if (telescope_id == 'mwa') or (phased_array): delays_str = NP.loadtxt(pointing_file, comments='#', usecols=(4,), delimiter=',', dtype=str) delays_list = [NP.fromstring(delaystr, dtype=float, sep=';', count=-1) for delaystr in delays_str] delay_settings = NP.asarray(delays_list) delay_settings *= 435e-12 delays = NP.copy(delay_settings) n_snaps = pointing_info_from_file.shape[0] pointing_info_from_file = pointing_info_from_file[:min(n_snaps, pointing_info_from_file.shape[0]),:] obs_id = obs_id[:min(n_snaps, pointing_info_from_file.shape[0])] if (telescope_id == 'mwa') or (phased_array): delays = delay_settings[:min(n_snaps, pointing_info_from_file.shape[0]),:] n_snaps = min(n_snaps, pointing_info_from_file.shape[0]) pointings_altaz = pointing_info_from_file[:,:2].reshape(-1,2) pointings_altaz_orig = pointing_info_from_file[:,:2].reshape(-1,2) lst = 15.0 * pointing_info_from_file[:,2] lst_wrapped = lst + 0.0 lst_wrapped[lst_wrapped > 180.0] = lst_wrapped[lst_wrapped > 180.0] - 360.0 lst_edges = NP.concatenate((lst_wrapped, [lst_wrapped[-1]+lst_wrapped[-1]-lst_wrapped[-2]])) lst = 0.5*(lst_edges[1:]+lst_edges[:-1]) t_snap = (lst_edges[1:]-lst_edges[:-1]) / 15.0 * 3.6e3 pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') pointings_hadec = GEOM.altaz2hadec(pointings_altaz, latitude, units='degrees') pointings_radec = NP.hstack(((lst-pointings_hadec[:,0]).reshape(-1,1), pointings_hadec[:,1].reshape(-1,1))) pointings_radec[:,0] = pointings_radec[:,0] % 360.0 pointings_ha = pointings_hadec[:,0] pointings_ha[pointings_ha > 180.0] = pointings_ha[pointings_ha > 180.0] - 360.0 pointings_ra = pointings_radec[:,0] pointings_ra[pointings_ra > 180.0] = pointings_ra[pointings_ra > 180.0] - 360.0 pointings_dec = pointings_radec[:,1] infile = '/data3/t_nithyanandan/'+project_dir+'/'+telescope_str+'multi_baseline_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(ref_bl_length[baseline_bin_indices[0]],ref_bl_length[min(baseline_bin_indices[n_bl_chunks-1]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_'+fg_str+sky_sector_str+'sprms_{0:.1f}_'.format(spindex_rms)+spindex_seed_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+'.fits' hdulist = fits.open(infile) lst_select = hdulist['POINTING AND PHASE CENTER INFO'].data['LST'] hdulist.close() lst_select[lst_select > 180.0] -= 360.0 fig = PLT.figure(figsize=(6,6)) ax1a = fig.add_subplot(111) ax1a.set_xlabel('Local Sidereal Time [hours]', fontsize=18, weight='medium') ax1a.set_ylabel('Longitude [degrees]', fontsize=18, weight='medium') ax1a.set_xlim((lst_wrapped.min()-1)/15.0, (lst_wrapped.max()-1)/15.0) ax1a.set_ylim(pointings_ha.min()-15.0, pointings_ha.max()+15.0) ax1a.plot(lst_wrapped/15.0, pointings_ha, 'k--', lw=2, label='HA') ax1a.plot(lst_wrapped/15.0, pointings_ra, 'k-', lw=2, label='RA') for i in xrange(lst_select.size): if i == 0: ax1a.axvline(x=lst_select[i]/15.0, color='gray', ls='-.', lw=2, label='Selected LST') else: ax1a.axvline(x=lst_select[i]/15.0, color='gray', ls='-.', lw=2) ax1a.tick_params(which='major', length=18, labelsize=12) ax1a.tick_params(which='minor', length=12, labelsize=12) # legend1a = ax1a.legend(loc='lower right') # legend1a.draw_frame(False) for axis in ['top','bottom','left','right']: ax1a.spines[axis].set_linewidth(2) xticklabels = PLT.getp(ax1a, 'xticklabels') yticklabels = PLT.getp(ax1a, 'yticklabels') PLT.setp(xticklabels, fontsize=15, weight='medium') PLT.setp(yticklabels, fontsize=15, weight='medium') ax1b = ax1a.twinx() ax1b.set_ylabel('Declination [degrees]', fontsize=18, weight='medium') ax1b.set_ylim(pointings_dec.min()-5.0, pointings_dec.max()+5.0) ax1b.plot(lst_wrapped/15.0, pointings_dec, 'k:', lw=2, label='Dec') ax1b.tick_params(which='major', length=12, labelsize=12) # legend1b = ax1b.legend(loc='upper right') # legend1b.draw_frame(False) yticklabels = PLT.getp(ax1b, 'yticklabels') PLT.setp(yticklabels, fontsize=15, weight='medium') decline = PLT.Line2D(range(1), range(0), color='k', ls=':', lw=2) haline = PLT.Line2D(range(1), range(0), color='k', ls='--', lw=2) raline = PLT.Line2D(range(1), range(0), color='k', ls='-', lw=2) lstline = PLT.Line2D(range(1), range(0), color='gray', ls='-.', lw=2) legend = PLT.legend((haline, raline, decline, lstline), ('HA', 'RA', 'Dec', 'Chosen LST'), loc='lower right', frameon=False) fig.subplots_adjust(right=0.85) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+obs_mode+'_pointings.eps', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+obs_mode+'_pointings.png', bbox_inches=0) ############################################################################# if plot_02 or plot_03 or plot_04 or plot_12: infile = '/data3/t_nithyanandan/'+project_dir+'/'+telescope_str+'multi_baseline_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(ref_bl_length[baseline_bin_indices[0]],ref_bl_length[min(baseline_bin_indices[n_bl_chunks-1]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_'+fg_str+sky_sector_str+'sprms_{0:.1f}_'.format(spindex_rms)+spindex_seed_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+'.fits' hdulist = fits.open(infile) n_snaps = hdulist[0].header['n_acc'] lst = hdulist['POINTING AND PHASE CENTER INFO'].data['LST'] hdulist.close() backdrop_xsize = 100 xmin = -180.0 xmax = 180.0 ymin = -90.0 ymax = 90.0 xgrid, ygrid = NP.meshgrid(NP.linspace(xmax, xmin, backdrop_xsize), NP.linspace(ymin, ymax, backdrop_xsize/2)) xvect = xgrid.ravel() yvect = ygrid.ravel() pb_snapshots = [] pbx_MWA_snapshots = [] pby_MWA_snapshots = [] src_ind_csm_snapshots = [] src_ind_gsm_snapshots = [] dsm_snapshots = [] if plot_03 or plot_12: freq_SUMSS = 0.843 # in GHz SUMSS_file = '/data3/t_nithyanandan/project_MWA/foregrounds/sumsscat.Mar-11-2008.txt' catalog = NP.loadtxt(SUMSS_file, usecols=(0,1,2,3,4,5,10,12,13,14,15,16)) ra_deg_SUMSS = 15.0 * (catalog[:,0] + catalog[:,1]/60.0 + catalog[:,2]/3.6e3) dec_dd = NP.loadtxt(SUMSS_file, usecols=(3,), dtype="|S3") sgn_dec_str = NP.asarray([dec_dd[i][0] for i in range(dec_dd.size)]) sgn_dec = 1.0*NP.ones(dec_dd.size) sgn_dec[sgn_dec_str == '-'] = -1.0 dec_deg_SUMSS = sgn_dec * (NP.abs(catalog[:,3]) + catalog[:,4]/60.0 + catalog[:,5]/3.6e3) fmajax = catalog[:,7] fminax = catalog[:,8] fpa = catalog[:,9] dmajax = catalog[:,10] dminax = catalog[:,11] PS_ind = NP.logical_and(dmajax == 0.0, dminax == 0.0) ra_deg_SUMSS = ra_deg_SUMSS[PS_ind] dec_deg_SUMSS = dec_deg_SUMSS[PS_ind] fint = catalog[PS_ind,6] * 1e-3 if spindex_seed is None: spindex_SUMSS = -0.83 + spindex_rms * NP.random.randn(fint.size) else: NP.random.seed(spindex_seed) spindex_SUMSS = -0.83 + spindex_rms * NP.random.randn(fint.size) fmajax = fmajax[PS_ind] fminax = fminax[PS_ind] fpa = fpa[PS_ind] dmajax = dmajax[PS_ind] dminax = dminax[PS_ind] bright_source_ind = fint >= 10.0 * (freq_SUMSS*1e9/freq)**spindex_SUMSS ra_deg_SUMSS = ra_deg_SUMSS[bright_source_ind] dec_deg_SUMSS = dec_deg_SUMSS[bright_source_ind] fint = fint[bright_source_ind] fmajax = fmajax[bright_source_ind] fminax = fminax[bright_source_ind] fpa = fpa[bright_source_ind] dmajax = dmajax[bright_source_ind] dminax = dminax[bright_source_ind] spindex_SUMSS = spindex_SUMSS[bright_source_ind] valid_ind = NP.logical_and(fmajax > 0.0, fminax > 0.0) ra_deg_SUMSS = ra_deg_SUMSS[valid_ind] dec_deg_SUMSS = dec_deg_SUMSS[valid_ind] fint = fint[valid_ind] fmajax = fmajax[valid_ind] fminax = fminax[valid_ind] fpa = fpa[valid_ind] spindex_SUMSS = spindex_SUMSS[valid_ind] freq_catalog = freq_SUMSS*1e9 + NP.zeros(fint.size) catlabel = NP.repeat('SUMSS', fint.size) ra_deg = ra_deg_SUMSS + 0.0 dec_deg = dec_deg_SUMSS spindex = spindex_SUMSS majax = fmajax/3.6e3 minax = fminax/3.6e3 fluxes = NP.copy(fint) nvss_file = '/data3/t_nithyanandan/project_MWA/foregrounds/NVSS_catalog.fits' freq_NVSS = 1.4 # in GHz hdulist = fits.open(nvss_file) ra_deg_NVSS = hdulist[1].data['RA(2000)'] dec_deg_NVSS = hdulist[1].data['DEC(2000)'] nvss_fpeak = hdulist[1].data['PEAK INT'] nvss_majax = hdulist[1].data['MAJOR AX'] nvss_minax = hdulist[1].data['MINOR AX'] hdulist.close() if spindex_seed is None: spindex_NVSS = -0.83 + spindex_rms * NP.random.randn(nvss_fpeak.size) else: NP.random.seed(2*spindex_seed) spindex_NVSS = -0.83 + spindex_rms * NP.random.randn(nvss_fpeak.size) not_in_SUMSS_ind = NP.logical_and(dec_deg_NVSS > -30.0, dec_deg_NVSS <= min(90.0, latitude+90.0)) bright_source_ind = nvss_fpeak >= 10.0 * (freq_NVSS*1e9/freq)**(spindex_NVSS) PS_ind = NP.sqrt(nvss_majax**2-(0.75/60.0)**2) < 14.0/3.6e3 count_valid = NP.sum(NP.logical_and(NP.logical_and(not_in_SUMSS_ind, bright_source_ind), PS_ind)) nvss_fpeak = nvss_fpeak[NP.logical_and(NP.logical_and(not_in_SUMSS_ind, bright_source_ind), PS_ind)] freq_catalog = NP.concatenate((freq_catalog, freq_NVSS*1e9 + NP.zeros(count_valid))) catlabel = NP.concatenate((catlabel, NP.repeat('NVSS',count_valid))) ra_deg = NP.concatenate((ra_deg, ra_deg_NVSS[NP.logical_and(NP.logical_and(not_in_SUMSS_ind, bright_source_ind), PS_ind)])) dec_deg = NP.concatenate((dec_deg, dec_deg_NVSS[NP.logical_and(NP.logical_and(not_in_SUMSS_ind, bright_source_ind), PS_ind)])) spindex = NP.concatenate((spindex, spindex_NVSS[NP.logical_and(NP.logical_and(not_in_SUMSS_ind, bright_source_ind), PS_ind)])) majax = NP.concatenate((majax, nvss_majax[NP.logical_and(NP.logical_and(not_in_SUMSS_ind, bright_source_ind), PS_ind)])) minax = NP.concatenate((minax, nvss_minax[NP.logical_and(NP.logical_and(not_in_SUMSS_ind, bright_source_ind), PS_ind)])) fluxes = NP.concatenate((fluxes, nvss_fpeak)) ra_deg_wrapped = ra_deg.ravel() ra_deg_wrapped[ra_deg_wrapped > 180.0] -= 360.0 # csmctlg = SM.Catalog(catlabel, freq_catalog, NP.hstack((ra_deg.reshape(-1,1), dec_deg.reshape(-1,1))), fluxes, spectral_index=spindex, src_shape=NP.hstack((majax.reshape(-1,1),minax.reshape(-1,1),NP.zeros(fluxes.size).reshape(-1,1))), src_shape_units=['degree','degree','degree']) spec_parms = {} # spec_parms['name'] = NP.repeat('tanh', ra_deg.size) spec_parms['name'] = NP.repeat('power-law', ra_deg.size) spec_parms['power-law-index'] = spindex # spec_parms['freq-ref'] = freq/1e9 + NP.zeros(ra_deg.size) spec_parms['freq-ref'] = freq_catalog + NP.zeros(ra_deg.size) spec_parms['flux-scale'] = fluxes spec_parms['flux-offset'] = NP.zeros(ra_deg.size) spec_parms['freq-width'] = NP.zeros(ra_deg.size) csmskymod = SM.SkyModel(catlabel, freq, NP.hstack((ra_deg.reshape(-1,1), dec_deg.reshape(-1,1))), 'func', spec_parms=spec_parms, src_shape=NP.hstack((majax.reshape(-1,1),minax.reshape(-1,1),NP.zeros(fluxes.size).reshape(-1,1))), src_shape_units=['degree','degree','degree']) dsm_file = '/data3/t_nithyanandan/project_MWA/foregrounds/gsmdata_{0:.1f}_MHz_nside_{1:0d}.fits'.format(freq/1e6,nside) hdulist = fits.open(dsm_file) dsm_table = hdulist[1].data dsm_ra_deg = dsm_table['RA'] dsm_dec_deg = dsm_table['DEC'] dsm_temperatures = dsm_table['T_{0:.0f}'.format(freq/1e6)] dsm = HP.cartview(dsm_temperatures.ravel(), coord=['G','C'], rot=[0,0,0], xsize=backdrop_xsize, return_projected_map=True) dsm = dsm.ravel() for i in xrange(n_snaps): havect = lst[i] - xvect altaz = GEOM.hadec2altaz(NP.hstack((havect.reshape(-1,1),yvect.reshape(-1,1))), latitude, units='degrees') dircos = GEOM.altaz2dircos(altaz, units='degrees') roi_altaz = NP.asarray(NP.where(altaz[:,0] >= 0.0)).ravel() az = altaz[:,1] + 0.0 az[az > 360.0 - 0.5*180.0/n_sky_sectors] -= 360.0 roi_sector_altaz = NP.asarray(NP.where(NP.logical_or(NP.logical_and(az[roi_altaz] >= -0.5*180.0/n_sky_sectors + sky_sector*180.0/n_sky_sectors, az[roi_altaz] < -0.5*180.0/n_sky_sectors + (sky_sector+1)*180.0/n_sky_sectors), NP.logical_and(az[roi_altaz] >= 180.0 - 0.5*180.0/n_sky_sectors + sky_sector*180.0/n_sky_sectors, az[roi_altaz] < 180.0 - 0.5*180.0/n_sky_sectors + (sky_sector+1)*180.0/n_sky_sectors)))).ravel() pb = NP.empty(xvect.size) pb.fill(NP.nan) pbx_MWA_vect = NP.empty(xvect.size) pbx_MWA_vect.fill(NP.nan) pby_MWA_vect = NP.empty(xvect.size) pby_MWA_vect.fill(NP.nan) pb[roi_altaz] = PB.primary_beam_generator(altaz[roi_altaz,:], freq, telescope=telescope, skyunits='altaz', freq_scale='Hz', pointing_info=roi.pinfo[i]) if (telescope_id == 'mwa') or (phased_array): pbx_MWA, pby_MWA = MWAPB.MWA_Tile_advanced(NP.radians(90.0-altaz[roi_altaz,0]).reshape(-1,1), NP.radians(altaz[roi_altaz,1]).reshape(-1,1), freq=185e6, delays=roi.pinfo[i]['delays']/435e-12) pbx_MWA_vect[roi_altaz] = pbx_MWA.ravel() pby_MWA_vect[roi_altaz] = pby_MWA.ravel() pb_snapshots += [pb] pbx_MWA_snapshots += [pbx_MWA_vect] pby_MWA_snapshots += [pby_MWA_vect] if plot_03 or plot_12: # csm_hadec = NP.hstack(((lst[i]-csmctlg.location[:,0]).reshape(-1,1), csmctlg.location[:,1].reshape(-1,1))) csm_hadec = NP.hstack(((lst[i]-csmskymod.location[:,0]).reshape(-1,1), csmskymod.location[:,1].reshape(-1,1))) csm_altaz = GEOM.hadec2altaz(csm_hadec, latitude, units='degrees') roi_csm_altaz = NP.asarray(NP.where(csm_altaz[:,0] >= 0.0)).ravel() src_ind_csm_snapshots += [roi_csm_altaz] dsm_snapshot = NP.empty(xvect.size) dsm_snapshot.fill(NP.nan) dsm_snapshot[roi_altaz] = dsm[roi_altaz] dsm_snapshots += [dsm_snapshot] if plot_02: descriptor_str = ['off-zenith', 'zenith'] fig, axs = PLT.subplots(n_snaps, sharex=True, sharey=True, figsize=(6,6)) for j in xrange(n_snaps): pbsky = axs[j].imshow(pb_snapshots[j].reshape(-1,backdrop_xsize), origin='lower', extent=(NP.amax(xvect), NP.amin(xvect), NP.amin(yvect), NP.amax(yvect)), norm=PLTC.LogNorm(vmin=1e-3, vmax=1.0), cmap=CM.jet) axs[j].set_xlim(xvect.max(), xvect.min()) axs[j].set_ylim(yvect.min(), yvect.max()) axs[j].grid(True, which='both') axs[j].set_aspect('auto') axs[j].tick_params(which='major', length=12, labelsize=12) axs[j].tick_params(which='minor', length=6) axs[j].locator_params(axis='x', nbins=5) axs[j].text(0.5, 0.9, descriptor_str[j], transform=axs[j].transAxes, fontsize=14, weight='semibold', ha='center', color='black') cbax = fig.add_axes([0.9, 0.122, 0.02, 0.84]) cbar = fig.colorbar(pbsky, cax=cbax, orientation='vertical') fig.subplots_adjust(hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_ylabel(r'$\delta$ [degrees]', fontsize=16, weight='medium', labelpad=30) big_ax.set_xlabel(r'$\alpha$ [degrees]', fontsize=16, weight='medium', labelpad=20) # PLT.tight_layout() fig.subplots_adjust(right=0.9) fig.subplots_adjust(top=0.98) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'powerpattern_'+ground_plane_str+snapshot_type_str+obs_mode+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'powerpattern_'+ground_plane_str+snapshot_type_str+obs_mode+'.eps', bbox_inches=0) # Plot each snapshot separately for j in xrange(n_snaps): fig = PLT.figure(figsize=(6,4)) ax = fig.add_subplot(111) pbsky = ax.imshow(pb_snapshots[j].reshape(-1,backdrop_xsize), origin='lower', extent=(NP.amax(xvect), NP.amin(xvect), NP.amin(yvect), NP.amax(yvect)), norm=PLTC.LogNorm(vmin=1e-5, vmax=1.0), cmap=CM.jet) ax.set_xlim(xvect.max(), xvect.min()) ax.set_ylim(yvect.min(), yvect.max()) ax.grid(True, which='both') ax.set_aspect('auto') ax.set_ylabel(r'$\delta$ [degrees]', fontsize=16, weight='medium') ax.set_xlabel(r'$\alpha$ [degrees]', fontsize=16, weight='medium') # ax.tick_params(which='major', length=12, labelsize=12) # ax.tick_params(which='minor', length=6) # ax.locator_params(axis='x', nbins=5) # ax.text(0.5, 0.9, descriptor_str[j], transform=ax.transAxes, fontsize=14, weight='semibold', ha='center', color='black') cbax = fig.add_axes([0.9, 0.15, 0.02, 0.81]) cbar = fig.colorbar(pbsky, cax=cbax, orientation='vertical') # PLT.tight_layout() fig.subplots_adjust(right=0.89) fig.subplots_adjust(top=0.96) fig.subplots_adjust(bottom=0.15) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'powerpattern_'+ground_plane_str+snapshot_type_str+obs_mode+'_snapshot_{0:1d}.png'.format(j), bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'powerpattern_'+ground_plane_str+snapshot_type_str+obs_mode+'_snapshot_{0:1d}.eps'.format(j), bbox_inches=0) if plot_03 or plot_12: # csm_fluxes = csmctlg.flux_density * (freq/csmctlg.frequency)**csmctlg.spectral_index csm_fluxes = csmskymod.spec_parms['flux-scale'] * (freq/csmskymod.spec_parms['freq-ref'])**csmskymod.spec_parms['power-law-index'] if plot_03: # 03) Plot foreground models with power pattern contours for snapshots descriptor_str = ['off-zenith', 'zenith'] n_fg_ticks = 5 fg_ticks = NP.round(NP.logspace(NP.log10(dsm.min()), NP.log10(dsm.max()), n_fg_ticks)).astype(NP.int) fig, axs = PLT.subplots(n_snaps, sharex=True, sharey=True, figsize=(6,6)) for j in xrange(n_snaps): dsmsky = axs[j].imshow(dsm_snapshots[j].reshape(-1,backdrop_xsize), origin='lower', extent=(NP.amax(xvect), NP.amin(xvect), NP.amin(yvect), NP.amax(yvect)), norm=PLTC.LogNorm(vmin=dsm.min(), vmax=dsm.max()), cmap=CM.jet) pbskyc = axs[j].contour(xgrid[0,:], ygrid[:,0], pb_snapshots[j].reshape(-1,backdrop_xsize), levels=[0.001953125, 0.0078125, 0.03125, 0.125, 0.5], colors='k', linewidths=1.5) axs[j].set_xlim(xvect.max(), xvect.min()) axs[j].set_ylim(yvect.min(), yvect.max()) axs[j].grid(True, which='both') axs[j].set_aspect('auto') axs[j].tick_params(which='major', length=12, labelsize=12) axs[j].tick_params(which='minor', length=6) axs[j].locator_params(axis='x', nbins=5) axs[j].text(0.5, 0.9, descriptor_str[j], transform=axs[j].transAxes, fontsize=14, weight='semibold', ha='center', color='black') cbax = fig.add_axes([0.85, 0.125, 0.02, 0.84]) cbar = fig.colorbar(dsmsky, cax=cbax, orientation='vertical') cbar.set_ticks(fg_ticks.tolist()) cbar.set_ticklabels(fg_ticks.tolist()) cbax.set_ylabel('Temperature [K]', labelpad=0, fontsize=14) fig.subplots_adjust(hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_ylabel(r'$\delta$ [degrees]', fontsize=16, weight='medium', labelpad=30) big_ax.set_xlabel(r'$\alpha$ [degrees]', fontsize=16, weight='medium', labelpad=20) # PLT.tight_layout() fig.subplots_adjust(right=0.85) fig.subplots_adjust(top=0.98) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/dsm.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/dsm.eps', bbox_inches=0) n_fg_ticks = 5 fg_ticks = NP.round(NP.logspace(NP.log10(csm_fluxes.min()), NP.log10(csm_fluxes.max()), n_fg_ticks)).astype(NP.int) fig, axs = PLT.subplots(n_snaps, sharex=True, sharey=True, figsize=(6,6)) for j in xrange(n_snaps): csmsky = axs[j].scatter(ra_deg_wrapped[src_ind_csm_snapshots[j]], dec_deg[src_ind_csm_snapshots[j]], c=csm_fluxes[src_ind_csm_snapshots[j]], norm=PLTC.LogNorm(vmin=csm_fluxes.min(), vmax=csm_fluxes.max()), cmap=CM.jet, edgecolor='none', s=20) pbskyc = axs[j].contour(xgrid[0,:], ygrid[:,0], pb_snapshots[j].reshape(-1,backdrop_xsize), levels=[0.001953125, 0.0078125, 0.03125, 0.125, 0.5], colors='k', linewidths=1.5) axs[j].set_xlim(xvect.max(), xvect.min()) axs[j].set_ylim(yvect.min(), yvect.max()) axs[j].grid(True, which='both') axs[j].set_aspect('auto') axs[j].tick_params(which='major', length=12, labelsize=12) axs[j].tick_params(which='minor', length=6) axs[j].locator_params(axis='x', nbins=5) axs[j].text(0.5, 0.9, descriptor_str[j], transform=axs[j].transAxes, fontsize=14, weight='semibold', ha='center', color='black') cbax = fig.add_axes([0.88, 0.125, 0.02, 0.84]) cbar = fig.colorbar(csmsky, cax=cbax, orientation='vertical') cbar.set_ticks(fg_ticks.tolist()) cbar.set_ticklabels(fg_ticks.tolist()) cbax.set_ylabel('Flux Density [Jy]', labelpad=0, fontsize=14) fig.subplots_adjust(hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_ylabel(r'$\delta$ [degrees]', fontsize=16, weight='medium', labelpad=30) big_ax.set_xlabel(r'$\alpha$ [degrees]', fontsize=16, weight='medium', labelpad=20) # PLT.tight_layout() fig.subplots_adjust(right=0.88) fig.subplots_adjust(top=0.98) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/csm.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/csm.eps', bbox_inches=0) if plot_12: descriptor_str = ['Diffuse Sky Model', 'Compact Emission'] n_fg_ticks = 5 fg_ticks = NP.round(NP.logspace(NP.log10(dsm.min()), NP.log10(dsm.max()), n_fg_ticks)).astype(NP.int) # Plot sky models with power pattern contours for j in xrange(n_snaps): fig, axs = PLT.subplots(2, sharex=True, sharey=True, figsize=(6,6)) dsmsky = axs[0].imshow(dsm_snapshots[j].reshape(-1,backdrop_xsize), origin='lower', extent=(NP.amax(xvect), NP.amin(xvect), NP.amin(yvect), NP.amax(yvect)), norm=PLTC.LogNorm(vmin=dsm.min(), vmax=dsm.max()), cmap=CM.jet) csmsky = axs[1].scatter(ra_deg_wrapped[src_ind_csm_snapshots[j]], dec_deg[src_ind_csm_snapshots[j]], c=csm_fluxes[src_ind_csm_snapshots[j]], norm=PLTC.LogNorm(vmin=csm_fluxes.min(), vmax=csm_fluxes.max()), cmap=CM.jet, edgecolor='none', s=20) for i in xrange(2): pbskyc = axs[i].contour(xgrid[0,:], ygrid[:,0], pb_snapshots[j].reshape(-1,backdrop_xsize), levels=[0.001953125, 0.0078125, 0.03125, 0.125, 0.5], colors='k', linewidths=1.5) axs[i].set_xlim(xvect.max(), xvect.min()) axs[i].set_ylim(yvect.min(), yvect.max()) axs[i].grid(True, which='both') axs[i].set_aspect('auto') axs[i].tick_params(which='major', length=12, labelsize=12) axs[i].tick_params(which='minor', length=6) axs[i].locator_params(axis='x', nbins=5) axs[i].text(0.5, 0.9, descriptor_str[i], transform=axs[i].transAxes, fontsize=16, weight='semibold', ha='center', color='black') fg_ticks = NP.round(NP.logspace(NP.log10(dsm.min()), NP.log10(dsm.max()), n_fg_ticks)).astype(NP.int) cbaxtr = fig.add_axes([0.86, 0.55, 0.02, 0.4]) cbartr = fig.colorbar(dsmsky, cax=cbaxtr, orientation='vertical') cbartr.set_ticks(fg_ticks.tolist()) cbartr.set_ticklabels(fg_ticks.tolist()) cbaxtr.set_ylabel('K', labelpad=0, fontsize=14) fg_ticks = NP.round(NP.logspace(NP.log10(csm_fluxes.min()), NP.log10(csm_fluxes.max()), n_fg_ticks)).astype(NP.int) cbaxbr = fig.add_axes([0.86, 0.11, 0.02, 0.4]) cbarbr = fig.colorbar(csmsky, cax=cbaxbr, orientation='vertical') cbarbr.set_ticks(fg_ticks.tolist()) cbarbr.set_ticklabels(fg_ticks.tolist()) cbaxbr.set_ylabel('Jy', labelpad=0, fontsize=14) fig.subplots_adjust(hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_ylabel(r'$\delta$ [degrees]', fontsize=16, weight='medium', labelpad=30) big_ax.set_xlabel(r'$\alpha$ [degrees]', fontsize=16, weight='medium', labelpad=20) # PLT.tight_layout() fig.subplots_adjust(right=0.85) fig.subplots_adjust(top=0.98) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/sky_model_with_pb_contours_snapshot_{0:0d}.png'.format(j), bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/sky_model_with_pb_contours_snapshot_{0:0d}.eps'.format(j), bbox_inches=0) # Plot sky models without power pattern contours for j in xrange(n_snaps): fig, axs = PLT.subplots(2, sharex=True, sharey=True, figsize=(6,6)) dsmsky = axs[0].imshow(dsm_snapshots[j].reshape(-1,backdrop_xsize), origin='lower', extent=(NP.amax(xvect), NP.amin(xvect), NP.amin(yvect), NP.amax(yvect)), norm=PLTC.LogNorm(vmin=dsm.min(), vmax=dsm.max()), cmap=CM.jet) csmsky = axs[1].scatter(ra_deg_wrapped[src_ind_csm_snapshots[j]], dec_deg[src_ind_csm_snapshots[j]], c=csm_fluxes[src_ind_csm_snapshots[j]], norm=PLTC.LogNorm(vmin=csm_fluxes.min(), vmax=csm_fluxes.max()), cmap=CM.jet, edgecolor='none', s=20) for i in xrange(2): axs[i].set_xlim(xvect.max(), xvect.min()) axs[i].set_ylim(yvect.min(), yvect.max()) axs[i].grid(True, which='both') axs[i].set_aspect('auto') axs[i].tick_params(which='major', length=12, labelsize=12) axs[i].tick_params(which='minor', length=6) axs[i].locator_params(axis='x', nbins=5) axs[i].text(0.5, 0.9, descriptor_str[i], transform=axs[i].transAxes, fontsize=16, weight='semibold', ha='center', color='black') fg_ticks = NP.round(NP.logspace(NP.log10(dsm.min()), NP.log10(dsm.max()), n_fg_ticks)).astype(NP.int) cbaxtr = fig.add_axes([0.86, 0.55, 0.02, 0.4]) cbartr = fig.colorbar(dsmsky, cax=cbaxtr, orientation='vertical') cbartr.set_ticks(fg_ticks.tolist()) cbartr.set_ticklabels(fg_ticks.tolist()) cbaxtr.set_ylabel('K', labelpad=0, fontsize=14) fg_ticks = NP.round(NP.logspace(NP.log10(csm_fluxes.min()), NP.log10(csm_fluxes.max()), n_fg_ticks)).astype(NP.int) cbaxbr = fig.add_axes([0.86, 0.11, 0.02, 0.4]) cbarbr = fig.colorbar(csmsky, cax=cbaxbr, orientation='vertical') cbarbr.set_ticks(fg_ticks.tolist()) cbarbr.set_ticklabels(fg_ticks.tolist()) cbaxbr.set_ylabel('Jy', labelpad=0, fontsize=14) fig.subplots_adjust(hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_ylabel(r'$\delta$ [degrees]', fontsize=16, weight='medium', labelpad=30) big_ax.set_xlabel(r'$\alpha$ [degrees]', fontsize=16, weight='medium', labelpad=20) # PLT.tight_layout() fig.subplots_adjust(right=0.85) fig.subplots_adjust(top=0.98) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/sky_model_snapshot_{0:0d}.png'.format(j), bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/sky_model_snapshot_{0:0d}.eps'.format(j), bbox_inches=0) if plot_04 or plot_12: # 04) Plot delay maps on sky for baselines of different orientations cardinal_blo = 180.0 / n_bins_baseline_orientation * (NP.arange(n_bins_baseline_orientation)-1).reshape(-1,1) cardinal_bll = 100.0 cardinal_bl = cardinal_bll * NP.hstack((NP.cos(NP.radians(cardinal_blo)), NP.sin(NP.radians(cardinal_blo)), NP.zeros_like(cardinal_blo))) delay_map = NP.empty((n_bins_baseline_orientation, xvect.size, n_snaps)) delay_map.fill(NP.nan) for i in xrange(n_snaps): havect = lst[i] - xvect altaz = GEOM.hadec2altaz(NP.hstack((havect.reshape(-1,1),yvect.reshape(-1,1))), latitude, units='degrees') dircos = GEOM.altaz2dircos(altaz, units='degrees') roi_altaz = NP.asarray(NP.where(altaz[:,0] >= 0.0)).ravel() delay_map[:,roi_altaz,i] = (DLY.geometric_delay(cardinal_bl, altaz[roi_altaz,:], altaz=True, dircos=False, hadec=False, latitude=latitude)-DLY.geometric_delay(cardinal_bl, pc, altaz=False, dircos=True, hadec=False, latitude=latitude)).T # mindelay = NP.nanmin(delay_map) # maxdelay = NP.nanmax(delay_map) # norm_b = PLTC.Normalize(vmin=mindelay, vmax=maxdelay) # for i in xrange(n_snaps): # fig = PLT.figure(figsize=(8,6)) # for j in xrange(n_bins_baseline_orientation): # ax = fig.add_subplot(2,2,j+1) # imdmap = ax.imshow(1e6 * delay_map[j,:,i].reshape(-1,backdrop_xsize), origin='lower', extent=(NP.amax(xvect), NP.amin(xvect), NP.amin(yvect), NP.amax(yvect)), vmin=1e6*NP.nanmin(delay_map), vmax=1e6*NP.nanmax(delay_map)) # cbax = fig.add_axes([0.95, 0.1, 0.02, 0.8]) # cbar = fig.colorbar(imdmap, cax=cbax, orientation='vertical') # cbax.set_ylabel(r'$\times\,(|\mathbf{b}|/100)\,\mu$s', labelpad=-90, fontsize=18) # PLT.tight_layout() # fig.subplots_adjust(right=0.85) # # fig.subplots_adjust(left=0.15) if plot_04: for i in xrange(n_snaps): fig, axs = PLT.subplots(ncols=2, nrows=2, sharex=True, sharey=True, figsize=(12,6)) for j in xrange(n_bins_baseline_orientation): imdmap = axs[j/2,j%2].imshow(1e6 * OPS.reverse(delay_map[j,:,i].reshape(-1,backdrop_xsize), axis=1), origin='lower', extent=(NP.amax(xvect), NP.amin(xvect), NP.amin(yvect), NP.amax(yvect)), vmin=1e6*NP.nanmin(delay_map), vmax=1e6*NP.nanmax(delay_map)) axs[j/2,j%2].set_xlim(xvect.min(), xvect.max()) axs[j/2,j%2].set_ylim(yvect.min(), yvect.max()) axs[j/2,j%2].text(0.8, 0.9, 'E: {0[0]:.1f}m\nN: {0[1]:.1f}m\nZ: {0[2]:.1f}m'.format(cardinal_bl[j,:].ravel()), ha='left', va='top', transform=axs[j/2,j%2].transAxes) # axs[j/2,j%2].set_aspect(1.33) # ax.text(0.05, 0.7, '{0:.1f} %'.format(confidence_level*100), horizontalalignment='left', verticalalignment='top', transform=ax.transAxes) # axs[j/2,j%2].set_autoscaley_on(False) # imdmap = axs[j/2,j%2].imshow(1e6 * delay_map[j,:,i].reshape(-1,backdrop_xsize), origin='lower', extent=(NP.amax(xvect), NP.amin(xvect), NP.amin(yvect), NP.amax(yvect)), vmin=1e6*NP.nanmin(delay_map), vmax=1e6*NP.nanmax(delay_map)) # axs[j/2,j%2].set_ylim(yvect.min(), yvect.max()) # ax = axs[j/2,j%2] # ax.set_ylim(yvect.min(), yvect.max()) # axs[j/2,j%2] = ax fig.subplots_adjust(wspace=0, hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_xlabel(r'$\alpha$ [degrees]', fontsize=16, weight='medium', labelpad=20) big_ax.set_ylabel(r'$\delta$ [degrees]', fontsize=16, weight='medium', labelpad=30) cbax = fig.add_axes([0.13, 0.92, 0.77, 0.02]) cbar = fig.colorbar(imdmap, cax=cbax, orientation='horizontal') cbax.set_xlabel(r'delay [$\times\,(|\mathbf{b}|/100)\,\mu$s]', labelpad=-50, fontsize=18) # PLT.tight_layout() fig.subplots_adjust(top=0.88) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/delay_map_snapshot_{0:0d}.png'.format(i), bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/delay_map_snapshot_{0:0d}.eps'.format(i), bbox_inches=0) # for i in xrange(n_bins_baseline_orientation): # axs[j/2,j%2].set_ylim(yvect.min(), yvect.max()) # axs[0,0].set_autoscaley_on(False) if plot_12: required_bl_orientation = ['North', 'East'] for i in xrange(n_snaps): fig, axs = PLT.subplots(len(required_bl_orientation), sharex=True, sharey=True, figsize=(6,6)) for k in xrange(len(required_bl_orientation)): j = bl_orientation_str.index(required_bl_orientation[k]) imdmap = axs[k].imshow(1e6 * OPS.reverse(delay_map[j,:,i].reshape(-1,backdrop_xsize), axis=1), origin='lower', extent=(NP.amax(xvect), NP.amin(xvect), NP.amin(yvect), NP.amax(yvect)), vmin=1e6*NP.nanmin(delay_map), vmax=1e6*NP.nanmax(delay_map)) pbskyc = axs[k].contour(xgrid[0,:], ygrid[:,0], OPS.reverse(pb_snapshots[i].reshape(-1,backdrop_xsize), axis=1), levels=[0.001953125, 0.0078125, 0.03125, 0.125, 0.5], colors='k', linewidths=1.5) axs[k].set_xlim(xvect.min(), xvect.max()) axs[k].set_ylim(yvect.min(), yvect.max()) axs[k].text(0.8, 0.9, required_bl_orientation[k], transform=axs[k].transAxes, fontsize=16, weight='semibold', ha='left', va='top') axs[k].set_aspect('auto') fig.subplots_adjust(wspace=0, hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_xlabel(r'$\alpha$ [degrees]', fontsize=16, weight='medium', labelpad=20) big_ax.set_ylabel(r'$\delta$ [degrees]', fontsize=16, weight='medium', labelpad=30) cbax = fig.add_axes([0.13, 0.92, 0.82, 0.02]) cbar = fig.colorbar(imdmap, cax=cbax, orientation='horizontal') cbax.set_xlabel(r'$\tau\,[(|\mathbf{b}|/100\,\mathrm{m})\,\mu\mathrm{s}]$', labelpad=-50, fontsize=18) # PLT.tight_layout() fig.subplots_adjust(top=0.88) fig.subplots_adjust(right=0.95) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/directional_delay_map_snapshot_{0:0d}.png'.format(i), bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/directional_delay_map_snapshot_{0:0d}.eps'.format(i), bbox_inches=0) ############################################################################## if plot_05 or plot_06 or plot_07 or plot_09 or plot_16: # 05) Plot FHD data and simulations on baselines by orientation and all combined fhd_obsid = [1061309344, 1061316544] infile = '/data3/t_nithyanandan/'+project_dir+'/'+telescope_str+'multi_baseline_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(ref_bl_length[baseline_bin_indices[0]],ref_bl_length[min(baseline_bin_indices[n_bl_chunks-1]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_'+fg_str+sky_sector_str+'sprms_{0:.1f}_'.format(spindex_rms)+spindex_seed_str+'nside_{0:0d}_'.format(nside)+delaygain_err_str+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6) asm_CLEAN_infile = '/data3/t_nithyanandan/'+project_dir+'/'+telescope_str+'multi_baseline_CLEAN_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(ref_bl_length[baseline_bin_indices[0]],ref_bl_length[min(baseline_bin_indices[n_bl_chunks-1]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_asm'+sky_sector_str+'sprms_{0:.1f}_'.format(spindex_rms)+spindex_seed_str+'nside_{0:0d}_'.format(nside)+delaygain_err_str+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+bpass_shape if use_alt_spindex: alt_asm_CLEAN_infile = '/data3/t_nithyanandan/'+project_dir+'/'+telescope_str+'multi_baseline_CLEAN_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(ref_bl_length[baseline_bin_indices[0]],ref_bl_length[min(baseline_bin_indices[n_bl_chunks-1]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_asm'+sky_sector_str+'sprms_{0:.1f}_'.format(alt_spindex_rms)+alt_spindex_seed_str+'nside_{0:0d}_'.format(nside)+delaygain_err_str+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+bpass_shape ia = RI.InterferometerArray(None, None, None, init_file=infile+'.fits') simdata_bl_orientation = NP.angle(ia.baselines[:,0] + 1j * ia.baselines[:,1], deg=True) simdata_neg_bl_orientation_ind = simdata_bl_orientation > 90.0 + 0.5*180.0/n_bins_baseline_orientation simdata_bl_orientation[simdata_neg_bl_orientation_ind] -= 180.0 ia.baselines[simdata_neg_bl_orientation_ind,:] = -ia.baselines[simdata_neg_bl_orientation_ind,:] hdulist = fits.open(infile+'.fits') latitude = hdulist[0].header['latitude'] pointing_coords = hdulist[0].header['pointing_coords'] pointings_table = hdulist['POINTING AND PHASE CENTER INFO'].data lst = pointings_table['LST'] n_snaps = lst.size hdulist.close() if pointing_coords == 'altaz': pointings_altaz = NP.hstack((pointings_table['pointing_latitude'].reshape(-1,1), pointings_table['pointing_longitude'].reshape(-1,1))) pointings_hadec = GEOM.altaz2hadec(pointings_altaz, latitude, units='degrees') pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') elif pointing_coords == 'radec': pointings_radec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) pointings_hadec = NP.hstack(((lst-pointings_radec[:,0]).reshape(-1,1), pointings_radec[:,1].reshape(-1,1))) pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') elif pointing_coords == 'hadec': pointings_hadec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) pointings_radec = NP.hstack(((lst-pointings_hadec[:,0]).reshape(-1,1), pointings_hadec[:,1].reshape(-1,1))) pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') hdulist = fits.open(asm_CLEAN_infile+'.fits') clean_lags = hdulist['SPECTRAL INFO'].data['lag'] clean_lags_orig = NP.copy(clean_lags) asm_cc_skyvis = hdulist['CLEAN NOISELESS VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES IMAG'].data asm_cc_skyvis_res = hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS IMAG'].data asm_cc_vis = hdulist['CLEAN NOISY VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES IMAG'].data asm_cc_vis_res = hdulist['CLEAN NOISY VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES RESIDUALS IMAG'].data hdulist.close() asm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:] = asm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:].conj() asm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:] = asm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:].conj() asm_cc_vis[simdata_neg_bl_orientation_ind,:,:] = asm_cc_vis[simdata_neg_bl_orientation_ind,:,:].conj() asm_cc_vis_res[simdata_neg_bl_orientation_ind,:,:] = asm_cc_vis_res[simdata_neg_bl_orientation_ind,:,:].conj() asm_cc_skyvis_lag = NP.fft.fftshift(NP.fft.ifft(asm_cc_skyvis, axis=1),axes=1) * asm_cc_skyvis.shape[1] * freq_resolution asm_ccres_sky = NP.fft.fftshift(NP.fft.ifft(asm_cc_skyvis_res, axis=1),axes=1) * asm_cc_skyvis.shape[1] * freq_resolution asm_cc_skyvis_lag = asm_cc_skyvis_lag + asm_ccres_sky asm_cc_vis_lag = NP.fft.fftshift(NP.fft.ifft(asm_cc_vis, axis=1),axes=1) * asm_cc_vis.shape[1] * freq_resolution asm_ccres = NP.fft.fftshift(NP.fft.ifft(asm_cc_vis_res, axis=1),axes=1) * asm_cc_vis.shape[1] * freq_resolution asm_cc_vis_lag = asm_cc_vis_lag + asm_ccres asm_cc_skyvis_lag = DSP.downsampler(asm_cc_skyvis_lag, 1.0*clean_lags.size/ia.lags.size, axis=1) asm_cc_vis_lag = DSP.downsampler(asm_cc_vis_lag, 1.0*clean_lags.size/ia.lags.size, axis=1) if use_alt_spindex: alt_hdulist = fits.open(alt_asm_CLEAN_infile+'.fits') alt_asm_cc_skyvis = alt_hdulist['CLEAN NOISELESS VISIBILITIES REAL'].data + 1j * alt_hdulist['CLEAN NOISELESS VISIBILITIES IMAG'].data alt_asm_cc_skyvis_res = alt_hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS REAL'].data + 1j * alt_hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS IMAG'].data alt_asm_cc_vis = alt_hdulist['CLEAN NOISY VISIBILITIES REAL'].data + 1j * alt_hdulist['CLEAN NOISY VISIBILITIES IMAG'].data alt_asm_cc_vis_res = alt_hdulist['CLEAN NOISY VISIBILITIES RESIDUALS REAL'].data + 1j * alt_hdulist['CLEAN NOISY VISIBILITIES RESIDUALS IMAG'].data alt_hdulist.close() alt_asm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:] = alt_asm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:].conj() alt_asm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:] = alt_asm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:].conj() alt_asm_cc_vis[simdata_neg_bl_orientation_ind,:,:] = alt_asm_cc_vis[simdata_neg_bl_orientation_ind,:,:].conj() alt_asm_cc_vis_res[simdata_neg_bl_orientation_ind,:,:] = alt_asm_cc_vis_res[simdata_neg_bl_orientation_ind,:,:].conj() alt_asm_cc_skyvis_lag = NP.fft.fftshift(NP.fft.ifft(alt_asm_cc_skyvis, axis=1),axes=1) * alt_asm_cc_skyvis.shape[1] * freq_resolution alt_asm_ccres_sky = NP.fft.fftshift(NP.fft.ifft(alt_asm_cc_skyvis_res, axis=1),axes=1) * alt_asm_cc_skyvis.shape[1] * freq_resolution alt_asm_cc_skyvis_lag = alt_asm_cc_skyvis_lag + alt_asm_ccres_sky alt_asm_cc_vis_lag = NP.fft.fftshift(NP.fft.ifft(alt_asm_cc_vis, axis=1),axes=1) * alt_asm_cc_vis.shape[1] * freq_resolution alt_asm_ccres = NP.fft.fftshift(NP.fft.ifft(alt_asm_cc_vis_res, axis=1),axes=1) * alt_asm_cc_vis.shape[1] * freq_resolution alt_asm_cc_vis_lag = alt_asm_cc_vis_lag + alt_asm_ccres alt_asm_cc_skyvis_lag = DSP.downsampler(alt_asm_cc_skyvis_lag, 1.0*clean_lags.size/ia.lags.size, axis=1) alt_asm_cc_vis_lag = DSP.downsampler(alt_asm_cc_vis_lag, 1.0*clean_lags.size/ia.lags.size, axis=1) clean_lags = DSP.downsampler(clean_lags, 1.0*clean_lags.size/ia.lags.size, axis=-1) clean_lags = clean_lags.ravel() vis_noise_lag = NP.copy(ia.vis_noise_lag) asm_cc_skyvis_lag = asm_cc_skyvis_lag[truncated_ref_bl_ind,:,:] asm_cc_vis_lag = asm_cc_vis_lag[truncated_ref_bl_ind,:,:] vis_noise_lag = vis_noise_lag[truncated_ref_bl_ind,:,:] delaymat = DLY.delay_envelope(ia.baselines[truncated_ref_bl_ind,:], pc, units='mks') min_delay = -delaymat[0,:,1]-delaymat[0,:,0] max_delay = delaymat[0,:,0]-delaymat[0,:,1] clags = clean_lags.reshape(1,-1) min_delay = min_delay.reshape(-1,1) max_delay = max_delay.reshape(-1,1) thermal_noise_window = NP.abs(clags) >= max_abs_delay*1e-6 thermal_noise_window = NP.repeat(thermal_noise_window, ia.baselines[truncated_ref_bl_ind,:].shape[0], axis=0) EoR_window = NP.logical_or(clags > max_delay+1/bw, clags < min_delay-1/bw) strict_EoR_window = NP.logical_and(EoR_window, NP.abs(clags) < 1/coarse_channel_resolution) wedge_window = NP.logical_and(clags <= max_delay, clags >= min_delay) non_wedge_window = NP.logical_not(wedge_window) # vis_rms_lag = OPS.rms(asm_cc_vis_lag.reshape(-1,n_snaps), mask=NP.logical_not(NP.repeat(thermal_noise_window.reshape(-1,1), n_snaps, axis=1)), axis=0) # vis_rms_freq = NP.abs(vis_rms_lag) / NP.sqrt(nchan) / freq_resolution # T_rms_freq = vis_rms_freq / (2.0 * FCNST.k) * NP.mean(ia.A_eff) * NP.mean(ia.eff_Q) * NP.sqrt(2.0*freq_resolution*NP.asarray(ia.t_acc).reshape(1,-1)) * CNST.Jy # vis_rms_lag_theory = OPS.rms(vis_noise_lag.reshape(-1,n_snaps), mask=NP.logical_not(NP.repeat(EoR_window.reshape(-1,1), n_snaps, axis=1)), axis=0) # vis_rms_freq_theory = NP.abs(vis_rms_lag_theory) / NP.sqrt(nchan) / freq_resolution # T_rms_freq_theory = vis_rms_freq_theory / (2.0 * FCNST.k) * NP.mean(ia.A_eff) * NP.mean(ia.eff_Q) * NP.sqrt(2.0*freq_resolution*NP.asarray(ia.t_acc).reshape(1,-1)) * CNST.Jy vis_rms_lag = OPS.rms(asm_cc_vis_lag, mask=NP.logical_not(NP.repeat(thermal_noise_window[:,:,NP.newaxis], n_snaps, axis=2)), axis=1) vis_rms_freq = NP.abs(vis_rms_lag) / NP.sqrt(nchan) / freq_resolution T_rms_freq = vis_rms_freq / (2.0 * FCNST.k) * NP.mean(ia.A_eff[truncated_ref_bl_ind,:]) * NP.mean(ia.eff_Q[truncated_ref_bl_ind,:]) * NP.sqrt(2.0*freq_resolution*NP.asarray(ia.t_acc).reshape(1,1,-1)) * CNST.Jy vis_rms_lag_theory = OPS.rms(vis_noise_lag, mask=NP.logical_not(NP.repeat(EoR_window[:,:,NP.newaxis], n_snaps, axis=2)), axis=1) vis_rms_freq_theory = NP.abs(vis_rms_lag_theory) / NP.sqrt(nchan) / freq_resolution T_rms_freq_theory = vis_rms_freq_theory / (2.0 * FCNST.k) * NP.mean(ia.A_eff[truncated_ref_bl_ind,:]) * NP.mean(ia.eff_Q[truncated_ref_bl_ind,:]) * NP.sqrt(2.0*freq_resolution*NP.asarray(ia.t_acc).reshape(1,1,-1)) * CNST.Jy if max_abs_delay is not None: small_delays_ind = NP.abs(clean_lags) <= max_abs_delay * 1e-6 clean_lags = clean_lags[small_delays_ind] asm_cc_vis_lag = asm_cc_vis_lag[:,small_delays_ind,:] asm_cc_skyvis_lag = asm_cc_skyvis_lag[:,small_delays_ind,:] if use_alt_spindex: alt_asm_cc_vis_lag = alt_asm_cc_vis_lag[:,small_delays_ind,:] alt_asm_cc_skyvis_lag = alt_asm_cc_skyvis_lag[:,small_delays_ind,:] ## Read in FHD data and other required information pointing_file = '/data3/t_nithyanandan/project_MWA/Aug23_obsinfo.txt' pointing_info_from_file = NP.loadtxt(pointing_file, comments='#', usecols=(1,2,3), delimiter=',') obs_id = NP.loadtxt(pointing_file, comments='#', usecols=(0,), delimiter=',', dtype=str) obsfile_lst = 15.0 * pointing_info_from_file[:,2] obsfile_pointings_altaz = pointing_info_from_file[:,:2].reshape(-1,2) obsfile_pointings_dircos = GEOM.altaz2dircos(obsfile_pointings_altaz, units='degrees') obsfile_pointings_hadec = GEOM.altaz2hadec(obsfile_pointings_altaz, latitude, units='degrees') common_bl_ind_in_ref_snapshots = [] fhd_info = {} for j in range(len(fhd_obsid)): fhd_infile = '/data3/t_nithyanandan/project_MWA/fhd_delay_spectrum_{0:0d}_reformatted.npz'.format(fhd_obsid[j]) fhd_data = NP.load(fhd_infile) fhd_vis_lag_noisy = fhd_data['fhd_vis_lag_noisy'] fhd_C = fhd_data['fhd_C'] valid_ind = NP.logical_and(NP.abs(NP.sum(fhd_vis_lag_noisy[:,:,0],axis=1))!=0.0, NP.abs(NP.sum(fhd_C[:,:,0],axis=1))!=0.0) fhd_C = fhd_C[valid_ind,:,:] fhd_vis_lag_noisy = fhd_vis_lag_noisy[valid_ind,:,:] fhd_delays = fhd_data['fhd_delays'] fhdfile_bl_id = fhd_data['fhd_bl_id'][valid_ind] fhdfile_bl_length = fhd_data['fhd_bl_length'][valid_ind] common_bl_id = NP.intersect1d(truncated_ref_bl_id, fhdfile_bl_id, assume_unique=True) common_bl_ind_in_ref = NP.in1d(truncated_ref_bl_id, common_bl_id, assume_unique=True) common_bl_ind_in_fhd = NP.in1d(fhdfile_bl_id, common_bl_id, assume_unique=True) fhd_bl_id = fhdfile_bl_id[common_bl_ind_in_fhd] fhd_bl_length = fhdfile_bl_length[common_bl_ind_in_fhd] fhd_k_perp = 2 * NP.pi * fhd_bl_length / (FCNST.c/freq) / cosmodel100.comoving_transverse_distance(z=redshift).value fhd_bl = truncated_ref_bl[common_bl_ind_in_ref, :] fhd_bl_orientation = truncated_ref_bl_orientation[common_bl_ind_in_ref] common_bl_ind_in_ref_snapshots += [common_bl_ind_in_ref] fhd_neg_bl_orientation_ind = fhd_bl_orientation > 90.0 + 0.5*180.0/n_bins_baseline_orientation fhd_bl_orientation[fhd_neg_bl_orientation_ind] -= 180.0 fhd_bl[fhd_neg_bl_orientation_ind,:] = -fhd_bl[fhd_neg_bl_orientation_ind,:] fhd_C = fhd_C[common_bl_ind_in_fhd,:,:] fhd_vis_lag_noisy = fhd_vis_lag_noisy[common_bl_ind_in_fhd,:,:]*2.78*nchan*freq_resolution/fhd_C fhd_obsid_pointing_dircos = obsfile_pointings_dircos[obs_id==str(fhd_obsid[j]),:].reshape(1,-1) fhd_obsid_pointing_altaz = obsfile_pointings_altaz[obs_id==str(fhd_obsid[j]),:].reshape(1,-1) fhd_obsid_pointing_hadec = obsfile_pointings_hadec[obs_id==str(fhd_obsid[j]),:].reshape(1,-1) fhd_lst = NP.asscalar(obsfile_lst[obs_id==str(fhd_obsid[j])]) fhd_obsid_pointing_radec = NP.copy(fhd_obsid_pointing_hadec) fhd_obsid_pointing_radec[0,0] = fhd_lst - fhd_obsid_pointing_hadec[0,0] fhd_delaymat = DLY.delay_envelope(fhd_bl, pc, units='mks') fhd_min_delay = -fhd_delaymat[0,:,1]-fhd_delaymat[0,:,0] fhd_max_delay = fhd_delaymat[0,:,0]-fhd_delaymat[0,:,1] fhd_min_delay = fhd_min_delay.reshape(-1,1) fhd_max_delay = fhd_max_delay.reshape(-1,1) fhd_thermal_noise_window = NP.abs(fhd_delays) >= max_abs_delay*1e-6 fhd_thermal_noise_window = fhd_thermal_noise_window.reshape(1,-1) fhd_thermal_noise_window = NP.repeat(fhd_thermal_noise_window, fhd_bl.shape[0], axis=0) fhd_EoR_window = NP.logical_or(fhd_delays > fhd_max_delay+1/bw, fhd_delays < fhd_min_delay-1/bw) fhd_wedge_window = NP.logical_and(fhd_delays <= fhd_max_delay, fhd_delays >= fhd_min_delay) fhd_non_wedge_window = NP.logical_not(fhd_wedge_window) fhd_vis_rms_lag = OPS.rms(fhd_vis_lag_noisy[:,:,0], mask=NP.logical_not(fhd_thermal_noise_window), axis=1) fhd_vis_rms_freq = NP.abs(fhd_vis_rms_lag) / NP.sqrt(nchan) / freq_resolution if max_abs_delay is not None: small_delays_ind = NP.abs(fhd_delays) <= max_abs_delay * 1e-6 fhd_delays = fhd_delays[small_delays_ind] fhd_vis_lag_noisy = fhd_vis_lag_noisy[:,small_delays_ind,:] fhd_k_prll = 2 * NP.pi * fhd_delays * cosmodel100.H0.value * CNST.rest_freq_HI * cosmodel100.efunc(z=redshift) / FCNST.c / (1+redshift)**2 * 1e3 fhd_info[fhd_obsid[j]] = {} fhd_info[fhd_obsid[j]]['bl_id'] = fhd_bl_id fhd_info[fhd_obsid[j]]['bl'] = fhd_bl fhd_info[fhd_obsid[j]]['bl_length'] = fhd_bl_length fhd_info[fhd_obsid[j]]['k_perp'] = fhd_k_perp fhd_info[fhd_obsid[j]]['bl_orientation'] = fhd_bl_orientation fhd_info[fhd_obsid[j]]['delays'] = fhd_delays fhd_info[fhd_obsid[j]]['k_prll'] = fhd_k_prll fhd_info[fhd_obsid[j]]['C'] = fhd_C fhd_info[fhd_obsid[j]]['vis_lag_noisy'] = fhd_vis_lag_noisy fhd_info[fhd_obsid[j]]['lst'] = fhd_lst fhd_info[fhd_obsid[j]]['pointing_radec'] = fhd_obsid_pointing_radec fhd_info[fhd_obsid[j]]['pointing_hadec'] = fhd_obsid_pointing_hadec fhd_info[fhd_obsid[j]]['pointing_altaz'] = fhd_obsid_pointing_altaz fhd_info[fhd_obsid[j]]['pointing_dircos'] = fhd_obsid_pointing_dircos fhd_info[fhd_obsid[j]]['min_delays'] = fhd_min_delay fhd_info[fhd_obsid[j]]['max_delays'] = fhd_max_delay fhd_info[fhd_obsid[j]]['rms_lag'] = fhd_vis_rms_lag fhd_info[fhd_obsid[j]]['rms_freq'] = fhd_vis_rms_freq if (dspec_min is None) or (dspec_max is None): dspec_min = min(min([NP.abs(asm_cc_vis_lag[common_bl_ind_in_ref_snapshots[j],:,j]).min() for j in xrange(n_snaps)]), min([NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy']).min() for j in xrange(len(fhd_obsid))])) dspec_max = max(max([NP.abs(asm_cc_vis_lag[common_bl_ind_in_ref_snapshots[j],:,j]).max() for j in xrange(n_snaps)]), max([NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy']).max() for j in xrange(len(fhd_obsid))])) dspec_min = dspec_min**2 * volfactor1 * volfactor2 * Jy2K**2 dspec_max = dspec_max**2 * volfactor1 * volfactor2 * Jy2K**2 cardinal_blo = 180.0 / n_bins_baseline_orientation * (NP.arange(n_bins_baseline_orientation)-1).reshape(-1,1) cardinal_bll = 100.0 cardinal_bl = cardinal_bll * NP.hstack((NP.cos(NP.radians(cardinal_blo)), NP.sin(NP.radians(cardinal_blo)), NP.zeros_like(cardinal_blo))) small_delays_EoR_window = EoR_window.T small_delays_strict_EoR_window = strict_EoR_window.T small_delays_wedge_window = wedge_window.T if max_abs_delay is not None: small_delays_EoR_window = small_delays_EoR_window[small_delays_ind,:] small_delays_strict_EoR_window = small_delays_strict_EoR_window[small_delays_ind,:] small_delays_wedge_window = small_delays_wedge_window[small_delays_ind,:] small_delays_non_wedge_window = NP.logical_not(small_delays_wedge_window) data_sim_ratio = [] data_sim_difference_fraction = [] # data_sim_difference_fraction = NP.zeros(len(fhd_obsid)) if use_alt_spindex: alt_data_sim_ratio = [] alt_data_sim_difference_fraction = [] relevant_EoR_window = [] relevant_wedge_window = [] relevant_non_wedge_window = [] if plot_05: descriptor_str = ['off-zenith', 'zenith'] # Plot FHD and modeled delay power spectra all snapshots together fig, axs = PLT.subplots(nrows=n_snaps, ncols=2, sharex=True, sharey=True, figsize=(12,6)) for j in xrange(n_snaps): fhddspec = axs[j,0].pcolorfast(fhd_info[fhd_obsid[j]]['bl_length'], 1e6*clean_lags, NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][:-1,:-1,0].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=(1e6)**2 * volfactor1 * volfactor2 * Jy2K**2, vmax=dspec_max)) horizonb = axs[j,0].plot(fhd_info[fhd_obsid[j]]['bl_length'], 1e6*min_delay[common_bl_ind_in_ref_snapshots[j]].ravel(), color='white', ls=':', lw=1.5) horizont = axs[j,0].plot(fhd_info[fhd_obsid[j]]['bl_length'], 1e6*max_delay[common_bl_ind_in_ref_snapshots[j]].ravel(), color='white', ls=':', lw=1.5) axs[j,0].set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) axs[j,0].set_aspect('auto') axs[j,0].text(0.5, 0.9, descriptor_str[j]+' data', transform=axs[j,0].transAxes, fontsize=14, weight='semibold', ha='center', color='white') simdspec = axs[j,1].pcolorfast(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*clean_lags, NP.abs(asm_cc_vis_lag[common_bl_ind_in_ref_snapshots[j][:-1],:-1,j].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=(1e6)**2 * volfactor1 * volfactor2 * Jy2K**2, vmax=dspec_max)) horizonb = axs[j,1].plot(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*min_delay[common_bl_ind_in_ref_snapshots[j]].ravel(), color='white', ls=':', lw=1.5) horizont = axs[j,1].plot(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*max_delay[common_bl_ind_in_ref_snapshots[j]].ravel(), color='white', ls=':', lw=1.5) axs[j,1].set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) axs[j,1].set_aspect('auto') axs[j,1].text(0.5, 0.9, descriptor_str[j]+' model', transform=axs[j,1].transAxes, fontsize=14, weight='semibold', ha='center', color='white') for j in xrange(n_snaps): axs_kprll = axs[j,1].twinx() axs_kprll.set_yticks(kprll(axs[j,1].get_yticks()*1e-6, redshift)) axs_kprll.set_ylim(kprll(NP.asarray(axs[j,1].get_ylim())*1e-6, redshift)) yformatter = FuncFormatter(lambda y, pos: '{0:.2f}'.format(y)) axs_kprll.yaxis.set_major_formatter(yformatter) if j == 0: for col in range(2): axs_kperp = axs[j,col].twiny() axs_kperp.set_xticks(kperp(axs[j,col].get_xticks()*freq/FCNST.c, redshift)) axs_kperp.set_xlim(kperp(NP.asarray(axs[j,col].get_xlim())*freq/FCNST.c, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) axs_kperp.xaxis.set_major_formatter(xformatter) fig.subplots_adjust(wspace=0, hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_ylabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium', labelpad=30) big_ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=16, weight='medium', labelpad=20) big_axr = big_ax.twinx() big_axr.set_axis_bgcolor('none') big_axr.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axr.set_xticks([]) big_axr.set_yticks([]) big_axr.set_ylabel(r'$k_\parallel$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=40) big_axt = big_ax.twiny() big_axt.set_axis_bgcolor('none') big_axt.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axt.set_xticks([]) big_axt.set_yticks([]) big_axt.set_xlabel(r'$k_\perp$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=30) cbax = fig.add_axes([0.93, 0.125, 0.02, 0.74]) cbar = fig.colorbar(simdspec, cax=cbax, orientation='vertical') cbax.set_xlabel(r'K$^2$(Mpc/h)$^3$', labelpad=10, fontsize=12) cbax.xaxis.set_label_position('top') # PLT.tight_layout() fig.subplots_adjust(right=0.82) fig.subplots_adjust(top=0.88) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noisy_PS_fhd_sim_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noisy_PS_fhd_sim_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.eps', bbox_inches=0) # Plot the FHD delay power spectra all snapshots together fig, axs = PLT.subplots(n_snaps, sharex=True, sharey=True, figsize=(6,6)) for j in xrange(n_snaps): imdspec = axs[j].pcolorfast(fhd_info[fhd_obsid[j]]['bl_length'], 1e6*clean_lags, NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][:-1,:-1,0].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=(1e6)**2 * volfactor1 * volfactor2 * Jy2K**2, vmax=dspec_max)) horizonb = axs[j].plot(fhd_info[fhd_obsid[j]]['bl_length'], 1e6*min_delay[common_bl_ind_in_ref_snapshots[j]].ravel(), color='white', ls=':', lw=1.5) horizont = axs[j].plot(fhd_info[fhd_obsid[j]]['bl_length'], 1e6*max_delay[common_bl_ind_in_ref_snapshots[j]].ravel(), color='white', ls=':', lw=1.5) # kcontour = axs[j].contour(fhd_info[fhd_obsid[j]]['bl_length'], 1e6*clean_lags, NP.sqrt((fhd_info[fhd_obsid[j]]['k_perp'].reshape(1,-1))**2+(fhd_info[fhd_obsid[j]]['k_prll'].reshape(-1,1))**2), levels=[0.04, 0.08, 0.16, 0.32], colors='k', linewidth=1.0) # axs[j].clabel(kcontour, inline=1, fontsize=8, colors='k', fmt='%0.2f') axs[j].set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) axs[j].set_aspect('auto') axs[j].text(0.5, 0.9, descriptor_str[j], transform=axs[j].transAxes, fontsize=14, weight='semibold', ha='center', color='white') for j in xrange(n_snaps): axs_kprll = axs[j].twinx() axs_kprll.set_yticks(kprll(axs[j].get_yticks()*1e-6, redshift)) axs_kprll.set_ylim(kprll(NP.asarray(axs[j].get_ylim())*1e-6, redshift)) yformatter = FuncFormatter(lambda y, pos: '{0:.2f}'.format(y)) axs_kprll.yaxis.set_major_formatter(yformatter) if j == 0: axs_kperp = axs[j].twiny() axs_kperp.set_xticks(kperp(axs[j].get_xticks()*freq/FCNST.c, redshift)) axs_kperp.set_xlim(kperp(NP.asarray(axs[j].get_xlim())*freq/FCNST.c, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) axs_kperp.xaxis.set_major_formatter(xformatter) fig.subplots_adjust(hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_ylabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium', labelpad=30) big_ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=16, weight='medium', labelpad=20) big_axr = big_ax.twinx() big_axr.set_axis_bgcolor('none') big_axr.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axr.set_xticks([]) big_axr.set_yticks([]) big_axr.set_ylabel(r'$k_\parallel$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=40) big_axt = big_ax.twiny() big_axt.set_axis_bgcolor('none') big_axt.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axt.set_xticks([]) big_axt.set_yticks([]) big_axt.set_xlabel(r'$k_\perp$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=30) cbax = fig.add_axes([0.9, 0.125, 0.02, 0.74]) cbar = fig.colorbar(imdspec, cax=cbax, orientation='vertical') cbax.set_xlabel(r'K$^2$(Mpc/h)$^3$', labelpad=10, fontsize=12) cbax.xaxis.set_label_position('top') # PLT.tight_layout() fig.subplots_adjust(right=0.72) fig.subplots_adjust(top=0.88) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noisy_PS_fhd_data_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noisy_PS_fhd_data_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.eps', bbox_inches=0) # Plot the modeled delay power spectra all snapshots together fig, axs = PLT.subplots(n_snaps, sharex=True, sharey=True, figsize=(6,6)) for j in xrange(n_snaps): imdspec = axs[j].pcolorfast(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*clean_lags, NP.abs(asm_cc_vis_lag[common_bl_ind_in_ref_snapshots[j][:-1],:-1,j].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=(1e6)**2 * volfactor1 * volfactor2 * Jy2K**2, vmax=dspec_max)) horizonb = axs[j].plot(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*min_delay[common_bl_ind_in_ref_snapshots[j]].ravel(), color='white', ls=':', lw=1.5) horizont = axs[j].plot(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*max_delay[common_bl_ind_in_ref_snapshots[j]].ravel(), color='white', ls=':', lw=1.5) axs[j].set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) axs[j].set_aspect('auto') axs[j].text(0.5, 0.9, descriptor_str[j], transform=axs[j].transAxes, fontsize=14, weight='semibold', ha='center', color='white') for j in xrange(n_snaps): axs_kprll = axs[j].twinx() axs_kprll.set_yticks(kprll(axs[j].get_yticks()*1e-6, redshift)) axs_kprll.set_ylim(kprll(NP.asarray(axs[j].get_ylim())*1e-6, redshift)) yformatter = FuncFormatter(lambda y, pos: '{0:.2f}'.format(y)) axs_kprll.yaxis.set_major_formatter(yformatter) if j == 0: axs_kperp = axs[j].twiny() axs_kperp.set_xticks(kperp(axs[j].get_xticks()*freq/FCNST.c, redshift)) axs_kperp.set_xlim(kperp(NP.asarray(axs[j].get_xlim())*freq/FCNST.c, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) axs_kperp.xaxis.set_major_formatter(xformatter) fig.subplots_adjust(hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_ylabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium', labelpad=30) big_ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=16, weight='medium', labelpad=20) big_axr = big_ax.twinx() big_axr.set_axis_bgcolor('none') big_axr.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axr.set_xticks([]) big_axr.set_yticks([]) big_axr.set_ylabel(r'$k_\parallel$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=40) big_axt = big_ax.twiny() big_axt.set_axis_bgcolor('none') big_axt.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axt.set_xticks([]) big_axt.set_yticks([]) big_axt.set_xlabel(r'$k_\perp$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=30) cbax = fig.add_axes([0.9, 0.125, 0.02, 0.74]) cbar = fig.colorbar(imdspec, cax=cbax, orientation='vertical') cbax.set_xlabel(r'K$^2$(Mpc/h)$^3$', labelpad=10, fontsize=12) cbax.xaxis.set_label_position('top') # PLT.tight_layout() fig.subplots_adjust(right=0.72) fig.subplots_adjust(top=0.88) # fig = PLT.figure(figsize=(6,6)) # for j in xrange(n_snaps): # # Determine the baselines common to simulations and data # # common_bl_ind = NP.squeeze(NP.where(NP.in1d(truncated_ref_bl_id, fhd_info[fhd_obsid[j]]['bl_id']))) # # sortind = NP.argsort(truncated_ref_bl_length[common_bl_ind], kind='heapsort') # # bloh, bloe, blon, blori = OPS.binned_statistic(fhd_info[fhd_obsid[j]]['bl_orientation'], statistic='count', bins=n_bins_baseline_orientation, range=[(-90.0+0.5*180.0/n_bins_baseline_orientation, 90.0+0.5*180.0/n_bins_baseline_orientation)]) # ax = fig.add_subplot(n_snaps,1,j+1) # ax.set_ylim(NP.amin(clean_lags*1e6), NP.amax(clean_lags*1e6)) # ax.set_ylabel(r'lag [$\mu$s]', fontsize=18) # ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=18) # imdspec = ax.pcolorfast(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*clean_lags, NP.abs(asm_cc_vis_lag[common_bl_ind_in_ref_snapshots[j][:-1],:-1,j].T), norm=PLTC.LogNorm(vmin=1e6, vmax=dspec_max)) # # imdspec = ax.pcolorfast(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*clean_lags, NP.abs(asm_cc_vis_lag[common_bl_ind[sortind[:-1]],:-1,j].T), norm=PLTC.LogNorm(vmin=1e6, vmax=dspec_max)) # horizonb = ax.plot(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*min_delay[common_bl_ind_in_ref_snapshots[j]].ravel(), color='white', ls='-', lw=1.5) # horizont = ax.plot(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*max_delay[common_bl_ind_in_ref_snapshots[j]].ravel(), color='white', ls='-', lw=1.5) # ax.set_aspect('auto') # cbax = fig.add_axes([0.86, 0.125, 0.02, 0.84]) # cbar = fig.colorbar(imdspec, cax=cbax, orientation='vertical') # cbax.set_ylabel('Jy Hz', labelpad=0, fontsize=18) # PLT.tight_layout() # fig.subplots_adjust(right=0.83) # # fig.subplots_adjust(top=0.9) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noisy_PS_sim_data_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noisy_PS_sim_data_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.eps', bbox_inches=0) # Plot each snapshot separately for j in xrange(n_snaps): fig = PLT.figure(figsize=(6,6)) ax = fig.add_subplot(111) imdspec = ax.pcolorfast(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*clean_lags, NP.abs(asm_cc_vis_lag[common_bl_ind_in_ref_snapshots[j][:-1],:-1,j].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=(1e6)**2 * volfactor1 * volfactor2 * Jy2K**2, vmax=dspec_max)) horizonb = ax.plot(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*min_delay[common_bl_ind_in_ref_snapshots[j]].ravel(), color='white', ls=':', lw=1.5) horizont = ax.plot(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*max_delay[common_bl_ind_in_ref_snapshots[j]].ravel(), color='white', ls=':', lw=1.5) ax.set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) ax.set_aspect('auto') # ax.text(0.5, 0.9, descriptor_str[j], transform=ax.transAxes, fontsize=14, weight='semibold', ha='center', color='white') ax_kprll = ax.twinx() ax_kprll.set_yticks(kprll(ax.get_yticks()*1e-6, redshift)) ax_kprll.set_ylim(kprll(NP.asarray(ax.get_ylim())*1e-6, redshift)) yformatter = FuncFormatter(lambda y, pos: '{0:.2f}'.format(y)) ax_kprll.yaxis.set_major_formatter(yformatter) ax_kperp = ax.twiny() ax_kperp.set_xticks(kperp(ax.get_xticks()*freq/FCNST.c, redshift)) ax_kperp.set_xlim(kperp(NP.asarray(ax.get_xlim())*freq/FCNST.c, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) ax_kperp.xaxis.set_major_formatter(xformatter) ax.set_ylabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium') ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=16, weight='medium') ax_kprll.set_ylabel(r'$k_\parallel$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium') ax_kperp.set_xlabel(r'$k_\perp$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium') cbax = fig.add_axes([0.9, 0.125, 0.02, 0.74]) cbar = fig.colorbar(imdspec, cax=cbax, orientation='vertical') cbax.set_xlabel(r'K$^2$(Mpc/h)$^3$', labelpad=10, fontsize=12) cbax.xaxis.set_label_position('top') # PLT.tight_layout() fig.subplots_adjust(right=0.72) fig.subplots_adjust(top=0.88) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noisy_PS_sim_data_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}_snapshot_{1:1d}'.format(oversampling_factor, j)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noisy_PS_sim_data_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}_snapshot_{1:1d}'.format(oversampling_factor, j)+'.eps', bbox_inches=0) for j in xrange(n_snaps): # Determine the baselines common to simulations and data # common_bl_ind = NP.squeeze(NP.where(NP.in1d(truncated_ref_bl_id, fhd_info[fhd_obsid[j]]['bl_id']))) # sortind = NP.argsort(truncated_ref_bl_length[common_bl_ind], kind='heapsort') # bloh, bloe, blon, blori = OPS.binned_statistic(fhd_info[fhd_obsid[j]]['bl_orientation'], statistic='count', bins=n_bins_baseline_orientation, range=[(-90.0+0.5*180.0/n_bins_baseline_orientation, 90.0+0.5*180.0/n_bins_baseline_orientation)]) # data_sim_ratio = NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][:,:,0].T) / NP.abs(asm_cc_vis_lag[common_bl_ind_in_ref_snapshots[j],:,j].T) data_sim_ratio += [NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][:,:,0].T) / NP.abs(asm_cc_vis_lag[common_bl_ind_in_ref_snapshots[j],:,j].T)] data_sim_difference_fraction += [(NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][:,:,0].T) - NP.abs(asm_cc_vis_lag[common_bl_ind_in_ref_snapshots[j],:,j].T)) / NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][:,:,0].T)] if use_alt_spindex: # alt_data_sim_ratio += [NP.abs(alt_asm_cc_vis_lag[common_bl_ind_in_ref_snapshots[j],:,j].T) / NP.abs(asm_cc_vis_lag[common_bl_ind_in_ref_snapshots[j],:,j].T)] # alt_data_sim_difference_fraction += [(NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][:,:,0].T) - NP.abs(alt_asm_cc_vis_lag[common_bl_ind_in_ref_snapshots[j],:,j].T)) / NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][:,:,0].T)] alt_data_sim_ratio += [NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][:,:,0].T) / NP.abs(alt_asm_cc_vis_lag[common_bl_ind_in_ref_snapshots[j],:,j].T)] alt_data_sim_difference_fraction += [(NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][:,:,0].T) - NP.abs(alt_asm_cc_vis_lag[common_bl_ind_in_ref_snapshots[j],:,j].T)) / NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][:,:,0].T)] relevant_EoR_window += [small_delays_EoR_window[:,common_bl_ind_in_ref_snapshots[j]]] relevant_wedge_window += [small_delays_wedge_window[:,common_bl_ind_in_ref_snapshots[j]]] relevant_non_wedge_window += [small_delays_non_wedge_window[:,common_bl_ind_in_ref_snapshots[j]]] # data_sim_difference_fraction[j] = NP.mean(NP.abs(NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][sortind,:,0].T) - NP.abs(asm_cc_vis_lag[common_bl_ind[sortind],:,j].T))/NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][sortind,:,0].T)) # data_sim_difference_fraction[j] = NP.mean(NP.abs(NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][sortind,:,0].T) - NP.abs(asm_cc_vis_lag[common_bl_ind[sortind],:,j].T))/NP.abs(asm_cc_vis_lag[common_bl_ind[sortind],:,j].T)) # data_sim_difference_fraction[j] = NP.sum(NP.abs(NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][:,:,0].T) - NP.abs(asm_cc_vis_lag[common_bl_ind_in_ref_snapshots[j],:,j].T))) / NP.sum(NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][:,:,0].T)) # data_sim_difference_fraction[j] = NP.sum(NP.abs(NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][sortind,:,0].T) - NP.abs(asm_cc_vis_lag[common_bl_ind[sortind],:,j].T))) / NP.sum(NP.abs(asm_cc_vis_lag[common_bl_ind[sortind],:,j].T)) # data_sim_difference_fraction[j] = NP.abs(NP.sum(NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][sortind,:,0].T)-NP.abs(NP.mean(fhd_info[fhd_obsid[j]]['rms_lag'])) - NP.abs(asm_cc_vis_lag[common_bl_ind[sortind],:,j].T)+NP.abs(NP.mean(vis_rms_lag)))) / NP.sum(NP.abs(asm_cc_vis_lag[common_bl_ind[sortind],:,j].T)-NP.abs(NP.mean(vis_rms_lag))) # mu = NP.mean(NP.log10(data_sim_ratio[relevant_EoR_window])) # sig= NP.std(NP.log10(data_sim_ratio[relevant_EoR_window])) if plot_06: # 06) Plot FHD data to simulation ratio on all baselines combined fig = PLT.figure(figsize=(6,6)) for j in xrange(n_snaps): ax = fig.add_subplot(n_snaps,1,j+1) ax.set_ylim(NP.amin(clean_lags*1e6), NP.amax(clean_lags*1e6)) ax.set_ylabel(r'lag [$\mu$s]', fontsize=18) ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=18) imdspec = ax.pcolorfast(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*clean_lags, NP.log10(data_sim_ratio[j][:-1,:-1]), vmin=-1.0, vmax=1.0) # imdspec = ax.pcolorfast(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*clean_lags, data_sim_ratio[:-1,:-1], norm=PLTC.LogNorm(vmin=1e-1, vmax=1e1)) horizonb = ax.plot(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*min_delay[common_bl_ind_in_ref_snapshots[j]].ravel(), color='white', ls=':', lw=1.5) horizont = ax.plot(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*max_delay[common_bl_ind_in_ref_snapshots[j]].ravel(), color='white', ls=':', lw=1.5) ax.set_aspect('auto') cbax = fig.add_axes([0.91, 0.125, 0.02, 0.84]) cbar = fig.colorbar(imdspec, cax=cbax, orientation='vertical') # cbax.set_ylabel('Jy Hz', labelpad=0, fontsize=18) PLT.tight_layout() fig.subplots_adjust(right=0.88) # fig.subplots_adjust(top=0.9) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noisy_PS_sim_data_ratio_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noisy_PS_sim_data_ratio_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.eps', bbox_inches=0) descriptor_str = ['off-zenith', 'zenith'] fig, axs = PLT.subplots(n_snaps, sharex=True, sharey=True, figsize=(6,6)) for j in xrange(n_snaps): hpdf, bins, patches = axs[j].hist(NP.log10(data_sim_ratio[j][relevant_wedge_window[j]]), bins=50, normed=True, cumulative=False, histtype='step', linewidth=2.5, color='black') mu = NP.mean(NP.log10(data_sim_ratio[j][relevant_wedge_window[j]])) sig = NP.std(NP.log10(data_sim_ratio[j][relevant_wedge_window[j]])) if use_alt_spindex: alt_hpdf, alt_bins, alt_patches = axs[j].hist(NP.log10(alt_data_sim_ratio[j][relevant_wedge_window[j]]), bins=50, normed=True, cumulative=False, histtype='step', linewidth=2.5, color='gray') alt_mu = NP.mean(NP.log10(alt_data_sim_ratio[j][relevant_wedge_window[j]])) alt_sig = NP.std(NP.log10(alt_data_sim_ratio[j][relevant_wedge_window[j]])) print NP.median(NP.abs(NP.log10(data_sim_ratio[j][relevant_wedge_window[j]]) - NP.median(NP.log10(data_sim_ratio[j][relevant_wedge_window[j]])))), NP.median(NP.abs(NP.log10(alt_data_sim_ratio[j][relevant_wedge_window[j]]) - NP.median(NP.log10(alt_data_sim_ratio[j][relevant_wedge_window[j]])))) else: print NP.median(NP.abs(NP.log10(data_sim_ratio[j][relevant_wedge_window[j]]) - NP.median(NP.log10(data_sim_ratio[j][relevant_wedge_window[j]])))) # print mu, sig # gauss_model = mlab.normpdf(bins, mu, sig) # modl = ax.plot(bins, gauss_model, 'k-') # axs[j].set_xlabel(r'$\log_{10}\,\rho$', fontsize=24, weight='medium') axs[j].set_xlim(-2, 2) axs[j].set_ylim(0.0, 1.1) axs[j].set_aspect('auto') axs[j].tick_params(which='major', length=12, labelsize=12) axs[j].tick_params(which='minor', length=6) axs[j].text(0.1, 0.8, descriptor_str[j], transform=axs[j].transAxes, fontsize=14, weight='semibold', ha='left', color='black') fig.subplots_adjust(hspace=0) # PLT.tight_layout() fig.subplots_adjust(top=0.95) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_xlabel(r'$\log_{10}\,\rho$', fontsize=24, weight='medium', labelpad=20) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'histogram_wedge_sim_data_log_ratio_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'histogram_wedge_sim_data_log_ratio_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.eps', bbox_inches=0) if plot_09: # 09) Plot histogram of fractional differences between FHD data and simulation fig = PLT.figure(figsize=(6,6)) for j in xrange(n_snaps): ax = fig.add_subplot(n_snaps,1,j+1) hpdf, bins, patches = ax.hist(data_sim_difference_fraction[j][relevant_wedge_window[j]], bins=50, normed=True, cumulative=False, histtype='step', linewidth=2.5, color='black', label='pdf (wedge)') ax.set_xlabel(r'$\rho-1$', fontsize=24, weight='medium') ax.set_xlim(-2, 2) PLT.tight_layout() fig.subplots_adjust(bottom=0.15) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'histogram_wedge_sim_data_snr_log_fractional_diff_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'histogram_wedge_sim_data_snr_log_fractional_diff_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.eps', bbox_inches=0) if plot_07 or plot_08: dsm_CLEAN_infile = '/data3/t_nithyanandan/'+project_dir+'/'+telescope_str+'multi_baseline_CLEAN_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(ref_bl_length[baseline_bin_indices[0]],ref_bl_length[min(baseline_bin_indices[n_bl_chunks-1]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_dsm'+sky_sector_str+'sprms_{0:.1f}_'.format(spindex_rms)+spindex_seed_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+bpass_shape csm_CLEAN_infile = '/data3/t_nithyanandan/'+project_dir+'/'+telescope_str+'multi_baseline_CLEAN_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(ref_bl_length[baseline_bin_indices[0]],ref_bl_length[min(baseline_bin_indices[n_bl_chunks-1]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_csm'+sky_sector_str+'sprms_{0:.1f}_'.format(spindex_rms)+spindex_seed_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+bpass_shape hdulist = fits.open(dsm_CLEAN_infile+'.fits') dsm_cc_skyvis = hdulist['CLEAN NOISELESS VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES IMAG'].data dsm_cc_skyvis_res = hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS IMAG'].data dsm_cc_vis = hdulist['CLEAN NOISY VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES IMAG'].data dsm_cc_vis_res = hdulist['CLEAN NOISY VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES RESIDUALS IMAG'].data hdulist.close() dsm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:] = dsm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:].conj() dsm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:] = dsm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:].conj() dsm_cc_vis[simdata_neg_bl_orientation_ind,:,:] = dsm_cc_vis[simdata_neg_bl_orientation_ind,:,:].conj() dsm_cc_vis_res[simdata_neg_bl_orientation_ind,:,:] = dsm_cc_vis_res[simdata_neg_bl_orientation_ind,:,:].conj() dsm_cc_skyvis_lag = NP.fft.fftshift(NP.fft.ifft(dsm_cc_skyvis, axis=1),axes=1) * dsm_cc_skyvis.shape[1] * freq_resolution dsm_ccres_sky = NP.fft.fftshift(NP.fft.ifft(dsm_cc_skyvis_res, axis=1),axes=1) * dsm_cc_skyvis.shape[1] * freq_resolution dsm_cc_skyvis_lag = dsm_cc_skyvis_lag + dsm_ccres_sky dsm_cc_vis_lag = NP.fft.fftshift(NP.fft.ifft(dsm_cc_vis, axis=1),axes=1) * dsm_cc_vis.shape[1] * freq_resolution dsm_ccres = NP.fft.fftshift(NP.fft.ifft(dsm_cc_vis_res, axis=1),axes=1) * dsm_cc_vis.shape[1] * freq_resolution dsm_cc_vis_lag = dsm_cc_vis_lag + dsm_ccres hdulist = fits.open(csm_CLEAN_infile+'.fits') csm_cc_skyvis = hdulist['CLEAN NOISELESS VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES IMAG'].data csm_cc_skyvis_res = hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS IMAG'].data csm_cc_vis = hdulist['CLEAN NOISY VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES IMAG'].data csm_cc_vis_res = hdulist['CLEAN NOISY VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES RESIDUALS IMAG'].data hdulist.close() csm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:] = csm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:].conj() csm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:] = csm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:].conj() csm_cc_vis[simdata_neg_bl_orientation_ind,:,:] = csm_cc_vis[simdata_neg_bl_orientation_ind,:,:].conj() csm_cc_vis_res[simdata_neg_bl_orientation_ind,:,:] = csm_cc_vis_res[simdata_neg_bl_orientation_ind,:,:].conj() csm_cc_skyvis_lag = NP.fft.fftshift(NP.fft.ifft(csm_cc_skyvis, axis=1),axes=1) * csm_cc_skyvis.shape[1] * freq_resolution csm_ccres_sky = NP.fft.fftshift(NP.fft.ifft(csm_cc_skyvis_res, axis=1),axes=1) * csm_cc_skyvis.shape[1] * freq_resolution csm_cc_skyvis_lag = csm_cc_skyvis_lag + csm_ccres_sky csm_cc_vis_lag = NP.fft.fftshift(NP.fft.ifft(csm_cc_vis, axis=1),axes=1) * csm_cc_vis.shape[1] * freq_resolution csm_ccres = NP.fft.fftshift(NP.fft.ifft(csm_cc_vis_res, axis=1),axes=1) * csm_cc_vis.shape[1] * freq_resolution csm_cc_vis_lag = csm_cc_vis_lag + csm_ccres dsm_cc_skyvis_lag = DSP.downsampler(dsm_cc_skyvis_lag, 1.0*clean_lags_orig.size/ia.lags.size, axis=1) dsm_cc_vis_lag = DSP.downsampler(dsm_cc_vis_lag, 1.0*clean_lags_orig.size/ia.lags.size, axis=1) csm_cc_skyvis_lag = DSP.downsampler(csm_cc_skyvis_lag, 1.0*clean_lags_orig.size/ia.lags.size, axis=1) csm_cc_vis_lag = DSP.downsampler(csm_cc_vis_lag, 1.0*clean_lags_orig.size/ia.lags.size, axis=1) dsm_cc_skyvis_lag = dsm_cc_skyvis_lag[truncated_ref_bl_ind,:,:] dsm_cc_vis_lag = dsm_cc_vis_lag[truncated_ref_bl_ind,:,:] csm_cc_skyvis_lag = csm_cc_skyvis_lag[truncated_ref_bl_ind,:,:] csm_cc_vis_lag = csm_cc_vis_lag[truncated_ref_bl_ind,:,:] if max_abs_delay is not None: dsm_cc_skyvis_lag = dsm_cc_skyvis_lag[:,small_delays_ind,:] csm_cc_skyvis_lag = csm_cc_skyvis_lag[:,small_delays_ind,:] dsm_cc_skyvis_lag_err = dsm_cc_skyvis_lag * NP.log(dsm_base_freq/freq) * dsm_dalpha csm_cc_skyvis_lag_err = csm_cc_skyvis_lag * NP.log(csm_base_freq/freq) * csm_dalpha # cc_skyvis_lag_err = NP.abs(dsm_cc_skyvis_lag_err) + NP.abs(csm_cc_skyvis_lag_err) # cc_skyvis_lag_err = NP.abs(dsm_cc_skyvis_lag_err + csm_cc_skyvis_lag_err) cc_skyvis_lag_err = NP.sqrt(NP.abs(dsm_cc_skyvis_lag_err)**2 + NP.abs(csm_cc_skyvis_lag_err)**2) if plot_07: # 07) Plot ratio of differences between FHD data and simulation to expected error on all baselines combined fig = PLT.figure(figsize=(6,6)) for j in xrange(n_snaps): err_log_ratio_fhd = NP.abs(fhd_info[fhd_obsid[j]]['rms_lag'].T)/NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][:,:,0].T) err_log_ratio_sim = NP.sqrt(cc_skyvis_lag_err[common_bl_ind_in_ref_snapshots[j],:,j]**2 + NP.abs(vis_rms_lag[common_bl_ind_in_ref_snapshots[j],:,j])**2).T / NP.abs(asm_cc_vis_lag[common_bl_ind_in_ref_snapshots[j],:,j]).T err_log_ratio = NP.sqrt(err_log_ratio_sim**2 + err_log_ratio_fhd**2) data_sim_log_ratio = NP.log10(data_sim_ratio[j]) # data_sim_log_ratio = NP.log10(NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][:,:,0].T) / NP.abs(asm_cc_vis_lag[common_bl_ind_in_ref_snapshots[j],:,j].T)) snr_log_ratio = data_sim_log_ratio / err_log_ratio ax = fig.add_subplot(n_snaps,1,j+1) ax.set_ylim(NP.amin(clean_lags*1e6), NP.amax(clean_lags*1e6)) ax.set_ylabel(r'lag [$\mu$s]', fontsize=18) ax.set_xlabel(r'$|\vec{mathbf{x}}|$ [m]', fontsize=18) imdspec = ax.pcolorfast(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*clean_lags, snr_log_ratio[:-1,:-1], vmin=-2, vmax=2) horizonb = ax.plot(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*min_delay[common_bl_ind_in_ref_snapshots[j]].ravel(), color='white', ls=':', lw=1.5) horizont = ax.plot(truncated_ref_bl_length[common_bl_ind_in_ref_snapshots[j]], 1e6*max_delay[common_bl_ind_in_ref_snapshots[j]].ravel(), color='white', ls=':', lw=1.5) ax.set_aspect('auto') cbax = fig.add_axes([0.86, 0.125, 0.02, 0.84]) cbar = fig.colorbar(imdspec, cax=cbax, orientation='vertical') PLT.tight_layout() fig.subplots_adjust(right=0.83) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noisy_PS_sim_data_snr_log_ratio_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noisy_PS_sim_data_snr_log_ratio_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.eps', bbox_inches=0) fig = PLT.figure(figsize=(6,8)) for j in xrange(n_snaps): err_log_ratio_fhd = NP.abs(fhd_info[fhd_obsid[j]]['rms_lag'].T)/NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][:,:,0].T) err_log_ratio_sim = NP.sqrt(cc_skyvis_lag_err[common_bl_ind_in_ref_snapshots[j],:,j]**2 + NP.abs(vis_rms_lag[common_bl_ind_in_ref_snapshots[j],:,j])**2).T / NP.abs(asm_cc_vis_lag[common_bl_ind_in_ref_snapshots[j],:,j]).T err_log_ratio = NP.sqrt(err_log_ratio_sim**2 + err_log_ratio_fhd**2) data_sim_log_ratio = NP.log10(data_sim_ratio[j]) # data_sim_log_ratio = NP.log10(NP.abs(fhd_info[fhd_obsid[j]]['vis_lag_noisy'][:,:,0].T) / NP.abs(asm_cc_vis_lag[common_bl_ind_in_ref_snapshots[j],:,j].T)) snr_data_sim_log_ratio = data_sim_log_ratio / err_log_ratio # relevant_EoR_window = small_delays_EoR_window[:,common_bl_ind_in_ref_snapshots[j]] # relevant_wedge_window = small_delays_wedge_window[:,common_bl_ind_in_ref_snapshots[j]] # relevant_non_wedge_window = small_delays_non_wedge_window[:,common_bl_ind_in_ref_snapshots[j]] ax = fig.add_subplot(n_snaps,1,j+1) hpdf, bins, patches = ax.hist(snr_data_sim_log_ratio[relevant_wedge_window[j]], bins=50, normed=True, cumulative=False, histtype='step', linewidth=2.5, color='black', label='pdf (wedge)') confidence_level = (NP.sum(hpdf[bins[:-1] <= 1.0]) - NP.sum(hpdf[bins[:-1] <= -1.0])) * (bins[1]-bins[0]) print confidence_level hpdf, bins, patches = ax.hist(snr_data_sim_log_ratio[relevant_non_wedge_window[j]], bins=50, normed=True, cumulative=False, histtype='step', linewidth=2.5, color='black', label='pdf (outside)', linestyle='dashed') hcdf, bins, patches = ax.hist(snr_data_sim_log_ratio[relevant_wedge_window[j]], bins=50, normed=True, cumulative=True, histtype='step', linewidth=2.5, color='gray', label='cdf (outside)') hcdf, bins, patches = ax.hist(snr_data_sim_log_ratio[relevant_non_wedge_window[j]], bins=50, normed=True, cumulative=True, histtype='step', linewidth=2.5, color='gray', label='cdf (wedge)', linestyle='dashed') ax.set_xlabel(r'$\frac{\mathrm{log}_{10}\,\rho}{\Delta\,\mathrm{log}_{10}\,\rho}$', fontsize=24, weight='medium') # ax.set_xlabel('log(ratio) / err[log(ratio)]', fontsize=16, weight='medium') ax.set_xlim(-2, 2) ax.axvline(x=-1.0, ymax=0.67, color='black', ls=':', lw=2) ax.axvline(x=1.0, ymax=0.67, color='black', ls=':', lw=2) l1 = PLT.Line2D(range(1), range(1), color='black', linestyle='-', linewidth=2.5) l2 = PLT.Line2D(range(1), range(1), color='black', linestyle='--', linewidth=2.5) l3 = PLT.Line2D(range(1), range(1), color='gray', linestyle='-', linewidth=2.5) l4 = PLT.Line2D(range(1), range(1), color='gray', linestyle='--', linewidth=2.5) pdflegend = PLT.legend((l1, l2), ('pdf (wedge)', 'pdf (outside)'), loc='upper left', frameon=False) ax = PLT.gca().add_artist(pdflegend) cdflegend = PLT.legend((l3, l4), ('cdf (wedge)', 'cdf (outside)'), loc='upper right', frameon=False) # ax.text(0.05, 0.7, '{0:.1f} %'.format(confidence_level*100), horizontalalignment='left', verticalalignment='top', transform=ax.transAxes) PLT.tight_layout() fig.subplots_adjust(bottom=0.15) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'histogram_wedge_sim_data_snr_log_ratio_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'histogram_wedge_sim_data_snr_log_ratio_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.eps', bbox_inches=0) if plot_16: # 16) Plot average thermal noise in simulations and data as a function of baseline length fig, axs = PLT.subplots(n_snaps, sharex=True, sharey=True, figsize=(6,6)) for j in xrange(n_snaps): axs[j].plot(truncated_ref_bl_length, NP.abs(vis_rms_lag[:,0,j]).ravel(), 'k.', label='Simulation') axs[j].plot(fhd_info[fhd_obsid[j]]['bl_length'], NP.abs(fhd_info[fhd_obsid[j]]['rms_lag']).ravel(), 'r.', label='MWA Data') axs[j].set_xlim(0.0, truncated_ref_bl_length.max()) axs[j].set_yscale('log') axs[j].set_aspect('auto') legend = axs[j].legend(loc='upper right') legend.draw_frame(False) fig.subplots_adjust(hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=24, weight='medium', labelpad=20) big_ax.set_ylabel(r'$V_{b\tau}^\mathrm{rms}(\mathbf{b})$ [Jy Hz]', fontsize=24, weight='medium', labelpad=20) if plot_10 or plot_11 or plot_12 or plot_13 or plot_14: infile = '/data3/t_nithyanandan/'+project_dir+'/'+telescope_str+'multi_baseline_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(ref_bl_length[baseline_bin_indices[0]],ref_bl_length[min(baseline_bin_indices[n_bl_chunks-1]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_'+fg_str+sky_sector_str+'sprms_{0:.1f}_'.format(spindex_rms)+spindex_seed_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6) asm_CLEAN_infile = '/data3/t_nithyanandan/'+project_dir+'/'+telescope_str+'multi_baseline_CLEAN_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(ref_bl_length[baseline_bin_indices[0]],ref_bl_length[min(baseline_bin_indices[n_bl_chunks-1]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_asm'+sky_sector_str+'sprms_{0:.1f}_'.format(spindex_rms)+spindex_seed_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+bpass_shape dsm_CLEAN_infile = '/data3/t_nithyanandan/'+project_dir+'/'+telescope_str+'multi_baseline_CLEAN_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(ref_bl_length[baseline_bin_indices[0]],ref_bl_length[min(baseline_bin_indices[n_bl_chunks-1]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_dsm'+sky_sector_str+'sprms_{0:.1f}_'.format(spindex_rms)+spindex_seed_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+bpass_shape csm_CLEAN_infile = '/data3/t_nithyanandan/'+project_dir+'/'+telescope_str+'multi_baseline_CLEAN_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(ref_bl_length[baseline_bin_indices[0]],ref_bl_length[min(baseline_bin_indices[n_bl_chunks-1]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_csm'+sky_sector_str+'sprms_{0:.1f}_'.format(spindex_rms)+spindex_seed_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+bpass_shape ia = RI.InterferometerArray(None, None, None, init_file=infile+'.fits') simdata_bl_orientation = NP.angle(ia.baselines[:,0] + 1j * ia.baselines[:,1], deg=True) simdata_neg_bl_orientation_ind = simdata_bl_orientation > 90.0 + 0.5*180.0/n_bins_baseline_orientation simdata_bl_orientation[simdata_neg_bl_orientation_ind] -= 180.0 ia.baselines[simdata_neg_bl_orientation_ind,:] = -ia.baselines[simdata_neg_bl_orientation_ind,:] hdulist = fits.open(infile+'.fits') latitude = hdulist[0].header['latitude'] pointing_coords = hdulist[0].header['pointing_coords'] pointings_table = hdulist['POINTING AND PHASE CENTER INFO'].data lst = pointings_table['LST'] n_snaps = lst.size hdulist.close() if pointing_coords == 'altaz': pointings_altaz = NP.hstack((pointings_table['pointing_latitude'].reshape(-1,1), pointings_table['pointing_longitude'].reshape(-1,1))) pointings_hadec = GEOM.altaz2hadec(pointings_altaz, latitude, units='degrees') pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') elif pointing_coords == 'radec': pointings_radec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) pointings_hadec = NP.hstack(((lst-pointings_radec[:,0]).reshape(-1,1), pointings_radec[:,1].reshape(-1,1))) pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') elif pointing_coords == 'hadec': pointings_hadec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) pointings_radec = NP.hstack(((lst-pointings_hadec[:,0]).reshape(-1,1), pointings_hadec[:,1].reshape(-1,1))) pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') hdulist = fits.open(asm_CLEAN_infile+'.fits') clean_lags = hdulist['SPECTRAL INFO'].data['lag'] clean_lags_orig = NP.copy(clean_lags) asm_cc_skyvis = hdulist['CLEAN NOISELESS VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES IMAG'].data asm_cc_skyvis_res = hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS IMAG'].data asm_cc_vis = hdulist['CLEAN NOISY VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES IMAG'].data asm_cc_vis_res = hdulist['CLEAN NOISY VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES RESIDUALS IMAG'].data hdulist.close() hdulist = fits.open(dsm_CLEAN_infile+'.fits') dsm_cc_skyvis = hdulist['CLEAN NOISELESS VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES IMAG'].data dsm_cc_skyvis_res = hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS IMAG'].data dsm_cc_vis = hdulist['CLEAN NOISY VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES IMAG'].data dsm_cc_vis_res = hdulist['CLEAN NOISY VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES RESIDUALS IMAG'].data hdulist.close() hdulist = fits.open(csm_CLEAN_infile+'.fits') csm_cc_skyvis = hdulist['CLEAN NOISELESS VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES IMAG'].data csm_cc_skyvis_res = hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS IMAG'].data csm_cc_vis = hdulist['CLEAN NOISY VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES IMAG'].data csm_cc_vis_res = hdulist['CLEAN NOISY VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES RESIDUALS IMAG'].data hdulist.close() asm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:] = asm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:].conj() asm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:] = asm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:].conj() asm_cc_vis[simdata_neg_bl_orientation_ind,:,:] = asm_cc_vis[simdata_neg_bl_orientation_ind,:,:].conj() asm_cc_vis_res[simdata_neg_bl_orientation_ind,:,:] = asm_cc_vis_res[simdata_neg_bl_orientation_ind,:,:].conj() asm_cc_skyvis_lag = NP.fft.fftshift(NP.fft.ifft(asm_cc_skyvis, axis=1),axes=1) * asm_cc_skyvis.shape[1] * freq_resolution asm_ccres_sky = NP.fft.fftshift(NP.fft.ifft(asm_cc_skyvis_res, axis=1),axes=1) * asm_cc_skyvis.shape[1] * freq_resolution asm_cc_skyvis_lag = asm_cc_skyvis_lag + asm_ccres_sky asm_cc_vis_lag = NP.fft.fftshift(NP.fft.ifft(asm_cc_vis, axis=1),axes=1) * asm_cc_vis.shape[1] * freq_resolution asm_ccres = NP.fft.fftshift(NP.fft.ifft(asm_cc_vis_res, axis=1),axes=1) * asm_cc_vis.shape[1] * freq_resolution asm_cc_vis_lag = asm_cc_vis_lag + asm_ccres dsm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:] = dsm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:].conj() dsm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:] = dsm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:].conj() dsm_cc_vis[simdata_neg_bl_orientation_ind,:,:] = dsm_cc_vis[simdata_neg_bl_orientation_ind,:,:].conj() dsm_cc_vis_res[simdata_neg_bl_orientation_ind,:,:] = dsm_cc_vis_res[simdata_neg_bl_orientation_ind,:,:].conj() dsm_cc_skyvis_lag = NP.fft.fftshift(NP.fft.ifft(dsm_cc_skyvis, axis=1),axes=1) * dsm_cc_skyvis.shape[1] * freq_resolution dsm_ccres_sky = NP.fft.fftshift(NP.fft.ifft(dsm_cc_skyvis_res, axis=1),axes=1) * dsm_cc_skyvis.shape[1] * freq_resolution dsm_cc_skyvis_lag = dsm_cc_skyvis_lag + dsm_ccres_sky dsm_cc_vis_lag = NP.fft.fftshift(NP.fft.ifft(dsm_cc_vis, axis=1),axes=1) * dsm_cc_vis.shape[1] * freq_resolution dsm_ccres = NP.fft.fftshift(NP.fft.ifft(dsm_cc_vis_res, axis=1),axes=1) * dsm_cc_vis.shape[1] * freq_resolution dsm_cc_vis_lag = dsm_cc_vis_lag + dsm_ccres csm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:] = csm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:].conj() csm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:] = csm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:].conj() csm_cc_vis[simdata_neg_bl_orientation_ind,:,:] = csm_cc_vis[simdata_neg_bl_orientation_ind,:,:].conj() csm_cc_vis_res[simdata_neg_bl_orientation_ind,:,:] = csm_cc_vis_res[simdata_neg_bl_orientation_ind,:,:].conj() csm_cc_skyvis_lag = NP.fft.fftshift(NP.fft.ifft(csm_cc_skyvis, axis=1),axes=1) * csm_cc_skyvis.shape[1] * freq_resolution csm_ccres_sky = NP.fft.fftshift(NP.fft.ifft(csm_cc_skyvis_res, axis=1),axes=1) * csm_cc_skyvis.shape[1] * freq_resolution csm_cc_skyvis_lag = csm_cc_skyvis_lag + csm_ccres_sky csm_cc_vis_lag = NP.fft.fftshift(NP.fft.ifft(csm_cc_vis, axis=1),axes=1) * csm_cc_vis.shape[1] * freq_resolution csm_ccres = NP.fft.fftshift(NP.fft.ifft(csm_cc_vis_res, axis=1),axes=1) * csm_cc_vis.shape[1] * freq_resolution csm_cc_vis_lag = csm_cc_vis_lag + csm_ccres asm_cc_skyvis_lag = DSP.downsampler(asm_cc_skyvis_lag, 1.0*clean_lags.size/ia.lags.size, axis=1) asm_cc_vis_lag = DSP.downsampler(asm_cc_vis_lag, 1.0*clean_lags.size/ia.lags.size, axis=1) dsm_cc_skyvis_lag = DSP.downsampler(dsm_cc_skyvis_lag, 1.0*clean_lags.size/ia.lags.size, axis=1) dsm_cc_vis_lag = DSP.downsampler(dsm_cc_vis_lag, 1.0*clean_lags.size/ia.lags.size, axis=1) csm_cc_skyvis_lag = DSP.downsampler(csm_cc_skyvis_lag, 1.0*clean_lags.size/ia.lags.size, axis=1) csm_cc_vis_lag = DSP.downsampler(csm_cc_vis_lag, 1.0*clean_lags.size/ia.lags.size, axis=1) clean_lags = DSP.downsampler(clean_lags, 1.0*clean_lags.size/ia.lags.size, axis=-1) clean_lags = clean_lags.ravel() vis_noise_lag = NP.copy(ia.vis_noise_lag) vis_noise_lag = vis_noise_lag[truncated_ref_bl_ind,:,:] asm_cc_skyvis_lag = asm_cc_skyvis_lag[truncated_ref_bl_ind,:,:] asm_cc_vis_lag = asm_cc_vis_lag[truncated_ref_bl_ind,:,:] csm_cc_skyvis_lag = csm_cc_skyvis_lag[truncated_ref_bl_ind,:,:] csm_cc_vis_lag = csm_cc_vis_lag[truncated_ref_bl_ind,:,:] dsm_cc_skyvis_lag = dsm_cc_skyvis_lag[truncated_ref_bl_ind,:,:] dsm_cc_vis_lag = dsm_cc_vis_lag[truncated_ref_bl_ind,:,:] delaymat = DLY.delay_envelope(ia.baselines[truncated_ref_bl_ind,:], pc, units='mks') bw = nchan * freq_resolution min_delay = -delaymat[0,:,1]-delaymat[0,:,0] max_delay = delaymat[0,:,0]-delaymat[0,:,1] clags = clean_lags.reshape(1,-1) min_delay = min_delay.reshape(-1,1) max_delay = max_delay.reshape(-1,1) thermal_noise_window = NP.abs(clags) >= max_abs_delay*1e-6 thermal_noise_window = NP.repeat(thermal_noise_window, ia.baselines[truncated_ref_bl_ind,:].shape[0], axis=0) EoR_window = NP.logical_or(clags > max_delay+3/bw, clags < min_delay-3/bw) strict_EoR_window = NP.logical_and(EoR_window, NP.abs(clags) < 1/coarse_channel_resolution) wedge_window = NP.logical_and(clags <= max_delay, clags >= min_delay) non_wedge_window = NP.logical_not(wedge_window) vis_rms_lag = OPS.rms(asm_cc_vis_lag, mask=NP.logical_not(NP.repeat(thermal_noise_window[:,:,NP.newaxis], n_snaps, axis=2)), axis=1) vis_rms_freq = NP.abs(vis_rms_lag) / NP.sqrt(nchan) / freq_resolution T_rms_freq = vis_rms_freq / (2.0 * FCNST.k) * NP.mean(ia.A_eff[truncated_ref_bl_ind,:]) * NP.mean(ia.eff_Q[truncated_ref_bl_ind,:]) * NP.sqrt(2.0*freq_resolution*NP.asarray(ia.t_acc).reshape(1,1,-1)) * CNST.Jy vis_rms_lag_theory = OPS.rms(vis_noise_lag, mask=NP.logical_not(NP.repeat(EoR_window[:,:,NP.newaxis], n_snaps, axis=2)), axis=1) vis_rms_freq_theory = NP.abs(vis_rms_lag_theory) / NP.sqrt(nchan) / freq_resolution T_rms_freq_theory = vis_rms_freq_theory / (2.0 * FCNST.k) * NP.mean(ia.A_eff[truncated_ref_bl_ind,:]) * NP.mean(ia.eff_Q[truncated_ref_bl_ind,:]) * NP.sqrt(2.0*freq_resolution*NP.asarray(ia.t_acc).reshape(1,1,-1)) * CNST.Jy if (dspec_min is None) or (dspec_max is None): dspec_max = max([NP.abs(asm_cc_skyvis_lag).max(), NP.abs(dsm_cc_skyvis_lag).max(), NP.abs(csm_cc_skyvis_lag).max()]) dspec_min = min([NP.abs(asm_cc_skyvis_lag).min(), NP.abs(dsm_cc_skyvis_lag).min(), NP.abs(csm_cc_skyvis_lag).min()]) dspec_max = dspec_max**2 * volfactor1 * volfactor2 * Jy2K**2 dspec_min = dspec_min**2 * volfactor1 * volfactor2 * Jy2K**2 small_delays_EoR_window = EoR_window.T small_delays_strict_EoR_window = strict_EoR_window.T small_delays_wedge_window = wedge_window.T if max_abs_delay is not None: small_delays_ind = NP.abs(clean_lags) <= max_abs_delay * 1e-6 clean_lags = clean_lags[small_delays_ind] asm_cc_vis_lag = asm_cc_vis_lag[:,small_delays_ind,:] asm_cc_skyvis_lag = asm_cc_skyvis_lag[:,small_delays_ind,:] dsm_cc_vis_lag = dsm_cc_vis_lag[:,small_delays_ind,:] dsm_cc_skyvis_lag = dsm_cc_skyvis_lag[:,small_delays_ind,:] csm_cc_vis_lag = csm_cc_vis_lag[:,small_delays_ind,:] csm_cc_skyvis_lag = csm_cc_skyvis_lag[:,small_delays_ind,:] small_delays_EoR_window = small_delays_EoR_window[small_delays_ind,:] small_delays_strict_EoR_window = small_delays_strict_EoR_window[small_delays_ind,:] small_delays_wedge_window = small_delays_wedge_window[small_delays_ind,:] if plot_10: # 10) Plot noiseless delay spectra from simulations for diffuse, compact and all-sky models descriptor_str = ['off-zenith', 'zenith'] All-sky model fig, axs = PLT.subplots(n_snaps, sharex=True, sharey=True, figsize=(6,6)) for j in xrange(n_snaps): imdspec = axs[j].pcolorfast(truncated_ref_bl_length, 1e6*clean_lags, NP.abs(asm_cc_skyvis_lag[:-1,:-1,j].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=(1e6)**2 * volfactor1 * volfactor2 * Jy2K**2, vmax=dspec_max)) horizonb = axs[j].plot(truncated_ref_bl_length, 1e6*min_delay.ravel(), color='white', ls=':', lw=1.5) horizont = axs[j].plot(truncated_ref_bl_length, 1e6*max_delay.ravel(), color='white', ls=':', lw=1.5) axs[j].set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) axs[j].set_aspect('auto') axs[j].text(0.5, 0.9, descriptor_str[j], transform=axs[j].transAxes, fontsize=14, weight='semibold', ha='center', color='white') for j in xrange(n_snaps): axs_kprll = axs[j].twinx() axs_kprll.set_yticks(kprll(axs[j].get_yticks()*1e-6, redshift)) axs_kprll.set_ylim(kprll(NP.asarray(axs[j].get_ylim())*1e-6, redshift)) yformatter = FuncFormatter(lambda y, pos: '{0:.2f}'.format(y)) axs_kprll.yaxis.set_major_formatter(yformatter) if j == 0: axs_kperp = axs[j].twiny() axs_kperp.set_xticks(kperp(axs[j].get_xticks()*freq/FCNST.c, redshift)) axs_kperp.set_xlim(kperp(NP.asarray(axs[j].get_xlim())*freq/FCNST.c, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) axs_kperp.xaxis.set_major_formatter(xformatter) fig.subplots_adjust(hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_ylabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium', labelpad=30) big_ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=16, weight='medium', labelpad=20) big_axr = big_ax.twinx() big_axr.set_axis_bgcolor('none') big_axr.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axr.set_xticks([]) big_axr.set_yticks([]) big_axr.set_ylabel(r'$k_\parallel$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=40) big_axt = big_ax.twiny() big_axt.set_axis_bgcolor('none') big_axt.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axt.set_xticks([]) big_axt.set_yticks([]) big_axt.set_xlabel(r'$k_\perp$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=30) cbax = fig.add_axes([0.9, 0.125, 0.02, 0.74]) cbar = fig.colorbar(imdspec, cax=cbax, orientation='vertical') cbax.set_xlabel(r'K$^2$(Mpc/h)$^3$', labelpad=10, fontsize=12) cbax.xaxis.set_label_position('top') # PLT.tight_layout() fig.subplots_adjust(right=0.72) fig.subplots_adjust(top=0.88) # fig = PLT.figure(figsize=(6,6)) # for j in xrange(n_snaps): # ax = fig.add_subplot(n_snaps,1,j+1) # ax.set_ylim(NP.amin(clean_lags*1e6), NP.amax(clean_lags*1e6)) # ax.set_ylabel(r'lag [$\mu$s]', fontsize=18) # ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=18) # imdspec = ax.pcolorfast(truncated_ref_bl_length, 1e6*clean_lags, NP.abs(asm_cc_skyvis_lag[:-1,:-1,j].T), norm=PLTC.LogNorm(vmin=1e6, vmax=dspec_max)) # horizonb = ax.plot(truncated_ref_bl_length, 1e6*min_delay.ravel(), color='white', ls='-', lw=1.5) # horizont = ax.plot(truncated_ref_bl_length, 1e6*max_delay.ravel(), color='white', ls='-', lw=1.5) # ax.set_aspect('auto') # cbax = fig.add_axes([0.86, 0.125, 0.02, 0.84]) # cbar = fig.colorbar(imdspec, cax=cbax, orientation='vertical') # cbax.set_ylabel('Jy Hz', labelpad=0, fontsize=18) # PLT.tight_layout() # fig.subplots_adjust(right=0.83) # # fig.subplots_adjust(top=0.9) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_asm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_asm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.eps', bbox_inches=0) # Plot each snapshot separately for j in xrange(n_snaps): fig = PLT.figure(figsize=(6,6)) ax = fig.add_subplot(111) imdspec = ax.pcolorfast(truncated_ref_bl_length, 1e6*clean_lags, NP.abs(asm_cc_skyvis_lag[:-1,:-1,j].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=1e0, vmax=1e12)) horizonb = ax.plot(truncated_ref_bl_length, 1e6*min_delay.ravel(), color='white', ls=':', lw=1.5) horizont = ax.plot(truncated_ref_bl_length, 1e6*max_delay.ravel(), color='white', ls=':', lw=1.5) ax.set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) ax.set_aspect('auto') # ax.text(0.5, 0.9, descriptor_str[j], transform=ax.transAxes, fontsize=14, weight='semibold', ha='center', color='white') ax_kprll = ax.twinx() ax_kprll.set_yticks(kprll(ax.get_yticks()*1e-6, redshift)) ax_kprll.set_ylim(kprll(NP.asarray(ax.get_ylim())*1e-6, redshift)) yformatter = FuncFormatter(lambda y, pos: '{0:.2f}'.format(y)) ax_kprll.yaxis.set_major_formatter(yformatter) ax_kperp = ax.twiny() ax_kperp.set_xticks(kperp(ax.get_xticks()*freq/FCNST.c, redshift)) ax_kperp.set_xlim(kperp(NP.asarray(ax.get_xlim())*freq/FCNST.c, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) ax_kperp.xaxis.set_major_formatter(xformatter) ax.set_ylabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium') ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=16, weight='medium') ax_kprll.set_ylabel(r'$k_\parallel$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium') ax_kperp.set_xlabel(r'$k_\perp$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium') cbax = fig.add_axes([0.9, 0.125, 0.02, 0.74]) cbar = fig.colorbar(imdspec, cax=cbax, orientation='vertical') cbax.set_xlabel(r'K$^2$(Mpc/h)$^3$', labelpad=10, fontsize=12) cbax.xaxis.set_label_position('top') # PLT.tight_layout() fig.subplots_adjust(right=0.72) fig.subplots_adjust(top=0.88) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_asm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}_snapshot_{1:1d}'.format(oversampling_factor, j)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_asm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}_snapshot_{1:1d}'.format(oversampling_factor, j)+'.eps', bbox_inches=0) # Diffuse foreground model fig, axs = PLT.subplots(n_snaps, sharex=True, sharey=True, figsize=(6,6)) for j in xrange(n_snaps): imdspec = axs[j].pcolorfast(truncated_ref_bl_length, 1e6*clean_lags, NP.abs(dsm_cc_skyvis_lag[:-1,:-1,j].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=(1e6)**2 * volfactor1 * volfactor2 * Jy2K**2, vmax=dspec_max)) horizonb = axs[j].plot(truncated_ref_bl_length, 1e6*min_delay.ravel(), color='white', ls=':', lw=1.5) horizont = axs[j].plot(truncated_ref_bl_length, 1e6*max_delay.ravel(), color='white', ls=':', lw=1.5) axs[j].set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) axs[j].set_aspect('auto') axs[j].text(0.5, 0.9, descriptor_str[j], transform=axs[j].transAxes, fontsize=14, weight='semibold', ha='center', color='white') for j in xrange(n_snaps): axs_kprll = axs[j].twinx() axs_kprll.set_yticks(kprll(axs[j].get_yticks()*1e-6, redshift)) axs_kprll.set_ylim(kprll(NP.asarray(axs[j].get_ylim())*1e-6, redshift)) yformatter = FuncFormatter(lambda y, pos: '{0:.2f}'.format(y)) axs_kprll.yaxis.set_major_formatter(yformatter) if j == 0: axs_kperp = axs[j].twiny() axs_kperp.set_xticks(kperp(axs[j].get_xticks()*freq/FCNST.c, redshift)) axs_kperp.set_xlim(kperp(NP.asarray(axs[j].get_xlim())*freq/FCNST.c, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) axs_kperp.xaxis.set_major_formatter(xformatter) fig.subplots_adjust(hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_ylabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium', labelpad=30) big_ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=16, weight='medium', labelpad=20) big_axr = big_ax.twinx() big_axr.set_axis_bgcolor('none') big_axr.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axr.set_xticks([]) big_axr.set_yticks([]) big_axr.set_ylabel(r'$k_\parallel$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=40) big_axt = big_ax.twiny() big_axt.set_axis_bgcolor('none') big_axt.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axt.set_xticks([]) big_axt.set_yticks([]) big_axt.set_xlabel(r'$k_\perp$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=30) cbax = fig.add_axes([0.9, 0.125, 0.02, 0.74]) cbar = fig.colorbar(imdspec, cax=cbax, orientation='vertical') cbax.set_xlabel(r'K$^2$(Mpc/h)$^3$', labelpad=10, fontsize=12) cbax.xaxis.set_label_position('top') # PLT.tight_layout() fig.subplots_adjust(right=0.72) fig.subplots_adjust(top=0.88) # fig = PLT.figure(figsize=(6,6)) # for j in xrange(n_snaps): # ax = fig.add_subplot(n_snaps,1,j+1) # ax.set_ylim(NP.amin(clean_lags*1e6), NP.amax(clean_lags*1e6)) # ax.set_ylabel(r'lag [$\mu$s]', fontsize=18) # ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=18) # imdspec = ax.pcolorfast(truncated_ref_bl_length, 1e6*clean_lags, NP.abs(dsm_cc_skyvis_lag[:-1,:-1,j].T), norm=PLTC.LogNorm(vmin=1e6, vmax=dspec_max)) # horizonb = ax.plot(truncated_ref_bl_length, 1e6*min_delay.ravel(), color='white', ls='-', lw=1.5) # horizont = ax.plot(truncated_ref_bl_length, 1e6*max_delay.ravel(), color='white', ls='-', lw=1.5) # ax.set_aspect('auto') # cbax = fig.add_axes([0.86, 0.125, 0.02, 0.84]) # cbar = fig.colorbar(imdspec, cax=cbax, orientation='vertical') # cbax.set_ylabel('Jy Hz', labelpad=0, fontsize=18) # PLT.tight_layout() # fig.subplots_adjust(right=0.83) # # fig.subplots_adjust(top=0.9) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_dsm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_dsm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.eps', bbox_inches=0) # Plot each snapshot separately for j in xrange(n_snaps): fig = PLT.figure(figsize=(6,6)) ax = fig.add_subplot(111) imdspec = ax.pcolorfast(truncated_ref_bl_length, 1e6*clean_lags, NP.abs(dsm_cc_skyvis_lag[:-1,:-1,j].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=1e0, vmax=1e12)) horizonb = ax.plot(truncated_ref_bl_length, 1e6*min_delay.ravel(), color='white', ls=':', lw=1.5) horizont = ax.plot(truncated_ref_bl_length, 1e6*max_delay.ravel(), color='white', ls=':', lw=1.5) ax.set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) ax.set_aspect('auto') # ax.text(0.5, 0.9, descriptor_str[j], transform=ax.transAxes, fontsize=14, weight='semibold', ha='center', color='white') ax_kprll = ax.twinx() ax_kprll.set_yticks(kprll(ax.get_yticks()*1e-6, redshift)) ax_kprll.set_ylim(kprll(NP.asarray(ax.get_ylim())*1e-6, redshift)) yformatter = FuncFormatter(lambda y, pos: '{0:.2f}'.format(y)) ax_kprll.yaxis.set_major_formatter(yformatter) ax_kperp = ax.twiny() ax_kperp.set_xticks(kperp(ax.get_xticks()*freq/FCNST.c, redshift)) ax_kperp.set_xlim(kperp(NP.asarray(ax.get_xlim())*freq/FCNST.c, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) ax_kperp.xaxis.set_major_formatter(xformatter) ax.set_ylabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium') ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=16, weight='medium') ax_kprll.set_ylabel(r'$k_\parallel$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium') ax_kperp.set_xlabel(r'$k_\perp$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium') cbax = fig.add_axes([0.9, 0.125, 0.02, 0.74]) cbar = fig.colorbar(imdspec, cax=cbax, orientation='vertical') cbax.set_xlabel(r'K$^2$(Mpc/h)$^3$', labelpad=10, fontsize=12) cbax.xaxis.set_label_position('top') # PLT.tight_layout() fig.subplots_adjust(right=0.72) fig.subplots_adjust(top=0.88) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_dsm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}_snapshot_{1:1d}'.format(oversampling_factor, j)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_dsm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}_snapshot_{1:1d}'.format(oversampling_factor, j)+'.eps', bbox_inches=0) # Compact foreground model fig, axs = PLT.subplots(n_snaps, sharex=True, sharey=True, figsize=(6,6)) for j in xrange(n_snaps): imdspec = axs[j].pcolorfast(truncated_ref_bl_length, 1e6*clean_lags, NP.abs(csm_cc_skyvis_lag[:-1,:-1,j].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=(1e6)**2 * volfactor1 * volfactor2 * Jy2K**2, vmax=dspec_max)) horizonb = axs[j].plot(truncated_ref_bl_length, 1e6*min_delay.ravel(), color='white', ls=':', lw=1.5) horizont = axs[j].plot(truncated_ref_bl_length, 1e6*max_delay.ravel(), color='white', ls=':', lw=1.5) axs[j].set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) axs[j].set_aspect('auto') axs[j].text(0.5, 0.9, descriptor_str[j], transform=axs[j].transAxes, fontsize=14, weight='semibold', ha='center', color='white') for j in xrange(n_snaps): axs_kprll = axs[j].twinx() axs_kprll.set_yticks(kprll(axs[j].get_yticks()*1e-6, redshift)) axs_kprll.set_ylim(kprll(NP.asarray(axs[j].get_ylim())*1e-6, redshift)) yformatter = FuncFormatter(lambda y, pos: '{0:.2f}'.format(y)) axs_kprll.yaxis.set_major_formatter(yformatter) if j == 0: axs_kperp = axs[j].twiny() axs_kperp.set_xticks(kperp(axs[j].get_xticks()*freq/FCNST.c, redshift)) axs_kperp.set_xlim(kperp(NP.asarray(axs[j].get_xlim())*freq/FCNST.c, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) axs_kperp.xaxis.set_major_formatter(xformatter) fig.subplots_adjust(hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_ylabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium', labelpad=30) big_ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=16, weight='medium', labelpad=20) big_axr = big_ax.twinx() big_axr.set_axis_bgcolor('none') big_axr.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axr.set_xticks([]) big_axr.set_yticks([]) big_axr.set_ylabel(r'$k_\parallel$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=40) big_axt = big_ax.twiny() big_axt.set_axis_bgcolor('none') big_axt.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axt.set_xticks([]) big_axt.set_yticks([]) big_axt.set_xlabel(r'$k_\perp$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=30) cbax = fig.add_axes([0.9, 0.125, 0.02, 0.74]) cbar = fig.colorbar(imdspec, cax=cbax, orientation='vertical') cbax.set_xlabel(r'K$^2$(Mpc/h)$^3$', labelpad=10, fontsize=12) cbax.xaxis.set_label_position('top') # PLT.tight_layout() fig.subplots_adjust(right=0.72) fig.subplots_adjust(top=0.88) # fig = PLT.figure(figsize=(6,6)) # for j in xrange(n_snaps): # ax = fig.add_subplot(n_snaps,1,j+1) # ax.set_ylim(NP.amin(clean_lags*1e6), NP.amax(clean_lags*1e6)) # ax.set_ylabel(r'lag [$\mu$s]', fontsize=18) # ax.set_xlabel(r'$|\vec{mathbf{x}}|$ [m]', fontsize=18) # imdspec = ax.pcolorfast(truncated_ref_bl_length, 1e6*clean_lags, NP.abs(csm_cc_skyvis_lag[:-1,:-1,j].T), norm=PLTC.LogNorm(vmin=1e6, vmax=dspec_max)) # horizonb = ax.plot(truncated_ref_bl_length, 1e6*min_delay.ravel(), color='white', ls='-', lw=1.5) # horizont = ax.plot(truncated_ref_bl_length, 1e6*max_delay.ravel(), color='white', ls='-', lw=1.5) # ax.set_aspect('auto') # cbax = fig.add_axes([0.86, 0.125, 0.02, 0.84]) # cbar = fig.colorbar(imdspec, cax=cbax, orientation='vertical') # cbax.set_ylabel('Jy Hz', labelpad=0, fontsize=18) # PLT.tight_layout() # fig.subplots_adjust(right=0.83) # # fig.subplots_adjust(top=0.9) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_csm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_csm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.eps', bbox_inches=0) # Plot each snapshot separately for j in xrange(n_snaps): fig = PLT.figure(figsize=(6,6)) ax = fig.add_subplot(111) imdspec = ax.pcolorfast(truncated_ref_bl_length, 1e6*clean_lags, NP.abs(csm_cc_skyvis_lag[:-1,:-1,j].