repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
teonlamont/mne-python
mne/decoding/ems.py
4
8295
# Author: Denis Engemann <[email protected]> # Alexandre Gramfort <[email protected]> # Jean-Remi King <[email protected]> # # License: BSD (3-clause) from collections import Counter import numpy as np from .mixin import TransformerMixin, EstimatorMixin from .base import _set_cv from ..utils import logger, verbose from ..parallel import parallel_func from .. import pick_types, pick_info class EMS(TransformerMixin, EstimatorMixin): """Transformer to compute event-matched spatial filters. This version of EMS [1]_ operates on the entire time course. No time window needs to be specified. The result is a spatial filter at each time point and a corresponding time course. Intuitively, the result gives the similarity between the filter at each time point and the data vector (sensors) at that time point. .. note : EMS only works for binary classification. Attributes ---------- filters_ : ndarray, shape (n_channels, n_times) The set of spatial filters. classes_ : ndarray, shape (n_classes,) The target classes. References ---------- .. [1] Aaron Schurger, Sebastien Marti, and Stanislas Dehaene, "Reducing multi-sensor data to a single time course that reveals experimental effects", BMC Neuroscience 2013, 14:122 """ def __repr__(self): # noqa: D105 if hasattr(self, 'filters_'): return '<EMS: fitted with %i filters on %i classes.>' % ( len(self.filters_), len(self.classes_)) else: return '<EMS: not fitted.>' def fit(self, X, y): """Fit the spatial filters. .. note : EMS is fitted on data normalized by channel type before the fitting of the spatial filters. Parameters ---------- X : array, shape (n_epochs, n_channels, n_times) The training data. y : array of int, shape (n_epochs) The target classes. Returns ------- self : returns and instance of self. """ classes = np.unique(y) if len(classes) != 2: raise ValueError('EMS only works for binary classification.') self.classes_ = classes filters = X[y == classes[0]].mean(0) - X[y == classes[1]].mean(0) filters /= np.linalg.norm(filters, axis=0)[None, :] self.filters_ = filters return self def transform(self, X): """Transform the data by the spatial filters. Parameters ---------- X : array, shape (n_epochs, n_channels, n_times) The input data. Returns ------- X : array, shape (n_epochs, n_times) The input data transformed by the spatial filters. """ Xt = np.sum(X * self.filters_, axis=1) return Xt @verbose def compute_ems(epochs, conditions=None, picks=None, n_jobs=1, verbose=None, cv=None): """Compute event-matched spatial filter on epochs. This version of EMS [1]_ operates on the entire time course. No time window needs to be specified. The result is a spatial filter at each time point and a corresponding time course. Intuitively, the result gives the similarity between the filter at each time point and the data vector (sensors) at that time point. .. note : EMS only works for binary classification. .. note : The present function applies a leave-one-out cross-validation, following Schurger et al's paper. However, we recommend using a stratified k-fold cross-validation. Indeed, leave-one-out tends to overfit and cannot be used to estimate the variance of the prediction within a given fold. .. note : Because of the leave-one-out, this function needs an equal number of epochs in each of the two conditions. Parameters ---------- epochs : instance of mne.Epochs The epochs. conditions : list of str | None, defaults to None If a list of strings, strings must match the epochs.event_id's key as well as the number of conditions supported by the objective_function. If None keys in epochs.event_id are used. picks : array-like of int | None, defaults to None Channels to be included. If None only good data channels are used. n_jobs : int, defaults to 1 Number of jobs to run in parallel. verbose : bool, str, int, or None, defaults to self.verbose If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). cv : cross-validation object | str | None, defaults to LeaveOneOut The cross-validation scheme. Returns ------- surrogate_trials : ndarray, shape (n_trials // 2, n_times) The trial surrogates. mean_spatial_filter : ndarray, shape (n_channels, n_times) The set of spatial filters. conditions : ndarray, shape (n_classes,) The conditions used. Values correspond to original event ids. References ---------- .. [1] Aaron Schurger, Sebastien Marti, and Stanislas Dehaene, "Reducing multi-sensor data to a single time course that reveals experimental effects", BMC Neuroscience 2013, 14:122 """ logger.info('...computing surrogate time series. This can take some time') # Default to leave-one-out cv cv = 'LeaveOneOut' if cv is None else cv if picks is None: picks = pick_types(epochs.info, meg=True, eeg=True) if not len(set(Counter(epochs.events[:, 2]).values())) == 1: raise ValueError('The same number of epochs is required by ' 'this function. Please consider ' '`epochs.equalize_event_counts`') if conditions is None: conditions = epochs.event_id.keys() epochs = epochs.copy() else: epochs = epochs[conditions] epochs.drop_bad() if len(conditions) != 2: raise ValueError('Currently this function expects exactly 2 ' 'conditions but you gave me %i' % len(conditions)) ev = epochs.events[:, 2] # Special care to avoid path dependent mappings and orders conditions = list(sorted(conditions)) cond_idx = [np.where(ev == epochs.event_id[k])[0] for k in conditions] info = pick_info(epochs.info, picks) data = epochs.get_data()[:, picks] # Scale (z-score) the data by channel type # XXX the z-scoring is applied outside the CV, which is not standard. for ch_type in ['mag', 'grad', 'eeg']: if ch_type in epochs: # FIXME should be applied to all sort of data channels if ch_type == 'eeg': this_picks = pick_types(info, meg=False, eeg=True) else: this_picks = pick_types(info, meg=ch_type, eeg=False) data[:, this_picks] /= np.std(data[:, this_picks]) # Setup cross-validation. Need to use _set_cv to deal with sklearn # deprecation of cv objects. y = epochs.events[:, 2] _, cv_splits = _set_cv(cv, 'classifier', X=y, y=y) parallel, p_func, _ = parallel_func(_run_ems, n_jobs=n_jobs) # FIXME this parallelization should be removed. # 1) it's numpy computation so it's already efficient, # 2) it duplicates the data in RAM, # 3) the computation is already super fast. out = parallel(p_func(_ems_diff, data, cond_idx, train, test) for train, test in cv_splits) surrogate_trials, spatial_filter = zip(*out) surrogate_trials = np.array(surrogate_trials) spatial_filter = np.mean(spatial_filter, axis=0) return surrogate_trials, spatial_filter, epochs.events[:, 2] def _ems_diff(data0, data1): """Compute the default diff objective function.""" return np.mean(data0, axis=0) - np.mean(data1, axis=0) def _run_ems(objective_function, data, cond_idx, train, test): """Run EMS.""" d = objective_function(*(data[np.intersect1d(c, train)] for c in cond_idx)) d /= np.sqrt(np.sum(d ** 2, axis=0))[None, :] # compute surrogates return np.sum(data[test[0]] * d, axis=0), d
bsd-3-clause
benmoran56/esper
examples/benchmark_cache.py
1
3589
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import time import optparse from dataclasses import dataclass as component from esper import Processor, World try: from matplotlib import pyplot except ImportError: print("The matplotlib module is required for this benchmark.") raise Exception ###################### # Commandline options: ###################### parser = optparse.OptionParser() parser.add_option("-e", "--entities", dest="entities", action="store", default=5000, type="int", help="Change the maximum number of Entities to benchmark. Default is 5000.") (options, arguments) = parser.parse_args() MAX_ENTITIES = options.entities if MAX_ENTITIES <= 50: print("The number of entities must be greater than 500.") sys.exit(1) ########################## # Simple timing decorator: ########################## def timing(f): def wrap(*args): time1 = time.process_time() ret = f(*args) time2 = time.process_time() current_run.append((time2 - time1) * 1000.0) return ret return wrap ########################## # Create a World instance: ########################## world = World() ################################# # Define some generic components: ################################# @component class Velocity: x: float = 0.0 y: float = 0.0 @component class Position: x: float = 0.0 y: float = 0.0 @component class Health: hp: int = 100 @component class Command: attack: bool = False defend: bool = True @component class Projectile: size: int = 10 lifespan: int = 100 @component class Damageable: defense: int = 45 @component class Brain: smarts: int = 9000 ########################## # Define some Processors: ########################## class MovementProcessor(Processor): def __init__(self): super().__init__() def process(self): for ent, (vel, pos) in self.world.get_components(Velocity, Position): pos.x += vel.x pos.y += vel.y print("Current Position: {}".format((int(pos.x), int(pos.y)))) ############################# # Set up some dummy entities: ############################# def create_entities(world, number): for _ in range(number // 2): world.create_entity(Position(), Velocity(), Health(), Command()) world.create_entity(Position(), Health(), Damageable()) ################################################# # Perform several queries, and print the results: ################################################# current_run = [] results = [] print("\nFor the first half of each pass, Entities are static.") print("For the second half, Entities are created/deleted each frame.\n") @timing def query_entities(world): for _, (_, _) in world.get_components(Position, Velocity): pass for _, (_, _, _) in world.get_components(Health, Damageable, Position): pass for current_pass in range(10): world.clear_database() create_entities(world, MAX_ENTITIES) print(f"Pass {current_pass + 1}...") for amount in range(1, 500): query_entities(world) if amount > 250: world.delete_entity(amount, immediate=True) create_entities(world, 1) results.append(current_run) current_run = [] averaged_results = [sorted(e)[0] for e in zip(*results)] pyplot.ylabel("Query time (ms)") pyplot.xlabel("Query of {} entities".format(MAX_ENTITIES)) pyplot.plot(averaged_results, label="Average query time") pyplot.legend(bbox_to_anchor=(0.5, 1)) pyplot.show()
mit
ANNarchy/ANNarchy
examples/hybrid/Hybrid.py
2
2865
# # ANNarchy - Hybrid network # # Simple example showing hybrid spike/rate-coded networks. # Reproduces Fig.4 of (Vitay, Dinkelbach and Hamker, 2015) # # authors: Helge Uelo Dinkelbach, Julien Vitay # from ANNarchy import * setup(dt=0.1) # Rate-coded input neuron input_neuron = Neuron( parameters = "baseline = 0.0", equations = "r = baseline" ) # Rate-coded output neuron simple_neuron = Neuron( equations = "r = sum(exc)" ) # Rate-coded population for input pop1 = Population(geometry=1, neuron=input_neuron) # Poisson Population to encode pop2 = PoissonPopulation(geometry=1000, target="exc") proj = Projection(pop1, pop2, 'exc').connect_all_to_all(weights=1.) # Rate-coded population to decode pop3 = Population(geometry=1000, neuron =simple_neuron) proj = DecodingProjection(pop2, pop3, 'exc', window=10.0) def diagonal(pre, post, weights): "Simple connector pattern to progressively connect each post-synaptic neuron to a growing number of pre-synaptic neurons" lil = CSR() for rk_post in range(post.size): lil.add(rk_post, range((rk_post+1)), [weights], [0] ) return lil proj.connect_with_func(method=diagonal, weights=1.) compile() # Monitors m1 = Monitor(pop1, 'r') m2 = Monitor(pop2, 'spike') m3 = Monitor(pop3, 'r') # Simulate duration = 250. # 0 Hz pop1.baseline = 0.0 simulate(duration) # 10 Hz pop1.baseline = 10.0 simulate(duration) # 50 Hz pop1.baseline = 50.0 simulate(duration) # 100 Hz pop1.baseline = 100.0 simulate(duration) # Get recordings data1 = m1.get() data2 = m2.get() data3 = m3.get() # Raster plot of the spiking population t, n = m2.raster_plot(data2['spike']) # Variance of the the decoded firing rate data_10 = data3['r'][int(1.0*duration/dt()):int(2*duration/dt()), :] data_50 = data3['r'][int(2.0*duration/dt()):int(3*duration/dt()), :] data_100 = data3['r'][int(3.0*duration/dt()):int(4*duration/dt()), :] var_10 = np.mean(np.abs((data_10 - 10.)/10.), axis=0) var_50 = np.mean(np.abs((data_50 - 50.)/50.), axis=0) var_100 = np.mean(np.abs((data_100 - 100.)/100.), axis=0) ### Plot the results import matplotlib.pyplot as plt plt.subplot(3,1,1) plt.plot(t, n, '.', markersize=0.5) plt.title('a) Raster plot') plt.xlabel('Time (ms)') plt.ylabel('# neurons') plt.xlim((0, 4*duration)) plt.subplot(3,1,2) plt.plot(np.arange(0, 4*duration, 0.1), data1['r'][:, 0], label='Original firing rate') plt.plot(np.arange(0, 4*duration, 0.1), data3['r'][:, 999], label='Decoded firing rate') plt.legend(frameon=False, loc=2) plt.title('b) Decoded firing rate') plt.xlabel('Time (ms)') plt.ylabel('Activity (Hz)') plt.subplot(3,1,3) plt.plot(var_10, label='10 Hz') plt.plot(var_50, label='50 Hz') plt.plot(var_100, label='100 Hz') plt.legend(frameon=False) plt.title('c) Precision') plt.xlabel('# neurons used for decoding') plt.ylabel('Normalized error') plt.ylim((0,1)) plt.show()
gpl-2.0
rubikloud/scikit-learn
sklearn/tests/test_pipeline.py
14
15252
""" Test the pipeline module. """ import numpy as np from scipy import sparse from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_raises, assert_raises_regex, assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns_message from sklearn.base import clone from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline, make_union from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.cluster import KMeans from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA, RandomizedPCA, TruncatedSVD from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler from sklearn.feature_extraction.text import CountVectorizer JUNK_FOOD_DOCS = ( "the pizza pizza beer copyright", "the pizza burger beer copyright", "the the pizza beer beer copyright", "the burger beer beer copyright", "the coke burger coke copyright", "the coke burger burger", ) class IncorrectT(object): """Small class to test parameter dispatching. """ def __init__(self, a=None, b=None): self.a = a self.b = b class T(IncorrectT): def fit(self, X, y): return self def get_params(self, deep=False): return {'a': self.a, 'b': self.b} def set_params(self, **params): self.a = params['a'] return self class TransfT(T): def transform(self, X, y=None): return X def inverse_transform(self, X): return X class FitParamT(object): """Mock classifier """ def __init__(self): self.successful = False pass def fit(self, X, y, should_succeed=False): self.successful = should_succeed def predict(self, X): return self.successful def test_pipeline_init(): # Test the various init parameters of the pipeline. assert_raises(TypeError, Pipeline) # Check that we can't instantiate pipelines with objects without fit # method pipe = assert_raises(TypeError, Pipeline, [('svc', IncorrectT)]) # Smoke test with only an estimator clf = T() pipe = Pipeline([('svc', clf)]) assert_equal(pipe.get_params(deep=True), dict(svc__a=None, svc__b=None, svc=clf, **pipe.get_params(deep=False))) # Check that params are set pipe.set_params(svc__a=0.1) assert_equal(clf.a, 0.1) assert_equal(clf.b, None) # Smoke test the repr: repr(pipe) # Test with two objects clf = SVC() filter1 = SelectKBest(f_classif) pipe = Pipeline([('anova', filter1), ('svc', clf)]) # Check that we can't use the same stage name twice assert_raises(ValueError, Pipeline, [('svc', SVC()), ('svc', SVC())]) # Check that params are set pipe.set_params(svc__C=0.1) assert_equal(clf.C, 0.1) # Smoke test the repr: repr(pipe) # Check that params are not set when naming them wrong assert_raises(ValueError, pipe.set_params, anova__C=0.1) # Test clone pipe2 = clone(pipe) assert_false(pipe.named_steps['svc'] is pipe2.named_steps['svc']) # Check that apart from estimators, the parameters are the same params = pipe.get_params(deep=True) params2 = pipe2.get_params(deep=True) for x in pipe.get_params(deep=False): params.pop(x) for x in pipe2.get_params(deep=False): params2.pop(x) # Remove estimators that where copied params.pop('svc') params.pop('anova') params2.pop('svc') params2.pop('anova') assert_equal(params, params2) def test_pipeline_methods_anova(): # Test the various methods of the pipeline (anova). iris = load_iris() X = iris.data y = iris.target # Test with Anova + LogisticRegression clf = LogisticRegression() filter1 = SelectKBest(f_classif, k=2) pipe = Pipeline([('anova', filter1), ('logistic', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_fit_params(): # Test that the pipeline can take fit parameters pipe = Pipeline([('transf', TransfT()), ('clf', FitParamT())]) pipe.fit(X=None, y=None, clf__should_succeed=True) # classifier should return True assert_true(pipe.predict(None)) # and transformer params should not be changed assert_true(pipe.named_steps['transf'].a is None) assert_true(pipe.named_steps['transf'].b is None) def test_pipeline_raise_set_params_error(): # Test pipeline raises set params error message for nested models. pipe = Pipeline([('cls', LinearRegression())]) # expected error message error_msg = ('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.') assert_raise_message(ValueError, error_msg % ('fake', 'Pipeline'), pipe.set_params, fake='nope') # nested model check assert_raise_message(ValueError, error_msg % ("fake", pipe), pipe.set_params, fake__estimator='nope') def test_pipeline_methods_pca_svm(): # Test the various methods of the pipeline (pca + svm). iris = load_iris() X = iris.data y = iris.target # Test with PCA + SVC clf = SVC(probability=True, random_state=0) pca = PCA(n_components='mle', whiten=True) pipe = Pipeline([('pca', pca), ('svc', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_methods_preprocessing_svm(): # Test the various methods of the pipeline (preprocessing + svm). iris = load_iris() X = iris.data y = iris.target n_samples = X.shape[0] n_classes = len(np.unique(y)) scaler = StandardScaler() pca = RandomizedPCA(n_components=2, whiten=True) clf = SVC(probability=True, random_state=0, decision_function_shape='ovr') for preprocessing in [scaler, pca]: pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)]) pipe.fit(X, y) # check shapes of various prediction functions predict = pipe.predict(X) assert_equal(predict.shape, (n_samples,)) proba = pipe.predict_proba(X) assert_equal(proba.shape, (n_samples, n_classes)) log_proba = pipe.predict_log_proba(X) assert_equal(log_proba.shape, (n_samples, n_classes)) decision_function = pipe.decision_function(X) assert_equal(decision_function.shape, (n_samples, n_classes)) pipe.score(X, y) def test_fit_predict_on_pipeline(): # test that the fit_predict method is implemented on a pipeline # test that the fit_predict on pipeline yields same results as applying # transform and clustering steps separately iris = load_iris() scaler = StandardScaler() km = KMeans(random_state=0) # first compute the transform and clustering step separately scaled = scaler.fit_transform(iris.data) separate_pred = km.fit_predict(scaled) # use a pipeline to do the transform and clustering in one step pipe = Pipeline([('scaler', scaler), ('Kmeans', km)]) pipeline_pred = pipe.fit_predict(iris.data) assert_array_almost_equal(pipeline_pred, separate_pred) def test_fit_predict_on_pipeline_without_fit_predict(): # tests that a pipeline does not have fit_predict method when final # step of pipeline does not have fit_predict defined scaler = StandardScaler() pca = PCA() pipe = Pipeline([('scaler', scaler), ('pca', pca)]) assert_raises_regex(AttributeError, "'PCA' object has no attribute 'fit_predict'", getattr, pipe, 'fit_predict') def test_feature_union(): # basic sanity check for feature union iris = load_iris() X = iris.data X -= X.mean(axis=0) y = iris.target svd = TruncatedSVD(n_components=2, random_state=0) select = SelectKBest(k=1) fs = FeatureUnion([("svd", svd), ("select", select)]) fs.fit(X, y) X_transformed = fs.transform(X) assert_equal(X_transformed.shape, (X.shape[0], 3)) # check if it does the expected thing assert_array_almost_equal(X_transformed[:, :-1], svd.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) # test if it also works for sparse input # We use a different svd object to control the random_state stream fs = FeatureUnion([("svd", svd), ("select", select)]) X_sp = sparse.csr_matrix(X) X_sp_transformed = fs.fit_transform(X_sp, y) assert_array_almost_equal(X_transformed, X_sp_transformed.toarray()) # test setting parameters fs.set_params(select__k=2) assert_equal(fs.fit_transform(X, y).shape, (X.shape[0], 4)) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("svd", svd), ("select", select)]) X_transformed = fs.fit_transform(X, y) assert_equal(X_transformed.shape, (X.shape[0], 8)) def test_make_union(): pca = PCA() mock = TransfT() fu = make_union(pca, mock) names, transformers = zip(*fu.transformer_list) assert_equal(names, ("pca", "transft")) assert_equal(transformers, (pca, mock)) def test_pipeline_transform(): # Test whether pipeline works with a transformer at the end. # Also test pipeline.transform and pipeline.inverse_transform iris = load_iris() X = iris.data pca = PCA(n_components=2) pipeline = Pipeline([('pca', pca)]) # test transform and fit_transform: X_trans = pipeline.fit(X).transform(X) X_trans2 = pipeline.fit_transform(X) X_trans3 = pca.fit_transform(X) assert_array_almost_equal(X_trans, X_trans2) assert_array_almost_equal(X_trans, X_trans3) X_back = pipeline.inverse_transform(X_trans) X_back2 = pca.inverse_transform(X_trans) assert_array_almost_equal(X_back, X_back2) def test_pipeline_fit_transform(): # Test whether pipeline works with a transformer missing fit_transform iris = load_iris() X = iris.data y = iris.target transft = TransfT() pipeline = Pipeline([('mock', transft)]) # test fit_transform: X_trans = pipeline.fit_transform(X, y) X_trans2 = transft.fit(X, y).transform(X) assert_array_almost_equal(X_trans, X_trans2) def test_make_pipeline(): t1 = TransfT() t2 = TransfT() pipe = make_pipeline(t1, t2) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") pipe = make_pipeline(t1, t2, FitParamT()) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") assert_equal(pipe.steps[2][0], "fitparamt") def test_feature_union_weights(): # test feature union with transformer weights iris = load_iris() X = iris.data y = iris.target pca = RandomizedPCA(n_components=2, random_state=0) select = SelectKBest(k=1) # test using fit followed by transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) fs.fit(X, y) X_transformed = fs.transform(X) # test using fit_transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) X_fit_transformed = fs.fit_transform(X, y) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("pca", pca), ("select", select)], transformer_weights={"mock": 10}) X_fit_transformed_wo_method = fs.fit_transform(X, y) # check against expected result # We use a different pca object to control the random_state stream assert_array_almost_equal(X_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_array_almost_equal(X_fit_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_fit_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_equal(X_fit_transformed_wo_method.shape, (X.shape[0], 7)) def test_feature_union_parallel(): # test that n_jobs work for FeatureUnion X = JUNK_FOOD_DOCS fs = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ]) fs_parallel = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs_parallel2 = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs.fit(X) X_transformed = fs.transform(X) assert_equal(X_transformed.shape[0], len(X)) fs_parallel.fit(X) X_transformed_parallel = fs_parallel.transform(X) assert_equal(X_transformed.shape, X_transformed_parallel.shape) assert_array_equal( X_transformed.toarray(), X_transformed_parallel.toarray() ) # fit_transform should behave the same X_transformed_parallel2 = fs_parallel2.fit_transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) # transformers should stay fit after fit_transform X_transformed_parallel2 = fs_parallel2.transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) def test_feature_union_feature_names(): word_vect = CountVectorizer(analyzer="word") char_vect = CountVectorizer(analyzer="char_wb", ngram_range=(3, 3)) ft = FeatureUnion([("chars", char_vect), ("words", word_vect)]) ft.fit(JUNK_FOOD_DOCS) feature_names = ft.get_feature_names() for feat in feature_names: assert_true("chars__" in feat or "words__" in feat) assert_equal(len(feature_names), 35) def test_classes_property(): iris = load_iris() X = iris.data y = iris.target reg = make_pipeline(SelectKBest(k=1), LinearRegression()) reg.fit(X, y) assert_raises(AttributeError, getattr, reg, "classes_") clf = make_pipeline(SelectKBest(k=1), LogisticRegression(random_state=0)) assert_raises(AttributeError, getattr, clf, "classes_") clf.fit(X, y) assert_array_equal(clf.classes_, np.unique(y)) def test_X1d_inverse_transform(): transformer = TransfT() pipeline = make_pipeline(transformer) X = np.ones(10) msg = "1d X will not be reshaped in pipeline.inverse_transform" assert_warns_message(FutureWarning, msg, pipeline.inverse_transform, X)
bsd-3-clause
HumanCompatibleAI/imitation
src/imitation/scripts/analyze.py
2
6347
import logging import os import os.path as osp import tempfile from collections import OrderedDict from typing import List, Optional import pandas as pd from sacred.observers import FileStorageObserver import imitation.util.sacred as sacred_util from imitation.scripts.config.analyze import analysis_ex from imitation.util.sacred import dict_get_nested as get @analysis_ex.command def gather_tb_directories( source_dir: str, run_name: Optional[str], env_name: Optional[str], skip_failed_runs: bool, ) -> dict: """Gather Tensorboard directories from a `parallel_ex` run. The directories are copied to a unique directory in `/tmp/analysis_tb/` under subdirectories matching the Tensorboard events' Ray Tune trial names. Undocumented arguments are the same as in `analyze_imitation()`. Args: source_dir: A local_dir for Ray. For example, `~/ray_results/`. Returns: A dict with two keys. "gather_dir" (str) is a path to a /tmp/ directory containing all the TensorBoard runs filtered from `source_dir`. "n_tb_dirs" (int) is the number of TensorBoard directories that were filtered. """ sacred_dicts = _get_sacred_dicts(source_dir, run_name, env_name, skip_failed_runs) os.makedirs("/tmp/analysis_tb", exist_ok=True) tmp_dir = tempfile.mkdtemp(dir="/tmp/analysis_tb/") tb_dirs_count = 0 for sd in sacred_dicts: # Expecting a path like "~/ray_results/{run_name}/sacred/1". # Want to search for all Tensorboard dirs inside # "~/ray_results/{run_name}". sacred_dir = sd.sacred_dir.rstrip("/") run_dir = osp.dirname(osp.dirname(sacred_dir)) run_name = osp.basename(run_dir) # "tb" is TensorBoard directory built by our codebase. "sb_tb" is Stable # Baselines TensorBoard directory. There should be at most one of each # directory. for basename in ["rl", "tb", "sb_tb"]: tb_src_dirs = tuple( sacred_util.filter_subdirs( run_dir, lambda path: osp.basename(path) == basename ) ) if tb_src_dirs: assert len(tb_src_dirs) == 1, "expect at most one TB dir of each type" tb_src_dir = tb_src_dirs[0] symlinks_dir = osp.join(tmp_dir, basename) os.makedirs(symlinks_dir, exist_ok=True) tb_symlink = osp.join(symlinks_dir, run_name) os.symlink(tb_src_dir, tb_symlink) tb_dirs_count += 1 logging.info(f"Symlinked {tb_dirs_count} TensorBoard dirs to {tmp_dir}.") logging.info(f"Start Tensorboard with `tensorboard --logdir {tmp_dir}`.") return {"n_tb_dirs": tb_dirs_count, "gather_dir": tmp_dir} @analysis_ex.command def analyze_imitation( source_dir: str, run_name: Optional[str], env_name: Optional[str], skip_failed_runs: bool, csv_output_path: Optional[str], verbose: bool, ) -> pd.DataFrame: """Parse Sacred logs and generate a DataFrame for imitation learning results. Args: source_dir: A directory containing Sacred FileObserver subdirectories associated with the `train_adversarial` Sacred script. Behavior is undefined if there are Sacred subdirectories associated with other scripts. run_name: If provided, then only analyze results from Sacred directories associated with this run name. `run_name` is compared against the "experiment.name" key in `run.json`. skip_failed_runs: If True, then filter out runs where the status is FAILED. csv_output_path: If provided, then save a CSV output file to this path. verbose: If True, then print the dataframe. Returns: A list of dictionaries used to generate the analysis DataFrame. """ sacred_dicts = _get_sacred_dicts(source_dir, run_name, env_name, skip_failed_runs) rows = [] for sd in sacred_dicts: row = OrderedDict() rows.append(row) # Use get to prevent exceptions when reading in-progress experiments. row["status"] = get(sd.run, "status") row["use_gail"] = get(sd.config, "init_trainer_kwargs.use_gail") row["env_name"] = get(sd.config, "env_name") row["n_expert_demos"] = get(sd.config, "n_expert_demos") row["run_name"] = get(sd.run, "experiment.name") imit_stats = get(sd.run, "result.imit_stats") expert_stats = get(sd.run, "result.expert_stats") if imit_stats is not None and expert_stats is not None: # Assume that `result.imit_stats` and `result.expert_stats` are # formatted correctly. row["expert_return_summary"] = _make_return_summary(expert_stats) row["imit_return_summary"] = _make_return_summary(imit_stats, "monitor_") row["imit_expert_ratio"] = ( imit_stats["monitor_return_mean"] / expert_stats["return_mean"] ) df = pd.DataFrame(rows) if csv_output_path is not None: df.to_csv(csv_output_path) if verbose: print(df.to_string()) return df def _make_return_summary(stats: dict, prefix="") -> str: return "{:3g} ± {:3g} (n={})".format( stats[f"{prefix}return_mean"], stats[f"{prefix}return_std"], stats["n_traj"] ) def _get_sacred_dicts( source_dir: str, run_name: str, env_name: str, skip_failed_runs: bool ) -> List[sacred_util.SacredDicts]: sacred_dirs = sacred_util.filter_subdirs(source_dir) sacred_dicts = [ sacred_util.SacredDicts.load_from_dir(sacred_dir) for sacred_dir in sacred_dirs ] if run_name is not None: sacred_dicts = filter( lambda sd: get(sd.run, "experiment.name") == run_name, sacred_dicts ) if env_name is not None: sacred_dicts = filter( lambda sd: get(sd.config, "env_name") == env_name, sacred_dicts ) if skip_failed_runs: sacred_dicts = filter( lambda sd: get(sd.run, "status") != "FAILED", sacred_dicts ) return list(sacred_dicts) def main_console(): observer = FileStorageObserver(osp.join("output", "sacred", "analyze")) analysis_ex.observers.append(observer) analysis_ex.run_commandline() if __name__ == "__main__": # pragma: no cover main_console()
mit
tian-zhou/InstrumentSegmentation
help/snake_python/morphsnakes.py
1
11921
# -*- coding: utf-8 -*- """ morphsnakes =========== This is a Python implementation of the algorithms introduced in the paper Márquez-Neila, P., Baumela, L., Álvarez, L., "A morphological approach to curvature-based evolution of curves and surfaces". IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2013. This implementation is intended to be as brief, understandable and self-contained as possible. It does not include any enhancement to make it fast or efficient. Any practical implementation of this algorithm should work only over the neighbor pixels of the 0.5-levelset, not over all the embedding function, and perhaps should feature multi-threading or GPU capabilities. The classes MorphGAC and MorphACWE provide most of the functionality of this module. They implement the Morphological Geodesic Active Contours and the Morphological Active Contours without Edges, respectively. See the aforementioned paper for full details. See test.py for examples of usage. """ __author__ = "P. Márquez Neila <[email protected]>" from itertools import cycle import numpy as np from scipy import ndimage from scipy.ndimage import binary_dilation, binary_erosion, \ gaussian_filter, gaussian_gradient_magnitude class fcycle(object): def __init__(self, iterable): """Call functions from the iterable each time it is called.""" self.funcs = cycle(iterable) def __call__(self, *args, **kwargs): f = self.funcs.next() return f(*args, **kwargs) # SI and IS operators for 2D and 3D. _P2 = [np.eye(3), np.array([[0,1,0]]*3), np.flipud(np.eye(3)), np.rot90([[0,1,0]]*3)] _P3 = [np.zeros((3,3,3)) for i in xrange(9)] _P3[0][:,:,1] = 1 _P3[1][:,1,:] = 1 _P3[2][1,:,:] = 1 _P3[3][:,[0,1,2],[0,1,2]] = 1 _P3[4][:,[0,1,2],[2,1,0]] = 1 _P3[5][[0,1,2],:,[0,1,2]] = 1 _P3[6][[0,1,2],:,[2,1,0]] = 1 _P3[7][[0,1,2],[0,1,2],:] = 1 _P3[8][[0,1,2],[2,1,0],:] = 1 _aux = np.zeros((0)) def SI(u): """SI operator.""" global _aux if np.ndim(u) == 2: P = _P2 elif np.ndim(u) == 3: P = _P3 else: raise ValueError, "u has an invalid number of dimensions (should be 2 or 3)" if u.shape != _aux.shape[1:]: _aux = np.zeros((len(P),) + u.shape) for i in xrange(len(P)): _aux[i] = binary_erosion(u, P[i]) return _aux.max(0) def IS(u): """IS operator.""" global _aux if np.ndim(u) == 2: P = _P2 elif np.ndim(u) == 3: P = _P3 else: raise ValueError, "u has an invalid number of dimensions (should be 2 or 3)" if u.shape != _aux.shape[1:]: _aux = np.zeros((len(P),) + u.shape) for i in xrange(len(P)): _aux[i] = binary_dilation(u, P[i]) return _aux.min(0) # SIoIS operator. SIoIS = lambda u: SI(IS(u)) ISoSI = lambda u: IS(SI(u)) curvop = fcycle([SIoIS, ISoSI]) # Stopping factors (function g(I) in the paper). def gborders(img, alpha=1.0, sigma=1.0): """Stopping criterion for image borders.""" # The norm of the gradient. gradnorm = gaussian_gradient_magnitude(img, sigma, mode='constant') return 1.0/np.sqrt(1.0 + alpha*gradnorm) def glines(img, sigma=1.0): """Stopping criterion for image black lines.""" return gaussian_filter(img, sigma) class MorphACWE(object): """Morphological ACWE based on the Chan-Vese energy functional.""" def __init__(self, data, smoothing=1, lambda1=1, lambda2=1): """Create a Morphological ACWE solver. Parameters ---------- data : ndarray The image data. smoothing : scalar The number of repetitions of the smoothing step (the curv operator) in each iteration. In other terms, this is the strength of the smoothing. This is the parameter µ. lambda1, lambda2 : scalars Relative importance of the inside pixels (lambda1) against the outside pixels (lambda2). """ self._u = None self.smoothing = smoothing self.lambda1 = lambda1 self.lambda2 = lambda2 self.data = data def set_levelset(self, u): self._u = np.double(u) self._u[u>0] = 1 self._u[u<=0] = 0 levelset = property(lambda self: self._u, set_levelset, doc="The level set embedding function (u).") def step(self): """Perform a single step of the morphological Chan-Vese evolution.""" # Assign attributes to local variables for convenience. u = self._u if u is None: raise ValueError, "the levelset function is not set (use set_levelset)" data = self.data # Determine c0 and c1. inside = u>0 outside = u<=0 c0 = data[outside].sum() / float(outside.sum()) c1 = data[inside].sum() / float(inside.sum()) # Image attachment. dres = np.array(np.gradient(u)) abs_dres = np.abs(dres).sum(0) #aux = abs_dres * (c0 - c1) * (c0 + c1 - 2*data) aux = abs_dres * (self.lambda1*(data - c1)**2 - self.lambda2*(data - c0)**2) res = np.copy(u) res[aux < 0] = 1 res[aux > 0] = 0 # Smoothing. for i in xrange(self.smoothing): res = curvop(res) self._u = res def run(self, iterations): """Run several iterations of the morphological Chan-Vese method.""" for i in xrange(iterations): self.step() class MorphGAC(object): """Morphological GAC based on the Geodesic Active Contours.""" def __init__(self, data, smoothing=1, threshold=0, balloon=0): """Create a Morphological GAC solver. Parameters ---------- data : array-like The stopping criterion g(I). See functions gborders and glines. smoothing : scalar The number of repetitions of the smoothing step in each iteration. This is the parameter µ. threshold : scalar The threshold that determines which areas are affected by the morphological balloon. This is the parameter θ. balloon : scalar The strength of the morphological balloon. This is the parameter ν. """ self._u = None self._v = balloon self._theta = threshold self.smoothing = smoothing self.set_data(data) def set_levelset(self, u): self._u = np.double(u) self._u[u>0] = 1 self._u[u<=0] = 0 def set_balloon(self, v): self._v = v self._update_mask() def set_threshold(self, theta): self._theta = theta self._update_mask() def set_data(self, data): self._data = data self._ddata = np.gradient(data) self._update_mask() # The structure element for binary dilation and erosion. self.structure = np.ones((3,)*np.ndim(data)) def _update_mask(self): """Pre-compute masks for speed.""" self._threshold_mask = self._data > self._theta self._threshold_mask_v = self._data > self._theta/np.abs(self._v) levelset = property(lambda self: self._u, set_levelset, doc="The level set embedding function (u).") data = property(lambda self: self._data, set_data, doc="The data that controls the snake evolution (the image or g(I)).") balloon = property(lambda self: self._v, set_balloon, doc="The morphological balloon parameter (ν (nu, not v)).") threshold = property(lambda self: self._theta, set_threshold, doc="The threshold value (θ).") def step(self): """Perform a single step of the morphological snake evolution.""" # Assign attributes to local variables for convenience. u = self._u gI = self._data dgI = self._ddata theta = self._theta v = self._v if u is None: raise ValueError, "the levelset is not set (use set_levelset)" res = np.copy(u) # Balloon. if v > 0: aux = binary_dilation(u, self.structure) elif v < 0: aux = binary_erosion(u, self.structure) if v!= 0: res[self._threshold_mask_v] = aux[self._threshold_mask_v] # Image attachment. aux = np.zeros_like(res) dres = np.gradient(res) for el1, el2 in zip(dgI, dres): aux += el1*el2 res[aux > 0] = 1 res[aux < 0] = 0 # Smoothing. for i in xrange(self.smoothing): res = curvop(res) self._u = res def run(self, iterations): """Run several iterations of the morphological snakes method.""" for i in xrange(iterations): self.step() def evolve_visual(msnake, levelset=None, num_iters=20, background=None): """ Visual evolution of a morphological snake. Parameters ---------- msnake : MorphGAC or MorphACWE instance The morphological snake solver. levelset : array-like, optional If given, the levelset of the solver is initialized to this. If not given, the evolution will use the levelset already set in msnake. num_iters : int, optional The number of iterations. background : array-like, optional If given, background will be shown behind the contours instead of msnake.data. """ from matplotlib import pyplot as ppl if levelset is not None: msnake.levelset = levelset # Prepare the visual environment. fig = ppl.gcf() fig.clf() ax1 = fig.add_subplot(1,2,1) if background is None: ax1.imshow(msnake.data, cmap=ppl.cm.gray) else: ax1.imshow(background, cmap=ppl.cm.gray) ax1.contour(msnake.levelset, [0.5], colors='r') ax2 = fig.add_subplot(1,2,2) ax_u = ax2.imshow(msnake.levelset) ppl.pause(0.001) # Iterate. for i in xrange(num_iters): # Evolve. msnake.step() # Update figure. del ax1.collections[0] ax1.contour(msnake.levelset, [0.5], colors='r') ax_u.set_data(msnake.levelset) fig.canvas.draw() #ppl.pause(0.001) # Return the last levelset. return msnake.levelset def evolve_visual3d(msnake, levelset=None, num_iters=20): """ Visual evolution of a three-dimensional morphological snake. Parameters ---------- msnake : MorphGAC or MorphACWE instance The morphological snake solver. levelset : array-like, optional If given, the levelset of the solver is initialized to this. If not given, the evolution will use the levelset already set in msnake. num_iters : int, optional The number of iterations. """ from mayavi import mlab import matplotlib.pyplot as ppl if levelset is not None: msnake.levelset = levelset fig = mlab.gcf() mlab.clf() src = mlab.pipeline.scalar_field(msnake.data) mlab.pipeline.image_plane_widget(src, plane_orientation='x_axes', colormap='gray') cnt = mlab.contour3d(msnake.levelset, contours=[0.5]) @mlab.animate(ui=True) def anim(): for i in xrange(num_iters): msnake.step() cnt.mlab_source.scalars = msnake.levelset print "Iteration %s/%s..." % (i + 1, num_iters) yield anim() mlab.show() # Return the last levelset. return msnake.levelset
gpl-2.0
mfjb/scikit-learn
examples/cluster/plot_agglomerative_clustering.py
343
2931
""" Agglomerative clustering with and without structure =================================================== This example shows the effect of imposing a connectivity graph to capture local structure in the data. The graph is simply the graph of 20 nearest neighbors. Two consequences of imposing a connectivity can be seen. First clustering with a connectivity matrix is much faster. Second, when using a connectivity matrix, average and complete linkage are unstable and tend to create a few clusters that grow very quickly. Indeed, average and complete linkage fight this percolation behavior by considering all the distances between two clusters when merging them. The connectivity graph breaks this mechanism. This effect is more pronounced for very sparse graphs (try decreasing the number of neighbors in kneighbors_graph) and with complete linkage. In particular, having a very small number of neighbors in the graph, imposes a geometry that is close to that of single linkage, which is well known to have this percolation instability. """ # Authors: Gael Varoquaux, Nelle Varoquaux # License: BSD 3 clause import time import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.neighbors import kneighbors_graph # Generate sample data n_samples = 1500 np.random.seed(0) t = 1.5 * np.pi * (1 + 3 * np.random.rand(1, n_samples)) x = t * np.cos(t) y = t * np.sin(t) X = np.concatenate((x, y)) X += .7 * np.random.randn(2, n_samples) X = X.T # Create a graph capturing local connectivity. Larger number of neighbors # will give more homogeneous clusters to the cost of computation # time. A very large number of neighbors gives more evenly distributed # cluster sizes, but may not impose the local manifold structure of # the data knn_graph = kneighbors_graph(X, 30, include_self=False) for connectivity in (None, knn_graph): for n_clusters in (30, 3): plt.figure(figsize=(10, 4)) for index, linkage in enumerate(('average', 'complete', 'ward')): plt.subplot(1, 3, index + 1) model = AgglomerativeClustering(linkage=linkage, connectivity=connectivity, n_clusters=n_clusters) t0 = time.time() model.fit(X) elapsed_time = time.time() - t0 plt.scatter(X[:, 0], X[:, 1], c=model.labels_, cmap=plt.cm.spectral) plt.title('linkage=%s (time %.2fs)' % (linkage, elapsed_time), fontdict=dict(verticalalignment='top')) plt.axis('equal') plt.axis('off') plt.subplots_adjust(bottom=0, top=.89, wspace=0, left=0, right=1) plt.suptitle('n_cluster=%i, connectivity=%r' % (n_clusters, connectivity is not None), size=17) plt.show()
bsd-3-clause
harshaneelhg/scikit-learn
examples/linear_model/plot_sgd_loss_functions.py
249
1095
""" ========================== SGD: convex loss functions ========================== A plot that compares the various convex loss functions supported by :class:`sklearn.linear_model.SGDClassifier` . """ print(__doc__) import numpy as np import matplotlib.pyplot as plt def modified_huber_loss(y_true, y_pred): z = y_pred * y_true loss = -4 * z loss[z >= -1] = (1 - z[z >= -1]) ** 2 loss[z >= 1.] = 0 return loss xmin, xmax = -4, 4 xx = np.linspace(xmin, xmax, 100) plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], 'k-', label="Zero-one loss") plt.plot(xx, np.where(xx < 1, 1 - xx, 0), 'g-', label="Hinge loss") plt.plot(xx, -np.minimum(xx, 0), 'm-', label="Perceptron loss") plt.plot(xx, np.log2(1 + np.exp(-xx)), 'r-', label="Log loss") plt.plot(xx, np.where(xx < 1, 1 - xx, 0) ** 2, 'b-', label="Squared hinge loss") plt.plot(xx, modified_huber_loss(xx, 1), 'y--', label="Modified Huber loss") plt.ylim((0, 8)) plt.legend(loc="upper right") plt.xlabel(r"Decision function $f(x)$") plt.ylabel("$L(y, f(x))$") plt.show()
bsd-3-clause
ageek/confPyNotebooks
sklearn-scipy-2013/figures/svm_gui_frames.py
2
2945
""" Linear Model Example -------------------- This is an example plot from the tutorial which accompanies an explanation of the support vector machine GUI. """ import numpy as np import pylab as pl import matplotlib from sklearn import svm def linear_model(rseed=42, Npts=30): np.random.seed(rseed) data = np.random.normal(0, 10, (Npts, 2)) data[:Npts / 2] -= 15 data[Npts / 2:] += 15 labels = np.ones(Npts) labels[:Npts / 2] = -1 return data, labels def nonlinear_model(rseed=42, Npts=30): radius = 40 * np.random.random(Npts) far_pts = radius > 20 radius[far_pts] *= 1.2 radius[~far_pts] *= 1.1 theta = np.random.random(Npts) * np.pi * 2 data = np.empty((Npts, 2)) data[:, 0] = radius * np.cos(theta) data[:, 1] = radius * np.sin(theta) labels = np.ones(Npts) labels[far_pts] = -1 return data, labels def plot_linear_model(): X, y = linear_model() clf = svm.SVC(kernel='linear', gamma=0.01, coef0=0, degree=3) clf.fit(X, y) fig = pl.figure() ax = pl.subplot(111, xticks=[], yticks=[]) ax.scatter(X[:, 0], X[:, 1], c=y, cmap=pl.cm.bone) ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, edgecolors="k", facecolors="none") delta = 1 y_min, y_max = -50, 50 x_min, x_max = -50, 50 x = np.arange(x_min, x_max + delta, delta) y = np.arange(y_min, y_max + delta, delta) X1, X2 = np.meshgrid(x, y) Z = clf.decision_function(np.c_[X1.ravel(), X2.ravel()]) Z = Z.reshape(X1.shape) levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles) def plot_rbf_model(): X, y = nonlinear_model() clf = svm.SVC(kernel='rbf', gamma=0.001, coef0=0, degree=3) clf.fit(X, y) fig = pl.figure() ax = pl.subplot(111, xticks=[], yticks=[]) ax.scatter(X[:, 0], X[:, 1], c=y, cmap=pl.cm.bone, zorder=2) ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, edgecolors="k", facecolors="none") delta = 1 y_min, y_max = -50, 50 x_min, x_max = -50, 50 x = np.arange(x_min, x_max + delta, delta) y = np.arange(y_min, y_max + delta, delta) X1, X2 = np.meshgrid(x, y) Z = clf.decision_function(np.c_[X1.ravel(), X2.ravel()]) Z = Z.reshape(X1.shape) levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' ax.contourf(X1, X2, Z, 10, cmap=matplotlib.cm.bone, origin='lower', alpha=0.85, zorder=1) ax.contour(X1, X2, Z, [0.0], colors='k', linestyles=['solid'], zorder=1) if __name__ == '__main__': plot_linear_model() plot_rbf_model() pl.show()
gpl-2.0
00krishna-research/py_university_gender_dynamics_pkg
pyugend/BasicStochasticModelFixedPromotionDeptSizeStable.py
1
13110
__author__ = 'krishnab' from operator import neg, truediv import numpy as np import pandas as pd from numpy.random import binomial from models.Models import Base_model class Basic_stochastic_model_fixed_promotion(Base_model): def __init__(self, **kwds): Base_model.__init__(self, **kwds) self.name = "Stochastic Model(sim_orig)" self.label = "promote-hire fp" def run_model(self): ## initialize data structure self.res = np.zeros([self.duration, 12], dtype=np.float32) self.res[0, 0] = self.nf1 self.res[0, 1] = self.nf2 self.res[0, 2] = self.nf3 self.res[0, 3] = self.nm1 self.res[0, 4] = self.nm2 self.res[0, 5] = self.nm3 self.res[0, 6] = self.vac3 self.res[0, 7] = self.vac2 self.res[0, 8] = self.vac1 self.res[0, 9] = self.female_promotion_probability_1 self.res[0, 10] = self.female_promotion_probability_2 self.res[0, 11] = np.float32( sum(list([self.nf1, self.nf2, self.nf3])) / sum(list([self.nf1, self.nf2, self.nf3, self.nm1, self.nm2, self.nm3]))) hiring_rate_female_level_1 = self.bf1 hiring_rate_female_level_2 = self.bf2 hiring_rate_female_level_3 = self.bf3 attrition_rate_female_level_1 = self.df1 attrition_rate_female_level_2 = self.df2 attrition_rate_female_level_3 = self.df3 attrition_rate_male_level_1 = self.dm1 attrition_rate_male_level_2 = self.dm2 attrition_rate_male_level_3 = self.dm3 probability_of_outside_hire_level_3 = self.phire3 probability_of_outside_hire_level_2 = self.phire2 male_promotion_probability_1_2 = self.male_promotion_probability_1 male_promotion_probability_2_3 = self.male_promotion_probability_2 for i in range(1, self.duration): # initialize variables for this iteration prev_number_of_females_level_1 = self.res[i - 1, 0] prev_number_of_females_level_2 = self.res[i - 1, 1] prev_number_of_females_level_3 = self.res[i - 1, 2] prev_number_of_males_level_1 = self.res[i - 1, 3] prev_number_of_males_level_2 = self.res[i - 1, 4] prev_number_of_males_level_3 = self.res[i - 1, 5] prev_number_of_vacancies_level_3 = self.res[i - 1, 6] prev_number_of_vacancies_level_2 = self.res[i - 1, 7] prev_number_of_vacancies_level_1 = self.res[i - 1, 8] prev_promotion_rate_female_level_1 = self.female_promotion_probability_1 prev_promotion_rate_female_level_2 = self.female_promotion_probability_2 if np.isnan(prev_promotion_rate_female_level_1): prev_promotion_rate_female_level_1 = 0 if np.isnan(prev_promotion_rate_female_level_2): prev_promotion_rate_female_level_2 = 0 prev_gender_proportion_of_department = np.float32( sum(list([prev_number_of_females_level_1, prev_number_of_females_level_2, prev_number_of_females_level_3])) / ( sum(list([prev_number_of_females_level_1, prev_number_of_females_level_2, prev_number_of_females_level_3, prev_number_of_males_level_1, prev_number_of_males_level_2, prev_number_of_males_level_3])))) # Process Model # first both female and males leave the department according to binomial probability. female_attrition_level_3 = binomial(prev_number_of_females_level_3, attrition_rate_female_level_3) male_attrition_level_3 = binomial(prev_number_of_males_level_3, attrition_rate_male_level_3) # the departures create a set of vacancies. These vacancies are the basis for new hiring total_vacancies_3 = female_attrition_level_3 + male_attrition_level_3 # women are hired first and then men hiring_female_3 = binomial(total_vacancies_3, probability_of_outside_hire_level_3 * hiring_rate_female_level_3) hiring_male_3 = binomial(max(0, total_vacancies_3 - hiring_female_3), probability_of_outside_hire_level_3 * ( 1 - hiring_rate_female_level_3)) total_hiring_3 = hiring_female_3 + hiring_male_3 # level 3 vacancies that are not filled by new hires create opportunities # for promotion from level 2. Again women are promoted first and men second. # Also note the error trap that if we try to promote more professors from # level 2 than there exist at level 2, then we will prevent this from happening. vacancies_remaining_after_hiring_3 = total_vacancies_3 - total_hiring_3 potential_promotions_after_hiring_3 = max(0, vacancies_remaining_after_hiring_3) promotions_of_females_level_2_3 = binomial(min( potential_promotions_after_hiring_3, prev_number_of_females_level_2), prev_promotion_rate_female_level_2) promotions_of_males_level_2_3 = binomial(max(0,min( potential_promotions_after_hiring_3-promotions_of_females_level_2_3, prev_number_of_males_level_2)), male_promotion_probability_2_3) # attrition at level 2 - either people leave from attrition or promotion female_attrition_level_2 = binomial( max(0, prev_number_of_females_level_2 - promotions_of_females_level_2_3), attrition_rate_female_level_2) male_attrition_level_2 = binomial(max(0, prev_number_of_males_level_2 - promotions_of_males_level_2_3), attrition_rate_male_level_2) # the departures create a set of vacancies. These vacancies are the basis for new hiring total_vacancies_2 = sum(list([female_attrition_level_2, male_attrition_level_2, promotions_of_females_level_2_3, promotions_of_males_level_2_3])) hiring_female_2 = binomial(max(0,total_vacancies_2), probability_of_outside_hire_level_2 * hiring_rate_female_level_2) hiring_male_2 = binomial(max(0,total_vacancies_2-hiring_female_2), probability_of_outside_hire_level_2 * (1-hiring_rate_female_level_2)) total_hiring_2 = hiring_female_2 + hiring_male_2 vacancies_remaining_after_hiring_2 = total_vacancies_2 - total_hiring_2 potential_promotions_after_hiring_2 = max(0, vacancies_remaining_after_hiring_2) promotions_of_females_level_1_2 = binomial(max(0, min(potential_promotions_after_hiring_2, prev_number_of_females_level_1)), prev_promotion_rate_female_level_1) promotions_of_males_level_1_2 = binomial(max(0,min( potential_promotions_after_hiring_2 - promotions_of_females_level_1_2, prev_number_of_males_level_1)), male_promotion_probability_1_2) ## Level 1 female_attrition_level_1 = binomial(max(0,prev_number_of_females_level_1-promotions_of_females_level_1_2), attrition_rate_female_level_1) male_attrition_level_1 = binomial(max(0,prev_number_of_males_level_1-promotions_of_males_level_1_2), attrition_rate_male_level_1) total_vacancies_1 = sum(list([female_attrition_level_1, male_attrition_level_1, promotions_of_females_level_1_2, promotions_of_males_level_1_2])) hiring_female_1 = binomial(max(0,total_vacancies_1), hiring_rate_female_level_1) hiring_male_1 = binomial(max(0,total_vacancies_1 - hiring_female_1), 1 - hiring_rate_female_level_1) # Write state variables to array and move to next iteration self.res[i, 0] = number_of_females_level_1 = sum( list([prev_number_of_females_level_1, neg(female_attrition_level_1), neg(promotions_of_females_level_1_2), hiring_female_1])) assert (number_of_females_level_1 >= 0), "negative number of females 1" self.res[i, 1] = number_of_females_level_2 = max(0, sum( list([prev_number_of_females_level_2, neg(female_attrition_level_2), neg(promotions_of_females_level_2_3), promotions_of_females_level_1_2, hiring_female_2]))) self.res[i, 2] = number_of_females_level_3 = sum(list([ prev_number_of_females_level_3, neg(female_attrition_level_3), promotions_of_females_level_2_3, hiring_female_3])) self.res[i, 3] = number_of_males_level_1 = sum(list([ prev_number_of_males_level_1, neg(male_attrition_level_1), neg(promotions_of_males_level_1_2), hiring_male_1])) self.res[i, 4] = number_of_males_level_2 = sum( list([prev_number_of_males_level_2, neg(male_attrition_level_2), neg(promotions_of_males_level_2_3), promotions_of_males_level_1_2, hiring_male_2])) self.res[i, 5] = number_of_males_level_3 = sum( list([prev_number_of_males_level_3, neg(male_attrition_level_3), promotions_of_males_level_2_3, hiring_male_3])) self.res[i, 6] = number_of_vacancies_level_3 = sum(list([ male_attrition_level_3, female_attrition_level_3])) self.res[i, 7] = number_of_vacancies_level_2 = sum(list([ male_attrition_level_2, female_attrition_level_2, promotions_of_females_level_2_3, promotions_of_males_level_2_3])) self.res[i, 8] = number_of_vacancies_level_1 = sum(list([ male_attrition_level_1, female_attrition_level_1, promotions_of_males_level_1_2, promotions_of_females_level_1_2])) self.res[i, 9] = promotion_rate_female_level_1 = np.float32( number_of_females_level_1 / sum(list([number_of_females_level_1, number_of_males_level_1]))) self.res[i, 10] = promotion_rate_women_level_2 = np.float32( number_of_females_level_2 / sum(list([number_of_females_level_2, number_of_males_level_2]))) self.res[i, 11] = gender_proportion_of_department = np.float32( truediv(sum(list([number_of_females_level_1, number_of_females_level_2, number_of_females_level_3])), sum(list([ number_of_females_level_1, number_of_females_level_2, number_of_females_level_3, number_of_males_level_1, number_of_males_level_2, number_of_males_level_3])))) # print(self.res[i,:]) ## Print Data matrix df_ = pd.DataFrame(self.res) df_.columns = ['f1', 'f2', 'f3', 'm1', 'm2', 'm3', 't3', 't2', 't1', 'prom1', 'prom2', 'gendprop'] # print(df_) recarray_results = df_.to_records(index=True) self.run = recarray_results return recarray_results
mit
rrohan/scikit-learn
examples/linear_model/plot_polynomial_interpolation.py
251
1895
#!/usr/bin/env python """ ======================== Polynomial interpolation ======================== This example demonstrates how to approximate a function with a polynomial of degree n_degree by using ridge regression. Concretely, from n_samples 1d points, it suffices to build the Vandermonde matrix, which is n_samples x n_degree+1 and has the following form: [[1, x_1, x_1 ** 2, x_1 ** 3, ...], [1, x_2, x_2 ** 2, x_2 ** 3, ...], ...] Intuitively, this matrix can be interpreted as a matrix of pseudo features (the points raised to some power). The matrix is akin to (but different from) the matrix induced by a polynomial kernel. This example shows that you can do non-linear regression with a linear model, using a pipeline to add non-linear features. Kernel methods extend this idea and can induce very high (even infinite) dimensional feature spaces. """ print(__doc__) # Author: Mathieu Blondel # Jake Vanderplas # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline def f(x): """ function to approximate by polynomial interpolation""" return x * np.sin(x) # generate points used to plot x_plot = np.linspace(0, 10, 100) # generate points and keep a subset of them x = np.linspace(0, 10, 100) rng = np.random.RandomState(0) rng.shuffle(x) x = np.sort(x[:20]) y = f(x) # create matrix versions of these arrays X = x[:, np.newaxis] X_plot = x_plot[:, np.newaxis] plt.plot(x_plot, f(x_plot), label="ground truth") plt.scatter(x, y, label="training points") for degree in [3, 4, 5]: model = make_pipeline(PolynomialFeatures(degree), Ridge()) model.fit(X, y) y_plot = model.predict(X_plot) plt.plot(x_plot, y_plot, label="degree %d" % degree) plt.legend(loc='lower left') plt.show()
bsd-3-clause
DiamondLightSource/auto_tomo_calibration-experimental
old_code_scripts/measure_resolution/lmfit-py/tests/test_algebraic_constraint2.py
4
3112
from numpy import linspace, zeros, sin, exp, random, sqrt, pi, sign from lmfit import Parameters, Parameter, Minimizer from lmfit.lineshapes import gaussian, lorentzian, pvoigt from lmfit.printfuncs import report_fit import sys # Turn off plotting if run by nosetests. WITHPLOT = True for arg in sys.argv: if 'nose' in arg: WITHPLOT = False if WITHPLOT: try: import matplotlib import pylab except ImportError: WITHPLOT = False def test_constraints(with_plot=True): with_plot = with_plot and WITHPLOT def residual(pars, x, sigma=None, data=None): yg = gaussian(x, pars['amp_g'].value, pars['cen_g'].value, pars['wid_g'].value) yl = lorentzian(x, pars['amp_l'].value, pars['cen_l'].value, pars['wid_l'].value) slope = pars['line_slope'].value offset = pars['line_off'].value model = yg + yl + offset + x * slope if data is None: return model if sigma is None: return (model - data) return (model - data) / sigma n = 201 xmin = 0. xmax = 20.0 x = linspace(xmin, xmax, n) data = (gaussian(x, 21, 8.1, 1.2) + lorentzian(x, 10, 9.6, 2.4) + random.normal(scale=0.23, size=n) + x*0.5) if with_plot: pylab.plot(x, data, 'r+') pfit = Parameters() pfit.add(name='amp_g', value=10) pfit.add(name='cen_g', value=9) pfit.add(name='wid_g', value=1) pfit.add(name='amp_tot', value=20) pfit.add(name='amp_l', expr='amp_tot - amp_g') pfit.add(name='cen_l', expr='1.5+cen_g') pfit.add(name='wid_l', expr='2*wid_g') pfit.add(name='line_slope', value=0.0) pfit.add(name='line_off', value=0.0) sigma = 0.021 # estimate of data error (for all data points) myfit = Minimizer(residual, pfit, fcn_args=(x,), fcn_kws={'sigma':sigma, 'data':data}, scale_covar=True) myfit.prepare_fit() init = residual(myfit.params, x) myfit.leastsq() print(' Nfev = ', myfit.nfev) print( myfit.chisqr, myfit.redchi, myfit.nfree) report_fit(myfit.params, min_correl=0.3) fit = residual(myfit.params, x) if with_plot: pylab.plot(x, fit, 'b-') assert(myfit.params['cen_l'].value == 1.5 + myfit.params['cen_g'].value) assert(myfit.params['amp_l'].value == myfit.params['amp_tot'].value - myfit.params['amp_g'].value) assert(myfit.params['wid_l'].value == 2 * myfit.params['wid_g'].value) # now, change fit slightly and re-run myfit.params['wid_l'].expr = '1.25*wid_g' myfit.leastsq() report_fit(myfit.params, min_correl=0.4) fit2 = residual(myfit.params, x) if with_plot: pylab.plot(x, fit2, 'k') pylab.show() assert(myfit.params['cen_l'].value == 1.5 + myfit.params['cen_g'].value) assert(myfit.params['amp_l'].value == myfit.params['amp_tot'].value - myfit.params['amp_g'].value) assert(myfit.params['wid_l'].value == 1.25 * myfit.params['wid_g'].value) test_constraints()
apache-2.0
pravsripad/mne-python
mne/preprocessing/maxwell.py
4
103431
# -*- coding: utf-8 -*- # Authors: Mark Wronkiewicz <[email protected]> # Eric Larson <[email protected]> # Jussi Nurminen <[email protected]> # License: BSD (3-clause) from collections import Counter, OrderedDict from functools import partial from math import factorial from os import path as op import numpy as np from .. import __version__ from ..annotations import _annotations_starts_stops from ..bem import _check_origin from ..transforms import (_str_to_frame, _get_trans, Transform, apply_trans, _find_vector_rotation, _cart_to_sph, _get_n_moments, _sph_to_cart_partials, _deg_ord_idx, _average_quats, _sh_complex_to_real, _sh_real_to_complex, _sh_negate, quat_to_rot, rot_to_quat) from ..forward import _concatenate_coils, _prep_meg_channels, _create_meg_coils from ..surface import _normalize_vectors from ..io.constants import FIFF, FWD from ..io.meas_info import _simplify_info, Info from ..io.proc_history import _read_ctc from ..io.write import _generate_meas_id, DATE_NONE from ..io import (_loc_to_coil_trans, _coil_trans_to_loc, BaseRaw, RawArray, Projection) from ..io.pick import pick_types, pick_info from ..utils import (verbose, logger, _clean_names, warn, _time_mask, _pl, _check_option, _ensure_int, _validate_type, use_log_level) from ..fixes import _safe_svd, einsum, bincount from ..channels.channels import _get_T1T2_mag_inds, fix_mag_coil_types # Note: MF uses single precision and some algorithms might use # truncated versions of constants (e.g., μ0), which could lead to small # differences between algorithms # Changes to arguments here should also be made in find_bad_channels_maxwell @verbose def maxwell_filter(raw, origin='auto', int_order=8, ext_order=3, calibration=None, cross_talk=None, st_duration=None, st_correlation=0.98, coord_frame='head', destination=None, regularize='in', ignore_ref=False, bad_condition='error', head_pos=None, st_fixed=True, st_only=False, mag_scale=100., skip_by_annotation=('edge', 'bad_acq_skip'), extended_proj=(), verbose=None): """Maxwell filter data using multipole moments. Parameters ---------- raw : instance of mne.io.Raw Data to be filtered. .. warning:: It is critical to mark bad channels in ``raw.info['bads']`` prior to processing in order to prevent artifact spreading. Manual inspection and use of :func:`~find_bad_channels_maxwell` is recommended. %(maxwell_origin)s %(maxwell_int)s %(maxwell_ext)s %(maxwell_cal)s %(maxwell_cross)s st_duration : float | None If not None, apply spatiotemporal SSS with specified buffer duration (in seconds). MaxFilter™'s default is 10.0 seconds in v2.2. Spatiotemporal SSS acts as implicitly as a high-pass filter where the cut-off frequency is 1/st_duration Hz. For this (and other) reasons, longer buffers are generally better as long as your system can handle the higher memory usage. To ensure that each window is processed identically, choose a buffer length that divides evenly into your data. Any data at the trailing edge that doesn't fit evenly into a whole buffer window will be lumped into the previous buffer. st_correlation : float Correlation limit between inner and outer subspaces used to reject ovwrlapping intersecting inner/outer signals during spatiotemporal SSS. %(maxwell_coord)s %(maxwell_dest)s %(maxwell_reg)s %(maxwell_ref)s %(maxwell_cond)s %(maxwell_pos)s .. versionadded:: 0.12 %(maxwell_st_fixed_only)s %(maxwell_mag)s .. versionadded:: 0.13 %(maxwell_skip)s .. versionadded:: 0.17 %(maxwell_extended)s %(verbose)s Returns ------- raw_sss : instance of mne.io.Raw The raw data with Maxwell filtering applied. See Also -------- mne.preprocessing.annotate_flat mne.preprocessing.find_bad_channels_maxwell mne.chpi.filter_chpi mne.chpi.read_head_pos mne.epochs.average_movements Notes ----- .. versionadded:: 0.11 Some of this code was adapted and relicensed (with BSD form) with permission from Jussi Nurminen. These algorithms are based on work from :footcite:`TauluKajola2005` and :footcite:`TauluSimola2006`. It will likely use multiple CPU cores, see the :ref:`FAQ <faq_cpu>` for more information. .. warning:: Maxwell filtering in MNE is not designed or certified for clinical use. Compared to the MEGIN MaxFilter™ software, the MNE Maxwell filtering routines currently provide the following features: .. table:: :widths: auto +-----------------------------------------------------------------------------+-----+-----------+ | Feature | MNE | MaxFilter | +=============================================================================+=====+===========+ | Maxwell filtering software shielding | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Bad channel reconstruction | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Cross-talk cancellation | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Fine calibration correction (1D) | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Fine calibration correction (3D) | ✓ | | +-----------------------------------------------------------------------------+-----+-----------+ | Spatio-temporal SSS (tSSS) | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Coordinate frame translation | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Regularization using information theory | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Movement compensation (raw) | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Movement compensation (:func:`epochs <mne.epochs.average_movements>`) | ✓ | | +-----------------------------------------------------------------------------+-----+-----------+ | :func:`cHPI subtraction <mne.chpi.filter_chpi>` | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Double floating point precision | ✓ | | +-----------------------------------------------------------------------------+-----+-----------+ | Seamless processing of split (``-1.fif``) and concatenated files | ✓ | | +-----------------------------------------------------------------------------+-----+-----------+ | Automatic bad channel detection (:func:`~find_bad_channels_maxwell`) | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Head position estimation (:func:`~mne.chpi.compute_head_pos`) | ✓ | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Certified for clinical use | | ✓ | +-----------------------------------------------------------------------------+-----+-----------+ | Extended external basis (eSSS) | ✓ | | +-----------------------------------------------------------------------------+-----+-----------+ Epoch-based movement compensation is described in :footcite:`TauluKajola2005`. Use of Maxwell filtering routines with non-Neuromag systems is currently **experimental**. Worse results for non-Neuromag systems are expected due to (at least): * Missing fine-calibration and cross-talk cancellation data for other systems. * Processing with reference sensors has not been vetted. * Regularization of components may not work well for all systems. * Coil integration has not been optimized using Abramowitz/Stegun definitions. .. note:: Various Maxwell filtering algorithm components are covered by patents owned by MEGIN. These patents include, but may not be limited to: - US2006031038 (Signal Space Separation) - US6876196 (Head position determination) - WO2005067789 (DC fields) - WO2005078467 (MaxShield) - WO2006114473 (Temporal Signal Space Separation) These patents likely preclude the use of Maxwell filtering code in commercial applications. Consult a lawyer if necessary. Currently, in order to perform Maxwell filtering, the raw data must not have any projectors applied. During Maxwell filtering, the spatial structure of the data is modified, so projectors are discarded (unless in ``st_only=True`` mode). References ---------- .. footbibliography:: """ # noqa: E501 logger.info('Maxwell filtering raw data') params = _prep_maxwell_filter( raw=raw, origin=origin, int_order=int_order, ext_order=ext_order, calibration=calibration, cross_talk=cross_talk, st_duration=st_duration, st_correlation=st_correlation, coord_frame=coord_frame, destination=destination, regularize=regularize, ignore_ref=ignore_ref, bad_condition=bad_condition, head_pos=head_pos, st_fixed=st_fixed, st_only=st_only, mag_scale=mag_scale, skip_by_annotation=skip_by_annotation, extended_proj=extended_proj) raw_sss = _run_maxwell_filter(raw, **params) # Update info _update_sss_info(raw_sss, **params['update_kwargs']) logger.info('[done]') return raw_sss @verbose def _prep_maxwell_filter( raw, origin='auto', int_order=8, ext_order=3, calibration=None, cross_talk=None, st_duration=None, st_correlation=0.98, coord_frame='head', destination=None, regularize='in', ignore_ref=False, bad_condition='error', head_pos=None, st_fixed=True, st_only=False, mag_scale=100., skip_by_annotation=('edge', 'bad_acq_skip'), extended_proj=(), reconstruct='in', verbose=None): # There are an absurd number of different possible notations for spherical # coordinates, which confounds the notation for spherical harmonics. Here, # we purposefully stay away from shorthand notation in both and use # explicit terms (like 'azimuth' and 'polar') to avoid confusion. # See mathworld.wolfram.com/SphericalHarmonic.html for more discussion. # Our code follows the same standard that ``scipy`` uses for ``sph_harm``. # triage inputs ASAP to avoid late-thrown errors _validate_type(raw, BaseRaw, 'raw') _check_usable(raw) _check_regularize(regularize) st_correlation = float(st_correlation) if st_correlation <= 0. or st_correlation > 1.: raise ValueError('Need 0 < st_correlation <= 1., got %s' % st_correlation) _check_option('coord_frame', coord_frame, ['head', 'meg']) head_frame = True if coord_frame == 'head' else False recon_trans = _check_destination(destination, raw.info, head_frame) if st_duration is not None: st_duration = float(st_duration) st_correlation = float(st_correlation) st_duration = int(round(st_duration * raw.info['sfreq'])) if not 0. < st_correlation <= 1: raise ValueError('st_correlation must be between 0. and 1.') _check_option('bad_condition', bad_condition, ['error', 'warning', 'ignore', 'info']) if raw.info['dev_head_t'] is None and coord_frame == 'head': raise RuntimeError('coord_frame cannot be "head" because ' 'info["dev_head_t"] is None; if this is an ' 'empty room recording, consider using ' 'coord_frame="meg"') if st_only and st_duration is None: raise ValueError('st_duration must not be None if st_only is True') head_pos = _check_pos(head_pos, head_frame, raw, st_fixed, raw.info['sfreq']) _check_info(raw.info, sss=not st_only, tsss=st_duration is not None, calibration=not st_only and calibration is not None, ctc=not st_only and cross_talk is not None) # Now we can actually get moving info = raw.info.copy() meg_picks, mag_picks, grad_picks, good_mask, mag_or_fine = \ _get_mf_picks_fix_mags(info, int_order, ext_order, ignore_ref) # Magnetometers are scaled to improve numerical stability coil_scale, mag_scale = _get_coil_scale( meg_picks, mag_picks, grad_picks, mag_scale, info) # # Extended projection vectors # _validate_type(extended_proj, (list, tuple), 'extended_proj') good_names = [info['ch_names'][c] for c in meg_picks[good_mask]] if len(extended_proj) > 0: extended_proj_ = list() for pi, proj in enumerate(extended_proj): item = 'extended_proj[%d]' % (pi,) _validate_type(proj, Projection, item) got_names = proj['data']['col_names'] missing = sorted(set(good_names) - set(got_names)) if missing: raise ValueError('%s channel names were missing some ' 'good MEG channel names:\n%s' % (item, ', '.join(missing))) idx = [got_names.index(name) for name in good_names] extended_proj_.append(proj['data']['data'][:, idx]) extended_proj = np.concatenate(extended_proj_) logger.info(' Extending external SSS basis using %d projection ' 'vectors' % (len(extended_proj),)) # # Fine calibration processing (load fine cal and overwrite sensor geometry) # sss_cal = dict() if calibration is not None: calibration, sss_cal = _update_sensor_geometry( info, calibration, ignore_ref) mag_or_fine.fill(True) # all channels now have some mag-type data # Determine/check the origin of the expansion origin = _check_origin(origin, info, coord_frame, disp=True) # Convert to the head frame if coord_frame == 'meg' and info['dev_head_t'] is not None: origin_head = apply_trans(info['dev_head_t'], origin) else: origin_head = origin update_kwargs = dict( origin=origin, coord_frame=coord_frame, sss_cal=sss_cal, int_order=int_order, ext_order=ext_order, extended_proj=extended_proj) del origin, coord_frame, sss_cal origin_head.setflags(write=False) # # Cross-talk processing # meg_ch_names = [info['ch_names'][p] for p in meg_picks] ctc, sss_ctc = _read_cross_talk(cross_talk, meg_ch_names) update_kwargs['sss_ctc'] = sss_ctc del sss_ctc # # Translate to destination frame (always use non-fine-cal bases) # exp = dict(origin=origin_head, int_order=int_order, ext_order=0) all_coils = _prep_mf_coils(info, ignore_ref) S_recon = _trans_sss_basis(exp, all_coils, recon_trans, coil_scale) exp['ext_order'] = ext_order exp['extended_proj'] = extended_proj del extended_proj # Reconstruct data from internal space only (Eq. 38), and rescale S_recon S_recon /= coil_scale if recon_trans is not None: # warn if we have translated too far diff = 1000 * (info['dev_head_t']['trans'][:3, 3] - recon_trans['trans'][:3, 3]) dist = np.sqrt(np.sum(_sq(diff))) if dist > 25.: warn('Head position change is over 25 mm (%s) = %0.1f mm' % (', '.join('%0.1f' % x for x in diff), dist)) # Reconstruct raw file object with spatiotemporal processed data max_st = dict() if st_duration is not None: if st_only: job = FIFF.FIFFV_SSS_JOB_TPROJ else: job = FIFF.FIFFV_SSS_JOB_ST max_st.update(job=job, subspcorr=st_correlation, buflen=st_duration / info['sfreq']) logger.info(' Processing data using tSSS with st_duration=%s' % max_st['buflen']) st_when = 'before' if st_fixed else 'after' # relative to movecomp else: # st_duration from here on will act like the chunk size st_duration = min(max(int(round(10. * info['sfreq'])), 1), len(raw.times)) st_correlation = None st_when = 'never' update_kwargs['max_st'] = max_st del st_fixed, max_st # Figure out which transforms we need for each tSSS block # (and transform pos[1] to times) head_pos[1] = raw.time_as_index(head_pos[1], use_rounding=True) # Compute the first bit of pos_data for cHPI reporting if info['dev_head_t'] is not None and head_pos[0] is not None: this_pos_quat = np.concatenate([ rot_to_quat(info['dev_head_t']['trans'][:3, :3]), info['dev_head_t']['trans'][:3, 3], np.zeros(3)]) else: this_pos_quat = None _get_this_decomp_trans = partial( _get_decomp, all_coils=all_coils, cal=calibration, regularize=regularize, exp=exp, ignore_ref=ignore_ref, coil_scale=coil_scale, grad_picks=grad_picks, mag_picks=mag_picks, good_mask=good_mask, mag_or_fine=mag_or_fine, bad_condition=bad_condition, mag_scale=mag_scale) update_kwargs.update( nchan=good_mask.sum(), st_only=st_only, recon_trans=recon_trans) params = dict( skip_by_annotation=skip_by_annotation, st_duration=st_duration, st_correlation=st_correlation, st_only=st_only, st_when=st_when, ctc=ctc, coil_scale=coil_scale, this_pos_quat=this_pos_quat, meg_picks=meg_picks, good_mask=good_mask, grad_picks=grad_picks, head_pos=head_pos, info=info, _get_this_decomp_trans=_get_this_decomp_trans, S_recon=S_recon, update_kwargs=update_kwargs) return params def _run_maxwell_filter( raw, skip_by_annotation, st_duration, st_correlation, st_only, st_when, ctc, coil_scale, this_pos_quat, meg_picks, good_mask, grad_picks, head_pos, info, _get_this_decomp_trans, S_recon, update_kwargs, reconstruct='in', copy=True): # Eventually find_bad_channels_maxwell could be sped up by moving this # outside the loop (e.g., in the prep function) but regularization depends # on which channels are being used, so easier just to include it here. # The time it takes to recompute S and pS themselves is roughly on par # with the np.dot with the data, so not a huge gain to be made there. S_decomp, S_decomp_full, pS_decomp, reg_moments, n_use_in = \ _get_this_decomp_trans(info['dev_head_t'], t=0.) update_kwargs.update(reg_moments=reg_moments.copy()) if ctc is not None: ctc = ctc[good_mask][:, good_mask] add_channels = (head_pos[0] is not None) and (not st_only) and copy raw_sss, pos_picks = _copy_preload_add_channels( raw, add_channels, copy, info) sfreq = info['sfreq'] del raw if not st_only: # remove MEG projectors, they won't apply now _remove_meg_projs(raw_sss) # Figure out which segments of data we can use onsets, ends = _annotations_starts_stops( raw_sss, skip_by_annotation, invert=True) max_samps = (ends - onsets).max() if not 0. < st_duration <= max_samps + 1.: raise ValueError('st_duration (%0.1fs) must be between 0 and the ' 'longest contiguous duration of the data ' '(%0.1fs).' % (st_duration / sfreq, max_samps / sfreq)) # Generate time points to break up data into equal-length windows starts, stops = list(), list() for onset, end in zip(onsets, ends): read_lims = np.arange(onset, end + 1, st_duration) if len(read_lims) == 1: read_lims = np.concatenate([read_lims, [end]]) if read_lims[-1] != end: read_lims[-1] = end # fold it into the previous buffer n_last_buf = read_lims[-1] - read_lims[-2] if st_correlation is not None and len(read_lims) > 2: if n_last_buf >= st_duration: logger.info( ' Spatiotemporal window did not fit evenly into' 'contiguous data segment. %0.2f seconds were lumped ' 'into the previous window.' % ((n_last_buf - st_duration) / sfreq,)) else: logger.info( ' Contiguous data segment of duration %0.2f ' 'seconds is too short to be processed with tSSS ' 'using duration %0.2f' % (n_last_buf / sfreq, st_duration / sfreq)) assert len(read_lims) >= 2 assert read_lims[0] == onset and read_lims[-1] == end starts.extend(read_lims[:-1]) stops.extend(read_lims[1:]) del read_lims st_duration = min(max_samps, st_duration) # Loop through buffer windows of data n_sig = int(np.floor(np.log10(max(len(starts), 0)))) + 1 logger.info( ' Processing %s data chunk%s' % (len(starts), _pl(starts))) for ii, (start, stop) in enumerate(zip(starts, stops)): if start == stop: continue # Skip zero-length annotations tsss_valid = (stop - start) >= st_duration rel_times = raw_sss.times[start:stop] t_str = '%8.3f - %8.3f sec' % tuple(rel_times[[0, -1]]) t_str += ('(#%d/%d)' % (ii + 1, len(starts))).rjust(2 * n_sig + 5) # Get original data orig_data = raw_sss._data[meg_picks[good_mask], start:stop] # This could just be np.empty if not st_only, but shouldn't be slow # this way so might as well just always take the original data out_meg_data = raw_sss._data[meg_picks, start:stop] # Apply cross-talk correction if ctc is not None: orig_data = ctc.dot(orig_data) out_pos_data = np.empty((len(pos_picks), stop - start)) # Figure out which positions to use t_s_s_q_a = _trans_starts_stops_quats(head_pos, start, stop, this_pos_quat) n_positions = len(t_s_s_q_a[0]) # Set up post-tSSS or do pre-tSSS if st_correlation is not None: # If doing tSSS before movecomp... resid = orig_data.copy() # to be safe let's operate on a copy if st_when == 'after': orig_in_data = np.empty((len(meg_picks), stop - start)) else: # 'before' avg_trans = t_s_s_q_a[-1] if avg_trans is not None: # if doing movecomp S_decomp_st, _, pS_decomp_st, _, n_use_in_st = \ _get_this_decomp_trans(avg_trans, t=rel_times[0]) else: S_decomp_st, pS_decomp_st = S_decomp, pS_decomp n_use_in_st = n_use_in orig_in_data = np.dot(np.dot(S_decomp_st[:, :n_use_in_st], pS_decomp_st[:n_use_in_st]), resid) resid -= np.dot(np.dot(S_decomp_st[:, n_use_in_st:], pS_decomp_st[n_use_in_st:]), resid) resid -= orig_in_data # Here we operate on our actual data proc = out_meg_data if st_only else orig_data _do_tSSS(proc, orig_in_data, resid, st_correlation, n_positions, t_str, tsss_valid) if not st_only or st_when == 'after': # Do movement compensation on the data for trans, rel_start, rel_stop, this_pos_quat in \ zip(*t_s_s_q_a[:4]): # Recalculate bases if necessary (trans will be None iff the # first position in this interval is the same as last of the # previous interval) if trans is not None: S_decomp, S_decomp_full, pS_decomp, reg_moments, \ n_use_in = _get_this_decomp_trans( trans, t=rel_times[rel_start]) # Determine multipole moments for this interval mm_in = np.dot(pS_decomp[:n_use_in], orig_data[:, rel_start:rel_stop]) # Our output data if not st_only: if reconstruct == 'in': proj = S_recon.take(reg_moments[:n_use_in], axis=1) mult = mm_in else: assert reconstruct == 'orig' proj = S_decomp_full # already picked reg mm_out = np.dot(pS_decomp[n_use_in:], orig_data[:, rel_start:rel_stop]) mult = np.concatenate((mm_in, mm_out)) out_meg_data[:, rel_start:rel_stop] = \ np.dot(proj, mult) if len(pos_picks) > 0: out_pos_data[:, rel_start:rel_stop] = \ this_pos_quat[:, np.newaxis] # Transform orig_data to store just the residual if st_when == 'after': # Reconstruct data using original location from external # and internal spaces and compute residual rel_resid_data = resid[:, rel_start:rel_stop] orig_in_data[:, rel_start:rel_stop] = \ np.dot(S_decomp[:, :n_use_in], mm_in) rel_resid_data -= np.dot(np.dot(S_decomp[:, n_use_in:], pS_decomp[n_use_in:]), rel_resid_data) rel_resid_data -= orig_in_data[:, rel_start:rel_stop] # If doing tSSS at the end if st_when == 'after': _do_tSSS(out_meg_data, orig_in_data, resid, st_correlation, n_positions, t_str, tsss_valid) elif st_when == 'never' and head_pos[0] is not None: logger.info(' Used % 2d head position%s for %s' % (n_positions, _pl(n_positions), t_str)) raw_sss._data[meg_picks, start:stop] = out_meg_data raw_sss._data[pos_picks, start:stop] = out_pos_data return raw_sss def _get_coil_scale(meg_picks, mag_picks, grad_picks, mag_scale, info): """Get the magnetometer scale factor.""" if isinstance(mag_scale, str): if mag_scale != 'auto': raise ValueError('mag_scale must be a float or "auto", got "%s"' % mag_scale) if len(mag_picks) in (0, len(meg_picks)): mag_scale = 100. # only one coil type, doesn't matter logger.info(' Setting mag_scale=%0.2f because only one ' 'coil type is present' % mag_scale) else: # Find our physical distance between gradiometer pickup loops # ("base line") coils = _create_meg_coils([info['chs'][pick] for pick in meg_picks], 'accurate') grad_base = {coils[pick]['base'] for pick in grad_picks} if len(grad_base) != 1 or list(grad_base)[0] <= 0: raise RuntimeError('Could not automatically determine ' 'mag_scale, could not find one ' 'proper gradiometer distance from: %s' % list(grad_base)) grad_base = list(grad_base)[0] mag_scale = 1. / grad_base logger.info(' Setting mag_scale=%0.2f based on gradiometer ' 'distance %0.2f mm' % (mag_scale, 1000 * grad_base)) mag_scale = float(mag_scale) coil_scale = np.ones((len(meg_picks), 1)) coil_scale[mag_picks] = mag_scale return coil_scale, mag_scale def _remove_meg_projs(inst): """Remove inplace existing MEG projectors (assumes inactive).""" meg_picks = pick_types(inst.info, meg=True, exclude=[]) meg_channels = [inst.ch_names[pi] for pi in meg_picks] non_meg_proj = list() for proj in inst.info['projs']: if not any(c in meg_channels for c in proj['data']['col_names']): non_meg_proj.append(proj) inst.add_proj(non_meg_proj, remove_existing=True, verbose=False) def _check_destination(destination, info, head_frame): """Triage our reconstruction trans.""" if destination is None: return info['dev_head_t'] if not head_frame: raise RuntimeError('destination can only be set if using the ' 'head coordinate frame') if isinstance(destination, str): recon_trans = _get_trans(destination, 'meg', 'head')[0] elif isinstance(destination, Transform): recon_trans = destination else: destination = np.array(destination, float) if destination.shape != (3,): raise ValueError('destination must be a 3-element vector, ' 'str, or None') recon_trans = np.eye(4) recon_trans[:3, 3] = destination recon_trans = Transform('meg', 'head', recon_trans) if recon_trans.to_str != 'head' or recon_trans.from_str != 'MEG device': raise RuntimeError('Destination transform is not MEG device -> head, ' 'got %s -> %s' % (recon_trans.from_str, recon_trans.to_str)) return recon_trans @verbose def _prep_mf_coils(info, ignore_ref=True, verbose=None): """Get all coil integration information loaded and sorted.""" coils, comp_coils = _prep_meg_channels( info, accurate=True, head_frame=False, ignore_ref=ignore_ref, do_picking=False, verbose=False)[:2] mag_mask = _get_mag_mask(coils) if len(comp_coils) > 0: meg_picks = pick_types(info, meg=True, ref_meg=False, exclude=[]) ref_picks = pick_types(info, meg=False, ref_meg=True, exclude=[]) inserts = np.searchsorted(meg_picks, ref_picks) # len(inserts) == len(comp_coils) for idx, comp_coil in zip(inserts[::-1], comp_coils[::-1]): coils.insert(idx, comp_coil) # Now we have: # [c['chname'] for c in coils] == # [info['ch_names'][ii] # for ii in pick_types(info, meg=True, ref_meg=True)] # Now coils is a sorted list of coils. Time to do some vectorization. n_coils = len(coils) rmags = np.concatenate([coil['rmag'] for coil in coils]) cosmags = np.concatenate([coil['cosmag'] for coil in coils]) ws = np.concatenate([coil['w'] for coil in coils]) cosmags *= ws[:, np.newaxis] del ws n_int = np.array([len(coil['rmag']) for coil in coils]) bins = np.repeat(np.arange(len(n_int)), n_int) bd = np.concatenate(([0], np.cumsum(n_int))) slice_map = {ii: slice(start, stop) for ii, (start, stop) in enumerate(zip(bd[:-1], bd[1:]))} return rmags, cosmags, bins, n_coils, mag_mask, slice_map def _trans_starts_stops_quats(pos, start, stop, this_pos_data): """Get all trans and limits we need.""" pos_idx = np.arange(*np.searchsorted(pos[1], [start, stop])) used = np.zeros(stop - start, bool) trans = list() rel_starts = list() rel_stops = list() quats = list() weights = list() for ti in range(-1, len(pos_idx)): # first iteration for this block of data if ti < 0: rel_start = 0 rel_stop = pos[1][pos_idx[0]] if len(pos_idx) > 0 else stop rel_stop = rel_stop - start if rel_start == rel_stop: continue # our first pos occurs on first time sample # Don't calculate S_decomp here, use the last one trans.append(None) # meaning: use previous quats.append(this_pos_data) else: rel_start = pos[1][pos_idx[ti]] - start if ti == len(pos_idx) - 1: rel_stop = stop - start else: rel_stop = pos[1][pos_idx[ti + 1]] - start trans.append(pos[0][pos_idx[ti]]) quats.append(pos[2][pos_idx[ti]]) assert 0 <= rel_start assert rel_start < rel_stop assert rel_stop <= stop - start assert not used[rel_start:rel_stop].any() used[rel_start:rel_stop] = True rel_starts.append(rel_start) rel_stops.append(rel_stop) weights.append(rel_stop - rel_start) assert used.all() # Use weighted average for average trans over the window if this_pos_data is None: avg_trans = None else: weights = np.array(weights) quats = np.array(quats) weights = weights / weights.sum().astype(float) # int -> float avg_quat = _average_quats(quats[:, :3], weights) avg_t = np.dot(weights, quats[:, 3:6]) avg_trans = np.vstack([ np.hstack([quat_to_rot(avg_quat), avg_t[:, np.newaxis]]), [[0., 0., 0., 1.]]]) return trans, rel_starts, rel_stops, quats, avg_trans def _do_tSSS(clean_data, orig_in_data, resid, st_correlation, n_positions, t_str, tsss_valid): """Compute and apply SSP-like projection vectors based on min corr.""" if not tsss_valid: t_proj = np.empty((clean_data.shape[1], 0)) else: np.asarray_chkfinite(resid) t_proj = _overlap_projector(orig_in_data, resid, st_correlation) # Apply projector according to Eq. 12 in :footcite:`TauluSimola2006` msg = (' Projecting %2d intersecting tSSS component%s ' 'for %s' % (t_proj.shape[1], _pl(t_proj.shape[1], ' '), t_str)) if n_positions > 1: msg += ' (across %2d position%s)' % (n_positions, _pl(n_positions, ' ')) logger.info(msg) clean_data -= np.dot(np.dot(clean_data, t_proj), t_proj.T) def _copy_preload_add_channels(raw, add_channels, copy, info): """Load data for processing and (maybe) add cHPI pos channels.""" if copy: raw = raw.copy() raw.info['chs'] = info['chs'] # updated coil types if add_channels: kinds = [FIFF.FIFFV_QUAT_1, FIFF.FIFFV_QUAT_2, FIFF.FIFFV_QUAT_3, FIFF.FIFFV_QUAT_4, FIFF.FIFFV_QUAT_5, FIFF.FIFFV_QUAT_6, FIFF.FIFFV_HPI_G, FIFF.FIFFV_HPI_ERR, FIFF.FIFFV_HPI_MOV] out_shape = (len(raw.ch_names) + len(kinds), len(raw.times)) out_data = np.zeros(out_shape, np.float64) msg = ' Appending head position result channels and ' if raw.preload: logger.info(msg + 'copying original raw data') out_data[:len(raw.ch_names)] = raw._data raw._data = out_data else: logger.info(msg + 'loading raw data from disk') with use_log_level(False): raw._preload_data(out_data[:len(raw.ch_names)]) raw._data = out_data assert raw.preload is True off = len(raw.ch_names) chpi_chs = [ dict(ch_name='CHPI%03d' % (ii + 1), logno=ii + 1, scanno=off + ii + 1, unit_mul=-1, range=1., unit=-1, kind=kinds[ii], coord_frame=FIFF.FIFFV_COORD_UNKNOWN, cal=1e-4, coil_type=FWD.COIL_UNKNOWN, loc=np.zeros(12)) for ii in range(len(kinds))] raw.info['chs'].extend(chpi_chs) raw.info._update_redundant() raw.info._check_consistency() assert raw._data.shape == (raw.info['nchan'], len(raw.times)) # Return the pos picks pos_picks = np.arange(len(raw.ch_names) - len(chpi_chs), len(raw.ch_names)) return raw, pos_picks else: if copy: if not raw.preload: logger.info(' Loading raw data from disk') raw.load_data(verbose=False) else: logger.info(' Using loaded raw data') return raw, np.array([], int) def _check_pos(pos, head_frame, raw, st_fixed, sfreq): """Check for a valid pos array and transform it to a more usable form.""" _validate_type(pos, (np.ndarray, None), 'head_pos') if pos is None: return [None, np.array([-1])] if not head_frame: raise ValueError('positions can only be used if coord_frame="head"') if not st_fixed: warn('st_fixed=False is untested, use with caution!') if not isinstance(pos, np.ndarray): raise TypeError('pos must be an ndarray') if pos.ndim != 2 or pos.shape[1] != 10: raise ValueError('pos must be an array of shape (N, 10)') t = pos[:, 0] if not np.array_equal(t, np.unique(t)): raise ValueError('Time points must unique and in ascending order') # We need an extra 1e-3 (1 ms) here because MaxFilter outputs values # only out to 3 decimal places if not _time_mask(t, tmin=raw._first_time - 1e-3, tmax=None, sfreq=sfreq).all(): raise ValueError('Head position time points must be greater than ' 'first sample offset, but found %0.4f < %0.4f' % (t[0], raw._first_time)) max_dist = np.sqrt(np.sum(pos[:, 4:7] ** 2, axis=1)).max() if max_dist > 1.: warn('Found a distance greater than 1 m (%0.3g m) from the device ' 'origin, positions may be invalid and Maxwell filtering could ' 'fail' % (max_dist,)) dev_head_ts = np.zeros((len(t), 4, 4)) dev_head_ts[:, 3, 3] = 1. dev_head_ts[:, :3, 3] = pos[:, 4:7] dev_head_ts[:, :3, :3] = quat_to_rot(pos[:, 1:4]) pos = [dev_head_ts, t - raw._first_time, pos[:, 1:]] return pos def _get_decomp(trans, all_coils, cal, regularize, exp, ignore_ref, coil_scale, grad_picks, mag_picks, good_mask, mag_or_fine, bad_condition, t, mag_scale): """Get a decomposition matrix and pseudoinverse matrices.""" from scipy import linalg # # Fine calibration processing (point-like magnetometers and calib. coeffs) # S_decomp_full = _get_s_decomp( exp, all_coils, trans, coil_scale, cal, ignore_ref, grad_picks, mag_picks, mag_scale) S_decomp = S_decomp_full[good_mask] # # Extended SSS basis (eSSS) # extended_proj = exp.get('extended_proj', ()) if len(extended_proj) > 0: rcond = 1e-4 thresh = 1e-4 extended_proj = extended_proj.T * coil_scale[good_mask] extended_proj /= np.linalg.norm(extended_proj, axis=0) n_int = _get_n_moments(exp['int_order']) if S_decomp.shape[1] > n_int: S_ext = S_decomp[:, n_int:].copy() S_ext /= np.linalg.norm(S_ext, axis=0) S_ext_orth = linalg.orth(S_ext, rcond=rcond) assert S_ext_orth.shape[1] == S_ext.shape[1] extended_proj -= np.dot(S_ext_orth, np.dot(S_ext_orth.T, extended_proj)) scale = np.mean(np.linalg.norm(S_decomp[n_int:], axis=0)) else: scale = np.mean(np.linalg.norm(S_decomp[:n_int], axis=0)) mask = np.linalg.norm(extended_proj, axis=0) > thresh extended_remove = list(np.where(~mask)[0] + S_decomp.shape[1]) logger.debug(' Reducing %d -> %d' % (extended_proj.shape[1], mask.sum())) extended_proj /= np.linalg.norm(extended_proj, axis=0) / scale S_decomp = np.concatenate([S_decomp, extended_proj], axis=-1) if extended_proj.shape[1]: S_decomp_full = np.pad( S_decomp_full, ((0, 0), (0, extended_proj.shape[1])), 'constant') S_decomp_full[good_mask, -extended_proj.shape[1]:] = extended_proj else: extended_remove = list() del extended_proj # # Regularization # S_decomp, reg_moments, n_use_in = _regularize( regularize, exp, S_decomp, mag_or_fine, extended_remove, t=t) S_decomp_full = S_decomp_full.take(reg_moments, axis=1) # # Pseudo-inverse of total multipolar moment basis set (Part of Eq. 37) # pS_decomp, sing = _col_norm_pinv(S_decomp.copy()) cond = sing[0] / sing[-1] if bad_condition != 'ignore' and cond >= 1000.: msg = 'Matrix is badly conditioned: %0.0f >= 1000' % cond if bad_condition == 'error': raise RuntimeError(msg) elif bad_condition == 'warning': warn(msg) else: # condition == 'info' logger.info(msg) # Build in our data scaling here pS_decomp *= coil_scale[good_mask].T S_decomp /= coil_scale[good_mask] S_decomp_full /= coil_scale return S_decomp, S_decomp_full, pS_decomp, reg_moments, n_use_in def _get_s_decomp(exp, all_coils, trans, coil_scale, cal, ignore_ref, grad_picks, mag_picks, mag_scale): """Get S_decomp.""" S_decomp = _trans_sss_basis(exp, all_coils, trans, coil_scale) if cal is not None: # Compute point-like mags to incorporate gradiometer imbalance grad_cals = _sss_basis_point(exp, trans, cal, ignore_ref, mag_scale) # Add point like magnetometer data to bases. if len(grad_picks) > 0: S_decomp[grad_picks, :] += grad_cals # Scale magnetometers by calibration coefficient if len(mag_picks) > 0: S_decomp[mag_picks, :] /= cal['mag_cals'] # We need to be careful about KIT gradiometers return S_decomp @verbose def _regularize(regularize, exp, S_decomp, mag_or_fine, extended_remove, t, verbose=None): """Regularize a decomposition matrix.""" # ALWAYS regularize the out components according to norm, since # gradiometer-only setups (e.g., KIT) can have zero first-order # (homogeneous field) components int_order, ext_order = exp['int_order'], exp['ext_order'] n_in = _get_n_moments(int_order) n_out = S_decomp.shape[1] - n_in t_str = '%8.3f' % t if regularize is not None: # regularize='in' in_removes, out_removes = _regularize_in( int_order, ext_order, S_decomp, mag_or_fine, extended_remove) else: in_removes = [] out_removes = _regularize_out(int_order, ext_order, mag_or_fine, extended_remove) reg_in_moments = np.setdiff1d(np.arange(n_in), in_removes) reg_out_moments = np.setdiff1d(np.arange(n_in, S_decomp.shape[1]), out_removes) n_use_in = len(reg_in_moments) n_use_out = len(reg_out_moments) reg_moments = np.concatenate((reg_in_moments, reg_out_moments)) S_decomp = S_decomp.take(reg_moments, axis=1) if regularize is not None or n_use_out != n_out: logger.info(' Using %s/%s harmonic components for %s ' '(%s/%s in, %s/%s out)' % (n_use_in + n_use_out, n_in + n_out, t_str, n_use_in, n_in, n_use_out, n_out)) return S_decomp, reg_moments, n_use_in @verbose def _get_mf_picks_fix_mags(info, int_order, ext_order, ignore_ref=False, verbose=None): """Pick types for Maxwell filtering and fix magnetometers.""" # Check for T1/T2 mag types mag_inds_T1T2 = _get_T1T2_mag_inds(info, use_cal=True) if len(mag_inds_T1T2) > 0: fix_mag_coil_types(info, use_cal=True) # Get indices of channels to use in multipolar moment calculation ref = not ignore_ref meg_picks = pick_types(info, meg=True, ref_meg=ref, exclude=[]) meg_info = pick_info(_simplify_info(info), meg_picks) del info good_mask = np.zeros(len(meg_picks,), bool) good_mask[pick_types(meg_info, meg=True, ref_meg=ref, exclude='bads')] = 1 n_bases = _get_n_moments([int_order, ext_order]).sum() if n_bases > good_mask.sum(): raise ValueError('Number of requested bases (%s) exceeds number of ' 'good sensors (%s)' % (str(n_bases), good_mask.sum())) recons = [ch for ch in meg_info['bads']] if len(recons) > 0: msg = ' Bad MEG channels being reconstructed: %s' % recons else: msg = ' No bad MEG channels' logger.info(msg) ref_meg = False if ignore_ref else 'mag' mag_picks = pick_types(meg_info, meg='mag', ref_meg=ref_meg, exclude=[]) ref_meg = False if ignore_ref else 'grad' grad_picks = pick_types(meg_info, meg='grad', ref_meg=ref_meg, exclude=[]) assert len(mag_picks) + len(grad_picks) == len(meg_info['ch_names']) # Determine which are magnetometers for external basis purposes mag_or_fine = np.zeros(len(meg_picks), bool) mag_or_fine[mag_picks] = True # KIT gradiometers are marked as having units T, not T/M (argh) # We need a separate variable for this because KIT grads should be # treated mostly like magnetometers (e.g., scaled by 100) for reg coil_types = np.array([ch['coil_type'] for ch in meg_info['chs']]) mag_or_fine[(coil_types & 0xFFFF) == FIFF.FIFFV_COIL_KIT_GRAD] = False # The same thing goes for CTF gradiometers... ctf_grads = [FIFF.FIFFV_COIL_CTF_GRAD, FIFF.FIFFV_COIL_CTF_REF_GRAD, FIFF.FIFFV_COIL_CTF_OFFDIAG_REF_GRAD] mag_or_fine[np.in1d(coil_types, ctf_grads)] = False msg = (' Processing %s gradiometers and %s magnetometers' % (len(grad_picks), len(mag_picks))) n_kit = len(mag_picks) - mag_or_fine.sum() if n_kit > 0: msg += ' (of which %s are actually KIT gradiometers)' % n_kit logger.info(msg) return meg_picks, mag_picks, grad_picks, good_mask, mag_or_fine def _check_regularize(regularize): """Ensure regularize is valid.""" if not (regularize is None or (isinstance(regularize, str) and regularize in ('in',))): raise ValueError('regularize must be None or "in"') def _check_usable(inst): """Ensure our data are clean.""" if inst.proj: raise RuntimeError('Projectors cannot be applied to data during ' 'Maxwell filtering.') current_comp = inst.compensation_grade if current_comp not in (0, None): raise RuntimeError('Maxwell filter cannot be done on compensated ' 'channels, but data have been compensated with ' 'grade %s.' % current_comp) def _col_norm_pinv(x): """Compute the pinv with column-normalization to stabilize calculation. Note: will modify/overwrite x. """ norm = np.sqrt(np.sum(x * x, axis=0)) x /= norm u, s, v = _safe_svd(x, full_matrices=False, **check_disable) v /= norm return np.dot(v.T * 1. / s, u.T), s def _sq(x): """Square quickly.""" return x * x def _check_finite(data): """Ensure data is finite.""" if not np.isfinite(data).all(): raise RuntimeError('data contains non-finite numbers') def _sph_harm_norm(order, degree): """Compute normalization factor for spherical harmonics.""" # we could use scipy.special.poch(degree + order + 1, -2 * order) # here, but it's slower for our fairly small degree norm = np.sqrt((2 * degree + 1.) / (4 * np.pi)) if order != 0: norm *= np.sqrt(factorial(degree - order) / float(factorial(degree + order))) return norm def _concatenate_sph_coils(coils): """Concatenate MEG coil parameters for spherical harmoncs.""" rs = np.concatenate([coil['r0_exey'] for coil in coils]) wcoils = np.concatenate([coil['w'] for coil in coils]) ezs = np.concatenate([np.tile(coil['ez'][np.newaxis, :], (len(coil['rmag']), 1)) for coil in coils]) bins = np.repeat(np.arange(len(coils)), [len(coil['rmag']) for coil in coils]) return rs, wcoils, ezs, bins _mu_0 = 4e-7 * np.pi # magnetic permeability def _get_mag_mask(coils): """Get the coil_scale for Maxwell filtering.""" return np.array([coil['coil_class'] == FWD.COILC_MAG for coil in coils]) def _sss_basis_basic(exp, coils, mag_scale=100., method='standard'): """Compute SSS basis using non-optimized (but more readable) algorithms.""" from scipy.special import sph_harm int_order, ext_order = exp['int_order'], exp['ext_order'] origin = exp['origin'] assert 'extended_proj' not in exp # advanced option not supported # Compute vector between origin and coil, convert to spherical coords if method == 'standard': # Get position, normal, weights, and number of integration pts. rmags, cosmags, ws, bins = _concatenate_coils(coils) rmags -= origin # Convert points to spherical coordinates rad, az, pol = _cart_to_sph(rmags).T cosmags *= ws[:, np.newaxis] del rmags, ws out_type = np.float64 else: # testing equivalence method rs, wcoils, ezs, bins = _concatenate_sph_coils(coils) rs -= origin rad, az, pol = _cart_to_sph(rs).T ezs *= wcoils[:, np.newaxis] del rs, wcoils out_type = np.complex128 del origin # Set up output matrices n_in, n_out = _get_n_moments([int_order, ext_order]) S_tot = np.empty((len(coils), n_in + n_out), out_type) S_in = S_tot[:, :n_in] S_out = S_tot[:, n_in:] coil_scale = np.ones((len(coils), 1)) coil_scale[_get_mag_mask(coils)] = mag_scale # Compute internal/external basis vectors (exclude degree 0; L/RHS Eq. 5) for degree in range(1, max(int_order, ext_order) + 1): # Only loop over positive orders, negative orders are handled # for efficiency within for order in range(degree + 1): S_in_out = list() grads_in_out = list() # Same spherical harmonic is used for both internal and external sph = sph_harm(order, degree, az, pol) sph_norm = _sph_harm_norm(order, degree) # Compute complex gradient for all integration points # in spherical coordinates (Eq. 6). The gradient for rad, az, pol # is obtained by taking the partial derivative of Eq. 4 w.r.t. each # coordinate. az_factor = 1j * order * sph / np.sin(np.maximum(pol, 1e-16)) pol_factor = (-sph_norm * np.sin(pol) * np.exp(1j * order * az) * _alegendre_deriv(order, degree, np.cos(pol))) if degree <= int_order: S_in_out.append(S_in) in_norm = _mu_0 * rad ** -(degree + 2) g_rad = in_norm * (-(degree + 1.) * sph) g_az = in_norm * az_factor g_pol = in_norm * pol_factor grads_in_out.append(_sph_to_cart_partials(az, pol, g_rad, g_az, g_pol)) if degree <= ext_order: S_in_out.append(S_out) out_norm = _mu_0 * rad ** (degree - 1) g_rad = out_norm * degree * sph g_az = out_norm * az_factor g_pol = out_norm * pol_factor grads_in_out.append(_sph_to_cart_partials(az, pol, g_rad, g_az, g_pol)) for spc, grads in zip(S_in_out, grads_in_out): # We could convert to real at the end, but it's more efficient # to do it now if method == 'standard': grads_pos_neg = [_sh_complex_to_real(grads, order)] orders_pos_neg = [order] # Deal with the negative orders if order > 0: # it's faster to use the conjugation property for # our normalized spherical harmonics than recalculate grads_pos_neg.append(_sh_complex_to_real( _sh_negate(grads, order), -order)) orders_pos_neg.append(-order) for gr, oo in zip(grads_pos_neg, orders_pos_neg): # Gradients dotted w/integration point weighted normals gr = einsum('ij,ij->i', gr, cosmags) vals = np.bincount(bins, gr, len(coils)) spc[:, _deg_ord_idx(degree, oo)] = -vals else: grads = einsum('ij,ij->i', grads, ezs) v = (np.bincount(bins, grads.real, len(coils)) + 1j * np.bincount(bins, grads.imag, len(coils))) spc[:, _deg_ord_idx(degree, order)] = -v if order > 0: spc[:, _deg_ord_idx(degree, -order)] = \ -_sh_negate(v, order) # Scale magnetometers S_tot *= coil_scale if method != 'standard': # Eventually we could probably refactor this for 2x mem (and maybe CPU) # savings by changing how spc/S_tot is assigned above (real only) S_tot = _bases_complex_to_real(S_tot, int_order, ext_order) return S_tot def _sss_basis(exp, all_coils): """Compute SSS basis for given conditions. Parameters ---------- exp : dict Must contain the following keys: origin : ndarray, shape (3,) Origin of the multipolar moment space in meters int_order : int Order of the internal multipolar moment space ext_order : int Order of the external multipolar moment space coils : list List of MEG coils. Each should contain coil information dict specifying position, normals, weights, number of integration points and channel type. All coil geometry must be in the same coordinate frame as ``origin`` (``head`` or ``meg``). Returns ------- bases : ndarray, shape (n_coils, n_mult_moments) Internal and external basis sets as a single ndarray. Notes ----- Does not incorporate magnetometer scaling factor or normalize spaces. Adapted from code provided by Jukka Nenonen. """ rmags, cosmags, bins, n_coils = all_coils[:4] int_order, ext_order = exp['int_order'], exp['ext_order'] n_in, n_out = _get_n_moments([int_order, ext_order]) rmags = rmags - exp['origin'] # do the heavy lifting max_order = max(int_order, ext_order) L = _tabular_legendre(rmags, max_order) phi = np.arctan2(rmags[:, 1], rmags[:, 0]) r_n = np.sqrt(np.sum(rmags * rmags, axis=1)) r_xy = np.sqrt(rmags[:, 0] * rmags[:, 0] + rmags[:, 1] * rmags[:, 1]) cos_pol = rmags[:, 2] / r_n # cos(theta); theta 0...pi sin_pol = np.sqrt(1. - cos_pol * cos_pol) # sin(theta) z_only = (r_xy <= 1e-16) sin_pol_nz = sin_pol.copy() sin_pol_nz[z_only] = 1. # will be overwritten later r_xy[z_only] = 1. cos_az = rmags[:, 0] / r_xy # cos(phi) cos_az[z_only] = 1. sin_az = rmags[:, 1] / r_xy # sin(phi) sin_az[z_only] = 0. # Appropriate vector spherical harmonics terms # JNE 2012-02-08: modified alm -> 2*alm, blm -> -2*blm r_nn2 = r_n.copy() r_nn1 = 1.0 / (r_n * r_n) S_tot = np.empty((n_coils, n_in + n_out), np.float64) S_in = S_tot[:, :n_in] S_out = S_tot[:, n_in:] for degree in range(max_order + 1): if degree <= ext_order: r_nn1 *= r_n # r^(l-1) if degree <= int_order: r_nn2 *= r_n # r^(l+2) # mu_0*sqrt((2l+1)/4pi (l-m)!