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=1e0, vmax=1e12)) horizonb = ax.plot(truncated_ref_bl_length, 1e6*min_delay.ravel(), color='white', ls=':', lw=1.5) horizont = ax.plot(truncated_ref_bl_length, 1e6*max_delay.ravel(), color='white', ls=':', lw=1.5) ax.set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) ax.set_aspect('auto') # ax.text(0.5, 0.9, descriptor_str[j], transform=ax.transAxes, fontsize=14, weight='semibold', ha='center', color='white') ax_kprll = ax.twinx() ax_kprll.set_yticks(kprll(ax.get_yticks()*1e-6, redshift)) ax_kprll.set_ylim(kprll(NP.asarray(ax.get_ylim())*1e-6, redshift)) yformatter = FuncFormatter(lambda y, pos: '{0:.2f}'.format(y)) ax_kprll.yaxis.set_major_formatter(yformatter) ax_kperp = ax.twiny() ax_kperp.set_xticks(kperp(ax.get_xticks()*freq/FCNST.c, redshift)) ax_kperp.set_xlim(kperp(NP.asarray(ax.get_xlim())*freq/FCNST.c, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) ax_kperp.xaxis.set_major_formatter(xformatter) ax.set_ylabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium') ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=16, weight='medium') ax_kprll.set_ylabel(r'$k_\parallel$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium') ax_kperp.set_xlabel(r'$k_\perp$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium') cbax = fig.add_axes([0.9, 0.125, 0.02, 0.74]) cbar = fig.colorbar(imdspec, cax=cbax, orientation='vertical') cbax.set_xlabel(r'K$^2$(Mpc/h)$^3$', labelpad=10, fontsize=12) cbax.xaxis.set_label_position('top') # PLT.tight_layout() fig.subplots_adjust(right=0.72) fig.subplots_adjust(top=0.88) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_csm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}_snapshot_{1:1d}'.format(oversampling_factor, j)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_csm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}_snapshot_{1:1d}'.format(oversampling_factor, j)+'.eps', bbox_inches=0) # Plot diffuse and compact sky models for all snapshots together fig, axs = PLT.subplots(nrows=n_snaps, ncols=2, sharex=True, sharey=True, figsize=(12,6)) for j in xrange(n_snaps): dsmdspec = axs[j,0].pcolorfast(truncated_ref_bl_length, 1e6*clean_lags, NP.abs(dsm_cc_skyvis_lag[:-1,:-1,j].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=(1e6)**2 * volfactor1 * volfactor2 * Jy2K**2, vmax=dspec_max)) horizonb = axs[j,0].plot(truncated_ref_bl_length, 1e6*min_delay.ravel(), color='white', ls=':', lw=1.5) horizont = axs[j,0].plot(truncated_ref_bl_length, 1e6*max_delay.ravel(), color='white', ls=':', lw=1.5) axs[j,0].set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) axs[j,0].set_aspect('auto') axs[j,0].text(0.5, 0.9, descriptor_str[j], transform=axs[j,0].transAxes, fontsize=14, weight='semibold', ha='center', color='white') csmspec = axs[j,1].pcolorfast(truncated_ref_bl_length, 1e6*clean_lags, NP.abs(csm_cc_skyvis_lag[:-1,:-1,j].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=(1e6)**2 * volfactor1 * volfactor2 * Jy2K**2, vmax=dspec_max)) horizonb = axs[j,1].plot(truncated_ref_bl_length, 1e6*min_delay.ravel(), color='white', ls=':', lw=1.5) horizont = axs[j,1].plot(truncated_ref_bl_length, 1e6*max_delay.ravel(), color='white', ls=':', lw=1.5) axs[j,1].set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) axs[j,1].set_aspect('auto') axs[j,1].text(0.5, 0.9, descriptor_str[j], transform=axs[j,1].transAxes, fontsize=14, weight='semibold', ha='center', color='white') for j in xrange(n_snaps): axs_kprll = axs[j,1].twinx() axs_kprll.set_yticks(kprll(axs[j,1].get_yticks()*1e-6, redshift)) axs_kprll.set_ylim(kprll(NP.asarray(axs[j,1].get_ylim())*1e-6, redshift)) yformatter = FuncFormatter(lambda y, pos: '{0:.2f}'.format(y)) axs_kprll.yaxis.set_major_formatter(yformatter) if j == 0: for col in range(2): axs_kperp = axs[j,col].twiny() axs_kperp.set_xticks(kperp(axs[j,col].get_xticks()*freq/FCNST.c, redshift)) axs_kperp.set_xlim(kperp(NP.asarray(axs[j,col].get_xlim())*freq/FCNST.c, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) axs_kperp.xaxis.set_major_formatter(xformatter) fig.subplots_adjust(wspace=0, hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_ylabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium', labelpad=30) big_ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=16, weight='medium', labelpad=20) big_axr = big_ax.twinx() big_axr.set_axis_bgcolor('none') big_axr.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axr.set_xticks([]) big_axr.set_yticks([]) big_axr.set_ylabel(r'$k_\parallel$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=40) big_axt = big_ax.twiny() big_axt.set_axis_bgcolor('none') big_axt.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axt.set_xticks([]) big_axt.set_yticks([]) big_axt.set_xlabel(r'$k_\perp$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=30) cbax = fig.add_axes([0.93, 0.125, 0.02, 0.74]) cbar = fig.colorbar(dsmdspec, cax=cbax, orientation='vertical') cbax.set_xlabel(r'K$^2$(Mpc/h)$^3$', labelpad=10, fontsize=12) cbax.xaxis.set_label_position('top') # PLT.tight_layout() fig.subplots_adjust(right=0.82) fig.subplots_adjust(top=0.88) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_dsm_csm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_dsm_csm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.eps', bbox_inches=0) select_bl_id = ['47-21'] # select_bl_id = ['125-124', '93-28', '95-51', '84-58', '167-166', '85-61', '94-23', '47-21', '63-58', '67-51', '68-18', '93-86'] for blid in select_bl_id: fig, axs = PLT.subplots(n_snaps, sharex=True, sharey=True, figsize=(6,6)) for j in xrange(n_snaps): axs[j].plot(1e6*clean_lags, NP.abs(dsm_cc_skyvis_lag[ref_bl_id == blid,:,j]).ravel()**2 * volfactor1 * volfactor2 * Jy2K**2, 'k:', lw=2, label='Diffuse') axs[j].plot(1e6*clean_lags, NP.abs(csm_cc_skyvis_lag[ref_bl_id == blid,:,j]).ravel()**2 * volfactor1 * volfactor2 * Jy2K**2, 'k--', lw=2, label='Compact') axs[j].plot(1e6*clean_lags, NP.abs(asm_cc_skyvis_lag[ref_bl_id == blid,:,j]).ravel()**2 * volfactor1 * volfactor2 * Jy2K**2, 'k-', lw=2, label='Both') dspec_ulim = NP.abs(asm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,j]).ravel()+NP.sqrt(NP.abs(csm_jacobian_spindex*csm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,j])**2 + NP.abs(dsm_jacobian_spindex*dsm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,j])**2 + NP.abs(vis_rms_lag[truncated_ref_bl_id==blid,:,j])**2).ravel() dspec_llim = NP.abs(asm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,j]).ravel()-NP.sqrt(NP.abs(csm_jacobian_spindex*csm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,j])**2 + NP.abs(dsm_jacobian_spindex*dsm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,j])**2 + NP.abs(vis_rms_lag[truncated_ref_bl_id==blid,:,j])**2).ravel() valid_ind = dspec_llim > 0.0 dspec_llim[NP.logical_not(valid_ind)] = 10**4.8 dspec_llim[small_delays_EoR_window[:,truncated_ref_bl_id==blid].ravel()] = 10**4.8 dspec_llim = dspec_llim**2 * volfactor1 * volfactor2 * Jy2K**2 dspec_ulim = dspec_ulim**2 * volfactor1 * volfactor2 * Jy2K**2 axs[j].fill_between(1e6*clean_lags, dspec_ulim, dspec_llim, alpha=0.75, edgecolor='none', facecolor='gray') axs[j].axvline(x=1e6*min_delay[truncated_ref_bl_id==blid,0], ls='-.', lw=2, color='black') axs[j].axvline(x=1e6*max_delay[truncated_ref_bl_id==blid,0], ls='-.', lw=2, color='black') axs[j].set_yscale('log') axs[j].set_xlim(1e6*clean_lags.min(), 1e6*clean_lags.max()) axs[j].set_ylim(dspec_llim.min(), 1.1*dspec_ulim.max()) # axs[j].set_ylim(10**4.3, 1.1*(max([NP.abs(asm_cc_vis_lag[truncated_ref_bl_id==blid,:,j]).max(), NP.abs(asm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,j]).max(), NP.abs(dsm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,j]).max(), NP.abs(csm_cc_vis_lag[truncated_ref_bl_id==blid,:,j]).max()])+NP.sqrt(NP.abs(csm_jacobian_spindex*csm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,j])**2 + NP.abs(dsm_jacobian_spindex*dsm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,j])**2 + NP.abs(vis_rms_lag[truncated_ref_bl_id==blid,:,j])**2)).max()) hl = PLT.Line2D(range(1), range(0), color='black', linestyle='-.', linewidth=2) csml = PLT.Line2D(range(1), range(0), color='black', linestyle='--', linewidth=2) dsml = PLT.Line2D(range(1), range(0), color='black', linestyle=':', linewidth=2) asml = PLT.Line2D(range(1), range(0), color='black', linestyle='-', linewidth=2) legend = axs[j].legend((dsml, csml, asml, hl), ('Diffuse', 'Compact', 'Both', 'Horizon\nLimit'), loc='upper right', frameon=False, fontsize=12) if j == 0: axs[j].set_title('East: {0[0]:+.1f} m, North: {0[1]:+.1f} m, Up: {0[2]:+.1f} m'.format(truncated_ref_bl[truncated_ref_bl_id==blid].ravel()), fontsize=12, weight='medium') fig.subplots_adjust(hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_xlabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium', labelpad=20) # big_ax.set_ylabel(r'$|V_{b\tau}(\mathbf{b},\tau)|$ [Jy Hz]', fontsize=16, weight='medium', labelpad=30) big_ax.set_ylabel(r"$P_d(k_\perp,k_\parallel)$ [K$^2$ (Mpc/$h)^3$]", fontsize=16, weight='medium', labelpad=30) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'baseline_'+blid+'_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_csm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'baseline_'+blid+'_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_csm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.eps', bbox_inches=0) select_bl_id = ['85-61', '63-58', '95-51'] fig, axs = PLT.subplots(len(select_bl_id), sharex=True, sharey=True, figsize=(6,8)) for j in xrange(len(select_bl_id)): blid = select_bl_id[j] axs[j].plot(1e6*clean_lags, NP.abs(dsm_cc_skyvis_lag[ref_bl_id == blid,:,1]).ravel()**2 * volfactor1 * volfactor2 * Jy2K**2, 'r-', lw=2, label='Diffuse') axs[j].plot(1e6*clean_lags, NP.abs(csm_cc_skyvis_lag[ref_bl_id == blid,:,1]).ravel()**2 * volfactor1 * volfactor2 * Jy2K**2, ls='-', lw=2, label='Compact', color='cyan') axs[j].plot(1e6*clean_lags, NP.abs(asm_cc_skyvis_lag[ref_bl_id == blid,:,1]).ravel()**2 * volfactor1 * volfactor2 * Jy2K**2, 'k-', lw=2, label='Both') dspec_ulim = NP.abs(asm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,1]).ravel()+NP.sqrt(NP.abs(csm_jacobian_spindex*csm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,1])**2 + NP.abs(dsm_jacobian_spindex*dsm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,1])**2 + NP.abs(vis_rms_lag[truncated_ref_bl_id==blid,:,1])**2).ravel() dspec_llim = NP.abs(asm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,1]).ravel()-NP.sqrt(NP.abs(csm_jacobian_spindex*csm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,1])**2 + NP.abs(dsm_jacobian_spindex*dsm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,1])**2 + NP.abs(vis_rms_lag[truncated_ref_bl_id==blid,:,1])**2).ravel() valid_ind = dspec_llim > 0.0 dspec_llim[NP.logical_not(valid_ind)] = 10**4.8 dspec_llim[small_delays_EoR_window[:,truncated_ref_bl_id==blid].ravel()] = 10**4.8 dspec_llim = dspec_llim**2 * volfactor1 * volfactor2 * Jy2K**2 dspec_ulim = dspec_ulim**2 * volfactor1 * volfactor2 * Jy2K**2 # axs[j].fill_between(1e6*clean_lags, dspec_ulim, dspec_llim, alpha=0.75, edgecolor='none', facecolor='gray') axs[j].axvline(x=1e6*min_delay[truncated_ref_bl_id==blid,0], ls=':', lw=2, color='black') axs[j].axvline(x=1e6*max_delay[truncated_ref_bl_id==blid,0], ls=':', lw=2, color='black') # axs[j].locator_params(axis='y', nbins=5) axs[j].set_yscale('log') axs[j].set_yticks(NP.logspace(0,8,5,endpoint=True).tolist()) # axs[j].get_yaxis().get_major_formatter().labelOnlyBase = True axs[j].set_xlim(1e6*clean_lags.min(), 1e6*clean_lags.max()) axs[j].set_ylim(0.1*dspec_llim.min(), 1.5*dspec_ulim.max()) # axs[j].set_ylim(10**4.3, 1.1*(max([NP.abs(asm_cc_vis_lag[truncated_ref_bl_id==blid,:,1]).max(), NP.abs(asm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,1]).max(), NP.abs(dsm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,1]).max(), NP.abs(csm_cc_vis_lag[truncated_ref_bl_id==blid,:,1]).max()])+NP.sqrt(NP.abs(csm_jacobian_spindex*csm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,1])**2 + NP.abs(dsm_jacobian_spindex*dsm_cc_skyvis_lag[truncated_ref_bl_id==blid,:,1])**2 + NP.abs(vis_rms_lag[truncated_ref_bl_id==blid,:,1])**2)).max()) hl = PLT.Line2D(range(1), range(0), color='black', linestyle=':', linewidth=2) dsml = PLT.Line2D(range(1), range(0), color='red', linestyle='-', linewidth=2) csml = PLT.Line2D(range(1), range(0), color='cyan', linestyle='-', linewidth=2) asml = PLT.Line2D(range(1), range(0), color='black', linestyle='-', linewidth=2) legend = axs[j].legend((dsml, csml, asml, hl), ('Diffuse', 'Compact', 'Both', 'Horizon\nLimit'), loc='upper right', frameon=False, fontsize=12) axs[j].text(0.05, 0.8, r'$|\mathbf{b}|$'+' = {0:.1f} m'.format(truncated_ref_bl_length[truncated_ref_bl_id==blid][0]), fontsize=12, weight='medium', transform=axs[j].transAxes) axs[j].text(0.05, 0.72, r'$\theta_b$'+' = {0:+.1f}$^\circ$'.format(truncated_ref_bl_orientation[truncated_ref_bl_id==blid][0]), fontsize=12, weight='medium', transform=axs[j].transAxes) # axs[j].text(0.05, 0.7, 'East: {0[0]:+.1f} m\nNorth: {0[1]:+.1f} m\nUp: {0[2]:+.1f} m'.format(truncated_ref_bl[truncated_ref_bl_id==blid].ravel()), fontsize=12, weight='medium', transform=axs[j].transAxes) if j == 0: axs_kprll = axs[j].twiny() axs_kprll.set_xticks(kprll(axs[j].get_xticks()*1e-6, redshift)) axs_kprll.set_xlim(kprll(NP.asarray(axs[j].get_xlim())*1e-6, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.2f}'.format(x)) axs_kprll.xaxis.set_major_formatter(xformatter) fig.subplots_adjust(hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_xlabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium', labelpad=20) # big_ax.set_ylabel(r'$|V_{b\tau}(\mathbf{b},\tau)|$ [Jy Hz]', fontsize=16, weight='medium', labelpad=30) big_ax.set_ylabel(r"$P_d(k_\perp,k_\parallel)$ [K$^2$ (Mpc/$h)^3$]", fontsize=16, weight='medium', labelpad=30) big_axt = big_ax.twiny() big_axt.set_axis_bgcolor('none') big_axt.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axt.set_xticks([]) big_axt.set_yticks([]) big_axt.set_xlabel(r'$k_\parallel$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=30) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'{0:0d}_baseline_comparison'.format(len(select_bl_id))+'_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'{0:0d}_baseline_comparison'.format(len(select_bl_id))+'_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.eps', bbox_inches=0) bl_orientation = NP.copy(simdata_bl_orientation[truncated_ref_bl_ind]) bloh, bloe, blon, blori = OPS.binned_statistic(bl_orientation, bins=n_bins_baseline_orientation, statistic='count', range=[(-90.0+0.5*180.0/n_bins_baseline_orientation, 90.0+0.5*180.0/n_bins_baseline_orientation)]) if plot_11: for j in xrange(n_snaps): fig, axs = PLT.subplots(n_bins_baseline_orientation, sharex=True, sharey=True, figsize=(6,9)) for i in xrange(n_bins_baseline_orientation): blind = blori[blori[i]:blori[i+1]] sortind = NP.argsort(truncated_ref_bl_length[blind], kind='heapsort') imdspec = axs[n_bins_baseline_orientation-1-i].pcolorfast(truncated_ref_bl_length[blind[sortind]], 1e6*clean_lags, NP.abs(asm_cc_skyvis_lag[truncated_ref_bl_ind,:,:][blind[sortind][:-1],:-1,j].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=(1e6)**2 * volfactor1 * volfactor2 * Jy2K**2, vmax=dspec_max)) horizonb = axs[n_bins_baseline_orientation-1-i].plot(truncated_ref_bl_length[blind], 1e6*min_delay[blind].ravel(), color='white', ls=':', lw=1.5) horizont = axs[n_bins_baseline_orientation-1-i].plot(truncated_ref_bl_length[blind], 1e6*max_delay[blind].ravel(), color='white', ls=':', lw=1.5) axs[n_bins_baseline_orientation-1-i].set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) axs[n_bins_baseline_orientation-1-i].set_xlim(truncated_ref_bl_length.min(), truncated_ref_bl_length.max()) axs[n_bins_baseline_orientation-1-i].set_aspect('auto') axs[n_bins_baseline_orientation-1-i].text(0.5, 0.1, bl_orientation_str[i]+': '+r'${0:+.1f}^\circ \leq\, \theta_b < {1:+.1f}^\circ$'.format(bloe[i], bloe[i+1]), fontsize=12, color='white', transform=axs[n_bins_baseline_orientation-1-i].transAxes, weight='bold', ha='center') for i in xrange(n_bins_baseline_orientation): axs_kprll = axs[i].twinx() axs_kprll.set_yticks(kprll(axs[i].get_yticks()*1e-6, redshift)) axs_kprll.set_ylim(kprll(NP.asarray(axs[i].get_ylim())*1e-6, redshift)) yformatter = FuncFormatter(lambda y, pos: '{0:.2f}'.format(y)) axs_kprll.yaxis.set_major_formatter(yformatter) if i == 0: axs_kperp = axs[i].twiny() axs_kperp.set_xticks(kperp(axs[i].get_xticks()*freq/FCNST.c, redshift)) axs_kperp.set_xlim(kperp(NP.asarray(axs[i].get_xlim())*freq/FCNST.c, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) axs_kperp.xaxis.set_major_formatter(xformatter) fig.subplots_adjust(hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_ylabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium', labelpad=30) big_ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=16, weight='medium', labelpad=20) big_axr = big_ax.twinx() big_axr.set_axis_bgcolor('none') big_axr.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axr.set_xticks([]) big_axr.set_yticks([]) big_axr.set_ylabel(r'$k_\parallel$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=40) big_axt = big_ax.twiny() big_axt.set_axis_bgcolor('none') big_axt.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axt.set_xticks([]) big_axt.set_yticks([]) big_axt.set_xlabel(r'$k_\perp$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=30) # cbax = fig.add_axes([0.9, 0.1, 0.02, 0.78]) # cbar = fig.colorbar(imdspec, cax=cbax, orientation='vertical') # cbax.set_xlabel('Jy Hz', labelpad=10, fontsize=12) # cbax.xaxis.set_label_position('top') # fig.subplots_adjust(right=0.75) # fig.subplots_adjust(top=0.92) # fig.subplots_adjust(bottom=0.07) cbax = fig.add_axes([0.125, 0.94, 0.72, 0.02]) cbar = fig.colorbar(imdspec, cax=cbax, orientation='horizontal') cbax.xaxis.tick_top() cbax.set_ylabel(r'K$^2$(Mpc/h)$^3$', fontsize=12, rotation='horizontal') # cbax.yaxis.set_label_position('right') cbax.yaxis.set_label_coords(1.1, 1.0) fig.subplots_adjust(right=0.86) fig.subplots_adjust(top=0.85) fig.subplots_adjust(bottom=0.07) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'baseline_binned_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_FG_model_asm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'_snapshot_{0:0d}.png'.format(j), bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'baseline_binned_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_FG_model_asm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'_snapshot_{0:0d}.eps'.format(j), bbox_inches=0) if plot_12: required_bl_orientation = ['North', 'East'] for j in xrange(n_snaps): fig, axs = PLT.subplots(len(required_bl_orientation), sharex=True, sharey=True, figsize=(6,6)) for k in xrange(len(required_bl_orientation)): i = bl_orientation_str.index(required_bl_orientation[k]) blind = blori[blori[i]:blori[i+1]] sortind = NP.argsort(truncated_ref_bl_length[blind], kind='heapsort') imdspec = axs[k].pcolorfast(truncated_ref_bl_length[blind[sortind]], 1e6*clean_lags, NP.abs(asm_cc_skyvis_lag[truncated_ref_bl_ind,:,:][blind[sortind][:-1],:-1,j].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=(1e6)**2 * volfactor1 * volfactor2 * Jy2K**2, vmax=dspec_max)) horizonb = axs[k].plot(truncated_ref_bl_length[blind], 1e6*min_delay[blind].ravel(), color='white', ls=':', lw=1.0) horizont = axs[k].plot(truncated_ref_bl_length[blind], 1e6*max_delay[blind].ravel(), color='white', ls=':', lw=1.0) axs[k].set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) axs[k].set_xlim(truncated_ref_bl_length.min(), truncated_ref_bl_length.max()) axs[k].set_aspect('auto') axs[k].text(0.5, 0.1, bl_orientation_str[i]+': '+r'${0:+.1f}^\circ \leq\, \theta_b < {1:+.1f}^\circ$'.format(bloe[i], bloe[i+1]), fontsize=16, color='white', transform=axs[k].transAxes, weight='semibold', ha='center') for i in xrange(len(required_bl_orientation)): axs_kprll = axs[i].twinx() axs_kprll.set_yticks(kprll(axs[i].get_yticks()*1e-6, redshift)) axs_kprll.set_ylim(kprll(NP.asarray(axs[i].get_ylim())*1e-6, redshift)) yformatter = FuncFormatter(lambda y, pos: '{0:.2f}'.format(y)) axs_kprll.yaxis.set_major_formatter(yformatter) if i == 0: axs_kperp = axs[i].twiny() axs_kperp.set_xticks(kperp(axs[i].get_xticks()*freq/FCNST.c, redshift)) axs_kperp.set_xlim(kperp(NP.asarray(axs[i].get_xlim())*freq/FCNST.c, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) axs_kperp.xaxis.set_major_formatter(xformatter) fig.subplots_adjust(hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_ylabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium', labelpad=30) big_ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=16, weight='medium', labelpad=20) big_axr = big_ax.twinx() big_axr.set_axis_bgcolor('none') big_axr.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axr.set_xticks([]) big_axr.set_yticks([]) big_axr.set_ylabel(r'$k_\parallel$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=40) big_axt = big_ax.twiny() big_axt.set_axis_bgcolor('none') big_axt.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axt.set_xticks([]) big_axt.set_yticks([]) big_axt.set_xlabel(r'$k_\perp$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=30) # cbax = fig.add_axes([0.9, 0.1, 0.02, 0.78]) # cbar = fig.colorbar(imdspec, cax=cbax, orientation='vertical') # cbax.set_xlabel('Jy Hz', labelpad=10, fontsize=12) # cbax.xaxis.set_label_position('top') # fig.subplots_adjust(right=0.75) # fig.subplots_adjust(top=0.92) # fig.subplots_adjust(bottom=0.07) cbax = fig.add_axes([0.125, 0.92, 0.72, 0.02]) cbar = fig.colorbar(imdspec, cax=cbax, orientation='horizontal') cbax.xaxis.tick_top() cbax.set_ylabel(r'K$^2$(Mpc/h)$^3$', fontsize=12, rotation='horizontal') # cbax.yaxis.set_label_position('right') cbax.yaxis.set_label_coords(1.1, 1.0) fig.subplots_adjust(right=0.86) fig.subplots_adjust(top=0.79) fig.subplots_adjust(bottom=0.09) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'baseline_N_E_binned_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_FG_model_asm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'_snapshot_{0:0d}.png'.format(j), bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'baseline_N_E_binned_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_FG_model_asm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'_snapshot_{0:0d}.eps'.format(j), bbox_inches=0) if plot_13: # 13) Plot EoR window foreground contamination when baselines are selectively removed blo_target = 0.0 n_blo_remove_range = 3 n_inner_bll_remove_range = 20 blo_remove_max = 0.5*180.0/n_bins_baseline_orientation*(1+NP.arange(n_blo_remove_range))/n_blo_remove_range inner_bll_remove_max = NP.logspace(NP.log10(truncated_ref_bl_length.min()), NP.log10(max_bl_length), n_inner_bll_remove_range) bl_screened_fg_contamination = NP.zeros((n_blo_remove_range, n_inner_bll_remove_range), dtype=NP.complex) fraction_bl_discarded = NP.zeros((n_blo_remove_range, n_inner_bll_remove_range)) ns_blind = blori[blori[3]:blori[3+1]] ns_fg_contamination = OPS.rms(NP.abs(asm_cc_skyvis_lag[ns_blind,:,0])**2, mask=NP.logical_not(small_delays_strict_EoR_window[:,ns_blind]).T) * volfactor1 * volfactor2 * Jy2K**2 ew_blind = blori[blori[1]:blori[1+1]] ew_fg_contamination = OPS.rms(NP.abs(asm_cc_skyvis_lag[ew_blind,:,0])**2, mask=NP.logical_not(small_delays_strict_EoR_window[:,ew_blind]).T) * volfactor1 * volfactor2 * Jy2K**2 for i in xrange(n_blo_remove_range): blo_retain_ind = NP.abs(bl_orientation - blo_target) > blo_remove_max[i] blo_discard_ind = NP.logical_not(blo_retain_ind) for j in xrange(n_inner_bll_remove_range): bll_retain_ind = truncated_ref_bl_length > inner_bll_remove_max[j] bll_discard_ind = NP.logical_not(bll_retain_ind) retain = NP.logical_not(NP.logical_and(blo_discard_ind, bll_discard_ind)) mask = NP.logical_not(NP.logical_and(small_delays_strict_EoR_window, retain.reshape(1,-1))) bl_screened_fg_contamination[i,j] = OPS.rms(NP.abs(asm_cc_skyvis_lag[:,:,0])**2, mask=mask.T) * volfactor1 * volfactor2 * Jy2K**2 fraction_bl_discarded[i,j] = 1.0 - NP.sum(retain).astype(float)/truncated_ref_bl_length.size symbols = ['o', 's', '*', 'd', '+', 'x'] fig = PLT.figure(figsize=(6,6)) ax1 = fig.add_subplot(111) ax2 = ax1.twinx() for i in xrange(n_blo_remove_range): ax1.plot(inner_bll_remove_max, bl_screened_fg_contamination[i,:], marker=symbols[i], markersize=6, lw=1, color='k', ls='-', label=r'$|\theta_b|\,\leq\,${0:.1f}$^\circ$'.format(blo_remove_max[i])) ax2.plot(inner_bll_remove_max, fraction_bl_discarded[i,:], marker=symbols[i], markersize=5, color='k', lw=1, ls=':', label=r'$|\theta_b|\,\leq\,${0:.1f}$^\circ$'.format(blo_remove_max[i])) # ax1.axhline(y=NP.abs(ew_fg_contamination), color='k', ls='-.', lw=2, label='Eastward limit') # ax1.axhline(y=NP.abs(ns_fg_contamination), color='k', ls='--', lw=2, label='Northward limit') ax1.set_ylim(0.3*bl_screened_fg_contamination.min(), 1.2*bl_screened_fg_contamination.max()) # ax1.set_ylim(0.9*NP.abs(ns_fg_contamination), 1.1*NP.abs(ew_fg_contamination)) ax1.set_xlim(0.9*inner_bll_remove_max.min(), 1.1*inner_bll_remove_max.max()) ax1.set_xscale('log') ax1.set_yscale('log') ax1.set_xlabel(r'Eastward $|\mathbf{b}|_\mathrm{max}$ [m]', fontsize=18, weight='medium') ax1.set_ylabel(r'Foreground Contamination [K$^2$(Mpc/h)$^3$]', fontsize=18, weight='medium') # ax1.set_ylabel(r'$\langle|V_{b\tau}^\mathrm{FG}(\mathbf{b},\tau)|^2\rangle^{1/2}_{\in\,\mathrm{EoR\,window}}$ [Jy Hz]', fontsize=18, weight='medium') # legend = ax1.legend(loc='lower right') # legend = ax1.legend(loc='lower right', fancybox=True, framealpha=1.0) ax2.set_yscale('log') ax2.set_xscale('log') ax2.set_ylim(1e-3, 1.0) ax2.set_ylabel('Baseline fraction discarded', fontsize=18, weight='medium', color='k') legend1_symbol = [] legend1_text = [] for i in xrange(n_blo_remove_range): legend1_symbol += [PLT.Line2D(range(1), range(0), marker=symbols[i], markersize=6, color='k', linestyle='None')] legend1_text += [r'$|\theta_b|\,\leq\,${0:.1f}$^\circ$'.format(blo_remove_max[i])] legend2_symbol = [] legend2_text = [] # legend2_symbol += [PLT.Line2D(range(1), range(0), linestyle='-.', lw=1.5, color='k')] # legend2_symbol += [PLT.Line2D(range(1), range(0), linestyle='--', lw=1.5, color='k')] legend2_symbol += [PLT.Line2D(range(1), range(0), linestyle='-', lw=1.5, color='k')] legend2_symbol += [PLT.Line2D(range(1), range(0), linestyle=':', lw=1.5, color='k')] # legend2_text += ['Foreground upper limit'] # legend2_text += ['Foreground lower limit'] legend2_text += ['Foreground in EoR window'] legend2_text += ['Baseline fraction'] legend1 = ax1.legend(legend1_symbol, legend1_text, loc='lower right', numpoints=1, fontsize='medium') legend2 = ax2.legend(legend2_symbol, legend2_text, loc='upper right', fontsize='medium') PLT.tight_layout() PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'baseline_screening_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_FG_model_asm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'baseline_screening_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_FG_model_asm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.eps', bbox_inches=0) if plot_14: # 14) Plot delay spectra before and after baselines are selectively removed blo_target = 0.0 blo_remove_max = 0.5*180.0/n_bins_baseline_orientation inner_bll_remove_max = 30.0 blo_retain_ind = NP.abs(bl_orientation - blo_target) > blo_remove_max blo_discard_ind = NP.logical_not(blo_retain_ind) bll_retain_ind = truncated_ref_bl_length > inner_bll_remove_max bll_discard_ind = NP.logical_not(bll_retain_ind) discard = NP.logical_and(blo_discard_ind, bll_discard_ind) retain = NP.logical_not(discard) msk = NP.zeros((truncated_ref_bl_length.size, clean_lags.size)) msk[discard,:] = 1 colrmap = copy.copy(CM.jet) colrmap.set_bad(color='black', alpha=1.0) bl_screened_asm_cc_skyvis_lag = NP.ma.masked_array(asm_cc_skyvis_lag[:,:,0], mask=msk) # bl_screened_asm_cc_skyvis_lag = NP.ma.filled(bl_screened_asm_cc_skyvis_lag, fill_value=1e-5) # bl_screened_asm_cc_skyvis_lag = NP.ma.compress_rows(bl_screened_asm_cc_skyvis_lag) # bl_screened_asm_cc_skyvis_lag = NP.copy(asm_cc_skyvis_lag[:,:,0]) # bl_screened_asm_cc_skyvis_lag[discard,:] = 1e-3 descriptor_str = ['All baselines', 'Short eastward baselines removed'] fig, axs = PLT.subplots(2, sharex=True, sharey=True, figsize=(6,6)) all_imdspec = axs[0].pcolorfast(truncated_ref_bl_length, 1e6*clean_lags, NP.abs(asm_cc_skyvis_lag[:-1,:-1,0].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=(1e6)**2 * volfactor1 * volfactor2 * Jy2K**2, vmax=NP.abs(asm_cc_skyvis_lag).max()**2 * volfactor1 * volfactor2 * Jy2K**2)) screened_imdspec = axs[1].pcolorfast(truncated_ref_bl_length, 1e6*clean_lags, NP.abs(bl_screened_asm_cc_skyvis_lag[:-1,:-1].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=(1e6)**2 * volfactor1 * volfactor2 * Jy2K**2, vmax=NP.abs(asm_cc_skyvis_lag).max()**2 * volfactor1 * volfactor2 * Jy2K**2), cmap=colrmap) for j in xrange(len(axs)): bll_cut = axs[j].axvline(x=inner_bll_remove_max, ymin=0.0, ymax=0.75, ls='--', color='white', lw=1.5) horizonb = axs[j].plot(truncated_ref_bl_length, 1e6*min_delay.ravel(), color='white', ls=':', lw=1.5) horizont = axs[j].plot(truncated_ref_bl_length, 1e6*max_delay.ravel(), color='white', ls=':', lw=1.5) axs[j].set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) axs[j].set_aspect('auto') axs[j].text(0.5, 0.8, descriptor_str[j], transform=axs[j].transAxes, fontsize=12, weight='semibold', ha='center', color='white') for j in xrange(len(axs)): axs_kprll = axs[j].twinx() axs_kprll.set_yticks(kprll(axs[j].get_yticks()*1e-6, redshift)) axs_kprll.set_ylim(kprll(NP.asarray(axs[j].get_ylim())*1e-6, redshift)) yformatter = FuncFormatter(lambda y, pos: '{0:.2f}'.format(y)) axs_kprll.yaxis.set_major_formatter(yformatter) if j == 0: axs_kperp = axs[j].twiny() axs_kperp.set_xticks(kperp(axs[j].get_xticks()*freq/FCNST.c, redshift)) axs_kperp.set_xlim(kperp(NP.asarray(axs[j].get_xlim())*freq/FCNST.c, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) axs_kperp.xaxis.set_major_formatter(xformatter) fig.subplots_adjust(hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_ylabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium', labelpad=30) big_ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=16, weight='medium', labelpad=20) big_axr = big_ax.twinx() big_axr.set_axis_bgcolor('none') big_axr.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axr.set_xticks([]) big_axr.set_yticks([]) big_axr.set_ylabel(r'$k_\parallel$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=40) big_axt = big_ax.twiny() big_axt.set_axis_bgcolor('none') big_axt.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axt.set_xticks([]) big_axt.set_yticks([]) big_axt.set_xlabel(r'$k_\perp$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=30) cbax = fig.add_axes([0.9, 0.125, 0.02, 0.74]) cbar = fig.colorbar(all_imdspec, cax=cbax, orientation='vertical') cbax.set_xlabel(r'K$^2$(Mpc/h)$^3$', labelpad=10, fontsize=12) cbax.xaxis.set_label_position('top') # PLT.tight_layout() fig.subplots_adjust(right=0.72) fig.subplots_adjust(top=0.88) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_screening_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_asm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/'+telescope_str+'multi_baseline_screening_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_asm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'.eps', bbox_inches=0) ################################################################## if plot_15: # 15) Plot Fourier space bw = nchan * freq_resolution fig = PLT.figure(figsize=(6,6)) ax = fig.add_subplot(111) # ax.plot(truncated_ref_bl_length, 1e6*min_delay.ravel(), 'k-', truncated_ref_bl_length, 1e6*max_delay.ravel(), 'k-') # ax.plot(truncated_ref_bl_length, 1e6*(min_delay.ravel()-1/bw), 'k--', truncated_ref_bl_length, 1e6*(max_delay.ravel()+1/bw), 'k--') ph_line, nh_line = ax.plot(truncated_ref_bl_length, 1e6*truncated_ref_bl_length/FCNST.c, 'k-', truncated_ref_bl_length, -1e6*truncated_ref_bl_length/FCNST.c, 'k-') ax.plot(truncated_ref_bl_length, -1e6*(truncated_ref_bl_length/FCNST.c + 1/bw), 'k--', truncated_ref_bl_length, 1e6*(truncated_ref_bl_length/FCNST.c + 1/bw), 'k--') ax.plot(truncated_ref_bl_length[truncated_ref_bl_length <= FCNST.c/coarse_channel_resolution], 1e6/coarse_channel_resolution*NP.ones(NP.sum(truncated_ref_bl_length <= FCNST.c/coarse_channel_resolution)), 'k-.') ax.plot(truncated_ref_bl_length[truncated_ref_bl_length <= FCNST.c/coarse_channel_resolution], -1e6/coarse_channel_resolution*NP.ones(NP.sum(truncated_ref_bl_length <= FCNST.c/coarse_channel_resolution)), 'k-.') ax.fill_between(truncated_ref_bl_length, -0.5/freq_resolution*1e6, -1e6*(truncated_ref_bl_length/FCNST.c + 1/bw), facecolor='0.8', edgecolor='none') ax.fill_between(truncated_ref_bl_length, 1e6*(truncated_ref_bl_length/FCNST.c + 1/bw), 0.5/freq_resolution*1e6, facecolor='0.8', edgecolor='none') ax.fill_between(truncated_ref_bl_length, -1e6/coarse_channel_resolution, -1e6*(truncated_ref_bl_length/FCNST.c + 1/bw), facecolor='0.7', edgecolor='none') ax.fill_between(truncated_ref_bl_length, 1e6*(truncated_ref_bl_length/FCNST.c + 1/bw), 1e6/coarse_channel_resolution, facecolor='0.7', edgecolor='none') ax.fill_between(truncated_ref_bl_length, -1e6*truncated_ref_bl_length/FCNST.c, 1e6*truncated_ref_bl_length/FCNST.c, facecolor='0.5', edgecolor='none') ax.set_xlim(truncated_ref_bl_length.min(), truncated_ref_bl_length.max()) ax.set_ylim(-1.25, 1.25) ax.text(0.5, 0.5, 'Foregrounds', transform=ax.transAxes, fontsize=12, weight='semibold', ha='left', color='black') ax.text(100, 1e6/coarse_channel_resolution, 'Delay grating', fontsize=12, weight='semibold', ha='left', color='black', va='bottom') ax.text(100, -1e6/coarse_channel_resolution, 'Delay grating', fontsize=12, weight='semibold', ha='left', color='black', va='top') ax.text(10, 0.45, 'Maximal EoR \nsensitivity', fontsize=12, weight='semibold', ha='left', va='center') ax.text(10, -0.45, 'Maximal EoR \nsensitivity', fontsize=12, weight='semibold', ha='left', va='center') anchor_bll = 125.0 anchor_nh_delay = -1e6 * anchor_bll/FCNST.c anchor_ph_delay = 1e6 * anchor_bll/FCNST.c nhp1 = ax.transData.transform_point(NP.array([nh_line.get_xdata()[0], nh_line.get_ydata()[0]])) nhp2 = ax.transData.transform_point(NP.array([nh_line.get_xdata()[-1], nh_line.get_ydata()[-1]])) nh_angle = NP.degrees(NP.arctan2(nhp2[1]-nhp1[1], nhp2[0]-nhp1[0])) php1 = ax.transData.transform_point(NP.array([ph_line.get_xdata()[0], ph_line.get_ydata()[0]])) php2 = ax.transData.transform_point(NP.array([ph_line.get_xdata()[-1], ph_line.get_ydata()[-1]])) ph_angle = NP.degrees(NP.arctan2(php2[1]-php1[1], php2[0]-php1[0])) nh_text = ax.text(anchor_bll, anchor_nh_delay, 'Horizon', fontsize=12, weight='semibold', rotation=nh_angle, ha='left') ph_text = ax.text(anchor_bll, anchor_ph_delay, 'Horizon', fontsize=12, weight='semibold', rotation=ph_angle, ha='left') # ax.set_ylim(-0.5/freq_resolution*1e6, 0.5/freq_resolution*1e6) ax.set_ylabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium') ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=16, weight='medium') axr = ax.twinx() axr.set_yticks([]) axr.set_yticks(kprll(ax.get_yticks()*1e-6, redshift)) axr.set_ylim(kprll(NP.asarray(ax.get_ylim())*1e-6, redshift)) axr.set_ylabel(r'$k_\parallel$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium') yformatter = FuncFormatter(lambda y, pos: '{0:.2f}'.format(y)) axr.yaxis.set_major_formatter(yformatter) axt = ax.twiny() axt.set_xticks([]) axt.set_xticks(kperp(ax.get_xticks()*freq/FCNST.c, redshift)) axt.set_xlim(kperp(NP.asarray(ax.get_xlim())*freq/FCNST.c, redshift)) axt.set_xlabel(r'$k_\perp$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium') xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) axt.xaxis.set_major_formatter(xformatter) PLT.tight_layout() PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/fourier_space_{0:.1f}_MHz_{1:.1f}_MHz.png'.format(freq/1e6,nchan*freq_resolution/1e6)) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/fourier_space_{0:.1f}_MHz_{1:.1f}_MHz.eps'.format(freq/1e6,nchan*freq_resolution/1e6)) ################################################################## if plot_17 or plot_18 or plot_19: delta_array_usm_infile = '/data3/t_nithyanandan/'+project_dir+'/delta_array_multi_baseline_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(ref_bl_length[baseline_bin_indices[0]],ref_bl_length[min(baseline_bin_indices[n_bl_chunks-1]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_usm'+sky_sector_str+'sprms_{0:.1f}_'.format(spindex_rms)+spindex_seed_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+'no_pfb' delta_array_usm_CLEAN_infile = '/data3/t_nithyanandan/'+project_dir+'/delta_array_multi_baseline_CLEAN_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(ref_bl_length[baseline_bin_indices[0]],ref_bl_length[min(baseline_bin_indices[n_bl_chunks-1]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_usm'+sky_sector_str+'sprms_{0:.1f}_'.format(spindex_rms)+spindex_seed_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+'no_pfb_'+bpass_shape delta_array_asm_CLEAN_infile = '/data3/t_nithyanandan/'+project_dir+'/delta_array_multi_baseline_CLEAN_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(ref_bl_length[baseline_bin_indices[0]],ref_bl_length[min(baseline_bin_indices[n_bl_chunks-1]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_asm'+sky_sector_str+'sprms_{0:.1f}_'.format(spindex_rms)+spindex_seed_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+'no_pfb_'+bpass_shape mwa_dipole_asm_CLEAN_infile = '/data3/t_nithyanandan/'+project_dir+'/mwa_dipole_multi_baseline_CLEAN_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(ref_bl_length[baseline_bin_indices[0]],ref_bl_length[min(baseline_bin_indices[n_bl_chunks-1]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_asm'+sky_sector_str+'sprms_{0:.1f}_'.format(spindex_rms)+spindex_seed_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+'no_pfb_'+bpass_shape hera_asm_CLEAN_infile = '/data3/t_nithyanandan/'+project_dir+'/hera_multi_baseline_CLEAN_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(ref_bl_length[baseline_bin_indices[0]],ref_bl_length[min(baseline_bin_indices[n_bl_chunks-1]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_asm'+sky_sector_str+'sprms_{0:.1f}_'.format(spindex_rms)+spindex_seed_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+'no_pfb_'+bpass_shape delta_usm_CLEAN_infile = '/data3/t_nithyanandan/'+project_dir+'/delta_multi_baseline_CLEAN_visibilities_no_ground_'+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(ref_bl_length[baseline_bin_indices[0]],ref_bl_length[min(baseline_bin_indices[n_bl_chunks-1]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_usm'+sky_sector_str+'sprms_{0:.1f}_'.format(spindex_rms)+spindex_seed_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+'no_pfb_'+bpass_shape ia = RI.InterferometerArray(None, None, None, init_file=delta_array_usm_infile+'.fits') simdata_bl_orientation = NP.angle(ia.baselines[:,0] + 1j * ia.baselines[:,1], deg=True) simdata_neg_bl_orientation_ind = simdata_bl_orientation > 90.0 + 0.5*180.0/n_bins_baseline_orientation simdata_bl_orientation[simdata_neg_bl_orientation_ind] -= 180.0 ia.baselines[simdata_neg_bl_orientation_ind,:] = -ia.baselines[simdata_neg_bl_orientation_ind,:] hdulist = fits.open(delta_array_usm_infile+'.fits') latitude = hdulist[0].header['latitude'] pointing_coords = hdulist[0].header['pointing_coords'] pointings_table = hdulist['POINTING AND PHASE CENTER INFO'].data lst = pointings_table['LST'] n_snaps = lst.size hdulist.close() if pointing_coords == 'altaz': pointings_altaz = NP.hstack((pointings_table['pointing_latitude'].reshape(-1,1), pointings_table['pointing_longitude'].reshape(-1,1))) pointings_hadec = GEOM.altaz2hadec(pointings_altaz, latitude, units='degrees') pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') elif pointing_coords == 'radec': pointings_radec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) pointings_hadec = NP.hstack(((lst-pointings_radec[:,0]).reshape(-1,1), pointings_radec[:,1].reshape(-1,1))) pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') elif pointing_coords == 'hadec': pointings_hadec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) pointings_radec = NP.hstack(((lst-pointings_hadec[:,0]).reshape(-1,1), pointings_hadec[:,1].reshape(-1,1))) pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') hdulist = fits.open(delta_array_usm_CLEAN_infile+'.fits') clean_lags = hdulist['SPECTRAL INFO'].data['lag'] clean_lags_orig = NP.copy(clean_lags) delta_array_usm_cc_skyvis = hdulist['CLEAN NOISELESS VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES IMAG'].data delta_array_usm_cc_skyvis_res = hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS IMAG'].data delta_array_usm_cc_vis = hdulist['CLEAN NOISY VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES IMAG'].data delta_array_usm_cc_vis_res = hdulist['CLEAN NOISY VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES RESIDUALS IMAG'].data hdulist.close() hdulist = fits.open(delta_array_asm_CLEAN_infile+'.fits') delta_array_asm_cc_skyvis = hdulist['CLEAN NOISELESS VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES IMAG'].data delta_array_asm_cc_skyvis_res = hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS IMAG'].data delta_array_asm_cc_vis = hdulist['CLEAN NOISY VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES IMAG'].data delta_array_asm_cc_vis_res = hdulist['CLEAN NOISY VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES RESIDUALS IMAG'].data hdulist.close() hdulist = fits.open(mwa_dipole_asm_CLEAN_infile+'.fits') mwa_dipole_asm_cc_skyvis = hdulist['CLEAN NOISELESS VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES IMAG'].data mwa_dipole_asm_cc_skyvis_res = hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS IMAG'].data mwa_dipole_asm_cc_vis = hdulist['CLEAN NOISY VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES IMAG'].data mwa_dipole_asm_cc_vis_res = hdulist['CLEAN NOISY VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES RESIDUALS IMAG'].data hdulist.close() hdulist = fits.open(hera_asm_CLEAN_infile+'.fits') hera_asm_cc_skyvis = hdulist['CLEAN NOISELESS VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES IMAG'].data hera_asm_cc_skyvis_res = hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS IMAG'].data hera_asm_cc_vis = hdulist['CLEAN NOISY VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES IMAG'].data hera_asm_cc_vis_res = hdulist['CLEAN NOISY VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES RESIDUALS IMAG'].data hdulist.close() hdulist = fits.open(delta_usm_CLEAN_infile+'.fits') delta_usm_cc_skyvis = hdulist['CLEAN NOISELESS VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES IMAG'].data delta_usm_cc_skyvis_res = hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISELESS VISIBILITIES RESIDUALS IMAG'].data delta_usm_cc_vis = hdulist['CLEAN NOISY VISIBILITIES REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES IMAG'].data delta_usm_cc_vis_res = hdulist['CLEAN NOISY VISIBILITIES RESIDUALS REAL'].data + 1j * hdulist['CLEAN NOISY VISIBILITIES RESIDUALS IMAG'].data hdulist.close() clean_lags = DSP.downsampler(clean_lags, 1.0*clean_lags.size/ia.lags.size, axis=-1) clean_lags = clean_lags.ravel() delaymat = DLY.delay_envelope(ia.baselines[truncated_ref_bl_ind,:], pc, units='mks') bw = nchan * freq_resolution min_delay = -delaymat[0,:,1]-delaymat[0,:,0] max_delay = delaymat[0,:,0]-delaymat[0,:,1] clags = clean_lags.reshape(1,-1) min_delay = min_delay.reshape(-1,1) max_delay = max_delay.reshape(-1,1) thermal_noise_window = NP.abs(clags) >= max_abs_delay*1e-6 thermal_noise_window = NP.repeat(thermal_noise_window, ia.baselines[truncated_ref_bl_ind,:].shape[0], axis=0) EoR_window = NP.logical_or(clags > max_delay+3/bw, clags < min_delay-3/bw) strict_EoR_window = NP.logical_and(EoR_window, NP.abs(clags) < 1/coarse_channel_resolution) wedge_window = NP.logical_and(clags <= max_delay, clags >= min_delay) non_wedge_window = NP.logical_not(wedge_window) small_delays_EoR_window = EoR_window.T small_delays_strict_EoR_window = strict_EoR_window.T small_delays_wedge_window = wedge_window.T if max_abs_delay is not None: small_delays_ind = NP.abs(clean_lags) <= max_abs_delay * 1e-6 clean_lags = clean_lags[small_delays_ind] small_delays_EoR_window = small_delays_EoR_window[small_delays_ind,:] small_delays_strict_EoR_window = small_delays_strict_EoR_window[small_delays_ind,:] small_delays_wedge_window = small_delays_wedge_window[small_delays_ind,:] if plot_17: # 17) Plot delay spectra of the MWA tile power pattern using a uniform sky model delta_array_usm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:] = delta_array_usm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:].conj() delta_array_usm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:] = delta_array_usm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:].conj() delta_array_usm_cc_skyvis_lag = NP.fft.fftshift(NP.fft.ifft(delta_array_usm_cc_skyvis, axis=1),axes=1) * delta_array_usm_cc_skyvis.shape[1] * freq_resolution delta_array_usm_ccres_sky = NP.fft.fftshift(NP.fft.ifft(delta_array_usm_cc_skyvis_res, axis=1),axes=1) * delta_array_usm_cc_skyvis.shape[1] * freq_resolution delta_array_usm_cc_skyvis_lag = delta_array_usm_cc_skyvis_lag + delta_array_usm_ccres_sky delta_array_usm_cc_skyvis_lag = DSP.downsampler(delta_array_usm_cc_skyvis_lag, 1.0*clean_lags_orig.size/ia.lags.size, axis=1) delta_array_usm_cc_skyvis_lag = delta_array_usm_cc_skyvis_lag[truncated_ref_bl_ind,:,:] delta_array_usm_dspec_max = NP.abs(delta_array_usm_cc_skyvis_lag).max() delta_array_usm_dspec_min = NP.abs(delta_array_usm_cc_skyvis_lag).min() # delta_array_usm_dspec_max = delta_array_usm_dspec_max**2 * volfactor1 * volfactor2 * Jy2K**2 # delta_array_usm_dspec_min = delta_array_usm_dspec_min**2 * volfactor1 * volfactor2 * Jy2K**2 if max_abs_delay is not None: delta_array_usm_cc_skyvis_lag = delta_array_usm_cc_skyvis_lag[:,small_delays_ind,:] fig, axs = PLT.subplots(n_snaps, sharex=True, sharey=True, figsize=(6,6)) for j in xrange(n_snaps): imdspec = axs[j].pcolorfast(truncated_ref_bl_length, 1e6*clean_lags, NP.abs(delta_array_usm_cc_skyvis_lag[:-1,:-1,j].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=(1e5**2) * volfactor1 * volfactor2 * Jy2K**2, vmax=(delta_array_usm_dspec_max**2) * volfactor1 * volfactor2 * Jy2K**2)) horizonb = axs[j].plot(truncated_ref_bl_length, 1e6*min_delay.ravel(), color='white', ls=':', lw=1.5) horizont = axs[j].plot(truncated_ref_bl_length, 1e6*max_delay.ravel(), color='white', ls=':', lw=1.5) axs[j].set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) axs[j].set_aspect('auto') axs[j].text(0.5, 0.9, descriptor_str[j], transform=axs[j].transAxes, fontsize=14, weight='semibold', ha='center', color='white') for j in xrange(n_snaps): axs_kprll = axs[j].twinx() axs_kprll.set_yticks(kprll(axs[j].get_yticks()*1e-6, redshift)) axs_kprll.set_ylim(kprll(NP.asarray(axs[j].get_ylim())*1e-6, redshift)) yformatter = FuncFormatter(lambda y, pos: '{0:.2f}'.format(y)) axs_kprll.yaxis.set_major_formatter(yformatter) if j == 0: axs_kperp = axs[j].twiny() axs_kperp.set_xticks(kperp(axs[j].get_xticks()*freq/FCNST.c, redshift)) axs_kperp.set_xlim(kperp(NP.asarray(axs[j].get_xlim())*freq/FCNST.c, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) axs_kperp.xaxis.set_major_formatter(xformatter) fig.subplots_adjust(hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_ylabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium', labelpad=30) big_ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=16, weight='medium', labelpad=20) big_axr = big_ax.twinx() big_axr.set_axis_bgcolor('none') big_axr.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axr.set_xticks([]) big_axr.set_yticks([]) big_axr.set_ylabel(r'$k_\parallel$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=40) big_axt = big_ax.twiny() big_axt.set_axis_bgcolor('none') big_axt.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axt.set_xticks([]) big_axt.set_yticks([]) big_axt.set_xlabel(r'$k_\perp$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=30) cbax = fig.add_axes([0.9, 0.125, 0.02, 0.74]) cbar = fig.colorbar(imdspec, cax=cbax, orientation='vertical') cbax.set_xlabel(r'K$^2$(Mpc/h)$^3$', labelpad=10, fontsize=12) cbax.xaxis.set_label_position('top') # PLT.tight_layout() fig.subplots_adjust(right=0.72) fig.subplots_adjust(top=0.88) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/delta_array_multi_baseline_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_usm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'_no_pfb_{0:.1f}'.format(oversampling_factor)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/delta_array_multi_baseline_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_usm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'_no_pfb_{0:.1f}'.format(oversampling_factor)+'.eps', bbox_inches=0) ################################################################## if plot_18: # 18) Plot delay spectra of the all-sky model with dipole, MWA tile, and HERA dish antenna shapes mwa_dipole_asm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:] = mwa_dipole_asm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:].conj() mwa_dipole_asm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:] = mwa_dipole_asm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:].conj() mwa_dipole_asm_cc_skyvis_lag = NP.fft.fftshift(NP.fft.ifft(mwa_dipole_asm_cc_skyvis, axis=1),axes=1) * mwa_dipole_asm_cc_skyvis.shape[1] * freq_resolution mwa_dipole_asm_ccres_sky = NP.fft.fftshift(NP.fft.ifft(mwa_dipole_asm_cc_skyvis_res, axis=1),axes=1) * mwa_dipole_asm_cc_skyvis.shape[1] * freq_resolution mwa_dipole_asm_cc_skyvis_lag = mwa_dipole_asm_cc_skyvis_lag + mwa_dipole_asm_ccres_sky mwa_dipole_asm_cc_skyvis_lag = DSP.downsampler(mwa_dipole_asm_cc_skyvis_lag, 1.0*clean_lags_orig.size/ia.lags.size, axis=1) delta_array_asm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:] = delta_array_asm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:].conj() delta_array_asm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:] = delta_array_asm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:].conj() delta_array_asm_cc_skyvis_lag = NP.fft.fftshift(NP.fft.ifft(delta_array_asm_cc_skyvis, axis=1),axes=1) * delta_array_asm_cc_skyvis.shape[1] * freq_resolution delta_array_asm_ccres_sky = NP.fft.fftshift(NP.fft.ifft(delta_array_asm_cc_skyvis_res, axis=1),axes=1) * delta_array_asm_cc_skyvis.shape[1] * freq_resolution delta_array_asm_cc_skyvis_lag = delta_array_asm_cc_skyvis_lag + delta_array_asm_ccres_sky delta_array_asm_cc_skyvis_lag = DSP.downsampler(delta_array_asm_cc_skyvis_lag, 1.0*clean_lags_orig.size/ia.lags.size, axis=1) hera_asm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:] = hera_asm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:].conj() hera_asm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:] = hera_asm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:].conj() hera_asm_cc_skyvis_lag = NP.fft.fftshift(NP.fft.ifft(hera_asm_cc_skyvis, axis=1),axes=1) * hera_asm_cc_skyvis.shape[1] * freq_resolution hera_asm_ccres_sky = NP.fft.fftshift(NP.fft.ifft(hera_asm_cc_skyvis_res, axis=1),axes=1) * hera_asm_cc_skyvis.shape[1] * freq_resolution hera_asm_cc_skyvis_lag = hera_asm_cc_skyvis_lag + hera_asm_ccres_sky hera_asm_cc_skyvis_lag = DSP.downsampler(hera_asm_cc_skyvis_lag, 1.0*clean_lags_orig.size/ia.lags.size, axis=1) delta_array_asm_cc_skyvis_lag = delta_array_asm_cc_skyvis_lag[truncated_ref_bl_ind,:,:] mwa_dipole_asm_cc_skyvis_lag = mwa_dipole_asm_cc_skyvis_lag[truncated_ref_bl_ind,:,:] hera_asm_cc_skyvis_lag = hera_asm_cc_skyvis_lag[truncated_ref_bl_ind,:,:] if max_abs_delay is not None: delta_array_asm_cc_skyvis_lag = delta_array_asm_cc_skyvis_lag[:,small_delays_ind,:] mwa_dipole_asm_cc_skyvis_lag = mwa_dipole_asm_cc_skyvis_lag[:,small_delays_ind,:] hera_asm_cc_skyvis_lag = hera_asm_cc_skyvis_lag[:,small_delays_ind,:] antelem_asm_dspec_max = max([NP.abs(mwa_dipole_asm_cc_skyvis_lag).max(), NP.abs(delta_array_asm_cc_skyvis_lag).max(), NP.abs(hera_asm_cc_skyvis_lag).max()]) antelem_asm_dspec_min = min([NP.abs(mwa_dipole_asm_cc_skyvis_lag).min(), NP.abs(delta_array_asm_cc_skyvis_lag).min(), NP.abs(hera_asm_cc_skyvis_lag).min()]) # antelem_asm_dspec_max = antelem_asm_dspec_max**2 * volfactor1 * volfactor2 * Jy2K**2 # antelem_asm_dspec_min = antelem_asm_dspec_min**2 * volfactor1 * volfactor2 * Jy2K**2 delta_array_roifile = '/data3/t_nithyanandan/'+project_dir+'/roi_info_delta_array_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_asm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+'.fits' delta_array_roi = RI.ROI_parameters(init_file=delta_array_roifile) delta_array_telescope = delta_array_roi.telescope mwa_dipole_roifile = '/data3/t_nithyanandan/'+project_dir+'/roi_info_mwa_dipole_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_asm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+'.fits' mwa_dipole_roi = RI.ROI_parameters(init_file=mwa_dipole_roifile) mwa_dipole_telescope = mwa_dipole_roi.telescope hera_roifile = '/data3/t_nithyanandan/'+project_dir+'/roi_info_hera_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_asm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+'.fits' hera_roi = RI.ROI_parameters(init_file=hera_roifile) hera_telescope = hera_roi.telescope backdrop_xsize = 100 xmin = -180.0 xmax = 180.0 ymin = -90.0 ymax = 90.0 xgrid, ygrid = NP.meshgrid(NP.linspace(xmax, xmin, backdrop_xsize), NP.linspace(ymin, ymax, backdrop_xsize/2)) xvect = xgrid.ravel() yvect = ygrid.ravel() delta_array_pb_snapshots = [] mwa_dipole_pb_snapshots = [] hera_pb_snapshots = [] for i in xrange(n_snaps): havect = lst[i] - xvect altaz = GEOM.hadec2altaz(NP.hstack((havect.reshape(-1,1),yvect.reshape(-1,1))), latitude, units='degrees') dircos = GEOM.altaz2dircos(altaz, units='degrees') roi_altaz = NP.asarray(NP.where(altaz[:,0] >= 0.0)).ravel() az = altaz[:,1] + 0.0 az[az > 360.0 - 0.5*180.0/n_sky_sectors] -= 360.0 roi_sector_altaz = NP.asarray(NP.where(NP.logical_or(NP.logical_and(az[roi_altaz] >= -0.5*180.0/n_sky_sectors + sky_sector*180.0/n_sky_sectors, az[roi_altaz] < -0.5*180.0/n_sky_sectors + (sky_sector+1)*180.0/n_sky_sectors), NP.logical_and(az[roi_altaz] >= 180.0 - 0.5*180.0/n_sky_sectors + sky_sector*180.0/n_sky_sectors, az[roi_altaz] < 180.0 - 0.5*180.0/n_sky_sectors + (sky_sector+1)*180.0/n_sky_sectors)))).ravel() pb = NP.empty(xvect.size) pb.fill(NP.nan) pb[roi_altaz] = PB.primary_beam_generator(altaz[roi_altaz,:], freq, telescope=mwa_dipole_telescope, skyunits='altaz', freq_scale='Hz', pointing_info=mwa_dipole_roi.pinfo[i]) mwa_dipole_pb_snapshots += [pb.copy()] pb[roi_altaz] = PB.primary_beam_generator(altaz[roi_altaz,:], freq, telescope=delta_array_telescope, skyunits='altaz', freq_scale='Hz', pointing_info=delta_array_roi.pinfo[i]) delta_array_pb_snapshots += [pb.copy()] pb[roi_altaz] = PB.primary_beam_generator(altaz[roi_altaz,:], freq, telescope=hera_telescope, skyunits='altaz', freq_scale='Hz', pointing_info=hera_roi.pinfo[i]) hera_pb_snapshots += [pb.copy()] for j in xrange(n_snaps): fig, axs = PLT.subplots(ncols=3, nrows=1, sharex=True, sharey=True, figsize=(10.5,2)) mwa_dipole_pbsky = axs[0].imshow(mwa_dipole_pb_snapshots[j].reshape(-1,backdrop_xsize), origin='lower', extent=(NP.amax(xvect), NP.amin(xvect), NP.amin(yvect), NP.amax(yvect)), norm=PLTC.LogNorm(vmin=1e-5, vmax=1.0), cmap=CM.jet) axs[0].set_xlim(xvect.max(), xvect.min()) axs[0].set_ylim(yvect.min(), yvect.max()) axs[0].grid(True, which='both') axs[0].set_aspect('auto') axs[0].tick_params(which='major', length=12, labelsize=12) axs[0].tick_params(which='minor', length=6) axs[0].locator_params(axis='x', nbins=5) axs[0].text(0.5, 0.87, 'Dipole', transform=axs[0].transAxes, fontsize=14, weight='semibold', ha='center', color='black') delta_array_pbsky = axs[1].imshow(delta_array_pb_snapshots[j].reshape(-1,backdrop_xsize), origin='lower', extent=(NP.amax(xvect), NP.amin(xvect), NP.amin(yvect), NP.amax(yvect)), norm=PLTC.LogNorm(vmin=1e-5, vmax=1.0), cmap=CM.jet) axs[1].set_xlim(xvect.max(), xvect.min()) axs[1].set_ylim(yvect.min(), yvect.max()) axs[1].grid(True, which='both') axs[1].set_aspect('auto') axs[1].tick_params(which='major', length=12, labelsize=12) axs[1].tick_params(which='minor', length=6) axs[1].locator_params(axis='x', nbins=5) axs[1].text(0.5, 0.87, 'Phased Array', transform=axs[1].transAxes, fontsize=14, weight='semibold', ha='center', color='black') hera_pbsky = axs[2].imshow(hera_pb_snapshots[j].reshape(-1,backdrop_xsize), origin='lower', extent=(NP.amax(xvect), NP.amin(xvect), NP.amin(yvect), NP.amax(yvect)), norm=PLTC.LogNorm(vmin=1e-5, vmax=1.0), cmap=CM.jet) axs[2].set_xlim(xvect.max(), xvect.min()) axs[2].set_ylim(yvect.min(), yvect.max()) axs[2].grid(True, which='both') axs[2].set_aspect('auto') axs[2].tick_params(which='major', length=12, labelsize=12) axs[2].tick_params(which='minor', length=6) axs[2].locator_params(axis='x', nbins=5) axs[2].text(0.5, 0.87, 'Dish', transform=axs[2].transAxes, fontsize=14, weight='semibold', ha='center', color='black') cbax = fig.add_axes([0.9, 0.24, 0.02, 0.7]) cbar = fig.colorbar(hera_pbsky, cax=cbax, orientation='vertical') fig.subplots_adjust(wspace=0, hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_ylabel(r'$\delta$ [degrees]', fontsize=16, weight='medium', labelpad=25) big_ax.set_xlabel(r'$\alpha$ [degrees]', fontsize=16, weight='medium', labelpad=15) # PLT.tight_layout() fig.subplots_adjust(right=0.89) fig.subplots_adjust(top=0.94) fig.subplots_adjust(bottom=0.24) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/powerpattern_'+ground_plane_str+snapshot_type_str+obs_mode+'_no_delayerr_snapshot_{0:0d}.png'.format(j), bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/powerpattern_'+ground_plane_str+snapshot_type_str+obs_mode+'_no_delayerr_snapshot_{0:0d}.eps'.format(j), bbox_inches=0) for j in xrange(n_snaps): fig, axs = PLT.subplots(ncols=3, nrows=1, sharex=True, sharey=True, figsize=(10.5,5)) mwa_dipole_imdspec = axs[0].pcolorfast(truncated_ref_bl_length, 1e6*clean_lags, NP.abs(mwa_dipole_asm_cc_skyvis_lag[:-1,:-1,j].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=(1e5)**2 * volfactor1 * volfactor2 * Jy2K**2, vmax=(antelem_asm_dspec_max**2) * volfactor1 * volfactor2 * Jy2K**2)) horizonb = axs[0].plot(truncated_ref_bl_length, 1e6*min_delay.ravel(), color='white', ls=':', lw=1.5) horizont = axs[0].plot(truncated_ref_bl_length, 1e6*max_delay.ravel(), color='white', ls=':', lw=1.5) axs[0].set_xlim(truncated_ref_bl_length.min(), truncated_ref_bl_length.max()) axs[0].set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) # axs[0].set_aspect('auto') axs[0].text(0.5, 0.9, 'Dipole', transform=axs[0].transAxes, fontsize=14, weight='semibold', ha='center', color='white') delta_array_imdspec = axs[1].pcolorfast(truncated_ref_bl_length, 1e6*clean_lags, NP.abs(delta_array_asm_cc_skyvis_lag[:-1,:-1,j].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=(1e5)**2 * volfactor1 * volfactor2 * Jy2K**2, vmax=(antelem_asm_dspec_max**2) * volfactor1 * volfactor2 * Jy2K**2)) horizonb = axs[1].plot(truncated_ref_bl_length, 1e6*min_delay.ravel(), color='white', ls=':', lw=1.5) horizont = axs[1].plot(truncated_ref_bl_length, 1e6*max_delay.ravel(), color='white', ls=':', lw=1.5) axs[1].set_xlim(truncated_ref_bl_length.min(), truncated_ref_bl_length.max()) axs[1].set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) # axs[1].set_aspect('auto') axs[1].text(0.5, 0.9, 'Phased Array', transform=axs[1].transAxes, fontsize=14, weight='semibold', ha='center', color='white') hera_imdspec = axs[2].pcolorfast(truncated_ref_bl_length, 1e6*clean_lags, NP.abs(hera_asm_cc_skyvis_lag[:-1,:-1,j].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=(1e5)**2 * volfactor1 * volfactor2 * Jy2K**2, vmax=(antelem_asm_dspec_max**2) * volfactor1 * volfactor2 * Jy2K**2)) horizonb = axs[2].plot(truncated_ref_bl_length, 1e6*min_delay.ravel(), color='white', ls=':', lw=1.5) horizont = axs[2].plot(truncated_ref_bl_length, 1e6*max_delay.ravel(), color='white', ls=':', lw=1.5) axs[2].set_xlim(truncated_ref_bl_length.min(), truncated_ref_bl_length.max()) axs[2].set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) # axs[2].set_aspect('auto') axs[2].text(0.5, 0.9, 'Dish', transform=axs[2].transAxes, fontsize=14, weight='semibold', ha='center', color='white') mwa_dipole_axs_kperp = axs[0].twiny() mwa_dipole_axs_kperp.set_xticks(kperp(axs[0].get_xticks()*freq/FCNST.c, redshift)) mwa_dipole_axs_kperp.set_xlim(kperp(NP.asarray(axs[0].get_xlim())*freq/FCNST.c, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) mwa_dipole_axs_kperp.xaxis.set_major_formatter(xformatter) delta_array_axs_kperp = axs[1].twiny() delta_array_axs_kperp.set_xticks(kperp(axs[1].get_xticks()*freq/FCNST.c, redshift)) delta_array_axs_kperp.set_xlim(kperp(NP.asarray(axs[1].get_xlim())*freq/FCNST.c, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) delta_array_axs_kperp.xaxis.set_major_formatter(xformatter) hera_axs_kperp = axs[2].twiny() hera_axs_kperp.set_xticks(kperp(axs[2].get_xticks()*freq/FCNST.c, redshift)) hera_axs_kperp.set_xlim(kperp(NP.asarray(axs[2].get_xlim())*freq/FCNST.c, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) hera_axs_kperp.xaxis.set_major_formatter(xformatter) axs_kprll = axs[2].twinx() axs_kprll.set_yticks(kprll(axs[2].get_yticks()*1e-6, redshift)) axs_kprll.set_ylim(kprll(NP.asarray(axs[2].get_ylim())*1e-6, redshift)) yformatter = FuncFormatter(lambda y, pos: '{0:.2f}'.format(y)) axs_kprll.yaxis.set_major_formatter(yformatter) fig.subplots_adjust(wspace=0, hspace=0) big_ax = fig.add_subplot(111) big_ax.set_axis_bgcolor('none') big_ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_ax.set_xticks([]) big_ax.set_yticks([]) big_ax.set_ylabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium', labelpad=30) big_ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=16, weight='medium', labelpad=20) big_axr = big_ax.twinx() big_axr.set_axis_bgcolor('none') big_axr.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axr.set_xticks([]) big_axr.set_yticks([]) big_axr.set_ylabel(r'$k_\parallel$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=40) big_axt = big_ax.twiny() big_axt.set_axis_bgcolor('none') big_axt.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') big_axt.set_xticks([]) big_axt.set_yticks([]) big_axt.set_xlabel(r'$k_\perp$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium', labelpad=30) cbax = fig.add_axes([0.9, 0.125, 0.02, 0.74]) cbar = fig.colorbar(hera_imdspec, cax=cbax, orientation='vertical') cbax.set_xlabel(r'K$^2$(Mpc/h)$^3$', labelpad=10, fontsize=12) cbax.xaxis.set_label_position('top') # PLT.tight_layout() fig.subplots_adjust(right=0.8) fig.subplots_adjust(top=0.85) fig.subplots_adjust(left=0.1) fig.subplots_adjust(bottom=0.125) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/multi_antenna_multi_baseline_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_asm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'_no_pfb_{0:.1f}_snapshot_{1:0d}'.format(oversampling_factor,j)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/multi_antenna_multi_baseline_CLEAN_noiseless_PS_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_asm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'_no_pfb_{0:.1f}_snapshot_{1:0d}'.format(oversampling_factor,j)+'.eps', bbox_inches=0) ################################################################## if plot_19: # 19) Plot delay spectrum of uniform sky model with a uniform power pattern delta_usm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:] = delta_usm_cc_skyvis[simdata_neg_bl_orientation_ind,:,:].conj() delta_usm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:] = delta_usm_cc_skyvis_res[simdata_neg_bl_orientation_ind,:,:].conj() delta_usm_cc_skyvis_lag = NP.fft.fftshift(NP.fft.ifft(delta_usm_cc_skyvis, axis=1),axes=1) * delta_usm_cc_skyvis.shape[1] * freq_resolution delta_usm_ccres_sky = NP.fft.fftshift(NP.fft.ifft(delta_usm_cc_skyvis_res, axis=1),axes=1) * delta_usm_cc_skyvis.shape[1] * freq_resolution delta_usm_cc_skyvis_lag = delta_usm_cc_skyvis_lag + delta_usm_ccres_sky delta_usm_cc_skyvis_lag = DSP.downsampler(delta_usm_cc_skyvis_lag, 1.0*clean_lags_orig.size/ia.lags.size, axis=1) delta_usm_cc_skyvis_lag = delta_usm_cc_skyvis_lag[truncated_ref_bl_ind,:,:] delta_usm_dspec_max = NP.abs(delta_usm_cc_skyvis_lag).max() delta_usm_dspec_min = NP.abs(delta_usm_cc_skyvis_lag).min() # delta_usm_dspec_max = delta_usm_dspec_max**2 * volfactor1 * volfactor2 * Jy2K**2 # delta_usm_dspec_min = delta_usm_dspec_min**2 * volfactor1 * volfactor2 * Jy2K**2 if max_abs_delay is not None: delta_usm_cc_skyvis_lag = delta_usm_cc_skyvis_lag[:,small_delays_ind,:] for j in xrange(n_snaps): fig = PLT.figure(figsize=(6,6)) ax = fig.add_subplot(111) imdspec = ax.pcolorfast(truncated_ref_bl_length, 1e6*clean_lags, NP.abs(delta_usm_cc_skyvis_lag[:-1,:-1,j].T)**2 * volfactor1 * volfactor2 * Jy2K**2, norm=PLTC.LogNorm(vmin=(1e5**2) * volfactor1 * volfactor2 * Jy2K**2, vmax=(delta_usm_dspec_max**2) * volfactor1 * volfactor2 * Jy2K**2)) horizonb = ax.plot(truncated_ref_bl_length, 1e6*min_delay.ravel(), color='white', ls=':', lw=1.5) horizont = ax.plot(truncated_ref_bl_length, 1e6*max_delay.ravel(), color='white', ls=':', lw=1.5) ax.set_ylim(0.9*NP.amin(clean_lags*1e6), 0.9*NP.amax(clean_lags*1e6)) ax.set_aspect('auto') # ax.text(0.5, 0.9, descriptor_str[j], transform=ax.transAxes, fontsize=14, weight='semibold', ha='center', color='white') ax_kprll = ax.twinx() ax_kprll.set_yticks(kprll(ax.get_yticks()*1e-6, redshift)) ax_kprll.set_ylim(kprll(NP.asarray(ax.get_ylim())*1e-6, redshift)) yformatter = FuncFormatter(lambda y, pos: '{0:.2f}'.format(y)) ax_kprll.yaxis.set_major_formatter(yformatter) ax_kperp = ax.twiny() ax_kperp.set_xticks(kperp(ax.get_xticks()*freq/FCNST.c, redshift)) ax_kperp.set_xlim(kperp(NP.asarray(ax.get_xlim())*freq/FCNST.c, redshift)) xformatter = FuncFormatter(lambda x, pos: '{0:.3f}'.format(x)) ax_kperp.xaxis.set_major_formatter(xformatter) ax.set_ylabel(r'$\tau$ [$\mu$s]', fontsize=16, weight='medium') ax.set_xlabel(r'$|\mathbf{b}|$ [m]', fontsize=16, weight='medium') ax_kprll.set_ylabel(r'$k_\parallel$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium') ax_kperp.set_xlabel(r'$k_\perp$ [$h$ Mpc$^{-1}$]', fontsize=16, weight='medium') cbax = fig.add_axes([0.9, 0.125, 0.02, 0.74]) cbar = fig.colorbar(imdspec, cax=cbax, orientation='vertical') cbax.set_xlabel(r'K$^2$(Mpc/h)$^3$', labelpad=10, fontsize=12) cbax.xaxis.set_label_position('top') # PLT.tight_layout() fig.subplots_adjust(right=0.72) fig.subplots_adjust(top=0.88) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/delta_multi_baseline_CLEAN_noiseless_PS_no_ground_'+snapshot_type_str+obs_mode+'_gaussian_FG_model_usm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'_no_pfb_{0:.1f}_snapshot_{1:0d}'.format(oversampling_factor,j)+'.png', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/'+project_dir+'/figures/delta_multi_baseline_CLEAN_noiseless_PS_no_ground_'+snapshot_type_str+obs_mode+'_gaussian_FG_model_usm'+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz_'.format(Tsys, freq/1e6,nchan*freq_resolution/1e6)+bpass_shape+'_no_pfb_{0:.1f}_snapshot_{1:0d}'.format(oversampling_factor,j)+'.eps', bbox_inches=0)
mit
ukuleleplayer/pureples
pureples/shared/visualize.py
1
3149
import graphviz import matplotlib.pyplot as plt try: import cPickle as pickle except: import pickle # Draw neural network with arbitrary topology. def draw_net(net, filename=None, node_names={}, node_colors={}): node_attrs = { 'shape': 'circle', 'fontsize': '9', 'height': '0.2', 'width': '0.2'} dot = graphviz.Digraph('svg', node_attr=node_attrs) inputs = set() for k in net.input_nodes: inputs.add(k) name = node_names.get(k, str(k)) input_attrs = {'style': 'filled', 'shape': 'box', 'fillcolor': node_colors.get(k, 'lightgray')} dot.node(name, _attributes=input_attrs) outputs = set() for k in net.output_nodes: outputs.add(k) name = node_names.get(k, str(k)) node_attrs = {'style': 'filled', 'fillcolor': node_colors.get(k, 'lightblue')} dot.node(name, _attributes=node_attrs) for node, act_func, agg_func, bias, response, links in net.node_evals: for i, w in links: input, output = node, i a = node_names.get(output, str(output)) b = node_names.get(input, str(input)) style = 'solid' color = 'green' if w > 0.0 else 'red' width = str(0.1 + abs(w / 5.0)) dot.edge(a, b, _attributes={'style': style, 'color': color, 'penwidth': width}) dot.render(filename) return dot # Click handler for weight gradient created by a CPPN. Will re-query with the clicked coordinate. def onclick(event): plt.close() x = event.xdata y = event.ydata path_to_cppn = "es_hyperneat_xor_small_cppn.pkl" with open(path_to_cppn, 'rb') as input: # For now, path_to_cppn should match path in test_cppn.py, sorry. cppn = pickle.load(input) from pureples.es_hyperneat.es_hyperneat import find_pattern pattern = find_pattern(cppn, (x, y)) draw_pattern(pattern) # Draws the pattern/weight gradient queried by a CPPN. def draw_pattern(im, res=60): fig = plt.figure() plt.axis([-1, 1, -1, 1]) fig.add_subplot(111) a = range(res) b = range(res) for x in a: for y in b: px = -1.0 + (x/float(res))*2.0+1.0/float(res) py = -1.0 + (y/float(res))*2.0+1.0/float(res) c = str(0.5-im[x][y]/float(res)) plt.plot(px, py, marker='s', color=c) fig.canvas.mpl_connect('button_press_event', onclick) plt.grid() plt.show() # Draw the net created by ES-HyperNEAT def draw_es(id_to_coords, connections, filename): fig = plt.figure() plt.axis([-1.1, 1.1, -1.1, 1.1]) fig.add_subplot(111) for c in connections: color = 'red' if c.weight > 0.0: color = 'black' plt.arrow(c.x1, c.y1, c.x2-c.x1, c.y2-c.y1, head_width=0.00, head_length=0.0, fc=color, ec=color, length_includes_head = True) for (coord, idx) in id_to_coords.items(): plt.plot(coord[0], coord[1], marker='o', markersize=8.0, color='grey') plt.grid() fig.savefig(filename)
mit
annayqho/TheCannon
code/lamost/xcalib_5labels/paper_plots/coverage_with_dist.py
1
2709
# read in all LAMOST labels import numpy as np from matplotlib import rc rc('font', family='serif') rc('text', usetex=True) import matplotlib.pyplot as plt from matplotlib.colors import LogNorm def calc_dist(lamost_point, training_points, coeffs): """ avg dist from one lamost point to nearest 10 training points """ diff2 = (training_points - lamost_point)**2 dist = np.sqrt(np.sum(diff2*coeffs, axis=1)) return np.mean(dist[dist.argsort()][0:10]) def dist(lamost_point, cannon_point, coeffs): diff2 = (lamost_point - cannon_point)**2 dist = np.sqrt(np.sum(diff2*coeffs,axis=1)) return dist coeffs = 1./(np.array([100,0.2,0.1])**2) # get all the training set values with np.load("../../examples/test_training_overlap/tr_label.npz") as a: training_points = a['arr_0'][:,0:3] direc = "../../examples/lamost_dr2" teff_all = np.loadtxt( "%s/lamost_labels_all_dates.csv" %direc, delimiter=',', dtype='float', usecols=(1,), skiprows=1) logg_all = np.loadtxt( "%s/lamost_labels_all_dates.csv" %direc, delimiter=',', dtype='float', usecols=(2,), skiprows=1) feh_all = np.loadtxt( "%s/lamost_labels_all_dates.csv" %direc, delimiter=',', dtype='float', usecols=(3,), skiprows=1) teff = np.loadtxt( "%s/lamost_labels_20121125.csv" %direc, delimiter=',', dtype='float', usecols=(1,), skiprows=1) logg = np.loadtxt( "%s/lamost_labels_20121125.csv" %direc, delimiter=',', dtype='float', usecols=(2,), skiprows=1) feh = np.loadtxt( "%s/lamost_labels_20121125.csv" %direc, delimiter=',', dtype='float', usecols=(3,), skiprows=1) lamost_points = np.vstack((teff,logg,feh)).T # calculate distances training_dist = np.array( [calc_dist(p, training_points, coeffs) for p in lamost_points]) # plot all plt.figure(figsize=(10,8)) plt.hist2d(teff_all,logg_all,bins=1000,norm=LogNorm(), cmap="Greys") plt.ylim(1.5,5) plt.gca().invert_xaxis() plt.gca().invert_yaxis() # plot training set for training_dist < 2.5 cut = training_dist < 2.5 plt.scatter(teff[cut],logg[cut],c='darkorange',s=1,lw=0, label=r"Distance from Training Labels $<$ 2.5") cut = training_dist > 2.5 im = plt.scatter(teff[cut],logg[cut],c='darkorchid',s=1,lw=0, label=r"Distance from Training Labels $>$ 2.5") plt.legend(loc='upper left', fontsize=16, markerscale=5) plt.xlabel(r"$\mbox{T}_{\mbox{eff}}$ [K] from LAMOST DR2", fontsize=16) plt.ylabel(r"log g [dex] from LAMOST DR2", fontsize=16) plt.tick_params(axis='x', labelsize=16) plt.tick_params(axis='y', labelsize=16) plt.savefig("ts_distance_in_full_lamost_label_space.png") plt.close()
mit
belteshassar/cartopy
lib/cartopy/io/img_tiles.py
2
15185
# (C) British Crown Copyright 2011 - 2016, Met Office # # This file is part of cartopy. # # cartopy is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # cartopy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with cartopy. If not, see <https://www.gnu.org/licenses/>. """ Implements image tile identification and fetching from various sources. The matplotlib interface can make use of tile objects (defined below) via the :meth:`cartopy.mpl.geoaxes.GeoAxes.add_image` method. For example, to add a :class:`MapQuest Open Aerial tileset <MapQuestOpenAerial>` to an existing axes at zoom level 2, do ``ax.add_image(MapQuestOpenAerial(), 2)``. An example of using tiles in this way can be found at :ref:`examples-eyja_volcano`. """ from __future__ import (absolute_import, division, print_function) from PIL import Image import shapely.geometry as sgeom import numpy as np import six import cartopy.crs as ccrs class GoogleTiles(object): """ Implements web tile retrieval using the Google WTS coordinate system. A "tile" in this class refers to the coordinates (x, y, z). """ def __init__(self, desired_tile_form='RGB', style="street"): """ :param desired_tile_form: :param style: The style for the Google Maps tiles. One of 'street', 'satellite', 'terrain', and 'only_streets'. Defaults to 'street'. """ # Only streets are partly transparent tiles that can be overlayed over # the satellite map to create the known hybrid style from google. styles = ["street", "satellite", "terrain", "only_streets"] style = style.lower() if style not in styles: msg = "Invalid style '%s'. Valid styles: %s" % \ (style, ", ".join(styles)) raise ValueError(msg) self.style = style # The 'satellite' and 'terrain' styles require pillow with a jpeg # decoder. if self.style in ["satellite", "terrain"] and \ not hasattr(Image.core, "jpeg_decoder") or \ not Image.core.jpeg_decoder: msg = "The '%s' style requires pillow with jpeg decoding support." raise ValueError(msg % self.style) self.imgs = [] self.crs = ccrs.Mercator.GOOGLE self.desired_tile_form = desired_tile_form def image_for_domain(self, target_domain, target_z): tiles = [] for tile in self.find_images(target_domain, target_z): try: img, extent, origin = self.get_image(tile) except IOError: continue img = np.array(img) x = np.linspace(extent[0], extent[1], img.shape[1]) y = np.linspace(extent[2], extent[3], img.shape[0]) tiles.append([img, x, y, origin]) img, extent, origin = _merge_tiles(tiles) return img, extent, origin def _find_images(self, target_domain, target_z, start_tile=(0, 0, 0)): """Target domain is a shapely polygon in native coordinates.""" assert isinstance(target_z, int) and target_z >= 0, ('target_z must ' 'be an integer ' '>=0.') # Recursively drill down to the images at the target zoom. x0, x1, y0, y1 = self._tileextent(start_tile) domain = sgeom.box(x0, y0, x1, y1) if domain.intersects(target_domain): if start_tile[2] == target_z: yield start_tile else: for tile in self._subtiles(start_tile): for result in self._find_images(target_domain, target_z, start_tile=tile): yield result find_images = _find_images def subtiles(self, x_y_z): x, y, z = x_y_z # Google tile specific (i.e. up->down). for xi in range(0, 2): for yi in range(0, 2): yield x * 2 + xi, y * 2 + yi, z + 1 _subtiles = subtiles def tile_bbox(self, x, y, z, y0_at_north_pole=True): """ Returns the ``(x0, x1), (y0, y1)`` bounding box for the given x, y, z tile position. Parameters ---------- x, y, z : int The x, y, z tile coordinates in the Google tile numbering system (with y=0 being at the north pole), unless `y0_at_north_pole` is set to ``False``, in which case `y` is in the TMS numbering system (with y=0 being at the south pole). y0_at_north_pole : bool Whether the numbering of the y coordinate starts at the north pole (as is the convention for Google tiles), or the south pole (as is the convention for TMS). """ n = 2 ** z assert 0 <= x <= (n - 1), ("Tile's x index is out of range. Upper " "limit %s. Got %s" % (n, x)) assert 0 <= y <= (n - 1), ("Tile's y index is out of range. Upper " "limit %s. Got %s" % (n, y)) x0, x1 = self.crs.x_limits y0, y1 = self.crs.y_limits # Compute the box height and width in native coordinates # for this zoom level. box_h = (y1 - y0) / n box_w = (x1 - x0) / n # Compute the native x & y extents of the tile. n_xs = x0 + (x + np.arange(0, 2, dtype=np.float64)) * box_w n_ys = y0 + (y + np.arange(0, 2, dtype=np.float64)) * box_h if y0_at_north_pole: n_ys = -1 * n_ys[::-1] return n_xs, n_ys def tileextent(self, x_y_z): """Returns extent tuple ``(x0,x1,y0,y1)`` in Mercator coordinates.""" x, y, z = x_y_z x_lim, y_lim = self.tile_bbox(x, y, z, y0_at_north_pole=True) return tuple(x_lim) + tuple(y_lim) _tileextent = tileextent def _image_url(self, tile): style_dict = { "street": "m", "satellite": "s", "terrain": "t", "only_streets": "h"} url = ('https://mts0.google.com/vt/lyrs={style}@177000000&hl=en&' 'src=api&x={tile_x}&y={tile_y}&z={tile_z}&s=G'.format( style=style_dict[self.style], tile_x=tile[0], tile_y=tile[1], tile_z=tile[2])) return url def get_image(self, tile): if six.PY3: from urllib.request import urlopen else: from urllib2 import urlopen url = self._image_url(tile) fh = urlopen(url) im_data = six.BytesIO(fh.read()) fh.close() img = Image.open(im_data) img = img.convert(self.desired_tile_form) return img, self.tileextent(tile), 'lower' class MapQuestOSM(GoogleTiles): # http://developer.mapquest.com/web/products/open/map for terms of use def _image_url(self, tile): x, y, z = tile url = 'http://otile1.mqcdn.com/tiles/1.0.0/osm/%s/%s/%s.jpg' % ( z, x, y) return url class MapQuestOpenAerial(GoogleTiles): # http://developer.mapquest.com/web/products/open/map for terms of use # The following attribution should be included in the resulting image: # "Portions Courtesy NASA/JPL-Caltech and U.S. Depart. of Agriculture, # Farm Service Agency" def _image_url(self, tile): x, y, z = tile url = 'http://oatile1.mqcdn.com/tiles/1.0.0/sat/%s/%s/%s.jpg' % ( z, x, y) return url class OSM(GoogleTiles): # http://developer.mapquest.com/web/products/open/map for terms of use def _image_url(self, tile): x, y, z = tile url = 'https://a.tile.openstreetmap.org/%s/%s/%s.png' % (z, x, y) return url class StamenTerrain(GoogleTiles): """ Terrain tiles defined for the continental United States, and include land color and shaded hills. The land colors are a custom palette developed by Gem Spear for the National Atlas 1km land cover data set, which defines twenty-four land classifications including five kinds of forest, combinations of shrubs, grasses and crops, and a few tundras and wetlands. The colors are at their highest contrast when fully zoomed-out to the whole U.S., and they slowly fade out to pale off-white as you zoom in to leave room for foreground data and break up the weirdness of large areas of flat, dark green. Additional info: http://mike.teczno.com/notes/osm-us-terrain-layer/background.html http://maps.stamen.com/#terrain/12/37.6902/-122.3600 https://wiki.openstreetmap.org/wiki/List_of_OSM_based_Services https://github.com/migurski/DEM-Tools """ def _image_url(self, tile): x, y, z = tile url = 'http://tile.stamen.com/terrain-background/%s/%s/%s.png' % ( z, x, y) return url class MapboxTiles(GoogleTiles): """ Implements web tile retrieval from Mapbox. For terms of service, see https://www.mapbox.com/tos/. """ def __init__(self, access_token, map_id): """ Set up a new Mapbox tiles instance. Access to Mapbox web services requires an access token and a map ID. See https://www.mapbox.com/developers/api/ for details. Parameters ---------- access_token: str A valid Mapbox API access token. map_id: str A map ID for a publically accessible map. This is the map whose tiles will be retrieved through this process. """ self.access_token = access_token self.map_id = map_id super(MapboxTiles, self).__init__() def _image_url(self, tile): x, y, z = tile url = ('https://api.tiles.mapbox.com/v4/{mapid}/{z}/{x}/{y}.png?' 'access_token={token}'.format(z=z, y=y, x=x, mapid=self.map_id, token=self.access_token)) return url class QuadtreeTiles(GoogleTiles): """ Implements web tile retrieval using the Microsoft WTS quadkey coordinate system. A "tile" in this class refers to a quadkey such as "1", "14" or "141" where the length of the quatree is the zoom level in Google Tile terms. """ def _image_url(self, tile): url = ('http://ecn.dynamic.t1.tiles.virtualearth.net/comp/' 'CompositionHandler/{tile}?mkt=en-' 'gb&it=A,G,L&shading=hill&n=z'.format(tile=tile)) return url def tms_to_quadkey(self, tms, google=False): quadKey = "" x, y, z = tms # this algorithm works with google tiles, rather than tms, so convert # to those first. if not google: y = (2 ** z - 1) - y for i in range(z, 0, -1): digit = 0 mask = 1 << (i - 1) if (x & mask) != 0: digit += 1 if (y & mask) != 0: digit += 2 quadKey += str(digit) return quadKey def quadkey_to_tms(self, quadkey, google=False): # algorithm ported from # https://msdn.microsoft.com/en-us/library/bb259689.aspx assert isinstance(quadkey, six.string_types), \ 'quadkey must be a string' x = y = 0 z = len(quadkey) for i in range(z, 0, -1): mask = 1 << (i - 1) if quadkey[z - i] == '0': pass elif quadkey[z - i] == '1': x |= mask elif quadkey[z - i] == '2': y |= mask elif quadkey[z - i] == '3': x |= mask y |= mask else: raise ValueError('Invalid QuadKey digit ' 'sequence.' + str(quadkey)) # the algorithm works to google tiles, so convert to tms if not google: y = (2 ** z - 1) - y return (x, y, z) def subtiles(self, quadkey): for i in range(4): yield quadkey + str(i) def tileextent(self, quadkey): x_y_z = self.quadkey_to_tms(quadkey, google=True) return GoogleTiles.tileextent(self, x_y_z) def find_images(self, target_domain, target_z, start_tile=None): """ Find all the quadtree's at the given target zoom, in the given target domain. target_z must be a value >= 1. """ if target_z == 0: raise ValueError('The empty quadtree cannot be returned.') if start_tile is None: start_tiles = ['0', '1', '2', '3'] else: start_tiles = [start_tile] for start_tile in start_tiles: start_tile = self.quadkey_to_tms(start_tile, google=True) for tile in GoogleTiles.find_images(self, target_domain, target_z, start_tile=start_tile): yield self.tms_to_quadkey(tile, google=True) def _merge_tiles(tiles): """Return a single image, merging the given images.""" if not tiles: raise ValueError('A non-empty list of tiles should ' 'be provided to merge.') xset = [set(x) for i, x, y, _ in tiles] yset = [set(y) for i, x, y, _ in tiles] xs = xset[0] xs.update(*xset[1:]) ys = yset[0] ys.update(*yset[1:]) xs = sorted(xs) ys = sorted(ys) other_len = tiles[0][0].shape[2:] img = np.zeros((len(ys), len(xs)) + other_len, dtype=np.uint8) - 1 for tile_img, x, y, origin in tiles: y_first, y_last = y[0], y[-1] yi0, yi1 = np.where((y_first == ys) | (y_last == ys))[0] if origin == 'upper': yi0 = tile_img.shape[0] - yi0 - 1 yi1 = tile_img.shape[0] - yi1 - 1 start, stop, step = yi0, yi1, 1 if yi0 < yi1 else -1 if step == 1 and stop == img.shape[0] - 1: stop = None elif step == -1 and stop == 0: stop = None else: stop += step y_slice = slice(start, stop, step) xi0, xi1 = np.where((x[0] == xs) | (x[-1] == xs))[0] start, stop, step = xi0, xi1, 1 if xi0 < xi1 else -1 if step == 1 and stop == img.shape[1] - 1: stop = None elif step == -1 and stop == 0: stop = None else: stop += step x_slice = slice(start, stop, step) img_slice = (y_slice, x_slice, Ellipsis) if origin == 'lower': tile_img = tile_img[::-1, ::] img[img_slice] = tile_img return img, [min(xs), max(xs), min(ys), max(ys)], 'lower'
gpl-3.0
FabienPean/sofa
applications/plugins/SofaPython/python/AdvancedTimerOutputAnalysis/TimerLJSONPlot.py
9
6307
import sys # ploting import matplotlib.pyplot as plt # JSON deconding from collections import OrderedDict import json # argument parser: usage via the command line import argparse class TimerLJSONPlot() : def __init__(self): lol = 0 def parseInput(self): parser = argparse.ArgumentParser( description='Programm to plot light JSON file from a SOFA simulation.', formatter_class=argparse.ArgumentDefaultsHelpFormatter,# ArgumentDefaultsHelpFormatter epilog='''This program was made to create plot from a light JSON file from a SOFA simulation time capture. You can choose the componants and componants data to plot. It uses matplotlib (https://matplotlib.org/).''') parser.add_argument('jsonFileName', metavar='j', type=str, help='Filename of the JSON file to plot.') parser.add_argument('-d', type=int, default='0', help='Deepness of the analyse. 0 means an analyse of the comonant and the componants on the same level. 1 means an analyse of the componant and its children.') parser.add_argument('-v', type=str, default='Percent', help='Value to search on the capture values of each componant. valide values are : [Dev, Level, Max, Mean, Min, Num, Percent, Start, Total].') parser.add_argument('-c', nargs='+', default='Mechanical', help='Componant(s) to search on the JSON file.') args = parser.parse_args() return parser,args; ### # Method : parseJsonComponantsId # Brief : parse a json file to create a block for the given composant name # Param : jsonData, json - data extracted from the json file # Param : componantID, string - id of the component to seek in the json file # Param : deep, int - 0 to get all componants on the same level than target, 1 to get all children of target ### def parseJsonComponantsId(self, jsonData, componantID, deep, value) : parsedInformations = [] # First iteration is used to create the list that will handle informations # The list is defiend as following : # steps | componantID | subComponant | subComponant2 | ... # 0 "Steps" | "CompName" | "subCompName"| "subCompName" | ... # 1 1 | 0.285 | 0.185 | 0.1 | ... # ... keyNumber = 0 father = "" # Each k in this loop is the simulation step for k,v in jsonData.items() : # First analys to take search informations if keyNumber == 0 : row = ["Steps", k] parsedInformations.append(row) # Take informations from the target componant for kbis, vbis in v.items() : if kbis == componantID : if deep == 0 : father = vbis["Father"] else : father = componantID row = [] row.append(componantID) row.append(vbis["Values"][value]) parsedInformations.append(row) # Take informations from componants on the same level than the target for kbis, vbis in v.items() : if kbis != componantID and vbis["Father"] == father : row = [] row.append(kbis) row.append(vbis["Values"][value]) parsedInformations.append(row) keyNumber = 1 # Informations extraction else : parsedInformations[0].append(int(k)) for kbis, vbis in v.items() : i = 0 if kbis == componantID or vbis["Father"] == father : # Find the componant index in parsedInformations for j, info in enumerate(parsedInformations) : if info[0] == kbis : i = j # stock informations row = parsedInformations[i] row.append(vbis["Values"][value]) return parsedInformations ### # Method : parseJsonFile # Brief : parse a json file to create a gnuplot file of the timer analysis # Param : jsonFile, string - name of the file to parse # Param : *componantsID, list of strings - ids of components to seek in the file ### def parseJsonFile(self, jsonFileName, deep, value, *componantsID): with open(jsonFileName, "r") as jsonFile : jsonData = json.load(jsonFile, object_pairs_hook=OrderedDict) fig, ax = plt.subplots() lineColors = ["green", "red", "blue", "yellow", "orange", "black", "purple", "brown"] markStyles = ['.', '+', 'p', '*', 'o', 'v', '^', '<', '>', '8', 's', 'h', 'x', 'D', '2'] lineColorIndice = 0 markStyleIndice = 0 for componantID in componantsID : result = self.parseJsonComponantsId(jsonData, componantID, deep, value) # Create plot for i in result : if i[0] != "Steps" and i[0] != componantID: ax.plot(result[0][1:], i[1:], label=i[0], color=lineColors[lineColorIndice], marker=markStyles[markStyleIndice]) markStyleIndice = (markStyleIndice + 1) % len(markStyles) elif i[0] != "Steps" : ax.plot(result[0][1:], i[1:], label=i[0], color=lineColors[lineColorIndice]) legend = ax.legend(loc='best', shadow=True, fontsize='x-large') # Set next line color lineColorIndice = (lineColorIndice + 1) % len(lineColors) legend.get_frame().set_facecolor('#00FFCC') plt.show() jsonFile.close() return 0 def main(): # Create the object obj = TimerLJSONPlot() # Parse the console input parser, args = obj.parseInput() jsonFileName = args.jsonFileName deep = args.d value = args.v componantsID = args.c obj.parseJsonFile(jsonFileName, deep, value, *componantsID) return if __name__ == "__main__": main()
lgpl-2.1
trankmichael/scikit-learn
sklearn/datasets/twenty_newsgroups.py
72
13586
"""Caching loader for the 20 newsgroups text classification dataset The description of the dataset is available on the official website at: http://people.csail.mit.edu/jrennie/20Newsgroups/ Quoting the introduction: The 20 Newsgroups data set is a collection of approximately 20,000 newsgroup documents, partitioned (nearly) evenly across 20 different newsgroups. To the best of my knowledge, it was originally collected by Ken Lang, probably for his Newsweeder: Learning to filter netnews paper, though he does not explicitly mention this collection. The 20 newsgroups collection has become a popular data set for experiments in text applications of machine learning techniques, such as text classification and text clustering. This dataset loader will download the recommended "by date" variant of the dataset and which features a point in time split between the train and test sets. The compressed dataset size is around 14 Mb compressed. Once uncompressed the train set is 52 MB and the test set is 34 MB. The data is downloaded, extracted and cached in the '~/scikit_learn_data' folder. The `fetch_20newsgroups` function will not vectorize the data into numpy arrays but the dataset lists the filenames of the posts and their categories as target labels. The `fetch_20newsgroups_tfidf` function will in addition do a simple tf-idf vectorization step. """ # Copyright (c) 2011 Olivier Grisel <[email protected]> # License: BSD 3 clause import os import logging import tarfile import pickle import shutil import re import codecs import numpy as np import scipy.sparse as sp from .base import get_data_home from .base import Bunch from .base import load_files from ..utils import check_random_state from ..feature_extraction.text import CountVectorizer from ..preprocessing import normalize from ..externals import joblib, six if six.PY3: from urllib.request import urlopen else: from urllib2 import urlopen logger = logging.getLogger(__name__) URL = ("http://people.csail.mit.edu/jrennie/" "20Newsgroups/20news-bydate.tar.gz") ARCHIVE_NAME = "20news-bydate.tar.gz" CACHE_NAME = "20news-bydate.pkz" TRAIN_FOLDER = "20news-bydate-train" TEST_FOLDER = "20news-bydate-test" def download_20newsgroups(target_dir, cache_path): """Download the 20 newsgroups data and stored it as a zipped pickle.""" archive_path = os.path.join(target_dir, ARCHIVE_NAME) train_path = os.path.join(target_dir, TRAIN_FOLDER) test_path = os.path.join(target_dir, TEST_FOLDER) if not os.path.exists(target_dir): os.makedirs(target_dir) if os.path.exists(archive_path): # Download is not complete as the .tar.gz file is removed after # download. logger.warning("Download was incomplete, downloading again.") os.remove(archive_path) logger.warning("Downloading dataset from %s (14 MB)", URL) opener = urlopen(URL) with open(archive_path, 'wb') as f: f.write(opener.read()) logger.info("Decompressing %s", archive_path) tarfile.open(archive_path, "r:gz").extractall(path=target_dir) os.remove(archive_path) # Store a zipped pickle cache = dict(train=load_files(train_path, encoding='latin1'), test=load_files(test_path, encoding='latin1')) compressed_content = codecs.encode(pickle.dumps(cache), 'zlib_codec') with open(cache_path, 'wb') as f: f.write(compressed_content) shutil.rmtree(target_dir) return cache def strip_newsgroup_header(text): """ Given text in "news" format, strip the headers, by removing everything before the first blank line. """ _before, _blankline, after = text.partition('\n\n') return after _QUOTE_RE = re.compile(r'(writes in|writes:|wrote:|says:|said:' r'|^In article|^Quoted from|^\||^>)') def strip_newsgroup_quoting(text): """ Given text in "news" format, strip lines beginning with the quote characters > or |, plus lines that often introduce a quoted section (for example, because they contain the string 'writes:'.) """ good_lines = [line for line in text.split('\n') if not _QUOTE_RE.search(line)] return '\n'.join(good_lines) def strip_newsgroup_footer(text): """ Given text in "news" format, attempt to remove a signature block. As a rough heuristic, we assume that signatures are set apart by either a blank line or a line made of hyphens, and that it is the last such line in the file (disregarding blank lines at the end). """ lines = text.strip().split('\n') for line_num in range(len(lines) - 1, -1, -1): line = lines[line_num] if line.strip().strip('-') == '': break if line_num > 0: return '\n'.join(lines[:line_num]) else: return text def fetch_20newsgroups(data_home=None, subset='train', categories=None, shuffle=True, random_state=42, remove=(), download_if_missing=True): """Load the filenames and data from the 20 newsgroups dataset. Read more in the :ref:`User Guide <20newsgroups>`. Parameters ---------- subset: 'train' or 'test', 'all', optional Select the dataset to load: 'train' for the training set, 'test' for the test set, 'all' for both, with shuffled ordering. data_home: optional, default: None Specify a download and cache folder for the datasets. If None, all scikit-learn data is stored in '~/scikit_learn_data' subfolders. categories: None or collection of string or unicode If None (default), load all the categories. If not None, list of category names to load (other categories ignored). shuffle: bool, optional Whether or not to shuffle the data: might be important for models that make the assumption that the samples are independent and identically distributed (i.i.d.), such as stochastic gradient descent. random_state: numpy random number generator or seed integer Used to shuffle the dataset. download_if_missing: optional, True by default If False, raise an IOError if the data is not locally available instead of trying to download the data from the source site. remove: tuple May contain any subset of ('headers', 'footers', 'quotes'). Each of these are kinds of text that will be detected and removed from the newsgroup posts, preventing classifiers from overfitting on metadata. 'headers' removes newsgroup headers, 'footers' removes blocks at the ends of posts that look like signatures, and 'quotes' removes lines that appear to be quoting another post. 'headers' follows an exact standard; the other filters are not always correct. """ data_home = get_data_home(data_home=data_home) cache_path = os.path.join(data_home, CACHE_NAME) twenty_home = os.path.join(data_home, "20news_home") cache = None if os.path.exists(cache_path): try: with open(cache_path, 'rb') as f: compressed_content = f.read() uncompressed_content = codecs.decode( compressed_content, 'zlib_codec') cache = pickle.loads(uncompressed_content) except Exception as e: print(80 * '_') print('Cache loading failed') print(80 * '_') print(e) if cache is None: if download_if_missing: cache = download_20newsgroups(target_dir=twenty_home, cache_path=cache_path) else: raise IOError('20Newsgroups dataset not found') if subset in ('train', 'test'): data = cache[subset] elif subset == 'all': data_lst = list() target = list() filenames = list() for subset in ('train', 'test'): data = cache[subset] data_lst.extend(data.data) target.extend(data.target) filenames.extend(data.filenames) data.data = data_lst data.target = np.array(target) data.filenames = np.array(filenames) else: raise ValueError( "subset can only be 'train', 'test' or 'all', got '%s'" % subset) data.description = 'the 20 newsgroups by date dataset' if 'headers' in remove: data.data = [strip_newsgroup_header(text) for text in data.data] if 'footers' in remove: data.data = [strip_newsgroup_footer(text) for text in data.data] if 'quotes' in remove: data.data = [strip_newsgroup_quoting(text) for text in data.data] if categories is not None: labels = [(data.target_names.index(cat), cat) for cat in categories] # Sort the categories to have the ordering of the labels labels.sort() labels, categories = zip(*labels) mask = np.in1d(data.target, labels) data.filenames = data.filenames[mask] data.target = data.target[mask] # searchsorted to have continuous labels data.target = np.searchsorted(labels, data.target) data.target_names = list(categories) # Use an object array to shuffle: avoids memory copy data_lst = np.array(data.data, dtype=object) data_lst = data_lst[mask] data.data = data_lst.tolist() if shuffle: random_state = check_random_state(random_state) indices = np.arange(data.target.shape[0]) random_state.shuffle(indices) data.filenames = data.filenames[indices] data.target = data.target[indices] # Use an object array to shuffle: avoids memory copy data_lst = np.array(data.data, dtype=object) data_lst = data_lst[indices] data.data = data_lst.tolist() return data def fetch_20newsgroups_vectorized(subset="train", remove=(), data_home=None): """Load the 20 newsgroups dataset and transform it into tf-idf vectors. This is a convenience function; the tf-idf transformation is done using the default settings for `sklearn.feature_extraction.text.Vectorizer`. For more advanced usage (stopword filtering, n-gram extraction, etc.), combine fetch_20newsgroups with a custom `Vectorizer` or `CountVectorizer`. Read more in the :ref:`User Guide <20newsgroups>`. Parameters ---------- subset: 'train' or 'test', 'all', optional Select the dataset to load: 'train' for the training set, 'test' for the test set, 'all' for both, with shuffled ordering. data_home: optional, default: None Specify an download and cache folder for the datasets. If None, all scikit-learn data is stored in '~/scikit_learn_data' subfolders. remove: tuple May contain any subset of ('headers', 'footers', 'quotes'). Each of these are kinds of text that will be detected and removed from the newsgroup posts, preventing classifiers from overfitting on metadata. 'headers' removes newsgroup headers, 'footers' removes blocks at the ends of posts that look like signatures, and 'quotes' removes lines that appear to be quoting another post. Returns ------- bunch : Bunch object bunch.data: sparse matrix, shape [n_samples, n_features] bunch.target: array, shape [n_samples] bunch.target_names: list, length [n_classes] """ data_home = get_data_home(data_home=data_home) filebase = '20newsgroup_vectorized' if remove: filebase += 'remove-' + ('-'.join(remove)) target_file = os.path.join(data_home, filebase + ".pk") # we shuffle but use a fixed seed for the memoization data_train = fetch_20newsgroups(data_home=data_home, subset='train', categories=None, shuffle=True, random_state=12, remove=remove) data_test = fetch_20newsgroups(data_home=data_home, subset='test', categories=None, shuffle=True, random_state=12, remove=remove) if os.path.exists(target_file): X_train, X_test = joblib.load(target_file) else: vectorizer = CountVectorizer(dtype=np.int16) X_train = vectorizer.fit_transform(data_train.data).tocsr() X_test = vectorizer.transform(data_test.data).tocsr() joblib.dump((X_train, X_test), target_file, compress=9) # the data is stored as int16 for compactness # but normalize needs floats X_train = X_train.astype(np.float64) X_test = X_test.astype(np.float64) normalize(X_train, copy=False) normalize(X_test, copy=False) target_names = data_train.target_names if subset == "train": data = X_train target = data_train.target elif subset == "test": data = X_test target = data_test.target elif subset == "all": data = sp.vstack((X_train, X_test)).tocsr() target = np.concatenate((data_train.target, data_test.target)) else: raise ValueError("%r is not a valid subset: should be one of " "['train', 'test', 'all']" % subset) return Bunch(data=data, target=target, target_names=target_names)
bsd-3-clause
sergpolly/GlycoMadness
DEPRECATED/previous_pipeline/resolve_peptide_ambiguity copy.py
1
5690
import sys from Bio import Seq from Bio import SeqIO from Bio import SeqRecord import pandas as pd import numpy as np import ms_module as ms import re # # # # pep_fname = "../peptides.xls" # fasta_fname = "dec23_1701.fasta" if len(sys.argv)<4: print "Command line arguments required! Launch example:" print "%s ../input_peptides.xls required_prot_dec23_1701.fasta uniq_peptides_catalog.sv"%sys.argv[0] sys.exit(1) pep_fname = sys.argv[1] fasta_fname = sys.argv[2] out_fname = sys.argv[3] # pep_info = pd.read_csv(pep_fname,sep='\t') # fasta = SeqIO.to_dict(SeqIO.parse(fasta_fname,"fasta"),key_function=lambda _: _.id.split('|')[1]) # # at first let's get a list of unique peptide sequences ... uniq_pept = pep_info['Peptide sequence'].unique() # now let's find all Uniprot ids associated with each peptide ... def extract_uids(peptide_seq,pep_dat_info,columns = ["Protein accession numbers","Other Proteins"]): """ looking for all uid in specified columns excluding Unknowns.""" pep_dat = pep_dat_info[pep_dat_info["Peptide sequence"]==peptide_seq] uid_ambig_list = [] for col in columns: for uids in pep_dat[col].unique(): # avoid missing data ... if pd.notnull(uids): # break them up (they are comma-separated) ... for uid in uids.strip(',').split(','): # avoid Unknowns ... if len(uid.split('|'))>1: uid_ambig_list.append(uid) ############################################# uid_uniq_list = [ uid_uniq_item.replace(';',' ') for uid_uniq_item in set(uid_ambig_list) ] to_return = ';'.join(uid_uniq_list) if uid_uniq_list else None return (pep_dat,to_return) def get_single_fasta(uids,fa_dict): """Uid for the longest protein gets selected as a representative""" ####################### uid_list = [uid.split('|')[1] for uid in uids.strip(',').split(',')] fasta_list = [fa_dict[uid] for uid in uid_list] fasta_len_list = [ len(sr.seq) for sr in fasta_list ] max_len_index = np.argmax(fasta_len_list) ####################### return (uid_list[max_len_index],fasta_len_list[max_len_index],fasta_list[max_len_index]) # extract_uids - is working interesting_peptide = [] uids_list = [] uid_of_maxlen_list = [] prot_len = [] prot_fasta = [] pept_positions = [] prot_name = [] uniq_pept_count = [] pept_probab = [] # aa_before = [] aa_after = [] for pept in uniq_pept: pep_dat_pept,uids = extract_uids(pept,pep_info) if uids: interesting_peptide.append(pept) uids_list.append(uids) ################################# _1,prot_len_fasta,prot_seq_fasta = get_single_fasta(uids,fasta) uid_of_maxlen_list.append(_1) prot_len.append(prot_len_fasta) prot_fasta.append(str(prot_seq_fasta.seq)) peptide_start_in_protein = ms.stupid_aligner(pept,prot_seq_fasta) # 1-based ... peptide_stop_in_protein = peptide_start_in_protein + len(pept) # 1-based ... pept_positions.append(peptide_start_in_protein) prot_name.append(prot_seq_fasta.description.replace(',',' ')) # long protein name here ... # uniq peptide count taken from pep_dat_pept, for definition look up extract_uids... uniq_pept_count_val = pep_dat_pept['Exclusive unique peptide count'].unique()[0] # uniq_pept_count_val, = pep_dat_pept['Exclusive unique peptide count'][pep_dat_pept['Exclusive unique peptide count']>0].unique() uniq_pept_count.append(uniq_pept_count_val) # some kind of peptide probability (like a quality score from experimental data)?! pept_probab_val, = pep_dat_pept['Best Peptide identification probability'].unique() pept_probab.append(pept_probab_val) ################################# # BEWARE: 1-BASED INDEXING ALL THE WAY ACROSS SO FAR... # peptide can start right at N-terminus, so there will be no AminoAcid preceding it, call it a START aa_before.append(str(prot_seq_fasta.seq)[peptide_start_in_protein-2] if peptide_start_in_protein>1 else 'START') # peptide can end right at C-terminus, so there will be no AminoAcid after it, call it an END aa_after.append(str(prot_seq_fasta.seq)[peptide_stop_in_protein+0] if peptide_stop_in_protein<prot_len_fasta else 'END') ######################################### dict_df = { "pept":interesting_peptide, "all_uids":uids_list, "uid_max":uid_of_maxlen_list, "protlen":prot_len, "peptide_start":pept_positions, "prot_seqrec":prot_fasta, "aa_before":aa_before, "aa_after":aa_after, "prot_name":prot_name, "uniq_pept_count":uniq_pept_count, "pept_probab":pept_probab } ############################################################################################################################## pep_df = pd.DataFrame(dict_df) # within-cell separators are ';' now ... # # let's change within a cell separators to ';' instead of ',', which is used for column separation ... # for col,dtype in pep_df.dtypes.iteritems(): # if dtype=='object': # pep_df[col].str.replace(';',' ').str.replace(',',';') ############################################################################################################################## pep_df.to_csv(out_fname,index=False) # print "Beware! Some columns have string values with the comma-characters ',' in them, turned out pandas " # print "deals with the problem graciously, placing such value in quotes, that makes reading such csv files " # print "an easy task. At least both pandas read_csv and Apple Numbers(like Excel) interpret the situation correctly!"
mit
lscsoft/gwdetchar
setup.py
1
3658
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (C) Duncan Macleod (2013) # # This file is part of the GW DetChar python (gwdetchar) package. # # gwdetchar is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # gwdetchar is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with gwdetchar. If not, see <http://www.gnu.org/licenses/>. """Setup the gwdetchar package """ from __future__ import print_function import glob import os.path import sys from setuptools import (setup, find_packages) # local setup utilities from _setup_utils import CMDCLASS as cmdclass # set basic metadata PACKAGENAME = 'gwdetchar' DISTNAME = 'gwdetchar' AUTHOR = 'Duncan Macleod' AUTHOR_EMAIL = '[email protected]' LICENSE = 'GPLv3' # -- versioning --------------------------------------------------------------- import versioneer __version__ = versioneer.get_version() # -- dependencies ------------------------------------------------------------- # build setup_requires = [ 'jsmin', 'libsass', 'setuptools', ] # run install_requires = [ 'astropy>=1.2', 'gwdatafind', 'gwpy>=0.13.0', 'gwtrigfind', 'MarkupPy>=1.14', 'matplotlib>=2.0.0', 'numpy>=1.10', 'pandas', 'pycondor', 'pytz', 'coloredlogs', 'scikit-learn', 'scipy>=1.2.0', 'setuptools', 'six', 'pathlib2 ; python_version < \'3.6\'', 'pygments', ] # test if 'test' in sys.argv: setup_requires.append('pytest-runner') tests_require = [ 'pytest', ] # -- run setup ---------------------------------------------------------------- packagenames = find_packages() scripts = glob.glob(os.path.join('bin', '*')) # read description with open('README.rst', 'rb') as f: longdesc = f.read().decode().strip() setup(name=DISTNAME, provides=[PACKAGENAME], version=__version__, description="A python package for gravitational-wave detector characterisation", long_description=longdesc, author=AUTHOR, author_email=AUTHOR_EMAIL, license=LICENSE, url='https://github.com/gwdetchar/gwdetchar', packages=packagenames, include_package_data=True, cmdclass=cmdclass, scripts=scripts, setup_requires=setup_requires, install_requires=install_requires, use_2to3=False, classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Science/Research', 'Intended Audience :: End Users/Desktop', 'Intended Audience :: Developers', 'License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)', 'Natural Language :: English', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Astronomy', 'Topic :: Scientific/Engineering :: Physics', ], )
gpl-3.0
jay-johnson/datanode
bins/ml/demo-ml-classifier-iris.py
1
18742
#!/usr/bin/env python # Load common imports and system envs to build the core object import sys, os # For running inside the docker container use: #import matplotlib #matplotlib.use('Agg') # Load the Environment: os.environ["ENV_DEPLOYMENT_TYPE"] = "JustRedis" from src.common.inits_for_python import * ##################################################################### # # Start Arg Processing: # action = "ML Classifier" parser = argparse.ArgumentParser(description="Parser for Action: " + str(action)) parser.add_argument('-f', '--csvfile', help='CSV File', dest='csvfile') parser.add_argument('-n', '--dsname', help='Dataset Name', dest='ds_name') parser.add_argument('-b', '--s3bucket', help='S3 Bucket (Optional)', dest='s_bucket') parser.add_argument('-k', '--s3key', help='S3 Key (Optional)', dest='s_key') parser.add_argument('-u', '--usedate', help='Use Date', dest='usedate') parser.add_argument("-d", "--debug", help="Debug Flag", dest='debug', action='store_true') args = parser.parse_args() if args.debug: debug = True core.enable_debug() ds_name = "iris_classifier" if args.ds_name: ds_name = str(args.ds_name).strip().lstrip() now = datetime.datetime.now() cur_date = now cur_date_str = now.strftime("%Y-%m-%d") if args.usedate: cur_date_str = str(args.usedate) send_email = "1" # by default send email s3_bucket = "demodatasets" s3_key = "dataset_" + str(str(ds_name).upper().strip().lstrip()) + "_" + str(cur_date_str) + ".csv" analysis_version = 2 if args.s_bucket: s3_bucket = str(args.s_bucket) if args.s_key: s3_key = str(args.s_key) dataset_filename = "iris.csv" ml_csv = str(os.getenv("ENV_DATA_SRC_DIR", "/opt/work/data/src")) + "/" + dataset_filename if args.csvfile: ml_csv = str(args.csvfile) # # End Arg Processing # ##################################################################### import pandas as pd import numpy as np import matplotlib.pyplot as plt if os.path.exists(ml_csv) == False: if os.path.exists("/opt/work/data/examples/iris.csv"): org_path = "/opt/work/data/examples/iris.csv" os.system("cp " + str(org_path) + " " + ml_csv) elif os.path.exists(os.getenv("ENV_DATANODE_REPO", "/opt/work") + "/data/examples/iris.csv"): org_path = os.getenv("ENV_DATANODE_REPO", "/opt/work") + "/data/examples/iris.csv" os.system("cp " + str(org_path) + " " + ml_csv) else: lg("Recreating iris dataset: /opt/work/bins/ml/downloaders/download_iris.py", 6) os.system("/opt/work/bins/ml/downloaders/download_iris.py") if os.path.exists(ml_csv) == False: lg("Failed to recreate iris dataset with: /opt/work/bins/ml/downloaders/download_iris.py", 0) lg("Stopping", 6) sys.exit(1) # end of checking if the csv file is available lg("Processing ML Predictions for CSV(" + str(ml_csv) + ")", 6) max_features_to_display = 10 num_estimators = 200 show_importance_plot = True show_confusion_plot = True random_state = 0 # For forecasting: units_ahead_set = [] units_ahead = 0 now = datetime.datetime.now() title_prefix = ds_name confusion_plot_title = ds_name + " - Random Forest Confusion Matrix\nThe darker the square on the diagonal the better the predictions\n\n" featimp_plot_title = ds_name + " - Feature Importance with Estimators(" + str(num_estimators) + ")" row_names = [ "Actual" ] # CM - Y Axis col_names = [ "Predictions" ] # CM - X Axis num_jobs = 8 ranked_features = [] org_ranked_features = [] ml_type = "Predict with Filter" ml_algo_name = "xgb-regressor" ml_algo_name = "xgb-classifier" price_min = 0.10 train_test_ratio = 0.1 # What column has the labeled targets as integers? (added-manually to the dataset) target_column_name = "ResultTargetValue" # possible values in the Target Column target_column_values = [ "Iris-setosa", "Iris-versicolor", "Iris-virginica" ] # What columns can the algorithms use for training and learning? feature_column_names = [ "SepalLength", "SepalWidth", "PetalLength", "PetalWidth", "ResultTargetValue" ] label_column_name = "ResultLabel" ignore_features = [ # Prune non-int/float columns as needed: label_column_name ] algo_nodes = [] forcast_df = None ml_request = { "MLType" : ml_type, "MLAlgo" : { "Name" : ml_algo_name, "Version" : 1, "Meta" : { "UnitsAhead" : units_ahead, "DatasetName" : ds_name, "FilterMask" : None, "Source" : { "CSVFile" : ml_csv, "S3File" : "", # <Bucket Name>:<Key> "RedisKey" : "" # <App Name>:<Key> }, }, "Steps" : { "Train" :{ "LearningRate" : 0.1, "NumEstimators" : 1000, "Objective" : "reg:linear", "MaxDepth" : 6, "MaxDeltaStep" : 0, "MinChildWeight" : 1, "Gamma" : 0, "SubSample" : 0.8, "ColSampleByTree" : 0.8, "ColSampleByLevel" : 1.0, "RegAlpha" : 0, "RegLambda" : 1, "BaseScore" : 0.5, "NumThreads" : -1, # infinite = -1 "ScaledPositionWeight" : 1, "Seed" : 27, "Debug" : True } } }, "FeatureColumnNames": feature_column_names, "TargetColumnName" : target_column_name, "TargetColumnValues": target_column_values, "IgnoreFeatures" : ignore_features, "UnitsAheadSet" : units_ahead_set, "UnitsAheadType" : "", "PredictionType" : "Predict", "MaxFeatures" : 10, "Version" : 1, "TrackingType" : "UseTargetColAndUnits", "TrackingName" : core.to_upper(ds_name), "TrackingID" : "ML_" + ds_name + "_" + str(core.build_unique_key()), "Debug" : False } # Load dataset to build csv_res = core.ml_load_csv_dataset(ml_request, core.get_rds(), core.get_dbs(), debug) if csv_res["Status"] != "SUCCESS": lg("ERROR: Failed to Load CSV(" + str(ml_request["MLAlgo"]["Meta"]["Source"]["CSVFile"]) + ")", 0) sys.exit(1) ds_df = csv_res["Record"]["SourceDF"] # Build a Filter for pruning bad records out before creating the train/test sets samples_filter_mask = (ds_df["SepalLength"] > 0.0) \ & (ds_df["PetalWidth"] > 0.0) # For patching on the fly you can use the encoder method to replace labels with target dictionary values: #ready_df = core.ml_encode_target_column(ds_df, "ResultLabel", "Target") show_pair_plot = False if show_pair_plot: lg("Samples(" + str(len(ds_df.index)) + ") in CSV(" + str(ml_request["MLAlgo"]["Meta"]["Source"]["CSVFile"]) + ")", 6) lg("") print ds_df.describe() lg("") num_per_class = ds_df.groupby("ResultLabel").size() print num_per_class lg("") pair_plot_req = { "Title" : "Iris Dataset PairPlot", "SourceDF" : ds_df[samples_filter_mask], "Style" : "default", "DiagKind" : "hist", # "kde" or "hist" "HueColumnName" : ml_request["TargetColumnName"], "XLabel" : "", "YLabel" : "", "CompareColumns": ml_request["FeatureColumnNames"], "Size" : 3.0, "ImgFile" : str(os.getenv("ENV_DATA_SRC_DIR", "/opt/work/data/src")) + "/" + "validate_jupyter_iris_classification_pairplot.png", "ShowPlot" : True } lg("Plotting Validation Pair Plot - Please wait a moment...", 6) core.sb_pairplot(pair_plot_req) if os.path.exists(pair_plot_req["ImgFile"]): lg("Done Plotting Valiation Pair Plot - Saved(" + str(pair_plot_req["ImgFile"]) + ")", 5) else: lg("Failed to save Validation Pair Plot(" + str(pair_plot_req["ImgFile"]) + "). Please check the ENV_DATA_SRC_DIR is writeable by this user and exposed to the docker container correctly.", 0) # end of showing a pairplot for validation # Create a Prediction Column ml_request["MLAlgo"]["Meta"]["SamplesFilterMask"] = samples_filter_mask # Create a Result Column core.enable_debug() ml_images = [] train_results = core.ml_train_models_for_predictions(ml_request, core.get_rds(), core.get_dbs(), debug) if train_results["Status"] != "SUCCESS": lg("ERROR: Failed to Train Models for Predictions with Error(" + str(train_results["Error"]) + ") StoppedEarly(" + str(train_results["Record"]["StoppedEarly"]) + ")", 0) sys.exit(1) algo_nodes = train_results["Record"]["AlgoNodes"] predict_row = { "SepalLength" : 5.4, "SepalWidth" : 3.4, "PetalLength" : 1.7, "PetalWidth" : 0.2, "ResultTargetValue" : 0 } predict_row_df = pd.DataFrame(predict_row, index=[0]) predict_req = { "AlgoNodes" : algo_nodes, "PredictionMask": samples_filter_mask, "PredictionRow" : predict_row_df } predict_results = core.ml_compile_predictions_from_models(predict_req, core.get_rds(), core.get_dbs(), debug) if predict_results["Status"] != "SUCCESS": lg("ERROR: Failed to Compile Predictions from Models with Error(" + str(predict_results["Error"]) + ")", 0) sys.exit(1) lg("Done with Predictions", 6) if predict_results["Status"] == "SUCCESS": al_req = train_results["Record"] al_req["DSName"] = ml_request["TrackingName"] al_req["Version"] = 1 al_req["FeatureColumnNames"]= ml_request["FeatureColumnNames"] al_req["TargetColumnName"] = ml_request["TargetColumnName"] al_req["TargetColumnValues"]= ml_request["TargetColumnValues"] al_req["IgnoreFeatures"] = ml_request["IgnoreFeatures"] al_req["PredictionType"] = ml_request["PredictionType"] al_req["ConfMatrices"] = predict_results["Record"]["ConfMatrices"] al_req["PredictionMarkers"] = predict_results["Record"]["PredictionMarkers"] analysis_dataset = core.ml_compile_analysis_dataset(al_req, core.get_rds(), core.get_dbs(), debug) lg("Analyzed Models(" + str(len(analysis_dataset["Models"])) + ")", 6) lg("-----------------------------------------------------", 6) lg("Caching Models", 6) cache_req = { "Name" : "CACHE", "Key" : "_MODELS_" + str(al_req["Tracking"]["TrackingName"]) + "_LATEST", "TrackingID": "_MD_" + str(al_req["Tracking"]["TrackingName"]), "Analysis" : analysis_dataset } cache_results = core.ml_cache_analysis_and_models(cache_req, core.get_rds(), core.get_dbs(), debug) lg("Done Caching Models", 6) lg("-----------------------------------------------------", 6) lg("Creating Analysis Visualizations", 6) # Turn this False to prevent displaying images analysis_dataset["ShowPlot"] = True analysis_dataset["SourceDF"] = al_req["SourceDF"] lg("Plotting Feature Importance", 6) for midx,model_node in enumerate(analysis_dataset["Models"]): predict_col = model_node["Target"] if predict_col == "ResultTargetValue": plot_req = { "ImgFile" : analysis_dataset["FeatImpImgFile"], "Model" : model_node["Model"], "XLabel" : str(predict_col), "YLabel" : "Importance Amount", "Title" : str(predict_col) + " Importance Analysis", "ShowPlot" : analysis_dataset["ShowPlot"] } image_list = core.sb_model_feature_importance(plot_req, debug) for img in image_list: ml_images.append(img) # end of for all models lg("Plotting PairPlot", 6) plot_req = { "DSName" : str(analysis_dataset["DSName"]), "Title" : str(analysis_dataset["DSName"]) + " - Pair Plot", "ImgFile" : str(analysis_dataset["PairPlotImgFile"]), "SourceDF" : al_req["SourceDF"], "HueColumnName" : target_column_name, "CompareColumns": feature_column_names, "Markers" : ["o", "s", "D"], "Width" : 15.0, "Height" : 15.0, "ShowPlot" : analysis_dataset["ShowPlot"] } image_list = core.sb_pairplot(plot_req, debug) for img in image_list: ml_images.append(img) lg("Plotting Confusion Matrices", 6) plot_req = { "DSName" : str(analysis_dataset["DSName"]), "Title" : str(analysis_dataset["DSName"]) + " - Confusion Matrix", "ImgFile" : str(analysis_dataset["CMatrixImgFile"]), "SourceDF" : al_req["SourceDF"], "ConfMatrices" : al_req["ConfMatrices"], "Width" : 15.0, "Height" : 15.0, "XLabel" : "Dates", "YLabel" : "Values", "ShowPlot" : analysis_dataset["ShowPlot"] } image_list = core.sb_confusion_matrix(plot_req, debug) for img in image_list: ml_images.append(img) lg("Plotting Scatters", 6) plot_req = { "DSName" : str(analysis_dataset["DSName"]), "Title" : str(analysis_dataset["DSName"]) + " - Scatter Plot", "ImgFile" : str(analysis_dataset["ScatterImgFile"]), "SourceDF" : analysis_dataset["SourceDF"], "UnitsAheadType" : analysis_dataset["UnitsAheadType"], "FeatureColumnNames": analysis_dataset["FeatureColumnNames"], "Hue" : label_column_name, "Width" : 7.0, "Height" : 7.0, "XLabel" : "Dates", "YLabel" : "Values", "ShowPlot" : analysis_dataset["ShowPlot"] } image_list = core.sb_all_scatterplots(plot_req, debug) for img in image_list: ml_images.append(img) lg("Plotting JointPlots", 6) plot_req = { "DSName" : str(analysis_dataset["DSName"]), "Title" : str(analysis_dataset["DSName"]) + " - Joint Plot", "ImgFile" : str(analysis_dataset["JointPlotImgFile"]), "SourceDF" : analysis_dataset["SourceDF"], "UnitsAheadType" : analysis_dataset["UnitsAheadType"], "FeatureColumnNames": analysis_dataset["FeatureColumnNames"], "Hue" : label_column_name, "Width" : 15.0, "Height" : 15.0, "XLabel" : "Dates", "YLabel" : "Values", "ShowPlot" : analysis_dataset["ShowPlot"] } image_list = core.sb_all_jointplots(plot_req, debug) for img in image_list: ml_images.append(img) lg("Done Creating Analysis Visualizations", 6) lg("-----------------------------------------------------", 6) else: lg("", 6) lg("ERROR: Failed Processing Predictions for Dataset(" + str(ds_name) + ") with Error:", 6) lg(ml_results["Error"], 6) lg("", 6) sys.exit(2) # end of if success lg("", 6) lg("Analysis Complete Saved Images(" + str(len(ml_images)) + ")", 5) lg("", 6) sys.exit(0)
apache-2.0
yonglehou/scikit-learn
examples/cluster/plot_kmeans_silhouette_analysis.py
242
5885
""" =============================================================================== Selecting the number of clusters with silhouette analysis on KMeans clustering =============================================================================== Silhouette analysis can be used to study the separation distance between the resulting clusters. The silhouette plot displays a measure of how close each point in one cluster is to points in the neighboring clusters and thus provides a way to assess parameters like number of clusters visually. This measure has a range of [-1, 1]. Silhoette coefficients (as these values are referred to as) near +1 indicate that the sample is far away from the neighboring clusters. A value of 0 indicates that the sample is on or very close to the decision boundary between two neighboring clusters and negative values indicate that those samples might have been assigned to the wrong cluster. In this example the silhouette analysis is used to choose an optimal value for ``n_clusters``. The silhouette plot shows that the ``n_clusters`` value of 3, 5 and 6 are a bad pick for the given data due to the presence of clusters with below average silhouette scores and also due to wide fluctuations in the size of the silhouette plots. Silhouette analysis is more ambivalent in deciding between 2 and 4. Also from the thickness of the silhouette plot the cluster size can be visualized. The silhouette plot for cluster 0 when ``n_clusters`` is equal to 2, is bigger in size owing to the grouping of the 3 sub clusters into one big cluster. However when the ``n_clusters`` is equal to 4, all the plots are more or less of similar thickness and hence are of similar sizes as can be also verified from the labelled scatter plot on the right. """ from __future__ import print_function from sklearn.datasets import make_blobs from sklearn.cluster import KMeans from sklearn.metrics import silhouette_samples, silhouette_score import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np print(__doc__) # Generating the sample data from make_blobs # This particular setting has one distict cluster and 3 clusters placed close # together. X, y = make_blobs(n_samples=500, n_features=2, centers=4, cluster_std=1, center_box=(-10.0, 10.0), shuffle=True, random_state=1) # For reproducibility range_n_clusters = [2, 3, 4, 5, 6] for n_clusters in range_n_clusters: # Create a subplot with 1 row and 2 columns fig, (ax1, ax2) = plt.subplots(1, 2) fig.set_size_inches(18, 7) # The 1st subplot is the silhouette plot # The silhouette coefficient can range from -1, 1 but in this example all # lie within [-0.1, 1] ax1.set_xlim([-0.1, 1]) # The (n_clusters+1)*10 is for inserting blank space between silhouette # plots of individual clusters, to demarcate them clearly. ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10]) # Initialize the clusterer with n_clusters value and a random generator # seed of 10 for reproducibility. clusterer = KMeans(n_clusters=n_clusters, random_state=10) cluster_labels = clusterer.fit_predict(X) # The silhouette_score gives the average value for all the samples. # This gives a perspective into the density and separation of the formed # clusters silhouette_avg = silhouette_score(X, cluster_labels) print("For n_clusters =", n_clusters, "The average silhouette_score is :", silhouette_avg) # Compute the silhouette scores for each sample sample_silhouette_values = silhouette_samples(X, cluster_labels) y_lower = 10 for i in range(n_clusters): # Aggregate the silhouette scores for samples belonging to # cluster i, and sort them ith_cluster_silhouette_values = \ sample_silhouette_values[cluster_labels == i] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = y_lower + size_cluster_i color = cm.spectral(float(i) / n_clusters) ax1.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) # Label the silhouette plots with their cluster numbers at the middle ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) # Compute the new y_lower for next plot y_lower = y_upper + 10 # 10 for the 0 samples ax1.set_title("The silhouette plot for the various clusters.") ax1.set_xlabel("The silhouette coefficient values") ax1.set_ylabel("Cluster label") # The vertical line for average silhoutte score of all the values ax1.axvline(x=silhouette_avg, color="red", linestyle="--") ax1.set_yticks([]) # Clear the yaxis labels / ticks ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) # 2nd Plot showing the actual clusters formed colors = cm.spectral(cluster_labels.astype(float) / n_clusters) ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7, c=colors) # Labeling the clusters centers = clusterer.cluster_centers_ # Draw white circles at cluster centers ax2.scatter(centers[:, 0], centers[:, 1], marker='o', c="white", alpha=1, s=200) for i, c in enumerate(centers): ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, s=50) ax2.set_title("The visualization of the clustered data.") ax2.set_xlabel("Feature space for the 1st feature") ax2.set_ylabel("Feature space for the 2nd feature") plt.suptitle(("Silhouette analysis for KMeans clustering on sample data " "with n_clusters = %d" % n_clusters), fontsize=14, fontweight='bold') plt.show()
bsd-3-clause
matbra/bokeh
examples/plotting/file/boxplot.py
43
2269
import numpy as np import pandas as pd from bokeh.plotting import figure, show, output_file # Generate some synthetic time series for six different categories cats = list("abcdef") yy = np.random.randn(2000) g = np.random.choice(cats, 2000) for i, l in enumerate(cats): yy[g == l] += i // 2 df = pd.DataFrame(dict(score=yy, group=g)) # Find the quartiles and IQR foor each category groups = df.groupby('group') q1 = groups.quantile(q=0.25) q2 = groups.quantile(q=0.5) q3 = groups.quantile(q=0.75) iqr = q3 - q1 upper = q3 + 1.5*iqr lower = q1 - 1.5*iqr # find the outliers for each category def outliers(group): cat = group.name return group[(group.score > upper.loc[cat][0]) | (group.score < lower.loc[cat][0])]['score'] out = groups.apply(outliers).dropna() # Prepare outlier data for plotting, we need coordinate for every outlier. outx = [] outy = [] for cat in cats: # only add outliers if they exist if not out.loc[cat].empty: for value in out[cat]: outx.append(cat) outy.append(value) output_file("boxplot.html") p = figure(tools="save", background_fill="#EFE8E2", title="", x_range=cats) # If no outliers, shrink lengths of stems to be no longer than the minimums or maximums qmin = groups.quantile(q=0.00) qmax = groups.quantile(q=1.00) upper.score = [min([x,y]) for (x,y) in zip(list(qmax.iloc[:,0]),upper.score) ] lower.score = [max([x,y]) for (x,y) in zip(list(qmin.iloc[:,0]),lower.score) ] # stems p.segment(cats, upper.score, cats, q3.score, line_width=2, line_color="black") p.segment(cats, lower.score, cats, q1.score, line_width=2, line_color="black") # boxes p.rect(cats, (q3.score+q2.score)/2, 0.7, q3.score-q2.score, fill_color="#E08E79", line_width=2, line_color="black") p.rect(cats, (q2.score+q1.score)/2, 0.7, q2.score-q1.score, fill_color="#3B8686", line_width=2, line_color="black") # whiskers (almost-0 height rects simpler than segments) p.rect(cats, lower.score, 0.2, 0.01, line_color="black") p.rect(cats, upper.score, 0.2, 0.01, line_color="black") # outliers p.circle(outx, outy, size=6, color="#F38630", fill_alpha=0.6) p.xgrid.grid_line_color = None p.ygrid.grid_line_color = "white" p.grid.grid_line_width = 2 p.xaxis.major_label_text_font_size="12pt" show(p)
bsd-3-clause
f3r/scikit-learn
sklearn/metrics/cluster/unsupervised.py
230
8281
""" Unsupervised evaluation metrics. """ # Authors: Robert Layton <[email protected]> # # License: BSD 3 clause import numpy as np from ...utils import check_random_state from ..pairwise import pairwise_distances def silhouette_score(X, labels, metric='euclidean', sample_size=None, random_state=None, **kwds): """Compute the mean Silhouette Coefficient of all samples. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. To clarify, ``b`` is the distance between a sample and the nearest cluster that the sample is not a part of. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the mean Silhouette Coefficient over all samples. To obtain the values for each sample, use :func:`silhouette_samples`. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Negative values generally indicate that a sample has been assigned to the wrong cluster, as a different cluster is more similar. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] Predicted labels for each sample. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`metrics.pairwise.pairwise_distances <sklearn.metrics.pairwise.pairwise_distances>`. If X is the distance array itself, use ``metric="precomputed"``. sample_size : int or None The size of the sample to use when computing the Silhouette Coefficient on a random subset of the data. If ``sample_size is None``, no sampling is used. random_state : integer or numpy.RandomState, optional The generator used to randomly select a subset of samples if ``sample_size is not None``. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : float Mean Silhouette Coefficient for all samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <http://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ n_labels = len(np.unique(labels)) n_samples = X.shape[0] if not 1 < n_labels < n_samples: raise ValueError("Number of labels is %d. Valid values are 2 " "to n_samples - 1 (inclusive)" % n_labels) if sample_size is not None: random_state = check_random_state(random_state) indices = random_state.permutation(X.shape[0])[:sample_size] if metric == "precomputed": X, labels = X[indices].T[indices].T, labels[indices] else: X, labels = X[indices], labels[indices] return np.mean(silhouette_samples(X, labels, metric=metric, **kwds)) def silhouette_samples(X, labels, metric='euclidean', **kwds): """Compute the Silhouette Coefficient for each sample. The Silhouette Coefficient is a measure of how well samples are clustered with samples that are similar to themselves. Clustering models with a high Silhouette Coefficient are said to be dense, where samples in the same cluster are similar to each other, and well separated, where samples in different clusters are not very similar to each other. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the Silhouette Coefficient for each sample. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] label values for each sample metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`sklearn.metrics.pairwise.pairwise_distances`. If X is the distance array itself, use "precomputed" as the metric. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a ``scipy.spatial.distance`` metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : array, shape = [n_samples] Silhouette Coefficient for each samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <http://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ distances = pairwise_distances(X, metric=metric, **kwds) n = labels.shape[0] A = np.array([_intra_cluster_distance(distances[i], labels, i) for i in range(n)]) B = np.array([_nearest_cluster_distance(distances[i], labels, i) for i in range(n)]) sil_samples = (B - A) / np.maximum(A, B) return sil_samples def _intra_cluster_distance(distances_row, labels, i): """Calculate the mean intra-cluster distance for sample i. Parameters ---------- distances_row : array, shape = [n_samples] Pairwise distance matrix between sample i and each sample. labels : array, shape = [n_samples] label values for each sample i : int Sample index being calculated. It is excluded from calculation and used to determine the current label Returns ------- a : float Mean intra-cluster distance for sample i """ mask = labels == labels[i] mask[i] = False if not np.any(mask): # cluster of size 1 return 0 a = np.mean(distances_row[mask]) return a def _nearest_cluster_distance(distances_row, labels, i): """Calculate the mean nearest-cluster distance for sample i. Parameters ---------- distances_row : array, shape = [n_samples] Pairwise distance matrix between sample i and each sample. labels : array, shape = [n_samples] label values for each sample i : int Sample index being calculated. It is used to determine the current label. Returns ------- b : float Mean nearest-cluster distance for sample i """ label = labels[i] b = np.min([np.mean(distances_row[labels == cur_label]) for cur_label in set(labels) if not cur_label == label]) return b
bsd-3-clause
timtroendle/urban-occupants-paper
scripts/simulationinput.py
1
13175
from datetime import datetime, timedelta from itertools import count, chain import math from multiprocessing import Pool, cpu_count import os from pathlib import Path import random import click import pandas as pd import yaml from tqdm import tqdm import requests_cache import sqlalchemy import urbanoccupants as uo NUMBER_HOUSEHOLDS_HARINGEY = 101955 NUMBER_USUAL_RESIDENTS_HARINGEY = 254926 RANDOM_SEED = 'haringey-case-study' ROOT_FOLDER = Path(os.path.abspath(__file__)).parent.parent CACHE_PATH = ROOT_FOLDER / 'build' / 'web-cache' MIDAS_DATABASE_PATH = ROOT_FOLDER / 'data' / 'Londhour.csv' requests_cache.install_cache((CACHE_PATH).as_posix()) @click.command() @click.argument('path_to_seed') @click.argument('path_to_markov_ts') @click.argument('path_to_config') @click.argument('path_to_result') def simulation_input(path_to_seed, path_to_markov_ts, path_to_config, path_to_result): random.seed(RANDOM_SEED) _check_paths(path_to_seed, path_to_markov_ts, path_to_config, path_to_result) seed = pd.read_pickle(path_to_seed) markov_ts = pd.read_pickle(path_to_markov_ts) config = uo.read_simulation_config(path_to_config) features = config['people-features'] + config['household-features'] seed, markov_ts = uo.tus.filter_features( seed, markov_ts, set(features + [uo.PeopleFeature.AGE]) ) markov_chains = _create_markov_chains( seed, markov_ts, features, config ) seed = _amend_seed_by_markov_model(seed, markov_chains, features, config['start-time']) seed = _amend_seed_by_metabolic_rate(seed, config) census_data_ppl = {feature: feature.read_census_data(config['spatial-resolution']) for feature in config['people-features']} for data in census_data_ppl.values(): assert data.sum().sum() == NUMBER_USUAL_RESIDENTS_HARINGEY census_data_hh = {feature: feature.read_census_data(config['spatial-resolution']) for feature in config['household-features']} for data in census_data_hh.values(): assert data.sum().sum() == NUMBER_HOUSEHOLDS_HARINGEY seed = _prepare_seed_index(seed) households, citizens = _create_synthetic_population( seed, census_data_hh, census_data_ppl, config ) _write_dwellings_table(households, config, path_to_result) _write_citizens_table(citizens, path_to_result) _write_markov_chains(markov_chains, path_to_result) _write_temperature_table(config, path_to_result) _write_simulation_parameter_table(config, path_to_result) def _check_paths(path_to_seed, path_to_markov_ts, path_to_config, path_to_result): if not Path(path_to_seed).exists(): raise ValueError("Seed is missing: {}.".format(path_to_seed)) if not Path(path_to_markov_ts).exists(): raise ValueError("Markov timeseries is missing: {}.".format(path_to_markov_ts)) if not Path(path_to_config).exists(): raise ValueError("Config file is missing: {}.".format(path_to_config)) path_to_result = Path(path_to_result) if path_to_result.exists(): path_to_result.unlink() if not MIDAS_DATABASE_PATH.exists(): raise ValueError('MIDAS weather data file is missing: {}.'.format(MIDAS_DATABASE_PATH)) def _create_markov_chains(seed, markov_ts, features, config): seed_groups = seed.groupby([str(feature) for feature in features]) print("Dividing the seed into {} cluster.".format(len(seed_groups.groups.keys()))) print("Cluster statistics:") print(seed_groups.size().describe()) with Pool(config['number-processes']) as pool: feature_combinations = seed_groups.groups.keys() all_parameters = ( # imap_unordered allows only one parameter, hence the tuple (markov_ts, seed_groups.get_group(features), features, config['time-step-size']) for features in feature_combinations ) markov_chains = dict(pool.imap_unordered(uo.tus.markov_chain_for_cluster, tqdm(all_parameters, total=len(feature_combinations), desc='Calculating markov chains'))) return markov_chains def _amend_seed_by_markov_model(seed, markov_chains, features, simulation_start_time): seed_groups = seed.groupby([str(feature) for feature in features]) for feature_combination, index in seed_groups.groups.items(): seed.loc[index, 'markov_id'] = uo.feature_id(feature_combination) seed.loc[index, 'initial_activity'] = markov_chains[feature_combination]\ .valid_states(simulation_start_time)[0] return seed def _amend_seed_by_metabolic_rate(seed, config): below18 = seed[str(uo.PeopleFeature.AGE)] < uo.types.AgeStructure.AGE_18_TO_19 above18 = seed[str(uo.PeopleFeature.AGE)] >= uo.types.AgeStructure.AGE_18_TO_19 metabolic_heat_gain_active = config['metabolic-heat-gain-active'] metabolic_heat_gain_passive = config['metabolic-heat-gain-passive'] metabolic_ratio_child = config['metabolic-ratio-child'] seed.loc[below18, 'metabolic_heat_gain_active'] = (metabolic_heat_gain_active * metabolic_ratio_child) seed.loc[below18, 'metabolic_heat_gain_passive'] = (metabolic_heat_gain_passive * metabolic_ratio_child) seed.loc[above18, 'metabolic_heat_gain_active'] = metabolic_heat_gain_active seed.loc[above18, 'metabolic_heat_gain_passive'] = metabolic_heat_gain_passive return seed def _prepare_seed_index(seed): sn1_plus_sn2 = seed.index.droplevel(2) seed = seed.copy() seed['household_id'] = list(sn1_plus_sn2) seed.reset_index(inplace=True) seed.rename(columns={'SN3': 'person_id'}, inplace=True) seed.set_index(['household_id', 'person_id'], inplace=True) seed.drop(['SN1', 'SN2'], axis=1, inplace=True) return seed def _create_synthetic_population(seed, census_data_hh, census_data_ppl, config): random_hh_feature = list(census_data_hh.values())[0] regions = list(random_hh_feature.index) controls_hh = {region: {str(feature): census_data_hh[feature].ix[region, :] for feature in config['household-features']} for region in regions} controls_ppl = {region: {str(feature): census_data_ppl[feature].ix[region, :] for feature in config['people-features']} for region in regions} number_households = {region: random_hh_feature.ix[region, :].sum() for region in regions} household_counter = count(start=1, step=1) household_ids = {region: [household_counter.__next__() for _ in range(number_households[region])] for region in regions} random_numbers = {region: [random.uniform(0, 1) for _ in range(number_households[region])] for region in regions} hh_chunk_size = int(NUMBER_HOUSEHOLDS_HARINGEY / config['number-processes'] / 4) with Pool(config['number-processes']) as pool: hipf_params = ((seed, controls_hh[region], controls_ppl[region], region) for region in regions) household_weights = dict(tqdm( pool.imap_unordered(uo.synthpop.run_hipf, hipf_params), total=len(regions), desc='Hierarchical IPF ' )) household_params = ((region, seed, household_weights[region], random_numbers[region], household_ids[region]) for region in regions) households = list(chain(*tqdm( pool.imap_unordered(uo.synthpop.sample_households, household_params), total=len(regions), desc='Sampling households ' ))) household_chunks = [households[i:i + hh_chunk_size] for i in range(0, len(households), hh_chunk_size)] citizens = list(chain(*tqdm( pool.imap_unordered( uo.synthpop.sample_citizen, ((households, seed) for households in household_chunks) ), total=math.ceil(NUMBER_HOUSEHOLDS_HARINGEY / hh_chunk_size), desc='Sampling individuals ' ))) assert len(households) == NUMBER_HOUSEHOLDS_HARINGEY assert abs(len(citizens) - NUMBER_USUAL_RESIDENTS_HARINGEY) < 2000 return households, citizens def _df_to_input_db(df, table_name, path_to_db): disk_engine = sqlalchemy.create_engine('sqlite:///{}'.format(path_to_db)) df.to_sql(name=table_name, con=disk_engine) def _write_dwellings_table(households, config, path_to_db): df = pd.DataFrame( index=[household.id for household in households], data={ 'thermalMassCapacity': config['dwelling']['thermal-mass-capacity'], 'thermalMassArea': config['dwelling']['thermal-mass-area'], 'floorArea': config['dwelling']['floor-area'], 'roomHeight': config['dwelling']['room-height'], 'windowToWallRatio': config['dwelling']['window-to-wall-ratio'], 'uWall': config['dwelling']['u-value-wall'], 'uRoof': config['dwelling']['u-value-roof'], 'uFloor': config['dwelling']['u-value-floor'], 'uWindow': config['dwelling']['u-value-window'], 'transmissionAdjustmentGround': config['dwelling']['transmission-adjustment-ground'], 'naturalVentilationRate': config['dwelling']['natural-ventilation-rate'], 'maxHeatingPower': config['dwelling']['max-heating-power'], 'initialTemperature': config['dwelling']['initial-temperature'], 'heatingControlStrategy': config['dwelling']['heating-control-strategy'], 'region': [household.region for household in households] } ) _df_to_input_db(df, uo.DWELLINGS_TABLE_NAME, path_to_db) def _write_citizens_table(citizens, path_to_db): df = pd.DataFrame( index=list(range(len(citizens))), data={ 'markovChainId': [citizen.markovId for citizen in citizens], 'dwellingId': [citizen.householdId for citizen in citizens], 'initialActivity': [str(citizen.initialActivity) for citizen in citizens], 'activeMetabolicRate': [citizen.activeMetabolicRate for citizen in citizens], 'passiveMetabolicRate': [citizen.passiveMetabolicRate for citizen in citizens], 'randomSeed': [citizen.randomSeed for citizen in citizens] } ) _df_to_input_db(df, uo.PEOPLE_TABLE_NAME, path_to_db) def _write_markov_chains(markov_chains, path_to_db): markov_index = pd.Series( { feature_id: "markov{}".format(feature_id) for feature_id in [uo.feature_id(key) for key in markov_chains.keys()] }, name='tablename' ) _df_to_input_db(markov_index, uo.MARKOV_CHAIN_INDEX_TABLE_NAME, path_to_db) for feature_combination, markov_chain in markov_chains.items(): df = markov_chain.to_dataframe() df.fromActivity = [str(x) for x in df.fromActivity] df.toActivity = [str(x) for x in df.toActivity] _df_to_input_db(df, markov_index[uo.feature_id(feature_combination)], path_to_db) def _write_temperature_table(config, path_to_db): def date_parser(date, time): month, day, year = [int(x) for x in date.split('/')] hour, minute = [int(x) for x in time.split(':')] return datetime(year, month, day, hour - 1, minute) temperature = pd.read_csv( MIDAS_DATABASE_PATH, skiprows=[0], header=0, parse_dates=[['Date (MM/DD/YYYY)', 'Time (HH:MM)']], date_parser=date_parser, index_col=[0] ) temperature.rename(columns={'Dry-bulb (C)': 'temperature'}, inplace=True) temperature.index.name = 'index' df = temperature['temperature'].resample(config['time-step-size']).ffill() _df_to_input_db(df, uo.ENVIRONMENT_TABLE_NAME, path_to_db) def _write_simulation_parameter_table(config, path_to_db): _df_to_input_db( table_name=uo.PARAMETERS_TABLE_NAME, df=pd.DataFrame( index=[1], data={ 'initialDatetime': config['start-time'], 'timeStepSize_in_min': config['time-step-size-minutes'], 'numberTimeSteps': config['number-time-steps'], 'setPointWhileHome': config['set-point-while-home'], 'setPointWhileAsleep': config['set-point-while-asleep'], 'wakeUpTime': config['wake-up-time'], 'leaveHomeTime': config['leave-home-time'], 'comeHomeTime': config['come-home-time'], 'bedTime': config['bed-time'], 'logTemperature': config['log-temperature'], 'logThermalPower': config['log-thermal-power'], 'logActivity': config['log-activity'] } ), path_to_db=path_to_db ) if __name__ == '__main__': simulation_input()
mit
lancezlin/ml_template_py
lib/python2.7/site-packages/sklearn/utils/tests/test_class_weight.py
50
13151
import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.datasets import make_blobs from sklearn.utils.class_weight import compute_class_weight from sklearn.utils.class_weight import compute_sample_weight from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns def test_compute_class_weight(): # Test (and demo) compute_class_weight. y = np.asarray([2, 2, 2, 3, 3, 4]) classes = np.unique(y) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_true(cw[0] < cw[1] < cw[2]) cw = compute_class_weight("balanced", classes, y) # total effect of samples is preserved class_counts = np.bincount(y)[2:] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_true(cw[0] < cw[1] < cw[2]) def test_compute_class_weight_not_present(): # Raise error when y does not contain all class labels classes = np.arange(4) y = np.asarray([0, 0, 0, 1, 1, 2]) assert_raises(ValueError, compute_class_weight, "auto", classes, y) assert_raises(ValueError, compute_class_weight, "balanced", classes, y) # Raise error when y has items not in classes classes = np.arange(2) assert_raises(ValueError, compute_class_weight, "auto", classes, y) assert_raises(ValueError, compute_class_weight, "balanced", classes, y) assert_raises(ValueError, compute_class_weight, {0: 1., 1: 2.}, classes, y) def test_compute_class_weight_dict(): classes = np.arange(3) class_weights = {0: 1.0, 1: 2.0, 2: 3.0} y = np.asarray([0, 0, 1, 2]) cw = compute_class_weight(class_weights, classes, y) # When the user specifies class weights, compute_class_weights should just # return them. assert_array_almost_equal(np.asarray([1.0, 2.0, 3.0]), cw) # When a class weight is specified that isn't in classes, a ValueError # should get raised msg = 'Class label 4 not present.' class_weights = {0: 1.0, 1: 2.0, 2: 3.0, 4: 1.5} assert_raise_message(ValueError, msg, compute_class_weight, class_weights, classes, y) msg = 'Class label -1 not present.' class_weights = {-1: 5.0, 0: 1.0, 1: 2.0, 2: 3.0} assert_raise_message(ValueError, msg, compute_class_weight, class_weights, classes, y) def test_compute_class_weight_invariance(): # Test that results with class_weight="balanced" is invariant wrt # class imbalance if the number of samples is identical. # The test uses a balanced two class dataset with 100 datapoints. # It creates three versions, one where class 1 is duplicated # resulting in 150 points of class 1 and 50 of class 0, # one where there are 50 points in class 1 and 150 in class 0, # and one where there are 100 points of each class (this one is balanced # again). # With balancing class weights, all three should give the same model. X, y = make_blobs(centers=2, random_state=0) # create dataset where class 1 is duplicated twice X_1 = np.vstack([X] + [X[y == 1]] * 2) y_1 = np.hstack([y] + [y[y == 1]] * 2) # create dataset where class 0 is duplicated twice X_0 = np.vstack([X] + [X[y == 0]] * 2) y_0 = np.hstack([y] + [y[y == 0]] * 2) # duplicate everything X_ = np.vstack([X] * 2) y_ = np.hstack([y] * 2) # results should be identical logreg1 = LogisticRegression(class_weight="balanced").fit(X_1, y_1) logreg0 = LogisticRegression(class_weight="balanced").fit(X_0, y_0) logreg = LogisticRegression(class_weight="balanced").fit(X_, y_) assert_array_almost_equal(logreg1.coef_, logreg0.coef_) assert_array_almost_equal(logreg.coef_, logreg0.coef_) def test_compute_class_weight_auto_negative(): # Test compute_class_weight when labels are negative # Test with balanced class labels. classes = np.array([-2, -1, 0]) y = np.asarray([-1, -1, 0, 0, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) # Test with unbalanced class labels. y = np.asarray([-1, 0, 0, -2, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([0.545, 1.636, 0.818]), decimal=3) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) class_counts = np.bincount(y + 2) assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2. / 3, 2., 1.]) def test_compute_class_weight_auto_unordered(): # Test compute_class_weight when classes are unordered classes = np.array([1, 0, 3]) y = np.asarray([1, 0, 0, 3, 3, 3]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1.636, 0.818, 0.545]), decimal=3) cw = compute_class_weight("balanced", classes, y) class_counts = np.bincount(y)[classes] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2., 1., 2. / 3]) def test_compute_sample_weight(): # Test (and demo) compute_sample_weight. # Test with balanced classes y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with user-defined weights sample_weight = compute_sample_weight({1: 2, 2: 1}, y) assert_array_almost_equal(sample_weight, [2., 2., 2., 1., 1., 1.]) # Test with column vector of balanced classes y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with unbalanced classes y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) expected_auto = np.asarray([.6, .6, .6, .6, .6, .6, 1.8]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y) expected_balanced = np.array([0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 2.3333]) assert_array_almost_equal(sample_weight, expected_balanced, decimal=4) # Test with `None` weights sample_weight = compute_sample_weight(None, y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 1.]) # Test with multi-output of balanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with multi-output with user-defined weights y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = compute_sample_weight([{1: 2, 2: 1}, {0: 1, 1: 2}], y) assert_array_almost_equal(sample_weight, [2., 2., 2., 2., 2., 2.]) # Test with multi-output of unbalanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [3, -1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, expected_balanced ** 2, decimal=3) def test_compute_sample_weight_with_subsample(): # Test compute_sample_weight with subsamples specified. # Test with balanced classes and all samples present y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with column vector of balanced classes and all samples present y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with a subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(4)) assert_array_almost_equal(sample_weight, [.5, .5, .5, 1.5, 1.5, 1.5]) sample_weight = compute_sample_weight("balanced", y, range(4)) assert_array_almost_equal(sample_weight, [2. / 3, 2. / 3, 2. / 3, 2., 2., 2.]) # Test with a bootstrap subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) expected_auto = np.asarray([1 / 3., 1 / 3., 1 / 3., 5 / 3., 5 / 3., 5 / 3.]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) expected_balanced = np.asarray([0.6, 0.6, 0.6, 3., 3., 3.]) assert_array_almost_equal(sample_weight, expected_balanced) # Test with a bootstrap subsample for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_balanced ** 2) # Test with a missing class y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) # Test with a missing class for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [2, 2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) def test_compute_sample_weight_errors(): # Test compute_sample_weight raises errors expected. # Invalid preset string y = np.asarray([1, 1, 1, 2, 2, 2]) y_ = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) assert_raises(ValueError, compute_sample_weight, "ni", y) assert_raises(ValueError, compute_sample_weight, "ni", y, range(4)) assert_raises(ValueError, compute_sample_weight, "ni", y_) assert_raises(ValueError, compute_sample_weight, "ni", y_, range(4)) # Not "auto" for subsample assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y, range(4)) # Not a list or preset for multi-output assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y_) # Incorrect length list for multi-output assert_raises(ValueError, compute_sample_weight, [{1: 2, 2: 1}], y_)
mit
ajrichards/notebook
python/kernel-density.py
4
2213
#!/usr/bin/env python """ https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/ """ import numpy as np from scipy.stats.distributions import norm import matplotlib.pyplot as plt from sklearn.neighbors import KernelDensity from scipy.stats import gaussian_kde from statsmodels.nonparametric.kde import KDEUnivariate from statsmodels.nonparametric.kernel_density import KDEMultivariate from scipy.stats import gaussian_kde def kde_scipy(x, x_grid, bandwidth=0.2, **kwargs): """Kernel Density Estimation with Scipy""" # Note that scipy weights its bandwidth by the covariance of the # input data. To make the results comparable to the other methods, # we divide the bandwidth by the sample standard deviation here. kde = gaussian_kde(x, bw_method=bandwidth / x.std(ddof=1), **kwargs) return kde.evaluate(x_grid) def kde_statsmodels_u(x, x_grid, bandwidth=0.2, **kwargs): """Univariate Kernel Density Estimation with Statsmodels""" kde = KDEUnivariate(x) kde.fit(bw=bandwidth, **kwargs) return kde.evaluate(x_grid) def kde_statsmodels_m(x, x_grid, bandwidth=0.2, **kwargs): """Multivariate Kernel Density Estimation with Statsmodels""" kde = KDEMultivariate(x, bw=bandwidth * np.ones_like(x), var_type='c', **kwargs) return kde.pdf(x_grid) def kde_sklearn(x, x_grid, bandwidth=0.2, **kwargs): """Kernel Density Estimation with Scikit-learn""" kde_skl = KernelDensity(bandwidth=bandwidth, **kwargs) kde_skl.fit(x[:, np.newaxis]) # score_samples() returns the log-likelihood of the samples log_pdf = kde_skl.score_samples(x_grid[:, np.newaxis]) return np.exp(log_pdf) ## plot fig, ax = plt.subplots() x_grid = np.linspace(-4.5, 3.5, 1000) np.random.seed(0) x = np.concatenate([norm(-1, 1.).rvs(400), norm(1, 0.3).rvs(100)]) for bandwidth in [0.1, 0.3, 1.0]: ax.plot(x_grid, kde_sklearn(x, x_grid, bandwidth=bandwidth), label='bw={0}'.format(bandwidth), linewidth=3, alpha=0.5) ax.hist(x, 30, fc='gray', histtype='stepfilled', alpha=0.3, normed=True) ax.set_xlim(-4.5, 3.5) ax.legend(loc='upper left') plt.show()
bsd-3-clause
zuku1985/scikit-learn
examples/gaussian_process/plot_gpc.py
103
3927
""" ==================================================================== Probabilistic predictions with Gaussian process classification (GPC) ==================================================================== This example illustrates the predicted probability of GPC for an RBF kernel with different choices of the hyperparameters. The first figure shows the predicted probability of GPC with arbitrarily chosen hyperparameters and with the hyperparameters corresponding to the maximum log-marginal-likelihood (LML). While the hyperparameters chosen by optimizing LML have a considerable larger LML, they perform slightly worse according to the log-loss on test data. The figure shows that this is because they exhibit a steep change of the class probabilities at the class boundaries (which is good) but have predicted probabilities close to 0.5 far away from the class boundaries (which is bad) This undesirable effect is caused by the Laplace approximation used internally by GPC. The second figure shows the log-marginal-likelihood for different choices of the kernel's hyperparameters, highlighting the two choices of the hyperparameters used in the first figure by black dots. """ print(__doc__) # Authors: Jan Hendrik Metzen <[email protected]> # # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.metrics.classification import accuracy_score, log_loss from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF # Generate data train_size = 50 rng = np.random.RandomState(0) X = rng.uniform(0, 5, 100)[:, np.newaxis] y = np.array(X[:, 0] > 2.5, dtype=int) # Specify Gaussian Processes with fixed and optimized hyperparameters gp_fix = GaussianProcessClassifier(kernel=1.0 * RBF(length_scale=1.0), optimizer=None) gp_fix.fit(X[:train_size], y[:train_size]) gp_opt = GaussianProcessClassifier(kernel=1.0 * RBF(length_scale=1.0)) gp_opt.fit(X[:train_size], y[:train_size]) print("Log Marginal Likelihood (initial): %.3f" % gp_fix.log_marginal_likelihood(gp_fix.kernel_.theta)) print("Log Marginal Likelihood (optimized): %.3f" % gp_opt.log_marginal_likelihood(gp_opt.kernel_.theta)) print("Accuracy: %.3f (initial) %.3f (optimized)" % (accuracy_score(y[:train_size], gp_fix.predict(X[:train_size])), accuracy_score(y[:train_size], gp_opt.predict(X[:train_size])))) print("Log-loss: %.3f (initial) %.3f (optimized)" % (log_loss(y[:train_size], gp_fix.predict_proba(X[:train_size])[:, 1]), log_loss(y[:train_size], gp_opt.predict_proba(X[:train_size])[:, 1]))) # Plot posteriors plt.figure(0) plt.scatter(X[:train_size, 0], y[:train_size], c='k', label="Train data") plt.scatter(X[train_size:, 0], y[train_size:], c='g', label="Test data") X_ = np.linspace(0, 5, 100) plt.plot(X_, gp_fix.predict_proba(X_[:, np.newaxis])[:, 1], 'r', label="Initial kernel: %s" % gp_fix.kernel_) plt.plot(X_, gp_opt.predict_proba(X_[:, np.newaxis])[:, 1], 'b', label="Optimized kernel: %s" % gp_opt.kernel_) plt.xlabel("Feature") plt.ylabel("Class 1 probability") plt.xlim(0, 5) plt.ylim(-0.25, 1.5) plt.legend(loc="best") # Plot LML landscape plt.figure(1) theta0 = np.logspace(0, 8, 30) theta1 = np.logspace(-1, 1, 29) Theta0, Theta1 = np.meshgrid(theta0, theta1) LML = [[gp_opt.log_marginal_likelihood(np.log([Theta0[i, j], Theta1[i, j]])) for i in range(Theta0.shape[0])] for j in range(Theta0.shape[1])] LML = np.array(LML).T plt.plot(np.exp(gp_fix.kernel_.theta)[0], np.exp(gp_fix.kernel_.theta)[1], 'ko', zorder=10) plt.plot(np.exp(gp_opt.kernel_.theta)[0], np.exp(gp_opt.kernel_.theta)[1], 'ko', zorder=10) plt.pcolor(Theta0, Theta1, LML) plt.xscale("log") plt.yscale("log") plt.colorbar() plt.xlabel("Magnitude") plt.ylabel("Length-scale") plt.title("Log-marginal-likelihood") plt.show()
bsd-3-clause
MCGallaspy/pymc3
pymc3/examples/lasso_block_update.py
14
1676
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <markdowncell> # Sometimes, it is very useful to update a set of parameters together. For example, variables that are highly correlated are often good to update together. In PyMC 3 block updating is simple, as example will demonstrate. # # Here we have a LASSO regression model where the two coefficients are strongly correlated. Normally, we would define the coefficient parameters as a single random variable, but here we define them separately to show how to do block updates. # # First we generate some fake data. # <codecell> from matplotlib.pylab import * from pymc3 import * import numpy as np d = np.random.normal(size=(3, 30)) d1 = d[0] + 4 d2 = d[1] + 4 yd = .2 * d1 + .3 * d2 + d[2] # <markdowncell> # Then define the random variables. # <codecell> with Model() as model: s = Exponential('s', 1) m1 = Laplace('m1', 0, 100) m2 = Laplace('m2', 0, 100) p = d1 * m1 + d2 * m2 y = Normal('y', p, s ** -2, observed=yd) # <markdowncell> # For most samplers, including Metropolis and HamiltonianMC, simply pass a # list of variables to sample as a block. This works with both scalar and # array parameters. # <codecell> with model: step1 = Metropolis([m1, m2], blocked=True) step2 = Metropolis([s], proposal_dist=LaplaceProposal) def run(n=5000): if n == "short": n = 300 with model: start = find_MAP() trace = sample(n, [step1, step2], start) dh = fn(hessian_diag(model.logpt)) # <codecell> traceplot(trace) # <codecell> hexbin(trace[m1], trace[m2], gridsize=50) # <codecell> if __name__ == '__main__': run()
apache-2.0
nhuntwalker/astroML
book_figures/chapter3/fig_fisher_f_distribution.py
3
2353
""" Example of Fisher's F distribution ------------------------------------ Figure 3.16. This shows an example of Fisher's F distribution with various parameters. We'll generate the distribution using:: dist = scipy.stats.f(...) Where ... should be filled in with the desired distribution parameters Once we have defined the distribution parameters in this way, these distribution objects have many useful methods; for example: * ``dist.pmf(x)`` computes the Probability Mass Function at values ``x`` in the case of discrete distributions * ``dist.pdf(x)`` computes the Probability Density Function at values ``x`` in the case of continuous distributions * ``dist.rvs(N)`` computes ``N`` random variables distributed according to the given distribution Many further options exist; refer to the documentation of ``scipy.stats`` for more details. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from scipy.stats import f as fisher_f from matplotlib import pyplot as plt #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Define the distribution parameters to be plotted mu = 0 d1_values = [1, 5, 2, 10] d2_values = [1, 2, 5, 50] linestyles = ['-', '--', ':', '-.'] x = np.linspace(0, 5, 1001)[1:] fig, ax = plt.subplots(figsize=(5, 3.75)) for (d1, d2, ls) in zip(d1_values, d2_values, linestyles): dist = fisher_f(d1, d2, mu) plt.plot(x, dist.pdf(x), ls=ls, c='black', label=r'$d_1=%i,\ d_2=%i$' % (d1, d2)) plt.xlim(0, 4) plt.ylim(0.0, 1.0) plt.xlabel('$x$') plt.ylabel(r'$p(x|d_1, d_2)$') plt.title("Fisher's Distribution") plt.legend() plt.show()
bsd-2-clause
fivejjs/pyhsmm
pyhsmm/basic/abstractions.py
3
4361
from __future__ import division import abc import numpy as np from matplotlib import pyplot as plt from pybasicbayes.abstractions import * import pyhsmm from pyhsmm.util.stats import flattendata, sample_discrete, sample_discrete_from_log, combinedata from pyhsmm.util.general import rcumsum class DurationDistribution(Distribution): __metaclass__ = abc.ABCMeta # in addition to the methods required by Distribution, we also require a # log_sf implementation @abc.abstractmethod def log_sf(self,x): ''' log survival function, defined by log_sf(x) = log(P[X \gt x]) = log(1-cdf(x)) where cdf(x) = P[X \leq x] ''' pass def log_pmf(self,x): return self.log_likelihood(x) def expected_log_pmf(self,x): return self.expected_log_likelihood(x) # default implementations below def pmf(self,x): return np.exp(self.log_pmf(x)) def rvs_given_greater_than(self,x): tail = self.log_sf(x) # if numerical underflow, return anything sensible if np.isinf(tail): return x+1 # if big tail, rejection sample elif np.exp(tail) > 0.1: y = self.rvs(25) while not np.any(y > x): y = self.rvs(25) return y[y > x][0] # otherwise, sample directly using the pmf and sf else: u = np.random.rand() y = x while u > 0: u -= np.exp(self.log_pmf(y) - tail) y += 1 return y def rvs_given_less_than(self,x,num): pmf = self.pmf(np.arange(1,x)) return sample_discrete(pmf,num)+1 def expected_log_sf(self,x): x = np.atleast_1d(x).astype('int32') assert x.ndim == 1 inf = max(2*x.max(),2*1000) # approximately infinity, we hope return rcumsum(self.expected_log_pmf(np.arange(1,inf)),strict=True)[x] def resample_with_censoring(self,data=[],censored_data=[]): ''' censored_data is full of observations that were censored, meaning a value of x really could have been anything >= x, so this method samples them out to be at least that large ''' filled_in = self._uncensor_data(censored_data) return self.resample(data=combinedata((data,filled_in))) def _uncensor_data(self,censored_data): # TODO numpy-vectorize this! if len(censored_data) > 0: if not isinstance(censored_data,list): filled_in = np.asarray([self.rvs_given_greater_than(x-1) for x in censored_data]) else: filled_in = np.asarray([self.rvs_given_greater_than(x-1) for xx in censored_data for x in xx]) else: filled_in = [] return filled_in def resample_with_censoring_and_truncation(self,data=[],censored_data=[],left_truncation_level=None): filled_in = self._uncensor_data(censored_data) if left_truncation_level is not None and left_truncation_level > 1: norm = self.pmf(np.arange(1,left_truncation_level)).sum() num_rejected = np.random.geometric(1-norm)-1 rejected_observations = self.rvs_given_less_than(left_truncation_level,num_rejected) \ if num_rejected > 0 else [] else: rejected_observations = [] self.resample(data=combinedata((data,filled_in,rejected_observations))) @property def mean(self): # TODO this is dumb, why is this here? trunc = 500 while self.log_sf(trunc) > -20: trunc *= 1.5 return np.arange(1,trunc+1).dot(self.pmf(np.arange(1,trunc+1))) def plot(self,data=None,color='b',**kwargs): data = flattendata(data) if data is not None else None try: tmax = np.where(np.exp(self.log_sf(np.arange(1,1000))) < 1e-3)[0][0] except IndexError: tmax = 2*self.rvs(1000).mean() tmax = max(tmax,data.max()) if data is not None else tmax t = np.arange(1,tmax+1) plt.plot(t,self.pmf(t),color=color) if data is not None: if len(data) > 1: plt.hist(data,bins=t-0.5,color=color,normed=len(set(data)) > 1) else: plt.hist(data,bins=t-0.5,color=color)
mit
q1ang/scikit-learn
sklearn/linear_model/tests/test_sparse_coordinate_descent.py
244
9986
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import ignore_warnings from sklearn.linear_model.coordinate_descent import (Lasso, ElasticNet, LassoCV, ElasticNetCV) def test_sparse_coef(): # Check that the sparse_coef propery works clf = ElasticNet() clf.coef_ = [1, 2, 3] assert_true(sp.isspmatrix(clf.sparse_coef_)) assert_equal(clf.sparse_coef_.toarray().tolist()[0], clf.coef_) def test_normalize_option(): # Check that the normalize option in enet works X = sp.csc_matrix([[-1], [0], [1]]) y = [-1, 0, 1] clf_dense = ElasticNet(fit_intercept=True, normalize=True) clf_sparse = ElasticNet(fit_intercept=True, normalize=True) clf_dense.fit(X, y) X = sp.csc_matrix(X) clf_sparse.fit(X, y) assert_almost_equal(clf_dense.dual_gap_, 0) assert_array_almost_equal(clf_dense.coef_, clf_sparse.coef_) def test_lasso_zero(): # Check that the sparse lasso can handle zero data without crashing X = sp.csc_matrix((3, 1)) y = [0, 0, 0] T = np.array([[1], [2], [3]]) clf = Lasso().fit(X, y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0]) assert_array_almost_equal(pred, [0, 0, 0]) assert_almost_equal(clf.dual_gap_, 0) def test_enet_toy_list_input(): # Test ElasticNet for various values of alpha and l1_ratio with list X X = np.array([[-1], [0], [1]]) X = sp.csc_matrix(X) Y = [-1, 0, 1] # just a straight line T = np.array([[2], [3], [4]]) # test sample # this should be the same as unregularized least squares clf = ElasticNet(alpha=0, l1_ratio=1.0) # catch warning about alpha=0. # this is discouraged but should work. ignore_warnings(clf.fit)(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0) def test_enet_toy_explicit_sparse_input(): # Test ElasticNet for various values of alpha and l1_ratio with sparse X f = ignore_warnings # training samples X = sp.lil_matrix((3, 1)) X[0, 0] = -1 # X[1, 0] = 0 X[2, 0] = 1 Y = [-1, 0, 1] # just a straight line (the identity function) # test samples T = sp.lil_matrix((3, 1)) T[0, 0] = 2 T[1, 0] = 3 T[2, 0] = 4 # this should be the same as lasso clf = ElasticNet(alpha=0, l1_ratio=1.0) f(clf.fit)(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0) def make_sparse_data(n_samples=100, n_features=100, n_informative=10, seed=42, positive=False, n_targets=1): random_state = np.random.RandomState(seed) # build an ill-posed linear regression problem with many noisy features and # comparatively few samples # generate a ground truth model w = random_state.randn(n_features, n_targets) w[n_informative:] = 0.0 # only the top features are impacting the model if positive: w = np.abs(w) X = random_state.randn(n_samples, n_features) rnd = random_state.uniform(size=(n_samples, n_features)) X[rnd > 0.5] = 0.0 # 50% of zeros in input signal # generate training ground truth labels y = np.dot(X, w) X = sp.csc_matrix(X) if n_targets == 1: y = np.ravel(y) return X, y def _test_sparse_enet_not_as_toy_dataset(alpha, fit_intercept, positive): n_samples, n_features, max_iter = 100, 100, 1000 n_informative = 10 X, y = make_sparse_data(n_samples, n_features, n_informative, positive=positive) X_train, X_test = X[n_samples // 2:], X[:n_samples // 2] y_train, y_test = y[n_samples // 2:], y[:n_samples // 2] s_clf = ElasticNet(alpha=alpha, l1_ratio=0.8, fit_intercept=fit_intercept, max_iter=max_iter, tol=1e-7, positive=positive, warm_start=True) s_clf.fit(X_train, y_train) assert_almost_equal(s_clf.dual_gap_, 0, 4) assert_greater(s_clf.score(X_test, y_test), 0.85) # check the convergence is the same as the dense version d_clf = ElasticNet(alpha=alpha, l1_ratio=0.8, fit_intercept=fit_intercept, max_iter=max_iter, tol=1e-7, positive=positive, warm_start=True) d_clf.fit(X_train.toarray(), y_train) assert_almost_equal(d_clf.dual_gap_, 0, 4) assert_greater(d_clf.score(X_test, y_test), 0.85) assert_almost_equal(s_clf.coef_, d_clf.coef_, 5) assert_almost_equal(s_clf.intercept_, d_clf.intercept_, 5) # check that the coefs are sparse assert_less(np.sum(s_clf.coef_ != 0.0), 2 * n_informative) def test_sparse_enet_not_as_toy_dataset(): _test_sparse_enet_not_as_toy_dataset(alpha=0.1, fit_intercept=False, positive=False) _test_sparse_enet_not_as_toy_dataset(alpha=0.1, fit_intercept=True, positive=False) _test_sparse_enet_not_as_toy_dataset(alpha=1e-3, fit_intercept=False, positive=True) _test_sparse_enet_not_as_toy_dataset(alpha=1e-3, fit_intercept=True, positive=True) def test_sparse_lasso_not_as_toy_dataset(): n_samples = 100 max_iter = 1000 n_informative = 10 X, y = make_sparse_data(n_samples=n_samples, n_informative=n_informative) X_train, X_test = X[n_samples // 2:], X[:n_samples // 2] y_train, y_test = y[n_samples // 2:], y[:n_samples // 2] s_clf = Lasso(alpha=0.1, fit_intercept=False, max_iter=max_iter, tol=1e-7) s_clf.fit(X_train, y_train) assert_almost_equal(s_clf.dual_gap_, 0, 4) assert_greater(s_clf.score(X_test, y_test), 0.85) # check the convergence is the same as the dense version d_clf = Lasso(alpha=0.1, fit_intercept=False, max_iter=max_iter, tol=1e-7) d_clf.fit(X_train.toarray(), y_train) assert_almost_equal(d_clf.dual_gap_, 0, 4) assert_greater(d_clf.score(X_test, y_test), 0.85) # check that the coefs are sparse assert_equal(np.sum(s_clf.coef_ != 0.0), n_informative) def test_enet_multitarget(): n_targets = 3 X, y = make_sparse_data(n_targets=n_targets) estimator = ElasticNet(alpha=0.01, fit_intercept=True, precompute=None) # XXX: There is a bug when precompute is not None! estimator.fit(X, y) coef, intercept, dual_gap = (estimator.coef_, estimator.intercept_, estimator.dual_gap_) for k in range(n_targets): estimator.fit(X, y[:, k]) assert_array_almost_equal(coef[k, :], estimator.coef_) assert_array_almost_equal(intercept[k], estimator.intercept_) assert_array_almost_equal(dual_gap[k], estimator.dual_gap_) def test_path_parameters(): X, y = make_sparse_data() max_iter = 50 n_alphas = 10 clf = ElasticNetCV(n_alphas=n_alphas, eps=1e-3, max_iter=max_iter, l1_ratio=0.5, fit_intercept=False) ignore_warnings(clf.fit)(X, y) # new params assert_almost_equal(0.5, clf.l1_ratio) assert_equal(n_alphas, clf.n_alphas) assert_equal(n_alphas, len(clf.alphas_)) sparse_mse_path = clf.mse_path_ ignore_warnings(clf.fit)(X.toarray(), y) # compare with dense data assert_almost_equal(clf.mse_path_, sparse_mse_path) def test_same_output_sparse_dense_lasso_and_enet_cv(): X, y = make_sparse_data(n_samples=40, n_features=10) for normalize in [True, False]: clfs = ElasticNetCV(max_iter=100, cv=5, normalize=normalize) ignore_warnings(clfs.fit)(X, y) clfd = ElasticNetCV(max_iter=100, cv=5, normalize=normalize) ignore_warnings(clfd.fit)(X.toarray(), y) assert_almost_equal(clfs.alpha_, clfd.alpha_, 7) assert_almost_equal(clfs.intercept_, clfd.intercept_, 7) assert_array_almost_equal(clfs.mse_path_, clfd.mse_path_) assert_array_almost_equal(clfs.alphas_, clfd.alphas_) clfs = LassoCV(max_iter=100, cv=4, normalize=normalize) ignore_warnings(clfs.fit)(X, y) clfd = LassoCV(max_iter=100, cv=4, normalize=normalize) ignore_warnings(clfd.fit)(X.toarray(), y) assert_almost_equal(clfs.alpha_, clfd.alpha_, 7) assert_almost_equal(clfs.intercept_, clfd.intercept_, 7) assert_array_almost_equal(clfs.mse_path_, clfd.mse_path_) assert_array_almost_equal(clfs.alphas_, clfd.alphas_)
bsd-3-clause
gotomypc/scikit-learn
sklearn/ensemble/tests/test_base.py
284
1328
""" Testing for the base module (sklearn.ensemble.base). """ # Authors: Gilles Louppe # License: BSD 3 clause from numpy.testing import assert_equal from nose.tools import assert_true from sklearn.utils.testing import assert_raise_message from sklearn.datasets import load_iris from sklearn.ensemble import BaggingClassifier from sklearn.linear_model import Perceptron def test_base(): # Check BaseEnsemble methods. ensemble = BaggingClassifier(base_estimator=Perceptron(), n_estimators=3) iris = load_iris() ensemble.fit(iris.data, iris.target) ensemble.estimators_ = [] # empty the list and create estimators manually ensemble._make_estimator() ensemble._make_estimator() ensemble._make_estimator() ensemble._make_estimator(append=False) assert_equal(3, len(ensemble)) assert_equal(3, len(ensemble.estimators_)) assert_true(isinstance(ensemble[0], Perceptron)) def test_base_zero_n_estimators(): # Check that instantiating a BaseEnsemble with n_estimators<=0 raises # a ValueError. ensemble = BaggingClassifier(base_estimator=Perceptron(), n_estimators=0) iris = load_iris() assert_raise_message(ValueError, "n_estimators must be greater than zero, got 0.", ensemble.fit, iris.data, iris.target)
bsd-3-clause
FrankTsui/robust_rescaled_svm
robust_rescaled_svm.py
1
6561
''' this algorithm is presented in: Guibiao Xu, Zheng Cao, Bao-Gang Hu and Jose Principe, Robust support vector machines based on the rescaled hinge loss, Pattern Recognition, 2017. ''' import numpy as np from sklearn.svm import SVC from collections import OrderedDict from config import config class rsvm: def __init__(self, config): ''' config: parameter settings ''' self.config = config def _create_svm_object(self): ''' create an svm object according to kernel type ''' if self.config['kernel'] == 'linear': return SVC(C = self.config['C'], kernel = self.config['kernel'], \ shrinking = self.config['shrinking'], probability = self.config['probability'], \ tol = self.config['tol'], cache_size = self.config['cache_size'], \ class_weight = self.config['class_weight'], verbose = self.config['verbose'], \ max_iter = self.config['max_iter'], decision_function_shape = self.config['decision_function_shape'], \ random_state = self.config['random_state']) elif self.config['kernel'] == 'poly': return SVC(C = self.config['C'], kernel = self.config['kernel'], \ degree = self.config['degree'], gamma = self.config['gamma'], coef0 = self.config['coef0'], \ shrinking = self.config['shrinking'], probability = self.config['probability'], \ tol = self.config['tol'], cache_size = self.config['cache_size'], \ class_weight = self.config['class_weight'], verbose = self.config['verbose'], \ max_iter = self.config['max_iter'], decision_function_shape = self.config['decision_function_shape'], \ random_state = self.config['random_state']) elif self.config['kernel'] == 'rbf': return SVC(C = self.config['C'], kernel = self.config['kernel'], gamma = self.config['gamma'], \ shrinking = self.config['shrinking'], probability = self.config['probability'], \ tol = self.config['tol'], cache_size = self.config['cache_size'], \ class_weight = self.config['class_weight'], verbose = self.config['verbose'], \ max_iter = self.config['max_iter'], decision_function_shape = self.config['decision_function_shape'], \ random_state = self.config['random_state']) elif self.config['kernel'] == 'sigmoid': return SVC(C = self.config['C'], kernel = self.config['kernel'], \ gamma = self.config['gamma'], coef0 = self.config['coef0'], \ shrinking = self.config['shrinking'], probability = self.config['probability'], \ tol = self.config['tol'], cache_size = self.config['cache_size'], \ class_weight = self.config['class_weight'], verbose = self.config['verbose'], \ max_iter = self.config['max_iter'], decision_function_shape = self.config['decision_function_shape'], \ random_state = self.config['random_state']) def fit(self, train_fea, train_gnd): ''' training method train_fea: array like, shape = (smp_num, fea_num) train_gnd: array like, shape = (smp_num,), -1 and +1 ''' # check elements in train_gnd, the element should be -1 or +1 assert set(train_gnd) == set([-1, 1]) train_num = train_fea.shape[0] # save sample weights across iterations self.smp_weights_mat = np.zeros(shape = (self.config['rsvm_iter_num'], train_num)) # save svm models across iterations self.svmmodel_dict = OrderedDict() # save support vector ratios across iterations self.sv_ratio_vec = np.zeros(shape = (self.config['rsvm_iter_num'],)) self.smp_weights_mat[0] = self.config['rsvm_v0'] for iter_i in range(self.config['rsvm_iter_num']): self.svmmodel_dict[iter_i] = self._create_svm_object() self.svmmodel_dict[iter_i].fit(train_fea, train_gnd, sample_weight = self.smp_weights_mat[iter_i]) self.sv_ratio_vec[iter_i] = np.float64(self.svmmodel_dict[iter_i].n_support_.sum()) / train_num * 100 # update weights of samples if iter_i == (self.config['rsvm_iter_num'] - 1): break else: tmp_outputs = self.svmmodel_dict[iter_i].decision_function(train_fea) tmp_hinge_loss = np.maximum(0.0, 1.0 - tmp_outputs * train_gnd) # weights update function self.smp_weights_mat[iter_i + 1] = np.exp(-self.config['rsvm_eta'] * tmp_hinge_loss) self.smp_weights_mat = self.smp_weights_mat.transpose() def predict(self, test_fea, last_model_flag = True): ''' prediction function test_fea: array like, shape = (smp_num, fea_num) last_model_flag: whether only use the last svm model or not return pred: array like, shape = (smp_num, iter_num) ''' if last_model_flag: return self.svmmodel_dict[self.config['rsvm_iter_num'] - 1].predict(test_fea) else: test_num = test_fea.shape[0] pred = np.zeros(shape = (test_num, self.config['rsvm_iter_num']), dtype = np.int32) for iter_i in range(self.config['rsvm_iter_num']): pred[:, iter_i] = self.svmmodel_dict[iter_i].predict(test_fea) return pred def score(self, test_fea, test_gnd, last_model_flag = True): ''' return accuracy on the given test_fea and test_gnd test_fea: array like, shape = (smp_num, fea_num) test_gnd: array like, shape = (smp_num,), -1 and +1 last_model_flag: whether only use the last svm model or not return accu_vec: a vector ''' if last_model_flag: return self.svmmodel_dict[self.config['rsvm_iter_num'] - 1].score(test_fea, test_gnd) * 100 else: accu_vec = np.zeros(shape = (self.config['rsvm_iter_num'],)) for iter_i in range(self.config['rsvm_iter_num']): accu_vec[iter_i] = self.svmmodel_dict[iter_i].score(test_fea, test_gnd) * 100 return accu_vec def decision_function(self, test_fea, last_model_flag = True): ''' svm outputs test_fea: array like, shape = (smp_num, fea_num) last_model_flag: whether only use the last svm model or not return distance: array like, shape = (smp_num, iter_num) ''' if last_model_flag: return self.svmmodel_dict[self.config['rsvm_iter_num'] - 1].decision_function(test_fea) else: test_num = test_fea.shape[0] distance = np.zeros(shape = (test_num, self.config['rsvm_iter_num']), dtype = np.float64) for iter_i in range(self.config['rsvm_iter_num']): distance[:, iter_i] = self.svmmodel_dict[iter_i].decision_function(test_fea) return distance if __name__ == '__main__': np.random.seed(0) X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)] y = [-1] * 10 + [1] * 10 train_num = 20 config['rsvm_v0'] = np.ones(shape = (20, ), dtype = np.float64) config['rsvm_eta'] = 0.5 rsvm_obj = rsvm(config) rsvm_obj.fit(X, y) print '#### sv ratio vector ####' print rsvm_obj.sv_ratio_vec print '#### smp_weights_mat ####' print rsvm_obj.smp_weights_mat
apache-2.0
CallaJun/hackprince
indico/matplotlib/tests/test_transforms.py
9
19984
from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange, zip import unittest from nose.tools import assert_equal, assert_raises import numpy.testing as np_test from numpy.testing import assert_almost_equal from matplotlib.transforms import Affine2D, BlendedGenericTransform from matplotlib.path import Path from matplotlib.scale import LogScale from matplotlib.testing.decorators import cleanup, image_comparison import numpy as np import matplotlib.transforms as mtrans import matplotlib.pyplot as plt import matplotlib.path as mpath import matplotlib.patches as mpatches @cleanup def test_non_affine_caching(): class AssertingNonAffineTransform(mtrans.Transform): """ This transform raises an assertion error when called when it shouldn't be and self.raise_on_transform is True. """ input_dims = output_dims = 2 is_affine = False def __init__(self, *args, **kwargs): mtrans.Transform.__init__(self, *args, **kwargs) self.raise_on_transform = False self.underlying_transform = mtrans.Affine2D().scale(10, 10) def transform_path_non_affine(self, path): if self.raise_on_transform: assert False, ('Invalidated affine part of transform ' 'unnecessarily.') return self.underlying_transform.transform_path(path) transform_path = transform_path_non_affine def transform_non_affine(self, path): if self.raise_on_transform: assert False, ('Invalidated affine part of transform ' 'unnecessarily.') return self.underlying_transform.transform(path) transform = transform_non_affine my_trans = AssertingNonAffineTransform() ax = plt.axes() plt.plot(list(xrange(10)), transform=my_trans + ax.transData) plt.draw() # enable the transform to raise an exception if it's non-affine transform # method is triggered again. my_trans.raise_on_transform = True ax.transAxes.invalidate() plt.draw() @cleanup def test_external_transform_api(): class ScaledBy(object): def __init__(self, scale_factor): self._scale_factor = scale_factor def _as_mpl_transform(self, axes): return mtrans.Affine2D().scale(self._scale_factor) + axes.transData ax = plt.axes() line, = plt.plot(list(xrange(10)), transform=ScaledBy(10)) ax.set_xlim(0, 100) ax.set_ylim(0, 100) # assert that the top transform of the line is the scale transform. np.testing.assert_allclose(line.get_transform()._a.get_matrix(), mtrans.Affine2D().scale(10).get_matrix()) @image_comparison(baseline_images=['pre_transform_data']) def test_pre_transform_plotting(): # a catch-all for as many as possible plot layouts which handle pre-transforming the data # NOTE: The axis range is important in this plot. It should be x10 what the data suggests it should be ax = plt.axes() times10 = mtrans.Affine2D().scale(10) ax.contourf(np.arange(48).reshape(6, 8), transform=times10 + ax.transData) ax.pcolormesh(np.linspace(0, 4, 7), np.linspace(5.5, 8, 9), np.arange(48).reshape(8, 6), transform=times10 + ax.transData) ax.scatter(np.linspace(0, 10), np.linspace(10, 0), transform=times10 + ax.transData) x = np.linspace(8, 10, 20) y = np.linspace(1, 5, 20) u = 2*np.sin(x) + np.cos(y[:, np.newaxis]) v = np.sin(x) - np.cos(y[:, np.newaxis]) df = 25. / 30. # Compatibility factor for old test image ax.streamplot(x, y, u, v, transform=times10 + ax.transData, density=(df, df), linewidth=u**2 + v**2) # reduce the vector data down a bit for barb and quiver plotting x, y = x[::3], y[::3] u, v = u[::3, ::3], v[::3, ::3] ax.quiver(x, y + 5, u, v, transform=times10 + ax.transData) ax.barbs(x - 3, y + 5, u**2, v**2, transform=times10 + ax.transData) @cleanup def test_contour_pre_transform_limits(): ax = plt.axes() xs, ys = np.meshgrid(np.linspace(15, 20, 15), np.linspace(12.4, 12.5, 20)) ax.contourf(xs, ys, np.log(xs * ys), transform=mtrans.Affine2D().scale(0.1) + ax.transData) expected = np.array([[ 1.5 , 1.24], [ 2. , 1.25]]) assert_almost_equal(expected, ax.dataLim.get_points()) @cleanup def test_pcolor_pre_transform_limits(): # Based on test_contour_pre_transform_limits() ax = plt.axes() xs, ys = np.meshgrid(np.linspace(15, 20, 15), np.linspace(12.4, 12.5, 20)) ax.pcolor(xs, ys, np.log(xs * ys), transform=mtrans.Affine2D().scale(0.1) + ax.transData) expected = np.array([[ 1.5 , 1.24], [ 2. , 1.25]]) assert_almost_equal(expected, ax.dataLim.get_points()) @cleanup def test_pcolormesh_pre_transform_limits(): # Based on test_contour_pre_transform_limits() ax = plt.axes() xs, ys = np.meshgrid(np.linspace(15, 20, 15), np.linspace(12.4, 12.5, 20)) ax.pcolormesh(xs, ys, np.log(xs * ys), transform=mtrans.Affine2D().scale(0.1) + ax.transData) expected = np.array([[ 1.5 , 1.24], [ 2. , 1.25]]) assert_almost_equal(expected, ax.dataLim.get_points()) def test_Affine2D_from_values(): points = np.array([ [0,0], [10,20], [-1,0], ]) t = mtrans.Affine2D.from_values(1,0,0,0,0,0) actual = t.transform(points) expected = np.array( [[0,0],[10,0],[-1,0]] ) assert_almost_equal(actual,expected) t = mtrans.Affine2D.from_values(0,2,0,0,0,0) actual = t.transform(points) expected = np.array( [[0,0],[0,20],[0,-2]] ) assert_almost_equal(actual,expected) t = mtrans.Affine2D.from_values(0,0,3,0,0,0) actual = t.transform(points) expected = np.array( [[0,0],[60,0],[0,0]] ) assert_almost_equal(actual,expected) t = mtrans.Affine2D.from_values(0,0,0,4,0,0) actual = t.transform(points) expected = np.array( [[0,0],[0,80],[0,0]] ) assert_almost_equal(actual,expected) t = mtrans.Affine2D.from_values(0,0,0,0,5,0) actual = t.transform(points) expected = np.array( [[5,0],[5,0],[5,0]] ) assert_almost_equal(actual,expected) t = mtrans.Affine2D.from_values(0,0,0,0,0,6) actual = t.transform(points) expected = np.array( [[0,6],[0,6],[0,6]] ) assert_almost_equal(actual,expected) def test_clipping_of_log(): # issue 804 M,L,C = Path.MOVETO, Path.LINETO, Path.CLOSEPOLY points = [ (0.2, -99), (0.4, -99), (0.4, 20), (0.2, 20), (0.2, -99) ] codes = [ M, L, L, L, C ] path = Path(points, codes) # something like this happens in plotting logarithmic histograms trans = BlendedGenericTransform(Affine2D(), LogScale.Log10Transform('clip')) tpath = trans.transform_path_non_affine(path) result = tpath.iter_segments(trans.get_affine(), clip=(0, 0, 100, 100), simplify=False) tpoints, tcodes = list(zip(*result)) # Because y coordinate -99 is outside the clip zone, the first # line segment is effectively removed. That means that the closepoly # operation must be replaced by a move to the first point. assert np.allclose(tcodes, [ M, M, L, L, L ]) class NonAffineForTest(mtrans.Transform): """ A class which looks like a non affine transform, but does whatever the given transform does (even if it is affine). This is very useful for testing NonAffine behaviour with a simple Affine transform. """ is_affine = False output_dims = 2 input_dims = 2 def __init__(self, real_trans, *args, **kwargs): self.real_trans = real_trans r = mtrans.Transform.__init__(self, *args, **kwargs) def transform_non_affine(self, values): return self.real_trans.transform(values) def transform_path_non_affine(self, path): return self.real_trans.transform_path(path) class BasicTransformTests(unittest.TestCase): def setUp(self): self.ta1 = mtrans.Affine2D(shorthand_name='ta1').rotate(np.pi / 2) self.ta2 = mtrans.Affine2D(shorthand_name='ta2').translate(10, 0) self.ta3 = mtrans.Affine2D(shorthand_name='ta3').scale(1, 2) self.tn1 = NonAffineForTest(mtrans.Affine2D().translate(1, 2), shorthand_name='tn1') self.tn2 = NonAffineForTest(mtrans.Affine2D().translate(1, 2), shorthand_name='tn2') self.tn3 = NonAffineForTest(mtrans.Affine2D().translate(1, 2), shorthand_name='tn3') # creates a transform stack which looks like ((A, (N, A)), A) self.stack1 = (self.ta1 + (self.tn1 + self.ta2)) + self.ta3 # creates a transform stack which looks like (((A, N), A), A) self.stack2 = self.ta1 + self.tn1 + self.ta2 + self.ta3 # creates a transform stack which is a subset of stack2 self.stack2_subset = self.tn1 + self.ta2 + self.ta3 # when in debug, the transform stacks can produce dot images: # self.stack1.write_graphviz(file('stack1.dot', 'w')) # self.stack2.write_graphviz(file('stack2.dot', 'w')) # self.stack2_subset.write_graphviz(file('stack2_subset.dot', 'w')) def test_transform_depth(self): assert_equal(self.stack1.depth, 4) assert_equal(self.stack2.depth, 4) assert_equal(self.stack2_subset.depth, 3) def test_left_to_right_iteration(self): stack3 = (self.ta1 + (self.tn1 + (self.ta2 + self.tn2))) + self.ta3 # stack3.write_graphviz(file('stack3.dot', 'w')) target_transforms = [stack3, (self.tn1 + (self.ta2 + self.tn2)) + self.ta3, (self.ta2 + self.tn2) + self.ta3, self.tn2 + self.ta3, self.ta3, ] r = [rh for _, rh in stack3._iter_break_from_left_to_right()] self.assertEqual(len(r), len(target_transforms)) for target_stack, stack in zip(target_transforms, r): self.assertEqual(target_stack, stack) def test_transform_shortcuts(self): self.assertEqual(self.stack1 - self.stack2_subset, self.ta1) self.assertEqual(self.stack2 - self.stack2_subset, self.ta1) assert_equal((self.stack2_subset - self.stack2), self.ta1.inverted(), ) assert_equal((self.stack2_subset - self.stack2).depth, 1) assert_raises(ValueError, self.stack1.__sub__, self.stack2) aff1 = self.ta1 + (self.ta2 + self.ta3) aff2 = self.ta2 + self.ta3 self.assertEqual(aff1 - aff2, self.ta1) self.assertEqual(aff1 - self.ta2, aff1 + self.ta2.inverted()) self.assertEqual(self.stack1 - self.ta3, self.ta1 + (self.tn1 + self.ta2)) self.assertEqual(self.stack2 - self.ta3, self.ta1 + self.tn1 + self.ta2) self.assertEqual((self.ta2 + self.ta3) - self.ta3 + self.ta3, self.ta2 + self.ta3) def test_contains_branch(self): r1 = (self.ta2 + self.ta1) r2 = (self.ta2 + self.ta1) self.assertEqual(r1, r2) self.assertNotEqual(r1, self.ta1) self.assertTrue(r1.contains_branch(r2)) self.assertTrue(r1.contains_branch(self.ta1)) self.assertFalse(r1.contains_branch(self.ta2)) self.assertFalse(r1.contains_branch((self.ta2 + self.ta2))) self.assertEqual(r1, r2) self.assertTrue(self.stack1.contains_branch(self.ta3)) self.assertTrue(self.stack2.contains_branch(self.ta3)) self.assertTrue(self.stack1.contains_branch(self.stack2_subset)) self.assertTrue(self.stack2.contains_branch(self.stack2_subset)) self.assertFalse(self.stack2_subset.contains_branch(self.stack1)) self.assertFalse(self.stack2_subset.contains_branch(self.stack2)) self.assertTrue(self.stack1.contains_branch((self.ta2 + self.ta3))) self.assertTrue(self.stack2.contains_branch((self.ta2 + self.ta3))) self.assertFalse(self.stack1.contains_branch((self.tn1 + self.ta2))) def test_affine_simplification(self): # tests that a transform stack only calls as much is absolutely necessary # "non-affine" allowing the best possible optimization with complex # transformation stacks. points = np.array([[0, 0], [10, 20], [np.nan, 1], [-1, 0]], dtype=np.float64) na_pts = self.stack1.transform_non_affine(points) all_pts = self.stack1.transform(points) na_expected = np.array([[1., 2.], [-19., 12.], [np.nan, np.nan], [1., 1.]], dtype=np.float64) all_expected = np.array([[11., 4.], [-9., 24.], [np.nan, np.nan], [11., 2.]], dtype=np.float64) # check we have the expected results from doing the affine part only np_test.assert_array_almost_equal(na_pts, na_expected) # check we have the expected results from a full transformation np_test.assert_array_almost_equal(all_pts, all_expected) # check we have the expected results from doing the transformation in two steps np_test.assert_array_almost_equal(self.stack1.transform_affine(na_pts), all_expected) # check that getting the affine transformation first, then fully transforming using that # yields the same result as before. np_test.assert_array_almost_equal(self.stack1.get_affine().transform(na_pts), all_expected) # check that the affine part of stack1 & stack2 are equivalent (i.e. the optimization # is working) expected_result = (self.ta2 + self.ta3).get_matrix() result = self.stack1.get_affine().get_matrix() np_test.assert_array_equal(expected_result, result) result = self.stack2.get_affine().get_matrix() np_test.assert_array_equal(expected_result, result) class TestTransformPlotInterface(unittest.TestCase): def tearDown(self): plt.close() def test_line_extent_axes_coords(self): # a simple line in axes coordinates ax = plt.axes() ax.plot([0.1, 1.2, 0.8], [0.9, 0.5, 0.8], transform=ax.transAxes) np.testing.assert_array_equal(ax.dataLim.get_points(), np.array([[np.inf, np.inf], [-np.inf, -np.inf]])) def test_line_extent_data_coords(self): # a simple line in data coordinates ax = plt.axes() ax.plot([0.1, 1.2, 0.8], [0.9, 0.5, 0.8], transform=ax.transData) np.testing.assert_array_equal(ax.dataLim.get_points(), np.array([[ 0.1, 0.5], [ 1.2, 0.9]])) def test_line_extent_compound_coords1(self): # a simple line in data coordinates in the y component, and in axes coordinates in the x ax = plt.axes() trans = mtrans.blended_transform_factory(ax.transAxes, ax.transData) ax.plot([0.1, 1.2, 0.8], [35, -5, 18], transform=trans) np.testing.assert_array_equal(ax.dataLim.get_points(), np.array([[ np.inf, -5.], [ -np.inf, 35.]])) plt.close() def test_line_extent_predata_transform_coords(self): # a simple line in (offset + data) coordinates ax = plt.axes() trans = mtrans.Affine2D().scale(10) + ax.transData ax.plot([0.1, 1.2, 0.8], [35, -5, 18], transform=trans) np.testing.assert_array_equal(ax.dataLim.get_points(), np.array([[1., -50.], [12., 350.]])) plt.close() def test_line_extent_compound_coords2(self): # a simple line in (offset + data) coordinates in the y component, and in axes coordinates in the x ax = plt.axes() trans = mtrans.blended_transform_factory(ax.transAxes, mtrans.Affine2D().scale(10) + ax.transData) ax.plot([0.1, 1.2, 0.8], [35, -5, 18], transform=trans) np.testing.assert_array_equal(ax.dataLim.get_points(), np.array([[ np.inf, -50.], [ -np.inf, 350.]])) plt.close() def test_line_extents_affine(self): ax = plt.axes() offset = mtrans.Affine2D().translate(10, 10) plt.plot(list(xrange(10)), transform=offset + ax.transData) expeted_data_lim = np.array([[0., 0.], [9., 9.]]) + 10 np.testing.assert_array_almost_equal(ax.dataLim.get_points(), expeted_data_lim) def test_line_extents_non_affine(self): ax = plt.axes() offset = mtrans.Affine2D().translate(10, 10) na_offset = NonAffineForTest(mtrans.Affine2D().translate(10, 10)) plt.plot(list(xrange(10)), transform=offset + na_offset + ax.transData) expeted_data_lim = np.array([[0., 0.], [9., 9.]]) + 20 np.testing.assert_array_almost_equal(ax.dataLim.get_points(), expeted_data_lim) def test_pathc_extents_non_affine(self): ax = plt.axes() offset = mtrans.Affine2D().translate(10, 10) na_offset = NonAffineForTest(mtrans.Affine2D().translate(10, 10)) pth = mpath.Path(np.array([[0, 0], [0, 10], [10, 10], [10, 0]])) patch = mpatches.PathPatch(pth, transform=offset + na_offset + ax.transData) ax.add_patch(patch) expeted_data_lim = np.array([[0., 0.], [10., 10.]]) + 20 np.testing.assert_array_almost_equal(ax.dataLim.get_points(), expeted_data_lim) def test_pathc_extents_affine(self): ax = plt.axes() offset = mtrans.Affine2D().translate(10, 10) pth = mpath.Path(np.array([[0, 0], [0, 10], [10, 10], [10, 0]])) patch = mpatches.PathPatch(pth, transform=offset + ax.transData) ax.add_patch(patch) expeted_data_lim = np.array([[0., 0.], [10., 10.]]) + 10 np.testing.assert_array_almost_equal(ax.dataLim.get_points(), expeted_data_lim) def test_line_extents_for_non_affine_transData(self): ax = plt.axes(projection='polar') # add 10 to the radius of the data offset = mtrans.Affine2D().translate(0, 10) plt.plot(list(xrange(10)), transform=offset + ax.transData) # the data lim of a polar plot is stored in coordinates # before a transData transformation, hence the data limits # are not what is being shown on the actual plot. expeted_data_lim = np.array([[0., 0.], [9., 9.]]) + [0, 10] np.testing.assert_array_almost_equal(ax.dataLim.get_points(), expeted_data_lim) def test_bbox_intersection(): bbox_from_ext = mtrans.Bbox.from_extents inter = mtrans.Bbox.intersection from numpy.testing import assert_array_equal as assert_a_equal def assert_bbox_eq(bbox1, bbox2): assert_a_equal(bbox1.bounds, bbox2.bounds) r1 = bbox_from_ext(0, 0, 1, 1) r2 = bbox_from_ext(0.5, 0.5, 1.5, 1.5) r3 = bbox_from_ext(0.5, 0, 0.75, 0.75) r4 = bbox_from_ext(0.5, 1.5, 1, 2.5) r5 = bbox_from_ext(1, 1, 2, 2) # self intersection -> no change assert_bbox_eq(inter(r1, r1), r1) # simple intersection assert_bbox_eq(inter(r1, r2), bbox_from_ext(0.5, 0.5, 1, 1)) # r3 contains r2 assert_bbox_eq(inter(r1, r3), r3) # no intersection assert_equal(inter(r1, r4), None) # single point assert_bbox_eq(inter(r1, r5), bbox_from_ext(1, 1, 1, 1)) @cleanup def test_log_transform(): # Tests that the last line runs without exception (previously the # transform would fail if one of the axes was logarithmic). fig, ax = plt.subplots() ax.set_yscale('log') ax.transData.transform((1,1)) if __name__=='__main__': import nose nose.runmodule(argv=['-s','--with-doctest'], exit=False)
lgpl-3.0
rbalda/neural_ocr
env/lib/python2.7/site-packages/matplotlib/testing/__init__.py
7
3942
from __future__ import (absolute_import, division, print_function, unicode_literals) import warnings from contextlib import contextmanager from matplotlib.cbook import is_string_like, iterable from matplotlib import rcParams, rcdefaults, use def _is_list_like(obj): """Returns whether the obj is iterable and not a string""" return not is_string_like(obj) and iterable(obj) # stolen from pandas @contextmanager def assert_produces_warning(expected_warning=Warning, filter_level="always", clear=None): """ Context manager for running code that expects to raise (or not raise) warnings. Checks that code raises the expected warning and only the expected warning. Pass ``False`` or ``None`` to check that it does *not* raise a warning. Defaults to ``exception.Warning``, baseclass of all Warnings. (basically a wrapper around ``warnings.catch_warnings``). >>> import warnings >>> with assert_produces_warning(): ... warnings.warn(UserWarning()) ... >>> with assert_produces_warning(False): ... warnings.warn(RuntimeWarning()) ... Traceback (most recent call last): ... AssertionError: Caused unexpected warning(s): ['RuntimeWarning']. >>> with assert_produces_warning(UserWarning): ... warnings.warn(RuntimeWarning()) Traceback (most recent call last): ... AssertionError: Did not see expected warning of class 'UserWarning'. ..warn:: This is *not* thread-safe. """ with warnings.catch_warnings(record=True) as w: if clear is not None: # make sure that we are clearning these warnings # if they have happened before # to guarantee that we will catch them if not _is_list_like(clear): clear = [clear] for m in clear: try: m.__warningregistry__.clear() except: pass saw_warning = False warnings.simplefilter(filter_level) yield w extra_warnings = [] for actual_warning in w: if (expected_warning and issubclass(actual_warning.category, expected_warning)): saw_warning = True else: extra_warnings.append(actual_warning.category.__name__) if expected_warning: assert saw_warning, ("Did not see expected warning of class %r." % expected_warning.__name__) assert not extra_warnings, ("Caused unexpected warning(s): %r." % extra_warnings) def setup(): # The baseline images are created in this locale, so we should use # it during all of the tests. import locale import warnings from matplotlib.backends import backend_agg, backend_pdf, backend_svg try: locale.setlocale(locale.LC_ALL, str('en_US.UTF-8')) except locale.Error: try: locale.setlocale(locale.LC_ALL, str('English_United States.1252')) except locale.Error: warnings.warn( "Could not set locale to English/United States. " "Some date-related tests may fail") use('Agg', warn=False) # use Agg backend for these tests # These settings *must* be hardcoded for running the comparison # tests and are not necessarily the default values as specified in # rcsetup.py rcdefaults() # Start with all defaults rcParams['font.family'] = 'Bitstream Vera Sans' rcParams['text.hinting'] = False rcParams['text.hinting_factor'] = 8 # Clear the font caches. Otherwise, the hinting mode can travel # from one test to another. backend_agg.RendererAgg._fontd.clear() backend_pdf.RendererPdf.truetype_font_cache.clear() backend_svg.RendererSVG.fontd.clear()
mit
cwaluga/singularities_dolfin
src/correction.py
1
5217
#! /usr/bin/env python """ Evaluation of fits and correction tools """ __author__ = "Christian Waluga ([email protected])" __copyright__ = "Copyright (c) 2013 %s" % __author__ from dolfin import * from singular import * from meshtools import * import numpy as np # evaluate fit which was obtained for p=1 and a symmetric mesh with isosceles # cf. Ruede, Waluga, Wohlmuth 2013 for an explanation def evaluate_fit(n, angle, dirichlet = True): fitfunc = lambda c, x: c[0]*(np.exp(-2.0*(x - pi)) - 1.0) + c[1]*(x - pi) if dirichlet: lookup = {\ 3: [0.0998183980437, 0.189615542703], 4: [0.0555624819392, 0.128041557699], 5: [0.0415019850858, 0.1072128902], 6: [0.0363481781425, 0.0979881012415], 7: [0.0328888599638, 0.0925971779024], 8: [0.0313092655216, 0.0894450110842], 9: [0.0304135897967, 0.0874557266743], 10: [0.0289942470411, 0.0857622163158], 11: [0.027901067039, 0.084485325609], 12: [0.0279439846719, 0.0838604929991], } else: lookup = {\ 3: [0.165216485785, 0.212197384825], 4: [0.0857378209084, 0.137467156594], 5: [0.0560465904453, 0.111396584279], 6: [0.044618021932, 0.10018816402], 7: [0.038669805111, 0.0941769068565], 8: [0.0352699798574, 0.0905576657623], 9: [0.0326235916411, 0.0879857131768], 10: [0.0311767624978, 0.0863397219782], 11: [0.0292296008797, 0.0848041056068], 12: [0.0282471423786, 0.0838033295999], } return fitfunc(lookup[n], angle) # create a measure that allows us to assemble for the corner domains only # this can be used to compute energies etc. def corner_measure(mesh, corners): # init mesh connectivity mesh.init(1) # create mesh function with marked indices ncorners = len(corners) domain = CellFunction('size_t', mesh, ncorners) for vertex in vertices(mesh): for i in range(ncorners): if all(vertex.x(i) == x for i, x in enumerate(corners[i])): domain.array()[vertex.entities(2)] = i break return Measure('dx')[domain] # defines the correction for the corner domains (probably slower than using varying coefficients) def correction(u, v, gammas, dx_correction): corr = 0.0*dot(u,v)*dx for i in range(0,len(gammas)): corr -= Constant(gammas[i])*inner(grad(u), grad(v))*dx_correction(i) return corr # correct the material parameter at the reentrant corners def correct_corner_stiffness(function, mesh, corners, gammas): # init mesh connectivity mesh.init(1) # create mesh function with marked indices for vertex in vertices(mesh): for i in range(len(corners)): if all(vertex.x(i) == x for i, x in enumerate(corners[i])): function.vector()[vertex.entities(2)] *= (1.0-gammas[i]) break return function def solve_problem(mesh, corners, gammas, angles, u_exact = None): # right hand side f = Constant(1.0) # correct coefficient V0 = FunctionSpace(mesh, 'DG', 0) a = interpolate(Constant(1.0), V0) a = correct_corner_stiffness(a, mesh, corners, gammas) # variational form V = FunctionSpace(mesh, 'Lagrange', 1) u = TrialFunction(V) v = TestFunction(V) a = a*inner(grad(u), grad(v))*dx L = f*v*dx # boundary conditions bcs = [DirichletBC(V, 0.0, 'on_boundary')] # solve the variational problem uh = Function(V) solve(a == L, uh, bcs, \ solver_parameters = { \ "linear_solver": "bicgstab", \ "preconditioner": "ml_amg" \ }) if u_exact is None: return uh V_ho = FunctionSpace(mesh, 'Lagrange', 3) u_ho = interpolate(u_exact, V_ho) weight = WeightingFunction(corners, angles) return uh, sqrt(assemble(weight*(u_ho-uh)**2*dx)) # unit test if __name__ == '__main__': from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import matplotlib.pyplot as plt import numpy as np import pylab pylab.rc("font", family = "serif") pylab.rc("font", size = 12) # generate first plot fig = plt.figure() ax = fig.gca(projection='3d') X = np.linspace(3, 12, 10) Y = np.linspace(1.0, 2.0-1e-3, 10) X, Y = np.meshgrid(X, Y) Z = np.vectorize(lambda X, Y: evaluate_fit(X, Y*pi, dirichlet = True))(X, Y) surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.binary, # choose cm.Spectral for color linewidth=.5, antialiased=True) ax.set_zlim(0.0, 0.5) ax.set_xlabel(r'$n$') ax.set_ylabel(r'$\theta/\pi$') ax.set_zlabel(r'$\gamma_{\infty}$') ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) fig.colorbar(surf, shrink=0.5, aspect=5) fig.savefig('gammafit3d.pdf') plt.show() # generate second plot X = np.linspace(3, 7, 5) Y = np.linspace(1.0, 2.0-1e-3, 20) fig = plt.figure() plots, labels = [], [] for i,n in enumerate(X): p, = plt.plot(Y, evaluate_fit(n, Y*pi), ['kv-', 'g^-', 'rD-', 'bs-', 'y*-'][i]) plots.append(p) labels.append('n={0}'.format(n)) plt.legend(plots,labels,loc=0) plt.xlabel(r'$\theta/\pi$') plt.ylabel(r'$\gamma_\infty$') fig.savefig('gamma-plot-angle-n=3-7.pdf') plt.show()
mit
tectronics/pygranule
pygranule/orbital_layer.py
2
13944
from datetime import datetime, timedelta import numpy as np from pyproj import Proj from shapely import geometry from abc import ABCMeta, abstractmethod class OrbitalLayerError(Exception): def __init__(self,value): self.value = value def __str__(self): return repr(self.value) class OrbitalLayer(object): """ Defines a common interface for accessing orbital information from an orbital package, such as pyorbital. This forms a convenient layer (model) between getsat and the orbital module. """ __metaclass__ = ABCMeta instrument_info_db = {'AVHRR':{'scan_steps':2048}, 'MODIS':{}, 'VIIRS':{}} earth_radius = 6.37e6 proj_out_of_bounds_value = 1.0e30 def __init__(self, aoi, sat, instrument="AVHRR"): self.aoi = np.array([ [x for (x,y) in aoi],[y for (x,y) in aoi] ]) self.sat = sat self.instrument = instrument self.instrument_info = self.instrument_info_db[instrument] # init working projection for aoi/observation polygons clon,clat = self.aoi_center() self.working_projection = {'proj':'ortho', 'lon_0':clon, 'lat_0':clat} self.proj = Proj(**self.working_projection) @abstractmethod def next_transit(self, start=datetime.now(), resolution=100): """ Next transit time relative to center of aoi. Search resolution accuracy defined by subdivision of orbital period. """ pass def next_sampling(self, start=datetime.now(), resolution=100, search_limit=timedelta(hours=30)): """ Returns next sampling of aoi, where swath intersects the aoi. Returns transit time relative to center of aoi and fraction of aoi area sampled by the instrument swath. """ # next transit quarter_period = timedelta(minutes=self.orbital_period()/4.0) t = self.next_transit(start,resolution) Dt = t - start f = self.intersect_fraction(t-quarter_period, 2.0*quarter_period.total_seconds()/60.0) if f > 0.0: return t, f else: while Dt < search_limit: t = self.next_transit(t,resolution) Dt = t - start f = self.intersect_fraction(t-quarter_period, 2.0*quarter_period.total_seconds()/60.0) if f > 0.0: return t, f raise Exception('AOI Sampling exceeded search limit') @abstractmethod def orbital_period(self): """ Orbital period in floating point minutes. """ pass def swath_lonlats(self, start, period=None): """ Returns outline of the instrument swath in lonlat coordinates. This is useful for forming a polygon shape to test intercept with the area of interest. """ # default period is 1 minute long granule if period is None: period = 1.0 # 100th step of orbit should be sufficient resolution for resulting polygon # equivalent ot 1m AVHRR granule t_step = self.orbital_period()/100.0 t_steps = np.arange(0.0, period+t_step, t_step) scans_lon = [] scans_lat = [] for dt in t_steps: t = start + timedelta(minutes=dt) pos_time = self.scan_line_lonlats(t) scans_lon.append( pos_time[0] ) scans_lat.append( pos_time[1] ) scans_lon = np.array(scans_lon) scans_lat = np.array(scans_lat) # pick out perimeter of swaths lons = scans_lon[0,:].tolist() + (scans_lon[1:-1,-1].tolist()) \ + (scans_lon[-1,:])[::-1].tolist() + (scans_lon[1:-1,0])[::-1].tolist() lats = scans_lat[0,:].tolist() + scans_lat[1:-1,-1].tolist() \ + (scans_lat[-1,:])[::-1].tolist() + (scans_lat[1:-1,0])[::-1].tolist() return np.array((lons,lats)) @abstractmethod def scan_line_lonlats(self, t): """ Returns a single instrument scan line starting at datetime t """ pass def scan_line_working_projection(self, t): """ Returns a single instrument scan line sarting at datetime t in working projection coordinates. """ return np.array(self.proj(*self.scan_line_lonlats(t))) def swath_working_projection(self, start, period=None): """ Returns the coordinate outline of the instrument swath in working projection coordinates. Out of map projection bound coordinates are handled by splitting up the outline into a list. """ # default period is 1 minute long granule if period is None: period = 1.0 # 100th step of orbit should be sufficient resolution for resulting polygon # equivalent ot 1m AVHRR granule t_step = self.orbital_period()/1000.0 t_steps = np.arange(0.0, period+t_step, t_step) # fetch all scan lines and index segments def has_valid_xy(A): return ((A[0] != self.proj_out_of_bounds_value) & (A[1] != self.proj_out_of_bounds_value)).any() def valid_xys(A): sel = (A[0] != self.proj_out_of_bounds_value) & (A[1] != self.proj_out_of_bounds_value) return A[:,sel] scans = [] segment_idx = [] count = 0 idx = -1 for dt in t_steps: t = start + timedelta(minutes=dt) pos = self.scan_line_working_projection(t) if has_valid_xy(pos): scans.append( valid_xys(pos) ) if idx < 0: #begin segment idx = count count += 1 elif idx > -1: #end segment segment_idx.append((idx,count-1)) idx = -1 if (pos < self.proj_out_of_bounds_value).any(): segment_idx.append((idx,count-1)) # pick out perimeters of segments (this is fast / above is bottleneck) segments = [] for s in segment_idx: a,b = s xs = scans[a][0].tolist() ys = scans[a][1].tolist() for i in range(a+1,b): xs = scans[i][0,0:1].tolist() + xs + scans[i][0,-1:].tolist() ys = scans[i][1,0:1].tolist() + ys + scans[i][1,-1:].tolist() xs = xs + scans[b][0,::-1].tolist() ys = ys + scans[b][1,::-1].tolist() segments.append( np.array((xs,ys)) ) return segments def intersect_polygon(self, start, period=None): """ Returns a shapely polygon representing the intersection with the area of interest and the instrument swath sampled at datetime start for period number of minutes. """ swath = self.swath_polygon(start, period) aoi = self.aoi_polygon() return aoi.intersection(swath) def intersect_fraction(self, start, period=None): """ Returns the fractional area of the area of interest, sampled by the instrument swath starting at datetime 'start' for a 'period' number of minutes. """ swath = self.swath_polygon(start, period) aoi = self.aoi_polygon() intersect = aoi.intersection(swath) return intersect.area/aoi.area def does_swath_sample_aoi(self, start, period=None): """ Check if swath starting at time 'start' samples (overlaps) the area of interest. """ swath = self.swath_polygon(start, period) aoi = self.aoi_polygon() return swath.intersects(aoi) #return aoi.intersection(swath).area > 0.0 # using area intersect because overlaps fails # for small poly or if swath line does not cross (need to read pyshapely manual) #return swath.overlaps(aoi) def swath_polygon(self, start, period=None): segments = self.swath_working_projection(start,period=period) try: if len(segments) == 0: # empty polygon return geometry.Polygon() elif len(segments) == 1: return geometry.Polygon(segments[0].transpose().tolist()) else: P = geometry.Polygon(segments[0].transpose().tolist()) for i in range(1,len(segments)): P = P.union( geometry.Polygon( segments[i].transpose().tolist()) ) return P except ValueError: # empty polygon if invalid polygon created return geometry.Polygon() def aoi_polygon(self): xys = np.array(self.proj(*self.aoi)) coords = xys.transpose().tolist() if len(coords) > 2: return geometry.Polygon(coords) elif len(coords) == 2: return geometry.LineString(coords) else: return geometry.Point(coords[0]) def show_swath(self, start, period=None): """ A helper method that displays the orbital swath starting at datetime start, for a period number of minutes. If, start is iterable, then the method assumes it is an iterable of datetimes, plotting a number of swaths at those times. """ # test if start is iterable, EAFP style: try: for e in start: pass except TypeError: start = [start] import matplotlib.pyplot as plt # fetch the coordinates (aoix,aoiy) = self.proj(*self.aoi) # plot AOI plt.axis('equal') plt.plot(aoix,aoiy,'r-') plt.plot((aoix[-1],aoix[0]),(aoiy[-1],aoiy[0]),'r-') # plot Earth Re = self.earth_radius circle=plt.Circle((0,0),Re,color='g',fill=False) fig = plt.gcf() fig.gca().add_artist(circle) plt.xlim((-1.5*Re,1.5*Re)) plt.ylim((-1.5*Re,1.5*Re)) # Plot granules for t in start: # fetch the coordinates xys_segs = self.swath_working_projection(t, period) for xys in xys_segs: plt.plot(xys[0],xys[1],'b-') plt.plot((xys[0][-1],xys[0][0]),(xys[1][-1],xys[1][0]),'b-') plt.show() #from mpl_toolkits.basemap import Basemap #m = Basemap(projection='ortho', lon_0=self.working_projection['lon_0'], # lat_0=self.working_projection['lat_0'],resolution='l') # convert and plot the predicted pixels in red #p1 = m.plot(x,y, marker='+', color='red', markerfacecolor='red', # markeredgecolor='red', markersize=1, markevery=1, zorder=4, linewidth=1.0) #m.fillcontinents(color='0.85', lake_color=None, zorder=3) #m.drawparallels(np.arange(-90.,90.,5.), labels=[1,0,1,0],fontsize=10, dashes=[1, 0], color=[0.8,0.8,0.8], zorder=1) #m.drawmeridians(np.arange(-180.,180.,5.), labels=[0,1,0,1],fontsize=10, dashes=[1, 0], color=[0.8,0.8,0.8], zorder=2) #plt.show() def show_swath_pycoast(self, start, period=None): """ A helper method that displays the orbital swath starting at datetime start, for a period number of minutes. If, start is iterable, then the method assumes it is an iterable of datetimes, plotting a number of swaths at those times. """ # test if start is iterable, EAFP style: try: for e in start: pass except TypeError: start = [start] start.sort() from PIL import Image from pycoast import ContourWriterAGG from pydecorate import DecoratorAGG img = Image.new('RGB', (650, 650)) proj4_string = "" for x in self.working_projection: proj4_string += "+%s=%s "%(x,self.working_projection[x]) area_extent = (-6700000.0, -6700000.0, 6700000.0, 6700000.0) area_def = (proj4_string, area_extent) cw = ContourWriterAGG() cw.add_grid(img, area_def, (10.0,10.0),(2.0,2.0), fill='blue', outline='gray', outline_opacity=130, minor_outline=None, write_text=False) # Plot granules for t in start: # fetch the coordinates xys_segs = self.swath_working_projection(t, period) for xys in xys_segs: lls = self.proj(xys[0],xys[1],inverse=True) cw.add_polygon(img, area_def, zip(lls[0], lls[1]), outline="blue", fill="blue", fill_opacity=70, width=1) cw.add_coastlines(img, area_def, resolution='l') aoi_coords = zip(*self.aoi) ## TODO: Handle single point case properly if len(aoi_coords) == 1: x, y = aoi_coords[0] d = 0.5 line_coords = [(x-d,y),(x+d,y)] cw.add_line(img, area_def, line_coords, outline="red", fill="red", fill_opacity=100, width=2) elif len(aoi_coords) == 2: cw.add_line(img, area_def, aoi_coords, outline="red", fill="red", fill_opacity=100, width=10) else: cw.add_polygon(img, area_def, aoi_coords, outline="red", fill="red", fill_opacity=100, width=2) # Decorate dc = DecoratorAGG(img) text = "Granules from time: %s + %.2f min."%(start[0].strftime('%Y.%m.%d %H:%M:%S'), (start[-1]-start[0]).total_seconds()/60.0) dc.align_bottom() dc.add_text(text,height=0) img.show() def aoi_center(self): ## eventually do this in projection coordinate space instead. ## swath and aoi intersection will be evaluated in projection (e.g. orthographic). return sum(self.aoi[0])/len(self.aoi[0]), sum(self.aoi[1])/len(self.aoi[1]) @abstractmethod def set_tle(self, line1, line2): """ Use to apply a particular two line element. """ pass
gpl-3.0
modelblocks/modelblocks-release
resource-rt/scripts/filter_cols.py
1
1065
import sys, re, argparse, pandas as pd argparser = argparse.ArgumentParser(''' Reads a space-delimited data table and outputs only user-specified columns. ''') argparser.add_argument('-c', '--cols', dest='c', nargs='+', action='store', help='column names to output') argparser.add_argument('-x', '--exclude', dest='x', nargs='+', action='store', help='column names to drop') argparser.add_argument('-d', '--dedup', dest='d', action='store_true', help='drop duplicate column names (keep values from the first one)') args, unknown = argparser.parse_known_args() def main(): data = pd.read_csv(sys.stdin, sep=' ', skipinitialspace=True, quoting=3) if args.d: dups = [col for col in data.columns.values if re.search('\.[0-9]+$', col)] for dup in dups: data.drop(dup, axis=1, inplace=True) if args.c != None: data = data.filter(items=args.c) if args.x != None: for x in args.x: data.drop(x, axis=1, inplace=True) data.to_csv(sys.stdout, ' ', na_rep='NaN', index=False, quoting=3) main()