/(l+m)!) mult = 2e-7 * np.sqrt((2 * degree + 1) * np.pi) if degree > 0: idx = _deg_ord_idx(degree, 0) # alpha if degree <= int_order: b_r = mult * (degree + 1) * L[degree][0] / r_nn2 b_pol = -mult * L[degree][1] / r_nn2 S_in[:, idx] = _integrate_points( cos_az, sin_az, cos_pol, sin_pol, b_r, 0., b_pol, cosmags, bins, n_coils) # beta if degree <= ext_order: b_r = -mult * degree * L[degree][0] * r_nn1 b_pol = -mult * L[degree][1] * r_nn1 S_out[:, idx] = _integrate_points( cos_az, sin_az, cos_pol, sin_pol, b_r, 0., b_pol, cosmags, bins, n_coils) for order in range(1, degree + 1): ord_phi = order * phi sin_order = np.sin(ord_phi) cos_order = np.cos(ord_phi) mult /= np.sqrt((degree - order + 1) * (degree + order)) factor = mult * np.sqrt(2) # equivalence fix (MF uses 2.) # Real idx = _deg_ord_idx(degree, order) r_fact = factor * L[degree][order] * cos_order az_fact = factor * order * sin_order * L[degree][order] pol_fact = -factor * (L[degree][order + 1] - (degree + order) * (degree - order + 1) * L[degree][order - 1]) * cos_order # alpha if degree <= int_order: b_r = (degree + 1) * r_fact / r_nn2 b_az = az_fact / (sin_pol_nz * r_nn2) b_az[z_only] = 0. b_pol = pol_fact / (2 * r_nn2) S_in[:, idx] = _integrate_points( cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol, cosmags, bins, n_coils) # beta if degree <= ext_order: b_r = -degree * r_fact * r_nn1 b_az = az_fact * r_nn1 / sin_pol_nz b_az[z_only] = 0. b_pol = pol_fact * r_nn1 / 2. S_out[:, idx] = _integrate_points( cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol, cosmags, bins, n_coils) # Imaginary idx = _deg_ord_idx(degree, -order) r_fact = factor * L[degree][order] * sin_order az_fact = factor * order * cos_order * L[degree][order] pol_fact = factor * (L[degree][order + 1] - (degree + order) * (degree - order + 1) * L[degree][order - 1]) * sin_order # alpha if degree <= int_order: b_r = -(degree + 1) * r_fact / r_nn2 b_az = az_fact / (sin_pol_nz * r_nn2) b_az[z_only] = 0. b_pol = pol_fact / (2 * r_nn2) S_in[:, idx] = _integrate_points( cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol, cosmags, bins, n_coils) # beta if degree <= ext_order: b_r = degree * r_fact * r_nn1 b_az = az_fact * r_nn1 / sin_pol_nz b_az[z_only] = 0. b_pol = pol_fact * r_nn1 / 2. S_out[:, idx] = _integrate_points( cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol, cosmags, bins, n_coils) return S_tot def _integrate_points(cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol, cosmags, bins, n_coils): """Integrate points in spherical coords.""" grads = _sp_to_cart(cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol).T grads = (grads * cosmags).sum(axis=1) return bincount(bins, grads, n_coils) def _tabular_legendre(r, nind): """Compute associated Legendre polynomials.""" r_n = np.sqrt(np.sum(r * r, axis=1)) x = r[:, 2] / r_n # cos(theta) L = list() for degree in range(nind + 1): L.append(np.zeros((degree + 2, len(r)))) L[0][0] = 1. pnn = np.ones(x.shape) fact = 1. sx2 = np.sqrt((1. - x) * (1. + x)) for degree in range(nind + 1): L[degree][degree] = pnn pnn *= (-fact * sx2) fact += 2. if degree < nind: L[degree + 1][degree] = x * (2 * degree + 1) * L[degree][degree] if degree >= 2: for order in range(degree - 1): L[degree][order] = (x * (2 * degree - 1) * L[degree - 1][order] - (degree + order - 1) * L[degree - 2][order]) / (degree - order) return L def _sp_to_cart(cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol): """Convert spherical coords to cartesian.""" out = np.empty((3,) + sin_pol.shape) out[0] = sin_pol * cos_az * b_r + cos_pol * cos_az * b_pol - sin_az * b_az out[1] = sin_pol * sin_az * b_r + cos_pol * sin_az * b_pol + cos_az * b_az out[2] = cos_pol * b_r - sin_pol * b_pol return out def _get_degrees_orders(order): """Get the set of degrees used in our basis functions.""" degrees = np.zeros(_get_n_moments(order), int) orders = np.zeros_like(degrees) for degree in range(1, order + 1): # Only loop over positive orders, negative orders are handled # for efficiency within for order in range(degree + 1): ii = _deg_ord_idx(degree, order) degrees[ii] = degree orders[ii] = order ii = _deg_ord_idx(degree, -order) degrees[ii] = degree orders[ii] = -order return degrees, orders def _alegendre_deriv(order, degree, val): """Compute the derivative of the associated Legendre polynomial at a value. Parameters ---------- order : int Order of spherical harmonic. (Usually) corresponds to 'm'. degree : int Degree of spherical harmonic. (Usually) corresponds to 'l'. val : float Value to evaluate the derivative at. Returns ------- dPlm : float Associated Legendre function derivative """ from scipy.special import lpmv assert order >= 0 return (order * val * lpmv(order, degree, val) + (degree + order) * (degree - order + 1.) * np.sqrt(1. - val * val) * lpmv(order - 1, degree, val)) / (1. - val * val) def _bases_complex_to_real(complex_tot, int_order, ext_order): """Convert complex spherical harmonics to real.""" n_in, n_out = _get_n_moments([int_order, ext_order]) complex_in = complex_tot[:, :n_in] complex_out = complex_tot[:, n_in:] real_tot = np.empty(complex_tot.shape, np.float64) real_in = real_tot[:, :n_in] real_out = real_tot[:, n_in:] for comp, real, exp_order in zip([complex_in, complex_out], [real_in, real_out], [int_order, ext_order]): for deg in range(1, exp_order + 1): for order in range(deg + 1): idx_pos = _deg_ord_idx(deg, order) idx_neg = _deg_ord_idx(deg, -order) real[:, idx_pos] = _sh_complex_to_real(comp[:, idx_pos], order) if order != 0: # This extra mult factor baffles me a bit, but it works # in round-trip testing, so we'll keep it :( mult = (-1 if order % 2 == 0 else 1) real[:, idx_neg] = mult * _sh_complex_to_real( comp[:, idx_neg], -order) return real_tot def _bases_real_to_complex(real_tot, int_order, ext_order): """Convert real spherical harmonics to complex.""" n_in, n_out = _get_n_moments([int_order, ext_order]) real_in = real_tot[:, :n_in] real_out = real_tot[:, n_in:] comp_tot = np.empty(real_tot.shape, np.complex128) comp_in = comp_tot[:, :n_in] comp_out = comp_tot[:, n_in:] for real, comp, exp_order in zip([real_in, real_out], [comp_in, comp_out], [int_order, ext_order]): for deg in range(1, exp_order + 1): # only loop over positive orders, figure out neg from pos for order in range(deg + 1): idx_pos = _deg_ord_idx(deg, order) idx_neg = _deg_ord_idx(deg, -order) this_comp = _sh_real_to_complex([real[:, idx_pos], real[:, idx_neg]], order) comp[:, idx_pos] = this_comp comp[:, idx_neg] = _sh_negate(this_comp, order) return comp_tot def _check_info(info, sss=True, tsss=True, calibration=True, ctc=True): """Ensure that Maxwell filtering has not been applied yet.""" for ent in info['proc_history']: for msg, key, doing in (('SSS', 'sss_info', sss), ('tSSS', 'max_st', tsss), ('fine calibration', 'sss_cal', calibration), ('cross-talk cancellation', 'sss_ctc', ctc)): if not doing: continue if len(ent['max_info'][key]) > 0: raise RuntimeError('Maxwell filtering %s step has already ' 'been applied, cannot reapply' % msg) def _update_sss_info(raw, origin, int_order, ext_order, nchan, coord_frame, sss_ctc, sss_cal, max_st, reg_moments, st_only, recon_trans, extended_proj): """Update info inplace after Maxwell filtering. Parameters ---------- raw : instance of mne.io.Raw Data to be filtered origin : array-like, shape (3,) Origin of internal and external multipolar moment space in head coords (in meters) int_order : int Order of internal component of spherical expansion ext_order : int Order of external component of spherical expansion nchan : int Number of sensors sss_ctc : dict The cross talk information. sss_cal : dict The calibration information. max_st : dict The tSSS information. reg_moments : ndarray | slice The moments that were used. st_only : bool Whether tSSS only was performed. recon_trans : instance of Transformation The reconstruction trans. extended_proj : ndarray Extended external bases. """ n_in, n_out = _get_n_moments([int_order, ext_order]) raw.info['maxshield'] = False components = np.zeros(n_in + n_out + len(extended_proj)).astype('int32') components[reg_moments] = 1 sss_info_dict = dict(in_order=int_order, out_order=ext_order, nchan=nchan, origin=origin.astype('float32'), job=FIFF.FIFFV_SSS_JOB_FILTER, nfree=np.sum(components[:n_in]), frame=_str_to_frame[coord_frame], components=components) max_info_dict = dict(max_st=max_st) if st_only: max_info_dict.update(sss_info=dict(), sss_cal=dict(), sss_ctc=dict()) else: max_info_dict.update(sss_info=sss_info_dict, sss_cal=sss_cal, sss_ctc=sss_ctc) # Reset 'bads' for any MEG channels since they've been reconstructed _reset_meg_bads(raw.info) # set the reconstruction transform raw.info['dev_head_t'] = recon_trans block_id = _generate_meas_id() raw.info['proc_history'].insert(0, dict( max_info=max_info_dict, block_id=block_id, date=DATE_NONE, creator='mne-python v%s' % __version__, experimenter='')) def _reset_meg_bads(info): """Reset MEG bads.""" meg_picks = pick_types(info, meg=True, exclude=[]) info['bads'] = [bad for bad in info['bads'] if info['ch_names'].index(bad) not in meg_picks] check_disable = dict(check_finite=False) def _orth_overwrite(A): """Create a slightly more efficient 'orth'.""" # adapted from scipy/linalg/decomp_svd.py u, s = _safe_svd(A, full_matrices=False, **check_disable)[:2] M, N = A.shape eps = np.finfo(float).eps tol = max(M, N) * np.amax(s) * eps num = np.sum(s > tol, dtype=int) return u[:, :num] def _overlap_projector(data_int, data_res, corr): """Calculate projector for removal of subspace intersection in tSSS.""" # corr necessary to deal with noise when finding identical signal # directions in the subspace. See the end of the Results section in # :footcite:`TauluSimola2006` # Note that the procedure here is an updated version of # :footcite:`TauluSimola2006` (and used in MF's tSSS) that uses residuals # instead of internal/external spaces directly. This provides more degrees # of freedom when analyzing for intersections between internal and # external spaces. # Normalize data, then compute orth to get temporal bases. Matrices # must have shape (n_samps x effective_rank) when passed into svd # computation # we use np.linalg.norm instead of sp.linalg.norm here: ~2x faster! from scipy import linalg n = np.linalg.norm(data_int) n = 1. if n == 0 else n # all-zero data should gracefully continue data_int = _orth_overwrite((data_int / n).T) n = np.linalg.norm(data_res) n = 1. if n == 0 else n data_res = _orth_overwrite((data_res / n).T) if data_int.shape[1] == 0 or data_res.shape[1] == 0: return np.empty((data_int.shape[0], 0)) Q_int = linalg.qr(data_int, overwrite_a=True, mode='economic', **check_disable)[0].T Q_res = linalg.qr(data_res, overwrite_a=True, mode='economic', **check_disable)[0] C_mat = np.dot(Q_int, Q_res) del Q_int # Compute angles between subspace and which bases to keep S_intersect, Vh_intersect = _safe_svd(C_mat, full_matrices=False, **check_disable)[1:] del C_mat intersect_mask = (S_intersect >= corr) del S_intersect # Compute projection operator as (I-LL_T) Eq. 12 in # :footcite:`TauluSimola2006` V_principal should be shape # (n_time_pts x n_retained_inds) Vh_intersect = Vh_intersect[intersect_mask].T V_principal = np.dot(Q_res, Vh_intersect) return V_principal def _prep_fine_cal(info, fine_cal): from ._fine_cal import read_fine_calibration _validate_type(fine_cal, (dict, 'path-like')) if not isinstance(fine_cal, dict): extra = op.basename(str(fine_cal)) fine_cal = read_fine_calibration(fine_cal) else: extra = 'dict' logger.info(f' Using fine calibration {extra}') ch_names = _clean_names(info['ch_names'], remove_whitespace=True) info_to_cal = OrderedDict() missing = list() for ci, name in enumerate(fine_cal['ch_names']): if name not in ch_names: missing.append(name) else: oi = ch_names.index(name) info_to_cal[oi] = ci meg_picks = pick_types(info, meg=True, exclude=[]) if len(info_to_cal) != len(meg_picks): raise RuntimeError( 'Not all MEG channels found in fine calibration file, missing:\n%s' % sorted(list({ch_names[pick] for pick in meg_picks} - set(fine_cal['ch_names'])))) if len(missing): warn('Found cal channel%s not in data: %s' % (_pl(missing), missing)) return info_to_cal, fine_cal, ch_names def _update_sensor_geometry(info, fine_cal, ignore_ref): """Replace sensor geometry information and reorder cal_chs.""" info_to_cal, fine_cal, ch_names = _prep_fine_cal(info, fine_cal) grad_picks = pick_types(info, meg='grad', exclude=()) mag_picks = pick_types(info, meg='mag', exclude=()) # Determine gradiometer imbalances and magnetometer calibrations grad_imbalances = np.array([fine_cal['imb_cals'][info_to_cal[gi]] for gi in grad_picks]).T if grad_imbalances.shape[0] not in [0, 1, 3]: raise ValueError('Must have 1 (x) or 3 (x, y, z) point-like ' + 'magnetometers. Currently have %i' % grad_imbalances.shape[0]) mag_cals = np.array([fine_cal['imb_cals'][info_to_cal[mi]] for mi in mag_picks]) # Now let's actually construct our point-like adjustment coils for grads grad_coilsets = _get_grad_point_coilsets( info, n_types=len(grad_imbalances), ignore_ref=ignore_ref) calibration = dict(grad_imbalances=grad_imbalances, grad_coilsets=grad_coilsets, mag_cals=mag_cals) # Replace sensor locations (and track differences) for fine calibration ang_shift = list() used = np.zeros(len(info['chs']), bool) cal_corrs = list() cal_chans = list() adjust_logged = False for oi, ci in info_to_cal.items(): assert not used[oi] used[oi] = True info_ch = info['chs'][oi] ch_num = int(fine_cal['ch_names'][ci].lstrip('MEG').lstrip('0')) cal_chans.append([ch_num, info_ch['coil_type']]) # Some .dat files might only rotate EZ, so we must check first that # EX and EY are orthogonal to EZ. If not, we find the rotation between # the original and fine-cal ez, and rotate EX and EY accordingly: ch_coil_rot = _loc_to_coil_trans(info_ch['loc'])[:3, :3] cal_loc = fine_cal['locs'][ci].copy() cal_coil_rot = _loc_to_coil_trans(cal_loc)[:3, :3] if np.max([np.abs(np.dot(cal_coil_rot[:, ii], cal_coil_rot[:, 2])) for ii in range(2)]) > 1e-6: # X or Y not orthogonal if not adjust_logged: logger.info(' Adjusting non-orthogonal EX and EY') adjust_logged = True # find the rotation matrix that goes from one to the other this_trans = _find_vector_rotation( ch_coil_rot[:, 2], cal_coil_rot[:, 2]) cal_loc[3:] = np.dot(this_trans, ch_coil_rot).T.ravel() # calculate shift angle v1 = _loc_to_coil_trans(cal_loc)[:3, :3] _normalize_vectors(v1) v2 = _loc_to_coil_trans(info_ch['loc'])[:3, :3] _normalize_vectors(v2) ang_shift.append(np.sum(v1 * v2, axis=0)) if oi in grad_picks: extra = [1., fine_cal['imb_cals'][ci][0]] else: extra = [fine_cal['imb_cals'][ci][0], 0.] cal_corrs.append(np.concatenate([extra, cal_loc])) # Adjust channel normal orientations with those from fine calibration # Channel positions are not changed info_ch['loc'][3:] = cal_loc[3:] assert (info_ch['coord_frame'] == FIFF.FIFFV_COORD_DEVICE) meg_picks = pick_types(info, meg=True, exclude=()) assert used[meg_picks].all() assert not used[np.setdiff1d(np.arange(len(used)), meg_picks)].any() # This gets written to the Info struct sss_cal = dict(cal_corrs=np.array(cal_corrs), cal_chans=np.array(cal_chans)) # Log quantification of sensor changes # Deal with numerical precision giving absolute vals slightly more than 1. ang_shift = np.array(ang_shift) np.clip(ang_shift, -1., 1., ang_shift) np.rad2deg(np.arccos(ang_shift), ang_shift) # Convert to degrees logger.info(' Adjusted coil positions by (μ ± σ): ' '%0.1f° ± %0.1f° (max: %0.1f°)' % (np.mean(ang_shift), np.std(ang_shift), np.max(np.abs(ang_shift)))) return calibration, sss_cal def _get_grad_point_coilsets(info, n_types, ignore_ref): """Get point-type coilsets for gradiometers.""" _rotations = dict( x=np.array([[0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1.]]), y=np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1.]]), z=np.eye(4)) grad_coilsets = list() grad_picks = pick_types(info, meg='grad', exclude=[]) if len(grad_picks) == 0: return grad_coilsets grad_info = pick_info(_simplify_info(info), grad_picks) # Coil_type values for x, y, z point magnetometers # Note: 1D correction files only have x-direction corrections for ch in grad_info['chs']: ch['coil_type'] = FIFF.FIFFV_COIL_POINT_MAGNETOMETER orig_locs = [ch['loc'].copy() for ch in grad_info['chs']] for rot in 'xyz'[:n_types]: # Rotate the Z magnetometer orientation to the destination orientation for ci, ch in enumerate(grad_info['chs']): ch['loc'][3:] = _coil_trans_to_loc(np.dot( _loc_to_coil_trans(orig_locs[ci]), _rotations[rot]))[3:] grad_coilsets.append(_prep_mf_coils(grad_info, ignore_ref)) return grad_coilsets def _sss_basis_point(exp, trans, cal, ignore_ref=False, mag_scale=100.): """Compute multipolar moments for point-like mags (in fine cal).""" # Loop over all coordinate directions desired and create point mags S_tot = 0. # These are magnetometers, so use a uniform coil_scale of 100. this_cs = np.array([mag_scale], float) for imb, coils in zip(cal['grad_imbalances'], cal['grad_coilsets']): S_add = _trans_sss_basis(exp, coils, trans, this_cs) # Scale spaces by gradiometer imbalance S_add *= imb[:, np.newaxis] S_tot += S_add # Return point-like mag bases return S_tot def _regularize_out(int_order, ext_order, mag_or_fine, extended_remove): """Regularize out components based on norm.""" n_in = _get_n_moments(int_order) remove_homog = ext_order > 0 and not mag_or_fine.any() return list(range(n_in, n_in + 3 * remove_homog)) + extended_remove def _regularize_in(int_order, ext_order, S_decomp, mag_or_fine, extended_remove): """Regularize basis set using idealized SNR measure.""" n_in, n_out = _get_n_moments([int_order, ext_order]) # The "signal" terms depend only on the inner expansion order # (i.e., not sensor geometry or head position / expansion origin) a_lm_sq, rho_i = _compute_sphere_activation_in( np.arange(int_order + 1)) degrees, orders = _get_degrees_orders(int_order) a_lm_sq = a_lm_sq[degrees] I_tots = np.zeros(n_in) # we might not traverse all, so use np.zeros in_keepers = list(range(n_in)) out_removes = _regularize_out(int_order, ext_order, mag_or_fine, extended_remove) out_keepers = list(np.setdiff1d(np.arange(n_in, S_decomp.shape[1]), out_removes)) remove_order = [] S_decomp = S_decomp.copy() use_norm = np.sqrt(np.sum(S_decomp * S_decomp, axis=0)) S_decomp /= use_norm eigs = np.zeros((n_in, 2)) # plot = False # for debugging # if plot: # import matplotlib.pyplot as plt # fig, axs = plt.subplots(3, figsize=[6, 12]) # plot_ord = np.empty(n_in, int) # plot_ord.fill(-1) # count = 0 # # Reorder plot to match MF # for degree in range(1, int_order + 1): # for order in range(0, degree + 1): # assert plot_ord[count] == -1 # plot_ord[count] = _deg_ord_idx(degree, order) # count += 1 # if order > 0: # assert plot_ord[count] == -1 # plot_ord[count] = _deg_ord_idx(degree, -order) # count += 1 # assert count == n_in # assert (plot_ord >= 0).all() # assert len(np.unique(plot_ord)) == n_in noise_lev = 5e-13 # noise level in T/m noise_lev *= noise_lev # effectively what would happen by earlier multiply for ii in range(n_in): this_S = S_decomp.take(in_keepers + out_keepers, axis=1) u, s, v = _safe_svd(this_S, full_matrices=False, **check_disable) del this_S eigs[ii] = s[[0, -1]] v = v.T[:len(in_keepers)] v /= use_norm[in_keepers][:, np.newaxis] eta_lm_sq = np.dot(v * 1. / s, u.T) del u, s, v eta_lm_sq *= eta_lm_sq eta_lm_sq = eta_lm_sq.sum(axis=1) eta_lm_sq *= noise_lev # Mysterious scale factors to match MF, likely due to differences # in the basis normalizations... eta_lm_sq[orders[in_keepers] == 0] *= 2 eta_lm_sq *= 0.0025 snr = a_lm_sq[in_keepers] / eta_lm_sq I_tots[ii] = 0.5 * np.log2(snr + 1.).sum() remove_order.append(in_keepers[np.argmin(snr)]) in_keepers.pop(in_keepers.index(remove_order[-1])) # heuristic to quit if we're past the peak to save cycles if ii > 10 and (I_tots[ii - 1:ii + 1] < 0.95 * I_tots.max()).all(): break # if plot and ii == 0: # axs[0].semilogy(snr[plot_ord[in_keepers]], color='k') # if plot: # axs[0].set(ylabel='SNR', ylim=[0.1, 500], xlabel='Component') # axs[1].plot(I_tots) # axs[1].set(ylabel='Information', xlabel='Iteration') # axs[2].plot(eigs[:, 0] / eigs[:, 1]) # axs[2].set(ylabel='Condition', xlabel='Iteration') # Pick the components that give at least 98% of max info # This is done because the curves can be quite flat, and we err on the # side of including rather than excluding components max_info = np.max(I_tots) lim_idx = np.where(I_tots >= 0.98 * max_info)[0][0] in_removes = remove_order[:lim_idx] for ii, ri in enumerate(in_removes): logger.debug(' Condition %0.3f/%0.3f = %03.1f, ' 'Removing in component %s: l=%s, m=%+0.0f' % (tuple(eigs[ii]) + (eigs[ii, 0] / eigs[ii, 1], ri, degrees[ri], orders[ri]))) logger.debug(' Resulting information: %0.1f bits/sample ' '(%0.1f%% of peak %0.1f)' % (I_tots[lim_idx], 100 * I_tots[lim_idx] / max_info, max_info)) return in_removes, out_removes def _compute_sphere_activation_in(degrees): u"""Compute the "in" power from random currents in a sphere. Parameters ---------- degrees : ndarray The degrees to evaluate. Returns ------- a_power : ndarray The a_lm associated for the associated degrees (see :footcite:`KnuutilaEtAl1993`). rho_i : float The current density. References ---------- .. footbibliography:: """ r_in = 0.080 # radius of the randomly-activated sphere # set the observation point r=r_s, az=el=0, so we can just look at m=0 term # compute the resulting current density rho_i # This is the "surface" version of the equation: # b_r_in = 100e-15 # fixed radial field amplitude at distance r_s = 100 fT # r_s = 0.13 # 5 cm from the surface # rho_degrees = np.arange(1, 100) # in_sum = (rho_degrees * (rho_degrees + 1.) / # ((2. * rho_degrees + 1.)) * # (r_in / r_s) ** (2 * rho_degrees + 2)).sum() * 4. * np.pi # rho_i = b_r_in * 1e7 / np.sqrt(in_sum) # rho_i = 5.21334885574e-07 # value for r_s = 0.125 rho_i = 5.91107375632e-07 # deterministic from above, so just store it a_power = _sq(rho_i) * (degrees * r_in ** (2 * degrees + 4) / (_sq(2. * degrees + 1.) * (degrees + 1.))) return a_power, rho_i def _trans_sss_basis(exp, all_coils, trans=None, coil_scale=100.): """Compute SSS basis (optionally) using a dev<->head trans.""" if trans is not None: if not isinstance(trans, Transform): trans = Transform('meg', 'head', trans) assert not np.isnan(trans['trans']).any() all_coils = (apply_trans(trans, all_coils[0]), apply_trans(trans, all_coils[1], move=False), ) + all_coils[2:] if not isinstance(coil_scale, np.ndarray): # Scale all magnetometers (with `coil_class` == 1.0) by `mag_scale` cs = coil_scale coil_scale = np.ones((all_coils[3], 1)) coil_scale[all_coils[4]] = cs S_tot = _sss_basis(exp, all_coils) S_tot *= coil_scale return S_tot # intentionally omitted: st_duration, st_correlation, destination, st_fixed, # st_only @verbose def find_bad_channels_maxwell( raw, limit=7., duration=5., min_count=5, return_scores=False, origin='auto', int_order=8, ext_order=3, calibration=None, cross_talk=None, coord_frame='head', regularize='in', ignore_ref=False, bad_condition='error', head_pos=None, mag_scale=100., skip_by_annotation=('edge', 'bad_acq_skip'), h_freq=40.0, extended_proj=(), verbose=None): r"""Find bad channels using Maxwell filtering. Parameters ---------- raw : instance of Raw Raw data to process. limit : float Detection limit for noisy segments (default is 7.). Smaller values will find more bad channels at increased risk of including good ones. This value can be interpreted as the standard score of differences between the original and Maxwell-filtered data. See the ``Notes`` section for details. .. note:: This setting only concerns *noisy* channel detection. The limit for *flat* channel detection currently cannot be controlled by the user. Flat channel detection is always run before noisy channel detection. duration : float Duration of the segments into which to slice the data for processing, in seconds. Default is 5. min_count : int Minimum number of times a channel must show up as bad in a chunk. Default is 5. return_scores : bool If ``True``, return a dictionary with scoring information for each evaluated segment of the data. Default is ``False``. .. warning:: This feature is experimental and may change in a future version of MNE-Python without prior notice. Please report any problems and enhancement proposals to the developers. .. versionadded:: 0.21 %(maxwell_origin)s %(maxwell_int)s %(maxwell_ext)s %(maxwell_cal)s %(maxwell_cross)s %(maxwell_coord)s %(maxwell_reg)s %(maxwell_ref)s %(maxwell_cond)s %(maxwell_pos)s %(maxwell_mag)s %(maxwell_skip)s h_freq : float | None The cutoff frequency (in Hz) of the low-pass filter that will be applied before processing the data. This defaults to ``40.``, which should provide similar results to MaxFilter. If you do not wish to apply a filter, set this to ``None``. %(maxwell_extended)s %(verbose)s Returns ------- noisy_chs : list List of bad MEG channels that were automatically detected as being noisy among the good MEG channels. flat_chs : list List of MEG channels that were detected as being flat in at least ``min_count`` segments. scores : dict A dictionary with information produced by the scoring algorithms. Only returned when ``return_scores`` is ``True``. It contains the following keys: - ``ch_names`` : ndarray, shape (n_meg,) The names of the MEG channels. Their order corresponds to the order of rows in the ``scores`` and ``limits`` arrays. - ``ch_types`` : ndarray, shape (n_meg,) The types of the MEG channels in ``ch_names`` (``'mag'``, ``'grad'``). - ``bins`` : ndarray, shape (n_windows, 2) The inclusive window boundaries (start and stop; in seconds) used to calculate the scores. - ``scores_flat`` : ndarray, shape (n_meg, n_windows) The scores for testing whether MEG channels are flat. These values correspond to the standard deviation of a segment. See the ``Notes`` section for details. - ``limits_flat`` : ndarray, shape (n_meg, 1) The score thresholds (in standard deviation) above which a segment was classified as "flat". - ``scores_noisy`` : ndarray, shape (n_meg, n_windows) The scores for testing whether MEG channels are noisy. These values correspond to the standard score of a segment. See the ``Notes`` section for details. - ``limits_noisy`` : ndarray, shape (n_meg, 1) The score thresholds (in standard scores) above which a segment was classified as "noisy". .. note:: The scores and limits for channels marked as ``bad`` in the input data will be set to ``np.nan``. See Also -------- annotate_flat maxwell_filter Notes ----- All arguments after ``raw``, ``limit``, ``duration``, ``min_count``, and ``return_scores`` are the same as :func:`~maxwell_filter`, except that the following are not allowed in this function because they are unused: ``st_duration``, ``st_correlation``, ``destination``, ``st_fixed``, and ``st_only``. This algorithm, for a given chunk of data: 1. Runs SSS on the data, without removing external components. 2. Excludes channels as *flat* that have had low variability (standard deviation < 0.01 fT or fT/cm in a 30 ms window) in the given or any previous chunk. 3. For each channel :math:`k`, computes the *range* or peak-to-peak :math:`d_k` of the difference between the reconstructed and original data. 4. Computes the average :math:`\mu_d` and standard deviation :math:`\sigma_d` of the differences (after scaling magnetometer data to roughly match the scale of the gradiometer data using ``mag_scale``). 5. Marks channels as bad for the chunk when :math:`d_k > \mu_d + \textrm{limit} \times \sigma_d`. Note that this expression can be easily transformed into :math:`(d_k - \mu_d) / \sigma_d > \textrm{limit}`, which is equivalent to :math:`z(d_k) > \textrm{limit}`, with :math:`z(d_k)` being the standard or z-score of the difference. Data are processed in chunks of the given ``duration``, and channels that are bad for at least ``min_count`` chunks are returned. Channels marked as *flat* in step 2 are excluded from all subsequent steps of noisy channel detection. This algorithm gives results similar to, but not identical with, MaxFilter. Differences arise because MaxFilter processes on a buffer-by-buffer basis (using buffer-size-dependent downsampling logic), uses different filtering characteristics, and possibly other factors. Channels that are near the ``limit`` for a given ``min_count`` are particularly susceptible to being different between the two implementations. .. versionadded:: 0.20 """ if h_freq is not None: if raw.info.get('lowpass') and raw.info['lowpass'] < h_freq: msg = (f'The input data has already been low-pass filtered with a ' f'{raw.info["lowpass"]} Hz cutoff frequency, which is ' f'below the requested cutoff of {h_freq} Hz. Not applying ' f'low-pass filter.') logger.info(msg) else: logger.info(f'Applying low-pass filter with {h_freq} Hz cutoff ' f'frequency ...') raw = raw.copy().load_data().filter(l_freq=None, h_freq=h_freq) limit = float(limit) onsets, ends = _annotations_starts_stops( raw, skip_by_annotation, invert=True) del skip_by_annotation # operate on chunks starts = list() stops = list() step = int(round(raw.info['sfreq'] * duration)) for onset, end in zip(onsets, ends): if end - onset >= step: ss = np.arange(onset, end - step + 1, step) starts.extend(ss) ss = ss + step ss[-1] = end stops.extend(ss) min_count = min(_ensure_int(min_count, 'min_count'), len(starts)) logger.info('Scanning for bad channels in %d interval%s (%0.1f sec) ...' % (len(starts), _pl(starts), step / raw.info['sfreq'])) params = _prep_maxwell_filter( raw, skip_by_annotation=[], # already accounted for origin=origin, int_order=int_order, ext_order=ext_order, calibration=calibration, cross_talk=cross_talk, coord_frame=coord_frame, regularize=regularize, ignore_ref=ignore_ref, bad_condition=bad_condition, head_pos=head_pos, mag_scale=mag_scale, extended_proj=extended_proj) del origin, int_order, ext_order, calibration, cross_talk, coord_frame del regularize, ignore_ref, bad_condition, head_pos, mag_scale good_meg_picks = params['meg_picks'][params['good_mask']] assert len(params['meg_picks']) == len(params['coil_scale']) assert len(params['good_mask']) == len(params['meg_picks']) noisy_chs = Counter() flat_chs = Counter() flat_limits = dict(grad=0.01e-13, mag=0.01e-15) these_limits = np.array([ flat_limits['grad'] if pick in params['grad_picks'] else flat_limits['mag'] for pick in good_meg_picks]) flat_step = max(20, int(30 * raw.info['sfreq'] / 1000.)) all_flats = set() # Prepare variables to return if `return_scores=True`. bins = np.empty((len(starts), 2)) # To store start, stop of each segment # We create ndarrays with one row per channel, regardless of channel type # and whether the channel has been marked as "bad" in info or not. This # makes indexing in the loop easier. We only filter this down to the subset # of MEG channels after all processing is done. ch_names = np.array(raw.ch_names) ch_types = np.array(raw.get_channel_types()) scores_flat = np.full((len(ch_names), len(starts)), np.nan) scores_noisy = np.full_like(scores_flat, fill_value=np.nan) thresh_flat = np.full((len(ch_names), 1), np.nan) thresh_noisy = np.full_like(thresh_flat, fill_value=np.nan) for si, (start, stop) in enumerate(zip(starts, stops)): n_iter = 0 orig_data = raw.get_data(None, start, stop, verbose=False) chunk_raw = RawArray( orig_data, params['info'], first_samp=raw.first_samp + start, copy='data', verbose=False) t = chunk_raw.times[[0, -1]] + start / raw.info['sfreq'] logger.info(' Interval %3d: %8.3f - %8.3f' % ((si + 1,) + tuple(t[[0, -1]]))) # Flat pass: SD < 0.01 fT/cm or 0.01 fT for at 30 ms (or 20 samples) n = stop - start flat_stop = n - (n % flat_step) data = chunk_raw.get_data(good_meg_picks, 0, flat_stop) data.shape = (data.shape[0], -1, flat_step) delta = np.std(data, axis=-1).min(-1) # min std across segments # We may want to return this later if `return_scores=True`. bins[si, :] = t[0], t[-1] scores_flat[good_meg_picks, si] = delta thresh_flat[good_meg_picks] = these_limits.reshape(-1, 1) chunk_flats = delta < these_limits chunk_flats = np.where(chunk_flats)[0] chunk_flats = [raw.ch_names[good_meg_picks[chunk_flat]] for chunk_flat in chunk_flats] flat_chs.update(chunk_flats) all_flats |= set(chunk_flats) chunk_flats = sorted(all_flats) these_picks = [pick for pick in good_meg_picks if raw.ch_names[pick] not in chunk_flats] # Bad pass chunk_noisy = list() params['st_duration'] = int(round( chunk_raw.times[-1] * raw.info['sfreq'])) for n_iter in range(1, 101): # iteratively exclude the worst ones assert set(raw.info['bads']) & set(chunk_noisy) == set() params['good_mask'][:] = [ chunk_raw.ch_names[pick] not in raw.info['bads'] + chunk_noisy + chunk_flats for pick in params['meg_picks']] chunk_raw._data[:] = orig_data delta = chunk_raw.get_data(these_picks) with use_log_level(False): _run_maxwell_filter( chunk_raw, reconstruct='orig', copy=False, **params) if n_iter == 1 and len(chunk_flats): logger.info(' Flat (%2d): %s' % (len(chunk_flats), ' '.join(chunk_flats))) delta -= chunk_raw.get_data(these_picks) # p2p range_ = np.ptp(delta, axis=-1) cs_picks = np.searchsorted(params['meg_picks'], these_picks) range_ *= params['coil_scale'][cs_picks, 0] mean, std = np.mean(range_), np.std(range_) # z score z = (range_ - mean) / std idx = np.argmax(z) max_ = z[idx] # We may want to return this later if `return_scores=True`. scores_noisy[these_picks, si] = z thresh_noisy[these_picks] = limit if max_ < limit: break name = raw.ch_names[these_picks[idx]] logger.debug(' Bad: %s %0.1f' % (name, max_)) these_picks.pop(idx) chunk_noisy.append(name) noisy_chs.update(chunk_noisy) noisy_chs = sorted((b for b, c in noisy_chs.items() if c >= min_count), key=lambda x: raw.ch_names.index(x)) flat_chs = sorted((f for f, c in flat_chs.items() if c >= min_count), key=lambda x: raw.ch_names.index(x)) # Only include MEG channels. ch_names = ch_names[params['meg_picks']] ch_types = ch_types[params['meg_picks']] scores_flat = scores_flat[params['meg_picks']] thresh_flat = thresh_flat[params['meg_picks']] scores_noisy = scores_noisy[params['meg_picks']] thresh_noisy = thresh_noisy[params['meg_picks']] logger.info(' Static bad channels: %s' % (noisy_chs,)) logger.info(' Static flat channels: %s' % (flat_chs,)) logger.info('[done]') if return_scores: scores = dict(ch_names=ch_names, ch_types=ch_types, bins=bins, scores_flat=scores_flat, limits_flat=thresh_flat, scores_noisy=scores_noisy, limits_noisy=thresh_noisy) return noisy_chs, flat_chs, scores else: return noisy_chs, flat_chs def _read_cross_talk(cross_talk, ch_names): sss_ctc = dict() ctc = None if cross_talk is not None: sss_ctc = _read_ctc(cross_talk) ctc_chs = sss_ctc['proj_items_chs'] # checking for extra space ambiguity in channel names # between old and new fif files if ch_names[0] not in ctc_chs: ctc_chs = _clean_names(ctc_chs, remove_whitespace=True) ch_names = _clean_names(ch_names, remove_whitespace=True) missing = sorted(list(set(ch_names) - set(ctc_chs))) if len(missing) != 0: raise RuntimeError('Missing MEG channels in cross-talk matrix:\n%s' % missing) missing = sorted(list(set(ctc_chs) - set(ch_names))) if len(missing) > 0: warn('Not all cross-talk channels in raw:\n%s' % missing) ctc_picks = [ctc_chs.index(name) for name in ch_names] ctc = sss_ctc['decoupler'][ctc_picks][:, ctc_picks] # I have no idea why, but MF transposes this for storage.. sss_ctc['decoupler'] = sss_ctc['decoupler'].T.tocsc() return ctc, sss_ctc @verbose def compute_maxwell_basis(info, origin='auto', int_order=8, ext_order=3, calibration=None, coord_frame='head', regularize='in', ignore_ref=True, bad_condition='error', mag_scale=100., extended_proj=(), verbose=None): r"""Compute the SSS basis for a given measurement info structure. Parameters ---------- info : instance of Info The measurement info. %(maxwell_origin)s %(maxwell_int)s %(maxwell_ext)s %(maxwell_cal)s %(maxwell_coord)s %(maxwell_reg)s %(maxwell_ref)s %(maxwell_cond)s %(maxwell_mag)s %(maxwell_extended)s %(verbose)s Returns ------- S : ndarray, shape (n_meg, n_moments) The basis that can be used to reconstruct the data. pS : ndarray, shape (n_moments, n_good_meg) The (stabilized) pseudoinverse of the S array. reg_moments : ndarray, shape (n_moments,) The moments that were kept after regularization. n_use_in : int The number of kept moments that were in the internal space. Notes ----- This outputs variants of :math:`\mathbf{S}` and :math:`\mathbf{S^\dagger}` from equations 27 and 37 of :footcite:`TauluKajola2005` with the coil scale for magnetometers already factored in so that the resulting denoising transform of the data to obtain :math:`\hat{\phi}_{in}` from equation 38 would be:: phi_in = S[:, :n_use_in] @ pS[:n_use_in] @ data_meg_good .. versionadded:: 0.23 References ---------- .. footbibliography:: """ from ..io import RawArray _validate_type(info, Info, 'info') raw = RawArray(np.zeros((len(info['ch_names']), 1)), info.copy(), verbose=False) logger.info('Computing Maxwell basis') params = _prep_maxwell_filter( raw=raw, origin=origin, int_order=int_order, ext_order=ext_order, calibration=calibration, coord_frame=coord_frame, destination=None, regularize=regularize, ignore_ref=ignore_ref, bad_condition=bad_condition, mag_scale=mag_scale, extended_proj=extended_proj) _, S_decomp_full, pS_decomp, reg_moments, n_use_in = \ params['_get_this_decomp_trans'](info['dev_head_t'], t=0.) return S_decomp_full, pS_decomp, reg_moments, n_use_in
bsd-3-clause
NixaSoftware/CVis
venv/lib/python2.7/site-packages/pandas/core/sparse/frame.py
3
35083
""" Data structures for sparse float data. Life is made simpler by dealing only with float64 data """ from __future__ import division # pylint: disable=E1101,E1103,W0231,E0202 import warnings from pandas.compat import lmap from pandas import compat import numpy as np from pandas.core.dtypes.missing import isna, notna from pandas.core.dtypes.cast import maybe_upcast, find_common_type from pandas.core.dtypes.common import _ensure_platform_int, is_scipy_sparse from pandas.core.common import _try_sort from pandas.compat.numpy import function as nv from pandas.core.index import Index, MultiIndex, _ensure_index from pandas.core.series import Series from pandas.core.frame import (DataFrame, extract_index, _prep_ndarray, _default_index) import pandas.core.algorithms as algos from pandas.core.internals import (BlockManager, create_block_manager_from_arrays) import pandas.core.generic as generic from pandas.core.sparse.series import SparseSeries, SparseArray from pandas._libs.sparse import BlockIndex, get_blocks from pandas.util._decorators import Appender import pandas.core.ops as ops _shared_doc_kwargs = dict(klass='SparseDataFrame') class SparseDataFrame(DataFrame): """ DataFrame containing sparse floating point data in the form of SparseSeries objects Parameters ---------- data : same types as can be passed to DataFrame or scipy.sparse.spmatrix index : array-like, optional column : array-like, optional default_kind : {'block', 'integer'}, default 'block' Default sparse kind for converting Series to SparseSeries. Will not override SparseSeries passed into constructor default_fill_value : float Default fill_value for converting Series to SparseSeries (default: nan). Will not override SparseSeries passed in. """ _subtyp = 'sparse_frame' def __init__(self, data=None, index=None, columns=None, default_kind=None, default_fill_value=None, dtype=None, copy=False): # pick up the defaults from the Sparse structures if isinstance(data, SparseDataFrame): if index is None: index = data.index if columns is None: columns = data.columns if default_fill_value is None: default_fill_value = data.default_fill_value if default_kind is None: default_kind = data.default_kind elif isinstance(data, (SparseSeries, SparseArray)): if index is None: index = data.index if default_fill_value is None: default_fill_value = data.fill_value if columns is None and hasattr(data, 'name'): columns = [data.name] if columns is None: raise Exception("cannot pass a series w/o a name or columns") data = {columns[0]: data} if default_fill_value is None: default_fill_value = np.nan if default_kind is None: default_kind = 'block' self._default_kind = default_kind self._default_fill_value = default_fill_value if is_scipy_sparse(data): mgr = self._init_spmatrix(data, index, columns, dtype=dtype, fill_value=default_fill_value) elif isinstance(data, dict): mgr = self._init_dict(data, index, columns, dtype=dtype) elif isinstance(data, (np.ndarray, list)): mgr = self._init_matrix(data, index, columns, dtype=dtype) elif isinstance(data, SparseDataFrame): mgr = self._init_mgr(data._data, dict(index=index, columns=columns), dtype=dtype, copy=copy) elif isinstance(data, DataFrame): mgr = self._init_dict(data, data.index, data.columns, dtype=dtype) elif isinstance(data, BlockManager): mgr = self._init_mgr(data, axes=dict(index=index, columns=columns), dtype=dtype, copy=copy) elif data is None: data = DataFrame() if index is None: index = Index([]) else: index = _ensure_index(index) if columns is None: columns = Index([]) else: for c in columns: data[c] = SparseArray(np.nan, index=index, kind=self._default_kind, fill_value=self._default_fill_value) mgr = to_manager(data, columns, index) if dtype is not None: mgr = mgr.astype(dtype) generic.NDFrame.__init__(self, mgr) @property def _constructor(self): return SparseDataFrame _constructor_sliced = SparseSeries def _init_dict(self, data, index, columns, dtype=None): # pre-filter out columns if we passed it if columns is not None: columns = _ensure_index(columns) data = dict((k, v) for k, v in compat.iteritems(data) if k in columns) else: columns = Index(_try_sort(list(data.keys()))) if index is None: index = extract_index(list(data.values())) sp_maker = lambda x: SparseArray(x, kind=self._default_kind, fill_value=self._default_fill_value, copy=True, dtype=dtype) sdict = {} for k, v in compat.iteritems(data): if isinstance(v, Series): # Force alignment, no copy necessary if not v.index.equals(index): v = v.reindex(index) if not isinstance(v, SparseSeries): v = sp_maker(v.values) elif isinstance(v, SparseArray): v = v.copy() else: if isinstance(v, dict): v = [v.get(i, np.nan) for i in index] v = sp_maker(v) sdict[k] = v # TODO: figure out how to handle this case, all nan's? # add in any other columns we want to have (completeness) nan_arr = np.empty(len(index), dtype='float64') nan_arr.fill(np.nan) nan_arr = sp_maker(nan_arr) sdict.update((c, nan_arr) for c in columns if c not in sdict) return to_manager(sdict, columns, index) def _init_matrix(self, data, index, columns, dtype=None): """ Init self from ndarray or list of lists """ data = _prep_ndarray(data, copy=False) index, columns = self._prep_index(data, index, columns) data = dict([(idx, data[:, i]) for i, idx in enumerate(columns)]) return self._init_dict(data, index, columns, dtype) def _init_spmatrix(self, data, index, columns, dtype=None, fill_value=None): """ Init self from scipy.sparse matrix """ index, columns = self._prep_index(data, index, columns) data = data.tocoo() N = len(index) # Construct a dict of SparseSeries sdict = {} values = Series(data.data, index=data.row, copy=False) for col, rowvals in values.groupby(data.col): # get_blocks expects int32 row indices in sorted order rowvals = rowvals.sort_index() rows = rowvals.index.values.astype(np.int32) blocs, blens = get_blocks(rows) sdict[columns[col]] = SparseSeries( rowvals.values, index=index, fill_value=fill_value, sparse_index=BlockIndex(N, blocs, blens)) # Add any columns that were empty and thus not grouped on above sdict.update({column: SparseSeries(index=index, fill_value=fill_value, sparse_index=BlockIndex(N, [], [])) for column in columns if column not in sdict}) return self._init_dict(sdict, index, columns, dtype) def _prep_index(self, data, index, columns): N, K = data.shape if index is None: index = _default_index(N) if columns is None: columns = _default_index(K) if len(columns) != K: raise ValueError('Column length mismatch: {columns} vs. {K}' .format(columns=len(columns), K=K)) if len(index) != N: raise ValueError('Index length mismatch: {index} vs. {N}' .format(index=len(index), N=N)) return index, columns def to_coo(self): """ Return the contents of the frame as a sparse SciPy COO matrix. .. versionadded:: 0.20.0 Returns ------- coo_matrix : scipy.sparse.spmatrix If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. Notes ----- The dtype will be the lowest-common-denominator type (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. By numpy.find_common_type convention, mixing int64 and and uint64 will result in a float64 dtype. """ try: from scipy.sparse import coo_matrix except ImportError: raise ImportError('Scipy is not installed') dtype = find_common_type(self.dtypes) cols, rows, datas = [], [], [] for col, name in enumerate(self): s = self[name] row = s.sp_index.to_int_index().indices cols.append(np.repeat(col, len(row))) rows.append(row) datas.append(s.sp_values.astype(dtype, copy=False)) cols = np.concatenate(cols) rows = np.concatenate(rows) datas = np.concatenate(datas) return coo_matrix((datas, (rows, cols)), shape=self.shape) def __array_wrap__(self, result): return self._constructor( result, index=self.index, columns=self.columns, default_kind=self._default_kind, default_fill_value=self._default_fill_value).__finalize__(self) def __getstate__(self): # pickling return dict(_typ=self._typ, _subtyp=self._subtyp, _data=self._data, _default_fill_value=self._default_fill_value, _default_kind=self._default_kind) def _unpickle_sparse_frame_compat(self, state): """ original pickle format """ series, cols, idx, fv, kind = state if not isinstance(cols, Index): # pragma: no cover from pandas.io.pickle import _unpickle_array columns = _unpickle_array(cols) else: columns = cols if not isinstance(idx, Index): # pragma: no cover from pandas.io.pickle import _unpickle_array index = _unpickle_array(idx) else: index = idx series_dict = DataFrame() for col, (sp_index, sp_values) in compat.iteritems(series): series_dict[col] = SparseSeries(sp_values, sparse_index=sp_index, fill_value=fv) self._data = to_manager(series_dict, columns, index) self._default_fill_value = fv self._default_kind = kind def to_dense(self): """ Convert to dense DataFrame Returns ------- df : DataFrame """ data = dict((k, v.to_dense()) for k, v in compat.iteritems(self)) return DataFrame(data, index=self.index, columns=self.columns) def _apply_columns(self, func): """ get new SparseDataFrame applying func to each columns """ new_data = {} for col, series in compat.iteritems(self): new_data[col] = func(series) return self._constructor( data=new_data, index=self.index, columns=self.columns, default_fill_value=self.default_fill_value).__finalize__(self) def astype(self, dtype): return self._apply_columns(lambda x: x.astype(dtype)) def copy(self, deep=True): """ Make a copy of this SparseDataFrame """ result = super(SparseDataFrame, self).copy(deep=deep) result._default_fill_value = self._default_fill_value result._default_kind = self._default_kind return result @property def default_fill_value(self): return self._default_fill_value @property def default_kind(self): return self._default_kind @property def density(self): """ Ratio of non-sparse points to total (dense) data points represented in the frame """ tot_nonsparse = sum([ser.sp_index.npoints for _, ser in compat.iteritems(self)]) tot = len(self.index) * len(self.columns) return tot_nonsparse / float(tot) def fillna(self, value=None, method=None, axis=0, inplace=False, limit=None, downcast=None): new_self = super(SparseDataFrame, self).fillna(value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast) if not inplace: self = new_self # set the fill value if we are filling as a scalar with nothing special # going on if (value is not None and value == value and method is None and limit is None): self._default_fill_value = value if not inplace: return self # ---------------------------------------------------------------------- # Support different internal representation of SparseDataFrame def _sanitize_column(self, key, value, **kwargs): """ Creates a new SparseArray from the input value. Parameters ---------- key : object value : scalar, Series, or array-like kwargs : dict Returns ------- sanitized_column : SparseArray """ sp_maker = lambda x, index=None: SparseArray( x, index=index, fill_value=self._default_fill_value, kind=self._default_kind) if isinstance(value, SparseSeries): clean = value.reindex(self.index).as_sparse_array( fill_value=self._default_fill_value, kind=self._default_kind) elif isinstance(value, SparseArray): if len(value) != len(self.index): raise AssertionError('Length of values does not match ' 'length of index') clean = value elif hasattr(value, '__iter__'): if isinstance(value, Series): clean = value.reindex(self.index) if not isinstance(value, SparseSeries): clean = sp_maker(clean) else: if len(value) != len(self.index): raise AssertionError('Length of values does not match ' 'length of index') clean = sp_maker(value) # Scalar else: clean = sp_maker(value, self.index) # always return a SparseArray! return clean def __getitem__(self, key): """ Retrieve column or slice from DataFrame """ if isinstance(key, slice): date_rng = self.index[key] return self.reindex(date_rng) elif isinstance(key, (np.ndarray, list, Series)): return self._getitem_array(key) else: return self._get_item_cache(key) def get_value(self, index, col, takeable=False): """ Quickly retrieve single value at passed column and index .. deprecated:: 0.21.0 Please use .at[] or .iat[] accessors. Parameters ---------- index : row label col : column label takeable : interpret the index/col as indexers, default False Returns ------- value : scalar value """ warnings.warn("get_value is deprecated and will be removed " "in a future release. Please use " ".at[] or .iat[] accessors instead", FutureWarning, stacklevel=2) return self._get_value(index, col, takeable=takeable) def _get_value(self, index, col, takeable=False): if takeable is True: series = self._iget_item_cache(col) else: series = self._get_item_cache(col) return series._get_value(index, takeable=takeable) _get_value.__doc__ = get_value.__doc__ def set_value(self, index, col, value, takeable=False): """ Put single value at passed column and index .. deprecated:: 0.21.0 Please use .at[] or .iat[] accessors. Parameters ---------- index : row label col : column label value : scalar value takeable : interpret the index/col as indexers, default False Notes ----- This method *always* returns a new object. It is currently not particularly efficient (and potentially very expensive) but is provided for API compatibility with DataFrame Returns ------- frame : DataFrame """ warnings.warn("set_value is deprecated and will be removed " "in a future release. Please use " ".at[] or .iat[] accessors instead", FutureWarning, stacklevel=2) return self._set_value(index, col, value, takeable=takeable) def _set_value(self, index, col, value, takeable=False): dense = self.to_dense()._set_value( index, col, value, takeable=takeable) return dense.to_sparse(kind=self._default_kind, fill_value=self._default_fill_value) _set_value.__doc__ = set_value.__doc__ def _slice(self, slobj, axis=0, kind=None): if axis == 0: new_index = self.index[slobj] new_columns = self.columns else: new_index = self.index new_columns = self.columns[slobj] return self.reindex(index=new_index, columns=new_columns) def xs(self, key, axis=0, copy=False): """ Returns a row (cross-section) from the SparseDataFrame as a Series object. Parameters ---------- key : some index contained in the index Returns ------- xs : Series """ if axis == 1: data = self[key] return data i = self.index.get_loc(key) data = self.take([i]).get_values()[0] return Series(data, index=self.columns) # ---------------------------------------------------------------------- # Arithmetic-related methods def _combine_frame(self, other, func, fill_value=None, level=None, try_cast=True): this, other = self.align(other, join='outer', level=level, copy=False) new_index, new_columns = this.index, this.columns if level is not None: raise NotImplementedError("'level' argument is not supported") if self.empty and other.empty: return self._constructor(index=new_index).__finalize__(self) new_data = {} new_fill_value = None if fill_value is not None: # TODO: be a bit more intelligent here for col in new_columns: if col in this and col in other: dleft = this[col].to_dense() dright = other[col].to_dense() result = dleft._binop(dright, func, fill_value=fill_value) result = result.to_sparse(fill_value=this[col].fill_value) new_data[col] = result else: for col in new_columns: if col in this and col in other: new_data[col] = func(this[col], other[col]) # if the fill values are the same use them? or use a valid one other_fill_value = getattr(other, 'default_fill_value', np.nan) if self.default_fill_value == other_fill_value: new_fill_value = self.default_fill_value elif np.isnan(self.default_fill_value) and not np.isnan( other_fill_value): new_fill_value = other_fill_value elif not np.isnan(self.default_fill_value) and np.isnan( other_fill_value): new_fill_value = self.default_fill_value return self._constructor(data=new_data, index=new_index, columns=new_columns, default_fill_value=new_fill_value ).__finalize__(self) def _combine_match_index(self, other, func, level=None, fill_value=None, try_cast=True): new_data = {} if fill_value is not None: raise NotImplementedError("'fill_value' argument is not supported") if level is not None: raise NotImplementedError("'level' argument is not supported") new_index = self.index.union(other.index) this = self if self.index is not new_index: this = self.reindex(new_index) if other.index is not new_index: other = other.reindex(new_index) for col, series in compat.iteritems(this): new_data[col] = func(series.values, other.values) # fill_value is a function of our operator if isna(other.fill_value) or isna(self.default_fill_value): fill_value = np.nan else: fill_value = func(np.float64(self.default_fill_value), np.float64(other.fill_value)) return self._constructor( new_data, index=new_index, columns=self.columns, default_fill_value=fill_value).__finalize__(self) def _combine_match_columns(self, other, func, level=None, fill_value=None, try_cast=True): # patched version of DataFrame._combine_match_columns to account for # NumPy circumventing __rsub__ with float64 types, e.g.: 3.0 - series, # where 3.0 is numpy.float64 and series is a SparseSeries. Still # possible for this to happen, which is bothersome if fill_value is not None: raise NotImplementedError("'fill_value' argument is not supported") if level is not None: raise NotImplementedError("'level' argument is not supported") new_data = {} union = intersection = self.columns if not union.equals(other.index): union = other.index.union(self.columns) intersection = other.index.intersection(self.columns) for col in intersection: new_data[col] = func(self[col], float(other[col])) return self._constructor( new_data, index=self.index, columns=union, default_fill_value=self.default_fill_value).__finalize__(self) def _combine_const(self, other, func, errors='raise', try_cast=True): return self._apply_columns(lambda x: func(x, other)) def _reindex_index(self, index, method, copy, level, fill_value=np.nan, limit=None, takeable=False): if level is not None: raise TypeError('Reindex by level not supported for sparse') if self.index.equals(index): if copy: return self.copy() else: return self if len(self.index) == 0: return self._constructor( index=index, columns=self.columns).__finalize__(self) indexer = self.index.get_indexer(index, method, limit=limit) indexer = _ensure_platform_int(indexer) mask = indexer == -1 need_mask = mask.any() new_series = {} for col, series in self.iteritems(): if mask.all(): continue values = series.values # .take returns SparseArray new = values.take(indexer) if need_mask: new = new.values # convert integer to float if necessary. need to do a lot # more than that, handle boolean etc also new, fill_value = maybe_upcast(new, fill_value=fill_value) np.putmask(new, mask, fill_value) new_series[col] = new return self._constructor( new_series, index=index, columns=self.columns, default_fill_value=self._default_fill_value).__finalize__(self) def _reindex_columns(self, columns, method, copy, level, fill_value=None, limit=None, takeable=False): if level is not None: raise TypeError('Reindex by level not supported for sparse') if notna(fill_value): raise NotImplementedError("'fill_value' argument is not supported") if limit: raise NotImplementedError("'limit' argument is not supported") if method is not None: raise NotImplementedError("'method' argument is not supported") # TODO: fill value handling sdict = dict((k, v) for k, v in compat.iteritems(self) if k in columns) return self._constructor( sdict, index=self.index, columns=columns, default_fill_value=self._default_fill_value).__finalize__(self) def _reindex_with_indexers(self, reindexers, method=None, fill_value=None, limit=None, copy=False, allow_dups=False): if method is not None or limit is not None: raise NotImplementedError("cannot reindex with a method or limit " "with sparse") if fill_value is None: fill_value = np.nan index, row_indexer = reindexers.get(0, (None, None)) columns, col_indexer = reindexers.get(1, (None, None)) if columns is None: columns = self.columns new_arrays = {} for col in columns: if col not in self: continue if row_indexer is not None: new_arrays[col] = algos.take_1d(self[col].get_values(), row_indexer, fill_value=fill_value) else: new_arrays[col] = self[col] return self._constructor(new_arrays, index=index, columns=columns).__finalize__(self) def _join_compat(self, other, on=None, how='left', lsuffix='', rsuffix='', sort=False): if on is not None: raise NotImplementedError("'on' keyword parameter is not yet " "implemented") return self._join_index(other, how, lsuffix, rsuffix) def _join_index(self, other, how, lsuffix, rsuffix): if isinstance(other, Series): if other.name is None: raise ValueError('Other Series must have a name') other = SparseDataFrame( {other.name: other}, default_fill_value=self._default_fill_value) join_index = self.index.join(other.index, how=how) this = self.reindex(join_index) other = other.reindex(join_index) this, other = this._maybe_rename_join(other, lsuffix, rsuffix) from pandas import concat return concat([this, other], axis=1, verify_integrity=True) def _maybe_rename_join(self, other, lsuffix, rsuffix): to_rename = self.columns.intersection(other.columns) if len(to_rename) > 0: if not lsuffix and not rsuffix: raise ValueError('columns overlap but no suffix specified: ' '{to_rename}'.format(to_rename=to_rename)) def lrenamer(x): if x in to_rename: return '{x}{lsuffix}'.format(x=x, lsuffix=lsuffix) return x def rrenamer(x): if x in to_rename: return '{x}{rsuffix}'.format(x=x, rsuffix=rsuffix) return x this = self.rename(columns=lrenamer) other = other.rename(columns=rrenamer) else: this = self return this, other def transpose(self, *args, **kwargs): """ Returns a DataFrame with the rows/columns switched. """ nv.validate_transpose(args, kwargs) return self._constructor( self.values.T, index=self.columns, columns=self.index, default_fill_value=self._default_fill_value, default_kind=self._default_kind).__finalize__(self) T = property(transpose) @Appender(DataFrame.count.__doc__) def count(self, axis=0, **kwds): if axis is None: axis = self._stat_axis_number return self.apply(lambda x: x.count(), axis=axis) def cumsum(self, axis=0, *args, **kwargs): """ Return SparseDataFrame of cumulative sums over requested axis. Parameters ---------- axis : {0, 1} 0 for row-wise, 1 for column-wise Returns ------- y : SparseDataFrame """ nv.validate_cumsum(args, kwargs) if axis is None: axis = self._stat_axis_number return self.apply(lambda x: x.cumsum(), axis=axis) @Appender(generic._shared_docs['isna']) def isna(self): return self._apply_columns(lambda x: x.isna()) isnull = isna @Appender(generic._shared_docs['notna']) def notna(self): return self._apply_columns(lambda x: x.notna()) notnull = notna def apply(self, func, axis=0, broadcast=False, reduce=False): """ Analogous to DataFrame.apply, for SparseDataFrame Parameters ---------- func : function Function to apply to each column axis : {0, 1, 'index', 'columns'} broadcast : bool, default False For aggregation functions, return object of same size with values propagated Returns ------- applied : Series or SparseDataFrame """ if not len(self.columns): return self axis = self._get_axis_number(axis) if isinstance(func, np.ufunc): new_series = {} for k, v in compat.iteritems(self): applied = func(v) applied.fill_value = func(v.fill_value) new_series[k] = applied return self._constructor( new_series, index=self.index, columns=self.columns, default_fill_value=self._default_fill_value, default_kind=self._default_kind).__finalize__(self) else: if not broadcast: return self._apply_standard(func, axis, reduce=reduce) else: return self._apply_broadcast(func, axis) def applymap(self, func): """ Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for each series in the DataFrame Parameters ---------- func : function Python function, returns a single value from a single value Returns ------- applied : DataFrame """ return self.apply(lambda x: lmap(func, x)) def to_manager(sdf, columns, index): """ create and return the block manager from a dataframe of series, columns, index """ # from BlockManager perspective axes = [_ensure_index(columns), _ensure_index(index)] return create_block_manager_from_arrays( [sdf[c] for c in columns], columns, axes) def stack_sparse_frame(frame): """ Only makes sense when fill_value is NaN """ lengths = [s.sp_index.npoints for _, s in compat.iteritems(frame)] nobs = sum(lengths) # this is pretty fast minor_labels = np.repeat(np.arange(len(frame.columns)), lengths) inds_to_concat = [] vals_to_concat = [] # TODO: Figure out whether this can be reached. # I think this currently can't be reached because you can't build a # SparseDataFrame with a non-np.NaN fill value (fails earlier). for _, series in compat.iteritems(frame): if not np.isnan(series.fill_value): raise TypeError('This routine assumes NaN fill value') int_index = series.sp_index.to_int_index() inds_to_concat.append(int_index.indices) vals_to_concat.append(series.sp_values) major_labels = np.concatenate(inds_to_concat) stacked_values = np.concatenate(vals_to_concat) index = MultiIndex(levels=[frame.index, frame.columns], labels=[major_labels, minor_labels], verify_integrity=False) lp = DataFrame(stacked_values.reshape((nobs, 1)), index=index, columns=['foo']) return lp.sort_index(level=0) def homogenize(series_dict): """ Conform a set of SparseSeries (with NaN fill_value) to a common SparseIndex corresponding to the locations where they all have data Parameters ---------- series_dict : dict or DataFrame Notes ----- Using the dumbest algorithm I could think of. Should put some more thought into this Returns ------- homogenized : dict of SparseSeries """ index = None need_reindex = False for _, series in compat.iteritems(series_dict): if not np.isnan(series.fill_value): raise TypeError('this method is only valid with NaN fill values') if index is None: index = series.sp_index elif not series.sp_index.equals(index): need_reindex = True index = index.intersect(series.sp_index) if need_reindex: output = {} for name, series in compat.iteritems(series_dict): if not series.sp_index.equals(index): series = series.sparse_reindex(index) output[name] = series else: output = series_dict return output # use unaccelerated ops for sparse objects ops.add_flex_arithmetic_methods(SparseDataFrame, use_numexpr=False, **ops.frame_flex_funcs) ops.add_special_arithmetic_methods(SparseDataFrame, use_numexpr=False, **ops.frame_special_funcs)
apache-2.0
gfyoung/pandas
pandas/compat/pickle_compat.py
1
7934
""" Support pre-0.12 series pickle compatibility. """ from __future__ import annotations import contextlib import copy import io import pickle as pkl from typing import TYPE_CHECKING, Optional import warnings from pandas._libs.tslibs import BaseOffset from pandas import Index if TYPE_CHECKING: from pandas import DataFrame, Series def load_reduce(self): stack = self.stack args = stack.pop() func = stack[-1] if len(args) and type(args[0]) is type: n = args[0].__name__ # noqa try: stack[-1] = func(*args) return except TypeError as err: # If we have a deprecated function, # try to replace and try again. msg = "_reconstruct: First argument must be a sub-type of ndarray" if msg in str(err): try: cls = args[0] stack[-1] = object.__new__(cls) return except TypeError: pass elif args and issubclass(args[0], BaseOffset): # TypeError: object.__new__(Day) is not safe, use Day.__new__() cls = args[0] stack[-1] = cls.__new__(*args) return raise _sparse_msg = """\ Loading a saved '{cls}' as a {new} with sparse values. '{cls}' is now removed. You should re-save this dataset in its new format. """ class _LoadSparseSeries: # To load a SparseSeries as a Series[Sparse] # https://github.com/python/mypy/issues/1020 # error: Incompatible return type for "__new__" (returns "Series", but must return # a subtype of "_LoadSparseSeries") def __new__(cls) -> Series: # type: ignore[misc] from pandas import Series warnings.warn( _sparse_msg.format(cls="SparseSeries", new="Series"), FutureWarning, stacklevel=6, ) return Series(dtype=object) class _LoadSparseFrame: # To load a SparseDataFrame as a DataFrame[Sparse] # https://github.com/python/mypy/issues/1020 # error: Incompatible return type for "__new__" (returns "DataFrame", but must # return a subtype of "_LoadSparseFrame") def __new__(cls) -> DataFrame: # type: ignore[misc] from pandas import DataFrame warnings.warn( _sparse_msg.format(cls="SparseDataFrame", new="DataFrame"), FutureWarning, stacklevel=6, ) return DataFrame() # If classes are moved, provide compat here. _class_locations_map = { ("pandas.core.sparse.array", "SparseArray"): ("pandas.core.arrays", "SparseArray"), # 15477 ("pandas.core.base", "FrozenNDArray"): ("numpy", "ndarray"), ("pandas.core.indexes.frozen", "FrozenNDArray"): ("numpy", "ndarray"), ("pandas.core.base", "FrozenList"): ("pandas.core.indexes.frozen", "FrozenList"), # 10890 ("pandas.core.series", "TimeSeries"): ("pandas.core.series", "Series"), ("pandas.sparse.series", "SparseTimeSeries"): ( "pandas.core.sparse.series", "SparseSeries", ), # 12588, extensions moving ("pandas._sparse", "BlockIndex"): ("pandas._libs.sparse", "BlockIndex"), ("pandas.tslib", "Timestamp"): ("pandas._libs.tslib", "Timestamp"), # 18543 moving period ("pandas._period", "Period"): ("pandas._libs.tslibs.period", "Period"), ("pandas._libs.period", "Period"): ("pandas._libs.tslibs.period", "Period"), # 18014 moved __nat_unpickle from _libs.tslib-->_libs.tslibs.nattype ("pandas.tslib", "__nat_unpickle"): ( "pandas._libs.tslibs.nattype", "__nat_unpickle", ), ("pandas._libs.tslib", "__nat_unpickle"): ( "pandas._libs.tslibs.nattype", "__nat_unpickle", ), # 15998 top-level dirs moving ("pandas.sparse.array", "SparseArray"): ( "pandas.core.arrays.sparse", "SparseArray", ), ("pandas.sparse.series", "SparseSeries"): ( "pandas.compat.pickle_compat", "_LoadSparseSeries", ), ("pandas.sparse.frame", "SparseDataFrame"): ( "pandas.core.sparse.frame", "_LoadSparseFrame", ), ("pandas.indexes.base", "_new_Index"): ("pandas.core.indexes.base", "_new_Index"), ("pandas.indexes.base", "Index"): ("pandas.core.indexes.base", "Index"), ("pandas.indexes.numeric", "Int64Index"): ( "pandas.core.indexes.numeric", "Int64Index", ), ("pandas.indexes.range", "RangeIndex"): ("pandas.core.indexes.range", "RangeIndex"), ("pandas.indexes.multi", "MultiIndex"): ("pandas.core.indexes.multi", "MultiIndex"), ("pandas.tseries.index", "_new_DatetimeIndex"): ( "pandas.core.indexes.datetimes", "_new_DatetimeIndex", ), ("pandas.tseries.index", "DatetimeIndex"): ( "pandas.core.indexes.datetimes", "DatetimeIndex", ), ("pandas.tseries.period", "PeriodIndex"): ( "pandas.core.indexes.period", "PeriodIndex", ), # 19269, arrays moving ("pandas.core.categorical", "Categorical"): ("pandas.core.arrays", "Categorical"), # 19939, add timedeltaindex, float64index compat from 15998 move ("pandas.tseries.tdi", "TimedeltaIndex"): ( "pandas.core.indexes.timedeltas", "TimedeltaIndex", ), ("pandas.indexes.numeric", "Float64Index"): ( "pandas.core.indexes.numeric", "Float64Index", ), ("pandas.core.sparse.series", "SparseSeries"): ( "pandas.compat.pickle_compat", "_LoadSparseSeries", ), ("pandas.core.sparse.frame", "SparseDataFrame"): ( "pandas.compat.pickle_compat", "_LoadSparseFrame", ), } # our Unpickler sub-class to override methods and some dispatcher # functions for compat and uses a non-public class of the pickle module. # error: Name 'pkl._Unpickler' is not defined class Unpickler(pkl._Unpickler): # type: ignore[name-defined] def find_class(self, module, name): # override superclass key = (module, name) module, name = _class_locations_map.get(key, key) return super().find_class(module, name) Unpickler.dispatch = copy.copy(Unpickler.dispatch) Unpickler.dispatch[pkl.REDUCE[0]] = load_reduce def load_newobj(self): args = self.stack.pop() cls = self.stack[-1] # compat if issubclass(cls, Index): obj = object.__new__(cls) else: obj = cls.__new__(cls, *args) self.stack[-1] = obj Unpickler.dispatch[pkl.NEWOBJ[0]] = load_newobj def load_newobj_ex(self): kwargs = self.stack.pop() args = self.stack.pop() cls = self.stack.pop() # compat if issubclass(cls, Index): obj = object.__new__(cls) else: obj = cls.__new__(cls, *args, **kwargs) self.append(obj) try: Unpickler.dispatch[pkl.NEWOBJ_EX[0]] = load_newobj_ex except (AttributeError, KeyError): pass def load(fh, encoding: Optional[str] = None, is_verbose: bool = False): """ Load a pickle, with a provided encoding, Parameters ---------- fh : a filelike object encoding : an optional encoding is_verbose : show exception output """ try: fh.seek(0) if encoding is not None: up = Unpickler(fh, encoding=encoding) else: up = Unpickler(fh) up.is_verbose = is_verbose return up.load() except (ValueError, TypeError): raise def loads( bytes_object: bytes, *, fix_imports: bool = True, encoding: str = "ASCII", errors: str = "strict", ): """ Analogous to pickle._loads. """ fd = io.BytesIO(bytes_object) return Unpickler( fd, fix_imports=fix_imports, encoding=encoding, errors=errors ).load() @contextlib.contextmanager def patch_pickle(): """ Temporarily patch pickle to use our unpickler. """ orig_loads = pkl.loads try: setattr(pkl, "loads", loads) yield finally: setattr(pkl, "loads", orig_loads)
bsd-3-clause
Sentient07/scikit-learn
examples/decomposition/plot_pca_vs_fa_model_selection.py
70
4523
""" =============================================================== Model selection with Probabilistic PCA and Factor Analysis (FA) =============================================================== Probabilistic PCA and Factor Analysis are probabilistic models. The consequence is that the likelihood of new data can be used for model selection and covariance estimation. Here we compare PCA and FA with cross-validation on low rank data corrupted with homoscedastic noise (noise variance is the same for each feature) or heteroscedastic noise (noise variance is the different for each feature). In a second step we compare the model likelihood to the likelihoods obtained from shrinkage covariance estimators. One can observe that with homoscedastic noise both FA and PCA succeed in recovering the size of the low rank subspace. The likelihood with PCA is higher than FA in this case. However PCA fails and overestimates the rank when heteroscedastic noise is present. Under appropriate circumstances the low rank models are more likely than shrinkage models. The automatic estimation from Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604 by Thomas P. Minka is also compared. """ # Authors: Alexandre Gramfort # Denis A. Engemann # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from scipy import linalg from sklearn.decomposition import PCA, FactorAnalysis from sklearn.covariance import ShrunkCovariance, LedoitWolf from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV print(__doc__) ############################################################################### # Create the data n_samples, n_features, rank = 1000, 50, 10 sigma = 1. rng = np.random.RandomState(42) U, _, _ = linalg.svd(rng.randn(n_features, n_features)) X = np.dot(rng.randn(n_samples, rank), U[:, :rank].T) # Adding homoscedastic noise X_homo = X + sigma * rng.randn(n_samples, n_features) # Adding heteroscedastic noise sigmas = sigma * rng.rand(n_features) + sigma / 2. X_hetero = X + rng.randn(n_samples, n_features) * sigmas ############################################################################### # Fit the models n_components = np.arange(0, n_features, 5) # options for n_components def compute_scores(X): pca = PCA(svd_solver='full') fa = FactorAnalysis() pca_scores, fa_scores = [], [] for n in n_components: pca.n_components = n fa.n_components = n pca_scores.append(np.mean(cross_val_score(pca, X))) fa_scores.append(np.mean(cross_val_score(fa, X))) return pca_scores, fa_scores def shrunk_cov_score(X): shrinkages = np.logspace(-2, 0, 30) cv = GridSearchCV(ShrunkCovariance(), {'shrinkage': shrinkages}) return np.mean(cross_val_score(cv.fit(X).best_estimator_, X)) def lw_score(X): return np.mean(cross_val_score(LedoitWolf(), X)) for X, title in [(X_homo, 'Homoscedastic Noise'), (X_hetero, 'Heteroscedastic Noise')]: pca_scores, fa_scores = compute_scores(X) n_components_pca = n_components[np.argmax(pca_scores)] n_components_fa = n_components[np.argmax(fa_scores)] pca = PCA(svd_solver='full', n_components='mle') pca.fit(X) n_components_pca_mle = pca.n_components_ print("best n_components by PCA CV = %d" % n_components_pca) print("best n_components by FactorAnalysis CV = %d" % n_components_fa) print("best n_components by PCA MLE = %d" % n_components_pca_mle) plt.figure() plt.plot(n_components, pca_scores, 'b', label='PCA scores') plt.plot(n_components, fa_scores, 'r', label='FA scores') plt.axvline(rank, color='g', label='TRUTH: %d' % rank, linestyle='-') plt.axvline(n_components_pca, color='b', label='PCA CV: %d' % n_components_pca, linestyle='--') plt.axvline(n_components_fa, color='r', label='FactorAnalysis CV: %d' % n_components_fa, linestyle='--') plt.axvline(n_components_pca_mle, color='k', label='PCA MLE: %d' % n_components_pca_mle, linestyle='--') # compare with other covariance estimators plt.axhline(shrunk_cov_score(X), color='violet', label='Shrunk Covariance MLE', linestyle='-.') plt.axhline(lw_score(X), color='orange', label='LedoitWolf MLE' % n_components_pca_mle, linestyle='-.') plt.xlabel('nb of components') plt.ylabel('CV scores') plt.legend(loc='lower right') plt.title(title) plt.show()
bsd-3-clause
jwass/mplleaflet
examples/quiver.py
2
1885
import json import os import matplotlib.pyplot as plt import numpy as np import pyproj import mplleaflet # Load up the geojson data filename = os.path.join(os.path.dirname(__file__), 'data', 'track.geojson') with open(filename) as f: gj = json.load(f) features = [feat for feat in gj['features'][::10]] xy = np.array([feat['geometry']['coordinates'] for feat in features]) # Transform the data to EPSG:26986 (Mass. state plane) proj_in = pyproj.Proj(preserve_units=True, init='epsg:4326', no_defs=True) crs_out = {'init': 'epsg:26986', 'no_defs': True} proj_out = pyproj.Proj(preserve_units=True, **crs_out) xy = np.array([pyproj.transform(proj_in, proj_out, c[0], c[1]) for c in xy]) # Grab the speed (m/s) speed = np.array([feat['properties']['speed'] for feat in features]) # Grab the course. Course is 0 degrees due North, increasing clockwise course = np.array([feat['properties']['course'] for feat in features]) angle = np.deg2rad(-course + 90) # Convert to angle in xy plane # Normalize the speed to use as the length of the arrows r = speed / max(speed) uv = r[:, np.newaxis] * np.column_stack([np.cos(angle), np.sin(angle)]) # For each point, plot an arrow pointing in the direction of the iPhone's # course estimate. The arrow length is proportional to the phone's speed # estimate. For a bigger effect, color each other based on its speed plt.quiver(xy[:,0], xy[:,1], uv[:,0], uv[:,1], speed) root, ext = os.path.splitext(__file__) mapfile = root + '.html' # Create the map mplleaflet.show(path=mapfile, crs=crs_out, tiles=('https://api.mapbox.com/styles/v1/jwasserman/cir51iqda0010bmnic1s5sb71/tiles/256/{z}/{x}/{y}?access_token=pk.eyJ1Ijoiandhc3Nlcm1hbiIsImEiOiJjaW9kNnRiaXUwNGh0dmFrajlqZ25wZnFsIn0.CU4YynqRJkmG1PwWDMBJSA', '<a href="https://mapbox.com/about/maps">© 2017 Mapbox</a> | <a href=https://www.openstreetmap.org/about">© OpenStreetMap</a>'))
bsd-3-clause
cdsi/grima
src/python/grima/plot2.py
1
16620
from __future__ import division from __future__ import with_statement # standard python libraries try: import json except: import simplejson as json import re import os import time # matplotlib.sf.net from matplotlib.figure import Figure from matplotlib.backends.backend_gtkagg import FigureCanvasGTKAgg as FigureCanvas from matplotlib.backends.backend_gtkagg import NavigationToolbar2GTKAgg as NavigationToolbar from mpl_toolkits.mplot3d import Axes3D # www.gtk.org import gtk import gobject gobject.threads_init() # our own libraries from elrond.static import * from elrond.ui import Widget, Playable, SaveAs from elrond.util import APINotImplemented, Object, Property class SubPlot(Widget): @Property def axl(): def fget(self): return self.__axes['axl'] def fset(self, value): pass return locals() @Property def axr(): def fget(self): return self.__axes['axr'] def fset(self, value): pass return locals() def __set_title(self, axes, title): if title: axes.set_title(title) def __set_limits(self, axes, xlimits, ylimits): axes.axis('auto') if xlimits[0] or xlimits[1]: axes.set_xlim(xlimits) if ylimits[0] or ylimits[1]: axes.set_ylim(ylimits) def __set_labels(self, axes, xlabel, ylabel): if xlabel: axes.set_xlabel(xlabel) if ylabel: axes.set_ylabel(ylabel) def __plot__(self, axes, xlabel, ylabel): if not self.overlay: self.clear() self.__set_labels(axes, xlabel, ylabel) axes.grid(True) def plotl(self, x, y, xlabel=None, ylabel=None, style='-', color=0xFF0000,\ mec='r', mfc='None', mew=1, ms=6, linewidth=1, label=None, picker=None): axes = self.__axes['axl'] self.__plot__(axes, xlabel, ylabel) pl = axes.plot(x, y, style, color='#%06X' % (color), mec=mec, mfc=mfc, mew=mew, ms=ms, linewidth=linewidth, label=label, picker=picker) def plotlh(self, y, xlabel=None, ylabel=None, style='--', color=0xFF0000): axes = self.__axes['axl'] self.__plot__(axes, xlabel, ylabel) axes.axhline(y, ls=style, color='#%06X' % (color)) def plotlv(self, x, xlabel=None, ylabel=None, style='--', color=0xFF0000): axes = self.__axes['axl'] self.__plot__(axes, xlabel, ylabel) axes.axvline(x, ls=style, color='#%06X' % (color)) def text(self, x, y, s, fontsize=12, backgroundcolor='w', va='bottom', ha='left', transform=False): axes=self.__axes['axl'] if transform: axes.text(x, y, s, fontsize=fontsize, backgroundcolor=backgroundcolor, \ va=va, ha=ha, transform = axes.transAxes) else: axes.text(x, y, s, fontsize=fontsize, backgroundcolor=backgroundcolor, \ va=va, ha=ha) def grid(self, grid): axes=self.__axes['axl'] axes.grid(grid) def annotate(self, text, xy, family, va): axes=self.__axes['axl'] axes.annotate(text, xy, family=family, va=va) def blankticks(self): axes = self.__axes['axl'] axes.set_xticklabels([], visible=False) axes.set_yticklabels([], visible=False) def addcollection(self, collection): axes = self.__axes['axl'] axes.add_collection(collection) def get_limits(self): axes = self.__axes['axl'] return axes.get_xlim() + axes.get_ylim() @APINotImplemented def plotr(self, x, y, xlabel=None, ylabel=None, style='-', color=0xFF0000): axes = self.__axes['axr'] self.__plot__(axes, xlabel, ylabel) axes.plot(x, y, style, color='#%06X' % (color)) @APINotImplemented def plotrh(self, y, xlabel=None, ylabel=None, style='--', color=0xFF0000): axes = self.__axes['axr'] self.__plot__(axes, xlabel, ylabel) axes.axhline(y, ls=style, color='#%06X' % (color)) @APINotImplemented def plotrv(self, x, xlabel=None, ylabel=None, style='--', color=0xFF0000): axes = self.__axes['axr'] self.__plot__(axes, xlabel, ylabel) axes.axvline(x, ls=style, color='#%06X' % (color)) def reset(self, nsubplots, i): axl = self.__axes['axl'] axr = self.__axes['axr'] axl.grid(True) axl.yaxis.set_label_position('left') axl.yaxis.tick_left() # TODO: axr.grid(True) # TODO: axr.yaxis.set_label_position('right') # TODO: axr.yaxis.tick_right() axl.change_geometry(nsubplots, 1, nsubplots - i) def clear(self): self.__axes['axl'].clear() # TODO: self.__axes['axr'].clear() def draw(self): axl = self.__axes['axl'] self.__set_limits(axl, self.xlimitsl, self.ylimitsl) self.__set_labels(axl, self.xlabel, self.ylabel) self.__set_title(axl, self.title) # TODO: axr = self.__axes['axr'] # TODO: self.__set_limits(axr, self.xlimitsr, self.ylimitsr) # TODO: self.__set_labels(axr, self.xlabel, self.ylabel) gobject.idle_add(self.__canvas.draw) def axes_new(self, figure, canvas, nsubplots): axl = figure.add_subplot(nsubplots + 1, 1, nsubplots + 1) axr = None # TODO: axl.twinx() self.__axes = {'axl': axl, 'axr': axr} self.__canvas = canvas def axes_delete(self, figure): figure.delaxes(self.__axes['axl']) def __init__(self): Widget.__init__(self) self.title = None self.xlimitsl = [0, 0] self.xlimitsr = [0, 0] self.ylimitsl = [0, 0] self.ylimitsr = [0, 0] self.xlabel = '' self.ylabel = '' self.overlay = True class StripChart(SubPlot, Playable): def __tasklette(self, producer, interval=1, duration=60): self.xlimitsl[0] = 0 self.xlimitsl[1] = duration x = [0, 0] y = [0, 0] offset = time.time() for data in producer(): elapsed = time.time() - offset if elapsed > duration: self.xlimitsl[0] += elapsed - x[1] self.xlimitsl[1] += elapsed - x[1] x[1] = elapsed for __y in data: y[1] = __y gtk.gdk.threads_enter() self.plotl(x, y) self.draw() gtk.gdk.threads_leave() y[0] = y[1] x[0] = x[1] time.sleep(interval) def __init__(self): SubPlot.__init__(self) Playable.__init__(self, self.__tasklette) class Plot(Widget): @Property def overlay(): def fget(self): return self.prefs['overlay'].enabled def fset(self, overlay): for plotable in self.__plotables: plotable.overlay = overlay widget = self.builder.get_object('overlay__enabled') widget.set_active(overlay) return locals() @Property def canvas(): def fget(self): return self.__canvas return locals() @Property def toolbar(): def fget(self): return self.__toolbar return locals() def __reset(self): nplotables = len(self.__plotables) for i, plotable in enumerate(self.__plotables): plotable.reset(nplotables, i) self.__figure.subplots_adjust(hspace = 0.5) def __plotable_new(self, plotable): plotable.axes_new(self.__figure, self.__canvas, len(self.__plotables)) self.__plotables.append(plotable) self.__reset() return plotable def __plotable_delete(self, plotable): plotable.axes_delete(self.__figure) self.__plotables.remove(plotable) self.__reset() def subplot_new(self): return self.__plotable_new(SubPlot()) def subplot_delete(self, plotable): self.__plotable_delete(plotable) def stripchart_new(self): return self.__plotable_new(StripChart()) def stripchart_delete(self, stripchart): self.__plotable_delete(stripchart) def plot3d_new(self): return self.__plotable_new(Plot3D()) def plot3d_delete(self, plot3d): self.__plotable_delete(plot3d) def __save(self, filename): if not filename: return self.__filename = filename with open(self.__filename, 'w') as fd: fd.write(self.__buffer.get_text(*self.__buffer.get_bounds())) def clear(self): for plotable in self.__plotables: plotable.clear() self.__reset() self.draw() def show(self): self.widget.show() self.__canvas.show() self.__toolbar.show() def hide(self): self.__toolbar.hide() self.__canvas.hide() self.widget.hide() def on_open(self, widget): pass def on_save(self, widget): if self.__filename: self.__save(self.__filename) else: self.__chooser.get_selection() def on_saveas(self, widget): self.__chooser.get_selection(filename=self.__filename) def on_clear(self, widget): self.clear() def get_toolbar(self): return self.__toolbar def __init__(self): Widget.__init__(self) path = os.environ['GRIMA_ETC'] name = 'grima-subplot-widget' self.loadui(path, name) self.loaddb(path, name) self.__figure = Figure() self.__canvas = FigureCanvas(self.__figure) self.__toolbar = NavigationToolbar(self.__canvas, None) self.__canvas.show() self.figure = self.__figure widget = gtk.VBox() widget.show() widget.pack_start(self.__canvas) widget.pack_start(self.__toolbar, False, False) container = self.builder.get_object('container') container.add(widget) self.__filename = None self.__plotables = [] self.__chooser = SaveAs() self.__chooser.deletable = False self.__chooser.embedded = True self.__chooser.callback = self.__save class PlotApp(Widget): def __init__(self, *args, **kwargs): Widget.__init__(self, *args, **kwargs) path = os.environ['GRIMA_ETC'] name = 'grima-subplot-app' self.loadui(path, name) self.loaddb(path, name) class Plot3D(SubPlot): def axes_new(self, figure, canvas, nsubplots): axl = Axes3D(figure) axr = None # TODO: axl.twinx() self.__axes = {'axl': axl, 'axr': axr} self.__canvas = canvas def reset(self, nsubplots, i): axl = self.__axes['axl'] axr = self.__axes['axr'] axl.grid(True) axl.yaxis.set_label_position('left') axl.yaxis.tick_left() def draw(self): self.__canvas.draw() def plotl(self, x, y, z, xlabel=None, ylabel=None, label=None): axes = self.__axes['axl'] self.__plot__(axes, xlabel, ylabel) axes.plot(x, y, z, label=label) try: axes.legend(numpoints=1) except: pass def __init__(self): SubPlot.__init__(self) self.zlimitsl = [0, 0] self.zlimitsr = [0, 0] self.zlabel = '' class Cursor: def __init__(self, ax, plot): self.ax = ax self.canvas = plot.canvas self.plot = plot self.lx = self.ax.axhline(color='r', linewidth=2) self.ly = self.ax.axvline(color='r', linewidth=2) self.hide() self.txt = ax.text(0.7, 0.9, '', transform=self.ax.transAxes) self.txt.set_visible(False) self.background = self.canvas.copy_from_bbox(self.ax.bbox) self.canvas.mpl_connect('draw_event', self.on_draw) self.canvas.mpl_connect('motion_notify_event', self.on_motion) self.restricted = False def show(self): self.lx.set_visible(True) self.ly.set_visible(True) def hide(self): self.lx.set_visible(False) self.ly.set_visible(False) def restrict(self, value): self.restricted = value def on_draw(self, event): self.hide() self.ax.draw_artist(self.ax) self.background = self.canvas.copy_from_bbox(self.ax.bbox) def on_motion(self, event): if self.restricted: return if not event.inaxes: self.hide() self.canvas.restore_region(self.background) self.canvas.blit(self.ax.bbox) return self.show() self.canvas.restore_region(self.background) x, y = event.xdata, event.ydata self.lx.set_ydata(y) self.ly.set_xdata(x) self.txt.set_text('x=%1.2f, y=%1.2f' % (x,y)) self.ax.draw_artist(self.lx) self.ax.draw_artist(self.ly) self.ax.draw_artist(self.txt) self.canvas.blit(self.ax.bbox) class SnapCursor(Cursor): def __init__(self, ax, plot, x, y): Cursor.__init__(self, ax, plot) self.x = x self.z = zip(x,y) self.x.sort() self.z.sort() def on_motion(self, event): if self.hidden or not event.inaxes: return self.canvas.restore_region(self.background) x, y = event.xdata, event.ydata i = np.searchsorted(self.x, x) x, y = self.z[i] self.lx.set_ydata(y) self.ly.set_xdata(x) self.txt.set_text('x=%1.2f, y=%1.2f' % (x,y)) self.ax.draw_artist(self.lx) self.ax.draw_artist(self.ly) self.ax.draw_artist(self.txt) self.canvas.blit(self.ax.bbox) # $Id:$ # # Local Variables: # indent-tabs-mode: nil # python-continuation-offset: 2 # python-indent: 8 # End: # vim: ai et si sw=8 ts=8
mit
brian-team/brian2cuda
examples/compartmental/bipolar_with_inputs2_cpp.py
1
2038
''' A pseudo MSO neuron, with two dendrites (fake geometry). There are synaptic inputs. Second method. ''' import os import matplotlib matplotlib.use('Agg') from brian2 import * name = os.path.basename(__file__).replace('.py', '') codefolder = os.path.join('code', name) print('runing example {}'.format(name)) print('compiling model in {}'.format(codefolder)) set_device('cpp_standalone', directory=codefolder, compile=True, run=True, debug=False) # Morphology morpho = Soma(30*um) morpho.L = Cylinder(diameter=1*um, length=100*um, n=50) morpho.R = Cylinder(diameter=1*um, length=100*um, n=50) # Passive channels gL = 1e-4*siemens/cm**2 EL = -70*mV Es = 0*mV taus = 1*ms eqs=''' Im = gL*(EL-v) : amp/meter**2 Is = gs*(Es-v) : amp (point current) dgs/dt = -gs/taus : siemens ''' neuron = SpatialNeuron(morphology=morpho, model=eqs, Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler') neuron.v = EL # Regular inputs stimulation = NeuronGroup(2, 'dx/dt = 300*Hz : 1', threshold='x>1', reset='x=0', method='euler') stimulation.x = [0, 0.5] # Asynchronous # Synapses w = 20*nS S = Synapses(stimulation, neuron,on_pre='gs += w') S.connect(i=0, j=morpho.L[99.9*um]) S.connect(i=1, j=morpho.R[99.9*um]) # Monitors mon_soma = StateMonitor(neuron, 'v', record=[0]) mon_L = StateMonitor(neuron.L, 'v', record=True) mon_R = StateMonitor(neuron, 'v', record=morpho.R[99.9*um]) run(50*ms, report='text', profile=True) print(profiling_summary()) subplot(211) plot(mon_L.t/ms, mon_soma[0].v/mV, 'k') plot(mon_L.t/ms, mon_L[morpho.L[99.9*um]].v/mV, 'r') plot(mon_L.t/ms, mon_R[morpho.R[99.9*um]].v/mV, 'b') ylabel('v (mV)') subplot(212) for i in [0, 5, 10, 15, 20, 25, 30, 35, 40, 45]: plot(mon_L.t/ms, mon_L.v[i, :]/mV) xlabel('Time (ms)') ylabel('v (mV)') #show() plotpath = os.path.join('plots', '{}.png'.format(name)) savefig(plotpath) print('plot saved in {}'.format(plotpath)) print('the generated model in {} needs to removed manually if wanted'.format(codefolder))
gpl-2.0
pwwang/pyppl
pipen/proc.py
1
9886
"""Provide the Proc class""" import asyncio import logging from pathlib import Path from typing import Any, ClassVar, Dict, Iterable, List, Optional, Type, Union from rich import box from rich.panel import Panel from slugify import slugify from varname import varname from simpleconf import Config from xqute import Xqute, JobStatus from xqute import Scheduler from pandas import DataFrame from .utils import ( brief_list, log_rich_renderable, logger, get_console_width, cached_property, DEFAULT_CONSOLE_WIDTH ) from .template import Template from .plugin import plugin from ._proc_properties import ProcProperties, ProcMeta, ProcType from .exceptions import ProcWorkdirConflictException class Proc(ProcProperties, metaclass=ProcMeta): """The Proc class provides process assembly functionality""" name: ClassVar[str] = None desc: ClassVar[str] = None SELF: ClassVar["Proc"] = None def __new__(cls, *args, **kwargs): """Make sure cls() always get to the same instance""" if not args and not kwargs: if not cls.SELF or cls.SELF.__class__ is not cls: cls.SELF = super().__new__(cls) return cls.SELF return super().__new__(cls) # pylint: disable=redefined-builtin,redefined-outer-name def __init__(self, name: Optional[str] = None, desc: Optional[str] = None, *, end: Optional[bool] = None, input_keys: Union[List[str], str] = None, input: Optional[Union[str, Iterable[str]]] = None, output: Optional[Union[str, Iterable[str]]] = None, requires: Optional[Union[ProcType, Iterable[ProcType]]] = None, lang: Optional[str] = None, script: Optional[str] = None, forks: Optional[int] = None, cache: Optional[bool] = None, args: Optional[Dict[str, Any]] = None, envs: Optional[Dict[str, Any]] = None, dirsig: Optional[bool] = None, profile: Optional[str] = None, template: Optional[Union[str, Type[Template]]] = None, scheduler: Optional[Union[str, Scheduler]] = None, scheduler_opts: Optional[Dict[str, Any]] = None, plugin_opts: Optional[Dict[str, Any]] = None) -> None: if getattr(self, '_inited', False): return super().__init__( end, input_keys, input, output, lang, script, forks, requires, args, envs, cache, dirsig, profile, template, scheduler, scheduler_opts, plugin_opts ) self.nexts = [] self.name = ( name if name is not None else self.__class__.name if self.__class__.name is not None else self.__class__.__name__ if self is self.__class__.SELF else varname() ) self.desc = ( desc if desc is not None else self.__class__.desc if self.__class__.desc is not None else self.__doc__.lstrip().splitlines()[0] if self.__doc__ else 'Undescribed.' ) self.pipeline = None self.pbar = None self.jobs = [] self.xqute = None self.workdir = None self.out_channel = None self._inited = True def log(self, level: Union[int, str], msg: str, *args, logger: logging.Logger = logger) -> None: """Log message for the process Args: level: The log level of the record msg: The message to log *args: The arguments to format the message logger: The logging logger """ msg = msg % args if not isinstance(level, int): level = logging.getLevelName(level.upper()) logger.log(level, '[cyan]%s:[/cyan] %s', self.name, msg) def gc(self): """GC process for the process to save memory after it's done""" del self.xqute self.xqute = None del self.jobs[:] self.jobs = [] del self.pbar self.pbar = None async def prepare(self, pipeline: "Pipen", profile: str) -> None: """Prepare the process Args: pipeline: The Pipen object profile: The profile of the configuration """ if self.end is None and not self.nexts: self.end = True self.pipeline = pipeline profile = self.profile or profile if profile == 'default': # no profile specified or profile is default, # we should use __init__ the highest priority config = pipeline.config._use('default', copy=True) else: config = pipeline.config._use(profile, 'default', copy=True) self.properties_from_config(config) self.workdir = Path(config.workdir) / slugify(self.name) self.compute_properties() await plugin.hooks.on_proc_property_computed(self) # check if it's the same proc using the workdir proc_name_file = self.workdir / 'proc.name' if proc_name_file.is_file() and proc_name_file.read_text() != self.name: raise ProcWorkdirConflictException( 'Workdir name is conflicting with process ' f'{proc_name_file.read_text()!r}, use a differnt pipeline ' 'or a different process name.' ) self.workdir.mkdir(parents=True, exist_ok=True) proc_name_file.write_text(self.name) self.xqute = Xqute( self.scheduler, job_metadir=self.workdir, job_submission_batch=config.submission_batch, job_error_strategy=config.error_strategy, job_num_retries=config.num_retries, scheduler_forks=self.forks, **self.scheduler_opts) # for the plugin hooks to access self.xqute.proc = self # init all other properties and jobs await self._init_jobs(config) self.out_channel = DataFrame((job.output for job in self.jobs)) await plugin.hooks.on_proc_init(self) def __repr__(self): return f'<Proc-{hex(id(self))}({self.name}: {self.size})>' @cached_property def size(self) -> int: """The size of the process (# of jobs)""" return len(self.jobs) @cached_property def succeeded(self) -> bool: """Check if the process is succeeded (all jobs succeeded)""" return all(job.status == JobStatus.FINISHED for job in self.jobs) async def run(self) -> None: """Run the process""" self._print_banner() self.log('info', 'Workdir: %r', str(self.workdir)) self._print_dependencies() # init pbar self.pbar = self.pipeline.pbar.proc_bar(self.size, self.name) await plugin.hooks.on_proc_start(self) cached_jobs = [] for job in self.jobs: if await job.cached: cached_jobs.append(job.index) self.pbar.update_job_submitted() self.pbar.update_job_running() self.pbar.update_job_succeeded() job.status = JobStatus.FINISHED await self.xqute.put(job) if cached_jobs: self.log('info', 'Cached jobs: %s', brief_list(cached_jobs)) await self.xqute.run_until_complete() self.pbar.done() await plugin.hooks.on_proc_done( self, False if not self.succeeded # pylint: disable=comparison-with-callable else 'cached' if len(cached_jobs) == self.size else True ) async def _init_job(self, worker_id: int, config: Config) -> None: """A worker to initialize jobs Args: worker_id: The worker id config: The pipeline configuration """ for job in self.jobs: if job.index % config.submission_batch != worker_id: continue await job.prepare(self) async def _init_jobs(self, config: Config) -> None: """Initialize all jobs Args: config: The pipeline configuration """ for i in range(self.input.data.shape[0]): job = self.scheduler.job_class(i, '', self.workdir) self.jobs.append(job) await asyncio.gather( *(self._init_job(i, config) for i in range(config.submission_batch)) ) def _print_banner(self) -> None: """Print the banner of the process""" console_width = get_console_width() panel = Panel( self.desc, title=self.name, box=box.Box( "╭═┬╮\n" "║ ║║\n" "├═┼┤\n" "║ ║║\n" "├═┼┤\n" "├═┼┤\n" "║ ║║\n" "╰═┴╯\n" ) if self.end else box.ROUNDED, width=min(DEFAULT_CONSOLE_WIDTH, console_width) ) logger.info('') log_rich_renderable(panel, 'cyan', logger.info) def _print_dependencies(self): """Print the dependencies""" self.log('info', '[yellow]<<<[/yellow] %s', [proc.name for proc in self.requires] if self.requires else '[START]') self.log('info', '[yellow]>>>[/yellow] %s', [proc.name for proc in self.nexts] if self.nexts else '[END]')
apache-2.0
freephys/python_ase
ase/gui/bulk_modulus.py
14
1044
# -*- coding: utf-8 -*- from math import sqrt import numpy as np from ase.units import kJ from ase.utils.eos import EquationOfState def BulkModulus(images): v = np.array([abs(np.linalg.det(A)) for A in images.A]) #import matplotlib.pyplot as plt import pylab as plt plt.ion() EquationOfState(v, images.E).plot() """ fit = np.poly1d(np.polyfit(v**-(1.0 / 3), images.E, 3)) fit1 = np.polyder(fit, 1) fit2 = np.polyder(fit1, 1) for t in np.roots(fit1): if t > 0 and fit2(t) > 0: break v0 = t**-3 e0 = fit(t) B = t**5 * fit2(t) / 9 / kJ * 1.0e24 # Gpa import pylab import matplotlib #matplotlib.use('GTK') pylab.ion() x = 3.95 pylab.figure(figsize=(x * 2.5**0.5, x)) pylab.plot(v, images.E, 'o') x = np.linspace(min(v), max(v), 100) pylab.plot(x, fit(x**-(1.0 / 3)), '-r') pylab.xlabel(u'volume [Å^3]') pylab.ylabel(u'energy [eV]') pylab.title(u'E: %.3f eV, V: %.3f Å^3, B: %.3f GPa' % (e0, v0, B)) pylab.show() """
gpl-3.0
stefantkeller/VECSELsetup
exp/eval/calibration/calib_highpower_pump.py
1
8078
#! /usr/bin/python2.7 # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import errorvalues as ev # github.com/stefantkeller/errorvalues from VECSELsetup.eval.varycolor import varycolor from VECSELsetup.eval.gen_functions import extract #from sys import exit def calibrate_pump(logfile1,logfile2,calibfile_pp,calibplot_pp,calibfile_cp,calibplot_cp): # logfile0 w/ directly attached P-I measurement # here we assume the P-I relation to be constant # logfile1 w/ P-I measurement after BS # (logfile0 and 1 give BS-fraction assumed to be constant) # logfile2 w/ "emission" measurement for whole I-range # from 2 find P-I relation, transform I into P with results from 1 # this gives a P-P relation for pump. # # drop 0-measurement and work with P-I relation from logfile1 #------------------------------------ #current_set,current,pump,reflection,emission,absorption = extract(logfile,identifiers=['Current','Pump','Refl','Laser']) current_set1, current1, thermal1 = extract(logfile1, identifiers=['Current','Laser']) current_set2, current2, pump2 = extract(logfile2, identifiers=['Current','Pump']) T1, T2 = current1.keys()[0], current2.keys()[0] # because the protocol writes HS temperature that we're not interested in during calibration (lazy.) #------------------------------------ cols = varycolor(3*len(current1)) # 3 per temperature # P-I (1) xmin, xmax = ev.min(current1[T1],False), ev.max(current1[T1],False) ymin, ymax = ev.min(thermal1[T1],False), ev.max(thermal1[T1],False) xlim = [xmin.v()-2*xmin.e(),xmax.v()+2*xmax.e()] ylim = [ymin.v()-2*ymin.e(),ymax.v()+2*ymax.e()] textx, texty = xmax.v()/4, ymax.v()*2/3 start_linreg_at = 6 #A sind1 = sum(current1[T1].v()<start_linreg_at) q1,m1 = ev.linreg(current1[T1].v()[sind1:],thermal1[T1].v()[sind1:],thermal1[T1].e()[sind1:]) if False: plt.clf() plt.subplot(1,1,1) plt.errorbar(current1[T1].v(),thermal1[T1].v(), xerr=current1[T1].e(),yerr=thermal1[T1].e(), c=cols[0],linestyle=' ') plt.plot(current1[T1].v(),m1.v()*current1[T1].v()+q1.v(),c=cols[1]) summary = r'(${0}$) $\times$ pump + (${1}$) W'.format(m1.round(2),q1.round(2)) plt.text(textx,texty, summary,color='k') plt.title('P-I pos1 -- supposed to be linear relation!') plt.xlabel('Pump current (A)') plt.ylabel('Power seen by S314C (thermal PM) (W)') plt.xlim(xlim) plt.ylim(ylim) plt.grid('on') plt.show() # P-I (2) xmin, xmax = ev.min(current2[T2],False), ev.max(current2[T2],False) ymin, ymax = ev.min(pump2[T2],False), ev.max(pump2[T2],False) xlim = [xmin.v()-2*xmin.e(),xmax.v()+2*xmax.e()] ylim = [ymin.v()-2*ymin.e(),ymax.v()+2*ymax.e()] textx, texty = xmax.v()/4, ymax.v()*2/3 start_linreg_at = 6 #A sind2 = sum(current2[T2].v()<start_linreg_at) q2,m2 = ev.linreg(current2[T2].v()[sind2:],pump2[T2].v()[sind2:],pump2[T2].e()[sind2:]) if False: plt.clf() plt.subplot(1,1,1) plt.errorbar(current2[T2].v(),pump2[T2].v(), xerr=current2[T2].e(),yerr=pump2[T2].e(), c=cols[0],linestyle=' ') plt.plot(current2[T2].v(),m2.v()*current2[T2].v()+q2.v(),c=cols[1]) summary = r'(${0}$) $\times$ pump + (${1}$) W'.format(m2.round(2),q2.round(2)) plt.text(textx,texty, summary,color='k') plt.title('P-I pump') plt.xlabel('Pump current (A)') plt.ylabel('Power seen by S121C (photodiode) (W)') plt.xlim(xlim) plt.ylim(ylim) plt.grid('on') plt.show() # ---------------------------------- # with m1,q1 scale current from 2 plt.clf() plt.subplot(1,1,1) pump_ = ev.errvallist([ev.max(ev.errvallist([0,p]),False) for p in current2[T2]*m1+q1]) # ignore values below pump threshold nzeros = np.sum(pump_.v()==0) xmin, xmax = ev.min(pump2[T2],False), ev.max(pump2[T2],False) ymin, ymax = ev.min(pump_,False), ev.max(pump_,False) xlim = [xmin.v()-2*xmin.e(),xmax.v()+2*xmax.e()] ylim = [ymin.v()-2*ymin.e(),ymax.v()+2*ymax.e()] textx, texty = xmax.v()/4, ymax.v()*2/3 q3,m3 = ev.linreg(pump2[T2].v()[nzeros:],pump_.v()[nzeros:],pump_.e()[nzeros:]) plt.errorbar(pump2[T2].v(),pump_.v(), xerr=pump2[T2].e(),yerr=pump_.e(), c=cols[0],linestyle=' ') plt.plot(pump2[T2].v(),m3.v()*pump2[T2].v()+q3.v(),c=cols[1]) summary = r'(${0}$) $\times$ pump + (${1}$) W'.format(m3.round(2),q3.round(2)) plt.text(textx,texty, summary,color='k') plt.title('Pump') plt.xlabel('Power seen by S121C (photodiode) (W)') plt.ylabel('Power at sample (W)') plt.xlim(xlim) plt.ylim(ylim) plt.grid('on') #plt.show() plt.savefig(calibplot_pp) # # # P-I (scaled) plt.clf() plt.subplot(1,1,1) xmin, xmax = ev.min(current2[T2],False), ev.max(current2[T2],False) ymin, ymax = ev.min(pump_,False), ev.max(pump_,False) xlim = [xmin.v()-2*xmin.e(),xmax.v()+2*xmax.e()] ylim = [ymin.v()-2*ymin.e(),ymax.v()+2*ymax.e()] textx, texty = xmax.v()/4, ymax.v()*2/3 start_linreg_at = 20 #A #end_linreg_at = .. sind = sum(current2[T2].v()<start_linreg_at) #eind = sum(current[Tc].v()<end_linreg_at) # linreg q4,m4 = ev.linreg(current2[T2].v()[sind:],pump_.v()[sind:],pump_.e()[sind:]) # plot plt.errorbar(current2[T2].v(),pump_.v(), xerr=current2[T2].e(),yerr=pump_.e(), c=cols[0],linestyle=' ') plt.plot(current2[T2].v(),m4.v()*current2[T2].v()+q4.v(),c=cols[1]) summary = r'(${0}$) $\times$ current (${1}$) W'.format(m4.round(2),q4.round(2)) plt.text(textx,texty, summary,color='k') plt.title('Pump (wrt current)') plt.xlabel('Achieved current setting (A)') plt.ylabel('Power at sample (W)') plt.xlim(xlim) plt.ylim(ylim) plt.grid('on') #plt.show() plt.savefig(calibplot_cp) #exit() #------------------------------------ # write file with evaluation as LUT with open(calibfile_pp,'wb') as pf: pf.write(u'columns=PM_pump(W),PM_pump_sterr(W),PM_reference(W),PM_reference_sterr(W);linreg={0}*p+{1}\n'.format(ev.errval(m3,printout='cp!'),ev.errval(q3,printout='cp!'))) for entry in range(len(pump_)): pf.write(u'{0},{1},{2},{3}\n'.format( pump2[T2].v()[entry],pump2[T2].e()[entry], pump_.v()[entry],pump_.e()[entry] )) with open(calibfile_cp,'wb') as cf: cf.write(u'columns=current(A),current_sterr(A),PM_reference(W),PM_reference_sterr(W);linreg={0}*c+{1}\n'.format(ev.errval(m4,printout='cp!'),ev.errval(q4,printout='cp!'))) for entry in range(len(current2[T2])): cf.write(u'{0},{1},{2},{3}\n'.format( current2[T2].v()[entry],current2[T2].e()[entry], pump_.v()[entry],pump_.e()[entry] )) print u'Pump calibration finished:\n{0}\n{1}\n{2}\n{3}'.format(calibfile_pp,calibplot_pp,calibfile_cp,calibplot_cp) def main(): logfile1 = '20150112_calib/1_pump_calib.csv' # thermal PM at sample pos logfile2 = '20150112_calib/2_refl_calib.csv' rootpath = '/'.join(logfile1.split('/')[:-1]) lut_folder = '/LUTs' calibfile_pp = rootpath+lut_folder+'/calib_pump.csv' calibplot_pp = rootpath+lut_folder+'/calib_pump.png' calibfile_cp = rootpath+lut_folder+'/calib_pump_current.csv' calibplot_cp = rootpath+lut_folder+'/calib_pump_current.png' #logfile1 = '../1_pump_calib.csv' # from here: take 'Current', 'Pump', and 'Laser' calibrate_pump(logfile1,logfile2,calibfile_pp,calibplot_pp,calibfile_cp,calibplot_cp) if __name__ == "__main__": main()
mit
herval/zeppelin
python/src/main/resources/python/zeppelin_python.py
2
6911
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os, sys, traceback, json, re from py4j.java_gateway import java_import, JavaGateway, GatewayClient from py4j.protocol import Py4JJavaError import ast class Logger(object): def __init__(self): pass def write(self, message): intp.appendOutput(message) def reset(self): pass def flush(self): pass class PythonCompletion: def __init__(self, interpreter, userNameSpace): self.interpreter = interpreter self.userNameSpace = userNameSpace def getObjectCompletion(self, text_value): completions = [completion for completion in list(self.userNameSpace.keys()) if completion.startswith(text_value)] builtinCompletions = [completion for completion in dir(__builtins__) if completion.startswith(text_value)] return completions + builtinCompletions def getMethodCompletion(self, objName, methodName): execResult = locals() try: exec("{} = dir({})".format("objectDefList", objName), _zcUserQueryNameSpace, execResult) except: self.interpreter.logPythonOutput("Fail to run dir on " + objName) self.interpreter.logPythonOutput(traceback.format_exc()) return None else: objectDefList = execResult['objectDefList'] return [completion for completion in execResult['objectDefList'] if completion.startswith(methodName)] def getCompletion(self, text_value): if text_value == None: return None dotPos = text_value.find(".") if dotPos == -1: objName = text_value completionList = self.getObjectCompletion(objName) else: objName = text_value[:dotPos] methodName = text_value[dotPos + 1:] completionList = self.getMethodCompletion(objName, methodName) if completionList is None or len(completionList) <= 0: self.interpreter.setStatementsFinished("", False) else: result = json.dumps(list(filter(lambda x : not re.match("^__.*", x), list(completionList)))) self.interpreter.setStatementsFinished(result, False) host = sys.argv[1] port = int(sys.argv[2]) if "PY4J_GATEWAY_SECRET" in os.environ: from py4j.java_gateway import GatewayParameters gateway_secret = os.environ["PY4J_GATEWAY_SECRET"] gateway = JavaGateway(gateway_parameters=GatewayParameters( address=host, port=port, auth_token=gateway_secret, auto_convert=True)) else: gateway = JavaGateway(GatewayClient(address=host, port=port), auto_convert=True) intp = gateway.entry_point _zcUserQueryNameSpace = {} completion = PythonCompletion(intp, _zcUserQueryNameSpace) _zcUserQueryNameSpace["__zeppelin_completion__"] = completion _zcUserQueryNameSpace["gateway"] = gateway from zeppelin_context import PyZeppelinContext if intp.getZeppelinContext(): z = __zeppelin__ = PyZeppelinContext(intp.getZeppelinContext(), gateway) __zeppelin__._setup_matplotlib() _zcUserQueryNameSpace["z"] = z _zcUserQueryNameSpace["__zeppelin__"] = __zeppelin__ intp.onPythonScriptInitialized(os.getpid()) # redirect stdout/stderr to java side so that PythonInterpreter can capture the python execution result output = Logger() sys.stdout = output sys.stderr = output while True : req = intp.getStatements() try: stmts = req.statements().split("\n") isForCompletion = req.isForCompletion() # Get post-execute hooks try: if req.isCallHooks(): global_hook = intp.getHook('post_exec_dev') else: global_hook = None except: global_hook = None try: if req.isCallHooks(): user_hook = __zeppelin__.getHook('post_exec') else: user_hook = None except: user_hook = None nhooks = 0 if not isForCompletion: for hook in (global_hook, user_hook): if hook: nhooks += 1 if stmts: # use exec mode to compile the statements except the last statement, # so that the last statement's evaluation will be printed to stdout code = compile('\n'.join(stmts), '<stdin>', 'exec', ast.PyCF_ONLY_AST, 1) to_run_hooks = [] if (nhooks > 0): to_run_hooks = code.body[-nhooks:] to_run_exec, to_run_single = (code.body[:-(nhooks + 1)], [code.body[-(nhooks + 1)]]) try: for node in to_run_exec: mod = ast.Module([node]) code = compile(mod, '<stdin>', 'exec') exec(code, _zcUserQueryNameSpace) for node in to_run_single: mod = ast.Interactive([node]) code = compile(mod, '<stdin>', 'single') exec(code, _zcUserQueryNameSpace) for node in to_run_hooks: mod = ast.Module([node]) code = compile(mod, '<stdin>', 'exec') exec(code, _zcUserQueryNameSpace) if not isForCompletion: # only call it when it is not for code completion. code completion will call it in # PythonCompletion.getCompletion intp.setStatementsFinished("", False) except Py4JJavaError: # raise it to outside try except raise except: if not isForCompletion: # extract which line incur error from error message. e.g. # Traceback (most recent call last): # File "<stdin>", line 1, in <module> # ZeroDivisionError: integer division or modulo by zero exception = traceback.format_exc() m = re.search("File \"<stdin>\", line (\d+).*", exception) if m: line_no = int(m.group(1)) intp.setStatementsFinished( "Fail to execute line {}: {}\n".format(line_no, stmts[line_no - 1]) + exception, True) else: intp.setStatementsFinished(exception, True) else: intp.setStatementsFinished("", False) except Py4JJavaError: excInnerError = traceback.format_exc() # format_tb() does not return the inner exception innerErrorStart = excInnerError.find("Py4JJavaError:") if innerErrorStart > -1: excInnerError = excInnerError[innerErrorStart:] intp.setStatementsFinished(excInnerError + str(sys.exc_info()), True) except: intp.setStatementsFinished(traceback.format_exc(), True) output.reset()
apache-2.0
idealabasu/code_pynamics
python/pynamics_examples/falling_rod.py
1
3239
# -*- coding: utf-8 -*- """ Written by Daniel M. Aukes Email: danaukes<at>gmail.com Please see LICENSE for full license. """ import sympy sympy.init_printing(pretty_print=False) import pynamics from pynamics.frame import Frame from pynamics.variable_types import Differentiable,Constant,Variable from pynamics.system import System from pynamics.body import Body from pynamics.dyadic import Dyadic from pynamics.output import Output,PointsOutput from pynamics.particle import Particle import pynamics.integration import pynamics.tanh import sympy import numpy import matplotlib.pyplot as plt plt.ion() from math import pi system = System() pynamics.set_system(__name__,system) tol = 1e-4 error_tol = 1e-10 m1 = Constant(1e0,'m1',system) m2 = Constant(1e0,'m2',system) l0 = Constant(1,'l0',system) g = Constant(9.81,'g',system) k_constraint = Constant(1e4,'k_constraint',system) b_constraint = Constant(1e5,'b_constraint',system) tinitial = 0 tfinal = 10 fps = 30 tstep = 1/fps t = numpy.r_[tinitial:tfinal:tstep] x1,x1_d,x1_dd = Differentiable('x1',system) y1,y1_d,y1_dd = Differentiable('y1',system) q1,q1_d,q1_dd = Differentiable('q1',system) vini = 5 aini = -60*pi/180 initialvalues = {} initialvalues[x1]=0 initialvalues[x1_d]=2 initialvalues[y1]=1 initialvalues[y1_d]=10 initialvalues[q1]=10*pi/180 initialvalues[q1_d]=-10 statevariables = system.get_state_variables() ini = [initialvalues[item] for item in statevariables] N = Frame('N') system.set_newtonian(N) A = Frame('A') A.rotate_fixed_axis_directed(N,[0,0,1],q1) pNA=0*N.x pm1 = x1*N.x + y1*N.y pm2 = pm1+l0*A.y Particle1 = Particle(pm1,m1,'Particle1',system) Particle2 = Particle(pm2,m2,'Particle2',system) vpm1 = pm1.time_derivative(N,system) vpm2 = pm2.time_derivative(N,system) system.addforcegravity(-g*N.y) y2 = pm2.dot(N.y) f_floor2 = (y2**2)**.5 - y2 system.addforce(k_constraint*f_floor2*N.y,vpm2) system.addforce(-b_constraint*f_floor2*vpm2,vpm2) f_floor1 = (y1**2)**.5 - y1 system.addforce(k_constraint*f_floor1*N.y,vpm1) system.addforce(-b_constraint*f_floor1*vpm1,vpm1) eq = [] f,ma = system.getdynamics() func = system.state_space_post_invert(f,ma) constants = system.constant_values.copy() # constants[b_constraint]=0 states=pynamics.integration.integrate_odeint(func,ini,t,rtol = tol, atol = tol, args=({'constants':constants},)) points = [pm1,pm2] po = PointsOutput(points, system, constant_values=system.constant_values) po.calc(states) constants = system.constant_values.copy() constants[b_constraint]=1e3 states=pynamics.integration.integrate_odeint(func,ini,t,rtol = tol, atol = tol, args=({'constants':constants},)) points = [pm1,pm2] po2 = PointsOutput(points, system, constant_values=system.constant_values) po2.calc(states) constants[b_constraint]=0 states=pynamics.integration.integrate_odeint(func,ini,t,rtol = tol, atol = tol, args=({'constants':constants},)) points = [pm1,pm2] po3 = PointsOutput(points, system, constant_values=system.constant_values) po3.calc(states) po.plot_time() po.animate(fps = fps, movie_name='bouncy-mod.mp4',lw=2,marker='o') po2.plot_time() po2.animate(fps = fps, movie_name='bouncy-mod.mp4',lw=2,marker='o') po3.plot_time() po3.animate(fps = fps, movie_name='bouncy-mod.mp4',lw=2,marker='o')
mit
daodaoliang/neural-network-animation
matplotlib/tests/test_agg.py
9
4670
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import io import os import numpy as np from numpy.testing import assert_array_almost_equal from matplotlib.image import imread from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from matplotlib.testing.decorators import cleanup from matplotlib import pyplot as plt from matplotlib import collections from matplotlib import path @cleanup def test_repeated_save_with_alpha(): # We want an image which has a background color of bluish green, with an # alpha of 0.25. fig = Figure([1, 0.4]) canvas = FigureCanvas(fig) fig.set_facecolor((0, 1, 0.4)) fig.patch.set_alpha(0.25) # The target color is fig.patch.get_facecolor() buf = io.BytesIO() fig.savefig(buf, facecolor=fig.get_facecolor(), edgecolor='none') # Save the figure again to check that the # colors don't bleed from the previous renderer. buf.seek(0) fig.savefig(buf, facecolor=fig.get_facecolor(), edgecolor='none') # Check the first pixel has the desired color & alpha # (approx: 0, 1.0, 0.4, 0.25) buf.seek(0) assert_array_almost_equal(tuple(imread(buf)[0, 0]), (0.0, 1.0, 0.4, 0.250), decimal=3) @cleanup def test_large_single_path_collection(): buff = io.BytesIO() # Generates a too-large single path in a path collection that # would cause a segfault if the draw_markers optimization is # applied. f, ax = plt.subplots() collection = collections.PathCollection( [path.Path([[-10, 5], [10, 5], [10, -5], [-10, -5], [-10, 5]])]) ax.add_artist(collection) ax.set_xlim(10**-3, 1) plt.savefig(buff) def report_memory(i): pid = os.getpid() a2 = os.popen('ps -p %d -o rss,sz' % pid).readlines() print(i, ' ', a2[1], end=' ') return int(a2[1].split()[0]) # This test is disabled -- it uses old API. -ADS 2009-09-07 ## def test_memleak(): ## """Test agg backend for memory leaks.""" ## from matplotlib.ft2font import FT2Font ## from numpy.random import rand ## from matplotlib.backend_bases import GraphicsContextBase ## from matplotlib.backends._backend_agg import RendererAgg ## fontname = '/usr/local/share/matplotlib/Vera.ttf' ## N = 200 ## for i in range( N ): ## gc = GraphicsContextBase() ## gc.set_clip_rectangle( [20, 20, 20, 20] ) ## o = RendererAgg( 400, 400, 72 ) ## for j in range( 50 ): ## xs = [ 400*int(rand()) for k in range(8) ] ## ys = [ 400*int(rand()) for k in range(8) ] ## rgb = (1, 0, 0) ## pnts = zip( xs, ys ) ## o.draw_polygon( gc, rgb, pnts ) ## o.draw_polygon( gc, None, pnts ) ## for j in range( 50 ): ## x = [ 400*int(rand()) for k in range(4) ] ## y = [ 400*int(rand()) for k in range(4) ] ## o.draw_lines( gc, x, y ) ## for j in range( 50 ): ## args = [ 400*int(rand()) for k in range(4) ] ## rgb = (1, 0, 0) ## o.draw_rectangle( gc, rgb, *args ) ## if 1: # add text ## font = FT2Font( fontname ) ## font.clear() ## font.set_text( 'hi mom', 60 ) ## font.set_size( 12, 72 ) ## o.draw_text_image( font.get_image(), 30, 40, gc ) ## fname = "agg_memleak_%05d.png" ## o.write_png( fname % i ) ## val = report_memory( i ) ## if i==1: start = val ## end = val ## avgMem = (end - start) / float(N) ## print 'Average memory consumed per loop: %1.4f\n' % (avgMem) ## #TODO: Verify the expected mem usage and approximate tolerance that ## # should be used ## #self.checkClose( 0.32, avgMem, absTol = 0.1 ) ## # w/o text and w/o write_png: Average memory consumed per loop: 0.02 ## # w/o text and w/ write_png : Average memory consumed per loop: 0.3400 ## # w/ text and w/ write_png : Average memory consumed per loop: 0.32 @cleanup def test_marker_with_nan(): # This creates a marker with nans in it, which was segfaulting the # Agg backend (see #3722) fig, ax = plt.subplots(1) steps = 1000 data = np.arange(steps) ax.semilogx(data) ax.fill_between(data, data*0.8, data*1.2) buf = io.BytesIO() fig.savefig(buf, format='png') if __name__ == "__main__": import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
mit
detrout/debian-statsmodels
docs/sphinxext/numpy_ext/docscrape_sphinx.py
62
7703
import re, inspect, textwrap, pydoc import sphinx from docscrape import NumpyDocString, FunctionDoc, ClassDoc class SphinxDocString(NumpyDocString): def __init__(self, docstring, config={}): self.use_plots = config.get('use_plots', False) NumpyDocString.__init__(self, docstring, config=config) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' '*indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param,param_type,desc in self[name]: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) out += [''] out += self._str_indent(desc,8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() if not self._obj or hasattr(self._obj, param): autosum += [" %s%s" % (prefix, param)] else: others.append((param, param_type, desc)) if autosum: out += ['.. autosummary::', ' :toctree:', ''] out += autosum if others: maxlen_0 = max([len(x[0]) for x in others]) maxlen_1 = max([len(x[1]) for x in others]) hdr = "="*maxlen_0 + " " + "="*maxlen_1 + " " + "="*10 fmt = '%%%ds %%%ds ' % (maxlen_0, maxlen_1) n_indent = maxlen_0 + maxlen_1 + 4 out += [hdr] for param, param_type, desc in others: out += [fmt % (param.strip(), param_type)] out += self._str_indent(desc, n_indent) out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default','')] for section, references in idx.iteritems(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it if sphinx.__version__ >= "0.6": out += ['.. only:: latex',''] else: out += ['.. latexonly::',''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() for param_list in ('Parameters', 'Returns', 'Raises'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for param_list in ('Attributes', 'Methods'): out += self._str_member_list(param_list) out = self._str_indent(out,indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.use_plots = config.get('use_plots', False) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.use_plots = config.get('use_plots', False) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config={}): self._f = obj SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if what is None: if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif callable(obj): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
bsd-3-clause
abad623/verbalucce
verbalucce/nltk/draw/dispersion.py
17
1693
# Natural Language Toolkit: Dispersion Plots # # Copyright (C) 2001-2012 NLTK Project # Author: Steven Bird <[email protected]> # URL: <http://www.nltk.org/> # For license information, see LICENSE.TXT """ A utility for displaying lexical dispersion. """ def dispersion_plot(text, words, ignore_case=False): """ Generate a lexical dispersion plot. :param text: The source text :type text: list(str) or enum(str) :param words: The target words :type words: list of str :param ignore_case: flag to set if case should be ignored when searching text :type ignore_case: bool """ try: import pylab except ImportError: raise ValueError('The plot function requires the matplotlib package (aka pylab).' 'See http://matplotlib.sourceforge.net/') text = list(text) words.reverse() if ignore_case: words_to_comp = map(str.lower, words) text_to_comp = map(str.lower, text) else: words_to_comp = words text_to_comp = text points = [(x,y) for x in range(len(text_to_comp)) for y in range(len(words_to_comp)) if text_to_comp[x] == words_to_comp[y]] if points: x, y = zip(*points) else: x = y = () pylab.plot(x, y, "b|", scalex=.1) pylab.yticks(range(len(words)), words, color="b") pylab.ylim(-1, len(words)) pylab.title("Lexical Dispersion Plot") pylab.xlabel("Word Offset") pylab.show() if __name__ == '__main__': from nltk.corpus import gutenberg words = ['Elinor', 'Marianne', 'Edward', 'Willoughby'] dispersion_plot(gutenberg.words('austen-sense.txt'), words)
apache-2.0
arthur-gouveia/DAT210x
Module5/assignment5.py
1
5322
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib from sklearn.model_selection import train_test_split from sklearn.preprocessing import Normalizer from sklearn.decomposition import PCA from sklearn.neighbors import KNeighborsClassifier matplotlib.style.use('ggplot') # Look Pretty def plotDecisionBoundary(model, X, y): fig = plt.figure() # ax = fig.add_subplot(111) padding = 0.6 resolution = 0.0025 colors = ['royalblue', 'forestgreen', 'ghostwhite'] # Calculate the boundaris x_min, x_max = X[:, 0].min(), X[:, 0].max() y_min, y_max = X[:, 1].min(), X[:, 1].max() x_range = x_max - x_min y_range = y_max - y_min x_min -= x_range * padding y_min -= y_range * padding x_max += x_range * padding y_max += y_range * padding # Create a 2D Grid Matrix. The values stored in the matrix # are the predictions of the class at at said location xx, yy = np.meshgrid(np.arange(x_min, x_max, resolution), np.arange(y_min, y_max, resolution)) # What class does the classifier say? Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour map # cs = plt.contourf(xx, yy, Z, cmap=plt.cm.terrain) # Plot the test original points as well... for label in range(len(np.unique(y))): indices = np.where(y == label) plt.scatter(X[indices, 0], X[indices, 1], c=colors[label], label=str(label), alpha=0.8) p = model.get_params() plt.axis('tight') plt.title('K = ' + str(p['n_neighbors'])) # # XXX: Load up the dataset into a variable called X. Check the .head and # compare it to the file you loaded in a text editor. Make sure you're # loading your data properly--don't fail on the 1st step! # # .. your code here .. X = pd.read_csv('Datasets/wheat.data', index_col=0) # # XXX: Copy the 'wheat_type' series slice out of X, and into a series # called 'y'. Then drop the original 'wheat_type' column from the X # # .. your code here .. y = X.wheat_type.copy() X = X.drop('wheat_type', axis=1) # XXX: Do a quick, "ordinal" conversion of 'y'. In actuality our # classification isn't ordinal, but just as an experiment... # # .. your code here .. y = y.astype('category').cat.codes # # XXX: Basic nan munging. Fill each row's nans with the mean of the feature # # .. your code here .. X.fillna(X.mean(), inplace=True) # # XXX: Split X into training and testing data sets using train_test_split(). # INFO: Use 0.33 test size, and use random_state=1. This is important # so that your answers are verifiable. In the real world, you wouldn't # specify a random_state. # # .. your code here .. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # # XXX: Create an instance of SKLearn's Normalizer class and then train it # using its .fit() method against your *training* data. # # NOTE: The reason you only fit against your training data is because in a # real-world situation, you'll only have your training data to train with! # In this lab setting, you have both train+test data; but in the wild, # you'll only have your training data, and then unlabeled data you want to # apply your models to. # # .. your code here .. normalizer = Normalizer().fit(X_train) # # XXX: With your trained pre-processor, transform both your training AND # testing data. # # NOTE: Any testing data has to be transformed with your preprocessor # that has ben fit against your training data, so that it exist in the same # feature-space as the original data used to train your models. # # .. your code here .. X_train = normalizer.transform(X_train) X_test = normalizer.transform(X_test) # # XXX: Just like your preprocessing transformation, create a PCA # transformation as well. Fit it against your training data, and then # project your training and testing features into PCA space using the # PCA model's .transform() method. # # NOTE: This has to be done because the only way to visualize the decision # boundary in 2D would be if your KNN algo ran in 2D as well: # # .. your code here .. pca = PCA(2).fit(X_train) X_train = pca.transform(X_train) X_test = pca.transform(X_test) # # XXX: Create and train a KNeighborsClassifier. Start with K=9 neighbors. # NOTE: Be sure train your classifier against the pre-processed, PCA- # transformed training data above! You do not, of course, need to transform # your labels. # # .. your code here .. knn = KNeighborsClassifier(n_neighbors=9).fit(X_train, y_train) # HINT: Ensure your KNeighbors classifier object from earlier is called 'knn' plotDecisionBoundary(knn, X_train, y_train) # ------------------------------------ # # XXX: Display the accuracy score of your test data/labels, computed by # your KNeighbors model. # # NOTE: You do NOT have to run .predict before calling .score, since # .score will take care of running your predictions for you automatically. # # .. your code here .. print(knn.score(X_test, y_test)) # # BONUS: Instead of the ordinal conversion, try and get this assignment # working with a proper Pandas get_dummies for feature encoding. HINT: # You might have to update some of the plotDecisionBoundary code. plt.show()
mit
TTXSJie/syn_icb
gan_toy.py
2
7739
import os, sys sys.path.append(os.getcwd()) import random import time import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import tensorflow as tf import sklearn.datasets import tflib as lib import tflib.ops.linear import tflib.plot MODE = 'wgan-gp' # wgan or wgan-gp DATASET = '8gaussians' # 8gaussians, 25gaussians, swissroll DIM = 512 # Model dimensionality FIXED_GENERATOR = False # whether to hold the generator fixed at real data plus # Gaussian noise, as in the plots in the paper LAMBDA = .1 # Smaller lambda makes things faster for toy tasks, but isn't # necessary if you increase CRITIC_ITERS enough CRITIC_ITERS = 5 # How many critic iterations per generator iteration BATCH_SIZE = 256 # Batch size ITERS = 100000 # how many generator iterations to train for lib.print_model_settings(locals().copy()) def ReLULayer(name, n_in, n_out, inputs): output = lib.ops.linear.Linear( name+'.Linear', n_in, n_out, inputs, initialization='he' ) output = tf.nn.relu(output) return output def Generator(n_samples, real_data): if FIXED_GENERATOR: return real_data + (1.*tf.random_normal(tf.shape(real_data))) else: noise = tf.random_normal([n_samples, 2]) output = ReLULayer('Generator.1', 2, DIM, noise) output = ReLULayer('Generator.2', DIM, DIM, output) output = ReLULayer('Generator.3', DIM, DIM, output) output = lib.ops.linear.Linear('Generator.4', DIM, 2, output) return output def Discriminator(inputs): output = ReLULayer('Discriminator.1', 2, DIM, inputs) output = ReLULayer('Discriminator.2', DIM, DIM, output) output = ReLULayer('Discriminator.3', DIM, DIM, output) output = lib.ops.linear.Linear('Discriminator.4', DIM, 1, output) return tf.reshape(output, [-1]) real_data = tf.placeholder(tf.float32, shape=[None, 2]) fake_data = Generator(BATCH_SIZE, real_data) disc_real = Discriminator(real_data) disc_fake = Discriminator(fake_data) # WGAN loss disc_cost = tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real) gen_cost = -tf.reduce_mean(disc_fake) # WGAN gradient penalty if MODE == 'wgan-gp': alpha = tf.random_uniform( shape=[BATCH_SIZE,1], minval=0., maxval=1. ) interpolates = alpha*real_data + ((1-alpha)*fake_data) disc_interpolates = Discriminator(interpolates) gradients = tf.gradients(disc_interpolates, [interpolates])[0] slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1])) gradient_penalty = tf.reduce_mean((slopes-1)**2) disc_cost += LAMBDA*gradient_penalty disc_params = lib.params_with_name('Discriminator') gen_params = lib.params_with_name('Generator') if MODE == 'wgan-gp': disc_train_op = tf.train.AdamOptimizer( learning_rate=1e-4, beta1=0.5, beta2=0.9 ).minimize( disc_cost, var_list=disc_params ) if len(gen_params) > 0: gen_train_op = tf.train.AdamOptimizer( learning_rate=1e-4, beta1=0.5, beta2=0.9 ).minimize( gen_cost, var_list=gen_params ) else: gen_train_op = tf.no_op() else: disc_train_op = tf.train.RMSPropOptimizer(learning_rate=5e-5).minimize( disc_cost, var_list=disc_params ) if len(gen_params) > 0: gen_train_op = tf.train.RMSPropOptimizer(learning_rate=5e-5).minimize( gen_cost, var_list=gen_params ) else: gen_train_op = tf.no_op() # Build an op to do the weight clipping clip_ops = [] for var in disc_params: clip_bounds = [-.01, .01] clip_ops.append( tf.assign( var, tf.clip_by_value(var, clip_bounds[0], clip_bounds[1]) ) ) clip_disc_weights = tf.group(*clip_ops) print "Generator params:" for var in lib.params_with_name('Generator'): print "\t{}\t{}".format(var.name, var.get_shape()) print "Discriminator params:" for var in lib.params_with_name('Discriminator'): print "\t{}\t{}".format(var.name, var.get_shape()) frame_index = [0] def generate_image(true_dist): """ Generates and saves a plot of the true distribution, the generator, and the critic. """ N_POINTS = 128 RANGE = 3 points = np.zeros((N_POINTS, N_POINTS, 2), dtype='float32') points[:,:,0] = np.linspace(-RANGE, RANGE, N_POINTS)[:,None] points[:,:,1] = np.linspace(-RANGE, RANGE, N_POINTS)[None,:] points = points.reshape((-1,2)) samples, disc_map = session.run( [fake_data, disc_real], feed_dict={real_data:points} ) disc_map = session.run(disc_real, feed_dict={real_data:points}) plt.clf() x = y = np.linspace(-RANGE, RANGE, N_POINTS) plt.contour(x,y,disc_map.reshape((len(x), len(y))).transpose()) plt.scatter(true_dist[:, 0], true_dist[:, 1], c='orange', marker='+') plt.scatter(samples[:, 0], samples[:, 1], c='green', marker='+') plt.savefig('frame'+str(frame_index[0])+'.jpg') frame_index[0] += 1 # Dataset iterator def inf_train_gen(): if DATASET == '25gaussians': dataset = [] for i in xrange(100000/25): for x in xrange(-2, 3): for y in xrange(-2, 3): point = np.random.randn(2)*0.05 point[0] += 2*x point[1] += 2*y dataset.append(point) dataset = np.array(dataset, dtype='float32') np.random.shuffle(dataset) dataset /= 2.828 # stdev while True: for i in xrange(len(dataset)/BATCH_SIZE): yield dataset[i*BATCH_SIZE:(i+1)*BATCH_SIZE] elif DATASET == 'swissroll': while True: data = sklearn.datasets.make_swiss_roll( n_samples=BATCH_SIZE, noise=0.25 )[0] data = data.astype('float32')[:, [0, 2]] data /= 7.5 # stdev plus a little yield data elif DATASET == '8gaussians': scale = 2. centers = [ (1,0), (-1,0), (0,1), (0,-1), (1./np.sqrt(2), 1./np.sqrt(2)), (1./np.sqrt(2), -1./np.sqrt(2)), (-1./np.sqrt(2), 1./np.sqrt(2)), (-1./np.sqrt(2), -1./np.sqrt(2)) ] centers = [(scale*x,scale*y) for x,y in centers] while True: dataset = [] for i in xrange(BATCH_SIZE): point = np.random.randn(2)*.02 center = random.choice(centers) point[0] += center[0] point[1] += center[1] dataset.append(point) dataset = np.array(dataset, dtype='float32') dataset /= 1.414 # stdev yield dataset # Train loop! with tf.Session() as session: session.run(tf.initialize_all_variables()) gen = inf_train_gen() for iteration in xrange(ITERS): # Train generator if iteration > 0: _ = session.run(gen_train_op) # Train critic for i in xrange(CRITIC_ITERS): _data = gen.next() _disc_cost, _ = session.run( [disc_cost, disc_train_op], feed_dict={real_data: _data} ) if MODE == 'wgan': _ = session.run([clip_disc_weights]) # Write logs and save samples lib.plot.plot('disc cost', _disc_cost) if iteration % 100 == 99: lib.plot.flush() generate_image(_data) lib.plot.tick()
mit
EuroPython/ep-tools
eptools/docstamp_utils.py
1
1868
""" Functions to help using docstamp. """ import os import os.path as path from docstamp.file_utils import get_extension, cleanup_docstamp_output from docstamp.template import XeLateXDocument def xelatex_document(doc_args, template_file, field_name, output_dir="."): """ Use docstamp to use xelatex to produce a XeLateX document using `template_file`. The output file will be saved in output_dir and its path returned. The doc_args keys will be lower case and have the white spaces replaced by '_'. Parameters ---------- doc_args: dict or pandas.DataFrame A dictionary with the argument values to fill the `template_file`. template_file: str Path to the .tex template file. field_name: str Name of the field in `doc_args` that will be used for the output file name and some checks. output_dir: str Path to the output folder. Returns ------- output_path """ # input data def process_data_key(key): return key.lower().replace(" ", "_").replace("(", "").replace(")", "") input_data = {process_data_key(key): value for key, value in doc_args.items()} # template doc template_doc = XeLateXDocument(template_file) # output file name field_val = input_data[process_data_key(field_name)].replace(" ", "") file_extension = get_extension(template_file) basename = path.basename(template_file).replace(file_extension, "") file_name = basename + "_" + field_val file_path = path.join(output_dir, file_name + ".pdf") # make output folder if not os.path.exists(output_dir): os.mkdir(output_dir) # fill the template template_doc.fill(input_data) # save into PDF template_doc.render(file_path) # clean up LateX mess cleanup_docstamp_output(output_dir) return file_path
mit
IshankGulati/scikit-learn
doc/conf.py
22
9789
# -*- coding: utf-8 -*- # # scikit-learn documentation build configuration file, created by # sphinx-quickstart on Fri Jan 8 09:13:42 2010. # # This file is execfile()d with the current directory set to its containing # dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. from __future__ import print_function import sys import os from sklearn.externals.six import u # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. sys.path.insert(0, os.path.abspath('sphinxext')) from github_link import make_linkcode_resolve import sphinx_gallery # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'numpy_ext.numpydoc', 'sphinx.ext.linkcode', 'sphinx.ext.doctest', 'sphinx_gallery.gen_gallery', 'sphinx_issues', ] # pngmath / imgmath compatibility layer for different sphinx versions import sphinx from distutils.version import LooseVersion if LooseVersion(sphinx.__version__) < LooseVersion('1.4'): extensions.append('sphinx.ext.pngmath') else: extensions.append('sphinx.ext.imgmath') autodoc_default_flags = ['members', 'inherited-members'] # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # generate autosummary even if no references autosummary_generate = True # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # Generate the plots for the gallery plot_gallery = True # The master toctree document. master_doc = 'index' # General information about the project. project = u('scikit-learn') copyright = u('2007 - 2017, scikit-learn developers (BSD License)') # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. import sklearn version = sklearn.__version__ # The full version, including alpha/beta/rc tags. release = sklearn.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be # searched for source files. exclude_trees = ['_build', 'templates', 'includes'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'scikit-learn' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = {'oldversion': False, 'collapsiblesidebar': True, 'google_analytics': True, 'surveybanner': False, 'sprintbanner': True} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = 'scikit-learn' # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = 'logos/scikit-learn-logo-small.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = 'logos/favicon.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['images'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_domain_indices = False # If false, no index is generated. html_use_index = False # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'scikit-learndoc' # -- Options for LaTeX output ------------------------------------------------ # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [('index', 'user_guide.tex', u('scikit-learn user guide'), u('scikit-learn developers'), 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = "logos/scikit-learn-logo.png" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. latex_preamble = r""" \usepackage{amsmath}\usepackage{amsfonts}\usepackage{bm}\usepackage{morefloats} \usepackage{enumitem} \setlistdepth{10} """ # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. latex_domain_indices = False trim_doctests_flags = True sphinx_gallery_conf = { 'doc_module': 'sklearn', 'reference_url': { 'sklearn': None, 'matplotlib': 'http://matplotlib.org', 'numpy': 'http://docs.scipy.org/doc/numpy-1.6.0', 'scipy': 'http://docs.scipy.org/doc/scipy-0.11.0/reference', 'nibabel': 'http://nipy.org/nibabel'} } # The following dictionary contains the information used to create the # thumbnails for the front page of the scikit-learn home page. # key: first image in set # values: (number of plot in set, height of thumbnail) carousel_thumbs = {'sphx_glr_plot_classifier_comparison_001.png': 600, 'sphx_glr_plot_outlier_detection_003.png': 372, 'sphx_glr_plot_gpr_co2_001.png': 350, 'sphx_glr_plot_adaboost_twoclass_001.png': 372, 'sphx_glr_plot_compare_methods_001.png': 349} def make_carousel_thumbs(app, exception): """produces the final resized carousel images""" if exception is not None: return print('Preparing carousel images') image_dir = os.path.join(app.builder.outdir, '_images') for glr_plot, max_width in carousel_thumbs.items(): image = os.path.join(image_dir, glr_plot) if os.path.exists(image): c_thumb = os.path.join(image_dir, glr_plot[:-4] + '_carousel.png') sphinx_gallery.gen_rst.scale_image(image, c_thumb, max_width, 190) # Config for sphinx_issues issues_uri = 'https://github.com/scikit-learn/scikit-learn/issues/{issue}' issues_github_path = 'scikit-learn/scikit-learn' issues_user_uri = 'https://github.com/{user}' def setup(app): # to hide/show the prompt in code examples: app.add_javascript('js/copybutton.js') app.connect('build-finished', make_carousel_thumbs) # The following is used by sphinx.ext.linkcode to provide links to github linkcode_resolve = make_linkcode_resolve('sklearn', u'https://github.com/scikit-learn/' 'scikit-learn/blob/{revision}/' '{package}/{path}#L{lineno}')
bsd-3-clause
evenmarbles/mlpy
mlpy/planners/discrete.py
1
12392
from __future__ import division, print_function, absolute_import import math from datetime import datetime import numpy as np from matplotlib import pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from . import IPlanner from .explorers.discrete import DiscreteExplorer from ..tools.log import LoggingMgr from ..tools.misc import Waiting class ValueIteration(IPlanner): """ Planning through value Iteration. Parameters ---------- model : DiscreteModel The Markov decision model. explorer : Explorer, optional The exploration strategy to employ. Available explorers are: :class:`.EGreedyExplorer` With :math:`\\epsilon` probability, a random action is chosen, otherwise the action resulting in the highest q-value is selected. :class:`.SoftmaxExplorer` The softmax explorer varies the action probability as a graded function of estimated value. The greedy action is still given the highest selection probability, but all the others are ranked and weighted according to their value estimates. By default no explorer is used and the greedy action is chosen. gamma : float, optional The discount factor. Default is 0.9. ignore_unreachable : bool, optional Whether to ignore unreachable states or not. Unreachability is determined by how many steps a state is are away from the closest neighboring state. Default is False. Raises ------ AttributeError If both the Markov model and the planner define an explorer. Only one explorer can be specified. """ MAX_STEPS = 100 @property def model(self): """ The Markov decision process model. The Markov decision process model contain information about the states, actions, and their transitions and the reward function. Returns ------- IMDPModel : The model. """ return self._model def __init__(self, model, explorer=None, gamma=None, ignore_unreachable=False): super(ValueIteration, self).__init__(explorer) self._logger = LoggingMgr().get_logger(self._mid) self._plot_num = 0 self._model = model """:type: IMDPModel""" if self._explorer is not None: variable = getattr(self._model, "_explorer", None) if variable is not None: raise AttributeError("There can be only one explorer. Either based on the model or of the planner.") if self._explorer is None: self._explorer = DiscreteExplorer() self._gamma = 0.9 if gamma is None else gamma self._ignore_unreachable = ignore_unreachable if ignore_unreachable is not None else False def __getstate__(self): data = super(ValueIteration, self).__getstate__() data.update({ '_model': self._model, '_explorer': self._explorer, '_gamma': self._gamma, '_ignore_unreachable': self._ignore_unreachable, '_plot_num': self._plot_num }) return data def __setstate__(self, d): super(ValueIteration, self).__setstate__(d) for name, value in d.iteritems(): setattr(self, name, value) self._logger = LoggingMgr().get_logger(self._mid) def activate_exploration(self): """Turn the explorer on.""" super(ValueIteration, self).activate_exploration() func = getattr(self._model, "activate_exploration", None) if callable(func): func() def deactivate_exploration(self): """Turn the explorer off.""" super(ValueIteration, self).deactivate_exploration() func = getattr(self._model, "deactivate_exploration", None) if callable(func): func() def get_best_action(self, state): """Choose the best next action for the agent to take. Parameters ---------- state : State The state for which to choose the action for. Returns ------- Action : The best action. """ self._model.add_state(state) actions = self._model.get_actions(state) info = self._model.statespace[state] action = self._explorer.choose_action(actions, [info.q[a] for a in actions]) self._logger.debug("state=%s\tact=%s\tvalue=%.2f", state, action, self._model.statespace[state].q[action]) return action def plan(self): """Plan for the optimal policy. Perform value iteration and build the Q-table. """ if self._ignore_unreachable: self._calculate_reachable_states() nloops = 0 max_error = 5000 min_error = 0.1 states_updated = 0 waiting = None if self._logger.level > LoggingMgr.LOG_DEBUG: waiting = Waiting("Perform value iteration") waiting.start() s0 = datetime.now() while max_error > min_error: self._logger.debug("max error: %0.5f nloops: %d", max_error, nloops) max_error = 0 nloops += 1 for state in self._model.statespace.keys(): info = self._model.statespace[state] self._logger.debug("\tState: id: %d: %s, Steps: %d", info.id, state, info.steps_away) states_updated += 1 if self._ignore_unreachable and info.steps_away > 99999: self._logger.debug("\tState not reachable, ignoring") continue for action, mdl in info.models.iteritems(): newq = mdl.reward_func.get(state) for state2, prob in mdl.transition_proba: self._logger.debug("\t\tNext state is: %s, prob: %.2f", state2, prob) real_state = state2.is_valid() next_state = state2 if not real_state: next_state = state elif self._ignore_unreachable and info.steps_away >= ValueIteration.MAX_STEPS: next_state = state else: self._model.add_state(next_state) info2 = self._model.statespace[next_state] next_steps = info.steps_away + 1 if next_steps < info2.steps_away: info2.steps_away = next_steps maxq = max([info2.q[a] for a in self._model.get_actions(state2)]) newq += self._gamma * prob * maxq tderror = math.fabs(info.q[action] - newq) info.q[action] = newq if tderror > max_error: max_error = tderror self._logger.debug("\t\tTD error: %.5f Max error: %.5f", tderror, max_error) s1 = datetime.now() delta = s1 - s0 if waiting is not None: waiting.stop() self._logger.info("\tvalues computed with maxError: %.5f nloops: %d time: %d:%d states: %d", max_error, nloops, delta.seconds, delta.microseconds, states_updated) self._remove_unreachable_states() # noinspection PyShadowingNames def visualize(self): """Visualize of the planning data. The results in the Q table are visualized via a heat map. """ nrows = 30 actions = self._model.get_actions() ncols = len(actions) num_states = len(self._model.statespace) data = np.zeros((num_states, len(actions))) ylabels = [None] * num_states for state, info in self._model.statespace.iteritems(): ylabels[info.id - 1] = state # TODO: check if that is correct: .encode() for i, act in enumerate(actions): data[info.id - 1][i] = info.q[act] decorated = [(i, tup[0], tup) for i, tup in enumerate(ylabels)] decorated.sort(key=lambda tup: tup[1]) ylabels = [tup for i, second, tup in decorated] indices = [i for i, second, tup in decorated] data = np.array([data[i] for i in indices]) self._logger.debug("Q-table data".format(data[::-1])) h, w = data.shape nsubplots = int(math.ceil(h / float(nrows))) diff = (nsubplots * nrows) - h # noinspection PyTypeChecker data = np.lib.pad(data, ((0, diff), (0, 0)), 'constant', constant_values=0) # noinspection PyTypeChecker ylabels.extend([""] * diff) h, w = data.shape # noinspection PyArgumentList,PyTypeChecker sdata = (data.reshape(h // nrows, nrows, -1, ncols) .swapaxes(1, 2) .reshape(-1, nrows, ncols)) dt = datetime.now().strftime("%Y-%m-%d %H-%M-%S") with PdfPages("savedata/figures/plot {0}.pdf".format(dt)) as pdf: fig, axes = plt.subplots(1, nsubplots, figsize=(10, 7), tight_layout=True) if nsubplots > 1: for i, ax in enumerate(axes.flat): self._add_subplot(fig, ax, sdata[i], ylabels[i * nrows:i * nrows + nrows]) else: self._add_subplot(fig, axes, sdata[0], ylabels[0:nrows]) fig.subplots_adjust(right=1.2, top=0.2) fig.suptitle("Plot #{0}".format(self._plot_num + 1), fontsize=10) self._plot_num += 1 pdf.savefig() plt.close() def _create_policy(self, func=None): """Creates a policy (i.e., a state-action association). Parameters ---------- func : callable, optional A callback function for mixing policies. """ policy = {} # noinspection PyUnresolvedReferences if func and self._history and len(self._history.itervalues().next()) >= 2: lmda = np.cumsum(func(), dtype=float) for state, info in self._model.statespace.iteritems(): idx = np.argmax(lmda > np.random.random()) policy[state] = [self._history[state][idx]] else: for state, info in self._model.statespace.iteritems(): policy[state] = [self.get_best_action(state)] return policy def _calculate_reachable_states(self): """Identify the reachable states.""" for state, info in self._model.statespace.iteritems(): info.steps_away = 100000 for mdl in info.models.values(): if mdl.visits > 0: info.steps_away = 0 break def _remove_unreachable_states(self): """Remove unreachable states.""" if False and self._ignore_unreachable: for state in self._model.statespace.keys(): info = self._model.statespace[state] if info.steps_away > ValueIteration.MAX_STEPS: self._model.statespace.pop(state, None) # noinspection PyMethodMayBeStatic def _add_subplot(self, fig, ax, data, ylabels): """Add a subplot.""" h, w = data.shape # noinspection PyUnresolvedReferences heatmap = ax.pcolormesh(data, edgecolors='w', # put white lines between squares in heatmap cmap=plt.cm.Blues) ax.autoscale(tight=True) # get rid of whitespace in margins of heatmap ax.set_aspect('equal') # ensure heatmap cells are square ax.tick_params(bottom='on', top='off', left='on', right='off') # turn off ticks ax.set_yticks(np.arange(h) + 0.5) ax.set_yticklabels(np.arange(1, h + 1), size=7) ax.set_xticks(np.arange(w) + 0.5) ax.set_xticklabels(np.arange(1, w + 1), size=7) from mpl_toolkits.axes_grid1 import make_axes_locatable divider = make_axes_locatable(ax) cax = divider.append_axes("right", "20%", pad="15%") cbar = fig.colorbar(heatmap, cax=cax) cbar.ax.tick_params(labelsize=7) # Set the labels ax.set_xticklabels(self._model.get_actions(), minor=False, rotation=90) ax.set_yticklabels(ylabels, minor=False)
mit
gfyoung/pandas
pandas/tests/window/test_numba.py
1
9535
import numpy as np import pytest from pandas.errors import NumbaUtilError import pandas.util._test_decorators as td from pandas import DataFrame, Series, option_context import pandas._testing as tm from pandas.core.util.numba_ import NUMBA_FUNC_CACHE @td.skip_if_no("numba", "0.46.0") @pytest.mark.filterwarnings("ignore:\\nThe keyword argument") # Filter warnings when parallel=True and the function can't be parallelized by Numba class TestEngine: @pytest.mark.parametrize("jit", [True, False]) def test_numba_vs_cython_apply(self, jit, nogil, parallel, nopython, center): def f(x, *args): arg_sum = 0 for arg in args: arg_sum += arg return np.mean(x) + arg_sum if jit: import numba f = numba.jit(f) engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} args = (2,) s = Series(range(10)) result = s.rolling(2, center=center).apply( f, args=args, engine="numba", engine_kwargs=engine_kwargs, raw=True ) expected = s.rolling(2, center=center).apply( f, engine="cython", args=args, raw=True ) tm.assert_series_equal(result, expected) def test_numba_vs_cython_rolling_methods( self, nogil, parallel, nopython, arithmetic_numba_supported_operators ): method = arithmetic_numba_supported_operators engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} df = DataFrame(np.eye(5)) roll = df.rolling(2) result = getattr(roll, method)(engine="numba", engine_kwargs=engine_kwargs) expected = getattr(roll, method)(engine="cython") # Check the cache assert (getattr(np, f"nan{method}"), "Rolling_apply_single") in NUMBA_FUNC_CACHE tm.assert_frame_equal(result, expected) def test_numba_vs_cython_expanding_methods( self, nogil, parallel, nopython, arithmetic_numba_supported_operators ): method = arithmetic_numba_supported_operators engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} df = DataFrame(np.eye(5)) expand = df.expanding() result = getattr(expand, method)(engine="numba", engine_kwargs=engine_kwargs) expected = getattr(expand, method)(engine="cython") # Check the cache assert ( getattr(np, f"nan{method}"), "Expanding_apply_single", ) in NUMBA_FUNC_CACHE tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("jit", [True, False]) def test_cache_apply(self, jit, nogil, parallel, nopython): # Test that the functions are cached correctly if we switch functions def func_1(x): return np.mean(x) + 4 def func_2(x): return np.std(x) * 5 if jit: import numba func_1 = numba.jit(func_1) func_2 = numba.jit(func_2) engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} roll = Series(range(10)).rolling(2) result = roll.apply( func_1, engine="numba", engine_kwargs=engine_kwargs, raw=True ) expected = roll.apply(func_1, engine="cython", raw=True) tm.assert_series_equal(result, expected) # func_1 should be in the cache now assert (func_1, "Rolling_apply_single") in NUMBA_FUNC_CACHE result = roll.apply( func_2, engine="numba", engine_kwargs=engine_kwargs, raw=True ) expected = roll.apply(func_2, engine="cython", raw=True) tm.assert_series_equal(result, expected) # This run should use the cached func_1 result = roll.apply( func_1, engine="numba", engine_kwargs=engine_kwargs, raw=True ) expected = roll.apply(func_1, engine="cython", raw=True) tm.assert_series_equal(result, expected) @td.skip_if_no("numba", "0.46.0") class TestGroupbyEWMMean: def test_invalid_engine(self): df = DataFrame({"A": ["a", "b", "a", "b"], "B": range(4)}) with pytest.raises(ValueError, match="engine must be either"): df.groupby("A").ewm(com=1.0).mean(engine="foo") def test_invalid_engine_kwargs(self): df = DataFrame({"A": ["a", "b", "a", "b"], "B": range(4)}) with pytest.raises(ValueError, match="cython engine does not"): df.groupby("A").ewm(com=1.0).mean( engine="cython", engine_kwargs={"nopython": True} ) def test_cython_vs_numba(self, nogil, parallel, nopython, ignore_na, adjust): df = DataFrame({"A": ["a", "b", "a", "b"], "B": range(4)}) gb_ewm = df.groupby("A").ewm(com=1.0, adjust=adjust, ignore_na=ignore_na) engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} result = gb_ewm.mean(engine="numba", engine_kwargs=engine_kwargs) expected = gb_ewm.mean(engine="cython") tm.assert_frame_equal(result, expected) @td.skip_if_no("numba", "0.46.0") def test_use_global_config(): def f(x): return np.mean(x) + 2 s = Series(range(10)) with option_context("compute.use_numba", True): result = s.rolling(2).apply(f, engine=None, raw=True) expected = s.rolling(2).apply(f, engine="numba", raw=True) tm.assert_series_equal(expected, result) @td.skip_if_no("numba", "0.46.0") def test_invalid_kwargs_nopython(): with pytest.raises(NumbaUtilError, match="numba does not support kwargs with"): Series(range(1)).rolling(1).apply( lambda x: x, kwargs={"a": 1}, engine="numba", raw=True ) @td.skip_if_no("numba", "0.46.0") @pytest.mark.slow @pytest.mark.filterwarnings("ignore:\\nThe keyword argument") # Filter warnings when parallel=True and the function can't be parallelized by Numba class TestTableMethod: def test_table_series_valueerror(self): def f(x): return np.sum(x, axis=0) + 1 with pytest.raises( ValueError, match="method='table' not applicable for Series objects." ): Series(range(1)).rolling(1, method="table").apply( f, engine="numba", raw=True ) def test_table_method_rolling_methods( self, axis, nogil, parallel, nopython, arithmetic_numba_supported_operators ): method = arithmetic_numba_supported_operators engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} df = DataFrame(np.eye(3)) result = getattr( df.rolling(2, method="table", axis=axis, min_periods=0), method )(engine_kwargs=engine_kwargs, engine="numba") expected = getattr( df.rolling(2, method="single", axis=axis, min_periods=0), method )(engine_kwargs=engine_kwargs, engine="numba") tm.assert_frame_equal(result, expected) def test_table_method_rolling_apply(self, axis, nogil, parallel, nopython): engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} def f(x): return np.sum(x, axis=0) + 1 df = DataFrame(np.eye(3)) result = df.rolling(2, method="table", axis=axis, min_periods=0).apply( f, raw=True, engine_kwargs=engine_kwargs, engine="numba" ) expected = df.rolling(2, method="single", axis=axis, min_periods=0).apply( f, raw=True, engine_kwargs=engine_kwargs, engine="numba" ) tm.assert_frame_equal(result, expected) def test_table_method_rolling_weighted_mean(self): def weighted_mean(x): arr = np.ones((1, x.shape[1])) arr[:, :2] = (x[:, :2] * x[:, 2]).sum(axis=0) / x[:, 2].sum() return arr df = DataFrame([[1, 2, 0.6], [2, 3, 0.4], [3, 4, 0.2], [4, 5, 0.7]]) result = df.rolling(2, method="table", min_periods=0).apply( weighted_mean, raw=True, engine="numba" ) expected = DataFrame( [ [1.0, 2.0, 1.0], [1.8, 2.0, 1.0], [3.333333, 2.333333, 1.0], [1.555556, 7, 1.0], ] ) tm.assert_frame_equal(result, expected) def test_table_method_expanding_apply(self, axis, nogil, parallel, nopython): engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} def f(x): return np.sum(x, axis=0) + 1 df = DataFrame(np.eye(3)) result = df.expanding(method="table", axis=axis).apply( f, raw=True, engine_kwargs=engine_kwargs, engine="numba" ) expected = df.expanding(method="single", axis=axis).apply( f, raw=True, engine_kwargs=engine_kwargs, engine="numba" ) tm.assert_frame_equal(result, expected) def test_table_method_expanding_methods( self, axis, nogil, parallel, nopython, arithmetic_numba_supported_operators ): method = arithmetic_numba_supported_operators engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} df = DataFrame(np.eye(3)) result = getattr(df.expanding(method="table", axis=axis), method)( engine_kwargs=engine_kwargs, engine="numba" ) expected = getattr(df.expanding(method="single", axis=axis), method)( engine_kwargs=engine_kwargs, engine="numba" ) tm.assert_frame_equal(result, expected)
bsd-3-clause
rfdougherty/dipy
scratch/very_scratch/spherical_statistics.py
20
5695
import numpy as np import dipy.core.meshes as meshes import get_vertices as gv from dipy.core.triangle_subdivide import create_unit_sphere #from dipy.viz import fos #from dipy.io import dicomreaders as dcm #import dipy.core.geometry as geometry #import matplotlib.pyplot as mplp import dipy.core.sphere_plots as splot # set up a dictionary of sphere points that are in use EITHER as a set # directions for diffusion weighted acquisitions OR as a set of # evaluation points for an ODF (orientation distribution function. sphere_dic = {'fy362': {'filepath' : '/home/ian/Devel/dipy/dipy/core/data/evenly_distributed_sphere_362.npz', 'object': 'npz', 'vertices': 'vertices', 'omit': 0, 'hemi': False}, 'fy642': {'filepath' : '/home/ian/Devel/dipy/dipy/core/data/evenly_distributed_sphere_642.npz', 'object': 'npz', 'vertices': 'odf_vertices', 'omit': 0, 'hemi': False}, 'siem64': {'filepath':'/home/ian/Devel/dipy/dipy/core/tests/data/small_64D.gradients.npy', 'object': 'npy', 'omit': 1, 'hemi': True}, 'create2': {}, 'create3': {}, 'create4': {}, 'create5': {}, 'create6': {}, 'create7': {}, 'create8': {}, 'create9': {}, 'marta200': {'filepath': '/home/ian/Data/Spheres/200.npy', 'object': 'npy', 'omit': 0, 'hemi': True}, 'dsi101': {'filepath': '/home/ian/Data/Frank_Eleftherios/frank/20100511_m030y_cbu100624/08_ep2d_advdiff_101dir_DSI', 'object': 'dicom', 'omit': 0, 'hemi': True}} def plot_sphere(v,key): r = fos.ren() fos.add(r,fos.point(v,fos.green, point_radius= 0.01)) fos.show(r, title=key, size=(1000,1000)) def plot_lambert(v,key): lamb = geometry.lambert_equal_area_projection_cart(*v.T).T (y1,y2) = lamb radius = np.sum(lamb**2,axis=0) < 1 #print inner #print y1[inner] #print y1[-inner] figure = mplp.figure(facecolor='w') current = figure.add_subplot(111) current.patch.set_color('k') current.plot(y1[radius],y2[radius],'.g') current.plot(y1[-radius],y2[-radius],'.r') current.axes.set_aspect(aspect = 'equal', adjustable = 'box') figure.show() figure.waitforbuttonpress() mplp.close() def get_vertex_set(key): if key[:6] == 'create': number = eval(key[6:]) vertices, edges, faces = create_unit_sphere(number) omit = 0 else: entry = sphere_dic[key] #print entry if entry.has_key('omit'): omit = entry['omit'] else: omit = 0 filepath = entry['filepath'] if entry['object'] == 'npz': filearray = np.load(filepath) vertices = filearray[entry['vertices']] elif sphere_dic[key]['object'] == 'npy': vertices = np.load(filepath) elif entry['object'] == 'dicom': data,affine,bvals,gradients=dcm.read_mosaic_dir(filepath) #print (bvals.shape, gradients.shape) grad3 = np.vstack((bvals,bvals,bvals)).transpose() #print grad3.shape #vertices = grad3*gradients vertices = gradients if omit > 0: vertices = vertices[omit:,:] if entry['hemi']: vertices = np.vstack([vertices, -vertices]) print key, ': number of vertices = ', vertices.shape[0], '(drop ',omit,')' return vertices[omit:,:] xup=np.array([ 1,0,0]) xdn=np.array([-1,0,0]) yup=np.array([0, 1,0]) ydn=np.array([0,-1,0]) zup=np.array([0,0, 1]) zdn=np.array([0,0,-1]) #for key in sphere_dic: #for key in ['siem64']: for key in ['fy642']: v = gv.get_vertex_set(key) splot.plot_sphere(v,key) splot.plot_lambert(v,key,centre=np.array([0.,0.])) equat, polar = meshes.spherical_statistics(v,north=xup,width=0.2) l = 2.*len(v) equat = equat/l polar = polar/l print '%6.3f %6.3f %6.3f %6.3f' % (equat.min(), equat.mean(), equat.max(), np.sqrt(equat.var())) print '%6.3f %6.3f %6.3f %6.3f' % (polar.min(), polar.mean(), polar.max(), np.sqrt(polar.var())) def spherical_statistics(vertices, north=np.array([0,0,1]), width=0.02): ''' function to evaluate a spherical triangulation by looking at the variability of numbers of vertices in 'vertices' in equatorial bands of width 'width' orthogonal to each point in 'vertices' ''' equatorial_counts = np.array([len(equatorial_zone_vertices(vertices, pole, width=width)) for pole in vertices if np.dot(pole,north) >= 0]) #equatorial_counts = np.bincount(equatorial_counts) #args = np.where(equatorial_counts>0) #print zip(list(args[0]), equatorial_counts[args]) polar_counts = np.array([len(polar_zone_vertices(vertices, pole, width=width)) for pole in vertices if np.dot(pole,north) >= 0]) #unique_counts = np.sort(np.array(list(set(equatorial_counts)))) #polar_counts = np.bincount(polar_counts) #counts_tokens = [(uc, bin_counts[uc]) for uc in bin_counts if ] #args = np.where(polar_counts>0) #print '(number, frequency):', zip(unique_counts,tokens) #print '(number, frequency):', counts_tokens #print zip(args, bin_counts[args]) #print zip(list(args[0]), polar_counts[args]) return equatorial_counts, polar_counts def spherical_proportion(zone_width): # assuming radius is 1: (2*np.pi*zone_width)/(4*np.pi) # 0 <= zone_width <= 2 return zone_width/2. def angle_for_zone(zone_width): return np.arcsin(zone_width/2.) def coarseness(faces): faces = np.asarray(faces) coarseness = 0.0 for face in faces: a, b, c = face coarse = np.max(coarse, geom.circumradius(a,b,c)) return coarse
bsd-3-clause
fzalkow/scikit-learn
sklearn/kernel_ridge.py
155
6545
"""Module :mod:`sklearn.kernel_ridge` implements kernel ridge regression.""" # Authors: Mathieu Blondel <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD 3 clause import numpy as np from .base import BaseEstimator, RegressorMixin from .metrics.pairwise import pairwise_kernels from .linear_model.ridge import _solve_cholesky_kernel from .utils import check_X_y from .utils.validation import check_is_fitted class KernelRidge(BaseEstimator, RegressorMixin): """Kernel ridge regression. Kernel ridge regression (KRR) combines ridge regression (linear least squares with l2-norm regularization) with the kernel trick. It thus learns a linear function in the space induced by the respective kernel and the data. For non-linear kernels, this corresponds to a non-linear function in the original space. The form of the model learned by KRR is identical to support vector regression (SVR). However, different loss functions are used: KRR uses squared error loss while support vector regression uses epsilon-insensitive loss, both combined with l2 regularization. In contrast to SVR, fitting a KRR model can be done in closed-form and is typically faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower than SVR, which learns a sparse model for epsilon > 0, at prediction-time. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]). Read more in the :ref:`User Guide <kernel_ridge>`. Parameters ---------- alpha : {float, array-like}, shape = [n_targets] Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. kernel : string or callable, default="linear" Kernel mapping used internally. A callable should accept two arguments and the keyword arguments passed to this object as kernel_params, and should return a floating point number. gamma : float, default=None Gamma parameter for the RBF, polynomial, exponential chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; see the documentation for sklearn.metrics.pairwise. Ignored by other kernels. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. kernel_params : mapping of string to any, optional Additional parameters (keyword arguments) for kernel function passed as callable object. Attributes ---------- dual_coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s) in kernel space X_fit_ : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data, which is also required for prediction References ---------- * Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press chapter 14.4.3, pp. 492-493 See also -------- Ridge Linear ridge regression. SVR Support Vector Regression implemented using libsvm. Examples -------- >>> from sklearn.kernel_ridge import KernelRidge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> rng = np.random.RandomState(0) >>> y = rng.randn(n_samples) >>> X = rng.randn(n_samples, n_features) >>> clf = KernelRidge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE KernelRidge(alpha=1.0, coef0=1, degree=3, gamma=None, kernel='linear', kernel_params=None) """ def __init__(self, alpha=1, kernel="linear", gamma=None, degree=3, coef0=1, kernel_params=None): self.alpha = alpha self.kernel = kernel self.gamma = gamma self.degree = degree self.coef0 = coef0 self.kernel_params = kernel_params def _get_kernel(self, X, Y=None): if callable(self.kernel): params = self.kernel_params or {} else: params = {"gamma": self.gamma, "degree": self.degree, "coef0": self.coef0} return pairwise_kernels(X, Y, metric=self.kernel, filter_params=True, **params) @property def _pairwise(self): return self.kernel == "precomputed" def fit(self, X, y=None, sample_weight=None): """Fit Kernel Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample, ignored if None is passed. Returns ------- self : returns an instance of self. """ # Convert data X, y = check_X_y(X, y, accept_sparse=("csr", "csc"), multi_output=True, y_numeric=True) K = self._get_kernel(X) alpha = np.atleast_1d(self.alpha) ravel = False if len(y.shape) == 1: y = y.reshape(-1, 1) ravel = True copy = self.kernel == "precomputed" self.dual_coef_ = _solve_cholesky_kernel(K, y, alpha, sample_weight, copy) if ravel: self.dual_coef_ = self.dual_coef_.ravel() self.X_fit_ = X return self def predict(self, X): """Predict using the the kernel ridge model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Samples. Returns ------- C : array, shape = [n_samples] or [n_samples, n_targets] Returns predicted values. """ check_is_fitted(self, ["X_fit_", "dual_coef_"]) K = self._get_kernel(X, self.X_fit_) return np.dot(K, self.dual_coef_)
bsd-3-clause
IndraVikas/scikit-learn
sklearn/linear_model/omp.py
127
30417