gpl-3.0
rohanp/scikit-learn
sklearn/neighbors/tests/test_dist_metrics.py
230
5234
import itertools import pickle import numpy as np from numpy.testing import assert_array_almost_equal import scipy from scipy.spatial.distance import cdist from sklearn.neighbors.dist_metrics import DistanceMetric from nose import SkipTest def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) def cmp_version(version1, version2): version1 = tuple(map(int, version1.split('.')[:2])) version2 = tuple(map(int, version2.split('.')[:2])) if version1 < version2: return -1 elif version1 > version2: return 1 else: return 0 class TestMetrics: def __init__(self, n1=20, n2=25, d=4, zero_frac=0.5, rseed=0, dtype=np.float64): np.random.seed(rseed) self.X1 = np.random.random((n1, d)).astype(dtype) self.X2 = np.random.random((n2, d)).astype(dtype) # make boolean arrays: ones and zeros self.X1_bool = self.X1.round(0) self.X2_bool = self.X2.round(0) V = np.random.random((d, d)) VI = np.dot(V, V.T) self.metrics = {'euclidean': {}, 'cityblock': {}, 'minkowski': dict(p=(1, 1.5, 2, 3)), 'chebyshev': {}, 'seuclidean': dict(V=(np.random.random(d),)), 'wminkowski': dict(p=(1, 1.5, 3), w=(np.random.random(d),)), 'mahalanobis': dict(VI=(VI,)), 'hamming': {}, 'canberra': {}, 'braycurtis': {}} self.bool_metrics = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def test_cdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X2, metric, **kwargs) yield self.check_cdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X2_bool, metric) yield self.check_cdist_bool, metric, D_true def check_cdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1, self.X2) assert_array_almost_equal(D12, D_true) def check_cdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool, self.X2_bool) assert_array_almost_equal(D12, D_true) def test_pdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X1, metric, **kwargs) yield self.check_pdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X1_bool, metric) yield self.check_pdist_bool, metric, D_true def check_pdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1) assert_array_almost_equal(D12, D_true) def check_pdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool) assert_array_almost_equal(D12, D_true) def test_haversine_metric(): def haversine_slow(x1, x2): return 2 * np.arcsin(np.sqrt(np.sin(0.5 * (x1[0] - x2[0])) ** 2 + np.cos(x1[0]) * np.cos(x2[0]) * np.sin(0.5 * (x1[1] - x2[1])) ** 2)) X = np.random.random((10, 2)) haversine = DistanceMetric.get_metric("haversine") D1 = haversine.pairwise(X) D2 = np.zeros_like(D1) for i, x1 in enumerate(X): for j, x2 in enumerate(X): D2[i, j] = haversine_slow(x1, x2) assert_array_almost_equal(D1, D2) assert_array_almost_equal(haversine.dist_to_rdist(D1), np.sin(0.5 * D2) ** 2) def test_pyfunc_metric(): X = np.random.random((10, 3)) euclidean = DistanceMetric.get_metric("euclidean") pyfunc = DistanceMetric.get_metric("pyfunc", func=dist_func, p=2) # Check if both callable metric and predefined metric initialized # DistanceMetric object is picklable euclidean_pkl = pickle.loads(pickle.dumps(euclidean)) pyfunc_pkl = pickle.loads(pickle.dumps(pyfunc)) D1 = euclidean.pairwise(X) D2 = pyfunc.pairwise(X) D1_pkl = euclidean_pkl.pairwise(X) D2_pkl = pyfunc_pkl.pairwise(X) assert_array_almost_equal(D1, D2) assert_array_almost_equal(D1_pkl, D2_pkl)
bsd-3-clause
mjgrav2001/scikit-learn
sklearn/datasets/lfw.py
50
19048
"""Loader for the Labeled Faces in the Wild (LFW) dataset This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. An alternative task, Face Recognition or Face Identification is: given the picture of the face of an unknown person, identify the name of the person by referring to a gallery of previously seen pictures of identified persons. Both Face Verification and Face Recognition are tasks that are typically performed on the output of a model trained to perform Face Detection. The most popular model for Face Detection is called Viola-Johns and is implemented in the OpenCV library. The LFW faces were extracted by this face detector from various online websites. """ # Copyright (c) 2011 Olivier Grisel <[email protected]> # License: BSD 3 clause from os import listdir, makedirs, remove from os.path import join, exists, isdir from sklearn.utils import deprecated import logging import numpy as np try: import urllib.request as urllib # for backwards compatibility except ImportError: import urllib from .base import get_data_home, Bunch from ..externals.joblib import Memory from ..externals.six import b logger = logging.getLogger(__name__) BASE_URL = "http://vis-www.cs.umass.edu/lfw/" ARCHIVE_NAME = "lfw.tgz" FUNNELED_ARCHIVE_NAME = "lfw-funneled.tgz" TARGET_FILENAMES = [ 'pairsDevTrain.txt', 'pairsDevTest.txt', 'pairs.txt', ] def scale_face(face): """Scale back to 0-1 range in case of normalization for plotting""" scaled = face - face.min() scaled /= scaled.max() return scaled # # Common private utilities for data fetching from the original LFW website # local disk caching, and image decoding. # def check_fetch_lfw(data_home=None, funneled=True, download_if_missing=True): """Helper function to download any missing LFW data""" data_home = get_data_home(data_home=data_home) lfw_home = join(data_home, "lfw_home") if funneled: archive_path = join(lfw_home, FUNNELED_ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw_funneled") archive_url = BASE_URL + FUNNELED_ARCHIVE_NAME else: archive_path = join(lfw_home, ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw") archive_url = BASE_URL + ARCHIVE_NAME if not exists(lfw_home): makedirs(lfw_home) for target_filename in TARGET_FILENAMES: target_filepath = join(lfw_home, target_filename) if not exists(target_filepath): if download_if_missing: url = BASE_URL + target_filename logger.warning("Downloading LFW metadata: %s", url) urllib.urlretrieve(url, target_filepath) else: raise IOError("%s is missing" % target_filepath) if not exists(data_folder_path): if not exists(archive_path): if download_if_missing: logger.warning("Downloading LFW data (~200MB): %s", archive_url) urllib.urlretrieve(archive_url, archive_path) else: raise IOError("%s is missing" % target_filepath) import tarfile logger.info("Decompressing the data archive to %s", data_folder_path) tarfile.open(archive_path, "r:gz").extractall(path=lfw_home) remove(archive_path) return lfw_home, data_folder_path def _load_imgs(file_paths, slice_, color, resize): """Internally used to load images""" # Try to import imread and imresize from PIL. We do this here to prevent # the whole sklearn.datasets module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread from scipy.misc import imresize except ImportError: raise ImportError("The Python Imaging Library (PIL)" " is required to load data from jpeg files") # compute the portion of the images to load to respect the slice_ parameter # given by the caller default_slice = (slice(0, 250), slice(0, 250)) if slice_ is None: slice_ = default_slice else: slice_ = tuple(s or ds for s, ds in zip(slice_, default_slice)) h_slice, w_slice = slice_ h = (h_slice.stop - h_slice.start) // (h_slice.step or 1) w = (w_slice.stop - w_slice.start) // (w_slice.step or 1) if resize is not None: resize = float(resize) h = int(resize * h) w = int(resize * w) # allocate some contiguous memory to host the decoded image slices n_faces = len(file_paths) if not color: faces = np.zeros((n_faces, h, w), dtype=np.float32) else: faces = np.zeros((n_faces, h, w, 3), dtype=np.float32) # iterate over the collected file path to load the jpeg files as numpy # arrays for i, file_path in enumerate(file_paths): if i % 1000 == 0: logger.info("Loading face #%05d / %05d", i + 1, n_faces) face = np.asarray(imread(file_path)[slice_], dtype=np.float32) face /= 255.0 # scale uint8 coded colors to the [0.0, 1.0] floats if resize is not None: face = imresize(face, resize) if not color: # average the color channels to compute a gray levels # representaion face = face.mean(axis=2) faces[i, ...] = face return faces # # Task #1: Face Identification on picture with names # def _fetch_lfw_people(data_folder_path, slice_=None, color=False, resize=None, min_faces_per_person=0): """Perform the actual data loading for the lfw people dataset This operation is meant to be cached by a joblib wrapper. """ # scan the data folder content to retain people with more that # `min_faces_per_person` face pictures person_names, file_paths = [], [] for person_name in sorted(listdir(data_folder_path)): folder_path = join(data_folder_path, person_name) if not isdir(folder_path): continue paths = [join(folder_path, f) for f in listdir(folder_path)] n_pictures = len(paths) if n_pictures >= min_faces_per_person: person_name = person_name.replace('_', ' ') person_names.extend([person_name] * n_pictures) file_paths.extend(paths) n_faces = len(file_paths) if n_faces == 0: raise ValueError("min_faces_per_person=%d is too restrictive" % min_faces_per_person) target_names = np.unique(person_names) target = np.searchsorted(target_names, person_names) faces = _load_imgs(file_paths, slice_, color, resize) # shuffle the faces with a deterministic RNG scheme to avoid having # all faces of the same person in a row, as it would break some # cross validation and learning algorithms such as SGD and online # k-means that make an IID assumption indices = np.arange(n_faces) np.random.RandomState(42).shuffle(indices) faces, target = faces[indices], target[indices] return faces, target, target_names def fetch_lfw_people(data_home=None, funneled=True, resize=0.5, min_faces_per_person=0, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) people dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Recognition (or Identification): given the picture of a face, find the name of the person given a training set (gallery). The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. min_faces_per_person : int, optional, default None The extracted dataset will only retain pictures of people that have at least `min_faces_per_person` different pictures. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- dataset : dict-like object with the following attributes: dataset.data : numpy array of shape (13233, 2914) Each row corresponds to a ravelled face image of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.images : numpy array of shape (13233, 62, 47) Each row is a face image corresponding to one of the 5749 people in the dataset. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.target : numpy array of shape (13233,) Labels associated to each face image. Those labels range from 0-5748 and correspond to the person IDs. dataset.DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading LFW people faces from %s', lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_people) # load and memoize the pairs as np arrays faces, target, target_names = load_func( data_folder_path, resize=resize, min_faces_per_person=min_faces_per_person, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=faces.reshape(len(faces), -1), images=faces, target=target, target_names=target_names, DESCR="LFW faces dataset") # # Task #2: Face Verification on pairs of face pictures # def _fetch_lfw_pairs(index_file_path, data_folder_path, slice_=None, color=False, resize=None): """Perform the actual data loading for the LFW pairs dataset This operation is meant to be cached by a joblib wrapper. """ # parse the index file to find the number of pairs to be able to allocate # the right amount of memory before starting to decode the jpeg files with open(index_file_path, 'rb') as index_file: split_lines = [ln.strip().split(b('\t')) for ln in index_file] pair_specs = [sl for sl in split_lines if len(sl) > 2] n_pairs = len(pair_specs) # interating over the metadata lines for each pair to find the filename to # decode and load in memory target = np.zeros(n_pairs, dtype=np.int) file_paths = list() for i, components in enumerate(pair_specs): if len(components) == 3: target[i] = 1 pair = ( (components[0], int(components[1]) - 1), (components[0], int(components[2]) - 1), ) elif len(components) == 4: target[i] = 0 pair = ( (components[0], int(components[1]) - 1), (components[2], int(components[3]) - 1), ) else: raise ValueError("invalid line %d: %r" % (i + 1, components)) for j, (name, idx) in enumerate(pair): try: person_folder = join(data_folder_path, name) except TypeError: person_folder = join(data_folder_path, str(name, 'UTF-8')) filenames = list(sorted(listdir(person_folder))) file_path = join(person_folder, filenames[idx]) file_paths.append(file_path) pairs = _load_imgs(file_paths, slice_, color, resize) shape = list(pairs.shape) n_faces = shape.pop(0) shape.insert(0, 2) shape.insert(0, n_faces // 2) pairs.shape = shape return pairs, target, np.array(['Different persons', 'Same person']) @deprecated("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") def load_lfw_people(download_if_missing=False, **kwargs): """Alias for fetch_lfw_people(download_if_missing=False) Check fetch_lfw_people.__doc__ for the documentation and parameter list. """ return fetch_lfw_people(download_if_missing=download_if_missing, **kwargs) def fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) pairs dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. In the official `README.txt`_ this task is described as the "Restricted" task. As I am not sure as to implement the "Unrestricted" variant correctly, I left it as unsupported for now. .. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Read more in the :ref:`User Guide <labeled_faces_in_the_wild>`. Parameters ---------- subset : optional, default: 'train' Select the dataset to load: 'train' for the development training set, 'test' for the development test set, and '10_folds' for the official evaluation set that is meant to be used with a 10-folds cross validation. data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- The data is returned as a Bunch object with the following attributes: data : numpy array of shape (2200, 5828) Each row corresponds to 2 ravel'd face images of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. pairs : numpy array of shape (2200, 2, 62, 47) Each row has 2 face images corresponding to same or different person from the dataset containing 5749 people. Changing the ``slice_`` or resize parameters will change the shape of the output. target : numpy array of shape (13233,) Labels associated to each pair of images. The two label values being different persons or the same person. DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading %s LFW pairs from %s', subset, lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_pairs) # select the right metadata file according to the requested subset label_filenames = { 'train': 'pairsDevTrain.txt', 'test': 'pairsDevTest.txt', '10_folds': 'pairs.txt', } if subset not in label_filenames: raise ValueError("subset='%s' is invalid: should be one of %r" % ( subset, list(sorted(label_filenames.keys())))) index_file_path = join(lfw_home, label_filenames[subset]) # load and memoize the pairs as np arrays pairs, target, target_names = load_func( index_file_path, data_folder_path, resize=resize, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=pairs.reshape(len(pairs), -1), pairs=pairs, target=target, target_names=target_names, DESCR="'%s' segment of the LFW pairs dataset" % subset) @deprecated("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") def load_lfw_pairs(download_if_missing=False, **kwargs): """Alias for fetch_lfw_pairs(download_if_missing=False) Check fetch_lfw_pairs.__doc__ for the documentation and parameter list. """ return fetch_lfw_pairs(download_if_missing=download_if_missing, **kwargs)
bsd-3-clause
Clyde-fare/scikit-learn
sklearn/tests/test_cross_validation.py
29
46740
"""Test the cross_validation module""" from __future__ import division import warnings import numpy as np from scipy.sparse import coo_matrix from scipy.sparse import csr_matrix from scipy import stats from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from sklearn import cross_validation as cval from sklearn.datasets import make_regression from sklearn.datasets import load_boston from sklearn.datasets import load_digits from sklearn.datasets import load_iris from sklearn.datasets import make_multilabel_classification from sklearn.metrics import explained_variance_score from sklearn.metrics import make_scorer from sklearn.metrics import precision_score from sklearn.externals import six from sklearn.externals.six.moves import zip from sklearn.linear_model import Ridge from sklearn.multiclass import OneVsRestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.cluster import KMeans from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, a=0, allow_nd=False): self.a = a self.allow_nd = allow_nd def fit(self, X, Y=None, sample_weight=None, class_prior=None, sparse_sample_weight=None, sparse_param=None, dummy_int=None, dummy_str=None, dummy_obj=None, callback=None): """The dummy arguments are to test that this fit function can accept non-array arguments through cross-validation, such as: - int - str (this is actually array-like) - object - function """ self.dummy_int = dummy_int self.dummy_str = dummy_str self.dummy_obj = dummy_obj if callback is not None: callback(self) if self.allow_nd: X = X.reshape(len(X), -1) if X.ndim >= 3 and not self.allow_nd: raise ValueError('X cannot be d') if sample_weight is not None: assert_true(sample_weight.shape[0] == X.shape[0], 'MockClassifier extra fit_param sample_weight.shape[0]' ' is {0}, should be {1}'.format(sample_weight.shape[0], X.shape[0])) if class_prior is not None: assert_true(class_prior.shape[0] == len(np.unique(y)), 'MockClassifier extra fit_param class_prior.shape[0]' ' is {0}, should be {1}'.format(class_prior.shape[0], len(np.unique(y)))) if sparse_sample_weight is not None: fmt = ('MockClassifier extra fit_param sparse_sample_weight' '.shape[0] is {0}, should be {1}') assert_true(sparse_sample_weight.shape[0] == X.shape[0], fmt.format(sparse_sample_weight.shape[0], X.shape[0])) if sparse_param is not None: fmt = ('MockClassifier extra fit_param sparse_param.shape ' 'is ({0}, {1}), should be ({2}, {3})') assert_true(sparse_param.shape == P_sparse.shape, fmt.format(sparse_param.shape[0], sparse_param.shape[1], P_sparse.shape[0], P_sparse.shape[1])) return self def predict(self, T): if self.allow_nd: T = T.reshape(len(T), -1) return T[:, 0] def score(self, X=None, Y=None): return 1. / (1 + np.abs(self.a)) def get_params(self, deep=False): return {'a': self.a, 'allow_nd': self.allow_nd} X = np.ones((10, 2)) X_sparse = coo_matrix(X) W_sparse = coo_matrix((np.array([1]), (np.array([1]), np.array([0]))), shape=(10, 1)) P_sparse = coo_matrix(np.eye(5)) y = np.arange(10) // 2 ############################################################################## # Tests def check_valid_split(train, test, n_samples=None): # Use python sets to get more informative assertion failure messages train, test = set(train), set(test) # Train and test split should not overlap assert_equal(train.intersection(test), set()) if n_samples is not None: # Check that the union of train an test split cover all the indices assert_equal(train.union(test), set(range(n_samples))) def check_cv_coverage(cv, expected_n_iter=None, n_samples=None): # Check that a all the samples appear at least once in a test fold if expected_n_iter is not None: assert_equal(len(cv), expected_n_iter) else: expected_n_iter = len(cv) collected_test_samples = set() iterations = 0 for train, test in cv: check_valid_split(train, test, n_samples=n_samples) iterations += 1 collected_test_samples.update(test) # Check that the accumulated test samples cover the whole dataset assert_equal(iterations, expected_n_iter) if n_samples is not None: assert_equal(collected_test_samples, set(range(n_samples))) def test_kfold_valueerrors(): # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.KFold, 3, 4) # Check that a warning is raised if the least populated class has too few # members. y = [3, 3, -1, -1, 2] cv = assert_warns_message(Warning, "The least populated class", cval.StratifiedKFold, y, 3) # Check that despite the warning the folds are still computed even # though all the classes are not necessarily represented at on each # side of the split at each split check_cv_coverage(cv, expected_n_iter=3, n_samples=len(y)) # Error when number of folds is <= 1 assert_raises(ValueError, cval.KFold, 2, 0) assert_raises(ValueError, cval.KFold, 2, 1) assert_raises(ValueError, cval.StratifiedKFold, y, 0) assert_raises(ValueError, cval.StratifiedKFold, y, 1) # When n is not integer: assert_raises(ValueError, cval.KFold, 2.5, 2) # When n_folds is not integer: assert_raises(ValueError, cval.KFold, 5, 1.5) assert_raises(ValueError, cval.StratifiedKFold, y, 1.5) def test_kfold_indices(): # Check all indices are returned in the test folds kf = cval.KFold(300, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=300) # Check all indices are returned in the test folds even when equal-sized # folds are not possible kf = cval.KFold(17, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=17) def test_kfold_no_shuffle(): # Manually check that KFold preserves the data ordering on toy datasets splits = iter(cval.KFold(4, 2)) train, test = next(splits) assert_array_equal(test, [0, 1]) assert_array_equal(train, [2, 3]) train, test = next(splits) assert_array_equal(test, [2, 3]) assert_array_equal(train, [0, 1]) splits = iter(cval.KFold(5, 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 2]) assert_array_equal(train, [3, 4]) train, test = next(splits) assert_array_equal(test, [3, 4]) assert_array_equal(train, [0, 1, 2]) def test_stratified_kfold_no_shuffle(): # Manually check that StratifiedKFold preserves the data ordering as much # as possible on toy datasets in order to avoid hiding sample dependencies # when possible splits = iter(cval.StratifiedKFold([1, 1, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 2]) assert_array_equal(train, [1, 3]) train, test = next(splits) assert_array_equal(test, [1, 3]) assert_array_equal(train, [0, 2]) splits = iter(cval.StratifiedKFold([1, 1, 1, 0, 0, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 3, 4]) assert_array_equal(train, [2, 5, 6]) train, test = next(splits) assert_array_equal(test, [2, 5, 6]) assert_array_equal(train, [0, 1, 3, 4]) def test_stratified_kfold_ratios(): # Check that stratified kfold preserves label ratios in individual splits # Repeat with shuffling turned off and on n_samples = 1000 labels = np.array([4] * int(0.10 * n_samples) + [0] * int(0.89 * n_samples) + [1] * int(0.01 * n_samples)) for shuffle in [False, True]: for train, test in cval.StratifiedKFold(labels, 5, shuffle=shuffle): assert_almost_equal(np.sum(labels[train] == 4) / len(train), 0.10, 2) assert_almost_equal(np.sum(labels[train] == 0) / len(train), 0.89, 2) assert_almost_equal(np.sum(labels[train] == 1) / len(train), 0.01, 2) assert_almost_equal(np.sum(labels[test] == 4) / len(test), 0.10, 2) assert_almost_equal(np.sum(labels[test] == 0) / len(test), 0.89, 2) assert_almost_equal(np.sum(labels[test] == 1) / len(test), 0.01, 2) def test_kfold_balance(): # Check that KFold returns folds with balanced sizes for kf in [cval.KFold(i, 5) for i in range(11, 17)]: sizes = [] for _, test in kf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), kf.n) def test_stratifiedkfold_balance(): # Check that KFold returns folds with balanced sizes (only when # stratification is possible) # Repeat with shuffling turned off and on labels = [0] * 3 + [1] * 14 for shuffle in [False, True]: for skf in [cval.StratifiedKFold(labels[:i], 3, shuffle=shuffle) for i in range(11, 17)]: sizes = [] for _, test in skf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), skf.n) def test_shuffle_kfold(): # Check the indices are shuffled properly, and that all indices are # returned in the different test folds kf = cval.KFold(300, 3, shuffle=True, random_state=0) ind = np.arange(300) all_folds = None for train, test in kf: sorted_array = np.arange(100) assert_true(np.any(sorted_array != ind[train])) sorted_array = np.arange(101, 200) assert_true(np.any(sorted_array != ind[train])) sorted_array = np.arange(201, 300) assert_true(np.any(sorted_array != ind[train])) if all_folds is None: all_folds = ind[test].copy() else: all_folds = np.concatenate((all_folds, ind[test])) all_folds.sort() assert_array_equal(all_folds, ind) def test_shuffle_stratifiedkfold(): # Check that shuffling is happening when requested, and for proper # sample coverage labels = [0] * 20 + [1] * 20 kf0 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=0)) kf1 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=1)) for (_, test0), (_, test1) in zip(kf0, kf1): assert_true(set(test0) != set(test1)) check_cv_coverage(kf0, expected_n_iter=5, n_samples=40) def test_kfold_can_detect_dependent_samples_on_digits(): # see #2372 # The digits samples are dependent: they are apparently grouped by authors # although we don't have any information on the groups segment locations # for this data. We can highlight this fact be computing k-fold cross- # validation with and without shuffling: we observe that the shuffling case # wrongly makes the IID assumption and is therefore too optimistic: it # estimates a much higher accuracy (around 0.96) than than the non # shuffling variant (around 0.86). digits = load_digits() X, y = digits.data[:800], digits.target[:800] model = SVC(C=10, gamma=0.005) n = len(y) cv = cval.KFold(n, 5, shuffle=False) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) # Shuffling the data artificially breaks the dependency and hides the # overfitting of the model with regards to the writing style of the authors # by yielding a seriously overestimated score: cv = cval.KFold(n, 5, shuffle=True, random_state=0) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) cv = cval.KFold(n, 5, shuffle=True, random_state=1) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) # Similarly, StratifiedKFold should try to shuffle the data as little # as possible (while respecting the balanced class constraints) # and thus be able to detect the dependency by not overestimating # the CV score either. As the digits dataset is approximately balanced # the estimated mean score is close to the score measured with # non-shuffled KFold cv = cval.StratifiedKFold(y, 5) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) def test_label_kfold(): rng = np.random.RandomState(0) # Parameters of the test n_labels = 15 n_samples = 1000 n_folds = 5 # Construct the test data tolerance = 0.05 * n_samples # 5 percent error allowed labels = rng.randint(0, n_labels, n_samples) folds = cval.LabelKFold(labels, n_folds).idxs ideal_n_labels_per_fold = n_samples // n_folds # Check that folds have approximately the same size assert_equal(len(folds), len(labels)) for i in np.unique(folds): assert_greater_equal(tolerance, abs(sum(folds == i) - ideal_n_labels_per_fold)) # Check that each label appears only in 1 fold for label in np.unique(labels): assert_equal(len(np.unique(folds[labels == label])), 1) # Check that no label is on both sides of the split labels = np.asarray(labels, dtype=object) for train, test in cval.LabelKFold(labels, n_folds=n_folds): assert_equal(len(np.intersect1d(labels[train], labels[test])), 0) # Construct the test data labels = ['Albert', 'Jean', 'Bertrand', 'Michel', 'Jean', 'Francis', 'Robert', 'Michel', 'Rachel', 'Lois', 'Michelle', 'Bernard', 'Marion', 'Laura', 'Jean', 'Rachel', 'Franck', 'John', 'Gael', 'Anna', 'Alix', 'Robert', 'Marion', 'David', 'Tony', 'Abel', 'Becky', 'Madmood', 'Cary', 'Mary', 'Alexandre', 'David', 'Francis', 'Barack', 'Abdoul', 'Rasha', 'Xi', 'Silvia'] n_labels = len(np.unique(labels)) n_samples = len(labels) n_folds = 5 tolerance = 0.05 * n_samples # 5 percent error allowed folds = cval.LabelKFold(labels, n_folds).idxs ideal_n_labels_per_fold = n_samples // n_folds # Check that folds have approximately the same size assert_equal(len(folds), len(labels)) for i in np.unique(folds): assert_greater_equal(tolerance, abs(sum(folds == i) - ideal_n_labels_per_fold)) # Check that each label appears only in 1 fold for label in np.unique(labels): assert_equal(len(np.unique(folds[labels == label])), 1) # Check that no label is on both sides of the split labels = np.asarray(labels, dtype=object) for train, test in cval.LabelKFold(labels, n_folds=n_folds): assert_equal(len(np.intersect1d(labels[train], labels[test])), 0) # Should fail if there are more folds than labels labels = np.array([1, 1, 1, 2, 2]) assert_raises(ValueError, cval.LabelKFold, labels, n_folds=3) def test_shuffle_split(): ss1 = cval.ShuffleSplit(10, test_size=0.2, random_state=0) ss2 = cval.ShuffleSplit(10, test_size=2, random_state=0) ss3 = cval.ShuffleSplit(10, test_size=np.int32(2), random_state=0) for typ in six.integer_types: ss4 = cval.ShuffleSplit(10, test_size=typ(2), random_state=0) for t1, t2, t3, t4 in zip(ss1, ss2, ss3, ss4): assert_array_equal(t1[0], t2[0]) assert_array_equal(t2[0], t3[0]) assert_array_equal(t3[0], t4[0]) assert_array_equal(t1[1], t2[1]) assert_array_equal(t2[1], t3[1]) assert_array_equal(t3[1], t4[1]) def test_stratified_shuffle_split_init(): y = np.asarray([0, 1, 1, 1, 2, 2, 2]) # Check that error is raised if there is a class with only one sample assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.2) # Check that error is raised if the test set size is smaller than n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 2) # Check that error is raised if the train set size is smaller than # n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 3, 2) y = np.asarray([0, 0, 0, 1, 1, 1, 2, 2, 2]) # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.5, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 8, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.6, 8) # Train size or test size too small assert_raises(ValueError, cval.StratifiedShuffleSplit, y, train_size=2) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, test_size=2) def test_stratified_shuffle_split_iter(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), np.array([-1] * 800 + [1] * 50) ] for y in ys: sss = cval.StratifiedShuffleSplit(y, 6, test_size=0.33, random_state=0) for train, test in sss: assert_array_equal(np.unique(y[train]), np.unique(y[test])) # Checks if folds keep classes proportions p_train = (np.bincount(np.unique(y[train], return_inverse=True)[1]) / float(len(y[train]))) p_test = (np.bincount(np.unique(y[test], return_inverse=True)[1]) / float(len(y[test]))) assert_array_almost_equal(p_train, p_test, 1) assert_equal(y[train].size + y[test].size, y.size) assert_array_equal(np.intersect1d(train, test), []) def test_stratified_shuffle_split_even(): # Test the StratifiedShuffleSplit, indices are drawn with a # equal chance n_folds = 5 n_iter = 1000 def assert_counts_are_ok(idx_counts, p): # Here we test that the distribution of the counts # per index is close enough to a binomial threshold = 0.05 / n_splits bf = stats.binom(n_splits, p) for count in idx_counts: p = bf.pmf(count) assert_true(p > threshold, "An index is not drawn with chance corresponding " "to even draws") for n_samples in (6, 22): labels = np.array((n_samples // 2) * [0, 1]) splits = cval.StratifiedShuffleSplit(labels, n_iter=n_iter, test_size=1. / n_folds, random_state=0) train_counts = [0] * n_samples test_counts = [0] * n_samples n_splits = 0 for train, test in splits: n_splits += 1 for counter, ids in [(train_counts, train), (test_counts, test)]: for id in ids: counter[id] += 1 assert_equal(n_splits, n_iter) assert_equal(len(train), splits.n_train) assert_equal(len(test), splits.n_test) assert_equal(len(set(train).intersection(test)), 0) label_counts = np.unique(labels) assert_equal(splits.test_size, 1.0 / n_folds) assert_equal(splits.n_train + splits.n_test, len(labels)) assert_equal(len(label_counts), 2) ex_test_p = float(splits.n_test) / n_samples ex_train_p = float(splits.n_train) / n_samples assert_counts_are_ok(train_counts, ex_train_p) assert_counts_are_ok(test_counts, ex_test_p) def test_predefinedsplit_with_kfold_split(): # Check that PredefinedSplit can reproduce a split generated by Kfold. folds = -1 * np.ones(10) kf_train = [] kf_test = [] for i, (train_ind, test_ind) in enumerate(cval.KFold(10, 5, shuffle=True)): kf_train.append(train_ind) kf_test.append(test_ind) folds[test_ind] = i ps_train = [] ps_test = [] ps = cval.PredefinedSplit(folds) for train_ind, test_ind in ps: ps_train.append(train_ind) ps_test.append(test_ind) assert_array_equal(ps_train, kf_train) assert_array_equal(ps_test, kf_test) def test_label_shuffle_split(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), ] for y in ys: n_iter = 6 test_size = 1./3 slo = cval.LabelShuffleSplit(y, n_iter, test_size=test_size, random_state=0) # Make sure the repr works repr(slo) # Test that the length is correct assert_equal(len(slo), n_iter) y_unique = np.unique(y) for train, test in slo: # First test: no train label is in the test set and vice versa y_train_unique = np.unique(y[train]) y_test_unique = np.unique(y[test]) assert_false(np.any(np.in1d(y[train], y_test_unique))) assert_false(np.any(np.in1d(y[test], y_train_unique))) # Second test: train and test add up to all the data assert_equal(y[train].size + y[test].size, y.size) # Third test: train and test are disjoint assert_array_equal(np.intersect1d(train, test), []) # Fourth test: # unique train and test labels are correct, # +- 1 for rounding error assert_true(abs(len(y_test_unique) - round(test_size * len(y_unique))) <= 1) assert_true(abs(len(y_train_unique) - round((1.0 - test_size) * len(y_unique))) <= 1) def test_leave_label_out_changing_labels(): # Check that LeaveOneLabelOut and LeavePLabelOut work normally if # the labels variable is changed before calling __iter__ labels = np.array([0, 1, 2, 1, 1, 2, 0, 0]) labels_changing = np.array(labels, copy=True) lolo = cval.LeaveOneLabelOut(labels) lolo_changing = cval.LeaveOneLabelOut(labels_changing) lplo = cval.LeavePLabelOut(labels, p=2) lplo_changing = cval.LeavePLabelOut(labels_changing, p=2) labels_changing[:] = 0 for llo, llo_changing in [(lolo, lolo_changing), (lplo, lplo_changing)]: for (train, test), (train_chan, test_chan) in zip(llo, llo_changing): assert_array_equal(train, train_chan) assert_array_equal(test, test_chan) def test_cross_val_score(): clf = MockClassifier() for a in range(-10, 10): clf.a = a # Smoke test scores = cval.cross_val_score(clf, X, y) assert_array_equal(scores, clf.score(X, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) scores = cval.cross_val_score(clf, X_sparse, y) assert_array_equal(scores, clf.score(X_sparse, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) scores = cval.cross_val_score(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) scores = cval.cross_val_score(clf, X, y.tolist()) assert_raises(ValueError, cval.cross_val_score, clf, X, y, scoring="sklearn") # test with 3d X and X_3d = X[:, :, np.newaxis] clf = MockClassifier(allow_nd=True) scores = cval.cross_val_score(clf, X_3d, y) clf = MockClassifier(allow_nd=False) assert_raises(ValueError, cval.cross_val_score, clf, X_3d, y) def test_cross_val_score_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_score(clf, X_df, y_ser) def test_cross_val_score_mask(): # test that cross_val_score works with boolean masks svm = SVC(kernel="linear") iris = load_iris() X, y = iris.data, iris.target cv_indices = cval.KFold(len(y), 5) scores_indices = cval.cross_val_score(svm, X, y, cv=cv_indices) cv_indices = cval.KFold(len(y), 5) cv_masks = [] for train, test in cv_indices: mask_train = np.zeros(len(y), dtype=np.bool) mask_test = np.zeros(len(y), dtype=np.bool) mask_train[train] = 1 mask_test[test] = 1 cv_masks.append((train, test)) scores_masks = cval.cross_val_score(svm, X, y, cv=cv_masks) assert_array_equal(scores_indices, scores_masks) def test_cross_val_score_precomputed(): # test for svm with precomputed kernel svm = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target linear_kernel = np.dot(X, X.T) score_precomputed = cval.cross_val_score(svm, linear_kernel, y) svm = SVC(kernel="linear") score_linear = cval.cross_val_score(svm, X, y) assert_array_equal(score_precomputed, score_linear) # Error raised for non-square X svm = SVC(kernel="precomputed") assert_raises(ValueError, cval.cross_val_score, svm, X, y) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cval.cross_val_score, svm, linear_kernel.tolist(), y) def test_cross_val_score_fit_params(): clf = MockClassifier() n_samples = X.shape[0] n_classes = len(np.unique(y)) DUMMY_INT = 42 DUMMY_STR = '42' DUMMY_OBJ = object() def assert_fit_params(clf): # Function to test that the values are passed correctly to the # classifier arguments for non-array type assert_equal(clf.dummy_int, DUMMY_INT) assert_equal(clf.dummy_str, DUMMY_STR) assert_equal(clf.dummy_obj, DUMMY_OBJ) fit_params = {'sample_weight': np.ones(n_samples), 'class_prior': np.ones(n_classes) / n_classes, 'sparse_sample_weight': W_sparse, 'sparse_param': P_sparse, 'dummy_int': DUMMY_INT, 'dummy_str': DUMMY_STR, 'dummy_obj': DUMMY_OBJ, 'callback': assert_fit_params} cval.cross_val_score(clf, X, y, fit_params=fit_params) def test_cross_val_score_score_func(): clf = MockClassifier() _score_func_args = [] def score_func(y_test, y_predict): _score_func_args.append((y_test, y_predict)) return 1.0 with warnings.catch_warnings(record=True): scoring = make_scorer(score_func) score = cval.cross_val_score(clf, X, y, scoring=scoring) assert_array_equal(score, [1.0, 1.0, 1.0]) assert len(_score_func_args) == 3 def test_cross_val_score_errors(): class BrokenEstimator: pass assert_raises(TypeError, cval.cross_val_score, BrokenEstimator(), X) def test_train_test_split_errors(): assert_raises(ValueError, cval.train_test_split) assert_raises(ValueError, cval.train_test_split, range(3), train_size=1.1) assert_raises(ValueError, cval.train_test_split, range(3), test_size=0.6, train_size=0.6) assert_raises(ValueError, cval.train_test_split, range(3), test_size=np.float32(0.6), train_size=np.float32(0.6)) assert_raises(ValueError, cval.train_test_split, range(3), test_size="wrong_type") assert_raises(ValueError, cval.train_test_split, range(3), test_size=2, train_size=4) assert_raises(TypeError, cval.train_test_split, range(3), some_argument=1.1) assert_raises(ValueError, cval.train_test_split, range(3), range(42)) def test_train_test_split(): X = np.arange(100).reshape((10, 10)) X_s = coo_matrix(X) y = np.arange(10) # simple test split = cval.train_test_split(X, y, test_size=None, train_size=.5) X_train, X_test, y_train, y_test = split assert_equal(len(y_test), len(y_train)) # test correspondence of X and y assert_array_equal(X_train[:, 0], y_train * 10) assert_array_equal(X_test[:, 0], y_test * 10) # conversion of lists to arrays (deprecated?) with warnings.catch_warnings(record=True): split = cval.train_test_split(X, X_s, y.tolist(), allow_lists=False) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_array_equal(X_train, X_s_train.toarray()) assert_array_equal(X_test, X_s_test.toarray()) # don't convert lists to anything else by default split = cval.train_test_split(X, X_s, y.tolist()) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_true(isinstance(y_train, list)) assert_true(isinstance(y_test, list)) # allow nd-arrays X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) split = cval.train_test_split(X_4d, y_3d) assert_equal(split[0].shape, (7, 5, 3, 2)) assert_equal(split[1].shape, (3, 5, 3, 2)) assert_equal(split[2].shape, (7, 7, 11)) assert_equal(split[3].shape, (3, 7, 11)) # test stratification option y = np.array([1, 1, 1, 1, 2, 2, 2, 2]) for test_size, exp_test_size in zip([2, 4, 0.25, 0.5, 0.75], [2, 4, 2, 4, 6]): train, test = cval.train_test_split(y, test_size=test_size, stratify=y, random_state=0) assert_equal(len(test), exp_test_size) assert_equal(len(test) + len(train), len(y)) # check the 1:1 ratio of ones and twos in the data is preserved assert_equal(np.sum(train == 1), np.sum(train == 2)) def train_test_split_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [MockDataFrame] try: from pandas import DataFrame types.append(DataFrame) except ImportError: pass for InputFeatureType in types: # X dataframe X_df = InputFeatureType(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, InputFeatureType)) assert_true(isinstance(X_test, InputFeatureType)) def train_test_split_mock_pandas(): # X mock dataframe X_df = MockDataFrame(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, MockDataFrame)) assert_true(isinstance(X_test, MockDataFrame)) X_train_arr, X_test_arr = cval.train_test_split(X_df, allow_lists=False) assert_true(isinstance(X_train_arr, np.ndarray)) assert_true(isinstance(X_test_arr, np.ndarray)) def test_cross_val_score_with_score_func_classification(): iris = load_iris() clf = SVC(kernel='linear') # Default score (should be the accuracy score) scores = cval.cross_val_score(clf, iris.data, iris.target, cv=5) assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2) # Correct classification score (aka. zero / one score) - should be the # same as the default estimator score zo_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="accuracy", cv=5) assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2) # F1 score (class are balanced so f1_score should be equal to zero/one # score f1_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="f1_weighted", cv=5) assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2) def test_cross_val_score_with_score_func_regression(): X, y = make_regression(n_samples=30, n_features=20, n_informative=5, random_state=0) reg = Ridge() # Default score of the Ridge regression estimator scores = cval.cross_val_score(reg, X, y, cv=5) assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # R2 score (aka. determination coefficient) - should be the # same as the default estimator score r2_scores = cval.cross_val_score(reg, X, y, scoring="r2", cv=5) assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # Mean squared error; this is a loss function, so "scores" are negative mse_scores = cval.cross_val_score(reg, X, y, cv=5, scoring="mean_squared_error") expected_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99]) assert_array_almost_equal(mse_scores, expected_mse, 2) # Explained variance scoring = make_scorer(explained_variance_score) ev_scores = cval.cross_val_score(reg, X, y, cv=5, scoring=scoring) assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) def test_permutation_score(): iris = load_iris() X = iris.data X_sparse = coo_matrix(X) y = iris.target svm = SVC(kernel='linear') cv = cval.StratifiedKFold(y, 2) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_greater(score, 0.9) assert_almost_equal(pvalue, 0.0, 1) score_label, _, pvalue_label = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # check that we obtain the same results with a sparse representation svm_sparse = SVC(kernel='linear') cv_sparse = cval.StratifiedKFold(y, 2) score_label, _, pvalue_label = cval.permutation_test_score( svm_sparse, X_sparse, y, n_permutations=30, cv=cv_sparse, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # test with custom scoring object def custom_score(y_true, y_pred): return (((y_true == y_pred).sum() - (y_true != y_pred).sum()) / y_true.shape[0]) scorer = make_scorer(custom_score) score, _, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=100, scoring=scorer, cv=cv, random_state=0) assert_almost_equal(score, .93, 2) assert_almost_equal(pvalue, 0.01, 3) # set random y y = np.mod(np.arange(len(y)), 3) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_less(score, 0.5) assert_greater(pvalue, 0.2) def test_cross_val_generator_with_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) # explicitly passing indices value is deprecated loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ps = cval.PredefinedSplit([1, 1, 2, 2]) ss = cval.ShuffleSplit(2) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] @ignore_warnings def test_cross_val_generator_with_default_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ss = cval.ShuffleSplit(2) ps = cval.PredefinedSplit([1, 1, 2, 2]) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] def test_shufflesplit_errors(): assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=2.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=1.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=0.1, train_size=0.95) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=11) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=10) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=8, train_size=3) assert_raises(ValueError, cval.ShuffleSplit, 10, train_size=1j) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=None, train_size=None) def test_shufflesplit_reproducible(): # Check that iterating twice on the ShuffleSplit gives the same # sequence of train-test when the random_state is given ss = cval.ShuffleSplit(10, random_state=21) assert_array_equal(list(a for a, b in ss), list(a for a, b in ss)) def test_safe_split_with_precomputed_kernel(): clf = SVC() clfp = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target K = np.dot(X, X.T) cv = cval.ShuffleSplit(X.shape[0], test_size=0.25, random_state=0) tr, te = list(cv)[0] X_tr, y_tr = cval._safe_split(clf, X, y, tr) K_tr, y_tr2 = cval._safe_split(clfp, K, y, tr) assert_array_almost_equal(K_tr, np.dot(X_tr, X_tr.T)) X_te, y_te = cval._safe_split(clf, X, y, te, tr) K_te, y_te2 = cval._safe_split(clfp, K, y, te, tr) assert_array_almost_equal(K_te, np.dot(X_te, X_tr.T)) def test_cross_val_score_allow_nans(): # Check that cross_val_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.cross_val_score(p, X, y, cv=5) def test_train_test_split_allow_nans(): # Check that train_test_split allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) cval.train_test_split(X, y, test_size=0.2, random_state=42) def test_permutation_test_score_allow_nans(): # Check that permutation_test_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.permutation_test_score(p, X, y, cv=5) def test_check_cv_return_types(): X = np.ones((9, 2)) cv = cval.check_cv(3, X, classifier=False) assert_true(isinstance(cv, cval.KFold)) y_binary = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1]) cv = cval.check_cv(3, X, y_binary, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2]) cv = cval.check_cv(3, X, y_multiclass, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) X = np.ones((5, 2)) y_multilabel = [[1, 0, 1], [1, 1, 0], [0, 0, 0], [0, 1, 1], [1, 0, 0]] cv = cval.check_cv(3, X, y_multilabel, classifier=True) assert_true(isinstance(cv, cval.KFold)) y_multioutput = np.array([[1, 2], [0, 3], [0, 0], [3, 1], [2, 0]]) cv = cval.check_cv(3, X, y_multioutput, classifier=True) assert_true(isinstance(cv, cval.KFold)) def test_cross_val_score_multilabel(): X = np.array([[-3, 4], [2, 4], [3, 3], [0, 2], [-3, 1], [-2, 1], [0, 0], [-2, -1], [-1, -2], [1, -2]]) y = np.array([[1, 1], [0, 1], [0, 1], [0, 1], [1, 1], [0, 1], [1, 0], [1, 1], [1, 0], [0, 0]]) clf = KNeighborsClassifier(n_neighbors=1) scoring_micro = make_scorer(precision_score, average='micro') scoring_macro = make_scorer(precision_score, average='macro') scoring_samples = make_scorer(precision_score, average='samples') score_micro = cval.cross_val_score(clf, X, y, scoring=scoring_micro, cv=5) score_macro = cval.cross_val_score(clf, X, y, scoring=scoring_macro, cv=5) score_samples = cval.cross_val_score(clf, X, y, scoring=scoring_samples, cv=5) assert_almost_equal(score_micro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 3]) assert_almost_equal(score_macro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) assert_almost_equal(score_samples, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) def test_cross_val_predict(): boston = load_boston() X, y = boston.data, boston.target cv = cval.KFold(len(boston.target)) est = Ridge() # Naive loop (should be same as cross_val_predict): preds2 = np.zeros_like(y) for train, test in cv: est.fit(X[train], y[train]) preds2[test] = est.predict(X[test]) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_array_almost_equal(preds, preds2) preds = cval.cross_val_predict(est, X, y) assert_equal(len(preds), len(y)) cv = cval.LeaveOneOut(len(y)) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_equal(len(preds), len(y)) Xsp = X.copy() Xsp *= (Xsp > np.median(Xsp)) Xsp = coo_matrix(Xsp) preds = cval.cross_val_predict(est, Xsp, y) assert_array_almost_equal(len(preds), len(y)) preds = cval.cross_val_predict(KMeans(), X) assert_equal(len(preds), len(y)) def bad_cv(): for i in range(4): yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8]) assert_raises(ValueError, cval.cross_val_predict, est, X, y, cv=bad_cv()) def test_cross_val_predict_input_types(): clf = Ridge() # Smoke test predictions = cval.cross_val_predict(clf, X, y) assert_equal(predictions.shape, (10,)) # test with multioutput y predictions = cval.cross_val_predict(clf, X_sparse, X) assert_equal(predictions.shape, (10, 2)) predictions = cval.cross_val_predict(clf, X_sparse, y) assert_array_equal(predictions.shape, (10,)) # test with multioutput y predictions = cval.cross_val_predict(clf, X_sparse, X) assert_array_equal(predictions.shape, (10, 2)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) predictions = cval.cross_val_predict(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) predictions = cval.cross_val_predict(clf, X, y.tolist()) # test with 3d X and X_3d = X[:, :, np.newaxis] check_3d = lambda x: x.ndim == 3 clf = CheckingClassifier(check_X=check_3d) predictions = cval.cross_val_predict(clf, X_3d, y) assert_array_equal(predictions.shape, (10,)) def test_cross_val_predict_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_predict(clf, X_df, y_ser) def test_sparse_fit_params(): iris = load_iris() X, y = iris.data, iris.target clf = MockClassifier() fit_params = {'sparse_sample_weight': coo_matrix(np.eye(X.shape[0]))} a = cval.cross_val_score(clf, X, y, fit_params=fit_params) assert_array_equal(a, np.ones(3)) def test_check_is_partition(): p = np.arange(100) assert_true(cval._check_is_partition(p, 100)) assert_false(cval._check_is_partition(np.delete(p, 23), 100)) p[0] = 23 assert_false(cval._check_is_partition(p, 100)) def test_cross_val_predict_sparse_prediction(): # check that cross_val_predict gives same result for sparse and dense input X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, return_indicator=True, random_state=1) X_sparse = csr_matrix(X) y_sparse = csr_matrix(y) classif = OneVsRestClassifier(SVC(kernel='linear')) preds = cval.cross_val_predict(classif, X, y, cv=10) preds_sparse = cval.cross_val_predict(classif, X_sparse, y_sparse, cv=10) preds_sparse = preds_sparse.toarray() assert_array_almost_equal(preds_sparse, preds)
bsd-3-clause
sonnyhu/scikit-learn
sklearn/metrics/setup.py
24
1059
import os import os.path import numpy from numpy.distutils.misc_util import Configuration from sklearn._build_utils import get_blas_info def configuration(parent_package="", top_path=None): config = Configuration("metrics", parent_package, top_path) cblas_libs, blas_info = get_blas_info() if os.name == 'posix': cblas_libs.append('m') config.add_extension("pairwise_fast", sources=["pairwise_fast.c"], include_dirs=[os.path.join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], libraries=cblas_libs, extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info) config.add_subpackage('tests') return config if __name__ == "__main__": from numpy.distutils.core import setup setup(**configuration().todict())
bsd-3-clause
gbouvignies/chemex
setup.py
1
1232
from setuptools import find_packages from setuptools import setup with open("README.md", "rb") as f: long_description = f.read().decode("utf-8") setup( name="chemex", use_scm_version=True, description="ChemEx is an analysis program for chemical exchange detected by NMR.", long_description=long_description, author="Guillaume Bouvignies", author_email="[email protected]", url="https://github.com/gbouvignies/chemex", license="3-Clause BSD", classifiers=[ "Intended Audience :: Science/Research", "License :: OSI Approved :: BSD License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], keywords="nmr protein dynamics chemical exchange cpmg cest relaxation data fitting", packages=find_packages(exclude=["tests"]), setup_requires=["setuptools_scm"], install_requires=[ "numpy>=1.0", "scipy>=1.0", "matplotlib>=2.0", "lmfit>=0.9.11", "asteval>=0.9.11", ], python_requires=">=3.6", entry_points={"console_scripts": ["chemex = chemex.chemex:main"]}, )
bsd-3-clause
Agent007/deepchem
examples/binding_pockets/binding_pocket_rf.py
6
1357
""" Script that trains Sklearn RF models on PDBbind Pockets dataset. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals __author__ = "Bharath Ramsundar" __copyright__ = "Copyright 2017, Stanford University" __license__ = "MIT" import os import deepchem as dc import numpy as np from sklearn.ensemble import RandomForestClassifier from binding_pocket_datasets import load_pdbbind_pockets # For stable runs np.random.seed(123) split = "random" subset = "full" pdbbind_tasks, pdbbind_datasets, transformers = load_pdbbind_pockets( split=split, subset=subset) train_dataset, valid_dataset, test_dataset = pdbbind_datasets metric = dc.metrics.Metric(dc.metrics.roc_auc_score) current_dir = os.path.dirname(os.path.realpath(__file__)) model_dir = os.path.join(current_dir, "pocket_%s_%s_RF" % (split, subset)) sklearn_model = RandomForestClassifier(n_estimators=500) model = dc.models.SklearnModel(sklearn_model, model_dir=model_dir) # Fit trained model print("Fitting model on train dataset") model.fit(train_dataset) model.save() print("Evaluating model") train_scores = model.evaluate(train_dataset, [metric], transformers) valid_scores = model.evaluate(valid_dataset, [metric], transformers) print("Train scores") print(train_scores) print("Validation scores") print(valid_scores)
mit
yavalvas/yav_com
build/matplotlib/doc/mpl_examples/axes_grid/demo_axes_hbox_divider.py
7
1547
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.axes_divider import HBoxDivider import mpl_toolkits.axes_grid1.axes_size as Size def make_heights_equal(fig, rect, ax1, ax2, pad): # pad in inches h1, v1 = Size.AxesX(ax1), Size.AxesY(ax1) h2, v2 = Size.AxesX(ax2), Size.AxesY(ax2) pad_v = Size.Scaled(1) pad_h = Size.Fixed(pad) my_divider = HBoxDivider(fig, rect, horizontal=[h1, pad_h, h2], vertical=[v1, pad_v, v2]) ax1.set_axes_locator(my_divider.new_locator(0)) ax2.set_axes_locator(my_divider.new_locator(2)) if __name__ == "__main__": arr1 = np.arange(20).reshape((4,5)) arr2 = np.arange(20).reshape((5,4)) fig, (ax1, ax2) = plt.subplots(1,2) ax1.imshow(arr1, interpolation="nearest") ax2.imshow(arr2, interpolation="nearest") rect = 111 # subplot param for combined axes make_heights_equal(fig, rect, ax1, ax2, pad=0.5) # pad in inches for ax in [ax1, ax2]: ax.locator_params(nbins=4) # annotate ax3 = plt.axes([0.5, 0.5, 0.001, 0.001], frameon=False) ax3.xaxis.set_visible(False) ax3.yaxis.set_visible(False) ax3.annotate("Location of two axes are adjusted\n" "so that they have equal heights\n" "while maintaining their aspect ratios", (0.5, 0.5), xycoords="axes fraction", va="center", ha="center", bbox=dict(boxstyle="round, pad=1", fc="w")) plt.show()
mit
zasdfgbnm/tensorflow
tensorflow/contrib/eager/python/examples/rnn_colorbot/rnn_colorbot.py
2
13049
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""TensorFlow Eager Execution Example: RNN Colorbot. This example builds, trains, and evaluates a multi-layer RNN that can be run with eager execution enabled. The RNN is trained to map color names to their RGB values: it takes as input a one-hot encoded character sequence and outputs a three-tuple (R, G, B) (scaled by 1/255). For example, say we'd like the RNN Colorbot to generate the RGB values for the color white. To represent our query in a form that the Colorbot could understand, we would create a sequence of five 256-long vectors encoding the ASCII values of the characters in "white". The first vector in our sequence would be 0 everywhere except for the ord("w")-th position, where it would be 1, the second vector would be 0 everywhere except for the ord("h")-th position, where it would be 1, and similarly for the remaining three vectors. We refer to such indicator vectors as "one-hot encodings" of characters. After consuming these vectors, a well-trained Colorbot would output the three tuple (1, 1, 1), since the RGB values for white are (255, 255, 255). We are of course free to ask the colorbot to generate colors for any string we'd like, such as "steel gray," "tensorflow orange," or "green apple," though your mileage may vary as your queries increase in creativity. This example shows how to: 1. read, process, (one-hot) encode, and pad text data via the Datasets API; 2. build a trainable model; 3. implement a multi-layer RNN using Python control flow constructs (e.g., a for loop); 4. train a model using an iterative gradient-based method; and The data used in this example is licensed under the Creative Commons Attribution-ShareAlike License and is available at https://en.wikipedia.org/wiki/List_of_colors:_A-F https://en.wikipedia.org/wiki/List_of_colors:_G-M https://en.wikipedia.org/wiki/List_of_colors:_N-Z This example was adapted from https://github.com/random-forests/tensorflow-workshop/tree/master/extras/colorbot """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import functools import os import sys import time import six import tensorflow as tf from tensorflow.contrib.eager.python import tfe try: import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top HAS_MATPLOTLIB = True except ImportError: HAS_MATPLOTLIB = False def parse(line): """Parse a line from the colors dataset.""" # Each line of the dataset is comma-separated and formatted as # color_name, r, g, b # so `items` is a list [color_name, r, g, b]. items = tf.string_split([line], ",").values rgb = tf.string_to_number(items[1:], out_type=tf.float32) / 255. # Represent the color name as a one-hot encoded character sequence. color_name = items[0] chars = tf.one_hot(tf.decode_raw(color_name, tf.uint8), depth=256) # The sequence length is needed by our RNN. length = tf.cast(tf.shape(chars)[0], dtype=tf.int64) return rgb, chars, length def load_dataset(data_dir, url, batch_size): """Loads the colors data at path into a PaddedDataset.""" # Downloads data at url into data_dir/basename(url). The dataset has a header # row (color_name, r, g, b) followed by comma-separated lines. path = tf.contrib.learn.datasets.base.maybe_download( os.path.basename(url), data_dir, url) # This chain of commands loads our data by: # 1. skipping the header; (.skip(1)) # 2. parsing the subsequent lines; (.map(parse)) # 3. shuffling the data; (.shuffle(...)) # 3. grouping the data into padded batches (.padded_batch(...)). dataset = tf.data.TextLineDataset(path).skip(1).map(parse).shuffle( buffer_size=10000).padded_batch( batch_size, padded_shapes=([None], [None, None], [])) return dataset # pylint: disable=not-callable class RNNColorbot(tfe.Network): """Multi-layer (LSTM) RNN that regresses on real-valued vector labels. """ def __init__(self, rnn_cell_sizes, label_dimension, keep_prob): """Constructs an RNNColorbot. Args: rnn_cell_sizes: list of integers denoting the size of each LSTM cell in the RNN; rnn_cell_sizes[i] is the size of the i-th layer cell label_dimension: the length of the labels on which to regress keep_prob: (1 - dropout probability); dropout is applied to the outputs of each LSTM layer """ super(RNNColorbot, self).__init__(name="") self.label_dimension = label_dimension self.keep_prob = keep_prob # Note the calls to `track_layer` below; these calls register the layers as # network components that house trainable variables. self.cells = [ self.track_layer(tf.nn.rnn_cell.BasicLSTMCell(size)) for size in rnn_cell_sizes ] self.relu = self.track_layer( tf.layers.Dense(label_dimension, activation=tf.nn.relu, name="relu")) def call(self, chars, sequence_length, training=False): """Implements the RNN logic and prediction generation. Args: chars: a Tensor of dimension [batch_size, time_steps, 256] holding a batch of one-hot encoded color names sequence_length: a Tensor of dimension [batch_size] holding the length of each character sequence (i.e., color name) training: whether the invocation is happening during training Returns: A tensor of dimension [batch_size, label_dimension] that is produced by passing chars through a multi-layer RNN and applying a ReLU to the final hidden state. """ # Transpose the first and second dimensions so that chars is of shape # [time_steps, batch_size, dimension]. chars = tf.transpose(chars, [1, 0, 2]) # The outer loop cycles through the layers of the RNN; the inner loop # executes the time steps for a particular layer. batch_size = int(chars.shape[1]) for l in range(len(self.cells)): cell = self.cells[l] outputs = [] state = cell.zero_state(batch_size, tf.float32) # Unstack the inputs to obtain a list of batches, one for each time step. chars = tf.unstack(chars, axis=0) for ch in chars: output, state = cell(ch, state) outputs.append(output) # The outputs of this layer are the inputs of the subsequent layer. chars = tf.stack(outputs, axis=0) if training: chars = tf.nn.dropout(chars, self.keep_prob) # Extract the correct output (i.e., hidden state) for each example. All the # character sequences in this batch were padded to the same fixed length so # that they could be easily fed through the above RNN loop. The # `sequence_length` vector tells us the true lengths of the character # sequences, letting us obtain for each sequence the hidden state that was # generated by its non-padding characters. batch_range = [i for i in range(batch_size)] indices = tf.stack([sequence_length - 1, batch_range], axis=1) hidden_states = tf.gather_nd(chars, indices) return self.relu(hidden_states) def loss(labels, predictions): """Computes mean squared loss.""" return tf.reduce_mean(tf.square(predictions - labels)) def test(model, eval_data): """Computes the average loss on eval_data, which should be a Dataset.""" avg_loss = tfe.metrics.Mean("loss") for (labels, chars, sequence_length) in tfe.Iterator(eval_data): predictions = model(chars, sequence_length, training=False) avg_loss(loss(labels, predictions)) print("eval/loss: %.6f\n" % avg_loss.result()) with tf.contrib.summary.always_record_summaries(): tf.contrib.summary.scalar("loss", avg_loss.result()) def train_one_epoch(model, optimizer, train_data, log_interval=10): """Trains model on train_data using optimizer.""" tf.train.get_or_create_global_step() def model_loss(labels, chars, sequence_length): predictions = model(chars, sequence_length, training=True) loss_value = loss(labels, predictions) tf.contrib.summary.scalar("loss", loss_value) return loss_value for (batch, (labels, chars, sequence_length)) in enumerate( tfe.Iterator(train_data)): with tf.contrib.summary.record_summaries_every_n_global_steps(log_interval): batch_model_loss = functools.partial(model_loss, labels, chars, sequence_length) optimizer.minimize( batch_model_loss, global_step=tf.train.get_global_step()) if log_interval and batch % log_interval == 0: print("train/batch #%d\tloss: %.6f" % (batch, batch_model_loss())) SOURCE_TRAIN_URL = "https://raw.githubusercontent.com/random-forests/tensorflow-workshop/master/extras/colorbot/data/train.csv" SOURCE_TEST_URL = "https://raw.githubusercontent.com/random-forests/tensorflow-workshop/master/extras/colorbot/data/test.csv" def main(_): data_dir = os.path.join(FLAGS.dir, "data") train_data = load_dataset( data_dir=data_dir, url=SOURCE_TRAIN_URL, batch_size=FLAGS.batch_size) eval_data = load_dataset( data_dir=data_dir, url=SOURCE_TEST_URL, batch_size=FLAGS.batch_size) model = RNNColorbot( rnn_cell_sizes=FLAGS.rnn_cell_sizes, label_dimension=3, keep_prob=FLAGS.keep_probability) optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate) if FLAGS.no_gpu or tfe.num_gpus() <= 0: print(tfe.num_gpus()) device = "/cpu:0" else: device = "/gpu:0" print("Using device %s." % device) log_dir = os.path.join(FLAGS.dir, "summaries") tf.gfile.MakeDirs(log_dir) train_summary_writer = tf.contrib.summary.create_file_writer( os.path.join(log_dir, "train"), flush_millis=10000) test_summary_writer = tf.contrib.summary.create_file_writer( os.path.join(log_dir, "eval"), flush_millis=10000, name="eval") with tf.device(device): for epoch in range(FLAGS.num_epochs): start = time.time() with train_summary_writer.as_default(): train_one_epoch(model, optimizer, train_data, FLAGS.log_interval) end = time.time() print("train/time for epoch #%d: %.2f" % (epoch, end - start)) with test_summary_writer.as_default(): test(model, eval_data) print("Colorbot is ready to generate colors!") while True: try: color_name = six.moves.input( "Give me a color name (or press enter to exit): ") except EOFError: return if not color_name: return _, chars, length = parse(color_name) with tf.device(device): (chars, length) = (tf.identity(chars), tf.identity(length)) chars = tf.expand_dims(chars, 0) length = tf.expand_dims(length, 0) preds = tf.unstack(model(chars, length, training=False)[0]) # Predictions cannot be negative, as they are generated by a ReLU layer; # they may, however, be greater than 1. clipped_preds = tuple(min(float(p), 1.0) for p in preds) rgb = tuple(int(p * 255) for p in clipped_preds) print("rgb:", rgb) data = [[clipped_preds]] if HAS_MATPLOTLIB: plt.imshow(data) plt.title(color_name) plt.show() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--dir", type=str, default="/tmp/rnn_colorbot/", help="Directory to download data files and save logs.") parser.add_argument( "--log_interval", type=int, default=10, metavar="N", help="Log training loss every log_interval batches.") parser.add_argument( "--num_epochs", type=int, default=20, help="Number of epochs to train.") parser.add_argument( "--rnn_cell_sizes", type=int, nargs="+", default=[256, 128], help="List of sizes for each layer of the RNN.") parser.add_argument( "--batch_size", type=int, default=64, help="Batch size for training and eval.") parser.add_argument( "--keep_probability", type=float, default=0.5, help="Keep probability for dropout between layers.") parser.add_argument( "--learning_rate", type=float, default=0.01, help="Learning rate to be used during training.") parser.add_argument( "--no_gpu", action="store_true", default=False, help="Disables GPU usage even if a GPU is available.") FLAGS, unparsed = parser.parse_known_args() tfe.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
ipashchenko/ml4vs
ml4vs/logistic.py
1
7944
# -*- coding: utf-8 -*- import os import numpy as np import hyperopt from sklearn import decomposition from sklearn.calibration import CalibratedClassifierCV from sklearn.metrics import confusion_matrix, precision_recall_curve, f1_score from hyperopt import hp, fmin, tpe, STATUS_OK, Trials from sklearn.cross_validation import StratifiedKFold, cross_val_score from sklearn.model_selection import cross_val_predict from sklearn.pipeline import Pipeline from sklearn.preprocessing import Imputer, StandardScaler, FunctionTransformer,\ RobustScaler from sklearn.linear_model import LogisticRegression from data_load import load_data, load_data_tgt from sklearn.cluster import FeatureAgglomeration data_dir = '/home/ilya/code/ml4vs/data/LMC_SC20__corrected_list_of_variables/raw_index_values' file_1 = 'vast_lightcurve_statistics_variables_only.log' file_0 = 'vast_lightcurve_statistics_constant_only.log' file_0 = os.path.join(data_dir, file_0) file_1 = os.path.join(data_dir, file_1) names = ['Magnitude', 'clipped_sigma', 'meaningless_1', 'meaningless_2', 'star_ID', 'weighted_sigma', 'skew', 'kurt', 'I', 'J', 'K', 'L', 'Npts', 'MAD', 'lag1', 'RoMS', 'rCh2', 'Isgn', 'Vp2p', 'Jclp', 'Lclp', 'Jtim', 'Ltim', 'CSSD', 'Ex', 'inv_eta', 'E_A', 'S_B', 'NXS', 'IQR'] names_to_delete = ['meaningless_1', 'meaningless_2', 'star_ID', 'Npts', 'CSSD', 'clipped_sigma', 'lag1', 'L', 'Lclp', 'Jclp', 'MAD', 'Ltim'] # names_to_delete = ['meaningless_1', 'meaningless_2', 'star_ID', # 'Npts', 'CSSD'] X, y, df, features_names, delta = load_data([file_0, file_1], names, names_to_delete) target = 'variable' predictors = list(df) predictors.remove(target) dtrain = df kfold = StratifiedKFold(y, n_folds=4, shuffle=True, random_state=1) def log_axis(X_, names=None): X = X_.copy() tr_names = ['clipped_sigma', 'weighted_sigma', 'RoMS', 'rCh2', 'Vp2p', 'Ex', 'inv_eta', 'S_B'] for name in tr_names: try: # print "Log-Transforming {}".format(name) i = names.index(name) X[:, i] = np.log(X[:, i]) except ValueError: print "No {} in predictors".format(name) pass return X def objective(space): print "C, n_pca, cw : {}, {}, {}".format(space['C'], space['n_pca'], space['cw']) clf = LogisticRegression(C=space['C'], class_weight={0: 1, 1: space['cw']}, random_state=1, max_iter=300, n_jobs=1, tol=10.**(-5)) pca = decomposition.PCA(n_components=space['n_pca'], random_state=1) # cal_clf = CalibratedClassifierCV(clf, method='sigmoid') # ward = FeatureAgglomeration(n_clusters=space['n_clusters']) estimators = list() estimators.append(('imputer', Imputer(missing_values='NaN', strategy='median', axis=0, verbose=2))) # estimators.append(('func', FunctionTransformer(log_axis, kw_args={'names': # predictors}))) estimators.append(('scaler', StandardScaler())) estimators.append(('pca', pca)) # estimators.append(('ward', ward)) estimators.append(('clf', clf)) pipeline = Pipeline(estimators) # auc = np.mean(cross_val_score(pipeline, X, y, cv=kfold, scoring='roc_auc', # verbose=1, n_jobs=2)) y_preds = cross_val_predict(pipeline, X, y, cv=kfold, n_jobs=4) CMs = list() for train_idx, test_idx in kfold: CMs.append(confusion_matrix(y[test_idx], y_preds[test_idx])) CM = np.sum(CMs, axis=0) FN = CM[1][0] TP = CM[1][1] FP = CM[0][1] print "TP = {}".format(TP) print "FP = {}".format(FP) print "FN = {}".format(FN) f1 = 2. * TP / (2. * TP + FP + FN) # print "AUC: {}".format(auc) print "F1: {}".format(f1) return{'loss': 1-f1, 'status': STATUS_OK} space = {'C': hp.loguniform('C', -5., 4.), 'cw': hp.choice('cw', np.arange(1, 300, 1, dtype=int)), # 'n_clusters': hp.choice('n_clusters', np.arange(3, 22, 1, dtype=int))} 'n_pca': hp.choice('n_pca', np.arange(5, 18, 1, dtype=int))} trials = Trials() best = fmin(fn=objective, space=space, algo=tpe.suggest, max_evals=500, trials=trials) print hyperopt.space_eval(space, best) best_pars = hyperopt.space_eval(space, best) # Load blind test data file_tgt = 'LMC_SC19_PSF_Pgood98__vast_lightcurve_statistics.log' file_tgt = os.path.join(data_dir, file_tgt) X_tgt, feature_names, df, df_orig = load_data_tgt(file_tgt, names, names_to_delete, delta) # Fit model on all training data clf = LogisticRegression(C=best_pars['C'], class_weight={0: 1, 1: best_pars['cw']}, random_state=1, max_iter=300, n_jobs=1, tol=10.**(-5)) # cal_clf = CalibratedClassifierCV(clf, method='sigmoid') pca = decomposition.PCA(n_components=best_pars['n_pca'], random_state=1) # ward = FeatureAgglomeration(n_clusters=best_pars['n_clusters']) estimators = list() estimators.append(('imputer', Imputer(missing_values='NaN', strategy='median', axis=0, verbose=2))) # estimators.append(('func', FunctionTransformer(log_axis, kw_args={'names': # predictors}))) estimators.append(('scaler', StandardScaler())) # estimators.append(('ward', ward)) estimators.append(('pca', pca)) estimators.append(('clf', clf)) pipeline = Pipeline(estimators) pipeline.fit(X, y) # y_probs = pipeline.predict(X_tgt) from scipy.optimize import fmin from sklearn.metrics import f1_score # thresh = fmin(lambda x: 1-f1_score(y, y_probs > x), 0.75, xtol=10**(-6), # ftol=10**(-6), maxiter=10**5) # thresh = 1. - np.array(np.count_nonzero(y_probs), dtype=float) / np.count_nonzero(1. - y_probs) thresh = 0.5 # Predict classes on new data y_probs = pipeline.predict_proba(X_tgt)[:, 1] idx = y_probs > thresh idx_ = y_probs < thresh gb_no = list(df_orig['star_ID'][idx_]) print("Found {} variables".format(np.count_nonzero(idx))) with open('lr_results.txt', 'w') as fo: for line in list(df_orig['star_ID'][idx]): fo.write(line + '\n') # Check F1 with open('clean_list_of_new_variables.txt', 'r') as fo: news = fo.readlines() news = [line.strip().split(' ')[1] for line in news] news = set(news) with open('lr_results.txt', 'r') as fo: gb = fo.readlines() gb = [line.strip().split('_')[4].split('.')[0] for line in gb] gb = set(gb) print "Among new vars found {}".format(len(news.intersection(gb))) with open('candidates_50perc_threshold.txt', 'r') as fo: c50 = fo.readlines() c50 = [line.strip("\", ', \", \n, }, {") for line in c50] with open('variables_not_in_catalogs.txt', 'r') as fo: not_in_cat = fo.readlines() nic = [line.strip().split(' ')[1] for line in not_in_cat] # Catalogue variables cat_vars = set(c50).difference(set(nic)) # Non-catalogue variable noncat_vars = set([line.strip().split(' ')[1] for line in not_in_cat if 'CST' not in line]) # All variables all_vars = news.union(cat_vars).union(noncat_vars) gb_no = set([line.strip().split('_')[4].split('.')[0] for line in gb_no]) found_bad = '181193' in gb print "Found known variable : ", found_bad FN = len(gb_no.intersection(all_vars)) TP = len(all_vars.intersection(gb)) TN = len(gb_no) - FN FP = len(gb) - TP recall = float(TP) / (TP + FN) precision = float(TP) / (TP + FP) F1 = 2 * precision * recall / (precision + recall) print "precision: {}".format(precision) print "recall: {}".format(recall) print "F1: {}".format(F1) print "TN={}, FP={}".format(TN, FP) print "FN={}, TP={}".format(FN, TP)
mit
massmutual/scikit-learn
sklearn/metrics/cluster/supervised.py
207
27395
"""Utilities to evaluate the clustering performance of models Functions named as *_score return a scalar value to maximize: the higher the better. """ # Authors: Olivier Grisel <[email protected]> # Wei LI <[email protected]> # Diego Molla <[email protected]> # License: BSD 3 clause from math import log from scipy.misc import comb from scipy.sparse import coo_matrix import numpy as np from .expected_mutual_info_fast import expected_mutual_information from ...utils.fixes import bincount def comb2(n): # the exact version is faster for k == 2: use it by default globally in # this module instead of the float approximate variant return comb(n, 2, exact=1) def check_clusterings(labels_true, labels_pred): """Check that the two clusterings matching 1D integer arrays""" labels_true = np.asarray(labels_true) labels_pred = np.asarray(labels_pred) # input checks if labels_true.ndim != 1: raise ValueError( "labels_true must be 1D: shape is %r" % (labels_true.shape,)) if labels_pred.ndim != 1: raise ValueError( "labels_pred must be 1D: shape is %r" % (labels_pred.shape,)) if labels_true.shape != labels_pred.shape: raise ValueError( "labels_true and labels_pred must have same size, got %d and %d" % (labels_true.shape[0], labels_pred.shape[0])) return labels_true, labels_pred def contingency_matrix(labels_true, labels_pred, eps=None): """Build a contengency matrix describing the relationship between labels. Parameters ---------- labels_true : int array, shape = [n_samples] Ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] Cluster labels to evaluate eps: None or float If a float, that value is added to all values in the contingency matrix. This helps to stop NaN propagation. If ``None``, nothing is adjusted. Returns ------- contingency: array, shape=[n_classes_true, n_classes_pred] Matrix :math:`C` such that :math:`C_{i, j}` is the number of samples in true class :math:`i` and in predicted class :math:`j`. If ``eps is None``, the dtype of this array will be integer. If ``eps`` is given, the dtype will be float. """ classes, class_idx = np.unique(labels_true, return_inverse=True) clusters, cluster_idx = np.unique(labels_pred, return_inverse=True) n_classes = classes.shape[0] n_clusters = clusters.shape[0] # Using coo_matrix to accelerate simple histogram calculation, # i.e. bins are consecutive integers # Currently, coo_matrix is faster than histogram2d for simple cases contingency = coo_matrix((np.ones(class_idx.shape[0]), (class_idx, cluster_idx)), shape=(n_classes, n_clusters), dtype=np.int).toarray() if eps is not None: # don't use += as contingency is integer contingency = contingency + eps return contingency # clustering measures def adjusted_rand_score(labels_true, labels_pred): """Rand index adjusted for chance The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings. The raw RI score is then "adjusted for chance" into the ARI score using the following scheme:: ARI = (RI - Expected_RI) / (max(RI) - Expected_RI) The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation). ARI is a symmetric measure:: adjusted_rand_score(a, b) == adjusted_rand_score(b, a) Read more in the :ref:`User Guide <adjusted_rand_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] Ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] Cluster labels to evaluate Returns ------- ari : float Similarity score between -1.0 and 1.0. Random labelings have an ARI close to 0.0. 1.0 stands for perfect match. Examples -------- Perfectly maching labelings have a score of 1 even >>> from sklearn.metrics.cluster import adjusted_rand_score >>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> adjusted_rand_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Labelings that assign all classes members to the same clusters are complete be not always pure, hence penalized:: >>> adjusted_rand_score([0, 0, 1, 2], [0, 0, 1, 1]) # doctest: +ELLIPSIS 0.57... ARI is symmetric, so labelings that have pure clusters with members coming from the same classes but unnecessary splits are penalized:: >>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 2]) # doctest: +ELLIPSIS 0.57... If classes members are completely split across different clusters, the assignment is totally incomplete, hence the ARI is very low:: >>> adjusted_rand_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 References ---------- .. [Hubert1985] `L. Hubert and P. Arabie, Comparing Partitions, Journal of Classification 1985` http://www.springerlink.com/content/x64124718341j1j0/ .. [wk] http://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index See also -------- adjusted_mutual_info_score: Adjusted Mutual Information """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) n_samples = labels_true.shape[0] classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split; # or trivial clustering where each document is assigned a unique cluster. # These are perfect matches hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0 or classes.shape[0] == clusters.shape[0] == len(labels_true)): return 1.0 contingency = contingency_matrix(labels_true, labels_pred) # Compute the ARI using the contingency data sum_comb_c = sum(comb2(n_c) for n_c in contingency.sum(axis=1)) sum_comb_k = sum(comb2(n_k) for n_k in contingency.sum(axis=0)) sum_comb = sum(comb2(n_ij) for n_ij in contingency.flatten()) prod_comb = (sum_comb_c * sum_comb_k) / float(comb(n_samples, 2)) mean_comb = (sum_comb_k + sum_comb_c) / 2. return ((sum_comb - prod_comb) / (mean_comb - prod_comb)) def homogeneity_completeness_v_measure(labels_true, labels_pred): """Compute the homogeneity and completeness and V-Measure scores at once Those metrics are based on normalized conditional entropy measures of the clustering labeling to evaluate given the knowledge of a Ground Truth class labels of the same samples. A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster. Both scores have positive values between 0.0 and 1.0, larger values being desirable. Those 3 metrics are independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score values in any way. V-Measure is furthermore symmetric: swapping ``labels_true`` and ``label_pred`` will give the same score. This does not hold for homogeneity and completeness. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- homogeneity: float score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling completeness: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling v_measure: float harmonic mean of the first two See also -------- homogeneity_score completeness_score v_measure_score """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) if len(labels_true) == 0: return 1.0, 1.0, 1.0 entropy_C = entropy(labels_true) entropy_K = entropy(labels_pred) MI = mutual_info_score(labels_true, labels_pred) homogeneity = MI / (entropy_C) if entropy_C else 1.0 completeness = MI / (entropy_K) if entropy_K else 1.0 if homogeneity + completeness == 0.0: v_measure_score = 0.0 else: v_measure_score = (2.0 * homogeneity * completeness / (homogeneity + completeness)) return homogeneity, completeness, v_measure_score def homogeneity_score(labels_true, labels_pred): """Homogeneity metric of a cluster labeling given a ground truth A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is not symmetric: switching ``label_true`` with ``label_pred`` will return the :func:`completeness_score` which will be different in general. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- homogeneity: float score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- completeness_score v_measure_score Examples -------- Perfect labelings are homogeneous:: >>> from sklearn.metrics.cluster import homogeneity_score >>> homogeneity_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Non-perfect labelings that further split classes into more clusters can be perfectly homogeneous:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 1, 2])) ... # doctest: +ELLIPSIS 1.0... >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 1.0... Clusters that include samples from different classes do not make for an homogeneous labeling:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 0, 1])) ... # doctest: +ELLIPSIS 0.0... >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 0, 0])) ... # doctest: +ELLIPSIS 0.0... """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[0] def completeness_score(labels_true, labels_pred): """Completeness metric of a cluster labeling given a ground truth A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is not symmetric: switching ``label_true`` with ``label_pred`` will return the :func:`homogeneity_score` which will be different in general. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- completeness: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- homogeneity_score v_measure_score Examples -------- Perfect labelings are complete:: >>> from sklearn.metrics.cluster import completeness_score >>> completeness_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Non-perfect labelings that assign all classes members to the same clusters are still complete:: >>> print(completeness_score([0, 0, 1, 1], [0, 0, 0, 0])) 1.0 >>> print(completeness_score([0, 1, 2, 3], [0, 0, 1, 1])) 1.0 If classes members are split across different clusters, the assignment cannot be complete:: >>> print(completeness_score([0, 0, 1, 1], [0, 1, 0, 1])) 0.0 >>> print(completeness_score([0, 0, 0, 0], [0, 1, 2, 3])) 0.0 """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[1] def v_measure_score(labels_true, labels_pred): """V-measure cluster labeling given a ground truth. This score is identical to :func:`normalized_mutual_info_score`. The V-measure is the harmonic mean between homogeneity and completeness:: v = 2 * (homogeneity * completeness) / (homogeneity + completeness) This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- v_measure: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- homogeneity_score completeness_score Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import v_measure_score >>> v_measure_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> v_measure_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Labelings that assign all classes members to the same clusters are complete be not homogeneous, hence penalized:: >>> print("%.6f" % v_measure_score([0, 0, 1, 2], [0, 0, 1, 1])) ... # doctest: +ELLIPSIS 0.8... >>> print("%.6f" % v_measure_score([0, 1, 2, 3], [0, 0, 1, 1])) ... # doctest: +ELLIPSIS 0.66... Labelings that have pure clusters with members coming from the same classes are homogeneous but un-necessary splits harms completeness and thus penalize V-measure as well:: >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 1, 2])) ... # doctest: +ELLIPSIS 0.8... >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 0.66... If classes members are completely split across different clusters, the assignment is totally incomplete, hence the V-Measure is null:: >>> print("%.6f" % v_measure_score([0, 0, 0, 0], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 0.0... Clusters that include samples from totally different classes totally destroy the homogeneity of the labeling, hence:: >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 0, 0])) ... # doctest: +ELLIPSIS 0.0... """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[2] def mutual_info_score(labels_true, labels_pred, contingency=None): """Mutual Information between two clusterings The Mutual Information is a measure of the similarity between two labels of the same data. Where :math:`P(i)` is the probability of a random sample occurring in cluster :math:`U_i` and :math:`P'(j)` is the probability of a random sample occurring in cluster :math:`V_j`, the Mutual Information between clusterings :math:`U` and :math:`V` is given as: .. math:: MI(U,V)=\sum_{i=1}^R \sum_{j=1}^C P(i,j)\log\\frac{P(i,j)}{P(i)P'(j)} This is equal to the Kullback-Leibler divergence of the joint distribution with the product distribution of the marginals. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. contingency: None or array, shape = [n_classes_true, n_classes_pred] A contingency matrix given by the :func:`contingency_matrix` function. If value is ``None``, it will be computed, otherwise the given value is used, with ``labels_true`` and ``labels_pred`` ignored. Returns ------- mi: float Mutual information, a non-negative value See also -------- adjusted_mutual_info_score: Adjusted against chance Mutual Information normalized_mutual_info_score: Normalized Mutual Information """ if contingency is None: labels_true, labels_pred = check_clusterings(labels_true, labels_pred) contingency = contingency_matrix(labels_true, labels_pred) contingency = np.array(contingency, dtype='float') contingency_sum = np.sum(contingency) pi = np.sum(contingency, axis=1) pj = np.sum(contingency, axis=0) outer = np.outer(pi, pj) nnz = contingency != 0.0 # normalized contingency contingency_nm = contingency[nnz] log_contingency_nm = np.log(contingency_nm) contingency_nm /= contingency_sum # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision log_outer = -np.log(outer[nnz]) + log(pi.sum()) + log(pj.sum()) mi = (contingency_nm * (log_contingency_nm - log(contingency_sum)) + contingency_nm * log_outer) return mi.sum() def adjusted_mutual_info_score(labels_true, labels_pred): """Adjusted Mutual Information between two clusterings Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of clusters, regardless of whether there is actually more information shared. For two clusterings :math:`U` and :math:`V`, the AMI is given as:: AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))] This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand Index. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. Returns ------- ami: float(upperlimited by 1.0) The AMI returns a value of 1 when the two partitions are identical (ie perfectly matched). Random partitions (independent labellings) have an expected AMI around 0 on average hence can be negative. See also -------- adjusted_rand_score: Adjusted Rand Index mutual_information_score: Mutual Information (not adjusted for chance) Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import adjusted_mutual_info_score >>> adjusted_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> adjusted_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally in-complete, hence the AMI is null:: >>> adjusted_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 References ---------- .. [1] `Vinh, Epps, and Bailey, (2010). Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance, JMLR <http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf>`_ .. [2] `Wikipedia entry for the Adjusted Mutual Information <http://en.wikipedia.org/wiki/Adjusted_Mutual_Information>`_ """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) n_samples = labels_true.shape[0] classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split. # This is a perfect match hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0): return 1.0 contingency = contingency_matrix(labels_true, labels_pred) contingency = np.array(contingency, dtype='float') # Calculate the MI for the two clusterings mi = mutual_info_score(labels_true, labels_pred, contingency=contingency) # Calculate the expected value for the mutual information emi = expected_mutual_information(contingency, n_samples) # Calculate entropy for each labeling h_true, h_pred = entropy(labels_true), entropy(labels_pred) ami = (mi - emi) / (max(h_true, h_pred) - emi) return ami def normalized_mutual_info_score(labels_true, labels_pred): """Normalized Mutual Information between two clusterings Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is normalized by ``sqrt(H(labels_true) * H(labels_pred))`` This measure is not adjusted for chance. Therefore :func:`adjusted_mustual_info_score` might be preferred. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. Returns ------- nmi: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling See also -------- adjusted_rand_score: Adjusted Rand Index adjusted_mutual_info_score: Adjusted Mutual Information (adjusted against chance) Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import normalized_mutual_info_score >>> normalized_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> normalized_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally in-complete, hence the NMI is null:: >>> normalized_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split. # This is a perfect match hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0): return 1.0 contingency = contingency_matrix(labels_true, labels_pred) contingency = np.array(contingency, dtype='float') # Calculate the MI for the two clusterings mi = mutual_info_score(labels_true, labels_pred, contingency=contingency) # Calculate the expected value for the mutual information # Calculate entropy for each labeling h_true, h_pred = entropy(labels_true), entropy(labels_pred) nmi = mi / max(np.sqrt(h_true * h_pred), 1e-10) return nmi def entropy(labels): """Calculates the entropy for a labeling.""" if len(labels) == 0: return 1.0 label_idx = np.unique(labels, return_inverse=True)[1] pi = bincount(label_idx).astype(np.float) pi = pi[pi > 0] pi_sum = np.sum(pi) # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision return -np.sum((pi / pi_sum) * (np.log(pi) - log(pi_sum)))
bsd-3-clause
glemaitre/UnbalancedDataset
imblearn/under_sampling/prototype_selection/tests/test_condensed_nearest_neighbour.py
2
3904
"""Test the module condensed nearest neighbour.""" # Authors: Guillaume Lemaitre <[email protected]> # Christos Aridas # License: MIT from __future__ import print_function import numpy as np from sklearn.utils.testing import assert_array_equal from pytest import raises from sklearn.neighbors import KNeighborsClassifier from imblearn.under_sampling import CondensedNearestNeighbour RND_SEED = 0 X = np.array([[2.59928271, 0.93323465], [0.25738379, 0.95564169], [1.42772181, 0.526027], [1.92365863, 0.82718767], [-0.10903849, -0.12085181], [-0.284881, -0.62730973], [0.57062627, 1.19528323], [0.03394306, 0.03986753], [0.78318102, 2.59153329], [0.35831463, 1.33483198], [-0.14313184, -1.0412815], [0.01936241, 0.17799828], [-1.25020462, -0.40402054], [-0.09816301, -0.74662486], [-0.01252787, 0.34102657], [0.52726792, -0.38735648], [0.2821046, -0.07862747], [0.05230552, 0.09043907], [0.15198585, 0.12512646], [0.70524765, 0.39816382]]) Y = np.array([1, 2, 1, 1, 0, 2, 2, 2, 2, 2, 2, 0, 1, 2, 2, 2, 2, 1, 2, 1]) def test_cnn_init(): cnn = CondensedNearestNeighbour(random_state=RND_SEED) assert cnn.n_seeds_S == 1 assert cnn.n_jobs == 1 def test_cnn_fit_sample(): cnn = CondensedNearestNeighbour(random_state=RND_SEED) X_resampled, y_resampled = cnn.fit_sample(X, Y) X_gt = np.array([[-0.10903849, -0.12085181], [0.01936241, 0.17799828], [0.05230552, 0.09043907], [-1.25020462, -0.40402054], [0.70524765, 0.39816382], [0.35831463, 1.33483198], [-0.284881, -0.62730973], [0.03394306, 0.03986753], [-0.01252787, 0.34102657], [0.15198585, 0.12512646]]) y_gt = np.array([0, 0, 1, 1, 1, 2, 2, 2, 2, 2]) assert_array_equal(X_resampled, X_gt) assert_array_equal(y_resampled, y_gt) def test_cnn_fit_sample_with_indices(): cnn = CondensedNearestNeighbour(return_indices=True, random_state=RND_SEED) X_resampled, y_resampled, idx_under = cnn.fit_sample(X, Y) X_gt = np.array([[-0.10903849, -0.12085181], [0.01936241, 0.17799828], [0.05230552, 0.09043907], [-1.25020462, -0.40402054], [0.70524765, 0.39816382], [0.35831463, 1.33483198], [-0.284881, -0.62730973], [0.03394306, 0.03986753], [-0.01252787, 0.34102657], [0.15198585, 0.12512646]]) y_gt = np.array([0, 0, 1, 1, 1, 2, 2, 2, 2, 2]) idx_gt = np.array([4, 11, 17, 12, 19, 9, 5, 7, 14, 18]) assert_array_equal(X_resampled, X_gt) assert_array_equal(y_resampled, y_gt) assert_array_equal(idx_under, idx_gt) def test_cnn_fit_sample_with_object(): knn = KNeighborsClassifier(n_neighbors=1) cnn = CondensedNearestNeighbour(random_state=RND_SEED, n_neighbors=knn) X_resampled, y_resampled = cnn.fit_sample(X, Y) X_gt = np.array([[-0.10903849, -0.12085181], [0.01936241, 0.17799828], [0.05230552, 0.09043907], [-1.25020462, -0.40402054], [0.70524765, 0.39816382], [0.35831463, 1.33483198], [-0.284881, -0.62730973], [0.03394306, 0.03986753], [-0.01252787, 0.34102657], [0.15198585, 0.12512646]]) y_gt = np.array([0, 0, 1, 1, 1, 2, 2, 2, 2, 2]) assert_array_equal(X_resampled, X_gt) assert_array_equal(y_resampled, y_gt) cnn = CondensedNearestNeighbour(random_state=RND_SEED, n_neighbors=1) X_resampled, y_resampled = cnn.fit_sample(X, Y) assert_array_equal(X_resampled, X_gt) assert_array_equal(y_resampled, y_gt) def test_cnn_fit_sample_with_wrong_object(): knn = 'rnd' cnn = CondensedNearestNeighbour(random_state=RND_SEED, n_neighbors=knn) with raises(ValueError, match="has to be a int or an "): cnn.fit_sample(X, Y)
mit
gpospelov/BornAgain
Examples/varia/PolarizedSpinAsymmetry.py
1
9308
""" This simulation example demonstrates how to replicate the fitting example "Magnetically Dead Layers in Spinel Films" given at the Nist website: https://www.nist.gov/ncnr/magnetically-dead-layers-spinel-films For simplicity, here we only reproduce the first part of that demonstration without the magnetically dead layer. """ # import boranagain import bornagain as ba from bornagain import deg, angstrom, nm import numpy import matplotlib.pyplot as plt # import more libs needed for data processing from re import match, DOTALL from sys import argv from io import BytesIO from urllib.request import urlopen from zipfile import ZipFile from os.path import isfile # q-range on which the simulation and fitting are to be performed qmin = 0.05997 qmax = 1.96 # number of points on which the computed result is plotted scan_size = 1500 # The SLD of the substrate is kept constant sldMao = (5.377e-06, 0) # constant to convert between magnetization and magnetic SLD RhoMconst = 2.910429812376859e-12 #################################################################### # Create Sample and Simulation # #################################################################### def get_sample(params): """ construct the sample with the given parameters """ magnetizationMagnitude = params["rhoM_Mafo"]*1e-6/RhoMconst angle = 0 magnetizationVector = ba.kvector_t( magnetizationMagnitude*numpy.sin(angle*deg), magnetizationMagnitude*numpy.cos(angle*deg), 0) mat_vacuum = ba.MaterialBySLD("Vacuum", 0.0, 0.0) mat_layer = ba.MaterialBySLD("(Mg,Al,Fe)3O4", params["rho_Mafo"]*1e-6, 0, magnetizationVector) mat_substrate = ba.MaterialBySLD("MgAl2O4", *sldMao) ambient_layer = ba.Layer(mat_vacuum) layer = ba.Layer(mat_layer, params["t_Mafo"]*angstrom) substrate_layer = ba.Layer(mat_substrate) r_Mafo = ba.LayerRoughness() r_Mafo.setSigma(params["r_Mafo"]*angstrom) r_substrate = ba.LayerRoughness() r_substrate.setSigma(params["r_Mao"]*angstrom) multi_layer = ba.MultiLayer() multi_layer.addLayer(ambient_layer) multi_layer.addLayerWithTopRoughness(layer, r_Mafo) multi_layer.addLayerWithTopRoughness(substrate_layer, r_substrate) return multi_layer def get_simulation(q_axis, parameters, polarization, analyzer): """ Returns a simulation object. Polarization, analyzer and resolution are set from given parameters """ simulation = ba.SpecularSimulation() q_axis = q_axis + parameters["q_offset"] scan = ba.QSpecScan(q_axis) dq = parameters["q_res"]*q_axis n_sig = 4.0 n_samples = 25 distr = ba.RangedDistributionGaussian(n_samples, n_sig) scan.setAbsoluteQResolution(distr, parameters["q_res"]) simulation.beam().setPolarization(polarization) simulation.setAnalyzerProperties(analyzer, 1.0, 0.5) simulation.setScan(scan) return simulation def run_simulation(q_axis, fitParams, *, polarization, analyzer): """ Run a simulation on the given q-axis, where the sample is constructed with the given parameters. Vectors for polarization and analyzer need to be provided """ parameters = dict(fitParams, **fixedParams) sample = get_sample(parameters) simulation = get_simulation(q_axis, parameters, polarization, analyzer) simulation.setSample(sample) simulation.runSimulation() return simulation def qr(result): """ Returns two arrays that hold the q-values as well as the reflectivity from a given simulation result """ q = numpy.array(result.result().axis(ba.Axes.QSPACE)) r = numpy.array(result.result().array(ba.Axes.QSPACE)) return q, r #################################################################### # Plot Handling # #################################################################### def plot(qs, rs, exps, labels, filename): """ Plot the simulated result together with the experimental data """ fig = plt.figure() ax = fig.add_subplot(111) for q, r, exp, l in zip(qs, rs, exps, labels): ax.errorbar(exp[0], exp[1], xerr=exp[3], yerr=exp[2], fmt='.', markersize=0.75, linewidth=0.5) ax.plot(q, r, label=l) ax.set_yscale('log') plt.legend() plt.xlabel("Q [nm${}^{-1}$]") plt.ylabel("R") plt.tight_layout() plt.savefig(filename) def plotSpinAsymmetry(data_pp, data_mm, q, r_pp, r_mm, filename): """ Plot the simulated spin asymmetry as well its experimental counterpart with errorbars """ # compute the errorbars of the spin asymmetry delta = numpy.sqrt(4 * (data_pp[1]**2 * data_mm[2]**2 + \ data_mm[1]**2 * data_pp[2]**2 ) / ( data_pp[1] + data_mm[1] )**4 ) fig = plt.figure() ax = fig.add_subplot(111) ax.errorbar(data_pp[0], (data_pp[1] - data_mm[1])/(data_pp[1] + data_mm[1]), xerr=data_pp[3], yerr=delta, fmt='.', markersize=0.75, linewidth=0.5) ax.plot(q, (r_pp - r_mm)/(r_pp + r_mm)) plt.gca().set_ylim((-0.3, 0.5)) plt.xlabel("Q [nm${}^{-1}$]") plt.ylabel("Spin asymmetry") plt.tight_layout() plt.savefig(filename) #################################################################### # Data Handling # #################################################################### def normalizeData(data): """ Removes duplicate q values from the input data, normalizes it such that the maximum of the reflectivity is unity and rescales the q-axis to inverse nm """ r0 = numpy.where(data[0] - numpy.roll(data[0], 1) == 0) data = numpy.delete(data, r0, 1) data[0] = data[0]/angstrom data[3] = data[3]/angstrom norm = numpy.max(data[1]) data[1] = data[1]/norm data[2] = data[2]/norm so = numpy.argsort(data[0]) data = data[:, so] return data def filterData(data, qmin, qmax): minIndex = numpy.argmin(numpy.abs(data[0] - qmin)) maxIndex = numpy.argmin(numpy.abs(data[0] - qmax)) return data[:, minIndex:maxIndex + 1] def get_Experimental_data(qmin, qmax): if hasattr(get_Experimental_data, "raw_data"): data_pp = get_Experimental_data.raw_data_pp data_mm = get_Experimental_data.raw_data_mm else: input_Data = downloadAndExtractData() data_pp = normalizeData(input_Data[0]) data_mm = normalizeData(input_Data[1]) get_Experimental_data.data_pp = data_pp get_Experimental_data.data_mm = data_mm get_Experimental_data.raw_data = True return (filterData(data_pp, qmin, qmax), filterData(data_mm, qmin, qmax)) def downloadAndExtractData(): url = "https://www.nist.gov/document/spinelfilmzip" if not isfile("spinelfilm.zip"): downloadfile = urlopen(url) with open("spinelfilm.zip", 'wb') as outfile: outfile.write(downloadfile.read()) zipfile = ZipFile("spinelfilm.zip") rawdata = zipfile.open("MAFO_Saturated.refl").\ read().decode("utf-8") table_pp = match( r'.*# "polarization": "\+\+"\n#.*?\n# "units".*?\n(.*?)#.*', rawdata, DOTALL).group(1) table_mm = match( r'.*# "polarization": "\-\-"\n#.*?\n# "units".*?\n(.*?)#.*', rawdata, DOTALL).group(1) data_pp = numpy.genfromtxt(BytesIO(table_pp.encode()), unpack=True) data_mm = numpy.genfromtxt(BytesIO(table_mm.encode()), unpack=True) return (data_pp, data_mm) #################################################################### # Main Function # #################################################################### if __name__ == '__main__': fixedParams = { # parameters from our own fit run 'q_res': 0.010542945012551425, 'q_offset': 7.971243487467318e-05, 'rho_Mafo': 6.370140108715461, 'rhoM_Mafo': 0.27399566816062926, 't_Mafo': 137.46913056084736, 'r_Mao': 8.60487712674644, 'r_Mafo': 3.7844265311293483 } def run_Simulation_pp(qzs, params): return run_simulation(qzs, params, polarization=ba.kvector_t(0, 1, 0), analyzer=ba.kvector_t(0, 1, 0)) def run_Simulation_mm(qzs, params): return run_simulation(qzs, params, polarization=ba.kvector_t(0, -1, 0), analyzer=ba.kvector_t(0, -1, 0)) qzs = numpy.linspace(qmin, qmax, scan_size) q_pp, r_pp = qr(run_Simulation_pp(qzs, fixedParams)) q_mm, r_mm = qr(run_Simulation_mm(qzs, fixedParams)) data_pp, data_mm = get_Experimental_data(qmin, qmax) plot([q_pp, q_mm], [r_pp, r_mm], [data_pp, data_mm], ["$++$", "$--$"], f'MAFO_Saturated.pdf') plotSpinAsymmetry(data_pp, data_mm, qzs, r_pp, r_mm, "MAFO_Saturated_spin_asymmetry.pdf")
gpl-3.0
davidbuzz/ardupilot
Tools/mavproxy_modules/lib/magcal_graph_ui.py
108
8248
# Copyright (C) 2016 Intel Corporation. All rights reserved. # # This file is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This file is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see <http://www.gnu.org/licenses/>. import matplotlib.pyplot as plt from matplotlib.backends.backend_wxagg import FigureCanvas from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection from pymavlink.mavutil import mavlink from MAVProxy.modules.lib import wx_processguard from MAVProxy.modules.lib.wx_loader import wx import geodesic_grid as grid class MagcalPanel(wx.Panel): _status_markup_strings = { mavlink.MAG_CAL_NOT_STARTED: 'Not started', mavlink.MAG_CAL_WAITING_TO_START: 'Waiting to start', mavlink.MAG_CAL_RUNNING_STEP_ONE: 'Step one', mavlink.MAG_CAL_RUNNING_STEP_TWO: 'Step two', mavlink.MAG_CAL_SUCCESS: '<span color="blue">Success</span>', mavlink.MAG_CAL_FAILED: '<span color="red">Failed</span>', } _empty_color = '#7ea6ce' _filled_color = '#4680b9' def __init__(self, *k, **kw): super(MagcalPanel, self).__init__(*k, **kw) facecolor = self.GetBackgroundColour().GetAsString(wx.C2S_HTML_SYNTAX) fig = plt.figure(facecolor=facecolor, figsize=(1,1)) self._canvas = FigureCanvas(self, wx.ID_ANY, fig) self._canvas.SetMinSize((300,300)) self._id_text = wx.StaticText(self, wx.ID_ANY) self._status_text = wx.StaticText(self, wx.ID_ANY) self._completion_pct_text = wx.StaticText(self, wx.ID_ANY) sizer = wx.BoxSizer(wx.VERTICAL) sizer.Add(self._id_text) sizer.Add(self._status_text) sizer.Add(self._completion_pct_text) sizer.Add(self._canvas, proportion=1, flag=wx.EXPAND) self.SetSizer(sizer) ax = fig.add_subplot(111, axis_bgcolor=facecolor, projection='3d') self.configure_plot(ax) def configure_plot(self, ax): extra = .5 lim = grid.radius + extra ax.set_xlim3d(-lim, lim) ax.set_ylim3d(-lim, lim) ax.set_zlim3d(-lim, lim) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') ax.invert_zaxis() ax.invert_xaxis() ax.set_aspect('equal') self._polygons_collection = Poly3DCollection( grid.sections_triangles, edgecolors='#386694', ) ax.add_collection3d(self._polygons_collection) def update_status_from_mavlink(self, m): status_string = self._status_markup_strings.get(m.cal_status, '???') self._status_text.SetLabelMarkup( '<b>Status:</b> %s' % status_string, ) def mavlink_magcal_report(self, m): self.update_status_from_mavlink(m) self._completion_pct_text.SetLabel('') def mavlink_magcal_progress(self, m): facecolors = [] for i, mask in enumerate(m.completion_mask): for j in range(8): section = i * 8 + j if mask & 1 << j: facecolor = self._filled_color else: facecolor = self._empty_color facecolors.append(facecolor) self._polygons_collection.set_facecolors(facecolors) self._canvas.draw() self._id_text.SetLabelMarkup( '<b>Compass id:</b> %d' % m.compass_id ) self._completion_pct_text.SetLabelMarkup( '<b>Completion:</b> %d%%' % m.completion_pct ) self.update_status_from_mavlink(m) _legend_panel = None @staticmethod def legend_panel(*k, **kw): if MagcalPanel._legend_panel: return MagcalPanel._legend_panel p = MagcalPanel._legend_panel = wx.Panel(*k, **kw) sizer = wx.BoxSizer(wx.HORIZONTAL) p.SetSizer(sizer) marker = wx.Panel(p, wx.ID_ANY, size=(10, 10)) marker.SetBackgroundColour(MagcalPanel._empty_color) sizer.Add(marker, flag=wx.ALIGN_CENTER) text = wx.StaticText(p, wx.ID_ANY) text.SetLabel('Sections not hit') sizer.Add(text, border=4, flag=wx.ALIGN_CENTER | wx.LEFT) marker = wx.Panel(p, wx.ID_ANY, size=(10, 10)) marker.SetBackgroundColour(MagcalPanel._filled_color) sizer.Add(marker, border=10, flag=wx.ALIGN_CENTER | wx.LEFT) text = wx.StaticText(p, wx.ID_ANY) text.SetLabel('Sections hit') sizer.Add(text, border=4, flag=wx.ALIGN_CENTER | wx.LEFT) return p class MagcalFrame(wx.Frame): def __init__(self, conn): super(MagcalFrame, self).__init__( None, wx.ID_ANY, title='Magcal Graph', ) self.SetMinSize((300, 300)) self._conn = conn self._main_panel = wx.ScrolledWindow(self, wx.ID_ANY) self._main_panel.SetScrollbars(1, 1, 1, 1) self._magcal_panels = {} self._sizer = wx.BoxSizer(wx.VERTICAL) self._main_panel.SetSizer(self._sizer) idle_text = wx.StaticText(self._main_panel, wx.ID_ANY) idle_text.SetLabelMarkup('<i>No calibration messages received yet...</i>') idle_text.SetForegroundColour('#444444') self._sizer.AddStretchSpacer() self._sizer.Add( idle_text, proportion=0, flag=wx.ALIGN_CENTER | wx.ALL, border=10, ) self._sizer.AddStretchSpacer() self._timer = wx.Timer(self) self.Bind(wx.EVT_TIMER, self.timer_callback, self._timer) self._timer.Start(200) def add_compass(self, id): if not self._magcal_panels: self._sizer.Clear(deleteWindows=True) self._magcal_panels_sizer = wx.BoxSizer(wx.HORIZONTAL) self._sizer.Add( self._magcal_panels_sizer, proportion=1, flag=wx.EXPAND, ) legend = MagcalPanel.legend_panel(self._main_panel, wx.ID_ANY) self._sizer.Add( legend, proportion=0, flag=wx.ALIGN_CENTER, ) self._magcal_panels[id] = MagcalPanel(self._main_panel, wx.ID_ANY) self._magcal_panels_sizer.Add( self._magcal_panels[id], proportion=1, border=10, flag=wx.EXPAND | wx.ALL, ) def timer_callback(self, evt): close_requested = False mavlink_msgs = {} while self._conn.poll(): m = self._conn.recv() if isinstance(m, str) and m == 'close': close_requested = True continue if m.compass_id not in mavlink_msgs: # Keep the last two messages so that we get the last progress # if the last message is the calibration report. mavlink_msgs[m.compass_id] = [None, m] else: l = mavlink_msgs[m.compass_id] l[0] = l[1] l[1] = m if close_requested: self._timer.Stop() self.Destroy() return if not mavlink_msgs: return needs_fit = False for k in mavlink_msgs: if k not in self._magcal_panels: self.add_compass(k) needs_fit = True if needs_fit: self._sizer.Fit(self) for k, l in mavlink_msgs.items(): for m in l: if not m: continue panel = self._magcal_panels[k] if m.get_type() == 'MAG_CAL_PROGRESS': panel.mavlink_magcal_progress(m) elif m.get_type() == 'MAG_CAL_REPORT': panel.mavlink_magcal_report(m)
gpl-3.0
bhargav/scikit-learn
examples/linear_model/plot_logistic.py
312
1426
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logit function ========================================================= Show in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e. class one or two, using the logit-curve. """ print(__doc__) # Code source: Gael Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # this is our test set, it's just a straight line with some # Gaussian noise xmin, xmax = -5, 5 n_samples = 100 np.random.seed(0) X = np.random.normal(size=n_samples) y = (X > 0).astype(np.float) X[X > 0] *= 4 X += .3 * np.random.normal(size=n_samples) X = X[:, np.newaxis] # run the classifier clf = linear_model.LogisticRegression(C=1e5) clf.fit(X, y) # and plot the result plt.figure(1, figsize=(4, 3)) plt.clf() plt.scatter(X.ravel(), y, color='black', zorder=20) X_test = np.linspace(-5, 10, 300) def model(x): return 1 / (1 + np.exp(-x)) loss = model(X_test * clf.coef_ + clf.intercept_).ravel() plt.plot(X_test, loss, color='blue', linewidth=3) ols = linear_model.LinearRegression() ols.fit(X, y) plt.plot(X_test, ols.coef_ * X_test + ols.intercept_, linewidth=1) plt.axhline(.5, color='.5') plt.ylabel('y') plt.xlabel('X') plt.xticks(()) plt.yticks(()) plt.ylim(-.25, 1.25) plt.xlim(-4, 10) plt.show()
bsd-3-clause
mariosky/evo-drawings
venv/lib/python2.7/site-packages/numpy/fft/fftpack.py
35
42179
""" Discrete Fourier Transforms Routines in this module: fft(a, n=None, axis=-1) ifft(a, n=None, axis=-1) rfft(a, n=None, axis=-1) irfft(a, n=None, axis=-1) hfft(a, n=None, axis=-1) ihfft(a, n=None, axis=-1) fftn(a, s=None, axes=None) ifftn(a, s=None, axes=None) rfftn(a, s=None, axes=None) irfftn(a, s=None, axes=None) fft2(a, s=None, axes=(-2,-1)) ifft2(a, s=None, axes=(-2, -1)) rfft2(a, s=None, axes=(-2,-1)) irfft2(a, s=None, axes=(-2, -1)) i = inverse transform r = transform of purely real data h = Hermite transform n = n-dimensional transform 2 = 2-dimensional transform (Note: 2D routines are just nD routines with different default behavior.) The underlying code for these functions is an f2c-translated and modified version of the FFTPACK routines. """ from __future__ import division, absolute_import, print_function __all__ = ['fft', 'ifft', 'rfft', 'irfft', 'hfft', 'ihfft', 'rfftn', 'irfftn', 'rfft2', 'irfft2', 'fft2', 'ifft2', 'fftn', 'ifftn'] from numpy.core import asarray, zeros, swapaxes, shape, conjugate, \ take from . import fftpack_lite as fftpack _fft_cache = {} _real_fft_cache = {} def _raw_fft(a, n=None, axis=-1, init_function=fftpack.cffti, work_function=fftpack.cfftf, fft_cache = _fft_cache ): a = asarray(a) if n is None: n = a.shape[axis] if n < 1: raise ValueError("Invalid number of FFT data points (%d) specified." % n) try: # Thread-safety note: We rely on list.pop() here to atomically # retrieve-and-remove a wsave from the cache. This ensures that no # other thread can get the same wsave while we're using it. wsave = fft_cache.setdefault(n, []).pop() except (IndexError): wsave = init_function(n) if a.shape[axis] != n: s = list(a.shape) if s[axis] > n: index = [slice(None)]*len(s) index[axis] = slice(0, n) a = a[index] else: index = [slice(None)]*len(s) index[axis] = slice(0, s[axis]) s[axis] = n z = zeros(s, a.dtype.char) z[index] = a a = z if axis != -1: a = swapaxes(a, axis, -1) r = work_function(a, wsave) if axis != -1: r = swapaxes(r, axis, -1) # As soon as we put wsave back into the cache, another thread could pick it # up and start using it, so we must not do this until after we're # completely done using it ourselves. fft_cache[n].append(wsave) return r def fft(a, n=None, axis=-1): """ Compute the one-dimensional discrete Fourier Transform. This function computes the one-dimensional *n*-point discrete Fourier Transform (DFT) with the efficient Fast Fourier Transform (FFT) algorithm [CT]. Parameters ---------- a : array_like Input array, can be complex. n : int, optional Length of the transformed axis of the output. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. Raises ------ IndexError if `axes` is larger than the last axis of `a`. See Also -------- numpy.fft : for definition of the DFT and conventions used. ifft : The inverse of `fft`. fft2 : The two-dimensional FFT. fftn : The *n*-dimensional FFT. rfftn : The *n*-dimensional FFT of real input. fftfreq : Frequency bins for given FFT parameters. Notes ----- FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently, by using symmetries in the calculated terms. The symmetry is highest when `n` is a power of 2, and the transform is therefore most efficient for these sizes. The DFT is defined, with the conventions used in this implementation, in the documentation for the `numpy.fft` module. References ---------- .. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the machine calculation of complex Fourier series," *Math. Comput.* 19: 297-301. Examples -------- >>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8)) array([ -3.44505240e-16 +1.14383329e-17j, 8.00000000e+00 -5.71092652e-15j, 2.33482938e-16 +1.22460635e-16j, 1.64863782e-15 +1.77635684e-15j, 9.95839695e-17 +2.33482938e-16j, 0.00000000e+00 +1.66837030e-15j, 1.14383329e-17 +1.22460635e-16j, -1.64863782e-15 +1.77635684e-15j]) >>> import matplotlib.pyplot as plt >>> t = np.arange(256) >>> sp = np.fft.fft(np.sin(t)) >>> freq = np.fft.fftfreq(t.shape[-1]) >>> plt.plot(freq, sp.real, freq, sp.imag) [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] >>> plt.show() In this example, real input has an FFT which is Hermitian, i.e., symmetric in the real part and anti-symmetric in the imaginary part, as described in the `numpy.fft` documentation. """ return _raw_fft(a, n, axis, fftpack.cffti, fftpack.cfftf, _fft_cache) def ifft(a, n=None, axis=-1): """ Compute the one-dimensional inverse discrete Fourier Transform. This function computes the inverse of the one-dimensional *n*-point discrete Fourier transform computed by `fft`. In other words, ``ifft(fft(a)) == a`` to within numerical accuracy. For a general description of the algorithm and definitions, see `numpy.fft`. The input should be ordered in the same way as is returned by `fft`, i.e., ``a[0]`` should contain the zero frequency term, ``a[1:n/2+1]`` should contain the positive-frequency terms, and ``a[n/2+1:]`` should contain the negative-frequency terms, in order of decreasingly negative frequency. See `numpy.fft` for details. Parameters ---------- a : array_like Input array, can be complex. n : int, optional Length of the transformed axis of the output. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. See notes about padding issues. axis : int, optional Axis over which to compute the inverse DFT. If not given, the last axis is used. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. Raises ------ IndexError If `axes` is larger than the last axis of `a`. See Also -------- numpy.fft : An introduction, with definitions and general explanations. fft : The one-dimensional (forward) FFT, of which `ifft` is the inverse ifft2 : The two-dimensional inverse FFT. ifftn : The n-dimensional inverse FFT. Notes ----- If the input parameter `n` is larger than the size of the input, the input is padded by appending zeros at the end. Even though this is the common approach, it might lead to surprising results. If a different padding is desired, it must be performed before calling `ifft`. Examples -------- >>> np.fft.ifft([0, 4, 0, 0]) array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j]) Create and plot a band-limited signal with random phases: >>> import matplotlib.pyplot as plt >>> t = np.arange(400) >>> n = np.zeros((400,), dtype=complex) >>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,))) >>> s = np.fft.ifft(n) >>> plt.plot(t, s.real, 'b-', t, s.imag, 'r--') [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] >>> plt.legend(('real', 'imaginary')) <matplotlib.legend.Legend object at 0x...> >>> plt.show() """ a = asarray(a).astype(complex) if n is None: n = shape(a)[axis] return _raw_fft(a, n, axis, fftpack.cffti, fftpack.cfftb, _fft_cache) / n def rfft(a, n=None, axis=-1): """ Compute the one-dimensional discrete Fourier Transform for real input. This function computes the one-dimensional *n*-point discrete Fourier Transform (DFT) of a real-valued array by means of an efficient algorithm called the Fast Fourier Transform (FFT). Parameters ---------- a : array_like Input array n : int, optional Number of points along transformation axis in the input to use. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. If `n` is even, the length of the transformed axis is ``(n/2)+1``. If `n` is odd, the length is ``(n+1)/2``. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See Also -------- numpy.fft : For definition of the DFT and conventions used. irfft : The inverse of `rfft`. fft : The one-dimensional FFT of general (complex) input. fftn : The *n*-dimensional FFT. rfftn : The *n*-dimensional FFT of real input. Notes ----- When the DFT is computed for purely real input, the output is Hermitian-symmetric, i.e. the negative frequency terms are just the complex conjugates of the corresponding positive-frequency terms, and the negative-frequency terms are therefore redundant. This function does not compute the negative frequency terms, and the length of the transformed axis of the output is therefore ``n//2 + 1``. When ``A = rfft(a)`` and fs is the sampling frequency, ``A[0]`` contains the zero-frequency term 0*fs, which is real due to Hermitian symmetry. If `n` is even, ``A[-1]`` contains the term representing both positive and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely real. If `n` is odd, there is no term at fs/2; ``A[-1]`` contains the largest positive frequency (fs/2*(n-1)/n), and is complex in the general case. If the input `a` contains an imaginary part, it is silently discarded. Examples -------- >>> np.fft.fft([0, 1, 0, 0]) array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) >>> np.fft.rfft([0, 1, 0, 0]) array([ 1.+0.j, 0.-1.j, -1.+0.j]) Notice how the final element of the `fft` output is the complex conjugate of the second element, for real input. For `rfft`, this symmetry is exploited to compute only the non-negative frequency terms. """ a = asarray(a).astype(float) return _raw_fft(a, n, axis, fftpack.rffti, fftpack.rfftf, _real_fft_cache) def irfft(a, n=None, axis=-1): """ Compute the inverse of the n-point DFT for real input. This function computes the inverse of the one-dimensional *n*-point discrete Fourier Transform of real input computed by `rfft`. In other words, ``irfft(rfft(a), len(a)) == a`` to within numerical accuracy. (See Notes below for why ``len(a)`` is necessary here.) The input is expected to be in the form returned by `rfft`, i.e. the real zero-frequency term followed by the complex positive frequency terms in order of increasing frequency. Since the discrete Fourier Transform of real input is Hermitian-symmetric, the negative frequency terms are taken to be the complex conjugates of the corresponding positive frequency terms. Parameters ---------- a : array_like The input array. n : int, optional Length of the transformed axis of the output. For `n` output points, ``n//2+1`` input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. If `n` is not given, it is determined from the length of the input along the axis specified by `axis`. axis : int, optional Axis over which to compute the inverse FFT. If not given, the last axis is used. Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is `n`, or, if `n` is not given, ``2*(m-1)`` where ``m`` is the length of the transformed axis of the input. To get an odd number of output points, `n` must be specified. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See Also -------- numpy.fft : For definition of the DFT and conventions used. rfft : The one-dimensional FFT of real input, of which `irfft` is inverse. fft : The one-dimensional FFT. irfft2 : The inverse of the two-dimensional FFT of real input. irfftn : The inverse of the *n*-dimensional FFT of real input. Notes ----- Returns the real valued `n`-point inverse discrete Fourier transform of `a`, where `a` contains the non-negative frequency terms of a Hermitian-symmetric sequence. `n` is the length of the result, not the input. If you specify an `n` such that `a` must be zero-padded or truncated, the extra/removed values will be added/removed at high frequencies. One can thus resample a series to `m` points via Fourier interpolation by: ``a_resamp = irfft(rfft(a), m)``. Examples -------- >>> np.fft.ifft([1, -1j, -1, 1j]) array([ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) >>> np.fft.irfft([1, -1j, -1]) array([ 0., 1., 0., 0.]) Notice how the last term in the input to the ordinary `ifft` is the complex conjugate of the second term, and the output has zero imaginary part everywhere. When calling `irfft`, the negative frequencies are not specified, and the output array is purely real. """ a = asarray(a).astype(complex) if n is None: n = (shape(a)[axis] - 1) * 2 return _raw_fft(a, n, axis, fftpack.rffti, fftpack.rfftb, _real_fft_cache) / n def hfft(a, n=None, axis=-1): """ Compute the FFT of a signal which has Hermitian symmetry (real spectrum). Parameters ---------- a : array_like The input array. n : int, optional Length of the transformed axis of the output. For `n` output points, ``n//2+1`` input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. If `n` is not given, it is determined from the length of the input along the axis specified by `axis`. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is `n`, or, if `n` is not given, ``2*(m-1)`` where ``m`` is the length of the transformed axis of the input. To get an odd number of output points, `n` must be specified. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See also -------- rfft : Compute the one-dimensional FFT for real input. ihfft : The inverse of `hfft`. Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy. Examples -------- >>> signal = np.array([1, 2, 3, 4, 3, 2]) >>> np.fft.fft(signal) array([ 15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j]) >>> np.fft.hfft(signal[:4]) # Input first half of signal array([ 15., -4., 0., -1., 0., -4.]) >>> np.fft.hfft(signal, 6) # Input entire signal and truncate array([ 15., -4., 0., -1., 0., -4.]) >>> signal = np.array([[1, 1.j], [-1.j, 2]]) >>> np.conj(signal.T) - signal # check Hermitian symmetry array([[ 0.-0.j, 0.+0.j], [ 0.+0.j, 0.-0.j]]) >>> freq_spectrum = np.fft.hfft(signal) >>> freq_spectrum array([[ 1., 1.], [ 2., -2.]]) """ a = asarray(a).astype(complex) if n is None: n = (shape(a)[axis] - 1) * 2 return irfft(conjugate(a), n, axis) * n def ihfft(a, n=None, axis=-1): """ Compute the inverse FFT of a signal which has Hermitian symmetry. Parameters ---------- a : array_like Input array. n : int, optional Length of the inverse FFT. Number of points along transformation axis in the input to use. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the inverse FFT. If not given, the last axis is used. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. If `n` is even, the length of the transformed axis is ``(n/2)+1``. If `n` is odd, the length is ``(n+1)/2``. See also -------- hfft, irfft Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy. Examples -------- >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4]) >>> np.fft.ifft(spectrum) array([ 1.+0.j, 2.-0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.-0.j]) >>> np.fft.ihfft(spectrum) array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) """ a = asarray(a).astype(float) if n is None: n = shape(a)[axis] return conjugate(rfft(a, n, axis))/n def _cook_nd_args(a, s=None, axes=None, invreal=0): if s is None: shapeless = 1 if axes is None: s = list(a.shape) else: s = take(a.shape, axes) else: shapeless = 0 s = list(s) if axes is None: axes = list(range(-len(s), 0)) if len(s) != len(axes): raise ValueError("Shape and axes have different lengths.") if invreal and shapeless: s[-1] = (a.shape[axes[-1]] - 1) * 2 return s, axes def _raw_fftnd(a, s=None, axes=None, function=fft): a = asarray(a) s, axes = _cook_nd_args(a, s, axes) itl = list(range(len(axes))) itl.reverse() for ii in itl: a = function(a, n=s[ii], axis=axes[ii]) return a def fftn(a, s=None, axes=None): """ Compute the N-dimensional discrete Fourier Transform. This function computes the *N*-dimensional discrete Fourier Transform over any number of axes in an *M*-dimensional array by means of the Fast Fourier Transform (FFT). Parameters ---------- a : array_like Input array, can be complex. s : sequence of ints, optional Shape (length of each transformed axis) of the output (`s[0]` refers to axis 0, `s[1]` to axis 1, etc.). This corresponds to `n` for `fft(x, n)`. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last ``len(s)`` axes are used, or all axes if `s` is also not specified. Repeated indices in `axes` means that the transform over that axis is performed multiple times. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` and `a`, as explained in the parameters section above. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. ifftn : The inverse of `fftn`, the inverse *n*-dimensional FFT. fft : The one-dimensional FFT, with definitions and conventions used. rfftn : The *n*-dimensional FFT of real input. fft2 : The two-dimensional FFT. fftshift : Shifts zero-frequency terms to centre of array Notes ----- The output, analogously to `fft`, contains the term for zero frequency in the low-order corner of all axes, the positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency. See `numpy.fft` for details, definitions and conventions used. Examples -------- >>> a = np.mgrid[:3, :3, :3][0] >>> np.fft.fftn(a, axes=(1, 2)) array([[[ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[ 9.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[ 18.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]]]) >>> np.fft.fftn(a, (2, 2), axes=(0, 1)) array([[[ 2.+0.j, 2.+0.j, 2.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[-2.+0.j, -2.+0.j, -2.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]]]) >>> import matplotlib.pyplot as plt >>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12, ... 2 * np.pi * np.arange(200) / 34) >>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape) >>> FS = np.fft.fftn(S) >>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2)) <matplotlib.image.AxesImage object at 0x...> >>> plt.show() """ return _raw_fftnd(a, s, axes, fft) def ifftn(a, s=None, axes=None): """ Compute the N-dimensional inverse discrete Fourier Transform. This function computes the inverse of the N-dimensional discrete Fourier Transform over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ``ifftn(fftn(a)) == a`` to within numerical accuracy. For a description of the definitions and conventions used, see `numpy.fft`. The input, analogously to `ifft`, should be ordered in the same way as is returned by `fftn`, i.e. it should have the term for zero frequency in all axes in the low-order corner, the positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency. Parameters ---------- a : array_like Input array, can be complex. s : sequence of ints, optional Shape (length of each transformed axis) of the output (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). This corresponds to ``n`` for ``ifft(x, n)``. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. See notes for issue on `ifft` zero padding. axes : sequence of ints, optional Axes over which to compute the IFFT. If not given, the last ``len(s)`` axes are used, or all axes if `s` is also not specified. Repeated indices in `axes` means that the inverse transform over that axis is performed multiple times. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` or `a`, as explained in the parameters section above. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. fftn : The forward *n*-dimensional FFT, of which `ifftn` is the inverse. ifft : The one-dimensional inverse FFT. ifft2 : The two-dimensional inverse FFT. ifftshift : Undoes `fftshift`, shifts zero-frequency terms to beginning of array. Notes ----- See `numpy.fft` for definitions and conventions used. Zero-padding, analogously with `ifft`, is performed by appending zeros to the input along the specified dimension. Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired, it must be performed before `ifftn` is called. Examples -------- >>> a = np.eye(4) >>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,)) array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]]) Create and plot an image with band-limited frequency content: >>> import matplotlib.pyplot as plt >>> n = np.zeros((200,200), dtype=complex) >>> n[60:80, 20:40] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20, 20))) >>> im = np.fft.ifftn(n).real >>> plt.imshow(im) <matplotlib.image.AxesImage object at 0x...> >>> plt.show() """ return _raw_fftnd(a, s, axes, ifft) def fft2(a, s=None, axes=(-2, -1)): """ Compute the 2-dimensional discrete Fourier Transform This function computes the *n*-dimensional discrete Fourier Transform over any axes in an *M*-dimensional array by means of the Fast Fourier Transform (FFT). By default, the transform is computed over the last two axes of the input array, i.e., a 2-dimensional FFT. Parameters ---------- a : array_like Input array, can be complex s : sequence of ints, optional Shape (length of each transformed axis) of the output (`s[0]` refers to axis 0, `s[1]` to axis 1, etc.). This corresponds to `n` for `fft(x, n)`. Along each axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last two axes are used. A repeated index in `axes` means the transform over that axis is performed multiple times. A one-element sequence means that a one-dimensional FFT is performed. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or the last two axes if `axes` is not given. Raises ------ ValueError If `s` and `axes` have different length, or `axes` not given and ``len(s) != 2``. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. ifft2 : The inverse two-dimensional FFT. fft : The one-dimensional FFT. fftn : The *n*-dimensional FFT. fftshift : Shifts zero-frequency terms to the center of the array. For two-dimensional input, swaps first and third quadrants, and second and fourth quadrants. Notes ----- `fft2` is just `fftn` with a different default for `axes`. The output, analogously to `fft`, contains the term for zero frequency in the low-order corner of the transformed axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of the axes, in order of decreasingly negative frequency. See `fftn` for details and a plotting example, and `numpy.fft` for definitions and conventions used. Examples -------- >>> a = np.mgrid[:5, :5][0] >>> np.fft.fft2(a) array([[ 50.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5+17.20477401j, 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5 +4.0614962j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5 -4.0614962j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5-17.20477401j, 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ]]) """ return _raw_fftnd(a, s, axes, fft) def ifft2(a, s=None, axes=(-2, -1)): """ Compute the 2-dimensional inverse discrete Fourier Transform. This function computes the inverse of the 2-dimensional discrete Fourier Transform over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ``ifft2(fft2(a)) == a`` to within numerical accuracy. By default, the inverse transform is computed over the last two axes of the input array. The input, analogously to `ifft`, should be ordered in the same way as is returned by `fft2`, i.e. it should have the term for zero frequency in the low-order corner of the two axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of both axes, in order of decreasingly negative frequency. Parameters ---------- a : array_like Input array, can be complex. s : sequence of ints, optional Shape (length of each axis) of the output (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). This corresponds to `n` for ``ifft(x, n)``. Along each axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. See notes for issue on `ifft` zero padding. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last two axes are used. A repeated index in `axes` means the transform over that axis is performed multiple times. A one-element sequence means that a one-dimensional FFT is performed. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or the last two axes if `axes` is not given. Raises ------ ValueError If `s` and `axes` have different length, or `axes` not given and ``len(s) != 2``. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. fft2 : The forward 2-dimensional FFT, of which `ifft2` is the inverse. ifftn : The inverse of the *n*-dimensional FFT. fft : The one-dimensional FFT. ifft : The one-dimensional inverse FFT. Notes ----- `ifft2` is just `ifftn` with a different default for `axes`. See `ifftn` for details and a plotting example, and `numpy.fft` for definition and conventions used. Zero-padding, analogously with `ifft`, is performed by appending zeros to the input along the specified dimension. Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired, it must be performed before `ifft2` is called. Examples -------- >>> a = 4 * np.eye(4) >>> np.fft.ifft2(a) array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j], [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]]) """ return _raw_fftnd(a, s, axes, ifft) def rfftn(a, s=None, axes=None): """ Compute the N-dimensional discrete Fourier Transform for real input. This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-dimensional real array by means of the Fast Fourier Transform (FFT). By default, all axes are transformed, with the real transform performed over the last axis, while the remaining transforms are complex. Parameters ---------- a : array_like Input array, taken to be real. s : sequence of ints, optional Shape (length along each transformed axis) to use from the input. (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). The final element of `s` corresponds to `n` for ``rfft(x, n)``, while for the remaining axes, it corresponds to `n` for ``fft(x, n)``. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last ``len(s)`` axes are used, or all axes if `s` is also not specified. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` and `a`, as explained in the parameters section above. The length of the last axis transformed will be ``s[-1]//2+1``, while the remaining transformed axes will have lengths according to `s`, or unchanged from the input. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- irfftn : The inverse of `rfftn`, i.e. the inverse of the n-dimensional FFT of real input. fft : The one-dimensional FFT, with definitions and conventions used. rfft : The one-dimensional FFT of real input. fftn : The n-dimensional FFT. rfft2 : The two-dimensional FFT of real input. Notes ----- The transform for real input is performed over the last transformation axis, as by `rfft`, then the transform over the remaining axes is performed as by `fftn`. The order of the output is as for `rfft` for the final transformation axis, and as for `fftn` for the remaining transformation axes. See `fft` for details, definitions and conventions used. Examples -------- >>> a = np.ones((2, 2, 2)) >>> np.fft.rfftn(a) array([[[ 8.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j]], [[ 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j]]]) >>> np.fft.rfftn(a, axes=(2, 0)) array([[[ 4.+0.j, 0.+0.j], [ 4.+0.j, 0.+0.j]], [[ 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j]]]) """ a = asarray(a).astype(float) s, axes = _cook_nd_args(a, s, axes) a = rfft(a, s[-1], axes[-1]) for ii in range(len(axes)-1): a = fft(a, s[ii], axes[ii]) return a def rfft2(a, s=None, axes=(-2, -1)): """ Compute the 2-dimensional FFT of a real array. Parameters ---------- a : array Input array, taken to be real. s : sequence of ints, optional Shape of the FFT. axes : sequence of ints, optional Axes over which to compute the FFT. Returns ------- out : ndarray The result of the real 2-D FFT. See Also -------- rfftn : Compute the N-dimensional discrete Fourier Transform for real input. Notes ----- This is really just `rfftn` with different default behavior. For more details see `rfftn`. """ return rfftn(a, s, axes) def irfftn(a, s=None, axes=None): """ Compute the inverse of the N-dimensional FFT of real input. This function computes the inverse of the N-dimensional discrete Fourier Transform for real input over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ``irfftn(rfftn(a), a.shape) == a`` to within numerical accuracy. (The ``a.shape`` is necessary like ``len(a)`` is for `irfft`, and for the same reason.) The input should be ordered in the same way as is returned by `rfftn`, i.e. as for `irfft` for the final transformation axis, and as for `ifftn` along all the other axes. Parameters ---------- a : array_like Input array. s : sequence of ints, optional Shape (length of each transformed axis) of the output (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the number of input points used along this axis, except for the last axis, where ``s[-1]//2+1`` points of the input are used. Along any axis, if the shape indicated by `s` is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. If `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the inverse FFT. If not given, the last `len(s)` axes are used, or all axes if `s` is also not specified. Repeated indices in `axes` means that the inverse transform over that axis is performed multiple times. Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` or `a`, as explained in the parameters section above. The length of each transformed axis is as given by the corresponding element of `s`, or the length of the input in every axis except for the last one if `s` is not given. In the final transformed axis the length of the output when `s` is not given is ``2*(m-1)`` where ``m`` is the length of the final transformed axis of the input. To get an odd number of output points in the final axis, `s` must be specified. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- rfftn : The forward n-dimensional FFT of real input, of which `ifftn` is the inverse. fft : The one-dimensional FFT, with definitions and conventions used. irfft : The inverse of the one-dimensional FFT of real input. irfft2 : The inverse of the two-dimensional FFT of real input. Notes ----- See `fft` for definitions and conventions used. See `rfft` for definitions and conventions used for real input. Examples -------- >>> a = np.zeros((3, 2, 2)) >>> a[0, 0, 0] = 3 * 2 * 2 >>> np.fft.irfftn(a) array([[[ 1., 1.], [ 1., 1.]], [[ 1., 1.], [ 1., 1.]], [[ 1., 1.], [ 1., 1.]]]) """ a = asarray(a).astype(complex) s, axes = _cook_nd_args(a, s, axes, invreal=1) for ii in range(len(axes)-1): a = ifft(a, s[ii], axes[ii]) a = irfft(a, s[-1], axes[-1]) return a def irfft2(a, s=None, axes=(-2, -1)): """ Compute the 2-dimensional inverse FFT of a real array. Parameters ---------- a : array_like The input array s : sequence of ints, optional Shape of the inverse FFT. axes : sequence of ints, optional The axes over which to compute the inverse fft. Default is the last two axes. Returns ------- out : ndarray The result of the inverse real 2-D FFT. See Also -------- irfftn : Compute the inverse of the N-dimensional FFT of real input. Notes ----- This is really `irfftn` with different defaults. For more details see `irfftn`. """ return irfftn(a, s, axes)
agpl-3.0
heroxbd/SHTOOLS
examples/python/GlobalSpectralAnalysis/SHRealSpectralAnalysis.py
1
4386
#!/usr/bin/env python """ This script tests the different Spherical Harmonics Transforms on the Mars topography data set """ from __future__ import absolute_import, division, print_function import os import sys import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt sys.path.append(os.path.join(os.path.dirname(__file__), "../../..")) from pyshtools import shtools # set shtools plot style: sys.path.append(os.path.join(os.path.dirname(__file__), "../Common")) from FigStyle import style_shtools mpl.rcParams.update(style_shtools) # ==== MAIN FUNCTION ==== def main(): test_RealSpectralAnalysis() example() def test_RealSpectralAnalysis(): # ---- input parameters ---- lmax = 5 ls = np.arange(lmax + 1) mask = np.zeros((2, lmax + 1, lmax + 1), dtype=np.bool) for l in np.arange(lmax + 1): mask[:, l, :l + 1] = True mask[1, :, 0] = False print('\n---- testing SHPower/DensityL, SHPowerSpectrum/Density ----') print('generating normal distributed coefficients with variance 1...') coeffs1 = np.random.normal(size=(2, lmax + 1, lmax + 1)) coeffs1[np.invert(mask)] = 0. spec1 = np.array([shtools.SHPowerL(coeffs1, l) for l in ls]) spec2 = shtools.SHPowerSpectrum(coeffs1) print('tot power computed with SHPowerL={:2.2f}'.format(np.sum(spec1))) print('tot power computed with SHPowerSpectrum={:2.2f}'.format( np.sum(spec2))) spec1 = np.array([shtools.SHPowerDensityL(coeffs1, l) for l in ls]) spec2 = shtools.SHPowerSpectrumDensity(coeffs1) print('tot power computed with SHPowerDensityL={:2.2f}'.format( np.sum(spec1 * (2 * ls + 1)))) print('tot power computed with SHPowerSpectrumDensity={:2.2f}'.format( np.sum(spec2 * (2 * ls + 1)))) print('\n---- testing SHCrossCrossPower/DensityL, ' + 'SHCrossCrossPowerSpectrum/Density ----') print('generating two sets of normal distributed coefficients ' + 'with variance 1...') coeffs2 = np.random.normal(size=(2, lmax + 1, lmax + 1)) coeffs2[np.invert(mask)] = 0. spec1 = np.array([shtools.SHCrossPowerL(coeffs1, coeffs2, l) for l in ls]) spec2 = shtools.SHCrossPowerSpectrum(coeffs1, coeffs2) print('tot cpower computed with SHCrossPowerL={:2.2f}'.format( np.sum(spec1))) print('tot cpower computed with SHCrossPowerSpectrum={:2.2f}'.format( np.sum(spec2))) spec1 = np.array([shtools.SHCrossPowerDensityL(coeffs1, coeffs2, l) for l in ls]) spec2 = shtools.SHCrossPowerSpectrumDensity(coeffs1, coeffs2) print('tot cpower computed with SHCrossPowerDensityL={:2.2f}'.format( np.sum(spec1 * (2 * ls + 1)))) print('tot cpower computed with SHCrossPowerSpectrumDensity={:2.2f}' .format(np.sum(spec2 * (2 * ls + 1)))) print('\n---- testing SHAdmitCorr and SHConfidence ----') admit, dadmit, corr = shtools.SHAdmitCorr(coeffs1, coeffs2) confidence = np.array([shtools.SHConfidence(l, corr[l]) for l in ls]) print('admittance:', admit) print('admittance error:', dadmit) print('correlation:', corr) print('confidence:', confidence) # ==== PLOT POWER SPECTRA ==== def example(): """ example that plots the power spectrum of Mars topography data """ # --- input data filename --- infile = os.path.join(os.path.dirname(__file__), '../../ExampleDataFiles/MarsTopo719.shape') coeffs, lmax = shtools.SHRead(infile, 719) lmax = coeffs.shape[1] - 1 # --- plot grid --- grid = shtools.MakeGridDH(coeffs, csphase=-1) fig_map = plt.figure() plt.imshow(grid) # ---- compute spectrum ---- ls = np.arange(lmax + 1) pspectrum = shtools.SHPowerSpectrum(coeffs) pdensity = shtools.SHPowerSpectrumDensity(coeffs) # ---- plot spectrum ---- fig_spectrum, ax = plt.subplots(1, 1) ax.set_xscale('log') ax.set_yscale('log') ax.set_xlabel('degree l') ax.grid(True, which='both') ax.plot(ls[1:], pspectrum[1:], label='power per degree l') ax.plot(ls[1:], pdensity[1:], label='power per degree l and order m') ax.legend() fig_map.savefig('SHRtopography_mars.png') fig_spectrum.savefig('SHRspectrum_mars.png') print('mars topography and spectrum saved') # plt.show() # ==== EXECUTE SCRIPT ==== if __name__ == "__main__": main()
bsd-3-clause
hainm/scikit-learn
sklearn/neighbors/unsupervised.py
106
4461
"""Unsupervised nearest neighbors learner""" from .base import NeighborsBase from .base import KNeighborsMixin from .base import RadiusNeighborsMixin from .base import UnsupervisedMixin class NearestNeighbors(NeighborsBase, KNeighborsMixin, RadiusNeighborsMixin, UnsupervisedMixin): """Unsupervised learner for implementing neighbor searches. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. p: integer, optional (default = 2) Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric : string or callable, default 'minkowski' metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_params: dict, optional (default = None) additional keyword arguments for the metric function. Examples -------- >>> import numpy as np >>> from sklearn.neighbors import NearestNeighbors >>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]] >>> neigh = NearestNeighbors(2, 0.4) >>> neigh.fit(samples) #doctest: +ELLIPSIS NearestNeighbors(...) >>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False) ... #doctest: +ELLIPSIS array([[2, 0]]...) >>> rng = neigh.radius_neighbors([0, 0, 1.3], 0.4, return_distance=False) >>> np.asarray(rng[0][0]) array(2) See also -------- KNeighborsClassifier RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor BallTree Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, **kwargs): self._init_params(n_neighbors=n_neighbors, radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, **kwargs)
bsd-3-clause
AlexRobson/scikit-learn
examples/decomposition/plot_pca_vs_lda.py
182
1743
""" ======================================================= Comparison of LDA and PCA 2D projection of Iris dataset ======================================================= The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length, sepal width, petal length and petal width. Principal Component Analysis (PCA) applied to this data identifies the combination of attributes (principal components, or directions in the feature space) that account for the most variance in the data. Here we plot the different samples on the 2 first principal components. Linear Discriminant Analysis (LDA) tries to identify attributes that account for the most variance *between classes*. In particular, LDA, in contrast to PCA, is a supervised method, using known class labels. """ print(__doc__) import matplotlib.pyplot as plt from sklearn import datasets from sklearn.decomposition import PCA from sklearn.lda import LDA iris = datasets.load_iris() X = iris.data y = iris.target target_names = iris.target_names pca = PCA(n_components=2) X_r = pca.fit(X).transform(X) lda = LDA(n_components=2) X_r2 = lda.fit(X, y).transform(X) # Percentage of variance explained for each components print('explained variance ratio (first two components): %s' % str(pca.explained_variance_ratio_)) plt.figure() for c, i, target_name in zip("rgb", [0, 1, 2], target_names): plt.scatter(X_r[y == i, 0], X_r[y == i, 1], c=c, label=target_name) plt.legend() plt.title('PCA of IRIS dataset') plt.figure() for c, i, target_name in zip("rgb", [0, 1, 2], target_names): plt.scatter(X_r2[y == i, 0], X_r2[y == i, 1], c=c, label=target_name) plt.legend() plt.title('LDA of IRIS dataset') plt.show()
bsd-3-clause
leal26/AeroPy
examples/morphing/flight_conditions/morphed/range_constant_aoa.py
2
6228
import aeropy.xfoil_module as xf from aeropy.geometry.airfoil import CST, create_x from aeropy.morphing.camber_2D import * from aeropy.aero_module import air_properties, Reynolds, LLT_calculator from scipy.interpolate import griddata, RegularGridInterpolator import numpy as np import matplotlib.pyplot as plt import pandas from sklearn.cluster import KMeans from sklearn.metrics import pairwise_distances_argmin_min import scipy def aircraft_range_varying_V(f_L, f_LD, AOA): def to_integrate(weight): # velocity = 0.514444*108 # m/s (113 KTAS) def calculate_velocity(AOA): def residual(V): CL = f_L([V, AOA])[0] span = 11 chord_root = span/16.2 return abs(V - math.sqrt(weight/(.5*density*(span*chord_root)))) res = scipy.optimize.minimize(residual, 30, bounds = [[20, 65],])#, options={'ftol':1e-9}) return res.x[0] velocity = calculate_velocity(AOA) lift_to_drag = f_LD([velocity, AOA]) span = 10.9728 RPM = 1800 a = 0.3089 # (lb/hr)/BTU b = 0.008*RPM+19.607 # lb/hr lbhr_to_kgs = 0.000125998 BHP_to_watt = 745.7 eta = 0.85 thrust = weight/lift_to_drag power_SI = thrust*velocity/eta power_BHP = power_SI/BHP_to_watt mass_flow = (a*power_BHP + b) mass_flow_SI = mass_flow*lbhr_to_kgs SFC = mass_flow_SI/thrust dR = velocity/g/SFC*lift_to_drag/weight return dR*0.001 # *0.0005399 AOA_list = [] g = 9.81 # kg/ms fuel = 56*6.01*0.4535*g initial_weight = 1111*g final_weight = initial_weight-fuel x = np.linspace(final_weight, initial_weight, 100) y = [] for x_i in x: y.append(to_integrate(x_i)[0]) range = scipy.integrate.simps(y, x) return range # ============================================================================== # Inputs # ============================================================================== altitude = 10000 # ft air_props = air_properties(altitude, unit='feet') density = air_props['Density'] # data = pandas.read_csv('performance_grid.csv') # psi_spars = [0.1, 0.3, 0.6, 0.8] # c_P = 1.0 # ranges = [] # for i in range(len(data.values)): # AC = data.values[i,0:4] # velocity = data.values[i,-4] # AOA = data.values[i,-5] # cl= data.values[i,-3] # cd = data.values[i,-2] # CL, CD = coefficient_LLT(AC, velocity, AOA) # data.values[i, -3] = CL # data.values[i, -2] = CD # data.values[i, -1] = CL/CD # print(i, CL, CD) # data = data.drop_duplicates() import pickle # f = open('wing.p', 'wb') # pickle.dump(data, f) # f.close() state = 'morphed' concepts = ['NACA0012', 'NACA4415', 'NACA641212', 'glider'] # # plt.figure() # for concept in concepts: # mat = scipy.io.loadmat(state + '_' + concept) # aoa = mat['aoa'][0] # velocity = mat['V'][0] # cl = mat['CL'].T # LD_ratio = mat['lift_to_drag'] # # print(aoa) # # print(velocity) # # print(cl) # f_LD = RegularGridInterpolator((velocity, aoa), LD_ratio, fill_value = 0, bounds_error = False) # f_L = RegularGridInterpolator((velocity, aoa), cl, fill_value = 0, bounds_error = False) # velocity = [20] # aoas = np.linspace(0,12,1000) # for i in range(len(velocity)): # data_i = np.array([velocity[i]*np.ones(np.shape(aoas)), aoas]).T # plt.plot(aoas, f_L(data_i), label = concept) # # plt.scatter(aoas, f_L((aoas, velocity[i]*np.ones(np.shape(aoas))))) # plt.legend() # plt.ylabel('cl') # plt.show() # plt.figure() # for concept in concepts: # mat = scipy.io.loadmat(state + '_' + concept) # aoa = mat['aoa'][0] # velocity = mat['V'][0] # cl = mat['CL'].T # LD_ratio = mat['lift_to_drag'] # f_LD = RegularGridInterpolator((velocity, aoa), LD_ratio, fill_value = 0, bounds_error = False) # f_L = RegularGridInterpolator((velocity, aoa), cl, fill_value = 0, bounds_error = False) # velocity = [20] # aoas = np.linspace(0,12,100) # for i in range(len(velocity)): # data_i = np.array([velocity[i]*np.ones(np.shape(aoas)), aoas]).T # plt.plot(aoas, f_LD(data_i), label = concept) # # plt.scatter(aoas, f_LD((aoas, velocity[i]*np.ones(np.shape(aoas))))) # plt.legend() # plt.ylabel('Lift-to-drag ratio') # plt.show() range_data = {} plt.figure() for concept in concepts: data = np.loadtxt('./'+state + '_' + concept + '.txt') aoa = np.unique(data[:,0]) velocity = np.unique(data[:,1]) cl = data[:,2].reshape([200,200]) LD_ratio = data[:,3].reshape([200,200]) f_LD = RegularGridInterpolator((velocity, aoa), LD_ratio, fill_value = 0, bounds_error = False) f_L = RegularGridInterpolator((velocity, aoa), cl, fill_value = 0, bounds_error = False) # velocity = np.linspace(20, 65, 7) # plt.figure() # aoas = np.linspace(0,12,1000) # for i in range(len(velocity)): # data_i = np.array([velocity[i]*np.ones(np.shape(aoas)), aoas]).T # plt.plot(aoas, f_L(data_i), label = velocity[i]) # # plt.scatter(aoas, f_L((aoas, velocity[i]*np.ones(np.shape(aoas))))) # plt.legend() # plt.show() # plt.figure() # aoas = np.linspace(0,12,1000) # for i in range(len(velocity)): # data_i = np.array([velocity[i]*np.ones(np.shape(aoas)), aoas]).T # plt.plot(aoas, f_LD(data_i), label = velocity[i]) # # plt.scatter(aoas, f_LD((aoas, velocity[i]*np.ones(np.shape(aoas))))) # plt.legend() # plt.show() ranges = [] # velocity = np.linspace(20, 60, 5) for i in range(len(aoa)): range_i = aircraft_range_varying_V(f_L, f_LD, aoa[i]) # plt.plot(np.arange(len(AOA_i)), AOA_i, label=velocity[i]) # plt.scatter(np.arange(len(AOA_i)),AOA_i) print(i, aoa[i], range_i) ranges.append(range_i) # print(velocity[36]) range_data[concept] = ranges plt.plot(aoa, ranges, lw=2, label=concept) f = open('ranges_aoa.p', 'wb') pickle.dump(range_data, f) f.close() # plt.xlim(min(velocity), max(velocity)) # plt.ylim(min(ranges), max(ranges)) plt.xlabel('Angle of Attack') plt.ylabel('Range (km)') plt.legend() plt.show()
mit
timsnyder/bokeh
sphinx/source/docs/user_guide/examples/categorical_heatmap_unemployment.py
11
1638
import pandas as pd from bokeh.io import output_file, show from bokeh.models import BasicTicker, ColorBar, ColumnDataSource, LinearColorMapper, PrintfTickFormatter from bokeh.plotting import figure from bokeh.sampledata.unemployment1948 import data from bokeh.transform import transform output_file("unemploymemt.html") data.Year = data.Year.astype(str) data = data.set_index('Year') data.drop('Annual', axis=1, inplace=True) data.columns.name = 'Month' # reshape to 1D array or rates with a month and year for each row. df = pd.DataFrame(data.stack(), columns=['rate']).reset_index() source = ColumnDataSource(df) # this is the colormap from the original NYTimes plot colors = ["#75968f", "#a5bab7", "#c9d9d3", "#e2e2e2", "#dfccce", "#ddb7b1", "#cc7878", "#933b41", "#550b1d"] mapper = LinearColorMapper(palette=colors, low=df.rate.min(), high=df.rate.max()) p = figure(plot_width=800, plot_height=300, title="US Unemployment 1948—2016", x_range=list(data.index), y_range=list(reversed(data.columns)), toolbar_location=None, tools="", x_axis_location="above") p.rect(x="Year", y="Month", width=1, height=1, source=source, line_color=None, fill_color=transform('rate', mapper)) color_bar = ColorBar(color_mapper=mapper, location=(0, 0), ticker=BasicTicker(desired_num_ticks=len(colors)), formatter=PrintfTickFormatter(format="%d%%")) p.add_layout(color_bar, 'right') p.axis.axis_line_color = None p.axis.major_tick_line_color = None p.axis.major_label_text_font_size = "5pt" p.axis.major_label_standoff = 0 p.xaxis.major_label_orientation = 1.0 show(p)
bsd-3-clause
tody411/InverseToon
inversetoon/core/light_estimation/light_estimation_lumo.py
1
1797
# -*- coding: utf-8 -*- ## @package inversetoon.core.light_estimation.light_estimation_lumo # # inversetoon.core.light_estimation.light_estimation_lumo utility package. # @author tody # @date 2015/10/04 import numpy as np import matplotlib.pyplot as plt from inversetoon.core.lumo import lumoNormal from inversetoon.core.light_estimation.light_estimation_common import testToon from inversetoon.np.norm import normalizeVector def foreGroundSamples(A_8U, num_xs=30, num_ys=30, alpha=100): h, w = A_8U.shape[:2] xs = np.linspace(0, w - 1, num_xs) ys = np.linspace(0, h - 1, num_ys) xs = np.int32(xs) ys = np.int32(ys) coords = [(x, y) for y in ys for x in xs if A_8U[y, x] > alpha] coords = np.array(coords) return coords def luminanceClusters(Is, num_bins=16): I_min = np.min(Is) I_max = np.max(Is) I_ids = np.int32((Is - I_min) * (num_bins - 1) / (I_max - I_min)) return I_ids def estimateLightByCluster(N_lumo, I_32F, p_samples): xs, ys = p_samples.T Is = I_32F[ys, xs] Ns = N_lumo[ys, xs, :] I_ids = luminanceClusters(Is) I_id_max = np.max(I_ids) Ns_bright = Ns[I_ids == I_id_max, :] L = np.sum(Ns_bright, axis=0) L = normalizeVector(L) print L return L def estimateLightDir(input_data): N_sil = input_data["N_sil"] I_sil = input_data["I_sil"] cvs_sil = input_data["cvs_sil"] I_32F = input_data["I"] A_8U = input_data["A"] p_samples = foreGroundSamples(A_8U) plt.imshow(A_8U) plt.scatter(p_samples[:, 0], p_samples[:, 1]) plt.show() N_lumo = lumoNormal(A_8U) L = estimateLightByCluster(N_lumo, I_32F, p_samples) output_data = {"L": L} return output_data if __name__ == '__main__': testToon("Lumo", estimateLightDir)
mit
IntelLabs/hpat
examples/series_setitem_int.py
1
1794
# ***************************************************************************** # Copyright (c) 2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import numpy as np import pandas as pd from numba import njit @njit def series_setitem(): value = 0 series = pd.Series(np.arange(5, 0, -1)) # Series of 5, 4, 3, 2, 1 series[0] = value return series # result Series of 0, 4, 3, 2, 1 print(series_setitem())
bsd-2-clause
JesseLivezey/pymc3
pymc3/plots.py
3
15589
import numpy as np from scipy.stats import kde from .stats import * from numpy.linalg import LinAlgError __all__ = ['traceplot', 'kdeplot', 'kde2plot', 'forestplot', 'autocorrplot'] def traceplot(trace, vars=None, figsize=None, lines=None, combined=False, grid=True, alpha=0.35, ax=None): """Plot samples histograms and values Parameters ---------- trace : result of MCMC run vars : list of variable names Variables to be plotted, if None all variable are plotted figsize : figure size tuple If None, size is (12, num of variables * 2) inch lines : dict Dictionary of variable name / value to be overplotted as vertical lines to the posteriors and horizontal lines on sample values e.g. mean of posteriors, true values of a simulation combined : bool Flag for combining multiple chains into a single chain. If False (default), chains will be plotted separately. grid : bool Flag for adding gridlines to histogram. Defaults to True. ax : axes Matplotlib axes. Defaults to None. Returns ------- ax : matplotlib axes """ import matplotlib.pyplot as plt if vars is None: vars = trace.varnames n = len(vars) if figsize is None: figsize = (12, n*2) if ax is None: fig, ax = plt.subplots(n, 2, squeeze=False, figsize=figsize) elif ax.shape != (n,2): print('traceplot requires n*2 subplots') return None for i, v in enumerate(vars): for d in trace.get_values(v, combine=combined, squeeze=False): d = np.squeeze(d) d = make_2d(d) if d.dtype.kind == 'i': histplot_op(ax[i, 0], d, alpha=alpha) else: kdeplot_op(ax[i, 0], d) ax[i, 0].set_title(str(v)) ax[i, 0].grid(grid) ax[i, 1].set_title(str(v)) ax[i, 1].plot(d, alpha=alpha) ax[i, 0].set_ylabel("Frequency") ax[i, 1].set_ylabel("Sample value") if lines: try: ax[i, 0].axvline(x=lines[v], color="r", lw=1.5) ax[i, 1].axhline(y=lines[v], color="r", lw=1.5, alpha=alpha) except KeyError: pass plt.tight_layout() return ax def histplot_op(ax, data, alpha=.35): for i in range(data.shape[1]): d = data[:, i] mind = np.min(d) maxd = np.max(d) step = max((maxd-mind)//100, 1) ax.hist(d, bins=range(mind, maxd + 2, step), alpha=alpha, align='left') ax.set_xlim(mind - .5, maxd + .5) def kdeplot_op(ax, data): errored = [] for i in range(data.shape[1]): d = data[:, i] try: density = kde.gaussian_kde(d) l = np.min(d) u = np.max(d) x = np.linspace(0, 1, 100) * (u - l) + l ax.plot(x, density(x)) except LinAlgError: errored.append(i) if errored: ax.text(.27,.47, 'WARNING: KDE plot failed for: ' + str(errored), style='italic', bbox={'facecolor':'red', 'alpha':0.5, 'pad':10}) def make_2d(a): """Ravel the dimensions after the first. """ a = np.atleast_2d(a.T).T #flatten out dimensions beyond the first n = a.shape[0] newshape = np.product(a.shape[1:]).astype(int) a = a.reshape((n, newshape), order='F') return a def kde2plot_op(ax, x, y, grid=200): xmin = x.min() xmax = x.max() ymin = y.min() ymax = y.max() grid = grid * 1j X, Y = np.mgrid[xmin:xmax:grid, ymin:ymax:grid] positions = np.vstack([X.ravel(), Y.ravel()]) values = np.vstack([x, y]) kernel = kde.gaussian_kde(values) Z = np.reshape(kernel(positions).T, X.shape) ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r, extent=[xmin, xmax, ymin, ymax]) def kdeplot(data, ax=None): if ax is None: f, ax = subplots(1, 1, squeeze=True) kdeplot_op(ax, data) return ax def kde2plot(x, y, grid=200, ax=None): if ax is None: f, ax = subplots(1, 1, squeeze=True) kde2plot_op(ax, x, y, grid) return ax def autocorrplot(trace, vars=None, max_lag=100, burn=0, ax=None): """Bar plot of the autocorrelation function for a trace Parameters ---------- trace : result of MCMC run vars : list of variable names Variables to be plotted, if None all variable are plotted max_lag : int Maximum lag to calculate autocorrelation. Defaults to 100. burn : int Number of samples to discard from the beginning of the trace. Defaults to 0. ax : axes Matplotlib axes. Defaults to None. Returns ------- ax : matplotlib axes """ import matplotlib.pyplot as plt if vars is None: vars = trace.varnames else: vars = [str(var) for var in vars] chains = trace.nchains fig, ax = plt.subplots(len(vars), chains, squeeze=False) max_lag = min(len(trace) - 1, max_lag) for i, v in enumerate(vars): for j in range(chains): d = np.squeeze(trace.get_values(v, chains=[j], burn=burn, combine=False)) ax[i, j].acorr(d, detrend=plt.mlab.detrend_mean, maxlags=max_lag) if not j: ax[i, j].set_ylabel("correlation") ax[i, j].set_xlabel("lag") if chains > 1: ax[i, j].set_title("chain {0}".format(j+1)) return (fig, ax) def var_str(name, shape): """Return a sequence of strings naming the element of the tallyable object. This is a support function for forestplot. :Example: >>> var_str('theta', (4,)) ['theta[1]', 'theta[2]', 'theta[3]', 'theta[4]'] """ size = np.prod(shape) ind = (np.indices(shape) + 1).reshape(-1, size) names = ['[' + ','.join(map(str, i)) + ']' for i in zip(*ind)] # if len(name)>12: # name = '\n'.join(name.split('_')) # name += '\n' names[0] = '%s %s' % (name, names[0]) return names def forestplot(trace_obj, vars=None, alpha=0.05, quartiles=True, rhat=True, main=None, xtitle=None, xrange=None, ylabels=None, chain_spacing=0.05, vline=0, gs=None): """ Forest plot (model summary plot) Generates a "forest plot" of 100*(1-alpha)% credible intervals for either the set of variables in a given model, or a specified set of nodes. :Arguments: trace_obj: NpTrace or MultiTrace object Trace(s) from an MCMC sample. vars: list List of variables to plot (defaults to None, which results in all variables plotted). alpha (optional): float Alpha value for (1-alpha)*100% credible intervals (defaults to 0.05). quartiles (optional): bool Flag for plotting the interquartile range, in addition to the (1-alpha)*100% intervals (defaults to True). rhat (optional): bool Flag for plotting Gelman-Rubin statistics. Requires 2 or more chains (defaults to True). main (optional): string Title for main plot. Passing False results in titles being suppressed; passing None (default) results in default titles. xtitle (optional): string Label for x-axis. Defaults to no label xrange (optional): list or tuple Range for x-axis. Defaults to matplotlib's best guess. ylabels (optional): list or array User-defined labels for each variable. If not provided, the node __name__ attributes are used. chain_spacing (optional): float Plot spacing between chains (defaults to 0.05). vline (optional): numeric Location of vertical reference line (defaults to 0). gs : GridSpec Matplotlib GridSpec object. Defaults to None. Returns ------- gs : matplotlib GridSpec """ import matplotlib.pyplot as plt from matplotlib import gridspec # Quantiles to be calculated qlist = [100 * alpha / 2, 50, 100 * (1 - alpha / 2)] if quartiles: qlist = [100 * alpha / 2, 25, 50, 75, 100 * (1 - alpha / 2)] # Range for x-axis plotrange = None # Number of chains chains = None # Subplots interval_plot = None rhat_plot = None nchains = trace_obj.nchains if nchains > 1: from .diagnostics import gelman_rubin R = gelman_rubin(trace_obj) if vars is not None: R = {v: R[v] for v in vars} else: # Can't calculate Gelman-Rubin with a single trace rhat = False if vars is None: vars = trace_obj.varnames # Empty list for y-axis labels labels = [] if gs is None: # Initialize plot if rhat and nchains > 1: gs = gridspec.GridSpec(1, 2, width_ratios=[3, 1]) else: gs = gridspec.GridSpec(1, 1) # Subplot for confidence intervals interval_plot = plt.subplot(gs[0]) trace_quantiles = quantiles(trace_obj, qlist, squeeze=False) hpd_intervals = hpd(trace_obj, alpha, squeeze=False) for j, chain in enumerate(trace_obj.chains): # Counter for current variable var = 1 for varname in vars: var_quantiles = trace_quantiles[chain][varname] quants = [var_quantiles[v] for v in qlist] var_hpd = hpd_intervals[chain][varname].T # Substitute HPD interval for quantile quants[0] = var_hpd[0].T quants[-1] = var_hpd[1].T # Ensure x-axis contains range of current interval if plotrange: plotrange = [min( plotrange[0], np.min(quants)), max(plotrange[1], np.max(quants))] else: plotrange = [np.min(quants), np.max(quants)] # Number of elements in current variable value = trace_obj.get_values(varname, chains=[chain])[0] k = np.size(value) # Append variable name(s) to list if not j: if k > 1: names = var_str(varname, np.shape(value)) labels += names else: labels.append(varname) # labels.append('\n'.join(varname.split('_'))) # Add spacing for each chain, if more than one e = [0] + [(chain_spacing * ((i + 2) / 2)) * (-1) ** i for i in range(nchains - 1)] # Deal with multivariate nodes if k > 1: for i, q in enumerate(np.transpose(quants).squeeze()): # Y coordinate with jitter y = -(var + i) + e[j] if quartiles: # Plot median plt.plot(q[2], y, 'bo', markersize=4) # Plot quartile interval plt.errorbar( x=(q[1], q[3]), y=(y, y), linewidth=2, color='b') else: # Plot median plt.plot(q[1], y, 'bo', markersize=4) # Plot outer interval plt.errorbar( x=(q[0], q[-1]), y=(y, y), linewidth=1, color='b') else: # Y coordinate with jitter y = -var + e[j] if quartiles: # Plot median plt.plot(quants[2], y, 'bo', markersize=4) # Plot quartile interval plt.errorbar( x=(quants[1], quants[3]), y=(y, y), linewidth=2, color='b') else: # Plot median plt.plot(quants[1], y, 'bo', markersize=4) # Plot outer interval plt.errorbar( x=(quants[0], quants[-1]), y=(y, y), linewidth=1, color='b') # Increment index var += k labels = ylabels if ylabels is not None else labels # Update margins left_margin = np.max([len(x) for x in labels]) * 0.015 gs.update(left=left_margin, right=0.95, top=0.9, bottom=0.05) # Define range of y-axis plt.ylim(-var + 0.5, -0.5) datarange = plotrange[1] - plotrange[0] plt.xlim(plotrange[0] - 0.05 * datarange, plotrange[1] + 0.05 * datarange) # Add variable labels plt.yticks([-(l + 1) for l in range(len(labels))], labels) # Add title if main is not False: plot_title = main or str(int(( 1 - alpha) * 100)) + "% Credible Intervals" plt.title(plot_title) # Add x-axis label if xtitle is not None: plt.xlabel(xtitle) # Constrain to specified range if xrange is not None: plt.xlim(*xrange) # Remove ticklines on y-axes for ticks in interval_plot.yaxis.get_major_ticks(): ticks.tick1On = False ticks.tick2On = False for loc, spine in interval_plot.spines.items(): if loc in ['bottom', 'top']: pass # spine.set_position(('outward',10)) # outward by 10 points elif loc in ['left', 'right']: spine.set_color('none') # don't draw spine # Reference line plt.axvline(vline, color='k', linestyle='--') # Genenerate Gelman-Rubin plot if rhat and nchains > 1: # If there are multiple chains, calculate R-hat rhat_plot = plt.subplot(gs[1]) if main is not False: plt.title("R-hat") # Set x range plt.xlim(0.9, 2.1) # X axis labels plt.xticks((1.0, 1.5, 2.0), ("1", "1.5", "2+")) plt.yticks([-(l + 1) for l in range(len(labels))], "") i = 1 for varname in vars: chain = trace_obj.chains[0] value = trace_obj.get_values(varname, chains=[chain])[0] k = np.size(value) if k > 1: plt.plot([min(r, 2) for r in R[varname]], [-(j + i) for j in range(k)], 'bo', markersize=4) else: plt.plot(min(R[varname], 2), -i, 'bo', markersize=4) i += k # Define range of y-axis plt.ylim(-i + 0.5, -0.5) # Remove ticklines on y-axes for ticks in rhat_plot.yaxis.get_major_ticks(): ticks.tick1On = False ticks.tick2On = False for loc, spine in rhat_plot.spines.items(): if loc in ['bottom', 'top']: pass # spine.set_position(('outward',10)) # outward by 10 points elif loc in ['left', 'right']: spine.set_color('none') # don't draw spine return gs
apache-2.0
LeeKamentsky/CellProfiler
cellprofiler/modules/tests/test_expandorshrinkobjects.py
2
16125
'''test_expandorshrink - test the ExpandOrShrink module CellProfiler is distributed under the GNU General Public License. See the accompanying file LICENSE for details. Copyright (c) 2003-2009 Massachusetts Institute of Technology Copyright (c) 2009-2015 Broad Institute All rights reserved. Please see the AUTHORS file for credits. Website: http://www.cellprofiler.org ''' import base64 from matplotlib.image import pil_to_array import numpy as np import os import PIL.Image as PILImage import scipy.ndimage from StringIO import StringIO import unittest import zlib from cellprofiler.preferences import set_headless set_headless() import cellprofiler.pipeline as cpp import cellprofiler.cpmodule as cpm import cellprofiler.cpimage as cpi import cellprofiler.measurements as cpmeas import cellprofiler.objects as cpo import cellprofiler.workspace as cpw import cellprofiler.cpmath.cpmorphology as morph from cellprofiler.cpmath.outline import outline import cellprofiler.modules.expandorshrinkobjects as E INPUT_NAME = "input" OUTPUT_NAME = "output" OUTLINES_NAME = "outlines" class TestExpandOrShrinkObjects(unittest.TestCase): def test_01_01_load_matlab(self): '''Load a matlab pipeline with ExpandOrShrink modules''' data = ('eJwB+QMG/E1BVExBQiA1LjAgTUFULWZpbGUsIFBsYXRmb3JtOiBQQ1dJTiwg' 'Q3JlYXRlZCBvbjogV2VkIEp1bCAyMiAwODozNDoyNSAyMDA5ICAgICAgICAg' 'ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAAAUlN' 'DwAAAHEDAAB4nOxZ0W7aMBQ1FGi7aahbtWmPaE97aLuw7WGP2dZqQ9qgGlW1' 'PZrEgNtgo8SpYF/Xz9jnzCYJBC+djUkBqUSyrGt8jk+uc31tUwUA/HkFQIXX' 'e7wUQfSUY7uQKsJuI8Yw6QVlUAIv4/ZbXi6hj2HHQ5fQC1EApk/S3iBdejEe' 'Tn/6Tt3QQ004SHfmTzMcdJAftLoJMP75HI+Q18a/EZh/km4/0A0OMCUxPuaX' 'W6fjUiaNW+Xl5+HMDwXJD7u8HKbaRX8bzPqXMvx2kOp/EJcLNGLHZyPosNoA' 'MqcveD4oePYkHmG3fNz7xF2tg69I+MrEz46HcPQeDx1vK/CPJbywP/chIch7' 'e2zVJ+2r0FGV8MJu9/2QXCOS5vmq4Hkm8Qj7bDSExEVuizgo4Urey4Qv0ZXF' 'Z/Keib5F/PVE4hH2Kb7BKRqteVs2/soSXth16+i9pTn+roQX9rmPB9Afb/FA' '/R08kvDCPqU1QlktDOKEIngsBc/OHM8O+MVziGnc8/jA5Np83YjiwRy/SePb' 'Cnxe81ec4ymCJjWbd76X0cIV5nAFUNfUaYrLS2eyLtkK3H3HVV7jq/LXC4lH' '2PP5phUyDxOxZcxT10PlydpPtVgQ1r54tAO9KY9unZdu07jcNJ1yPFlH9YV0' 'LuqHd5q40hyuBKwTq74O/6l49iUeYTcIQyTAbLyA3qRWrT9PpfGEjYkrdqoh' '9Gp8o9ObnlbXod80r5ro/Bgyyg/G2LkHnfJ3ewLWo9NkvJ4Px4EDPZTiMc2r' 'ujrXnbfz0mn6fa5ap+xP8gauZJ519d3lR13+2/3/36+l18Fl1/3JotnzaTjU' '58nal9DOFXLYjGjLo+ZJapO8l+Kr8RyIhlu+jeWzFXxZ99+zuIzoTNYp03pT' '9KrmIes+lUYn0H8mYsu3PJ+t4Nt+x9t6E+u840C3fl28ex8n7PR9ven+7RuF' 'biN18NV53+cSj7AbLiIMd8fi/4L0mU1HV1XiE3Z0L9jyF7m/3mSevwAAAP//' 'E2BgYOADYteKgsS8FP+i4IyizLxsiJgDELMBMQcQszBAACuUzwjVxwgVx2eO' 'BZI5bFjMYUcyhwnKFxJmAwGwfgMC7mBkQHYHI4MhA/n2svIwgQCG/wnpZ4Ha' 'GSPjL7MaDiFiFYwIcxgJmANSr8GAWz0MjKonTj0AsKrvYTgV5Hg=') pipeline = cpp.Pipeline() def callback(caller,event): self.assertFalse(isinstance(event, cpp.LoadExceptionEvent)) pipeline.add_listener(callback) pipeline.load(StringIO(zlib.decompress(base64.b64decode(data)))) # Module #3: ExpandOrShrink revision - 2 # object_name - Nuclei # output_object_name - ShrunkenNuclei # object_choice - Primary # operation - Shrink # iterations - Inf # outlines - Do not use # # Module #4: ExpandOrShrink revision - 2 # object_name - Nuclei # output_object_name - ExpandedOnceNuclei # object_choice - Primary # operation - Expand # iterations - 1 # outlines - ExpandedNucleiOutlines # # Module #5: ExpandOrShrink revision - 2 # object_name - Nuclei # output_object_name - ShrunkenOnceNuclei # object_choice - Primary # operation - Shrink # iterations - 1 # outlines - Do not use # # Module #6: ExpandOrShrink revision - 2 # object_name - Nuclei # output_object_name - ExpandedNuclei # object_choice - Primary # operation - Expand # iterations - Inf # outlines Do not use # # Module #7: ExpandOrShrink revision - 2 # object_name - Nuclei # output_object_name - DividedNuclei # object_choice - Primary # operation - Shrink # iterations - 0 # outlines Do not use modules = pipeline.modules() self.assertEqual(len(modules),7) for module, output_object_name, operation, has_outline in \ ((modules[2], "ShrunkenNuclei", E.O_SHRINK_INF, False), (modules[3], "ExpandedOnceNuclei", E.O_EXPAND, True), (modules[4], "ShrunkenOnceNuclei", E.O_SHRINK, False), (modules[5], "ExpandedNuclei", E.O_EXPAND_INF, False), (modules[6], "DividedNuclei", E.O_DIVIDE, False)): self.assertEqual(module.output_object_name, output_object_name) self.assertEqual(module.operation, operation) self.assertEqual(module.wants_outlines.value, has_outline) if has_outline: self.assertEqual(module.outlines_name,"ExpandedNucleiOutlines") for module in modules[4:6]: self.assertEqual(module.iterations, 1) def test_01_02_load_v1(self): '''Load ExpandOrShrink modules, v1''' data = ('eJztW91u2zYUlhMnbVasSHezYr3hZbPFguS2aBMUqb24W73VjlEbDYqiP7RF' 'x2xpUpCoJF5RoJd7lD3GHmeXe4SJshTJnFvJju1YqQQI8jnidw6/Qx6KEs1a' 'ufW0/DO4p2qgVm4Vupgg0CCQd5nV3wWUb4N9C0GODMDoLjh0r785BBSLQNvZ' '1e/s6hooatqOMt2Rq9auu5c/7yvKunu96p4r/q01X85FTiE3EeeYHtlrSl65' '6ev/ds/n0MKwTdBzSBxkhy4CfZV2WWtgnt2qMcMhqA770cLuUXf6bWTZB90A' '6N9u4FNEmvgPJFEIij1Dx9jGjPp4376sPfPLuORXxOHqD2EcclIc8u55K6IX' '5Z8oYfn8mLjdiJTf9GVMDXyMDQcSgPvw6KwWwp4WY291xN6qUqmXPdyDGNy6' 'VI91L84dgvDQbykGf13CC7nZsxz6HtFJ7GxKdsTZQqe88PgUdjjoQ97ppYnP' 't5IdIVdE6yIjMJOoXXMjdnLKHR8XF4c1yb+QdW37rubj38bgVQkv5MenJqTu' 'YNN+hzrcBu0BgMA2UQd3sTv2UC+PAOsCU+SjnczPj5IfIZcNA5jQ4thNBC8j' '3EEFEEyR6xPxE4RoUIchLkl7fCP5EXKFAco4cGwU2pk0z164WXqedpwUpyfE' 'rYzgVpQ6Sxcubvz8XhltTyFXUBc6hIOqGDxBBVtuF2HWYK7tOs94rUu44Ahw' 'G/41Sf+/JsVLyAfcdsCvhLUhSWwnaR7Nys682k3G6ap2rvjPAjcJv2nmF5qq' 'ece27v+Ycf1nyXvavMqP4PKCs34R/Eox9RyXj/s9SCkixYKmJ7azIdkRcpVy' 'RG3MBzPgsah+HcxXLyvfWT3HdW05+cl5V2cUTROX+zOs5yS4TzH1/F0Z7XdC' 'fn37UeOheCFHe+pPW2+EdIgIecZO9l6WC41XW4FmnxGnT/deaoWdVx/07eLH' 'YeEmdpGecitxnJM87xYRr15MPR9I8RKy4PwCQcsPxN2PWwWhqjHKe76u6Osq' 'cBBq5jWfWHTeLGJekPHL+C0jP20J5teLft6lmd+s30+Xjd/Xl3/3Lrye835/' 'ap0w0CHQtv0v52ni+ySG77j3+UOEj3pi+edYLHTQDorYSwvvUgzvcfO6X5iF' 'jizmUOPi6v3XzRCXk3Dj1oMWGR9v8UgEyExuZ1w+DT+yh4ZmaWeReRLxDzA1' 'kJkie2nJ4wyX4TLc+XFx48d3yuj4IWTmcLE6+r8BZB720hLHDJfhLiOuFMEl' '/R9NOB8cZnOa+Ga4DHcZcdlzOcNluAy3bPOHpN+T0sI3w2W4DJfhvnbcP7kQ' 'J69XCDm6ni3Kv434Sfq//Q4ixLSY2KdkqX1vM42tEgaN4W4W9an7sxrZ2CL8' 'mDF+SpKf0uf8YANRjrsD03K9OZz1IccdteprG662HGiF316M36Lkt/g5v8jb' 'FMEsu2dh+l4d7pE4sJqeGPJctL9oP9kY4y/a3iuutHnrypUv9S9FGe1XYX/7' '99E0/lZXczmBi+5juRaDyyuj/dzr18pk/fr2F8oHHJe1/H/d4QwI') pipeline = cpp.Pipeline() def callback(caller,event): self.assertFalse(isinstance(event, cpp.LoadExceptionEvent)) pipeline.add_listener(callback) pipeline.load(StringIO(zlib.decompress(base64.b64decode(data)))) self.assertEqual(len(pipeline.modules()), 4) module = pipeline.modules()[2] self.assertTrue(isinstance(module,E.ExpandOrShrink)) self.assertEqual(module.object_name, "Nuclei") self.assertEqual(module.output_object_name, "ShrunkenNuclei") self.assertEqual(module.operation, E.O_EXPAND) self.assertEqual(module.iterations, 3) self.assertFalse(module.wants_outlines.value) module = pipeline.modules()[3] self.assertTrue(isinstance(module,E.ExpandOrShrink)) self.assertEqual(module.object_name, "ShrunkenNuclei") self.assertEqual(module.output_object_name, "DividedNuclei") self.assertEqual(module.operation, E.O_DIVIDE) def make_workspace(self, labels, operation, iterations = 1, wants_outlines = False, wants_fill_holes = False): object_set = cpo.ObjectSet() objects = cpo.Objects() objects.segmented = labels object_set.add_objects(objects, INPUT_NAME) module = E.ExpandOrShrink() module.object_name.value = INPUT_NAME module.output_object_name.value = OUTPUT_NAME module.outlines_name.value = OUTLINES_NAME module.operation.value = operation module.iterations.value = iterations module.wants_outlines.value = wants_outlines module.wants_fill_holes.value = wants_fill_holes module.module_num = 1 pipeline = cpp.Pipeline() pipeline.add_module(module) image_set_list = cpi.ImageSetList() workspace = cpw.Workspace(pipeline, module, image_set_list.get_image_set(0), object_set, cpmeas.Measurements(), image_set_list) return workspace, module def test_02_01_expand(self): '''Expand an object once''' labels = np.zeros((10,10), int) labels[4,4] = 1 expected = np.zeros((10,10), int) expected[np.array([4,3,4,5,4],int),np.array([3,4,4,4,5],int)] = 1 workspace, module = self.make_workspace(labels, E.O_EXPAND) module.run(workspace) objects = workspace.object_set.get_objects(OUTPUT_NAME) self.assertTrue(np.all(objects.segmented == expected)) self.assertTrue(OUTLINES_NAME not in workspace.get_outline_names()) m = workspace.measurements self.assertTrue(isinstance(m, cpmeas.Measurements)) count = m.get_current_image_measurement("Count_" + OUTPUT_NAME) if not np.isscalar(count): count = count[0] self.assertEqual(count, 1) location_x = m.get_current_measurement(OUTPUT_NAME, "Location_Center_X") self.assertEqual(len(location_x), 1) self.assertEqual(location_x[0], 4) location_y = m.get_current_measurement(OUTPUT_NAME, "Location_Center_Y") self.assertEqual(len(location_y), 1) self.assertEqual(location_y[0], 4) def test_02_02_expand_twice(self): '''Expand an object "twice"''' labels = np.zeros((10,10), int) labels[4,4] = 1 i,j = np.mgrid[0:10,0:10]-4 expected = (i**2 + j**2 <=4).astype(int) workspace, module = self.make_workspace(labels, E.O_EXPAND, 2) module.run(workspace) objects = workspace.object_set.get_objects(OUTPUT_NAME) self.assertTrue(np.all(objects.segmented == expected)) def test_02_03_expand_two(self): '''Expand two objects once''' labels = np.zeros((10,10), int) labels[2,3] = 1 labels[6,5] = 2 i,j = np.mgrid[0:10,0:10] expected = (((i-2)**2 + (j-3)**2 <=1).astype(int) + ((i-6)**2 + (j-5)**2 <=1).astype(int) * 2) workspace, module = self.make_workspace(labels, E.O_EXPAND, 1) module.run(workspace) objects = workspace.object_set.get_objects(OUTPUT_NAME) self.assertTrue(np.all(objects.segmented == expected)) def test_03_01_expand_inf(self): '''Expand two objects infinitely''' labels = np.zeros((10,10), int) labels[2,3] = 1 labels[6,5] = 2 i,j = np.mgrid[0:10,0:10] distance = (((i-2)**2 + (j-3)**2) - ((i-6)**2 + (j-5)**2)) workspace, module = self.make_workspace(labels, E.O_EXPAND_INF) module.run(workspace) objects = workspace.object_set.get_objects(OUTPUT_NAME) self.assertTrue(np.all(objects.segmented[distance < 0]==1)) self.assertTrue(np.all(objects.segmented[distance > 0]==2)) def test_04_01_divide(self): '''Divide two touching objects''' labels = np.ones((10,10), int) labels[5:,:] = 2 expected = labels.copy() expected[4:6,:] = 0 workspace, module = self.make_workspace(labels, E.O_DIVIDE) module.run(workspace) objects = workspace.object_set.get_objects(OUTPUT_NAME) self.assertTrue(np.all(objects.segmented == expected)) def test_04_02_dont_divide(self): '''Don't divide an object that would disappear''' labels = np.ones((10,10), int) labels[9,9] = 2 expected = labels.copy() expected[8,9] = 0 expected[8,8] = 0 expected[9,8] = 0 workspace, module = self.make_workspace(labels, E.O_DIVIDE) module.run(workspace) objects = workspace.object_set.get_objects(OUTPUT_NAME) self.assertTrue(np.all(objects.segmented == expected)) def test_05_01_shrink(self): '''Shrink once''' labels = np.zeros((10,10), int) labels[1:9,1:9] = 1 expected = morph.thin(labels, iterations = 1) workspace, module = self.make_workspace(labels, E.O_SHRINK, 1) module.run(workspace) objects = workspace.object_set.get_objects(OUTPUT_NAME) self.assertTrue(np.all(objects.segmented == expected)) def test_06_01_shrink_inf(self): '''Shrink infinitely''' labels = np.zeros((10,10), int) labels[1:8,1:8] = 1 expected = np.zeros((10,10),int) expected[4,4] = 1 workspace, module = self.make_workspace(labels, E.O_SHRINK_INF) module.run(workspace) objects = workspace.object_set.get_objects(OUTPUT_NAME) self.assertTrue(np.all(objects.segmented == expected)) def test_06_02_shrink_inf_fill_holes(self): '''Shrink infinitely after filling a hole''' labels = np.zeros((10,10), int) labels[1:8,1:8] = 1 labels[4,4] = 0 expected = np.zeros((10,10),int) expected[4,4] = 1 # Test failure without filling the hole workspace, module = self.make_workspace(labels, E.O_SHRINK_INF) module.run(workspace) objects = workspace.object_set.get_objects(OUTPUT_NAME) self.assertFalse(np.all(objects.segmented == expected)) # Test success after filling the hole workspace, module = self.make_workspace(labels, E.O_SHRINK_INF, wants_fill_holes = True) module.run(workspace) objects = workspace.object_set.get_objects(OUTPUT_NAME) self.assertTrue(np.all(objects.segmented == expected)) def test_07_01_outlines(self): '''Create an outline of the resulting objects''' labels = np.zeros((10,10), int) labels[4,4] = 1 i,j = np.mgrid[0:10,0:10]-4 expected = (i**2 + j**2 <=4).astype(int) expected_outlines = outline(expected) workspace, module = self.make_workspace(labels, E.O_EXPAND, 2, wants_outlines = True) module.run(workspace) objects = workspace.object_set.get_objects(OUTPUT_NAME) self.assertTrue(np.all(objects.segmented == expected)) self.assertTrue(OUTLINES_NAME in workspace.image_set.get_names()) outlines = workspace.image_set.get_image(OUTLINES_NAME).pixel_data self.assertTrue(np.all(outlines == expected_outlines))
gpl-2.0
aiguofer/bokeh
examples/app/stocks/main.py
11
4555
''' Create a simple stocks correlation dashboard. Choose stocks to compare in the drop down widgets, and make selections on the plots to update the summary and histograms accordingly. .. note:: Running this example requires downloading sample data. See the included `README`_ for more information. Use the ``bokeh serve`` command to run the example by executing: bokeh serve stocks at your command prompt. Then navigate to the URL http://localhost:5006/stocks .. _README: https://github.com/bokeh/bokeh/blob/master/examples/app/stocks/README.md ''' try: from functools import lru_cache except ImportError: # Python 2 does stdlib does not have lru_cache so let's just # create a dummy decorator to avoid crashing print ("WARNING: Cache for this example is available on Python 3 only.") def lru_cache(): def dec(f): def _(*args, **kws): return f(*args, **kws) return _ return dec from os.path import dirname, join import pandas as pd from bokeh.io import curdoc from bokeh.layouts import row, column from bokeh.models import ColumnDataSource from bokeh.models.widgets import PreText, Select from bokeh.plotting import figure DATA_DIR = join(dirname(__file__), 'daily') DEFAULT_TICKERS = ['AAPL', 'GOOG', 'INTC', 'BRCM', 'YHOO'] def nix(val, lst): return [x for x in lst if x != val] @lru_cache() def load_ticker(ticker): fname = join(DATA_DIR, 'table_%s.csv' % ticker.lower()) data = pd.read_csv(fname, header=None, parse_dates=['date'], names=['date', 'foo', 'o', 'h', 'l', 'c', 'v']) data = data.set_index('date') return pd.DataFrame({ticker: data.c, ticker+'_returns': data.c.diff()}) @lru_cache() def get_data(t1, t2): df1 = load_ticker(t1) df2 = load_ticker(t2) data = pd.concat([df1, df2], axis=1) data = data.dropna() data['t1'] = data[t1] data['t2'] = data[t2] data['t1_returns'] = data[t1+'_returns'] data['t2_returns'] = data[t2+'_returns'] return data # set up widgets stats = PreText(text='', width=500) ticker1 = Select(value='AAPL', options=nix('GOOG', DEFAULT_TICKERS)) ticker2 = Select(value='GOOG', options=nix('AAPL', DEFAULT_TICKERS)) # set up plots source = ColumnDataSource(data=dict(date=[], t1=[], t2=[], t1_returns=[], t2_returns=[])) source_static = ColumnDataSource(data=dict(date=[], t1=[], t2=[], t1_returns=[], t2_returns=[])) tools = 'pan,wheel_zoom,xbox_select,reset' corr = figure(plot_width=350, plot_height=350, tools='pan,wheel_zoom,box_select,reset') corr.circle('t1_returns', 't2_returns', size=2, source=source, selection_color="orange", alpha=0.6, nonselection_alpha=0.1, selection_alpha=0.4) ts1 = figure(plot_width=900, plot_height=200, tools=tools, x_axis_type='datetime', active_drag="xbox_select") ts1.line('date', 't1', source=source_static) ts1.circle('date', 't1', size=1, source=source, color=None, selection_color="orange") ts2 = figure(plot_width=900, plot_height=200, tools=tools, x_axis_type='datetime', active_drag="xbox_select") ts2.x_range = ts1.x_range ts2.line('date', 't2', source=source_static) ts2.circle('date', 't2', size=1, source=source, color=None, selection_color="orange") # set up callbacks def ticker1_change(attrname, old, new): ticker2.options = nix(new, DEFAULT_TICKERS) update() def ticker2_change(attrname, old, new): ticker1.options = nix(new, DEFAULT_TICKERS) update() def update(selected=None): t1, t2 = ticker1.value, ticker2.value data = get_data(t1, t2) source.data = source.from_df(data[['t1', 't2', 't1_returns', 't2_returns']]) source_static.data = source.data update_stats(data, t1, t2) corr.title.text = '%s returns vs. %s returns' % (t1, t2) ts1.title.text, ts2.title.text = t1, t2 def update_stats(data, t1, t2): stats.text = str(data[[t1, t2, t1+'_returns', t2+'_returns']].describe()) ticker1.on_change('value', ticker1_change) ticker2.on_change('value', ticker2_change) def selection_change(attrname, old, new): t1, t2 = ticker1.value, ticker2.value data = get_data(t1, t2) selected = source.selected['1d']['indices'] if selected: data = data.iloc[selected, :] update_stats(data, t1, t2) source.on_change('selected', selection_change) # set up layout widgets = column(ticker1, ticker2, stats) main_row = row(corr, widgets) series = column(ts1, ts2) layout = column(main_row, series) # initialize update() curdoc().add_root(layout) curdoc().title = "Stocks"
bsd-3-clause
creyesp/RF_Estimation
Clustering/clustering/clusteringTime8.py
2
8261
#!/usr/bin/env python # -*- coding: utf-8 -*- # # SpectralClustering.py # # Copyright 2014 Carlos "casep" Sepulveda <[email protected]> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. # # # Performs clustering using different libraries import sys, os #Relative path for RFE LIB sys.path.append(os.path.join(os.path.dirname(__file__), '../..','LIB')) import rfestimationLib as rfe #Some custom functions import argparse #argument parsing from sklearn import metrics from sklearn import preprocessing from math import ceil from math import floor from scipy.interpolate import UnivariateSpline from numpy import zeros from numpy import linspace from numpy import concatenate from numpy import append from numpy import amax from numpy import amin from numpy import chararray from numpy import shape from numpy import savetxt from numpy import where from numpy import unique from numpy import mean from numpy import absolute from math import pi from numpy import float64 from numpy import empty from numpy import reshape #Output file format # 0-19 Timestamps # aRadius # bRadius # angle # xCoordinate # yCoordinate # area # clusterId # peakTime def main(): parser = argparse.ArgumentParser(prog='clusteringTime8.py', description='Performs clustering, Gaussian Mixture, KMeans or Spectral', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--sourceFolder', help='Source folder', type=str, required=True) parser.add_argument('--outputFolder', help='Output folder', type=str, required=True) parser.add_argument('--clustersNumber', help='Number of clusters', type=int, default='3', choices=[2,3,4,5,6,7,8,9,10,11,12,13,14,15], required=False) parser.add_argument('--framesNumber', help='Number of frames used in STA analysis', type=int, default='20', required=False) parser.add_argument('--blockSize', help='Size of each block in micrometres', type=int, default='50', required=False) parser.add_argument('--clusteringAlgorithm', help='Clustering algorithm to use: K-Means, Spectral Clustering, GMM', type=str, default='kmeans', choices=['kmeans','spectral','gmm','densityPeaks'], required=False) parser.add_argument('--percentageDensityDistance', help='Percentage used to calculate the distance', type=float, default='2', required=False) args = parser.parse_args() #Source folder of the files with the timestamps sourceFolder = rfe.fixPath(args.sourceFolder) if not os.path.exists(sourceFolder): print '' print 'Source folder does not exists ' + sourceFolder print '' sys.exit() #Output folder for the graphics outputFolder = rfe.fixPath(args.outputFolder) if not os.path.exists(outputFolder): try: os.makedirs(outputFolder) except: print '' print 'Unable to create folder ' + outputFolder print '' sys.exit() #Clusters number for the kmeans algorithm clustersNumber = args.clustersNumber #Frames used in STA analysis framesNumber = args.framesNumber #Size of each block in micrometres blockSize = args.blockSize #Clustering Algorithm clusteringAlgorithm = args.clusteringAlgorithm #dataCluster stores the data to be used for the clustering process #the size is equal to the number of frames, aka, the time component #plus 5 as we are incorporating the 2 dimensions of the ellipse, #x position, y position and angle dataCluster = zeros((1,framesNumber+7)) units = [] dato = empty((1,1)) for unitFile in os.listdir(sourceFolder): if os.path.isdir(sourceFolder+unitFile): dato = empty((1,1)) unitName = unitFile.rsplit('_', 1)[0] #print unitName dataUnit, coordinates = rfe.loadSTACurve(sourceFolder,unitFile,unitName) xSize = dataUnit.shape[0] ySize = dataUnit.shape[1] fitResult = rfe.loadFitMatrix(sourceFolder,unitFile) dataUnitTemporal = dataUnit[coordinates[0][0],[coordinates[1][0]],:] #Time data from FITResult #dataUnitTemporal = rfe.loadVectorAmp(sourceFolder,unitFile).T #A radius of the RF ellipse aRadius = fitResult[0][2] dato[0] = aRadius dataUnitCompleta = concatenate((dataUnitTemporal,dato),1) #B radius of the RF ellipse bRadius = fitResult[0][3] dato[0] = bRadius dataUnitCompleta = concatenate((dataUnitCompleta,dato),1) #angle of the RF ellipse angle = fitResult[0][1] dato[0] = angle dataUnitCompleta = concatenate((dataUnitCompleta,dato),1) #X coordinate of the RF ellipse xCoordinate = fitResult[0][4] #print 'xCoordinate',xCoordinate dato[0] = xCoordinate dataUnitCompleta = concatenate((dataUnitCompleta,dato),1) #Y coordinate of the RF ellipse yCoordinate = fitResult[0][5] #print 'yCoordinate',yCoordinate dato[0] = yCoordinate dataUnitCompleta = concatenate((dataUnitCompleta,dato),1) #Area of the RF ellipse area = aRadius*bRadius*pi dato[0] = area dataUnitCompleta = concatenate((dataUnitCompleta,dato),1) #UnitName dato=empty(1, dtype='|S16') dato[0]=unitName dataUnitCompleta = concatenate((dataUnitCompleta,dato.reshape(1, 1)),1) dataCluster = append(dataCluster,dataUnitCompleta, axis=0) units.append(unitName) # remove the first row of zeroes dataCluster = dataCluster[1:,:] #Solo temporal dataCluster[:,0:framesNumber] # framesNumber data = dataCluster[:,framesNumber*.45:framesNumber*.9] data = data.astype(float64, copy=False) # Calculates the next 5-step for the y-coordinate maxData = ceil(amax(data)/5)*5 minData = floor(amin(data)/5)*5 if clusteringAlgorithm == 'spectral': from sklearn.cluster import SpectralClustering sc = SpectralClustering(n_clusters=clustersNumber, eigen_solver=None, \ random_state=None, n_init=10, gamma=1.0, affinity='nearest_neighbors', \ n_neighbors=10, eigen_tol=0.0, assign_labels='kmeans', degree=3, \ coef0=1, kernel_params=None) sc.fit(data) labels = sc.labels_ elif clusteringAlgorithm == 'gmm': from sklearn import mixture gmix = mixture.GMM(n_components=clustersNumber, covariance_type='spherical') gmix.fit(data) labels = gmix.predict(data) elif clusteringAlgorithm == 'densityPeaks': import densityPeaks as dp percentageDensityDistance = args.percentageDensityDistance clustersNumber, labels = dp.predict(data, percentageDensityDistance) else: from sklearn.cluster import KMeans km = KMeans(init='k-means++', n_clusters=clustersNumber, n_init=10,n_jobs=-1) km.fit(data) labels = km.labels_ dataFile = empty((1,framesNumber+9),dtype='|S16') datos = empty((1,framesNumber+7),dtype='|S16') dato = empty((1,1),dtype='|S16') for clusterId in range(clustersNumber): for unitId in range(dataCluster.shape[0]): if labels[unitId] == clusterId: dato[0] = clusterId dataFileTmp = concatenate(([dataCluster[unitId,:]],dato),1) x = linspace(1, framesNumber, framesNumber) s = UnivariateSpline(x, dataCluster[unitId,0:framesNumber], s=0) xs = linspace(1, framesNumber, framesNumber*1000) ys = s(xs) media = mean(ys) maximo = amax(ys) minimo = amin(ys) maximaDistancia = absolute(maximo-media) minimaDistancia = absolute(minimo-media) peakTempCurve = minimo if maximaDistancia > minimaDistancia: peakTempCurve = maximo dato[0] = unique(where(peakTempCurve==ys)[0])[0] dataFileTmp = concatenate((dataFileTmp,dato),1) dataFile = append(dataFile, dataFileTmp, axis=0) # remove the first row of zeroes dataFile = dataFile[1:,:] savetxt(outputFolder+'outputFile.csv',dataFile, fmt='%s', delimiter=',', newline='\n') return 0 if __name__ == '__main__': main()
gpl-2.0
finfou/tushare
test/storing_test.py
40
1729
# -*- coding:utf-8 -*- import os from sqlalchemy import create_engine from pandas.io.pytables import HDFStore import tushare as ts def csv(): df = ts.get_hist_data('000875') df.to_csv('c:/day/000875.csv',columns=['open','high','low','close']) def xls(): df = ts.get_hist_data('000875') #直接保存 df.to_excel('c:/day/000875.xlsx', startrow=2,startcol=5) def hdf(): df = ts.get_hist_data('000875') # df.to_hdf('c:/day/store.h5','table') store = HDFStore('c:/day/store.h5') store['000875'] = df store.close() def json(): df = ts.get_hist_data('000875') df.to_json('c:/day/000875.json',orient='records') #或者直接使用 print(df.to_json(orient='records')) def appends(): filename = 'c:/day/bigfile.csv' for code in ['000875', '600848', '000981']: df = ts.get_hist_data(code) if os.path.exists(filename): df.to_csv(filename, mode='a', header=None) else: df.to_csv(filename) def db(): df = ts.get_tick_data('600848',date='2014-12-22') engine = create_engine('mysql://root:[email protected]/mystock?charset=utf8') # db = MySQLdb.connect(host='127.0.0.1',user='root',passwd='jimmy1',db="mystock",charset="utf8") # df.to_sql('TICK_DATA',con=db,flavor='mysql') # db.close() df.to_sql('tick_data',engine,if_exists='append') def nosql(): import pymongo import json conn = pymongo.Connection('127.0.0.1', port=27017) df = ts.get_tick_data('600848',date='2014-12-22') print(df.to_json(orient='records')) conn.db.tickdata.insert(json.loads(df.to_json(orient='records'))) # print conn.db.tickdata.find() if __name__ == '__main__': nosql()
bsd-3-clause
jblackburne/scikit-learn
examples/datasets/plot_iris_dataset.py
35
1929
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= The Iris Dataset ========================================================= This data sets consists of 3 different types of irises' (Setosa, Versicolour, and Virginica) petal and sepal length, stored in a 150x4 numpy.ndarray The rows being the samples and the columns being: Sepal Length, Sepal Width, Petal Length and Petal Width. The below plot uses the first two features. See `here <https://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more information on this dataset. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets from sklearn.decomposition import PCA # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 plt.figure(2, figsize=(8, 6)) plt.clf() # Plot the training points plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) # To getter a better understanding of interaction of the dimensions # plot the first three PCA dimensions fig = plt.figure(1, figsize=(8, 6)) ax = Axes3D(fig, elev=-150, azim=110) X_reduced = PCA(n_components=3).fit_transform(iris.data) ax.scatter(X_reduced[:, 0], X_reduced[:, 1], X_reduced[:, 2], c=Y, cmap=plt.cm.Paired) ax.set_title("First three PCA directions") ax.set_xlabel("1st eigenvector") ax.w_xaxis.set_ticklabels([]) ax.set_ylabel("2nd eigenvector") ax.w_yaxis.set_ticklabels([]) ax.set_zlabel("3rd eigenvector") ax.w_zaxis.set_ticklabels([]) plt.show()
bsd-3-clause
phiros/nepi
benchmark/scalability/scripts/plot.py
1
6063
import numpy as numpy import matplotlib.pyplot as pyplot from matplotlib.backends.backend_pdf import PdfPages from optparse import OptionParser def compute_estimator(samples): if len(samples) == 0: return 0,0,0 x = numpy.array(samples) n = len(samples) std = x.std() m = x.mean() return n, m, std def add_sample_data(data, thread_count, rm_count, sample): n,m,std = compute_estimator(sample) if not thread_count in data: data[thread_count] = dict() if not rm_count in data[thread_count]: data[thread_count][rm_count] = list() data[thread_count][rm_count].append(m) return data def add_scalar_data(data, thread_count, rm_count, scalar): if not thread_count in data: data[thread_count] = dict() if not rm_count in data[thread_count]: data[thread_count][rm_count] = list() data[thread_count][rm_count].append(scalar) return data def read_data(data_file): data_cpu_d = dict() data_cpu_e = dict() data_cpu_r = dict() data_mem_d = dict() data_mem_e = dict() data_mem_r = dict() data_time = dict() f = open(data_file, "r") for l in f: if l.startswith("timestamp|"): continue rows = l.split("|") platform = rows[1] node_count = int(rows[2]) app_count = int(rows[3]) thread_count = int(rows[4]) delay = float(rows[6]) opdelay = float(rows[7]) status = rows[19] if status.strip() != "OK": continue if platform != "dummy": opdelay = "Nan" else: opdelay = "%.2f" % opdelay # Compute number of rms (1 dev per node) rm_count = node_count * 2 + app_count * node_count cpu_d = rows[9] if cpu_d: cpu_d = map(float, cpu_d.split(",")) add_sample_data(data_cpu_d, thread_count, rm_count, cpu_d) cpu_e = rows[10] if cpu_e: cpu_e = map(float, cpu_e.split(",")) add_sample_data(data_cpu_e, thread_count, rm_count, cpu_e) cpu_r = rows[11] if cpu_r: cpu_r = map(float, cpu_r.split(",")) add_sample_data(data_cpu_r, thread_count, rm_count, cpu_r) mem_d = rows[13] if mem_d: mem_d = map(float, mem_d.split(",")) add_sample_data(data_mem_d, thread_count, rm_count, mem_d) mem_e = rows[14] if mem_e: mem_e = map(float, mem_e.split(",")) add_sample_data(data_mem_e, thread_count, rm_count, mem_e) mem_r = rows[15] if mem_r: mem_r = map(float, mem_r.split(",")) add_sample_data(data_mem_r, thread_count, rm_count, mem_r) ttd = int(rows[16]) ttr = int(rows[17]) ttrel = int(rows[18]) # Compute total duration of experiment in seconds duration = (ttd + ttr + ttrel) / (1000.0) add_scalar_data(data_time, thread_count, rm_count, duration) f.close() return (data_cpu_d, data_cpu_e, data_cpu_r, data_mem_d, data_mem_e, data_mem_r, data_time, platform, delay, opdelay) def save_figure(figure, platform, delay, opdelay, metric, stage): outputfile = "%s_d_%.2f_o_%s_%s_%s.pdf" % ( platform, delay, opdelay, metric, stage) pp = PdfPages(outputfile) pp.savefig(figure) pp.close() def plot_data(data, platform, delay, opdelay, metric, stage, unit): plts = dict() for thread_count in sorted(data.keys()): plts[thread_count] = [[], [], [], []] rm_info = data[thread_count] for rm_count in sorted(rm_info.keys()): sample = rm_info[rm_count] x = numpy.array(sample) n = len(sample) std = x.std() m = x.mean() ci2 = numpy.percentile(sample, [2.5, 97.5]) plts[thread_count][0].append(rm_count) plts[thread_count][1].append(m) plts[thread_count][2].append(m - ci2[0]) plts[thread_count][3].append(ci2[1] - m) colors = ['red', 'orange', 'green', 'blue'] fig = pyplot.figure(figsize=(8, 6), dpi=100) ax = fig.add_subplot(111) i = 0 for thread_count in sorted(plts.keys()): info = plts[thread_count] x = info[0] y = info[1] ye1 = info[2] ye2 = info[3] # plot ax.errorbar(x, y, yerr=[ye1, ye2], fmt='-o', label="%d threads" % thread_count, color = colors[i]) i+=1 ax.grid(True) ax.set_xlabel("# Resources") #plt.gca().set_xscale('log') ylabel = "%s %s" % (metric, unit) ax.set_ylabel(ylabel) #plt.gca().set_yscale('log') ax.legend(loc='lower right', framealpha=0.5) title = "%s - %s usage during %s\n" \ "Reschedule / Operation delay = %.2f / %s " % ( platform, metric, stage, delay, opdelay) ax.set_title(title) #pyplot.show() save_figure(fig, platform, delay, opdelay, metric, stage) usage = ("usage: %prog -f <data-file>") parser = OptionParser(usage = usage) parser.add_option("-f", "--data-file", dest="data_file", help="File containing data to plot", type="string") (options, args) = parser.parse_args() data_file = options.data_file (data_cpu_d, data_cpu_e, data_cpu_r, data_mem_d, data_mem_e, data_mem_r, data_time, platform, delay, opdelay) = read_data(data_file) plot_data(data_cpu_d, platform, delay, opdelay, "CPU", "deploy", "(%)") plot_data(data_cpu_e, platform, delay, opdelay, "CPU", "execute", "(%)") plot_data(data_cpu_r, platform, delay, opdelay, "CPU", "release", "(%)") plot_data(data_mem_d, platform, delay, opdelay, "Memory", "deploy", "(%)") plot_data(data_mem_e, platform, delay, opdelay, "Memory", "execute", "(%)") plot_data(data_mem_r, platform, delay, opdelay, "Memory", "release", "(%)") plot_data(data_time, platform, delay, opdelay, "Time", "total", "(sec)")
gpl-3.0
hdmetor/scikit-learn
examples/applications/topics_extraction_with_nmf.py
106
2313
""" ======================================================== Topics extraction with Non-Negative Matrix Factorization ======================================================== This is a proof of concept application of Non Negative Matrix Factorization of the term frequency matrix of a corpus of documents so as to extract an additive model of the topic structure of the corpus. The output is a list of topics, each represented as a list of terms (weights are not shown). The default parameters (n_samples / n_features / n_topics) should make the example runnable in a couple of tens of seconds. You can try to increase the dimensions of the problem, but be aware than the time complexity is polynomial. """ # Author: Olivier Grisel <[email protected]> # Lars Buitinck <[email protected]> # License: BSD 3 clause from __future__ import print_function from time import time from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import NMF from sklearn.datasets import fetch_20newsgroups n_samples = 2000 n_features = 1000 n_topics = 10 n_top_words = 20 # Load the 20 newsgroups dataset and vectorize it. We use a few heuristics # to filter out useless terms early on: the posts are stripped of headers, # footers and quoted replies, and common English words, words occurring in # only one document or in at least 95% of the documents are removed. t0 = time() print("Loading dataset and extracting TF-IDF features...") dataset = fetch_20newsgroups(shuffle=True, random_state=1, remove=('headers', 'footers', 'quotes')) vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, max_features=n_features, stop_words='english') tfidf = vectorizer.fit_transform(dataset.data[:n_samples]) print("done in %0.3fs." % (time() - t0)) # Fit the NMF model print("Fitting the NMF model with n_samples=%d and n_features=%d..." % (n_samples, n_features)) nmf = NMF(n_components=n_topics, random_state=1).fit(tfidf) print("done in %0.3fs." % (time() - t0)) feature_names = vectorizer.get_feature_names() for topic_idx, topic in enumerate(nmf.components_): print("Topic #%d:" % topic_idx) print(" ".join([feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1]])) print()
bsd-3-clause
yask123/scikit-learn
sklearn/ensemble/tests/test_forest.py
48
39224
""" Testing for the forest module (sklearn.ensemble.forest). """ # Authors: Gilles Louppe, # Brian Holt, # Andreas Mueller, # Arnaud Joly # License: BSD 3 clause import pickle from collections import defaultdict from itertools import combinations from itertools import product import numpy as np from scipy.misc import comb from scipy.sparse import csr_matrix from scipy.sparse import csc_matrix from scipy.sparse import coo_matrix from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_less, assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn import datasets from sklearn.decomposition import TruncatedSVD from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomTreesEmbedding from sklearn.grid_search import GridSearchCV from sklearn.svm import LinearSVC from sklearn.utils.fixes import bincount from sklearn.utils.validation import check_random_state from sklearn.tree.tree import SPARSE_SPLITTERS # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = check_random_state(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] FOREST_CLASSIFIERS = { "ExtraTreesClassifier": ExtraTreesClassifier, "RandomForestClassifier": RandomForestClassifier, } FOREST_REGRESSORS = { "ExtraTreesRegressor": ExtraTreesRegressor, "RandomForestRegressor": RandomForestRegressor, } FOREST_TRANSFORMERS = { "RandomTreesEmbedding": RandomTreesEmbedding, } FOREST_ESTIMATORS = dict() FOREST_ESTIMATORS.update(FOREST_CLASSIFIERS) FOREST_ESTIMATORS.update(FOREST_REGRESSORS) FOREST_ESTIMATORS.update(FOREST_TRANSFORMERS) def check_classification_toy(name): """Check classification on a toy dataset.""" ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) clf = ForestClassifier(n_estimators=10, max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) # also test apply leaf_indices = clf.apply(X) assert_equal(leaf_indices.shape, (len(X), clf.n_estimators)) def test_classification_toy(): for name in FOREST_CLASSIFIERS: yield check_classification_toy, name def check_iris_criterion(name, criterion): # Check consistency on dataset iris. ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, criterion=criterion, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.9, "Failed with criterion %s and score = %f" % (criterion, score)) clf = ForestClassifier(n_estimators=10, criterion=criterion, max_features=2, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.5, "Failed with criterion %s and score = %f" % (criterion, score)) def test_iris(): for name, criterion in product(FOREST_CLASSIFIERS, ("gini", "entropy")): yield check_iris_criterion, name, criterion def check_boston_criterion(name, criterion): # Check consistency on dataset boston house prices. ForestRegressor = FOREST_REGRESSORS[name] clf = ForestRegressor(n_estimators=5, criterion=criterion, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.95, "Failed with max_features=None, criterion %s " "and score = %f" % (criterion, score)) clf = ForestRegressor(n_estimators=5, criterion=criterion, max_features=6, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.95, "Failed with max_features=6, criterion %s " "and score = %f" % (criterion, score)) def test_boston(): for name, criterion in product(FOREST_REGRESSORS, ("mse", )): yield check_boston_criterion, name, criterion def check_regressor_attributes(name): # Regression models should not have a classes_ attribute. r = FOREST_REGRESSORS[name](random_state=0) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) r.fit([[1, 2, 3], [4, 5, 6]], [1, 2]) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) def test_regressor_attributes(): for name in FOREST_REGRESSORS: yield check_regressor_attributes, name def check_probability(name): # Predict probabilities. ForestClassifier = FOREST_CLASSIFIERS[name] with np.errstate(divide="ignore"): clf = ForestClassifier(n_estimators=10, random_state=1, max_features=1, max_depth=1) clf.fit(iris.data, iris.target) assert_array_almost_equal(np.sum(clf.predict_proba(iris.data), axis=1), np.ones(iris.data.shape[0])) assert_array_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data))) def test_probability(): for name in FOREST_CLASSIFIERS: yield check_probability, name def check_importances(X, y, name, criterion): ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=20, criterion=criterion, random_state=0) est.fit(X, y) importances = est.feature_importances_ n_important = np.sum(importances > 0.1) assert_equal(importances.shape[0], 10) assert_equal(n_important, 3) X_new = est.transform(X, threshold="mean") assert_less(X_new.shape[1], X.shape[1]) # Check with parallel importances = est.feature_importances_ est.set_params(n_jobs=2) importances_parrallel = est.feature_importances_ assert_array_almost_equal(importances, importances_parrallel) # Check with sample weights sample_weight = check_random_state(0).randint(1, 10, len(X)) est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=sample_weight) importances = est.feature_importances_ assert_true(np.all(importances >= 0.0)) for scale in [0.5, 10, 100]: est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=scale * sample_weight) importances_bis = est.feature_importances_ assert_less(np.abs(importances - importances_bis).mean(), 0.001) def test_importances(): X, y = datasets.make_classification(n_samples=500, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name, criterion in product(FOREST_CLASSIFIERS, ["gini", "entropy"]): yield check_importances, X, y, name, criterion for name, criterion in product(FOREST_REGRESSORS, ["mse", "friedman_mse"]): yield check_importances, X, y, name, criterion def test_importances_asymptotic(): # Check whether variable importances of totally randomized trees # converge towards their theoretical values (See Louppe et al, # Understanding variable importances in forests of randomized trees, 2013). def binomial(k, n): return 0 if k < 0 or k > n else comb(int(n), int(k), exact=True) def entropy(samples): n_samples = len(samples) entropy = 0. for count in bincount(samples): p = 1. * count / n_samples if p > 0: entropy -= p * np.log2(p) return entropy def mdi_importance(X_m, X, y): n_samples, n_features = X.shape features = list(range(n_features)) features.pop(X_m) values = [np.unique(X[:, i]) for i in range(n_features)] imp = 0. for k in range(n_features): # Weight of each B of size k coef = 1. / (binomial(k, n_features) * (n_features - k)) # For all B of size k for B in combinations(features, k): # For all values B=b for b in product(*[values[B[j]] for j in range(k)]): mask_b = np.ones(n_samples, dtype=np.bool) for j in range(k): mask_b &= X[:, B[j]] == b[j] X_, y_ = X[mask_b, :], y[mask_b] n_samples_b = len(X_) if n_samples_b > 0: children = [] for xi in values[X_m]: mask_xi = X_[:, X_m] == xi children.append(y_[mask_xi]) imp += (coef * (1. * n_samples_b / n_samples) # P(B=b) * (entropy(y_) - sum([entropy(c) * len(c) / n_samples_b for c in children]))) return imp data = np.array([[0, 0, 1, 0, 0, 1, 0, 1], [1, 0, 1, 1, 1, 0, 1, 2], [1, 0, 1, 1, 0, 1, 1, 3], [0, 1, 1, 1, 0, 1, 0, 4], [1, 1, 0, 1, 0, 1, 1, 5], [1, 1, 0, 1, 1, 1, 1, 6], [1, 0, 1, 0, 0, 1, 0, 7], [1, 1, 1, 1, 1, 1, 1, 8], [1, 1, 1, 1, 0, 1, 1, 9], [1, 1, 1, 0, 1, 1, 1, 0]]) X, y = np.array(data[:, :7], dtype=np.bool), data[:, 7] n_features = X.shape[1] # Compute true importances true_importances = np.zeros(n_features) for i in range(n_features): true_importances[i] = mdi_importance(i, X, y) # Estimate importances with totally randomized trees clf = ExtraTreesClassifier(n_estimators=500, max_features=1, criterion="entropy", random_state=0).fit(X, y) importances = sum(tree.tree_.compute_feature_importances(normalize=False) for tree in clf.estimators_) / clf.n_estimators # Check correctness assert_almost_equal(entropy(y), sum(importances)) assert_less(np.abs(true_importances - importances).mean(), 0.01) def check_unfitted_feature_importances(name): assert_raises(ValueError, getattr, FOREST_ESTIMATORS[name](random_state=0), "feature_importances_") def test_unfitted_feature_importances(): for name in FOREST_ESTIMATORS: yield check_unfitted_feature_importances, name def check_oob_score(name, X, y, n_estimators=20): # Check that oob prediction is a good estimation of the generalization # error. # Proper behavior est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=n_estimators, bootstrap=True) n_samples = X.shape[0] est.fit(X[:n_samples // 2, :], y[:n_samples // 2]) test_score = est.score(X[n_samples // 2:, :], y[n_samples // 2:]) if name in FOREST_CLASSIFIERS: assert_less(abs(test_score - est.oob_score_), 0.1) else: assert_greater(test_score, est.oob_score_) assert_greater(est.oob_score_, .8) # Check warning if not enough estimators with np.errstate(divide="ignore", invalid="ignore"): est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=1, bootstrap=True) assert_warns(UserWarning, est.fit, X, y) def test_oob_score(): for name in FOREST_CLASSIFIERS: yield check_oob_score, name, iris.data, iris.target # csc matrix yield check_oob_score, name, csc_matrix(iris.data), iris.target # non-contiguous targets in classification yield check_oob_score, name, iris.data, iris.target * 2 + 1 for name in FOREST_REGRESSORS: yield check_oob_score, name, boston.data, boston.target, 50 # csc matrix yield check_oob_score, name, csc_matrix(boston.data), boston.target, 50 def check_oob_score_raise_error(name): ForestEstimator = FOREST_ESTIMATORS[name] if name in FOREST_TRANSFORMERS: for oob_score in [True, False]: assert_raises(TypeError, ForestEstimator, oob_score=oob_score) assert_raises(NotImplementedError, ForestEstimator()._set_oob_score, X, y) else: # Unfitted / no bootstrap / no oob_score for oob_score, bootstrap in [(True, False), (False, True), (False, False)]: est = ForestEstimator(oob_score=oob_score, bootstrap=bootstrap, random_state=0) assert_false(hasattr(est, "oob_score_")) # No bootstrap assert_raises(ValueError, ForestEstimator(oob_score=True, bootstrap=False).fit, X, y) def test_oob_score_raise_error(): for name in FOREST_ESTIMATORS: yield check_oob_score_raise_error, name def check_gridsearch(name): forest = FOREST_CLASSIFIERS[name]() clf = GridSearchCV(forest, {'n_estimators': (1, 2), 'max_depth': (1, 2)}) clf.fit(iris.data, iris.target) def test_gridsearch(): # Check that base trees can be grid-searched. for name in FOREST_CLASSIFIERS: yield check_gridsearch, name def check_parallel(name, X, y): """Check parallel computations in classification""" ForestEstimator = FOREST_ESTIMATORS[name] forest = ForestEstimator(n_estimators=10, n_jobs=3, random_state=0) forest.fit(X, y) assert_equal(len(forest), 10) forest.set_params(n_jobs=1) y1 = forest.predict(X) forest.set_params(n_jobs=2) y2 = forest.predict(X) assert_array_almost_equal(y1, y2, 3) def test_parallel(): for name in FOREST_CLASSIFIERS: yield check_parallel, name, iris.data, iris.target for name in FOREST_REGRESSORS: yield check_parallel, name, boston.data, boston.target def check_pickle(name, X, y): # Check pickability. ForestEstimator = FOREST_ESTIMATORS[name] obj = ForestEstimator(random_state=0) obj.fit(X, y) score = obj.score(X, y) pickle_object = pickle.dumps(obj) obj2 = pickle.loads(pickle_object) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(X, y) assert_equal(score, score2) def test_pickle(): for name in FOREST_CLASSIFIERS: yield check_pickle, name, iris.data[::2], iris.target[::2] for name in FOREST_REGRESSORS: yield check_pickle, name, boston.data[::2], boston.target[::2] def check_multioutput(name): # Check estimators on multi-output problems. X_train = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y_train = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] X_test = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_test = [[-1, 0], [1, 1], [-1, 2], [1, 3]] est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) y_pred = est.fit(X_train, y_train).predict(X_test) assert_array_almost_equal(y_pred, y_test) if name in FOREST_CLASSIFIERS: with np.errstate(divide="ignore"): proba = est.predict_proba(X_test) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = est.predict_log_proba(X_test) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) def test_multioutput(): for name in FOREST_CLASSIFIERS: yield check_multioutput, name for name in FOREST_REGRESSORS: yield check_multioutput, name def check_classes_shape(name): # Test that n_classes_ and classes_ have proper shape. ForestClassifier = FOREST_CLASSIFIERS[name] # Classification, single output clf = ForestClassifier(random_state=0).fit(X, y) assert_equal(clf.n_classes_, 2) assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(random_state=0).fit(X, _y) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_classes_shape(): for name in FOREST_CLASSIFIERS: yield check_classes_shape, name def test_random_trees_dense_type(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning a dense array. # Create the RTE with sparse=False hasher = RandomTreesEmbedding(n_estimators=10, sparse_output=False) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # Assert that type is ndarray, not scipy.sparse.csr.csr_matrix assert_equal(type(X_transformed), np.ndarray) def test_random_trees_dense_equal(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning the same array for both argument values. # Create the RTEs hasher_dense = RandomTreesEmbedding(n_estimators=10, sparse_output=False, random_state=0) hasher_sparse = RandomTreesEmbedding(n_estimators=10, sparse_output=True, random_state=0) X, y = datasets.make_circles(factor=0.5) X_transformed_dense = hasher_dense.fit_transform(X) X_transformed_sparse = hasher_sparse.fit_transform(X) # Assert that dense and sparse hashers have same array. assert_array_equal(X_transformed_sparse.toarray(), X_transformed_dense) def test_random_hasher(): # test random forest hashing on circles dataset # make sure that it is linearly separable. # even after projected to two SVD dimensions # Note: Not all random_states produce perfect results. hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # test fit and transform: hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) assert_array_equal(hasher.fit(X).transform(X).toarray(), X_transformed.toarray()) # one leaf active per data point per forest assert_equal(X_transformed.shape[0], X.shape[0]) assert_array_equal(X_transformed.sum(axis=1), hasher.n_estimators) svd = TruncatedSVD(n_components=2) X_reduced = svd.fit_transform(X_transformed) linear_clf = LinearSVC() linear_clf.fit(X_reduced, y) assert_equal(linear_clf.score(X_reduced, y), 1.) def test_random_hasher_sparse_data(): X, y = datasets.make_multilabel_classification(random_state=0) hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X_transformed = hasher.fit_transform(X) X_transformed_sparse = hasher.fit_transform(csc_matrix(X)) assert_array_equal(X_transformed_sparse.toarray(), X_transformed.toarray()) def test_parallel_train(): rng = check_random_state(12321) n_samples, n_features = 80, 30 X_train = rng.randn(n_samples, n_features) y_train = rng.randint(0, 2, n_samples) clfs = [ RandomForestClassifier(n_estimators=20, n_jobs=n_jobs, random_state=12345).fit(X_train, y_train) for n_jobs in [1, 2, 3, 8, 16, 32] ] X_test = rng.randn(n_samples, n_features) probas = [clf.predict_proba(X_test) for clf in clfs] for proba1, proba2 in zip(probas, probas[1:]): assert_array_almost_equal(proba1, proba2) def test_distribution(): rng = check_random_state(12321) # Single variable with 4 values X = rng.randint(0, 4, size=(1000, 1)) y = rng.rand(1000) n_trees = 500 clf = ExtraTreesRegressor(n_estimators=n_trees, random_state=42).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = sorted([(1. * count / n_trees, tree) for tree, count in uniques.items()]) # On a single variable problem where X_0 has 4 equiprobable values, there # are 5 ways to build a random tree. The more compact (0,1/0,0/--0,2/--) of # them has probability 1/3 while the 4 others have probability 1/6. assert_equal(len(uniques), 5) assert_greater(0.20, uniques[0][0]) # Rough approximation of 1/6. assert_greater(0.20, uniques[1][0]) assert_greater(0.20, uniques[2][0]) assert_greater(0.20, uniques[3][0]) assert_greater(uniques[4][0], 0.3) assert_equal(uniques[4][1], "0,1/0,0/--0,2/--") # Two variables, one with 2 values, one with 3 values X = np.empty((1000, 2)) X[:, 0] = np.random.randint(0, 2, 1000) X[:, 1] = np.random.randint(0, 3, 1000) y = rng.rand(1000) clf = ExtraTreesRegressor(n_estimators=100, max_features=1, random_state=1).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = [(count, tree) for tree, count in uniques.items()] assert_equal(len(uniques), 8) def check_max_leaf_nodes_max_depth(name, X, y): # Test precedence of max_leaf_nodes over max_depth. ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(max_depth=1, max_leaf_nodes=4, n_estimators=1).fit(X, y) assert_greater(est.estimators_[0].tree_.max_depth, 1) est = ForestEstimator(max_depth=1, n_estimators=1).fit(X, y) assert_equal(est.estimators_[0].tree_.max_depth, 1) def test_max_leaf_nodes_max_depth(): X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for name in FOREST_ESTIMATORS: yield check_max_leaf_nodes_max_depth, name, X, y def check_min_samples_leaf(name, X, y): # Test if leaves contain more than leaf_count training examples ForestEstimator = FOREST_ESTIMATORS[name] # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes in (None, 1000): est = ForestEstimator(min_samples_leaf=5, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) def test_min_samples_leaf(): X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) X = X.astype(np.float32) for name in FOREST_ESTIMATORS: yield check_min_samples_leaf, name, X, y def check_min_weight_fraction_leaf(name, X, y): # Test if leaves contain at least min_weight_fraction_leaf of the # training set ForestEstimator = FOREST_ESTIMATORS[name] rng = np.random.RandomState(0) weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes in (None, 1000): for frac in np.linspace(0, 0.5, 6): est = ForestEstimator(min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, random_state=0) if isinstance(est, (RandomForestClassifier, RandomForestRegressor)): est.bootstrap = False est.fit(X, y, sample_weight=weights) out = est.estimators_[0].tree_.apply(X) node_weights = bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert_greater_equal( np.min(leaf_weights), total_weight * est.min_weight_fraction_leaf, "Failed with {0} " "min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) def test_min_weight_fraction_leaf(): X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) X = X.astype(np.float32) for name in FOREST_ESTIMATORS: yield check_min_weight_fraction_leaf, name, X, y def check_sparse_input(name, X, X_sparse, y): ForestEstimator = FOREST_ESTIMATORS[name] dense = ForestEstimator(random_state=0, max_depth=2).fit(X, y) sparse = ForestEstimator(random_state=0, max_depth=2).fit(X_sparse, y) assert_array_almost_equal(sparse.apply(X), dense.apply(X)) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_array_almost_equal(sparse.predict(X), dense.predict(X)) assert_array_almost_equal(sparse.feature_importances_, dense.feature_importances_) if name in FOREST_CLASSIFIERS: assert_array_almost_equal(sparse.predict_proba(X), dense.predict_proba(X)) assert_array_almost_equal(sparse.predict_log_proba(X), dense.predict_log_proba(X)) if name in FOREST_TRANSFORMERS: assert_array_almost_equal(sparse.transform(X).toarray(), dense.transform(X).toarray()) assert_array_almost_equal(sparse.fit_transform(X).toarray(), dense.fit_transform(X).toarray()) def test_sparse_input(): X, y = datasets.make_multilabel_classification(random_state=0, n_samples=50) for name, sparse_matrix in product(FOREST_ESTIMATORS, (csr_matrix, csc_matrix, coo_matrix)): yield check_sparse_input, name, X, sparse_matrix(X), y def check_memory_layout(name, dtype): # Check that it works no matter the memory layout est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) if est.base_estimator.splitter in SPARSE_SPLITTERS: # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # coo_matrix X = coo_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_memory_layout(): for name, dtype in product(FOREST_CLASSIFIERS, [np.float64, np.float32]): yield check_memory_layout, name, dtype for name, dtype in product(FOREST_REGRESSORS, [np.float64, np.float32]): yield check_memory_layout, name, dtype @ignore_warnings def check_1d_input(name, X, X_2d, y): ForestEstimator = FOREST_ESTIMATORS[name] assert_raises(ValueError, ForestEstimator(random_state=0).fit, X, y) est = ForestEstimator(random_state=0) est.fit(X_2d, y) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_raises(ValueError, est.predict, X) @ignore_warnings def test_1d_input(): X = iris.data[:, 0] X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target for name in FOREST_ESTIMATORS: yield check_1d_input, name, X, X_2d, y def check_class_weights(name): # Check class_weights resemble sample_weights behavior. ForestClassifier = FOREST_CLASSIFIERS[name] # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target) clf2 = ForestClassifier(class_weight='balanced', random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Make a multi-output problem with three copies of Iris iris_multi = np.vstack((iris.target, iris.target, iris.target)).T # Create user-defined weights that should balance over the outputs clf3 = ForestClassifier(class_weight=[{0: 2., 1: 2., 2: 1.}, {0: 2., 1: 1., 2: 2.}, {0: 1., 1: 2., 2: 2.}], random_state=0) clf3.fit(iris.data, iris_multi) assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_) # Check against multi-output "balanced" which should also have no effect clf4 = ForestClassifier(class_weight='balanced', random_state=0) clf4.fit(iris.data, iris_multi) assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Check that sample_weight and class_weight are multiplicative clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) def test_class_weights(): for name in FOREST_CLASSIFIERS: yield check_class_weights, name def check_class_weight_balanced_and_bootstrap_multi_output(name): # Test class_weight works for multi-output""" ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(class_weight='balanced', random_state=0) clf.fit(X, _y) clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}, {-2: 1., 2: 1.}], random_state=0) clf.fit(X, _y) # smoke test for subsample and balanced subsample clf = ForestClassifier(class_weight='balanced_subsample', random_state=0) clf.fit(X, _y) clf = ForestClassifier(class_weight='subsample', random_state=0) ignore_warnings(clf.fit)(X, _y) def test_class_weight_balanced_and_bootstrap_multi_output(): for name in FOREST_CLASSIFIERS: yield check_class_weight_balanced_and_bootstrap_multi_output, name def check_class_weight_errors(name): # Test if class_weight raises errors and warnings when expected. ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T # Invalid preset string clf = ForestClassifier(class_weight='the larch', random_state=0) assert_raises(ValueError, clf.fit, X, y) assert_raises(ValueError, clf.fit, X, _y) # Warning warm_start with preset clf = ForestClassifier(class_weight='auto', warm_start=True, random_state=0) assert_warns(UserWarning, clf.fit, X, y) assert_warns(UserWarning, clf.fit, X, _y) # Not a list or preset for multi-output clf = ForestClassifier(class_weight=1, random_state=0) assert_raises(ValueError, clf.fit, X, _y) # Incorrect length list for multi-output clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}], random_state=0) assert_raises(ValueError, clf.fit, X, _y) def test_class_weight_errors(): for name in FOREST_CLASSIFIERS: yield check_class_weight_errors, name def check_warm_start(name, random_state=42): # Test if fitting incrementally with warm start gives a forest of the # right size and the same results as a normal fit. X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] clf_ws = None for n_estimators in [5, 10]: if clf_ws is None: clf_ws = ForestEstimator(n_estimators=n_estimators, random_state=random_state, warm_start=True) else: clf_ws.set_params(n_estimators=n_estimators) clf_ws.fit(X, y) assert_equal(len(clf_ws), n_estimators) clf_no_ws = ForestEstimator(n_estimators=10, random_state=random_state, warm_start=False) clf_no_ws.fit(X, y) assert_equal(set([tree.random_state for tree in clf_ws]), set([tree.random_state for tree in clf_no_ws])) assert_array_equal(clf_ws.apply(X), clf_no_ws.apply(X), err_msg="Failed with {0}".format(name)) def test_warm_start(): for name in FOREST_ESTIMATORS: yield check_warm_start, name def check_warm_start_clear(name): # Test if fit clears state and grows a new forest when warm_start==False. X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True, random_state=2) clf_2.fit(X, y) # inits state clf_2.set_params(warm_start=False, random_state=1) clf_2.fit(X, y) # clears old state and equals clf assert_array_almost_equal(clf_2.apply(X), clf.apply(X)) def test_warm_start_clear(): for name in FOREST_ESTIMATORS: yield check_warm_start_clear, name def check_warm_start_smaller_n_estimators(name): # Test if warm start second fit with smaller n_estimators raises error. X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True) clf.fit(X, y) clf.set_params(n_estimators=4) assert_raises(ValueError, clf.fit, X, y) def test_warm_start_smaller_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_smaller_n_estimators, name def check_warm_start_equal_n_estimators(name): # Test if warm start with equal n_estimators does nothing and returns the # same forest and raises a warning. X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf_2.fit(X, y) # Now clf_2 equals clf. clf_2.set_params(random_state=2) assert_warns(UserWarning, clf_2.fit, X, y) # If we had fit the trees again we would have got a different forest as we # changed the random state. assert_array_equal(clf.apply(X), clf_2.apply(X)) def test_warm_start_equal_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_equal_n_estimators, name def check_warm_start_oob(name): # Test that the warm start computes oob score when asked. X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] # Use 15 estimators to avoid 'some inputs do not have OOB scores' warning. clf = ForestEstimator(n_estimators=15, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=True) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=False) clf_2.fit(X, y) clf_2.set_params(warm_start=True, oob_score=True, n_estimators=15) clf_2.fit(X, y) assert_true(hasattr(clf_2, 'oob_score_')) assert_equal(clf.oob_score_, clf_2.oob_score_) # Test that oob_score is computed even if we don't need to train # additional trees. clf_3 = ForestEstimator(n_estimators=15, max_depth=3, warm_start=True, random_state=1, bootstrap=True, oob_score=False) clf_3.fit(X, y) assert_true(not(hasattr(clf_3, 'oob_score_'))) clf_3.set_params(oob_score=True) ignore_warnings(clf_3.fit)(X, y) assert_equal(clf.oob_score_, clf_3.oob_score_) def test_warm_start_oob(): for name in FOREST_CLASSIFIERS: yield check_warm_start_oob, name for name in FOREST_REGRESSORS: yield check_warm_start_oob, name def test_dtype_convert(n_classes=15): classifier = RandomForestClassifier(random_state=0, bootstrap=False) X = np.eye(n_classes) y = [ch for ch in 'ABCDEFGHIJKLMNOPQRSTU'[:n_classes]] result = classifier.fit(X, y).predict(X) assert_array_equal(classifier.classes_, y) assert_array_equal(result, y)