"""Orthogonal matching pursuit algorithms """ # Author: Vlad Niculae # # License: BSD 3 clause import warnings from distutils.version import LooseVersion import numpy as np from scipy import linalg from scipy.linalg.lapack import get_lapack_funcs from .base import LinearModel, _pre_fit from ..base import RegressorMixin from ..utils import as_float_array, check_array, check_X_y from ..cross_validation import check_cv from ..externals.joblib import Parallel, delayed import scipy solve_triangular_args = {} if LooseVersion(scipy.__version__) >= LooseVersion('0.12'): # check_finite=False is an optimization available only in scipy >=0.12 solve_triangular_args = {'check_finite': False} premature = """ Orthogonal matching pursuit ended prematurely due to linear dependence in the dictionary. The requested precision might not have been met. """ def _cholesky_omp(X, y, n_nonzero_coefs, tol=None, copy_X=True, return_path=False): """Orthogonal Matching Pursuit step using the Cholesky decomposition. Parameters ---------- X : array, shape (n_samples, n_features) Input dictionary. Columns are assumed to have unit norm. y : array, shape (n_samples,) Input targets n_nonzero_coefs : int Targeted number of non-zero elements tol : float Targeted squared error, if not None overrides n_nonzero_coefs. copy_X : bool, optional Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. Returns ------- gamma : array, shape (n_nonzero_coefs,) Non-zero elements of the solution idx : array, shape (n_nonzero_coefs,) Indices of the positions of the elements in gamma within the solution vector coef : array, shape (n_features, n_nonzero_coefs) The first k values of column k correspond to the coefficient value for the active features at that step. The lower left triangle contains garbage. Only returned if ``return_path=True``. n_active : int Number of active features at convergence. """ if copy_X: X = X.copy('F') else: # even if we are allowed to overwrite, still copy it if bad order X = np.asfortranarray(X) min_float = np.finfo(X.dtype).eps nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (X,)) potrs, = get_lapack_funcs(('potrs',), (X,)) alpha = np.dot(X.T, y) residual = y gamma = np.empty(0) n_active = 0 indices = np.arange(X.shape[1]) # keeping track of swapping max_features = X.shape[1] if tol is not None else n_nonzero_coefs if solve_triangular_args: # new scipy, don't need to initialize because check_finite=False L = np.empty((max_features, max_features), dtype=X.dtype) else: # old scipy, we need the garbage upper triangle to be non-Inf L = np.zeros((max_features, max_features), dtype=X.dtype) L[0, 0] = 1. if return_path: coefs = np.empty_like(L) while True: lam = np.argmax(np.abs(np.dot(X.T, residual))) if lam < n_active or alpha[lam] ** 2 < min_float: # atom already selected or inner product too small warnings.warn(premature, RuntimeWarning, stacklevel=2) break if n_active > 0: # Updates the Cholesky decomposition of X' X L[n_active, :n_active] = np.dot(X[:, :n_active].T, X[:, lam]) linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **solve_triangular_args) v = nrm2(L[n_active, :n_active]) ** 2 if 1 - v <= min_float: # selected atoms are dependent warnings.warn(premature, RuntimeWarning, stacklevel=2) break L[n_active, n_active] = np.sqrt(1 - v) X.T[n_active], X.T[lam] = swap(X.T[n_active], X.T[lam]) alpha[n_active], alpha[lam] = alpha[lam], alpha[n_active] indices[n_active], indices[lam] = indices[lam], indices[n_active] n_active += 1 # solves LL'x = y as a composition of two triangular systems gamma, _ = potrs(L[:n_active, :n_active], alpha[:n_active], lower=True, overwrite_b=False) if return_path: coefs[:n_active, n_active - 1] = gamma residual = y - np.dot(X[:, :n_active], gamma) if tol is not None and nrm2(residual) ** 2 <= tol: break elif n_active == max_features: break if return_path: return gamma, indices[:n_active], coefs[:, :n_active], n_active else: return gamma, indices[:n_active], n_active def _gram_omp(Gram, Xy, n_nonzero_coefs, tol_0=None, tol=None, copy_Gram=True, copy_Xy=True, return_path=False): """Orthogonal Matching Pursuit step on a precomputed Gram matrix. This function uses the the Cholesky decomposition method. Parameters ---------- Gram : array, shape (n_features, n_features) Gram matrix of the input data matrix Xy : array, shape (n_features,) Input targets n_nonzero_coefs : int Targeted number of non-zero elements tol_0 : float Squared norm of y, required if tol is not None. tol : float Targeted squared error, if not None overrides n_nonzero_coefs. copy_Gram : bool, optional Whether the gram matrix must be copied by the algorithm. A false value is only helpful if it is already Fortran-ordered, otherwise a copy is made anyway. copy_Xy : bool, optional Whether the covariance vector Xy must be copied by the algorithm. If False, it may be overwritten. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. Returns ------- gamma : array, shape (n_nonzero_coefs,) Non-zero elements of the solution idx : array, shape (n_nonzero_coefs,) Indices of the positions of the elements in gamma within the solution vector coefs : array, shape (n_features, n_nonzero_coefs) The first k values of column k correspond to the coefficient value for the active features at that step. The lower left triangle contains garbage. Only returned if ``return_path=True``. n_active : int Number of active features at convergence. """ Gram = Gram.copy('F') if copy_Gram else np.asfortranarray(Gram) if copy_Xy: Xy = Xy.copy() min_float = np.finfo(Gram.dtype).eps nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (Gram,)) potrs, = get_lapack_funcs(('potrs',), (Gram,)) indices = np.arange(len(Gram)) # keeping track of swapping alpha = Xy tol_curr = tol_0 delta = 0 gamma = np.empty(0) n_active = 0 max_features = len(Gram) if tol is not None else n_nonzero_coefs if solve_triangular_args: # new scipy, don't need to initialize because check_finite=False L = np.empty((max_features, max_features), dtype=Gram.dtype) else: # old scipy, we need the garbage upper triangle to be non-Inf L = np.zeros((max_features, max_features), dtype=Gram.dtype) L[0, 0] = 1. if return_path: coefs = np.empty_like(L) while True: lam = np.argmax(np.abs(alpha)) if lam < n_active or alpha[lam] ** 2 < min_float: # selected same atom twice, or inner product too small warnings.warn(premature, RuntimeWarning, stacklevel=3) break if n_active > 0: L[n_active, :n_active] = Gram[lam, :n_active] linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **solve_triangular_args) v = nrm2(L[n_active, :n_active]) ** 2 if 1 - v <= min_float: # selected atoms are dependent warnings.warn(premature, RuntimeWarning, stacklevel=3) break L[n_active, n_active] = np.sqrt(1 - v) Gram[n_active], Gram[lam] = swap(Gram[n_active], Gram[lam]) Gram.T[n_active], Gram.T[lam] = swap(Gram.T[n_active], Gram.T[lam]) indices[n_active], indices[lam] = indices[lam], indices[n_active] Xy[n_active], Xy[lam] = Xy[lam], Xy[n_active] n_active += 1 # solves LL'x = y as a composition of two triangular systems gamma, _ = potrs(L[:n_active, :n_active], Xy[:n_active], lower=True, overwrite_b=False) if return_path: coefs[:n_active, n_active - 1] = gamma beta = np.dot(Gram[:, :n_active], gamma) alpha = Xy - beta if tol is not None: tol_curr += delta delta = np.inner(gamma, beta[:n_active]) tol_curr -= delta if abs(tol_curr) <= tol: break elif n_active == max_features: break if return_path: return gamma, indices[:n_active], coefs[:, :n_active], n_active else: return gamma, indices[:n_active], n_active def orthogonal_mp(X, y, n_nonzero_coefs=None, tol=None, precompute=False, copy_X=True, return_path=False, return_n_iter=False): """Orthogonal Matching Pursuit (OMP) Solves n_targets Orthogonal Matching Pursuit problems. An instance of the problem has the form: When parametrized by the number of non-zero coefficients using `n_nonzero_coefs`: argmin ||y - X\gamma||^2 subject to ||\gamma||_0 <= n_{nonzero coefs} When parametrized by error using the parameter `tol`: argmin ||\gamma||_0 subject to ||y - X\gamma||^2 <= tol Read more in the :ref:`User Guide <omp>`. Parameters ---------- X : array, shape (n_samples, n_features) Input data. Columns are assumed to have unit norm. y : array, shape (n_samples,) or (n_samples, n_targets) Input targets n_nonzero_coefs : int Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. tol : float Maximum norm of the residual. If not None, overrides n_nonzero_coefs. precompute : {True, False, 'auto'}, Whether to perform precomputations. Improves performance when n_targets or n_samples is very large. copy_X : bool, optional Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. return_n_iter : bool, optional default False Whether or not to return the number of iterations. Returns ------- coef : array, shape (n_features,) or (n_features, n_targets) Coefficients of the OMP solution. If `return_path=True`, this contains the whole coefficient path. In this case its shape is (n_features, n_features) or (n_features, n_targets, n_features) and iterating over the last axis yields coefficients in increasing order of active features. n_iters : array-like or int Number of active features across every target. Returned only if `return_n_iter` is set to True. See also -------- OrthogonalMatchingPursuit orthogonal_mp_gram lars_path decomposition.sparse_encode Notes ----- Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf """ X = check_array(X, order='F', copy=copy_X) copy_X = False if y.ndim == 1: y = y.reshape(-1, 1) y = check_array(y) if y.shape[1] > 1: # subsequent targets will be affected copy_X = True if n_nonzero_coefs is None and tol is None: # default for n_nonzero_coefs is 0.1 * n_features # but at least one. n_nonzero_coefs = max(int(0.1 * X.shape[1]), 1) if tol is not None and tol < 0: raise ValueError("Epsilon cannot be negative") if tol is None and n_nonzero_coefs <= 0: raise ValueError("The number of atoms must be positive") if tol is None and n_nonzero_coefs > X.shape[1]: raise ValueError("The number of atoms cannot be more than the number " "of features") if precompute == 'auto': precompute = X.shape[0] > X.shape[1] if precompute: G = np.dot(X.T, X) G = np.asfortranarray(G) Xy = np.dot(X.T, y) if tol is not None: norms_squared = np.sum((y ** 2), axis=0) else: norms_squared = None return orthogonal_mp_gram(G, Xy, n_nonzero_coefs, tol, norms_squared, copy_Gram=copy_X, copy_Xy=False, return_path=return_path) if return_path: coef = np.zeros((X.shape[1], y.shape[1], X.shape[1])) else: coef = np.zeros((X.shape[1], y.shape[1])) n_iters = [] for k in range(y.shape[1]): out = _cholesky_omp( X, y[:, k], n_nonzero_coefs, tol, copy_X=copy_X, return_path=return_path) if return_path: _, idx, coefs, n_iter = out coef = coef[:, :, :len(idx)] for n_active, x in enumerate(coefs.T): coef[idx[:n_active + 1], k, n_active] = x[:n_active + 1] else: x, idx, n_iter = out coef[idx, k] = x n_iters.append(n_iter) if y.shape[1] == 1: n_iters = n_iters[0] if return_n_iter: return np.squeeze(coef), n_iters else: return np.squeeze(coef) def orthogonal_mp_gram(Gram, Xy, n_nonzero_coefs=None, tol=None, norms_squared=None, copy_Gram=True, copy_Xy=True, return_path=False, return_n_iter=False): """Gram Orthogonal Matching Pursuit (OMP) Solves n_targets Orthogonal Matching Pursuit problems using only the Gram matrix X.T * X and the product X.T * y. Read more in the :ref:`User Guide <omp>`. Parameters ---------- Gram : array, shape (n_features, n_features) Gram matrix of the input data: X.T * X Xy : array, shape (n_features,) or (n_features, n_targets) Input targets multiplied by X: X.T * y n_nonzero_coefs : int Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. tol : float Maximum norm of the residual. If not None, overrides n_nonzero_coefs. norms_squared : array-like, shape (n_targets,) Squared L2 norms of the lines of y. Required if tol is not None. copy_Gram : bool, optional Whether the gram matrix must be copied by the algorithm. A false value is only helpful if it is already Fortran-ordered, otherwise a copy is made anyway. copy_Xy : bool, optional Whether the covariance vector Xy must be copied by the algorithm. If False, it may be overwritten. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. return_n_iter : bool, optional default False Whether or not to return the number of iterations. Returns ------- coef : array, shape (n_features,) or (n_features, n_targets) Coefficients of the OMP solution. If `return_path=True`, this contains the whole coefficient path. In this case its shape is (n_features, n_features) or (n_features, n_targets, n_features) and iterating over the last axis yields coefficients in increasing order of active features. n_iters : array-like or int Number of active features across every target. Returned only if `return_n_iter` is set to True. See also -------- OrthogonalMatchingPursuit orthogonal_mp lars_path decomposition.sparse_encode Notes ----- Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf """ Gram = check_array(Gram, order='F', copy=copy_Gram) Xy = np.asarray(Xy) if Xy.ndim > 1 and Xy.shape[1] > 1: # or subsequent target will be affected copy_Gram = True if Xy.ndim == 1: Xy = Xy[:, np.newaxis] if tol is not None: norms_squared = [norms_squared] if n_nonzero_coefs is None and tol is None: n_nonzero_coefs = int(0.1 * len(Gram)) if tol is not None and norms_squared is None: raise ValueError('Gram OMP needs the precomputed norms in order ' 'to evaluate the error sum of squares.') if tol is not None and tol < 0: raise ValueError("Epsilon cannot be negative") if tol is None and n_nonzero_coefs <= 0: raise ValueError("The number of atoms must be positive") if tol is None and n_nonzero_coefs > len(Gram): raise ValueError("The number of atoms cannot be more than the number " "of features") if return_path: coef = np.zeros((len(Gram), Xy.shape[1], len(Gram))) else: coef = np.zeros((len(Gram), Xy.shape[1])) n_iters = [] for k in range(Xy.shape[1]): out = _gram_omp( Gram, Xy[:, k], n_nonzero_coefs, norms_squared[k] if tol is not None else None, tol, copy_Gram=copy_Gram, copy_Xy=copy_Xy, return_path=return_path) if return_path: _, idx, coefs, n_iter = out coef = coef[:, :, :len(idx)] for n_active, x in enumerate(coefs.T): coef[idx[:n_active + 1], k, n_active] = x[:n_active + 1] else: x, idx, n_iter = out coef[idx, k] = x n_iters.append(n_iter) if Xy.shape[1] == 1: n_iters = n_iters[0] if return_n_iter: return np.squeeze(coef), n_iters else: return np.squeeze(coef) class OrthogonalMatchingPursuit(LinearModel, RegressorMixin): """Orthogonal Matching Pursuit model (OMP) Parameters ---------- n_nonzero_coefs : int, optional Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. tol : float, optional Maximum norm of the residual. If not None, overrides n_nonzero_coefs. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional If False, the regressors X are assumed to be already normalized. precompute : {True, False, 'auto'}, default 'auto' Whether to use a precomputed Gram and Xy matrix to speed up calculations. Improves performance when `n_targets` or `n_samples` is very large. Note that if you already have such matrices, you can pass them directly to the fit method. Read more in the :ref:`User Guide <omp>`. Attributes ---------- coef_ : array, shape (n_features,) or (n_features, n_targets) parameter vector (w in the formula) intercept_ : float or array, shape (n_targets,) independent term in decision function. n_iter_ : int or array-like Number of active features across every target. Notes ----- Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf See also -------- orthogonal_mp orthogonal_mp_gram lars_path Lars LassoLars decomposition.sparse_encode """ def __init__(self, n_nonzero_coefs=None, tol=None, fit_intercept=True, normalize=True, precompute='auto'): self.n_nonzero_coefs = n_nonzero_coefs self.tol = tol self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- self : object returns an instance of self. """ X, y = check_X_y(X, y, multi_output=True, y_numeric=True) n_features = X.shape[1] X, y, X_mean, y_mean, X_std, Gram, Xy = \ _pre_fit(X, y, None, self.precompute, self.normalize, self.fit_intercept, copy=True) if y.ndim == 1: y = y[:, np.newaxis] if self.n_nonzero_coefs is None and self.tol is None: # default for n_nonzero_coefs is 0.1 * n_features # but at least one. self.n_nonzero_coefs_ = max(int(0.1 * n_features), 1) else: self.n_nonzero_coefs_ = self.n_nonzero_coefs if Gram is False: coef_, self.n_iter_ = orthogonal_mp( X, y, self.n_nonzero_coefs_, self.tol, precompute=False, copy_X=True, return_n_iter=True) else: norms_sq = np.sum(y ** 2, axis=0) if self.tol is not None else None coef_, self.n_iter_ = orthogonal_mp_gram( Gram, Xy=Xy, n_nonzero_coefs=self.n_nonzero_coefs_, tol=self.tol, norms_squared=norms_sq, copy_Gram=True, copy_Xy=True, return_n_iter=True) self.coef_ = coef_.T self._set_intercept(X_mean, y_mean, X_std) return self def _omp_path_residues(X_train, y_train, X_test, y_test, copy=True, fit_intercept=True, normalize=True, max_iter=100): """Compute the residues on left-out data for a full LARS path Parameters ----------- X_train : array, shape (n_samples, n_features) The data to fit the LARS on y_train : array, shape (n_samples) The target variable to fit LARS on X_test : array, shape (n_samples, n_features) The data to compute the residues on y_test : array, shape (n_samples) The target variable to compute the residues on copy : boolean, optional Whether X_train, X_test, y_train and y_test should be copied. If False, they may be overwritten. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. max_iter : integer, optional Maximum numbers of iterations to perform, therefore maximum features to include. 100 by default. Returns ------- residues: array, shape (n_samples, max_features) Residues of the prediction on the test data """ if copy: X_train = X_train.copy() y_train = y_train.copy() X_test = X_test.copy() y_test = y_test.copy() if fit_intercept: X_mean = X_train.mean(axis=0) X_train -= X_mean X_test -= X_mean y_mean = y_train.mean(axis=0) y_train = as_float_array(y_train, copy=False) y_train -= y_mean y_test = as_float_array(y_test, copy=False) y_test -= y_mean if normalize: norms = np.sqrt(np.sum(X_train ** 2, axis=0)) nonzeros = np.flatnonzero(norms) X_train[:, nonzeros] /= norms[nonzeros] coefs = orthogonal_mp(X_train, y_train, n_nonzero_coefs=max_iter, tol=None, precompute=False, copy_X=False, return_path=True) if coefs.ndim == 1: coefs = coefs[:, np.newaxis] if normalize: coefs[nonzeros] /= norms[nonzeros][:, np.newaxis] return np.dot(coefs.T, X_test.T) - y_test class OrthogonalMatchingPursuitCV(LinearModel, RegressorMixin): """Cross-validated Orthogonal Matching Pursuit model (OMP) Parameters ---------- copy : bool, optional Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional If False, the regressors X are assumed to be already normalized. max_iter : integer, optional Maximum numbers of iterations to perform, therefore maximum features to include. 10% of ``n_features`` but at least 5 if available. cv : cross-validation generator, optional see :mod:`sklearn.cross_validation`. If ``None`` is passed, default to a 5-fold strategy n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs verbose : boolean or integer, optional Sets the verbosity amount Read more in the :ref:`User Guide <omp>`. Attributes ---------- intercept_ : float or array, shape (n_targets,) Independent term in decision function. coef_ : array, shape (n_features,) or (n_features, n_targets) Parameter vector (w in the problem formulation). n_nonzero_coefs_ : int Estimated number of non-zero coefficients giving the best mean squared error over the cross-validation folds. n_iter_ : int or array-like Number of active features across every target for the model refit with the best hyperparameters got by cross-validating across all folds. See also -------- orthogonal_mp orthogonal_mp_gram lars_path Lars LassoLars OrthogonalMatchingPursuit LarsCV LassoLarsCV decomposition.sparse_encode """ def __init__(self, copy=True, fit_intercept=True, normalize=True, max_iter=None, cv=None, n_jobs=1, verbose=False): self.copy = copy self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.cv = cv self.n_jobs = n_jobs self.verbose = verbose def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape [n_samples, n_features] Training data. y : array-like, shape [n_samples] Target values. Returns ------- self : object returns an instance of self. """ X, y = check_X_y(X, y, y_numeric=True) X = as_float_array(X, copy=False, force_all_finite=False) cv = check_cv(self.cv, X, y, classifier=False) max_iter = (min(max(int(0.1 * X.shape[1]), 5), X.shape[1]) if not self.max_iter else self.max_iter) cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_omp_path_residues)( X[train], y[train], X[test], y[test], self.copy, self.fit_intercept, self.normalize, max_iter) for train, test in cv) min_early_stop = min(fold.shape[0] for fold in cv_paths) mse_folds = np.array([(fold[:min_early_stop] ** 2).mean(axis=1) for fold in cv_paths]) best_n_nonzero_coefs = np.argmin(mse_folds.mean(axis=0)) + 1 self.n_nonzero_coefs_ = best_n_nonzero_coefs omp = OrthogonalMatchingPursuit(n_nonzero_coefs=best_n_nonzero_coefs, fit_intercept=self.fit_intercept, normalize=self.normalize) omp.fit(X, y) self.coef_ = omp.coef_ self.intercept_ = omp.intercept_ self.n_iter_ = omp.n_iter_ return self
bsd-3-clause
henryzord/clustering
src/measures/dbcv/sequential.py
1
2360
import operator import itertools import warnings from sklearn.metrics import pairwise_distances import numpy as np from __handler__ import Handler class SequentialHandler(Handler): def __init__(self, dataset): super(SequentialHandler, self).__init__(dataset) self._data_dm = pairwise_distances(dataset, metric='euclidean') ** 2. self._data_coredist = np.empty(self._n_objects, dtype=np.float32) def __get_coredist__(self): """ Calculate the all points core distance (a_pts_coredist) for each object. :rtype: numpy.ndarray :return: The core distance for each object in the dataset. """ # -- non-vectorized version, for understanding -- # # for i in xrange(self._n_objects): # index_neighbours = np.setdiff1d(np.flatnonzero(self.labels == self.labels[i]), [i]) # n_neighbours = index_neighbours.shape[0] # dist_neighbours = self._data_dm[i, index_neighbours] # # _sum = 0. # for neighbour in dist_neighbours: # _sum += (1. / neighbour) ** float(self._n_attributes) # # _sum /= n_neighbours # _sum **= -(1./self._n_attributes) # # self._data_coredist[i] = _sum # -- vectorized counterpart, for speed -- # warnings.filterwarnings(action='ignore') vec_func = np.vectorize( lambda i: ( ( 1. / self._data_dm[i, np.setdiff1d(np.flatnonzero(self._data_labels == self._data_labels[i]), [i])] ) ** float(self._n_attributes) ).sum() / float(np.count_nonzero(self._data_labels == self._data_labels[i]) - 1) ) self._data_coredist = np.power(vec_func(xrange(self._n_objects)), -(1./self._n_attributes)) warnings.filterwarnings(action='default') def __mrd__(self): _list = itertools.combinations_with_replacement(xrange(self._n_objects), r=2) for x, y in _list: self._data_mreach[x, y] = max([self._data_dm[x, y], self._data_coredist[x], self._data_coredist[y]]) self._data_mreach[y, x] = self._data_mreach[x, y] # warnings.warn('filling diagonal with zeros!') # np.fill_diagonal(self._data_mreach, 0.) # TODO testing! return self._data_mreach
gpl-3.0
mikebenfield/scikit-learn
sklearn/linear_model/tests/test_sag.py
7
30673
# Authors: Danny Sullivan <[email protected]> # Tom Dupre la Tour <[email protected]> # # License: BSD 3 clause import math import numpy as np import scipy.sparse as sp from sklearn.linear_model.sag import get_auto_step_size from sklearn.linear_model.sag_fast import _multinomial_grad_loss_all_samples from sklearn.linear_model import LogisticRegression, Ridge from sklearn.linear_model.base import make_dataset from sklearn.linear_model.logistic import _multinomial_loss_grad from sklearn.utils.extmath import logsumexp from sklearn.utils.extmath import row_norms from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.utils import compute_class_weight from sklearn.utils import check_random_state from sklearn.preprocessing import LabelEncoder, LabelBinarizer from sklearn.datasets import make_blobs, load_iris from sklearn.base import clone iris = load_iris() # this is used for sag classification def log_dloss(p, y): z = p * y # approximately equal and saves the computation of the log if z > 18.0: return math.exp(-z) * -y if z < -18.0: return -y return -y / (math.exp(z) + 1.0) def log_loss(p, y): return np.mean(np.log(1. + np.exp(-y * p))) # this is used for sag regression def squared_dloss(p, y): return p - y def squared_loss(p, y): return np.mean(0.5 * (p - y) * (p - y)) # function for measuring the log loss def get_pobj(w, alpha, myX, myy, loss): w = w.ravel() pred = np.dot(myX, w) p = loss(pred, myy) p += alpha * w.dot(w) / 2. return p def sag(X, y, step_size, alpha, n_iter=1, dloss=None, sparse=False, sample_weight=None, fit_intercept=True, saga=False): n_samples, n_features = X.shape[0], X.shape[1] weights = np.zeros(X.shape[1]) sum_gradient = np.zeros(X.shape[1]) gradient_memory = np.zeros((n_samples, n_features)) intercept = 0.0 intercept_sum_gradient = 0.0 intercept_gradient_memory = np.zeros(n_samples) rng = np.random.RandomState(77) decay = 1.0 seen = set() # sparse data has a fixed decay of .01 if sparse: decay = .01 for epoch in range(n_iter): for k in range(n_samples): idx = int(rng.rand(1) * n_samples) # idx = k entry = X[idx] seen.add(idx) p = np.dot(entry, weights) + intercept gradient = dloss(p, y[idx]) if sample_weight is not None: gradient *= sample_weight[idx] update = entry * gradient + alpha * weights gradient_correction = update - gradient_memory[idx] sum_gradient += gradient_correction gradient_memory[idx] = update if saga: weights -= (gradient_correction * step_size * (1 - 1. / len(seen))) if fit_intercept: gradient_correction = (gradient - intercept_gradient_memory[idx]) intercept_gradient_memory[idx] = gradient intercept_sum_gradient += gradient_correction gradient_correction *= step_size * (1. - 1. / len(seen)) if saga: intercept -= (step_size * intercept_sum_gradient / len(seen) * decay) + gradient_correction else: intercept -= (step_size * intercept_sum_gradient / len(seen) * decay) weights -= step_size * sum_gradient / len(seen) return weights, intercept def sag_sparse(X, y, step_size, alpha, n_iter=1, dloss=None, sample_weight=None, sparse=False, fit_intercept=True, saga=False): if step_size * alpha == 1.: raise ZeroDivisionError("Sparse sag does not handle the case " "step_size * alpha == 1") n_samples, n_features = X.shape[0], X.shape[1] weights = np.zeros(n_features) sum_gradient = np.zeros(n_features) last_updated = np.zeros(n_features, dtype=np.int) gradient_memory = np.zeros(n_samples) rng = np.random.RandomState(77) intercept = 0.0 intercept_sum_gradient = 0.0 wscale = 1.0 decay = 1.0 seen = set() c_sum = np.zeros(n_iter * n_samples) # sparse data has a fixed decay of .01 if sparse: decay = .01 counter = 0 for epoch in range(n_iter): for k in range(n_samples): # idx = k idx = int(rng.rand(1) * n_samples) entry = X[idx] seen.add(idx) if counter >= 1: for j in range(n_features): if last_updated[j] == 0: weights[j] -= c_sum[counter - 1] * sum_gradient[j] else: weights[j] -= ((c_sum[counter - 1] - c_sum[last_updated[j] - 1]) * sum_gradient[j]) last_updated[j] = counter p = (wscale * np.dot(entry, weights)) + intercept gradient = dloss(p, y[idx]) if sample_weight is not None: gradient *= sample_weight[idx] update = entry * gradient gradient_correction = update - (gradient_memory[idx] * entry) sum_gradient += gradient_correction if saga: for j in range(n_features): weights[j] -= (gradient_correction[j] * step_size * (1 - 1. / len(seen)) / wscale) if fit_intercept: gradient_correction = gradient - gradient_memory[idx] intercept_sum_gradient += gradient_correction gradient_correction *= step_size * (1. - 1. / len(seen)) if saga: intercept -= ((step_size * intercept_sum_gradient / len(seen) * decay) + gradient_correction) else: intercept -= (step_size * intercept_sum_gradient / len(seen) * decay) gradient_memory[idx] = gradient wscale *= (1.0 - alpha * step_size) if counter == 0: c_sum[0] = step_size / (wscale * len(seen)) else: c_sum[counter] = (c_sum[counter - 1] + step_size / (wscale * len(seen))) if counter >= 1 and wscale < 1e-9: for j in range(n_features): if last_updated[j] == 0: weights[j] -= c_sum[counter] * sum_gradient[j] else: weights[j] -= ((c_sum[counter] - c_sum[last_updated[j] - 1]) * sum_gradient[j]) last_updated[j] = counter + 1 c_sum[counter] = 0 weights *= wscale wscale = 1.0 counter += 1 for j in range(n_features): if last_updated[j] == 0: weights[j] -= c_sum[counter - 1] * sum_gradient[j] else: weights[j] -= ((c_sum[counter - 1] - c_sum[last_updated[j] - 1]) * sum_gradient[j]) weights *= wscale return weights, intercept def get_step_size(X, alpha, fit_intercept, classification=True): if classification: return (4.0 / (np.max(np.sum(X * X, axis=1)) + fit_intercept + 4.0 * alpha)) else: return 1.0 / (np.max(np.sum(X * X, axis=1)) + fit_intercept + alpha) @ignore_warnings def test_classifier_matching(): n_samples = 20 X, y = make_blobs(n_samples=n_samples, centers=2, random_state=0, cluster_std=0.1) y[y == 0] = -1 alpha = 1.1 fit_intercept = True step_size = get_step_size(X, alpha, fit_intercept) for solver in ['sag', 'saga']: if solver == 'sag': n_iter = 80 else: # SAGA variance w.r.t. stream order is higher n_iter = 300 clf = LogisticRegression(solver=solver, fit_intercept=fit_intercept, tol=1e-11, C=1. / alpha / n_samples, max_iter=n_iter, random_state=10) clf.fit(X, y) weights, intercept = sag_sparse(X, y, step_size, alpha, n_iter=n_iter, dloss=log_dloss, fit_intercept=fit_intercept, saga=solver == 'saga') weights2, intercept2 = sag(X, y, step_size, alpha, n_iter=n_iter, dloss=log_dloss, fit_intercept=fit_intercept, saga=solver == 'saga') weights = np.atleast_2d(weights) intercept = np.atleast_1d(intercept) weights2 = np.atleast_2d(weights2) intercept2 = np.atleast_1d(intercept2) assert_array_almost_equal(weights, clf.coef_, decimal=9) assert_array_almost_equal(intercept, clf.intercept_, decimal=9) assert_array_almost_equal(weights2, clf.coef_, decimal=9) assert_array_almost_equal(intercept2, clf.intercept_, decimal=9) @ignore_warnings def test_regressor_matching(): n_samples = 10 n_features = 5 rng = np.random.RandomState(10) X = rng.normal(size=(n_samples, n_features)) true_w = rng.normal(size=n_features) y = X.dot(true_w) alpha = 1. n_iter = 100 fit_intercept = True step_size = get_step_size(X, alpha, fit_intercept, classification=False) clf = Ridge(fit_intercept=fit_intercept, tol=.00000000001, solver='sag', alpha=alpha * n_samples, max_iter=n_iter) clf.fit(X, y) weights1, intercept1 = sag_sparse(X, y, step_size, alpha, n_iter=n_iter, dloss=squared_dloss, fit_intercept=fit_intercept) weights2, intercept2 = sag(X, y, step_size, alpha, n_iter=n_iter, dloss=squared_dloss, fit_intercept=fit_intercept) assert_array_almost_equal(weights1, clf.coef_, decimal=10) assert_array_almost_equal(intercept1, clf.intercept_, decimal=10) assert_array_almost_equal(weights2, clf.coef_, decimal=10) assert_array_almost_equal(intercept2, clf.intercept_, decimal=10) @ignore_warnings def test_sag_pobj_matches_logistic_regression(): """tests if the sag pobj matches log reg""" n_samples = 100 alpha = 1.0 max_iter = 20 X, y = make_blobs(n_samples=n_samples, centers=2, random_state=0, cluster_std=0.1) clf1 = LogisticRegression(solver='sag', fit_intercept=False, tol=.0000001, C=1. / alpha / n_samples, max_iter=max_iter, random_state=10) clf2 = clone(clf1) clf3 = LogisticRegression(fit_intercept=False, tol=.0000001, C=1. / alpha / n_samples, max_iter=max_iter, random_state=10) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) clf3.fit(X, y) pobj1 = get_pobj(clf1.coef_, alpha, X, y, log_loss) pobj2 = get_pobj(clf2.coef_, alpha, X, y, log_loss) pobj3 = get_pobj(clf3.coef_, alpha, X, y, log_loss) assert_array_almost_equal(pobj1, pobj2, decimal=4) assert_array_almost_equal(pobj2, pobj3, decimal=4) assert_array_almost_equal(pobj3, pobj1, decimal=4) @ignore_warnings def test_sag_pobj_matches_ridge_regression(): """tests if the sag pobj matches ridge reg""" n_samples = 100 n_features = 10 alpha = 1.0 n_iter = 100 fit_intercept = False rng = np.random.RandomState(10) X = rng.normal(size=(n_samples, n_features)) true_w = rng.normal(size=n_features) y = X.dot(true_w) clf1 = Ridge(fit_intercept=fit_intercept, tol=.00000000001, solver='sag', alpha=alpha, max_iter=n_iter, random_state=42) clf2 = clone(clf1) clf3 = Ridge(fit_intercept=fit_intercept, tol=.00001, solver='lsqr', alpha=alpha, max_iter=n_iter, random_state=42) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) clf3.fit(X, y) pobj1 = get_pobj(clf1.coef_, alpha, X, y, squared_loss) pobj2 = get_pobj(clf2.coef_, alpha, X, y, squared_loss) pobj3 = get_pobj(clf3.coef_, alpha, X, y, squared_loss) assert_array_almost_equal(pobj1, pobj2, decimal=4) assert_array_almost_equal(pobj1, pobj3, decimal=4) assert_array_almost_equal(pobj3, pobj2, decimal=4) @ignore_warnings def test_sag_regressor_computed_correctly(): """tests if the sag regressor is computed correctly""" alpha = .1 n_features = 10 n_samples = 40 max_iter = 50 tol = .000001 fit_intercept = True rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) y = np.dot(X, w) + 2. step_size = get_step_size(X, alpha, fit_intercept, classification=False) clf1 = Ridge(fit_intercept=fit_intercept, tol=tol, solver='sag', alpha=alpha * n_samples, max_iter=max_iter) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) spweights1, spintercept1 = sag_sparse(X, y, step_size, alpha, n_iter=max_iter, dloss=squared_dloss, fit_intercept=fit_intercept) spweights2, spintercept2 = sag_sparse(X, y, step_size, alpha, n_iter=max_iter, dloss=squared_dloss, sparse=True, fit_intercept=fit_intercept) assert_array_almost_equal(clf1.coef_.ravel(), spweights1.ravel(), decimal=3) assert_almost_equal(clf1.intercept_, spintercept1, decimal=1) # TODO: uncomment when sparse Ridge with intercept will be fixed (#4710) # assert_array_almost_equal(clf2.coef_.ravel(), # spweights2.ravel(), # decimal=3) # assert_almost_equal(clf2.intercept_, spintercept2, decimal=1)''' @ignore_warnings def test_get_auto_step_size(): X = np.array([[1, 2, 3], [2, 3, 4], [2, 3, 2]], dtype=np.float64) alpha = 1.2 fit_intercept = False # sum the squares of the second sample because that's the largest max_squared_sum = 4 + 9 + 16 max_squared_sum_ = row_norms(X, squared=True).max() n_samples = X.shape[0] assert_almost_equal(max_squared_sum, max_squared_sum_, decimal=4) for saga in [True, False]: for fit_intercept in (True, False): if saga: L_sqr = (max_squared_sum + alpha + int(fit_intercept)) L_log = (max_squared_sum + 4.0 * alpha + int(fit_intercept)) / 4.0 mun_sqr = min(2 * n_samples * alpha, L_sqr) mun_log = min(2 * n_samples * alpha, L_log) step_size_sqr = 1 / (2 * L_sqr + mun_sqr) step_size_log = 1 / (2 * L_log + mun_log) else: step_size_sqr = 1.0 / (max_squared_sum + alpha + int(fit_intercept)) step_size_log = 4.0 / (max_squared_sum + 4.0 * alpha + int(fit_intercept)) step_size_sqr_ = get_auto_step_size(max_squared_sum_, alpha, "squared", fit_intercept, n_samples=n_samples, is_saga=saga) step_size_log_ = get_auto_step_size(max_squared_sum_, alpha, "log", fit_intercept, n_samples=n_samples, is_saga=saga) assert_almost_equal(step_size_sqr, step_size_sqr_, decimal=4) assert_almost_equal(step_size_log, step_size_log_, decimal=4) msg = 'Unknown loss function for SAG solver, got wrong instead of' assert_raise_message(ValueError, msg, get_auto_step_size, max_squared_sum_, alpha, "wrong", fit_intercept) @ignore_warnings def test_sag_regressor(): """tests if the sag regressor performs well""" xmin, xmax = -5, 5 n_samples = 20 tol = .001 max_iter = 20 alpha = 0.1 rng = np.random.RandomState(0) X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1) # simple linear function without noise y = 0.5 * X.ravel() clf1 = Ridge(tol=tol, solver='sag', max_iter=max_iter, alpha=alpha * n_samples) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) score1 = clf1.score(X, y) score2 = clf2.score(X, y) assert_greater(score1, 0.99) assert_greater(score2, 0.99) # simple linear function with noise y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel() clf1 = Ridge(tol=tol, solver='sag', max_iter=max_iter, alpha=alpha * n_samples) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) score1 = clf1.score(X, y) score2 = clf2.score(X, y) score2 = clf2.score(X, y) assert_greater(score1, 0.5) assert_greater(score2, 0.5) @ignore_warnings def test_sag_classifier_computed_correctly(): """tests if the binary classifier is computed correctly""" alpha = .1 n_samples = 50 n_iter = 50 tol = .00001 fit_intercept = True X, y = make_blobs(n_samples=n_samples, centers=2, random_state=0, cluster_std=0.1) step_size = get_step_size(X, alpha, fit_intercept, classification=True) classes = np.unique(y) y_tmp = np.ones(n_samples) y_tmp[y != classes[1]] = -1 y = y_tmp clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples, max_iter=n_iter, tol=tol, random_state=77, fit_intercept=fit_intercept) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) spweights, spintercept = sag_sparse(X, y, step_size, alpha, n_iter=n_iter, dloss=log_dloss, fit_intercept=fit_intercept) spweights2, spintercept2 = sag_sparse(X, y, step_size, alpha, n_iter=n_iter, dloss=log_dloss, sparse=True, fit_intercept=fit_intercept) assert_array_almost_equal(clf1.coef_.ravel(), spweights.ravel(), decimal=2) assert_almost_equal(clf1.intercept_, spintercept, decimal=1) assert_array_almost_equal(clf2.coef_.ravel(), spweights2.ravel(), decimal=2) assert_almost_equal(clf2.intercept_, spintercept2, decimal=1) @ignore_warnings def test_sag_multiclass_computed_correctly(): """tests if the multiclass classifier is computed correctly""" alpha = .1 n_samples = 20 tol = .00001 max_iter = 40 fit_intercept = True X, y = make_blobs(n_samples=n_samples, centers=3, random_state=0, cluster_std=0.1) step_size = get_step_size(X, alpha, fit_intercept, classification=True) classes = np.unique(y) clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples, max_iter=max_iter, tol=tol, random_state=77, fit_intercept=fit_intercept) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) coef1 = [] intercept1 = [] coef2 = [] intercept2 = [] for cl in classes: y_encoded = np.ones(n_samples) y_encoded[y != cl] = -1 spweights1, spintercept1 = sag_sparse(X, y_encoded, step_size, alpha, dloss=log_dloss, n_iter=max_iter, fit_intercept=fit_intercept) spweights2, spintercept2 = sag_sparse(X, y_encoded, step_size, alpha, dloss=log_dloss, n_iter=max_iter, sparse=True, fit_intercept=fit_intercept) coef1.append(spweights1) intercept1.append(spintercept1) coef2.append(spweights2) intercept2.append(spintercept2) coef1 = np.vstack(coef1) intercept1 = np.array(intercept1) coef2 = np.vstack(coef2) intercept2 = np.array(intercept2) for i, cl in enumerate(classes): assert_array_almost_equal(clf1.coef_[i].ravel(), coef1[i].ravel(), decimal=2) assert_almost_equal(clf1.intercept_[i], intercept1[i], decimal=1) assert_array_almost_equal(clf2.coef_[i].ravel(), coef2[i].ravel(), decimal=2) assert_almost_equal(clf2.intercept_[i], intercept2[i], decimal=1) @ignore_warnings def test_classifier_results(): """tests if classifier results match target""" alpha = .1 n_features = 20 n_samples = 10 tol = .01 max_iter = 200 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) y = np.dot(X, w) y = np.sign(y) clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples, max_iter=max_iter, tol=tol, random_state=77) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) pred1 = clf1.predict(X) pred2 = clf2.predict(X) assert_almost_equal(pred1, y, decimal=12) assert_almost_equal(pred2, y, decimal=12) @ignore_warnings def test_binary_classifier_class_weight(): """tests binary classifier with classweights for each class""" alpha = .1 n_samples = 50 n_iter = 20 tol = .00001 fit_intercept = True X, y = make_blobs(n_samples=n_samples, centers=2, random_state=10, cluster_std=0.1) step_size = get_step_size(X, alpha, fit_intercept, classification=True) classes = np.unique(y) y_tmp = np.ones(n_samples) y_tmp[y != classes[1]] = -1 y = y_tmp class_weight = {1: .45, -1: .55} clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples, max_iter=n_iter, tol=tol, random_state=77, fit_intercept=fit_intercept, class_weight=class_weight) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) le = LabelEncoder() class_weight_ = compute_class_weight(class_weight, np.unique(y), y) sample_weight = class_weight_[le.fit_transform(y)] spweights, spintercept = sag_sparse(X, y, step_size, alpha, n_iter=n_iter, dloss=log_dloss, sample_weight=sample_weight, fit_intercept=fit_intercept) spweights2, spintercept2 = sag_sparse(X, y, step_size, alpha, n_iter=n_iter, dloss=log_dloss, sparse=True, sample_weight=sample_weight, fit_intercept=fit_intercept) assert_array_almost_equal(clf1.coef_.ravel(), spweights.ravel(), decimal=2) assert_almost_equal(clf1.intercept_, spintercept, decimal=1) assert_array_almost_equal(clf2.coef_.ravel(), spweights2.ravel(), decimal=2) assert_almost_equal(clf2.intercept_, spintercept2, decimal=1) @ignore_warnings def test_multiclass_classifier_class_weight(): """tests multiclass with classweights for each class""" alpha = .1 n_samples = 20 tol = .00001 max_iter = 50 class_weight = {0: .45, 1: .55, 2: .75} fit_intercept = True X, y = make_blobs(n_samples=n_samples, centers=3, random_state=0, cluster_std=0.1) step_size = get_step_size(X, alpha, fit_intercept, classification=True) classes = np.unique(y) clf1 = LogisticRegression(solver='sag', C=1. / alpha / n_samples, max_iter=max_iter, tol=tol, random_state=77, fit_intercept=fit_intercept, class_weight=class_weight) clf2 = clone(clf1) clf1.fit(X, y) clf2.fit(sp.csr_matrix(X), y) le = LabelEncoder() class_weight_ = compute_class_weight(class_weight, np.unique(y), y) sample_weight = class_weight_[le.fit_transform(y)] coef1 = [] intercept1 = [] coef2 = [] intercept2 = [] for cl in classes: y_encoded = np.ones(n_samples) y_encoded[y != cl] = -1 spweights1, spintercept1 = sag_sparse(X, y_encoded, step_size, alpha, n_iter=max_iter, dloss=log_dloss, sample_weight=sample_weight) spweights2, spintercept2 = sag_sparse(X, y_encoded, step_size, alpha, n_iter=max_iter, dloss=log_dloss, sample_weight=sample_weight, sparse=True) coef1.append(spweights1) intercept1.append(spintercept1) coef2.append(spweights2) intercept2.append(spintercept2) coef1 = np.vstack(coef1) intercept1 = np.array(intercept1) coef2 = np.vstack(coef2) intercept2 = np.array(intercept2) for i, cl in enumerate(classes): assert_array_almost_equal(clf1.coef_[i].ravel(), coef1[i].ravel(), decimal=2) assert_almost_equal(clf1.intercept_[i], intercept1[i], decimal=1) assert_array_almost_equal(clf2.coef_[i].ravel(), coef2[i].ravel(), decimal=2) assert_almost_equal(clf2.intercept_[i], intercept2[i], decimal=1) def test_classifier_single_class(): """tests if ValueError is thrown with only one class""" X = [[1, 2], [3, 4]] y = [1, 1] assert_raise_message(ValueError, "This solver needs samples of at least 2 classes " "in the data", LogisticRegression(solver='sag').fit, X, y) def test_step_size_alpha_error(): X = [[0, 0], [0, 0]] y = [1, -1] fit_intercept = False alpha = 1. msg = ("Current sag implementation does not handle the case" " step_size * alpha_scaled == 1") clf1 = LogisticRegression(solver='sag', C=1. / alpha, fit_intercept=fit_intercept) assert_raise_message(ZeroDivisionError, msg, clf1.fit, X, y) clf2 = Ridge(fit_intercept=fit_intercept, solver='sag', alpha=alpha) assert_raise_message(ZeroDivisionError, msg, clf2.fit, X, y) def test_multinomial_loss(): # test if the multinomial loss and gradient computations are consistent X, y = iris.data, iris.target.astype(np.float64) n_samples, n_features = X.shape n_classes = len(np.unique(y)) rng = check_random_state(42) weights = rng.randn(n_features, n_classes) intercept = rng.randn(n_classes) sample_weights = rng.randn(n_samples) np.abs(sample_weights, sample_weights) # compute loss and gradient like in multinomial SAG dataset, _ = make_dataset(X, y, sample_weights, random_state=42) loss_1, grad_1 = _multinomial_grad_loss_all_samples(dataset, weights, intercept, n_samples, n_features, n_classes) # compute loss and gradient like in multinomial LogisticRegression lbin = LabelBinarizer() Y_bin = lbin.fit_transform(y) weights_intercept = np.vstack((weights, intercept)).T.ravel() loss_2, grad_2, _ = _multinomial_loss_grad(weights_intercept, X, Y_bin, 0.0, sample_weights) grad_2 = grad_2.reshape(n_classes, -1) grad_2 = grad_2[:, :-1].T # comparison assert_array_almost_equal(grad_1, grad_2) assert_almost_equal(loss_1, loss_2) def test_multinomial_loss_ground_truth(): # n_samples, n_features, n_classes = 4, 2, 3 n_classes = 3 X = np.array([[1.1, 2.2], [2.2, -4.4], [3.3, -2.2], [1.1, 1.1]]) y = np.array([0, 1, 2, 0]) lbin = LabelBinarizer() Y_bin = lbin.fit_transform(y) weights = np.array([[0.1, 0.2, 0.3], [1.1, 1.2, -1.3]]) intercept = np.array([1., 0, -.2]) sample_weights = np.array([0.8, 1, 1, 0.8]) prediction = np.dot(X, weights) + intercept logsumexp_prediction = logsumexp(prediction, axis=1) p = prediction - logsumexp_prediction[:, np.newaxis] loss_1 = -(sample_weights[:, np.newaxis] * p * Y_bin).sum() diff = sample_weights[:, np.newaxis] * (np.exp(p) - Y_bin) grad_1 = np.dot(X.T, diff) weights_intercept = np.vstack((weights, intercept)).T.ravel() loss_2, grad_2, _ = _multinomial_loss_grad(weights_intercept, X, Y_bin, 0.0, sample_weights) grad_2 = grad_2.reshape(n_classes, -1) grad_2 = grad_2[:, :-1].T assert_almost_equal(loss_1, loss_2) assert_array_almost_equal(grad_1, grad_2) # ground truth loss_gt = 11.680360354325961 grad_gt = np.array([[-0.557487, -1.619151, +2.176638], [-0.903942, +5.258745, -4.354803]]) assert_almost_equal(loss_1, loss_gt) assert_array_almost_equal(grad_1, grad_gt)
bsd-3-clause
Ziqi-Li/bknqgis
pandas/pandas/tests/internals/test_internals.py
10
46654
# -*- coding: utf-8 -*- # pylint: disable=W0102 from datetime import datetime, date import sys import pytest import numpy as np import re from distutils.version import LooseVersion import itertools from pandas import (Index, MultiIndex, DataFrame, DatetimeIndex, Series, Categorical) from pandas.compat import OrderedDict, lrange from pandas.core.sparse.array import SparseArray from pandas.core.internals import (BlockPlacement, SingleBlockManager, make_block, BlockManager) import pandas.core.algorithms as algos import pandas.util.testing as tm import pandas as pd from pandas._libs import lib from pandas.util.testing import (assert_almost_equal, assert_frame_equal, randn, assert_series_equal) from pandas.compat import zip, u # in 3.6.1 a c-api slicing function changed, see src/compat_helper.h PY361 = sys.version >= LooseVersion('3.6.1') @pytest.fixture def mgr(): return create_mgr( 'a: f8; b: object; c: f8; d: object; e: f8;' 'f: bool; g: i8; h: complex; i: datetime-1; j: datetime-2;' 'k: M8[ns, US/Eastern]; l: M8[ns, CET];') def assert_block_equal(left, right): tm.assert_numpy_array_equal(left.values, right.values) assert left.dtype == right.dtype assert isinstance(left.mgr_locs, lib.BlockPlacement) assert isinstance(right.mgr_locs, lib.BlockPlacement) tm.assert_numpy_array_equal(left.mgr_locs.as_array, right.mgr_locs.as_array) def get_numeric_mat(shape): arr = np.arange(shape[0]) return np.lib.stride_tricks.as_strided(x=arr, shape=shape, strides=( arr.itemsize, ) + (0, ) * (len(shape) - 1)).copy() N = 10 def create_block(typestr, placement, item_shape=None, num_offset=0): """ Supported typestr: * float, f8, f4, f2 * int, i8, i4, i2, i1 * uint, u8, u4, u2, u1 * complex, c16, c8 * bool * object, string, O * datetime, dt, M8[ns], M8[ns, tz] * timedelta, td, m8[ns] * sparse (SparseArray with fill_value=0.0) * sparse_na (SparseArray with fill_value=np.nan) * category, category2 """ placement = BlockPlacement(placement) num_items = len(placement) if item_shape is None: item_shape = (N, ) shape = (num_items, ) + item_shape mat = get_numeric_mat(shape) if typestr in ('float', 'f8', 'f4', 'f2', 'int', 'i8', 'i4', 'i2', 'i1', 'uint', 'u8', 'u4', 'u2', 'u1'): values = mat.astype(typestr) + num_offset elif typestr in ('complex', 'c16', 'c8'): values = 1.j * (mat.astype(typestr) + num_offset) elif typestr in ('object', 'string', 'O'): values = np.reshape(['A%d' % i for i in mat.ravel() + num_offset], shape) elif typestr in ('b', 'bool', ): values = np.ones(shape, dtype=np.bool_) elif typestr in ('datetime', 'dt', 'M8[ns]'): values = (mat * 1e9).astype('M8[ns]') elif typestr.startswith('M8[ns'): # datetime with tz m = re.search(r'M8\[ns,\s*(\w+\/?\w*)\]', typestr) assert m is not None, "incompatible typestr -> {0}".format(typestr) tz = m.groups()[0] assert num_items == 1, "must have only 1 num items for a tz-aware" values = DatetimeIndex(np.arange(N) * 1e9, tz=tz) elif typestr in ('timedelta', 'td', 'm8[ns]'): values = (mat * 1).astype('m8[ns]') elif typestr in ('category', ): values = Categorical([1, 1, 2, 2, 3, 3, 3, 3, 4, 4]) elif typestr in ('category2', ): values = Categorical(['a', 'a', 'a', 'a', 'b', 'b', 'c', 'c', 'c', 'd' ]) elif typestr in ('sparse', 'sparse_na'): # FIXME: doesn't support num_rows != 10 assert shape[-1] == 10 assert all(s == 1 for s in shape[:-1]) if typestr.endswith('_na'): fill_value = np.nan else: fill_value = 0.0 values = SparseArray([fill_value, fill_value, 1, 2, 3, fill_value, 4, 5, fill_value, 6], fill_value=fill_value) arr = values.sp_values.view() arr += (num_offset - 1) else: raise ValueError('Unsupported typestr: "%s"' % typestr) return make_block(values, placement=placement, ndim=len(shape)) def create_single_mgr(typestr, num_rows=None): if num_rows is None: num_rows = N return SingleBlockManager( create_block(typestr, placement=slice(0, num_rows), item_shape=()), np.arange(num_rows)) def create_mgr(descr, item_shape=None): """ Construct BlockManager from string description. String description syntax looks similar to np.matrix initializer. It looks like this:: a,b,c: f8; d,e,f: i8 Rules are rather simple: * see list of supported datatypes in `create_block` method * components are semicolon-separated * each component is `NAME,NAME,NAME: DTYPE_ID` * whitespace around colons & semicolons are removed * components with same DTYPE_ID are combined into single block * to force multiple blocks with same dtype, use '-SUFFIX':: 'a:f8-1; b:f8-2; c:f8-foobar' """ if item_shape is None: item_shape = (N, ) offset = 0 mgr_items = [] block_placements = OrderedDict() for d in descr.split(';'): d = d.strip() if not len(d): continue names, blockstr = d.partition(':')[::2] blockstr = blockstr.strip() names = names.strip().split(',') mgr_items.extend(names) placement = list(np.arange(len(names)) + offset) try: block_placements[blockstr].extend(placement) except KeyError: block_placements[blockstr] = placement offset += len(names) mgr_items = Index(mgr_items) blocks = [] num_offset = 0 for blockstr, placement in block_placements.items(): typestr = blockstr.split('-')[0] blocks.append(create_block(typestr, placement, item_shape=item_shape, num_offset=num_offset, )) num_offset += len(placement) return BlockManager(sorted(blocks, key=lambda b: b.mgr_locs[0]), [mgr_items] + [np.arange(n) for n in item_shape]) class TestBlock(object): def setup_method(self, method): # self.fblock = get_float_ex() # a,c,e # self.cblock = get_complex_ex() # # self.oblock = get_obj_ex() # self.bool_block = get_bool_ex() # self.int_block = get_int_ex() self.fblock = create_block('float', [0, 2, 4]) self.cblock = create_block('complex', [7]) self.oblock = create_block('object', [1, 3]) self.bool_block = create_block('bool', [5]) self.int_block = create_block('int', [6]) def test_constructor(self): int32block = create_block('i4', [0]) assert int32block.dtype == np.int32 def test_pickle(self): def _check(blk): assert_block_equal(tm.round_trip_pickle(blk), blk) _check(self.fblock) _check(self.cblock) _check(self.oblock) _check(self.bool_block) def test_mgr_locs(self): assert isinstance(self.fblock.mgr_locs, lib.BlockPlacement) tm.assert_numpy_array_equal(self.fblock.mgr_locs.as_array, np.array([0, 2, 4], dtype=np.int64)) def test_attrs(self): assert self.fblock.shape == self.fblock.values.shape assert self.fblock.dtype == self.fblock.values.dtype assert len(self.fblock) == len(self.fblock.values) def test_merge(self): avals = randn(2, 10) bvals = randn(2, 10) ref_cols = Index(['e', 'a', 'b', 'd', 'f']) ablock = make_block(avals, ref_cols.get_indexer(['e', 'b'])) bblock = make_block(bvals, ref_cols.get_indexer(['a', 'd'])) merged = ablock.merge(bblock) tm.assert_numpy_array_equal(merged.mgr_locs.as_array, np.array([0, 1, 2, 3], dtype=np.int64)) tm.assert_numpy_array_equal(merged.values[[0, 2]], np.array(avals)) tm.assert_numpy_array_equal(merged.values[[1, 3]], np.array(bvals)) # TODO: merge with mixed type? def test_copy(self): cop = self.fblock.copy() assert cop is not self.fblock assert_block_equal(self.fblock, cop) def test_reindex_index(self): pass def test_reindex_cast(self): pass def test_insert(self): pass def test_delete(self): newb = self.fblock.copy() newb.delete(0) assert isinstance(newb.mgr_locs, lib.BlockPlacement) tm.assert_numpy_array_equal(newb.mgr_locs.as_array, np.array([2, 4], dtype=np.int64)) assert (newb.values[0] == 1).all() newb = self.fblock.copy() newb.delete(1) assert isinstance(newb.mgr_locs, lib.BlockPlacement) tm.assert_numpy_array_equal(newb.mgr_locs.as_array, np.array([0, 4], dtype=np.int64)) assert (newb.values[1] == 2).all() newb = self.fblock.copy() newb.delete(2) tm.assert_numpy_array_equal(newb.mgr_locs.as_array, np.array([0, 2], dtype=np.int64)) assert (newb.values[1] == 1).all() newb = self.fblock.copy() with pytest.raises(Exception): newb.delete(3) def test_split_block_at(self): # with dup column support this method was taken out # GH3679 pytest.skip("skipping for now") bs = list(self.fblock.split_block_at('a')) assert len(bs) == 1 assert np.array_equal(bs[0].items, ['c', 'e']) bs = list(self.fblock.split_block_at('c')) assert len(bs) == 2 assert np.array_equal(bs[0].items, ['a']) assert np.array_equal(bs[1].items, ['e']) bs = list(self.fblock.split_block_at('e')) assert len(bs) == 1 assert np.array_equal(bs[0].items, ['a', 'c']) # bblock = get_bool_ex(['f']) # bs = list(bblock.split_block_at('f')) # assert len(bs), 0) class TestDatetimeBlock(object): def test_try_coerce_arg(self): block = create_block('datetime', [0]) # coerce None none_coerced = block._try_coerce_args(block.values, None)[2] assert pd.Timestamp(none_coerced) is pd.NaT # coerce different types of date bojects vals = (np.datetime64('2010-10-10'), datetime(2010, 10, 10), date(2010, 10, 10)) for val in vals: coerced = block._try_coerce_args(block.values, val)[2] assert np.int64 == type(coerced) assert pd.Timestamp('2010-10-10') == pd.Timestamp(coerced) class TestBlockManager(object): def test_constructor_corner(self): pass def test_attrs(self): mgr = create_mgr('a,b,c: f8-1; d,e,f: f8-2') assert mgr.nblocks == 2 assert len(mgr) == 6 def test_is_mixed_dtype(self): assert not create_mgr('a,b:f8').is_mixed_type assert not create_mgr('a:f8-1; b:f8-2').is_mixed_type assert create_mgr('a,b:f8; c,d: f4').is_mixed_type assert create_mgr('a,b:f8; c,d: object').is_mixed_type def test_is_indexed_like(self): mgr1 = create_mgr('a,b: f8') mgr2 = create_mgr('a:i8; b:bool') mgr3 = create_mgr('a,b,c: f8') assert mgr1._is_indexed_like(mgr1) assert mgr1._is_indexed_like(mgr2) assert mgr1._is_indexed_like(mgr3) assert not mgr1._is_indexed_like(mgr1.get_slice( slice(-1), axis=1)) def test_duplicate_ref_loc_failure(self): tmp_mgr = create_mgr('a:bool; a: f8') axes, blocks = tmp_mgr.axes, tmp_mgr.blocks blocks[0].mgr_locs = np.array([0]) blocks[1].mgr_locs = np.array([0]) # test trying to create block manager with overlapping ref locs with pytest.raises(AssertionError): BlockManager(blocks, axes) blocks[0].mgr_locs = np.array([0]) blocks[1].mgr_locs = np.array([1]) mgr = BlockManager(blocks, axes) mgr.iget(1) def test_contains(self, mgr): assert 'a' in mgr assert 'baz' not in mgr def test_pickle(self, mgr): mgr2 = tm.round_trip_pickle(mgr) assert_frame_equal(DataFrame(mgr), DataFrame(mgr2)) # share ref_items # assert mgr2.blocks[0].ref_items is mgr2.blocks[1].ref_items # GH2431 assert hasattr(mgr2, "_is_consolidated") assert hasattr(mgr2, "_known_consolidated") # reset to False on load assert not mgr2._is_consolidated assert not mgr2._known_consolidated def test_non_unique_pickle(self): mgr = create_mgr('a,a,a:f8') mgr2 = tm.round_trip_pickle(mgr) assert_frame_equal(DataFrame(mgr), DataFrame(mgr2)) mgr = create_mgr('a: f8; a: i8') mgr2 = tm.round_trip_pickle(mgr) assert_frame_equal(DataFrame(mgr), DataFrame(mgr2)) def test_categorical_block_pickle(self): mgr = create_mgr('a: category') mgr2 = tm.round_trip_pickle(mgr) assert_frame_equal(DataFrame(mgr), DataFrame(mgr2)) smgr = create_single_mgr('category') smgr2 = tm.round_trip_pickle(smgr) assert_series_equal(Series(smgr), Series(smgr2)) def test_get_scalar(self, mgr): for item in mgr.items: for i, index in enumerate(mgr.axes[1]): res = mgr.get_scalar((item, index)) exp = mgr.get(item, fastpath=False)[i] assert res == exp exp = mgr.get(item).internal_values()[i] assert res == exp def test_get(self): cols = Index(list('abc')) values = np.random.rand(3, 3) block = make_block(values=values.copy(), placement=np.arange(3)) mgr = BlockManager(blocks=[block], axes=[cols, np.arange(3)]) assert_almost_equal(mgr.get('a', fastpath=False), values[0]) assert_almost_equal(mgr.get('b', fastpath=False), values[1]) assert_almost_equal(mgr.get('c', fastpath=False), values[2]) assert_almost_equal(mgr.get('a').internal_values(), values[0]) assert_almost_equal(mgr.get('b').internal_values(), values[1]) assert_almost_equal(mgr.get('c').internal_values(), values[2]) def test_set(self): mgr = create_mgr('a,b,c: int', item_shape=(3, )) mgr.set('d', np.array(['foo'] * 3)) mgr.set('b', np.array(['bar'] * 3)) tm.assert_numpy_array_equal(mgr.get('a').internal_values(), np.array([0] * 3)) tm.assert_numpy_array_equal(mgr.get('b').internal_values(), np.array(['bar'] * 3, dtype=np.object_)) tm.assert_numpy_array_equal(mgr.get('c').internal_values(), np.array([2] * 3)) tm.assert_numpy_array_equal(mgr.get('d').internal_values(), np.array(['foo'] * 3, dtype=np.object_)) def test_set_change_dtype(self, mgr): mgr.set('baz', np.zeros(N, dtype=bool)) mgr.set('baz', np.repeat('foo', N)) assert mgr.get('baz').dtype == np.object_ mgr2 = mgr.consolidate() mgr2.set('baz', np.repeat('foo', N)) assert mgr2.get('baz').dtype == np.object_ mgr2.set('quux', randn(N).astype(int)) assert mgr2.get('quux').dtype == np.int_ mgr2.set('quux', randn(N)) assert mgr2.get('quux').dtype == np.float_ def test_set_change_dtype_slice(self): # GH8850 cols = MultiIndex.from_tuples([('1st', 'a'), ('2nd', 'b'), ('3rd', 'c') ]) df = DataFrame([[1.0, 2, 3], [4.0, 5, 6]], columns=cols) df['2nd'] = df['2nd'] * 2.0 assert sorted(df.blocks.keys()) == ['float64', 'int64'] assert_frame_equal(df.blocks['float64'], DataFrame( [[1.0, 4.0], [4.0, 10.0]], columns=cols[:2])) assert_frame_equal(df.blocks['int64'], DataFrame( [[3], [6]], columns=cols[2:])) def test_copy(self, mgr): cp = mgr.copy(deep=False) for blk, cp_blk in zip(mgr.blocks, cp.blocks): # view assertion assert cp_blk.equals(blk) assert cp_blk.values.base is blk.values.base cp = mgr.copy(deep=True) for blk, cp_blk in zip(mgr.blocks, cp.blocks): # copy assertion we either have a None for a base or in case of # some blocks it is an array (e.g. datetimetz), but was copied assert cp_blk.equals(blk) if cp_blk.values.base is not None and blk.values.base is not None: assert cp_blk.values.base is not blk.values.base else: assert cp_blk.values.base is None and blk.values.base is None def test_sparse(self): mgr = create_mgr('a: sparse-1; b: sparse-2') # what to test here? assert mgr.as_matrix().dtype == np.float64 def test_sparse_mixed(self): mgr = create_mgr('a: sparse-1; b: sparse-2; c: f8') assert len(mgr.blocks) == 3 assert isinstance(mgr, BlockManager) # what to test here? def test_as_matrix_float(self): mgr = create_mgr('c: f4; d: f2; e: f8') assert mgr.as_matrix().dtype == np.float64 mgr = create_mgr('c: f4; d: f2') assert mgr.as_matrix().dtype == np.float32 def test_as_matrix_int_bool(self): mgr = create_mgr('a: bool-1; b: bool-2') assert mgr.as_matrix().dtype == np.bool_ mgr = create_mgr('a: i8-1; b: i8-2; c: i4; d: i2; e: u1') assert mgr.as_matrix().dtype == np.int64 mgr = create_mgr('c: i4; d: i2; e: u1') assert mgr.as_matrix().dtype == np.int32 def test_as_matrix_datetime(self): mgr = create_mgr('h: datetime-1; g: datetime-2') assert mgr.as_matrix().dtype == 'M8[ns]' def test_as_matrix_datetime_tz(self): mgr = create_mgr('h: M8[ns, US/Eastern]; g: M8[ns, CET]') assert mgr.get('h').dtype == 'datetime64[ns, US/Eastern]' assert mgr.get('g').dtype == 'datetime64[ns, CET]' assert mgr.as_matrix().dtype == 'object' def test_astype(self): # coerce all mgr = create_mgr('c: f4; d: f2; e: f8') for t in ['float16', 'float32', 'float64', 'int32', 'int64']: t = np.dtype(t) tmgr = mgr.astype(t) assert tmgr.get('c').dtype.type == t assert tmgr.get('d').dtype.type == t assert tmgr.get('e').dtype.type == t # mixed mgr = create_mgr('a,b: object; c: bool; d: datetime;' 'e: f4; f: f2; g: f8') for t in ['float16', 'float32', 'float64', 'int32', 'int64']: t = np.dtype(t) tmgr = mgr.astype(t, errors='ignore') assert tmgr.get('c').dtype.type == t assert tmgr.get('e').dtype.type == t assert tmgr.get('f').dtype.type == t assert tmgr.get('g').dtype.type == t assert tmgr.get('a').dtype.type == np.object_ assert tmgr.get('b').dtype.type == np.object_ if t != np.int64: assert tmgr.get('d').dtype.type == np.datetime64 else: assert tmgr.get('d').dtype.type == t def test_convert(self): def _compare(old_mgr, new_mgr): """ compare the blocks, numeric compare ==, object don't """ old_blocks = set(old_mgr.blocks) new_blocks = set(new_mgr.blocks) assert len(old_blocks) == len(new_blocks) # compare non-numeric for b in old_blocks: found = False for nb in new_blocks: if (b.values == nb.values).all(): found = True break assert found for b in new_blocks: found = False for ob in old_blocks: if (b.values == ob.values).all(): found = True break assert found # noops mgr = create_mgr('f: i8; g: f8') new_mgr = mgr.convert() _compare(mgr, new_mgr) mgr = create_mgr('a, b: object; f: i8; g: f8') new_mgr = mgr.convert() _compare(mgr, new_mgr) # convert mgr = create_mgr('a,b,foo: object; f: i8; g: f8') mgr.set('a', np.array(['1'] * N, dtype=np.object_)) mgr.set('b', np.array(['2.'] * N, dtype=np.object_)) mgr.set('foo', np.array(['foo.'] * N, dtype=np.object_)) new_mgr = mgr.convert(numeric=True) assert new_mgr.get('a').dtype == np.int64 assert new_mgr.get('b').dtype == np.float64 assert new_mgr.get('foo').dtype == np.object_ assert new_mgr.get('f').dtype == np.int64 assert new_mgr.get('g').dtype == np.float64 mgr = create_mgr('a,b,foo: object; f: i4; bool: bool; dt: datetime;' 'i: i8; g: f8; h: f2') mgr.set('a', np.array(['1'] * N, dtype=np.object_)) mgr.set('b', np.array(['2.'] * N, dtype=np.object_)) mgr.set('foo', np.array(['foo.'] * N, dtype=np.object_)) new_mgr = mgr.convert(numeric=True) assert new_mgr.get('a').dtype == np.int64 assert new_mgr.get('b').dtype == np.float64 assert new_mgr.get('foo').dtype == np.object_ assert new_mgr.get('f').dtype == np.int32 assert new_mgr.get('bool').dtype == np.bool_ assert new_mgr.get('dt').dtype.type, np.datetime64 assert new_mgr.get('i').dtype == np.int64 assert new_mgr.get('g').dtype == np.float64 assert new_mgr.get('h').dtype == np.float16 def test_interleave(self): # self for dtype in ['f8', 'i8', 'object', 'bool', 'complex', 'M8[ns]', 'm8[ns]']: mgr = create_mgr('a: {0}'.format(dtype)) assert mgr.as_matrix().dtype == dtype mgr = create_mgr('a: {0}; b: {0}'.format(dtype)) assert mgr.as_matrix().dtype == dtype # will be converted according the actual dtype of the underlying mgr = create_mgr('a: category') assert mgr.as_matrix().dtype == 'i8' mgr = create_mgr('a: category; b: category') assert mgr.as_matrix().dtype == 'i8' mgr = create_mgr('a: category; b: category2') assert mgr.as_matrix().dtype == 'object' mgr = create_mgr('a: category2') assert mgr.as_matrix().dtype == 'object' mgr = create_mgr('a: category2; b: category2') assert mgr.as_matrix().dtype == 'object' # combinations mgr = create_mgr('a: f8') assert mgr.as_matrix().dtype == 'f8' mgr = create_mgr('a: f8; b: i8') assert mgr.as_matrix().dtype == 'f8' mgr = create_mgr('a: f4; b: i8') assert mgr.as_matrix().dtype == 'f8' mgr = create_mgr('a: f4; b: i8; d: object') assert mgr.as_matrix().dtype == 'object' mgr = create_mgr('a: bool; b: i8') assert mgr.as_matrix().dtype == 'object' mgr = create_mgr('a: complex') assert mgr.as_matrix().dtype == 'complex' mgr = create_mgr('a: f8; b: category') assert mgr.as_matrix().dtype == 'object' mgr = create_mgr('a: M8[ns]; b: category') assert mgr.as_matrix().dtype == 'object' mgr = create_mgr('a: M8[ns]; b: bool') assert mgr.as_matrix().dtype == 'object' mgr = create_mgr('a: M8[ns]; b: i8') assert mgr.as_matrix().dtype == 'object' mgr = create_mgr('a: m8[ns]; b: bool') assert mgr.as_matrix().dtype == 'object' mgr = create_mgr('a: m8[ns]; b: i8') assert mgr.as_matrix().dtype == 'object' mgr = create_mgr('a: M8[ns]; b: m8[ns]') assert mgr.as_matrix().dtype == 'object' def test_interleave_non_unique_cols(self): df = DataFrame([ [pd.Timestamp('20130101'), 3.5], [pd.Timestamp('20130102'), 4.5]], columns=['x', 'x'], index=[1, 2]) df_unique = df.copy() df_unique.columns = ['x', 'y'] assert df_unique.values.shape == df.values.shape tm.assert_numpy_array_equal(df_unique.values[0], df.values[0]) tm.assert_numpy_array_equal(df_unique.values[1], df.values[1]) def test_consolidate(self): pass def test_consolidate_ordering_issues(self, mgr): mgr.set('f', randn(N)) mgr.set('d', randn(N)) mgr.set('b', randn(N)) mgr.set('g', randn(N)) mgr.set('h', randn(N)) # we have datetime/tz blocks in mgr cons = mgr.consolidate() assert cons.nblocks == 4 cons = mgr.consolidate().get_numeric_data() assert cons.nblocks == 1 assert isinstance(cons.blocks[0].mgr_locs, lib.BlockPlacement) tm.assert_numpy_array_equal(cons.blocks[0].mgr_locs.as_array, np.arange(len(cons.items), dtype=np.int64)) def test_reindex_index(self): pass def test_reindex_items(self): # mgr is not consolidated, f8 & f8-2 blocks mgr = create_mgr('a: f8; b: i8; c: f8; d: i8; e: f8;' 'f: bool; g: f8-2') reindexed = mgr.reindex_axis(['g', 'c', 'a', 'd'], axis=0) assert reindexed.nblocks == 2 tm.assert_index_equal(reindexed.items, pd.Index(['g', 'c', 'a', 'd'])) assert_almost_equal( mgr.get('g', fastpath=False), reindexed.get('g', fastpath=False)) assert_almost_equal( mgr.get('c', fastpath=False), reindexed.get('c', fastpath=False)) assert_almost_equal( mgr.get('a', fastpath=False), reindexed.get('a', fastpath=False)) assert_almost_equal( mgr.get('d', fastpath=False), reindexed.get('d', fastpath=False)) assert_almost_equal( mgr.get('g').internal_values(), reindexed.get('g').internal_values()) assert_almost_equal( mgr.get('c').internal_values(), reindexed.get('c').internal_values()) assert_almost_equal( mgr.get('a').internal_values(), reindexed.get('a').internal_values()) assert_almost_equal( mgr.get('d').internal_values(), reindexed.get('d').internal_values()) def test_multiindex_xs(self): mgr = create_mgr('a,b,c: f8; d,e,f: i8') index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) mgr.set_axis(1, index) result = mgr.xs('bar', axis=1) assert result.shape == (6, 2) assert result.axes[1][0] == ('bar', 'one') assert result.axes[1][1] == ('bar', 'two') def test_get_numeric_data(self): mgr = create_mgr('int: int; float: float; complex: complex;' 'str: object; bool: bool; obj: object; dt: datetime', item_shape=(3, )) mgr.set('obj', np.array([1, 2, 3], dtype=np.object_)) numeric = mgr.get_numeric_data() tm.assert_index_equal(numeric.items, pd.Index(['int', 'float', 'complex', 'bool'])) assert_almost_equal( mgr.get('float', fastpath=False), numeric.get('float', fastpath=False)) assert_almost_equal( mgr.get('float').internal_values(), numeric.get('float').internal_values()) # Check sharing numeric.set('float', np.array([100., 200., 300.])) assert_almost_equal( mgr.get('float', fastpath=False), np.array([100., 200., 300.])) assert_almost_equal( mgr.get('float').internal_values(), np.array([100., 200., 300.])) numeric2 = mgr.get_numeric_data(copy=True) tm.assert_index_equal(numeric.items, pd.Index(['int', 'float', 'complex', 'bool'])) numeric2.set('float', np.array([1000., 2000., 3000.])) assert_almost_equal( mgr.get('float', fastpath=False), np.array([100., 200., 300.])) assert_almost_equal( mgr.get('float').internal_values(), np.array([100., 200., 300.])) def test_get_bool_data(self): mgr = create_mgr('int: int; float: float; complex: complex;' 'str: object; bool: bool; obj: object; dt: datetime', item_shape=(3, )) mgr.set('obj', np.array([True, False, True], dtype=np.object_)) bools = mgr.get_bool_data() tm.assert_index_equal(bools.items, pd.Index(['bool'])) assert_almost_equal(mgr.get('bool', fastpath=False), bools.get('bool', fastpath=False)) assert_almost_equal( mgr.get('bool').internal_values(), bools.get('bool').internal_values()) bools.set('bool', np.array([True, False, True])) tm.assert_numpy_array_equal(mgr.get('bool', fastpath=False), np.array([True, False, True])) tm.assert_numpy_array_equal(mgr.get('bool').internal_values(), np.array([True, False, True])) # Check sharing bools2 = mgr.get_bool_data(copy=True) bools2.set('bool', np.array([False, True, False])) tm.assert_numpy_array_equal(mgr.get('bool', fastpath=False), np.array([True, False, True])) tm.assert_numpy_array_equal(mgr.get('bool').internal_values(), np.array([True, False, True])) def test_unicode_repr_doesnt_raise(self): repr(create_mgr(u('b,\u05d0: object'))) def test_missing_unicode_key(self): df = DataFrame({"a": [1]}) try: df.loc[:, u("\u05d0")] # should not raise UnicodeEncodeError except KeyError: pass # this is the expected exception def test_equals(self): # unique items bm1 = create_mgr('a,b,c: i8-1; d,e,f: i8-2') bm2 = BlockManager(bm1.blocks[::-1], bm1.axes) assert bm1.equals(bm2) bm1 = create_mgr('a,a,a: i8-1; b,b,b: i8-2') bm2 = BlockManager(bm1.blocks[::-1], bm1.axes) assert bm1.equals(bm2) def test_equals_block_order_different_dtypes(self): # GH 9330 mgr_strings = [ "a:i8;b:f8", # basic case "a:i8;b:f8;c:c8;d:b", # many types "a:i8;e:dt;f:td;g:string", # more types "a:i8;b:category;c:category2;d:category2", # categories "c:sparse;d:sparse_na;b:f8", # sparse ] for mgr_string in mgr_strings: bm = create_mgr(mgr_string) block_perms = itertools.permutations(bm.blocks) for bm_perm in block_perms: bm_this = BlockManager(bm_perm, bm.axes) assert bm.equals(bm_this) assert bm_this.equals(bm) def test_single_mgr_ctor(self): mgr = create_single_mgr('f8', num_rows=5) assert mgr.as_matrix().tolist() == [0., 1., 2., 3., 4.] def test_validate_bool_args(self): invalid_values = [1, "True", [1, 2, 3], 5.0] bm1 = create_mgr('a,b,c: i8-1; d,e,f: i8-2') for value in invalid_values: with pytest.raises(ValueError): bm1.replace_list([1], [2], inplace=value) class TestIndexing(object): # Nosetests-style data-driven tests. # # This test applies different indexing routines to block managers and # compares the outcome to the result of same operations on np.ndarray. # # NOTE: sparse (SparseBlock with fill_value != np.nan) fail a lot of tests # and are disabled. MANAGERS = [ create_single_mgr('f8', N), create_single_mgr('i8', N), # create_single_mgr('sparse', N), create_single_mgr('sparse_na', N), # 2-dim create_mgr('a,b,c,d,e,f: f8', item_shape=(N,)), create_mgr('a,b,c,d,e,f: i8', item_shape=(N,)), create_mgr('a,b: f8; c,d: i8; e,f: string', item_shape=(N,)), create_mgr('a,b: f8; c,d: i8; e,f: f8', item_shape=(N,)), # create_mgr('a: sparse', item_shape=(N,)), create_mgr('a: sparse_na', item_shape=(N,)), # 3-dim create_mgr('a,b,c,d,e,f: f8', item_shape=(N, N)), create_mgr('a,b,c,d,e,f: i8', item_shape=(N, N)), create_mgr('a,b: f8; c,d: i8; e,f: string', item_shape=(N, N)), create_mgr('a,b: f8; c,d: i8; e,f: f8', item_shape=(N, N)), # create_mgr('a: sparse', item_shape=(1, N)), ] # MANAGERS = [MANAGERS[6]] def test_get_slice(self): def assert_slice_ok(mgr, axis, slobj): # import pudb; pudb.set_trace() mat = mgr.as_matrix() # we maybe using an ndarray to test slicing and # might not be the full length of the axis if isinstance(slobj, np.ndarray): ax = mgr.axes[axis] if len(ax) and len(slobj) and len(slobj) != len(ax): slobj = np.concatenate([slobj, np.zeros( len(ax) - len(slobj), dtype=bool)]) sliced = mgr.get_slice(slobj, axis=axis) mat_slobj = (slice(None), ) * axis + (slobj, ) tm.assert_numpy_array_equal(mat[mat_slobj], sliced.as_matrix(), check_dtype=False) tm.assert_index_equal(mgr.axes[axis][slobj], sliced.axes[axis]) for mgr in self.MANAGERS: for ax in range(mgr.ndim): # slice assert_slice_ok(mgr, ax, slice(None)) assert_slice_ok(mgr, ax, slice(3)) assert_slice_ok(mgr, ax, slice(100)) assert_slice_ok(mgr, ax, slice(1, 4)) assert_slice_ok(mgr, ax, slice(3, 0, -2)) # boolean mask assert_slice_ok( mgr, ax, np.array([], dtype=np.bool_)) assert_slice_ok( mgr, ax, np.ones(mgr.shape[ax], dtype=np.bool_)) assert_slice_ok( mgr, ax, np.zeros(mgr.shape[ax], dtype=np.bool_)) if mgr.shape[ax] >= 3: assert_slice_ok( mgr, ax, np.arange(mgr.shape[ax]) % 3 == 0) assert_slice_ok( mgr, ax, np.array( [True, True, False], dtype=np.bool_)) # fancy indexer assert_slice_ok(mgr, ax, []) assert_slice_ok(mgr, ax, lrange(mgr.shape[ax])) if mgr.shape[ax] >= 3: assert_slice_ok(mgr, ax, [0, 1, 2]) assert_slice_ok(mgr, ax, [-1, -2, -3]) def test_take(self): def assert_take_ok(mgr, axis, indexer): mat = mgr.as_matrix() taken = mgr.take(indexer, axis) tm.assert_numpy_array_equal(np.take(mat, indexer, axis), taken.as_matrix(), check_dtype=False) tm.assert_index_equal(mgr.axes[axis].take(indexer), taken.axes[axis]) for mgr in self.MANAGERS: for ax in range(mgr.ndim): # take/fancy indexer assert_take_ok(mgr, ax, []) assert_take_ok(mgr, ax, [0, 0, 0]) assert_take_ok(mgr, ax, lrange(mgr.shape[ax])) if mgr.shape[ax] >= 3: assert_take_ok(mgr, ax, [0, 1, 2]) assert_take_ok(mgr, ax, [-1, -2, -3]) def test_reindex_axis(self): def assert_reindex_axis_is_ok(mgr, axis, new_labels, fill_value): mat = mgr.as_matrix() indexer = mgr.axes[axis].get_indexer_for(new_labels) reindexed = mgr.reindex_axis(new_labels, axis, fill_value=fill_value) tm.assert_numpy_array_equal(algos.take_nd(mat, indexer, axis, fill_value=fill_value), reindexed.as_matrix(), check_dtype=False) tm.assert_index_equal(reindexed.axes[axis], new_labels) for mgr in self.MANAGERS: for ax in range(mgr.ndim): for fill_value in (None, np.nan, 100.): assert_reindex_axis_is_ok( mgr, ax, pd.Index([]), fill_value) assert_reindex_axis_is_ok( mgr, ax, mgr.axes[ax], fill_value) assert_reindex_axis_is_ok( mgr, ax, mgr.axes[ax][[0, 0, 0]], fill_value) assert_reindex_axis_is_ok( mgr, ax, pd.Index(['foo', 'bar', 'baz']), fill_value) assert_reindex_axis_is_ok( mgr, ax, pd.Index(['foo', mgr.axes[ax][0], 'baz']), fill_value) if mgr.shape[ax] >= 3: assert_reindex_axis_is_ok( mgr, ax, mgr.axes[ax][:-3], fill_value) assert_reindex_axis_is_ok( mgr, ax, mgr.axes[ax][-3::-1], fill_value) assert_reindex_axis_is_ok( mgr, ax, mgr.axes[ax][[0, 1, 2, 0, 1, 2]], fill_value) def test_reindex_indexer(self): def assert_reindex_indexer_is_ok(mgr, axis, new_labels, indexer, fill_value): mat = mgr.as_matrix() reindexed_mat = algos.take_nd(mat, indexer, axis, fill_value=fill_value) reindexed = mgr.reindex_indexer(new_labels, indexer, axis, fill_value=fill_value) tm.assert_numpy_array_equal(reindexed_mat, reindexed.as_matrix(), check_dtype=False) tm.assert_index_equal(reindexed.axes[axis], new_labels) for mgr in self.MANAGERS: for ax in range(mgr.ndim): for fill_value in (None, np.nan, 100.): assert_reindex_indexer_is_ok( mgr, ax, pd.Index([]), [], fill_value) assert_reindex_indexer_is_ok( mgr, ax, mgr.axes[ax], np.arange(mgr.shape[ax]), fill_value) assert_reindex_indexer_is_ok( mgr, ax, pd.Index(['foo'] * mgr.shape[ax]), np.arange(mgr.shape[ax]), fill_value) assert_reindex_indexer_is_ok( mgr, ax, mgr.axes[ax][::-1], np.arange(mgr.shape[ax]), fill_value) assert_reindex_indexer_is_ok( mgr, ax, mgr.axes[ax], np.arange(mgr.shape[ax])[::-1], fill_value) assert_reindex_indexer_is_ok( mgr, ax, pd.Index(['foo', 'bar', 'baz']), [0, 0, 0], fill_value) assert_reindex_indexer_is_ok( mgr, ax, pd.Index(['foo', 'bar', 'baz']), [-1, 0, -1], fill_value) assert_reindex_indexer_is_ok( mgr, ax, pd.Index(['foo', mgr.axes[ax][0], 'baz']), [-1, -1, -1], fill_value) if mgr.shape[ax] >= 3: assert_reindex_indexer_is_ok( mgr, ax, pd.Index(['foo', 'bar', 'baz']), [0, 1, 2], fill_value) # test_get_slice(slice_like, axis) # take(indexer, axis) # reindex_axis(new_labels, axis) # reindex_indexer(new_labels, indexer, axis) class TestBlockPlacement(object): def test_slice_len(self): assert len(BlockPlacement(slice(0, 4))) == 4 assert len(BlockPlacement(slice(0, 4, 2))) == 2 assert len(BlockPlacement(slice(0, 3, 2))) == 2 assert len(BlockPlacement(slice(0, 1, 2))) == 1 assert len(BlockPlacement(slice(1, 0, -1))) == 1 def test_zero_step_raises(self): with pytest.raises(ValueError): BlockPlacement(slice(1, 1, 0)) with pytest.raises(ValueError): BlockPlacement(slice(1, 2, 0)) def test_unbounded_slice_raises(self): def assert_unbounded_slice_error(slc): tm.assert_raises_regex(ValueError, "unbounded slice", lambda: BlockPlacement(slc)) assert_unbounded_slice_error(slice(None, None)) assert_unbounded_slice_error(slice(10, None)) assert_unbounded_slice_error(slice(None, None, -1)) assert_unbounded_slice_error(slice(None, 10, -1)) # These are "unbounded" because negative index will change depending on # container shape. assert_unbounded_slice_error(slice(-1, None)) assert_unbounded_slice_error(slice(None, -1)) assert_unbounded_slice_error(slice(-1, -1)) assert_unbounded_slice_error(slice(-1, None, -1)) assert_unbounded_slice_error(slice(None, -1, -1)) assert_unbounded_slice_error(slice(-1, -1, -1)) def test_not_slice_like_slices(self): def assert_not_slice_like(slc): assert not BlockPlacement(slc).is_slice_like assert_not_slice_like(slice(0, 0)) assert_not_slice_like(slice(100, 0)) assert_not_slice_like(slice(100, 100, -1)) assert_not_slice_like(slice(0, 100, -1)) assert not BlockPlacement(slice(0, 0)).is_slice_like assert not BlockPlacement(slice(100, 100)).is_slice_like def test_array_to_slice_conversion(self): def assert_as_slice_equals(arr, slc): assert BlockPlacement(arr).as_slice == slc assert_as_slice_equals([0], slice(0, 1, 1)) assert_as_slice_equals([100], slice(100, 101, 1)) assert_as_slice_equals([0, 1, 2], slice(0, 3, 1)) assert_as_slice_equals([0, 5, 10], slice(0, 15, 5)) assert_as_slice_equals([0, 100], slice(0, 200, 100)) assert_as_slice_equals([2, 1], slice(2, 0, -1)) if not PY361: assert_as_slice_equals([2, 1, 0], slice(2, None, -1)) assert_as_slice_equals([100, 0], slice(100, None, -100)) def test_not_slice_like_arrays(self): def assert_not_slice_like(arr): assert not BlockPlacement(arr).is_slice_like assert_not_slice_like([]) assert_not_slice_like([-1]) assert_not_slice_like([-1, -2, -3]) assert_not_slice_like([-10]) assert_not_slice_like([-1]) assert_not_slice_like([-1, 0, 1, 2]) assert_not_slice_like([-2, 0, 2, 4]) assert_not_slice_like([1, 0, -1]) assert_not_slice_like([1, 1, 1]) def test_slice_iter(self): assert list(BlockPlacement(slice(0, 3))) == [0, 1, 2] assert list(BlockPlacement(slice(0, 0))) == [] assert list(BlockPlacement(slice(3, 0))) == [] if not PY361: assert list(BlockPlacement(slice(3, 0, -1))) == [3, 2, 1] assert list(BlockPlacement(slice(3, None, -1))) == [3, 2, 1, 0] def test_slice_to_array_conversion(self): def assert_as_array_equals(slc, asarray): tm.assert_numpy_array_equal( BlockPlacement(slc).as_array, np.asarray(asarray, dtype=np.int64)) assert_as_array_equals(slice(0, 3), [0, 1, 2]) assert_as_array_equals(slice(0, 0), []) assert_as_array_equals(slice(3, 0), []) assert_as_array_equals(slice(3, 0, -1), [3, 2, 1]) if not PY361: assert_as_array_equals(slice(3, None, -1), [3, 2, 1, 0]) assert_as_array_equals(slice(31, None, -10), [31, 21, 11, 1]) def test_blockplacement_add(self): bpl = BlockPlacement(slice(0, 5)) assert bpl.add(1).as_slice == slice(1, 6, 1) assert bpl.add(np.arange(5)).as_slice == slice(0, 10, 2) assert list(bpl.add(np.arange(5, 0, -1))) == [5, 5, 5, 5, 5] def test_blockplacement_add_int(self): def assert_add_equals(val, inc, result): assert list(BlockPlacement(val).add(inc)) == result assert_add_equals(slice(0, 0), 0, []) assert_add_equals(slice(1, 4), 0, [1, 2, 3]) assert_add_equals(slice(3, 0, -1), 0, [3, 2, 1]) assert_add_equals([1, 2, 4], 0, [1, 2, 4]) assert_add_equals(slice(0, 0), 10, []) assert_add_equals(slice(1, 4), 10, [11, 12, 13]) assert_add_equals(slice(3, 0, -1), 10, [13, 12, 11]) assert_add_equals([1, 2, 4], 10, [11, 12, 14]) assert_add_equals(slice(0, 0), -1, []) assert_add_equals(slice(1, 4), -1, [0, 1, 2]) assert_add_equals([1, 2, 4], -1, [0, 1, 3]) with pytest.raises(ValueError): BlockPlacement(slice(1, 4)).add(-10) with pytest.raises(ValueError): BlockPlacement([1, 2, 4]).add(-10) if not PY361: assert_add_equals(slice(3, 0, -1), -1, [2, 1, 0]) assert_add_equals(slice(2, None, -1), 0, [2, 1, 0]) assert_add_equals(slice(2, None, -1), 10, [12, 11, 10]) with pytest.raises(ValueError): BlockPlacement(slice(2, None, -1)).add(-1)
gpl-2.0
pauljxtan/mathsci
examples/integrate_nonlinear_pendulum.py
2
1050
#!/usr/bin/env python """ Integrating the nonlinear pendulum. """ import math from matplotlib import pyplot from souffle.physics import mechanics from souffle.math import odeint def main(): # Set the integration parameters f = mechanics.nonlinear_pendulum dt = 0.01 t0 = 0.0 X0 = [0.99*math.pi, 0.0] # Set constants l = 0.1 # Integrate it... # Using non-adaptive RK4: #nonlinpend = odeint.RK4(f, t0, X0, l=l) #nonlinpend.integrate(dt, 2500, True) # Using adaptive RK4: nonlinpend = odeint.RK4Adaptive(f, t0, X0, l=l) duration = 25.0 dt0 = 0.05 delta = 1e-3 indices = [0, 1] nonlinpend.integrate(duration, dt0, delta, indices, True) # Unpack data t = nonlinpend.t theta, omega = nonlinpend.unpack() # Plot it fig1 = pyplot.figure() fig1_sp1 = fig1.add_subplot(111) fig1_sp1.plot(t, theta, "x-") fig1_sp1.set_xlabel("Time [s]") fig1_sp1.set_ylabel("Angle from vertical [rad]") pyplot.show() if __name__ == "__main__": main()
mit
ChinaQuants/zipline
zipline/utils/test_utils.py
1
11380
from contextlib import contextmanager from itertools import ( product, ) import operator import os import shutil from string import ascii_uppercase import tempfile from logbook import FileHandler from mock import patch from numpy.testing import assert_allclose, assert_array_equal import pandas as pd from six import ( itervalues, ) from six.moves import filter from sqlalchemy import create_engine from zipline.assets import AssetFinder from zipline.assets.asset_writer import AssetDBWriterFromDataFrame from zipline.finance.blotter import ORDER_STATUS from zipline.utils import security_list EPOCH = pd.Timestamp(0, tz='UTC') def seconds_to_timestamp(seconds): return pd.Timestamp(seconds, unit='s', tz='UTC') def to_utc(time_str): """Convert a string in US/Eastern time to UTC""" return pd.Timestamp(time_str, tz='US/Eastern').tz_convert('UTC') def str_to_seconds(s): """ Convert a pandas-intelligible string to (integer) seconds since UTC. >>> from pandas import Timestamp >>> (Timestamp('2014-01-01') - Timestamp(0)).total_seconds() 1388534400.0 >>> str_to_seconds('2014-01-01') 1388534400 """ return int((pd.Timestamp(s, tz='UTC') - EPOCH).total_seconds()) def setup_logger(test, path='test.log'): test.log_handler = FileHandler(path) test.log_handler.push_application() def teardown_logger(test): test.log_handler.pop_application() test.log_handler.close() def drain_zipline(test, zipline): output = [] transaction_count = 0 msg_counter = 0 # start the simulation for update in zipline: msg_counter += 1 output.append(update) if 'daily_perf' in update: transaction_count += \ len(update['daily_perf']['transactions']) return output, transaction_count def assert_single_position(test, zipline): output, transaction_count = drain_zipline(test, zipline) if 'expected_transactions' in test.zipline_test_config: test.assertEqual( test.zipline_test_config['expected_transactions'], transaction_count ) else: test.assertEqual( test.zipline_test_config['order_count'], transaction_count ) # the final message is the risk report, the second to # last is the final day's results. Positions is a list of # dicts. closing_positions = output[-2]['daily_perf']['positions'] # confirm that all orders were filled. # iterate over the output updates, overwriting # orders when they are updated. Then check the status on all. orders_by_id = {} for update in output: if 'daily_perf' in update: if 'orders' in update['daily_perf']: for order in update['daily_perf']['orders']: orders_by_id[order['id']] = order for order in itervalues(orders_by_id): test.assertEqual( order['status'], ORDER_STATUS.FILLED, "") test.assertEqual( len(closing_positions), 1, "Portfolio should have one position." ) sid = test.zipline_test_config['sid'] test.assertEqual( closing_positions[0]['sid'], sid, "Portfolio should have one position in " + str(sid) ) return output, transaction_count class ExceptionSource(object): def __init__(self): pass def get_hash(self): return "ExceptionSource" def __iter__(self): return self def next(self): 5 / 0 def __next__(self): 5 / 0 @contextmanager def security_list_copy(): old_dir = security_list.SECURITY_LISTS_DIR new_dir = tempfile.mkdtemp() try: for subdir in os.listdir(old_dir): shutil.copytree(os.path.join(old_dir, subdir), os.path.join(new_dir, subdir)) with patch.object(security_list, 'SECURITY_LISTS_DIR', new_dir), \ patch.object(security_list, 'using_copy', True, create=True): yield finally: shutil.rmtree(new_dir, True) def add_security_data(adds, deletes): if not hasattr(security_list, 'using_copy'): raise Exception('add_security_data must be used within ' 'security_list_copy context') directory = os.path.join( security_list.SECURITY_LISTS_DIR, "leveraged_etf_list/20150127/20150125" ) if not os.path.exists(directory): os.makedirs(directory) del_path = os.path.join(directory, "delete") with open(del_path, 'w') as f: for sym in deletes: f.write(sym) f.write('\n') add_path = os.path.join(directory, "add") with open(add_path, 'w') as f: for sym in adds: f.write(sym) f.write('\n') def all_pairs_matching_predicate(values, pred): """ Return an iterator of all pairs, (v0, v1) from values such that `pred(v0, v1) == True` Parameters ---------- values : iterable pred : function Returns ------- pairs_iterator : generator Generator yielding pairs matching `pred`. Examples -------- >>> from zipline.utils.test_utils import all_pairs_matching_predicate >>> from operator import eq, lt >>> list(all_pairs_matching_predicate(range(5), eq)) [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)] >>> list(all_pairs_matching_predicate("abcd", lt)) [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd'), ('c', 'd')] """ return filter(lambda pair: pred(*pair), product(values, repeat=2)) def product_upper_triangle(values, include_diagonal=False): """ Return an iterator over pairs, (v0, v1), drawn from values. If `include_diagonal` is True, returns all pairs such that v0 <= v1. If `include_diagonal` is False, returns all pairs such that v0 < v1. """ return all_pairs_matching_predicate( values, operator.le if include_diagonal else operator.lt, ) def all_subindices(index): """ Return all valid sub-indices of a pandas Index. """ return ( index[start:stop] for start, stop in product_upper_triangle(range(len(index) + 1)) ) def make_rotating_asset_info(num_assets, first_start, frequency, periods_between_starts, asset_lifetime): """ Create a DataFrame representing lifetimes of assets that are constantly rotating in and out of existence. Parameters ---------- num_assets : int How many assets to create. first_start : pd.Timestamp The start date for the first asset. frequency : str or pd.tseries.offsets.Offset (e.g. trading_day) Frequency used to interpret next two arguments. periods_between_starts : int Create a new asset every `frequency` * `periods_between_new` asset_lifetime : int Each asset exists for `frequency` * `asset_lifetime` days. Returns ------- info : pd.DataFrame DataFrame representing newly-created assets. """ return pd.DataFrame( { 'sid': range(num_assets), 'symbol': [chr(ord('A') + i) for i in range(num_assets)], 'asset_type': ['equity'] * num_assets, # Start a new asset every `periods_between_starts` days. 'start_date': pd.date_range( first_start, freq=(periods_between_starts * frequency), periods=num_assets, ), # Each asset lasts for `asset_lifetime` days. 'end_date': pd.date_range( first_start + (asset_lifetime * frequency), freq=(periods_between_starts * frequency), periods=num_assets, ), 'exchange': 'TEST', } ) def make_simple_asset_info(assets, start_date, end_date, symbols=None): """ Create a DataFrame representing assets that exist for the full duration between `start_date` and `end_date`. Parameters ---------- assets : array-like start_date : pd.Timestamp end_date : pd.Timestamp symbols : list, optional Symbols to use for the assets. If not provided, symbols are generated from the sequence 'A', 'B', ... Returns ------- info : pd.DataFrame DataFrame representing newly-created assets. """ num_assets = len(assets) if symbols is None: symbols = list(ascii_uppercase[:num_assets]) return pd.DataFrame( { 'sid': assets, 'symbol': symbols, 'asset_type': ['equity'] * num_assets, 'start_date': [start_date] * num_assets, 'end_date': [end_date] * num_assets, 'exchange': 'TEST', } ) def check_allclose(actual, desired, rtol=1e-07, atol=0, err_msg='', verbose=True): """ Wrapper around np.testing.assert_allclose that also verifies that inputs are ndarrays. See Also -------- np.assert_allclose """ if type(actual) != type(desired): raise AssertionError("%s != %s" % (type(actual), type(desired))) return assert_allclose(actual, desired, err_msg=err_msg, verbose=True) def check_arrays(x, y, err_msg='', verbose=True): """ Wrapper around np.testing.assert_array_equal that also verifies that inputs are ndarrays. See Also -------- np.assert_array_equal """ if type(x) != type(y): raise AssertionError("%s != %s" % (type(x), type(y))) return assert_array_equal(x, y, err_msg=err_msg, verbose=True) class UnexpectedAttributeAccess(Exception): pass class ExplodingObject(object): """ Object that will raise an exception on any attribute access. Useful for verifying that an object is never touched during a function/method call. """ def __getattribute__(self, name): raise UnexpectedAttributeAccess(name) class tmp_assets_db(object): """Create a temporary assets sqlite database. This is meant to be used as a context manager. Paramaters ---------- data : pd.DataFrame, optional The data to feed to the writer. By default this maps: ('A', 'B', 'C') -> map(ord, 'ABC') """ def __init__(self, data=None): self._eng = None self._data = AssetDBWriterFromDataFrame( data if data is not None else make_simple_asset_info( list(map(ord, 'ABC')), pd.Timestamp(0), pd.Timestamp('2015'), ) ) def __enter__(self): self._eng = eng = create_engine('sqlite://') self._data.write_all(eng) return eng def __exit__(self, *excinfo): assert self._eng is not None, '_eng was not set in __enter__' self._eng.dispose() class tmp_asset_finder(tmp_assets_db): """Create a temporary asset finder using an in memory sqlite db. Paramaters ---------- data : dict, optional The data to feed to the writer """ def __enter__(self): return AssetFinder(super(tmp_asset_finder, self).__enter__())
apache-2.0
kambysese/mne-python
mne/viz/backends/_abstract.py
3
24285
"""ABCs.""" # Authors: Guillaume Favelier <[email protected] # Eric Larson <[email protected]> # # License: Simplified BSD import warnings from abc import ABC, abstractmethod, abstractclassmethod from ..utils import tight_layout from ...fixes import nullcontext class _AbstractRenderer(ABC): @abstractclassmethod def __init__(self, fig=None, size=(600, 600), bgcolor=(0., 0., 0.), name=None, show=False, shape=(1, 1)): """Set up the scene.""" pass @abstractclassmethod def subplot(self, x, y): """Set the active subplot.""" pass @abstractclassmethod def scene(self): """Return scene handle.""" pass @abstractclassmethod def set_interaction(self, interaction): """Set interaction mode.""" pass @abstractclassmethod def mesh(self, x, y, z, triangles, color, opacity=1.0, shading=False, backface_culling=False, scalars=None, colormap=None, vmin=None, vmax=None, interpolate_before_map=True, representation='surface', line_width=1., normals=None, polygon_offset=None, **kwargs): """Add a mesh in the scene. Parameters ---------- x : array, shape (n_vertices,) The array containing the X component of the vertices. y : array, shape (n_vertices,) The array containing the Y component of the vertices. z : array, shape (n_vertices,) The array containing the Z component of the vertices. triangles : array, shape (n_polygons, 3) The array containing the indices of the polygons. color : tuple | str The color of the mesh as a tuple (red, green, blue) of float values between 0 and 1 or a valid color name (i.e. 'white' or 'w'). opacity : float The opacity of the mesh. shading : bool If True, enable the mesh shading. backface_culling : bool If True, enable backface culling on the mesh. scalars : ndarray, shape (n_vertices,) The scalar valued associated to the vertices. vmin : float | None vmin is used to scale the colormap. If None, the min of the data will be used vmax : float | None vmax is used to scale the colormap. If None, the max of the data will be used colormap : The colormap to use. interpolate_before_map : Enabling makes for a smoother scalars display. Default is True. When False, OpenGL will interpolate the mapped colors which can result is showing colors that are not present in the color map. representation : str The representation of the mesh: either 'surface' or 'wireframe'. line_width : int The width of the lines when representation='wireframe'. normals : array, shape (n_vertices, 3) The array containing the normal of each vertex. polygon_offset : float If not None, the factor used to resolve coincident topology. kwargs : args The arguments to pass to triangular_mesh Returns ------- surface : Handle of the mesh in the scene. """ pass @abstractclassmethod def contour(self, surface, scalars, contours, width=1.0, opacity=1.0, vmin=None, vmax=None, colormap=None, normalized_colormap=False, kind='line', color=None): """Add a contour in the scene. Parameters ---------- surface : surface object The mesh to use as support for contour. scalars : ndarray, shape (n_vertices,) The scalar valued associated to the vertices. contours : int | list Specifying a list of values will only give the requested contours. width : float The width of the lines or radius of the tubes. opacity : float The opacity of the contour. vmin : float | None vmin is used to scale the colormap. If None, the min of the data will be used vmax : float | None vmax is used to scale the colormap. If None, the max of the data will be used colormap : The colormap to use. normalized_colormap : bool Specify if the values of the colormap are between 0 and 1. kind : 'line' | 'tube' The type of the primitives to use to display the contours. color : The color of the mesh as a tuple (red, green, blue) of float values between 0 and 1 or a valid color name (i.e. 'white' or 'w'). """ pass @abstractclassmethod def surface(self, surface, color=None, opacity=1.0, vmin=None, vmax=None, colormap=None, normalized_colormap=False, scalars=None, backface_culling=False, polygon_offset=None): """Add a surface in the scene. Parameters ---------- surface : surface object The information describing the surface. color : tuple | str The color of the surface as a tuple (red, green, blue) of float values between 0 and 1 or a valid color name (i.e. 'white' or 'w'). opacity : float The opacity of the surface. vmin : float | None vmin is used to scale the colormap. If None, the min of the data will be used vmax : float | None vmax is used to scale the colormap. If None, the max of the data will be used colormap : The colormap to use. scalars : ndarray, shape (n_vertices,) The scalar valued associated to the vertices. backface_culling : bool If True, enable backface culling on the surface. polygon_offset : float If not None, the factor used to resolve coincident topology. """ pass @abstractclassmethod def sphere(self, center, color, scale, opacity=1.0, resolution=8, backface_culling=False, radius=None): """Add sphere in the scene. Parameters ---------- center : ndarray, shape(n_center, 3) The list of centers to use for the sphere(s). color : tuple | str The color of the sphere as a tuple (red, green, blue) of float values between 0 and 1 or a valid color name (i.e. 'white' or 'w'). scale : float The scaling applied to the spheres. The given value specifies the maximum size in drawing units. opacity : float The opacity of the sphere(s). resolution : int The resolution of the sphere created. This is the number of divisions along theta and phi. backface_culling : bool If True, enable backface culling on the sphere(s). radius : float | None Replace the glyph scaling by a fixed radius value for each sphere (not supported by mayavi). """ pass @abstractclassmethod def tube(self, origin, destination, radius=0.001, color='white', scalars=None, vmin=None, vmax=None, colormap='RdBu', normalized_colormap=False, reverse_lut=False): """Add tube in the scene. Parameters ---------- origin : array, shape(n_lines, 3) The coordinates of the first end of the tube(s). destination : array, shape(n_lines, 3) The coordinates of the other end of the tube(s). radius : float The radius of the tube(s). color : tuple | str The color of the tube as a tuple (red, green, blue) of float values between 0 and 1 or a valid color name (i.e. 'white' or 'w'). scalars : array, shape (n_quivers,) | None The optional scalar data to use. vmin : float | None vmin is used to scale the colormap. If None, the min of the data will be used vmax : float | None vmax is used to scale the colormap. If None, the max of the data will be used colormap : The colormap to use. opacity : float The opacity of the tube(s). backface_culling : bool If True, enable backface culling on the tube(s). reverse_lut : bool If True, reverse the lookup table. Returns ------- surface : Handle of the tube in the scene. """ pass @abstractclassmethod def quiver3d(self, x, y, z, u, v, w, color, scale, mode, resolution=8, glyph_height=None, glyph_center=None, glyph_resolution=None, opacity=1.0, scale_mode='none', scalars=None, backface_culling=False, colormap=None, vmin=None, vmax=None, line_width=2., name=None): """Add quiver3d in the scene. Parameters ---------- x : array, shape (n_quivers,) The X component of the position of the quiver. y : array, shape (n_quivers,) The Y component of the position of the quiver. z : array, shape (n_quivers,) The Z component of the position of the quiver. u : array, shape (n_quivers,) The last X component of the quiver. v : array, shape (n_quivers,) The last Y component of the quiver. w : array, shape (n_quivers,) The last Z component of the quiver. color : tuple | str The color of the quiver as a tuple (red, green, blue) of float values between 0 and 1 or a valid color name (i.e. 'white' or 'w'). scale : float The scaling applied to the glyphs. The size of the glyph is by default calculated from the inter-glyph spacing. The given value specifies the maximum glyph size in drawing units. mode : 'arrow', 'cone' or 'cylinder' The type of the quiver. resolution : int The resolution of the glyph created. Depending on the type of glyph, it represents the number of divisions in its geometric representation. glyph_height : float The height of the glyph used with the quiver. glyph_center : tuple The center of the glyph used with the quiver: (x, y, z). glyph_resolution : float The resolution of the glyph used with the quiver. opacity : float The opacity of the quiver. scale_mode : 'vector', 'scalar' or 'none' The scaling mode for the glyph. scalars : array, shape (n_quivers,) | None The optional scalar data to use. backface_culling : bool If True, enable backface culling on the quiver. colormap : The colormap to use. vmin : float | None vmin is used to scale the colormap. If None, the min of the data will be used vmax : float | None vmax is used to scale the colormap. If None, the max of the data will be used line_width : float The width of the 2d arrows. """ pass @abstractclassmethod def text2d(self, x_window, y_window, text, size=14, color='white'): """Add 2d text in the scene. Parameters ---------- x : float The X component to use as position of the text in the window coordinates system (window_width, window_height). y : float The Y component to use as position of the text in the window coordinates system (window_width, window_height). text : str The content of the text. size : int The size of the font. color : tuple | str The color of the text as a tuple (red, green, blue) of float values between 0 and 1 or a valid color name (i.e. 'white' or 'w'). """ pass @abstractclassmethod def text3d(self, x, y, z, text, width, color='white'): """Add 2d text in the scene. Parameters ---------- x : float The X component to use as position of the text. y : float The Y component to use as position of the text. z : float The Z component to use as position of the text. text : str The content of the text. width : float The width of the text. color : tuple | str The color of the text as a tuple (red, green, blue) of float values between 0 and 1 or a valid color name (i.e. 'white' or 'w'). """ pass @abstractclassmethod def scalarbar(self, source, color="white", title=None, n_labels=4, bgcolor=None): """Add a scalar bar in the scene. Parameters ---------- source : The object of the scene used for the colormap. color : The color of the label text. title : str | None The title of the scalar bar. n_labels : int | None The number of labels to display on the scalar bar. bgcolor : The color of the background when there is transparency. """ pass @abstractclassmethod def show(self): """Render the scene.""" pass @abstractclassmethod def close(self): """Close the scene.""" pass @abstractclassmethod def set_camera(self, azimuth=None, elevation=None, distance=None, focalpoint=None, roll=None, reset_camera=True): """Configure the camera of the scene. Parameters ---------- azimuth : float The azimuthal angle of the camera. elevation : float The zenith angle of the camera. distance : float The distance to the focal point. focalpoint : tuple The focal point of the camera: (x, y, z). roll : float The rotation of the camera along its axis. reset_camera : bool If True, reset the camera properties beforehand. """ pass @abstractclassmethod def reset_camera(self): """Reset the camera properties.""" pass @abstractclassmethod def screenshot(self, mode='rgb', filename=None): """Take a screenshot of the scene. Parameters ---------- mode : str Either 'rgb' or 'rgba' for values to return. Default is 'rgb'. filename : str | None If not None, save the figure to the disk. """ pass @abstractclassmethod def project(self, xyz, ch_names): """Convert 3d points to a 2d perspective. Parameters ---------- xyz : array, shape(n_points, 3) The points to project. ch_names : array, shape(_n_points,) Names of the channels. """ pass @abstractclassmethod def enable_depth_peeling(self): """Enable depth peeling.""" pass @abstractclassmethod def remove_mesh(self, mesh_data): """Remove the given mesh from the scene. Parameters ---------- mesh_data : tuple | Surface The mesh to remove. """ pass class _AbstractToolBar(ABC): @abstractmethod def _tool_bar_load_icons(self): pass @abstractmethod def _tool_bar_initialize(self, name="default", window=None): pass @abstractmethod def _tool_bar_add_button(self, name, desc, func, icon_name=None, shortcut=None): pass @abstractmethod def _tool_bar_update_button_icon(self, name, icon_name): pass @abstractmethod def _tool_bar_add_text(self, name, value, placeholder): pass @abstractmethod def _tool_bar_add_spacer(self): pass @abstractmethod def _tool_bar_add_screenshot_button(self, name, desc, func): pass @abstractmethod def _tool_bar_set_theme(self, theme): pass class _AbstractDock(ABC): @abstractmethod def _dock_initialize(self, window=None): pass @abstractmethod def _dock_finalize(self): pass @abstractmethod def _dock_show(self): pass @abstractmethod def _dock_hide(self): pass @abstractmethod def _dock_add_stretch(self, layout): pass @abstractmethod def _dock_add_layout(self, vertical=True): pass @abstractmethod def _dock_add_label(self, value, align=False, layout=None): pass @abstractmethod def _dock_add_button(self, name, callback, layout=None): pass @abstractmethod def _dock_named_layout(self, name, layout, compact): pass @abstractmethod def _dock_add_slider(self, name, value, rng, callback, compact=True, double=False, layout=None): pass @abstractmethod def _dock_add_spin_box(self, name, value, rng, callback, compact=True, double=True, layout=None): pass @abstractmethod def _dock_add_combo_box(self, name, value, rng, callback, compact=True, layout=None): pass @abstractmethod def _dock_add_group_box(self, name, layout=None): pass class _AbstractMenuBar(ABC): @abstractmethod def _menu_initialize(self, window=None): pass @abstractmethod def _menu_add_submenu(self, name, desc): pass @abstractmethod def _menu_add_button(self, menu_name, name, desc, func): pass class _AbstractStatusBar(ABC): @abstractmethod def _status_bar_initialize(self, window=None): pass @abstractmethod def _status_bar_add_label(self, value, stretch=0): pass @abstractmethod def _status_bar_add_progress_bar(self, stretch=0): pass class _AbstractPlayback(ABC): @abstractmethod def _playback_initialize(self, func, timeout): pass class _AbstractLayout(ABC): @abstractmethod def _layout_initialize(self, max_width): pass @abstractmethod def _layout_add_widget(self, layout, widget): pass class _AbstractWidget(ABC): def __init__(self, widget): self._widget = widget @property def widget(self): return self._widget @abstractmethod def set_value(self, value): pass @abstractmethod def get_value(self): pass class _AbstractMplInterface(ABC): @abstractmethod def _mpl_initialize(): pass class _AbstractMplCanvas(ABC): def __init__(self, width, height, dpi): """Initialize the MplCanvas.""" from matplotlib import rc_context from matplotlib.figure import Figure # prefer constrained layout here but live with tight_layout otherwise context = nullcontext self._extra_events = ('resize',) try: context = rc_context({'figure.constrained_layout.use': True}) self._extra_events = () except KeyError: pass with context: self.fig = Figure(figsize=(width, height), dpi=dpi) self.axes = self.fig.add_subplot(111) self.axes.set(xlabel='Time (sec)', ylabel='Activation (AU)') self.manager = None def _connect(self): for event in ('button_press', 'motion_notify') + self._extra_events: self.canvas.mpl_connect( event + '_event', getattr(self, 'on_' + event)) def plot(self, x, y, label, **kwargs): """Plot a curve.""" line, = self.axes.plot( x, y, label=label, **kwargs) self.update_plot() return line def plot_time_line(self, x, label, **kwargs): """Plot the vertical line.""" line = self.axes.axvline(x, label=label, **kwargs) self.update_plot() return line def update_plot(self): """Update the plot.""" with warnings.catch_warnings(record=True): warnings.filterwarnings('ignore', 'constrained_layout') self.canvas.draw() def set_color(self, bg_color, fg_color): """Set the widget colors.""" self.axes.set_facecolor(bg_color) self.axes.xaxis.label.set_color(fg_color) self.axes.yaxis.label.set_color(fg_color) self.axes.spines['top'].set_color(fg_color) self.axes.spines['bottom'].set_color(fg_color) self.axes.spines['left'].set_color(fg_color) self.axes.spines['right'].set_color(fg_color) self.axes.tick_params(axis='x', colors=fg_color) self.axes.tick_params(axis='y', colors=fg_color) self.fig.patch.set_facecolor(bg_color) def show(self): """Show the canvas.""" if self.manager is None: self.canvas.show() else: self.manager.show() def close(self): """Close the canvas.""" self.canvas.close() def clear(self): """Clear internal variables.""" self.close() self.axes.clear() self.fig.clear() self.canvas = None self.manager = None def on_resize(self, event): """Handle resize events.""" tight_layout(fig=self.axes.figure) class _AbstractBrainMplCanvas(_AbstractMplCanvas): def __init__(self, brain, width, height, dpi): """Initialize the MplCanvas.""" super().__init__(width, height, dpi) self.brain = brain self.time_func = brain.callbacks["time"] def update_plot(self): """Update the plot.""" leg = self.axes.legend( prop={'family': 'monospace', 'size': 'small'}, framealpha=0.5, handlelength=1., facecolor=self.brain._bg_color) for text in leg.get_texts(): text.set_color(self.brain._fg_color) super().update_plot() def on_button_press(self, event): """Handle button presses.""" # left click (and maybe drag) in progress in axes if (event.inaxes != self.axes or event.button != 1): return self.time_func( event.xdata, update_widget=True, time_as_index=False) on_motion_notify = on_button_press # for now they can be the same def clear(self): """Clear internal variables.""" super().clear() self.brain = None class _AbstractWindow(ABC): def _window_initialize(self): self._window = None self._interactor = None self._mplcanvas = None self._show_traces = None self._separate_canvas = None self._interactor_fraction = None @abstractmethod def _window_close_connect(self, func): pass @abstractmethod def _window_get_dpi(self): pass @abstractmethod def _window_get_size(self): pass def _window_get_mplcanvas_size(self, fraction): ratio = (1 - fraction) / fraction dpi = self._window_get_dpi() w, h = self._window_get_size() h /= ratio return (w / dpi, h / dpi) @abstractmethod def _window_get_simple_canvas(self, width, height, dpi): pass @abstractmethod def _window_get_mplcanvas(self, brain, interactor_fraction, show_traces, separate_canvas): pass @abstractmethod def _window_adjust_mplcanvas_layout(self): pass @abstractmethod def _window_get_cursor(self): pass @abstractmethod def _window_set_cursor(self, cursor): pass @abstractmethod def _window_ensure_minimum_sizes(self): pass @abstractmethod def _window_set_theme(self, theme): pass
bsd-3-clause
chrinide/hep_ml
hep_ml/uboost.py
4
24323
""" The module contains an implementation of uBoost algorithm. The main goal of **uBoost** is to fight correlation between predictions and some variables (i.e. mass of particle). * `uBoostBDT` is a modified version of AdaBoost, that targets to obtain efficiency uniformity at the specified level (global efficiency) * `uBoostClassifier` is a combination of uBoostBDTs for different efficiencies This implementation is more advanced than one described in the original paper, contains smoothing and trains classifiers in threads, has `learning_rate` and `uniforming_rate` parameters, does automatic weights renormalization and supports SAMME.R modification to use predicted probabilities. Only binary classification is implemented. See also: :class:`hep_ml.losses.BinFlatnessLossFunction`, :class:`hep_ml.losses.KnnFlatnessLossFunction`, :class:`hep_ml.losses.KnnAdaLossFunction` to fight correlation. Examples ________ To get uniform prediction in mass for background: >>> base_tree = DecisionTreeClassifier(max_depth=3) >>> clf = uBoostClassifier(uniform_features=['mass'], uniform_label=0, base_estimator=base_tree, >>> train_features=['pt', 'flight_time']) >>> clf.fit(train_data, train_labels, sample_weight=train_weights) >>> proba = clf.predict_proba(test_data) To get uniform prediction in Dalitz variables for signal >>> clf = uBoostClassifier(uniform_features=['mass_12', 'mass_23'], uniform_label=1, base_estimator=base_tree, >>> train_features=['pt', 'flight_time']) >>> clf.fit(train_data, train_labels, sample_weight=train_weights) >>> proba = clf.predict_proba(test_data) """ # Authors: # Alex Rogozhnikov <[email protected]> # Nikita Kazeev <[email protected]> from six.moves import zip import numpy as np from sklearn.base import BaseEstimator, ClassifierMixin, clone from sklearn.tree import DecisionTreeClassifier from sklearn.utils.random import check_random_state from .commonutils import sigmoid_function, map_on_cluster, \ compute_knn_indices_of_same_class, compute_cut_for_efficiency, check_xyw from . import commonutils from .metrics_utils import compute_group_efficiencies_by_indices __author__ = "Alex Rogozhnikov, Nikita Kazeev" __all__ = ["uBoostBDT", "uBoostClassifier"] class uBoostBDT(BaseEstimator, ClassifierMixin): def __init__(self, uniform_features, uniform_label, target_efficiency=0.5, n_neighbors=50, subsample=1.0, base_estimator=None, n_estimators=50, learning_rate=1., uniforming_rate=1., train_features=None, smoothing=0.0, random_state=None, algorithm="SAMME"): """ uBoostBDT is AdaBoostClassifier, which is modified to have flat efficiency of signal (class=1) along some variables. Efficiency is only guaranteed at the cut, corresponding to global efficiency == target_efficiency. Can be used alone, without uBoostClassifier. :param uniform_features: list of strings, names of variables, along which flatness is desired :param uniform_label: int, label of class on which uniformity is desired (typically 0 for background, 1 for signal). :param target_efficiency: float, the flatness is obtained at global BDT cut, corresponding to global efficiency :param n_neighbors: int, (default=50) the number of neighbours, which are used to compute local efficiency :param subsample: float (default=1.0), part of training dataset used to build each base estimator. :param base_estimator: classifier, optional (default=DecisionTreeClassifier(max_depth=2)) The base estimator from which the boosted ensemble is built. Support for sample weighting is required, as well as proper `classes_` and `n_classes_` attributes. :param n_estimators: integer, optional (default=50) number of estimators used. :param learning_rate: float, optional (default=1.) Learning rate shrinks the contribution of each classifier by ``learning_rate``. There is a trade-off between ``learning_rate`` and ``n_estimators``. :param uniforming_rate: float, optional (default=1.) how much do we take into account the uniformity of signal, there is a trade-off between uniforming_rate and the speed of uniforming, zero value corresponds to plain AdaBoost :param train_features: list of strings, names of variables used in fit/predict. If None, all the variables are used (including uniform_variables) :param smoothing: float, (default=0.), used to smooth computing of local efficiencies, 0.0 corresponds to usual uBoost :param random_state: int, RandomState instance or None (default None) Reference ---------- .. [1] J. Stevens, M. Williams 'uBoost: A boosting method for producing uniform selection efficiencies from multivariate classifiers' """ self.base_estimator = base_estimator self.n_estimators = n_estimators self.learning_rate = learning_rate self.uniforming_rate = uniforming_rate self.uniform_features = uniform_features self.target_efficiency = target_efficiency self.n_neighbors = n_neighbors self.subsample = subsample self.train_features = train_features self.smoothing = smoothing self.uniform_label = uniform_label self.random_state = random_state self.algorithm = algorithm def fit(self, X, y, sample_weight=None, neighbours_matrix=None): """Build a boosted classifier from the training set (X, y). :param X: array-like of shape [n_samples, n_features] :param y: labels, array of shape [n_samples] with 0 and 1. :param sample_weight: array-like of shape [n_samples] or None :param neighbours_matrix: array-like of shape [n_samples, n_neighbours], each row contains indices of signal neighbours (neighbours should be computed for background too), if None, this matrix is computed. :return: self """ if self.smoothing < 0: raise ValueError("Smoothing must be non-negative") if not isinstance(self.base_estimator, BaseEstimator): raise TypeError("estimator must be a subclass of BaseEstimator") if self.n_estimators <= 0: raise ValueError("n_estimators must be greater than zero.") if self.learning_rate <= 0: raise ValueError("learning_rate must be greater than zero") if self.base_estimator is None: self.base_estimator = DecisionTreeClassifier(max_depth=2) # Check that algorithm is supported if self.algorithm not in ('SAMME', 'SAMME.R'): raise ValueError("algorithm %s is not supported" % self.algorithm) if self.algorithm == 'SAMME.R': if not hasattr(self.base_estimator, 'predict_proba'): raise TypeError( "uBoostBDT with algorithm='SAMME.R' requires " "that the weak learner have a predict_proba method.\n" "Please change the base estimator or set algorithm='SAMME' instead.") assert np.in1d(y, [0, 1]).all(), \ "only two-class classification is implemented, with labels 0 and 1" self.signed_uniform_label = 2 * self.uniform_label - 1 if neighbours_matrix is not None: assert np.shape(neighbours_matrix) == (len(X), self.n_neighbors), \ "Wrong shape of neighbours_matrix" self.knn_indices = neighbours_matrix else: assert self.uniform_features is not None, \ "uniform_variables should be set" self.knn_indices = compute_knn_indices_of_same_class( X.ix[:, self.uniform_features], y, self.n_neighbors) sample_weight = commonutils.check_sample_weight(y, sample_weight=sample_weight, normalize=True) assert np.all(sample_weight >= 0.), 'the weights should be non-negative' # Clear any previous fit results self.estimators_ = [] self.estimator_weights_ = [] # score cuts correspond to # global efficiency == target_efficiency on each iteration. self.score_cuts_ = [] x_train_features = self._get_train_features(X) x_train_features, y, sample_weight = check_xyw(x_train_features, y, sample_weight) self.random_state_ = check_random_state(self.random_state) self._boost(x_train_features, y, sample_weight) self.score_cut = self.signed_uniform_label * compute_cut_for_efficiency( self.target_efficiency, y == self.uniform_label, self.decision_function(X) * self.signed_uniform_label) assert np.allclose(self.score_cut, self.score_cuts_[-1], rtol=1e-10, atol=1e-10), \ "score cut doesn't appear to coincide with the staged one" assert len(self.estimators_) == len(self.estimator_weights_) == len(self.score_cuts_) return self def _make_estimator(self): estimator = clone(self.base_estimator) # self.estimators_.append(estimator) try: estimator.set_params(random_state=self.random_state) except ValueError: pass return estimator def _estimator_score(self, estimator, X): if self.algorithm == "SAMME": return 2 * estimator.predict(X) - 1. else: p = estimator.predict_proba(X) p[p <= 1e-5] = 1e-5 return np.log(p[:, 1] / p[:, 0]) @staticmethod def _normalize_weight(y, weight): # frequently algorithm assigns very big weight to signal events # compared to background ones (or visa versa, if want to be uniform in bck) return commonutils.check_sample_weight(y, sample_weight=weight, normalize=True, normalize_by_class=True) def _compute_uboost_multipliers(self, sample_weight, score, y): """Returns uBoost multipliers to sample_weight and computed global cut""" signed_score = score * self.signed_uniform_label signed_score_cut = compute_cut_for_efficiency(self.target_efficiency, y == self.uniform_label, signed_score) global_score_cut = signed_score_cut * self.signed_uniform_label local_efficiencies = compute_group_efficiencies_by_indices(signed_score, self.knn_indices, cut=signed_score_cut, smoothing=self.smoothing) # pay attention - sample_weight should be used only here e_prime = np.average(np.abs(local_efficiencies - self.target_efficiency), weights=sample_weight) is_uniform_class = (y == self.uniform_label) # beta = np.log((1.0 - e_prime) / e_prime) # changed to log(1. / e_prime), otherwise this can lead to the situation # where beta is negative (which is a disaster). # Mike (uboost author) said he didn't take that into account. beta = np.log(1. / e_prime) boost_weights = np.exp((self.target_efficiency - local_efficiencies) * is_uniform_class * (beta * self.uniforming_rate)) return boost_weights, global_score_cut def _boost(self, X, y, sample_weight): """Implement a single boost using the SAMME or SAMME.R algorithm, which is modified in uBoost way""" cumulative_score = np.zeros(len(X)) y_signed = 2 * y - 1 for iteration in range(self.n_estimators): estimator = self._make_estimator() mask = _generate_subsample_mask(len(X), self.subsample, self.random_state_) estimator.fit(X[mask], y[mask], sample_weight=sample_weight[mask]) # computing estimator weight if self.algorithm == 'SAMME': y_pred = estimator.predict(X) # Error fraction estimator_error = np.average(y_pred != y, weights=sample_weight) estimator_error = np.clip(estimator_error, 1e-6, 1. - 1e-6) estimator_weight = self.learning_rate * 0.5 * ( np.log((1. - estimator_error) / estimator_error)) score = estimator_weight * (2 * y_pred - 1) else: estimator_weight = self.learning_rate * 0.5 score = estimator_weight * self._estimator_score(estimator, X) # correcting the weights and score according to predictions sample_weight *= np.exp(- y_signed * score) sample_weight = self._normalize_weight(y, sample_weight) cumulative_score += score uboost_multipliers, global_score_cut = \ self._compute_uboost_multipliers(sample_weight, cumulative_score, y) sample_weight *= uboost_multipliers sample_weight = self._normalize_weight(y, sample_weight) self.score_cuts_.append(global_score_cut) self.estimators_.append(estimator) self.estimator_weights_.append(estimator_weight) # erasing from memory self.knn_indices = None def _get_train_features(self, X): """Gets the DataFrame and returns only columns that should be used in fitting / predictions""" if self.train_features is None: return X else: return X[self.train_features] def staged_decision_function(self, X): """Decision function after each stage of boosting. Float for each sample, the greater --- the more signal like event is. :param X: data, pandas.DataFrame of shape [n_samples, n_features] :return: array of shape [n_samples] with floats. """ X = self._get_train_features(X) score = np.zeros(len(X)) for classifier, weight in zip(self.estimators_, self.estimator_weights_): score += self._estimator_score(classifier, X) * weight yield score def decision_function(self, X): """Decision function. Float for each sample, the greater --- the more signal like event is. :param X: data, pandas.DataFrame of shape [n_samples, n_features] :return: array of shape [n_samples] with floats """ return commonutils.take_last(self.staged_decision_function(X)) def predict(self, X): """Predict classes for each sample :param X: data, pandas.DataFrame of shape [n_samples, n_features] :return: array of shape [n_samples] with predicted classes. """ return np.array(self.decision_function(X) > self.score_cut, dtype=int) def predict_proba(self, X): """Predict probabilities :param X: data, pandas.DataFrame of shape [n_samples, n_features] :return: array of shape [n_samples, n_classes] with probabilities. """ return commonutils.score_to_proba(self.decision_function(X)) def staged_predict_proba(self, X): """Predicted probabilities for each sample after each stage of boosting. :param X: data, pandas.DataFrame of shape [n_samples, n_features] :return: sequence of numpy.arrays of shape [n_samples, n_classes] """ for score in self.staged_decision_function(X): yield commonutils.score_to_proba(score) def _uboost_predict_score(self, X): """Method added specially for uBoostClassifier""" return sigmoid_function(self.decision_function(X) - self.score_cut, self.smoothing) def _uboost_staged_predict_score(self, X): """Method added specially for uBoostClassifier""" for cut, score in zip(self.score_cuts_, self.staged_decision_function(X)): yield sigmoid_function(score - cut, self.smoothing) @property def feature_importances_(self): """Return the feature importances for `train_features`. :return: array of shape [n_features], the order is the same as in `train_features` """ if self.estimators_ is None or len(self.estimators_) == 0: raise ValueError("Estimator not fitted," " call `fit` before `feature_importances_`.") return sum(tree.feature_importances_ * weight for tree, weight in zip(self.estimators_, self.estimator_weights_)) def _train_classifier(classifier, X_train_vars, y, sample_weight, neighbours_matrix): # supplementary function to train separate parts of uBoost on cluster return classifier.fit(X_train_vars, y, sample_weight=sample_weight, neighbours_matrix=neighbours_matrix) class uBoostClassifier(BaseEstimator, ClassifierMixin): def __init__(self, uniform_features, uniform_label, train_features=None, n_neighbors=50, efficiency_steps=20, n_estimators=40, base_estimator=None, subsample=1.0, algorithm="SAMME", smoothing=None, n_threads=1, random_state=None): """uBoost classifier, an algorithm of boosting targeted to obtain flat efficiency in signal along some variables (e.g. mass). In principle, uBoost is ensemble of uBoostBDTs. See [1] for details. Parameters ---------- :param uniform_features: list of strings, names of variables, along which flatness is desired :param uniform_label: int, tha label of class for which uniformity is desired :param train_features: list of strings, names of variables used in fit/predict. if None, all the variables are used (including uniform_variables) :param n_neighbors: int, (default=50) the number of neighbours, which are used to compute local efficiency :param n_estimators: integer, optional (default=50) The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. :param efficiency_steps: integer, optional (default=20), How many uBoostBDTs should be trained (each with its own target_efficiency) :param base_estimator: object, optional (default=DecisionTreeClassifier(max_depth=2)) The base estimator from which the boosted ensemble is built. Support for sample weighting is required, as well as proper `classes_` and `n_classes_` attributes. :param subsample: float (default =1.) part of training dataset used to train each base classifier. :param smoothing: float, default=None, used to smooth computing of local efficiencies, 0.0 corresponds to usual uBoost, :param random_state: int, RandomState instance or None, (default=None) :param n_threads: int, number of threads used. Reference ---------- .. [1] J. Stevens, M. Williams 'uBoost: A boosting method for producing uniform selection efficiencies from multivariate classifiers' """ self.uniform_features = uniform_features self.uniform_label = uniform_label self.knn = n_neighbors self.efficiency_steps = efficiency_steps self.random_state = random_state self.n_estimators = n_estimators self.base_estimator = base_estimator self.subsample = subsample self.train_features = train_features self.smoothing = smoothing self.n_threads = n_threads self.algorithm = algorithm def _get_train_features(self, X): if self.train_features is not None: return X[self.train_features] else: return X def fit(self, X, y, sample_weight=None): """Build a boosted classifier from the training set. :param X: data, pandas.DatFrame of shape [n_samples, n_features] :param y: labels, array of shape [n_samples] with 0 and 1. The target values (integers that correspond to classes). :param sample_weight: array-like of shape [n_samples] with weights or None :return: self """ if self.uniform_features is None: raise ValueError("Please set uniform variables") if len(self.uniform_features) == 0: raise ValueError("The set of uniform variables cannot be empty") assert np.in1d(y, [0, 1]).all(), \ "only two-class classification is implemented" if self.base_estimator is None: self.base_estimator = DecisionTreeClassifier(max_depth=2) X, y, sample_weight = check_xyw(X, y, sample_weight=sample_weight, classification=True) data_train_features = self._get_train_features(X) if self.smoothing is None: self.smoothing = 10. / self.efficiency_steps neighbours_matrix = compute_knn_indices_of_same_class( X[self.uniform_features], y, n_neighbours=self.knn) self.target_efficiencies = np.linspace(0, 1, self.efficiency_steps + 2)[1:-1] self.classifiers = [] for efficiency in self.target_efficiencies: classifier = uBoostBDT( uniform_features=self.uniform_features, uniform_label=self.uniform_label, train_features=None, target_efficiency=efficiency, n_neighbors=self.knn, n_estimators=self.n_estimators, base_estimator=self.base_estimator, random_state=self.random_state, subsample=self.subsample, smoothing=self.smoothing, algorithm=self.algorithm) self.classifiers.append(classifier) self.classifiers = map_on_cluster('threads-{}'.format(self.n_threads), _train_classifier, self.classifiers, self.efficiency_steps * [data_train_features], self.efficiency_steps * [y], self.efficiency_steps * [sample_weight], self.efficiency_steps * [neighbours_matrix]) return self def predict(self, X): """Predict labels :param X: data, pandas.DataFrame of shape [n_samples, n_features] :return: numpy.array of shape [n_samples] """ return self.predict_proba(X).argmax(axis=1) def predict_proba(self, X): """Predict probabilities :param X: data, pandas.DataFrame of shape [n_samples, n_features] :return: array of shape [n_samples, n_classes] with probabilities. """ X = self._get_train_features(X) score = sum(clf._uboost_predict_score(X) for clf in self.classifiers) return commonutils.score_to_proba(score / self.efficiency_steps) def staged_predict_proba(self, X): """Predicted probabilities for each sample after each stage of boosting. :param X: data, pandas.DataFrame of shape [n_samples, n_features] :return: sequence of numpy.arrays of shape [n_samples, n_classes] """ X = self._get_train_features(X) for scores in zip(*[clf._uboost_staged_predict_score(X) for clf in self.classifiers]): yield commonutils.score_to_proba(sum(scores) / self.efficiency_steps) def _generate_subsample_mask(n_samples, subsample, random_generator): """ :param float subsample: part of samples to be left :param random_generator: numpy.random.RandomState instance """ assert 0 < subsample <= 1., 'subsample should be in range (0, 1]' if subsample == 1.0: mask = slice(None, None, None) else: mask = random_generator.uniform(size=n_samples) < subsample return mask
apache-2.0
guschmue/tensorflow
tensorflow/contrib/metrics/python/kernel_tests/histogram_ops_test.py
130
9577
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for histogram_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.metrics.python.ops import histogram_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test class Strict1dCumsumTest(test.TestCase): """Test this private function.""" def test_empty_tensor_returns_empty(self): with self.test_session(): tensor = constant_op.constant([]) result = histogram_ops._strict_1d_cumsum(tensor, 0) expected = constant_op.constant([]) np.testing.assert_array_equal(expected.eval(), result.eval()) def test_length_1_tensor_works(self): with self.test_session(): tensor = constant_op.constant([3], dtype=dtypes.float32) result = histogram_ops._strict_1d_cumsum(tensor, 1) expected = constant_op.constant([3], dtype=dtypes.float32) np.testing.assert_array_equal(expected.eval(), result.eval()) def test_length_3_tensor_works(self): with self.test_session(): tensor = constant_op.constant([1, 2, 3], dtype=dtypes.float32) result = histogram_ops._strict_1d_cumsum(tensor, 3) expected = constant_op.constant([1, 3, 6], dtype=dtypes.float32) np.testing.assert_array_equal(expected.eval(), result.eval()) class AUCUsingHistogramTest(test.TestCase): def setUp(self): self.rng = np.random.RandomState(0) def test_empty_labels_and_scores_gives_nan_auc(self): with self.test_session(): labels = constant_op.constant([], shape=[0], dtype=dtypes.bool) scores = constant_op.constant([], shape=[0], dtype=dtypes.float32) score_range = [0, 1.] auc, update_op = histogram_ops.auc_using_histogram(labels, scores, score_range) variables.local_variables_initializer().run() update_op.run() self.assertTrue(np.isnan(auc.eval())) def test_perfect_scores_gives_auc_1(self): self._check_auc( nbins=100, desired_auc=1.0, score_range=[0, 1.], num_records=50, frac_true=0.5, atol=0.05, num_updates=1) def test_terrible_scores_gives_auc_0(self): self._check_auc( nbins=100, desired_auc=0.0, score_range=[0, 1.], num_records=50, frac_true=0.5, atol=0.05, num_updates=1) def test_many_common_conditions(self): for nbins in [50]: for desired_auc in [0.3, 0.5, 0.8]: for score_range in [[-1, 1], [-10, 0]]: for frac_true in [0.3, 0.8]: # Tests pass with atol = 0.03. Moved up to 0.05 to avoid flakes. self._check_auc( nbins=nbins, desired_auc=desired_auc, score_range=score_range, num_records=100, frac_true=frac_true, atol=0.05, num_updates=50) def test_large_class_imbalance_still_ok(self): # With probability frac_true ** num_records, each batch contains only True # records. In this case, ~ 95%. # Tests pass with atol = 0.02. Increased to 0.05 to avoid flakes. self._check_auc( nbins=100, desired_auc=0.8, score_range=[-1, 1.], num_records=10, frac_true=0.995, atol=0.05, num_updates=1000) def test_super_accuracy_with_many_bins_and_records(self): # Test passes with atol = 0.0005. Increased atol to avoid flakes. self._check_auc( nbins=1000, desired_auc=0.75, score_range=[0, 1.], num_records=1000, frac_true=0.5, atol=0.005, num_updates=100) def _check_auc(self, nbins=100, desired_auc=0.75, score_range=None, num_records=50, frac_true=0.5, atol=0.05, num_updates=10): """Check auc accuracy against synthetic data. Args: nbins: nbins arg from contrib.metrics.auc_using_histogram. desired_auc: Number in [0, 1]. The desired auc for synthetic data. score_range: 2-tuple, (low, high), giving the range of the resultant scores. Defaults to [0, 1.]. num_records: Positive integer. The number of records to return. frac_true: Number in (0, 1). Expected fraction of resultant labels that will be True. This is just in expectation...more or less may actually be True. atol: Absolute tolerance for final AUC estimate. num_updates: Update internal histograms this many times, each with a new batch of synthetic data, before computing final AUC. Raises: AssertionError: If resultant AUC is not within atol of theoretical AUC from synthetic data. """ score_range = [0, 1.] or score_range with self.test_session(): labels = array_ops.placeholder(dtypes.bool, shape=[num_records]) scores = array_ops.placeholder(dtypes.float32, shape=[num_records]) auc, update_op = histogram_ops.auc_using_histogram( labels, scores, score_range, nbins=nbins) variables.local_variables_initializer().run() # Updates, then extract auc. for _ in range(num_updates): labels_a, scores_a = synthetic_data(desired_auc, score_range, num_records, self.rng, frac_true) update_op.run(feed_dict={labels: labels_a, scores: scores_a}) labels_a, scores_a = synthetic_data(desired_auc, score_range, num_records, self.rng, frac_true) # Fetch current auc, and verify that fetching again doesn't change it. auc_eval = auc.eval() self.assertAlmostEqual(auc_eval, auc.eval(), places=5) msg = ('nbins: %s, desired_auc: %s, score_range: %s, ' 'num_records: %s, frac_true: %s, num_updates: %s') % (nbins, desired_auc, score_range, num_records, frac_true, num_updates) np.testing.assert_allclose(desired_auc, auc_eval, atol=atol, err_msg=msg) def synthetic_data(desired_auc, score_range, num_records, rng, frac_true): """Create synthetic boolean_labels and scores with adjustable auc. Args: desired_auc: Number in [0, 1], the theoretical AUC of resultant data. score_range: 2-tuple, (low, high), giving the range of the resultant scores num_records: Positive integer. The number of records to return. rng: Initialized np.random.RandomState random number generator frac_true: Number in (0, 1). Expected fraction of resultant labels that will be True. This is just in expectation...more or less may actually be True. Returns: boolean_labels: np.array, dtype=bool. scores: np.array, dtype=np.float32 """ # We prove here why the method (below) for computing AUC works. Of course we # also checked this against sklearn.metrics.roc_auc_curve. # # First do this for score_range = [0, 1], then rescale. # WLOG assume AUC >= 0.5, otherwise we will solve for AUC >= 0.5 then swap # the labels. # So for AUC in [0, 1] we create False and True labels # and corresponding scores drawn from: # F ~ U[0, 1], T ~ U[x, 1] # We have, # AUC # = P[T > F] # = P[T > F | F < x] P[F < x] + P[T > F | F > x] P[F > x] # = (1 * x) + (0.5 * (1 - x)). # Inverting, we have: # x = 2 * AUC - 1, when AUC >= 0.5. assert 0 <= desired_auc <= 1 assert 0 < frac_true < 1 if desired_auc < 0.5: flip_labels = True desired_auc = 1 - desired_auc frac_true = 1 - frac_true else: flip_labels = False x = 2 * desired_auc - 1 labels = rng.binomial(1, frac_true, size=num_records).astype(bool) num_true = labels.sum() num_false = num_records - labels.sum() # Draw F ~ U[0, 1], and T ~ U[x, 1] false_scores = rng.rand(num_false) true_scores = x + rng.rand(num_true) * (1 - x) # Reshape [0, 1] to score_range. def reshape(scores): return score_range[0] + scores * (score_range[1] - score_range[0]) false_scores = reshape(false_scores) true_scores = reshape(true_scores) # Place into one array corresponding with the labels. scores = np.nan * np.ones(num_records, dtype=np.float32) scores[labels] = true_scores scores[~labels] = false_scores if flip_labels: labels = ~labels return labels, scores if __name__ == '__main__': test.main()
apache-2.0
fivejjs/bayespy
bayespy/inference/vmp/nodes/beta.py
2
4372
################################################################################ # Copyright (C) 2014 Jaakko Luttinen # # This file is licensed under the MIT License. ################################################################################ """ A module for the beta distribution node """ import numpy as np import scipy.special as special from .dirichlet import (DirichletMoments, DirichletDistribution, Dirichlet) from .node import Moments, ensureparents class BetaMoments(DirichletMoments): """ Class for the moments of beta variables. """ def compute_fixed_moments(self, p): """ Compute the moments for a fixed value """ p = np.asanyarray(p)[...,None] * [1,-1] + [0,1] return super().compute_fixed_moments(p) def compute_dims_from_values(self, p): """ Return the shape of the moments for a fixed value. """ return ( (2,), ) class BetaDistribution(DirichletDistribution): """ Class for the VMP formulas of beta variables. Although the realizations are scalars (probability p), the moments is a two-dimensional vector: [log(p), log(1-p)]. """ def compute_message_to_parent(self, parent, index, u_self, u_alpha): """ Compute the message to a parent node. """ return super().compute_message_to_parent(parent, index, u_self, u_alpha) def compute_phi_from_parents(self, u_alpha, mask=True): """ Compute the natural parameter vector given parent moments. """ return super().compute_phi_from_parents(u_alpha, mask=mask) def compute_moments_and_cgf(self, phi, mask=True): """ Compute the moments and :math:`g(\phi)`. """ return super().compute_moments_and_cgf(phi, mask) def compute_cgf_from_parents(self, u_alpha): """ Compute :math:`\mathrm{E}_{q(p)}[g(p)]` """ return super().compute_cgf_from_parents(u_alpha) def compute_fixed_moments_and_f(self, p, mask=True): """ Compute the moments and :math:`f(x)` for a fixed value. """ p = np.asanyarray(p)[...,None] * [1,-1] + [0,1] return super().compute_fixed_moments_and_f(p, mask=mask) def random(self, *phi, plates=None): """ Draw a random sample from the distribution. """ p = super().random(*phi, plates=plates) return p[...,0] class Beta(Dirichlet): r""" Node for beta random variables. The node models a probability variable :math:`p \in [0,1]` as .. math:: p \sim \mathrm{Beta}(a, b) where :math:`a` and :math:`b` are prior counts for success and failure, respectively. Parameters ---------- alpha : (...,2)-shaped array Two-element vector containing :math:`a` and :math:`b` Examples -------- >>> import warnings >>> warnings.filterwarnings('ignore', category=RuntimeWarning) >>> from bayespy.nodes import Bernoulli, Beta >>> p = Beta([1e-3, 1e-3]) >>> z = Bernoulli(p, plates=(10,)) >>> z.observe([0, 1, 1, 1, 0, 1, 1, 1, 0, 1]) >>> p.update() >>> import bayespy.plot as bpplt >>> import numpy as np >>> bpplt.pdf(p, np.linspace(0, 1, num=100)) [<matplotlib.lines.Line2D object at 0x...>] """ _moments = BetaMoments() _distribution = BetaDistribution() def __init__(self, alpha, **kwargs): """ Create beta node """ super().__init__(alpha, **kwargs) @classmethod @ensureparents def _constructor(cls, alpha, **kwargs): """ Constructs distribution and moments objects. """ D = alpha.dims[0][0] if D != 2: raise ValueError("Parent has wrong dimensionality. Must be a " "two-dimensional vector.") return super()._constructor(alpha, **kwargs) def __str__(self): """ Print the distribution using standard parameterization. """ a = self.phi[0][...,0] b = self.phi[0][...,1] return ("%s ~ Beta(a, b)\n" " a = \n" "%s\n" " b = \n" "%s\n" % (self.name, a, b))
mit
dhruv13J/scikit-learn
sklearn/decomposition/tests/test_factor_analysis.py
222
3055
# Author: Christian Osendorfer <[email protected]> # Alexandre Gramfort <[email protected]> # Licence: BSD3 import numpy as np from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils import ConvergenceWarning from sklearn.decomposition import FactorAnalysis def test_factor_analysis(): # Test FactorAnalysis ability to recover the data covariance structure rng = np.random.RandomState(0) n_samples, n_features, n_components = 20, 5, 3 # Some random settings for the generative model W = rng.randn(n_components, n_features) # latent variable of dim 3, 20 of it h = rng.randn(n_samples, n_components) # using gamma to model different noise variance # per component noise = rng.gamma(1, size=n_features) * rng.randn(n_samples, n_features) # generate observations # wlog, mean is 0 X = np.dot(h, W) + noise assert_raises(ValueError, FactorAnalysis, svd_method='foo') fa_fail = FactorAnalysis() fa_fail.svd_method = 'foo' assert_raises(ValueError, fa_fail.fit, X) fas = [] for method in ['randomized', 'lapack']: fa = FactorAnalysis(n_components=n_components, svd_method=method) fa.fit(X) fas.append(fa) X_t = fa.transform(X) assert_equal(X_t.shape, (n_samples, n_components)) assert_almost_equal(fa.loglike_[-1], fa.score_samples(X).sum()) assert_almost_equal(fa.score_samples(X).mean(), fa.score(X)) diff = np.all(np.diff(fa.loglike_)) assert_greater(diff, 0., 'Log likelihood dif not increase') # Sample Covariance scov = np.cov(X, rowvar=0., bias=1.) # Model Covariance mcov = fa.get_covariance() diff = np.sum(np.abs(scov - mcov)) / W.size assert_less(diff, 0.1, "Mean absolute difference is %f" % diff) fa = FactorAnalysis(n_components=n_components, noise_variance_init=np.ones(n_features)) assert_raises(ValueError, fa.fit, X[:, :2]) f = lambda x, y: np.abs(getattr(x, y)) # sign will not be equal fa1, fa2 = fas for attr in ['loglike_', 'components_', 'noise_variance_']: assert_almost_equal(f(fa1, attr), f(fa2, attr)) fa1.max_iter = 1 fa1.verbose = True assert_warns(ConvergenceWarning, fa1.fit, X) # Test get_covariance and get_precision with n_components == n_features # with n_components < n_features and with n_components == 0 for n_components in [0, 2, X.shape[1]]: fa.n_components = n_components fa.fit(X) cov = fa.get_covariance() precision = fa.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]), 12)
bsd-3-clause
0x0all/scikit-learn
examples/linear_model/plot_logistic.py
312
1426
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logit function ========================================================= Show in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e. class one or two, using the logit-curve. """ print(__doc__) # Code source: Gael Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # this is our test set, it's just a straight line with some # Gaussian noise xmin, xmax = -5, 5 n_samples = 100 np.random.seed(0) X = np.random.normal(size=n_samples) y = (X > 0).astype(np.float) X[X > 0] *= 4 X += .3 * np.random.normal(size=n_samples) X = X[:, np.newaxis] # run the classifier clf = linear_model.LogisticRegression(C=1e5) clf.fit(X, y) # and plot the result plt.figure(1, figsize=(4, 3)) plt.clf() plt.scatter(X.ravel(), y, color='black', zorder=20) X_test = np.linspace(-5, 10, 300) def model(x): return 1 / (1 + np.exp(-x)) loss = model(X_test * clf.coef_ + clf.intercept_).ravel() plt.plot(X_test, loss, color='blue', linewidth=3) ols = linear_model.LinearRegression() ols.fit(X, y) plt.plot(X_test, ols.coef_ * X_test + ols.intercept_, linewidth=1) plt.axhline(.5, color='.5') plt.ylabel('y') plt.xlabel('X') plt.xticks(()) plt.yticks(()) plt.ylim(-.25, 1.25) plt.xlim(-4, 10) plt.show()
bsd-3-clause
aleju/imgaug
imgaug/augmentables/segmaps.py
2
21991
"""Classes dealing with segmentation maps. E.g. masks, semantic or instance segmentation maps. """ from __future__ import print_function, division, absolute_import import numpy as np import six.moves as sm from .. import imgaug as ia from ..augmenters import blend as blendlib from .base import IAugmentable @ia.deprecated(alt_func="SegmentationMapsOnImage", comment="(Note the plural 'Maps' instead of old 'Map'.)") def SegmentationMapOnImage(*args, **kwargs): """Object representing a segmentation map associated with an image.""" # pylint: disable=invalid-name return SegmentationMapsOnImage(*args, **kwargs) class SegmentationMapsOnImage(IAugmentable): """ Object representing a segmentation map associated with an image. Attributes ---------- DEFAULT_SEGMENT_COLORS : list of tuple of int Standard RGB colors to use during drawing, ordered by class index. Parameters ---------- arr : (H,W) ndarray or (H,W,C) ndarray Array representing the segmentation map(s). May have dtypes bool, int or uint. shape : tuple of int Shape of the image on which the segmentation map(s) is/are placed. **Not** the shape of the segmentation map(s) array, unless it is identical to the image shape (note the likely difference between the arrays in the number of channels). This is expected to be ``(H, W)`` or ``(H, W, C)`` with ``C`` usually being ``3``. If there is no corresponding image, use ``(H_arr, W_arr)`` instead, where ``H_arr`` is the height of the segmentation map(s) array (analogous ``W_arr``). nb_classes : None or int, optional Deprecated. """ # TODO replace this by matplotlib colormap DEFAULT_SEGMENT_COLORS = [ (0, 0, 0), # black (230, 25, 75), # red (60, 180, 75), # green (255, 225, 25), # yellow (0, 130, 200), # blue (245, 130, 48), # orange (145, 30, 180), # purple (70, 240, 240), # cyan (240, 50, 230), # magenta (210, 245, 60), # lime (250, 190, 190), # pink (0, 128, 128), # teal (230, 190, 255), # lavender (170, 110, 40), # brown (255, 250, 200), # beige (128, 0, 0), # maroon (170, 255, 195), # mint (128, 128, 0), # olive (255, 215, 180), # coral (0, 0, 128), # navy (128, 128, 128), # grey (255, 255, 255), # white # -- (115, 12, 37), # dark red (30, 90, 37), # dark green (127, 112, 12), # dark yellow (0, 65, 100), # dark blue (122, 65, 24), # dark orange (72, 15, 90), # dark purple (35, 120, 120), # dark cyan (120, 25, 115), # dark magenta (105, 122, 30), # dark lime (125, 95, 95), # dark pink (0, 64, 64), # dark teal (115, 95, 127), # dark lavender (85, 55, 20), # dark brown (127, 125, 100), # dark beige (64, 0, 0), # dark maroon (85, 127, 97), # dark mint (64, 64, 0), # dark olive (127, 107, 90), # dark coral (0, 0, 64), # dark navy (64, 64, 64), # dark grey ] def __init__(self, arr, shape, nb_classes=None): assert ia.is_np_array(arr), ( "Expected to get numpy array, got %s." % (type(arr),)) assert arr.ndim in [2, 3], ( "Expected segmentation map array to be 2- or " "3-dimensional, got %d dimensions and shape %s." % ( arr.ndim, arr.shape)) assert isinstance(shape, tuple), ( "Expected 'shape' to be a tuple denoting the shape of the image " "on which the segmentation map is placed. Got type %s instead." % ( type(shape))) if arr.dtype.kind == "f": ia.warn_deprecated( "Got a float array as the segmentation map in " "SegmentationMapsOnImage. That is deprecated. Please provide " "instead a (H,W,[C]) array of dtype bool_, int or uint, where " "C denotes the segmentation map index." ) if arr.ndim == 2: arr = (arr > 0.5) else: # arr.ndim == 3 arr = np.argmax(arr, axis=2).astype(np.int32) if arr.dtype.name == "bool": self._input_was = (arr.dtype, arr.ndim) if arr.ndim == 2: arr = arr[..., np.newaxis] elif arr.dtype.kind in ["i", "u"]: assert np.min(arr.flat[0:100]) >= 0, ( "Expected segmentation map array to only contain values >=0, " "got a minimum of %d." % (np.min(arr),)) if arr.dtype.kind == "u": # allow only <=uint16 due to conversion to int32 assert arr.dtype.itemsize <= 2, ( "When using uint arrays as segmentation maps, only uint8 " "and uint16 are allowed. Got dtype %s." % (arr.dtype.name,) ) elif arr.dtype.kind == "i": # allow only <=uint16 due to conversion to int32 assert arr.dtype.itemsize <= 4, ( "When using int arrays as segmentation maps, only int8, " "int16 and int32 are allowed. Got dtype %s." % ( arr.dtype.name,) ) self._input_was = (arr.dtype, arr.ndim) if arr.ndim == 2: arr = arr[..., np.newaxis] else: raise Exception(( "Input was expected to be an array of dtype 'bool', 'int' " "or 'uint'. Got dtype '%s'.") % (arr.dtype.name,)) if arr.dtype.name != "int32": arr = arr.astype(np.int32) self.arr = arr self.shape = shape if nb_classes is not None: ia.warn_deprecated( "Providing nb_classes to SegmentationMapsOnImage is no longer " "necessary and hence deprecated. The argument is ignored " "and can be safely removed.") def get_arr(self): """Return the seg.map array, with original dtype and shape ndim. Here, "original" denotes the dtype and number of shape dimensions that was used when the :class:`SegmentationMapsOnImage` instance was created, i.e. upon the call of :func:`SegmentationMapsOnImage.__init__`. Internally, this class may use a different dtype and shape to simplify computations. .. note:: The height and width may have changed compared to the original input due to e.g. pooling operations. Returns ------- ndarray Segmentation map array. Same dtype and number of dimensions as was originally used when the :class:`SegmentationMapsOnImage` instance was created. """ input_dtype, input_ndim = self._input_was # The internally used int32 has a wider value range than any other # input dtype, hence we can simply convert via astype() here. arr_input = self.arr.astype(input_dtype) if input_ndim == 2: assert arr_input.shape[2] == 1, ( "Originally got a (H,W) segmentation map. Internal array " "should now have shape (H,W,1), but got %s. This might be " "an internal error." % (arr_input.shape,)) return arr_input[:, :, 0] return arr_input @ia.deprecated(alt_func="SegmentationMapsOnImage.get_arr()") def get_arr_int(self, *args, **kwargs): """Return the seg.map array, with original dtype and shape ndim.""" # pylint: disable=unused-argument return self.get_arr() def draw(self, size=None, colors=None): """ Render the segmentation map as an RGB image. Parameters ---------- size : None or float or iterable of int or iterable of float, optional Size of the rendered RGB image as ``(height, width)``. See :func:`~imgaug.imgaug.imresize_single_image` for details. If set to ``None``, no resizing is performed and the size of the segmentation map array is used. colors : None or list of tuple of int, optional Colors to use. One for each class to draw. If ``None``, then default colors will be used. Returns ------- list of (H,W,3) ndarray Rendered segmentation map (dtype is ``uint8``). One per ``C`` in the original input array ``(H,W,C)``. """ def _handle_sizeval(sizeval, arr_axis_size): if sizeval is None: return arr_axis_size if ia.is_single_float(sizeval): return max(int(arr_axis_size * sizeval), 1) if ia.is_single_integer(sizeval): return sizeval raise ValueError("Expected float or int, got %s." % ( type(sizeval),)) if size is None: size = [size, size] elif not ia.is_iterable(size): size = [size, size] height = _handle_sizeval(size[0], self.arr.shape[0]) width = _handle_sizeval(size[1], self.arr.shape[1]) image = np.zeros((height, width, 3), dtype=np.uint8) return self.draw_on_image( image, alpha=1.0, resize="segmentation_map", colors=colors, draw_background=True ) def draw_on_image(self, image, alpha=0.75, resize="segmentation_map", colors=None, draw_background=False, background_class_id=0, background_threshold=None): """Draw the segmentation map as an overlay over an image. Parameters ---------- image : (H,W,3) ndarray Image onto which to draw the segmentation map. Expected dtype is ``uint8``. alpha : float, optional Alpha/opacity value to use for the mixing of image and segmentation map. Larger values mean that the segmentation map will be more visible and the image less visible. resize : {'segmentation_map', 'image'}, optional In case of size differences between the image and segmentation map, either the image or the segmentation map can be resized. This parameter controls which of the two will be resized to the other's size. colors : None or list of tuple of int, optional Colors to use. One for each class to draw. If ``None``, then default colors will be used. draw_background : bool, optional If ``True``, the background will be drawn like any other class. If ``False``, the background will not be drawn, i.e. the respective background pixels will be identical with the image's RGB color at the corresponding spatial location and no color overlay will be applied. background_class_id : int, optional Class id to interpret as the background class. See `draw_background`. background_threshold : None, optional Deprecated. This parameter is ignored. Returns ------- list of (H,W,3) ndarray Rendered overlays as ``uint8`` arrays. Always a **list** containing one RGB image per segmentation map array channel. """ if background_threshold is not None: ia.warn_deprecated( "The argument `background_threshold` is deprecated and " "ignored. Please don't use it anymore.") assert image.ndim == 3, ( "Expected to draw on 3-dimensional image, got image with %d " "dimensions." % (image.ndim,)) assert image.shape[2] == 3, ( "Expected to draw on RGB image, got image with %d channels " "instead." % (image.shape[2],)) assert image.dtype.name == "uint8", ( "Expected to get image with dtype uint8, got dtype %s." % ( image.dtype.name,)) assert 0 - 1e-8 <= alpha <= 1.0 + 1e-8, ( "Expected 'alpha' to be in interval [0.0, 1.0], got %.4f." % ( alpha,)) assert resize in ["segmentation_map", "image"], ( "Expected 'resize' to be \"segmentation_map\" or \"image\", got " "%s." % (resize,)) colors = ( colors if colors is not None else SegmentationMapsOnImage.DEFAULT_SEGMENT_COLORS ) if resize == "image": image = ia.imresize_single_image( image, self.arr.shape[0:2], interpolation="cubic") segmaps_drawn = [] arr_channelwise = np.dsplit(self.arr, self.arr.shape[2]) for arr in arr_channelwise: arr = arr[:, :, 0] nb_classes = 1 + np.max(arr) segmap_drawn = np.zeros((arr.shape[0], arr.shape[1], 3), dtype=np.uint8) assert nb_classes <= len(colors), ( "Can't draw all %d classes as it would exceed the maximum " "number of %d available colors." % (nb_classes, len(colors),)) ids_in_map = np.unique(arr) for c, color in zip(sm.xrange(nb_classes), colors): if c in ids_in_map: class_mask = (arr == c) segmap_drawn[class_mask] = color segmap_drawn = ia.imresize_single_image( segmap_drawn, image.shape[0:2], interpolation="nearest") segmap_on_image = blendlib.blend_alpha(segmap_drawn, image, alpha) if draw_background: mix = segmap_on_image else: foreground_mask = ia.imresize_single_image( (arr != background_class_id), image.shape[0:2], interpolation="nearest") # without this, the merge below does nothing foreground_mask = np.atleast_3d(foreground_mask) mix = ( (~foreground_mask) * image + foreground_mask * segmap_on_image ) segmaps_drawn.append(mix) return segmaps_drawn def pad(self, top=0, right=0, bottom=0, left=0, mode="constant", cval=0): """Pad the segmentation maps at their top/right/bottom/left side. Parameters ---------- top : int, optional Amount of pixels to add at the top side of the segmentation map. Must be ``0`` or greater. right : int, optional Amount of pixels to add at the right side of the segmentation map. Must be ``0`` or greater. bottom : int, optional Amount of pixels to add at the bottom side of the segmentation map. Must be ``0`` or greater. left : int, optional Amount of pixels to add at the left side of the segmentation map. Must be ``0`` or greater. mode : str, optional Padding mode to use. See :func:`~imgaug.imgaug.pad` for details. cval : number, optional Value to use for padding if `mode` is ``constant``. See :func:`~imgaug.imgaug.pad` for details. Returns ------- imgaug.augmentables.segmaps.SegmentationMapsOnImage Padded segmentation map with height ``H'=H+top+bottom`` and width ``W'=W+left+right``. """ from ..augmenters import size as iasize arr_padded = iasize.pad(self.arr, top=top, right=right, bottom=bottom, left=left, mode=mode, cval=cval) return self.deepcopy(arr=arr_padded) def pad_to_aspect_ratio(self, aspect_ratio, mode="constant", cval=0, return_pad_amounts=False): """Pad the segmentation maps until they match a target aspect ratio. Depending on which dimension is smaller (height or width), only the corresponding sides (left/right or top/bottom) will be padded. In each case, both of the sides will be padded equally. Parameters ---------- aspect_ratio : float Target aspect ratio, given as width/height. E.g. ``2.0`` denotes the image having twice as much width as height. mode : str, optional Padding mode to use. See :func:`~imgaug.imgaug.pad` for details. cval : number, optional Value to use for padding if `mode` is ``constant``. See :func:`~imgaug.imgaug.pad` for details. return_pad_amounts : bool, optional If ``False``, then only the padded instance will be returned. If ``True``, a tuple with two entries will be returned, where the first entry is the padded instance and the second entry are the amounts by which each array side was padded. These amounts are again a tuple of the form ``(top, right, bottom, left)``, with each value being an integer. Returns ------- imgaug.augmentables.segmaps.SegmentationMapsOnImage Padded segmentation map as :class:`SegmentationMapsOnImage` instance. tuple of int Amounts by which the instance's array was padded on each side, given as a tuple ``(top, right, bottom, left)``. This tuple is only returned if `return_pad_amounts` was set to ``True``. """ from ..augmenters import size as iasize arr_padded, pad_amounts = iasize.pad_to_aspect_ratio( self.arr, aspect_ratio=aspect_ratio, mode=mode, cval=cval, return_pad_amounts=True) segmap = self.deepcopy(arr=arr_padded) if return_pad_amounts: return segmap, pad_amounts return segmap @ia.deprecated(alt_func="SegmentationMapsOnImage.resize()", comment="resize() has the exactly same interface.") def scale(self, *args, **kwargs): """Resize the seg.map(s) array given a target size and interpolation.""" return self.resize(*args, **kwargs) def resize(self, sizes, interpolation="nearest"): """Resize the seg.map(s) array given a target size and interpolation. Parameters ---------- sizes : float or iterable of int or iterable of float New size of the array in ``(height, width)``. See :func:`~imgaug.imgaug.imresize_single_image` for details. interpolation : None or str or int, optional The interpolation to use during resize. Nearest neighbour interpolation (``"nearest"``) is almost always the best choice. See :func:`~imgaug.imgaug.imresize_single_image` for details. Returns ------- imgaug.augmentables.segmaps.SegmentationMapsOnImage Resized segmentation map object. """ arr_resized = ia.imresize_single_image(self.arr, sizes, interpolation=interpolation) return self.deepcopy(arr_resized) # TODO how best to handle changes to _input_was due to changed 'arr'? def copy(self, arr=None, shape=None): """Create a shallow copy of the segmentation map object. Parameters ---------- arr : None or (H,W) ndarray or (H,W,C) ndarray, optional Optionally the `arr` attribute to use for the new segmentation map instance. Will be copied from the old instance if not provided. See :func:`~imgaug.augmentables.segmaps.SegmentationMapsOnImage.__init__` for details. shape : None or tuple of int, optional Optionally the shape attribute to use for the the new segmentation map instance. Will be copied from the old instance if not provided. See :func:`~imgaug.augmentables.segmaps.SegmentationMapsOnImage.__init__` for details. Returns ------- imgaug.augmentables.segmaps.SegmentationMapsOnImage Shallow copy. """ # pylint: disable=protected-access segmap = SegmentationMapsOnImage( self.arr if arr is None else arr, shape=self.shape if shape is None else shape) segmap._input_was = self._input_was return segmap def deepcopy(self, arr=None, shape=None): """Create a deep copy of the segmentation map object. Parameters ---------- arr : None or (H,W) ndarray or (H,W,C) ndarray, optional Optionally the `arr` attribute to use for the new segmentation map instance. Will be copied from the old instance if not provided. See :func:`~imgaug.augmentables.segmaps.SegmentationMapsOnImage.__init__` for details. shape : None or tuple of int, optional Optionally the shape attribute to use for the the new segmentation map instance. Will be copied from the old instance if not provided. See :func:`~imgaug.augmentables.segmaps.SegmentationMapsOnImage.__init__` for details. Returns ------- imgaug.augmentables.segmaps.SegmentationMapsOnImage Deep copy. """ # pylint: disable=protected-access segmap = SegmentationMapsOnImage( np.copy(self.arr if arr is None else arr), shape=self.shape if shape is None else shape) segmap._input_was = self._input_was return segmap
mit
xiaoh/sediFoam
cases/auto-testing/test-cases/multiParticlesCollideRho/particlePosition.py
2
1082
#!/usr/bin/python import sys, os, os.path import matplotlib.pyplot as plt p = []; for i in [1,2,3,4]: cmd = 'grep "' + str(i) +' 1" snapshot.bubblemd > data/p' + str(i) + '.dat'; os.system(cmd); x_p = []; y_p = []; x_p_bench = []; y_p_bench = []; pData='data/p' + str(i) + '.dat'; fData = open(pData, 'r'); for line in fData.readlines(): data = [x.strip() for x in line.split(None)] if (not data): continue x_p.append(data[4]); y_p.append(data[5]); p.append(plt.plot(x_p,y_p,'k-o',markersize = 4)) pData='data/origin/p' + str(i) + '.dat'; fData = open(pData, 'r'); for line in fData.readlines(): data = [x.strip() for x in line.split(None)] if (not data): continue x_p_bench.append(data[4]); y_p_bench.append(data[5]); p.append(plt.plot(x_p_bench,y_p_bench,'r-o',markersize = 4)) lg = plt.legend([p[0],p[1]],["current result","benchmark"],loc=4) lg.draw_frame(False) plt.savefig('data/multiParticlesPositionRho.pdf');
gpl-2.0
satishgoda/bokeh
bokeh/util/serialization.py
7
6810
""" Functions for helping with serialization and deserialization of Bokeh objects. """ from __future__ import absolute_import from six import iterkeys import numpy as np try: import pandas as pd is_pandas = True except ImportError: is_pandas = False import logging log = logging.getLogger(__name__) _simple_id = 1000 def make_id(): """ Return a new unique ID for a Bokeh object. Normally this function will return UUIDs to use for identifying Bokeh objects. This is especally important for Bokeh objects stored on a Bokeh server. However, it is convenient to have more human-readable IDs during development, so this behavior can be overridden by setting the environment variable ``BOKEH_SIMPLE_IDS=yes``. """ global _simple_id import uuid from ..settings import settings if settings.simple_ids(False): _simple_id += 1 new_id = _simple_id else: new_id = uuid.uuid4() return str(new_id) def urljoin(*args): """ Construct an absolute URL from several URL components. Args: *args (str) : URL components to join Returns: str : joined URL """ from six.moves.urllib.parse import urljoin as sys_urljoin from functools import reduce return reduce(sys_urljoin, args) def get_json(response): """ Unify retrieving JSON responses from different sources. Works correctly for HTTP responses from requests <=1.0, >1.0, and the Flask test client. Args: response (Flask or requests response) : a response to process Returns: JSON """ import json try: import flask except ImportError: flask = None if flask and isinstance(response, flask.Response): # flask testing return json.loads(response.data.decode('utf-8')) else: # requests if hasattr(response.json, '__call__'): return response.json() else: return response.json def dump(objs, docid, changed_only=True): """ Serialize a sequence of Bokeh objects into JSON Args: objs (seq[obj]) : a sequence of Bokeh object to dump docid (str) : an ID for a Bokeh Document to dump relative to changed_only (bool, optional) : whether to dump only attributes that have had their values changed at some point (default: True) Returns: list[json] """ json_objs = [] for obj in objs: ref = obj.ref ref["attributes"] = obj.vm_serialize(changed_only=changed_only) ref["attributes"].update({"id": ref["id"], "doc" : docid}) json_objs.append(ref) return json_objs def is_ref(frag): """ Test whether a given Bokeh object graph fragment is a reference. A Bokeh "reference" is a ``dict`` with ``"type"`` and ``"id"`` keys. Args: frag (dict) : a fragment of a Bokeh object graph Returns: True, if the fragment is a reference, otherwise False """ return isinstance(frag, dict) and \ frag.get('type') and \ frag.get('id') def json_apply(fragment, check_func, func): """ Apply a function to JSON fragments that match the given predicate and return the collected results. Recursively traverses a nested collection of ``dict`` and ``list``, applying ``check_func`` to each fragment. If True, then collect ``func(fragment)`` in the final output Args: fragment (JSON-like) : the fragment to apply ``func`` to recursively check_func (callable) : the predicate to test fragments with func (callable) : the conversion function to apply Returns: converted fragments """ if check_func(fragment): return func(fragment) elif isinstance(fragment, list): output = [] for val in fragment: output.append(json_apply(val, check_func, func)) return output elif isinstance(fragment, dict): output = {} for k, val in fragment.items(): output[k] = json_apply(val, check_func, func) return output else: return fragment def transform_series(obj): """transforms pandas series into array of values """ vals = obj.values return transform_array(vals) def transform_array(obj): """Transform arrays into lists of json safe types also handles pandas series, and replacing nans and infs with strings """ # Check for astype failures (putative Numpy < 1.7) dt2001 = np.datetime64('2001') legacy_datetime64 = (dt2001.astype('int64') == dt2001.astype('datetime64[ms]').astype('int64')) ## not quite correct, truncates to ms.. if obj.dtype.kind == 'M': if legacy_datetime64: if obj.dtype == np.dtype('datetime64[ns]'): return (obj.astype('int64') / 10**6.0).tolist() else: return (obj.astype('datetime64[us]').astype('int64') / 1000.).tolist() elif obj.dtype.kind in ('u', 'i', 'f'): return transform_numerical_array(obj) return obj.tolist() def transform_numerical_array(obj): """handles nans/inf conversion """ if isinstance(obj, np.ma.MaskedArray): obj = obj.filled(np.nan) # Set masked values to nan if not np.isnan(obj).any() and not np.isinf(obj).any(): return obj.tolist() else: transformed = obj.astype('object') transformed[np.isnan(obj)] = 'NaN' transformed[np.isposinf(obj)] = 'Infinity' transformed[np.isneginf(obj)] = '-Infinity' return transformed.tolist() def traverse_data(datum): """recursively look for NaN, Infinity, and -Infinity objects and replace them with JSON-compliant strings """ datum_copy = [] for item in datum: if isinstance(item, (list, tuple)): datum_copy.append(traverse_data(item)) elif isinstance(item, float): if np.isnan(item): item = 'NaN' elif np.isposinf(item): item = 'Infinity' elif np.isneginf(item): item = '-Infinity' datum_copy.append(item) else: datum_copy.append(item) return datum_copy def transform_column_source_data(data): """iterate through the data of a ColumnSourceData object replacing non-JSON-compliant objects with compliant ones """ data_copy = {} for key in iterkeys(data): if is_pandas and isinstance(data[key], (pd.Series, pd.Index)): data_copy[key] = transform_series(data[key]) elif isinstance(data[key], np.ndarray): data_copy[key] = transform_array(data[key]) else: data_copy[key] = traverse_data(data[key]) return data_copy
bsd-3-clause
asnorkin/sentiment_analysis
site/lib/python2.7/site-packages/sklearn/linear_model/ridge.py
13
51357
""" Ridge regression """ # Author: Mathieu Blondel <[email protected]> # Reuben Fletcher-Costin <[email protected]> # Fabian Pedregosa <[email protected]> # Michael Eickenberg <[email protected]> # License: BSD 3 clause from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy import linalg from scipy import sparse from scipy.sparse import linalg as sp_linalg from .base import LinearClassifierMixin, LinearModel, _rescale_data from .sag import sag_solver from ..base import RegressorMixin from ..utils.extmath import safe_sparse_dot from ..utils.extmath import row_norms from ..utils import check_X_y from ..utils import check_array from ..utils import check_consistent_length from ..utils import compute_sample_weight from ..utils import column_or_1d from ..preprocessing import LabelBinarizer from ..model_selection import GridSearchCV from ..externals import six from ..metrics.scorer import check_scoring def _solve_sparse_cg(X, y, alpha, max_iter=None, tol=1e-3, verbose=0): n_samples, n_features = X.shape X1 = sp_linalg.aslinearoperator(X) coefs = np.empty((y.shape[1], n_features)) if n_features > n_samples: def create_mv(curr_alpha): def _mv(x): return X1.matvec(X1.rmatvec(x)) + curr_alpha * x return _mv else: def create_mv(curr_alpha): def _mv(x): return X1.rmatvec(X1.matvec(x)) + curr_alpha * x return _mv for i in range(y.shape[1]): y_column = y[:, i] mv = create_mv(alpha[i]) if n_features > n_samples: # kernel ridge # w = X.T * inv(X X^t + alpha*Id) y C = sp_linalg.LinearOperator( (n_samples, n_samples), matvec=mv, dtype=X.dtype) coef, info = sp_linalg.cg(C, y_column, tol=tol) coefs[i] = X1.rmatvec(coef) else: # linear ridge # w = inv(X^t X + alpha*Id) * X.T y y_column = X1.rmatvec(y_column) C = sp_linalg.LinearOperator( (n_features, n_features), matvec=mv, dtype=X.dtype) coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter, tol=tol) if info < 0: raise ValueError("Failed with error code %d" % info) if max_iter is None and info > 0 and verbose: warnings.warn("sparse_cg did not converge after %d iterations." % info) return coefs def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3): n_samples, n_features = X.shape coefs = np.empty((y.shape[1], n_features)) n_iter = np.empty(y.shape[1], dtype=np.int32) # According to the lsqr documentation, alpha = damp^2. sqrt_alpha = np.sqrt(alpha) for i in range(y.shape[1]): y_column = y[:, i] info = sp_linalg.lsqr(X, y_column, damp=sqrt_alpha[i], atol=tol, btol=tol, iter_lim=max_iter) coefs[i] = info[0] n_iter[i] = info[2] return coefs, n_iter def _solve_cholesky(X, y, alpha): # w = inv(X^t X + alpha*Id) * X.T y n_samples, n_features = X.shape n_targets = y.shape[1] A = safe_sparse_dot(X.T, X, dense_output=True) Xy = safe_sparse_dot(X.T, y, dense_output=True) one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]]) if one_alpha: A.flat[::n_features + 1] += alpha[0] return linalg.solve(A, Xy, sym_pos=True, overwrite_a=True).T else: coefs = np.empty([n_targets, n_features]) for coef, target, current_alpha in zip(coefs, Xy.T, alpha): A.flat[::n_features + 1] += current_alpha coef[:] = linalg.solve(A, target, sym_pos=True, overwrite_a=False).ravel() A.flat[::n_features + 1] -= current_alpha return coefs def _solve_cholesky_kernel(K, y, alpha, sample_weight=None, copy=False): # dual_coef = inv(X X^t + alpha*Id) y n_samples = K.shape[0] n_targets = y.shape[1] if copy: K = K.copy() alpha = np.atleast_1d(alpha) one_alpha = (alpha == alpha[0]).all() has_sw = isinstance(sample_weight, np.ndarray) \ or sample_weight not in [1.0, None] if has_sw: # Unlike other solvers, we need to support sample_weight directly # because K might be a pre-computed kernel. sw = np.sqrt(np.atleast_1d(sample_weight)) y = y * sw[:, np.newaxis] K *= np.outer(sw, sw) if one_alpha: # Only one penalty, we can solve multi-target problems in one time. K.flat[::n_samples + 1] += alpha[0] try: # Note: we must use overwrite_a=False in order to be able to # use the fall-back solution below in case a LinAlgError # is raised dual_coef = linalg.solve(K, y, sym_pos=True, overwrite_a=False) except np.linalg.LinAlgError: warnings.warn("Singular matrix in solving dual problem. Using " "least-squares solution instead.") dual_coef = linalg.lstsq(K, y)[0] # K is expensive to compute and store in memory so change it back in # case it was user-given. K.flat[::n_samples + 1] -= alpha[0] if has_sw: dual_coef *= sw[:, np.newaxis] return dual_coef else: # One penalty per target. We need to solve each target separately. dual_coefs = np.empty([n_targets, n_samples]) for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha): K.flat[::n_samples + 1] += current_alpha dual_coef[:] = linalg.solve(K, target, sym_pos=True, overwrite_a=False).ravel() K.flat[::n_samples + 1] -= current_alpha if has_sw: dual_coefs *= sw[np.newaxis, :] return dual_coefs.T def _solve_svd(X, y, alpha): U, s, Vt = linalg.svd(X, full_matrices=False) idx = s > 1e-15 # same default value as scipy.linalg.pinv s_nnz = s[idx][:, np.newaxis] UTy = np.dot(U.T, y) d = np.zeros((s.size, alpha.size)) d[idx] = s_nnz / (s_nnz ** 2 + alpha) d_UT_y = d * UTy return np.dot(Vt.T, d_UT_y).T def ridge_regression(X, y, alpha, sample_weight=None, solver='auto', max_iter=None, tol=1e-3, verbose=0, random_state=None, return_n_iter=False, return_intercept=False): """Solve the ridge equation by the method of normal equations. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- X : {array-like, sparse matrix, LinearOperator}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values alpha : {float, array-like}, shape = [n_targets] if array-like Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. max_iter : int, optional Maximum number of iterations for conjugate gradient solver. For 'sparse_cg' and 'lsqr' solvers, the default value is determined by scipy.sparse.linalg. For 'sag' solver, the default value is 1000. sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample. If sample_weight is not None and solver='auto', the solver will be set to 'cholesky'. .. versionadded:: 0.17 solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution via a Cholesky decomposition of dot(X.T, X) - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fastest but may not be available in old scipy versions. It also uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent. It also uses an iterative procedure, and is often faster than other solvers when both n_samples and n_features are large. Note that 'sag' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. All last four solvers support both dense and sparse data. However, only 'sag' supports sparse input when `fit_intercept` is True. .. versionadded:: 0.17 Stochastic Average Gradient descent solver. tol : float Precision of the solution. verbose : int Verbosity level. Setting verbose > 0 will display additional information depending on the solver used. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used only in 'sag' solver. return_n_iter : boolean, default False If True, the method also returns `n_iter`, the actual number of iteration performed by the solver. .. versionadded:: 0.17 return_intercept : boolean, default False If True and if X is sparse, the method also returns the intercept, and the solver is automatically changed to 'sag'. This is only a temporary fix for fitting the intercept with sparse data. For dense data, use sklearn.linear_model._preprocess_data before your regression. .. versionadded:: 0.17 Returns ------- coef : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). n_iter : int, optional The actual number of iteration performed by the solver. Only returned if `return_n_iter` is True. intercept : float or array, shape = [n_targets] The intercept of the model. Only returned if `return_intercept` is True and if X is a scipy sparse array. Notes ----- This function won't compute the intercept. """ if return_intercept and sparse.issparse(X) and solver != 'sag': if solver != 'auto': warnings.warn("In Ridge, only 'sag' solver can currently fit the " "intercept when X is sparse. Solver has been " "automatically changed into 'sag'.") solver = 'sag' # SAG needs X and y columns to be C-contiguous and np.float64 if solver == 'sag': X = check_array(X, accept_sparse=['csr'], dtype=np.float64, order='C') y = check_array(y, dtype=np.float64, ensure_2d=False, order='F') else: X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) y = check_array(y, dtype='numeric', ensure_2d=False) check_consistent_length(X, y) n_samples, n_features = X.shape if y.ndim > 2: raise ValueError("Target y has the wrong shape %s" % str(y.shape)) ravel = False if y.ndim == 1: y = y.reshape(-1, 1) ravel = True n_samples_, n_targets = y.shape if n_samples != n_samples_: raise ValueError("Number of samples in X and y does not correspond:" " %d != %d" % (n_samples, n_samples_)) has_sw = sample_weight is not None if solver == 'auto': # cholesky if it's a dense array and cg in any other case if not sparse.issparse(X) or has_sw: solver = 'cholesky' else: solver = 'sparse_cg' elif solver == 'lsqr' and not hasattr(sp_linalg, 'lsqr'): warnings.warn("""lsqr not available on this machine, falling back to sparse_cg.""") solver = 'sparse_cg' if has_sw: if np.atleast_1d(sample_weight).ndim > 1: raise ValueError("Sample weights must be 1D array or scalar") if solver != 'sag': # SAG supports sample_weight directly. For other solvers, # we implement sample_weight via a simple rescaling. X, y = _rescale_data(X, y, sample_weight) # There should be either 1 or n_targets penalties alpha = np.asarray(alpha).ravel() if alpha.size not in [1, n_targets]: raise ValueError("Number of targets and number of penalties " "do not correspond: %d != %d" % (alpha.size, n_targets)) if alpha.size == 1 and n_targets > 1: alpha = np.repeat(alpha, n_targets) if solver not in ('sparse_cg', 'cholesky', 'svd', 'lsqr', 'sag'): raise ValueError('Solver %s not understood' % solver) n_iter = None if solver == 'sparse_cg': coef = _solve_sparse_cg(X, y, alpha, max_iter, tol, verbose) elif solver == 'lsqr': coef, n_iter = _solve_lsqr(X, y, alpha, max_iter, tol) elif solver == 'cholesky': if n_features > n_samples: K = safe_sparse_dot(X, X.T, dense_output=True) try: dual_coef = _solve_cholesky_kernel(K, y, alpha) coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' else: try: coef = _solve_cholesky(X, y, alpha) except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' elif solver == 'sag': # precompute max_squared_sum for all targets max_squared_sum = row_norms(X, squared=True).max() coef = np.empty((y.shape[1], n_features)) n_iter = np.empty(y.shape[1], dtype=np.int32) intercept = np.zeros((y.shape[1], )) for i, (alpha_i, target) in enumerate(zip(alpha, y.T)): init = {'coef': np.zeros((n_features + int(return_intercept), 1))} coef_, n_iter_, _ = sag_solver( X, target.ravel(), sample_weight, 'squared', alpha_i, max_iter, tol, verbose, random_state, False, max_squared_sum, init) if return_intercept: coef[i] = coef_[:-1] intercept[i] = coef_[-1] else: coef[i] = coef_ n_iter[i] = n_iter_ if intercept.shape[0] == 1: intercept = intercept[0] coef = np.asarray(coef) if solver == 'svd': if sparse.issparse(X): raise TypeError('SVD solver does not support sparse' ' inputs currently') coef = _solve_svd(X, y, alpha) if ravel: # When y was passed as a 1d-array, we flatten the coefficients. coef = coef.ravel() if return_n_iter and return_intercept: return coef, n_iter, intercept elif return_intercept: return coef, intercept elif return_n_iter: return coef, n_iter else: return coef class _BaseRidge(six.with_metaclass(ABCMeta, LinearModel)): @abstractmethod def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto", random_state=None): self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.max_iter = max_iter self.tol = tol self.solver = solver self.random_state = random_state def fit(self, X, y, sample_weight=None): X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float64, multi_output=True, y_numeric=True) if ((sample_weight is not None) and np.atleast_1d(sample_weight).ndim > 1): raise ValueError("Sample weights must be 1D array or scalar") X, y, X_offset, y_offset, X_scale = self._preprocess_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) # temporary fix for fitting the intercept with sparse data using 'sag' if sparse.issparse(X) and self.fit_intercept: self.coef_, self.n_iter_, self.intercept_ = ridge_regression( X, y, alpha=self.alpha, sample_weight=sample_weight, max_iter=self.max_iter, tol=self.tol, solver=self.solver, random_state=self.random_state, return_n_iter=True, return_intercept=True) self.intercept_ += y_offset else: self.coef_, self.n_iter_ = ridge_regression( X, y, alpha=self.alpha, sample_weight=sample_weight, max_iter=self.max_iter, tol=self.tol, solver=self.solver, random_state=self.random_state, return_n_iter=True, return_intercept=False) self._set_intercept(X_offset, y_offset, X_scale) return self class Ridge(_BaseRidge, RegressorMixin): """Linear least squares with l2 regularization. This model solves a regression model where the loss function is the linear least squares function and regularization is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]). Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : {float, array-like}, shape (n_targets) Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. For 'sparse_cg' and 'lsqr' solvers, the default value is determined by scipy.sparse.linalg. For 'sag' solver, the default value is 1000. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fastest but may not be available in old scipy versions. It also uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent. It also uses an iterative procedure, and is often faster than other solvers when both n_samples and n_features are large. Note that 'sag' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. All last four solvers support both dense and sparse data. However, only 'sag' supports sparse input when `fit_intercept` is True. .. versionadded:: 0.17 Stochastic Average Gradient descent solver. tol : float Precision of the solution. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used only in 'sag' solver. .. versionadded:: 0.17 *random_state* to support Stochastic Average Gradient. Attributes ---------- coef_ : array, shape (n_features,) or (n_targets, n_features) Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. n_iter_ : array or None, shape (n_targets,) Actual number of iterations for each target. Available only for sag and lsqr solvers. Other solvers will return None. .. versionadded:: 0.17 See also -------- RidgeClassifier, RidgeCV, :class:`sklearn.kernel_ridge.KernelRidge` Examples -------- >>> from sklearn.linear_model import Ridge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = Ridge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001) """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto", random_state=None): super(Ridge, self).__init__(alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver, random_state=random_state) def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample Returns ------- self : returns an instance of self. """ return super(Ridge, self).fit(X, y, sample_weight=sample_weight) class RidgeClassifier(LinearClassifierMixin, _BaseRidge): """Classifier using Ridge regression. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : float Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fastest but may not be available in old scipy versions. It also uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent. It also uses an iterative procedure, and is faster than other solvers when both n_samples and n_features are large. .. versionadded:: 0.17 Stochastic Average Gradient descent solver. tol : float Precision of the solution. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used in 'sag' solver. Attributes ---------- coef_ : array, shape (n_features,) or (n_classes, n_features) Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. n_iter_ : array or None, shape (n_targets,) Actual number of iterations for each target. Available only for sag and lsqr solvers. Other solvers will return None. See also -------- Ridge, RidgeClassifierCV Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, class_weight=None, solver="auto", random_state=None): super(RidgeClassifier, self).__init__( alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver, random_state=random_state) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit Ridge regression model. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples,n_features] Training data y : array-like, shape = [n_samples] Target values sample_weight : float or numpy array of shape (n_samples,) Sample weight. .. versionadded:: 0.17 *sample_weight* support to Classifier. Returns ------- self : returns an instance of self. """ self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) else: # we don't (yet) support multi-label classification in Ridge raise ValueError( "%s doesn't support multi-label classification" % ( self.__class__.__name__)) if self.class_weight: if sample_weight is None: sample_weight = 1. # modify the sample weights with the corresponding class weight sample_weight = (sample_weight * compute_sample_weight(self.class_weight, y)) super(RidgeClassifier, self).fit(X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_ class _RidgeGCV(LinearModel): """Ridge regression with built-in Generalized Cross-Validation It allows efficient Leave-One-Out cross-validation. This class is not intended to be used directly. Use RidgeCV instead. Notes ----- We want to solve (K + alpha*Id)c = y, where K = X X^T is the kernel matrix. Let G = (K + alpha*Id)^-1. Dual solution: c = Gy Primal solution: w = X^T c Compute eigendecomposition K = Q V Q^T. Then G = Q (V + alpha*Id)^-1 Q^T, where (V + alpha*Id) is diagonal. It is thus inexpensive to inverse for many alphas. Let loov be the vector of prediction values for each example when the model was fitted with all examples but this example. loov = (KGY - diag(KG)Y) / diag(I-KG) Let looe be the vector of prediction errors for each example when the model was fitted with all examples but this example. looe = y - loov = c / diag(G) References ---------- http://cbcl.mit.edu/projects/cbcl/publications/ps/MIT-CSAIL-TR-2007-025.pdf http://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf """ def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, copy_X=True, gcv_mode=None, store_cv_values=False): self.alphas = np.asarray(alphas) self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.copy_X = copy_X self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def _pre_compute(self, X, y, centered_kernel=True): # even if X is very sparse, K is usually very dense K = safe_sparse_dot(X, X.T, dense_output=True) # the following emulates an additional constant regressor # corresponding to fit_intercept=True # but this is done only when the features have been centered if centered_kernel: K += np.ones_like(K) v, Q = linalg.eigh(K) QT_y = np.dot(Q.T, y) return v, Q, QT_y def _decomp_diag(self, v_prime, Q): # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T)) return (v_prime * Q ** 2).sum(axis=-1) def _diag_dot(self, D, B): # compute dot(diag(D), B) if len(B.shape) > 1: # handle case where B is > 1-d D = D[(slice(None), ) + (np.newaxis, ) * (len(B.shape) - 1)] return D * B def _errors_and_values_helper(self, alpha, y, v, Q, QT_y): """Helper function to avoid code duplication between self._errors and self._values. Notes ----- We don't construct matrix G, instead compute action on y & diagonal. """ w = 1. / (v + alpha) constant_column = np.var(Q, 0) < 1.e-12 # detect constant columns w[constant_column] = 0 # cancel the regularization for the intercept w[v == 0] = 0 c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return G_diag, c def _errors(self, alpha, y, v, Q, QT_y): G_diag, c = self._errors_and_values_helper(alpha, y, v, Q, QT_y) return (c / G_diag) ** 2, c def _values(self, alpha, y, v, Q, QT_y): G_diag, c = self._errors_and_values_helper(alpha, y, v, Q, QT_y) return y - (c / G_diag), c def _pre_compute_svd(self, X, y, centered_kernel=True): if sparse.issparse(X): raise TypeError("SVD not supported for sparse matrices") if centered_kernel: X = np.hstack((X, np.ones((X.shape[0], 1)))) # to emulate fit_intercept=True situation, add a column on ones # Note that by centering, the other columns are orthogonal to that one U, s, _ = linalg.svd(X, full_matrices=0) v = s ** 2 UT_y = np.dot(U.T, y) return v, U, UT_y def _errors_and_values_svd_helper(self, alpha, y, v, U, UT_y): """Helper function to avoid code duplication between self._errors_svd and self._values_svd. """ constant_column = np.var(U, 0) < 1.e-12 # detect columns colinear to ones w = ((v + alpha) ** -1) - (alpha ** -1) w[constant_column] = - (alpha ** -1) # cancel the regularization for the intercept c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case where y is 2-d G_diag = G_diag[:, np.newaxis] return G_diag, c def _errors_svd(self, alpha, y, v, U, UT_y): G_diag, c = self._errors_and_values_svd_helper(alpha, y, v, U, UT_y) return (c / G_diag) ** 2, c def _values_svd(self, alpha, y, v, U, UT_y): G_diag, c = self._errors_and_values_svd_helper(alpha, y, v, U, UT_y) return y - (c / G_diag), c def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float64, multi_output=True, y_numeric=True) n_samples, n_features = X.shape X, y, X_offset, y_offset, X_scale = LinearModel._preprocess_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) gcv_mode = self.gcv_mode with_sw = len(np.shape(sample_weight)) if gcv_mode is None or gcv_mode == 'auto': if sparse.issparse(X) or n_features > n_samples or with_sw: gcv_mode = 'eigen' else: gcv_mode = 'svd' elif gcv_mode == "svd" and with_sw: # FIXME non-uniform sample weights not yet supported warnings.warn("non-uniform sample weights unsupported for svd, " "forcing usage of eigen") gcv_mode = 'eigen' if gcv_mode == 'eigen': _pre_compute = self._pre_compute _errors = self._errors _values = self._values elif gcv_mode == 'svd': # assert n_samples >= n_features _pre_compute = self._pre_compute_svd _errors = self._errors_svd _values = self._values_svd else: raise ValueError('bad gcv_mode "%s"' % gcv_mode) if sample_weight is not None: X, y = _rescale_data(X, y, sample_weight) centered_kernel = not sparse.issparse(X) and self.fit_intercept v, Q, QT_y = _pre_compute(X, y, centered_kernel) n_y = 1 if len(y.shape) == 1 else y.shape[1] cv_values = np.zeros((n_samples * n_y, len(self.alphas))) C = [] scorer = check_scoring(self, scoring=self.scoring, allow_none=True) error = scorer is None for i, alpha in enumerate(self.alphas): if error: out, c = _errors(alpha, y, v, Q, QT_y) else: out, c = _values(alpha, y, v, Q, QT_y) cv_values[:, i] = out.ravel() C.append(c) if error: best = cv_values.mean(axis=0).argmin() else: # The scorer want an object that will make the predictions but # they are already computed efficiently by _RidgeGCV. This # identity_estimator will just return them def identity_estimator(): pass identity_estimator.decision_function = lambda y_predict: y_predict identity_estimator.predict = lambda y_predict: y_predict out = [scorer(identity_estimator, y.ravel(), cv_values[:, i]) for i in range(len(self.alphas))] best = np.argmax(out) self.alpha_ = self.alphas[best] self.dual_coef_ = C[best] self.coef_ = safe_sparse_dot(self.dual_coef_.T, X) self._set_intercept(X_offset, y_offset, X_scale) if self.store_cv_values: if len(y.shape) == 1: cv_values_shape = n_samples, len(self.alphas) else: cv_values_shape = n_samples, n_y, len(self.alphas) self.cv_values_ = cv_values.reshape(cv_values_shape) return self class _BaseRidgeCV(LinearModel): def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None, store_cv_values=False): self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.cv = cv self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ if self.cv is None: estimator = _RidgeGCV(self.alphas, fit_intercept=self.fit_intercept, normalize=self.normalize, scoring=self.scoring, gcv_mode=self.gcv_mode, store_cv_values=self.store_cv_values) estimator.fit(X, y, sample_weight=sample_weight) self.alpha_ = estimator.alpha_ if self.store_cv_values: self.cv_values_ = estimator.cv_values_ else: if self.store_cv_values: raise ValueError("cv!=None and store_cv_values=True " " are incompatible") parameters = {'alpha': self.alphas} fit_params = {'sample_weight': sample_weight} gs = GridSearchCV(Ridge(fit_intercept=self.fit_intercept), parameters, fit_params=fit_params, cv=self.cv, scoring=self.scoring) gs.fit(X, y) estimator = gs.best_estimator_ self.alpha_ = gs.best_estimator_.alpha self.coef_ = estimator.coef_ self.intercept_ = estimator.intercept_ return self class RidgeCV(_BaseRidgeCV, RegressorMixin): """Ridge regression with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the efficient Leave-One-Out cross-validation - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used, else, :class:`sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. gcv_mode : {None, 'auto', 'svd', eigen'}, optional Flag indicating which strategy to use when performing Generalized Cross-Validation. Options are:: 'auto' : use svd if n_samples > n_features or when X is a sparse matrix, otherwise use eigen 'svd' : force computation via singular value decomposition of X (does not work for sparse matrices) 'eigen' : force computation via eigendecomposition of X^T X The 'auto' mode is the default and is intended to pick the cheaper option of the two depending upon the shape and format of the training data. store_cv_values : boolean, default=False Flag indicating if the cross-validation values corresponding to each alpha should be stored in the `cv_values_` attribute (see below). This flag is only compatible with `cv=None` (i.e. using Generalized Cross-Validation). Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_targets, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and \ `cv=None`). After `fit()` has been called, this attribute will \ contain the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. alpha_ : float Estimated regularization parameter. See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeClassifierCV: Ridge classifier with built-in cross validation """ pass class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV): """Ridge classifier with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the efficient Leave-One-Out cross-validation - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_responses, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and `cv=None`). After `fit()` has been called, this attribute will contain \ the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. alpha_ : float Estimated regularization parameter See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeCV: Ridge regression with built-in cross validation Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, class_weight=None): super(RidgeClassifierCV, self).__init__( alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, scoring=scoring, cv=cv) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit the ridge classifier. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. sample_weight : float or numpy array of shape (n_samples,) Sample weight. Returns ------- self : object Returns self. """ self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) if self.class_weight: if sample_weight is None: sample_weight = 1. # modify the sample weights with the corresponding class weight sample_weight = (sample_weight * compute_sample_weight(self.class_weight, y)) _BaseRidgeCV.fit(self, X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_