bsd-3-clause
RPGOne/Skynet
numpy-master/numpy/core/code_generators/ufunc_docstrings.py
7
92602
""" Docstrings for generated ufuncs The syntax is designed to look like the function add_newdoc is being called from numpy.lib, but in this file add_newdoc puts the docstrings in a dictionary. This dictionary is used in numpy/core/code_generators/generate_umath.py to generate the docstrings for the ufuncs in numpy.core at the C level when the ufuncs are created at compile time. """ from __future__ import division, absolute_import, print_function docdict = {} def get(name): return docdict.get(name) def add_newdoc(place, name, doc): docdict['.'.join((place, name))] = doc add_newdoc('numpy.core.umath', 'absolute', """ Calculate the absolute value element-wise. Parameters ---------- x : array_like Input array. Returns ------- absolute : ndarray An ndarray containing the absolute value of each element in `x`. For complex input, ``a + ib``, the absolute value is :math:`\\sqrt{ a^2 + b^2 }`. Examples -------- >>> x = np.array([-1.2, 1.2]) >>> np.absolute(x) array([ 1.2, 1.2]) >>> np.absolute(1.2 + 1j) 1.5620499351813308 Plot the function over ``[-10, 10]``: >>> import matplotlib.pyplot as plt >>> x = np.linspace(start=-10, stop=10, num=101) >>> plt.plot(x, np.absolute(x)) >>> plt.show() Plot the function over the complex plane: >>> xx = x + 1j * x[:, np.newaxis] >>> plt.imshow(np.abs(xx), extent=[-10, 10, -10, 10]) >>> plt.show() """) add_newdoc('numpy.core.umath', 'add', """ Add arguments element-wise. Parameters ---------- x1, x2 : array_like The arrays to be added. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). Returns ------- add : ndarray or scalar The sum of `x1` and `x2`, element-wise. Returns a scalar if both `x1` and `x2` are scalars. Notes ----- Equivalent to `x1` + `x2` in terms of array broadcasting. Examples -------- >>> np.add(1.0, 4.0) 5.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.add(x1, x2) array([[ 0., 2., 4.], [ 3., 5., 7.], [ 6., 8., 10.]]) """) add_newdoc('numpy.core.umath', 'arccos', """ Trigonometric inverse cosine, element-wise. The inverse of `cos` so that, if ``y = cos(x)``, then ``x = arccos(y)``. Parameters ---------- x : array_like `x`-coordinate on the unit circle. For real arguments, the domain is [-1, 1]. out : ndarray, optional Array of the same shape as `a`, to store results in. See `doc.ufuncs` (Section "Output arguments") for more details. Returns ------- angle : ndarray The angle of the ray intersecting the unit circle at the given `x`-coordinate in radians [0, pi]. If `x` is a scalar then a scalar is returned, otherwise an array of the same shape as `x` is returned. See Also -------- cos, arctan, arcsin, emath.arccos Notes ----- `arccos` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `cos(z) = x`. The convention is to return the angle `z` whose real part lies in `[0, pi]`. For real-valued input data types, `arccos` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arccos` is a complex analytic function that has branch cuts `[-inf, -1]` and `[1, inf]` and is continuous from above on the former and from below on the latter. The inverse `cos` is also known as `acos` or cos^-1. References ---------- M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/ Examples -------- We expect the arccos of 1 to be 0, and of -1 to be pi: >>> np.arccos([1, -1]) array([ 0. , 3.14159265]) Plot arccos: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-1, 1, num=100) >>> plt.plot(x, np.arccos(x)) >>> plt.axis('tight') >>> plt.show() """) add_newdoc('numpy.core.umath', 'arccosh', """ Inverse hyperbolic cosine, element-wise. Parameters ---------- x : array_like Input array. out : ndarray, optional Array of the same shape as `x`, to store results in. See `doc.ufuncs` (Section "Output arguments") for details. Returns ------- arccosh : ndarray Array of the same shape as `x`. See Also -------- cosh, arcsinh, sinh, arctanh, tanh Notes ----- `arccosh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `cosh(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]` and the real part in ``[0, inf]``. For real-valued input data types, `arccosh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arccosh` is a complex analytical function that has a branch cut `[-inf, 1]` and is continuous from above on it. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse hyperbolic function", http://en.wikipedia.org/wiki/Arccosh Examples -------- >>> np.arccosh([np.e, 10.0]) array([ 1.65745445, 2.99322285]) >>> np.arccosh(1) 0.0 """) add_newdoc('numpy.core.umath', 'arcsin', """ Inverse sine, element-wise. Parameters ---------- x : array_like `y`-coordinate on the unit circle. out : ndarray, optional Array of the same shape as `x`, in which to store the results. See `doc.ufuncs` (Section "Output arguments") for more details. Returns ------- angle : ndarray The inverse sine of each element in `x`, in radians and in the closed interval ``[-pi/2, pi/2]``. If `x` is a scalar, a scalar is returned, otherwise an array. See Also -------- sin, cos, arccos, tan, arctan, arctan2, emath.arcsin Notes ----- `arcsin` is a multivalued function: for each `x` there are infinitely many numbers `z` such that :math:`sin(z) = x`. The convention is to return the angle `z` whose real part lies in [-pi/2, pi/2]. For real-valued input data types, *arcsin* always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arcsin` is a complex analytic function that has, by convention, the branch cuts [-inf, -1] and [1, inf] and is continuous from above on the former and from below on the latter. The inverse sine is also known as `asin` or sin^{-1}. References ---------- Abramowitz, M. and Stegun, I. A., *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 79ff. http://www.math.sfu.ca/~cbm/aands/ Examples -------- >>> np.arcsin(1) # pi/2 1.5707963267948966 >>> np.arcsin(-1) # -pi/2 -1.5707963267948966 >>> np.arcsin(0) 0.0 """) add_newdoc('numpy.core.umath', 'arcsinh', """ Inverse hyperbolic sine element-wise. Parameters ---------- x : array_like Input array. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See `doc.ufuncs`. Returns ------- out : ndarray Array of of the same shape as `x`. Notes ----- `arcsinh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `sinh(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi/2, pi/2]`. For real-valued input data types, `arcsinh` always returns real output. For each value that cannot be expressed as a real number or infinity, it returns ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arccos` is a complex analytical function that has branch cuts `[1j, infj]` and `[-1j, -infj]` and is continuous from the right on the former and from the left on the latter. The inverse hyperbolic sine is also known as `asinh` or ``sinh^-1``. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse hyperbolic function", http://en.wikipedia.org/wiki/Arcsinh Examples -------- >>> np.arcsinh(np.array([np.e, 10.0])) array([ 1.72538256, 2.99822295]) """) add_newdoc('numpy.core.umath', 'arctan', """ Trigonometric inverse tangent, element-wise. The inverse of tan, so that if ``y = tan(x)`` then ``x = arctan(y)``. Parameters ---------- x : array_like Input values. `arctan` is applied to each element of `x`. Returns ------- out : ndarray Out has the same shape as `x`. Its real part is in ``[-pi/2, pi/2]`` (``arctan(+/-inf)`` returns ``+/-pi/2``). It is a scalar if `x` is a scalar. See Also -------- arctan2 : The "four quadrant" arctan of the angle formed by (`x`, `y`) and the positive `x`-axis. angle : Argument of complex values. Notes ----- `arctan` is a multi-valued function: for each `x` there are infinitely many numbers `z` such that tan(`z`) = `x`. The convention is to return the angle `z` whose real part lies in [-pi/2, pi/2]. For real-valued input data types, `arctan` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arctan` is a complex analytic function that has [`1j, infj`] and [`-1j, -infj`] as branch cuts, and is continuous from the left on the former and from the right on the latter. The inverse tangent is also known as `atan` or tan^{-1}. References ---------- Abramowitz, M. and Stegun, I. A., *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/ Examples -------- We expect the arctan of 0 to be 0, and of 1 to be pi/4: >>> np.arctan([0, 1]) array([ 0. , 0.78539816]) >>> np.pi/4 0.78539816339744828 Plot arctan: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-10, 10) >>> plt.plot(x, np.arctan(x)) >>> plt.axis('tight') >>> plt.show() """) add_newdoc('numpy.core.umath', 'arctan2', """ Element-wise arc tangent of ``x1/x2`` choosing the quadrant correctly. The quadrant (i.e., branch) is chosen so that ``arctan2(x1, x2)`` is the signed angle in radians between the ray ending at the origin and passing through the point (1,0), and the ray ending at the origin and passing through the point (`x2`, `x1`). (Note the role reversal: the "`y`-coordinate" is the first function parameter, the "`x`-coordinate" is the second.) By IEEE convention, this function is defined for `x2` = +/-0 and for either or both of `x1` and `x2` = +/-inf (see Notes for specific values). This function is not defined for complex-valued arguments; for the so-called argument of complex values, use `angle`. Parameters ---------- x1 : array_like, real-valued `y`-coordinates. x2 : array_like, real-valued `x`-coordinates. `x2` must be broadcastable to match the shape of `x1` or vice versa. Returns ------- angle : ndarray Array of angles in radians, in the range ``[-pi, pi]``. See Also -------- arctan, tan, angle Notes ----- *arctan2* is identical to the `atan2` function of the underlying C library. The following special values are defined in the C standard: [1]_ ====== ====== ================ `x1` `x2` `arctan2(x1,x2)` ====== ====== ================ +/- 0 +0 +/- 0 +/- 0 -0 +/- pi > 0 +/-inf +0 / +pi < 0 +/-inf -0 / -pi +/-inf +inf +/- (pi/4) +/-inf -inf +/- (3*pi/4) ====== ====== ================ Note that +0 and -0 are distinct floating point numbers, as are +inf and -inf. References ---------- .. [1] ISO/IEC standard 9899:1999, "Programming language C." Examples -------- Consider four points in different quadrants: >>> x = np.array([-1, +1, +1, -1]) >>> y = np.array([-1, -1, +1, +1]) >>> np.arctan2(y, x) * 180 / np.pi array([-135., -45., 45., 135.]) Note the order of the parameters. `arctan2` is defined also when `x2` = 0 and at several other special points, obtaining values in the range ``[-pi, pi]``: >>> np.arctan2([1., -1.], [0., 0.]) array([ 1.57079633, -1.57079633]) >>> np.arctan2([0., 0., np.inf], [+0., -0., np.inf]) array([ 0. , 3.14159265, 0.78539816]) """) add_newdoc('numpy.core.umath', '_arg', """ DO NOT USE, ONLY FOR TESTING """) add_newdoc('numpy.core.umath', 'arctanh', """ Inverse hyperbolic tangent element-wise. Parameters ---------- x : array_like Input array. Returns ------- out : ndarray Array of the same shape as `x`. See Also -------- emath.arctanh Notes ----- `arctanh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `tanh(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi/2, pi/2]`. For real-valued input data types, `arctanh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arctanh` is a complex analytical function that has branch cuts `[-1, -inf]` and `[1, inf]` and is continuous from above on the former and from below on the latter. The inverse hyperbolic tangent is also known as `atanh` or ``tanh^-1``. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse hyperbolic function", http://en.wikipedia.org/wiki/Arctanh Examples -------- >>> np.arctanh([0, -0.5]) array([ 0. , -0.54930614]) """) add_newdoc('numpy.core.umath', 'bitwise_and', """ Compute the bit-wise AND of two arrays element-wise. Computes the bit-wise AND of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``&``. Parameters ---------- x1, x2 : array_like Only integer and boolean types are handled. Returns ------- out : array_like Result. See Also -------- logical_and bitwise_or bitwise_xor binary_repr : Return the binary representation of the input number as a string. Examples -------- The number 13 is represented by ``00001101``. Likewise, 17 is represented by ``00010001``. The bit-wise AND of 13 and 17 is therefore ``000000001``, or 1: >>> np.bitwise_and(13, 17) 1 >>> np.bitwise_and(14, 13) 12 >>> np.binary_repr(12) '1100' >>> np.bitwise_and([14,3], 13) array([12, 1]) >>> np.bitwise_and([11,7], [4,25]) array([0, 1]) >>> np.bitwise_and(np.array([2,5,255]), np.array([3,14,16])) array([ 2, 4, 16]) >>> np.bitwise_and([True, True], [False, True]) array([False, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'bitwise_or', """ Compute the bit-wise OR of two arrays element-wise. Computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``|``. Parameters ---------- x1, x2 : array_like Only integer and boolean types are handled. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- out : array_like Result. See Also -------- logical_or bitwise_and bitwise_xor binary_repr : Return the binary representation of the input number as a string. Examples -------- The number 13 has the binaray representation ``00001101``. Likewise, 16 is represented by ``00010000``. The bit-wise OR of 13 and 16 is then ``000111011``, or 29: >>> np.bitwise_or(13, 16) 29 >>> np.binary_repr(29) '11101' >>> np.bitwise_or(32, 2) 34 >>> np.bitwise_or([33, 4], 1) array([33, 5]) >>> np.bitwise_or([33, 4], [1, 2]) array([33, 6]) >>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4])) array([ 6, 5, 255]) >>> np.array([2, 5, 255]) | np.array([4, 4, 4]) array([ 6, 5, 255]) >>> np.bitwise_or(np.array([2, 5, 255, 2147483647L], dtype=np.int32), ... np.array([4, 4, 4, 2147483647L], dtype=np.int32)) array([ 6, 5, 255, 2147483647]) >>> np.bitwise_or([True, True], [False, True]) array([ True, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'bitwise_xor', """ Compute the bit-wise XOR of two arrays element-wise. Computes the bit-wise XOR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``^``. Parameters ---------- x1, x2 : array_like Only integer and boolean types are handled. Returns ------- out : array_like Result. See Also -------- logical_xor bitwise_and bitwise_or binary_repr : Return the binary representation of the input number as a string. Examples -------- The number 13 is represented by ``00001101``. Likewise, 17 is represented by ``00010001``. The bit-wise XOR of 13 and 17 is therefore ``00011100``, or 28: >>> np.bitwise_xor(13, 17) 28 >>> np.binary_repr(28) '11100' >>> np.bitwise_xor(31, 5) 26 >>> np.bitwise_xor([31,3], 5) array([26, 6]) >>> np.bitwise_xor([31,3], [5,6]) array([26, 5]) >>> np.bitwise_xor([True, True], [False, True]) array([ True, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'ceil', """ Return the ceiling of the input, element-wise. The ceil of the scalar `x` is the smallest integer `i`, such that `i >= x`. It is often denoted as :math:`\\lceil x \\rceil`. Parameters ---------- x : array_like Input data. Returns ------- y : ndarray or scalar The ceiling of each element in `x`, with `float` dtype. See Also -------- floor, trunc, rint Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.ceil(a) array([-1., -1., -0., 1., 2., 2., 2.]) """) add_newdoc('numpy.core.umath', 'trunc', """ Return the truncated value of the input, element-wise. The truncated value of the scalar `x` is the nearest integer `i` which is closer to zero than `x` is. In short, the fractional part of the signed number `x` is discarded. Parameters ---------- x : array_like Input data. Returns ------- y : ndarray or scalar The truncated value of each element in `x`. See Also -------- ceil, floor, rint Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.trunc(a) array([-1., -1., -0., 0., 1., 1., 2.]) """) add_newdoc('numpy.core.umath', 'conjugate', """ Return the complex conjugate, element-wise. The complex conjugate of a complex number is obtained by changing the sign of its imaginary part. Parameters ---------- x : array_like Input value. Returns ------- y : ndarray The complex conjugate of `x`, with same dtype as `y`. Examples -------- >>> np.conjugate(1+2j) (1-2j) >>> x = np.eye(2) + 1j * np.eye(2) >>> np.conjugate(x) array([[ 1.-1.j, 0.-0.j], [ 0.-0.j, 1.-1.j]]) """) add_newdoc('numpy.core.umath', 'cos', """ Cosine element-wise. Parameters ---------- x : array_like Input array in radians. out : ndarray, optional Output array of same shape as `x`. Returns ------- y : ndarray The corresponding cosine values. Raises ------ ValueError: invalid return array shape if `out` is provided and `out.shape` != `x.shape` (See Examples) Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972. Examples -------- >>> np.cos(np.array([0, np.pi/2, np.pi])) array([ 1.00000000e+00, 6.12303177e-17, -1.00000000e+00]) >>> >>> # Example of providing the optional output parameter >>> out2 = np.cos([0.1], out1) >>> out2 is out1 True >>> >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.cos(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: invalid return array shape """) add_newdoc('numpy.core.umath', 'cosh', """ Hyperbolic cosine, element-wise. Equivalent to ``1/2 * (np.exp(x) + np.exp(-x))`` and ``np.cos(1j*x)``. Parameters ---------- x : array_like Input array. Returns ------- out : ndarray Output array of same shape as `x`. Examples -------- >>> np.cosh(0) 1.0 The hyperbolic cosine describes the shape of a hanging cable: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-4, 4, 1000) >>> plt.plot(x, np.cosh(x)) >>> plt.show() """) add_newdoc('numpy.core.umath', 'degrees', """ Convert angles from radians to degrees. Parameters ---------- x : array_like Input array in radians. out : ndarray, optional Output array of same shape as x. Returns ------- y : ndarray of floats The corresponding degree values; if `out` was supplied this is a reference to it. See Also -------- rad2deg : equivalent function Examples -------- Convert a radian array to degrees >>> rad = np.arange(12.)*np.pi/6 >>> np.degrees(rad) array([ 0., 30., 60., 90., 120., 150., 180., 210., 240., 270., 300., 330.]) >>> out = np.zeros((rad.shape)) >>> r = degrees(rad, out) >>> np.all(r == out) True """) add_newdoc('numpy.core.umath', 'rad2deg', """ Convert angles from radians to degrees. Parameters ---------- x : array_like Angle in radians. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- y : ndarray The corresponding angle in degrees. See Also -------- deg2rad : Convert angles from degrees to radians. unwrap : Remove large jumps in angle by wrapping. Notes ----- .. versionadded:: 1.3.0 rad2deg(x) is ``180 * x / pi``. Examples -------- >>> np.rad2deg(np.pi/2) 90.0 """) add_newdoc('numpy.core.umath', 'divide', """ Divide arguments element-wise. Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- y : ndarray or scalar The quotient ``x1/x2``, element-wise. Returns a scalar if both ``x1`` and ``x2`` are scalars. See Also -------- seterr : Set whether to raise or warn on overflow, underflow and division by zero. Notes ----- Equivalent to ``x1`` / ``x2`` in terms of array-broadcasting. Behavior on division by zero can be changed using ``seterr``. In Python 2, when both ``x1`` and ``x2`` are of an integer type, ``divide`` will behave like ``floor_divide``. In Python 3, it behaves like ``true_divide``. Examples -------- >>> np.divide(2.0, 4.0) 0.5 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.divide(x1, x2) array([[ NaN, 1. , 1. ], [ Inf, 4. , 2.5], [ Inf, 7. , 4. ]]) Note the behavior with integer types (Python 2 only): >>> np.divide(2, 4) 0 >>> np.divide(2, 4.) 0.5 Division by zero always yields zero in integer arithmetic (again, Python 2 only), and does not raise an exception or a warning: >>> np.divide(np.array([0, 1], dtype=int), np.array([0, 0], dtype=int)) array([0, 0]) Division by zero can, however, be caught using ``seterr``: >>> old_err_state = np.seterr(divide='raise') >>> np.divide(1, 0) Traceback (most recent call last): File "<stdin>", line 1, in <module> FloatingPointError: divide by zero encountered in divide >>> ignored_states = np.seterr(**old_err_state) >>> np.divide(1, 0) 0 """) add_newdoc('numpy.core.umath', 'equal', """ Return (x1 == x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- not_equal, greater_equal, less_equal, greater, less Examples -------- >>> np.equal([0, 1, 3], np.arange(3)) array([ True, True, False], dtype=bool) What is compared are values, not types. So an int (1) and an array of length one can evaluate as True: >>> np.equal(1, np.ones(1)) array([ True], dtype=bool) """) add_newdoc('numpy.core.umath', 'exp', """ Calculate the exponential of all elements in the input array. Parameters ---------- x : array_like Input values. Returns ------- out : ndarray Output array, element-wise exponential of `x`. See Also -------- expm1 : Calculate ``exp(x) - 1`` for all elements in the array. exp2 : Calculate ``2**x`` for all elements in the array. Notes ----- The irrational number ``e`` is also known as Euler's number. It is approximately 2.718281, and is the base of the natural logarithm, ``ln`` (this means that, if :math:`x = \\ln y = \\log_e y`, then :math:`e^x = y`. For real input, ``exp(x)`` is always positive. For complex arguments, ``x = a + ib``, we can write :math:`e^x = e^a e^{ib}`. The first term, :math:`e^a`, is already known (it is the real argument, described above). The second term, :math:`e^{ib}`, is :math:`\\cos b + i \\sin b`, a function with magnitude 1 and a periodic phase. References ---------- .. [1] Wikipedia, "Exponential function", http://en.wikipedia.org/wiki/Exponential_function .. [2] M. Abramovitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," Dover, 1964, p. 69, http://www.math.sfu.ca/~cbm/aands/page_69.htm Examples -------- Plot the magnitude and phase of ``exp(x)`` in the complex plane: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-2*np.pi, 2*np.pi, 100) >>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane >>> out = np.exp(xx) >>> plt.subplot(121) >>> plt.imshow(np.abs(out), ... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi]) >>> plt.title('Magnitude of exp(x)') >>> plt.subplot(122) >>> plt.imshow(np.angle(out), ... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi]) >>> plt.title('Phase (angle) of exp(x)') >>> plt.show() """) add_newdoc('numpy.core.umath', 'exp2', """ Calculate `2**p` for all `p` in the input array. Parameters ---------- x : array_like Input values. out : ndarray, optional Array to insert results into. Returns ------- out : ndarray Element-wise 2 to the power `x`. See Also -------- power Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> np.exp2([2, 3]) array([ 4., 8.]) """) add_newdoc('numpy.core.umath', 'expm1', """ Calculate ``exp(x) - 1`` for all elements in the array. Parameters ---------- x : array_like Input values. Returns ------- out : ndarray Element-wise exponential minus one: ``out = exp(x) - 1``. See Also -------- log1p : ``log(1 + x)``, the inverse of expm1. Notes ----- This function provides greater precision than ``exp(x) - 1`` for small values of ``x``. Examples -------- The true value of ``exp(1e-10) - 1`` is ``1.00000000005e-10`` to about 32 significant digits. This example shows the superiority of expm1 in this case. >>> np.expm1(1e-10) 1.00000000005e-10 >>> np.exp(1e-10) - 1 1.000000082740371e-10 """) add_newdoc('numpy.core.umath', 'fabs', """ Compute the absolute values element-wise. This function returns the absolute values (positive magnitude) of the data in `x`. Complex values are not handled, use `absolute` to find the absolute values of complex data. Parameters ---------- x : array_like The array of numbers for which the absolute values are required. If `x` is a scalar, the result `y` will also be a scalar. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- y : ndarray or scalar The absolute values of `x`, the returned values are always floats. See Also -------- absolute : Absolute values including `complex` types. Examples -------- >>> np.fabs(-1) 1.0 >>> np.fabs([-1.2, 1.2]) array([ 1.2, 1.2]) """) add_newdoc('numpy.core.umath', 'floor', """ Return the floor of the input, element-wise. The floor of the scalar `x` is the largest integer `i`, such that `i <= x`. It is often denoted as :math:`\\lfloor x \\rfloor`. Parameters ---------- x : array_like Input data. Returns ------- y : ndarray or scalar The floor of each element in `x`. See Also -------- ceil, trunc, rint Notes ----- Some spreadsheet programs calculate the "floor-towards-zero", in other words ``floor(-2.5) == -2``. NumPy instead uses the definition of `floor` where `floor(-2.5) == -3`. Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.floor(a) array([-2., -2., -1., 0., 1., 1., 2.]) """) add_newdoc('numpy.core.umath', 'floor_divide', """ Return the largest integer smaller or equal to the division of the inputs. It is equivalent to the Python ``//`` operator and pairs with the Python ``%`` (`remainder`), function so that ``b = a % b + b * (a // b)`` up to roundoff. Parameters ---------- x1 : array_like Numerator. x2 : array_like Denominator. Returns ------- y : ndarray y = floor(`x1`/`x2`) See Also -------- remainder : Remainder complementary to floor_divide. divide : Standard division. floor : Round a number to the nearest integer toward minus infinity. ceil : Round a number to the nearest integer toward infinity. Examples -------- >>> np.floor_divide(7,3) 2 >>> np.floor_divide([1., 2., 3., 4.], 2.5) array([ 0., 0., 1., 1.]) """) add_newdoc('numpy.core.umath', 'fmod', """ Return the element-wise remainder of division. This is the NumPy implementation of the C library function fmod, the remainder has the same sign as the dividend `x1`. It is equivalent to the Matlab(TM) ``rem`` function and should not be confused with the Python modulus operator ``x1 % x2``. Parameters ---------- x1 : array_like Dividend. x2 : array_like Divisor. Returns ------- y : array_like The remainder of the division of `x1` by `x2`. See Also -------- remainder : Equivalent to the Python ``%`` operator. divide Notes ----- The result of the modulo operation for negative dividend and divisors is bound by conventions. For `fmod`, the sign of result is the sign of the dividend, while for `remainder` the sign of the result is the sign of the divisor. The `fmod` function is equivalent to the Matlab(TM) ``rem`` function. Examples -------- >>> np.fmod([-3, -2, -1, 1, 2, 3], 2) array([-1, 0, -1, 1, 0, 1]) >>> np.remainder([-3, -2, -1, 1, 2, 3], 2) array([1, 0, 1, 1, 0, 1]) >>> np.fmod([5, 3], [2, 2.]) array([ 1., 1.]) >>> a = np.arange(-3, 3).reshape(3, 2) >>> a array([[-3, -2], [-1, 0], [ 1, 2]]) >>> np.fmod(a, [2,2]) array([[-1, 0], [-1, 0], [ 1, 0]]) """) add_newdoc('numpy.core.umath', 'greater', """ Return the truth value of (x1 > x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). Returns ------- out : bool or ndarray of bool Array of bools, or a single bool if `x1` and `x2` are scalars. See Also -------- greater_equal, less, less_equal, equal, not_equal Examples -------- >>> np.greater([4,2],[2,2]) array([ True, False], dtype=bool) If the inputs are ndarrays, then np.greater is equivalent to '>'. >>> a = np.array([4,2]) >>> b = np.array([2,2]) >>> a > b array([ True, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'greater_equal', """ Return the truth value of (x1 >= x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). Returns ------- out : bool or ndarray of bool Array of bools, or a single bool if `x1` and `x2` are scalars. See Also -------- greater, less, less_equal, equal, not_equal Examples -------- >>> np.greater_equal([4, 2, 1], [2, 2, 2]) array([ True, True, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'hypot', """ Given the "legs" of a right triangle, return its hypotenuse. Equivalent to ``sqrt(x1**2 + x2**2)``, element-wise. If `x1` or `x2` is scalar_like (i.e., unambiguously cast-able to a scalar type), it is broadcast for use with each element of the other argument. (See Examples) Parameters ---------- x1, x2 : array_like Leg of the triangle(s). out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- z : ndarray The hypotenuse of the triangle(s). Examples -------- >>> np.hypot(3*np.ones((3, 3)), 4*np.ones((3, 3))) array([[ 5., 5., 5.], [ 5., 5., 5.], [ 5., 5., 5.]]) Example showing broadcast of scalar_like argument: >>> np.hypot(3*np.ones((3, 3)), [4]) array([[ 5., 5., 5.], [ 5., 5., 5.], [ 5., 5., 5.]]) """) add_newdoc('numpy.core.umath', 'invert', """ Compute bit-wise inversion, or bit-wise NOT, element-wise. Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``~``. For signed integer inputs, the two's complement is returned. In a two's-complement system negative numbers are represented by the two's complement of the absolute value. This is the most common method of representing signed integers on computers [1]_. A N-bit two's-complement system can represent every integer in the range :math:`-2^{N-1}` to :math:`+2^{N-1}-1`. Parameters ---------- x1 : array_like Only integer and boolean types are handled. Returns ------- out : array_like Result. See Also -------- bitwise_and, bitwise_or, bitwise_xor logical_not binary_repr : Return the binary representation of the input number as a string. Notes ----- `bitwise_not` is an alias for `invert`: >>> np.bitwise_not is np.invert True References ---------- .. [1] Wikipedia, "Two's complement", http://en.wikipedia.org/wiki/Two's_complement Examples -------- We've seen that 13 is represented by ``00001101``. The invert or bit-wise NOT of 13 is then: >>> np.invert(np.array([13], dtype=uint8)) array([242], dtype=uint8) >>> np.binary_repr(x, width=8) '00001101' >>> np.binary_repr(242, width=8) '11110010' The result depends on the bit-width: >>> np.invert(np.array([13], dtype=uint16)) array([65522], dtype=uint16) >>> np.binary_repr(x, width=16) '0000000000001101' >>> np.binary_repr(65522, width=16) '1111111111110010' When using signed integer types the result is the two's complement of the result for the unsigned type: >>> np.invert(np.array([13], dtype=int8)) array([-14], dtype=int8) >>> np.binary_repr(-14, width=8) '11110010' Booleans are accepted as well: >>> np.invert(array([True, False])) array([False, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'isfinite', """ Test element-wise for finiteness (not infinity or not Not a Number). The result is returned as a boolean array. Parameters ---------- x : array_like Input values. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See `doc.ufuncs`. Returns ------- y : ndarray, bool For scalar input, the result is a new boolean with value True if the input is finite; otherwise the value is False (input is either positive infinity, negative infinity or Not a Number). For array input, the result is a boolean array with the same dimensions as the input and the values are True if the corresponding element of the input is finite; otherwise the values are False (element is either positive infinity, negative infinity or Not a Number). See Also -------- isinf, isneginf, isposinf, isnan Notes ----- Not a Number, positive infinity and negative infinity are considered to be non-finite. NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is equivalent to positive infinity. Errors result if the second argument is also supplied when `x` is a scalar input, or if first and second arguments have different shapes. Examples -------- >>> np.isfinite(1) True >>> np.isfinite(0) True >>> np.isfinite(np.nan) False >>> np.isfinite(np.inf) False >>> np.isfinite(np.NINF) False >>> np.isfinite([np.log(-1.),1.,np.log(0)]) array([False, True, False], dtype=bool) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([2, 2, 2]) >>> np.isfinite(x, y) array([0, 1, 0]) >>> y array([0, 1, 0]) """) add_newdoc('numpy.core.umath', 'isinf', """ Test element-wise for positive or negative infinity. Returns a boolean array of the same shape as `x`, True where ``x == +/-inf``, otherwise False. Parameters ---------- x : array_like Input values out : array_like, optional An array with the same shape as `x` to store the result. Returns ------- y : bool (scalar) or boolean ndarray For scalar input, the result is a new boolean with value True if the input is positive or negative infinity; otherwise the value is False. For array input, the result is a boolean array with the same shape as the input and the values are True where the corresponding element of the input is positive or negative infinity; elsewhere the values are False. If a second argument was supplied the result is stored there. If the type of that array is a numeric type the result is represented as zeros and ones, if the type is boolean then as False and True, respectively. The return value `y` is then a reference to that array. See Also -------- isneginf, isposinf, isnan, isfinite Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Errors result if the second argument is supplied when the first argument is a scalar, or if the first and second arguments have different shapes. Examples -------- >>> np.isinf(np.inf) True >>> np.isinf(np.nan) False >>> np.isinf(np.NINF) True >>> np.isinf([np.inf, -np.inf, 1.0, np.nan]) array([ True, True, False, False], dtype=bool) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([2, 2, 2]) >>> np.isinf(x, y) array([1, 0, 1]) >>> y array([1, 0, 1]) """) add_newdoc('numpy.core.umath', 'isnan', """ Test element-wise for NaN and return result as a boolean array. Parameters ---------- x : array_like Input array. Returns ------- y : ndarray or bool For scalar input, the result is a new boolean with value True if the input is NaN; otherwise the value is False. For array input, the result is a boolean array of the same dimensions as the input and the values are True if the corresponding element of the input is NaN; otherwise the values are False. See Also -------- isinf, isneginf, isposinf, isfinite Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Examples -------- >>> np.isnan(np.nan) True >>> np.isnan(np.inf) False >>> np.isnan([np.log(-1.),1.,np.log(0)]) array([ True, False, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'left_shift', """ Shift the bits of an integer to the left. Bits are shifted to the left by appending `x2` 0s at the right of `x1`. Since the internal representation of numbers is in binary format, this operation is equivalent to multiplying `x1` by ``2**x2``. Parameters ---------- x1 : array_like of integer type Input values. x2 : array_like of integer type Number of zeros to append to `x1`. Has to be non-negative. Returns ------- out : array of integer type Return `x1` with bits shifted `x2` times to the left. See Also -------- right_shift : Shift the bits of an integer to the right. binary_repr : Return the binary representation of the input number as a string. Examples -------- >>> np.binary_repr(5) '101' >>> np.left_shift(5, 2) 20 >>> np.binary_repr(20) '10100' >>> np.left_shift(5, [1,2,3]) array([10, 20, 40]) """) add_newdoc('numpy.core.umath', 'less', """ Return the truth value of (x1 < x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). Returns ------- out : bool or ndarray of bool Array of bools, or a single bool if `x1` and `x2` are scalars. See Also -------- greater, less_equal, greater_equal, equal, not_equal Examples -------- >>> np.less([1, 2], [2, 2]) array([ True, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'less_equal', """ Return the truth value of (x1 =< x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). Returns ------- out : bool or ndarray of bool Array of bools, or a single bool if `x1` and `x2` are scalars. See Also -------- greater, less, greater_equal, equal, not_equal Examples -------- >>> np.less_equal([4, 2, 1], [2, 2, 2]) array([False, True, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'log', """ Natural logarithm, element-wise. The natural logarithm `log` is the inverse of the exponential function, so that `log(exp(x)) = x`. The natural logarithm is logarithm in base `e`. Parameters ---------- x : array_like Input value. Returns ------- y : ndarray The natural logarithm of `x`, element-wise. See Also -------- log10, log2, log1p, emath.log Notes ----- Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `exp(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log` is a complex analytical function that has a branch cut `[-inf, 0]` and is continuous from above on it. `log` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm Examples -------- >>> np.log([1, np.e, np.e**2, 0]) array([ 0., 1., 2., -Inf]) """) add_newdoc('numpy.core.umath', 'log10', """ Return the base 10 logarithm of the input array, element-wise. Parameters ---------- x : array_like Input values. Returns ------- y : ndarray The logarithm to the base 10 of `x`, element-wise. NaNs are returned where x is negative. See Also -------- emath.log10 Notes ----- Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `10**z = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log10` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log10` is a complex analytical function that has a branch cut `[-inf, 0]` and is continuous from above on it. `log10` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm Examples -------- >>> np.log10([1e-15, -3.]) array([-15., NaN]) """) add_newdoc('numpy.core.umath', 'log2', """ Base-2 logarithm of `x`. Parameters ---------- x : array_like Input values. Returns ------- y : ndarray Base-2 logarithm of `x`. See Also -------- log, log10, log1p, emath.log2 Notes ----- .. versionadded:: 1.3.0 Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `2**z = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log2` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log2` is a complex analytical function that has a branch cut `[-inf, 0]` and is continuous from above on it. `log2` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. Examples -------- >>> x = np.array([0, 1, 2, 2**4]) >>> np.log2(x) array([-Inf, 0., 1., 4.]) >>> xi = np.array([0+1.j, 1, 2+0.j, 4.j]) >>> np.log2(xi) array([ 0.+2.26618007j, 0.+0.j , 1.+0.j , 2.+2.26618007j]) """) add_newdoc('numpy.core.umath', 'logaddexp', """ Logarithm of the sum of exponentiations of the inputs. Calculates ``log(exp(x1) + exp(x2))``. This function is useful in statistics where the calculated probabilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the logarithm of the calculated probability is stored. This function allows adding probabilities stored in such a fashion. Parameters ---------- x1, x2 : array_like Input values. Returns ------- result : ndarray Logarithm of ``exp(x1) + exp(x2)``. See Also -------- logaddexp2: Logarithm of the sum of exponentiations of inputs in base 2. Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> prob1 = np.log(1e-50) >>> prob2 = np.log(2.5e-50) >>> prob12 = np.logaddexp(prob1, prob2) >>> prob12 -113.87649168120691 >>> np.exp(prob12) 3.5000000000000057e-50 """) add_newdoc('numpy.core.umath', 'logaddexp2', """ Logarithm of the sum of exponentiations of the inputs in base-2. Calculates ``log2(2**x1 + 2**x2)``. This function is useful in machine learning when the calculated probabilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the base-2 logarithm of the calculated probability can be used instead. This function allows adding probabilities stored in such a fashion. Parameters ---------- x1, x2 : array_like Input values. out : ndarray, optional Array to store results in. Returns ------- result : ndarray Base-2 logarithm of ``2**x1 + 2**x2``. See Also -------- logaddexp: Logarithm of the sum of exponentiations of the inputs. Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> prob1 = np.log2(1e-50) >>> prob2 = np.log2(2.5e-50) >>> prob12 = np.logaddexp2(prob1, prob2) >>> prob1, prob2, prob12 (-166.09640474436813, -164.77447664948076, -164.28904982231052) >>> 2**prob12 3.4999999999999914e-50 """) add_newdoc('numpy.core.umath', 'log1p', """ Return the natural logarithm of one plus the input array, element-wise. Calculates ``log(1 + x)``. Parameters ---------- x : array_like Input values. Returns ------- y : ndarray Natural logarithm of `1 + x`, element-wise. See Also -------- expm1 : ``exp(x) - 1``, the inverse of `log1p`. Notes ----- For real-valued input, `log1p` is accurate also for `x` so small that `1 + x == 1` in floating-point accuracy. Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `exp(z) = 1 + x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log1p` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log1p` is a complex analytical function that has a branch cut `[-inf, -1]` and is continuous from above on it. `log1p` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm Examples -------- >>> np.log1p(1e-99) 1e-99 >>> np.log(1 + 1e-99) 0.0 """) add_newdoc('numpy.core.umath', 'logical_and', """ Compute the truth value of x1 AND x2 element-wise. Parameters ---------- x1, x2 : array_like Input arrays. `x1` and `x2` must be of the same shape. Returns ------- y : ndarray or bool Boolean result with the same shape as `x1` and `x2` of the logical AND operation on corresponding elements of `x1` and `x2`. See Also -------- logical_or, logical_not, logical_xor bitwise_and Examples -------- >>> np.logical_and(True, False) False >>> np.logical_and([True, False], [False, False]) array([False, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_and(x>1, x<4) array([False, False, True, True, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'logical_not', """ Compute the truth value of NOT x element-wise. Parameters ---------- x : array_like Logical NOT is applied to the elements of `x`. Returns ------- y : bool or ndarray of bool Boolean result with the same shape as `x` of the NOT operation on elements of `x`. See Also -------- logical_and, logical_or, logical_xor Examples -------- >>> np.logical_not(3) False >>> np.logical_not([True, False, 0, 1]) array([False, True, True, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_not(x<3) array([False, False, False, True, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'logical_or', """ Compute the truth value of x1 OR x2 element-wise. Parameters ---------- x1, x2 : array_like Logical OR is applied to the elements of `x1` and `x2`. They have to be of the same shape. Returns ------- y : ndarray or bool Boolean result with the same shape as `x1` and `x2` of the logical OR operation on elements of `x1` and `x2`. See Also -------- logical_and, logical_not, logical_xor bitwise_or Examples -------- >>> np.logical_or(True, False) True >>> np.logical_or([True, False], [False, False]) array([ True, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_or(x < 1, x > 3) array([ True, False, False, False, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'logical_xor', """ Compute the truth value of x1 XOR x2, element-wise. Parameters ---------- x1, x2 : array_like Logical XOR is applied to the elements of `x1` and `x2`. They must be broadcastable to the same shape. Returns ------- y : bool or ndarray of bool Boolean result of the logical XOR operation applied to the elements of `x1` and `x2`; the shape is determined by whether or not broadcasting of one or both arrays was required. See Also -------- logical_and, logical_or, logical_not, bitwise_xor Examples -------- >>> np.logical_xor(True, False) True >>> np.logical_xor([True, True, False, False], [True, False, True, False]) array([False, True, True, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_xor(x < 1, x > 3) array([ True, False, False, False, True], dtype=bool) Simple example showing support of broadcasting >>> np.logical_xor(0, np.eye(2)) array([[ True, False], [False, True]], dtype=bool) """) add_newdoc('numpy.core.umath', 'maximum', """ Element-wise maximum of array elements. Compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are propagated. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. Returns ------- y : ndarray or scalar The maximum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- minimum : Element-wise minimum of two arrays, propagates NaNs. fmax : Element-wise maximum of two arrays, ignores NaNs. amax : The maximum value of an array along a given axis, propagates NaNs. nanmax : The maximum value of an array along a given axis, ignores NaNs. fmin, amin, nanmin Notes ----- The maximum is equivalent to ``np.where(x1 >= x2, x1, x2)`` when neither x1 nor x2 are nans, but it is faster and does proper broadcasting. Examples -------- >>> np.maximum([2, 3, 4], [1, 5, 2]) array([2, 5, 4]) >>> np.maximum(np.eye(2), [0.5, 2]) # broadcasting array([[ 1. , 2. ], [ 0.5, 2. ]]) >>> np.maximum([np.nan, 0, np.nan], [0, np.nan, np.nan]) array([ NaN, NaN, NaN]) >>> np.maximum(np.Inf, 1) inf """) add_newdoc('numpy.core.umath', 'minimum', """ Element-wise minimum of array elements. Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are propagated. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. Returns ------- y : ndarray or scalar The minimum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- maximum : Element-wise maximum of two arrays, propagates NaNs. fmin : Element-wise minimum of two arrays, ignores NaNs. amin : The minimum value of an array along a given axis, propagates NaNs. nanmin : The minimum value of an array along a given axis, ignores NaNs. fmax, amax, nanmax Notes ----- The minimum is equivalent to ``np.where(x1 <= x2, x1, x2)`` when neither x1 nor x2 are NaNs, but it is faster and does proper broadcasting. Examples -------- >>> np.minimum([2, 3, 4], [1, 5, 2]) array([1, 3, 2]) >>> np.minimum(np.eye(2), [0.5, 2]) # broadcasting array([[ 0.5, 0. ], [ 0. , 1. ]]) >>> np.minimum([np.nan, 0, np.nan],[0, np.nan, np.nan]) array([ NaN, NaN, NaN]) >>> np.minimum(-np.Inf, 1) -inf """) add_newdoc('numpy.core.umath', 'fmax', """ Element-wise maximum of array elements. Compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are ignored when possible. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape. Returns ------- y : ndarray or scalar The maximum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- fmin : Element-wise minimum of two arrays, ignores NaNs. maximum : Element-wise maximum of two arrays, propagates NaNs. amax : The maximum value of an array along a given axis, propagates NaNs. nanmax : The maximum value of an array along a given axis, ignores NaNs. minimum, amin, nanmin Notes ----- .. versionadded:: 1.3.0 The fmax is equivalent to ``np.where(x1 >= x2, x1, x2)`` when neither x1 nor x2 are NaNs, but it is faster and does proper broadcasting. Examples -------- >>> np.fmax([2, 3, 4], [1, 5, 2]) array([ 2., 5., 4.]) >>> np.fmax(np.eye(2), [0.5, 2]) array([[ 1. , 2. ], [ 0.5, 2. ]]) >>> np.fmax([np.nan, 0, np.nan],[0, np.nan, np.nan]) array([ 0., 0., NaN]) """) add_newdoc('numpy.core.umath', 'fmin', """ Element-wise minimum of array elements. Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are ignored when possible. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape. Returns ------- y : ndarray or scalar The minimum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- fmax : Element-wise maximum of two arrays, ignores NaNs. minimum : Element-wise minimum of two arrays, propagates NaNs. amin : The minimum value of an array along a given axis, propagates NaNs. nanmin : The minimum value of an array along a given axis, ignores NaNs. maximum, amax, nanmax Notes ----- .. versionadded:: 1.3.0 The fmin is equivalent to ``np.where(x1 <= x2, x1, x2)`` when neither x1 nor x2 are NaNs, but it is faster and does proper broadcasting. Examples -------- >>> np.fmin([2, 3, 4], [1, 5, 2]) array([1, 3, 2]) >>> np.fmin(np.eye(2), [0.5, 2]) array([[ 0.5, 0. ], [ 0. , 1. ]]) >>> np.fmin([np.nan, 0, np.nan],[0, np.nan, np.nan]) array([ 0., 0., NaN]) """) add_newdoc('numpy.core.umath', 'modf', """ Return the fractional and integral parts of an array, element-wise. The fractional and integral parts are negative if the given number is negative. Parameters ---------- x : array_like Input array. Returns ------- y1 : ndarray Fractional part of `x`. y2 : ndarray Integral part of `x`. Notes ----- For integer input the return values are floats. Examples -------- >>> np.modf([0, 3.5]) (array([ 0. , 0.5]), array([ 0., 3.])) >>> np.modf(-0.5) (-0.5, -0) """) add_newdoc('numpy.core.umath', 'multiply', """ Multiply arguments element-wise. Parameters ---------- x1, x2 : array_like Input arrays to be multiplied. Returns ------- y : ndarray The product of `x1` and `x2`, element-wise. Returns a scalar if both `x1` and `x2` are scalars. Notes ----- Equivalent to `x1` * `x2` in terms of array broadcasting. Examples -------- >>> np.multiply(2.0, 4.0) 8.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.multiply(x1, x2) array([[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.]]) """) add_newdoc('numpy.core.umath', 'negative', """ Numerical negative, element-wise. Parameters ---------- x : array_like or scalar Input array. Returns ------- y : ndarray or scalar Returned array or scalar: `y = -x`. Examples -------- >>> np.negative([1.,-1.]) array([-1., 1.]) """) add_newdoc('numpy.core.umath', 'not_equal', """ Return (x1 != x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. out : ndarray, optional A placeholder the same shape as `x1` to store the result. See `doc.ufuncs` (Section "Output arguments") for more details. Returns ------- not_equal : ndarray bool, scalar bool For each element in `x1, x2`, return True if `x1` is not equal to `x2` and False otherwise. See Also -------- equal, greater, greater_equal, less, less_equal Examples -------- >>> np.not_equal([1.,2.], [1., 3.]) array([False, True], dtype=bool) >>> np.not_equal([1, 2], [[1, 3],[1, 4]]) array([[False, True], [False, True]], dtype=bool) """) add_newdoc('numpy.core.umath', '_ones_like', """ This function used to be the numpy.ones_like, but now a specific function for that has been written for consistency with the other *_like functions. It is only used internally in a limited fashion now. See Also -------- ones_like """) add_newdoc('numpy.core.umath', 'power', """ First array elements raised to powers from second array, element-wise. Raise each base in `x1` to the positionally-corresponding power in `x2`. `x1` and `x2` must be broadcastable to the same shape. Note that an integer type raised to a negative integer power will raise a ValueError. Parameters ---------- x1 : array_like The bases. x2 : array_like The exponents. Returns ------- y : ndarray The bases in `x1` raised to the exponents in `x2`. See Also -------- float_power : power function that promotes integers to float Examples -------- Cube each element in a list. >>> x1 = range(6) >>> x1 [0, 1, 2, 3, 4, 5] >>> np.power(x1, 3) array([ 0, 1, 8, 27, 64, 125]) Raise the bases to different exponents. >>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0] >>> np.power(x1, x2) array([ 0., 1., 8., 27., 16., 5.]) The effect of broadcasting. >>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> x2 array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> np.power(x1, x2) array([[ 0, 1, 8, 27, 16, 5], [ 0, 1, 8, 27, 16, 5]]) """) add_newdoc('numpy.core.umath', 'float_power', """ First array elements raised to powers from second array, element-wise. Raise each base in `x1` to the positionally-corresponding power in `x2`. `x1` and `x2` must be broadcastable to the same shape. This differs from the power function in that integers, float16, and float32 are promoted to floats with a minimum precision of float64 so that the result is always inexact. The intent is that the function will return a usable result for negative powers and seldom overflow for positive powers. .. versionadded:: 1.12.0 Parameters ---------- x1 : array_like The bases. x2 : array_like The exponents. Returns ------- y : ndarray The bases in `x1` raised to the exponents in `x2`. See Also -------- power : power function that preserves type Examples -------- Cube each element in a list. >>> x1 = range(6) >>> x1 [0, 1, 2, 3, 4, 5] >>> np.float_power(x1, 3) array([ 0., 1., 8., 27., 64., 125.]) Raise the bases to different exponents. >>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0] >>> np.float_power(x1, x2) array([ 0., 1., 8., 27., 16., 5.]) The effect of broadcasting. >>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> x2 array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> np.float_power(x1, x2) array([[ 0., 1., 8., 27., 16., 5.], [ 0., 1., 8., 27., 16., 5.]]) """) add_newdoc('numpy.core.umath', 'radians', """ Convert angles from degrees to radians. Parameters ---------- x : array_like Input array in degrees. out : ndarray, optional Output array of same shape as `x`. Returns ------- y : ndarray The corresponding radian values. See Also -------- deg2rad : equivalent function Examples -------- Convert a degree array to radians >>> deg = np.arange(12.) * 30. >>> np.radians(deg) array([ 0. , 0.52359878, 1.04719755, 1.57079633, 2.0943951 , 2.61799388, 3.14159265, 3.66519143, 4.1887902 , 4.71238898, 5.23598776, 5.75958653]) >>> out = np.zeros((deg.shape)) >>> ret = np.radians(deg, out) >>> ret is out True """) add_newdoc('numpy.core.umath', 'deg2rad', """ Convert angles from degrees to radians. Parameters ---------- x : array_like Angles in degrees. Returns ------- y : ndarray The corresponding angle in radians. See Also -------- rad2deg : Convert angles from radians to degrees. unwrap : Remove large jumps in angle by wrapping. Notes ----- .. versionadded:: 1.3.0 ``deg2rad(x)`` is ``x * pi / 180``. Examples -------- >>> np.deg2rad(180) 3.1415926535897931 """) add_newdoc('numpy.core.umath', 'reciprocal', """ Return the reciprocal of the argument, element-wise. Calculates ``1/x``. Parameters ---------- x : array_like Input array. Returns ------- y : ndarray Return array. Notes ----- .. note:: This function is not designed to work with integers. For integer arguments with absolute value larger than 1 the result is always zero because of the way Python handles integer division. For integer zero the result is an overflow. Examples -------- >>> np.reciprocal(2.) 0.5 >>> np.reciprocal([1, 2., 3.33]) array([ 1. , 0.5 , 0.3003003]) """) add_newdoc('numpy.core.umath', 'remainder', """ Return element-wise remainder of division. Computes the remainder complementary to the `floor_divide` function. It is equivalent to the Python modulus operator``x1 % x2`` and has the same sign as the divisor `x2`. It should not be confused with the Matlab(TM) ``rem`` function. Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- y : ndarray The element-wise remainder of the quotient ``floor_divide(x1, x2)``. Returns a scalar if both `x1` and `x2` are scalars. See Also -------- floor_divide : Equivalent of Python ``//`` operator. fmod : Equivalent of the Matlab(TM) ``rem`` function. divide, floor Notes ----- Returns 0 when `x2` is 0 and both `x1` and `x2` are (arrays of) integers. Examples -------- >>> np.remainder([4, 7], [2, 3]) array([0, 1]) >>> np.remainder(np.arange(7), 5) array([0, 1, 2, 3, 4, 0, 1]) """) add_newdoc('numpy.core.umath', 'right_shift', """ Shift the bits of an integer to the right. Bits are shifted to the right `x2`. Because the internal representation of numbers is in binary format, this operation is equivalent to dividing `x1` by ``2**x2``. Parameters ---------- x1 : array_like, int Input values. x2 : array_like, int Number of bits to remove at the right of `x1`. Returns ------- out : ndarray, int Return `x1` with bits shifted `x2` times to the right. See Also -------- left_shift : Shift the bits of an integer to the left. binary_repr : Return the binary representation of the input number as a string. Examples -------- >>> np.binary_repr(10) '1010' >>> np.right_shift(10, 1) 5 >>> np.binary_repr(5) '101' >>> np.right_shift(10, [1,2,3]) array([5, 2, 1]) """) add_newdoc('numpy.core.umath', 'rint', """ Round elements of the array to the nearest integer. Parameters ---------- x : array_like Input array. Returns ------- out : ndarray or scalar Output array is same shape and type as `x`. See Also -------- ceil, floor, trunc Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.rint(a) array([-2., -2., -0., 0., 2., 2., 2.]) """) add_newdoc('numpy.core.umath', 'sign', """ Returns an element-wise indication of the sign of a number. The `sign` function returns ``-1 if x < 0, 0 if x==0, 1 if x > 0``. nan is returned for nan inputs. For complex inputs, the `sign` function returns ``sign(x.real) + 0j if x.real != 0 else sign(x.imag) + 0j``. complex(nan, 0) is returned for complex nan inputs. Parameters ---------- x : array_like Input values. Returns ------- y : ndarray The sign of `x`. Notes ----- There is more than one definition of sign in common use for complex numbers. The definition used here is equivalent to :math:`x/\\sqrt{x*x}` which is different from a common alternative, :math:`x/|x|`. Examples -------- >>> np.sign([-5., 4.5]) array([-1., 1.]) >>> np.sign(0) 0 >>> np.sign(5-2j) (1+0j) """) add_newdoc('numpy.core.umath', 'signbit', """ Returns element-wise True where signbit is set (less than zero). Parameters ---------- x : array_like The input value(s). out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See `doc.ufuncs`. Returns ------- result : ndarray of bool Output array, or reference to `out` if that was supplied. Examples -------- >>> np.signbit(-1.2) True >>> np.signbit(np.array([1, -2.3, 2.1])) array([False, True, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'copysign', """ Change the sign of x1 to that of x2, element-wise. If both arguments are arrays or sequences, they have to be of the same length. If `x2` is a scalar, its sign will be copied to all elements of `x1`. Parameters ---------- x1 : array_like Values to change the sign of. x2 : array_like The sign of `x2` is copied to `x1`. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- out : array_like The values of `x1` with the sign of `x2`. Examples -------- >>> np.copysign(1.3, -1) -1.3 >>> 1/np.copysign(0, 1) inf >>> 1/np.copysign(0, -1) -inf >>> np.copysign([-1, 0, 1], -1.1) array([-1., -0., -1.]) >>> np.copysign([-1, 0, 1], np.arange(3)-1) array([-1., 0., 1.]) """) add_newdoc('numpy.core.umath', 'nextafter', """ Return the next floating-point value after x1 towards x2, element-wise. Parameters ---------- x1 : array_like Values to find the next representable value of. x2 : array_like The direction where to look for the next representable value of `x1`. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See `doc.ufuncs`. Returns ------- out : array_like The next representable values of `x1` in the direction of `x2`. Examples -------- >>> eps = np.finfo(np.float64).eps >>> np.nextafter(1, 2) == eps + 1 True >>> np.nextafter([1, 2], [2, 1]) == [eps + 1, 2 - eps] array([ True, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'spacing', """ Return the distance between x and the nearest adjacent number. Parameters ---------- x1 : array_like Values to find the spacing of. Returns ------- out : array_like The spacing of values of `x1`. Notes ----- It can be considered as a generalization of EPS: ``spacing(np.float64(1)) == np.finfo(np.float64).eps``, and there should not be any representable number between ``x + spacing(x)`` and x for any finite x. Spacing of +- inf and NaN is NaN. Examples -------- >>> np.spacing(1) == np.finfo(np.float64).eps True """) add_newdoc('numpy.core.umath', 'sin', """ Trigonometric sine, element-wise. Parameters ---------- x : array_like Angle, in radians (:math:`2 \\pi` rad equals 360 degrees). Returns ------- y : array_like The sine of each element of x. See Also -------- arcsin, sinh, cos Notes ----- The sine is one of the fundamental functions of trigonometry (the mathematical study of triangles). Consider a circle of radius 1 centered on the origin. A ray comes in from the :math:`+x` axis, makes an angle at the origin (measured counter-clockwise from that axis), and departs from the origin. The :math:`y` coordinate of the outgoing ray's intersection with the unit circle is the sine of that angle. It ranges from -1 for :math:`x=3\\pi / 2` to +1 for :math:`\\pi / 2.` The function has zeroes where the angle is a multiple of :math:`\\pi`. Sines of angles between :math:`\\pi` and :math:`2\\pi` are negative. The numerous properties of the sine and related functions are included in any standard trigonometry text. Examples -------- Print sine of one angle: >>> np.sin(np.pi/2.) 1.0 Print sines of an array of angles given in degrees: >>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180. ) array([ 0. , 0.5 , 0.70710678, 0.8660254 , 1. ]) Plot the sine function: >>> import matplotlib.pylab as plt >>> x = np.linspace(-np.pi, np.pi, 201) >>> plt.plot(x, np.sin(x)) >>> plt.xlabel('Angle [rad]') >>> plt.ylabel('sin(x)') >>> plt.axis('tight') >>> plt.show() """) add_newdoc('numpy.core.umath', 'sinh', """ Hyperbolic sine, element-wise. Equivalent to ``1/2 * (np.exp(x) - np.exp(-x))`` or ``-1j * np.sin(1j*x)``. Parameters ---------- x : array_like Input array. out : ndarray, optional Output array of same shape as `x`. Returns ------- y : ndarray The corresponding hyperbolic sine values. Raises ------ ValueError: invalid return array shape if `out` is provided and `out.shape` != `x.shape` (See Examples) Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83. Examples -------- >>> np.sinh(0) 0.0 >>> np.sinh(np.pi*1j/2) 1j >>> np.sinh(np.pi*1j) # (exact value is 0) 1.2246063538223773e-016j >>> # Discrepancy due to vagaries of floating point arithmetic. >>> # Example of providing the optional output parameter >>> out2 = np.sinh([0.1], out1) >>> out2 is out1 True >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.sinh(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: invalid return array shape """) add_newdoc('numpy.core.umath', 'sqrt', """ Return the positive square-root of an array, element-wise. Parameters ---------- x : array_like The values whose square-roots are required. out : ndarray, optional Alternate array object in which to put the result; if provided, it must have the same shape as `x` Returns ------- y : ndarray An array of the same shape as `x`, containing the positive square-root of each element in `x`. If any element in `x` is complex, a complex array is returned (and the square-roots of negative reals are calculated). If all of the elements in `x` are real, so is `y`, with negative elements returning ``nan``. If `out` was provided, `y` is a reference to it. See Also -------- lib.scimath.sqrt A version which returns complex numbers when given negative reals. Notes ----- *sqrt* has--consistent with common convention--as its branch cut the real "interval" [`-inf`, 0), and is continuous from above on it. A branch cut is a curve in the complex plane across which a given complex function fails to be continuous. Examples -------- >>> np.sqrt([1,4,9]) array([ 1., 2., 3.]) >>> np.sqrt([4, -1, -3+4J]) array([ 2.+0.j, 0.+1.j, 1.+2.j]) >>> np.sqrt([4, -1, numpy.inf]) array([ 2., NaN, Inf]) """) add_newdoc('numpy.core.umath', 'cbrt', """ Return the cube-root of an array, element-wise. .. versionadded:: 1.10.0 Parameters ---------- x : array_like The values whose cube-roots are required. out : ndarray, optional Alternate array object in which to put the result; if provided, it must have the same shape as `x` Returns ------- y : ndarray An array of the same shape as `x`, containing the cube cube-root of each element in `x`. If `out` was provided, `y` is a reference to it. Examples -------- >>> np.cbrt([1,8,27]) array([ 1., 2., 3.]) """) add_newdoc('numpy.core.umath', 'square', """ Return the element-wise square of the input. Parameters ---------- x : array_like Input data. Returns ------- out : ndarray Element-wise `x*x`, of the same shape and dtype as `x`. Returns scalar if `x` is a scalar. See Also -------- numpy.linalg.matrix_power sqrt power Examples -------- >>> np.square([-1j, 1]) array([-1.-0.j, 1.+0.j]) """) add_newdoc('numpy.core.umath', 'subtract', """ Subtract arguments, element-wise. Parameters ---------- x1, x2 : array_like The arrays to be subtracted from each other. Returns ------- y : ndarray The difference of `x1` and `x2`, element-wise. Returns a scalar if both `x1` and `x2` are scalars. Notes ----- Equivalent to ``x1 - x2`` in terms of array broadcasting. Examples -------- >>> np.subtract(1.0, 4.0) -3.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.subtract(x1, x2) array([[ 0., 0., 0.], [ 3., 3., 3.], [ 6., 6., 6.]]) """) add_newdoc('numpy.core.umath', 'tan', """ Compute tangent element-wise. Equivalent to ``np.sin(x)/np.cos(x)`` element-wise. Parameters ---------- x : array_like Input array. out : ndarray, optional Output array of same shape as `x`. Returns ------- y : ndarray The corresponding tangent values. Raises ------ ValueError: invalid return array shape if `out` is provided and `out.shape` != `x.shape` (See Examples) Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972. Examples -------- >>> from math import pi >>> np.tan(np.array([-pi,pi/2,pi])) array([ 1.22460635e-16, 1.63317787e+16, -1.22460635e-16]) >>> >>> # Example of providing the optional output parameter illustrating >>> # that what is returned is a reference to said parameter >>> out2 = np.cos([0.1], out1) >>> out2 is out1 True >>> >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.cos(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: invalid return array shape """) add_newdoc('numpy.core.umath', 'tanh', """ Compute hyperbolic tangent element-wise. Equivalent to ``np.sinh(x)/np.cosh(x)`` or ``-1j * np.tan(1j*x)``. Parameters ---------- x : array_like Input array. out : ndarray, optional Output array of same shape as `x`. Returns ------- y : ndarray The corresponding hyperbolic tangent values. Raises ------ ValueError: invalid return array shape if `out` is provided and `out.shape` != `x.shape` (See Examples) Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- .. [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Hyperbolic function", http://en.wikipedia.org/wiki/Hyperbolic_function Examples -------- >>> np.tanh((0, np.pi*1j, np.pi*1j/2)) array([ 0. +0.00000000e+00j, 0. -1.22460635e-16j, 0. +1.63317787e+16j]) >>> # Example of providing the optional output parameter illustrating >>> # that what is returned is a reference to said parameter >>> out2 = np.tanh([0.1], out1) >>> out2 is out1 True >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.tanh(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: invalid return array shape """) add_newdoc('numpy.core.umath', 'true_divide', """ Returns a true division of the inputs, element-wise. Instead of the Python traditional 'floor division', this returns a true division. True division adjusts the output type to present the best answer, regardless of input types. Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. Returns ------- out : ndarray Result is scalar if both inputs are scalar, ndarray otherwise. Notes ----- The floor division operator ``//`` was added in Python 2.2 making ``//`` and ``/`` equivalent operators. The default floor division operation of ``/`` can be replaced by true division with ``from __future__ import division``. In Python 3.0, ``//`` is the floor division operator and ``/`` the true division operator. The ``true_divide(x1, x2)`` function is equivalent to true division in Python. Examples -------- >>> x = np.arange(5) >>> np.true_divide(x, 4) array([ 0. , 0.25, 0.5 , 0.75, 1. ]) >>> x/4 array([0, 0, 0, 0, 1]) >>> x//4 array([0, 0, 0, 0, 1]) >>> from __future__ import division >>> x/4 array([ 0. , 0.25, 0.5 , 0.75, 1. ]) >>> x//4 array([0, 0, 0, 0, 1]) """) add_newdoc('numpy.core.umath', 'frexp', """ Decompose the elements of x into mantissa and twos exponent. Returns (`mantissa`, `exponent`), where `x = mantissa * 2**exponent``. The mantissa is lies in the open interval(-1, 1), while the twos exponent is a signed integer. Parameters ---------- x : array_like Array of numbers to be decomposed. out1 : ndarray, optional Output array for the mantissa. Must have the same shape as `x`. out2 : ndarray, optional Output array for the exponent. Must have the same shape as `x`. Returns ------- (mantissa, exponent) : tuple of ndarrays, (float, int) `mantissa` is a float array with values between -1 and 1. `exponent` is an int array which represents the exponent of 2. See Also -------- ldexp : Compute ``y = x1 * 2**x2``, the inverse of `frexp`. Notes ----- Complex dtypes are not supported, they will raise a TypeError. Examples -------- >>> x = np.arange(9) >>> y1, y2 = np.frexp(x) >>> y1 array([ 0. , 0.5 , 0.5 , 0.75 , 0.5 , 0.625, 0.75 , 0.875, 0.5 ]) >>> y2 array([0, 1, 2, 2, 3, 3, 3, 3, 4]) >>> y1 * 2**y2 array([ 0., 1., 2., 3., 4., 5., 6., 7., 8.]) """) add_newdoc('numpy.core.umath', 'ldexp', """ Returns x1 * 2**x2, element-wise. The mantissas `x1` and twos exponents `x2` are used to construct floating point numbers ``x1 * 2**x2``. Parameters ---------- x1 : array_like Array of multipliers. x2 : array_like, int Array of twos exponents. out : ndarray, optional Output array for the result. Returns ------- y : ndarray or scalar The result of ``x1 * 2**x2``. See Also -------- frexp : Return (y1, y2) from ``x = y1 * 2**y2``, inverse to `ldexp`. Notes ----- Complex dtypes are not supported, they will raise a TypeError. `ldexp` is useful as the inverse of `frexp`, if used by itself it is more clear to simply use the expression ``x1 * 2**x2``. Examples -------- >>> np.ldexp(5, np.arange(4)) array([ 5., 10., 20., 40.], dtype=float32) >>> x = np.arange(6) >>> np.ldexp(*np.frexp(x)) array([ 0., 1., 2., 3., 4., 5.]) """)
bsd-3-clause
artmusic0/theano-learning.part03
Myfile_run-py_big-taining/cnn_training_computation.old.py
3
7532
import os import sys, getopt import time import numpy import theano import theano.tensor as T from sklearn import preprocessing from cnn import CNN import pickle as cPickle from logistic_sgd import LogisticRegression def fit(data, labels, filename = 'weights_v5.pkl'): fit_predict(data, labels, filename = filename, action = 'fit') def predict(test_dataset, filename = 'weights_v5.pkl' ): return fit_predict(data=[], labels=[], filename= filename, test_datasets=[test_dataset], action = 'predict')[0] def fit_predict(data, labels, action, filename, test_datasets = [], learning_rate=0.1, n_epochs=100, nkerns=[20, 50, 90], batch_size=50, seed=8000): rng = numpy.random.RandomState(seed) x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of [int] labels index = T.lscalar() # index to a [mini]batch if action=='fit': NUM_TRAIN = len(data) #print NUM_TRAIN #print batch_size if NUM_TRAIN % batch_size != 0: #if the last batch is not full, just don't use the remainder whole = (NUM_TRAIN / batch_size) * batch_size data = data[:whole] NUM_TRAIN = len(data) #print NUM_TRAIN #print batch_size # random permutation indices = rng.permutation(NUM_TRAIN) data, labels = data[indices, :], labels[indices] # batch_size == 500, splits (480, 20). We will use 96% of the data for training, and the rest to validate the NN while training is_train = numpy.array( ([0]* (batch_size - 20) + [1] * 20) * (NUM_TRAIN / batch_size)) # now we split the dataset to test and valid datasets train_set_x, train_set_y = numpy.array(data[is_train==0]), labels[is_train==0] valid_set_x, valid_set_y = numpy.array(data[is_train==1]), labels[is_train==1] # compute number of minibatches n_train_batches = len(train_set_y) / batch_size n_valid_batches = len(valid_set_y) / batch_size ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' # allocate symbolic variables for the data epoch = T.scalar() #index = T.lscalar() # index to a [mini]batch #x = T.matrix('x') # the data is presented as rasterized images #y = T.ivector('y') # the labels are presented as 1D vector of [int] labels # construct the CNN class classifier = CNN( rng=rng, input=x, nkerns = nkerns, batch_size = batch_size ) train_set_x = theano.shared(numpy.asarray(train_set_x, dtype=theano.config.floatX)) train_set_y = T.cast(theano.shared(numpy.asarray(train_set_y, dtype=theano.config.floatX)), 'int32') valid_set_x = theano.shared(numpy.asarray(valid_set_x, dtype=theano.config.floatX)) valid_set_y = T.cast(theano.shared(numpy.asarray(valid_set_y, dtype=theano.config.floatX)), 'int32') validate_model = theano.function( inputs=[index], outputs=classifier.errors(y), givens={ x: valid_set_x[index * batch_size:(index + 1) * batch_size], y: valid_set_y[index * batch_size:(index + 1) * batch_size] } ) cost = classifier.layer4.negative_log_likelihood(y) # create a list of gradients for all model parameters grads = T.grad(cost, classifier.params) # specify how to update the parameters of the model as a list of (variable, update expression) pairs updates = [ (param_i, param_i - learning_rate * grad_i) for param_i, grad_i in zip(classifier.params, grads) ] # compiling a Theano function `train_model` that returns the cost, but # in the same time updates the parameter of the model based on the rules defined in `updates` train_model = theano.function( inputs=[index], outputs=cost, updates=updates, givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size] } ) ############### # TRAIN MODEL # ############### print '... training' best_iter = 0 test_score = 0. start_time = time.clock() epoch = 0 # here is an example how to print the current value of a Theano variable: print test_set_x.shape.eval() # start training while (epoch < n_epochs): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): minibatch_avg_cost = train_model(minibatch_index) iter = (epoch - 1) * n_train_batches + minibatch_index if (epoch) % 1 == 0 and minibatch_index==0: # compute zero-one loss on validation set validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] this_validation_loss = numpy.mean(validation_losses) print( 'epoch %i, minibatch %i/%i, validation error %f %%' % ( epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100. ) ) ############### # PREDICTIONS # ############### # save and load f = file(filename, 'wb') cPickle.dump(classifier.__getstate__(), f, protocol=cPickle.HIGHEST_PROTOCOL) f.close() end_time = time.clock() print >> sys.stderr, ('The code ran for %.2fm' % ((end_time - start_time) / 60.)) if action == 'predict': # construct the CNN class classifier_2 = CNN( rng=rng, input=x, nkerns = nkerns, batch_size = batch_size ) print "...." f = file(filename, 'rb') classifier_2.__setstate__(cPickle.load(f)) f.close() RET = [] for it in range(len(test_datasets)): test_data = test_datasets[it] N = len(test_data) test_data = theano.shared(numpy.asarray(test_data, dtype=theano.config.floatX)) # just zeroes test_labels = T.cast(theano.shared(numpy.asarray(numpy.zeros(batch_size), dtype=theano.config.floatX)), 'int32') ppm = theano.function([index], classifier_2.layer3.pred_probs(), givens={ x: test_data[index * batch_size: (index + 1) * batch_size], y: test_labels }, on_unused_input='warn') # p : predictions, we need to take argmax, p is 3-dim: (# loop iterations x batch_size x 2) p = [ppm(ii) for ii in xrange( N / batch_size)] #p_one = sum(p, []) #print p p = numpy.array(p).reshape((N, 20)) #print p p = numpy.argmax(p, axis=1) p = p.astype(int) RET.append(p) return RET
gpl-3.0
liyu1990/sklearn
sklearn/feature_selection/tests/test_feature_select.py
103
22297
""" Todo: cross-check the F-value with stats model """ from __future__ import division import itertools import warnings import numpy as np from scipy import stats, sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_not_in from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils import safe_mask from sklearn.datasets.samples_generator import (make_classification, make_regression) from sklearn.feature_selection import (chi2, f_classif, f_oneway, f_regression, SelectPercentile, SelectKBest, SelectFpr, SelectFdr, SelectFwe, GenericUnivariateSelect) ############################################################################## # Test the score functions def test_f_oneway_vs_scipy_stats(): # Test that our f_oneway gives the same result as scipy.stats rng = np.random.RandomState(0) X1 = rng.randn(10, 3) X2 = 1 + rng.randn(10, 3) f, pv = stats.f_oneway(X1, X2) f2, pv2 = f_oneway(X1, X2) assert_true(np.allclose(f, f2)) assert_true(np.allclose(pv, pv2)) def test_f_oneway_ints(): # Smoke test f_oneway on integers: that it does raise casting errors # with recent numpys rng = np.random.RandomState(0) X = rng.randint(10, size=(10, 10)) y = np.arange(10) fint, pint = f_oneway(X, y) # test that is gives the same result as with float f, p = f_oneway(X.astype(np.float), y) assert_array_almost_equal(f, fint, decimal=4) assert_array_almost_equal(p, pint, decimal=4) def test_f_classif(): # Test whether the F test yields meaningful results # on a simple simulated classification problem X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) F, pv = f_classif(X, y) F_sparse, pv_sparse = f_classif(sparse.csr_matrix(X), y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) assert_array_almost_equal(F_sparse, F) assert_array_almost_equal(pv_sparse, pv) def test_f_regression(): # Test whether the F test yields meaningful results # on a simple simulated regression problem X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) F, pv = f_regression(X, y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) # again without centering, compare with sparse F, pv = f_regression(X, y, center=False) F_sparse, pv_sparse = f_regression(sparse.csr_matrix(X), y, center=False) assert_array_almost_equal(F_sparse, F) assert_array_almost_equal(pv_sparse, pv) def test_f_regression_input_dtype(): # Test whether f_regression returns the same value # for any numeric data_type rng = np.random.RandomState(0) X = rng.rand(10, 20) y = np.arange(10).astype(np.int) F1, pv1 = f_regression(X, y) F2, pv2 = f_regression(X, y.astype(np.float)) assert_array_almost_equal(F1, F2, 5) assert_array_almost_equal(pv1, pv2, 5) def test_f_regression_center(): # Test whether f_regression preserves dof according to 'center' argument # We use two centered variates so we have a simple relationship between # F-score with variates centering and F-score without variates centering. # Create toy example X = np.arange(-5, 6).reshape(-1, 1) # X has zero mean n_samples = X.size Y = np.ones(n_samples) Y[::2] *= -1. Y[0] = 0. # have Y mean being null F1, _ = f_regression(X, Y, center=True) F2, _ = f_regression(X, Y, center=False) assert_array_almost_equal(F1 * (n_samples - 1.) / (n_samples - 2.), F2) assert_almost_equal(F2[0], 0.232558139) # value from statsmodels OLS def test_f_classif_multi_class(): # Test whether the F test yields meaningful results # on a simple simulated classification problem X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) F, pv = f_classif(X, y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) def test_select_percentile_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the percentile heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_classif, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect(f_classif, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_percentile_classif_sparse(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the percentile heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) X = sparse.csr_matrix(X) univariate_filter = SelectPercentile(f_classif, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect(f_classif, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r.toarray(), X_r2.toarray()) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) X_r2inv = univariate_filter.inverse_transform(X_r2) assert_true(sparse.issparse(X_r2inv)) support_mask = safe_mask(X_r2inv, support) assert_equal(X_r2inv.shape, X.shape) assert_array_equal(X_r2inv[:, support_mask].toarray(), X_r.toarray()) # Check other columns are empty assert_equal(X_r2inv.getnnz(), X_r.getnnz()) ############################################################################## # Test univariate selection in classification settings def test_select_kbest_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the k best heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k=5) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_classif, mode='k_best', param=5).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_kbest_all(): # Test whether k="all" correctly returns all features. X, y = make_classification(n_samples=20, n_features=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k='all') X_r = univariate_filter.fit(X, y).transform(X) assert_array_equal(X, X_r) def test_select_kbest_zero(): # Test whether k=0 correctly returns no features. X, y = make_classification(n_samples=20, n_features=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k=0) univariate_filter.fit(X, y) support = univariate_filter.get_support() gtruth = np.zeros(10, dtype=bool) assert_array_equal(support, gtruth) X_selected = assert_warns_message(UserWarning, 'No features were selected', univariate_filter.transform, X) assert_equal(X_selected.shape, (20, 0)) def test_select_heuristics_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the fdr, fwe and fpr heuristics X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectFwe(f_classif, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) gtruth = np.zeros(20) gtruth[:5] = 1 for mode in ['fdr', 'fpr', 'fwe']: X_r2 = GenericUnivariateSelect( f_classif, mode=mode, param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() assert_array_almost_equal(support, gtruth) ############################################################################## # Test univariate selection in regression settings def assert_best_scores_kept(score_filter): scores = score_filter.scores_ support = score_filter.get_support() assert_array_equal(np.sort(scores[support]), np.sort(scores)[-support.sum():]) def test_select_percentile_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the percentile heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_regression, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) X_2 = X.copy() X_2[:, np.logical_not(support)] = 0 assert_array_equal(X_2, univariate_filter.inverse_transform(X_r)) # Check inverse_transform respects dtype assert_array_equal(X_2.astype(bool), univariate_filter.inverse_transform(X_r.astype(bool))) def test_select_percentile_regression_full(): # Test whether the relative univariate feature selection # selects all features when '100%' is asked. X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_regression, percentile=100) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='percentile', param=100).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.ones(20) assert_array_equal(support, gtruth) def test_invalid_percentile(): X, y = make_regression(n_samples=10, n_features=20, n_informative=2, shuffle=False, random_state=0) assert_raises(ValueError, SelectPercentile(percentile=-1).fit, X, y) assert_raises(ValueError, SelectPercentile(percentile=101).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='percentile', param=-1).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='percentile', param=101).fit, X, y) def test_select_kbest_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the k best heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0, noise=10) univariate_filter = SelectKBest(f_regression, k=5) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='k_best', param=5).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_heuristics_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the fpr, fdr or fwe heuristics X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0, noise=10) univariate_filter = SelectFpr(f_regression, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) gtruth = np.zeros(20) gtruth[:5] = 1 for mode in ['fdr', 'fpr', 'fwe']: X_r2 = GenericUnivariateSelect( f_regression, mode=mode, param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() assert_array_equal(support[:5], np.ones((5, ), dtype=np.bool)) assert_less(np.sum(support[5:] == 1), 3) def test_select_fdr_regression(): # Test that fdr heuristic actually has low FDR. def single_fdr(alpha, n_informative, random_state): X, y = make_regression(n_samples=150, n_features=20, n_informative=n_informative, shuffle=False, random_state=random_state, noise=10) with warnings.catch_warnings(record=True): # Warnings can be raised when no features are selected # (low alpha or very noisy data) univariate_filter = SelectFdr(f_regression, alpha=alpha) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_regression, mode='fdr', param=alpha).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() num_false_positives = np.sum(support[n_informative:] == 1) num_true_positives = np.sum(support[:n_informative] == 1) if num_false_positives == 0: return 0. false_discovery_rate = (num_false_positives / (num_true_positives + num_false_positives)) return false_discovery_rate for alpha in [0.001, 0.01, 0.1]: for n_informative in [1, 5, 10]: # As per Benjamini-Hochberg, the expected false discovery rate # should be lower than alpha: # FDR = E(FP / (TP + FP)) <= alpha false_discovery_rate = np.mean([single_fdr(alpha, n_informative, random_state) for random_state in range(30)]) assert_greater_equal(alpha, false_discovery_rate) # Make sure that the empirical false discovery rate increases # with alpha: if false_discovery_rate != 0: assert_greater(false_discovery_rate, alpha / 10) def test_select_fwe_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the fwe heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectFwe(f_regression, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_regression, mode='fwe', param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support[:5], np.ones((5, ), dtype=np.bool)) assert_less(np.sum(support[5:] == 1), 2) def test_selectkbest_tiebreaking(): # Test whether SelectKBest actually selects k features in case of ties. # Prior to 0.11, SelectKBest would return more features than requested. Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]] y = [1] dummy_score = lambda X, y: (X[0], X[0]) for X in Xs: sel = SelectKBest(dummy_score, k=1) X1 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X1.shape[1], 1) assert_best_scores_kept(sel) sel = SelectKBest(dummy_score, k=2) X2 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X2.shape[1], 2) assert_best_scores_kept(sel) def test_selectpercentile_tiebreaking(): # Test if SelectPercentile selects the right n_features in case of ties. Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]] y = [1] dummy_score = lambda X, y: (X[0], X[0]) for X in Xs: sel = SelectPercentile(dummy_score, percentile=34) X1 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X1.shape[1], 1) assert_best_scores_kept(sel) sel = SelectPercentile(dummy_score, percentile=67) X2 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X2.shape[1], 2) assert_best_scores_kept(sel) def test_tied_pvalues(): # Test whether k-best and percentiles work with tied pvalues from chi2. # chi2 will return the same p-values for the following features, but it # will return different scores. X0 = np.array([[10000, 9999, 9998], [1, 1, 1]]) y = [0, 1] for perm in itertools.permutations((0, 1, 2)): X = X0[:, perm] Xt = SelectKBest(chi2, k=2).fit_transform(X, y) assert_equal(Xt.shape, (2, 2)) assert_not_in(9998, Xt) Xt = SelectPercentile(chi2, percentile=67).fit_transform(X, y) assert_equal(Xt.shape, (2, 2)) assert_not_in(9998, Xt) def test_tied_scores(): # Test for stable sorting in k-best with tied scores. X_train = np.array([[0, 0, 0], [1, 1, 1]]) y_train = [0, 1] for n_features in [1, 2, 3]: sel = SelectKBest(chi2, k=n_features).fit(X_train, y_train) X_test = sel.transform([[0, 1, 2]]) assert_array_equal(X_test[0], np.arange(3)[-n_features:]) def test_nans(): # Assert that SelectKBest and SelectPercentile can handle NaNs. # First feature has zero variance to confuse f_classif (ANOVA) and # make it return a NaN. X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] for select in (SelectKBest(f_classif, 2), SelectPercentile(f_classif, percentile=67)): ignore_warnings(select.fit)(X, y) assert_array_equal(select.get_support(indices=True), np.array([1, 2])) def test_score_func_error(): X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] for SelectFeatures in [SelectKBest, SelectPercentile, SelectFwe, SelectFdr, SelectFpr, GenericUnivariateSelect]: assert_raises(TypeError, SelectFeatures(score_func=10).fit, X, y) def test_invalid_k(): X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] assert_raises(ValueError, SelectKBest(k=-1).fit, X, y) assert_raises(ValueError, SelectKBest(k=4).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='k_best', param=-1).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='k_best', param=4).fit, X, y) def test_f_classif_constant_feature(): # Test that f_classif warns if a feature is constant throughout. X, y = make_classification(n_samples=10, n_features=5) X[:, 0] = 2.0 assert_warns(UserWarning, f_classif, X, y) def test_no_feature_selected(): rng = np.random.RandomState(0) # Generate random uncorrelated data: a strict univariate test should # rejects all the features X = rng.rand(40, 10) y = rng.randint(0, 4, size=40) strict_selectors = [ SelectFwe(alpha=0.01).fit(X, y), SelectFdr(alpha=0.01).fit(X, y), SelectFpr(alpha=0.01).fit(X, y), SelectPercentile(percentile=0).fit(X, y), SelectKBest(k=0).fit(X, y), ] for selector in strict_selectors: assert_array_equal(selector.get_support(), np.zeros(10)) X_selected = assert_warns_message( UserWarning, 'No features were selected', selector.transform, X) assert_equal(X_selected.shape, (40, 0))
bsd-3-clause
mlperf/training_results_v0.7
Inspur/benchmarks/dlrm/implementations/implementation_closed/tests/metrics_test.py
1
1545
"""Tests for metrics""" from absl.testing import absltest from sklearn.metrics import roc_auc_score import numpy as np import torch from dlrm.utils import metrics # pylint:disable=missing-docstring, no-self-use class AucTest(absltest.TestCase): def test_against_sklearn_exact(self): for num_samples in [100, 1000, 10000, 100000, 1048576]: y = np.random.randint(0, 2, num_samples) scores = np.random.power(10, num_samples) ref_auc = roc_auc_score(y, scores) test_auc = metrics.ref_roc_auc_score(y, scores) assert ref_auc == test_auc def test_against_sklearn_almost_exact(self): for num_samples in [100, 1000, 10000, 100000, 1048576]: y = np.random.randint(0, 2, num_samples) scores = np.random.power(10, num_samples) ref_auc = roc_auc_score(y, scores) test_auc = metrics.ref_roc_auc_score(y, scores, exact=False) np.testing.assert_almost_equal(ref_auc, test_auc) def test_pytorch_against_sklearn(self): for num_samples in [100, 1000, 10000, 100000, 1048576]: y = np.random.randint(0, 2, num_samples).astype(np.float32) scores = np.random.power(10, num_samples).astype(np.float32) ref_auc = roc_auc_score(y, scores) test_auc = metrics.roc_auc_score(torch.from_numpy(y).cuda(), torch.from_numpy(scores).cuda()) np.testing.assert_almost_equal(ref_auc, test_auc.cpu().numpy()) if __name__ == '__main__': absltest.main()
apache-2.0
B3AU/waveTree
sklearn/utils/setup.py
4
2703
import os from os.path import join from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): import numpy from numpy.distutils.misc_util import Configuration config = Configuration('utils', parent_package, top_path) config.add_subpackage('sparsetools') cblas_libs, blas_info = get_blas_info() cblas_compile_args = blas_info.pop('extra_compile_args', []) cblas_includes = [join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])] libraries = [] if os.name == 'posix': libraries.append('m') cblas_libs.append('m') config.add_extension('arraybuilder', sources=['arraybuilder.c']) config.add_extension('sparsefuncs', sources=['sparsefuncs.c'], libraries=libraries) config.add_extension('arrayfuncs', sources=['arrayfuncs.c'], depends=[join('src', 'cholesky_delete.h')], libraries=cblas_libs, include_dirs=cblas_includes, extra_compile_args=cblas_compile_args, **blas_info ) config.add_extension( 'murmurhash', sources=['murmurhash.c', join('src', 'MurmurHash3.cpp')], include_dirs=['src']) config.add_extension('lgamma', sources=['lgamma.c', join('src', 'gamma.c')], include_dirs=['src'], libraries=libraries) config.add_extension('graph_shortest_path', sources=['graph_shortest_path.c'], include_dirs=[numpy.get_include()]) config.add_extension('seq_dataset', sources=['seq_dataset.c'], include_dirs=[numpy.get_include()]) config.add_extension('weight_vector', sources=['weight_vector.c'], include_dirs=cblas_includes, libraries=cblas_libs, **blas_info) config.add_extension("random", sources=["random.c"], include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension("_logistic_sigmoid", sources=["_logistic_sigmoid.c"], include_dirs=[numpy.get_include()], libraries=libraries) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
js850/pele
pele/gui/run.py
1
27479