mit
mne-tools/mne-tools.github.io
0.19/_downloads/a5d4e64d0843ff17526c0588f9967f97/plot_covariance_whitening_dspm.py
5
6810
""" =================================================== Demonstrate impact of whitening on source estimates =================================================== This example demonstrates the relationship between the noise covariance estimate and the MNE / dSPM source amplitudes. It computes source estimates for the SPM faces data and compares proper regularization with insufficient regularization based on the methods described in [1]_. The example demonstrates that improper regularization can lead to overestimation of source amplitudes. This example makes use of the previous, non-optimized code path that was used before implementing the suggestions presented in [1]_. This example does quite a bit of processing, so even on a fast machine it can take a couple of minutes to complete. .. warning:: Please do not copy the patterns presented here for your own analysis, this is example is purely illustrative. References ---------- .. [1] Engemann D. and Gramfort A. (2015) Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals, vol. 108, 328-342, NeuroImage. """ # Author: Denis A. Engemann <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import io from mne.datasets import spm_face from mne.minimum_norm import apply_inverse, make_inverse_operator from mne.cov import compute_covariance print(__doc__) ############################################################################## # Get data data_path = spm_face.data_path() subjects_dir = data_path + '/subjects' raw_fname = data_path + '/MEG/spm/SPM_CTF_MEG_example_faces%d_3D.ds' raw = io.read_raw_ctf(raw_fname % 1) # Take first run # To save time and memory for this demo, we'll just use the first # 2.5 minutes (all we need to get 30 total events) and heavily # resample 480->60 Hz (usually you wouldn't do either of these!) raw = raw.crop(0, 150.).load_data() picks = mne.pick_types(raw.info, meg=True, exclude='bads') raw.filter(None, 20.) events = mne.find_events(raw, stim_channel='UPPT001') event_ids = {"faces": 1, "scrambled": 2} tmin, tmax = -0.2, 0.5 baseline = (None, 0) reject = dict(mag=3e-12) # Make forward trans = data_path + '/MEG/spm/SPM_CTF_MEG_example_faces1_3D_raw-trans.fif' src = data_path + '/subjects/spm/bem/spm-oct-6-src.fif' bem = data_path + '/subjects/spm/bem/spm-5120-5120-5120-bem-sol.fif' forward = mne.make_forward_solution(raw.info, trans, src, bem) del src # inverse parameters conditions = 'faces', 'scrambled' snr = 3.0 lambda2 = 1.0 / snr ** 2 clim = dict(kind='value', lims=[0, 2.5, 5]) ############################################################################### # Estimate covariances samples_epochs = 5, 15, method = 'empirical', 'shrunk' colors = 'steelblue', 'red' evokeds = list() stcs = list() methods_ordered = list() for n_train in samples_epochs: # estimate covs based on a subset of samples # make sure we have the same number of conditions. events_ = np.concatenate([events[events[:, 2] == id_][:n_train] for id_ in [event_ids[k] for k in conditions]]) events_ = events_[np.argsort(events_[:, 0])] epochs_train = mne.Epochs(raw, events_, event_ids, tmin, tmax, picks=picks, baseline=baseline, preload=True, reject=reject, decim=8) epochs_train.equalize_event_counts(event_ids) assert len(epochs_train) == 2 * n_train # We know some of these have too few samples, so suppress warning # with verbose='error' noise_covs = compute_covariance( epochs_train, method=method, tmin=None, tmax=0, # baseline only return_estimators=True, rank=None, verbose='error') # returns list # prepare contrast evokeds = [epochs_train[k].average() for k in conditions] del epochs_train, events_ # do contrast # We skip empirical rank estimation that we introduced in response to # the findings in reference [1] to use the naive code path that # triggered the behavior described in [1]. The expected true rank is # 274 for this dataset. Please do not do this with your data but # rely on the default rank estimator that helps regularizing the # covariance. stcs.append(list()) methods_ordered.append(list()) for cov in noise_covs: inverse_operator = make_inverse_operator(evokeds[0].info, forward, cov, loose=0.2, depth=0.8) assert len(inverse_operator['sing']) == 274 # sanity check stc_a, stc_b = (apply_inverse(e, inverse_operator, lambda2, "dSPM", pick_ori=None) for e in evokeds) stc = stc_a - stc_b methods_ordered[-1].append(cov['method']) stcs[-1].append(stc) del inverse_operator, evokeds, cov, noise_covs, stc, stc_a, stc_b del raw, forward # save some memory ############################################################################## # Show the resulting source estimates fig, (axes1, axes2) = plt.subplots(2, 3, figsize=(9.5, 5)) for ni, (n_train, axes) in enumerate(zip(samples_epochs, (axes1, axes2))): # compute stc based on worst and best ax_dynamics = axes[1] for stc, ax, method, kind, color in zip(stcs[ni], axes[::2], methods_ordered[ni], ['best', 'worst'], colors): brain = stc.plot(subjects_dir=subjects_dir, hemi='both', clim=clim, initial_time=0.175, background='w', foreground='k') brain.show_view('ven') im = brain.screenshot() brain.close() ax.axis('off') ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax.imshow(im) ax.set_title('{0} ({1} epochs)'.format(kind, n_train * 2)) # plot spatial mean stc_mean = stc.data.mean(0) ax_dynamics.plot(stc.times * 1e3, stc_mean, label='{0} ({1})'.format(method, kind), color=color) # plot spatial std stc_var = stc.data.std(0) ax_dynamics.fill_between(stc.times * 1e3, stc_mean - stc_var, stc_mean + stc_var, alpha=0.2, color=color) # signal dynamics worst and best ax_dynamics.set(title='{0} epochs'.format(n_train * 2), xlabel='Time (ms)', ylabel='Source Activation (dSPM)', xlim=(tmin * 1e3, tmax * 1e3), ylim=(-3, 3)) ax_dynamics.legend(loc='upper left', fontsize=10) fig.subplots_adjust(hspace=0.2, left=0.01, right=0.99, wspace=0.03)
bsd-3-clause
thilbern/scikit-learn
sklearn/ensemble/tests/test_forest.py
7
30960
""" Testing for the forest module (sklearn.ensemble.forest). """ # Authors: Gilles Louppe, # Brian Holt, # Andreas Mueller, # Arnaud Joly # License: BSD 3 clause import pickle from collections import defaultdict from itertools import product import numpy as np from scipy.sparse import csr_matrix, csc_matrix, coo_matrix from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_less, assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn import datasets from sklearn.decomposition import TruncatedSVD from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomTreesEmbedding from sklearn.grid_search import GridSearchCV from sklearn.svm import LinearSVC from sklearn.utils.validation import check_random_state from sklearn.tree.tree import SPARSE_SPLITTERS # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = check_random_state(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] FOREST_CLASSIFIERS = { "ExtraTreesClassifier": ExtraTreesClassifier, "RandomForestClassifier": RandomForestClassifier, } FOREST_REGRESSORS = { "ExtraTreesRegressor": ExtraTreesRegressor, "RandomForestRegressor": RandomForestRegressor, } FOREST_TRANSFORMERS = { "RandomTreesEmbedding": RandomTreesEmbedding, } FOREST_ESTIMATORS = dict() FOREST_ESTIMATORS.update(FOREST_CLASSIFIERS) FOREST_ESTIMATORS.update(FOREST_REGRESSORS) FOREST_ESTIMATORS.update(FOREST_TRANSFORMERS) def check_classification_toy(name): """Check classification on a toy dataset.""" ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) clf = ForestClassifier(n_estimators=10, max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) # also test apply leaf_indices = clf.apply(X) assert_equal(leaf_indices.shape, (len(X), clf.n_estimators)) def test_classification_toy(): for name in FOREST_CLASSIFIERS: yield check_classification_toy, name def check_iris_criterion(name, criterion): """Check consistency on dataset iris.""" ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, criterion=criterion, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.9, "Failed with criterion %s and score = %f" % (criterion, score)) clf = ForestClassifier(n_estimators=10, criterion=criterion, max_features=2, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.5, "Failed with criterion %s and score = %f" % (criterion, score)) def test_iris(): for name, criterion in product(FOREST_CLASSIFIERS, ("gini", "entropy")): yield check_iris_criterion, name, criterion def check_boston_criterion(name, criterion): """Check consistency on dataset boston house prices.""" ForestRegressor = FOREST_REGRESSORS[name] clf = ForestRegressor(n_estimators=5, criterion=criterion, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.95, "Failed with max_features=None, criterion %s " "and score = %f" % (criterion, score)) clf = ForestRegressor(n_estimators=5, criterion=criterion, max_features=6, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.95, "Failed with max_features=6, criterion %s " "and score = %f" % (criterion, score)) def test_boston(): for name, criterion in product(FOREST_REGRESSORS, ("mse", )): yield check_boston_criterion, name, criterion def check_regressor_attributes(name): """Regression models should not have a classes_ attribute.""" r = FOREST_REGRESSORS[name](random_state=0) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) r.fit([[1, 2, 3], [4, 5, 6]], [1, 2]) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) def test_regressor_attributes(): for name in FOREST_REGRESSORS: yield check_regressor_attributes, name def check_probability(name): """Predict probabilities.""" ForestClassifier = FOREST_CLASSIFIERS[name] with np.errstate(divide="ignore"): clf = ForestClassifier(n_estimators=10, random_state=1, max_features=1, max_depth=1) clf.fit(iris.data, iris.target) assert_array_almost_equal(np.sum(clf.predict_proba(iris.data), axis=1), np.ones(iris.data.shape[0])) assert_array_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data))) def test_probability(): for name in FOREST_CLASSIFIERS: yield check_probability, name def check_importances(name, X, y): """Check variable importances.""" ForestClassifier = FOREST_CLASSIFIERS[name] for n_jobs in [1, 2]: clf = ForestClassifier(n_estimators=10, n_jobs=n_jobs) clf.fit(X, y) importances = clf.feature_importances_ n_important = np.sum(importances > 0.1) assert_equal(importances.shape[0], 10) assert_equal(n_important, 3) X_new = clf.transform(X, threshold="mean") assert_less(0 < X_new.shape[1], X.shape[1]) # Check with sample weights sample_weight = np.ones(y.shape) sample_weight[y == 1] *= 100 clf = ForestClassifier(n_estimators=50, n_jobs=n_jobs, random_state=0) clf.fit(X, y, sample_weight=sample_weight) importances = clf.feature_importances_ assert_true(np.all(importances >= 0.0)) clf = ForestClassifier(n_estimators=50, n_jobs=n_jobs, random_state=0) clf.fit(X, y, sample_weight=3 * sample_weight) importances_bis = clf.feature_importances_ assert_almost_equal(importances, importances_bis) def test_importances(): X, y = datasets.make_classification(n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name in FOREST_CLASSIFIERS: yield check_importances, name, X, y def check_unfitted_feature_importances(name): assert_raises(ValueError, getattr, FOREST_ESTIMATORS[name](random_state=0), "feature_importances_") def test_unfitted_feature_importances(): for name in FOREST_ESTIMATORS: yield check_unfitted_feature_importances, name def check_oob_score(name, X, y, n_estimators=20): """Check that oob prediction is a good estimation of the generalization error.""" # Proper behavior est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=n_estimators, bootstrap=True) n_samples = X.shape[0] est.fit(X[:n_samples // 2, :], y[:n_samples // 2]) test_score = est.score(X[n_samples // 2:, :], y[n_samples // 2:]) if name in FOREST_CLASSIFIERS: assert_less(abs(test_score - est.oob_score_), 0.1) else: assert_greater(test_score, est.oob_score_) assert_greater(est.oob_score_, .8) # Check warning if not enough estimators with np.errstate(divide="ignore", invalid="ignore"): est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=1, bootstrap=True) assert_warns(UserWarning, est.fit, X, y) def test_oob_score(): for name in FOREST_CLASSIFIERS: yield check_oob_score, name, iris.data, iris.target # non-contiguous targets in classification yield check_oob_score, name, iris.data, iris.target * 2 + 1 for name in FOREST_REGRESSORS: yield check_oob_score, name, boston.data, boston.target, 50 def check_oob_score_raise_error(name): ForestEstimator = FOREST_ESTIMATORS[name] if name in FOREST_TRANSFORMERS: for oob_score in [True, False]: assert_raises(TypeError, ForestEstimator, oob_score=oob_score) assert_raises(NotImplementedError, ForestEstimator()._set_oob_score, X, y) else: # Unfitted / no bootstrap / no oob_score for oob_score, bootstrap in [(True, False), (False, True), (False, False)]: est = ForestEstimator(oob_score=oob_score, bootstrap=bootstrap, random_state=0) assert_false(hasattr(est, "oob_score_")) # No bootstrap assert_raises(ValueError, ForestEstimator(oob_score=True, bootstrap=False).fit, X, y) def test_oob_score_raise_error(): for name in FOREST_ESTIMATORS: yield check_oob_score_raise_error, name def check_gridsearch(name): forest = FOREST_CLASSIFIERS[name]() clf = GridSearchCV(forest, {'n_estimators': (1, 2), 'max_depth': (1, 2)}) clf.fit(iris.data, iris.target) def test_gridsearch(): """Check that base trees can be grid-searched.""" for name in FOREST_CLASSIFIERS: yield check_gridsearch, name def check_parallel(name, X, y): """Check parallel computations in classification""" ForestEstimator = FOREST_ESTIMATORS[name] forest = ForestEstimator(n_estimators=10, n_jobs=3, random_state=0) forest.fit(X, y) assert_equal(len(forest), 10) forest.set_params(n_jobs=1) y1 = forest.predict(X) forest.set_params(n_jobs=2) y2 = forest.predict(X) assert_array_almost_equal(y1, y2, 3) def test_parallel(): for name in FOREST_CLASSIFIERS: yield check_parallel, name, iris.data, iris.target for name in FOREST_REGRESSORS: yield check_parallel, name, boston.data, boston.target def check_pickle(name, X, y): """Check pickability.""" ForestEstimator = FOREST_ESTIMATORS[name] obj = ForestEstimator(random_state=0) obj.fit(X, y) score = obj.score(X, y) pickle_object = pickle.dumps(obj) obj2 = pickle.loads(pickle_object) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(X, y) assert_equal(score, score2) def test_pickle(): for name in FOREST_CLASSIFIERS: yield check_pickle, name, iris.data[::2], iris.target[::2] for name in FOREST_REGRESSORS: yield check_pickle, name, boston.data[::2], boston.target[::2] def check_multioutput(name): """Check estimators on multi-output problems.""" X_train = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y_train = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] X_test = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_test = [[-1, 0], [1, 1], [-1, 2], [1, 3]] est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) y_pred = est.fit(X_train, y_train).predict(X_test) assert_array_almost_equal(y_pred, y_test) if name in FOREST_CLASSIFIERS: with np.errstate(divide="ignore"): proba = est.predict_proba(X_test) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = est.predict_log_proba(X_test) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) def test_multioutput(): for name in FOREST_CLASSIFIERS: yield check_multioutput, name for name in FOREST_REGRESSORS: yield check_multioutput, name def check_classes_shape(name): """Test that n_classes_ and classes_ have proper shape.""" ForestClassifier = FOREST_CLASSIFIERS[name] # Classification, single output clf = ForestClassifier(random_state=0).fit(X, y) assert_equal(clf.n_classes_, 2) assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(random_state=0).fit(X, _y) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_classes_shape(): for name in FOREST_CLASSIFIERS: yield check_classes_shape, name def test_random_trees_dense_type(): ''' Test that the `sparse_output` parameter of RandomTreesEmbedding works by returning a dense array. ''' # Create the RTE with sparse=False hasher = RandomTreesEmbedding(n_estimators=10, sparse_output=False) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # Assert that type is ndarray, not scipy.sparse.csr.csr_matrix assert_equal(type(X_transformed), np.ndarray) def test_random_trees_dense_equal(): ''' Test that the `sparse_output` parameter of RandomTreesEmbedding works by returning the same array for both argument values. ''' # Create the RTEs hasher_dense = RandomTreesEmbedding(n_estimators=10, sparse_output=False, random_state=0) hasher_sparse = RandomTreesEmbedding(n_estimators=10, sparse_output=True, random_state=0) X, y = datasets.make_circles(factor=0.5) X_transformed_dense = hasher_dense.fit_transform(X) X_transformed_sparse = hasher_sparse.fit_transform(X) # Assert that dense and sparse hashers have same array. assert_array_equal(X_transformed_sparse.toarray(), X_transformed_dense) def test_random_hasher(): # test random forest hashing on circles dataset # make sure that it is linearly separable. # even after projected to two SVD dimensions # Note: Not all random_states produce perfect results. hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # test fit and transform: hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) assert_array_equal(hasher.fit(X).transform(X).toarray(), X_transformed.toarray()) # one leaf active per data point per forest assert_equal(X_transformed.shape[0], X.shape[0]) assert_array_equal(X_transformed.sum(axis=1), hasher.n_estimators) svd = TruncatedSVD(n_components=2) X_reduced = svd.fit_transform(X_transformed) linear_clf = LinearSVC() linear_clf.fit(X_reduced, y) assert_equal(linear_clf.score(X_reduced, y), 1.) def test_random_hasher_sparse_data(): X, y = datasets.make_multilabel_classification(return_indicator=True, random_state=0) hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X_transformed = hasher.fit_transform(X) X_transformed_sparse = hasher.fit_transform(csc_matrix(X)) assert_array_equal(X_transformed_sparse.toarray(), X_transformed.toarray()) def test_parallel_train(): rng = check_random_state(12321) n_samples, n_features = 80, 30 X_train = rng.randn(n_samples, n_features) y_train = rng.randint(0, 2, n_samples) clfs = [ RandomForestClassifier(n_estimators=20, n_jobs=n_jobs, random_state=12345).fit(X_train, y_train) for n_jobs in [1, 2, 3, 8, 16, 32] ] X_test = rng.randn(n_samples, n_features) probas = [clf.predict_proba(X_test) for clf in clfs] for proba1, proba2 in zip(probas, probas[1:]): assert_array_almost_equal(proba1, proba2) def test_distribution(): rng = check_random_state(12321) # Single variable with 4 values X = rng.randint(0, 4, size=(1000, 1)) y = rng.rand(1000) n_trees = 500 clf = ExtraTreesRegressor(n_estimators=n_trees, random_state=42).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = sorted([(1. * count / n_trees, tree) for tree, count in uniques.items()]) # On a single variable problem where X_0 has 4 equiprobable values, there # are 5 ways to build a random tree. The more compact (0,1/0,0/--0,2/--) of # them has probability 1/3 while the 4 others have probability 1/6. assert_equal(len(uniques), 5) assert_greater(0.20, uniques[0][0]) # Rough approximation of 1/6. assert_greater(0.20, uniques[1][0]) assert_greater(0.20, uniques[2][0]) assert_greater(0.20, uniques[3][0]) assert_greater(uniques[4][0], 0.3) assert_equal(uniques[4][1], "0,1/0,0/--0,2/--") # Two variables, one with 2 values, one with 3 values X = np.empty((1000, 2)) X[:, 0] = np.random.randint(0, 2, 1000) X[:, 1] = np.random.randint(0, 3, 1000) y = rng.rand(1000) clf = ExtraTreesRegressor(n_estimators=100, max_features=1, random_state=1).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = [(count, tree) for tree, count in uniques.items()] assert_equal(len(uniques), 8) def check_max_leaf_nodes_max_depth(name, X, y): """Test precedence of max_leaf_nodes over max_depth. """ ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(max_depth=1, max_leaf_nodes=4, n_estimators=1).fit(X, y) assert_greater(est.estimators_[0].tree_.max_depth, 1) est = ForestEstimator(max_depth=1, n_estimators=1).fit(X, y) assert_equal(est.estimators_[0].tree_.max_depth, 1) def test_max_leaf_nodes_max_depth(): X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for name in FOREST_ESTIMATORS: yield check_max_leaf_nodes_max_depth, name, X, y def check_min_samples_leaf(name, X, y): """Test if leaves contain more than leaf_count training examples""" ForestEstimator = FOREST_ESTIMATORS[name] # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes in (None, 1000): est = ForestEstimator(min_samples_leaf=5, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) def test_min_samples_leaf(): X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) X = X.astype(np.float32) for name in FOREST_ESTIMATORS: yield check_min_samples_leaf, name, X, y def check_min_weight_fraction_leaf(name, X, y): """Test if leaves contain at least min_weight_fraction_leaf of the training set""" ForestEstimator = FOREST_ESTIMATORS[name] rng = np.random.RandomState(0) weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes in (None, 1000): for frac in np.linspace(0, 0.5, 6): est = ForestEstimator(min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, random_state=0) if isinstance(est, (RandomForestClassifier, RandomForestRegressor)): est.bootstrap = False est.fit(X, y, sample_weight=weights) out = est.estimators_[0].tree_.apply(X) node_weights = np.bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert_greater_equal( np.min(leaf_weights), total_weight * est.min_weight_fraction_leaf, "Failed with {0} " "min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) def test_min_weight_fraction_leaf(): X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) X = X.astype(np.float32) for name in FOREST_ESTIMATORS: yield check_min_weight_fraction_leaf, name, X, y def check_sparse_input(name, X, X_sparse, y): ForestEstimator = FOREST_ESTIMATORS[name] dense = ForestEstimator(random_state=0, max_depth=2).fit(X, y) sparse = ForestEstimator(random_state=0, max_depth=2).fit(X_sparse, y) assert_array_almost_equal(sparse.apply(X), dense.apply(X)) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_array_almost_equal(sparse.predict(X), dense.predict(X)) assert_array_almost_equal(sparse.feature_importances_, dense.feature_importances_) if name in FOREST_CLASSIFIERS: assert_array_almost_equal(sparse.predict_proba(X), dense.predict_proba(X)) assert_array_almost_equal(sparse.predict_log_proba(X), dense.predict_log_proba(X)) if name in FOREST_TRANSFORMERS: assert_array_almost_equal(sparse.transform(X).toarray(), dense.transform(X).toarray()) assert_array_almost_equal(sparse.fit_transform(X).toarray(), dense.fit_transform(X).toarray()) def test_sparse_input(): X, y = datasets.make_multilabel_classification(return_indicator=True, random_state=0, n_samples=40) for name, sparse_matrix in product(FOREST_ESTIMATORS, (csr_matrix, csc_matrix, coo_matrix)): yield check_sparse_input, name, X, sparse_matrix(X), y def check_memory_layout(name, dtype): """Check that it works no matter the memory layout""" est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) if est.base_estimator.splitter in SPARSE_SPLITTERS: # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # coo_matrix X = coo_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_memory_layout(): for name, dtype in product(FOREST_CLASSIFIERS, [np.float64, np.float32]): yield check_memory_layout, name, dtype for name, dtype in product(FOREST_REGRESSORS, [np.float64, np.float32]): yield check_memory_layout, name, dtype def check_1d_input(name, X, X_2d, y): ForestEstimator = FOREST_ESTIMATORS[name] assert_raises(ValueError, ForestEstimator(random_state=0).fit, X, y) est = ForestEstimator(random_state=0) est.fit(X_2d, y) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_raises(ValueError, est.predict, X) def test_1d_input(): X = iris.data[:, 0].ravel() X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target for name in FOREST_ESTIMATORS: yield check_1d_input, name, X, X_2d, y def check_warm_start(name, random_state=42): """Test if fitting incrementally with warm start gives a forest of the right size and the same results as a normal fit.""" X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] clf_ws = None for n_estimators in [5, 10]: if clf_ws is None: clf_ws = ForestEstimator(n_estimators=n_estimators, random_state=random_state, warm_start=True) else: clf_ws.set_params(n_estimators=n_estimators) clf_ws.fit(X, y) assert_equal(len(clf_ws), n_estimators) clf_no_ws = ForestEstimator(n_estimators=10, random_state=random_state, warm_start=False) clf_no_ws.fit(X, y) assert_equal(set([tree.random_state for tree in clf_ws]), set([tree.random_state for tree in clf_no_ws])) assert_array_equal(clf_ws.apply(X), clf_no_ws.apply(X), err_msg="Failed with {0}".format(name)) def test_warm_start(): for name in FOREST_ESTIMATORS: yield check_warm_start, name def check_warm_start_clear(name): """Test if fit clears state and grows a new forest when warm_start==False. """ X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True, random_state=2) clf_2.fit(X, y) # inits state clf_2.set_params(warm_start=False, random_state=1) clf_2.fit(X, y) # clears old state and equals clf assert_array_almost_equal(clf_2.apply(X), clf.apply(X)) def test_warm_start_clear(): for name in FOREST_ESTIMATORS: yield check_warm_start_clear, name def check_warm_start_smaller_n_estimators(name): """Test if warm start second fit with smaller n_estimators raises error.""" X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True) clf.fit(X, y) clf.set_params(n_estimators=4) assert_raises(ValueError, clf.fit, X, y) def test_warm_start_smaller_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_smaller_n_estimators, name def check_warm_start_equal_n_estimators(name): """Test if warm start with equal n_estimators does nothing and returns the same forest and raises a warning.""" X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf_2.fit(X, y) # Now clf_2 equals clf. clf_2.set_params(random_state=2) assert_warns(UserWarning, clf_2.fit, X, y) # If we had fit the trees again we would have got a different forest as we # changed the random state. assert_array_equal(clf.apply(X), clf_2.apply(X)) def test_warm_start_equal_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_equal_n_estimators, name def check_warm_start_oob(name): """Test that the warm start computes oob score when asked.""" X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] # Use 15 estimators to avoid 'some inputs do not have OOB scores' warning. clf = ForestEstimator(n_estimators=15, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=True) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=False) clf_2.fit(X, y) clf_2.set_params(warm_start=True, oob_score=True, n_estimators=15) clf_2.fit(X, y) assert_true(hasattr(clf_2, 'oob_score_')) assert_equal(clf.oob_score_, clf_2.oob_score_) # Test that oob_score is computed even if we don't need to train # additional trees. clf_3 = ForestEstimator(n_estimators=15, max_depth=3, warm_start=True, random_state=1, bootstrap=True, oob_score=False) clf_3.fit(X, y) assert_true(not(hasattr(clf_3, 'oob_score_'))) clf_3.set_params(oob_score=True) ignore_warnings(clf_3.fit)(X, y) assert_equal(clf.oob_score_, clf_3.oob_score_) def test_warm_start_oob(): for name in FOREST_CLASSIFIERS: yield check_warm_start_oob, name for name in FOREST_REGRESSORS: yield check_warm_start_oob, name if __name__ == "__main__": import nose nose.runmodule()
bsd-3-clause
wkfwkf/statsmodels
statsmodels/sandbox/examples/ex_kaplan_meier.py
33
2838
#An example for the Kaplan-Meier estimator from __future__ import print_function from statsmodels.compat.python import lrange import statsmodels.api as sm import matplotlib.pyplot as plt import numpy as np from statsmodels.sandbox.survival2 import KaplanMeier #Getting the strike data as an array dta = sm.datasets.strikes.load() print('basic data') print('\n') dta = list(dta.values()[-1]) print(dta[lrange(5),:]) print('\n') #Create the KaplanMeier object and fit the model km = KaplanMeier(dta,0) km.fit() #show the results km.plot() print('basic model') print('\n') km.summary() print('\n') #Mutiple survival curves km2 = KaplanMeier(dta,0,exog=1) km2.fit() print('more than one curve') print('\n') km2.summary() print('\n') km2.plot() #with censoring censoring = np.ones_like(dta[:,0]) censoring[dta[:,0] > 80] = 0 dta = np.c_[dta,censoring] print('with censoring') print('\n') print(dta[lrange(5),:]) print('\n') km3 = KaplanMeier(dta,0,exog=1,censoring=2) km3.fit() km3.summary() print('\n') km3.plot() #Test for difference of survival curves log_rank = km3.test_diff([0.0645,-0.03957]) print('log rank test') print('\n') print(log_rank) print('\n') #The zeroth element of log_rank is the chi-square test statistic #for the difference between the survival curves for exog = 0.0645 #and exog = -0.03957, the index one element is the degrees of freedom for #the test, and the index two element is the p-value for the test wilcoxon = km3.test_diff([0.0645,-0.03957], rho=1) print('Wilcoxon') print('\n') print(wilcoxon) print('\n') #Same info as log_rank, but for Peto and Peto modification to the #Gehan-Wilcoxon test #User specified functions for tests #A wider range of rates can be accessed by using the 'weight' parameter #for the test_diff method #For example, if the desire weights are S(t)*(1-S(t)), where S(t) is a pooled #estimate for the survival function, this could be computed by doing def weights(t): #must accept one arguement, even though it is not used here s = KaplanMeier(dta,0,censoring=2) s.fit() s = s.results[0][0] s = s * (1 - s) return s #KaplanMeier provides an array of times to the weighting function #internally, so the weighting function must accept one arguement test = km3.test_diff([0.0645,-0.03957], weight=weights) print('user specified weights') print('\n') print(test) print('\n') #Groups with nan names #These can be handled by passing the data to KaplanMeier as an array of strings groups = np.ones_like(dta[:,1]) groups = groups.astype('S4') groups[dta[:,1] > 0] = 'high' groups[dta[:,1] <= 0] = 'low' dta = dta.astype('S4') dta[:,1] = groups print('with nan group names') print('\n') print(dta[lrange(5),:]) print('\n') km4 = KaplanMeier(dta,0,exog=1,censoring=2) km4.fit() km4.summary() print('\n') km4.plot() #show all the plots plt.show()
bsd-3-clause
ajaybhat/scikit-image
skimage/feature/tests/test_util.py
35
2818
import numpy as np try: import matplotlib.pyplot as plt except ImportError: plt = None from numpy.testing import assert_equal, assert_raises from skimage.feature.util import (FeatureDetector, DescriptorExtractor, _prepare_grayscale_input_2D, _mask_border_keypoints, plot_matches) def test_feature_detector(): assert_raises(NotImplementedError, FeatureDetector().detect, None) def test_descriptor_extractor(): assert_raises(NotImplementedError, DescriptorExtractor().extract, None, None) def test_prepare_grayscale_input_2D(): assert_raises(ValueError, _prepare_grayscale_input_2D, np.zeros((3, 3, 3))) assert_raises(ValueError, _prepare_grayscale_input_2D, np.zeros((3, 1))) assert_raises(ValueError, _prepare_grayscale_input_2D, np.zeros((3, 1, 1))) img = _prepare_grayscale_input_2D(np.zeros((3, 3))) img = _prepare_grayscale_input_2D(np.zeros((3, 3, 1))) img = _prepare_grayscale_input_2D(np.zeros((1, 3, 3))) def test_mask_border_keypoints(): keypoints = np.array([[0, 0], [1, 1], [2, 2], [3, 3], [4, 4]]) assert_equal(_mask_border_keypoints((10, 10), keypoints, 0), [1, 1, 1, 1, 1]) assert_equal(_mask_border_keypoints((10, 10), keypoints, 2), [0, 0, 1, 1, 1]) assert_equal(_mask_border_keypoints((4, 4), keypoints, 2), [0, 0, 1, 0, 0]) assert_equal(_mask_border_keypoints((10, 10), keypoints, 5), [0, 0, 0, 0, 0]) assert_equal(_mask_border_keypoints((10, 10), keypoints, 4), [0, 0, 0, 0, 1]) @np.testing.decorators.skipif(plt is None) def test_plot_matches(): fig, ax = plt.subplots(nrows=1, ncols=1) shapes = (((10, 10), (10, 10)), ((10, 10), (12, 10)), ((10, 10), (10, 12)), ((10, 10), (12, 12)), ((12, 10), (10, 10)), ((10, 12), (10, 10)), ((12, 12), (10, 10))) keypoints1 = 10 * np.random.rand(10, 2) keypoints2 = 10 * np.random.rand(10, 2) idxs1 = np.random.randint(10, size=10) idxs2 = np.random.randint(10, size=10) matches = np.column_stack((idxs1, idxs2)) for shape1, shape2 in shapes: img1 = np.zeros(shape1) img2 = np.zeros(shape2) plot_matches(ax, img1, img2, keypoints1, keypoints2, matches) plot_matches(ax, img1, img2, keypoints1, keypoints2, matches, only_matches=True) plot_matches(ax, img1, img2, keypoints1, keypoints2, matches, keypoints_color='r') plot_matches(ax, img1, img2, keypoints1, keypoints2, matches, matches_color='r') if __name__ == '__main__': from numpy import testing testing.run_module_suite()
bsd-3-clause
Canas/kaftools
examples/klms_pretrained.py
1
1192
import matplotlib.pyplot as plt import numpy as np from kaftools.filters import KlmsFilter from kaftools.kernels import GaussianKernel from kaftools.utils.shortcuts import plot_series, plot_squared_error from kaftools.sparsifiers import NoveltyCriterion if __name__ == "__main__": # Cargar datos data = np.load('./data/pretrained_data_lorentz.npz') # sparsify lorentz : lr(1e-2), novelty(0.99919, 1.0) # sparsify wind: lr(1e-2), novelty(0.9934, 1.0) # Configurar KLMS klms_params = { 'kernel': GaussianKernel(sigma=float(data['sigma_k_post'])), 'learning_rate': 1e-1, 'delay': int(data['delay']), #'sparsifiers': [NoveltyCriterion(0.99919, 1.0)] 'coefs': data['a_post'], 'dict': data['s_post'].T, 'freeze_dict': True } # np.seterr(all='raise') klms = KlmsFilter(data['y_prog'], data['y_prog']) klms.fit(**klms_params) print(len(klms.support_vectors)) plot_series(data['y_prog'], klms.estimate, markersize=1, linewidth=1, figsize=(15, 3)) plot_squared_error(klms.error_history) import matplotlib.pyplot as plt #plt.semilogy(np.array(klms.error_history)**2) #plt.show()
mit
Statoil/libecl
python/ecl/summary/ecl_sum.py
1
58477
# Copyright (C) 2011 Equinor ASA, Norway. # # The file 'ecl_sum.py' is part of ERT - Ensemble based Reservoir Tool. # # ERT is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ERT is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. # # See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html> # for more details. """ Module for loading and querying summary data. The low-level organisation of summary data is extensively documented in the C source files ecl_sum.c, ecl_smspec.c and ecl_sum_data in the libecl/src directory. """ import warnings import numpy import datetime import os.path import ctypes import pandas import re # Observe that there is some convention conflict with the C code # regarding order of arguments: The C code generally takes the time # index as the first argument and the key/key_index as second # argument. In the python code this order has been reversed. from cwrap import BaseCClass, CFILE from ecl.util.util import monkey_the_camel from ecl.util.util import StringList, CTime, DoubleVector, TimeVector, IntVector from ecl.summary import EclSumTStep from ecl.summary import EclSumVarType from ecl.summary.ecl_sum_vector import EclSumVector from ecl.summary.ecl_smspec_node import EclSMSPECNode from ecl import EclPrototype, EclUnitTypeEnum #, EclSumKeyWordVector #import ecl.ecl_plot.sum_plot as sum_plot # The date2num function is a verbatim copy of the _to_ordinalf() # function from the matplotlib.dates module. Inserted here only to # avoid importing the full matplotlib library. The date2num # implementation could be replaced with: # # from matplotlib.dates import date2num HOURS_PER_DAY = 24.0 MINUTES_PER_DAY = 60 * HOURS_PER_DAY SECONDS_PER_DAY = 60 * MINUTES_PER_DAY MUSECONDS_PER_DAY = 1e6 * SECONDS_PER_DAY def date2num(dt): """ Convert a python datetime instance to UTC float days. Convert datetime to the Gregorian date as UTC float days, preserving hours, minutes, seconds and microseconds, return value is a float. The function is a verbatim copy of the _to_ordinalf() function from the matplotlib.dates module. """ if hasattr(dt, 'tzinfo') and dt.tzinfo is not None: delta = dt.tzinfo.utcoffset(dt) if delta is not None: dt -= delta base = float(dt.toordinal()) if hasattr(dt, 'hour'): base += (dt.hour/HOURS_PER_DAY + dt.minute/MINUTES_PER_DAY + dt.second/SECONDS_PER_DAY + dt.microsecond/MUSECONDS_PER_DAY) return base class EclSum(BaseCClass): TYPE_NAME = "ecl_sum" _fread_alloc_case2 = EclPrototype("void* ecl_sum_fread_alloc_case2__(char*, char*, bool, bool, int)", bind=False) _fread_alloc = EclPrototype("void* ecl_sum_fread_alloc(char*, stringlist, char*, bool)", bind=False) _create_restart_writer = EclPrototype("ecl_sum_obj ecl_sum_alloc_restart_writer2(char*, char*, int, bool, bool, char*, time_t, bool, int, int, int)", bind = False) _create_writer = EclPrototype("ecl_sum_obj ecl_sum_alloc_writer(char*, bool, bool, char*, time_t, bool, int, int, int)", bind = False) _resample = EclPrototype("ecl_sum_obj ecl_sum_alloc_resample( ecl_sum, char*, time_t_vector, bool, bool)") _iiget = EclPrototype("double ecl_sum_iget(ecl_sum, int, int)") _free = EclPrototype("void ecl_sum_free(ecl_sum)") _data_length = EclPrototype("int ecl_sum_get_data_length(ecl_sum)") _iget_sim_days = EclPrototype("double ecl_sum_iget_sim_days(ecl_sum, int) ") _iget_report_step = EclPrototype("int ecl_sum_iget_report_step(ecl_sum, int) ") _iget_sim_time = EclPrototype("time_t ecl_sum_iget_sim_time(ecl_sum, int) ") _get_report_end = EclPrototype("int ecl_sum_iget_report_end(ecl_sum, int)") _get_general_var = EclPrototype("double ecl_sum_get_general_var(ecl_sum, int, char*)") _get_general_var_index = EclPrototype("int ecl_sum_get_general_var_params_index(ecl_sum, char*)") _get_general_var_from_sim_days = EclPrototype("double ecl_sum_get_general_var_from_sim_days(ecl_sum, double, char*)") _get_general_var_from_sim_time = EclPrototype("double ecl_sum_get_general_var_from_sim_time(ecl_sum, time_t, char*)") _solve_days = EclPrototype("double_vector_obj ecl_sum_alloc_days_solution(ecl_sum, char*, double, bool)") _solve_dates = EclPrototype("time_t_vector_obj ecl_sum_alloc_time_solution(ecl_sum, char*, double, bool)") _get_first_gt = EclPrototype("int ecl_sum_get_first_gt(ecl_sum, int, double)") _get_first_lt = EclPrototype("int ecl_sum_get_first_lt(ecl_sum, int, double)") _get_start_date = EclPrototype("time_t ecl_sum_get_start_time(ecl_sum)") _get_end_date = EclPrototype("time_t ecl_sum_get_end_time(ecl_sum)") _get_last_report_step = EclPrototype("int ecl_sum_get_last_report_step(ecl_sum)") _get_first_report_step = EclPrototype("int ecl_sum_get_first_report_step(ecl_sum)") _select_matching_keys = EclPrototype("void ecl_sum_select_matching_general_var_list(ecl_sum, char*, stringlist)") _has_key = EclPrototype("bool ecl_sum_has_general_var(ecl_sum, char*)") _check_sim_time = EclPrototype("bool ecl_sum_check_sim_time(ecl_sum, time_t)") _check_sim_days = EclPrototype("bool ecl_sum_check_sim_days(ecl_sum, double)") _sim_length = EclPrototype("double ecl_sum_get_sim_length(ecl_sum)") _get_first_day = EclPrototype("double ecl_sum_get_first_day(ecl_sum)") _get_data_start = EclPrototype("time_t ecl_sum_get_data_start(ecl_sum)") _get_unit = EclPrototype("char* ecl_sum_get_unit(ecl_sum, char*)") _get_restart_case = EclPrototype("ecl_sum_ref ecl_sum_get_restart_case(ecl_sum)") _get_restart_step = EclPrototype("int ecl_sum_get_restart_step(ecl_sum)") _get_simcase = EclPrototype("char* ecl_sum_get_case(ecl_sum)") _get_unit_system = EclPrototype("ecl_unit_enum ecl_sum_get_unit_system(ecl_sum)") _get_base = EclPrototype("char* ecl_sum_get_base(ecl_sum)") _get_path = EclPrototype("char* ecl_sum_get_path(ecl_sum)") _get_abs_path = EclPrototype("char* ecl_sum_get_abs_path(ecl_sum)") _get_report_step_from_time = EclPrototype("int ecl_sum_get_report_step_from_time(ecl_sum, time_t)") _get_report_step_from_days = EclPrototype("int ecl_sum_get_report_step_from_days(ecl_sum, double)") _get_report_time = EclPrototype("time_t ecl_sum_get_report_time(ecl_sum, int)") _fwrite_sum = EclPrototype("void ecl_sum_fwrite(ecl_sum)") _can_write = EclPrototype("bool ecl_sum_can_write(ecl_sum)") _set_case = EclPrototype("void ecl_sum_set_case(ecl_sum, char*)") _alloc_time_vector = EclPrototype("time_t_vector_obj ecl_sum_alloc_time_vector(ecl_sum, bool)") _alloc_data_vector = EclPrototype("double_vector_obj ecl_sum_alloc_data_vector(ecl_sum, int, bool)") _get_var_node = EclPrototype("smspec_node_ref ecl_sum_get_general_var_node(ecl_sum, char*)") _create_well_list = EclPrototype("stringlist_obj ecl_sum_alloc_well_list(ecl_sum, char*)") _create_group_list = EclPrototype("stringlist_obj ecl_sum_alloc_group_list(ecl_sum, char*)") _add_variable = EclPrototype("smspec_node_ref ecl_sum_add_var(ecl_sum, char*, char*, int, char*, double)") _add_tstep = EclPrototype("ecl_sum_tstep_ref ecl_sum_add_tstep(ecl_sum, int, double)") _export_csv = EclPrototype("void ecl_sum_export_csv(ecl_sum, char*, stringlist, char*, char*)") _identify_var_type = EclPrototype("ecl_sum_var_type ecl_sum_identify_var_type(char*)", bind = False) _is_rate = EclPrototype("bool smspec_node_identify_rate(char*)", bind = False) _is_total = EclPrototype("bool smspec_node_identify_total(char*, ecl_sum_var_type)", bind = False) _get_last_value = EclPrototype("double ecl_sum_get_last_value_gen_key(ecl_sum, char*)") _get_first_value = EclPrototype("double ecl_sum_get_first_value_gen_key(ecl_sum, char*)") _init_numpy_vector = EclPrototype("void ecl_sum_init_double_vector(ecl_sum, char*, double*)") _init_numpy_vector_interp = EclPrototype("void ecl_sum_init_double_vector_interp(ecl_sum, char*, time_t_vector, double*)") _init_numpy_datetime64 = EclPrototype("void ecl_sum_init_datetime64_vector(ecl_sum, int64*, int)") def __init__(self, load_case, join_string=":", include_restart=True, lazy_load=True, file_options=0): """Loads a new EclSum instance with summary data. Loads a new summary results from the ECLIPSE case given by argument @load_case; @load_case should be the basename of the ECLIPSE simulation you want to load. @load_case can contain a leading path component, and also an extension - the latter will be ignored. The @join_string is the string used when combining elements from the WGNAMES, KEYWORDS and NUMS vectors into a composit key; with @join_string == ":" the water cut in well OP_1 will be available as "WWCT:OP_1". If the @include_restart parameter is set to true the summary loader will, in the case of a restarted ECLIPSE simulation, try to load summary results also from the restarted case. If the @lazy_load parameter is set to true the loader will not load all the data from a UNSMRY file at creation time, but wait until the data is actually requested. This will reduce startup time and memory usage, whereas getting a vector will be slower. When the summary data is split over multiple CASE.Snnn files all the data will be loaded at construction time, and the @lazy_load option is ignored. If the lazy_load functionality is used the file_options intege flag is passed when opening the UNSMRY file. """ if not load_case: raise ValueError('load_case must be the basename of the simulation') c_pointer = self._fread_alloc_case2(load_case, join_string, include_restart, lazy_load, file_options) if c_pointer is None: raise IOError("Failed to create summary instance from argument:%s" % load_case) super(EclSum, self).__init__(c_pointer) self._load_case = load_case @classmethod def load(cls, smspec_file, unsmry_file, key_join_string = ":", include_restart = True): if not os.path.isfile( smspec_file ): raise IOError("No such file: %s" % smspec_file) if not os.path.isfile( unsmry_file ): raise IOError("No such file: %s" % unsmry_file ) data_files = StringList( ) data_files.append( unsmry_file ) c_ptr = cls._fread_alloc(smspec_file, data_files, key_join_string, include_restart) if c_ptr is None: raise IOError("Failed to create summary instance") ecl_sum = cls.createPythonObject( c_ptr ) ecl_sum._load_case = smspec_file return ecl_sum @classmethod def createCReference(cls, c_pointer, parent=None): result = super(EclSum, cls).createCReference(c_pointer, parent) return result @classmethod def createPythonObject(cls, c_pointer): result = super(EclSum, cls).createPythonObject(c_pointer) return result @staticmethod def var_type(keyword): return EclSum._identify_var_type(keyword) @staticmethod def is_rate(keyword): return EclSum._is_rate(keyword) @staticmethod def is_total(keyword): return EclSum._is_total(keyword, EclSum.var_type(keyword)) @staticmethod def writer(case, start_time, nx,ny,nz, fmt_output=False, unified=True, time_in_days=True, key_join_string=":"): """ The writer is not generally usable. @rtype: EclSum """ start = CTime(start_time) smry = EclSum._create_writer(case, fmt_output, unified, key_join_string, start, time_in_days, nx, ny, nz) smry._load_case = 'writer' return smry @staticmethod def restart_writer(case, restart_case, restart_step, start_time, nx,ny,nz, fmt_output=False, unified=True, time_in_days=True, key_join_string=":"): """ The writer is not generally usable. @rtype: EclSum """ start = CTime(start_time) smry = EclSum._create_restart_writer(case, restart_case, restart_step, fmt_output, unified, key_join_string, start, time_in_days, nx, ny, nz) smry._load_case = 'restart_writer' return smry def add_variable(self, variable, wgname=None, num=0, unit="None", default_value=0): return self._add_variable(variable, wgname, num, unit, default_value).setParent(parent=self) def add_t_step(self, report_step, sim_days): """ @rtype: EclSumTStep """ # report_step int if not isinstance(report_step, int): raise TypeError('Parameter report_step should be int, was %r' % report_step) try: float(sim_days) except TypeError: raise TypeError('Parameter sim_days should be float, was %r' % sim_days) sim_seconds = sim_days * 24 * 60 * 60 tstep = self._add_tstep(report_step, sim_seconds).setParent(parent=self) return tstep def get_vector(self, key, report_only=False): """ Will return EclSumVector according to @key. Will raise exception KeyError if the summary object does not have @key. """ warnings.warn("The method get_vector() has been deprecated, use numpy_vector() instead", DeprecationWarning) self.assertKeyValid(key) if report_only: return EclSumVector(self, key, report_only=True) else: return EclSumVector(self, key) def report_index_list(self): """ Internal function for working with report_steps. """ first_report = self.first_report last_report = self.last_report index_list = IntVector() for report_step in range(first_report, last_report + 1): time_index = self._get_report_end(report_step) index_list.append(time_index) return index_list def wells(self, pattern=None): """ Will return a list of all the well names in case. If the pattern variable is different from None only wells matching the pattern will be returned; the matching is based on fnmatch(), i.e. shell style wildcards. """ return self._create_well_list(pattern) def groups(self, pattern=None): """ Will return a list of all the group names in case. If the pattern variable is different from None only groups matching the pattern will be returned; the matching is based on fnmatch(), i.e. shell style wildcards. """ return self._create_group_list(pattern) def get_values(self, key, report_only=False): """ Will return numpy vector of all values according to @key. If the optional argument report_only is true only the values corresponding to report steps are included. The method is also available as the 'values' property of an EclSumVector instance. """ warnings.warn("The method get_values() has been deprecated - use numpy_vector() instead.", DeprecationWarning) if self.has_key(key): key_index = self._get_general_var_index(key) if report_only: index_list = self.report_index_list() values = numpy.zeros(len(index_list)) for i in range(len(index_list)): time_index = index_list[i] values[i] = self._iiget(time_index, key_index) else: length = self._data_length() values = numpy.zeros(length) for i in range(length): values[i] = self._iiget(i, key_index) return values else: raise KeyError("Summary object does not have key:%s" % key) def _make_time_vector(self, time_index): time_points = TimeVector() for t in time_index: time_points.append(t) return time_points def numpy_vector(self, key, time_index=None, report_only=False): """Will return numpy vector of all the values corresponding to @key. The optional argument @time_index can be used to limit the time points where you want evaluation. The time_index argument should be a list of datetime instances. The values will be interpolated to the time points given in the time_index vector. If the time points in the time_inedx vector are outside of the simulated range you will get an extrapolated value: Rates -> 0 Not rate -> first or last simulated value. The function will raise KeyError if the requested key does not exist. If many keys are needed it will be faster to use the pandas_frame() function. If you set the optional argument report_only to True the you will only get values at the report dates. Observe that passing report_only=True can not be combined with a value for time_index, that will give you a ValueError exception. """ if key not in self: raise KeyError("No such key:%s" % key) if report_only: if time_index is None: time_index = self.report_dates else: raise ValueError("Can not suuply both time_index and report_only=True") if time_index is None: np_vector = numpy.zeros(len(self)) self._init_numpy_vector(key ,np_vector.ctypes.data_as(ctypes.POINTER(ctypes.c_double))) return np_vector else: time_vector = self._make_time_vector(time_index) np_vector = numpy.zeros(len(time_vector)) self._init_numpy_vector_interp(key, time_vector, np_vector.ctypes.data_as(ctypes.POINTER(ctypes.c_double))) return np_vector @property def numpy_dates(self): """ Will return numpy vector of numpy.datetime64() values for all the simulated timepoints. """ np_dates = numpy.zeros(len(self), dtype="datetime64[ms]") self._init_numpy_datetime64(np_dates.ctypes.data_as(ctypes.POINTER(ctypes.c_int64)), 1000) return np_dates @property def dates(self): """ Will return ordinary Python list of datetime.datetime() objects of simulated timepoints. """ np_dates = self.numpy_dates return np_dates.tolist() @property def report_dates(self): dates = [] if len(self): for report in range(self.first_report,self.last_report + 1): dates.append(self.get_report_time( report )) return dates def pandas_frame(self, time_index = None, column_keys = None): """Will create a pandas frame with summary data. By default you will get all time points in the summary case, but by using the time_index argument you can control which times you are interested in. If you have supplied a time_index argument the data will be interpolated to these time values. If the time points in the time_index vector are outside of the simulated range you will get an extrapolated value: Rates -> 0 Not rate -> first or last simulated value. By default the frame will contain all the summary vectors in the case, but this can be controlled by using the column_keys argument. The column_keys should be a list of strings, and each summary vector matching one of the elements in the @column_keys will get a column in the frame, you can use wildcards like "WWCT:*" and "*:OP". If you supply a column_keys argument which does not resolve to any valid summary keys you will get a ValueError exception. sum = EclSum(case) monthly_dates = sum.time_range(interval="1M") data = sum.pandas_frame(time_index = monthly_dates, column_keys=["F*PT"]) FOPT FGPT FWPT 2010-01-01 100.7 200.0 25.0 2010-02-01 150.7 275.0 67.6 2010-03-01 276.7 310.6 67.0 2010-04-01 672.7 620.4 78.7 .... """ from ecl.summary import EclSumKeyWordVector if column_keys is None: keywords = EclSumKeyWordVector(self, add_keywords = True) else: keywords = EclSumKeyWordVector(self) for key in column_keys: keywords.add_keywords(key) if len(keywords) == 0: raise ValueError("No valid key") if time_index is None: time_index = self.numpy_dates data = numpy.zeros([len(time_index), len(keywords)]) EclSum._init_pandas_frame(self, keywords,data.ctypes.data_as(ctypes.POINTER(ctypes.c_double))) else: time_points = self._make_time_vector(time_index) data = numpy.zeros([len(time_points), len(keywords)]) EclSum._init_pandas_frame_interp(self, keywords, time_points, data.ctypes.data_as(ctypes.POINTER(ctypes.c_double))) frame = pandas.DataFrame(index = time_index, columns=list(keywords), data=data) return frame @staticmethod def _compile_headers_list(headers, dims): var_list = [] for key in headers: lst = re.split(':', key) kw = lst[0] wgname = None num = 0; unit = "UNIT" if len(lst) > 1: nums = [] if lst[1][0].isdigit(): nums = re.split(',', lst[1]) else: wgname = lst[1] if len(lst) == 3: nums = re.split(",", lst[2]) if len(nums) == 3: i = int(nums[0])-1 j = int(nums[1])-1 k = int(nums[2])-1 if dims is None: raise ValueError("For key %s When using indexing i,j,k you must supply a valid value for the dims argument" % key) num = i + j * dims[0] + k * dims[0]*dims[1] + 1 elif len(nums) == 1: num = int(nums[0]) var_list.append( [kw, wgname, num, unit] ) return var_list @classmethod def from_pandas(cls, case, frame, dims = None, headers = None): start_time = frame.index[0] var_list = [] if headers is None: header_list = EclSum._compile_headers_list( frame.columns.values, dims ) else: header_list = EclSum._compile_headers_list( headers, dims ) if dims is None: dims = [1,1,1]; ecl_sum = EclSum.writer(case, start_time.to_pydatetime(), dims[0], dims[1], dims[2]) for kw, wgname, num, unit in header_list: var_list.append( ecl_sum.addVariable( kw , wgname = wgname , num = num, unit =unit).getKey1() ) for i, time in enumerate(frame.index): days = (time - start_time).days t_step = ecl_sum.addTStep( i+1 , days ) for var in var_list: t_step[var] = frame.iloc[i][var] return ecl_sum def get_key_index(self, key): """ Lookup parameter index of @key. All the summary keys identified in the SMSPEC file have a corresponding index which is used internally. This function will return that index for input key @key, this can then be used in subsequent calls to e.g. the iiget() method. This is a minor optimization in the case of many lookups of the same key: sum = ecl.EclSum(case) key_index = sum.get_key_index(key) for time_index in range(sum.length): value = sum.iiget(time_index, key_index) Quite low-level function, should probably rather use a EclSumVector based function? """ index = self._get_general_var_index(key) if index >= 0: return index else: return None def last_value(self, key): """ Will return the last value corresponding to @key. Typically useful to get the total production at end of simulation: total_production = sum.last_value("FOPT") The alternative method 'last' will return a EclSumNode instance with some extra time related information. """ if not key in self: raise KeyError("No such key:%s" % key) return self._get_last_value(key) def first_value(self, key): """ Will return first value corresponding to @key. """ if not key in self: raise KeyError("No such key:%s" % key) return self._get_first_value(key) def get_last_value(self,key): warnings.warn("The function get_last_value() is deprecated, use last_value() instead",DeprecationWarning) return self.last_value(key) def get_last(self, key): """ Will return the last EclSumNode corresponding to @key. If you are only interested in the final value, you can use the last_value() method. """ return self[key].last def iiget(self, time_index, key_index): """ Lookup a summary value based on naive @time_index and @key_index. The iiget() method will lookup a summary value based on the 'time' value give by @time_index (i.e. naive counting of time steps starting at zero), and a key index given by @key_index. The @key_index value will typically be obtained with the get_key_index() method first. This is a quite low level function, in most cases it will be natural to go via e.g. an EclSumVector instance. """ return self._iiget(time_index, key_index) def iget(self, key, time_index): """ Lookup summary value based on @time_index and key. The @time_index value should be an integer [0,num_steps) and @key should be string key. To get all the water cut values from a well: for time_index in range(sum.length): wwct = sum.iget(time_index, "WWCT:W5") This is a quite low level function, in most cases it will be natural to go via e.g. an EclSumVector instance. """ return self._get_general_var(time_index, key) def __len__(self): """ The number of timesteps in the dataset; the return when evaluating len(case). """ return self._data_length() def __contains__(self, key): if self._has_key(key): return True else: return False def assert_key_valid(self, key): if not key in self: raise KeyError("The summary key:%s was not recognized" % key) def __iter__(self): return iter(self.keys()) def __getitem__(self, key): """ Implements [] operator - @key should be a summary key. The returned value will be a EclSumVector instance. """ warnings.warn("The method the [] operator will change behaviour in the future. It will then return a plain numpy vector. You are advised to change to use the numpy_vector() method right away", DeprecationWarning) return self.get_vector(key) def scale_vector(self, key, scalar): msg = """The function EclSum.scale_vector has been removed. As an alternative you are advised to fetch vector as a numpy vector and then scale that yourself: vec = ecl_sum.numpy_vector(key) vec *= scalar """ raise NotImplementedError(msg) def shift_vector(self, key, addend): msg = """The function EclSum.shift_vector has been removed. As an alternative you are advised to fetch vector as a numpy vector and then scale that yourself: vec = ecl_sum.numpy_vector(key) vec += scalar """ raise NotImplementedError(msg) def check_sim_time(self, date): """ Will check if the input date is in the time span [sim_start, sim_end]. """ if not isinstance(date, CTime): date = CTime(date) return self._check_sim_time(date) def get_interp_direct(self,key, date): if not isinstance(date, CTime): date = CTime(date) return self._get_general_var_from_sim_time(date, key) def get_interp(self, key, days=None, date=None): """ Will lookup vector @key at time given by @days or @date. Requiers exactly one input argument @days or @date; will raise exception ValueError if this is not satisfied. The method will check that the time argument is within the time limits of the simulation; if else the method will raise exception ValueError. Also available as method get_interp() on the EclSumVector class. """ self.assertKeyValid(key) if days is None and date is None: raise ValueError("Must supply either days or date") if days is None: t = CTime(date) if self.check_sim_time(t): return self._get_general_var_from_sim_time(t, key) else: raise ValueError("date:%s is outside range of simulation data" % date) elif date is None: if self._check_sim_days(days): return self._get_general_var_from_sim_days(days, key) else: raise ValueError("days:%s is outside range of simulation: [%g,%g]" % (days, self.first_day, self.sim_length)) else: raise ValueError("Must supply either days or date") def get_interp_row(self, key_list, sim_time, invalid_value = -1): ctime = CTime(sim_time) data = DoubleVector( initial_size = len(key_list) , default_value = invalid_value) EclSum._get_interp_vector(self, ctime, key_list, data) return data def time_range(self, start=None, end=None, interval="1Y", num_timestep = None, extend_end=True): """Will create a vector of timepoints based on the current case. By default the timepoints will be regularly sampled based on the interval given by the @interval string. Alternatively the total number of timesteps can be specified, if the @num_timestep option is specified that will take presedence. """ (num, timeUnit) = TimeVector.parseTimeUnit(interval) if start is None: start = self.getDataStartTime() else: if isinstance(start, datetime.date): start = datetime.datetime(start.year, start.month, start.day, 0, 0, 0) if start < self.getDataStartTime(): start = self.getDataStartTime() if end is None: end = self.getEndTime() else: if isinstance(end, datetime.date): end = datetime.datetime(end.year, end.month, end.day, 0, 0, 0) if end > self.getEndTime(): end = self.getEndTime() if end < start: raise ValueError("Invalid time interval start after end") if not num_timestep is None: return TimeVector.create_linear(CTime(start), CTime(end), num_timestep) range_start = start range_end = end if not timeUnit == "d": year1 = start.year year2 = end.year month1 = start.month month2 = end.month day1 = start.day day2 = end.day if extend_end: if timeUnit == 'm': if day2 > 1: month2 += 1 if month2 == 13: year2 += 1 month2 = 1 elif timeUnit == "y": month1 = 1 if year2 > 1 or day2 > 1: year2 += 1 month2 = 1 day1 = 1 day2 = 1 range_start = datetime.date(year1, month1, day1) range_end = datetime.date(year2, month2, day2) trange = TimeVector.createRegular(range_start, range_end, interval) # If the simulation does not start at the first of the month # the start value will be before the simulation start; we # manually shift the first element in the trange to the start # value; the same for the end of list. if trange[-1] < end: if extend_end: trange.appendTime(num, timeUnit) else: trange.append(end) data_start = self.getDataStartTime() if trange[0] < data_start: trange[0] = CTime(data_start) return trange def blocked_production(self, totalKey, timeRange): node = self.smspec_node(totalKey) if node.isTotal(): total = DoubleVector() for t in timeRange: if t < CTime(self.start_time): total.append(0) elif t >= CTime(self.end_time): total.append(self.last_value(totalKey)) else: total.append(self.get_interp(totalKey, date=t)) tmp = total << 1 total.pop() return tmp - total else: raise TypeError("The blockedProduction method must be called with one of the TOTAL keys like e.g. FOPT or GWIT") def get_report(self, date=None, days=None): """ Will return the report step corresponding to input @date or @days. If the input argument does not correspond to any report steps the function will return -1. Observe that the function requires strict equality. """ if date: if days: raise ValueError("Must supply either days or date") step = self._get_report_step_from_time(CTime(date)) elif days: step = self._get_report_step_from_days(days) return step def get_report_time(self, report): """ Will return the datetime corresponding to the report_step @report. """ return CTime(self._get_report_time(report)).date() def get_interp_vector(self, key, days_list=None, date_list=None): """ Will return numpy vector with interpolated values. Requiers exactly one input argument @days or @date; will raise exception ValueError if this is not satisfied. The method will check that the time arguments are within the time limits of the simulation; if else the method will raise exception ValueError. Also available as method get_interp_vector() on the EclSumVector class. """ self.assertKeyValid(key) if days_list: if date_list: raise ValueError("Must supply either days_list or date_list") else: vector = numpy.zeros(len(days_list)) sim_length = self.sim_length sim_start = self.first_day index = 0 for days in days_list: if (days >= sim_start) and (days <= sim_length): vector[index] = self._get_general_var_from_sim_days(days, key) else: raise ValueError("Invalid days value") index += 1 elif date_list: start_time = self.data_start end_time = self.end_date vector = numpy.zeros(len(date_list)) index = 0 for date in date_list: ct = CTime(date) if start_time <= ct <= end_time: vector[index] = self._get_general_var_from_sim_time(ct, key) else: raise ValueError("Invalid date value") index += 1 else: raise ValueError("Must supply either days_list or date_list") return vector def get_from_report(self, key, report_step): """ Return summary value of @key at time @report_step. """ time_index = self._get_report_end(report_step) return self._get_general_var(time_index, key) def has_key(self, key): """ Check if summary object has key @key. """ return key in self def smspec_node(self, key): """ Will return a EclSMSPECNode instance corresponding to @key. The returned EclSMPECNode instance can then be used to ask for various properties of the variable; i.e. if it is a rate variable, what is the unit, if it is a total variable and so on. """ if self.has_key(key): node = self._get_var_node(key).setParent(self) return node else: raise KeyError("Summary case does not have key:%s" % key) def unit(self, key): """ Will return the unit of @key. """ node = self.smspec_node(key) return node.unit @property def unit_system(self): """ Will return the unit system in use for this case. """ return self._get_unit_system() @property def case(self): """ Will return the case name of the current instance - optionally including path. """ return self._get_simcase() @property def restart_step(self): """ Will return the report step this case has been restarted from, or -1. """ return self._get_restart_step() @property def restart_case(self): restart_case = self._get_restart_case() if restart_case: restart_case.setParent(parent=self) return restart_case @property def path(self): """ Will return the path to the current case. Will be None for case in CWD. See also abs_path. """ return self._get_path() @property def base(self): """ Will return the basename of the current case - no path. """ return self._get_base() @property def abs_path(self): """ Will return the absolute path to the current case. """ return self._get_abs_path() #----------------------------------------------------------------- # Here comes functions for getting vectors of the time # dimension. All the get_xxx() functions have an optional boolean # argument @report_only. If this argument is set to True the # functions will return time vectors only corresponding to the # report times. # # In addition to the get_xxx() methods there are properties with # the same name (excluding the 'get'); these properties correspond # to an get_xxx() invocation with optional argument report_only # set to False (i.e. the defualt). @property def days(self): """ Will return a numpy vector of simulations days. """ return self.get_days(False) def get_days(self, report_only=False): """ Will return a numpy vector of simulations days. If the optional argument @report_only is set to True, only 'days' values corresponding to report steps will be included. """ if report_only: dates = self.report_dates start_date = self.data_start start = datetime.date(start_date.year, start_date.month, start_date.day) return [ (x - start).total_seconds( ) / 86400 for x in dates ] else: return [ self._iget_sim_days(index) for index in range(len(self)) ] def get_dates(self, report_only=False): """ Will return a list of simulation dates. The list will be an ordinary Python list, and the dates will be in terms ordinary Python datetime values. If the optional argument @report_only is set to True, only dates corresponding to report steps will be included. """ if report_only: return self.report_dates else: return self.dates @property def mpl_dates(self): """ Will return a numpy vector of dates ready for matplotlib The content of the vector are dates in matplotlib format, i.e. floats - generated by the date2num() function at the top of this file. """ warnings.warn("The mpl_dates property has been deprecated - use numpy_dates instead", DeprecationWarning) return self.get_mpl_dates(False) def get_mpl_dates(self, report_only=False): """ Will return a numpy vector of dates ready for matplotlib If the optional argument @report_only is set to True, only dates values corresponding to report steps will be included. The content of the vector are dates in matplotlib format, i.e. floats - generated by the date2num() function at the top of this file. """ warnings.warn("The get_mpl_dates( ) method has been deprecated - use numpy_dates instead", DeprecationWarning) if report_only: return [ date2num(dt) for dt in self.report_dates ] else: return [date2num(dt) for dt in self.dates] @property def report_step(self): """ Will return a list of report steps. The simulator will typically use several simulation timesteps for each report step, and the number will change between different report steps. So - assuming that the first report step one has five simulations timesteps and the next two have three the report_step vector can look like: [...,1,1,1,1,1,2,2,2,3,3,3,....] """ return self.get_report_step(False) def get_report_step(self, report_only=False): if report_only: report_steps = list(range(self.first_report, self.last_report + 1)) else: report_steps = [] for index in range(len(self)): report_steps.append( self._iget_report_step(index) ) return report_steps #----------------------------------------------------------------- def iget_days(self, time_index): """ Returns the number of simulation days for element nr @time_index. """ return self._iget_sim_days(time_index) def iget_date(self, time_index): """ Returns the simulation date for element nr @time_index. """ long_time = self._iget_sim_time(time_index) ct = CTime(long_time) return ct.datetime() def iget_report(self, time_index): """ Returns the report step corresponding to @time_index. One report step will in general contain many ministeps. """ return self._iget_report_step(time_index) @property def length(self): """ The number of timesteps in the dataset. """ return self._data_length() @property def first_day(self): """ The first day we have simulation data for; normally 0. """ return self._get_first_day() @property def sim_length(self): """Will return the total time span for the simulation data. The lengt will be returned in time unit used in the simulation data; i.e. typically days. """ return self.getSimulationLength() @property def start_date(self): """ A Python date instance with the start date. The start time is taken from the SMSPEC file, and in case not all timesteps have been loaded, e.g. for a restarted case, the returned start_date might be different from the datetime of the first (loaded) timestep. """ ct = self._get_start_date() return CTime(ct).date() @property def end_date(self): """ The date of the last (loaded) time step. """ return CTime(self._get_end_date()).date() @property def data_start(self): return self.getDataStartTime() @property def end_time(self): """ The time of the last (loaded) time step. """ return self.getEndTime() @property def start_time(self): return self.getStartTime() def get_data_start_time(self): """The first date we have data for. Thiw will mostly be equal to getStartTime(), but in the case of restarts, where the case we have restarted from is not found, this time will be later than the true start of the field. """ return CTime(self._get_data_start()).datetime() def get_start_time(self): """ A Python datetime instance with the start time. See start_date() for further details. """ return CTime(self._get_start_date()).datetime() def get_end_time(self): """ A Python datetime instance with the last loaded time. """ return CTime(self._get_end_date()).datetime() def getSimulationLength(self): """ The length of the current dataset in simulation days. Will include the length of a leading restart section, irrespective of whether we have data for this or not. """ return self._sim_length() @property def last_report(self): """ The number of the last report step in the dataset. """ return self._get_last_report_step() @property def first_report(self): """ The number of the first report step in the dataset. """ return self._get_first_report_step() def first_gt_index(self, key, limit): """ Returns the first index where @key is above @limit. """ key_index = self._get_general_var_index(key) time_index = self._get_first_gt(key_index, limit) return time_index def first_lt_index(self, key, limit): """ Returns the first index where @key is below @limit. """ key_index = self._get_general_var_index(key) time_index = self._get_first_lt(key_index, limit) return time_index def first_gt(self, key, limit): """ First EclSumNode of @key which is above @limit. """ vector = self[key] return vector.first_gt(limit) def first_lt(self, key, limit): """ First EclSumNode of @key which is below @limit. """ vector = self[key] return vector.first_lt(limit) def solve_dates(self, key, value, rates_clamp_lower=True): """Will solve the equation vector[@key] == value for dates. See solveDays() for further details. """ if not key in self: raise KeyError("Unrecognized key:%s" % key) if len(self) < 2: raise ValueError("Must have at least two elements to start solving") return [ x.datetime() for x in self._solve_dates(key, value, rates_clamp_lower)] def solve_days(self, key, value, rates_clamp_lower=True): """Will solve the equation vector[@key] == value. This method will solve find tha approximate simulation days where the vector @key is equal @value. The method will return a list of values, which can have zero, one or multiple values: case = EclSum("CASE") days = case.solveDays("RPR:2", 200) if len(days) == 0: print("Pressure was never equal to 200 BARSA") elif len(days) == 1: print("Pressure equal to 200 BARSA after %s simulation days" % days[0]) else: print("Pressure equal to 200 BARSA multiple times") for index,day in enumerate(days): print("Solution[%d] : %s days" % (index, day)) For variables like pressure and total volumes the solution is based on straightforward linear interpolation between the simulated values; that is quite intuitive. However - rates is less intuitive, and how a rate like FOPR is handled can be surprising: Fundamentally the simulator works with *volumes*. Assume that the simulator calculates that between the times t1 and t2 the total volume of oil produced is V, then the oil production rate is given as: FOPR = V / (t2 - t1) This is the average production rate in the timespan (t1,t2]; the simulator does not have any information on a finer time scale than this - so the natural assumption is that the production is constant at this value for the whole time period. The logical consequence of this is that production rates should be visualized as a piecewise constant function: A B | | /|\ OPR | | | \|/ \|/ | | +============X | | | |-------------------------------------------------- X | | | | +=============X | | | | +===========X |=========X | | +---------+-------------+------------+-----------+--> t0 t1 t2 t3 t4 time This figure shows a plot of the OPR as a piecewise constant function. In a strict mathematical sense the equation: OPR = X Does not have a solution at all, but since this inequality: OPR(t2) < X < OPR(t3) it is natural to say that the equation has a solution. The default behaviour is to say that the (first) solution in this case is: tx = t2 + epsilon corresponding to the arrow 'A' on the figure. Alternatively if you set the optional argument 'rates_clamp_lower' to false the method will find the solution: tx = t3 corresponding to the arrow 'B* in the figure. """ if not key in self: raise KeyError("Unrecognized key:%s" % key) if len(self) < 2: raise ValueError("Must have at least two elements to start solving") return self._solve_days(key, value, rates_clamp_lower) def keys(self, pattern=None): """ Return a StringList of summary keys matching @pattern. The matching algorithm is ultimately based on the fnmatch() function, i.e. normal shell-character syntax is used. With @pattern == "WWCT:*" you will get a list of watercut keys for all wells. If pattern is None you will get all the keys of summary object. """ s = StringList() self._select_matching_keys(pattern, s) return s def can_write(self): return self._can_write( ) def fwrite(self, ecl_case=None): if not self.can_write(): raise NotImplementedError("Write method is not implemented for this case. lazy_load=True??") if ecl_case: self._set_case(ecl_case) self._fwrite_sum() def alloc_time_vector(self, report_only): return self._alloc_time_vector(report_only) def alloc_data_vector(self, data_index, report_only): return self._alloc_data_vector(data_index, report_only) def get_general_var_index(self, key): return self._get_general_var_index(key) def free(self): self._free() def _nicename(self): """load_case is often full path to summary file, if so, output basename, else name """ name = self._load_case if name and os.path.isfile(name): name = os.path.basename(name) return name def __repr__(self): """Returns, e.g. EclSum("NORNE_ATW2013.UNSMRY", [1997-11-06 00:00:00, 2006-12-01 00:00:00], keys=3781) at 0x1609e20 """ name = self._nicename() s_time = self.getStartTime() e_time = self.getEndTime() num_keys = len(self.keys()) content = 'name="%s", time=[%s, %s], keys=%d' % (name, s_time, e_time, num_keys) return self._create_repr(content) def dump_csv_line(self, time, keywords, pfile): """ Will dump a csv formatted line of the keywords in @keywords, evaluated at the intertpolated time @time. @pfile should point to an open Python file handle. """ cfile = CFILE(pfile) ctime = CTime(time) EclSum._dump_csv_line(self, ctime, keywords, cfile) def export_csv(self, filename, keys=None, date_format="%Y-%m-%d", sep=";"): """Will create a CSV file with summary data. By default all the vectors in the summary case will be exported, but by using the optional keys parameter you can limit the keys which are exported: ecl_sum = EclSum("CASE") ecl_sum.exportCSV("case.csv", keys=["W*:OP1", "W*:OP2", "F*T"]) Will export all well related variables for wells 'OP1' and 'OP2' and all total field vectors. """ if keys is None: var_list = self.keys() else: var_list = StringList() for key in keys: var_list |= self.keys(pattern=key) self._export_csv(filename, var_list, date_format, sep) def resample(self, new_case_name, time_points, lower_extrapolation=False, upper_extrapolation=False): new_case = self._resample(new_case_name, time_points, lower_extrapolation, upper_extrapolation) if new_case is None: raise ValueError("Failed to create new resampled case:{}".format(new_case_name)) return new_case import ecl.summary.ecl_sum_keyword_vector EclSum._dump_csv_line = EclPrototype("void ecl_sum_fwrite_interp_csv_line(ecl_sum, time_t, ecl_sum_vector, FILE)", bind=False) EclSum._get_interp_vector = EclPrototype("void ecl_sum_get_interp_vector(ecl_sum, time_t, ecl_sum_vector, double_vector)", bind=False) EclSum._init_pandas_frame = EclPrototype("void ecl_sum_init_double_frame(ecl_sum, ecl_sum_vector, double*)", bind=False) EclSum._init_pandas_frame_interp = EclPrototype("void ecl_sum_init_double_frame_interp(ecl_sum, ecl_sum_vector, time_t_vector, double*)", bind=False) monkey_the_camel(EclSum, 'varType', EclSum.var_type, classmethod) monkey_the_camel(EclSum, 'addVariable', EclSum.add_variable) monkey_the_camel(EclSum, 'addTStep', EclSum.add_t_step) monkey_the_camel(EclSum, 'assertKeyValid', EclSum.assert_key_valid) monkey_the_camel(EclSum, 'scaleVector', EclSum.scale_vector) monkey_the_camel(EclSum, 'shiftVector', EclSum.shift_vector) monkey_the_camel(EclSum, 'timeRange', EclSum.time_range) monkey_the_camel(EclSum, 'blockedProduction', EclSum.blocked_production) monkey_the_camel(EclSum, 'getDataStartTime', EclSum.get_data_start_time) monkey_the_camel(EclSum, 'getStartTime', EclSum.get_start_time) monkey_the_camel(EclSum, 'getEndTime', EclSum.get_end_time) monkey_the_camel(EclSum, 'solveDates', EclSum.solve_dates) monkey_the_camel(EclSum, 'solveDays', EclSum.solve_days) monkey_the_camel(EclSum, 'dumpCSVLine', EclSum.dump_csv_line) monkey_the_camel(EclSum, 'exportCSV', EclSum.export_csv)
gpl-3.0
Sentient07/scikit-learn
examples/tree/plot_unveil_tree_structure.py
13
4839
""" ========================================= Understanding the decision tree structure ========================================= The decision tree structure can be analysed to gain further insight on the relation between the features and the target to predict. In this example, we show how to retrieve: - the binary tree structure; - the depth of each node and whether or not it's a leaf; - the nodes that were reached by a sample using the ``decision_path`` method; - the leaf that was reached by a sample using the apply method; - the rules that were used to predict a sample; - the decision path shared by a group of samples. """ import numpy as np from sklearn.model_selection import train_test_split from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier iris = load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) estimator = DecisionTreeClassifier(max_leaf_nodes=3, random_state=0) estimator.fit(X_train, y_train) # The decision estimator has an attribute called tree_ which stores the entire # tree structure and allows access to low level attributes. The binary tree # tree_ is represented as a number of parallel arrays. The i-th element of each # array holds information about the node `i`. Node 0 is the tree's root. NOTE: # Some of the arrays only apply to either leaves or split nodes, resp. In this # case the values of nodes of the other type are arbitrary! # # Among those arrays, we have: # - left_child, id of the left child of the node # - right_child, id of the right child of the node # - feature, feature used for splitting the node # - threshold, threshold value at the node # # Using those arrays, we can parse the tree structure: n_nodes = estimator.tree_.node_count children_left = estimator.tree_.children_left children_right = estimator.tree_.children_right feature = estimator.tree_.feature threshold = estimator.tree_.threshold # The tree structure can be traversed to compute various properties such # as the depth of each node and whether or not it is a leaf. node_depth = np.zeros(shape=n_nodes, dtype=np.int64) is_leaves = np.zeros(shape=n_nodes, dtype=bool) stack = [(0, -1)] # seed is the root node id and its parent depth while len(stack) > 0: node_id, parent_depth = stack.pop() node_depth[node_id] = parent_depth + 1 # If we have a test node if (children_left[node_id] != children_right[node_id]): stack.append((children_left[node_id], parent_depth + 1)) stack.append((children_right[node_id], parent_depth + 1)) else: is_leaves[node_id] = True print("The binary tree structure has %s nodes and has " "the following tree structure:" % n_nodes) for i in range(n_nodes): if is_leaves[i]: print("%snode=%s leaf node." % (node_depth[i] * "\t", i)) else: print("%snode=%s test node: go to node %s if X[:, %s] <= %s else to " "node %s." % (node_depth[i] * "\t", i, children_left[i], feature[i], threshold[i], children_right[i], )) print() # First let's retrieve the decision path of each sample. The decision_path # method allows to retrieve the node indicator functions. A non zero element of # indicator matrix at the position (i, j) indicates that the sample i goes # through the node j. node_indicator = estimator.decision_path(X_test) # Similarly, we can also have the leaves ids reached by each sample. leave_id = estimator.apply(X_test) # Now, it's possible to get the tests that were used to predict a sample or # a group of samples. First, let's make it for the sample. sample_id = 0 node_index = node_indicator.indices[node_indicator.indptr[sample_id]: node_indicator.indptr[sample_id + 1]] print('Rules used to predict sample %s: ' % sample_id) for node_id in node_index: if leave_id[sample_id] != node_id: continue if (X_test[sample_id, feature[node_id]] <= threshold[node_id]): threshold_sign = "<=" else: threshold_sign = ">" print("decision id node %s : (X[%s, %s] (= %s) %s %s)" % (node_id, sample_id, feature[node_id], X_test[i, feature[node_id]], threshold_sign, threshold[node_id])) # For a group of samples, we have the following common node. sample_ids = [0, 1] common_nodes = (node_indicator.toarray()[sample_ids].sum(axis=0) == len(sample_ids)) common_node_id = np.arange(n_nodes)[common_nodes] print("\nThe following samples %s share the node %s in the tree" % (sample_ids, common_node_id)) print("It is %s %% of all nodes." % (100 * len(common_node_id) / n_nodes,))
bsd-3-clause
pydata/xarray
xarray/coding/times.py
1
19732