import matplotlib matplotlib.use("QT4Agg") import traceback import sys import numpy as np from PyQt4 import QtCore, QtGui, Qt from pele.landscape import TSGraph from pele.storage import Database from pele.utils.events import Signal from pele.config import config from pele.gui.MainWindow import Ui_MainWindow from pele.gui.bhrunner import BHManager from pele.gui.dlg_params import DlgParams from pele.gui.ui.dgraph_dlg import DGraphDialog #from pele.gui.connect_explorer_dlg import ConnectExplorerDialog from pele.gui.connect_run_dlg import ConnectViewer from pele.gui.takestep_explorer import TakestepExplorer from pele.gui.normalmode_browser import NormalmodeBrowser from pele.gui._list_views import ListViewManager from pele.gui._cv_viewer import HeatCapacityViewer from pele.gui._rate_gui import RateViewer from pele.gui.graph_viewer import GraphViewDialog def excepthook(ex_type, ex_value, traceback_obj): """ redirected exception handler """ errorbox = QtGui.QMessageBox() msg = "An unhandled exception occurred:\n"+str(ex_type) + "\n\n"\ + str(ex_value) + "\n\nTraceback:\n----------" for line in traceback.format_tb(traceback_obj): msg += "\n" + line errorbox.setText(msg) errorbox.setStandardButtons(QtGui.QMessageBox.Ignore | QtGui.QMessageBox.Cancel) errorbox.setDefaultButton(QtGui.QMessageBox.Cancel) if errorbox.exec_() == QtGui.QMessageBox.Cancel: raise ex_value class MySelection(object): """keep track of which minima have been selected and whether those coordinates have been modified """ def __init__(self): self.minimum1 = None self.minimum2 = None self.coords1 = None self.coords2 = None class MainGUI(QtGui.QMainWindow): """ this is the main class for the pele gui Parameters ---------- app : the application object returned by QtGui.QApplication() systemtype : system class object the system class """ def __init__(self, app, systemtype, parent=None): QtGui.QWidget.__init__(self) self.ui = Ui_MainWindow() self.ui.setupUi(self) self.systemtype = systemtype self.transition=None self.app = app self.double_ended_connect_runs = [] self.pick_count = 0 self.minima_selection = MySelection() self.on_minimum_1_selected = Signal() self.on_minimum_2_selected = Signal() # set up the list manager self.list_manager = ListViewManager(self) # define the system self.NewSystem() # finish setting up the list manager (this must be done after NewSystem() is called) self.list_manager.finish_setup() #try to load the pymol viewer. try: self.usepymol = self.system.params.gui.use_pymol except (KeyError, AttributeError): self.usepymol = config.getboolean("gui", "use_pymol") if self.usepymol: try: from pymol_viewer import PymolViewer self.pymolviewer = PymolViewer(self.system.load_coords_pymol) except (ImportError or NotImplementedError): self.usepymol = False if self.usepymol == False: #note: glutInit() must be called exactly once. pymol calls it #during pymol.finish_launching(), so if we call it again it will #give an error. On the other hand, if we're not using pymol we #must call it. from OpenGL.GLUT import glutInit glutInit() self.bhmanager = None def NewSystem(self): """ this is called to initialize the system with a database """ self.system = self.systemtype() self.connect_db() def on_action_edit_params_triggered(self, checked=None): if checked is None: return self.paramsdlg = DlgParams(self.system.params) self.paramsdlg.show() def processEvents(self): self.app.processEvents() def on_action_db_connect_triggered(self, checked=None): """ launch a file browser to connect to an existing database """ if checked is None: return filename = QtGui.QFileDialog.getSaveFileName(self, 'Select database', '.') if len(filename) > 0: self.connect_db(filename) def connect_db(self, database=":memory:"): """ connect to an existing database at location filename """ self.list_manager.clear() # note: database can be either Database, or string, or QString if isinstance(database, Database): self.system.database = database else: self.system.database = self.system.create_database(db=database) #add minima to listWidged. do sorting after all minima are added for minimum in self.system.database.minima(): self.NewMinimum(minimum, sort_items=False) self.list_manager._sort_minima() self.NewTS(self.system.database.transition_states(order_energy=True)) self.list_manager.resize_columns_minima() self.list_manager.resize_columns_ts() self.system.database.on_minimum_added.connect(self.NewMinimum) self.system.database.on_minimum_removed(self.RemoveMinimum) self.system.database.on_ts_added.connect(self.NewTS) self.system.database.on_ts_removed.connect(self.RemoveTS) def SelectMinimum(self, minimum, set_selected=True): """when you click on a minimum in the basinhopping tab """ # print "selecting minimum", minimum._id, minimum.energy if set_selected: self.list_manager._select_main(minimum) return self.ui.ogl_main.setSystem(self.system) self.ui.ogl_main.setCoords(minimum.coords) self.ui.ogl_main.setMinimum(minimum) self.ui.oglTS.setSystem(self.system) if self.usepymol: self.pymolviewer.update_coords([minimum.coords], index=1, delete_all=True) def _SelectMinimum1(self, minimum, set_selected=True): """set the first minimum displayed in the connect tab""" if set_selected: self.list_manager._select1(minimum) return print "selecting minimum 1:", minimum._id, minimum.energy self.ui.oglPath.setSystem(self.system) self.ui.oglPath.setCoords(minimum.coords, index=1) # self.ui.oglPath.setMinimum(minimum, index=1) self.minima_selection.minimum1 = minimum self.minima_selection.coords1 = minimum.coords self.neb = None if self.usepymol: self.pymolviewer.update_coords([minimum.coords], index=1) self.on_minimum_1_selected(minimum) def _SelectMinimum2(self, minimum, set_selected=True): """set the second minimum displayed in the connect tab""" if set_selected: self.list_manager._select2(minimum) return print "selecting minimum 2:", minimum._id, minimum.energy self.ui.oglPath.setSystem(self.system) self.ui.oglPath.setCoords(minimum.coords, index=2) # self.ui.oglPath.setMinimum(minimum, index=2) self.minima_selection.minimum2 = minimum self.minima_selection.coords2 = minimum.coords self.neb = None if self.usepymol: self.pymolviewer.update_coords([minimum.coords], index=2) self.on_minimum_2_selected(minimum) def get_selected_minima(self): """return the two minima that have been chosen in the gui""" m1, m2 = self.minima_selection.minimum1, self.minima_selection.minimum2 if m1 is None or m2 is None: raise Exception("you must select two minima first") return m1, m2 def get_selected_coords(self): """return the two sets of coordinates that have been chosen in the gui note, that these may not be the same as what is stored in the minimum. E.g. they may be the aligned structures """ coords1, coords2 = self.minima_selection.coords1, self.minima_selection.coords2 if coords1 is None or coords2 is None: raise Exception("you must select two minima first") return coords1, coords2 def show_TS(self, ts): """ show the transition state and the associated minima in the 3d viewer """ self.ui.oglTS.setSystem(self.system) m1 = ts.minimum1 m2 = ts.minimum2 # put them in best alignment mindist = self.system.get_mindist() dist, m1coords, tscoords = mindist(m1.coords, ts.coords) dist, m2coords, tscoords = mindist(m2.coords, ts.coords) self.tscoordspath = np.array([m1coords, tscoords, m2coords]) labels = ["minimum: energy " + str(m1.energy) + " id " + str(m1._id)] labels += ["ts: energy " + str(ts.energy)] labels += ["minimum: energy " + str(m2.energy) + " id " + str(m2._id)] self.ui.oglTS.setCoordsPath(self.tscoordspath, frame=1, labels=labels) if self.usepymol: self.pymolviewer.update_coords(self.tscoordspath, index=1, delete_all=True) def on_btnAlign_clicked(self, clicked=None): """use mindist to align the minima. called when the align button is pressed """ if clicked is None: return coords1, coords2 = self.get_selected_coords() align = self.system.get_mindist() pot = self.system.get_potential() print "energy before alignment", pot.getEnergy(coords1), pot.getEnergy(coords2) dist, coords1, coords2 = align(coords1, coords2) print "energy after alignment", pot.getEnergy(coords1), pot.getEnergy(coords2) print "best alignment distance", dist self.ui.oglPath.setCoords(coords1, index=1) self.ui.oglPath.setCoords(coords2, index=2) self.minima_selection.coords1 = coords1 self.minima_selection.coords2 = coords2 if self.usepymol: self.pymolviewer.update_coords([coords1], index=1) self.pymolviewer.update_coords([coords2], index=2) def on_btnNEB_clicked(self, clicked=None): """do an NEB run (not a connect run). Don't find best alignment first""" if clicked is None: return coords1, coords2 = self.get_selected_coords() from neb_explorer import NEBExplorer if not hasattr(self, "nebexplorer"): self.nebexplorer = NEBExplorer(system=self.system, app=self.app, parent=self) self.nebexplorer.show() self.nebexplorer.new_neb(coords1, coords2, run=False) # def showFrame(self, i): # if hasattr(self, "nebcoords"): # self.ui.oglPath.setCoords(self.nebcoords[i,:]) def on_minimum_picked(self, min1): """called when a minimimum is clicked on in the graph or disconnectivity graph""" if (self.pick_count % 2) == 0: self._SelectMinimum1(min1) else: self._SelectMinimum2(min1) self.pick_count += 1 def on_btnDisconnectivity_graph_clicked(self, clicked=None): """show the disconnectivity graph it is interactive, so that when you click on an end point that minima is selected """ if clicked is None: return if not hasattr(self, "dgraph_dlg"): self.dgraph_dlg = DGraphDialog(self.system.database, parent=self) self.dgraph_dlg.dgraph_widget.minimum_selected.connect(self.on_minimum_picked) self.dgraph_dlg.dgraph_widget.minimum_selected.connect(self.SelectMinimum) self.dgraph_dlg.rebuild_disconnectivity_graph() self.dgraph_dlg.show() def on_btnShowGraph_clicked(self, clicked=None): """ show the graph of minima and transition states make it interactive, so that when you click on a point that minima is selected """ if clicked is None: return self.pick_count = 0 if not hasattr(self, "graphview"): self.graphview = GraphViewDialog(self.system.database, parent=self, app=self.app) self.graphview.widget.on_minima_picked.connect(self.on_minimum_picked) self.graphview.widget.on_minima_picked.connect(self.SelectMinimum) self.graphview.show() self.graphview.widget.make_graph() try: m1, m2 = self.get_selected_minima() self.graphview.widget._show_minimum_energy_path(m1, m2) except: self.graphview.widget.show_graph() def on_pushNormalmodesMin_clicked(self, clicked=None): if clicked is None: return if not hasattr(self, "normalmode_explorer"): self.normalmode_explorer = NormalmodeBrowser(self, self.system, self.app) min1 = self.ui.ogl_main.minima[1] if min1 is None: raise RuntimeError("you must select a minimum first") self.normalmode_explorer.set_coords(min1.coords) self.normalmode_explorer.show() def on_pushNormalmodesTS_clicked(self, clicked=None): if clicked is None: return if not hasattr(self, "normalmode_explorer"): self.normalmode_explorer = NormalmodeBrowser(self, self.system, self.app) ts = self.list_manager.get_selected_ts() if ts is None: raise RuntimeError("you must select a transition state first") self.normalmode_explorer.set_coords(ts.coords) self.normalmode_explorer.show() def NewMinimum(self, minimum, sort_items=True): """ add a new minimum to the system """ self.list_manager.NewMinimum(minimum, sort_items=sort_items) def RemoveMinimum(self, minimum): """remove a minimum from self.minima_list_model""" self.list_manager.RemoveMinimum(minimum) def NewTS(self, ts, sort=True): """add new transition state, or list of transition states""" self.list_manager.NewTS(ts, sort=sort) def RemoveTS(self, ts): """remove transition state""" raise Exception("removing transition states not implemented yet") obj = self.ui.list_TS tsid = id(ts) itms = self.ui.list_TS.findItems('*', QtCore.Qt.MatchWildcard) for i in itms: if i.tsid == tsid: obj.takeItem(obj.row(i)) def set_basinhopping_number_alive(self, nalive): """set the label that shows how many basinhopping processes are alive""" self.ui.label_bh_nproc.setText("%d B.H. processes" % nalive) def on_btn_start_basinhopping_clicked(self, clicked=None): """this is run when the start basinhopping button is clicked""" if clicked is None: return # set up the basinhopping manager if not already done if self.bhmanager is None: self.bhmanager = BHManager(self.system, self.system.database, on_number_alive_changed=self.set_basinhopping_number_alive) # get the number of steps from the input box nstepsstr = self.ui.lineEdit_bh_nsteps.text() nsteps = None try: nsteps = int(nstepsstr) except ValueError: # ignore the text if it is the default text if "steps" not in nstepsstr: sys.stderr.write("can't convert %s to integer\n" % nstepsstr) # start a basinhopping run self.bhmanager.start_worker(nsteps=nsteps) def on_btn_stop_basinhopping_clicked(self, clicked=None): if clicked is None: return self.bhmanager.kill_all_workers() def on_action_delete_minimum_triggered(self, checked=None): if checked is None: return min1 = self.ui.ogl_main.minima[1] ret = QtGui.QMessageBox.question(self, "Deleting minima", "Do you want to delete minima %d with energy %g"%(min1._id, min1.energy), QtGui.QMessageBox.Ok, QtGui.QMessageBox.Cancel) if(ret == QtGui.QMessageBox.Ok): print "deleting minima" print "deleting minimum", min1._id, min1.energy self.RemoveMinimum(min1) self.system.database.removeMinimum(min1) def on_btnConnect_clicked(self, clicked=None): if clicked is None: return return self._doubleEndedConnect(reconnect=False) def on_btnReconnect_clicked(self, clicked=None): if clicked is None: return return self._doubleEndedConnect(reconnect=True) def _doubleEndedConnect(self, reconnect=False, min1min2=None): """ launch a double ended connect run to connect the two selected minima. If the minima are not connected, or reconnect is True, launch a connect browser in a separate window. Else just show the path in the OGL viewer """ # determine which minima to connect if min1min2 is None: min1, min2 = self.get_selected_minima() else: min1, min2 = min1min2 database = self.system.database if not reconnect: # check if the minima are already connected double_ended_connect = self.system.get_double_ended_connect(min1, min2, database, fresh_connect=False, verbosity=0) if double_ended_connect.graph.areConnected(min1, min2): print "minima are already connected. loading smoothed path in viewer" mints, S, energies = double_ended_connect.returnPath() clist = [m.coords for m in mints] smoothpath = self.system.smooth_path(clist) coords = np.array(smoothpath) self.nebcoords = coords self.nebenergies = np.array(energies) print "setting path in oglPath" self.ui.oglPath.setCoordsPath(coords)#, labels) # self.ui.oglPath.setCoords(coords[0,:], 1) # self.ui.oglPath.setCoords(None, 2) # self.ui.sliderFrame.setRange(0, coords.shape[0]-1) if self.usepymol: self.pymolviewer.update_coords(self.nebcoords, index=1, delete_all=True) return # make the connect viewer decviewer = ConnectViewer(self.system, self.system.database, min1, min2, parent=self, app=self.app) print "starting double ended" decviewer.show() decviewer.start() # store pointers self.double_ended_connect_runs.append(decviewer) def on_btn_connect_in_optim_clicked(self, clicked=None): """spawn an OPTIM job and retrieve the minima and transition states it finds""" if clicked is None: return min1, min2 = self.get_selected_minima() # existing_minima = set(self.system.database.minima()) spawner = self.system.get_optim_spawner(min1.coords, min2.coords) spawner.run() db = self.system.database newminima, newts = spawner.load_results(self.system.database) # for m in newminima: # if m not in existing_minima: # self.NewMinimum(m) #now use DoubleEndedConnect to test if they are connected graph = TSGraph(db) if graph.areConnected(min1, min2): #use double ended connect to draw the interpolated path #this is ugly self._doubleEndedConnect(reconnect=False, min1min2=(min1, min2)) def _merge_minima(self, min1, min2): mindist = self.system.get_mindist() dist, x1, x2 = mindist(min1.coords, min2.coords) query = "Do you want to merge minimum %d with energy %g" %(min1._id, min1.energy) query += " with minimum %d with energy %g" %(min2._id, min2.energy) query += " separated by distance %g" % (dist) ret = QtGui.QMessageBox.question(self, "Merging minima", query, QtGui.QMessageBox.Ok, QtGui.QMessageBox.Cancel) if(ret == QtGui.QMessageBox.Ok): m1, m2 = min1, min2 if m1._id > m2._id: m1, m2 = m2, m1 print "merging minima", m1._id, m2._id#, ": minimum", m2._id, "will be deleted" self.system.database.mergeMinima(m1, m2) self.RemoveMinimum(m2) def on_action_merge_minima_triggered(self, checked=None): if checked is None: return min1, min2 = self.get_selected_minima() self._merge_minima(min1, min2) def on_action_compute_thermodynamic_info_triggered(self, checked=None): if checked is None: return def on_done(): print "done computing thermodynamic info" self._on_done = on_done # because on_finish stores a weak reference self.compute_thermodynamic_information(on_finish=self._on_done ) # def launch_connect_explorer(self): # coords1, coords2 = self.get_selected_coords() # # if not hasattr(self, "local_connect_explorer"): # self.local_connect_explorer = ConnectExplorerDialog(self.system) # self.local_connect_explorer.nebwgt.process_events.connect(self.processEvents) # self.local_connect_explorer.show() # self.local_connect_explorer.createNEB(coords1, coords2) # self.local_connect_explorer.runNEB() def on_btn_close_all_clicked(self, checked=None): if checked is None: return print "closing all windows" for dv in self.double_ended_connect_runs: dv.hide() # del dv self.double_ended_connect_runs = [] try: self.local_connect_explorer.hide() del self.local_connect_explorer except AttributeError: pass try: self.dgraph_dlg.hide() del self.dgraph_dlg except AttributeError: pass try: self.nebexplorer.hide() del self.nebexplorer except AttributeError: pass try: self.rate_viewer.hide() del self.rate_viewer except AttributeError: pass def on_btn_connect_all_clicked(self, checked=None): if checked is None: return from pele.gui.connect_all import ConnectAllDialog # if hasattr(self, "connect_all"): # if not self.connect_all.isVisible(): # self.connect_all.show() # if not self.connect_all.is_running() self.connect_all = ConnectAllDialog(self.system, self.system.database, parent=self, app=self.app) self.connect_all.show() self.connect_all.start() def on_pushTakestepExplorer_clicked(self): if not hasattr(self, "takestep_explorer"): self.takestep_explorer = TakestepExplorer(parent=self, system = self.system, app = self.app, database = self.system.database) self.takestep_explorer.show() def on_btn_heat_capacity_clicked(self, clicked=None): if clicked is None: return self.cv_viewer = HeatCapacityViewer(self.system, self.system.database, parent=self) self.cv_viewer.show() self.cv_viewer.rebuild_cv_plot() def compute_thermodynamic_information(self, on_finish=None): """compute thermodynamic information for minima and ts in the background call on_finish when the calculation is done """ # TODO: deal carefuly with what will happen if this is called again # before the first calculation is done. if self.thermo_worker is overwritten will # the first calculation stop? from pele.gui._cv_viewer import GetThermodynamicInfoParallelQT self.thermo_worker = GetThermodynamicInfoParallelQT(self.system, self.system.database, npar=1) if on_finish is not None: self.thermo_worker.on_finish.connect(on_finish) self.thermo_worker.start() njobs = self.thermo_worker.njobs print "calculating thermodynamics for", njobs, "minima and transition states" # def _compute_rates(self, min1, min2, T=1.): # """compute rates without first calculating thermodynamics # """ # print "computing rates at temperature T =", T # tslist = [ts for ts in self.system.database.transition_states() # if ts.fvib is not None] # rcalc = RateCalculation(tslist, [min1], [min2], T=T) # r12, r21 = rcalc.compute_rates() # print "rate from", min1._id, "to", min2._id, "=", r12 # print "rate from", min2._id, "to", min1._id, "=", r21 # # def compute_rates(self, min1, min2, T=1.): # """compute the transition rate from min1 to min2 and vice versa""" # def on_finish(): # print "thermodynamic calculation finished" # self._compute_rates(min1, min2) # self._on_finish_thermo_reference = on_finish # so it doeesn't get garbage collected # self.compute_thermodynamic_information(on_finish=on_finish) def on_btn_rates_clicked(self, clicked=None): if clicked is None: return if not hasattr(self, "rate_viewer"): m1, m2 = self.minima_selection.minimum1, self.minima_selection.minimum2 self.rate_viewer = RateViewer(self.system, self.system.database, parent=self) if m1 is not None: self.rate_viewer.update_A(m1) if m2 is not None: self.rate_viewer.update_B(m2) self.on_minimum_1_selected.connect(self.rate_viewer.update_A) self.on_minimum_2_selected.connect(self.rate_viewer.update_B) self.rate_viewer.show() # min1, min2 = self.get_selected_minima() # self.compute_rates(min1, min2) #def refresh_pl(): #pl.pause(0.000001) def run_gui(system, db=None, application=None): """ The top level function that will launch the gui for a given system Parameters ---------- system : System class A pele system, derived from BaseSystem. All information about the system is in this class. db : pele database or string, optional connect to this database or the database at this file location application : QApplication Use this QApplication object rather than creating a new one """ if application is None: application = QtGui.QApplication(sys.argv) sys.excepthook = excepthook myapp = MainGUI(application, system) if db is not None: myapp.connect_db(db) # refresh_timer = QtCore.QTimer() # refresh_timer.timeout.connect(refresh_pl) # refresh_timer.start(0.) myapp.show() sys.exit(application.exec_()) #def run_gui(systemtype): # app = QtGui.QApplication(sys.argv) # import pylab as pl # myapp = MainGUI(systemtype) # refresh_timer = QtCore.QTimer() # refresh_timer.timeout.connect(refresh_pl) # refresh_timer.start(0.) # # myapp.show() # sys.exit(app.exec_())
gpl-3.0
marcsans/cnn-physics-perception
phy/lib/python2.7/site-packages/matplotlib/backends/qt_editor/figureoptions.py
4
6227
# -*- coding: utf-8 -*- # # Copyright © 2009 Pierre Raybaut # Licensed under the terms of the MIT License # see the mpl licenses directory for a copy of the license """Module that provides a GUI-based editor for matplotlib's figure options""" from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six import os.path as osp import matplotlib.backends.qt_editor.formlayout as formlayout from matplotlib.backends.qt_compat import QtGui from matplotlib import markers from matplotlib.colors import colorConverter, rgb2hex def get_icon(name): import matplotlib basedir = osp.join(matplotlib.rcParams['datapath'], 'images') return QtGui.QIcon(osp.join(basedir, name)) LINESTYLES = {'-': 'Solid', '--': 'Dashed', '-.': 'DashDot', ':': 'Dotted', 'none': 'None', } DRAWSTYLES = {'default': 'Default', 'steps': 'Steps', } MARKERS = markers.MarkerStyle.markers def figure_edit(axes, parent=None): """Edit matplotlib figure options""" sep = (None, None) # separator has_curve = len(axes.get_lines()) > 0 # Get / General xmin, xmax = axes.get_xlim() ymin, ymax = axes.get_ylim() general = [('Title', axes.get_title()), sep, (None, "<b>X-Axis</b>"), ('Min', xmin), ('Max', xmax), ('Label', axes.get_xlabel()), ('Scale', [axes.get_xscale(), 'linear', 'log']), sep, (None, "<b>Y-Axis</b>"), ('Min', ymin), ('Max', ymax), ('Label', axes.get_ylabel()), ('Scale', [axes.get_yscale(), 'linear', 'log']), sep, ('(Re-)Generate automatic legend', False), ] # Save the unit data xconverter = axes.xaxis.converter yconverter = axes.yaxis.converter xunits = axes.xaxis.get_units() yunits = axes.yaxis.get_units() if has_curve: # Get / Curves linedict = {} for line in axes.get_lines(): label = line.get_label() if label == '_nolegend_': continue linedict[label] = line curves = [] linestyles = list(six.iteritems(LINESTYLES)) drawstyles = list(six.iteritems(DRAWSTYLES)) markers = list(six.iteritems(MARKERS)) curvelabels = sorted(linedict.keys()) for label in curvelabels: line = linedict[label] color = rgb2hex(colorConverter.to_rgb(line.get_color())) ec = rgb2hex(colorConverter.to_rgb(line.get_markeredgecolor())) fc = rgb2hex(colorConverter.to_rgb(line.get_markerfacecolor())) curvedata = [('Label', label), sep, (None, '<b>Line</b>'), ('Line Style', [line.get_linestyle()] + linestyles), ('Draw Style', [line.get_drawstyle()] + drawstyles), ('Width', line.get_linewidth()), ('Color', color), sep, (None, '<b>Marker</b>'), ('Style', [line.get_marker()] + markers), ('Size', line.get_markersize()), ('Facecolor', fc), ('Edgecolor', ec), ] curves.append([curvedata, label, ""]) # make sure that there is at least one displayed curve has_curve = bool(curves) datalist = [(general, "Axes", "")] if has_curve: datalist.append((curves, "Curves", "")) def apply_callback(data): """This function will be called to apply changes""" if has_curve: general, curves = data else: general, = data # Set / General title, xmin, xmax, xlabel, xscale, ymin, ymax, ylabel, yscale, \ generate_legend = general if axes.get_xscale() != xscale: axes.set_xscale(xscale) if axes.get_yscale() != yscale: axes.set_yscale(yscale) axes.set_title(title) axes.set_xlim(xmin, xmax) axes.set_xlabel(xlabel) axes.set_ylim(ymin, ymax) axes.set_ylabel(ylabel) # Restore the unit data axes.xaxis.converter = xconverter axes.yaxis.converter = yconverter axes.xaxis.set_units(xunits) axes.yaxis.set_units(yunits) axes.xaxis._update_axisinfo() axes.yaxis._update_axisinfo() if has_curve: # Set / Curves for index, curve in enumerate(curves): line = linedict[curvelabels[index]] label, linestyle, drawstyle, linewidth, color, \ marker, markersize, markerfacecolor, markeredgecolor \ = curve line.set_label(label) line.set_linestyle(linestyle) line.set_drawstyle(drawstyle) line.set_linewidth(linewidth) line.set_color(color) if marker is not 'none': line.set_marker(marker) line.set_markersize(markersize) line.set_markerfacecolor(markerfacecolor) line.set_markeredgecolor(markeredgecolor) # re-generate legend, if checkbox is checked if generate_legend: draggable = None ncol = 1 if axes.legend_ is not None: old_legend = axes.get_legend() draggable = old_legend._draggable is not None ncol = old_legend._ncol new_legend = axes.legend(ncol=ncol) if new_legend: new_legend.draggable(draggable) # Redraw figure = axes.get_figure() figure.canvas.draw() data = formlayout.fedit(datalist, title="Figure options", parent=parent, icon=get_icon('qt4_editor_options.svg'), apply=apply_callback) if data is not None: apply_callback(data)
mit
hugobowne/scikit-learn
sklearn/neighbors/tests/test_approximate.py
55
19053
""" Testing for the approximate neighbor search using Locality Sensitive Hashing Forest module (sklearn.neighbors.LSHForest). """ # Author: Maheshakya Wijewardena, Joel Nothman import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_array_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.metrics.pairwise import pairwise_distances from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors def test_neighbors_accuracy_with_n_candidates(): # Checks whether accuracy increases as `n_candidates` increases. n_candidates_values = np.array([.1, 50, 500]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_candidates_values.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, n_candidates in enumerate(n_candidates_values): lshf = LSHForest(n_candidates=n_candidates) ignore_warnings(lshf.fit)(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") def test_neighbors_accuracy_with_n_estimators(): # Checks whether accuracy increases as `n_estimators` increases. n_estimators = np.array([1, 10, 100]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_estimators.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, t in enumerate(n_estimators): lshf = LSHForest(n_candidates=500, n_estimators=t) ignore_warnings(lshf.fit)(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") @ignore_warnings def test_kneighbors(): # Checks whether desired number of neighbors are returned. # It is guaranteed to return the requested number of neighbors # if `min_hash_match` is set to 0. Returned distances should be # in ascending order. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) # Test unfitted estimator assert_raises(ValueError, lshf.kneighbors, X[0]) ignore_warnings(lshf.fit)(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=False) # Desired number of neighbors should be returned. assert_equal(neighbors.shape[1], n_neighbors) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=True) assert_equal(neighbors.shape[0], n_queries) assert_equal(distances.shape[0], n_queries) # Test only neighbors neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=False) assert_equal(neighbors.shape[0], n_queries) # Test random point(not in the data set) query = rng.randn(n_features).reshape(1, -1) lshf.kneighbors(query, n_neighbors=1, return_distance=False) # Test n_neighbors at initialization neighbors = lshf.kneighbors(query, return_distance=False) assert_equal(neighbors.shape[1], 5) # Test `neighbors` has an integer dtype assert_true(neighbors.dtype.kind == 'i', msg="neighbors are not in integer dtype.") def test_radius_neighbors(): # Checks whether Returned distances are less than `radius` # At least one point should be returned when the `radius` is set # to mean distance from the considering point to other points in # the database. # Moreover, this test compares the radius neighbors of LSHForest # with the `sklearn.neighbors.NearestNeighbors`. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() # Test unfitted estimator assert_raises(ValueError, lshf.radius_neighbors, X[0]) ignore_warnings(lshf.fit)(X) for i in range(n_iter): # Select a random point in the dataset as the query query = X[rng.randint(0, n_samples)].reshape(1, -1) # At least one neighbor should be returned when the radius is the # mean distance from the query to the points of the dataset. mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=False) assert_equal(neighbors.shape, (1,)) assert_equal(neighbors.dtype, object) assert_greater(neighbors[0].shape[0], 0) # All distances to points in the results of the radius query should # be less than mean_dist distances, neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=True) assert_array_less(distances[0], mean_dist) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.radius_neighbors(queries, return_distance=True) # dists and inds should not be 1D arrays or arrays of variable lengths # hence the use of the object dtype. assert_equal(distances.shape, (n_queries,)) assert_equal(distances.dtype, object) assert_equal(neighbors.shape, (n_queries,)) assert_equal(neighbors.dtype, object) # Compare with exact neighbor search query = X[rng.randint(0, n_samples)].reshape(1, -1) mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) distances_exact, _ = nbrs.radius_neighbors(query, radius=mean_dist) distances_approx, _ = lshf.radius_neighbors(query, radius=mean_dist) # Radius-based queries do not sort the result points and the order # depends on the method, the random_state and the dataset order. Therefore # we need to sort the results ourselves before performing any comparison. sorted_dists_exact = np.sort(distances_exact[0]) sorted_dists_approx = np.sort(distances_approx[0]) # Distances to exact neighbors are less than or equal to approximate # counterparts as the approximate radius query might have missed some # closer neighbors. assert_true(np.all(np.less_equal(sorted_dists_exact, sorted_dists_approx))) @ignore_warnings def test_radius_neighbors_boundary_handling(): X = [[0.999, 0.001], [0.5, 0.5], [0, 1.], [-1., 0.001]] n_points = len(X) # Build an exact nearest neighbors model as reference model to ensure # consistency between exact and approximate methods nnbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) # Build a LSHForest model with hyperparameter values that always guarantee # exact results on this toy dataset. lsfh = LSHForest(min_hash_match=0, n_candidates=n_points).fit(X) # define a query aligned with the first axis query = [[1., 0.]] # Compute the exact cosine distances of the query to the four points of # the dataset dists = pairwise_distances(query, X, metric='cosine').ravel() # The first point is almost aligned with the query (very small angle), # the cosine distance should therefore be almost null: assert_almost_equal(dists[0], 0, decimal=5) # The second point form an angle of 45 degrees to the query vector assert_almost_equal(dists[1], 1 - np.cos(np.pi / 4)) # The third point is orthogonal from the query vector hence at a distance # exactly one: assert_almost_equal(dists[2], 1) # The last point is almost colinear but with opposite sign to the query # therefore it has a cosine 'distance' very close to the maximum possible # value of 2. assert_almost_equal(dists[3], 2, decimal=5) # If we query with a radius of one, all the samples except the last sample # should be included in the results. This means that the third sample # is lying on the boundary of the radius query: exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1) assert_array_equal(np.sort(exact_idx[0]), [0, 1, 2]) assert_array_equal(np.sort(approx_idx[0]), [0, 1, 2]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-1]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-1]) # If we perform the same query with a slightly lower radius, the third # point of the dataset that lay on the boundary of the previous query # is now rejected: eps = np.finfo(np.float64).eps exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1 - eps) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1 - eps) assert_array_equal(np.sort(exact_idx[0]), [0, 1]) assert_array_equal(np.sort(approx_idx[0]), [0, 1]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-2]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-2]) def test_distances(): # Checks whether returned neighbors are from closest to farthest. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() ignore_warnings(lshf.fit)(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) distances, neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=True) # Returned neighbors should be from closest to farthest, that is # increasing distance values. assert_true(np.all(np.diff(distances[0]) >= 0)) # Note: the radius_neighbors method does not guarantee the order of # the results. def test_fit(): # Checks whether `fit` method sets all attribute values correctly. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators) ignore_warnings(lshf.fit)(X) # _input_array = X assert_array_equal(X, lshf._fit_X) # A hash function g(p) for each tree assert_equal(n_estimators, len(lshf.hash_functions_)) # Hash length = 32 assert_equal(32, lshf.hash_functions_[0].components_.shape[0]) # Number of trees_ in the forest assert_equal(n_estimators, len(lshf.trees_)) # Each tree has entries for every data point assert_equal(n_samples, len(lshf.trees_[0])) # Original indices after sorting the hashes assert_equal(n_estimators, len(lshf.original_indices_)) # Each set of original indices in a tree has entries for every data point assert_equal(n_samples, len(lshf.original_indices_[0])) def test_partial_fit(): # Checks whether inserting array is consistent with fitted data. # `partial_fit` method should set all attribute values correctly. n_samples = 12 n_samples_partial_fit = 3 n_features = 2 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) X_partial_fit = rng.rand(n_samples_partial_fit, n_features) lshf = LSHForest() # Test unfitted estimator ignore_warnings(lshf.partial_fit)(X) assert_array_equal(X, lshf._fit_X) ignore_warnings(lshf.fit)(X) # Insert wrong dimension assert_raises(ValueError, lshf.partial_fit, np.random.randn(n_samples_partial_fit, n_features - 1)) ignore_warnings(lshf.partial_fit)(X_partial_fit) # size of _input_array = samples + 1 after insertion assert_equal(lshf._fit_X.shape[0], n_samples + n_samples_partial_fit) # size of original_indices_[1] = samples + 1 assert_equal(len(lshf.original_indices_[0]), n_samples + n_samples_partial_fit) # size of trees_[1] = samples + 1 assert_equal(len(lshf.trees_[1]), n_samples + n_samples_partial_fit) def test_hash_functions(): # Checks randomness of hash functions. # Variance and mean of each hash function (projection vector) # should be different from flattened array of hash functions. # If hash functions are not randomly built (seeded with # same value), variances and means of all functions are equal. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators, random_state=rng.randint(0, np.iinfo(np.int32).max)) ignore_warnings(lshf.fit)(X) hash_functions = [] for i in range(n_estimators): hash_functions.append(lshf.hash_functions_[i].components_) for i in range(n_estimators): assert_not_equal(np.var(hash_functions), np.var(lshf.hash_functions_[i].components_)) for i in range(n_estimators): assert_not_equal(np.mean(hash_functions), np.mean(lshf.hash_functions_[i].components_)) def test_candidates(): # Checks whether candidates are sufficient. # This should handle the cases when number of candidates is 0. # User should be warned when number of candidates is less than # requested number of neighbors. X_train = np.array([[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]], dtype=np.float32) X_test = np.array([7, 10, 3], dtype=np.float32).reshape(1, -1) # For zero candidates lshf = LSHForest(min_hash_match=32) ignore_warnings(lshf.fit)(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (3, 32)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=3) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=3) assert_equal(distances.shape[1], 3) # For candidates less than n_neighbors lshf = LSHForest(min_hash_match=31) ignore_warnings(lshf.fit)(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (5, 31)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=5) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=5) assert_equal(distances.shape[1], 5) def test_graphs(): # Smoke tests for graph methods. n_samples_sizes = [5, 10, 20] n_features = 3 rng = np.random.RandomState(42) for n_samples in n_samples_sizes: X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) ignore_warnings(lshf.fit)(X) kneighbors_graph = lshf.kneighbors_graph(X) radius_neighbors_graph = lshf.radius_neighbors_graph(X) assert_equal(kneighbors_graph.shape[0], n_samples) assert_equal(kneighbors_graph.shape[1], n_samples) assert_equal(radius_neighbors_graph.shape[0], n_samples) assert_equal(radius_neighbors_graph.shape[1], n_samples) def test_sparse_input(): # note: Fixed random state in sp.rand is not supported in older scipy. # The test should succeed regardless. X1 = sp.rand(50, 100) X2 = sp.rand(10, 100) forest_sparse = LSHForest(radius=1, random_state=0).fit(X1) forest_dense = LSHForest(radius=1, random_state=0).fit(X1.A) d_sparse, i_sparse = forest_sparse.kneighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.kneighbors(X2.A, return_distance=True) assert_almost_equal(d_sparse, d_dense) assert_almost_equal(i_sparse, i_dense) d_sparse, i_sparse = forest_sparse.radius_neighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.radius_neighbors(X2.A, return_distance=True) assert_equal(d_sparse.shape, d_dense.shape) for a, b in zip(d_sparse, d_dense): assert_almost_equal(a, b) for a, b in zip(i_sparse, i_dense): assert_almost_equal(a, b)
bsd-3-clause
structRecomputation/computations
_modules/auxiliary_exact.py
1
1627
import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt def plot_choices(rslts, tasks): """ Function to produce plot for choice patterns. """ for task in tasks: choice_probabilities = rslts[task] deciles = range(40) colors = ['blue', 'yellow', 'orange', 'red'] width = 0.9 # Plotting bottom = [0] * 40 # Initialize plot ax = plt.figure(figsize=(12, 8)).add_subplot(111) labels = ['Home', 'School', 'Occupation A', 'Occupation B'] for j, i in enumerate([3, 2, 0, 1]): heights = choice_probabilities[:, i] plt.bar(deciles, heights, width, bottom=bottom, color=colors[j], alpha=0.70) bottom = [heights[i] + bottom[i] for i in range(40)] # Both Axes ax.tick_params(labelsize=16, direction='out', axis='both', top='off', right='off') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) # X axis ax.set_xlabel('Period', fontsize=16) ax.set_xlim([0, 40]) # Y axis ax.set_ylabel('Share of Population', fontsize=16) ax.yaxis.get_major_ticks()[0].set_visible(False) # Legend plt.legend(labels, loc='upper center', bbox_to_anchor=(0.5, -0.10), fancybox=False, frameon=False, shadow=False, ncol=4, fontsize=20) # Write out to plt.savefig('choices_' + task + '.png', bbox_inches='tight', format='png')
mit
mramire8/active
datautil/userstudy.py
1
3986
__author__ = 'mramire8' import sys, os sys.path.append(os.path.abspath(".")) import argparse from sklearn.feature_extraction.text import CountVectorizer from bunch import Bunch from datautil.textutils import StemTokenizer from datautil.load_data import * from strategy import randomsampling import codecs import random ap = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawTextHelpFormatter) ap.add_argument('--train', metavar='TRAIN', #default="C:/Users/mramire8/Documents/Research/Oracle confidence and Interruption/newExperiment/evidencefit/data/evidence-data-nolabel.txt", default="20news", help='training data (libSVM format)') ap.add_argument('--file', metavar='FILE', #default="C:/Users/mramire8/Documents/Research/Oracle confidence and Interruption/newExperiment/evidencefit/data/evidence-data-nolabel.txt", default="file.txt", help='output file name') ap.add_argument('--packsize', metavar='packsize', type=int, default=40, help='number of instances per pack') args = ap.parse_args() def main(): vct = CountVectorizer(encoding='ISO-8859-1', min_df=5, max_df=1.0, binary=True, ngram_range=(1, 1), token_pattern='\\b\\w+\\b', tokenizer=StemTokenizer()) vct_analizer = vct.build_analyzer() print("Start loading ...") # data fields: data, bow, file_names, target_names, target ########## NEWS GROUPS ############### # easy to hard. see "Less is More" paper: http://axon.cs.byu.edu/~martinez/classes/678/Presentations/Clawson.pdf categories = [['alt.atheism', 'talk.religion.misc'], ['comp.graphics', 'comp.windows.x'], ['comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware'], ['rec.sport.baseball', 'sci.crypt']] if "imdb" in args.train: ########## IMDB MOVIE REVIEWS ########### data = Bunch(load_imdb(args.train, shuffle=True, rnd=2356, vct=vct)) # should brind data as is elif "aviation" in args.train: raise Exception("We are not ready for that data yet") elif "20news" in args.train: ########## 20 news groups ###### data = Bunch(load_20newsgroups(categories=categories[0], vectorizer=vct, min_size=50)) # for testing purposes elif "dummy" in args.train: ########## DUMMY DATA########### data = Bunch(load_dummy("C:/Users/mramire8/Documents/code/python/data/dummy", shuffle=True,rnd=2356,vct=vct)) else: raise Exception("We do not know that dataset") print("Data %s" % args.train) total = len(data.train.data) print("Data size %s" % total) #print(data.train.data[0]) ## prepare pool for the sampling pool = Bunch() pool.data = data.train.bow.tocsr() # full words, for training pool.target = data.train.target pool.predicted = [] pool.remaining = set(range(pool.data.shape[0])) # indices of the pool bt = randomsampling.BootstrapFromEach(87654321) for i in range(7): query_index = bt.bootstrap(pool=pool, k=args.packsize) # get instances from each class filename = "{0}-P{1}.txt".format(args.train,i) f = codecs.open(filename, 'a+', 'utf-8') #print documents in file random.shuffle(query_index) for di in query_index: x = unicode(data.train.data[di].replace("\n","<br>")) #y = data.train.target[di] y = data.train.target_names[data.train.target[di]] #f.write(str(i)) #f.write("\t") #f.write(str(y)) #f.write("\t") #f.write(x) #f.write("\n") f.close() pool.remaining.difference_update(query_index) # remove the used ones #print("hi there", file="file.txt") if __name__ == '__main__': main()
apache-2.0
anurag313/scikit-learn
sklearn/lda.py
5
17773
""" Linear Discriminant Analysis (LDA) """ # Authors: Clemens Brunner # Martin Billinger # Matthieu Perrot # Mathieu Blondel # License: BSD 3-Clause from __future__ import print_function import warnings import numpy as np from scipy import linalg from .externals.six import string_types from .base import BaseEstimator, TransformerMixin from .linear_model.base import LinearClassifierMixin from .covariance import ledoit_wolf, empirical_covariance, shrunk_covariance from .utils.multiclass import unique_labels from .utils import check_array, check_X_y from .utils.validation import check_is_fitted from .utils.fixes import bincount from .preprocessing import StandardScaler __all__ = ['LDA'] def _cov(X, shrinkage=None): """Estimate covariance matrix (using optional shrinkage). Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. shrinkage : string or float, optional Shrinkage parameter, possible values: - None or 'empirical': no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- s : array, shape (n_features, n_features) Estimated covariance matrix. """ shrinkage = "empirical" if shrinkage is None else shrinkage if isinstance(shrinkage, string_types): if shrinkage == 'auto': sc = StandardScaler() # standardize features X = sc.fit_transform(X) s = ledoit_wolf(X)[0] s = sc.std_[:, np.newaxis] * s * sc.std_[np.newaxis, :] # rescale elif shrinkage == 'empirical': s = empirical_covariance(X) else: raise ValueError('unknown shrinkage parameter') elif isinstance(shrinkage, float) or isinstance(shrinkage, int): if shrinkage < 0 or shrinkage > 1: raise ValueError('shrinkage parameter must be between 0 and 1') s = shrunk_covariance(empirical_covariance(X), shrinkage) else: raise TypeError('shrinkage must be of string or int type') return s def _class_means(X, y): """Compute class means. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- means : array-like, shape (n_features,) Class means. """ means = [] classes = np.unique(y) for group in classes: Xg = X[y == group, :] means.append(Xg.mean(0)) return np.asarray(means) def _class_cov(X, y, priors=None, shrinkage=None): """Compute class covariance matrix. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. priors : array-like, shape (n_classes,) Class priors. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- cov : array-like, shape (n_features, n_features) Class covariance matrix. """ classes = np.unique(y) covs = [] for group in classes: Xg = X[y == group, :] covs.append(np.atleast_2d(_cov(Xg, shrinkage))) return np.average(covs, axis=0, weights=priors) class LDA(BaseEstimator, LinearClassifierMixin, TransformerMixin): """Linear Discriminant Analysis (LDA). A classifier with a linear decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule. The model fits a Gaussian density to each class, assuming that all classes share the same covariance matrix. The fitted model can also be used to reduce the dimensionality of the input by projecting it to the most discriminative directions. Read more in the :ref:`User Guide <lda_qda>`. Parameters ---------- solver : string, optional Solver to use, possible values: - 'svd': Singular value decomposition (default). Does not compute the covariance matrix, therefore this solver is recommended for data with a large number of features. - 'lsqr': Least squares solution, can be combined with shrinkage. - 'eigen': Eigenvalue decomposition, can be combined with shrinkage. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Note that shrinkage works only with 'lsqr' and 'eigen' solvers. priors : array, optional, shape (n_classes,) Class priors. n_components : int, optional Number of components (< n_classes - 1) for dimensionality reduction. store_covariance : bool, optional Additionally compute class covariance matrix (default False). tol : float, optional Threshold used for rank estimation in SVD solver. Attributes ---------- coef_ : array, shape (n_features,) or (n_classes, n_features) Weight vector(s). intercept_ : array, shape (n_features,) Intercept term. covariance_ : array-like, shape (n_features, n_features) Covariance matrix (shared by all classes). means_ : array-like, shape (n_classes, n_features) Class means. priors_ : array-like, shape (n_classes,) Class priors (sum to 1). scalings_ : array-like, shape (rank, n_classes - 1) Scaling of the features in the space spanned by the class centroids. xbar_ : array-like, shape (n_features,) Overall mean. classes_ : array-like, shape (n_classes,) Unique class labels. See also -------- sklearn.qda.QDA: Quadratic discriminant analysis Notes ----- The default solver is 'svd'. It can perform both classification and transform, and it does not rely on the calculation of the covariance matrix. This can be an advantage in situations where the number of features is large. However, the 'svd' solver cannot be used with shrinkage. The 'lsqr' solver is an efficient algorithm that only works for classification. It supports shrinkage. The 'eigen' solver is based on the optimization of the between class scatter to within class scatter ratio. It can be used for both classification and transform, and it supports shrinkage. However, the 'eigen' solver needs to compute the covariance matrix, so it might not be suitable for situations with a high number of features. Examples -------- >>> import numpy as np >>> from sklearn.lda import LDA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = LDA() >>> clf.fit(X, y) LDA(n_components=None, priors=None, shrinkage=None, solver='svd', store_covariance=False, tol=0.0001) >>> print(clf.predict([[-0.8, -1]])) [1] """ def __init__(self, solver='svd', shrinkage=None, priors=None, n_components=None, store_covariance=False, tol=1e-4): self.solver = solver self.shrinkage = shrinkage self.priors = priors self.n_components = n_components self.store_covariance = store_covariance # used only in svd solver self.tol = tol # used only in svd solver def _solve_lsqr(self, X, y, shrinkage): """Least squares solver. The least squares solver computes a straightforward solution of the optimal decision rule based directly on the discriminant functions. It can only be used for classification (with optional shrinkage), because estimation of eigenvectors is not performed. Therefore, dimensionality reduction with the transform is not supported. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_classes) Target values. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Notes ----- This solver is based on [1]_, section 2.6.2, pp. 39-41. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) self.coef_ = linalg.lstsq(self.covariance_, self.means_.T)[0].T self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_eigen(self, X, y, shrinkage): """Eigenvalue solver. The eigenvalue solver computes the optimal solution of the Rayleigh coefficient (basically the ratio of between class scatter to within class scatter). This solver supports both classification and dimensionality reduction (with optional shrinkage). Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage constant. Notes ----- This solver is based on [1]_, section 3.8.3, pp. 121-124. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) Sw = self.covariance_ # within scatter St = _cov(X, shrinkage) # total scatter Sb = St - Sw # between scatter evals, evecs = linalg.eigh(Sb, Sw) evecs = evecs[:, np.argsort(evals)[::-1]] # sort eigenvectors # evecs /= np.linalg.norm(evecs, axis=0) # doesn't work with numpy 1.6 evecs /= np.apply_along_axis(np.linalg.norm, 0, evecs) self.scalings_ = evecs self.coef_ = np.dot(self.means_, evecs).dot(evecs.T) self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_svd(self, X, y, store_covariance=False, tol=1.0e-4): """SVD solver. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. store_covariance : bool, optional Additionally compute class covariance matrix (default False). tol : float, optional Threshold used for rank estimation. """ n_samples, n_features = X.shape n_classes = len(self.classes_) self.means_ = _class_means(X, y) if store_covariance: self.covariance_ = _class_cov(X, y, self.priors_) Xc = [] for idx, group in enumerate(self.classes_): Xg = X[y == group, :] Xc.append(Xg - self.means_[idx]) self.xbar_ = np.dot(self.priors_, self.means_) Xc = np.concatenate(Xc, axis=0) # 1) within (univariate) scaling by with classes std-dev std = Xc.std(axis=0) # avoid division by zero in normalization std[std == 0] = 1. fac = 1. / (n_samples - n_classes) # 2) Within variance scaling X = np.sqrt(fac) * (Xc / std) # SVD of centered (within)scaled data U, S, V = linalg.svd(X, full_matrices=False) rank = np.sum(S > tol) if rank < n_features: warnings.warn("Variables are collinear.") # Scaling of within covariance is: V' 1/S scalings = (V[:rank] / std).T / S[:rank] # 3) Between variance scaling # Scale weighted centers X = np.dot(((np.sqrt((n_samples * self.priors_) * fac)) * (self.means_ - self.xbar_).T).T, scalings) # Centers are living in a space with n_classes-1 dim (maximum) # Use SVD to find projection in the space spanned by the # (n_classes) centers _, S, V = linalg.svd(X, full_matrices=0) rank = np.sum(S > tol * S[0]) self.scalings_ = np.dot(scalings, V.T[:, :rank]) coef = np.dot(self.means_ - self.xbar_, self.scalings_) self.intercept_ = (-0.5 * np.sum(coef ** 2, axis=1) + np.log(self.priors_)) self.coef_ = np.dot(coef, self.scalings_.T) self.intercept_ -= np.dot(self.xbar_, self.coef_.T) def fit(self, X, y, store_covariance=False, tol=1.0e-4): """Fit LDA model according to the given training data and parameters. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array, shape (n_samples,) Target values. """ if store_covariance: warnings.warn("'store_covariance' was moved to the __init__()" "method in version 0.16 and will be removed from" "fit() in version 0.18.", DeprecationWarning) else: store_covariance = self.store_covariance if tol != 1.0e-4: warnings.warn("'tol' was moved to __init__() method in version" " 0.16 and will be removed from fit() in 0.18", DeprecationWarning) self.tol = tol X, y = check_X_y(X, y, ensure_min_samples=2) self.classes_ = unique_labels(y) if self.priors is None: # estimate priors from sample _, y_t = np.unique(y, return_inverse=True) # non-negative ints self.priors_ = bincount(y_t) / float(len(y)) else: self.priors_ = self.priors if self.solver == 'svd': if self.shrinkage is not None: raise NotImplementedError('shrinkage not supported') self._solve_svd(X, y, store_covariance=store_covariance, tol=tol) elif self.solver == 'lsqr': self._solve_lsqr(X, y, shrinkage=self.shrinkage) elif self.solver == 'eigen': self._solve_eigen(X, y, shrinkage=self.shrinkage) else: raise ValueError("unknown solver {} (valid solvers are 'svd', " "'lsqr', and 'eigen').".format(self.solver)) if self.classes_.size == 2: # treat binary case as a special case self.coef_ = np.array(self.coef_[1, :] - self.coef_[0, :], ndmin=2) self.intercept_ = np.array(self.intercept_[1] - self.intercept_[0], ndmin=1) return self def transform(self, X): """Project data to maximize class separation. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- X_new : array, shape (n_samples, n_components) Transformed data. """ if self.solver == 'lsqr': raise NotImplementedError("transform not implemented for 'lsqr' " "solver (use 'svd' or 'eigen').") check_is_fitted(self, ['xbar_', 'scalings_'], all_or_any=any) X = check_array(X) if self.solver == 'svd': X_new = np.dot(X - self.xbar_, self.scalings_) elif self.solver == 'eigen': X_new = np.dot(X, self.scalings_) n_components = X.shape[1] if self.n_components is None \ else self.n_components return X_new[:, :n_components] def predict_proba(self, X): """Estimate probability. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- C : array, shape (n_samples, n_classes) Estimated probabilities. """ prob = self.decision_function(X) prob *= -1 np.exp(prob, prob) prob += 1 np.reciprocal(prob, prob) if len(self.classes_) == 2: # binary case return np.column_stack([1 - prob, prob]) else: # OvR normalization, like LibLinear's predict_probability prob /= prob.sum(axis=1).reshape((prob.shape[0], -1)) return prob def predict_log_proba(self, X): """Estimate log probability. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- C : array, shape (n_samples, n_classes) Estimated log probabilities. """ return np.log(self.predict_proba(X))
bsd-3-clause
drusk/pml
pml/unsupervised/pca.py
1
12771
# Copyright (C) 2012 David Rusk # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. """ Implements principal component analysis (PCA) and related operations. @author: drusk """ import numpy as np import numpy.linalg as linalg import pandas as pd from pml.data import model from pml.utils import plotting class ReducedDataSet(model.DataSet): """ A DataSet which has had dimensionality reduction performed on it. Columns are interpreted as features in the data set, and rows are observations. This dimensionally reduced data set has all of the observations of the original, but its features have been adjusted to be linear combinations of the originals. Those features with little variance may have been dropped during the dimensionality reduction process. Use the percent_variance() method to find out how much of the original variance has been retained in the reduced features. """ def __init__(self, data, original_data, eigenvalues, weights): """ Creates a new ReducedDataSet. Args: data: numpy.array The raw array with the new data. original_data: model.DataSet The original data before being reduced. eigenvalues: numpy.array (1D) The list of eigenvalues produced to determine which components in the new feature space were most important. This includes all of the eigenvalues, not just the ones for the components selected. weights: numpy.array (2D) The weights 'matrix' that the imput data is dot-producted with to produce the reduced data. Each column corresponds to a principle component and contains the coefficients for each feature. """ # build a pandas DataFrame with the original row index dataframe = pd.DataFrame(data, index=original_data.get_sample_ids()) super(ReducedDataSet, self).__init__(dataframe, original_data.get_labels()) self.eigenvalues = eigenvalues self.weights = weights self._original_features = original_data.feature_list() def percent_variance(self): """ Calculates the percentage of the original DataSet's variance which is still present in this dimensionally reduced DataSet. Returns: A floating point number between 0.0 and 1.0 representing the percentage. """ return _percent_variance(self.eigenvalues, self.num_features()) def get_weights(self): """ Returns: weights: numpy.array (2D) The weights 'matrix' that the imput data was dot-producted with to produce the reduced data. Each column corresponds to a principle component and contains the coefficients for each feature. """ return self.weights def get_first_component_impacts(self): """ Takes the weights for the features in the first principle component and finds their absolute values ('impacts'). See also get_weights(). Returns: impacts: pd.Series Magnitude (absolute value) of weights by feature, sorted from largest to smallest. """ impact = np.abs(pd.Series(self.weights[:, 0], index=self._original_features)) return impact.order(ascending=False) def get_eigenvalues(self): """ Returns: eigenvalues: numpy.array (1D) The list of eigenvalues produced to determine which components in the new feature space were most important. This includes all of the eigenvalues, not just the ones for the components selected. NOTE: the eigenvalues are returned in the order they were calculated, not sorted. """ return self.eigenvalues def _percent_variance(eigenvalues, num_components): """ Calculates the percentage of total variance found in the top princpal components. Args: eigenvalues: numpy.array (1D) The list of all eigenvalues for a data set. num_components: int The number of principal components which will be selected. Returns: The percentage of total variance for the top number of principal components selected. This will be a floating point number between 0.0 and 1.0. """ # make sure eigenvalues are a numpy array (allows fancy indexing) eigenvalues = np.array(eigenvalues) # get indices sorted smallest to largest sorted_indices = np.argsort(eigenvalues) # get largest selected_indices = sorted_indices[-num_components:] return np.sum(eigenvalues[selected_indices]) / np.sum(eigenvalues) def _get_cov_mat_eigen_values_and_vectors(dataset): """ Calculates the eigenvalues and eigenvectors for the covariance matrix of a DataSet. Args: dataset: model.DataSet The data whose covariance matrix will be calculated. Returns: eigenvalues: numpy.array A 1D array of the eigenvalues of the covariance matrix. eigenvectors: numpy.array A 2D array of the eigenvectors of the covariance matrix. """ # rowvar=0 so that rows are interpreted as observations cov_mat = np.cov(dataset.get_data_frame(), rowvar=0) eigenvalues, eigenvectors = linalg.eig(cov_mat) return eigenvalues, eigenvectors def _copy_and_remove_means(dataset): """ Copies the DataSet before removing the column means in order to preserve the original data. Args: dataset: model.DataSet The DataSet to copy and remove means from. Returns: The new, copied DataSet with column means removed. """ dataset = dataset.copy() remove_means(dataset) return dataset def _get_descending_cov_mat_eigenvalues(dataset): """ Get the eigenvalues of the covariance matrix sorted largest to smallest. Args: dataset: model.DataSet The data whose covariance matrix will be calculated. Returns: eigenvalues: list The list of eigenvalues in descending order of magnitude. """ eigenvalues, _ = _get_cov_mat_eigen_values_and_vectors(dataset) eigenvalues = eigenvalues.tolist() # sort from largest to smallest eigenvalues.sort() eigenvalues.reverse() return eigenvalues def plot_pct_variance_per_principal_component(dataset, plot_type="bar"): """ Generates a plot to visualize the percentage of variance captured by each principal component in the data set. Args: dataset: model.DataSet The data set whose principal components will be examined. Should not already be reduced. plot_type: string The plot type to generate. Supported plot types are: 'bar': vertical bar chart 'barh': horizontal bar chart 'line': line chart Default is 'bar'. Returns: void, but produces a matplotlib plot. Raises: UnsupportedPlotTypeError if plot_type is not recognized. """ # Fail early: check plot type here right away even though the plotting # module will check it later. Don't want a user with a large data set to # wait for all the processing to occur only to find out they made a typo # on the plot type. plotting.verify_supported_series_plot_type(plot_type) variances = get_pct_variance_per_principal_component(dataset) plotting.plot_percent_series(variances, plot_type) def get_pct_variance_per_principal_component(dataset): """ Determines the percentage of variance captured by each principal component in the data set. Args: dataset: model.DataSet The data set whose principal components will be examined. Should not already be reduced. Returns: variances: pandas.Series The percentage of variance (as a float between 0.0 and 1.0) for each principal component. """ eigenvalues = _get_descending_cov_mat_eigenvalues(dataset) return pd.Series(eigenvalues) / np.sum(eigenvalues) def recommend_num_components(dataset, min_pct_variance=0.9): """ Recommends the number of principal components that should be selected in order to keep a minimum specified percentage of the original data's variance while also minimizing dimensionality. Args: dataset: model.DataSet The dataset in question. min_pct_variance: float The minimum percent of variance which should be maintained when selecting the recommended number of principal components. Should be between 0.0 and 1.0. Defaults to 0.9 (i.e. 90%). Returns: The integer number of principal components which should be selected for Principal Component Analysis. Raises: ValueError if min_pct_variance is < 0 or > 1. """ if min_pct_variance < 0 or min_pct_variance > 1: raise ValueError("Invalid minimum percent variance " "(must be between 0 and 1): %f" %min_pct_variance) dataset = _copy_and_remove_means(dataset) eigenvalues = _get_descending_cov_mat_eigenvalues(dataset) cumulative_pct_variance = np.cumsum(eigenvalues) / np.sum(eigenvalues) num_components = 1 for pct_variance in cumulative_pct_variance: if pct_variance >= min_pct_variance: return num_components num_components += 1 # should never reach this point since if all components are used the # percent variance will be 100%, and the min percent variance specified # can never be greater than 100% def remove_means(dataset): """ Remove the column mean from each value in the dataset. For example, if a certain column as values [1, 2, 3], the column mean is 2. When the column means are removed, that column will then have the values [-1, 0, 1]. NOTE: the modifications are made in place in dataset. Args: dataset: model.DataSet The dataset to remove the column means from. """ column_means = dataset.reduce_features(np.mean) for feature in dataset.feature_list(): def subtract_mean(sample): """ Subtracts the current column/feature's mean value from a sample. """ return sample - column_means[feature] dataset.set_column(feature, dataset.get_column(feature).map(subtract_mean)) def pca(dataset, num_components): """ Performs Principle Component Analysis (PCA) on a dataset. Args: dataset: model.DataSet The dataset to be analysed. num_components: int The number of principal components to select. """ dataset = _copy_and_remove_means(dataset) eigenvalues, eigenvectors = _get_cov_mat_eigen_values_and_vectors(dataset) # get a list of indices for the eigenvalues ordered largest to smallest indices = np.argsort(eigenvalues).tolist() indices.reverse() # take the top N eigenvectors selected_indices = indices[:num_components] # transform the data into the new space created by the top N eigenvectors weights = eigenvectors[:, selected_indices] transformed_data = np.dot(dataset.get_data_frame(), weights) return ReducedDataSet(transformed_data, dataset, eigenvalues, weights)
mit
csaladenes/csaladenes.github.io
present/bi2/2020/ubb/az_en_jupyter2_mappam/sklearn_tutorial/fig_code/ML_flow_chart.py
61
4970
""" Tutorial Diagrams ----------------- This script plots the flow-charts used in the scikit-learn tutorials. """ import numpy as np import pylab as pl from matplotlib.patches import Circle, Rectangle, Polygon, Arrow, FancyArrow def create_base(box_bg = '#CCCCCC', arrow1 = '#88CCFF', arrow2 = '#88FF88', supervised=True): fig = pl.figure(figsize=(9, 6), facecolor='w') ax = pl.axes((0, 0, 1, 1), xticks=[], yticks=[], frameon=False) ax.set_xlim(0, 9) ax.set_ylim(0, 6) patches = [Rectangle((0.3, 3.6), 1.5, 1.8, zorder=1, fc=box_bg), Rectangle((0.5, 3.8), 1.5, 1.8, zorder=2, fc=box_bg), Rectangle((0.7, 4.0), 1.5, 1.8, zorder=3, fc=box_bg), Rectangle((2.9, 3.6), 0.2, 1.8, fc=box_bg), Rectangle((3.1, 3.8), 0.2, 1.8, fc=box_bg), Rectangle((3.3, 4.0), 0.2, 1.8, fc=box_bg), Rectangle((0.3, 0.2), 1.5, 1.8, fc=box_bg), Rectangle((2.9, 0.2), 0.2, 1.8, fc=box_bg), Circle((5.5, 3.5), 1.0, fc=box_bg), Polygon([[5.5, 1.7], [6.1, 1.1], [5.5, 0.5], [4.9, 1.1]], fc=box_bg), FancyArrow(2.3, 4.6, 0.35, 0, fc=arrow1, width=0.25, head_width=0.5, head_length=0.2), FancyArrow(3.75, 4.2, 0.5, -0.2, fc=arrow1, width=0.25, head_width=0.5, head_length=0.2), FancyArrow(5.5, 2.4, 0, -0.4, fc=arrow1, width=0.25, head_width=0.5, head_length=0.2), FancyArrow(2.0, 1.1, 0.5, 0, fc=arrow2, width=0.25, head_width=0.5, head_length=0.2), FancyArrow(3.3, 1.1, 1.3, 0, fc=arrow2, width=0.25, head_width=0.5, head_length=0.2), FancyArrow(6.2, 1.1, 0.8, 0, fc=arrow2, width=0.25, head_width=0.5, head_length=0.2)] if supervised: patches += [Rectangle((0.3, 2.4), 1.5, 0.5, zorder=1, fc=box_bg), Rectangle((0.5, 2.6), 1.5, 0.5, zorder=2, fc=box_bg), Rectangle((0.7, 2.8), 1.5, 0.5, zorder=3, fc=box_bg), FancyArrow(2.3, 2.9, 2.0, 0, fc=arrow1, width=0.25, head_width=0.5, head_length=0.2), Rectangle((7.3, 0.85), 1.5, 0.5, fc=box_bg)] else: patches += [Rectangle((7.3, 0.2), 1.5, 1.8, fc=box_bg)] for p in patches: ax.add_patch(p) pl.text(1.45, 4.9, "Training\nText,\nDocuments,\nImages,\netc.", ha='center', va='center', fontsize=14) pl.text(3.6, 4.9, "Feature\nVectors", ha='left', va='center', fontsize=14) pl.text(5.5, 3.5, "Machine\nLearning\nAlgorithm", ha='center', va='center', fontsize=14) pl.text(1.05, 1.1, "New Text,\nDocument,\nImage,\netc.", ha='center', va='center', fontsize=14) pl.text(3.3, 1.7, "Feature\nVector", ha='left', va='center', fontsize=14) pl.text(5.5, 1.1, "Predictive\nModel", ha='center', va='center', fontsize=12) if supervised: pl.text(1.45, 3.05, "Labels", ha='center', va='center', fontsize=14) pl.text(8.05, 1.1, "Expected\nLabel", ha='center', va='center', fontsize=14) pl.text(8.8, 5.8, "Supervised Learning Model", ha='right', va='top', fontsize=18) else: pl.text(8.05, 1.1, "Likelihood\nor Cluster ID\nor Better\nRepresentation", ha='center', va='center', fontsize=12) pl.text(8.8, 5.8, "Unsupervised Learning Model", ha='right', va='top', fontsize=18) def plot_supervised_chart(annotate=False): create_base(supervised=True) if annotate: fontdict = dict(color='r', weight='bold', size=14) pl.text(1.9, 4.55, 'X = vec.fit_transform(input)', fontdict=fontdict, rotation=20, ha='left', va='bottom') pl.text(3.7, 3.2, 'clf.fit(X, y)', fontdict=fontdict, rotation=20, ha='left', va='bottom') pl.text(1.7, 1.5, 'X_new = vec.transform(input)', fontdict=fontdict, rotation=20, ha='left', va='bottom') pl.text(6.1, 1.5, 'y_new = clf.predict(X_new)', fontdict=fontdict, rotation=20, ha='left', va='bottom') def plot_unsupervised_chart(): create_base(supervised=False) if __name__ == '__main__': plot_supervised_chart(False) plot_supervised_chart(True) plot_unsupervised_chart() pl.show()
mit
ch3ll0v3k/scikit-learn
sklearn/metrics/cluster/tests/test_unsupervised.py
230
2823
import numpy as np from scipy.sparse import csr_matrix from sklearn import datasets from sklearn.metrics.cluster.unsupervised import silhouette_score from sklearn.metrics import pairwise_distances from sklearn.utils.testing import assert_false, assert_almost_equal from sklearn.utils.testing import assert_raises_regexp def test_silhouette(): # Tests the Silhouette Coefficient. dataset = datasets.load_iris() X = dataset.data y = dataset.target D = pairwise_distances(X, metric='euclidean') # Given that the actual labels are used, we can assume that S would be # positive. silhouette = silhouette_score(D, y, metric='precomputed') assert(silhouette > 0) # Test without calculating D silhouette_metric = silhouette_score(X, y, metric='euclidean') assert_almost_equal(silhouette, silhouette_metric) # Test with sampling silhouette = silhouette_score(D, y, metric='precomputed', sample_size=int(X.shape[0] / 2), random_state=0) silhouette_metric = silhouette_score(X, y, metric='euclidean', sample_size=int(X.shape[0] / 2), random_state=0) assert(silhouette > 0) assert(silhouette_metric > 0) assert_almost_equal(silhouette_metric, silhouette) # Test with sparse X X_sparse = csr_matrix(X) D = pairwise_distances(X_sparse, metric='euclidean') silhouette = silhouette_score(D, y, metric='precomputed') assert(silhouette > 0) def test_no_nan(): # Assert Silhouette Coefficient != nan when there is 1 sample in a class. # This tests for the condition that caused issue 960. # Note that there is only one sample in cluster 0. This used to cause the # silhouette_score to return nan (see bug #960). labels = np.array([1, 0, 1, 1, 1]) # The distance matrix doesn't actually matter. D = np.random.RandomState(0).rand(len(labels), len(labels)) silhouette = silhouette_score(D, labels, metric='precomputed') assert_false(np.isnan(silhouette)) def test_correct_labelsize(): # Assert 1 < n_labels < n_samples dataset = datasets.load_iris() X = dataset.data # n_labels = n_samples y = np.arange(X.shape[0]) assert_raises_regexp(ValueError, 'Number of labels is %d\. Valid values are 2 ' 'to n_samples - 1 \(inclusive\)' % len(np.unique(y)), silhouette_score, X, y) # n_labels = 1 y = np.zeros(X.shape[0]) assert_raises_regexp(ValueError, 'Number of labels is %d\. Valid values are 2 ' 'to n_samples - 1 \(inclusive\)' % len(np.unique(y)), silhouette_score, X, y)
bsd-3-clause
feranick/GES_AT
GridEdgeAT/gridedgeat/resultsWindow.py
1
32720
''' ResultsWindow.py ---------------- Classes for providing a graphical user interface for the resultsWindow Copyright (C) 2017-2019 Nicola Ferralis <[email protected]> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. ''' import sys, random, math, json, requests, webbrowser import numpy as np import pandas as pd from datetime import datetime from PyQt5.QtWidgets import (QMainWindow,QPushButton,QVBoxLayout,QFileDialog,QWidget, QGridLayout,QGraphicsView,QLabel,QComboBox,QLineEdit, QTextEdit, QMenuBar,QStatusBar, QApplication,QTableWidget, QTableWidgetItem,QAction,QHeaderView,QMenu,QHBoxLayout, QAbstractItemView) from PyQt5.QtCore import (QRect,pyqtSlot,pyqtSignal,Qt) from PyQt5.QtGui import (QColor,QCursor) from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar import matplotlib.pyplot as plt from .dataManagement import * from .queryDMWindow import * from .fitMethods import * from . import logger #################################################################### # Results Window #################################################################### class ResultsWindow(QMainWindow): def __init__(self, parent=None): super(ResultsWindow, self).__init__(parent) self.deviceID = np.zeros((0,1)) self.perfData = np.zeros((0,9)) self.JV = np.array([]) self.setupDataFrame() self.csvFolder = self.parent().config.csvSavingFolder self.initUI() self.initPlots(self.perfData) self.initJVPlot() self.show() # Define UI elements def initUI(self): self.setGeometry(380, 30, 1180, 950) self.setWindowTitle('Results Panel') self.setFixedSize(self.size()) # A figure instance to plot on self.figureMPP = plt.figure() self.figureJVresp = plt.figure() self.figurePVresp = plt.figure() self.figureJVresp.subplots_adjust(left=0.15, right=0.95, top=0.95, bottom=0.15) self.figurePVresp.subplots_adjust(left=0.15, right=0.95, top=0.95, bottom=0.15) self.figureMPP.subplots_adjust(left=0.08, right=0.98, top=0.95, bottom=0.20) self.centralwidget = QWidget(self) self.centralwidget.setObjectName("centralwidget") self.jvGridLayoutWidget = QWidget(self.centralwidget) self.jvGridLayoutWidget.setGeometry(QRect(0, 30, 1180, 455)) self.mppGridLayoutWidget = QWidget(self.centralwidget) self.mppGridLayoutWidget.setGeometry(QRect(0, 475, 1180, 290)) self.VLayout = QVBoxLayout(self.jvGridLayoutWidget) self.jvHLayout = QHBoxLayout() self.canvasJVresp = FigureCanvas(self.figureJVresp) self.toolbarJVresp = CustomToolbar(self.canvasJVresp, self.figureJVresp, self) self.toolbarJVresp.setMaximumHeight(30) self.toolbarJVresp.setStyleSheet("QToolBar { border: 0px }") self.canvasPVresp = FigureCanvas(self.figurePVresp) self.toolbarPVresp = CustomToolbar(self.canvasPVresp, self.figurePVresp, self) self.toolbarPVresp.setMaximumHeight(30) self.toolbarPVresp.setStyleSheet("QToolBar { border: 0px }") self.jvLayout = QVBoxLayout() self.pvLayout = QVBoxLayout() self.jvLayout.addWidget(self.toolbarJVresp) self.jvLayout.addWidget(self.canvasJVresp) self.jvHLayout.addLayout(self.jvLayout) self.pvLayout.addWidget(self.toolbarPVresp) self.pvLayout.addWidget(self.canvasPVresp) self.jvHLayout.addLayout(self.pvLayout) self.VLayout.addLayout(self.jvHLayout) self.mppLayout = QVBoxLayout(self.mppGridLayoutWidget) self.canvasMPP = FigureCanvas(self.figureMPP) self.toolbarMPP = NavigationToolbar(self.canvasMPP, self) self.toolbarMPP.setMaximumHeight(30) self.toolbarMPP.setStyleSheet("QToolBar { border: 0px }") self.mppLayout.addWidget(self.toolbarMPP) self.mppLayout.addWidget(self.canvasMPP) self.resTableW = 1160 self.resTableH = 145 self.resTableWidget = QTableWidget(self.centralwidget) self.resTableWidget.setGeometry(QRect(10, 770, self.resTableW, self.resTableH)) self.resTableWidget.setToolTip("Right click for more options") self.resTableWidget.setColumnCount(11) self.resTableWidget.setRowCount(0) self.resTableWidget.setItem(0,0, QTableWidgetItem("")) self.resTableWidget.setHorizontalHeaderItem(0,QTableWidgetItem("Device ID")) self.resTableWidget.setHorizontalHeaderItem(1,QTableWidgetItem("Av Voc [V]")) self.resTableWidget.setHorizontalHeaderItem(2,QTableWidgetItem(u"Av Jsc [mA/cm\u00B2]")) self.resTableWidget.setHorizontalHeaderItem(3,QTableWidgetItem("Av VPP [V]")) self.resTableWidget.setHorizontalHeaderItem(4,QTableWidgetItem("Av MPP [mW/cm\u00B2]")) self.resTableWidget.setHorizontalHeaderItem(5,QTableWidgetItem("Av FF")) self.resTableWidget.setHorizontalHeaderItem(6,QTableWidgetItem("Av PCE [%]")) self.resTableWidget.setHorizontalHeaderItem(7,QTableWidgetItem("Illumination")) self.resTableWidget.setHorizontalHeaderItem(8,QTableWidgetItem("Tracking time [s]")) self.resTableWidget.setHorizontalHeaderItem(9,QTableWidgetItem("Acq Date")) self.resTableWidget.setHorizontalHeaderItem(10,QTableWidgetItem("Acq Time")) self.resTableWidget.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) self.resTableWidget.setSelectionBehavior(QAbstractItemView.SelectRows) self.resTableWidget.itemClicked.connect(self.onCellClick) self.setCentralWidget(self.centralwidget) # Make Menu for plot related calls self.menuBar = QMenuBar(self) self.menuBar.setGeometry(0,0,1150,25) self.loadMenu = QAction("&Load Local Data", self) self.loadMenu.setShortcut("Ctrl+o") self.loadMenu.setStatusTip('Load csv data from saved file') self.loadMenu.triggered.connect(self.load_csv) self.loadDMMenu = QAction("&Load Data from Data Management", self) self.loadDMMenu.setShortcut("Ctrl+Shift+o") self.loadDMMenu.setStatusTip('Load data from Data Management') self.loadDMMenu.triggered.connect(self.openWindowDM) self.saveAllMenu = QAction("&Save All Data", self) self.saveAllMenu.setShortcut("Ctrl+Shift+s") self.saveAllMenu.setStatusTip('Save all data into csv') self.saveAllMenu.triggered.connect(lambda: self.selectDeviceSaveLocally(list(range(self.resTableWidget.rowCount())))) self.directoryMenu = QAction("&Set directory for saved files", self) self.directoryMenu.setShortcut("Ctrl+d") self.directoryMenu.setStatusTip('Set directory for saved files') self.directoryMenu.triggered.connect(self.set_dir_saved) self.clearMenu = QAction("&Clear Plots", self) self.clearMenu.setShortcut("Ctrl+x") self.clearMenu.setStatusTip('Clear plots') self.clearMenu.triggered.connect(lambda: self.clearPlots(True)) fileMenu = self.menuBar.addMenu('&File') fileMenu.addAction(self.loadMenu) fileMenu.addAction(self.loadDMMenu) fileMenu.addAction(self.saveAllMenu) fileMenu.addSeparator() fileMenu.addAction(self.directoryMenu) plotMenu = self.menuBar.addMenu('&Plot') plotMenu.addAction(self.clearMenu) self.parent().viewWindowMenus(self.menuBar, self.parent()) self.statusbar = QStatusBar(self) self.statusbar.setObjectName("statusbar") self.setStatusBar(self.statusbar) # Set directory for saved data def set_dir_saved(self): self.csvFolder = str(QFileDialog.getExistingDirectory(self, "Select Directory")) self.parent().config.conf['System']['csvSavingFolder'] = str(self.csvFolder) self.parent().config.saveConfig(self.parent().config.configFile) self.parent().config.readConfig(self.parent().config.configFile) msg = "CSV Files will be saved in: "+self.csvFolder print(msg) logger.info(msg) # Define axis parametrs for plots def plotSettings(self, ax): ax.tick_params(axis='both', which='major', labelsize=8) ax.tick_params(axis='both', which='minor', labelsize=8) # Initialize Time-based plots def initPlots(self, data): self.figureMPP.clf() self.axMPP = self.figureMPP.add_subplot(111) self.plotSettings(self.axMPP) self.axMPP.set_xlabel('Time [s]',fontsize=8) self.axMPP.set_ylabel('Max power point \n[mW/cm$^2$]',fontsize=8) self.axMPP.set_autoscale_on(True) self.axMPP.autoscale_view(True,True,True) self.canvasMPP.draw() self.lineMPP, = self.axMPP.plot(data[:,0],data[:,4], '.-',linewidth=0.5) # Initialize JV and PV plots def initJVPlot(self): self.figureJVresp.clf() self.figurePVresp.clf() self.axJVresp = self.figureJVresp.add_subplot(111) self.plotSettings(self.axJVresp) self.axJVresp.set_xlabel('Voltage [V]',fontsize=8) self.axJVresp.set_ylabel('Current density [mA/cm$^2$]',fontsize=8) self.axJVresp.axvline(x=0, linewidth=0.5) self.axJVresp.axhline(y=0, linewidth=0.5) self.axPVresp = self.figurePVresp.add_subplot(111) self.plotSettings(self.axPVresp) self.axPVresp.set_xlabel('Voltage [V]',fontsize=8) self.axPVresp.set_ylabel('Power density [mW/cm$^2$]',fontsize=8) self.axPVresp.axvline(x=0, linewidth=0.5) self.axPVresp.axhline(y=0, linewidth=0.5) self.canvasJVresp.draw() self.canvasPVresp.draw() # Plot MPP with tracking def plotMPP(self, data): self.toolbarMPP.update() self.lineMPP.set_data(data[:,2].astype(float), abs(data[:,6].astype(float))) self.axMPP.relim() self.axMPP.autoscale_view(True,True,True) self.canvasMPP.draw() # Plot JV response def plotJVresp(self, JV, clearFlag): if clearFlag: self.initJVPlot() self.toolbarJVresp.update() self.toolbarPVresp.update() labelF = "Forw" labelR = "Back" else: labelF = "Forw-Fit" labelR = "Back-Fit" self.axJVresp.plot(JV[:,0],JV[:,1], '.-',linewidth=0.5, label=labelF) self.axJVresp.plot(JV[:,2],JV[:,3], '.-',linewidth=0.5, label=labelR) self.axPVresp.plot(JV[:,0],JV[:,0]*JV[:,1], '.-',linewidth=0.5, label=labelF) self.axPVresp.plot(JV[:,2],JV[:,2]*JV[:,3], '.-',linewidth=0.5, label=labelR) self.axJVresp.legend(loc='lower left') self.axPVresp.legend(loc='upper left') if self.parent().config.logPlotJV: self.axJVresp.set_yscale('log') self.axPVresp.set_yscale('log') self.figureJVresp.tight_layout() self.figurePVresp.tight_layout() self.canvasJVresp.draw() self.canvasPVresp.draw() # Clear all plots and fields def clearPlots(self, includeTable): self.setWindowTitle('Results Panel') self.deviceID = np.zeros((0,1)) self.perfData = np.zeros((0,8)) self.JV = np.array([]) self.initPlots(self.perfData) self.initJVPlot() if includeTable is True: self.resTableWidget.setRowCount(0) QApplication.processEvents() # Action upon selecting a row in the table. @pyqtSlot() def onCellClick(self): row = self.resTableWidget.selectedItems()[0].row() for j in range(self.resTableWidget.columnCount()): for i in range(self.resTableWidget.rowCount()): self.resTableWidget.item(i,j).setBackground(QColor(255,255,255)) for j in range(self.resTableWidget.columnCount()): self.resTableWidget.item(row,j).setBackground(QColor(0,255,0)) try: self.setWindowTitle('Results Panel - Device: '+ str(self.dfTotDeviceID.iat[0,self.resTableWidget.rowCount()-1-row][0][0])) self.plotData(self.dfTotDeviceID.iat[0,self.resTableWidget.rowCount()-1-row], self.dfTotPerfData.iat[0,self.resTableWidget.rowCount()-1-row], self.dfTotJV.iat[0,self.resTableWidget.rowCount()-1-row]) except: pass # Process Key Events def keyPressEvent(self, event): if self.resTableWidget.rowCount() > 0: if event.key() == Qt.Key_Delete: selectedRows = list(set([ i.row() for i in self.resTableWidget.selectedItems()])) self.selectDeviceRemove(selectedRows) # Enable right click on substrates for saving locally and delete def contextMenuEvent(self, event): self.menu = QMenu(self) rPos = self.resTableWidget.mapFromGlobal(QCursor.pos()) if rPos.x()>0 and rPos.x()<self.resTableW and \ rPos.y()>0 and rPos.y()<self.resTableH and \ self.resTableWidget.rowCount() > 0 : selectCellLoadAction = QAction('Load from csv...', self) selectCellLoadAction.setShortcut("Ctrl+o") selectCellLoadAction.setStatusTip('Load data from saved csv file...') selectCellSaveAction = QAction('Save selected data as csv files...', self) selectCellSaveAction.setShortcut("Ctrl+s") selectCellSaveAllAction = QAction('Save all data as csv files...', self) selectCellSaveAllAction.setShortcut("Ctrl+Shift+s") viewDMEntryAction = QAction('View Entry in Database...', self) viewDMEntryAction.setShortcut("Ctrl+v") selectCellRemoveAction = QAction('Remove Selected...', self) selectCellRemoveAction.setShortcut("Del") selectRemoveAllAction = QAction('Remove All...', self) selectRemoveAllAction.setShortcut("Shift+Del") fitInterpolateAction = QAction('Fit with scipy.interpolate...', self) fitInterpolateAction.setShortcut("Ctrl+i") fitDiodeEquationAction = QAction('Fit with Diode Equation (EXPERIMENTAL)...', self) fitDiodeEquationAction.setShortcut("Ctrl+e") self.menu.addAction(selectCellRemoveAction) self.menu.addAction(selectRemoveAllAction) self.menu.addSeparator() self.menu.addAction(selectCellLoadAction) self.menu.addAction(selectCellSaveAction) self.menu.addAction(selectCellSaveAllAction) self.menu.addSeparator() self.menu.addAction(fitInterpolateAction) self.menu.addAction(fitDiodeEquationAction) self.menu.addSeparator() self.menu.addAction(viewDMEntryAction) self.menu.popup(QCursor.pos()) QApplication.processEvents() selectCellLoadAction.triggered.connect(self.load_csv) selectedRows = [self.resTableWidget.rowCount()-j-1 for j in list(set([ i.row() for i in self.resTableWidget.selectedItems()]))] #selectedRows = list(set([ i.row() for i in self.resTableWidget.selectedItems()])) #for row in selectedRows[::-1]: selectCellSaveAction.triggered.connect(lambda: self.selectDeviceSaveLocally(selectedRows)) selectCellSaveAllAction.triggered.connect(lambda: self.selectDeviceSaveLocally(list(range(self.resTableWidget.rowCount())))) selectCellRemoveAction.triggered.connect(lambda: self.selectDeviceRemove(selectedRows)) selectRemoveAllAction.triggered.connect(lambda: self.clearPlots(True)) fitDiodeEquationAction.triggered.connect(lambda: self.fitDiodeEquation(selectedRows)) fitInterpolateAction.triggered.connect(lambda: self.fitInterpolate(selectedRows)) viewDMEntryAction.triggered.connect(lambda: self.parent().samplewind.viewOnDM(self.resTableWidget.selectedItems()[0].text())) # Logic to save locally devices selected from results table def selectDeviceSaveLocally(self, selectedRows): try: folder = str(QFileDialog.getExistingDirectory(self, "Select directory where to save...")) #print(selectedRows) for row in selectedRows: #print(self.dfTotDeviceID.iat[0,row][0][0],self.dfTotPerfData.iat[0,row]) self.save_csv(self.dfTotDeviceID.iat[0,row][0][0], self.dfTotAcqParams.iloc[[row]], self.dfTotPerfData.iat[0,row], self.dfTotJV.iat[0,row],folder) except: print("Error: data cannot be saved") # Logic to remove data from devices selected from results table def selectDeviceRemove(self, selectedRows): for row in selectedRows: self.dfTotDeviceID.drop(self.dfTotDeviceID.columns[row], axis=1) self.dfTotPerfData.drop(self.dfTotPerfData.columns[row], axis=1) self.dfTotJV.drop(self.dfTotJV.columns[row], axis=1) for l in self.axJVresp.get_lines(): l.remove() for l in self.axPVresp.get_lines(): l.remove() #print(" Removed data from table: ",str(self.dfTotDeviceID.iat[0,row])) self.canvasJVresp.draw() self.canvasPVresp.draw() self.resTableWidget.removeRow(row) # Logic to Fit the JV curve using the Diode Equation def fitDiodeEquation(self, selectedRows): FM = FitMethods(self) FM.results.connect(lambda msg: print(msg)) FM.results.connect(lambda msg: logger.info(msg)) #DE.func.connect(lambda func: [FM.fitDE(func,self.dfTotJV.iat[0,row]) for row in selectedRows]) FM.JV_fit.connect(lambda JV: self.plotJVresp(JV,False)) [FM.fitDE(self.dfTotJV.iat[0,row]) for row in selectedRows] #FM.start() # Logic to Fit the JV curve using scipy.interpolate.interp1d def fitInterpolate(self, selectedRows): FM = FitMethods(self) FM.results.connect(lambda msg: print(msg)) FM.results.connect(lambda msg: logger.info(msg)) #DE.func.connect(lambda func: [FM.fitDE(func,self.dfTotJV.iat[0,row]) for row in selectedRows]) FM.JV_fit.connect(lambda JV: self.plotJVresp(JV,False)) [FM.fitInterp(self.dfTotJV.iat[0,row]) for row in selectedRows] #FM.start() # Add row and initialize it within the table def setupResultTable(self): self.resTableWidget.insertRow(0) self.lastRowInd = 0 ### Uncomment this to display latest acquisition last #self.resTableWidget.insertRow(self.resTableWidget.rowCount()) #self.resTableWidget.setItem(self.resTableWidget.rowCount()-1,0, # QTableWidgetItem()) #for j in range(self.resTableWidget.columnCount()): # self.resTableWidget.setItem(self.resTableWidget.rowCount(),j, # QTableWidgetItem()) #self.lastRowInd = self.resTableWidget.rowCount()-1 #for f in range(9): # self.resTableWidget.setItem(self.lastRowInd, 0,QTableWidgetItem()) # Create internal dataframe with all the data. # This is needed for plotting data after acquisition def setupDataFrame(self): self.dfTotDeviceID = pd.DataFrame() self.dfTotPerfData = pd.DataFrame() self.dfTotAcqParams = pd.DataFrame() self.dfTotJV = pd.DataFrame() # Process data from devices def processDeviceData(self, deviceID, dfAcqParams, perfData, JV, flag, track_flag): # create numpy arrays for all devices as well as dataframes for csv and jsons self.deviceID = np.vstack((self.deviceID, np.array([deviceID]))) self.perfData = perfData self.JV = JV # Populate table. if flag is False and track_flag is False: self.setupResultTable() self.fillTableData(deviceID, self.perfData) QApplication.processEvents() # Plot results self.plotData(self.deviceID,self.perfData, JV) QApplication.processEvents() if flag is True: # Save to internal dataFrame self.makeInternalDataFrames(self.lastRowInd+self.resTableWidget.rowCount() , self.deviceID,self.perfData, dfAcqParams, self.JV) # Enable/disable saving to file # Using ALT with Start Acquisition button overrides the config settings. if self.parent().config.saveLocalCsv == True or \ self.parent().acquisition.modifiers == Qt.AltModifier: self.save_csv(deviceID, dfAcqParams, self.perfData, self.JV,self.csvFolder) if self.parent().config.submitToDb == True: self.submit_DM(deviceID, dfAcqParams, self.perfData, self.JV) # Plot data from devices def plotData(self, deviceID, perfData, JV): self.plotJVresp(JV,True) self.plotMPP(perfData) self.show() # Create internal dataframe with all the data. # This is needed for plotting data after acquisition def makeInternalDataFrames(self, index,deviceID,perfData,dfAcqParams,JV): self.dfTotDeviceID[index] = [deviceID] self.dfTotPerfData[index] = [perfData] self.dfTotAcqParams = self.dfTotAcqParams.append(dfAcqParams) self.dfTotJV[index] = [JV] # Create DataFrames for saving csv and jsons def makeDFPerfData(self,perfData): dfPerfData = pd.DataFrame({'Time step': perfData[:,2], 'Voc': perfData[:,3], 'Jsc': perfData[:,4], 'VPP' : perfData[:,5], 'MPP': perfData[:,6], 'FF': perfData[:,7], 'PCE': perfData[:,8], 'Light' : perfData[:,9], 'Acq Date': perfData[:,0], 'Acq Time': perfData[:,1], }) dfPerfData = dfPerfData[['Acq Date','Acq Time','Time step', 'Voc', 'Jsc', 'VPP', 'MPP','FF','PCE', 'Light']] return dfPerfData def makeDFJV(self,JV,set): dfJV = pd.DataFrame({'V':JV[:,2*set+0], 'J':JV[:,2*set+1]}) dfJV = dfJV[['V', 'J']] listJV = dict(dfJV.to_dict(orient='split')) listJV['columnlabel'] = listJV.pop('columns') listJV['output'] = listJV.pop('data') del listJV['index'] return dfJV, listJV ### Submit json for device data to Data-Management def submit_DM(self,deviceID, dfAcqParams, perfData, JV): dfPerfData = self.makeDFPerfData(perfData) # Prepare json-data jsonData = {'itemId' : deviceID[-1]} listSubstrateName = {'substrate' : deviceID[:-1]} listEquipment = {'equipment' : 'auto-testing'} listAcqParams = dict(dfAcqParams.to_dict(orient='list')) jsonData.update(listEquipment) jsonData.update(listSubstrateName) jsonData.update(listAcqParams) _, listJV0 = self.makeDFJV(JV,0) jsonData.update(listJV0) if float(perfData[0,2]) == 0: if int(float(dfPerfData.at[0,'Light'])) == 0: listMeasType = {'measType' : 'JV_dark'} listName = {'name': 'JV_dark_f'} listName1 = {'name': 'JV_dark_r'} else: listMeasType = {'measType' : 'JV'} listName = {'name': 'JV_f'} listName1 = {'name': 'JV_r'} listPerfData = dict(dfPerfData.iloc[[0]].to_dict('list')) jsonData.update(listPerfData) jsonData.update(listName) jsonData.update(listMeasType) jsonData1 = jsonData.copy() jsonData1.update(listName1) listPerfData1 = dict(dfPerfData.iloc[[1]].to_dict('list')) jsonData1.update(listPerfData1) _, listJV1 = self.makeDFJV(JV,1) jsonData1.update(listJV1) else: listName = {'name': 'tracking'} listMeasType = {'measType' : 'tracking'} listPerfData = dict(dfPerfData.to_dict('split')) listPerfData['columnlabel'] = listPerfData.pop('columns') listPerfData['output'] = listPerfData.pop('data') del listPerfData['index'] jsonData.update(listPerfData) jsonData.update(listName) jsonData.update(listMeasType) self.dbConnectInfo = self.parent().dbconnectionwind.getDbConnectionInfo() try: # This is for direct submission via pymongo conn = DataManagement(self.dbConnectInfo) client, _ = conn.connectDB() db = client[self.dbConnectInfo[2]] db_entry = db.Measurement.insert_one(json.loads(json.dumps(jsonData))) msg = " Device " + deviceID + \ ": submission to DM via Mongo successful\n (ids: " + \ str(db_entry.inserted_id) if float(perfData[0,2]) == 0: db_entry1 = db.Measurement.insert_one(json.loads(json.dumps(jsonData1))) msg += ", "+str(db_entry1.inserted_id) msg += ")" except: try: msg = " Submission to DM via Mongo: failed. Trying via HTTP POST" print(msg) logger.info(msg) #This is for using POST HTTP url = "http://"+self.dbConnectInfo[0]+":"+self.dbConnectInfo[5]+self.dbConnectInfo[6] if float(perfData[0,2]) == 0: req = requests.post(url, json=jsonData) req1 = requests.post(url, json=jsonData1) if req.status_code == 200 and req1.status_code == 200: msg = " Device " + deviceID + \ ", submission to DM via HTTP POST successful\n (ETag: " + \ str(req.headers['ETag'])+", "+str(req1.headers['ETag'])+")" else: req.raise_for_status() req1.raise_for_status() else: if req.status_code == 200: req = requests.post(url, json=jsonData) msg = " Device " + deviceID + \ ", submission to DM via HTTP POST successful\n (ETag: " + \ str(req.headers['ETag'])+")" else: req.raise_for_status() except: msg = " Connection to DM server: failed. Saving local file" self.save_csv(deviceID, dfAcqParams, perfData, JV, self.csvFolder) print(msg) logger.info(msg) # Open DM window for searching for data in DM def openWindowDM(self, deviceID): self.loadDMWindow = DataLoadDMWindow(parent=self) self.loadDMWindow.show() deviceID = self.loadDMWindow.deviceData.connect(lambda deviceID, perfData, acqParams, JV:\ self.loadDeviceDM(deviceID, perfData, acqParams, JV)) # Once data is retrieved from DM, plot it and populate table def loadDeviceDM(self, deviceID, perfData, dfAcqParams, JV): print(" Plotting data for:",deviceID) self.plotData(deviceID, perfData, JV) self.setupResultTable() self.fillTableData(deviceID, perfData) self.makeInternalDataFrames(self.resTableWidget.rowCount()-1, [[deviceID]], perfData, dfAcqParams, np.array(JV)) # Load data from saved CSV def load_csv(self): filenames = QFileDialog.getOpenFileNames(self, "Open csv data", "","*.csv") try: for filename in filenames[0]: print("Open saved device data from: ", filename) dftot = pd.read_csv(filename, na_filter=False) deviceID = dftot.at[0,'Device'] perfData = dftot.to_numpy()[range(0,np.count_nonzero(dftot['Acq Date']))][:,range(1,11)] JV = dftot.values[range(0,np.count_nonzero(dftot['V_r']))][:,np.arange(11,15)].astype(float) dfAcqParams = dftot.loc[0:1, 'Acq Soak Voltage':'Comments'] self.plotData(deviceID, perfData, JV) self.setupResultTable() self.fillTableData(deviceID, perfData) self.makeInternalDataFrames(self.resTableWidget.rowCount()-1, [[deviceID]], perfData, dfAcqParams, np.array(JV)) except: print("Loading files failed") # Save device acquisition as csv def save_csv(self,deviceID, dfAcqParams, perfData, JV, folder): dfPerfData = self.makeDFPerfData(perfData) dfJV0,_ = self.makeDFJV(JV,0) dfJV1,_ = self.makeDFJV(JV,1) dfJV0 = dfJV0.rename(columns={"V": "V_f", "J": "J_f"}) dfJV1 = dfJV1.rename(columns={"V": "V_r", "J": "J_r"}) dfDeviceID = pd.DataFrame({'Device':[deviceID]}) dfTot = pd.concat([dfDeviceID, dfPerfData], axis = 1) dfTot = pd.concat([dfTot,dfJV0], axis = 1) dfTot = pd.concat([dfTot,dfJV1], axis = 1) dfTot = pd.concat([dfTot,dfAcqParams], axis = 1) dateTimeTag = str(datetime.now().strftime('%Y%m%d-%H%M%S-%f')) csvFilename = deviceID+"_" if int(float(dfPerfData.at[0,'Light'])) == 0: csvFilename+="dark_" if int(float(dfPerfData.at[0,'Light'])) != 0: if float(perfData[0,2]) != 0: csvFilename += "tracking_" csvFilename += dateTimeTag + ".csv" try: dfTot.to_csv(folder+"/"+csvFilename, sep=',', index=False) msg=" Device data saved on: "+folder+"/"+csvFilename except: msg=" Device data NOT saved. Check File saving folder in INI file" print(msg) logger.info(msg) # Populate result table. def fillTableData(self, deviceID, obj): if str(obj[0,9]) == "1.0": light = "ON" else: light = "OFF" self.resTableWidget.setItem(self.lastRowInd, 0,QTableWidgetItem(deviceID)) for i in range(1,7,1): self.resTableWidget.setItem(self.lastRowInd, i,QTableWidgetItem("{0:0.3f}".format(np.mean(obj[:,i+2].astype(float))))) try: self.resTableWidget.item(self.lastRowInd,i).setToolTip("F:{0:0.3f}".format(float(obj[0,i+2]))+" / B:{0:0.3f}".format(float(obj[1,i+2]))) except: pass self.resTableWidget.setItem(self.lastRowInd, 7,QTableWidgetItem(light)) #Light self.resTableWidget.setItem(self.lastRowInd, 9,QTableWidgetItem(obj[0,0])) self.resTableWidget.setItem(self.lastRowInd, 10,QTableWidgetItem(obj[0,1])) if float(obj[0,2]) == 0.: self.resTableWidget.setItem(self.lastRowInd, 8,QTableWidgetItem("None")) #track_time else: self.resTableWidget.setItem(self.lastRowInd, 8,QTableWidgetItem("{0:0.3f}".format(float(obj[0,2])))) #track_time #################################################################### # Custom Toolbar with linear/log button #################################################################### class CustomToolbar(NavigationToolbar): def __init__(self, figure_canvas, figure, parent= None): self.maxY = 5.0 self.figure = figure self.figure_canvas = figure_canvas self.toolitems +=(('Log/Lin', "Log/Lin scale", "Log/Lin scale", 'log_lin_scale'),('Toggle Max Y', "Toggle Max Y", "Toggle Max Y", 'max_ylim')) NavigationToolbar.__init__(self, figure_canvas, parent=parent) def log_lin_scale(self): if len(self.figure.gca().lines) > 2: if self.figure.gca().get_yscale() == 'log': self.figure.gca().set_yscale('linear') else: self.figure.gca().set_yscale('log') self.figure_canvas.draw() def max_ylim(self): if len(self.figure.gca().lines) > 2: if self.figure.gca().get_ylim()[1] == self.maxY: self.figure.gca().set_ylim(top=None) self.figure.gca().relim() self.figure.gca().autoscale() else: self.figure.gca().set_ylim(top=self.maxY) self.figure_canvas.draw()
gpl-3.0
neuropower/neuropower
neuropower/apps/neuropowertoolbox/plots.py
2
8183
import matplotlib as mpl mpl.use('Agg') from models import NeuropowerModel from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from palettable.colorbrewer.qualitative import Paired_12,Set1_9 from django.http import HttpResponse, HttpResponseRedirect from neuropower import * from utils import get_session_id from mpld3 import plugins import pandas as pd import numpy as np import matplotlib.pyplot as plt import scipy import mpld3 def plotModel(request): plt.switch_backend('agg') sid = get_session_id(request) neuropowerdata = NeuropowerModel.objects.get(SID=sid) if not neuropowerdata.err == "": fig=plt.figure(facecolor="white") else: peaks = neuropowerdata.peaktable twocol = Paired_12.mpl_colors if neuropowerdata.pi1>0: xn = np.arange(-10,30,0.01) nul = [1-float(neuropowerdata.pi1)]*neuropowermodels.nulPDF(xn,exc=float(neuropowerdata.ExcZ),method="RFT") alt = float(neuropowerdata.pi1)*neuropowermodels.altPDF(xn,mu=float(neuropowerdata.mu),sigma=float(neuropowerdata.sigma),exc=float(neuropowerdata.ExcZ),method="RFT") mix = neuropowermodels.mixPDF(xn,pi1=float(neuropowerdata.pi1),mu=float(neuropowerdata.mu),sigma=float(neuropowerdata.sigma),exc=float(neuropowerdata.ExcZ),method="RFT") xn_p = np.arange(0,1,0.01) alt_p = float(neuropowerdata.pi1)*scipy.stats.beta.pdf(xn_p, float(neuropowerdata.a), 1)+1-float(neuropowerdata.pi1) null_p = [1-float(neuropowerdata.pi1)]*len(xn_p) mpl.rcParams['font.size']='11.0' fig,axs=plt.subplots(1,2,figsize=(14,5)) fig.patch.set_facecolor('None') fig.subplots_adjust(hspace=.5,wspace=0.3) axs=axs.ravel() axs[0].hist(peaks.pval,lw=0,normed=True,facecolor=twocol[0],bins=np.arange(0,1.1,0.1),label="observed distribution") axs[0].set_ylim([0,3]) axs[0].plot(xn_p,null_p,color=twocol[3],lw=2,label="null distribution") axs[0].plot(xn_p,alt_p,color=twocol[5],lw=2,label="alternative distribution") axs[0].legend(loc="upper right",frameon=False) axs[0].set_title("Distribution of "+str(len(peaks))+" peak p-values \n $\pi_1$ = "+str(round(float(neuropowerdata.pi1),2))) axs[0].set_xlabel("Peak p-values") axs[0].set_ylabel("Density") axs[1].hist(peaks.peak,lw=0,facecolor=twocol[0],normed=True,bins=np.arange(min(peaks.peak),30,0.3),label="observed distribution") axs[1].set_xlim([float(neuropowerdata.ExcZ),np.max(peaks.peak)+1]) axs[1].set_ylim([0,1.3]) if not neuropowerdata.pi1==0: axs[1].plot(xn,nul,color=twocol[3],lw=2,label="null distribution") axs[1].plot(xn,alt,color=twocol[5],lw=2, label="alternative distribution") axs[1].plot(xn,mix,color=twocol[1],lw=2,label="total distribution") axs[1].legend(loc="upper right",frameon=False) peak_heights_string = str(round(float(neuropowerdata.mu)/np.sqrt(neuropowerdata.Subj),2)) axs[1].set_title("Distribution of peak heights \n $\delta_1$ = %s" %(peak_heights_string)) axs[1].set_xlabel("Peak heights (z-values)") axs[1].set_ylabel("Density") canvas = FigureCanvas(fig) response = HttpResponse(content_type='image/png') canvas.print_png(response) return response def plotPower(sid,MCP='',pow=0,ss=0): neuropowerdata = NeuropowerModel.objects.get(SID=sid) powtab = neuropowerdata.data powtxt = powtab.round(2) cols = dict(zip(['BF','BH','RFT','UN'],Set1_9.mpl_colors)) sub = int(neuropowerdata.Subj) newsubs = powtab.newsamplesize amax = int(np.min(powtab.newsamplesize)+50) css = """ table{border-collapse: collapse} td{background-color: rgba(217, 222, 230,50)} table, th, td{border: 1px solid;border-color: rgba(217, 222, 230,50);text-align: right;font-size: 12px} """ hover_BF = [pd.DataFrame(['Bonferroni','Sample Size: '+str(newsubs[i]),'Power: '+str(powtxt['BF'][i])]).to_html(header=False,index_names=False,index=False) for i in range(len(powtab)) if 'BF' in powtab.columns] hover_BH = [pd.DataFrame(['Benjamini-Hochberg','Sample Size: '+str(newsubs[i]),'Power: '+str(powtxt['BH'][i])]).to_html(header=False,index_names=False,index=False) for i in range(len(powtab)) if 'BH' in powtab.columns] hover_RFT = [pd.DataFrame(['Random Field Theory','Sample Size: '+str(newsubs[i]),'Power: '+str(powtxt['RFT'][i])]).to_html(header=False,index_names=False,index=False) for i in range(len(powtab)) if 'RFT' in powtab.columns] hover_UN = [pd.DataFrame(['Uncorrected','Sample Size: '+str(newsubs[i]),'Power: '+str(powtxt['UN'][i])]).to_html(header=False,index_names=False,index=False) for i in range(len(powtab)) if 'UN' in powtab.columns] fig,axs=plt.subplots(1,1,figsize=(8,5)) fig.patch.set_facecolor('None') lty = ['--' if all(powtab.BF==powtab.RFT) else '-'] BF=axs.plot(powtab.newsamplesize,powtab.BF,'o',markersize=15,alpha=0,label="") if 'BF' in powtab.columns else 'nan' BH=axs.plot(powtab.newsamplesize,powtab.BH,'o',markersize=15,alpha=0,label="") if 'BH' in powtab.columns else 'nan' RFT=axs.plot(powtab.newsamplesize,powtab.RFT,'o',markersize=15,alpha=0,label="") if 'RFT' in powtab.columns else 'nan' UN=axs.plot(powtab.newsamplesize,powtab.UN,'o',markersize=15,alpha=0,label="") if 'UN' in powtab.columns else 'nan' plugins.clear(fig) plugins.connect(fig, plugins.PointHTMLTooltip(BF[0], hover_BF,hoffset=0,voffset=10,css=css)) plugins.connect(fig, plugins.PointHTMLTooltip(RFT[0], hover_RFT,hoffset=0,voffset=10,css=css)) plugins.connect(fig, plugins.PointHTMLTooltip(UN[0], hover_UN,hoffset=0,voffset=10,css=css)) if 'BH' in powtab.columns: plugins.connect(fig, plugins.PointHTMLTooltip(BH[0], hover_BH,hoffset=0,voffset=10,css=css)) axs.plot(newsubs,powtab.BH,color=cols['BH'],lw=2,label="Benjamini-Hochberg") axs.plot(newsubs,powtab.BF,color=cols['BF'],lw=2,label="Bonferroni") axs.plot(newsubs,powtab.RFT,color=cols['RFT'],lw=2,linestyle=str(lty[0]),label="Random Field Theory") axs.plot(newsubs,powtab.UN,color=cols['UN'],lw=2,label="Uncorrected") text = "None" if pow != 0: if MCP == 'BH' and not 'BH' in powtab.columns: text = "There is not enough power to estimate a threshold for FDR control. As such it's impossible to predict power for FDR control." elif all(powtab[MCP]<pow): text = "To obtain a statistical power of "+str(pow)+" this study would require a sample size larger than 600 subjects." amax = max(powtab.newsamplesize) else: min = int(np.min([i for i,elem in enumerate(powtab[MCP]>pow,1) if elem])+sub-1) axs.plot([min,min],[0,powtab[MCP][min-sub]],color=cols[MCP]) axs.plot([sub,min],[powtab[MCP][min-sub],powtab[MCP][min-sub]],color=cols[MCP]) text = "To obtain a statistical power of %s this study would require a sample size of %s subjects." %(pow,min) amax = max(min,amax) if ss != 0: if MCP == 'BH' and not 'BH' in powtab.columns: text = "There is not enough power to estimate a threshold for FDR control. As such it's impossible to predict power for FDR control." else: ss_pow = powtab[MCP][ss] axs.plot([ss,ss],[0,ss_pow],color=cols[MCP],linestyle="--") axs.plot([sub,ss],[ss_pow,ss_pow],color=cols[MCP],linestyle="--") xticks = [x for x in list(np.arange((np.ceil(sub/10.))*10,100,10)) if not x == np.round(ss/10.)*10] axs.set_xticks(xticks+[ss]) axs.set_yticks(list(np.arange(0,1.1,0.1))) text = "A sample size of %s subjects with %s control comes with a power of %s." %(ss,MCP,str(np.round(ss_pow,decimals=2))) amax = max(ss,amax) axs.set_ylim([0,1]) axs.set_xlim([sub,amax]) axs.set_title("Power curves") axs.set_xlabel("Subjects") axs.set_ylabel("Average power") axs.legend(loc="lower right",frameon=False,title="") code = mpld3.fig_to_html(fig) out = { "code":code, "text":text } return out
mit
ldirer/scikit-learn
examples/linear_model/plot_sgd_loss_functions.py
86
1234
""" ========================== SGD: convex loss functions ========================== A plot that compares the various convex loss functions supported by :class:`sklearn.linear_model.SGDClassifier` . """ print(__doc__) import numpy as np import matplotlib.pyplot as plt def modified_huber_loss(y_true, y_pred): z = y_pred * y_true loss = -4 * z loss[z >= -1] = (1 - z[z >= -1]) ** 2 loss[z >= 1.] = 0 return loss xmin, xmax = -4, 4 xx = np.linspace(xmin, xmax, 100) lw = 2 plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], color='gold', lw=lw, label="Zero-one loss") plt.plot(xx, np.where(xx < 1, 1 - xx, 0), color='teal', lw=lw, label="Hinge loss") plt.plot(xx, -np.minimum(xx, 0), color='yellowgreen', lw=lw, label="Perceptron loss") plt.plot(xx, np.log2(1 + np.exp(-xx)), color='cornflowerblue', lw=lw, label="Log loss") plt.plot(xx, np.where(xx < 1, 1 - xx, 0) ** 2, color='orange', lw=lw, label="Squared hinge loss") plt.plot(xx, modified_huber_loss(xx, 1), color='darkorchid', lw=lw, linestyle='--', label="Modified Huber loss") plt.ylim((0, 8)) plt.legend(loc="upper right") plt.xlabel(r"Decision function $f(x)$") plt.ylabel("$L(y=1, f(x))$") plt.show()
bsd-3-clause
matthewzimmer/traffic-sign-classification
zimpy/tests/dataset_tests.py
1
1087
from zimpy.datasets.german_traffic_signs import GermanTrafficSignDataset data = GermanTrafficSignDataset() data.configure(one_hot=False) X_train = data.train_orig y_train = data.train_labels import unittest import numpy as np from sklearn.preprocessing import normalize # Learn more about unit tests here at https://docs.python.org/2/library/unittest.html class TestDataset(unittest.TestCase): def test_shapes(self): self.assertEqual(X_train.shape[0], y_train.shape[0], "The number of images is not equal to the number of labels.") self.assertEqual(X_train.shape[1:], (32, 32, 3), "The dimensions of the images are not 32 x 32 x 3.") def test_data_normalization(self): X_norm = data.normalize_data(X_train) self.assertEqual(round(np.mean(X_norm)), 0, "The mean of the input data is: %f" % np.mean(X_norm)) self.assertTupleEqual((np.min(X_norm), np.max(X_norm)), (-0.5, 0.5)), "The range of the input data is: %.1f to %.1f" % (np.min(X_norm), np.max(X_norm)) if __name__ == '__main__': unittest.main()
mit
ishank08/scikit-learn
examples/applications/topics_extraction_with_nmf_lda.py
21
4784
""" ======================================================================================= Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation ======================================================================================= This is an example of applying :class:`sklearn.decomposition.NMF` and :class:`sklearn.decomposition.LatentDirichletAllocation` on a corpus of documents and extract additive models of the topic structure of the corpus. The output is a list of topics, each represented as a list of terms (weights are not shown). Non-negative Matrix Factorization is applied with two different objective functions: the Frobenius norm, and the generalized Kullback-Leibler divergence. The latter is equivalent to Probabilistic Latent Semantic Indexing. The default parameters (n_samples / n_features / n_topics) should make the example runnable in a couple of tens of seconds. You can try to increase the dimensions of the problem, but be aware that the time complexity is polynomial in NMF. In LDA, the time complexity is proportional to (n_samples * iterations). """ # Author: Olivier Grisel <[email protected]> # Lars Buitinck # Chyi-Kwei Yau <[email protected]> # License: BSD 3 clause from __future__ import print_function from time import time from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import NMF, LatentDirichletAllocation from sklearn.datasets import fetch_20newsgroups n_samples = 2000 n_features = 1000 n_topics = 10 n_top_words = 20 def print_top_words(model, feature_names, n_top_words): for topic_idx, topic in enumerate(model.components_): message = "Topic #%d: " % topic_idx message += " ".join([feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1]]) print(message) print() # Load the 20 newsgroups dataset and vectorize it. We use a few heuristics # to filter out useless terms early on: the posts are stripped of headers, # footers and quoted replies, and common English words, words occurring in # only one document or in at least 95% of the documents are removed. print("Loading dataset...") t0 = time() dataset = fetch_20newsgroups(shuffle=True, random_state=1, remove=('headers', 'footers', 'quotes')) data_samples = dataset.data[:n_samples] print("done in %0.3fs." % (time() - t0)) # Use tf-idf features for NMF. print("Extracting tf-idf features for NMF...") tfidf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, max_features=n_features, stop_words='english') t0 = time() tfidf = tfidf_vectorizer.fit_transform(data_samples) print("done in %0.3fs." % (time() - t0)) # Use tf (raw term count) features for LDA. print("Extracting tf features for LDA...") tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=n_features, stop_words='english') t0 = time() tf = tf_vectorizer.fit_transform(data_samples) print("done in %0.3fs." % (time() - t0)) print() # Fit the NMF model print("Fitting the NMF model (Frobenius norm) with tf-idf features, " "n_samples=%d and n_features=%d..." % (n_samples, n_features)) t0 = time() nmf = NMF(n_components=n_topics, random_state=1, alpha=.1, l1_ratio=.5).fit(tfidf) print("done in %0.3fs." % (time() - t0)) print("\nTopics in NMF model (Frobenius norm):") tfidf_feature_names = tfidf_vectorizer.get_feature_names() print_top_words(nmf, tfidf_feature_names, n_top_words) # Fit the NMF model print("Fitting the NMF model (generalized Kullback-Leibler divergence) with " "tf-idf features, n_samples=%d and n_features=%d..." % (n_samples, n_features)) t0 = time() nmf = NMF(n_components=n_topics, random_state=1, beta_loss='kullback-leibler', solver='mu', max_iter=1000, alpha=.1, l1_ratio=.5).fit(tfidf) print("done in %0.3fs." % (time() - t0)) print("\nTopics in NMF model (generalized Kullback-Leibler divergence):") tfidf_feature_names = tfidf_vectorizer.get_feature_names() print_top_words(nmf, tfidf_feature_names, n_top_words) print("Fitting LDA models with tf features, " "n_samples=%d and n_features=%d..." % (n_samples, n_features)) lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=5, learning_method='online', learning_offset=50., random_state=0) t0 = time() lda.fit(tf) print("done in %0.3fs." % (time() - t0)) print("\nTopics in LDA model:") tf_feature_names = tf_vectorizer.get_feature_names() print_top_words(lda, tf_feature_names, n_top_words)
bsd-3-clause
mblondel/scikit-learn
benchmarks/bench_isotonic.py
268
3046
""" Benchmarks of isotonic regression performance. We generate a synthetic dataset of size 10^n, for n in [min, max], and examine the time taken to run isotonic regression over the dataset. The timings are then output to stdout, or visualized on a log-log scale with matplotlib. This alows the scaling of the algorithm with the problem size to be visualized and understood. """ from __future__ import print_function import numpy as np import gc from datetime import datetime from sklearn.isotonic import isotonic_regression from sklearn.utils.bench import total_seconds import matplotlib.pyplot as plt import argparse def generate_perturbed_logarithm_dataset(size): return np.random.randint(-50, 50, size=n) \ + 50. * np.log(1 + np.arange(n)) def generate_logistic_dataset(size): X = np.sort(np.random.normal(size=size)) return np.random.random(size=size) < 1.0 / (1.0 + np.exp(-X)) DATASET_GENERATORS = { 'perturbed_logarithm': generate_perturbed_logarithm_dataset, 'logistic': generate_logistic_dataset } def bench_isotonic_regression(Y): """ Runs a single iteration of isotonic regression on the input data, and reports the total time taken (in seconds). """ gc.collect() tstart = datetime.now() isotonic_regression(Y) delta = datetime.now() - tstart return total_seconds(delta) if __name__ == '__main__': parser = argparse.ArgumentParser( description="Isotonic Regression benchmark tool") parser.add_argument('--iterations', type=int, required=True, help="Number of iterations to average timings over " "for each problem size") parser.add_argument('--log_min_problem_size', type=int, required=True, help="Base 10 logarithm of the minimum problem size") parser.add_argument('--log_max_problem_size', type=int, required=True, help="Base 10 logarithm of the maximum problem size") parser.add_argument('--show_plot', action='store_true', help="Plot timing output with matplotlib") parser.add_argument('--dataset', choices=DATASET_GENERATORS.keys(), required=True) args = parser.parse_args() timings = [] for exponent in range(args.log_min_problem_size, args.log_max_problem_size): n = 10 ** exponent Y = DATASET_GENERATORS[args.dataset](n) time_per_iteration = \ [bench_isotonic_regression(Y) for i in range(args.iterations)] timing = (n, np.mean(time_per_iteration)) timings.append(timing) # If we're not plotting, dump the timing to stdout if not args.show_plot: print(n, np.mean(time_per_iteration)) if args.show_plot: plt.plot(*zip(*timings)) plt.title("Average time taken running isotonic regression") plt.xlabel('Number of observations') plt.ylabel('Time (s)') plt.axis('tight') plt.loglog() plt.show()
bsd-3-clause
xingjiepan/figurePXJ
figurePXJ/Figure.py
1
2466
import numpy as np import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties class Figure: '''Base class for figures.''' def __init__(self, info_dict={}): self.info_dict = info_dict def show(self): self.make_plot() plt.show() def save(self, path): self.make_plot() plt.savefig(path) def set_axes(self): x_min, x_max, y_min, y_max = plt.axis() x_min = self.info_dict.setdefault('x_min', x_min) x_max = self.info_dict.setdefault('x_max', x_max) y_min = self.info_dict.setdefault('y_min', y_min) y_max = self.info_dict.setdefault('y_max', y_max) plt.axis([x_min, x_max, y_min, y_max]) def plot_labels(self): font = FontProperties() font.set_family('sans-serif') font.set_size('x-large') plt.xlabel(self.info_dict['x_label'], fontproperties=font) plt.ylabel(self.info_dict['y_label'], fontproperties=font) def plot_title(self): font = FontProperties() font.set_family('sans-serif') font.set_size('xx-large') #font.set_weight('bold') plt.title(self.info_dict['title'], fontproperties=font) def draw_auxiliary_lines(self): '''Draw auxiliary lines specified by users. The format in the info_dict is: 'auxiliary_lines' : [ ((x1,y1), (x2,y2)), ... ] ''' for line in self.info_dict.setdefault('auxiliary_lines', []): self.draw_one_auxiliary_line(np.array(line[0]), np.array(line[1])) def draw_one_auxiliary_line(self, p1, p2): '''Draw one axuilary line given two points. p1 and p2 are numpy arrays. ''' x_min, x_max, y_min, y_max = plt.axis() # Get the vector of the line v = p2 - p1 if v[0] == 0 and v[1] == 0: raise Exception("Zero vector") # Get the upper point to draw the line scale_up = ((x_max - p1[0]) / v[0]) if v[0] != 0 \ else (y_max - p1[1]) / v[1] p_up = p1 + scale_up * v # Get the lower point to draw the line scale_low = ((x_min - p1[0]) / v[0]) if v[0] != 0 \ else (y_min - p1[1]) / v[1] p_low = p1 + scale_low * v # Draw the line xy = list(zip(p_up, p_low)) plt.plot(xy[0], xy[1], '--', color=self.info_dict['style'].color('normal', 'black'))
gpl-3.0
DonBeo/statsmodels
statsmodels/stats/tests/test_diagnostic.py
6
39973