import re import warnings from datetime import datetime, timedelta from distutils.version import LooseVersion from functools import partial import numpy as np import pandas as pd from pandas.errors import OutOfBoundsDatetime from ..core import indexing from ..core.common import contains_cftime_datetimes from ..core.formatting import first_n_items, format_timestamp, last_item from ..core.variable import Variable from .variables import ( SerializationWarning, VariableCoder, lazy_elemwise_func, pop_to, safe_setitem, unpack_for_decoding, unpack_for_encoding, ) # standard calendars recognized by cftime _STANDARD_CALENDARS = {"standard", "gregorian", "proleptic_gregorian"} _NS_PER_TIME_DELTA = { "ns": 1, "us": int(1e3), "ms": int(1e6), "s": int(1e9), "m": int(1e9) * 60, "h": int(1e9) * 60 * 60, "D": int(1e9) * 60 * 60 * 24, } _US_PER_TIME_DELTA = { "microseconds": 1, "milliseconds": 1_000, "seconds": 1_000_000, "minutes": 60 * 1_000_000, "hours": 60 * 60 * 1_000_000, "days": 24 * 60 * 60 * 1_000_000, } _NETCDF_TIME_UNITS_CFTIME = [ "days", "hours", "minutes", "seconds", "milliseconds", "microseconds", ] _NETCDF_TIME_UNITS_NUMPY = _NETCDF_TIME_UNITS_CFTIME + ["nanoseconds"] TIME_UNITS = frozenset( [ "days", "hours", "minutes", "seconds", "milliseconds", "microseconds", "nanoseconds", ] ) def _is_standard_calendar(calendar): return calendar.lower() in _STANDARD_CALENDARS def _netcdf_to_numpy_timeunit(units): units = units.lower() if not units.endswith("s"): units = f"{units}s" return { "nanoseconds": "ns", "microseconds": "us", "milliseconds": "ms", "seconds": "s", "minutes": "m", "hours": "h", "days": "D", }[units] def _ensure_padded_year(ref_date): # Reference dates without a padded year (e.g. since 1-1-1 or since 2-3-4) # are ambiguous (is it YMD or DMY?). This can lead to some very odd # behaviour e.g. pandas (via dateutil) passes '1-1-1 00:00:0.0' as # '2001-01-01 00:00:00' (because it assumes a) DMY and b) that year 1 is # shorthand for 2001 (like 02 would be shorthand for year 2002)). # Here we ensure that there is always a four-digit year, with the # assumption being that year comes first if we get something ambiguous. matches_year = re.match(r".*\d{4}.*", ref_date) if matches_year: # all good, return return ref_date # No four-digit strings, assume the first digits are the year and pad # appropriately matches_start_digits = re.match(r"(\d+)(.*)", ref_date) if not matches_start_digits: raise ValueError(f"invalid reference date for time units: {ref_date}") ref_year, everything_else = [s for s in matches_start_digits.groups()] ref_date_padded = "{:04d}{}".format(int(ref_year), everything_else) warning_msg = ( f"Ambiguous reference date string: {ref_date}. The first value is " "assumed to be the year hence will be padded with zeros to remove " f"the ambiguity (the padded reference date string is: {ref_date_padded}). " "To remove this message, remove the ambiguity by padding your reference " "date strings with zeros." ) warnings.warn(warning_msg, SerializationWarning) return ref_date_padded def _unpack_netcdf_time_units(units): # CF datetime units follow the format: "UNIT since DATE" # this parses out the unit and date allowing for extraneous # whitespace. It also ensures that the year is padded with zeros # so it will be correctly understood by pandas (via dateutil). matches = re.match(r"(.+) since (.+)", units) if not matches: raise ValueError(f"invalid time units: {units}") delta_units, ref_date = [s.strip() for s in matches.groups()] ref_date = _ensure_padded_year(ref_date) return delta_units, ref_date def _decode_cf_datetime_dtype(data, units, calendar, use_cftime): # Verify that at least the first and last date can be decoded # successfully. Otherwise, tracebacks end up swallowed by # Dataset.__repr__ when users try to view their lazily decoded array. values = indexing.ImplicitToExplicitIndexingAdapter(indexing.as_indexable(data)) example_value = np.concatenate( [first_n_items(values, 1) or [0], last_item(values) or [0]] ) try: result = decode_cf_datetime(example_value, units, calendar, use_cftime) except Exception: calendar_msg = ( "the default calendar" if calendar is None else f"calendar {calendar!r}" ) msg = ( f"unable to decode time units {units!r} with {calendar_msg!r}. Try " "opening your dataset with decode_times=False or installing cftime " "if it is not installed." ) raise ValueError(msg) else: dtype = getattr(result, "dtype", np.dtype("object")) return dtype def _decode_datetime_with_cftime(num_dates, units, calendar): import cftime return np.asarray( cftime.num2date(num_dates, units, calendar, only_use_cftime_datetimes=True) ) def _decode_datetime_with_pandas(flat_num_dates, units, calendar): if not _is_standard_calendar(calendar): raise OutOfBoundsDatetime( "Cannot decode times from a non-standard calendar, {!r}, using " "pandas.".format(calendar) ) delta, ref_date = _unpack_netcdf_time_units(units) delta = _netcdf_to_numpy_timeunit(delta) try: ref_date = pd.Timestamp(ref_date) except ValueError: # ValueError is raised by pd.Timestamp for non-ISO timestamp # strings, in which case we fall back to using cftime raise OutOfBoundsDatetime with warnings.catch_warnings(): warnings.filterwarnings("ignore", "invalid value encountered", RuntimeWarning) pd.to_timedelta(flat_num_dates.min(), delta) + ref_date pd.to_timedelta(flat_num_dates.max(), delta) + ref_date # To avoid integer overflow when converting to nanosecond units for integer # dtypes smaller than np.int64 cast all integer-dtype arrays to np.int64 # (GH 2002). if flat_num_dates.dtype.kind == "i": flat_num_dates = flat_num_dates.astype(np.int64) # Cast input ordinals to integers of nanoseconds because pd.to_timedelta # works much faster when dealing with integers (GH 1399). flat_num_dates_ns_int = (flat_num_dates * _NS_PER_TIME_DELTA[delta]).astype( np.int64 ) # Use pd.to_timedelta to safely cast integer values to timedeltas, # and add those to a Timestamp to safely produce a DatetimeIndex. This # ensures that we do not encounter integer overflow at any point in the # process without raising OutOfBoundsDatetime. return (pd.to_timedelta(flat_num_dates_ns_int, "ns") + ref_date).values def decode_cf_datetime(num_dates, units, calendar=None, use_cftime=None): """Given an array of numeric dates in netCDF format, convert it into a numpy array of date time objects. For standard (Gregorian) calendars, this function uses vectorized operations, which makes it much faster than cftime.num2date. In such a case, the returned array will be of type np.datetime64. Note that time unit in `units` must not be smaller than microseconds and not larger than days. See Also -------- cftime.num2date """ num_dates = np.asarray(num_dates) flat_num_dates = num_dates.ravel() if calendar is None: calendar = "standard" if use_cftime is None: try: dates = _decode_datetime_with_pandas(flat_num_dates, units, calendar) except (KeyError, OutOfBoundsDatetime, OverflowError): dates = _decode_datetime_with_cftime( flat_num_dates.astype(float), units, calendar ) if ( dates[np.nanargmin(num_dates)].year < 1678 or dates[np.nanargmax(num_dates)].year >= 2262 ): if _is_standard_calendar(calendar): warnings.warn( "Unable to decode time axis into full " "numpy.datetime64 objects, continuing using " "cftime.datetime objects instead, reason: dates out " "of range", SerializationWarning, stacklevel=3, ) else: if _is_standard_calendar(calendar): dates = cftime_to_nptime(dates) elif use_cftime: dates = _decode_datetime_with_cftime(flat_num_dates, units, calendar) else: dates = _decode_datetime_with_pandas(flat_num_dates, units, calendar) return dates.reshape(num_dates.shape) def to_timedelta_unboxed(value, **kwargs): if LooseVersion(pd.__version__) < "0.25.0": result = pd.to_timedelta(value, **kwargs, box=False) else: result = pd.to_timedelta(value, **kwargs).to_numpy() assert result.dtype == "timedelta64[ns]" return result def to_datetime_unboxed(value, **kwargs): if LooseVersion(pd.__version__) < "0.25.0": result = pd.to_datetime(value, **kwargs, box=False) else: result = pd.to_datetime(value, **kwargs).to_numpy() assert result.dtype == "datetime64[ns]" return result def decode_cf_timedelta(num_timedeltas, units): """Given an array of numeric timedeltas in netCDF format, convert it into a numpy timedelta64[ns] array. """ num_timedeltas = np.asarray(num_timedeltas) units = _netcdf_to_numpy_timeunit(units) result = to_timedelta_unboxed(num_timedeltas.ravel(), unit=units) return result.reshape(num_timedeltas.shape) def _unit_timedelta_cftime(units): return timedelta(microseconds=_US_PER_TIME_DELTA[units]) def _unit_timedelta_numpy(units): numpy_units = _netcdf_to_numpy_timeunit(units) return np.timedelta64(_NS_PER_TIME_DELTA[numpy_units], "ns") def _infer_time_units_from_diff(unique_timedeltas): if unique_timedeltas.dtype == np.dtype("O"): time_units = _NETCDF_TIME_UNITS_CFTIME unit_timedelta = _unit_timedelta_cftime zero_timedelta = timedelta(microseconds=0) timedeltas = unique_timedeltas else: time_units = _NETCDF_TIME_UNITS_NUMPY unit_timedelta = _unit_timedelta_numpy zero_timedelta = np.timedelta64(0, "ns") # Note that the modulus operator was only implemented for np.timedelta64 # arrays as of NumPy version 1.16.0. Once our minimum version of NumPy # supported is greater than or equal to this we will no longer need to cast # unique_timedeltas to a TimedeltaIndex. In the meantime, however, the # modulus operator works for TimedeltaIndex objects. timedeltas = pd.TimedeltaIndex(unique_timedeltas) for time_unit in time_units: if np.all(timedeltas % unit_timedelta(time_unit) == zero_timedelta): return time_unit return "seconds" def infer_calendar_name(dates): """Given an array of datetimes, infer the CF calendar name""" if np.asarray(dates).dtype == "datetime64[ns]": return "proleptic_gregorian" else: return np.asarray(dates).ravel()[0].calendar def infer_datetime_units(dates): """Given an array of datetimes, returns a CF compatible time-unit string of the form "{time_unit} since {date[0]}", where `time_unit` is 'days', 'hours', 'minutes' or 'seconds' (the first one that can evenly divide all unique time deltas in `dates`) """ dates = np.asarray(dates).ravel() if np.asarray(dates).dtype == "datetime64[ns]": dates = to_datetime_unboxed(dates) dates = dates[pd.notnull(dates)] reference_date = dates[0] if len(dates) > 0 else "1970-01-01" reference_date = pd.Timestamp(reference_date) else: reference_date = dates[0] if len(dates) > 0 else "1970-01-01" reference_date = format_cftime_datetime(reference_date) unique_timedeltas = np.unique(np.diff(dates)) units = _infer_time_units_from_diff(unique_timedeltas) return f"{units} since {reference_date}" def format_cftime_datetime(date): """Converts a cftime.datetime object to a string with the format: YYYY-MM-DD HH:MM:SS.UUUUUU """ return "{:04d}-{:02d}-{:02d} {:02d}:{:02d}:{:02d}.{:06d}".format( date.year, date.month, date.day, date.hour, date.minute, date.second, date.microsecond, ) def infer_timedelta_units(deltas): """Given an array of timedeltas, returns a CF compatible time-unit from {'days', 'hours', 'minutes' 'seconds'} (the first one that can evenly divide all unique time deltas in `deltas`) """ deltas = to_timedelta_unboxed(np.asarray(deltas).ravel()) unique_timedeltas = np.unique(deltas[pd.notnull(deltas)]) return _infer_time_units_from_diff(unique_timedeltas) def cftime_to_nptime(times): """Given an array of cftime.datetime objects, return an array of numpy.datetime64 objects of the same size""" times = np.asarray(times) new = np.empty(times.shape, dtype="M8[ns]") for i, t in np.ndenumerate(times): try: # Use pandas.Timestamp in place of datetime.datetime, because # NumPy casts it safely it np.datetime64[ns] for dates outside # 1678 to 2262 (this is not currently the case for # datetime.datetime). dt = pd.Timestamp( t.year, t.month, t.day, t.hour, t.minute, t.second, t.microsecond ) except ValueError as e: raise ValueError( "Cannot convert date {} to a date in the " "standard calendar. Reason: {}.".format(t, e) ) new[i] = np.datetime64(dt) return new def _cleanup_netcdf_time_units(units): delta, ref_date = _unpack_netcdf_time_units(units) try: units = "{} since {}".format(delta, format_timestamp(ref_date)) except OutOfBoundsDatetime: # don't worry about reifying the units if they're out of bounds pass return units def _encode_datetime_with_cftime(dates, units, calendar): """Fallback method for encoding dates using cftime. This method is more flexible than xarray's parsing using datetime64[ns] arrays but also slower because it loops over each element. """ import cftime if np.issubdtype(dates.dtype, np.datetime64): # numpy's broken datetime conversion only works for us precision dates = dates.astype("M8[us]").astype(datetime) def encode_datetime(d): return np.nan if d is None else cftime.date2num(d, units, calendar) return np.array([encode_datetime(d) for d in dates.ravel()]).reshape(dates.shape) def cast_to_int_if_safe(num): int_num = np.array(num, dtype=np.int64) if (num == int_num).all(): num = int_num return num def encode_cf_datetime(dates, units=None, calendar=None): """Given an array of datetime objects, returns the tuple `(num, units, calendar)` suitable for a CF compliant time variable. Unlike `date2num`, this function can handle datetime64 arrays. See Also -------- cftime.date2num """ dates = np.asarray(dates) if units is None: units = infer_datetime_units(dates) else: units = _cleanup_netcdf_time_units(units) if calendar is None: calendar = infer_calendar_name(dates) delta, ref_date = _unpack_netcdf_time_units(units) try: if not _is_standard_calendar(calendar) or dates.dtype.kind == "O": # parse with cftime instead raise OutOfBoundsDatetime assert dates.dtype == "datetime64[ns]" delta_units = _netcdf_to_numpy_timeunit(delta) time_delta = np.timedelta64(1, delta_units).astype("timedelta64[ns]") ref_date = pd.Timestamp(ref_date) # If the ref_date Timestamp is timezone-aware, convert to UTC and # make it timezone-naive (GH 2649). if ref_date.tz is not None: ref_date = ref_date.tz_convert(None) # Wrap the dates in a DatetimeIndex to do the subtraction to ensure # an OverflowError is raised if the ref_date is too far away from # dates to be encoded (GH 2272). dates_as_index = pd.DatetimeIndex(dates.ravel()) time_deltas = dates_as_index - ref_date # Use floor division if time_delta evenly divides all differences # to preserve integer dtype if possible (GH 4045). if np.all(time_deltas % time_delta == np.timedelta64(0, "ns")): num = time_deltas // time_delta else: num = time_deltas / time_delta num = num.values.reshape(dates.shape) except (OutOfBoundsDatetime, OverflowError): num = _encode_datetime_with_cftime(dates, units, calendar) num = cast_to_int_if_safe(num) return (num, units, calendar) def encode_cf_timedelta(timedeltas, units=None): if units is None: units = infer_timedelta_units(timedeltas) np_unit = _netcdf_to_numpy_timeunit(units) num = 1.0 * timedeltas / np.timedelta64(1, np_unit) num = np.where(pd.isnull(timedeltas), np.nan, num) num = cast_to_int_if_safe(num) return (num, units) class CFDatetimeCoder(VariableCoder): def __init__(self, use_cftime=None): self.use_cftime = use_cftime def encode(self, variable, name=None): dims, data, attrs, encoding = unpack_for_encoding(variable) if np.issubdtype(data.dtype, np.datetime64) or contains_cftime_datetimes( variable ): (data, units, calendar) = encode_cf_datetime( data, encoding.pop("units", None), encoding.pop("calendar", None) ) safe_setitem(attrs, "units", units, name=name) safe_setitem(attrs, "calendar", calendar, name=name) return Variable(dims, data, attrs, encoding) def decode(self, variable, name=None): dims, data, attrs, encoding = unpack_for_decoding(variable) if "units" in attrs and "since" in attrs["units"]: units = pop_to(attrs, encoding, "units") calendar = pop_to(attrs, encoding, "calendar") dtype = _decode_cf_datetime_dtype(data, units, calendar, self.use_cftime) transform = partial( decode_cf_datetime, units=units, calendar=calendar, use_cftime=self.use_cftime, ) data = lazy_elemwise_func(data, transform, dtype) return Variable(dims, data, attrs, encoding) class CFTimedeltaCoder(VariableCoder): def encode(self, variable, name=None): dims, data, attrs, encoding = unpack_for_encoding(variable) if np.issubdtype(data.dtype, np.timedelta64): data, units = encode_cf_timedelta(data, encoding.pop("units", None)) safe_setitem(attrs, "units", units, name=name) return Variable(dims, data, attrs, encoding) def decode(self, variable, name=None): dims, data, attrs, encoding = unpack_for_decoding(variable) if "units" in attrs and attrs["units"] in TIME_UNITS: units = pop_to(attrs, encoding, "units") transform = partial(decode_cf_timedelta, units=units) dtype = np.dtype("timedelta64[ns]") data = lazy_elemwise_func(data, transform, dtype=dtype) return Variable(dims, data, attrs, encoding)
apache-2.0
devanshdalal/scikit-learn
examples/cluster/plot_digits_agglomeration.py
377
1694
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Feature agglomeration ========================================================= These images how similar features are merged together using feature agglomeration. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, cluster from sklearn.feature_extraction.image import grid_to_graph digits = datasets.load_digits() images = digits.images X = np.reshape(images, (len(images), -1)) connectivity = grid_to_graph(*images[0].shape) agglo = cluster.FeatureAgglomeration(connectivity=connectivity, n_clusters=32) agglo.fit(X) X_reduced = agglo.transform(X) X_restored = agglo.inverse_transform(X_reduced) images_restored = np.reshape(X_restored, images.shape) plt.figure(1, figsize=(4, 3.5)) plt.clf() plt.subplots_adjust(left=.01, right=.99, bottom=.01, top=.91) for i in range(4): plt.subplot(3, 4, i + 1) plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') plt.xticks(()) plt.yticks(()) if i == 1: plt.title('Original data') plt.subplot(3, 4, 4 + i + 1) plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') if i == 1: plt.title('Agglomerated data') plt.xticks(()) plt.yticks(()) plt.subplot(3, 4, 10) plt.imshow(np.reshape(agglo.labels_, images[0].shape), interpolation='nearest', cmap=plt.cm.spectral) plt.xticks(()) plt.yticks(()) plt.title('Labels') plt.show()
bsd-3-clause
kaichogami/scikit-learn
benchmarks/bench_plot_svd.py
325
2899
"""Benchmarks of Singular Value Decomposition (Exact and Approximate) The data is mostly low rank but is a fat infinite tail. """ import gc from time import time import numpy as np from collections import defaultdict from scipy.linalg import svd from sklearn.utils.extmath import randomized_svd from sklearn.datasets.samples_generator import make_low_rank_matrix def compute_bench(samples_range, features_range, n_iter=3, rank=50): it = 0 results = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print('====================') print('Iteration %03d of %03d' % (it, max_it)) print('====================') X = make_low_rank_matrix(n_samples, n_features, effective_rank=rank, tail_strength=0.2) gc.collect() print("benchmarking scipy svd: ") tstart = time() svd(X, full_matrices=False) results['scipy svd'].append(time() - tstart) gc.collect() print("benchmarking scikit-learn randomized_svd: n_iter=0") tstart = time() randomized_svd(X, rank, n_iter=0) results['scikit-learn randomized_svd (n_iter=0)'].append( time() - tstart) gc.collect() print("benchmarking scikit-learn randomized_svd: n_iter=%d " % n_iter) tstart = time() randomized_svd(X, rank, n_iter=n_iter) results['scikit-learn randomized_svd (n_iter=%d)' % n_iter].append(time() - tstart) return results if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(2, 1000, 4).astype(np.int) features_range = np.linspace(2, 1000, 4).astype(np.int) results = compute_bench(samples_range, features_range) label = 'scikit-learn singular value decomposition benchmark results' fig = plt.figure(label) ax = fig.gca(projection='3d') for c, (label, timings) in zip('rbg', sorted(results.iteritems())): X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3, color=c) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') ax.set_zlabel('Time (s)') ax.legend() plt.show()
bsd-3-clause
Carrotsmile/CS428
steerstats/tools/plotting/plotVortex.py
8
2777
import csv from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib import cm import sys import scipy from scipy.interpolate import bisplrep from scipy.interpolate import bisplev import numpy as np import math sys.path.append('../../') from util import writeEntropyMetricData velocity = 1.33 def f(x): y=x return y def f2(x): y = math.cos(x)/3.6 return y def f3(x): y = math.exp(x*4) return y def f4(x): y = float(x) y = ((y)) / (y+0.3) return y def rotateInXZPlane( dir, angle): s = math.sin(angle) c = math.cos(angle) return np.array((dir * c) + (dir.z * s), (dir.y), (dir.z * c) - (dir.x * s)) distance = 30.9 points = 100.0 fps = 16.0 tocm = 100.0 scale = 10 shift = scale * tocm seconds = distance/velocity points = math.floor(seconds*fps) print "points: " + str(points) x = np.array(np.arange((points)))/float(points) x2 = np.array(np.arange(points))/float(points) print "len x " + str(len(x)) y = np.array(map(f4, x*(math.pi/2.0))) # y = y / np.amax(y) # print y fig = plt.figure() ax = fig.add_subplot(111) # x=x*2.0 # y=(y)+x2 # y=y -0.5 # y=y*2.0 points = np.append([x], [y], axis=0).transpose() ax.plot(points[:,0], points[:,1], linewidth=2.0) # ax.set_ylim([0.0,1.0]) # ax.set_xlim([-1.0,1.0]) # plt.show() points = (points-0.5)*2.0*scale*tocm # print points distance = 0.0 for i in range(len(points)-1): distance = distance + np.linalg.norm(points[i]-points[i+1]) print "distance: " + str(distance) agentData = [] agentData.append(np.array(points)) agentData.append(np.array(points+tocm)) agentData.append(np.array(points+-tocm)) tmp_points = np.array(points *-1.0, copy=True) agentData.append(np.array(tmp_points)) agentData.append(np.array(tmp_points+tocm)) agentData.append(np.array(tmp_points+-tocm)) points[:,0] = points[:,0] * -1.0 points2= np.array(points, copy=True ) length = len(points2)-1 for i in range(len(points2)): # point[1] = point[1] + (((shift+point[0])-point[1])) points[i] = points2[length-i] agentData.append(np.array(points)) tmp_points = np.array(points, copy=True) tmp_points[:,0] = tmp_points[:,0] + tocm tmp_points[:,1] = tmp_points[:,1] - tocm agentData.append(np.array(tmp_points)) agentData.append(np.array(points + (points - tmp_points))) points = points *-1.0 agentData.append(np.array(points)) tmp_points = np.array(points, copy=True) tmp_points[:,0] = tmp_points[:,0] + tocm tmp_points[:,1] = tmp_points[:,1] - tocm agentData.append(np.array(tmp_points)) agentData.append(np.array(points + (points - tmp_points))) for agent in agentData: # print agent ax.plot(agent[:,0], agent[:,1], linewidth=2.0) file = open('entropyData.txt', 'w') writeEntropyMetricData(agentData, file) file.close() plt.show()
gpl-3.0
go-bears/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/delaunay/interpolate.py
73
7068
import numpy as np from matplotlib._delaunay import compute_planes, linear_interpolate_grid, nn_interpolate_grid from matplotlib._delaunay import nn_interpolate_unstructured __all__ = ['LinearInterpolator', 'NNInterpolator'] def slice2gridspec(key): """Convert a 2-tuple of slices to start,stop,steps for x and y. key -- (slice(ystart,ystop,ystep), slice(xtart, xstop, xstep)) For now, the only accepted step values are imaginary integers (interpreted in the same way numpy.mgrid, etc. do). """ if ((len(key) != 2) or (not isinstance(key[0], slice)) or (not isinstance(key[1], slice))): raise ValueError("only 2-D slices, please") x0 = key[1].start x1 = key[1].stop xstep = key[1].step if not isinstance(xstep, complex) or int(xstep.real) != xstep.real: raise ValueError("only the [start:stop:numsteps*1j] form supported") xstep = int(xstep.imag) y0 = key[0].start y1 = key[0].stop ystep = key[0].step if not isinstance(ystep, complex) or int(ystep.real) != ystep.real: raise ValueError("only the [start:stop:numsteps*1j] form supported") ystep = int(ystep.imag) return x0, x1, xstep, y0, y1, ystep class LinearInterpolator(object): """Interpolate a function defined on the nodes of a triangulation by using the planes defined by the three function values at each corner of the triangles. LinearInterpolator(triangulation, z, default_value=numpy.nan) triangulation -- Triangulation instance z -- the function values at each node of the triangulation default_value -- a float giving the default value should the interpolating point happen to fall outside of the convex hull of the triangulation At the moment, the only regular rectangular grids are supported for interpolation. vals = interp[ystart:ystop:ysteps*1j, xstart:xstop:xsteps*1j] vals would then be a (ysteps, xsteps) array containing the interpolated values. These arguments are interpreted the same way as numpy.mgrid. Attributes: planes -- (ntriangles, 3) array of floats specifying the plane for each triangle. Linear Interpolation -------------------- Given the Delauany triangulation (or indeed *any* complete triangulation) we can interpolate values inside the convex hull by locating the enclosing triangle of the interpolation point and returning the value at that point of the plane defined by the three node values. f = planes[tri,0]*x + planes[tri,1]*y + planes[tri,2] The interpolated function is C0 continuous across the convex hull of the input points. It is C1 continuous across the convex hull except for the nodes and the edges of the triangulation. """ def __init__(self, triangulation, z, default_value=np.nan): self.triangulation = triangulation self.z = np.asarray(z, dtype=np.float64) self.default_value = default_value self.planes = compute_planes(triangulation.x, triangulation.y, self.z, triangulation.triangle_nodes) def __getitem__(self, key): x0, x1, xstep, y0, y1, ystep = slice2gridspec(key) grid = linear_interpolate_grid(x0, x1, xstep, y0, y1, ystep, self.default_value, self.planes, self.triangulation.x, self.triangulation.y, self.triangulation.triangle_nodes, self.triangulation.triangle_neighbors) return grid class NNInterpolator(object): """Interpolate a function defined on the nodes of a triangulation by the natural neighbors method. NNInterpolator(triangulation, z, default_value=numpy.nan) triangulation -- Triangulation instance z -- the function values at each node of the triangulation default_value -- a float giving the default value should the interpolating point happen to fall outside of the convex hull of the triangulation At the moment, the only regular rectangular grids are supported for interpolation. vals = interp[ystart:ystop:ysteps*1j, xstart:xstop:xsteps*1j] vals would then be a (ysteps, xsteps) array containing the interpolated values. These arguments are interpreted the same way as numpy.mgrid. Natural Neighbors Interpolation ------------------------------- One feature of the Delaunay triangulation is that for each triangle, its circumcircle contains no other point (although in degenerate cases, like squares, other points may be *on* the circumcircle). One can also construct what is called the Voronoi diagram from a Delaunay triangulation by connecting the circumcenters of the triangles to those of their neighbors to form a tesselation of irregular polygons covering the plane and containing only one node from the triangulation. Each point in one node's Voronoi polygon is closer to that node than any other node. To compute the Natural Neighbors interpolant, we consider adding the interpolation point to the triangulation. We define the natural neighbors of this point as the set of nodes participating in Delaunay triangles whose circumcircles contain the point. To restore the Delaunay-ness of the triangulation, one would only have to alter those triangles and Voronoi polygons. The new Voronooi diagram would have a polygon around the inserted point. This polygon would "steal" area from the original Voronoi polygons. For each node i in the natural neighbors set, we compute the area stolen from its original Voronoi polygon, stolen[i]. We define the natural neighbors coordinates phi[i] = stolen[i] / sum(stolen,axis=0) We then use these phi[i] to weight the corresponding function values from the input data z to compute the interpolated value. The interpolated surface is C1-continuous except at the nodes themselves across the convex hull of the input points. One can find the set of points that a given node will affect by computing the union of the areas covered by the circumcircles of each Delaunay triangle that node participates in. """ def __init__(self, triangulation, z, default_value=np.nan): self.triangulation = triangulation self.z = np.asarray(z, dtype=np.float64) self.default_value = default_value def __getitem__(self, key): x0, x1, xstep, y0, y1, ystep = slice2gridspec(key) grid = nn_interpolate_grid(x0, x1, xstep, y0, y1, ystep, self.default_value, self.triangulation.x, self.triangulation.y, self.z, self.triangulation.circumcenters, self.triangulation.triangle_nodes, self.triangulation.triangle_neighbors) return grid def __call__(self, intx, inty): intz = nn_interpolate_unstructured(intx, inty, self.default_value, self.triangulation.x, self.triangulation.y, self.z, self.triangulation.circumcenters, self.triangulation.triangle_nodes, self.triangulation.triangle_neighbors) return intz
agpl-3.0
sniemi/SamPy
cosmology/distances.py
1
5054
""" Functions related cosmology such as diameter and proper motion distances. Plot some distance measures versus redshift and omega_M. :requires: CosmoloPy :requires: cosmocalc :author: Sami-Matias Niemi """ import sys import numpy import matplotlib.pyplot as pylab import matplotlib.cm as cm import cosmolopy.distance as cd #import cosmolopy.constants as cc from cosmocalc import cosmocalc def getDiameterDistances(data, redshift=0): """ Calculates a diameter distance in kpc / arc seconds from data for all unique redshifts. The redshift keyword indicates the column of redshifts. :requires: cosmocalc :param: data :param: redshift column :return: diameter distances :rtype: dictionary """ out = {} for x in set(data[:, redshift]): out[x] = cosmocalc(x, 71.0, 0.28)['PS_kpc'] #in kpc / arc seconds return out def plot_DM(filename): """ The dimensionless proper motion distance DM/DH. """ # Set up an array of redshift values. dz = 0.1 z = numpy.arange(0., 10. + 1.1 * dz, dz) # Set up a cosmology dictionary, with an array of matter density values. cosmo = {} dom = 0.01 om = numpy.atleast_2d(numpy.linspace(0.1, 1.0, (1. - 0.1) / dom)).transpose() cosmo['omega_M_0'] = om cosmo['omega_lambda_0'] = 1. - cosmo['omega_M_0'] cosmo['h'] = 0.701 cosmo['omega_k_0'] = 0.0 # Calculate the hubble distance. dh = cd.hubble_distance_z(0, **cosmo) # Calculate the comoving distance. dm, dm_err = cd.comoving_distance_transverse(z, **cosmo) # Make plots. plot_dist(z, dz, om, dom, dm, dh, 'proper motion distance', r'D_M', filename) plot_dist_ony(z, dz, om, dom, dm, dh, 'proper motion distance', r'D_M', filename) def plot_DA(filename): """ The dimensionless angular diameter distance DA/DH. """ # Set up an array of redshift values. dz = 0.1 z = numpy.arange(0., 10. + dz, dz) # Set up a cosmology dictionary, with an array of matter density values. cosmo = {} dom = 0.01 om = numpy.atleast_2d(numpy.linspace(0.1, 1.0, (1. - 0.1) / dom)).transpose() cosmo['omega_M_0'] = om cosmo['omega_lambda_0'] = 1. - cosmo['omega_M_0'] cosmo['h'] = 0.701 cosmo['omega_k_0'] = 0.0 # Calculate the hubble distance. dh = cd.hubble_distance_z(0, **cosmo) # Calculate the angular diameter distance. da, da_err1, da_err2 = cd.angular_diameter_distance(z, **cosmo) # Make plots. plot_dist(z, dz, om, dom, da, dh, 'angular diameter distance', r'D_A', filename) plot_dist_ony(z, dz, om, dom, da, dh, 'angular diameter distance', r'D_A', filename) def plot_dist(z, dz, om, dom, dist, dh, name, mathname, filename=None): """ Make a 2-D plot of a distance versus redshift (x) and matter density (y). """ # Grid of redshift and matter density values. x, y = numpy.meshgrid(z, om) pylab.figure() pylab.imshow(dist / dh, extent=(z.min() - dz / 2., z.max() + dz / 2., om.max() + dom / 2., om.min() - dom / 2.), interpolation='nearest', aspect=z.max() / om.max(), cmap=cm.Spectral ) cb = pylab.colorbar() cb.ax.set_ylabel(r'$' + mathname + '/D_H$') pylab.contour(x, y, dist / dh, 10, colors='k') pylab.xlim(z.min(), z.max()) pylab.ylim(om.min(), om.max()) pylab.xlabel("Redshift z") pylab.ylabel(r"$\Omega_M = 1 - \Omega_\lambda$") pylab.title(name) if filename is not None: prefix, extension = filename.split('.') pylab.savefig(prefix + '_' + mathname + '.' + extension, bbox_inches="tight") def plot_dist_ony(z, dz, om, dom, dist, dh, name, mathname, filename=None): """ Make a 2-D plot of matter density versus redshift (x) and distance (y) """ dist = dist / dh z = z * numpy.ones(dist.shape) om = om * numpy.ones(dist.shape) # pylab.figure(figsize=(5.5,4.5)) pylab.figure() pylab.contour(z, dist, om, 50) cb = pylab.colorbar() cb.ax.set_ylabel(r'$\Omega_M = 1 - \Omega_\lambda$') pylab.xlim(z.min(), z.max()) pylab.ylim(dist.min(), dist.max()) pylab.xlabel("redshift z") pylab.ylabel(name + r': $' + mathname + '/D_H$') pylab.title(name) if filename is not None: prefix, extension = filename.split('.') pylab.savefig(prefix + '_' + mathname + '_ony.' + extension, bbox_inches="tight") if __name__ == "__main__": if len(sys.argv) == 1: print "Run with a filename argument to produce image files, e.g.:" print " python plot_2d_distances.py dist2d.png" print " python plot_2d_distances.py dist2d.eps" if len(sys.argv) > 1: filename = sys.argv[1] else: filename = None plot_DM(filename) plot_DA(filename) if filename is None: pylab.show()
bsd-2-clause
huobaowangxi/scikit-learn
sklearn/feature_extraction/image.py
263
17600
""" The :mod:`sklearn.feature_extraction.image` submodule gathers utilities to extract features from images. """ # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # Olivier Grisel # Vlad Niculae # License: BSD 3 clause from itertools import product import numbers import numpy as np from scipy import sparse from numpy.lib.stride_tricks import as_strided from ..utils import check_array, check_random_state from ..utils.fixes import astype from ..base import BaseEstimator __all__ = ['PatchExtractor', 'extract_patches_2d', 'grid_to_graph', 'img_to_graph', 'reconstruct_from_patches_2d'] ############################################################################### # From an image to a graph def _make_edges_3d(n_x, n_y, n_z=1): """Returns a list of edges for a 3D image. Parameters =========== n_x: integer The size of the grid in the x direction. n_y: integer The size of the grid in the y direction. n_z: integer, optional The size of the grid in the z direction, defaults to 1 """ vertices = np.arange(n_x * n_y * n_z).reshape((n_x, n_y, n_z)) edges_deep = np.vstack((vertices[:, :, :-1].ravel(), vertices[:, :, 1:].ravel())) edges_right = np.vstack((vertices[:, :-1].ravel(), vertices[:, 1:].ravel())) edges_down = np.vstack((vertices[:-1].ravel(), vertices[1:].ravel())) edges = np.hstack((edges_deep, edges_right, edges_down)) return edges def _compute_gradient_3d(edges, img): n_x, n_y, n_z = img.shape gradient = np.abs(img[edges[0] // (n_y * n_z), (edges[0] % (n_y * n_z)) // n_z, (edges[0] % (n_y * n_z)) % n_z] - img[edges[1] // (n_y * n_z), (edges[1] % (n_y * n_z)) // n_z, (edges[1] % (n_y * n_z)) % n_z]) return gradient # XXX: Why mask the image after computing the weights? def _mask_edges_weights(mask, edges, weights=None): """Apply a mask to edges (weighted or not)""" inds = np.arange(mask.size) inds = inds[mask.ravel()] ind_mask = np.logical_and(np.in1d(edges[0], inds), np.in1d(edges[1], inds)) edges = edges[:, ind_mask] if weights is not None: weights = weights[ind_mask] if len(edges.ravel()): maxval = edges.max() else: maxval = 0 order = np.searchsorted(np.unique(edges.ravel()), np.arange(maxval + 1)) edges = order[edges] if weights is None: return edges else: return edges, weights def _to_graph(n_x, n_y, n_z, mask=None, img=None, return_as=sparse.coo_matrix, dtype=None): """Auxiliary function for img_to_graph and grid_to_graph """ edges = _make_edges_3d(n_x, n_y, n_z) if dtype is None: if img is None: dtype = np.int else: dtype = img.dtype if img is not None: img = np.atleast_3d(img) weights = _compute_gradient_3d(edges, img) if mask is not None: edges, weights = _mask_edges_weights(mask, edges, weights) diag = img.squeeze()[mask] else: diag = img.ravel() n_voxels = diag.size else: if mask is not None: mask = astype(mask, dtype=np.bool, copy=False) mask = np.asarray(mask, dtype=np.bool) edges = _mask_edges_weights(mask, edges) n_voxels = np.sum(mask) else: n_voxels = n_x * n_y * n_z weights = np.ones(edges.shape[1], dtype=dtype) diag = np.ones(n_voxels, dtype=dtype) diag_idx = np.arange(n_voxels) i_idx = np.hstack((edges[0], edges[1])) j_idx = np.hstack((edges[1], edges[0])) graph = sparse.coo_matrix((np.hstack((weights, weights, diag)), (np.hstack((i_idx, diag_idx)), np.hstack((j_idx, diag_idx)))), (n_voxels, n_voxels), dtype=dtype) if return_as is np.ndarray: return graph.toarray() return return_as(graph) def img_to_graph(img, mask=None, return_as=sparse.coo_matrix, dtype=None): """Graph of the pixel-to-pixel gradient connections Edges are weighted with the gradient values. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- img : ndarray, 2D or 3D 2D or 3D image mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype : None or dtype, optional The data of the returned sparse matrix. By default it is the dtype of img Notes ----- For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ img = np.atleast_3d(img) n_x, n_y, n_z = img.shape return _to_graph(n_x, n_y, n_z, mask, img, return_as, dtype) def grid_to_graph(n_x, n_y, n_z=1, mask=None, return_as=sparse.coo_matrix, dtype=np.int): """Graph of the pixel-to-pixel connections Edges exist if 2 voxels are connected. Parameters ---------- n_x : int Dimension in x axis n_y : int Dimension in y axis n_z : int, optional, default 1 Dimension in z axis mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype : dtype, optional, default int The data of the returned sparse matrix. By default it is int Notes ----- For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ return _to_graph(n_x, n_y, n_z, mask=mask, return_as=return_as, dtype=dtype) ############################################################################### # From an image to a set of small image patches def _compute_n_patches(i_h, i_w, p_h, p_w, max_patches=None): """Compute the number of patches that will be extracted in an image. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- i_h : int The image height i_w : int The image with p_h : int The height of a patch p_w : int The width of a patch max_patches : integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. """ n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 all_patches = n_h * n_w if max_patches: if (isinstance(max_patches, (numbers.Integral)) and max_patches < all_patches): return max_patches elif (isinstance(max_patches, (numbers.Real)) and 0 < max_patches < 1): return int(max_patches * all_patches) else: raise ValueError("Invalid value for max_patches: %r" % max_patches) else: return all_patches def extract_patches(arr, patch_shape=8, extraction_step=1): """Extracts patches of any n-dimensional array in place using strides. Given an n-dimensional array it will return a 2n-dimensional array with the first n dimensions indexing patch position and the last n indexing the patch content. This operation is immediate (O(1)). A reshape performed on the first n dimensions will cause numpy to copy data, leading to a list of extracted patches. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- arr : ndarray n-dimensional array of which patches are to be extracted patch_shape : integer or tuple of length arr.ndim Indicates the shape of the patches to be extracted. If an integer is given, the shape will be a hypercube of sidelength given by its value. extraction_step : integer or tuple of length arr.ndim Indicates step size at which extraction shall be performed. If integer is given, then the step is uniform in all dimensions. Returns ------- patches : strided ndarray 2n-dimensional array indexing patches on first n dimensions and containing patches on the last n dimensions. These dimensions are fake, but this way no data is copied. A simple reshape invokes a copying operation to obtain a list of patches: result.reshape([-1] + list(patch_shape)) """ arr_ndim = arr.ndim if isinstance(patch_shape, numbers.Number): patch_shape = tuple([patch_shape] * arr_ndim) if isinstance(extraction_step, numbers.Number): extraction_step = tuple([extraction_step] * arr_ndim) patch_strides = arr.strides slices = [slice(None, None, st) for st in extraction_step] indexing_strides = arr[slices].strides patch_indices_shape = ((np.array(arr.shape) - np.array(patch_shape)) // np.array(extraction_step)) + 1 shape = tuple(list(patch_indices_shape) + list(patch_shape)) strides = tuple(list(indexing_strides) + list(patch_strides)) patches = as_strided(arr, shape=shape, strides=strides) return patches def extract_patches_2d(image, patch_size, max_patches=None, random_state=None): """Reshape a 2D image into a collection of patches The resulting patches are allocated in a dedicated array. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- image : array, shape = (image_height, image_width) or (image_height, image_width, n_channels) The original image data. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. patch_size : tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches : integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. random_state : int or RandomState Pseudo number generator state used for random sampling to use if `max_patches` is not None. Returns ------- patches : array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the image, where `n_patches` is either `max_patches` or the total number of patches that can be extracted. Examples -------- >>> from sklearn.feature_extraction import image >>> one_image = np.arange(16).reshape((4, 4)) >>> one_image array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) >>> patches = image.extract_patches_2d(one_image, (2, 2)) >>> print(patches.shape) (9, 2, 2) >>> patches[0] array([[0, 1], [4, 5]]) >>> patches[1] array([[1, 2], [5, 6]]) >>> patches[8] array([[10, 11], [14, 15]]) """ i_h, i_w = image.shape[:2] p_h, p_w = patch_size if p_h > i_h: raise ValueError("Height of the patch should be less than the height" " of the image.") if p_w > i_w: raise ValueError("Width of the patch should be less than the width" " of the image.") image = check_array(image, allow_nd=True) image = image.reshape((i_h, i_w, -1)) n_colors = image.shape[-1] extracted_patches = extract_patches(image, patch_shape=(p_h, p_w, n_colors), extraction_step=1) n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, max_patches) if max_patches: rng = check_random_state(random_state) i_s = rng.randint(i_h - p_h + 1, size=n_patches) j_s = rng.randint(i_w - p_w + 1, size=n_patches) patches = extracted_patches[i_s, j_s, 0] else: patches = extracted_patches patches = patches.reshape(-1, p_h, p_w, n_colors) # remove the color dimension if useless if patches.shape[-1] == 1: return patches.reshape((n_patches, p_h, p_w)) else: return patches def reconstruct_from_patches_2d(patches, image_size): """Reconstruct the image from all of its patches. Patches are assumed to overlap and the image is constructed by filling in the patches from left to right, top to bottom, averaging the overlapping regions. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patches : array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The complete set of patches. If the patches contain colour information, channels are indexed along the last dimension: RGB patches would have `n_channels=3`. image_size : tuple of ints (image_height, image_width) or (image_height, image_width, n_channels) the size of the image that will be reconstructed Returns ------- image : array, shape = image_size the reconstructed image """ i_h, i_w = image_size[:2] p_h, p_w = patches.shape[1:3] img = np.zeros(image_size) # compute the dimensions of the patches array n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 for p, (i, j) in zip(patches, product(range(n_h), range(n_w))): img[i:i + p_h, j:j + p_w] += p for i in range(i_h): for j in range(i_w): # divide by the amount of overlap # XXX: is this the most efficient way? memory-wise yes, cpu wise? img[i, j] /= float(min(i + 1, p_h, i_h - i) * min(j + 1, p_w, i_w - j)) return img class PatchExtractor(BaseEstimator): """Extracts patches from a collection of images Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patch_size : tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches : integer or float, optional default is None The maximum number of patches per image to extract. If max_patches is a float in (0, 1), it is taken to mean a proportion of the total number of patches. random_state : int or RandomState Pseudo number generator state used for random sampling. """ def __init__(self, patch_size=None, max_patches=None, random_state=None): self.patch_size = patch_size self.max_patches = max_patches self.random_state = random_state def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ return self def transform(self, X): """Transforms the image samples in X into a matrix of patch data. Parameters ---------- X : array, shape = (n_samples, image_height, image_width) or (n_samples, image_height, image_width, n_channels) Array of images from which to extract patches. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. Returns ------- patches: array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the images, where `n_patches` is either `n_samples * max_patches` or the total number of patches that can be extracted. """ self.random_state = check_random_state(self.random_state) n_images, i_h, i_w = X.shape[:3] X = np.reshape(X, (n_images, i_h, i_w, -1)) n_channels = X.shape[-1] if self.patch_size is None: patch_size = i_h // 10, i_w // 10 else: patch_size = self.patch_size # compute the dimensions of the patches array p_h, p_w = patch_size n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, self.max_patches) patches_shape = (n_images * n_patches,) + patch_size if n_channels > 1: patches_shape += (n_channels,) # extract the patches patches = np.empty(patches_shape) for ii, image in enumerate(X): patches[ii * n_patches:(ii + 1) * n_patches] = extract_patches_2d( image, patch_size, self.max_patches, self.random_state) return patches
bsd-3-clause
ishank08/scikit-learn
sklearn/ensemble/forest.py
11
67127
"""Forest of trees-based ensemble methods Those methods include random forests and extremely randomized trees. The module structure is the following: - The ``BaseForest`` base class implements a common ``fit`` method for all the estimators in the module. The ``fit`` method of the base ``Forest`` class calls the ``fit`` method of each sub-estimator on random samples (with replacement, a.k.a. bootstrap) of the training set. The init of the sub-estimator is further delegated to the ``BaseEnsemble`` constructor. - The ``ForestClassifier`` and ``ForestRegressor`` base classes further implement the prediction logic by computing an average of the predicted outcomes of the sub-estimators. - The ``RandomForestClassifier`` and ``RandomForestRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using classical, deterministic ``DecisionTreeClassifier`` and ``DecisionTreeRegressor`` as sub-estimator implementations. - The ``ExtraTreesClassifier`` and ``ExtraTreesRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using the extremely randomized trees ``ExtraTreeClassifier`` and ``ExtraTreeRegressor`` as sub-estimator implementations. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <[email protected]> # Brian Holt <[email protected]> # Joly Arnaud <[email protected]> # Fares Hedayati <[email protected]> # # License: BSD 3 clause from __future__ import division import warnings from warnings import warn from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from scipy.sparse import hstack as sparse_hstack from ..base import ClassifierMixin, RegressorMixin from ..externals.joblib import Parallel, delayed from ..externals import six from ..metrics import r2_score from ..preprocessing import OneHotEncoder from ..tree import (DecisionTreeClassifier, DecisionTreeRegressor, ExtraTreeClassifier, ExtraTreeRegressor) from ..tree._tree import DTYPE, DOUBLE from ..utils import check_random_state, check_array, compute_sample_weight from ..exceptions import DataConversionWarning, NotFittedError from .base import BaseEnsemble, _partition_estimators from ..utils.fixes import bincount, parallel_helper from ..utils.multiclass import check_classification_targets from ..utils.validation import check_is_fitted __all__ = ["RandomForestClassifier", "RandomForestRegressor", "ExtraTreesClassifier", "ExtraTreesRegressor", "RandomTreesEmbedding"] MAX_INT = np.iinfo(np.int32).max def _generate_sample_indices(random_state, n_samples): """Private function used to _parallel_build_trees function.""" random_instance = check_random_state(random_state) sample_indices = random_instance.randint(0, n_samples, n_samples) return sample_indices def _generate_unsampled_indices(random_state, n_samples): """Private function used to forest._set_oob_score function.""" sample_indices = _generate_sample_indices(random_state, n_samples) sample_counts = bincount(sample_indices, minlength=n_samples) unsampled_mask = sample_counts == 0 indices_range = np.arange(n_samples) unsampled_indices = indices_range[unsampled_mask] return unsampled_indices def _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose=0, class_weight=None): """Private function used to fit a single tree in parallel.""" if verbose > 1: print("building tree %d of %d" % (tree_idx + 1, n_trees)) if forest.bootstrap: n_samples = X.shape[0] if sample_weight is None: curr_sample_weight = np.ones((n_samples,), dtype=np.float64) else: curr_sample_weight = sample_weight.copy() indices = _generate_sample_indices(tree.random_state, n_samples) sample_counts = bincount(indices, minlength=n_samples) curr_sample_weight *= sample_counts if class_weight == 'subsample': with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) curr_sample_weight *= compute_sample_weight('auto', y, indices) elif class_weight == 'balanced_subsample': curr_sample_weight *= compute_sample_weight('balanced', y, indices) tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) else: tree.fit(X, y, sample_weight=sample_weight, check_input=False) return tree class BaseForest(six.with_metaclass(ABCMeta, BaseEnsemble)): """Base class for forests of trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(BaseForest, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.bootstrap = bootstrap self.oob_score = oob_score self.n_jobs = n_jobs self.random_state = random_state self.verbose = verbose self.warm_start = warm_start self.class_weight = class_weight def apply(self, X): """Apply trees in the forest to X, return leaf indices. Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- X_leaves : array_like, shape = [n_samples, n_estimators] For each datapoint x in X and for each tree in the forest, return the index of the leaf x ends up in. """ X = self._validate_X_predict(X) results = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(tree, 'apply', X, check_input=False) for tree in self.estimators_) return np.array(results).T def decision_path(self, X): """Return the decision path in the forest .. versionadded:: 0.18 Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- indicator : sparse csr array, shape = [n_samples, n_nodes] Return a node indicator matrix where non zero elements indicates that the samples goes through the nodes. n_nodes_ptr : array of size (n_estimators + 1, ) The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator. """ X = self._validate_X_predict(X) indicators = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(tree, 'decision_path', X, check_input=False) for tree in self.estimators_) n_nodes = [0] n_nodes.extend([i.shape[1] for i in indicators]) n_nodes_ptr = np.array(n_nodes).cumsum() return sparse_hstack(indicators).tocsr(), n_nodes_ptr def fit(self, X, y, sample_weight=None): """Build a forest of trees from the training set (X, y). Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The training input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. Returns ------- self : object Returns self. """ # Validate or convert input data X = check_array(X, accept_sparse="csc", dtype=DTYPE) y = check_array(y, accept_sparse='csc', ensure_2d=False, dtype=None) if sample_weight is not None: sample_weight = check_array(sample_weight, ensure_2d=False) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() # Remap output n_samples, self.n_features_ = X.shape y = np.atleast_1d(y) if y.ndim == 2 and y.shape[1] == 1: warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples,), for example using ravel().", DataConversionWarning, stacklevel=2) if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] y, expanded_class_weight = self._validate_y_class_weight(y) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Check parameters self._validate_estimator() if not self.bootstrap and self.oob_score: raise ValueError("Out of bag estimation only available" " if bootstrap=True") random_state = check_random_state(self.random_state) if not self.warm_start or not hasattr(self, "estimators_"): # Free allocated memory, if any self.estimators_ = [] n_more_estimators = self.n_estimators - len(self.estimators_) if n_more_estimators < 0: raise ValueError('n_estimators=%d must be larger or equal to ' 'len(estimators_)=%d when warm_start==True' % (self.n_estimators, len(self.estimators_))) elif n_more_estimators == 0: warn("Warm-start fitting without increasing n_estimators does not " "fit new trees.") else: if self.warm_start and len(self.estimators_) > 0: # We draw from the random state to get the random state we # would have got if we hadn't used a warm_start. random_state.randint(MAX_INT, size=len(self.estimators_)) trees = [] for i in range(n_more_estimators): tree = self._make_estimator(append=False, random_state=random_state) trees.append(tree) # Parallel loop: we use the threading backend as the Cython code # for fitting the trees is internally releasing the Python GIL # making threading always more efficient than multiprocessing in # that case. trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_build_trees)( t, self, X, y, sample_weight, i, len(trees), verbose=self.verbose, class_weight=self.class_weight) for i, t in enumerate(trees)) # Collect newly grown trees self.estimators_.extend(trees) if self.oob_score: self._set_oob_score(X, y) # Decapsulate classes_ attributes if hasattr(self, "classes_") and self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self @abstractmethod def _set_oob_score(self, X, y): """Calculate out of bag predictions and score.""" def _validate_y_class_weight(self, y): # Default implementation return y, None def _validate_X_predict(self, X): """Validate X whenever one tries to predict, apply, predict_proba""" if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, " "call `fit` before exploiting the model.") return self.estimators_[0]._validate_X_predict(X, check_input=True) @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ check_is_fitted(self, 'estimators_') all_importances = Parallel(n_jobs=self.n_jobs, backend="threading")( delayed(getattr)(tree, 'feature_importances_') for tree in self.estimators_) return sum(all_importances) / len(self.estimators_) class ForestClassifier(six.with_metaclass(ABCMeta, BaseForest, ClassifierMixin)): """Base class for forest of trees-based classifiers. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ForestClassifier, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) def _set_oob_score(self, X, y): """Compute out-of-bag score""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_classes_ = self.n_classes_ n_samples = y.shape[0] oob_decision_function = [] oob_score = 0.0 predictions = [] for k in range(self.n_outputs_): predictions.append(np.zeros((n_samples, n_classes_[k]))) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict_proba(X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = [p_estimator] for k in range(self.n_outputs_): predictions[k][unsampled_indices, :] += p_estimator[k] for k in range(self.n_outputs_): if (predictions[k].sum(axis=1) == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") decision = (predictions[k] / predictions[k].sum(axis=1)[:, np.newaxis]) oob_decision_function.append(decision) oob_score += np.mean(y[:, k] == np.argmax(predictions[k], axis=1), axis=0) if self.n_outputs_ == 1: self.oob_decision_function_ = oob_decision_function[0] else: self.oob_decision_function_ = oob_decision_function self.oob_score_ = oob_score / self.n_outputs_ def _validate_y_class_weight(self, y): check_classification_targets(y) y = np.copy(y) expanded_class_weight = None if self.class_weight is not None: y_original = np.copy(y) self.classes_ = [] self.n_classes_ = [] y_store_unique_indices = np.zeros(y.shape, dtype=np.int) for k in range(self.n_outputs_): classes_k, y_store_unique_indices[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) y = y_store_unique_indices if self.class_weight is not None: valid_presets = ('balanced', 'balanced_subsample') if isinstance(self.class_weight, six.string_types): if self.class_weight not in valid_presets: raise ValueError('Valid presets for class_weight include ' '"balanced" and "balanced_subsample". Given "%s".' % self.class_weight) if self.warm_start: warn('class_weight presets "balanced" or "balanced_subsample" are ' 'not recommended for warm_start if the fitted data ' 'differs from the full dataset. In order to use ' '"balanced" weights, use compute_class_weight("balanced", ' 'classes, y). In place of y you can use a large ' 'enough sample of the full training set target to ' 'properly estimate the class frequency ' 'distributions. Pass the resulting weights as the ' 'class_weight parameter.') if (self.class_weight != 'balanced_subsample' or not self.bootstrap): if self.class_weight == "balanced_subsample": class_weight = "balanced" else: class_weight = self.class_weight expanded_class_weight = compute_sample_weight(class_weight, y_original) return y, expanded_class_weight def predict(self, X): """Predict class for X. The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability estimates. That is, the predicted class is the one with highest mean probability estimate across the trees. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: n_samples = proba[0].shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take(np.argmax(proba[k], axis=1), axis=0) return predictions def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample are computed as the mean predicted class probabilities of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class in a leaf. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ check_is_fitted(self, 'estimators_') # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(e, 'predict_proba', X, check_input=False) for e in self.estimators_) # Reduce proba = all_proba[0] if self.n_outputs_ == 1: for j in range(1, len(all_proba)): proba += all_proba[j] proba /= len(self.estimators_) else: for j in range(1, len(all_proba)): for k in range(self.n_outputs_): proba[k] += all_proba[j][k] for k in range(self.n_outputs_): proba[k] /= self.n_estimators return proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class probabilities of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class ForestRegressor(six.with_metaclass(ABCMeta, BaseForest, RegressorMixin)): """Base class for forest of trees-based regressors. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ForestRegressor, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) def predict(self, X): """Predict regression target for X. The predicted regression target of an input sample is computed as the mean predicted regression targets of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted values. """ check_is_fitted(self, 'estimators_') # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_y_hat = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(e, 'predict', X, check_input=False) for e in self.estimators_) # Reduce y_hat = sum(all_y_hat) / len(self.estimators_) return y_hat def _set_oob_score(self, X, y): """Compute out-of-bag scores""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_samples = y.shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) n_predictions = np.zeros((n_samples, self.n_outputs_)) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict( X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = p_estimator[:, np.newaxis] predictions[unsampled_indices, :] += p_estimator n_predictions[unsampled_indices, :] += 1 if (n_predictions == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") n_predictions[n_predictions == 0] = 1 predictions /= n_predictions self.oob_prediction_ = predictions if self.n_outputs_ == 1: self.oob_prediction_ = \ self.oob_prediction_.reshape((n_samples, )) self.oob_score_ = 0.0 for k in range(self.n_outputs_): self.oob_score_ += r2_score(y[:, k], predictions[:, k]) self.oob_score_ /= self.n_outputs_ class RandomForestClassifier(ForestClassifier): """A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)` (same as "auto"). - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool (default=False) Whether to use out-of-bag samples to estimate the generalization accuracy. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeClassifier, ExtraTreesClassifier """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(RandomForestClassifier, self).__init__( base_estimator=DecisionTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class RandomForestRegressor(ForestRegressor): """A random forest regressor. A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) whether to use out-of-bag samples to estimate the R^2 on unseen data. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeRegressor, ExtraTreesRegressor """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomForestRegressor, self).__init__( base_estimator=DecisionTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class ExtraTreesClassifier(ForestClassifier): """An extra-trees classifier. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) Whether to use out-of-bag samples to estimate the generalization accuracy. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeClassifier : Base classifier for this ensemble. RandomForestClassifier : Ensemble Classifier based on trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ExtraTreesClassifier, self).__init__( base_estimator=ExtraTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class ExtraTreesRegressor(ForestRegressor): """An extra-trees regressor. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) Whether to use out-of-bag samples to estimate the R^2 on unseen data. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features. n_outputs_ : int The number of outputs. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeRegressor: Base estimator for this ensemble. RandomForestRegressor: Ensemble regressor using trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ExtraTreesRegressor, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class RandomTreesEmbedding(BaseForest): """An ensemble of totally random trees. An unsupervised transformation of a dataset to a high-dimensional sparse representation. A datapoint is coded according to which leaf of each tree it is sorted into. Using a one-hot encoding of the leaves, this leads to a binary coding with as many ones as there are trees in the forest. The dimensionality of the resulting representation is ``n_out <= n_estimators * max_leaf_nodes``. If ``max_leaf_nodes == None``, the number of leaf nodes is at most ``n_estimators * 2 ** max_depth``. Read more in the :ref:`User Guide <random_trees_embedding>`. Parameters ---------- n_estimators : integer, optional (default=10) Number of trees in the forest. max_depth : integer, optional (default=5) The maximum depth of each tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` is the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` is the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 sparse_output : bool, optional (default=True) Whether or not to return a sparse CSR matrix, as default behavior, or to return a dense array compatible with dense pipeline operators. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. .. [2] Moosmann, F. and Triggs, B. and Jurie, F. "Fast discriminative visual codebooks using randomized clustering forests" NIPS 2007 """ def __init__(self, n_estimators=10, max_depth=5, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_leaf_nodes=None, min_impurity_split=1e-7, sparse_output=True, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomTreesEmbedding, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=False, oob_score=False, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = 'mse' self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = 1 self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split self.sparse_output = sparse_output def _set_oob_score(self, X, y): raise NotImplementedError("OOB score not supported by tree embedding") def fit(self, X, y=None, sample_weight=None): """Fit estimator. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) The input samples. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csc_matrix`` for maximum efficiency. Returns ------- self : object Returns self. """ self.fit_transform(X, y, sample_weight=sample_weight) return self def fit_transform(self, X, y=None, sample_weight=None): """Fit estimator and transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data used to build forests. Use ``dtype=np.float32`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ X = check_array(X, accept_sparse=['csc']) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() rnd = check_random_state(self.random_state) y = rnd.uniform(size=X.shape[0]) super(RandomTreesEmbedding, self).fit(X, y, sample_weight=sample_weight) self.one_hot_encoder_ = OneHotEncoder(sparse=self.sparse_output) return self.one_hot_encoder_.fit_transform(self.apply(X)) def transform(self, X): """Transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data to be transformed. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csr_matrix`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ return self.one_hot_encoder_.transform(self.apply(X))
bsd-3-clause
tobiasgehring/qudi
tools/Pulse_analysis_standalone.py
4
8606
# -*- coding: utf-8 -*- """ Created on Wed Aug 26 16:35:51 2015 This file contains a class for standalone analysis of fast counter data. Qudi is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Qudi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Qudi. If not, see <http://www.gnu.org/licenses/>. Copyright (C) 2015 Nikolas Tomek [email protected] """ import numpy as np from scipy import ndimage from matplotlib.pyplot import plot class PulseAnalysis(): def __init__(self): self.is_counter_gated = False # std. deviation of the gaussian filter. #Too small and the filtered data is too noisy to analyze; too big and the pulse edges are filtered out... self.conv_std_dev = 5 # set windows for signal and normalization of the laser pulses self.signal_start_bin = 5 self.signal_width_bins = 200 self.norm_start_bin = 500 self.norm_width_bins = 200 # total number of laser pulses in the sequence self.number_of_lasers = 50 # data arrays self.tau_vector = np.array(range(50)) # tau values (x-axis) self.signal_vector = np.zeros(self.number_of_lasers, dtype=float) # data points (y-axis) self.laser_data = None # extracted laser pulses def _gated_extraction(self, count_data): """ This method detects the rising flank in the gated timetrace data and extracts just the laser pulses @param 2D numpy.ndarray count_data: the raw timetrace data from a gated fast counter (dimensions 0: gate number, 1: time bin) @return 2D numpy.ndarray: The extracted laser pulses of the timetrace (dimensions 0: laser number, 1: time bin) """ # sum up all gated timetraces to ease flank detection timetrace_sum = np.sum(count_data, 0) # apply gaussian filter to remove noise and compute the gradient of the timetrace sum conv_deriv = self._convolve_derive(timetrace_sum, self.conv_std_dev) # get indices of rising and falling flank rising_ind = conv_deriv.argmax() falling_ind = conv_deriv.argmin() # slice the data array to cut off anything but laser pulses laser_arr = count_data[:, rising_ind:falling_ind] return laser_arr def _ungated_extraction(self, count_data, num_of_lasers): """ This method detects the laser pulses in the ungated timetrace data and extracts them @param 1D numpy.ndarray count_data: the raw timetrace data from an ungated fast counter @param int num_of_lasers: The total number of laser pulses inside the pulse sequence @return 2D numpy.ndarray: The extracted laser pulses of the timetrace (dimensions 0: laser number, 1: time bin) """ # apply gaussian filter to remove noise and compute the gradient of the timetrace conv_deriv = self._convolve_derive(count_data, self.conv_std_dev) # initialize arrays to contain indices for all rising and falling flanks, respectively rising_ind = np.empty([num_of_lasers],int) falling_ind = np.empty([num_of_lasers],int) # Find as many rising and falling flanks as there are laser pulses in the timetrace for i in range(num_of_lasers): # save the index of the absolute maximum of the derived timetrace as rising flank position rising_ind[i] = np.argmax(conv_deriv) # set this position and the sourrounding of the saved flank to 0 to avoid a second detection if rising_ind[i] < 2*self.conv_std_dev: del_ind_start = 0 else: del_ind_start = rising_ind[i] - 2*self.conv_std_dev if (conv_deriv.size - rising_ind[i]) < 2*self.conv_std_dev: del_ind_stop = conv_deriv.size-1 else: del_ind_stop = rising_ind[i] + 2*self.conv_std_dev conv_deriv[del_ind_start:del_ind_stop] = 0 # save the index of the absolute minimum of the derived timetrace as falling flank position falling_ind[i] = np.argmin(conv_deriv) # set this position and the sourrounding of the saved flank to 0 to avoid a second detection if falling_ind[i] < 2*self.conv_std_dev: del_ind_start = 0 else: del_ind_start = falling_ind[i] - 2*self.conv_std_dev if (conv_deriv.size - falling_ind[i]) < 2*self.conv_std_dev: del_ind_stop = conv_deriv.size-1 else: del_ind_stop = falling_ind[i] + 2*self.conv_std_dev conv_deriv[del_ind_start:del_ind_stop] = 0 # sort all indices of rising and falling flanks rising_ind.sort() falling_ind.sort() # find the maximum laser length to use as size for the laser array laser_length = np.max(falling_ind-rising_ind) # initialize the empty output array laser_arr = np.zeros([num_of_lasers, laser_length],int) # slice the detected laser pulses of the timetrace and save them in the output array for i in range(num_of_lasers): if (rising_ind[i]+laser_length > count_data.size): lenarr = count_data[rising_ind[i]:].size laser_arr[i, 0:lenarr] = count_data[rising_ind[i]:] else: laser_arr[i] = count_data[rising_ind[i]:rising_ind[i]+laser_length] return laser_arr def _convolve_derive(self, data, std_dev): """ This method smoothes the input data by applying a gaussian filter (convolution) with specified standard deviation. The derivative of the smoothed data is computed afterwards and returned. If the input data is some kind of rectangular signal containing high frequency noise, the output data will show sharp peaks corresponding to the rising and falling flanks of the input signal. @param 1D numpy.ndarray timetrace: the raw data to be smoothed and derived @param float std_dev: standard deviation of the gaussian filter to be applied for smoothing @return 1D numpy.ndarray: The smoothed and derived data """ conv = ndimage.filters.gaussian_filter1d(data, std_dev) conv_deriv = np.gradient(conv) return conv_deriv def analyze_data(self, raw_data): """ This method captures the fast counter data and extracts the laser pulses. @param int num_of_lasers: The total number of laser pulses inside the pulse sequence @return 2D numpy.ndarray: The extracted laser pulses of the timetrace (dimensions 0: laser number, 1: time bin) @return 1D/2D numpy.ndarray: The raw timetrace from the fast counter """ # call appropriate laser extraction method depending on if the fast counter is gated or not. if self.is_counter_gated: self.laser_data = self._gated_extraction(raw_data) else: self.laser_data = self._ungated_extraction(raw_data, self.number_of_lasers) #analyze data norm_mean = np.zeros(self.number_of_lasers, dtype=float) signal_mean = np.zeros(self.number_of_lasers, dtype=float) # set start and stop indices for the analysis norm_start = self.norm_start_bin norm_end = self.norm_start_bin + self.norm_width_bins signal_start = self.signal_start_bin signal_end = self.signal_start_bin + self.signal_width_bins # loop over all laser pulses and analyze them for i in range(self.number_of_lasers): # calculate the mean of the data in the normalization window norm_mean[i] = self.laser_data[i][norm_start:norm_end].mean() # calculate the mean of the data in the signal window signal_mean[i] = (self.laser_data[i][signal_start:signal_end] - norm_mean[i]).mean() # update the signal plot y-data self.signal_vector[i] = 1. + (signal_mean[i]/norm_mean[i]) return if __name__ == "__main__": tool = PulseAnalysis() data = np.loadtxt('FastComTec_demo_timetrace.asc') tool.analyze_data(data) plot(tool.tau_vector, tool.signal_vector)
gpl-3.0
mjirik/imtools
tests/train_test.py
1
6177
#! /usr/bin/python # -*- coding: utf-8 -*- # import funkcí z jiného adresáře import unittest import numpy as np import os import os.path import pytest import os.path as op import sys import matplotlib.pyplot as plt import glob import itertools import io3d import sed3 import imtools.trainer3d import imtools.datasets import sklearn import sklearn.metrics import sklearn.neural_network from sklearn.svm import SVC from loguru import logger sys.path.append(op.expanduser("~/projects/bodynavigation")) # import bodynavigation pt = op.expanduser("~/projects/imtools") sys.path.append(pt) import imtools # @pytest.mark.interactive def test_intensity_training_ircad(): #nth - use every nth pixel nth = 10 # TODO use ircad sliver_reference_dir = io3d.datasets.joinp("~/data/medical/orig/sliver07/training/", return_as_str=True) # sliver_reference_dir = op.expanduser("~/data/medical/orig/sliver07/training/") # Train ol = imtools.trainer3d.Trainer3D() # ol.feature_function = localization_fv # for one in imtools.datasets.sliver_reader("*[0].mhd", read_seg=True): for i in range(1, 2): datap = io3d.read_dataset('3Dircadb1', "data3d", i) datap_liver = io3d.read_dataset('3Dircadb1', "liver", i) ol.add_train_data(datap["data3d"], (datap_liver["data3d"] > 0).astype(np.uint8), voxelsize_mm=datap["voxelsize_mm"]) # numeric_label, vs_mm, oname, orig_data, rname, ref_data = one # ol.add_train_data(orig_data, ref_data, voxelsize_mm=vs_mm) ol.fit() # Testing i = 1 datap = io3d.datasets.read_dataset("3Dircadb1", 'data3d', i) datap_liver = io3d.datasets.read_dataset("3Dircadb1", 'liver', i) data3d = datap["data3d"] segmentation = (datap_liver["data3d"] > 0).astype(np.uint8) fit = ol.predict(data3d, voxelsize_mm=datap["voxelsize_mm"]) # one = list(imtools.datasets.sliver_reader("*018.mhd", read_seg=True))[0] # numeric_label, vs_mm, oname, orig_data, rname, ref_data = one # fit = ol.predict(orig_data, voxelsize_mm=vs_mm) err = segmentation != (fit > 0).astype(np.uint8) # visualization # plt.figure(figsize=(15, 10)) # sed3.show_slices(datap["data3d"], fit, slice_step=20, axis=1, flipV=True) accuracy = np.sum(~err) / np.prod(data3d.shape) assert accuracy >= 0.80 # assert def _mk_data(slice3, offset=1, shape=[10, 11, 12]): data3d = np.random.random(shape) data3d[slice3] += offset segmentation = np.zeros(shape, dtype=int) segmentation[slice3] = 1 return data3d, segmentation # TODO finish product _gmm__mix_clf = imtools.ml.gmmcl.GMMCl() _gmm__mix_clf.cl = {0:sklearn.mixture.GaussianMixture(n_components=1), 1:sklearn.mixture.GaussianMixture(n_components=3)} @pytest.mark.parametrize('cl,shape', itertools.product( [ # sklearn.tree.DecisionTreeClassifier(), # _gmm__mix_clf, imtools.ml.gmmcl.GMMCl(), # sklearn.neural_network.MLPClassifier(), SVC(kernel='linear', class_weight='balanced', probability=True), # SVC() ], [ # [10, 11, 12], [30, 31, 32], ] )) def test_intensity_training_artificial(cl, shape): """ Test different classifiers on unbalanced dataset. :param cl: :param shape: :return: """ # scl = str(cl) # logger.debug(f'cl={scl[:min(30, len(scl))]}') logger.debug(f'cl={cl}') logger.debug(f'shape={shape}') slice3 = (slice(3, 7), slice(3, 7), slice(3, 7)) # shape = [30,31,32] voxelsize_mm = [1, 2, 3] d3d, seg = _mk_data(slice3, shape=shape, offset=0.7) un, counts = np.unique(seg.flatten(), return_counts=True) logger.debug(f'counts={counts}') ol = imtools.trainer3d.Trainer3D(classifier=cl) ol.working_voxelsize_mm=[2,2,2] # ol.cl = tree.DecisionTreeClassifier() # ol.cl = cl ol.add_train_data(d3d, seg, voxelsize_mm=voxelsize_mm, nth=None) # We take all samples # https://elitedatascience.com/imbalanced-classes un, counts = np.unique(ol.target, return_counts=True) n_samples = np.min(counts) new_data_list = [] new_target_list = [] for label in un: all_data_for_one_label = ol.data[ol.target.astype(np.uint8).flatten() == label] # TODO mozna pouzit funkci sklearn.utils.resample # https://scikit-learn.org/stable/modules/generated/sklearn.utils.resample.html resamples = sklearn.utils.resample(all_data_for_one_label, n_samples=n_samples, replace=True) # data_subset = all_data_for_one_label[:n_samples] # pick first n samples # new_data_list.append(data_subset) new_data_list.append(resamples) new_target_list.append(np.ones([n_samples], dtype=type(label)) * label) original_data = ol.data original_target = ol.target new_data = np.concatenate(new_data_list, axis=0) new_target = np.concatenate(new_target_list, axis=0) ol.data = new_data ol.target = new_target ol.fit() # test # slice3 = (slice(2, 6), slice(2, 8), slice(2, 7)) # shape = [12, 11, 10] # voxelsize_mm = [1, 2, 3] d3d, seg = _mk_data(slice3, shape=shape, offset=0.7) pred_seg = ol.predict(d3d, voxelsize_mm) sed3.show_slices(d3d, contour=seg, slice_number=8) # ed = sed3.sed3(d3d, contour=seg) # ed.show() sc = sklearn.metrics.accuracy_score(seg.flatten(), pred_seg.flatten()) f1 = sklearn.metrics.f1_score(seg.flatten(), pred_seg.flatten()) logger.debug(f"f1={f1}") assert sc > 0.5 assert f1 > 0.5 def test_resample(): y = np.array([0, 0, 0, 1, 1, 1, 1, 1, 1]) X = np.random.rand(y.shape[0]) + y X = X.reshape([-1,1]) # X = np.array([[1., 0.], [2., 1.], [0., 0.]]) # y = np.array([0, 1, 2]) # from scipy.sparse import coo_matrix # X_sparse = coo_matrix(X) from sklearn.utils import shuffle, resample # X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0) # X # # X_sparse # # X_sparse.toarray() y # shuffle(y, n_samples=2, random_state=0) Xr = resample(X, n_samples=2, random_state=0) print(Xr) def balance_dataset(X,y): labels, counts = np.unique(y)
mit
zhuangjun1981/retinotopic_mapping
retinotopic_mapping/StimulusRoutines.py
1
176902
""" Contains various stimulus routines """ import os import numpy as np import matplotlib.pyplot as plt import random import time import h5py from tools import ImageAnalysis as ia from tools import FileTools as ft try: import skimage.external.tifffile as tf except ImportError: import tifffile as tf def in_hull(p, hull): """ Determine if points in `p` are in `hull` `p` should be a `NxK` coordinate matrix of `N` points in `K` dimensions `hull` is either a scipy.spatial.Delaunay object or the `MxK` array of the coordinates of `M` points in `K`dimensions for which Delaunay triangulation will be computed Parameters ---------- p : array NxK coordinate matrix of N points in K dimensions hull : either a scipy.spatial.Delaunay object or the `MxK` array of the coordinates of `M` points in `K`dimensions for which Delaunay triangulation will be computed Returns ------- is_in_hull : ndarray of int Indices of simplices containing each point. Points outside the triangulation get the value -1. """ from scipy.spatial import Delaunay if not isinstance(hull, Delaunay): hull = Delaunay(hull) return hull.find_simplex(p) >= 0 def get_warped_probes(deg_coord_alt, deg_coord_azi, probes, width, height, ori=0., background_color=0.): """ Generate a frame (matrix) with multiple probes defined by 'porbes', `width`, `height` and orientation in degrees. visual degree coordinate of each pixel is defined by deg_coord_azi, and deg_coord_alt Parameters ---------- deg_coord_alt : ndarray 2d array of warped altitude coordinates of monitor pixels deg_coord_azi : ndarray 2d array of warped azimuth coordinates of monitor pixels probes : tuple or list each element of probes represents a single probe (center_alt, center_azi, sign) width : float width of the square in degrees height : float height of the square in degrees ori : float angle in degree, should be [0., 180.] foreground_color : float, optional color of the noise pixels, takes values in [-1,1] and defaults to `1.` background_color : float, optional color of the background behind the noise pixels, takes values in [-1,1] and defaults to `0.` Returns ------- frame : ndarray the warped s """ frame = np.ones(deg_coord_azi.shape, dtype=np.float32) * background_color # if ori < 0. or ori > 180.: # raise ValueError, 'ori should be between 0 and 180.' ori_arc = (ori % 360.) * 2 * np.pi / 360. for probe in probes: dis_width = np.abs(np.cos(ori_arc) * (deg_coord_azi - probe[1]) + np.sin(ori_arc) * (deg_coord_alt - probe[0])) dis_height = np.abs(np.cos(ori_arc + np.pi / 2) * (deg_coord_azi - probe[1]) + np.sin(ori_arc + np.pi / 2) * (deg_coord_alt - probe[0])) # f, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5)) # fig1 = ax1.imshow(dis_width) # ax1.set_title('width') # f.colorbar(fig1, ax=ax1) # fig2 = ax2.imshow(dis_height) # ax2.set_title('height') # f.colorbar(fig2, ax=ax2) # plt.show() frame[np.logical_and(dis_width <= width / 2., dis_height <= height / 2.)] = probe[2] return frame def blur_cos(dis, sigma): """ return a smoothed value [0., 1.] given the distance to center (with sign) and smooth width. this is using cosine curve to smooth edge parameters ---------- dis : ndarray array that store the distance from the current pixel to blurred band center sigma : float definition of the width of blurred width, here is the length represent half cycle of the cosin function returns ------- blurred : float blurred value """ dis_f = dis.astype(np.float32) sigma_f = abs(float(sigma)) blur_band = (np.cos((dis_f - (sigma_f / -2.)) * np.pi / sigma_f) + 1.) / 2. # plt.imshow(blur_band) # plt.show() blur_band[dis_f < (sigma_f / -2.)] = 1. blur_band[dis_f > (sigma_f / 2.)] = 0. # print blur_band.dtype return blur_band def get_circle_mask(map_alt, map_azi, center, radius, is_smooth_edge=False, blur_ratio=0.2, blur_func=blur_cos, is_plot=False): """ Generate a binary mask of a circle with given `center` and `radius` The binary mask is generated on a map with coordinates for each pixel defined by `map_x` and `map_y` Parameters ---------- map_alt : ndarray altitude coordinates for each pixel on a map map_azi : ndarray azimuth coordinates for each pixel on a map center : tuple coordinates (altitude, azimuth) of the center of the binary circle mask radius : float radius of the binary circle mask is_smooth_edge : bool if True, use 'blur_ratio' and 'blur_func' to smooth circle edge blur_ratio : float, option, default 0.2 the ratio between blurred band width to radius, should be smaller than 1 the middle of blurred band is the circle edge blur_func : function object to blur edge is_plot : bool Returns ------- circle_mask : ndarray (dtype np.float32) with same shape as map_alt and map_azi if is_smooth_edge is True weighted circle mask, with smoothed edge if is_smooth_edge is False binary circle mask, takes values in [0.,1.] """ if map_alt.shape != map_azi.shape: raise ValueError('map_alt and map_azi should have same shape.') if len(map_alt.shape) != 2: raise ValueError('map_alt and map_azi should be 2-d.') dis_mat = np.sqrt((map_alt - center[0]) ** 2 + (map_azi - center[1]) ** 2) # plt.imshow(dis_mat) # plt.show() if is_smooth_edge: sigma = radius * blur_ratio circle_mask = blur_func(dis=dis_mat - radius, sigma=sigma) else: circle_mask = np.zeros(map_alt.shape, dtype=np.float32) circle_mask[dis_mat <= radius] = 1. if is_plot: plt.imshow(circle_mask) plt.show() return circle_mask def get_grating(alt_map, azi_map, dire=0., spatial_freq=0.1, center=(0., 60.), phase=0., contrast=1.): """ Generate a grating frame with defined spatial frequency, center location, phase and contrast Parameters ---------- azi_map : ndarray x coordinates for each pixel on a map alt_map : ndarray y coordinates for each pixel on a map dire : float, optional orientation angle of the grating in degrees, defaults to 0. spatial_freq : float, optional spatial frequency (cycle per unit), defaults to 0.1 center : tuple, optional center coordinates of circle {alt, azi} phase : float, optional defaults to 0. contrast : float, optional defines contrast. takes values in [0., 1.], defaults to 1. Returns ------- frame : a frame as floating point 2-d array with grating, value range [0., 1.] """ if azi_map.shape != alt_map.shape: raise ValueError('map_alt and map_azi should have same shape.') if len(azi_map.shape) != 2: raise ValueError('map_alt and map_azi should be 2-d.') axis_arc = ((dire + 90.) * np.pi / 180.) % (2 * np.pi) map_azi_h = np.array(azi_map, dtype=np.float32) map_alt_h = np.array(alt_map, dtype=np.float32) distance = (np.sin(axis_arc) * (map_azi_h - center[1]) - np.cos(axis_arc) * (map_alt_h - center[0])) grating = np.sin(distance * 2 * np.pi * spatial_freq - phase) grating = grating * contrast # adjust contrast grating = (grating + 1.) / 2. # change the scale of grating to be [0., 1.] return grating # def get_sparse_loc_num_per_frame(min_alt, max_alt, min_azi, max_azi, minimum_dis): # """ # given the subregion of visual space and the minmum distance between the probes # within a frame (definition of sparseness), return generously how many probes # will be presented of a given frame # # Parameters # ---------- # min_alt : float # minimum altitude of display region, in visual degrees # max_alt : float # maximum altitude of display region, in visual degrees # min_azi : float # minimum azimuth of display region, in visual degrees # max_azi : float # maximum azimuth of display region, in visual degrees # minimum_dis : float # minimum distance allowed among probes within a frame # # returns # ------- # probe_num_per_frame : uint # generously how many probes will be presented in a given frame # """ # if min_alt >= max_alt: # raise ValueError('min_alt should be less than max_alt.') # # if min_azi >= max_azi: # raise ValueError('min_azi should be less than max_azi.') # # min_alt = float(min_alt) # max_alt = float(max_alt) # min_azi = float(min_azi) # max_azi = float(max_azi) # # area_tot = (max_alt - min_alt) * (max_azi - min_azi) # area_circle = np.pi * (minimum_dis ** 2) # probe_num_per_frame = int(np.ceil((2.0 * (area_tot / area_circle)))) # return probe_num_per_frame def get_grid_locations(subregion, grid_space, monitor_azi, monitor_alt, is_include_edge=True, is_plot=False): """ generate all the grid points in display area (covered by both subregion and monitor span), designed for SparseNoise and LocallySparseNoise stimuli. Parameters ---------- subregion : list, tuple or np.array the region on the monitor that will display the sparse noise, [min_alt, max_alt, min_azi, max_azi], all floats grid_space : tuple or list of two floats grid size of probes to be displayed, [altitude, azimuth] monitor_azi : 2-d array array mapping monitor pixels to azimuth in visual space monitor_alt : 2-d array array mapping monitor pixels to altitude in visual space is_include_edge : bool, default True, if True, the displayed probes will cover the edge case and ensure that the entire subregion is covered. If False, the displayed probes will exclude edge case and ensure that all the centers of displayed probes are within the subregion. is_plot : bool Returns ------- grid_locations : n x 2 array, refined [alt, azi] pairs of probe centers going to be displayed """ rows = np.arange(subregion[0], subregion[1] + grid_space[0], grid_space[0]) columns = np.arange(subregion[2], subregion[3] + grid_space[1], grid_space[1]) azis, alts = np.meshgrid(columns, rows) grid_locations = np.transpose(np.array([alts.flatten(), azis.flatten()])) left_alt = monitor_alt[:, 0] right_alt = monitor_alt[:, -1] top_azi = monitor_azi[0, :] bottom_azi = monitor_azi[-1, :] left_azi = monitor_azi[:, 0] right_azi = monitor_azi[:, -1] top_alt = monitor_alt[0, :] bottom_alt = monitor_alt[-1, :] left_azi_e = left_azi - grid_space[1] right_azi_e = right_azi + grid_space[1] top_alt_e = top_alt + grid_space[0] bottom_alt_e = bottom_alt - grid_space[0] all_alt = np.concatenate((left_alt, right_alt, top_alt, bottom_alt)) all_azi = np.concatenate((left_azi, right_azi, top_azi, bottom_azi)) all_alt_e = np.concatenate((left_alt, right_alt, top_alt_e, bottom_alt_e)) all_azi_e = np.concatenate((left_azi_e, right_azi_e, top_azi, bottom_azi)) monitorPoints = np.array([all_alt, all_azi]).transpose() monitorPoints_e = np.array([all_alt_e, all_azi_e]).transpose() # get the grid points within the coverage of monitor if is_include_edge: grid_locations = grid_locations[in_hull(grid_locations, monitorPoints_e)] else: grid_locations = grid_locations[in_hull(grid_locations, monitorPoints)] # grid_locations = np.array([grid_locations[:, 1], grid_locations[:, 0]]).transpose() if is_plot: f = plt.figure() ax = f.add_subplot(111) ax.plot(monitorPoints[:, 1], monitorPoints[:, 0], '.r', label='monitor') ax.plot(monitorPoints_e[:, 1], monitorPoints_e[:, 0], '.g', label='monitor_e') ax.plot(grid_locations[:, 1], grid_locations[:, 0], '.b', label='grid') ax.legend() plt.show() return grid_locations class Stim(object): """ generic class for visual stimulation. parent class for individual stimulus routines. Parameters ---------- monitor : monitor object the monitor used to display stimulus in the experiment indicator : indicator object the indicator used during stimulus background : float, optional background color of the monitor screen when stimulus is not being presented, takes values in [-1,1] and defaults to `0.` (grey) coordinate : str {'degree', 'linear'}, optional determines the representation of pixel coordinates on monitor, defaults to 'degree' pregap_dur : float, optional duration of gap period before stimulus, measured in seconds, defaults to `2.` postgap_dur : float, optional duration of gap period after stimulus, measured in seconds, defaults to `3.` """ def __init__(self, monitor, indicator, background=0., coordinate='degree', pregap_dur=2., postgap_dur=3.): """ Initialize visual stimulus object """ self.monitor = monitor self.indicator = indicator if background < -1. or background > 1.: raise ValueError('parameter "background" should be a float within [-1., 1.].') else: self.background = float(background) if coordinate not in ['degree', 'linear']: raise ValueError('parameter "coordinate" should be either "degree" or "linear".') else: self.coordinate = coordinate if pregap_dur >= 0.: self.pregap_dur = float(pregap_dur) else: raise ValueError('pregap_dur should be no less than 0.') if postgap_dur >= 0.: self.postgap_dur = float(postgap_dur) else: raise ValueError('postgap_dur should be no less than 0.') self.clear() @property def pregap_frame_num(self): return int(self.pregap_dur * self.monitor.refresh_rate) @property def postgap_frame_num(self): return int(self.postgap_dur * self.monitor.refresh_rate) def generate_frames(self): """ place holder of function "generate_frames" for each specific stimulus """ print('Nothing executed! This is a place holder function. \n' 'See documentation in the respective stimulus.') def generate_movie(self): """ place holder of function 'generate_movie' for each specific stimulus """ print('Nothing executed! This is a place holder function. ' 'See documentation in the respective stimulus. \n' 'It is possible that full sequence generation is not' 'implemented in this particular stimulus. Try ' 'generate_movie_by_index() function to see if indexed ' 'sequence generation is implemented.') def _generate_frames_for_index_display(self): """ place holder of function _generate_frames_for_index_display() for each specific stimulus """ print('Nothing executed! This is a place holder function. \n' 'See documentation in the respective stimulus.') def _generate_display_index(self): """ place holder of function _generate_display_index() for each specific stimulus """ print('Nothing executed! This is a place holder function. \n' 'See documentation in the respective stimulus.') def generate_movie_by_index(self): """ place holder of function generate_movie_by_index() for each specific stimulus """ print('Nothing executed! This is a place holder function. \n' 'See documentation in the respective stimulus.') def clear(self): if hasattr(self, 'frames'): del self.frames if hasattr(self, 'frames_unique'): del self.frames_unique if hasattr(self, 'index_to_display'): del self.index_to_display # for StaticImages if hasattr(self, 'images_wrapped'): del self.images_wrapped if hasattr(self, 'images_dewrapped'): del self.images_dewrapped if hasattr(self, 'altitude_wrapped'): del self.altitude_wrapped if hasattr(self, 'azimuth_wrapped'): del self.azimuth_wrapped if hasattr(self, 'altitude_dewrapped'): del self.altitude_dewrapped if hasattr(self, 'azimuth_dewrapped'): del self.azimuth_dewrapped def set_monitor(self, monitor): self.monitor = monitor self.clear() def set_indicator(self, indicator): self.indicator = indicator self.clear() def set_pregap_dur(self, pregap_dur): if pregap_dur >= 0.: self.pregap_dur = float(pregap_dur) else: raise ValueError('pregap_dur should be no less than 0.') self.clear() def set_postgap_dur(self, postgap_dur): if postgap_dur >= 0.: self.postgap_dur = float(postgap_dur) else: raise ValueError('postgap_dur should be no less than 0.') def set_background(self, background): if background < -1. or background > 1.: raise ValueError('parameter "background" should be a float within [-1., 1.].') else: self.background = float(background) self.clear() def set_coordinate(self, coordinate): if coordinate not in ['degree', 'linear']: raise ValueError('parameter "coordinate" should be either "degree" or "linear".') self.coordinate = coordinate class UniformContrast(Stim): """ Generate full field uniform luminance for recording spontaneous activity. Inherits from Stim. The full field uniform luminance stimulus presents a fixed background color which is normally taken to be grey. Parameters ---------- monitor : monitor object contains display monitor information indicator : indicator object contains indicator information coordinate : str from {'degree','linear'}, optional specifies coordinates, defaults to 'degree' background : float, optional color of background. Takes values in [-1,1] where -1 is black and 1 is white pregap_dur : float, optional amount of time (in seconds) before the stimulus is presented, defaults to `2.