# -*- coding: utf-8 -*- """Tests for Regression Diagnostics and Specification Tests Created on Thu Feb 09 13:19:47 2012 Author: Josef Perktold License: BSD-3 currently all tests are against R """ import os import numpy as np from numpy.testing import (assert_, assert_almost_equal, assert_equal, assert_approx_equal, assert_allclose) from nose import SkipTest from statsmodels.regression.linear_model import OLS, GLSAR from statsmodels.tools.tools import add_constant from statsmodels.datasets import macrodata import statsmodels.stats.sandwich_covariance as sw import statsmodels.stats.diagnostic as smsdia import json #import statsmodels.sandbox.stats.diagnostic as smsdia import statsmodels.stats.outliers_influence as oi cur_dir = os.path.abspath(os.path.dirname(__file__)) def compare_t_est(sp, sp_dict, decimal=(14, 14)): assert_almost_equal(sp[0], sp_dict['statistic'], decimal=decimal[0]) assert_almost_equal(sp[1], sp_dict['pvalue'], decimal=decimal[1]) def notyet_atst(): d = macrodata.load().data realinv = d['realinv'] realgdp = d['realgdp'] realint = d['realint'] endog = realinv exog = add_constant(np.c_[realgdp, realint]) res_ols1 = OLS(endog, exog).fit() #growth rates gs_l_realinv = 400 * np.diff(np.log(d['realinv'])) gs_l_realgdp = 400 * np.diff(np.log(d['realgdp'])) lint = d['realint'][:-1] tbilrate = d['tbilrate'][:-1] endogg = gs_l_realinv exogg = add_constant(np.c_[gs_l_realgdp, lint]) exogg2 = add_constant(np.c_[gs_l_realgdp, tbilrate]) res_ols = OLS(endogg, exogg).fit() res_ols2 = OLS(endogg, exogg2).fit() #the following were done accidentally with res_ols1 in R, #with original Greene data params = np.array([-272.3986041341653, 0.1779455206941112, 0.2149432424658157]) cov_hac_4 = np.array([1321.569466333051, -0.2318836566017612, 37.01280466875694, -0.2318836566017614, 4.602339488102263e-05, -0.0104687835998635, 37.012804668757, -0.0104687835998635, 21.16037144168061]).reshape(3,3, order='F') cov_hac_10 = np.array([2027.356101193361, -0.3507514463299015, 54.81079621448568, -0.350751446329901, 6.953380432635583e-05, -0.01268990195095196, 54.81079621448564, -0.01268990195095195, 22.92512402151113]).reshape(3,3, order='F') #goldfeld-quandt het_gq_greater = dict(statistic=13.20512768685082, df1=99, df2=98, pvalue=1.246141976112324e-30, distr='f') het_gq_less = dict(statistic=13.20512768685082, df1=99, df2=98, pvalue=1.) het_gq_2sided = dict(statistic=13.20512768685082, df1=99, df2=98, pvalue=1.246141976112324e-30, distr='f') #goldfeld-quandt, fraction = 0.5 het_gq_greater_2 = dict(statistic=87.1328934692124, df1=48, df2=47, pvalue=2.154956842194898e-33, distr='f') gq = smsdia.het_goldfeldquandt(endog, exog, split=0.5) compare_t_est(gq, het_gq_greater, decimal=(13, 14)) assert_equal(gq[-1], 'increasing') harvey_collier = dict(stat=2.28042114041313, df=199, pvalue=0.02364236161988260, distr='t') #hc = harvtest(fm, order.by=ggdp , data = list()) harvey_collier_2 = dict(stat=0.7516918462158783, df=199, pvalue=0.4531244858006127, distr='t') ################################## class TestDiagnosticG(object): def __init__(self): d = macrodata.load().data #growth rates gs_l_realinv = 400 * np.diff(np.log(d['realinv'])) gs_l_realgdp = 400 * np.diff(np.log(d['realgdp'])) lint = d['realint'][:-1] tbilrate = d['tbilrate'][:-1] endogg = gs_l_realinv exogg = add_constant(np.c_[gs_l_realgdp, lint]) exogg2 = add_constant(np.c_[gs_l_realgdp, tbilrate]) exogg3 = add_constant(np.c_[gs_l_realgdp]) res_ols = OLS(endogg, exogg).fit() res_ols2 = OLS(endogg, exogg2).fit() res_ols3 = OLS(endogg, exogg3).fit() self.res = res_ols self.res2 = res_ols2 self.res3 = res_ols3 self.endog = self.res.model.endog self.exog = self.res.model.exog def test_basic(self): #mainly to check I got the right regression #> mkarray(fm$coefficients, "params") params = np.array([-9.48167277465485, 4.3742216647032, -0.613996969478989]) assert_almost_equal(self.res.params, params, decimal=12) def test_hac(self): res = self.res #> nw = NeweyWest(fm, lag = 4, prewhite = FALSE, verbose=TRUE) #> nw2 = NeweyWest(fm, lag=10, prewhite = FALSE, verbose=TRUE) #> mkarray(nw, "cov_hac_4") cov_hac_4 = np.array([1.385551290884014, -0.3133096102522685, -0.0597207976835705, -0.3133096102522685, 0.1081011690351306, 0.000389440793564336, -0.0597207976835705, 0.000389440793564339, 0.0862118527405036]).reshape(3,3, order='F') #> mkarray(nw2, "cov_hac_10") cov_hac_10 = np.array([1.257386180080192, -0.2871560199899846, -0.03958300024627573, -0.2871560199899845, 0.1049107028987101, 0.0003896205316866944, -0.03958300024627578, 0.0003896205316866961, 0.0985539340694839]).reshape(3,3, order='F') cov = sw.cov_hac_simple(res, nlags=4, use_correction=False) bse_hac = sw.se_cov(cov) assert_almost_equal(cov, cov_hac_4, decimal=14) assert_almost_equal(bse_hac, np.sqrt(np.diag(cov)), decimal=14) cov = sw.cov_hac_simple(res, nlags=10, use_correction=False) bse_hac = sw.se_cov(cov) assert_almost_equal(cov, cov_hac_10, decimal=14) assert_almost_equal(bse_hac, np.sqrt(np.diag(cov)), decimal=14) def test_het_goldfeldquandt(self): #TODO: test options missing #> gq = gqtest(fm, alternative='greater') #> mkhtest_f(gq, 'het_gq_greater', 'f') het_gq_greater = dict(statistic=0.5313259064778423, pvalue=0.9990217851193723, parameters=(98, 98), distr='f') #> gq = gqtest(fm, alternative='less') #> mkhtest_f(gq, 'het_gq_less', 'f') het_gq_less = dict(statistic=0.5313259064778423, pvalue=0.000978214880627621, parameters=(98, 98), distr='f') #> gq = gqtest(fm, alternative='two.sided') #> mkhtest_f(gq, 'het_gq_two_sided', 'f') het_gq_two_sided = dict(statistic=0.5313259064778423, pvalue=0.001956429761255241, parameters=(98, 98), distr='f') #> gq = gqtest(fm, fraction=0.1, alternative='two.sided') #> mkhtest_f(gq, 'het_gq_two_sided_01', 'f') het_gq_two_sided_01 = dict(statistic=0.5006976835928314, pvalue=0.001387126702579789, parameters=(88, 87), distr='f') #> gq = gqtest(fm, fraction=0.5, alternative='two.sided') #> mkhtest_f(gq, 'het_gq_two_sided_05', 'f') het_gq_two_sided_05 = dict(statistic=0.434815645134117, pvalue=0.004799321242905568, parameters=(48, 47), distr='f') endogg, exogg = self.endog, self.exog #tests gq = smsdia.het_goldfeldquandt(endogg, exogg, split=0.5) compare_t_est(gq, het_gq_greater, decimal=(14, 14)) assert_equal(gq[-1], 'increasing') gq = smsdia.het_goldfeldquandt(endogg, exogg, split=0.5, alternative='decreasing') compare_t_est(gq, het_gq_less, decimal=(14, 14)) assert_equal(gq[-1], 'decreasing') gq = smsdia.het_goldfeldquandt(endogg, exogg, split=0.5, alternative='two-sided') compare_t_est(gq, het_gq_two_sided, decimal=(14, 14)) assert_equal(gq[-1], 'two-sided') #TODO: forcing the same split as R 202-90-90-1=21 gq = smsdia.het_goldfeldquandt(endogg, exogg, split=90, drop=21, alternative='two-sided') compare_t_est(gq, het_gq_two_sided_01, decimal=(14, 14)) assert_equal(gq[-1], 'two-sided') #TODO other options ??? def test_het_breush_pagan(self): res = self.res bptest = dict(statistic=0.709924388395087, pvalue=0.701199952134347, parameters=(2,), distr='f') bp = smsdia.het_breushpagan(res.resid, res.model.exog) compare_t_est(bp, bptest, decimal=(12, 12)) def test_het_white(self): res = self.res #TODO: regressiontest, compare with Greene or Gretl or Stata hw = smsdia.het_white(res.resid, res.model.exog) hw_values = (33.503722896538441, 2.9887960597830259e-06, 7.7945101228430946, 1.0354575277704231e-06) assert_almost_equal(hw, hw_values) def test_het_arch(self): #test het_arch and indirectly het_lm against R #> library(FinTS) #> at = ArchTest(residuals(fm), lags=4) #> mkhtest(at, 'archtest_4', 'chi2') archtest_4 = dict(statistic=3.43473400836259, pvalue=0.487871315392619, parameters=(4,), distr='chi2') #> at = ArchTest(residuals(fm), lags=12) #> mkhtest(at, 'archtest_12', 'chi2') archtest_12 = dict(statistic=8.648320999014171, pvalue=0.732638635007718, parameters=(12,), distr='chi2') at4 = smsdia.het_arch(self.res.resid, maxlag=4) at12 = smsdia.het_arch(self.res.resid, maxlag=12) compare_t_est(at4[:2], archtest_4, decimal=(12, 13)) compare_t_est(at12[:2], archtest_12, decimal=(12, 13)) def test_het_arch2(self): #test autolag options, this also test het_lm #unfortunately optimal lag=1 for this data resid = self.res.resid res1 = smsdia.het_arch(resid, maxlag=1, autolag=None, store=True) rs1 = res1[-1] res2 = smsdia.het_arch(resid, maxlag=5, autolag='aic', store=True) rs2 = res2[-1] assert_almost_equal(rs2.resols.params, rs1.resols.params, decimal=13) assert_almost_equal(res2[:4], res1[:4], decimal=13) #test that smallest lag, maxlag=1 works res3 = smsdia.het_arch(resid, maxlag=1, autolag='aic') assert_almost_equal(res3[:4], res1[:4], decimal=13) def test_acorr_breush_godfrey(self): res = self.res #bgf = bgtest(fm, order = 4, type="F") breushgodfrey_f = dict(statistic=1.179280833676792, pvalue=0.321197487261203, parameters=(4,195,), distr='f') #> bgc = bgtest(fm, order = 4, type="Chisq") #> mkhtest(bgc, "breushpagan_c", "chi2") breushgodfrey_c = dict(statistic=4.771042651230007, pvalue=0.3116067133066697, parameters=(4,), distr='chi2') bg = smsdia.acorr_breush_godfrey(res, nlags=4) bg_r = [breushgodfrey_c['statistic'], breushgodfrey_c['pvalue'], breushgodfrey_f['statistic'], breushgodfrey_f['pvalue']] assert_almost_equal(bg, bg_r, decimal=13) # check that lag choice works bg2 = smsdia.acorr_breush_godfrey(res, nlags=None) bg3 = smsdia.acorr_breush_godfrey(res, nlags=14) assert_almost_equal(bg2, bg3, decimal=13) def test_acorr_ljung_box(self): res = self.res #> bt = Box.test(residuals(fm), lag=4, type = "Ljung-Box") #> mkhtest(bt, "ljung_box_4", "chi2") ljung_box_4 = dict(statistic=5.23587172795227, pvalue=0.263940335284713, parameters=(4,), distr='chi2') #> bt = Box.test(residuals(fm), lag=4, type = "Box-Pierce") #> mkhtest(bt, "ljung_box_bp_4", "chi2") ljung_box_bp_4 = dict(statistic=5.12462932741681, pvalue=0.2747471266820692, parameters=(4,), distr='chi2') #ddof correction for fitted parameters in ARMA(p,q) fitdf=p+q #> bt = Box.test(residuals(fm), lag=4, type = "Ljung-Box", fitdf=2) #> mkhtest(bt, "ljung_box_4df2", "chi2") ljung_box_4df2 = dict(statistic=5.23587172795227, pvalue=0.0729532930400377, parameters=(2,), distr='chi2') #> bt = Box.test(residuals(fm), lag=4, type = "Box-Pierce", fitdf=2) #> mkhtest(bt, "ljung_box_bp_4df2", "chi2") ljung_box_bp_4df2 = dict(statistic=5.12462932741681, pvalue=0.0771260128929921, parameters=(2,), distr='chi2') lb, lbpval, bp, bppval = smsdia.acorr_ljungbox(res.resid, 4, boxpierce=True) compare_t_est([lb[-1], lbpval[-1]], ljung_box_4, decimal=(13, 14)) compare_t_est([bp[-1], bppval[-1]], ljung_box_bp_4, decimal=(13, 14)) def test_harvey_collier(self): #> hc = harvtest(fm, order.by = NULL, data = list()) #> mkhtest_f(hc, 'harvey_collier', 't') harvey_collier = dict(statistic=0.494432160939874, pvalue=0.6215491310408242, parameters=(198), distr='t') #> hc2 = harvtest(fm, order.by=ggdp , data = list()) #> mkhtest_f(hc2, 'harvey_collier_2', 't') harvey_collier_2 = dict(statistic=1.42104628340473, pvalue=0.1568762892441689, parameters=(198), distr='t') hc = smsdia.linear_harvey_collier(self.res) compare_t_est(hc, harvey_collier, decimal=(12, 12)) def test_rainbow(self): #rainbow test #> rt = raintest(fm) #> mkhtest_f(rt, 'raintest', 'f') raintest = dict(statistic=0.6809600116739604, pvalue=0.971832843583418, parameters=(101, 98), distr='f') #> rt = raintest(fm, center=0.4) #> mkhtest_f(rt, 'raintest_center_04', 'f') raintest_center_04 = dict(statistic=0.682635074191527, pvalue=0.971040230422121, parameters=(101, 98), distr='f') #> rt = raintest(fm, fraction=0.4) #> mkhtest_f(rt, 'raintest_fraction_04', 'f') raintest_fraction_04 = dict(statistic=0.565551237772662, pvalue=0.997592305968473, parameters=(122, 77), distr='f') #> rt = raintest(fm, order.by=ggdp) #Warning message: #In if (order.by == "mahalanobis") { : # the condition has length > 1 and only the first element will be used #> mkhtest_f(rt, 'raintest_order_gdp', 'f') raintest_order_gdp = dict(statistic=1.749346160513353, pvalue=0.002896131042494884, parameters=(101, 98), distr='f') rb = smsdia.linear_rainbow(self.res) compare_t_est(rb, raintest, decimal=(13, 14)) rb = smsdia.linear_rainbow(self.res, frac=0.4) compare_t_est(rb, raintest_fraction_04, decimal=(13, 14)) def test_compare_lr(self): res = self.res res3 = self.res3 #nested within res #lrtest #lrt = lrtest(fm, fm2) #Model 1: ginv ~ ggdp + lint #Model 2: ginv ~ ggdp lrtest = dict(loglike1=-763.9752181602237, loglike2=-766.3091902020184, chi2value=4.66794408358942, pvalue=0.03073069384028677, df=(4,3,1)) lrt = res.compare_lr_test(res3) assert_almost_equal(lrt[0], lrtest['chi2value'], decimal=11) assert_almost_equal(lrt[1], lrtest['pvalue'], decimal=11) waldtest = dict(fvalue=4.65216373312492, pvalue=0.03221346195239025, df=(199,200,1)) wt = res.compare_f_test(res3) assert_almost_equal(wt[0], waldtest['fvalue'], decimal=11) assert_almost_equal(wt[1], waldtest['pvalue'], decimal=11) def test_compare_nonnested(self): res = self.res res2 = self.res2 #jt = jtest(fm, lm(ginv ~ ggdp + tbilrate)) #Estimate Std. Error t value Pr(>|t|) jtest = [('M1 + fitted(M2)', 1.591505670785873, 0.7384552861695823, 2.155182176352370, 0.032354572525314450, '*'), ('M2 + fitted(M1)', 1.305687653016899, 0.4808385176653064, 2.715438978051544, 0.007203854534057954, '**')] jt1 = smsdia.compare_j(res2, res) assert_almost_equal(jt1, jtest[0][3:5], decimal=13) jt2 = smsdia.compare_j(res, res2) assert_almost_equal(jt2, jtest[1][3:5], decimal=14) #Estimate Std. Error z value Pr(>|z|) coxtest = [('fitted(M1) ~ M2', -0.782030488930356, 0.599696502782265, -1.304043770977755, 1.922186587840554e-01, ' '), ('fitted(M2) ~ M1', -2.248817107408537, 0.392656854330139, -5.727181590258883, 1.021128495098556e-08, '***')] ct1 = smsdia.compare_cox(res, res2) assert_almost_equal(ct1, coxtest[0][3:5], decimal=13) ct2 = smsdia.compare_cox(res2, res) assert_almost_equal(ct2, coxtest[1][3:5], decimal=12) #TODO should be approx # Res.Df Df F Pr(>F) encomptest = [('M1 vs. ME', 198, -1, 4.644810213266983, 0.032354572525313666, '*'), ('M2 vs. ME', 198, -1, 7.373608843521585, 0.007203854534058054, '**')] # Estimate Std. Error t value petest = [('M1 + log(fit(M1))-fit(M2)', -229.281878354594596, 44.5087822087058598, -5.15139, 6.201281252449979e-07), ('M2 + fit(M1)-exp(fit(M2))', 0.000634664704814, 0.0000462387010349, 13.72583, 1.319536115230356e-30)] def test_cusum_ols(self): #R library(strucchange) #> sc = sctest(ginv ~ ggdp + lint, type="OLS-CUSUM") #> mkhtest(sc, 'cusum_ols', 'BB') cusum_ols = dict(statistic=1.055750610401214, pvalue=0.2149567397376543, parameters=(), distr='BB') #Brownian Bridge k_vars=3 cs_ols = smsdia.breaks_cusumolsresid(self.res.resid, ddof=k_vars) # compare_t_est(cs_ols, cusum_ols, decimal=(12, 12)) def test_breaks_hansen(self): #> sc = sctest(ginv ~ ggdp + lint, type="Nyblom-Hansen") #> mkhtest(sc, 'breaks_nyblom_hansen', 'BB') breaks_nyblom_hansen = dict(statistic=1.0300792740544484, pvalue=0.1136087530212015, parameters=(), distr='BB') bh = smsdia.breaks_hansen(self.res) assert_almost_equal(bh[0], breaks_nyblom_hansen['statistic'], decimal=13) #TODO: breaks_hansen doesn't return pvalues def test_recursive_residuals(self): reccumres_standardize = np.array([-2.151, -3.748, -3.114, -3.096, -1.865, -2.230, -1.194, -3.500, -3.638, -4.447, -4.602, -4.631, -3.999, -4.830, -5.429, -5.435, -6.554, -8.093, -8.567, -7.532, -7.079, -8.468, -9.320, -12.256, -11.932, -11.454, -11.690, -11.318, -12.665, -12.842, -11.693, -10.803, -12.113, -12.109, -13.002, -11.897, -10.787, -10.159, -9.038, -9.007, -8.634, -7.552, -7.153, -6.447, -5.183, -3.794, -3.511, -3.979, -3.236, -3.793, -3.699, -5.056, -5.724, -4.888, -4.309, -3.688, -3.918, -3.735, -3.452, -2.086, -6.520, -7.959, -6.760, -6.855, -6.032, -4.405, -4.123, -4.075, -3.235, -3.115, -3.131, -2.986, -1.813, -4.824, -4.424, -4.796, -4.000, -3.390, -4.485, -4.669, -4.560, -3.834, -5.507, -3.792, -2.427, -1.756, -0.354, 1.150, 0.586, 0.643, 1.773, -0.830, -0.388, 0.517, 0.819, 2.240, 3.791, 3.187, 3.409, 2.431, 0.668, 0.957, -0.928, 0.327, -0.285, -0.625, -2.316, -1.986, -0.744, -1.396, -1.728, -0.646, -2.602, -2.741, -2.289, -2.897, -1.934, -2.532, -3.175, -2.806, -3.099, -2.658, -2.487, -2.515, -2.224, -2.416, -1.141, 0.650, -0.947, 0.725, 0.439, 0.885, 2.419, 2.642, 2.745, 3.506, 4.491, 5.377, 4.624, 5.523, 6.488, 6.097, 5.390, 6.299, 6.656, 6.735, 8.151, 7.260, 7.846, 8.771, 8.400, 8.717, 9.916, 9.008, 8.910, 8.294, 8.982, 8.540, 8.395, 7.782, 7.794, 8.142, 8.362, 8.400, 7.850, 7.643, 8.228, 6.408, 7.218, 7.699, 7.895, 8.725, 8.938, 8.781, 8.350, 9.136, 9.056, 10.365, 10.495, 10.704, 10.784, 10.275, 10.389, 11.586, 11.033, 11.335, 11.661, 10.522, 10.392, 10.521, 10.126, 9.428, 9.734, 8.954, 9.949, 10.595, 8.016, 6.636, 6.975]) rr = smsdia.recursive_olsresiduals(self.res, skip=3, alpha=0.95) assert_equal(np.round(rr[5][1:], 3), reccumres_standardize) #extra zero in front #assert_equal(np.round(rr[3][4:], 3), np.diff(reccumres_standardize)) assert_almost_equal(rr[3][4:], np.diff(reccumres_standardize),3) assert_almost_equal(rr[4][3:].std(ddof=1), 10.7242, decimal=4) #regression number, visually checked with graph from gretl ub0 = np.array([ 13.37318571, 13.50758959, 13.64199346, 13.77639734, 13.91080121]) ub1 = np.array([ 39.44753774, 39.58194162, 39.7163455 , 39.85074937, 39.98515325]) lb, ub = rr[6] assert_almost_equal(ub[:5], ub0, decimal=7) assert_almost_equal(lb[:5], -ub0, decimal=7) assert_almost_equal(ub[-5:], ub1, decimal=7) assert_almost_equal(lb[-5:], -ub1, decimal=7) #test a few values with explicit OLS endog = self.res.model.endog exog = self.res.model.exog params = [] ypred = [] for i in range(3,10): resi = OLS(endog[:i], exog[:i]).fit() ypred.append(resi.model.predict(resi.params, exog[i])) params.append(resi.params) assert_almost_equal(rr[2][3:10], ypred, decimal=12) assert_almost_equal(rr[0][3:10], endog[3:10] - ypred, decimal=12) assert_almost_equal(rr[1][2:9], params, decimal=12) def test_normality(self): res = self.res #> library(nortest) #Lilliefors (Kolmogorov-Smirnov) normality test #> lt = lillie.test(residuals(fm)) #> mkhtest(lt, "lillifors", "-") lillifors1 = dict(statistic=0.0723390908786589, pvalue=0.01204113540102896, parameters=(), distr='-') #> lt = lillie.test(residuals(fm)**2) #> mkhtest(lt, "lillifors", "-") lillifors2 = dict(statistic=0.301311621898024, pvalue=1.004305736618051e-51, parameters=(), distr='-') #> lt = lillie.test(residuals(fm)[1:20]) #> mkhtest(lt, "lillifors", "-") lillifors3 = dict(statistic=0.1333956004203103, pvalue=0.4618672180799566, parameters=(), distr='-') lf1 = smsdia.lillifors(res.resid) lf2 = smsdia.lillifors(res.resid**2) lf3 = smsdia.lillifors(res.resid[:20]) compare_t_est(lf1, lillifors1, decimal=(14, 14)) compare_t_est(lf2, lillifors2, decimal=(14, 14)) #pvalue very small assert_approx_equal(lf2[1], lillifors2['pvalue'], significant=10) compare_t_est(lf3, lillifors3, decimal=(14, 1)) #R uses different approximation for pvalue in last case #> ad = ad.test(residuals(fm)) #> mkhtest(ad, "ad3", "-") adr1 = dict(statistic=1.602209621518313, pvalue=0.0003937979149362316, parameters=(), distr='-') #> ad = ad.test(residuals(fm)**2) #> mkhtest(ad, "ad3", "-") adr2 = dict(statistic=np.inf, pvalue=np.nan, parameters=(), distr='-') #> ad = ad.test(residuals(fm)[1:20]) #> mkhtest(ad, "ad3", "-") adr3 = dict(statistic=0.3017073732210775, pvalue=0.5443499281265933, parameters=(), distr='-') ad1 = smsdia.normal_ad(res.resid) compare_t_est(ad1, adr1, decimal=(11, 13)) ad2 = smsdia.normal_ad(res.resid**2) assert_(np.isinf(ad2[0])) ad3 = smsdia.normal_ad(res.resid[:20]) compare_t_est(ad3, adr3, decimal=(11, 12)) def test_influence(self): res = self.res #this test is slow infl = oi.OLSInfluence(res) fp = open(os.path.join(cur_dir,"results/influence_lsdiag_R.json")) lsdiag = json.load(fp) #basic assert_almost_equal(np.array(lsdiag['cov.scaled']).reshape(3, 3), res.cov_params(), decimal=14) assert_almost_equal(np.array(lsdiag['cov.unscaled']).reshape(3, 3), res.normalized_cov_params, decimal=14) c0, c1 = infl.cooks_distance #TODO: what's c1 assert_almost_equal(c0, lsdiag['cooks'], decimal=14) assert_almost_equal(infl.hat_matrix_diag, lsdiag['hat'], decimal=14) assert_almost_equal(infl.resid_studentized_internal, lsdiag['std.res'], decimal=14) #slow: #infl._get_all_obs() #slow, nobs estimation loop, called implicitly dffits, dffth = infl.dffits assert_almost_equal(dffits, lsdiag['dfits'], decimal=14) assert_almost_equal(infl.resid_studentized_external, lsdiag['stud.res'], decimal=14) import pandas fn = os.path.join(cur_dir,"results/influence_measures_R.csv") infl_r = pandas.read_csv(fn, index_col=0) conv = lambda s: 1 if s=='TRUE' else 0 fn = os.path.join(cur_dir,"results/influence_measures_bool_R.csv") #not used yet: #infl_bool_r = pandas.read_csv(fn, index_col=0, # converters=dict(zip(lrange(7),[conv]*7))) infl_r2 = np.asarray(infl_r) assert_almost_equal(infl.dfbetas, infl_r2[:,:3], decimal=13) assert_almost_equal(infl.cov_ratio, infl_r2[:,4], decimal=14) #duplicates assert_almost_equal(dffits, infl_r2[:,3], decimal=14) assert_almost_equal(c0, infl_r2[:,5], decimal=14) assert_almost_equal(infl.hat_matrix_diag, infl_r2[:,6], decimal=14) #Note: for dffits, R uses a threshold around 0.36, mine: dffits[1]=0.24373 #TODO: finish and check thresholds and pvalues ''' R has >>> np.nonzero(np.asarray(infl_bool_r["dffit"]))[0] array([ 6, 26, 63, 76, 90, 199]) >>> np.nonzero(np.asarray(infl_bool_r["cov.r"]))[0] array([ 4, 26, 59, 61, 63, 72, 76, 84, 91, 92, 94, 95, 108, 197, 198]) >>> np.nonzero(np.asarray(infl_bool_r["hat"]))[0] array([ 62, 76, 84, 90, 91, 92, 95, 108, 197, 199]) ''' class TestDiagnosticGPandas(TestDiagnosticG): def __init__(self): d = macrodata.load_pandas().data #growth rates d['gs_l_realinv'] = 400 * np.log(d['realinv']).diff() d['gs_l_realgdp'] = 400 * np.log(d['realgdp']).diff() d['lint'] = d['realint'].shift(1) d['tbilrate'] = d['tbilrate'].shift(1) d = d.dropna() self.d = d endogg = d['gs_l_realinv'] exogg = add_constant(d[['gs_l_realgdp', 'lint']]) exogg2 = add_constant(d[['gs_l_realgdp', 'tbilrate']]) exogg3 = add_constant(d[['gs_l_realgdp']]) res_ols = OLS(endogg, exogg).fit() res_ols2 = OLS(endogg, exogg2).fit() res_ols3 = OLS(endogg, exogg3).fit() self.res = res_ols self.res2 = res_ols2 self.res3 = res_ols3 self.endog = self.res.model.endog self.exog = self.res.model.exog def grangertest(): #> gt = grangertest(ginv, ggdp, order=4) #> gt #Granger causality test # #Model 1: ggdp ~ Lags(ggdp, 1:4) + Lags(ginv, 1:4) #Model 2: ggdp ~ Lags(ggdp, 1:4) grangertest = dict(fvalue=1.589672703015157, pvalue=0.178717196987075, df=(198,193)) def test_outlier_influence_funcs(): #smoke test x = add_constant(np.random.randn(10, 2)) y = x.sum(1) + np.random.randn(10) res = OLS(y, x).fit() oi.summary_table(res, alpha=0.05) res2 = OLS(y, x[:,0]).fit() oi.summary_table(res2, alpha=0.05) infl = res2.get_influence() infl.summary_table() def test_influence_wrapped(): from pandas import DataFrame from pandas.util.testing import assert_series_equal d = macrodata.load_pandas().data #growth rates gs_l_realinv = 400 * np.log(d['realinv']).diff().dropna() gs_l_realgdp = 400 * np.log(d['realgdp']).diff().dropna() lint = d['realint'][:-1] # re-index these because they won't conform to lint gs_l_realgdp.index = lint.index gs_l_realinv.index = lint.index data = dict(const=np.ones_like(lint), lint=lint, lrealgdp=gs_l_realgdp) #order is important exog = DataFrame(data, columns=['const','lrealgdp','lint']) res = OLS(gs_l_realinv, exog).fit() #basic # already tested #assert_almost_equal(lsdiag['cov.scaled'], # res.cov_params().values.ravel(), decimal=14) #assert_almost_equal(lsdiag['cov.unscaled'], # res.normalized_cov_params.values.ravel(), decimal=14) infl = oi.OLSInfluence(res) # smoke test just to make sure it works, results separately tested df = infl.summary_frame() assert_(isinstance(df, DataFrame)) #this test is slow fp = open(os.path.join(cur_dir,"results/influence_lsdiag_R.json")) lsdiag = json.load(fp) c0, c1 = infl.cooks_distance #TODO: what's c1, it's pvalues? -ss #NOTE: we get a hard-cored 5 decimals with pandas testing assert_almost_equal(c0, lsdiag['cooks'], 14) assert_almost_equal(infl.hat_matrix_diag, (lsdiag['hat']), 14) assert_almost_equal(infl.resid_studentized_internal, lsdiag['std.res'], 14) #slow: dffits, dffth = infl.dffits assert_almost_equal(dffits, lsdiag['dfits'], 14) assert_almost_equal(infl.resid_studentized_external, lsdiag['stud.res'], 14) import pandas fn = os.path.join(cur_dir,"results/influence_measures_R.csv") infl_r = pandas.read_csv(fn, index_col=0) conv = lambda s: 1 if s=='TRUE' else 0 fn = os.path.join(cur_dir,"results/influence_measures_bool_R.csv") #not used yet: #infl_bool_r = pandas.read_csv(fn, index_col=0, # converters=dict(zip(lrange(7),[conv]*7))) infl_r2 = np.asarray(infl_r) #TODO: finish wrapping this stuff assert_almost_equal(infl.dfbetas, infl_r2[:,:3], decimal=13) assert_almost_equal(infl.cov_ratio, infl_r2[:,4], decimal=14) def test_influence_dtype(): # see #2148 bug when endog is integer y = np.ones(20) np.random.seed(123) x = np.random.randn(20, 3) res1 = OLS(y, x).fit() res2 = OLS(y*1., x).fit() cr1 = res1.get_influence().cov_ratio cr2 = res2.get_influence().cov_ratio assert_allclose(cr1, cr2, rtol=1e-14) # regression test for values cr3 = np.array( [ 1.22239215, 1.31551021, 1.52671069, 1.05003921, 0.89099323, 1.57405066, 1.03230092, 0.95844196, 1.15531836, 1.21963623, 0.87699564, 1.16707748, 1.10481391, 0.98839447, 1.08999334, 1.35680102, 1.46227715, 1.45966708, 1.13659521, 1.22799038]) assert_almost_equal(cr1, cr3, decimal=8) def test_outlier_test(): # results from R with NA -> 1. Just testing interface here because # outlier_test is just a wrapper labels = ['accountant', 'pilot', 'architect', 'author', 'chemist', 'minister', 'professor', 'dentist', 'reporter', 'engineer', 'undertaker', 'lawyer', 'physician', 'welfare.worker', 'teacher', 'conductor', 'contractor', 'factory.owner', 'store.manager', 'banker', 'bookkeeper', 'mail.carrier', 'insurance.agent', 'store.clerk', 'carpenter', 'electrician', 'RR.engineer', 'machinist', 'auto.repairman', 'plumber', 'gas.stn.attendant', 'coal.miner', 'streetcar.motorman', 'taxi.driver', 'truck.driver', 'machine.operator', 'barber', 'bartender', 'shoe.shiner', 'cook', 'soda.clerk', 'watchman', 'janitor', 'policeman', 'waiter'] #Duncan's prestige data from car exog = [[1.0, 62.0, 86.0], [1.0, 72.0, 76.0], [1.0, 75.0, 92.0], [1.0, 55.0, 90.0], [1.0, 64.0, 86.0], [1.0, 21.0, 84.0], [1.0, 64.0, 93.0], [1.0, 80.0, 100.0], [1.0, 67.0, 87.0], [1.0, 72.0, 86.0], [1.0, 42.0, 74.0], [1.0, 76.0, 98.0], [1.0, 76.0, 97.0], [1.0, 41.0, 84.0], [1.0, 48.0, 91.0], [1.0, 76.0, 34.0], [1.0, 53.0, 45.0], [1.0, 60.0, 56.0], [1.0, 42.0, 44.0], [1.0, 78.0, 82.0], [1.0, 29.0, 72.0], [1.0, 48.0, 55.0], [1.0, 55.0, 71.0], [1.0, 29.0, 50.0], [1.0, 21.0, 23.0], [1.0, 47.0, 39.0], [1.0, 81.0, 28.0], [1.0, 36.0, 32.0], [1.0, 22.0, 22.0], [1.0, 44.0, 25.0], [1.0, 15.0, 29.0], [1.0, 7.0, 7.0], [1.0, 42.0, 26.0], [1.0, 9.0, 19.0], [1.0, 21.0, 15.0], [1.0, 21.0, 20.0], [1.0, 16.0, 26.0], [1.0, 16.0, 28.0], [1.0, 9.0, 17.0], [1.0, 14.0, 22.0], [1.0, 12.0, 30.0], [1.0, 17.0, 25.0], [1.0, 7.0, 20.0], [1.0, 34.0, 47.0], [1.0, 8.0, 32.0]] endog = [ 82., 83., 90., 76., 90., 87., 93., 90., 52., 88., 57., 89., 97., 59., 73., 38., 76., 81., 45., 92., 39., 34., 41., 16., 33., 53., 67., 57., 26., 29., 10., 15., 19., 10., 13., 24., 20., 7., 3., 16., 6., 11., 8., 41., 10.] ndarray_mod = OLS(endog, exog).fit() rstudent = [3.1345185839, -2.3970223990, 2.0438046359, -1.9309187757, 1.8870465798, -1.7604905300, -1.7040324156, 1.6024285876, -1.4332485037, -1.1044851583, 1.0688582315, 1.0185271840, -0.9024219332, -0.9023876471, -0.8830953936, 0.8265782334, 0.8089220547, 0.7682770197, 0.7319491074, -0.6665962829, 0.5227352794, -0.5135016547, 0.5083881518, 0.4999224372, -0.4980818221, -0.4759717075, -0.4293565820, -0.4114056499, -0.3779540862, 0.3556874030, 0.3409200462, 0.3062248646, 0.3038999429, -0.3030815773, -0.1873387893, 0.1738050251, 0.1424246593, -0.1292266025, 0.1272066463, -0.0798902878, 0.0788467222, 0.0722556991, 0.0505098280, 0.0233215136, 0.0007112055] unadj_p = [0.003177202, 0.021170298, 0.047432955, 0.060427645, 0.066248120, 0.085783008, 0.095943909, 0.116738318, 0.159368890, 0.275822623, 0.291386358, 0.314400295, 0.372104049, 0.372122040, 0.382333561, 0.413260793, 0.423229432, 0.446725370, 0.468363101, 0.508764039, 0.603971990, 0.610356737, 0.613905871, 0.619802317, 0.621087703, 0.636621083, 0.669911674, 0.682917818, 0.707414459, 0.723898263, 0.734904667, 0.760983108, 0.762741124, 0.763360242, 0.852319039, 0.862874018, 0.887442197, 0.897810225, 0.899398691, 0.936713197, 0.937538115, 0.942749758, 0.959961394, 0.981506948, 0.999435989] bonf_p = [0.1429741, 0.9526634, 2.1344830, 2.7192440, 2.9811654, 3.8602354, 4.3174759, 5.2532243, 7.1716001, 12.4120180, 13.1123861, 14.1480133, 16.7446822, 16.7454918, 17.2050103, 18.5967357, 19.0453245, 20.1026416, 21.0763395, 22.8943818, 27.1787396, 27.4660532, 27.6257642, 27.8911043, 27.9489466, 28.6479487, 30.1460253, 30.7313018, 31.8336506, 32.5754218, 33.0707100, 34.2442399, 34.3233506, 34.3512109, 38.3543568, 38.8293308, 39.9348989, 40.4014601, 40.4729411, 42.1520939, 42.1892152, 42.4237391, 43.1982627, 44.1678127, 44.9746195] bonf_p = np.array(bonf_p) bonf_p[bonf_p > 1] = 1 sorted_labels = ["minister", "reporter", "contractor", "insurance.agent", "machinist", "store.clerk", "conductor", "factory.owner", "mail.carrier", "streetcar.motorman", "carpenter", "coal.miner", "bartender", "bookkeeper", "soda.clerk", "chemist", "RR.engineer", "professor", "electrician", "gas.stn.attendant", "auto.repairman", "watchman", "banker", "machine.operator", "dentist", "waiter", "shoe.shiner", "welfare.worker", "plumber", "physician", "pilot", "engineer", "accountant", "lawyer", "undertaker", "barber", "store.manager", "truck.driver", "cook", "janitor", "policeman", "architect", "teacher", "taxi.driver", "author"] res2 = np.c_[rstudent, unadj_p, bonf_p] res = oi.outlier_test(ndarray_mod, method='b', labels=labels, order=True) np.testing.assert_almost_equal(res.values, res2, 7) np.testing.assert_equal(res.index.tolist(), sorted_labels) # pylint: disable-msg=E1103 if __name__ == '__main__': import nose nose.runmodule(argv=[__file__, '-vvs', '-x'], exit=False) #t = TestDiagnosticG() #t.test_basic() #t.test_hac() #t.test_acorr_breush_godfrey() #t.test_acorr_ljung_box() #t.test_het_goldfeldquandt() #t.test_het_breush_pagan() #t.test_het_white() #t.test_compare_lr() #t.test_compare_nonnested() #t.test_influence() ################################################## ''' J test Model 1: ginv ~ ggdp + lint Model 2: ginv ~ ggdp + tbilrate Estimate Std. Error t value Pr(>|t|) M1 + fitted(M2) 1.591505670785873 0.7384552861695823 2.15518 0.0323546 * M2 + fitted(M1) 1.305687653016899 0.4808385176653064 2.71544 0.0072039 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 = lm(ginv ~ ggdp + tbilrate) > ct = coxtest(fm, fm3) > ct Cox test Model 1: ginv ~ ggdp + lint Model 2: ginv ~ ggdp + tbilrate Estimate Std. Error z value Pr(>|z|) fitted(M1) ~ M2 -0.782030488930356 0.599696502782265 -1.30404 0.19222 fitted(M2) ~ M1 -2.248817107408537 0.392656854330139 -5.72718 1.0211e-08 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 > et = encomptest(fm, fm3) > et Encompassing test Model 1: ginv ~ ggdp + lint Model 2: ginv ~ ggdp + tbilrate Model E: ginv ~ ggdp + lint + tbilrate Res.Df Df F Pr(>F) M1 vs. ME 198 -1 4.64481 0.0323546 * M2 vs. ME 198 -1 7.37361 0.0072039 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 > fm4 = lm(realinv ~ realgdp + realint, data=d) > fm5 = lm(log(realinv) ~ realgdp + realint, data=d) > pet = petest(fm4, fm5) > pet PE test Model 1: realinv ~ realgdp + realint Model 2: log(realinv) ~ realgdp + realint Estimate Std. Error t value M1 + log(fit(M1))-fit(M2) -229.281878354594596 44.5087822087058598 -5.15139 M2 + fit(M1)-exp(fit(M2)) 0.000634664704814 0.0000462387010349 13.72583 Pr(>|t|) M1 + log(fit(M1))-fit(M2) 6.2013e-07 *** M2 + fit(M1)-exp(fit(M2)) < 2.22e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 '''
bsd-3-clause
dsquareindia/scikit-learn
examples/applications/plot_species_distribution_modeling.py
55
7386
""" ============================= Species distribution modeling ============================= Modeling species' geographic distributions is an important problem in conservation biology. In this example we model the geographic distribution of two south american mammals given past observations and 14 environmental variables. Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density estimation problem and use the `OneClassSVM` provided by the package `sklearn.svm` as our modeling tool. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.org/basemap>`_ to plot the coast lines and national boundaries of South America. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: BSD 3 clause from __future__ import print_function from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.base import Bunch from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn import svm, metrics # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False print(__doc__) def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid): """Create a bunch with information about a particular organism This will use the test/train record arrays to extract the data specific to the given species name. """ bunch = Bunch(name=' '.join(species_name.split("_")[:2])) species_name = species_name.encode('ascii') points = dict(test=test, train=train) for label, pts in points.items(): # choose points associated with the desired species pts = pts[pts['species'] == species_name] bunch['pts_%s' % label] = pts # determine coverage values for each of the training & testing points ix = np.searchsorted(xgrid, pts['dd long']) iy = np.searchsorted(ygrid, pts['dd lat']) bunch['cov_%s' % label] = coverages[:, -iy, ix].T return bunch def plot_species_distribution(species=("bradypus_variegatus_0", "microryzomys_minutus_0")): """ Plot the species distribution. """ if len(species) > 2: print("Note: when more than two species are provided," " only the first two will be used") t0 = time() # Load the compressed data data = fetch_species_distributions() # Set up the data grid xgrid, ygrid = construct_grids(data) # The grid in x,y coordinates X, Y = np.meshgrid(xgrid, ygrid[::-1]) # create a bunch for each species BV_bunch = create_species_bunch(species[0], data.train, data.test, data.coverages, xgrid, ygrid) MM_bunch = create_species_bunch(species[1], data.train, data.test, data.coverages, xgrid, ygrid) # background points (grid coordinates) for evaluation np.random.seed(13) background_points = np.c_[np.random.randint(low=0, high=data.Ny, size=10000), np.random.randint(low=0, high=data.Nx, size=10000)].T # We'll make use of the fact that coverages[6] has measurements at all # land points. This will help us decide between land and water. land_reference = data.coverages[6] # Fit, predict, and plot for each species. for i, species in enumerate([BV_bunch, MM_bunch]): print("_" * 80) print("Modeling distribution of species '%s'" % species.name) # Standardize features mean = species.cov_train.mean(axis=0) std = species.cov_train.std(axis=0) train_cover_std = (species.cov_train - mean) / std # Fit OneClassSVM print(" - fit OneClassSVM ... ", end='') clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5) clf.fit(train_cover_std) print("done.") # Plot map of South America plt.subplot(1, 2, i + 1) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) print(" - predict species distribution") # Predict species distribution using the training data Z = np.ones((data.Ny, data.Nx), dtype=np.float64) # We'll predict only for the land points. idx = np.where(land_reference > -9999) coverages_land = data.coverages[:, idx[0], idx[1]].T pred = clf.decision_function((coverages_land - mean) / std)[:, 0] Z *= pred.min() Z[idx[0], idx[1]] = pred levels = np.linspace(Z.min(), Z.max(), 25) Z[land_reference == -9999] = -9999 # plot contours of the prediction plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) plt.colorbar(format='%.2f') # scatter training/testing points plt.scatter(species.pts_train['dd long'], species.pts_train['dd lat'], s=2 ** 2, c='black', marker='^', label='train') plt.scatter(species.pts_test['dd long'], species.pts_test['dd lat'], s=2 ** 2, c='black', marker='x', label='test') plt.legend() plt.title(species.name) plt.axis('equal') # Compute AUC with regards to background points pred_background = Z[background_points[0], background_points[1]] pred_test = clf.decision_function((species.cov_test - mean) / std)[:, 0] scores = np.r_[pred_test, pred_background] y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)] fpr, tpr, thresholds = metrics.roc_curve(y, scores) roc_auc = metrics.auc(fpr, tpr) plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right") print("\n Area under the ROC curve : %f" % roc_auc) print("\ntime elapsed: %.2fs" % (time() - t0)) plot_species_distribution() plt.show()
bsd-3-clause
dopplershift/MetPy
src/metpy/plots/declarative.py
1
65191
# Copyright (c) 2018,2019 MetPy Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause """Declarative plotting tools.""" import contextlib import copy from datetime import datetime, timedelta import re import matplotlib.pyplot as plt import numpy as np import pandas as pd from traitlets import (Any, Bool, Float, HasTraits, Instance, Int, List, observe, TraitError, Tuple, Unicode, Union, validate) from . import ctables from . import wx_symbols from .cartopy_utils import import_cartopy from .station_plot import StationPlot from ..calc import reduce_point_density from ..package_tools import Exporter from ..units import units ccrs = import_cartopy() exporter = Exporter(globals()) _areas = { '105': (-129.3, -22.37, 17.52, 53.78), 'local': (-92., -64., 28.5, 48.5), 'wvaac': (120.86, -15.07, -53.6, 89.74), 'tropsfc': (-100., -55., 8., 33.), 'epacsfc': (-155., -75., -20., 33.), 'ofagx': (-100., -80., 20., 35.), 'ahsf': (-105., -30., -5., 35.), 'ehsf': (-145., -75., -5., 35.), 'shsf': (-125., -75., -20., 5.), 'tropful': (-160., 0., -20., 50.), 'tropatl': (-115., 10., 0., 40.), 'subtrop': (-90., -20., 20., 60.), 'troppac': (-165., -80., -25., 45.), 'gulf': (-105., -70., 10., 40.), 'carib': (-100., -50., 0., 40.), 'sthepac': (-170., -70., -60., 0.), 'opcahsf': (-102., -20., 0., 45.), 'opcphsf': (175., -70., -28., 45.), 'wwe': (-106., -50., 18., 54.), 'world': (-24., -24., -90., 90.), 'nwwrd1': (-180., 180., -90., 90.), 'nwwrd2': (0., 0., -90., 90.), 'afna': (-135.02, -23.04, 10.43, 40.31), 'awna': (-141.03, -18.58, 7.84, 35.62), 'medr': (-178., -25., -15., 5.), 'pacsfc': (129., -95., -5., 18.), 'saudi': (4.6, 92.5, -13.2, 60.3), 'natlmed': (-30., 70., 0., 65.), 'ncna': (-135.5, -19.25, 8., 37.7), 'ncna2': (-133.5, -20.5, 10., 42.), 'hpcsfc': (-124., -26., 15., 53.), 'atlhur': (-96., -6., 4., 3.), 'nam': (-134., 3., -4., 39.), 'sam': (-120., -20., -60., 20.), 'samps': (-148., -36., -28., 12.), 'eur': (-16., 80., 24., 52.), 'afnh': (-155.19, 18.76, -6.8, -3.58), 'awnh': (-158.94, 15.35, -11.55, -8.98), 'wwwus': (-127.7, -59., 19.8, 56.6), 'ccfp': (-130., -65., 22., 52.), 'llvl': (-119.6, -59.5, 19.9, 44.5), 'llvl2': (-125., -32.5, 5., 46.), 'llvl_e': (-89., -59.5, 23.5, 44.5), 'llvl_c': (-102.4, -81.25, 23.8, 51.6), 'llvl_w': (-119.8, -106.5, 19.75, 52.8), 'ak_artc': (163.7, -65.3, 17.5, 52.6), 'fxpswna': (-80.5, 135., -1., 79.), 'fxpsnna': (-80.5, 54., -1., 25.5), 'fxpsna': (-72.6, 31.4, -3.6, 31.), 'natl_ps': (-80.5, 54., -1., 25.5), 'fxpsena': (-45., 54., 11., 25.5), 'fxpsnp': (155.5, -106.5, 22.5, 47.), 'npac_ps': (155.5, -106.5, 22.5, 47.), 'fxpsus': (-120., -59., 20., 44.5), 'fxmrwrd': (58., 58., -70., 70.), 'fxmrwr2': (-131., -131., -70., 70.), 'nwmrwrd': (70., 70., -70., 70.), 'wrld_mr': (58., 58., -70., 70.), 'fxmr110': (-180., -110., -20., 50.5), 'fxmr180': (110., -180., -20., 50.5), 'fxmrswp': (97.5, -147.5, -36., 45.5), 'fxmrus': (-162.5, -37.5, -28., 51.2), 'fxmrea': (-40., 20., -20., 54.2), 'fxmrjp': (100., -160., 0., 45.), 'icao_a': (-137.4, -12.6, -54., 67.), 'icao_b': (-52.5, -16., -62.5, 77.5), 'icao_b1': (-125., 40., -45.5, 62.7), 'icao_c': (-35., 70., -45., 75.), 'icao_d': (-15., 132., -27., 63.), 'icao_e': (25., 180., -54., 40.), 'icao_f': (100., -110., -52.7, 50.), 'icao_g': (34.8, 157.2, -0.8, 13.7), 'icao_h': (-79.1, 56.7, 1.6, 25.2), 'icao_i': (166.24, -60.62, -6.74, 33.32), 'icao_j': (106.8, -101.1, -27.6, 0.8), 'icao_k': (3.3, 129.1, -11.1, 6.7), 'icao_m': (100., -110., -10., 70.), 'icao_eu': (-21.6, 68.4, 21.4, 58.7), 'icao_me': (17., 70., 10., 44.), 'icao_as': (53., 108., 00., 36.), 'icao_na': (-54.1, 60.3, 17.2, 50.7), 'nhem': (-135., 45., -15., -15.), 'nhem_ps': (-135., 45., -15., -15.), 'nhem180': (135., -45., -15., -15.), 'nhem155': (160., -20., -15., -15.), 'nhem165': (150., -30., -15., -15.), 'nh45_ps': (-90., 90., -15., -15.), 'nhem0': (-45., 135., -15., -15.), 'shem_ps': (88., -92., 30., 30.), 'hfo_gu': (160., -130., -30., 40.), 'natl': (-110., 20.1, 15., 70.), 'watl': (-84., -38., 25., 46.), 'tatl': (-90., -15., -10., 35.), 'npac': (102., -110., -12., 60.), 'spac': (102., -70., -60., 20.), 'tpac': (-165., -75., -10., 40.), 'epac': (-134., -110., 12., 75.), 'wpac': (130., -120., 0., 63.), 'mpac': (128., -108., 15., 71.95), 'opcsfp': (128.89, -105.3, 3.37, 16.77), 'opcsfa': (-55.5, 75., -8.5, 52.6), 'opchur': (-99., -15., 1., 50.05), 'us': (-119., -56., 19., 47.), 'spcus': (-116.4, -63.9, 22.1, 47.2), 'afus': (-119.04, -63.44, 23.1, 44.63), 'ncus': (-124.2, -40.98, 17.89, 47.39), 'nwus': (-118., -55.5, 17., 46.5), 'awips': (-127., -59., 20., 50.), 'bwus': (-124.6, -46.7, 13.1, 43.1), 'usa': (-118., -62., 22.8, 45.), 'usnps': (-118., -62., 18., 51.), 'uslcc': (-118., -62., 20., 51.), 'uswn': (-129., -45., 17., 53.), 'ussf': (-123.5, -44.5, 13., 32.1), 'ussp': (-126., -49., 13., 54.), 'whlf': (-123.8, -85.9, 22.9, 50.2), 'chlf': (-111., -79., 27.5, 50.5), 'centus': (-105.4, -77., 24.7, 47.6), 'ehlf': (-96.2, -62.7, 22., 49.), 'mehlf': (-89.9, -66.6, 23.8, 49.1), 'bosfa': (-87.5, -63.5, 34.5, 50.5), 'miafa': (-88., -72., 23., 39.), 'chifa': (-108., -75., 34., 50.), 'dfwfa': (-106.5, -80.5, 22., 40.), 'slcfa': (-126., -98., 29.5, 50.5), 'sfofa': (-129., -111., 30., 50.), 'g8us': (-116., -58., 19., 56.), 'wsig': (155., -115., 18., 58.), 'esig': (-80., -30., 25., 51.), 'eg8': (-79., -13., 24., 52.), 'west': (-125., -90., 25., 55.), 'cent': (-107.4, -75.3, 24.3, 49.7), 'east': (-100.55, -65.42, 24.57, 47.2), 'nwse': (-126., -102., 38.25, 50.25), 'swse': (-126., -100., 28.25, 40.25), 'ncse': (-108., -84., 38.25, 50.25), 'scse': (-108.9, -84., 24., 40.25), 'nese': (-89., -64., 37.25, 47.25), 'sese': (-90., -66., 28.25, 40.25), 'afwh': (170.7, 15.4, -48.6, 69.4), 'afeh': (-9.3, -164.6, -48.6, 69.4), 'afpc': (80.7, -74.6, -48.6, 69.4), 'ak': (-179., -116.4, 49., 69.), 'ak2': (-180., -106., 42., 73.), 'nwak': (-180., -110., 50., 60.), 'al': (-95., -79., 27., 38.), 'ar': (-100.75, -84.75, 29.5, 40.5), 'ca': (-127.75, -111.75, 31.5, 42.5), 'co': (-114., -98., 33.5, 44.5), 'ct': (-81.25, -65.25, 36., 47.), 'dc': (-85., -69., 33.35, 44.35), 'de': (-83.75, -67.75, 33.25, 44.25), 'fl': (-90., -74., 23., 34.), 'ga': (-92., -76., 27.5, 38.5), 'hi': (-161.5, -152.5, 17., 23.), 'nwxhi': (-166., -148., 14., 26.), 'ia': (-102., -86., 36.5, 47.5), 'id': (-123., -107., 39.25, 50.25), 'il': (-97.75, -81.75, 34.5, 45.5), 'in': (-94.5, -78.5, 34.5, 45.5), 'ks': (-106.5, -90.5, 33.25, 44.25), 'ky': (-93., -77., 31.75, 42.75), 'la': (-100.75, -84.75, 25.75, 36.75), 'ma': (-80.25, -64.25, 36.75, 47.75), 'md': (-85.25, -69.25, 33.75, 44.75), 'me': (-77.75, -61.75, 39.5, 50.5), 'mi': (-93., -77., 37.75, 48.75), 'mn': (-102., -86., 40.5, 51.5), 'mo': (-101., -85., 33., 44.), 'ms': (-98., -82., 27., 38.), 'mt': (-117., -101., 41.5, 52.5), 'nc': (-87.25, -71.25, 30., 41.), 'nd': (-107.5, -91.5, 42.25, 53.25), 'ne': (-107.5, -91.5, 36.25, 47.25), 'nh': (-79.5, -63.5, 38.25, 49.25), 'nj': (-82.5, -66.5, 34.75, 45.75), 'nm': (-114.25, -98.25, 29., 40.), 'nv': (-125., -109., 34., 45.), 'ny': (-84., -68., 37.25, 48.25), 'oh': (-91., -75., 34.5, 45.5), 'ok': (-105.25, -89.25, 30.25, 41.25), 'or': (-128., -112., 38.75, 49.75), 'pa': (-86., -70., 35.5, 46.5), 'ri': (-79.75, -63.75, 36., 47.), 'sc': (-89., -73., 28.5, 39.5), 'sd': (-107.5, -91.5, 39., 50.), 'tn': (-95., -79., 30., 41.), 'tx': (-107., -91., 25.4, 36.5), 'ut': (-119., -103., 34., 45.), 'va': (-86.5, -70.5, 32.25, 43.25), 'vt': (-80.75, -64.75, 38.25, 49.25), 'wi': (-98., -82., 38.5, 49.5), 'wv': (-89., -73., 33., 44.), 'wy': (-116., -100., 37.75, 48.75), 'az': (-119., -103., 29., 40.), 'wa': (-128., -112., 41.75, 52.75), 'abrfc': (-108., -88., 30., 42.), 'ab10': (-106.53, -90.28, 31.69, 40.01), 'cbrfc': (-117., -103., 28., 46.), 'cb10': (-115.69, -104.41, 29.47, 44.71), 'lmrfc': (-100., -77., 26., 40.), 'lm10': (-97.17, -80.07, 28.09, 38.02), 'marfc': (-83.5, -70., 35.5, 44.), 'ma10': (-81.27, -72.73, 36.68, 43.1), 'mbrfc': (-116., -86., 33., 53.), 'mb10': (-112.8, -89.33, 35.49, 50.72), 'ncrfc': (-108., -76., 34., 53.), 'nc10': (-104.75, -80.05, 35.88, 50.6), 'nerfc': (-84., -61., 39., 49.), 'ne10': (-80.11, -64.02, 40.95, 47.62), 'nwrfc': (-128., -105., 35., 55.), 'nw10': (-125.85, -109.99, 38.41, 54.46), 'ohrfc': (-92., -75., 34., 44.), 'oh10': (-90.05, -77.32, 35.2, 42.9), 'serfc': (-94., -70., 22., 40.), 'se10': (-90.6, -73.94, 24.12, 37.91), 'wgrfc': (-112., -88., 21., 42.), 'wg10': (-108.82, -92.38, 23.99, 39.18), 'nwcn': (-133.5, -10.5, 32., 56.), 'cn': (-120.4, -14., 37.9, 58.6), 'ab': (-119.6, -108.2, 48.6, 60.4), 'bc': (-134.5, -109., 47.2, 60.7), 'mb': (-102.4, -86.1, 48.3, 60.2), 'nb': (-75.7, -57.6, 42.7, 49.6), 'nf': (-68., -47., 45., 62.), 'ns': (-67., -59., 43., 47.5), 'nt': (-131.8, -33.3, 57.3, 67.8), 'on': (-94.5, -68.2, 41.9, 55.), 'pe': (-64.6, -61.7, 45.8, 47.1), 'qb': (-80., -49.2, 44.1, 60.9), 'sa': (-111.2, -97.8, 48.5, 60.3), 'yt': (-142., -117., 59., 70.5), 'ag': (-80., -53., -56., -20.), 'ah': (60., 77., 27., 40.), 'afrca': (-25., 59.4, -36., 41.), 'ai': (-14.3, -14.1, -8., -7.8), 'alba': (18., 23., 39., 43.), 'alge': (-9., 12., 15., 38.), 'an': (10., 25., -20., -5.), 'antl': (-70., -58., 11., 19.), 'antg': (-86., -65., 17., 25.), 'atg': (-62., -61.6, 16.9, 17.75), 'au': (101., 148., -45., -6.5), 'azor': (-27.6, -23., 36., 41.), 'ba': (-80.5, -72.5, 22.5, 28.5), 'be': (-64.9, -64.5, 32.2, 32.6), 'bel': (2.5, 6.5, 49.4, 51.6), 'bf': (113., 116., 4., 5.5), 'bfa': (-6., 3., 9., 15.1), 'bh': (-89.3, -88.1, 15.7, 18.5), 'bi': (29., 30.9, -4.6, -2.2), 'bj': (0., 5., 6., 12.6), 'bn': (50., 51., 25.5, 27.1), 'bo': (-72., -50., -24., -8.), 'bots': (19., 29.6, -27., -17.), 'br': (-62.5, -56.5, 12.45, 13.85), 'bt': (71.25, 72.6, -7.5, -5.), 'bu': (22., 30., 40., 45.), 'bv': (3., 4., -55., -54.), 'bw': (87., 93., 20.8, 27.), 'by': (19., 33., 51., 60.), 'bz': (-75., -30., -35., 5.), 'cais': (-172., -171., -3., -2.), 'nwcar': (-120., -50., -15., 35.), 'cari': (-103., -53., 3., 36.), 'cb': (13., 25., 7., 24.), 'ce': (14., 29., 2., 11.5), 'cg': (10., 20., -6., 5.), 'ch': (-80., -66., -56., -15.), 'ci': (85., 145., 14., 48.5), 'cm': (7.5, 17.1, 1., 14.), 'colm': (-81., -65., -5., 14.), 'cr': (-19., -13., 27., 30.), 'cs': (-86.5, -81.5, 8.2, 11.6), 'cu': (-85., -74., 19., 24.), 'cv': (-26., -22., 14., 18.), 'cy': (32., 35., 34., 36.), 'cz': (8.9, 22.9, 47.4, 52.4), 'dj': (41.5, 44.1, 10.5, 13.1), 'dl': (4.8, 16.8, 47., 55.), 'dn': (8., 11., 54., 58.6), 'do': (-61.6, -61.2, 15.2, 15.8), 'dr': (-72.2, -68., 17.5, 20.2), 'eg': (24., 37., 21., 33.), 'eq': (-85., -74., -7., 3.), 'er': (50., 57., 22., 26.6), 'es': (-90.3, -87.5, 13., 14.6), 'et': (33., 49., 2., 19.), 'fa': (-8., -6., 61., 63.), 'fg': (-55., -49., 1., 7.), 'fi': (20.9, 35.1, 59., 70.6), 'fj': (176., -179., 16., 19.), 'fk': (-61.3, -57.5, -53., -51.), 'fn': (0., 17., 11., 24.), 'fr': (-5., 11., 41., 51.5), 'gb': (-17.1, -13.5, 13., 14.6), 'gc': (-82.8, -77.6, 17.9, 21.1), 'gh': (-4.5, 1.5, 4., 12.), 'gi': (-8., -4., 35., 38.), 'gl': (-56.7, 14., 58.3, 79.7), 'glp': (-64.2, -59.8, 14.8, 19.2), 'gm': (144.5, 145.1, 13., 14.), 'gn': (2., 16., 3.5, 15.5), 'go': (8., 14.5, -4.6, 3.), 'gr': (20., 27.6, 34., 42.), 'gu': (-95.6, -85., 10.5, 21.1), 'gw': (-17.5, -13.5, 10.8, 12.8), 'gy': (-62., -55., 0., 10.), 'ha': (-75., -71., 18., 20.), 'he': (-6.1, -5.5, -16.3, -15.5), 'hk': (113.5, 114.7, 22., 23.), 'ho': (-90., -83., 13., 16.6), 'hu': (16., 23., 45.5, 49.1), 'ic': (43., 45., -13.2, -11.), 'icel': (-24.1, -11.5, 63., 67.5), 'ie': (-11.1, -4.5, 50., 55.6), 'inda': (67., 92., 4.2, 36.), 'indo': (95., 141., -8., 6.), 'iq': (38., 50., 29., 38.), 'ir': (44., 65., 25., 40.), 'is': (34., 37., 29., 34.), 'iv': (-9., -2., 4., 11.), 'iw': (34.8, 35.6, 31.2, 32.6), 'iy': (6.6, 20.6, 35.6, 47.2), 'jd': (34., 39.6, 29., 33.6), 'jm': (-80., -76., 16., 19.), 'jp': (123., 155., 24., 47.), 'ka': (131., 155., 1., 9.6), 'kash': (74., 78., 32., 35.), 'kb': (172., 177., -3., 3.2), 'khm': (102., 108., 10., 15.), 'ki': (105.2, 106.2, -11., -10.), 'kn': (32.5, 42.1, -6., 6.), 'kna': (-62.9, -62.4, 17., 17.5), 'ko': (124., 131.5, 33., 43.5), 'ku': (-168., -155., -24.1, -6.1), 'kw': (46.5, 48.5, 28.5, 30.5), 'laos': (100., 108., 13.5, 23.1), 'lb': (34.5, 37.1, 33., 35.), 'lc': (60.9, 61.3, 13.25, 14.45), 'li': (-12., -7., 4., 9.), 'ln': (-162.1, -154.9, -4.2, 6.), 'ls': (27., 29.6, -30.6, -28.), 'lt': (9.3, 9.9, 47., 47.6), 'lux': (5.6, 6.6, 49.35, 50.25), 'ly': (8., 26., 19., 35.), 'maar': (-63.9, -62.3, 17., 18.6), 'made': (-17.3, -16.5, 32.6, 33.), 'mala': (100., 119.6, 1., 8.), 'mali': (-12.5, 6., 8.5, 25.5), 'maur': (57.2, 57.8, -20.7, -19.9), 'maut': (-17.1, -4.5, 14.5, 28.1), 'mc': (-13., -1., 25., 36.), 'mg': (43., 50.6, -25.6, -12.), 'mh': (160., 172., 4.5, 12.1), 'ml': (14.3, 14.7, 35.8, 36.), 'mmr': (92., 102., 7.5, 28.5), 'mong': (87.5, 123.1, 38.5, 52.6), 'mr': (-61.2, -60.8, 14.3, 15.1), 'mu': (113., 114., 22., 23.), 'mv': (70.1, 76.1, -6., 10.), 'mw': (32.5, 36.1, -17., -9.), 'mx': (-119., -83., 13., 34.), 'my': (142.5, 148.5, 9., 25.), 'mz': (29., 41., -26.5, -9.5), 'nama': (11., 25., -29.5, -16.5), 'ncal': (158., 172., -23., -18.), 'ng': (130., 152., -11., 0.), 'ni': (2., 14.6, 3., 14.), 'nk': (-88., -83., 10.5, 15.1), 'nl': (3.5, 7.5, 50.5, 54.1), 'no': (3., 35., 57., 71.5), 'np': (80., 89., 25., 31.), 'nw': (166.4, 167.4, -1., 0.), 'nz': (165., 179., -48., -33.), 'om': (52., 60., 16., 25.6), 'os': (9., 18., 46., 50.), 'pf': (-154., -134., -28., -8.), 'ph': (116., 127., 4., 21.), 'pi': (-177.5, -167.5, -9., 1.), 'pk': (60., 78., 23., 37.), 'pl': (14., 25., 48.5, 55.), 'pm': (-83., -77., 7., 10.), 'po': (-10., -4., 36.5, 42.5), 'pr': (-82., -68., -20., 5.), 'pt': (-130.6, -129.6, -25.56, -24.56), 'pu': (-67.5, -65.5, 17.5, 18.5), 'py': (-65., -54., -32., -17.), 'qg': (7., 12., -2., 3.), 'qt': (50., 52., 24., 27.), 'ra': (60., -165., 25., 55.), 're': (55., 56., -21.5, -20.5), 'riro': (-18., -12., 17.5, 27.5), 'ro': (19., 31., 42.5, 48.5), 'rw': (29., 31., -3., -1.), 'saud': (34.5, 56.1, 15., 32.6), 'sb': (79., 83., 5., 10.), 'seyc': (55., 56., -5., -4.), 'sg': (-18., -10., 12., 17.), 'si': (39.5, 52.1, -4.5, 13.5), 'sk': (109.5, 119.3, 1., 7.), 'sl': (-13.6, -10.2, 6.9, 10.1), 'sm': (-59., -53., 1., 6.), 'sn': (10., 25., 55., 69.6), 'so': (156., 167., -12., -6.), 'sp': (-10., 6., 35., 44.), 'sr': (103., 105., 1., 2.), 'su': (21.5, 38.5, 3.5, 23.5), 'sv': (30.5, 33.1, -27.5, -25.3), 'sw': (5.9, 10.5, 45.8, 48.), 'sy': (35., 42.6, 32., 37.6), 'tanz': (29., 40.6, -13., 0.), 'td': (-62.1, -60.5, 10., 11.6), 'tg': (-0.5, 2.5, 5., 12.), 'th': (97., 106., 5., 21.), 'ti': (-71.6, -70.6, 21., 22.), 'tk': (-173., -171., -11.5, -7.5), 'to': (-178.5, -170.5, -22., -15.), 'tp': (6., 7.6, 0., 2.), 'ts': (7., 13., 30., 38.), 'tu': (25., 48., 34.1, 42.1), 'tv': (176., 180., -11., -5.), 'tw': (120., 122., 21.9, 25.3), 'ug': (29., 35., -3.5, 5.5), 'uk': (-11., 5., 49., 60.), 'ur': (24., 41., 44., 55.), 'uy': (-60., -52., -35.5, -29.5), 'vanu': (167., 170., -21., -13.), 'vi': (-65.5, -64., 16.6, 19.6), 'vk': (13.8, 25.8, 46.75, 50.75), 'vn': (-75., -60., -2., 14.), 'vs': (102., 110., 8., 24.), 'wk': (166.1, 167.1, 18.8, 19.8), 'ye': (42.5, 54.1, 12.5, 19.1), 'yg': (13.5, 24.6, 40., 47.), 'za': (16., 34., -36., -22.), 'zb': (21., 35., -20., -7.), 'zm': (170.5, 173.5, -15., -13.), 'zr': (12., 31.6, -14., 6.), 'zw': (25., 34., -22.9, -15.5) } def lookup_projection(projection_code): """Get a Cartopy projection based on a short abbreviation.""" import cartopy.crs as ccrs projections = {'lcc': ccrs.LambertConformal(central_latitude=40, central_longitude=-100, standard_parallels=[30, 60]), 'ps': ccrs.NorthPolarStereo(central_longitude=-100), 'mer': ccrs.Mercator()} return projections[projection_code] def lookup_map_feature(feature_name): """Get a Cartopy map feature based on a name.""" import cartopy.feature as cfeature from . import cartopy_utils name = feature_name.upper() try: feat = getattr(cfeature, name) scaler = cfeature.AdaptiveScaler('110m', (('50m', 50), ('10m', 15))) except AttributeError: feat = getattr(cartopy_utils, name) scaler = cfeature.AdaptiveScaler('20m', (('5m', 5), ('500k', 1))) return feat.with_scale(scaler) class Panel(HasTraits): """Draw one or more plots.""" @exporter.export class PanelContainer(HasTraits): """Collects panels and set complete figure related settings (e.g., size).""" size = Union([Tuple(Union([Int(), Float()]), Union([Int(), Float()])), Instance(type(None))], default_value=None) size.__doc__ = """This trait takes a tuple of (width, height) to set the size of the figure. This trait defaults to None and will assume the default `matplotlib.pyplot.figure` size. """ panels = List(Instance(Panel)) panels.__doc__ = """A list of panels to plot on the figure. This trait must contain at least one panel to plot on the figure.""" @property def panel(self): """Provide simple access for a single panel.""" return self.panels[0] @panel.setter def panel(self, val): self.panels = [val] @observe('panels') def _panels_changed(self, change): for panel in change.new: panel.parent = self panel.observe(self.refresh, names=('_need_redraw')) @property def figure(self): """Provide access to the underlying figure object.""" if not hasattr(self, '_fig'): self._fig = plt.figure(figsize=self.size) return self._fig def refresh(self, _): """Refresh the rendering of all panels.""" # First make sure everything is properly constructed self.draw() # Trigger the graphics refresh self.figure.canvas.draw() # Flush out interactive events--only ok on Agg for newer matplotlib with contextlib.suppress(NotImplementedError): self.figure.canvas.flush_events() def draw(self): """Draw the collection of panels.""" for panel in self.panels: with panel.hold_trait_notifications(): panel.draw() def save(self, *args, **kwargs): """Save the constructed graphic as an image file. This method takes a string for saved file name. Additionally, the same arguments and keyword arguments that `matplotlib.pyplot.savefig` does. """ self.draw() self.figure.savefig(*args, **kwargs) def show(self): """Show the constructed graphic on the screen.""" self.draw() plt.show() def copy(self): """Return a copy of the panel container.""" return copy.copy(self) @exporter.export class MapPanel(Panel): """Set figure related elements for an individual panel. Parameters that need to be set include collecting all plotting types (e.g., contours, wind barbs, etc.) that are desired to be in a given panel. Additionally, traits can be set to plot map related features (e.g., coastlines, borders), projection, graphics area, and title. """ parent = Instance(PanelContainer, allow_none=True) layout = Tuple(Int(), Int(), Int(), default_value=(1, 1, 1)) layout.__doc__ = """A tuple that contains the description (nrows, ncols, index) of the panel position; default value is (1, 1, 1). This trait is set to describe the panel position and the default is for a single panel. For example, a four-panel plot will have two rows and two columns with the tuple setting for the upper-left panel as (2, 2, 1), upper-right as (2, 2, 2), lower-left as (2, 2, 3), and lower-right as (2, 2, 4). For more details see the documentation for `matplotlib.figure.Figure.add_subplot`. """ plots = List(Any()) plots.__doc__ = """A list of handles that represent the plots (e.g., `ContourPlot`, `FilledContourPlot`, `ImagePlot`) to put on a given panel. This trait collects the different plots, including contours and images, that are intended for a given panel. """ _need_redraw = Bool(default_value=True) area = Union([Unicode(), Tuple(Float(), Float(), Float(), Float())], allow_none=True, default_value=None) area.__doc__ = """A tuple or string value that indicates the graphical area of the plot. The tuple value corresponds to longitude/latitude box based on the projection of the map with the format (west-most longitude, east-most longitude, south-most latitude, north-most latitude). This tuple defines a box from the lower-left to the upper-right corner. This trait can also be set with a string value associated with the named geographic regions within MetPy. The tuples associated with the names are based on a PlatteCarree projection. For a CONUS region, the following strings can be used: 'us', 'spcus', 'ncus', and 'afus'. For regional plots, US postal state abbreviations can be used, such as 'co', 'ny', 'ca', et cetera. Providing a '+' or '-' suffix to the string value will zoom in or out, respectively. Providing multiple '+' or '-' characters will zoom in or out further. """ projection = Union([Unicode(), Instance('cartopy.crs.Projection')], default_value='data') projection.__doc__ = """A string for a pre-defined projection or a Cartopy projection object. There are three pre-defined projections that can be called with a short name: Lambert conformal conic ('lcc'), Mercator ('mer'), or polar-stereographic ('ps'). Additionally, this trait can be set to a Cartopy projection object. """ layers = List(Union([Unicode(), Instance('cartopy.feature.Feature')]), default_value=['coastline']) layers.__doc__ = """A list of strings for a pre-defined feature layer or a Cartopy Feature object. Like the projection, there are a couple of pre-defined feature layers that can be called using a short name. The pre-defined layers are: 'coastline', 'states', 'borders', 'lakes', 'land', 'ocean', 'rivers', 'usstates', and 'uscounties'. Additionally, this can accept Cartopy Feature objects. """ title = Unicode() title.__doc__ = """A string to set a title for the figure. This trait sets a user-defined title that will plot at the top center of the figure. """ title_fontsize = Union([Int(), Float(), Unicode()], allow_none=True, default_value=None) title_fontsize.__doc__ = """An integer or string value for the font size of the title of the figure. This trait sets the font size for the title that will plot at the top center of the figure. Accepts size in points or relative size. Allowed relative sizes are those of Matplotlib: 'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'. """ @validate('area') def _valid_area(self, proposal): """Check that proposed string or tuple is valid and turn string into a tuple extent.""" area = proposal['value'] # Parse string, check that string is valid, and determine extent based on string if isinstance(area, str): match = re.match(r'(\w+)([-+]*)$', area) if match is None: raise TraitError(f'"{area}" is not a valid string area.') region, modifier = match.groups() region = region.lower() if region == 'global': extent = 'global' elif region in _areas: extent = _areas[region] zoom = modifier.count('+') - modifier.count('-') extent = self._zoom_extent(extent, zoom) else: raise TraitError(f'"{area}" is not a valid string area.') # Otherwise, assume area is a tuple and check that latitudes/longitudes are valid else: west_lon, east_lon, south_lat, north_lat = area valid_west = -180 <= west_lon <= 180 valid_east = -180 <= east_lon <= 180 valid_south = -90 <= south_lat <= 90 valid_north = -90 <= north_lat <= 90 if not (valid_west and valid_east and valid_south and valid_north): raise TraitError(f'"{area}" is not a valid string area.') extent = area return extent @observe('plots') def _plots_changed(self, change): """Handle when our collection of plots changes.""" for plot in change.new: plot.parent = self plot.observe(self.refresh, names=('_need_redraw')) self._need_redraw = True @observe('parent') def _parent_changed(self, _): """Handle when the parent is changed.""" self.ax = None @property def _proj_obj(self): """Return the projection as a Cartopy object. Handles looking up a string for the projection, or if the projection is set to ``'data'`` looks at the data for the projection. """ if isinstance(self.projection, str): if self.projection == 'data': if isinstance(self.plots[0].griddata, tuple): return self.plots[0].griddata[0].metpy.cartopy_crs else: return self.plots[0].griddata.metpy.cartopy_crs else: return lookup_projection(self.projection) else: return self.projection @property def _layer_features(self): """Iterate over all map features and return as Cartopy objects. Handle converting names of maps to auto-scaling map features. """ for item in self.layers: if isinstance(item, str): feat = lookup_map_feature(item) else: feat = item yield feat @observe('area') def _set_need_redraw(self, _): """Watch traits and set the need redraw flag as necessary.""" self._need_redraw = True @staticmethod def _zoom_extent(extent, zoom): """Calculate new bounds for zooming in or out of a given extent. ``extent`` is given as a tuple with four numeric values, in the same format as the ``area`` trait. If ``zoom`` = 0, the extent will not be changed from what was provided to the method If ``zoom`` > 0, the returned extent will be smaller (zoomed in) If ``zoom`` < 0, the returned extent will be larger (zoomed out) """ west_lon, east_lon, south_lat, north_lat = extent # Turn number of pluses and minuses into a number than can scale the latitudes and # longitudes of our extent zoom_multiplier = (1 - 2**-zoom) / 2 # Calculate bounds for new, zoomed extent new_north_lat = north_lat + (south_lat - north_lat) * zoom_multiplier new_south_lat = south_lat - (south_lat - north_lat) * zoom_multiplier new_east_lon = east_lon + (west_lon - east_lon) * zoom_multiplier new_west_lon = west_lon - (west_lon - east_lon) * zoom_multiplier return (new_west_lon, new_east_lon, new_south_lat, new_north_lat) @property def ax(self): """Get the :class:`matplotlib.axes.Axes` to draw on. Creates a new instance if necessary. """ # If we haven't actually made an instance yet, make one with the right size and # map projection. if getattr(self, '_ax', None) is None: self._ax = self.parent.figure.add_subplot(*self.layout, projection=self._proj_obj) return self._ax @ax.setter def ax(self, val): """Set the :class:`matplotlib.axes.Axes` to draw on. Clears existing state as necessary. """ if getattr(self, '_ax', None) is not None: self._ax.cla() self._ax = val def refresh(self, changed): """Refresh the drawing if necessary.""" self._need_redraw = changed.new def draw(self): """Draw the panel.""" # Only need to run if we've actually changed. if self._need_redraw: # Set the extent as appropriate based on the area. One special case for 'global'. if self.area == 'global': self.ax.set_global() elif self.area is not None: self.ax.set_extent(self.area, ccrs.PlateCarree()) # Draw all of the plots. for p in self.plots: with p.hold_trait_notifications(): p.draw() # Add all of the maps for feat in self._layer_features: self.ax.add_feature(feat) # Use the set title or generate one. title = self.title or ',\n'.join(plot.name for plot in self.plots) self.ax.set_title(title, fontsize=self.title_fontsize) self._need_redraw = False def __copy__(self): """Return a copy of this MapPanel.""" # Create new, blank instance of MapPanel cls = self.__class__ obj = cls.__new__(cls) # Copy each attribute from current MapPanel to new MapPanel for name in self.trait_names(): # The 'plots' attribute is a list. # A copy must be made for each plot in the list. if name == 'plots': obj.plots = [copy.copy(plot) for plot in self.plots] else: setattr(obj, name, getattr(self, name)) return obj def copy(self): """Return a copy of the panel.""" return copy.copy(self) @exporter.export class Plots2D(HasTraits): """The highest level class related to plotting 2D data. This class collects all common methods no matter whether plotting a scalar variable or vector. Primary settings common to all types of 2D plots are time and level. """ parent = Instance(Panel) _need_redraw = Bool(default_value=True) level = Union([Int(allow_none=True, default_value=None), Instance(units.Quantity)]) level.__doc__ = """The level of the field to be plotted. This is a value with units to choose the desired plot level. For example, selecting the 850-hPa level, set this parameter to ``850 * units.hPa`` """ time = Instance(datetime, allow_none=True) time.__doc__ = """Set the valid time to be plotted as a datetime object. If a forecast hour is to be plotted the time should be set to the valid future time, which can be done using the `~datetime.datetime` and `~datetime.timedelta` objects from the Python standard library. """ plot_units = Unicode(allow_none=True, default_value=None) plot_units.__doc__ = """The desired units to plot the field in. Setting this attribute will convert the units of the field variable to the given units for plotting using the MetPy Units module. """ scale = Float(default_value=1e0) scale.__doc__ = """Scale the field to be plotted by the value given. This attribute will scale the field by multiplying by the scale. For example, to scale vorticity to be whole values for contouring you could set the scale to 1e5, such that the data values will be scaled by 10^5. """ @property def _cmap_obj(self): """Return the colormap object. Handle convert the name of the colormap to an object from matplotlib or metpy. """ try: return ctables.registry.get_colortable(self.colormap) except KeyError: return plt.get_cmap(self.colormap) @property def _norm_obj(self): """Return the normalization object. Converts the tuple image range to a matplotlib normalization instance. """ return plt.Normalize(*self.image_range) def clear(self): """Clear the plot. Resets all internal state and sets need for redraw. """ if getattr(self, 'handle', None) is not None: if getattr(self.handle, 'collections', None) is not None: self.clear_collections() else: self.clear_handle() self._need_redraw = True def clear_handle(self): """Clear the handle to the plot instance.""" self.handle.remove() self.handle = None def clear_collections(self): """Clear the handle collections to the plot instance.""" for col in self.handle.collections: col.remove() self.handle = None @observe('parent') def _parent_changed(self, _): """Handle setting the parent object for the plot.""" self.clear() @observe('level', 'time') def _update_data(self, _=None): """Handle updating the internal cache of data. Responds to changes in various subsetting parameters. """ self._griddata = None self.clear() # Can't be a Traitlet because notifications don't work with arrays for traits # notification never happens @property def data(self): """Xarray dataset that contains the field to be plotted.""" return self._data @data.setter def data(self, val): self._data = val self._update_data() @property def name(self): """Generate a name for the plot.""" if isinstance(self.field, tuple): ret = '' ret += ' and '.join(f for f in self.field) else: ret = self.field if self.level is not None: ret += f'@{self.level:d}' return ret def copy(self): """Return a copy of the plot.""" return copy.copy(self) @exporter.export class PlotScalar(Plots2D): """Defines the common elements of 2D scalar plots for single scalar value fields. Most of the other traits here are for one or more of the specific plots. Currently this allows too many options for `ContourPlot` since it does not user image_range, for example. Similar issues for `ImagePlot` and `FilledContourPlot`. """ field = Unicode() field.__doc__ = """Name of the field to be plotted. This is the name of the variable from the dataset that is to be plotted. An example, from a model grid file that uses the THREDDS convention for naming would be `Geopotential_height_isobaric` or `Temperature_isobaric`. For GOES-16/17 satellite data it might be `Sectorized_CMI`. To check for the variables available within a dataset, list the variables with the following command assuming the dataset was read using xarray as `ds`, `list(ds)` """ @observe('field') def _update_data(self, _=None): """Handle updating the internal cache of data. Responds to changes in various subsetting parameters. """ self._griddata = None self.clear() @property def griddata(self): """Return the internal cached data.""" if getattr(self, '_griddata', None) is None: if self.field: data = self.data.metpy.parse_cf(self.field) elif not hasattr(self.data.metpy, 'x'): # Handles the case where we have a dataset but no specified field raise ValueError('field attribute has not been set.') else: data = self.data subset = {'method': 'nearest'} if self.level is not None: subset[data.metpy.vertical.name] = self.level if self.time is not None: subset[data.metpy.time.name] = self.time data_subset = data.metpy.sel(**subset).squeeze() if self.plot_units is not None: data_subset = data_subset.metpy.convert_units(self.plot_units) self._griddata = data_subset * self.scale return self._griddata @property def plotdata(self): """Return the data for plotting. The data array, x coordinates, and y coordinates. """ x = self.griddata.metpy.x y = self.griddata.metpy.y return x, y, self.griddata def draw(self): """Draw the plot.""" if self._need_redraw: if getattr(self, 'handle', None) is None: self._build() if getattr(self, 'colorbar', None) is not None: cbar = self.parent.ax.figure.colorbar( self.handle, orientation=self.colorbar, pad=0, aspect=50) cbar.ax.tick_params(labelsize=self.colorbar_fontsize) self._need_redraw = False class ContourTraits(HasTraits): """Represents common contour traits.""" contours = Union([List(Float()), Int()], default_value=25) contours.__doc__ = """A list of values to contour or an integer number of contour levels. This parameter sets contour or colorfill values for a plot. Values can be entered either as a list of values or as an integer with the number of contours to be plotted (as per matplotlib documentation). A list can be generated by using square brackets or creating a numpy 1D array and converting it to a list with the `~numpy.ndarray.tolist` method. """ clabels = Bool(default_value=False) clabels.__doc__ = """A boolean (True/False) on whether to plot contour labels. To plot contour labels set this trait to ``True``, the default value is ``False``. """ label_fontsize = Union([Int(), Float(), Unicode()], allow_none=True, default_value=None) label_fontsize.__doc__ = """An integer, float, or string value to set the font size of labels for contours. This trait sets the font size for labels that will plot along contour lines. Accepts size in points or relative size. Allowed relative sizes are those of Matplotlib: 'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'. """ class ColorfillTraits(HasTraits): """Represent common colorfill traits.""" colormap = Unicode(allow_none=True, default_value=None) colormap.__doc__ = """The string name for a Matplolib or MetPy colormap. For example, the Blue-Purple colormap from Matplotlib can be accessed using 'BuPu'. """ image_range = Union([Tuple(Int(allow_none=True), Int(allow_none=True)), Instance(plt.Normalize)], default_value=(None, None)) image_range.__doc__ = """A tuple of min and max values that represent the range of values to color the rasterized image. The min and max values entered as a tuple will be converted to a `matplotlib.colors.Normalize` instance for plotting. """ colorbar = Unicode(default_value=None, allow_none=True) colorbar.__doc__ = """A string (horizontal/vertical) on whether to add a colorbar to the plot. To add a colorbar associated with the plot, set the trait to ``horizontal`` or ``vertical``,specifying the orientation of the produced colorbar. The default value is ``None``. """ colorbar_fontsize = Union([Int(), Float(), Unicode()], allow_none=True, default_value=None) colorbar_fontsize.__doc__ = """An integer, float, or string value to set the font size of labels for the colorbar. This trait sets the font size of labels for the colorbar. Accepts size in points or relative size. Allowed relative sizes are those of Matplotlib: 'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'. """ @exporter.export class ImagePlot(PlotScalar, ColorfillTraits): """Make raster image using `~matplotlib.pyplot.imshow` for satellite or colored image.""" @observe('colormap', 'image_range') def _set_need_redraw(self, _): """Handle changes to attributes that just need a simple redraw.""" if hasattr(self, 'handle'): self.handle.set_cmap(self._cmap_obj) self.handle.set_norm(self._norm_obj) self._need_redraw = True @observe('colorbar') def _set_need_rebuild(self, _): """Handle changes to attributes that need to regenerate everything.""" # Because matplotlib doesn't let you just change these properties, we need # to trigger a clear and re-call of contour() self.clear() @property def plotdata(self): """Return the data for plotting. The data array, x coordinates, and y coordinates. """ x = self.griddata.metpy.x y = self.griddata.metpy.y # At least currently imshow with cartopy does not like this if 'degree' in x.units: x = x.data x[x > 180] -= 360 return x, y, self.griddata def _build(self): """Build the plot by calling any plotting methods as necessary.""" x, y, imdata = self.plotdata # We use min/max for y and manually figure out origin to try to avoid upside down # images created by images where y[0] > y[-1] extents = (x[0], x[-1], y.min(), y.max()) origin = 'upper' if y[0] > y[-1] else 'lower' self.handle = self.parent.ax.imshow(imdata, extent=extents, origin=origin, cmap=self._cmap_obj, norm=self._norm_obj, transform=imdata.metpy.cartopy_crs) @exporter.export class ContourPlot(PlotScalar, ContourTraits): """Make contour plots by defining specific traits.""" linecolor = Unicode('black') linecolor.__doc__ = """A string value to set the color of plotted contours; default is black. This trait can be set to any Matplotlib color (https://matplotlib.org/3.1.0/gallery/color/named_colors.html) """ linewidth = Int(2) linewidth.__doc__ = """An integer value to set the width of plotted contours; default value is 2. This trait changes the thickness of contour lines with a higher value plotting a thicker line. """ linestyle = Unicode('solid', allow_none=True) linestyle.__doc__ = """A string value to set the linestyle (e.g., dashed); default is solid. The valid string values are those of Matplotlib which are solid, dashed, dotted, and dashdot. """ @observe('contours', 'linecolor', 'linewidth', 'linestyle', 'clabels', 'label_fontsize') def _set_need_rebuild(self, _): """Handle changes to attributes that need to regenerate everything.""" # Because matplotlib doesn't let you just change these properties, we need # to trigger a clear and re-call of contour() self.clear() def _build(self): """Build the plot by calling any plotting methods as necessary.""" x, y, imdata = self.plotdata self.handle = self.parent.ax.contour(x, y, imdata, self.contours, colors=self.linecolor, linewidths=self.linewidth, linestyles=self.linestyle, transform=imdata.metpy.cartopy_crs) if self.clabels: self.handle.clabel(inline=1, fmt='%.0f', inline_spacing=8, use_clabeltext=True, fontsize=self.label_fontsize) @exporter.export class FilledContourPlot(PlotScalar, ColorfillTraits, ContourTraits): """Make color-filled contours plots by defining appropriate traits.""" @observe('contours', 'colorbar', 'colormap') def _set_need_rebuild(self, _): """Handle changes to attributes that need to regenerate everything.""" # Because matplotlib doesn't let you just change these properties, we need # to trigger a clear and re-call of contour() self.clear() def _build(self): """Build the plot by calling any plotting methods as necessary.""" x, y, imdata = self.plotdata self.handle = self.parent.ax.contourf(x, y, imdata, self.contours, cmap=self._cmap_obj, norm=self._norm_obj, transform=imdata.metpy.cartopy_crs) @exporter.export class PlotVector(Plots2D): """Defines common elements for 2D vector plots. This class collects common elements including the field trait, which is a tuple argument accepting two strings, for plotting 2D vector fields. """ field = Tuple(Unicode(), Unicode()) field.__doc__ = """A tuple containing the two components of the vector field from the dataset in the form (east-west component, north-south component). For a wind barb plot each component of the wind must be specified and should be of the form (u-wind, v-wind). """ pivot = Unicode('middle') pivot.__doc__ = """A string setting the pivot point of the vector. Default value is 'middle'. This trait takes the values of the keyword argument from `matplotlin.pyplot.barbs`: 'tip' or 'middle'. """ skip = Tuple(Int(), Int(), default_value=(1, 1)) skip.__doc__ = """A tuple of integers to indicate the number of grid points to skip between plotting vectors. Default is (1, 1). This trait is to be used to reduce the number of vectors plotted in the (east-west, north-south) components. The two values can be set to the same or different integer values depending on what is desired. """ earth_relative = Bool(default_value=True) earth_relative.__doc__ = """A boolean value to indicate whether the vector to be plotted is earth- or grid-relative. Default value is `True`, indicating that vectors are earth-relative. Common gridded meteorological datasets including GFS and NARR output contain wind components that are earth-relative. The primary exception is NAM output with wind components that are grid-relative. For any grid-relative vectors set this trait to `False`. """ color = Unicode(default_value='black') color.__doc__ = """A string value that controls the color of the vectors. Default value is black. This trait can be set to any named color from `Matplotlibs Colors <https://matplotlib.org/3.1.0/gallery/color/named_colors.html>` """ @observe('field') def _update_data(self, _=None): """Handle updating the internal cache of data. Responds to changes in various subsetting parameters. """ self._griddata_u = None self._griddata_v = None self.clear() @property def griddata(self): """Return the internal cached data.""" if getattr(self, '_griddata_u', None) is None: if self.field[0]: u = self.data.metpy.parse_cf(self.field[0]) v = self.data.metpy.parse_cf(self.field[1]) else: raise ValueError('field attribute not set correctly') subset = {'method': 'nearest'} if self.level is not None: subset[u.metpy.vertical.name] = self.level if self.time is not None: subset[u.metpy.time.name] = self.time data_subset_u = u.metpy.sel(**subset).squeeze() data_subset_v = v.metpy.sel(**subset).squeeze() if self.plot_units is not None: data_subset_u = data_subset_u.metpy.convert_units(self.plot_units) data_subset_v = data_subset_v.metpy.convert_units(self.plot_units) self._griddata_u = data_subset_u self._griddata_v = data_subset_v return (self._griddata_u, self._griddata_v) @property def plotdata(self): """Return the data for plotting. The data array, x coordinates, and y coordinates. """ x = self.griddata[0].metpy.x y = self.griddata[0].metpy.y if self.earth_relative: x, y, _ = ccrs.PlateCarree().transform_points(self.griddata[0].metpy.cartopy_crs, *np.meshgrid(x, y)).T x = x.T y = y.T else: if 'degree' in x.units: x, y, _ = self.griddata[0].metpy.cartopy_crs.transform_points( ccrs.PlateCarree(), *np.meshgrid(x, y)).T x = x.T y = y.T if x.ndim == 1: xx, yy = np.meshgrid(x, y) else: xx, yy = x, y return xx, yy, self.griddata[0], self.griddata[1] def draw(self): """Draw the plot.""" if self._need_redraw: if getattr(self, 'handle', None) is None: self._build() self._need_redraw = False @exporter.export class BarbPlot(PlotVector): """Make plots of wind barbs on a map with traits to refine the look of plotted elements.""" barblength = Float(default_value=7) barblength.__doc__ = """A float value that changes the length of the wind barbs. Default value is 7. This trait corresponds to the keyword length in `matplotlib.pyplot.barbs`. """ @observe('barblength', 'pivot', 'skip', 'earth_relative', 'color') def _set_need_rebuild(self, _): """Handle changes to attributes that need to regenerate everything.""" # Because matplotlib doesn't let you just change these properties, we need # to trigger a clear and re-call of contour() self.clear() def _build(self): """Build the plot by calling needed plotting methods as necessary.""" x, y, u, v = self.plotdata if self.earth_relative: transform = ccrs.PlateCarree() else: transform = u.metpy.cartopy_crs wind_slice = (slice(None, None, self.skip[0]), slice(None, None, self.skip[1])) self.handle = self.parent.ax.barbs( x[wind_slice], y[wind_slice], u.values[wind_slice], v.values[wind_slice], color=self.color, pivot=self.pivot, length=self.barblength, transform=transform) @exporter.export class PlotObs(HasTraits): """The highest level class related to plotting observed surface and upperair data. This class collects all common methods no matter whether plotting a upper-level or surface data using station plots. List of Traits: * level * time * fields * locations (optional) * time_window (optional) * formats (optional) * colors (optional) * plot_units (optional) * vector_field (optional) * vector_field_color (optional) * vector_field_length (optional) * vector_plot_units (optional) * reduce_points (optional) * fontsize (optional) """ parent = Instance(Panel) _need_redraw = Bool(default_value=True) level = Union([Int(allow_none=True), Instance(units.Quantity)], default_value=None) level.__doc__ = """The level of the field to be plotted. This is a value with units to choose the desired plot level. For example, selecting the 850-hPa level, set this parameter to ``850 * units.hPa``. For surface data, parameter must be set to `None`. """ time = Instance(datetime, allow_none=True) time.__doc__ = """Set the valid time to be plotted as a datetime object. If a forecast hour is to be plotted the time should be set to the valid future time, which can be done using the `~datetime.datetime` and `~datetime.timedelta` objects from the Python standard library. """ time_window = Instance(timedelta, default_value=timedelta(minutes=0), allow_none=True) time_window.__doc__ = """Set a range to look for data to plot as a timedelta object. If this parameter is set, it will subset the data provided to be within the time and plus or minus the range value given. If there is more than one observation from a given station then it will keep only the most recent one for plotting purposes. Default value is to have no range. (optional) """ fields = List(Unicode()) fields.__doc__ = """Name of the scalar or symbol fields to be plotted. List of parameters to be plotted around station plot (e.g., temperature, dewpoint, skyc). """ locations = List(default_value=['C']) locations.__doc__ = """List of strings for scalar or symbol field plotting locations. List of parameters locations for plotting parameters around the station plot (e.g., NW, NE, SW, SE, W, C). (optional) """ formats = List(default_value=[None]) formats.__doc__ = """List of the scalar, symbol, and text field data formats. (optional) List of scalar parameters formmaters or mapping values (if symbol) for plotting text and/or symbols around the station plot (e.g., for pressure variable ```lambda v: format(10 * v, '.0f')[-3:]```). For symbol mapping the following options are available to be put in as a string: current_weather, sky_cover, low_clouds, mid_clouds, high_clouds, and pressure_tendency. For plotting text, use the format setting of 'text'. """ colors = List(Unicode(), default_value=['black']) colors.__doc__ = """List of the scalar and symbol field colors. List of strings that represent the colors to be used for the variable being plotted. (optional) """ vector_field = List(default_value=[None], allow_none=True) vector_field.__doc__ = """List of the vector field to be plotted. List of vector components to combined and plotted from the center of the station plot (e.g., wind components). (optional) """ vector_field_color = Unicode('black', allow_none=True) vector_field_color.__doc__ = """String color name to plot the vector. (optional)""" vector_field_length = Int(default_value=None, allow_none=True) vector_field_length.__doc__ = """Integer value to set the length of the plotted vector. (optional) """ reduce_points = Float(default_value=0) reduce_points.__doc__ = """Float to reduce number of points plotted. (optional)""" plot_units = List(default_value=[None], allow_none=True) plot_units.__doc__ = """A list of the desired units to plot the fields in. Setting this attribute will convert the units of the field variable to the given units for plotting using the MetPy Units module, provided that units are attached to the DataFrame. """ vector_plot_units = Unicode(default_value=None, allow_none=True) vector_plot_units.__doc__ = """The desired units to plot the vector field in. Setting this attribute will convert the units of the field variable to the given units for plotting using the MetPy Units module, provided that units are attached to the DataFrame. """ fontsize = Int(10) fontsize.__doc__ = """An integer value to set the font size of station plots. Default is 10 pt.""" def clear(self): """Clear the plot. Resets all internal state and sets need for redraw. """ if getattr(self, 'handle', None) is not None: self.handle.ax.cla() self.handle = None self._need_redraw = True @observe('parent') def _parent_changed(self, _): """Handle setting the parent object for the plot.""" self.clear() @observe('fields', 'level', 'time', 'vector_field', 'time_window') def _update_data(self, _=None): """Handle updating the internal cache of data. Responds to changes in various subsetting parameters. """ self._obsdata = None self.clear() # Can't be a Traitlet because notifications don't work with arrays for traits # notification never happens @property def data(self): """Pandas dataframe that contains the fields to be plotted.""" return self._data @data.setter def data(self, val): self._data = val self._update_data() @property def name(self): """Generate a name for the plot.""" ret = '' ret += ' and '.join(f for f in self.fields) if self.level is not None: ret += f'@{self.level:d}' return ret @property def obsdata(self): """Return the internal cached data.""" if getattr(self, '_obsdata', None) is None: # Use a copy of data so we retain all of the original data passed in unmodified data = self.data # Subset for a particular level if given if self.level is not None: mag = getattr(self.level, 'magnitude', self.level) data = data[data.pressure == mag] # Subset for our particular time if self.time is not None: # If data are not currently indexed by time, we need to do so choosing one of # the columns we're looking for if not isinstance(data.index, pd.DatetimeIndex): time_vars = ['valid', 'time', 'valid_time', 'date_time', 'date'] dim_times = [time_var for time_var in time_vars if time_var in list(self.data)] if not dim_times: raise AttributeError( 'Time variable not found. Valid variable names are:' f'{time_vars}') data = data.set_index(dim_times[0]) if not isinstance(data.index, pd.DatetimeIndex): # Convert our column of interest to a datetime data = data.reset_index() time_index = pd.to_datetime(data[dim_times[0]]) data = data.set_index(time_index) # Works around the fact that traitlets 4.3 insists on sending us None by # default because timedelta(0) is Falsey. window = timedelta(minutes=0) if self.time_window is None else self.time_window # Indexes need to be properly sorted for the slicing below to work; the # error you get if that's not the case really convoluted, which is why # we don't rely on users doing it. data = data.sort_index() data = data[self.time - window:self.time + window] # Look for the station column stn_vars = ['station', 'stn', 'station_id', 'stid'] dim_stns = [stn_var for stn_var in stn_vars if stn_var in list(self.data)] if not dim_stns: raise AttributeError('Station variable not found. Valid variable names are: ' f'{stn_vars}') else: dim_stn = dim_stns[0] # Make sure we only use one observation per station self._obsdata = data.groupby(dim_stn).tail(1) return self._obsdata @property def plotdata(self): """Return the data for plotting. The data arrays, x coordinates, and y coordinates. """ plot_data = {} for dim_name in list(self.obsdata): if dim_name.find('lat') != -1: lat = self.obsdata[dim_name] elif dim_name.find('lon') != -1: lon = self.obsdata[dim_name] else: plot_data[dim_name] = self.obsdata[dim_name] return lon.values, lat.values, plot_data def draw(self): """Draw the plot.""" if self._need_redraw: if getattr(self, 'handle', None) is None: self._build() self._need_redraw = False @observe('colors', 'formats', 'locations', 'reduce_points', 'vector_field_color') def _set_need_rebuild(self, _): """Handle changes to attributes that need to regenerate everything.""" # Because matplotlib doesn't let you just change these properties, we need # to trigger a clear and re-call of contour() self.clear() def _build(self): """Build the plot by calling needed plotting methods as necessary.""" lon, lat, data = self.plotdata # Use the cartopy map projection to transform station locations to the map and # then refine the number of stations plotted by setting a radius if self.parent._proj_obj == ccrs.PlateCarree(): scale = 1. else: scale = 100000. point_locs = self.parent._proj_obj.transform_points(ccrs.PlateCarree(), lon, lat) subset = reduce_point_density(point_locs, self.reduce_points * scale) self.handle = StationPlot(self.parent.ax, lon[subset], lat[subset], clip_on=True, transform=ccrs.PlateCarree(), fontsize=self.fontsize) for i, ob_type in enumerate(self.fields): field_kwargs = {} if len(self.locations) > 1: location = self.locations[i] else: location = self.locations[0] if len(self.colors) > 1: field_kwargs['color'] = self.colors[i] else: field_kwargs['color'] = self.colors[0] if len(self.formats) > 1: field_kwargs['formatter'] = self.formats[i] else: field_kwargs['formatter'] = self.formats[0] if len(self.plot_units) > 1: field_kwargs['plot_units'] = self.plot_units[i] else: field_kwargs['plot_units'] = self.plot_units[0] if hasattr(self.data, 'units') and (field_kwargs['plot_units'] is not None): parameter = units.Quantity(data[ob_type][subset].values, self.data.units[ob_type]) else: parameter = data[ob_type][subset] if field_kwargs['formatter'] is not None: mapper = getattr(wx_symbols, str(field_kwargs['formatter']), None) if mapper is not None: field_kwargs.pop('formatter') self.handle.plot_symbol(location, parameter, mapper, **field_kwargs) else: if self.formats[i] == 'text': self.handle.plot_text(location, parameter, color=field_kwargs['color']) else: self.handle.plot_parameter(location, parameter, **field_kwargs) else: field_kwargs.pop('formatter') self.handle.plot_parameter(location, parameter, **field_kwargs) if self.vector_field[0] is not None: vector_kwargs = {} vector_kwargs['color'] = self.vector_field_color vector_kwargs['plot_units'] = self.vector_plot_units if hasattr(self.data, 'units') and (vector_kwargs['plot_units'] is not None): u = units.Quantity(data[self.vector_field[0]][subset].values, self.data.units[self.vector_field[0]]) v = units.Quantity(data[self.vector_field[1]][subset].values, self.data.units[self.vector_field[1]]) else: vector_kwargs.pop('plot_units') u = data[self.vector_field[0]][subset] v = data[self.vector_field[1]][subset] if self.vector_field_length is not None: vector_kwargs['length'] = self.vector_field_length self.handle.plot_barb(u, v, **vector_kwargs) def copy(self): """Return a copy of the plot.""" return copy.copy(self)
bsd-3-clause
mne-tools/mne-tools.github.io
0.12/_downloads/plot_temporal_whitening.py
9
1849
""" ================================ Temporal whitening with AR model ================================ This script shows how to fit an AR model to data and use it to temporally whiten the signals. """ # Authors: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import numpy as np from scipy import signal import matplotlib.pyplot as plt import mne from mne.time_frequency import fit_iir_model_raw from mne.datasets import sample print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' proj_fname = data_path + '/MEG/sample/sample_audvis_ecg-proj.fif' raw = mne.io.read_raw_fif(raw_fname) proj = mne.read_proj(proj_fname) raw.info['projs'] += proj raw.info['bads'] = ['MEG 2443', 'EEG 053'] # mark bad channels # Set up pick list: Gradiometers - bad channels picks = mne.pick_types(raw.info, meg='grad', exclude='bads') order = 5 # define model order picks = picks[:5] # Estimate AR models on raw data b, a = fit_iir_model_raw(raw, order=order, picks=picks, tmin=60, tmax=180) d, times = raw[0, 1e4:2e4] # look at one channel from now on d = d.ravel() # make flat vector innovation = signal.convolve(d, a, 'valid') d_ = signal.lfilter(b, a, innovation) # regenerate the signal d_ = np.r_[d_[0] * np.ones(order), d_] # dummy samples to keep signal length ############################################################################### # Plot the different time series and PSDs plt.close('all') plt.figure() plt.plot(d[:100], label='signal') plt.plot(d_[:100], label='regenerated signal') plt.legend() plt.figure() plt.psd(d, Fs=raw.info['sfreq'], NFFT=2048) plt.psd(innovation, Fs=raw.info['sfreq'], NFFT=2048) plt.psd(d_, Fs=raw.info['sfreq'], NFFT=2048, linestyle='--') plt.legend(('Signal', 'Innovation', 'Regenerated signal')) plt.show()
bsd-3-clause
mne-tools/mne-tools.github.io
0.13/_downloads/plot_temporal_whitening.py
9
1849
""" ================================ Temporal whitening with AR model ================================ This script shows how to fit an AR model to data and use it to temporally whiten the signals. """ # Authors: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import numpy as np from scipy import signal import matplotlib.pyplot as plt import mne from mne.time_frequency import fit_iir_model_raw from mne.datasets import sample print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' proj_fname = data_path + '/MEG/sample/sample_audvis_ecg-proj.fif' raw = mne.io.read_raw_fif(raw_fname) proj = mne.read_proj(proj_fname) raw.info['projs'] += proj raw.info['bads'] = ['MEG 2443', 'EEG 053'] # mark bad channels # Set up pick list: Gradiometers - bad channels picks = mne.pick_types(raw.info, meg='grad', exclude='bads') order = 5 # define model order picks = picks[:5] # Estimate AR models on raw data b, a = fit_iir_model_raw(raw, order=order, picks=picks, tmin=60, tmax=180) d, times = raw[0, 1e4:2e4] # look at one channel from now on d = d.ravel() # make flat vector innovation = signal.convolve(d, a, 'valid') d_ = signal.lfilter(b, a, innovation) # regenerate the signal d_ = np.r_[d_[0] * np.ones(order), d_] # dummy samples to keep signal length ############################################################################### # Plot the different time series and PSDs plt.close('all') plt.figure() plt.plot(d[:100], label='signal') plt.plot(d_[:100], label='regenerated signal') plt.legend() plt.figure() plt.psd(d, Fs=raw.info['sfreq'], NFFT=2048) plt.psd(innovation, Fs=raw.info['sfreq'], NFFT=2048) plt.psd(d_, Fs=raw.info['sfreq'], NFFT=2048, linestyle='--') plt.legend(('Signal', 'Innovation', 'Regenerated signal')) plt.show()
bsd-3-clause
LennonLab/Micro-Encounter
fig-scripts/OLD-fig-scripts/NewFig2.py
1
10871
from __future__ import division import matplotlib.pyplot as plt import random from random import shuffle import pandas as pd import numpy as np import os import sys import statsmodels.formula.api as smf from statsmodels.stats.outliers_influence import summary_table mydir = os.path.expanduser('~/GitHub/Micro-Encounter') sys.path.append(mydir+'/tools') mydir2 = os.path.expanduser("~/") dat = pd.read_csv(mydir + '/results/simulated_data/SimData.csv') dat = dat.convert_objects(convert_numeric=True).dropna() color1 = 'm' color2 = 'steelblue' color3 = 'goldenrod' #-------------------------DATA FILTERS------------------------------------------ dat = dat[dat['ResourceComplexityLevel'] == 2] dat = dat[dat['TrophicComplexityLevel'] == 1] dat['DormFreq'] = np.log10(dat['MeanDormFreq']) dat = dat[np.isfinite(dat['DormFreq'])] dat['Encounters'] = np.log10(dat['MeanEncounter']) dat = dat[np.isfinite(dat['Encounters'])] dat['Production'] = np.log10(dat['MeanIndProduction']) dat = dat[np.isfinite(dat['Production'])] dat['TotalAbundance'] = np.log10(dat['MeanTotalAbundance']) dat = dat[np.isfinite(dat['TotalAbundance'])] dat['ActiveAbundance'] = np.log10(dat['MeanTotalAbundance'] * (1 - dat['MeanDormFreq'])) dat = dat[np.isfinite(dat['ActiveAbundance'])] #------------------------------------------------------------------------------- #### plot figure ############################################################### fs = 8 # fontsize fig = plt.figure() dat1 = dat[dat['SpatialComplexityLevel'] == 1] dat2 = dat[dat['SpatialComplexityLevel'] == 2] dat3 = dat[dat['SpatialComplexityLevel'] == 3] label1 = 'White noise' label2 = 'Aggregated w/ Random walks' label3 = 'Aggregated w/ chemotaxis' Xs = [] Ys = [] colors = [] #### PLOT 1 ################################################################# fig.add_subplot(2, 2, 1) xlab = 'Average encounters, '+'$log$'+r'$_{10}$' ylab = '% Dormancy, '+'$log$'+r'$_{10}$' width = 1 f = smf.ols('DormFreq ~ Encounters', dat1).fit() st, data, ss2 = summary_table(f, alpha=0.05) mean_ci_low, mean_ci_upp = data[:,4:6].T x = dat1['Encounters'].tolist() y = dat1['DormFreq'].tolist() ylow = mean_ci_low.tolist() yupp = mean_ci_upp.tolist() x, y, yupp, ylow = zip(*sorted(zip(x, y, yupp, ylow))) Xs.extend(x) Ys.extend(y) colors.extend([color1]*len(x)) plt.plot(x, ylow, color = color1, alpha = 0.9, lw=width, label=label1) plt.plot(x, yupp, color = color1, alpha = 0.9, lw=width) f = smf.ols('DormFreq ~ Encounters', dat2).fit() st, data, ss2 = summary_table(f, alpha=0.05) mean_ci_low, mean_ci_upp = data[:,4:6].T x = dat2['Encounters'].tolist() y = dat2['DormFreq'].tolist() ylow = mean_ci_low.tolist() yupp = mean_ci_upp.tolist() x, y, yupp, ylow = zip(*sorted(zip(x, y, yupp, ylow))) Xs.extend(x) Ys.extend(y) colors.extend([color2]*len(x)) plt.plot(x, ylow, color = color2, alpha = 0.9, lw=width, label=label2) plt.plot(x, yupp, color = color2, alpha = 0.9, lw=width) f = smf.ols('DormFreq ~ Encounters', dat3).fit() st, data, ss2 = summary_table(f, alpha=0.05) mean_ci_low, mean_ci_upp = data[:,4:6].T x = dat3['Encounters'].tolist() y = dat3['DormFreq'].tolist() ylow = mean_ci_low.tolist() yupp = mean_ci_upp.tolist() x, y, yupp, ylow = zip(*sorted(zip(x, y, yupp, ylow))) Xs.extend(x) Ys.extend(y) colors.extend([color3]*len(x)) plt.plot(x, ylow, color = color3, alpha = 0.9, lw=width, label=label3) plt.plot(x, yupp, color = color3, alpha = 0.9, lw=width) indices = range(0, len(Xs)) shuffle(indices) for i in indices: plt.scatter(Xs[i], Ys[i], color = colors[i], alpha = 0.6 , s = 5, linewidths = 0.0) plt.ylabel(ylab, fontsize=fs+5) plt.xlabel(xlab, fontsize=fs+5) plt.ylim(-1.0, 0.1) plt.tick_params(axis='both', which='major', labelsize=fs) plt.legend(bbox_to_anchor=(-0.04, 1.05, 2.48, .2), loc=10, ncol=3, mode="expand",prop={'size':fs}) #### PLOT 2 ################################ fig.add_subplot(2, 2, 2) Xs = [] Ys = [] colors = [] xlab = 'Average encounters, '+'$log$'+r'$_{10}$' ylab = 'Individual production, '+'$log$'+r'$_{10}$' f = smf.ols('Production ~ Encounters', dat1).fit() st, data, ss2 = summary_table(f, alpha=0.05) mean_ci_low, mean_ci_upp = data[:,4:6].T x = dat1['Encounters'].tolist() y = dat1['Production'].tolist() ylow = mean_ci_low.tolist() yupp = mean_ci_upp.tolist() x, y, yupp, ylow = zip(*sorted(zip(x, y, yupp, ylow))) Xs.extend(x) Ys.extend(y) colors.extend([color1]*len(x)) plt.scatter(x, y, color = color1, alpha = 0.3 , s = 5, linewidths = 0.0) plt.plot(x, ylow, color = color1, alpha = 0.9, lw=width, label=label1) plt.plot(x, yupp, color = color1, alpha = 0.9, lw=width) f = smf.ols('Production ~ Encounters', dat2).fit() st, data, ss2 = summary_table(f, alpha=0.05) mean_ci_low, mean_ci_upp = data[:,4:6].T x = dat2['Encounters'].tolist() y = dat2['Production'].tolist() ylow = mean_ci_low.tolist() yupp = mean_ci_upp.tolist() x, y, yupp, ylow = zip(*sorted(zip(x, y, yupp, ylow))) Xs.extend(x) Ys.extend(y) colors.extend([color2]*len(x)) plt.scatter(x, y, color = color2, alpha = 0.3 , s = 5, linewidths = 0.0) plt.plot(x, ylow, color = color2, alpha = 0.9, lw=width, label=label2) plt.plot(x, yupp, color = color2, alpha = 0.9, lw=width) f = smf.ols('Production ~ Encounters', dat3).fit() st, data, ss2 = summary_table(f, alpha=0.05) mean_ci_low, mean_ci_upp = data[:,4:6].T x = dat3['Encounters'].tolist() y = dat3['Production'].tolist() ylow = mean_ci_low.tolist() yupp = mean_ci_upp.tolist() x, y, yupp, ylow = zip(*sorted(zip(x, y, yupp, ylow))) Xs.extend(x) Ys.extend(y) colors.extend([color3]*len(x)) plt.scatter(x, y, color = color3, alpha = 0.3 , s = 5, linewidths = 0.0) plt.plot(x, ylow, color = color3, alpha = 0.9, lw=width, label=label3) plt.plot(x, yupp, color = color3, alpha = 0.9, lw=width) indices = range(0, len(Xs)) shuffle(indices) for i in indices: plt.scatter(Xs[i], Ys[i], color = colors[i], alpha = 0.6 , s = 5, linewidths = 0.0) plt.ylabel(ylab, fontsize=fs+5) plt.xlabel(xlab, fontsize=fs+5) plt.ylim(-2.0, 2.0) #plt.xlim(0.1, 300) plt.tick_params(axis='both', which='major', labelsize=fs) #### PLOT 3 ################################################################# fig.add_subplot(2, 2, 3) Xs = [] Ys = [] colors = [] xlab = 'Average encounters, '+'$log$'+r'$_{10}$' ylab = 'Total abundance, '+'$log$'+r'$_{10}$' f = smf.ols('TotalAbundance ~ Encounters', dat1).fit() st, data, ss2 = summary_table(f, alpha=0.05) mean_ci_low, mean_ci_upp = data[:,4:6].T x = dat1['Encounters'].tolist() y = dat1['TotalAbundance'].tolist() ylow = mean_ci_low.tolist() yupp = mean_ci_upp.tolist() x, y, yupp, ylow = zip(*sorted(zip(x, y, yupp, ylow))) Xs.extend(x) Ys.extend(y) colors.extend([color1]*len(x)) plt.scatter(x, y, color = color1, alpha = 0.3 , s = 5, linewidths = 0.0) plt.plot(x, ylow, color = color1, alpha = 0.9, lw=width, label=label1) plt.plot(x, yupp, color = color1, alpha = 0.9, lw=width) f = smf.ols('TotalAbundance ~ Encounters', dat2).fit() st, data, ss2 = summary_table(f, alpha=0.05) mean_ci_low, mean_ci_upp = data[:,4:6].T x = dat2['Encounters'].tolist() y = dat2['TotalAbundance'].tolist() ylow = mean_ci_low.tolist() yupp = mean_ci_upp.tolist() x, y, yupp, ylow = zip(*sorted(zip(x, y, yupp, ylow))) Xs.extend(x) Ys.extend(y) colors.extend([color2]*len(x)) plt.scatter(x, y, color = color2, alpha = 0.3 , s = 5, linewidths = 0.0) plt.plot(x, ylow, color = color2, alpha = 0.9, lw=width, label=label2) plt.plot(x, yupp, color = color2, alpha = 0.9, lw=width) f = smf.ols('TotalAbundance ~ Encounters', dat3).fit() st, data, ss2 = summary_table(f, alpha=0.05) mean_ci_low, mean_ci_upp = data[:,4:6].T x = dat3['Encounters'].tolist() y = dat3['TotalAbundance'].tolist() ylow = mean_ci_low.tolist() yupp = mean_ci_upp.tolist() x, y, yupp, ylow = zip(*sorted(zip(x, y, yupp, ylow))) Xs.extend(x) Ys.extend(y) colors.extend([color3]*len(x)) plt.scatter(x, y, color = color3, alpha = 0.3 , s = 5, linewidths = 0.0) plt.plot(x, ylow, color = color3, alpha = 0.9, lw=width, label=label3) plt.plot(x, yupp, color = color3, alpha = 0.9, lw=width) indices = range(0, len(Xs)) shuffle(indices) for i in indices: plt.scatter(Xs[i], Ys[i], color = colors[i], alpha = 0.6 , s = 5, linewidths = 0.0) plt.ylabel(ylab, fontsize=fs+5) plt.xlabel(xlab, fontsize=fs+5) #plt.xlim(0.15, 300) plt.ylim(0.5, 3.1) plt.tick_params(axis='both', which='major', labelsize=fs) #### PLOT 4 ################################################################# fig.add_subplot(2, 2, 4) Xs = [] Ys = [] colors = [] xlab = 'Average encounters, '+'$log$'+r'$_{10}$' ylab = 'Active abundance, '+'$log$'+r'$_{10}$' f = smf.ols('ActiveAbundance ~ Encounters', dat1).fit() st, data, ss2 = summary_table(f, alpha=0.05) mean_ci_low, mean_ci_upp = data[:,4:6].T x = dat1['Encounters'].tolist() y = dat1['ActiveAbundance'].tolist() ylow = mean_ci_low.tolist() yupp = mean_ci_upp.tolist() x, y, yupp, ylow = zip(*sorted(zip(x, y, yupp, ylow))) Xs.extend(x) Ys.extend(y) colors.extend([color1]*len(x)) plt.scatter(x, y, color = color1, alpha = 0.3 , s = 5, linewidths = 0.0) plt.plot(x, ylow, color = color1, alpha = 0.9, lw=width, label=label1) plt.plot(x, yupp, color = color1, alpha = 0.9, lw=width) f = smf.ols('ActiveAbundance ~ Encounters', dat2).fit() st, data, ss2 = summary_table(f, alpha=0.05) mean_ci_low, mean_ci_upp = data[:,4:6].T x = dat2['Encounters'].tolist() y = dat2['ActiveAbundance'].tolist() ylow = mean_ci_low.tolist() yupp = mean_ci_upp.tolist() x, y, yupp, ylow = zip(*sorted(zip(x, y, yupp, ylow))) Xs.extend(x) Ys.extend(y) colors.extend([color2]*len(x)) plt.scatter(x, y, color = color2, alpha = 0.3 , s = 5, linewidths = 0.0) plt.plot(x, ylow, color = color2, alpha = 0.9, lw=width, label=label2) plt.plot(x, yupp, color = color2, alpha = 0.9, lw=width) f = smf.ols('ActiveAbundance ~ Encounters', dat3).fit() st, data, ss2 = summary_table(f, alpha=0.05) mean_ci_low, mean_ci_upp = data[:,4:6].T x = dat3['Encounters'].tolist() y = dat3['ActiveAbundance'].tolist() ylow = mean_ci_low.tolist() yupp = mean_ci_upp.tolist() x, y, yupp, ylow = zip(*sorted(zip(x, y, yupp, ylow))) Xs.extend(x) Ys.extend(y) colors.extend([color3]*len(x)) plt.scatter(x, y, color = color3, alpha = 0.3 , s = 5, linewidths = 0.0) plt.plot(x, ylow, color = color3, alpha = 0.9, lw=width, label=label3) plt.plot(x, yupp, color = color3, alpha = 0.9, lw=width) indices = range(0, len(Xs)) shuffle(indices) for i in indices: plt.scatter(Xs[i], Ys[i], color = colors[i], alpha = 0.6 , s = 5, linewidths = 0.0) plt.ylabel(ylab, fontsize=fs+5) plt.xlabel(xlab, fontsize=fs+5) #plt.xlim(0.15, 1000) plt.ylim(-0.5, 3.1) plt.tick_params(axis='both', which='major', labelsize=fs) #### Final Format and Save ##################################################### plt.subplots_adjust(wspace=0.4, hspace=0.4) plt.savefig(mydir + '/results/figures/Fig2-Spatial_RC2-TC1.png', dpi=600, bbox_inches = "tight") #plt.show()
gpl-3.0
chengsoonong/crowdastro
crowdastro/active_learning/sampler.py
1
2545
"""Active learning sampler base class. Pool-based. Binary class labels. Matthew Alger The Australian National University 2016 """ import numpy import sklearn.metrics from crowdastro.crowd.util import balanced_accuracy class Sampler(object): """Pool-based active learning base class.""" def __init__(self, pool, labels, Classifier, classifier_params=None): """ pool: (n_samples, n_features) array of partially labelled data points. labels: (n_samples,) masked array of binary labels. classifier: Binary classifier class implementing a sklearn interface. classifier_params: Parameters to pass to Classifier. Default None. """ self.pool = pool self.labels = labels self.Classifier = Classifier self.classifier_params = classifier_params or {} self.train() def sample_index(self): """Finds index of the unlabelled point to sample.""" raise NotImplementedError() def sample_indices(self, n): """Finds indices of the top n unlabelled points to sample.""" raise NotImplementedError() def add_label(self, index, label, retrain=True): """Adds a label from an oracle. index: Index of data point to label. label: Label from the oracle. """ self.labels[index] = label if retrain: self.retrain() def add_labels(self, indices, labels, retrain=True): """Adds labels from an oracle. indices: Indices of data points to label. labels: Labels from the oracle. """ for index, label in zip(indices, labels): self.add_label(index, label, retrain=False) if retrain: self.retrain() def train(self): """Trains the classifier.""" self.classifier = self.Classifier(**self.classifier_params) self.classifier.fit(self.pool[~self.labels.mask], self.labels[~self.labels.mask]) def retrain(self): """Retrains the classifier.""" # TODO(MatthewJA): Not sure if we should use warm starts here, so for # now I won't. self.train() def score(self, test_xs, test_ts): """Finds cross-entropy error on test data.""" return sklearn.metrics.log_loss( test_ts, self.classifier.predict(test_xs)) def ba(self, test_xs, test_ts): """Finds balanced accuracy on test data.""" return balanced_accuracy(test_ts, self.classifier.predict(test_xs))
mit
andretadeu/jhu-immuno
code/logRegrPropImportance.py
1
2462
# -*- coding: utf-8 -*- """ Created on Tue Sep 22 13:49:37 2015 @author: brian """ import pandas as pd props = pd.read_csv('../data/peptide_9_props.csv') immun = pd.read_excel('../input/journal.pcbi.1003266.s001-2.XLS') # understanding the apply method immun['length'] = immun.Peptide.apply(len) immun = immun[immun.length ==9] both = pd.merge(props, immun, left_on='PEPTIDE', right_on='Peptide') train = both train['y']=train.Immunogenicity.map({'non-immunogenic':0, 'immunogenic':1}) # dum2=pd.get_dummies(train.MHC) # pd.concat(dum2,train) train = train.drop(['Immunogenicity','PEPTIDE','Peptide','Species','MHC','Unnamed: 4897'],axis=1) X = train.drop(['y'],axis=1) y = train.y # TASK 3: split the data into training and testing sets from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) # TASK 4: fit a logistic regression model and examine the coefficients from sklearn.linear_model import LogisticRegression logreg = LogisticRegression(C=1e1,penalty='l1') logreg.fit(X_train, y_train) propImp =zip(X.columns, logreg.coef_[0]) pd.DataFrame(propImp).to_clipboard() from sklearn import metrics # predict and calculate AUC y_pred_prob = logreg.predict_proba(X_test)[:, 1] y_pred_class = logreg.predict(X_test) print metrics.roc_auc_score(y_test, y_pred_prob) # 0.858192133098 with Tdf vectorizer and stop_words='english',ngram_range=(1, 2), max_features=1000 # 0.846367492831 adding 'OL_GENERAL','INSITE_PAGE','BROWSER_OS','BROWSER2' # 0.846423953016 ngram_range=(1,3) # 0.810 max_feature 100 # 0.8399 rang=(1,4) max features 2000 print metrics.accuracy_score(y_test, y_pred_class) # 74.7% with CountVectorizer() # 65% # 76% with TfidfVectorizer(stop_words='english',ngram_range=(1, 2), max_features=1000) confusion = metrics.confusion_matrix(y_test, y_pred_class) print confusion sensitivity =float(confusion[1,1])/(confusion[1,0] + confusion[1,1]) print 'sensitivity is %f' % sensitivity # sensitivity is 50, 56% with CountVectorizer() #Q why is sensitivity .09 with tdf if specificity =float(confusion[0,0])/(confusion[0,0] + confusion[0,1]) print 'specificity is %f' % specificity import matplotlib.pyplot as plt fpr, tpr, thresholds = metrics.roc_curve(y_test, y_pred_prob) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.0]) plt.xlabel('False Positive Rate (1 - Specificity)') plt.ylabel('True Positive Rate (Sensitivity)') plt.plot(fpr, tpr)
mit
galactics/space-api
doc/source/_static/hohmann.py
2
2636
"""Example of Hohmann transfer The orbit we are starting with is a Tle of the ISS. The amplitude of the maneuver is greatly exagerated regarding the ISS's capability, but has the convenience to be particularly visual. """ import sys import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from beyond.io.tle import Tle from beyond.dates import timedelta from beyond.propagators.keplernum import KeplerNum from beyond.env.solarsystem import get_body from beyond.orbits.man import ImpulsiveMan from beyond.propagators.listeners import ApsideListener, find_event orb = Tle("""ISS (ZARYA) 1 25544U 98067A 18124.55610684 .00001524 00000-0 30197-4 0 9997 2 25544 51.6421 236.2139 0003381 47.8509 47.6767 15.54198229111731""").orbit() start = orb.date stop = timedelta(minutes=300) step = timedelta(seconds=60) # Changing the propagator to Keplerian, as SGP4 is not able to perform maneuvers orb.propagator = KeplerNum(step, bodies=get_body("Earth")) # Research for the next perigee perigee = find_event(orb.iter(stop=stop, listeners=ApsideListener()), 'Periapsis') man1 = ImpulsiveMan(perigee.date, (280, 0, 0), frame="TNW") orb.maneuvers = [man1] dates1, alt1 = [], [] # Research for the next apogee after the first maneuver apogee = find_event(orb.iter(start=perigee.date - step * 10, stop=stop, listeners=ApsideListener()), 'Apoapsis') # apogee = find_event(orb.iter(stop=stop, listeners=ApsideListener()), 'Apoapsis', offset=1) # Adding the second maneuver to the orbit man2 = ImpulsiveMan(apogee.date, (270, 0, 0), frame="TNW") orb.maneuvers.append(man2) print(man1.date) print(man2.date) # Propagation throught the two maneuvers ephem = orb.ephem(start=start, stop=stop, step=step) # graphs plt.figure() data = np.array(ephem) dates = [x.date for x in ephem] # Altitude in km alt = (np.linalg.norm(data[:, :3], axis=1) - orb.frame.center.body.r) / 1000 events_dates = [perigee.date, apogee.date] events_alt = (np.linalg.norm([perigee[:3], apogee[:3]], axis=1) - orb.frame.center.body.r) / 1000 plt.plot(dates, alt) plt.plot([events_dates[0]], [events_alt[0]], 'ro', label="perigee") plt.plot([events_dates[1]], [events_alt[1]], 'ko', label="apogee") plt.ylabel("altitude (km)") plt.legend() plt.grid(linestyle=':', alpha=0.4) plt.tight_layout() fig = plt.figure() ax = plt.gca(projection='3d') ax.view_init(elev=52, azim=140) x, y, z = zip(perigee[:3], apogee[:3]) plt.plot(data[:, 0], data[:, 1], data[:, 2]) plt.plot([perigee[0]], [perigee[1]], [perigee[2]], 'ro') plt.plot([apogee[0]], [apogee[1]], [apogee[2]], 'ko') if "no-display" not in sys.argv: plt.show()
gpl-3.0