` postgap_dur : float, optional amount of time (in seconds) after the stimulus is presented, defaults to `3.` duration: float number of seconds of the duration of the uniform luminance. color : float, optional the choice of color to display in the stimulus, defaults to `0.` which is grey """ def __init__(self, monitor, indicator, duration, color=0., pregap_dur=2., postgap_dur=3., background=0., coordinate='degree'): """ Initialize UniformContrast object """ super(UniformContrast, self).__init__(monitor=monitor, indicator=indicator, coordinate=coordinate, background=background, pregap_dur=pregap_dur, postgap_dur=postgap_dur) self.stim_name = 'UniformContrast' self.duration = duration self.color = float(color) self.frame_config = ('is_display', 'indicator color [-1., 1.]') def generate_frames(self): """ generate a tuple of parameters with information for each frame. Information contained in each frame: first element - during display frames, value takes on 1 and value is 0 otherwise second element - color of indicator during display value is equal to 1 and during gaps value is equal to -1 """ displayframe_num = int(self.duration * self.monitor.refresh_rate) frames = [(0, -1.)] * self.pregap_frame_num + \ [(1, 1.)] * displayframe_num + \ [(0, -1.)] * self.postgap_frame_num return tuple(frames) def _generate_frames_for_index_display(self): """ parameters are predefined here, nothing to compute. """ if self.indicator.is_sync: # Parameters that define the stimulus frames = ((0, -1.), (1, 1.)) return frames else: raise NotImplementedError("method not avaialable for non-sync indicator.") def _generate_display_index(self): """ compute a list of indices corresponding to each frame to display. """ displayframe_num = int(self.duration * self.monitor.refresh_rate) index_to_display = [0] * self.pregap_frame_num + [1] * displayframe_num + \ [0] * self.postgap_frame_num return index_to_display def generate_movie_by_index(self): """ compute the stimulus movie to be displayed by index. """ self.frames_unique = self._generate_frames_for_index_display() self.index_to_display = self._generate_display_index() num_frames = len(self.frames_unique) num_pixels_width = self.monitor.deg_coord_x.shape[0] num_pixels_height = self.monitor.deg_coord_x.shape[1] # Initialize numpy array of 0's as placeholder for stimulus routine full_sequence = np.ones((num_frames, num_pixels_width, num_pixels_height), dtype=np.float32) * self.background # Compute pixel coordinates for indicator indicator_width_min = (self.indicator.center_width_pixel - self.indicator.width_pixel / 2) indicator_width_max = (self.indicator.center_width_pixel + self.indicator.width_pixel / 2) indicator_height_min = (self.indicator.center_height_pixel - self.indicator.height_pixel / 2) indicator_height_max = (self.indicator.center_height_pixel + self.indicator.height_pixel / 2) display = self.color * np.ones((num_pixels_width,num_pixels_height), dtype=np.float32) for i, frame in enumerate(self.frames_unique): if frame[0] == 1: full_sequence[i] = display # Insert indicator pixels full_sequence[i, indicator_height_min:indicator_height_max, indicator_width_min:indicator_width_max] = frame[1] monitor_dict = dict(self.monitor.__dict__) indicator_dict = dict(self.indicator.__dict__) NF_dict = dict(self.__dict__) NF_dict.pop('monitor') NF_dict.pop('indicator') full_dict = {'stimulation': NF_dict, 'monitor': monitor_dict, 'indicator': indicator_dict} return full_sequence, full_dict def generate_movie(self): """ generate movie for uniform contrast display frame by frame. Returns ------- full_seq : nd array, uint8 3-d array of the stimulus to be displayed. full_dict : dict dictionary containing the information of the stimulus. """ self.frames = self.generate_frames() full_seq = np.zeros((len(self.frames), self.monitor.deg_coord_x.shape[0], self.monitor.deg_coord_x.shape[1]), dtype=np.float32) indicator_width_min = (self.indicator.center_width_pixel - self.indicator.width_pixel / 2) indicator_width_max = (self.indicator.center_width_pixel + self.indicator.width_pixel / 2) indicator_height_min = (self.indicator.center_height_pixel - self.indicator.height_pixel / 2) indicator_height_max = (self.indicator.center_height_pixel + self.indicator.height_pixel / 2) background = np.ones((np.size(self.monitor.deg_coord_x, 0), np.size(self.monitor.deg_coord_x, 1)), dtype=np.float32) * self.background display = np.ones((np.size(self.monitor.deg_coord_x, 0), np.size(self.monitor.deg_coord_x, 1)), dtype=np.float32) * self.color if not (self.coordinate == 'degree' or self.coordinate == 'linear'): raise LookupError, "`coordinate` value not in {'degree','linear'}" for i in range(len(self.frames)): curr_frame = self.frames[i] if curr_frame[0] == 0: curr_FC_seq = background else: curr_FC_seq = display curr_FC_seq[indicator_height_min:indicator_height_max, indicator_width_min:indicator_width_max] = curr_frame[1] full_seq[i] = curr_FC_seq if i in range(0, len(self.frames), len(self.frames) / 10): print('Generating numpy sequence: ' + str(int(100 * (i + 1) / len(self.frames))) + '%') mondict = dict(self.monitor.__dict__) indicator_dict = dict(self.indicator.__dict__) indicator_dict.pop('monitor') NFdict = dict(self.__dict__) NFdict.pop('monitor') NFdict.pop('indicator') full_dict = {'stimulation': NFdict, 'monitor': mondict, 'indicator': indicator_dict} return full_seq, full_dict class SinusoidalLuminance(Stim): """ Generate fullfield sinusoidal luminance fluctuation at given frequency for given number of cycles. Center luminance is at 0. Parameters ---------- monitor : monitor object contains display monitor information indicator : indicator object contains indicator information coordinate : str from {'degree','linear'}, optional specifies coordinates, defaults to 'degree' background : float, optional color of background. Takes values in [-1,1] where -1 is black and 1 is white pregap_dur : float, optional amount of time (in seconds) before the stimulus is presented, defaults to `2.` postgap_dur : float, optional amount of time (in seconds) after the stimulus is presented, defaults to `3.` midgap_dur : float, optional amount of time (in seconds) in between each cycle, defaults to `0.` max_level : float, [-1., 1.] maximum level of peak luminance, defaults to `1.` min_level : float, [-1., 1.] minimum level of peak luminance, defaults to `-1.` Should be smaller than max_level frequency : float, Hz frequency of the luminance fluctuation, should be less than 1/4 of monitor refresh rate. cycle_num : int number of cycles to be displayed. Should be positive. start_phase : float, [0, 2*pi] starting phase of the cycle. """ def __init__(self, monitor, indicator, max_level=1., min_level=-1., frequency=1., cycle_num=10, start_phase=0., pregap_dur=2., postgap_dur=3., midgap_dur=0., background=0., coordinate='degree'): """ Initialize SinusoidalLuminance object """ super(SinusoidalLuminance, self).__init__(monitor=monitor, indicator=indicator, coordinate=coordinate, background=background, pregap_dur=pregap_dur, postgap_dur=postgap_dur) self.stim_name = 'SinusoidalLuminance' if midgap_dur >= 0.: self.midgap_dur = float(midgap_dur) else: raise ValueError('midgap_dur should be no less than 0.') if max_level > 1.: self.max_level = 1. elif max_level < -1.: self.max_level = -1 else: self.max_level = float(max_level) if min_level > 1.: self.min_level = 1. elif min_level < -1: self.min_level = -1. else: self.min_level = float(min_level) if self.min_level >= self.max_level: raise ValueError('self.min_level ({}) should be smaller than ' 'self.max_level({}).'.format(self.min_level, self.max_level)) if frequency > (monitor.refresh_rate / 4.): raise ValueError('frequency too high to be sufficiently sampled. Should ' 'be less than 1/4 of monitor refresh rate: {}.'.format(self.monitor.refresh_rate)) self.frequency = float(frequency) if int(cycle_num) <= 0: raise ValueError('cycle_num should be a positive integer.') self.cycle_num = int(cycle_num) self.start_phase = start_phase % (2 * np.pi) self.frame_config = ('is_display', 'color [-1., 1.]', 'indicator color [-1., 1.]') def _generate_frames_for_index_display(self): if self.indicator.is_sync: gap_frame = (0, None, -1.) frames_per_cycle = int(np.round(self.monitor.refresh_rate / self.frequency)) phases = (2. * np.pi * np.arange(frames_per_cycle) / frames_per_cycle) + self.start_phase mean_level = (self.max_level + self.min_level) / 2 amp_level = (self.max_level - self.min_level) / 2 colors = np.sin(phases) * amp_level + mean_level indicator_on_frames = frames_per_cycle // 2 indicator_off_frames = frames_per_cycle - indicator_on_frames indicator_color = [1.] * indicator_on_frames + [0.] * indicator_off_frames display_frames = [(1, colors[frame_i], indicator_color[frame_i]) for frame_i in range(frames_per_cycle)] frames = [gap_frame] + display_frames return frames else: raise NotImplementedError("method not avaialable for non-sync indicator.") def _generate_display_index(self): pregap_ind = [0] * int(self.pregap_dur * self.monitor.refresh_rate) postgap_ind = [0] * int(self.postgap_dur * self.monitor.refresh_rate) midgap_ind = [0] * int(self.midgap_dur * self.monitor.refresh_rate) frames_per_cycle = int(np.round(self.monitor.refresh_rate / self.frequency)) cycle_ind = midgap_ind + range(1, frames_per_cycle + 1) display_ind = cycle_ind * self.cycle_num display_ind = display_ind[len(midgap_ind):] index_to_display = pregap_ind + display_ind + postgap_ind return index_to_display def generate_movie_by_index(self): """ compute the stimulus movie to be displayed by index. """ self.frames_unique = self._generate_frames_for_index_display() self.index_to_display = self._generate_display_index() num_frames = len(self.frames_unique) num_pixels_width = self.monitor.deg_coord_x.shape[0] num_pixels_height = self.monitor.deg_coord_x.shape[1] # Initialize numpy array of 0's as placeholder for stimulus routine full_sequence = np.ones((num_frames, num_pixels_width, num_pixels_height), dtype=np.float32) * self.background # Compute pixel coordinates for indicator indicator_width_min = (self.indicator.center_width_pixel - self.indicator.width_pixel / 2) indicator_width_max = (self.indicator.center_width_pixel + self.indicator.width_pixel / 2) indicator_height_min = (self.indicator.center_height_pixel - self.indicator.height_pixel / 2) indicator_height_max = (self.indicator.center_height_pixel + self.indicator.height_pixel / 2) for i, frame in enumerate(self.frames_unique): if frame[1] is not None: full_sequence[i] = frame[1] # Insert indicator pixels full_sequence[i, indicator_height_min:indicator_height_max, indicator_width_min:indicator_width_max] = frame[2] monitor_dict = dict(self.monitor.__dict__) indicator_dict = dict(self.indicator.__dict__) NF_dict = dict(self.__dict__) NF_dict.pop('monitor') NF_dict.pop('indicator') full_dict = {'stimulation': NF_dict, 'monitor': monitor_dict, 'indicator': indicator_dict} return full_sequence, full_dict class FlashingCircle(Stim): """ Generate flashing circle stimulus. Stimulus routine presents a circle centered at the position `center` with given `radius`. Parameters ---------- monitor : monitor object contains display monitor information indicator : indicator object contains indicator information coordinate : str from {'degree','linear'}, optional specifies coordinates, defaults to 'degree' background : float, optional color of background. Takes values in [-1,1] where -1 is black and 1 is white pregap_dur : float, optional amount of time (in seconds) before the stimulus is presented, defaults to `2.` postgap_dur : float, optional amount of time (in seconds) after the stimulus is presented, defaults to `3.` center : 2-tuple, optional center coordinate (altitude, azimuth) of the circle in degrees, defaults to (0.,60.). radius : float, optional radius of the circle, defaults to `10.` is_smooth_edge : bool True, smooth circle edge with smooth_width_ratio and smooth_func False, do not smooth edge smooth_width_ratio : float, should be smaller than 1. the ratio between smooth band width and radius, circle edge is the middle of smooth band smooth_func : function object this function take to inputs first, ndarray storing the distance from each pixel to smooth band center second, smooth band width returns smoothed mask with same shape as input ndarray color : float, optional color of the circle, takes values in [-1,1], defaults to `-1.` iteration : int, optional total number of flashes, defaults to `1`. flash_frame : int, optional number of frames that circle is displayed during each presentation of the stimulus, defaults to `3`. """ def __init__(self, monitor, indicator, coordinate='degree', center=(0., 60.), radius=10., is_smooth_edge=False, smooth_width_ratio=0.2, smooth_func=blur_cos, color=-1., flash_frame_num=3, pregap_dur=2., postgap_dur=3., background=0., midgap_dur=1., iteration=1): """ Initialize `FlashingCircle` stimulus object. """ super(FlashingCircle, self).__init__(monitor=monitor, indicator=indicator, background=background, coordinate=coordinate, pregap_dur=pregap_dur, postgap_dur=postgap_dur) self.stim_name = 'FlashingCircle' self.center = center self.radius = float(radius) self.color = float(color) self.flash_frame_num = int(flash_frame_num) self.frame_config = ('is_display', 'indicator color [-1., 1.]') self.is_smooth_edge = is_smooth_edge self.smooth_width_ratio = float(smooth_width_ratio) self.smooth_func = smooth_func self.midgap_dur = float(midgap_dur) self.iteration = int(iteration) if self.pregap_frame_num + self.postgap_frame_num == 0: raise ValueError('pregap_frame_num + postgap_frame_num should be larger than 0.') self.clear() def set_flash_frame_num(self, flash_frame_num): self.flash_frame_num = flash_frame_num self.clear() def set_color(self, color): self.color = color self.clear() def set_center(self, center): self.center = center self.clear() def set_radius(self, radius): self.radius = radius self.clear() @property def midgap_frame_num(self): return int(self.midgap_dur * self.monitor.refresh_rate) def generate_frames(self): """ function to generate all the frames needed for the stimulation. Information contained in each frame: first element : during a gap, the value is equal to 0 and during display the value is equal to 1 second element : corresponds to the color of indicator if indicator.is_sync is True, during stimulus the value is equal to 1., whereas during a gap the value isequal to -1.; if indicator.is_sync is False, indicator color will alternate between 1. and -1. at the frequency as indicator.freq Returns ------- frames : list list of information defining each frame. """ frames = [[0, -1.]] * self.pregap_frame_num for iter in range(self.iteration): if self.indicator.is_sync: frames += [[0, -1.]] * self.midgap_frame_num frames += [[1, 1.]] * self.flash_frame_num else: frames += [[0, -1.]] * self.midgap_frame_num frames += [[1, -1.]] * self.flash_frame_num frames += [[0, -1.]] * self.postgap_frame_num frames = frames[self.midgap_frame_num:] if not self.indicator.is_sync: for frame_ind in xrange(frames.shape[0]): # mark unsynchronized indicator if np.floor(frame_ind // self.indicator.frame_num) % 2 == 0: frames[frame_ind, 1] = 1. else: frames[frame_ind, 1] = -1. frames = [tuple(x) for x in frames] return tuple(frames) def _generate_frames_for_index_display(self): """ frame structure: first element: is_gap (0:False; 1:True). second element: indicator color [-1., 1.] """ if self.indicator.is_sync: gap = (0., -1.) flash = (1., 1.) frames = (gap, flash) return frames else: raise NotImplementedError, "method not available for non-sync indicator" def _generate_display_index(self): """ compute a list of indices corresponding to each frame to display. """ if self.indicator.is_sync: index_to_display = [0] * self.pregap_frame_num for iter in range(self.iteration): index_to_display += [0] * self.midgap_frame_num index_to_display += [1] * self.flash_frame_num index_to_display += [0] * self.postgap_frame_num index_to_display = index_to_display[self.midgap_frame_num:] return index_to_display else: raise NotImplementedError, "method not available for non-sync indicator" def generate_movie_by_index(self): """ compute the stimulus movie to be displayed by index. """ # compute unique frame parameters self.frames_unique = self._generate_frames_for_index_display() self.index_to_display = self._generate_display_index() num_frames = len(self.frames_unique) num_pixels_width = self.monitor.deg_coord_x.shape[0] num_pixels_height = self.monitor.deg_coord_x.shape[1] full_sequence = self.background * np.ones((num_frames, num_pixels_width, num_pixels_height), dtype=np.float32) indicator_width_min = (self.indicator.center_width_pixel - self.indicator.width_pixel / 2) indicator_width_max = (self.indicator.center_width_pixel + self.indicator.width_pixel / 2) indicator_height_min = (self.indicator.center_height_pixel - self.indicator.height_pixel / 2) indicator_height_max = (self.indicator.center_height_pixel + self.indicator.height_pixel / 2) # background = self.background * np.ones((num_pixels_width, # num_pixels_height), # dtype=np.float32) if self.coordinate == 'degree': map_azi = self.monitor.deg_coord_x map_alt = self.monitor.deg_coord_y elif self.coordinate == 'linear': map_azi = self.monitor.lin_coord_x map_alt = self.monitor.lin_coord_y else: raise LookupError, "`coordinate` not in {'linear','degree'}" circle_mask = get_circle_mask(map_alt=map_alt, map_azi=map_azi, center=self.center, radius=self.radius, is_smooth_edge=self.is_smooth_edge, blur_ratio=self.smooth_width_ratio, blur_func=self.smooth_func).astype(np.float32) # plt.imshow(circle_mask) # plt.show() for i, frame in enumerate(self.frames_unique): if frame[0] == 1: full_sequence[i][np.where(circle_mask==1)] = self.color full_sequence[i, indicator_height_min:indicator_height_max, indicator_width_min:indicator_width_max] = frame[1] mondict = dict(self.monitor.__dict__) indicator_dict = dict(self.indicator.__dict__) indicator_dict.pop('monitor') NFdict = dict(self.__dict__) NFdict.pop('monitor') NFdict.pop('indicator') NFdict.pop('smooth_func') full_dict = {'stimulation': NFdict, 'monitor': mondict, 'indicator': indicator_dict} return full_sequence, full_dict def generate_movie(self): """ generate movie frame by frame. """ self.frames = self.generate_frames() full_seq = np.zeros((len(self.frames), self.monitor.deg_coord_x.shape[0], self.monitor.deg_coord_x.shape[1]), dtype=np.float32) indicator_width_min = (self.indicator.center_width_pixel - (self.indicator.width_pixel / 2)) indicator_width_max = (self.indicator.center_width_pixel + (self.indicator.width_pixel / 2)) indicator_height_min = (self.indicator.center_height_pixel - (self.indicator.height_pixel / 2)) indicator_height_max = (self.indicator.center_height_pixel + (self.indicator.height_pixel / 2)) background = np.ones((np.size(self.monitor.deg_coord_x, 0), np.size(self.monitor.deg_coord_x, 1)), dtype=np.float32) * self.background if self.coordinate == 'degree': map_azi = self.monitor.deg_coord_x map_alt = self.monitor.deg_coord_y elif self.coordinate == 'linear': map_azi = self.monitor.lin_coord_x map_alt = self.monitor.lin_coord_y else: raise LookupError, "`coordinate` not in {'linear','degree'}" circle_mask = get_circle_mask(map_alt=map_alt, map_azi=map_azi, center=self.center, radius=self.radius, is_smooth_edge=self.is_smooth_edge, blur_ratio=self.smooth_width_ratio, blur_func=self.smooth_func).astype(np.float32) for i in range(len(self.frames)): curr_frame = self.frames[i] if curr_frame[0] == 0: curr_FC_seq = background else: curr_FC_seq = ((circle_mask * self.color) + ((-1 * (circle_mask - 1)) * background)) curr_FC_seq[indicator_height_min:indicator_height_max, indicator_width_min:indicator_width_max] = curr_frame[1] full_seq[i] = curr_FC_seq if i in range(0, len(self.frames), len(self.frames) / 10): print('Generating numpy sequence: ' + str(int(100 * (i + 1) / len(self.frames))) + '%') mondict = dict(self.monitor.__dict__) indicator_dict = dict(self.indicator.__dict__) indicator_dict.pop('monitor') NFdict = dict(self.__dict__) NFdict.pop('monitor') NFdict.pop('indicator') NFdict.pop('smooth_func') full_dict = {'stimulation': NFdict, 'monitor': mondict, 'indicator': indicator_dict} return full_seq, full_dict class SparseNoise(Stim): """ generate sparse noise stimulus integrates flashing indicator for photodiode This stimulus routine presents quasi-random noise in a specified region of the monitor. The `background` color can be customized but defaults to a grey value. Can specify the `subregion` of the monitor where the pixels will flash on and off (black and white respectively) Parameters ---------- monitor : monitor object contains display monitor information indicator : indicator object contains indicator information coordinate : str from {'degree','linear'}, optional specifies coordinates, defaults to 'degree' background : float, optional color of background. Takes values in [-1,1] where -1 is black and 1 is white pregap_dur : float, optional amount of time (in seconds) before the stimulus is presented, defaults to `2.` postgap_dur : float, optional amount of time (in seconds) after the stimulus is presented, defaults to `3.` grid_space : 2-tuple of floats, optional first coordinate is altitude, second coordinate is azimuth probe_size : 2-tuple of floats, optional size of flicker probes. First coordinate defines the width, and second coordinate defines the height probe_orientation : float, optional orientation of flicker probes probe_frame_num : int, optional number of frames for each square presentation subregion : list or tuple the region on the monitor that will display the sparse noise, list or tuple, [min_alt, max_alt, min_azi, max_azi] sign : {'ON-OFF', 'ON', 'OFF'}, optional determines which pixels appear in the `subregion`, defaults to `'ON-Off'` so that both on and off pixels appear. If `'ON` selected only on pixels (white) are displayed in the noise `subregion while if `'OFF'` is selected only off (black) pixels are displayed in the noise iteration : int, optional number of times to present stimulus, defaults to `1` is_include_edge : bool, default True, if True, the displayed probes will cover the edge case and ensure that the entire subregion is covered. If False, the displayed probes will exclude edge case and ensure that all the centers of displayed probes are within the subregion. """ def __init__(self, monitor, indicator, background=0., coordinate='degree', grid_space=(10., 10.), probe_size=(10., 10.), probe_orientation=0., probe_frame_num=6, subregion=None, sign='ON-OFF', iteration=1, pregap_dur=2., postgap_dur=3., is_include_edge=True): """ Initialize sparse noise object, inherits Parameters from Stim object """ super(SparseNoise, self).__init__(monitor=monitor, indicator=indicator, background=background, coordinate=coordinate, pregap_dur=pregap_dur, postgap_dur=postgap_dur) self.stim_name = 'SparseNoise' self.grid_space = grid_space self.probe_size = probe_size self.probe_orientation = probe_orientation if probe_frame_num >= 2.: self.probe_frame_num = int(probe_frame_num) else: raise ValueError('SparseNoise: probe_frame_num should be no less than 2.') self.is_include_edge = is_include_edge self.frame_config = ('is_display', 'probe center (altitude, azimuth)', 'polarity (-1 or 1)', 'indicator color [-1., 1.]') if subregion is None: if self.coordinate == 'degree': self.subregion = [np.amin(self.monitor.deg_coord_y), np.amax(self.monitor.deg_coord_y), np.amin(self.monitor.deg_coord_x), np.amax(self.monitor.deg_coord_x)] if self.coordinate == 'linear': self.subregion = [np.amin(self.monitor.lin_coord_y), np.amax(self.monitor.lin_coord_y), np.amin(self.monitor.lin_coord_x), np.amax(self.monitor.lin_coord_x)] else: self.subregion = subregion self.sign = sign if iteration >= 1: self.iteration = int(iteration) else: raise ValueError('iteration should be no less than 1.') self.clear() def _get_grid_locations(self, is_plot=False): """ generate all the grid points in display area (covered by both subregion and monitor span) Returns ------- grid_points : n x 2 array, refined [alt, azi] pairs of probe centers going to be displayed """ # get all the visual points for each pixels on monitor if self.coordinate == 'degree': monitor_azi = self.monitor.deg_coord_x monitor_alt = self.monitor.deg_coord_y elif self.coordinate == 'linear': monitor_azi = self.monitor.lin_coord_x monitor_alt = self.monitor.lin_coord_y else: raise ValueError('Do not understand coordinate system: {}. ' 'Should be either "linear" or "degree".'. format(self.coordinate)) grid_locations = get_grid_locations(subregion=self.subregion, grid_space=self.grid_space, monitor_azi=monitor_azi, monitor_alt=monitor_alt, is_include_edge=self.is_include_edge, is_plot=is_plot) return grid_locations def _generate_grid_points_sequence(self): """ generate pseudorandomized grid point sequence. if ON-OFF, consecutive frames should not present stimulus at same location Returns ------- all_grid_points : list list of the form [grid_point, sign] """ grid_points = self._get_grid_locations() if self.sign == 'ON': grid_points = [[x, 1] for x in grid_points] random.shuffle(grid_points) return grid_points elif self.sign == 'OFF': grid_points = [[x, -1] for x in grid_points] random.shuffle(grid_points) return grid_points elif self.sign == 'ON-OFF': all_grid_points = [[x, 1] for x in grid_points] + [[x, -1] for x in grid_points] random.shuffle(all_grid_points) # remove coincident hit of same location by continuous frames print('removing coincident hit of same location with continuous frames:') while True: iteration = 0 coincident_hit_num = 0 for i, grid_point in enumerate(all_grid_points[:-3]): if (all_grid_points[i][0] == all_grid_points[i + 1][0]).all(): all_grid_points[i + 1], all_grid_points[i + 2] = all_grid_points[i + 2], all_grid_points[i + 1] coincident_hit_num += 1 iteration += 1 print('iteration:' + iteration + ' continous hits number:' + coincident_hit_num) if coincident_hit_num == 0: break return all_grid_points def generate_frames(self): """ function to generate all the frames needed for SparseNoise stimulus returns a list of information of all frames as a list of tuples Information contained in each frame: first element - int when stimulus is displayed value is equal to 1, otherwise equal to 0, second element - tuple, retinotopic location of the center of current square,[alt, azi] third element - polarity of current square, 1 -> bright, -1-> dark forth element - color of indicator if synchronized : value equal to 0 when stimulus is not begin displayed, and 1 for onset frame of stimulus for each square, -1 for the rest. if non-synchronized: values alternate between -1 and 1 at defined frequency for gap frames the second and third elements should be 'None' """ frames = [] if self.probe_frame_num == 1: indicator_on_frame = 1 elif self.probe_frame_num > 1: indicator_on_frame = self.probe_frame_num // 2 else: raise ValueError('`probe_frame_num` should be an int larger than 0!') indicator_off_frame = self.probe_frame_num - indicator_on_frame frames += [[0., None, None, -1.]] * self.pregap_frame_num for i in range(self.iteration): iter_grid_points = self._generate_grid_points_sequence() for grid_point in iter_grid_points: frames += [[1., grid_point[0], grid_point[1], 1.]] * indicator_on_frame frames += [[1., grid_point[0], grid_point[1], -1.]] * indicator_off_frame frames += [[0., None, None, -1.]] * self.postgap_frame_num if not self.indicator.is_sync: indicator_frame = self.indicator.frame_num for m in range(len(frames)): if np.floor(m // indicator_frame) % 2 == 0: frames[m][3] = 1. else: frames[m][3] = -1. frames = [tuple(x) for x in frames] return tuple(frames) def _generate_frames_for_index_display(self): """ compute the information that defines the frames used for index display""" if self.indicator.is_sync: frames_unique = [] gap = [0., None, None, -1.] frames_unique.append(gap) grid_points = self._get_grid_locations() for grid_point in grid_points: if self.sign == 'ON': frames_unique.append([1., grid_point, 1., 1.]) frames_unique.append([1., grid_point, 1., -1.]) elif self.sign == 'OFF': frames_unique.append([1., grid_point, -1., 1.]) frames_unique.append([1., grid_point, -1., -1]) elif self.sign == 'ON-OFF': frames_unique.append([1., grid_point, 1., 1.]) frames_unique.append([1., grid_point, 1., -1.]) frames_unique.append([1., grid_point, -1., 1.]) frames_unique.append([1., grid_point, -1., -1]) else: raise ValueError('SparseNoise: Do not understand "sign", should ' 'be one of "ON", "OFF" and "ON-OFF".') frames_unique = tuple([tuple(f) for f in frames_unique]) return frames_unique else: raise NotImplementedError, "method not available for non-sync indicator" @staticmethod def _get_probe_index_for_one_iter_on_off(frames_unique): """ get shuffled probe indices from frames_unique generated by self._generate_frames_for_index_display(), only for 'ON-OFF' stimulus the first element of frames_unique should be gap frame, the following frames should be [ (probe_i_ON, indictor_ON), (probe_i_ON, indictor_OFF), (probe_i_OFF, indictor_ON), (probe_i_OFF, indictor_OFF), ] it is designed such that no consecutive probes will hit the same visual field location return list of integers, indices of shuffled probe """ if len(frames_unique) % 4 == 1: probe_num = (len(frames_unique) - 1) // 2 else: raise ValueError('number of frames_unique should be 4x + 1') probe_locations = [f[1] for f in frames_unique[1::2]] probe_ind = np.arange(probe_num) np.random.shuffle(probe_ind) is_overlap = True while is_overlap: is_overlap = False for i in range(probe_num - 1): probe_loc_0 = probe_locations[probe_ind[i]] probe_loc_1 = probe_locations[probe_ind[i + 1]] if np.array_equal(probe_loc_0, probe_loc_1): # print('overlapping probes detected. ind_{}:loc{}; ind_{}:loc{}' # .format(i, probe_loc_0, i + 1, probe_loc_1)) # print ('ind_{}:loc{}'.format((i + 2) % probe_num, # probe_locations[(i + 2) % probe_num])) ind_temp = probe_ind[i + 1] probe_ind[i + 1] = probe_ind[(i + 2) % probe_num] probe_ind[(i + 2) % probe_num] = ind_temp is_overlap = True return probe_ind def _generate_display_index(self): """ compute a list of indices corresponding to each frame to display. """ frames_unique = self._generate_frames_for_index_display() probe_on_frame_num = self.probe_frame_num // 2 probe_off_frame_num = self.probe_frame_num - probe_on_frame_num if self.sign == 'ON' or self.sign == 'OFF': if len(frames_unique) % 2 == 1: probe_num = (len(frames_unique) - 1) / 2 else: raise ValueError('SparseNoise: number of unique frames is not correct. Should be odd.') index_to_display = [] index_to_display += [0] * self.pregap_frame_num for iter in range(self.iteration): probe_sequence = np.arange(probe_num) np.random.shuffle(probe_sequence) for probe_ind in probe_sequence: index_to_display += [probe_ind * 2 + 1] * probe_on_frame_num index_to_display += [probe_ind * 2 + 2] * probe_off_frame_num index_to_display += [0] * self.postgap_frame_num elif self.sign == 'ON-OFF': if len(frames_unique) % 4 != 1: raise ValueError('number of frames_unique should be 4x + 1') index_to_display = [] index_to_display += [0] * self.pregap_frame_num for iter in range(self.iteration): probe_inds = self._get_probe_index_for_one_iter_on_off(frames_unique) for probe_ind in probe_inds: index_to_display += [probe_ind * 2 + 1] * probe_on_frame_num index_to_display += [probe_ind * 2 + 2] * probe_off_frame_num index_to_display += [0] * self.postgap_frame_num else: raise ValueError('SparseNoise: Do not understand "sign", should ' 'be one of "ON", "OFF" and "ON-OFF".') return frames_unique, index_to_display def generate_movie_by_index(self): """ compute the stimulus movie to be displayed by index. """ self.frames_unique, self.index_to_display = self._generate_display_index() num_unique_frames = len(self.frames_unique) num_pixels_width = self.monitor.deg_coord_x.shape[0] num_pixels_height = self.monitor.deg_coord_x.shape[1] if self.coordinate == 'degree': coord_azi = self.monitor.deg_coord_x coord_alt = self.monitor.deg_coord_y elif self.coordinate == 'linear': coord_azi = self.monitor.lin_coord_x coord_alt = self.monitor.lin_coord_y else: raise ValueError('Do not understand coordinate system: {}. ' 'Should be either "linear" or "degree".'. format(self.coordinate)) indicator_width_min = (self.indicator.center_width_pixel - self.indicator.width_pixel / 2) indicator_width_max = (self.indicator.center_width_pixel + self.indicator.width_pixel / 2) indicator_height_min = (self.indicator.center_height_pixel - self.indicator.height_pixel / 2) indicator_height_max = (self.indicator.center_height_pixel + self.indicator.height_pixel / 2) full_seq = self.background * \ np.ones((num_unique_frames, num_pixels_width, num_pixels_height), dtype=np.float32) for i, frame in enumerate(self.frames_unique): if frame[0] == 1: curr_probes = ([frame[1][0], frame[1][1], frame[2]],) # print type(curr_probes) disp_mat = get_warped_probes(deg_coord_alt=coord_alt, deg_coord_azi=coord_azi, probes=curr_probes, width=self.probe_size[0], height=self.probe_size[1], ori=self.probe_orientation, background_color=self.background) full_seq[i] = disp_mat full_seq[i, indicator_height_min:indicator_height_max, indicator_width_min:indicator_width_max] = frame[3] mondict = dict(self.monitor.__dict__) indicator_dict = dict(self.indicator.__dict__) indicator_dict.pop('monitor') SNdict = dict(self.__dict__) SNdict.pop('monitor') SNdict.pop('indicator') full_dict = {'stimulation': SNdict, 'monitor': mondict, 'indicator': indicator_dict} return full_seq, full_dict def generate_movie(self): """ generate movie for display frame by frame """ self.frames = self.generate_frames() if self.coordinate == 'degree': coord_x = self.monitor.deg_coord_x coord_y = self.monitor.deg_coord_y elif self.coordinate == 'linear': coord_x = self.monitor.lin_coord_x coord_y = self.monitor.lin_coord_y else: raise ValueError('Do not understand coordinate system: {}. ' 'Should be either "linear" or "degree".'. format(self.coordinate)) indicator_width_min = (self.indicator.center_width_pixel - self.indicator.width_pixel / 2) indicator_width_max = (self.indicator.center_width_pixel + self.indicator.width_pixel / 2) indicator_height_min = (self.indicator.center_height_pixel - self.indicator.height_pixel / 2) indicator_height_max = (self.indicator.center_height_pixel + self.indicator.height_pixel / 2) full_seq = np.ones((len(self.frames), self.monitor.deg_coord_x.shape[0], self.monitor.deg_coord_x.shape[1]), dtype=np.float32) * self.background for i, curr_frame in enumerate(self.frames): if curr_frame[0] == 1: # not a gap curr_probes = ([curr_frame[1][0], curr_frame[1][1], curr_frame[2]],) if i == 0: # first frame and (not a gap) curr_disp_mat = get_warped_probes(deg_coord_alt=coord_y, deg_coord_azi=coord_x, probes=curr_probes, width=self.probe_size[0], height=self.probe_size[1], ori=self.probe_orientation, background_color=self.background) else: # (not first frame) and (not a gap) if self.frames[i - 1][1] is None: # (not first frame) and (not a gap) and (new square from gap) curr_disp_mat = get_warped_probes(deg_coord_alt=coord_y, deg_coord_azi=coord_x, probes=curr_probes, width=self.probe_size[0], height=self.probe_size[1], ori=self.probe_orientation, background_color=self.background) elif (curr_frame[1] != self.frames[i - 1][1]).any() or (curr_frame[2] != self.frames[i - 1][2]): # (not first frame) and (not a gap) and (new square from old square) curr_disp_mat = get_warped_probes(deg_coord_alt=coord_y, deg_coord_azi=coord_x, probes=curr_probes, width=self.probe_size[0], height=self.probe_size[1], ori=self.probe_orientation, background_color=self.background) # assign current display matrix to full sequence full_seq[i] = curr_disp_mat # add sync square for photodiode full_seq[i, indicator_height_min:indicator_height_max, indicator_width_min:indicator_width_max] = curr_frame[3] if i in range(0, len(self.frames), len(self.frames) / 10): print('Generating numpy sequence: ' + str(int(100 * (i + 1) / len(self.frames))) + '%') # generate log dictionary mondict = dict(self.monitor.__dict__) indicator_dict = dict(self.indicator.__dict__) indicator_dict.pop('monitor') SNdict = dict(self.__dict__) SNdict.pop('monitor') SNdict.pop('indicator') full_dict = {'stimulation': SNdict, 'monitor': mondict, 'indicator': indicator_dict} return full_seq, full_dict class LocallySparseNoise(Stim): """ generate locally sparse noise stimulus integrates flashing indicator for photodiode This stimulus routine presents quasi-random noise in a specified region of the monitor. The `background` color can be customized but defaults to a grey value. Can specify the `subregion` of the monitor where the pixels will flash on and off (black and white respectively) Different from SparseNoise stimulus which presents only one probe at a time, the LocallySparseNoise presents multiple probes simultaneously to speed up the sampling frequency. The sparsity of probes is defined by minimum distance in visual degree: in any given frame, the centers of any pair of two probes will have distance larger than minimum distance in visual degrees. The method generate locally sparse noise here insures, for each iteration, all the locations in the subregion will be sampled once and only once. Parameters ---------- monitor : monitor object contains display monitor information indicator : indicator object contains indicator information coordinate : str from {'degree','linear'}, optional specifies coordinates, defaults to 'degree' background : float, optional color of background. Takes values in [-1,1] where -1 is black and 1 is white pregap_dur : float, optional amount of time (in seconds) before the stimulus is presented, defaults to `2.` postgap_dur : float, optional amount of time (in seconds) after the stimulus is presented, defaults to `3.` min_distance : float, default 20. the minimum distance in visual degree for any pair of probe centers in a given frame grid_space : 2-tuple of floats, optional first coordinate is altitude, second coordinate is azimuth probe_size : 2-tuple of floats, optional size of flicker probes. First coordinate defines the width, and second coordinate defines the height probe_orientation : float, optional orientation of flicker probes probe_frame_num : int, optional number of frames for each square presentation subregion : list or tuple the region on the monitor that will display the sparse noise, list or tuple, [min_alt, max_alt, min_azi, max_azi] sign : {'ON-OFF', 'ON', 'OFF'}, optional determines which pixels appear in the `subregion`, defaults to `'ON-Off'` so that both on and off pixels appear. If `'ON` selected only on pixels (white) are displayed in the noise `subregion while if `'OFF'` is selected only off (black) pixels are displayed in the noise iteration : int, optional number of times to present stimulus with random order, the total number a paticular probe will be displayded will be iteration * repeat, defaults to `1` repeat : int, optional number of repeat of whole sequence, the total number a paticular probe will be displayded will be iteration * repeat, defaults to `1` is_include_edge : bool, default True, if True, the displayed probes will cover the edge case and ensure that the entire subregion is covered. If False, the displayed probes will exclude edge case and ensure that all the centers of displayed probes are within the subregion. """ def __init__(self, monitor, indicator, min_distance=20., background=0., coordinate='degree', grid_space=(10., 10.), probe_size=(10., 10.), probe_orientation=0., probe_frame_num=6, subregion=None, sign='ON-OFF', iteration=1, repeat=1, pregap_dur=2., postgap_dur=3., is_include_edge=True): """ Initialize sparse noise object, inherits Parameters from Stim object """ super(LocallySparseNoise, self).__init__(monitor=monitor, indicator=indicator, background=background, coordinate=coordinate, pregap_dur=pregap_dur, postgap_dur=postgap_dur) self.stim_name = 'LocallySparseNoise' self.grid_space = grid_space self.probe_size = probe_size self.min_distance = float(min_distance) self.probe_orientation = probe_orientation self.is_include_edge = is_include_edge self.frame_config = ('is_display', 'probes ((altitude, azimuth, sign), ...)', 'iteration', 'indicator color [-1., 1.]') if probe_frame_num >= 2: self.probe_frame_num = int(probe_frame_num) else: raise ValueError('SparseNoise: probe_frame_num should be no less than 2.') self.is_include_edge = is_include_edge if subregion is None: if self.coordinate == 'degree': self.subregion = [np.amin(self.monitor.deg_coord_y), np.amax(self.monitor.deg_coord_y), np.amin(self.monitor.deg_coord_x), np.amax(self.monitor.deg_coord_x)] if self.coordinate == 'linear': self.subregion = [np.amin(self.monitor.lin_coord_y), np.amax(self.monitor.lin_coord_y), np.amin(self.monitor.lin_coord_x), np.amax(self.monitor.lin_coord_x)] else: self.subregion = subregion self.sign = sign if iteration >= 1: self.iteration = int(iteration) else: raise ValueError('iteration should be no less than 1.') if repeat >= 1: self.repeat = int(repeat) else: raise ValueError('repeat should be no less than 1.') self.clear() def _get_grid_locations(self, is_plot=False): """ generate all the grid points in display area (covered by both subregion and monitor span) Returns ------- grid_points : n x 2 array, refined [azi, alt] pairs of probe centers going to be displayed """ # get all the visual points for each pixels on monitor if self.coordinate == 'degree': monitor_azi = self.monitor.deg_coord_x monitor_alt = self.monitor.deg_coord_y elif self.coordinate == 'linear': monitor_azi = self.monitor.lin_coord_x monitor_alt = self.monitor.lin_coord_y else: raise ValueError('Do not understand coordinate system: {}. Should be either "linear" or "degree".'. format(self.coordinate)) grid_locations = get_grid_locations(subregion=self.subregion, grid_space=self.grid_space, monitor_azi=monitor_azi, monitor_alt=monitor_alt, is_include_edge=self.is_include_edge, is_plot=is_plot) return grid_locations def _generate_all_probes(self): """ return all possible (grid location + sign) combinations within the subregion, return a list of probe parameters, each element in the list is [center_altitude, center_azimuth, sign] """ grid_locs = self._get_grid_locations() grid_locs = list([list(gl) for gl in grid_locs]) if self.sign == 'ON': all_probes = [gl + [1.] for gl in grid_locs] elif self.sign == 'OFF': all_probes = [gl + [-1.] for gl in grid_locs] elif self.sign == 'ON-OFF': all_probes = [gl + [1.] for gl in grid_locs] + [gl + [-1.] for gl in grid_locs] else: raise ValueError('LocallySparseNoise: Cannot understand self.sign, should be ' 'one of "ON", "OFF", "ON-OFF".') return all_probes def _generate_probe_locs_one_frame(self, probes): """ given the available probes, generate a sublist of the probes for a single frame, all the probes in the sublist will have their visual space distance longer than self.min_distance. This function will also update input probes, remove the elements that have been selected into the sublist. parameters ---------- probes : list of all available probes each elements is [center_altitude, center_azimuth, sign] for a particular probe min_dis : float minimum distance to reject probes too close to each other returns ------- probes_one_frame : list of selected probes fo one frame each elements is [center_altitude, center_azimuth, sign] for a selected probe """ np.random.shuffle(probes) probes_one_frame = [] probes_left = list(probes) for probe in probes: # print len(probes) is_overlap = False for probe_frame in probes_one_frame: # print probe # print probe_frame curr_dis = ia.distance([probe[0], probe[1]], [probe_frame[0], probe_frame[1]]) if curr_dis <= self.min_distance: is_overlap = True break if not is_overlap: probes_one_frame.append(probe) probes_left.remove(probe) return probes_one_frame, probes_left def _generate_probe_sequence_one_iteration(self, all_probes, is_redistribute=True): """ given all probes to be displayed and minimum distance between any pair of two probes return frames of one iteration that ensure all probes will be present once parameters ---------- all_probes : list all probes to be displayed, each element (center_alt, center_azi, sign). ideally outputs of self._generate_all_probes() is_redistribute : bool redistribute the probes among frames after initial generation or not. redistribute will use self._redistribute_probes() and try to minimize the difference of probe numbers among different frames returns ------- frames : tuple each element of the frames tuple represent one display frame, the element itself is a tuple of the probes to be displayed in this particular frame """ all_probes_cpy = list(all_probes) frames = [] while len(all_probes_cpy) > 0: curr_frames, all_probes_cpy = self._generate_probe_locs_one_frame(probes=all_probes_cpy) frames.append(curr_frames) if is_redistribute: frames = self._redistribute_probes(frames=frames) frames = tuple(tuple(f) for f in frames) return frames def _redistribute_one_probe(self, frames): # initiate is_moved variable is_moved = False # reorder frames from most probes to least probes new_frames = sorted(frames, key=lambda frame: len(frame)) probe_num_most = len(new_frames[-1]) # the indices of frames in new_frames that contain most probes frame_ind_most = [] # the indices of frames in new_frames that contain less probes frame_ind_less = [] for frame_ind, frame in enumerate(new_frames): if len(frame) == probe_num_most: frame_ind_most.append(frame_ind) elif len(frame) <= probe_num_most - 2: # '-1' means well distributed frame_ind_less.append(frame_ind) # constructing a list of probes that potentially can be moved # each element is [(center_alt, center_azi, sign), frame_ind] probes_to_be_moved = [] for frame_ind in frame_ind_most: frame_most = new_frames[frame_ind] for probe in frame_most: probes_to_be_moved.append((probe, frame_ind)) # loop through probes_to_be_moved to see if any of them will fit into # frames with less probes, once find a case, break the loop and return for probe, frame_ind_src in probes_to_be_moved: frame_src = new_frames[frame_ind_src] for frame_ind_dst in frame_ind_less: frame_dst = new_frames[frame_ind_dst] if self._is_fit(probe, frame_dst): frame_src.remove(probe) frame_dst.append(probe) is_moved = True break if is_moved: break return is_moved, new_frames def _is_fit(self, probe, probes): """ test if a given probe will fit a group of probes without breaking the sparcity parameters ---------- probe : list or tuple of three floats (center_alt, center_azi, sign) probes : list of probes [(center_alt, center_zai, sign), (center_alt, center_azi, sign), ...] returns ------- is_fit : bool the probe will fit or not """ is_fit = True for probe2 in probes: if ia.distance([probe[0], probe[1]], [probe2[0], probe2[1]]) <= self.min_distance: is_fit = False break return is_fit def _redistribute_probes(self, frames): """ attempt to redistribute probes among frames for one iteration of display the algorithm is to pick a probe from the frames with most probes to the frames with least probes and do it iteratively until it can not move anymore and the biggest difference of probe numbers among all frames is no more than 1 (most evenly distributed). the algorithm is implemented by self._redistribute_probes() function, this is just to roughly massage the probes among frames, but not the attempt to find the best solution. parameters ---------- frames : list each element of the frames list represent one display frame, the element itself is a list of the probes (center_alt, center_azi, sign) to be displayed in this particular frame returns ------- new_frames : list same structure as input frames but with redistributed probes """ new_frames = list(frames) is_moved = True probe_nums = [len(frame) for frame in new_frames] probe_nums.sort() probe_diff = probe_nums[-1] - probe_nums[0] while is_moved and probe_diff > 1: is_moved, new_frames = self._redistribute_one_probe(new_frames) probe_nums = [len(frame) for frame in new_frames] probe_nums.sort() probe_diff = probe_nums[-1] - probe_nums[0] else: if not is_moved: # print ('redistributing probes among frames: no more probes can be moved.') pass if probe_diff <= 1: # print ('redistributing probes among frames: probes already well distributed.') pass return new_frames def _generate_frames_for_index_display(self): """ compute the information that defines the frames used for index display parameters ---------- all_probes : list all probes to be displayed, each element (center_alt, center_azi, sign). ideally outputs of self._generate_all_probes() returns ------- frames_unique : tuple """ all_probes = self._generate_all_probes() frames_unique = [] gap = [0., None, None, -1.] frames_unique.append(gap) for i in range(self.iteration): probes_iter = self._generate_probe_sequence_one_iteration(all_probes=all_probes, is_redistribute=True) for probes in probes_iter: frames_unique.append([1., probes, i, 1.]) frames_unique.append([1., probes, i, -1.]) frames_unique = tuple([tuple(f) for f in frames_unique]) return frames_unique def _generate_display_index(self): """ compute a list of indices corresponding to each frame to display. """ if self.indicator.is_sync: frames_unique = self._generate_frames_for_index_display() if len(frames_unique) % 2 == 1: display_num = (len(frames_unique) - 1) / 2 # number of each unique display frame else: raise ValueError('LocallySparseNoise: number of unique frames is not correct. Should be odd.') probe_on_frame_num = self.probe_frame_num // 2 probe_off_frame_num = self.probe_frame_num - probe_on_frame_num index_to_display = [] for display_ind in range(display_num): index_to_display += [display_ind * 2 + 1] * probe_on_frame_num index_to_display += [display_ind * 2 + 2] * probe_off_frame_num index_to_display = index_to_display * self.repeat index_to_display = [0] * self.pregap_frame_num + index_to_display + [0] * self.postgap_frame_num return frames_unique, index_to_display else: raise NotImplementedError, "method not available for non-sync indicator" def generate_movie_by_index(self): self.frames_unique, self.index_to_display = self._generate_display_index() num_unique_frames = len(self.frames_unique) num_pixels_width = self.monitor.deg_coord_x.shape[0] num_pixels_height = self.monitor.deg_coord_x.shape[1] if self.coordinate == 'degree': coord_azi = self.monitor.deg_coord_x coord_alt = self.monitor.deg_coord_y elif self.coordinate == 'linear': coord_azi = self.monitor.lin_coord_x coord_alt = self.monitor.lin_coord_y else: raise ValueError('Do not understand coordinate system: {}. ' 'Should be either "linear" or "degree".'. format(self.coordinate)) indicator_width_min = (self.indicator.center_width_pixel - self.indicator.width_pixel / 2) indicator_width_max = (self.indicator.center_width_pixel + self.indicator.width_pixel / 2) indicator_height_min = (self.indicator.center_height_pixel - self.indicator.height_pixel / 2) indicator_height_max = (self.indicator.center_height_pixel + self.indicator.height_pixel / 2) full_seq = self.background * \ np.ones((num_unique_frames, num_pixels_width, num_pixels_height), dtype=np.float32) for i, frame in enumerate(self.frames_unique): if frame[0] == 1.: disp_mat = get_warped_probes(deg_coord_alt=coord_alt, deg_coord_azi=coord_azi, probes=frame[1], width=self.probe_size[0], height=self.probe_size[1], ori=self.probe_orientation, background_color=self.background) full_seq[i] = disp_mat full_seq[i, indicator_height_min:indicator_height_max, indicator_width_min:indicator_width_max] = frame[3] mondict = dict(self.monitor.__dict__) indicator_dict = dict(self.indicator.__dict__) indicator_dict.pop('monitor') SNdict = dict(self.__dict__) SNdict.pop('monitor') SNdict.pop('indicator') full_dict = {'stimulation': SNdict, 'monitor': mondict, 'indicator': indicator_dict} return full_seq, full_dict class DriftingGratingCircle(Stim): """ Generate drifting grating circle stimulus Stimulus routine presents drifting grating stimulus inside of a circle centered at `center`. The drifting gratings are determined by spatial and temporal frequencies, directionality, contrast, and radius. The routine can generate several different gratings within one presentation by specifying multiple values of the parameters which characterize the stimulus. Parameters ---------- monitor : monitor object contains display monitor information indicator : indicator object contains indicator information coordinate : str from {'degree','linear'}, optional specifies coordinates, defaults to 'degree' background : float, optional color of background. Takes values in [-1,1] where -1 is black and 1 is white pregap_dur : float, optional amount of time (in seconds) before the stimulus is presented, defaults to `2.` postgap_dur : float, optional amount of time (in seconds) after the stimulus is presented, defaults to `3.` center : 2-tuple of floats, optional coordintes for center of the stimulus (altitude, azimuth) sf_list : n-tuple, optional list of spatial frequencies in cycles/unit, defaults to `(0.08)` tf_list : n-tuple, optional list of temportal frequencies in Hz, defaults to `(4.)` dire_list : n-tuple, optional list of directions in degrees, defaults to `(0.)` con_list : n-tuple, optional list of contrasts taking values in [0.,1.], defaults to `(0.5)` radius_list : n-tuple list of radii of circles, unit defined by `self.coordinate`, defaults to `(10.)` block_dur : float, optional duration of each condition in seconds, defaults to `2.` midgap_dur : float, optional duration of gap between conditions, defaults to `0.5` iteration : int, optional number of times the stimulus is displayed, defaults to `1` is_smooth_edge : bool True, smooth circle edge with smooth_width_ratio and smooth_func False, do not smooth edge smooth_width_ratio : float, should be smaller than 1. the ratio between smooth band width and radius, circle edge is the middle of smooth band smooth_func : function object this function take two inputs: 1) ndarray storing the distance from each pixel to smooth band center; 2) smooth band width. returns smoothed mask with same shape as input ndarray is_blank_block : bool if True, one blank block (full screen background with the same duration of other blocks) will be displayed for each iteration. The frames of this condition will be: (1, 1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0), the meaning of these numbers can be found in self.frame_config """ def __init__(self, monitor, indicator, background=0., coordinate='degree', center=(0., 60.), sf_list=(0.08,), tf_list=(4.,), dire_list=(0.,), con_list=(0.5,), radius_list=(10.,), block_dur=2., midgap_dur=0.5, iteration=1, pregap_dur=2., postgap_dur=3., is_smooth_edge=False, smooth_width_ratio=0.2, smooth_func=blur_cos, is_blank_block=True): """ Initialize `DriftingGratingCircle` stimulus object, inherits Parameters from `Stim` class """ super(DriftingGratingCircle, self).__init__(monitor=monitor, indicator=indicator, background=background, coordinate=coordinate, pregap_dur=pregap_dur, postgap_dur=postgap_dur) self.stim_name = 'DriftingGratingCircle' if len(center) != 2: raise ValueError("DriftingGragingCircle: input 'center' should have " "two elements: (altitude, azimuth).") self.center = center self.sf_list = list(set(sf_list)) self.tf_list = list(set(tf_list)) self.dire_list = list(set(dire_list)) self.con_list = list(set(con_list)) self.radius_list = list(set(radius_list)) self.is_smooth_edge = is_smooth_edge self.smooth_width_ratio = smooth_width_ratio self.smooth_func = smooth_func if int(block_dur * self.monitor.refresh_rate) >= 4: self.block_dur = float(block_dur) else: raise ValueError('There should be more than 4 frames per block, otherwise the ' 'synchronized indicator strategy will not work.') if midgap_dur >= 0.: self.midgap_dur = float(midgap_dur) else: raise ValueError('midgap_dur should be no less than 0 second') self.iteration = iteration self.frame_config = ('is_display', 'isCycleStart', 'spatial frequency (cycle/deg)', 'temporal frequency (Hz)', 'direction (deg)', 'contrast [0., 1.]', 'radius (deg)', 'phase (deg)', 'indicator color [-1., 1.]') self.is_blank_block = bool(is_blank_block) for tf in tf_list: period = 1. / tf if (0.05 * period) < (block_dur % period) < (0.95 * period): # print(period) # print(block_dur % period) # print(0.95 * period) error_msg = ('Duration of each block times tf ' + str(tf) + ' should be close to a whole number!') raise ValueError, error_msg @property def midgap_frame_num(self): return int(self.midgap_dur * self.monitor.refresh_rate) @property def block_frame_num(self): return int(self.block_dur * self.monitor.refresh_rate) def _generate_all_conditions(self): """ generate all possible conditions for one iteration given the lists of parameters Returns ------- all_conditions : list of tuples all unique combinations of spatial frequency, temporal frequency, direction, contrast, and radius. Output depends on initialization parameters. """ all_conditions = [(sf, tf, dire, con, size) for sf in self.sf_list for tf in self.tf_list for dire in self.dire_list for con in self.con_list for size in self.radius_list] if self.is_blank_block: all_conditions.append((0., 0., 0., 0., 0.)) return all_conditions def _generate_phase_list(self, tf): """ get a list of phases that will be displayed for each frame in the block duration, also make the first frame of each cycle Parameters ---------- tf : float temporal frequency in Hz Returns ------- phases : list of phases in one block frame_per_cycle : number of frames for each circle """ if tf == 0.: phases = [0.] * self.block_frame_num frame_per_cycle = self.block_frame_num else: frame_per_cycle = int(self.monitor.refresh_rate / tf) phases_per_cycle = list(np.arange(0, np.pi * 2, np.pi * 2 / frame_per_cycle)) phases = [] while len(phases) < self.block_frame_num: phases += phases_per_cycle phases = phases[0: self.block_frame_num] return phases, frame_per_cycle @staticmethod def _get_ori(dire): """ get orientation from direction, [0, pi) """ return (dire + 90.) % 360. def generate_frames(self): """ function to generate all the frames needed for DriftingGratingCircle returns a list of information of all frames as a list of tuples Information contained in each frame: first element - value equal to 1 during stimulus and 0 otherwise second element - on first frame in a cycle value takes on 1, and otherwise is equal to 0. third element - spatial frequency forth element - temporal frequency fifth element - direction, [0, 2*pi) sixth element - contrast, [-1., 1.] seventh element - size, float (radius of the circle in visual degree) eighth element - phase, [0, 2*pi) ninth element - indicator color [-1, 1]. Value is equal to 1 on the first frame of each cycle, -1 during gaps and otherwise 0. during gap frames the second through the eighth elements should be 'None'. """ frames = [] off_params = [0, None, None, None, None, None, None, None, -1.] # midgap_frames = int(self.midgap_dur*self.monitor.refresh_rate) for i in range(self.iteration): if i == 0: # very first block frames += [off_params for ind in range(self.pregap_frame_num)] else: # first block for the later iteration frames += [off_params for ind in range(self.midgap_frame_num)] all_conditions = self._generate_all_conditions() random.shuffle(all_conditions) for j, condition in enumerate(all_conditions): if j != 0: # later conditions frames += [off_params for ind in range(self.midgap_frame_num)] sf, tf, dire, con, size = condition # get phase list for each condition phases, frame_per_cycle = self._generate_phase_list(tf) # if (dire % 360.) >= 90. and (dire % 360. < 270.): # phases = [-phase for phase in phases] for k, phase in enumerate(phases): # each frame in the block # mark first frame of each cycle if k % frame_per_cycle == 0: first_in_cycle = 1 else: first_in_cycle = 0 frames.append([1, first_in_cycle, sf, tf, dire, con, size, phase, float(first_in_cycle)]) # add post gap frame frames += [off_params for ind in range(self.postgap_frame_num)] # add non-synchronized indicator if self.indicator.is_sync == False: for l in range(len(frames)): if np.floor(l // self.indicator.frame_num) % 2 == 0: frames[l][-1] = 1 else: frames[l][-1] = -1 # switch each frame to tuple frames = [tuple(frame) for frame in frames] return tuple(frames) def _generate_frames_for_index_display_condition(self, condi_params): """ :param condi_params: list of input condition parameters, [sf, tf, dire, con, size] designed for the output of self._generate_all_conditions() :return: frames_unique_condi: list of unique frame parameters for this particular condition index_to_display_condi: list of indices of display order of the unique frames for this particular condition """ phases, frame_per_cycle = self._generate_phase_list(condi_params[1]) if condi_params[0] == 0.: # blank block frames_unique_condi = ((1, 1, 0., 0., 0., 0., 0., 0., 1.), (1, 1, 0., 0., 0., 0., 0., 0., 0.)) index_to_display_condi = [1] * self.block_frame_num index_to_display_condi[0] = 0 else: phases_unique = phases[0:frame_per_cycle] frames_unique_condi = [] for i, ph in enumerate(phases_unique): if i == 0: frames_unique_condi.append([1, 1, condi_params[0], condi_params[1], condi_params[2], condi_params[3], condi_params[4], ph, 1.]) else: frames_unique_condi.append([1, 0, condi_params[0], condi_params[1], condi_params[2], condi_params[3], condi_params[4], ph, 0.]) index_to_display_condi = [] while len(index_to_display_condi) < len(phases): index_to_display_condi += range(frame_per_cycle) index_to_display_condi = index_to_display_condi[0:len(phases)] frames_unique_condi = tuple([tuple(f) for f in frames_unique_condi]) return frames_unique_condi, index_to_display_condi def _generate_frames_unique_and_condi_ind_dict(self): """ compute the information that defines the frames used for index display :return frames_unique the condi_ind_in_frames_unique: { condi_key (same condi_key as condi_dict): list of non-negative integers representing the indices of this particular condition in frames_unique } """ if self.indicator.is_sync: all_conditions = self._generate_all_conditions() ''' cond_dict is a dictionary constructed as following { condi_key (i.e. condi_0000): { 'frames_unique': list of unique frame parameters for this particual condition [is_display, is_first_in_cycle, sf, tf, dire, con, size, phase, indicator_color], 'index_to_display': list of non-negative integers, } } ''' condi_dict = {} for i, condi in enumerate(all_conditions): frames_unique_condi, index_to_display_condi = self._generate_frames_for_index_display_condition(condi) condi_dict.update({'condi_{:04d}'.format(i): {'frames_unique': frames_unique_condi, 'index_to_display': index_to_display_condi} }) condi_keys = condi_dict.keys() condi_keys.sort() # handle frames_unique frames_unique = [] gap_frame = (0., None, None, None, None, None, None, None, -1.) frames_unique.append(gap_frame) condi_keys.sort() condi_ind_in_frames_unique = {} for condi_key in condi_keys: curr_frames_unique_total = len(frames_unique) curr_index_to_display_condi = np.array(condi_dict[condi_key]['index_to_display']) frames_unique += list(condi_dict[condi_key]['frames_unique']) condi_ind_in_frames_unique.update( {condi_key: list(curr_index_to_display_condi + curr_frames_unique_total)}) return frames_unique, condi_ind_in_frames_unique else: raise NotImplementedError, "method not available for non-sync indicator" def _generate_display_index(self): """ compute a list of indices corresponding to each frame to display. """ frames_unique, condi_ind_in_frames_unique = self._generate_frames_unique_and_condi_ind_dict() condi_keys = list(condi_ind_in_frames_unique.keys()) index_to_display = [] index_to_display += [0] * self.pregap_frame_num for iter in range(self.iteration): np.random.shuffle(condi_keys) for condi_ind, condi in enumerate(condi_keys): if iter == 0 and condi_ind == 0: pass else: index_to_display += [0] * self.midgap_frame_num index_to_display += condi_ind_in_frames_unique[condi] index_to_display += [0] * self.postgap_frame_num return frames_unique, index_to_display def generate_movie_by_index(self): """ compute the stimulus movie to be displayed by index. """ self.frames_unique, self.index_to_display = self._generate_display_index() # print '\n'.join([str(f) for f in self.frames_unique]) mask_dict = self._generate_circle_mask_dict() num_unique_frames = len(self.frames_unique) num_pixels_width = self.monitor.deg_coord_x.shape[0] num_pixels_height = self.monitor.deg_coord_x.shape[1] if self.coordinate == 'degree': coord_azi = self.monitor.deg_coord_x coord_alt = self.monitor.deg_coord_y elif self.coordinate == 'linear': coord_azi = self.monitor.lin_coord_x coord_alt = self.monitor.lin_coord_y else: raise LookupError, "`coordinate` not in {'linear','degree'}" indicator_width_min = (self.indicator.center_width_pixel - self.indicator.width_pixel / 2) indicator_width_max = (self.indicator.center_width_pixel + self.indicator.width_pixel / 2) indicator_height_min = (self.indicator.center_height_pixel - self.indicator.height_pixel / 2) indicator_height_max = (self.indicator.center_height_pixel + self.indicator.height_pixel / 2) mov = self.background * np.ones((num_unique_frames, num_pixels_width, num_pixels_height), dtype=np.float32) background_frame = self.background * np.ones((num_pixels_width, num_pixels_height), dtype=np.float32) for i, frame in enumerate(self.frames_unique): if frame[0] == 1 and frame[2] != 0.: # not a gap and not a blank block # curr_ori = self._get_ori(frame[3]) curr_grating = get_grating(alt_map=coord_alt, azi_map=coord_azi, dire=frame[4], spatial_freq=frame[2], center=self.center, phase=frame[7], contrast=frame[5]) curr_grating = curr_grating * 2. - 1. curr_circle_mask = mask_dict[frame[6]] mov[i] = ((curr_grating * curr_circle_mask) + (background_frame * (curr_circle_mask * -1. + 1.))) # add sync square for photodiode mov[i, indicator_height_min:indicator_height_max, indicator_width_min:indicator_width_max] = frame[-1] mondict = dict(self.monitor.__dict__) indicator_dict = dict(self.indicator.__dict__) indicator_dict.pop('monitor') self_dict = dict(self.__dict__) self_dict.pop('monitor') self_dict.pop('indicator') self_dict.pop('smooth_func') log = {'stimulation': self_dict, 'monitor': mondict, 'indicator': indicator_dict} return mov, log def _generate_circle_mask_dict(self): """ generate a dictionary of circle masks for each size in size list """ masks = {} if self.coordinate == 'degree': coord_azi = self.monitor.deg_coord_x coord_alt = self.monitor.deg_coord_y elif self.coordinate == 'linear': coord_azi = self.monitor.lin_coord_x coord_alt = self.monitor.lin_coord_y else: raise ValueError('Do not understand coordinate system: {}. ' 'Should be either "linear" or "degree".'. format(self.coordinate)) for radius in self.radius_list: curr_mask = get_circle_mask(map_alt=coord_alt, map_azi=coord_azi, center=self.center, radius=radius, is_smooth_edge=self.is_smooth_edge, blur_ratio=self.smooth_width_ratio, blur_func=self.smooth_func) masks.update({radius: curr_mask}) return masks def generate_movie(self): """ Generate movie frame by frame """ self.frames = self.generate_frames() mask_dict = self._generate_circle_mask_dict() if self.coordinate == 'degree': coord_azi = self.monitor.deg_coord_x coord_alt = self.monitor.deg_coord_y elif self.coordinate == 'linear': coord_azi = self.monitor.lin_coord_x coord_alt = self.monitor.lin_coord_y else: raise LookupError, "`coordinate` not in {'linear','degree'}" indicator_width_min = (self.indicator.center_width_pixel - self.indicator.width_pixel / 2) indicator_width_max = (self.indicator.center_width_pixel + self.indicator.width_pixel / 2) indicator_height_min = (self.indicator.center_height_pixel - self.indicator.height_pixel / 2) indicator_height_max = (self.indicator.center_height_pixel + self.indicator.height_pixel / 2) mov = np.ones((len(self.frames), coord_azi.shape[0], coord_azi.shape[1]), dtype=np.float32) * self.background background_frame = np.ones(coord_azi.shape, dtype=np.float32) * self.background for i, curr_frame in enumerate(self.frames): if curr_frame[0] == 1 and curr_frame[2] != 0. : # not a gap and not a blank block # curr_ori = self._get_ori(curr_frame[4]) curr_grating = get_grating(alt_map=coord_alt, azi_map=coord_azi, dire=curr_frame[4], spatial_freq=curr_frame[2], center=self.center, phase=curr_frame[7], contrast=curr_frame[5]) # plt.imshow(curr_grating) # plt.show() curr_grating = curr_grating * 2. - 1. # change scale from [0., 1.] to [-1., 1.] curr_circle_mask = mask_dict[curr_frame[6]] mov[i] = ((curr_grating * curr_circle_mask) + (background_frame * (curr_circle_mask * -1. + 1.))) # add sync square for photodiode mov[i, indicator_height_min:indicator_height_max, indicator_width_min:indicator_width_max] = curr_frame[-1] if i in range(0, len(self.frames), len(self.frames) / 10): print('Generating numpy sequence: ' + str(int(100 * (i + 1) / len(self.frames))) + '%') # generate log dictionary mondict = dict(self.monitor.__dict__) indicator_dict = dict(self.indicator.__dict__) indicator_dict.pop('monitor') self_dict = dict(self.__dict__) self_dict.pop('monitor') self_dict.pop('indicator') self_dict.pop('smooth_func') log = {'stimulation': self_dict, 'monitor': mondict, 'indicator': indicator_dict} return mov, log class StaticGratingCircle(Stim): """ Generate static grating circle stimulus Stimulus routine presents flashing static grating stimulus inside of a circle centered at `center`. The static gratings are determined by spatial frequencies, orientation, contrast, radius and phase. The routine can generate several different gratings within one presentation by specifying multiple values of the parameters which characterize the stimulus. Parameters ---------- monitor : monitor object contains display monitor information indicator : indicator object contains indicator information coordinate : str from {'degree','linear'}, optional specifies coordinates, defaults to 'degree' background : float, optional color of background. Takes values in [-1,1] where -1 is black and 1 is white pregap_dur : float, optional amount of time (in seconds) before the stimulus is presented, defaults to `2.` postgap_dur : float, optional amount of time (in seconds) after the stimulus is presented, defaults to `3.` center : 2-tuple of floats, optional coordintes for center of the stimulus (altitude, azimuth) sf_list : n-tuple, optional list of spatial frequencies in cycles/unit, defaults to `(0.08)` ori_list : n-tuple, optional list of directions in degrees, defaults to `(0., 90.)` con_list : n-tuple, optional list of contrasts taking values in [0.,1.], defaults to `(0.5)` radius_list : n-tuple, optional list of radii of circles, unit defined by `self.coordinate`, defaults to `(10.)` phase_list : n-tuple, optional list of phase of gratings in degrees, default (0., 90., 180., 270.) display_dur : float, optional duration of each condition in seconds, defaults to `0.25` midgap_dur, float, optional duration of gap between conditions, defaults to `0.` iteration, int, optional number of times the stimulus is displayed, defaults to `1` is_smooth_edge : bool True, smooth circle edge with smooth_width_ratio and smooth_func False, do not smooth edge smooth_width_ratio : float, should be smaller than 1. the ratio between smooth band width and radius, circle edge is the middle of smooth band smooth_func : function object this function take two inputs: 1) ndarray storing the distance from each pixel to smooth band center; 2) smooth band width. returns smoothed mask with same shape as input ndarray is_blank_block : bool, optional if True, a full screen background will be displayed as an additional grating. The frames of this condition will be: (1, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0 or 0.0), the meaning of these numbers can be found in self.frame_config """ def __init__(self, monitor, indicator, background=0., coordinate='degree', center=(0., 60.), sf_list=(0.08,), ori_list=(0., 90.), con_list=(0.5,), radius_list=(10.,), phase_list=(0., 90., 180., 270.), display_dur=0.25, midgap_dur=0., iteration=1, pregap_dur=2., postgap_dur=3., is_smooth_edge=False, smooth_width_ratio=0.2, smooth_func=blur_cos, is_blank_block=True): """ Initialize `StaticGratingCircle` stimulus object, inherits Parameters from `Stim` class """ super(StaticGratingCircle, self).__init__(monitor=monitor, indicator=indicator, background=background, coordinate=coordinate, pregap_dur=pregap_dur, postgap_dur=postgap_dur) self.stim_name = 'StaticGratingCircle' if len(center) != 2: raise ValueError("StaticGragingCircle: input 'center' should have " "two elements: (altitude, azimuth).") self.center = center self.sf_list = list(set(sf_list)) self.phase_list = list(set([p % 360. for p in phase_list])) self.ori_list = list(set([o % 180. for o in ori_list])) self.con_list = list(set(con_list)) self.radius_list = list(set(radius_list)) self.is_smooth_edge = is_smooth_edge self.smooth_width_ratio = smooth_width_ratio self.smooth_func = smooth_func if display_dur > 0.: self.display_dur = float(display_dur) else: raise ValueError('block_dur should be larger than 0 second.') if midgap_dur >= 0.: self.midgap_dur = float(midgap_dur) else: raise ValueError('midgap_dur should be no less than 0 second') self.iteration = iteration self.frame_config = ('is_display', 'spatial frequency (cycle/deg)', 'phase (deg)', 'orientation (deg)', 'contrast [0., 1.]', 'radius (deg)', 'indicator_color [-1., 1.]') self.is_blank_block = bool(is_blank_block) @property def midgap_frame_num(self): return int(self.midgap_dur * self.monitor.refresh_rate) @property def display_frame_num(self): return int(self.display_dur * self.monitor.refresh_rate) @staticmethod def _get_dire(ori): return (ori + 90.) % 180. def _generate_circle_mask_dict(self): """ generate a dictionary of circle masks for each size in size list """ masks = {} if self.coordinate == 'degree': coord_azi = self.monitor.deg_coord_x coord_alt = self.monitor.deg_coord_y elif self.coordinate == 'linear': coord_azi = self.monitor.lin_coord_x coord_alt = self.monitor.lin_coord_y else: raise ValueError('Do not understand coordinate system: {}. ' 'Should be either "linear" or "degree".'. format(self.coordinate)) for radius in self.radius_list: curr_mask = get_circle_mask(map_alt=coord_alt, map_azi=coord_azi, center=self.center, radius=radius, is_smooth_edge=self.is_smooth_edge, blur_ratio=self.smooth_width_ratio, blur_func=self.smooth_func) masks.update({radius: curr_mask}) return masks def _generate_all_conditions(self): """ generate all possible conditions for one iteration given the lists of parameters Returns ------- all_conditions : list of tuples all unique combinations of spatial frequency, phase, orientation, contrast, and radius. Output depends on initialization parameters. """ all_conditions = [(sf, ph, ori, con, radius) for sf in self.sf_list for ph in self.phase_list for ori in self.ori_list for con in self.con_list for radius in self.radius_list] if self.is_blank_block: all_conditions.append((0., 0., 0., 0., 0.)) return all_conditions def _generate_frames_for_index_display(self): """ generate a tuple of unique frames, each element of the tuple represents a unique display condition including gap frame structure: 0. is_display: if gap --> 0; if display --> 1 1. spatial frequency, cyc/deg 2. phase, deg 3. orientation, deg 4. contrast, [0., 1.] 5. radius, deg 6. indicator color, [-1., 1.] """ all_conditions = self._generate_all_conditions() gap_frame = (0., None, None, None, None, None, -1.) frames_unique = [gap_frame] for condition in all_conditions: frames_unique.append((1, condition[0], condition[1], condition[2], condition[3], condition[4], 1.)) frames_unique.append((1, condition[0], condition[1], condition[2], condition[3], condition[4], 0.)) return frames_unique def _generate_display_index(self): if self.indicator.is_sync: display_frame_num = int(self.display_dur * self.monitor.refresh_rate) if display_frame_num < 2: raise ValueError('StaticGratingCircle: display_dur too short, should be ' 'at least 2 display frames.') indicator_on_frame_num = display_frame_num // 2 indicator_off_frame_num = display_frame_num - indicator_on_frame_num frames_unique = self._generate_frames_for_index_display() if len(frames_unique) % 2 != 1: raise ValueError('StaticGratingCircle: the number of unique frames should odd.') condition_num = (len(frames_unique) - 1) / 2 index_to_display = [0] * self.pregap_frame_num for iter in range(self.iteration): display_sequence = range(condition_num) random.shuffle(display_sequence) for cond_ind in display_sequence: index_to_display += [0] * self.midgap_frame_num index_to_display += [cond_ind * 2 + 1] * indicator_on_frame_num index_to_display += [cond_ind * 2 + 2] * indicator_off_frame_num index_to_display += [0] * self.postgap_frame_num # remove the extra mid gap index_to_display = index_to_display[self.midgap_frame_num:] return frames_unique, index_to_display else: raise NotImplementedError, "method not available for non-sync indicator." def generate_movie_by_index(self): """ compute the stimulus movie to be displayed by index. """ self.frames_unique, self.index_to_display = self._generate_display_index() # print '\n'.join([str(f) for f in self.frames_unique]) mask_dict = self._generate_circle_mask_dict() num_unique_frames = len(self.frames_unique) num_pixels_width = self.monitor.deg_coord_x.shape[0] num_pixels_height = self.monitor.deg_coord_x.shape[1] if self.coordinate == 'degree': coord_azi = self.monitor.deg_coord_x coord_alt = self.monitor.deg_coord_y elif self.coordinate == 'linear': coord_azi = self.monitor.lin_coord_x coord_alt = self.monitor.lin_coord_y else: raise LookupError, "`coordinate` not in {'linear','degree'}" indicator_width_min = (self.indicator.center_width_pixel - self.indicator.width_pixel / 2) indicator_width_max = (self.indicator.center_width_pixel + self.indicator.width_pixel / 2) indicator_height_min = (self.indicator.center_height_pixel - self.indicator.height_pixel / 2) indicator_height_max = (self.indicator.center_height_pixel + self.indicator.height_pixel / 2) mov = self.background * np.ones((num_unique_frames, num_pixels_width, num_pixels_height), dtype=np.float32) background_frame = self.background * np.ones((num_pixels_width, num_pixels_height), dtype=np.float32) for i, frame in enumerate(self.frames_unique): if frame[0] == 1 and frame[1] != 0: # not a gap and not a blank grating # curr_ori = self._get_ori(frame[3]) curr_grating = get_grating(alt_map=coord_alt, azi_map=coord_azi, dire=self._get_dire(frame[3]), spatial_freq=frame[1], center=self.center, phase=frame[2], contrast=frame[4]) curr_grating = curr_grating * 2. - 1. curr_circle_mask = mask_dict[frame[5]] mov[i] = ((curr_grating * curr_circle_mask) + (background_frame * (curr_circle_mask * -1. + 1.))) # add sync square for photodiode mov[i, indicator_height_min:indicator_height_max, indicator_width_min:indicator_width_max] = frame[-1] mondict = dict(self.monitor.__dict__) indicator_dict = dict(self.indicator.__dict__) indicator_dict.pop('monitor') self_dict = dict(self.__dict__) self_dict.pop('monitor') self_dict.pop('indicator') self_dict.pop('smooth_func') log = {'stimulation': self_dict, 'monitor': mondict, 'indicator': indicator_dict} return mov, log class StaticImages(Stim): """ Generate static images stimulus Stimulus routine presents a sequence of static images in a random order. Currently the input image stack should be a tif file. The size of the image should be exactly same as the pixel dimension of downsized monitor pixel resolution. For example if self.monitor.resolution = (1200,1920) and self.monitor.downsample_rate = 10. The shape of input image stack should be n x 120 x 192. Value of the input image stack should be within the range of [-1., 1.]. The values out of this range will be handled by psychopy.visual.ImageStim() function. The reason of this seemingly stringent requirement is that, for visual physiological experiments, the parameters of visual stimuli should be very well controlled. Any imaging cropping, zooming, transformating etc. will affect luminance, contrast, spatial resolution etc. and produce unexpected effects. This stimulus routing provides a method to generate such image stacks. StaticImages.wrap_images() takes a list of image files transform them into a desired spherically corrected and luminance normalized image stack into visual degree coordinates and save it as a tif file. Parameters ---------- monitor : monitor object contains display monitor information indicator : indicator object contains indicator information coordinate : str from {'degree','linear'}, optional specifies coordinates, defaults to 'degree' background : float, optional color of background. Takes values in [-1,1] where -1 is black and 1 is white pregap_dur : float, optional amount of time (in seconds) before the stimulus is presented, defaults to `2.` postgap_dur : float, optional amount of time (in seconds) after the stimulus is presented, defaults to `3.` img_center : 2-tuple of floats, optional coordintes for center of the images (altitude, azimuth) deg_per_pixel: float, or list/tuple of two floats pixel size in visual degrees of unwrapped image (altitude, azimuth), if float, assume sizes in altitude and azimuth are the same display_dur : float, optional duration of each condition in seconds, defaults to `0.25` midgap_dur : float, optional duration of gap between conditions, defaults to `0.` iteration : int, optional number of times the stimulus is displayed, defaults to `1` is_blank_block : bool, optional if True, a full screen background will be displayed as an additional image. index of this image will be -1. """ def __init__(self, monitor, indicator, background=0., coordinate='degree', img_center=(0., 60.), deg_per_pixel=(0.1, 0.1), display_dur=0.25, midgap_dur=0., iteration=1, pregap_dur=2., postgap_dur=3., is_blank_block=True): """ Initialize `StaticImages` stimulus object, inherits Parameters from `Stim` class """ super(StaticImages, self).__init__(monitor=monitor, indicator=indicator, background=background, coordinate=coordinate, pregap_dur=pregap_dur, postgap_dur=postgap_dur) if len(img_center) != 2: raise ValueError("StaticImages: input 'img_center' should have " "two elements: (altitude, azimuth).") self.stim_name = 'StaticImages' self.img_center = img_center self.frame_config = ('is_display', 'image_index', 'indicator color [-1., 1.]') try: self.deg_per_pixel_alt = float(deg_per_pixel[0]) self.deg_per_pixel_azi = float(deg_per_pixel[1]) except TypeError: self.deg_per_pixel_alt = self.deg_per_pixel_azi = float(deg_per_pixel) self.display_dur = float(display_dur) self.midgap_dur = float(midgap_dur) self.iteration = int(iteration) self.is_blank_block = bool(is_blank_block) @property def display_frame_num(self): return int(self.display_dur * self.monitor.refresh_rate) @property def midgap_frame_num(self): return int(self.midgap_dur * self.monitor.refresh_rate) def wrap_images(self, work_dir): """ look for the 'images_original.tif' in the work_dir, load the images, warp and luminance correct images, save wrapping results in an HDF5 file with name "wrapped_images_for_display.hdf5" in the work_dir datasets -------- images_wrapped : 3d array, frame x altitude x azimuth, each frame will have same shape as the pixel resolution of down sampled self.monitor attrs +++++ altitude : 2d array, altitude x azimuth altitude coordinates of wrapped images in visual degrees, same shape as each frame of images_wrapped azimuth : 2d array, altitude x azimuth azimuth coordinates of wrapped images in visual degrees, same shape as each frame of images_wrapped images_dewrapped : 3d array, frame x altitude x azimuth dewrapped images, please note there is no pixel to pixel relationship between images_wrapped and images_dewrapped. Different regions in images_dewrapped have different sampling density to generate images_wrapped. Some pixels in image_dewrapped (especially on the edge) may not get presented by image_wrapped. images_dewrapped represent the minimum rectangle region in the original image that cover the entire images_wrapped. attrs +++++ altitude : 2d array, altitude x azimuth altitude coordinates of dewrapped images in visual degrees, same shape as each frame in images_dewrapped azimuth : 2d array, altitude x azimuth azimuth coordinates of dewrapped images in visual degrees, same shape as each frame in images_dewrapped """ if os.path.isfile(os.path.join(work_dir, 'wrapped_images_for_display.hdf5')): raise IOError('"wrapped_images_for_display.hdf5" already exists in the ' '"work_dir" : {}. Please choose another folder or delete ' 'the file.'.format(os.path.realpath(work_dir))) imgs = tf.imread(os.path.join(work_dir, 'images_original.tif')) deg_per_pixel = [self.deg_per_pixel_alt, self.deg_per_pixel_azi] wrapping_results = self.monitor.warp_images(imgs=imgs, center_coor=self.img_center, deg_per_pixel=deg_per_pixel, is_luminance_correction=True) imgs_w, alt_w, azi_w, imgs_dw, alt_dw, azi_dw = wrapping_results results_f = h5py.File(os.path.join(work_dir, 'wrapped_images_for_display.hdf5')) grp_w = results_f.create_group('images_wrapped') _ = grp_w.create_dataset('images', data=imgs_w) _ = grp_w.create_dataset('altitude', data=alt_w) _ = grp_w.create_dataset('azimuth', data=azi_w) grp_dw = results_f.create_group('images_dewrapped') _ = grp_dw.create_dataset('images', data=imgs_dw) _ = grp_dw.create_dataset('altitude', data=alt_dw.astype(np.float32)) _ = grp_dw.create_dataset('azimuth', data=azi_dw.astype(np.float32)) results_f.close() def set_imgs_from_tif(self, imgs_path_wrapped, imgs_path_dewrapped=None): imgs_wrapped = tf.imread(imgs_path_wrapped) if len(imgs_wrapped.shape) != 3: raise ValueError('StaticImages: the input wrapped images should be a 3d array.') if (imgs_wrapped.shape[1], imgs_wrapped.shape[2]) != self.monitor.deg_coord_x.shape: raise ValueError('StaticImages: the input wrapped images should have ' 'the same dimensions of the pixel resolution of ' 'downsampled monitor.') self.images_wrapped = imgs_wrapped if imgs_path_dewrapped is not None: imgs_dewrapped = tf.imread(imgs_path_dewrapped) if imgs_dewrapped.shape[0] != imgs_wrapped.shape[0]: print ('The input dewrapped images have different dimensions from the ' 'input wrapped images. Set self.images_dewrapped to None.') self.images_dewrapped = None else: self.images_dewrapped = tf.imread(imgs_path_dewrapped) else: self.images_dewrapped = None def set_imgs_from_hdf5(self, imgs_file_path): """ set 3d arrays from a hdf5 file for display. Ideally the hdf5 file should be the result from self.wrap_images() method. Only designed to work with wrapped images parameters ---------- imgs_file_path : str system path ot the hdf5 file. It should have at least one dataset named 'images_wrapped' containing a 3d array of wrapped images to display """ img_f = h5py.File(imgs_file_path, 'r') if len(img_f['images_wrapped/images'].shape) != 3: raise ValueError('StaticImages: the input wrapped images should be a 3d array.') if (img_f['images_wrapped/images'].shape[1], img_f['images_wrapped/images'].shape[2]) != self.monitor.deg_coord_x.shape: raise ValueError('StaticImages: the input wrapped images should have ' 'the same dimensions of the pixel resolution of ' 'downsampled monitor.') try: alt_w = img_f['images_wrapped/altitude'].value except: alt_w = None try: azi_w = img_f['images_wrapped/azimuth'].value except: azi_w = None if alt_w is not None: if not np.array_equal(alt_w, self.monitor.deg_coord_y): raise ValueError('the altitude coordinates of input wrapped images do not ' 'match the wrapped monitor pixel altitude coordinates.') if azi_w is not None: if not np.array_equal(azi_w, self.monitor.deg_coord_x): raise ValueError('the azimuth coordinates of input wrapped images do not ' 'match the wrapped monitor pixel azimuth coordinates.') self.images_wrapped = img_f['images_wrapped/images'].value if 'images_dewrapped' in img_f: if not img_f['images_dewrapped/images'].shape != 3: print ('The images_dewrapped in the input file is not 3d. ' 'Set self.images_dewrapped to None.') self.images_dewrapped = None self.altitude_dewrapped = None self.azimuth_dewrapped = None elif img_f['images_dewrapped/images'].shape[0] != self.images_wrapped.shape[0]: print ('The number of frames of images_dewrapped in the input file is different' 'from the number of frames of self.images. Set self.images_dewrapped to None.') self.images_dewrapped = None self.altitude_dewrapped = None self.azimuth_dewrapped = None else: self.images_dewrapped = img_f['images_dewrapped/images'].value try: alt_d = img_f['images_dewrapped/altitude'].value if alt_d.shape[0] != self.images_dewrapped.shape[1] or \ alt_d.shape[1] != self.images_dewrapped.shape[2]: print ('altitude coordinates of images_dewrapped in the input file have ' 'different shape as frames in self.images_dewrapped. Set' 'self.altitude_dewrapped to None.') self.altitude_dewrapped = None else: self.altitude_dewrapped = alt_d except: self.altitude_dewrapped = None try: azi_d = img_f['images_dewrapped/azimuth'].value if azi_d.shape[0] != self.images_dewrapped.shape[1] or \ azi_d.shape[1] != self.images_dewrapped.shape[2]: print ('azimuth coordinates of images_dewrapped in the input file have ' 'different shape as frames in self.images_dewrapped. Set' 'self.azimuth_dewrapped to None.') self.azimuth_dewrapped = None else: self.azimuth_dewrapped = azi_d except: self.azimuth_dewrapped = None else: print ('Cannot find "images_dewrapped" dataset in the input file. ' 'Set self.images_dewrapped to None.') self.images_dewrapped = None self.altitude_dewrapped = None self.azimuth_dewrapped = None img_f.close() def _generate_frames_for_index_display(self): """ generate a tuple of unique frames, each element of the tuple represents a unique display condition including gap frame structure: 0. is_display: if gap --> 0; if display --> 1 1. image index, non-negative integer 2. indicator color, [-1., 1.] """ if not hasattr(self, 'images_wrapped'): raise LookupError('StaticImages: cannot find attribute: "imgs_wrapped".' 'Please use self.set_imgs_from_tif() or ' 'self.set_imgs_from_hdf5() to set the images.') img_num = self.images_wrapped.shape[0] frames_unique = [(0, None, -1.)] for i in range(img_num): frames_unique.append((1, i, 1.)) frames_unique.append((1, i, 0.)) # adding blank image if self.is_blank_block: frames_unique.append((1, -1, 1.)) frames_unique.append((1, -1, 0.)) return frames_unique def _generate_display_index(self): if self.indicator.is_sync: display_frame_num = int(self.display_dur * self.monitor.refresh_rate) if display_frame_num < 2: raise ValueError('StaticGratingCircle: display_dur too short, should be ' 'at least 2 display frames.') indicator_on_frame_num = display_frame_num // 2 indicator_off_frame_num = display_frame_num - indicator_on_frame_num frames_unique = self._generate_frames_for_index_display() if len(frames_unique) % 2 != 1: raise ValueError('StaticGratingCircle: the number of unique frames should odd.') img_num = (len(frames_unique) - 1) / 2 index_to_display = [0] * self.pregap_frame_num for iter in range(self.iteration): display_sequence = range(img_num) random.shuffle(display_sequence) for cond_ind in display_sequence: index_to_display += [0] * self.midgap_frame_num index_to_display += [cond_ind * 2 + 1] * indicator_on_frame_num index_to_display += [cond_ind * 2 + 2] * indicator_off_frame_num index_to_display += [0] * self.postgap_frame_num # remove the extra mid gap index_to_display = index_to_display[self.midgap_frame_num:] return frames_unique, index_to_display else: raise NotImplementedError, "method not available for non-sync indicator." def generate_movie_by_index(self): """ compute the stimulus movie to be displayed by index. """ self.frames_unique, self.index_to_display = self._generate_display_index() # print '\n'.join([str(f) for f in self.frames_unique]) if self.coordinate == 'degree': coord_azi = self.monitor.deg_coord_x coord_alt = self.monitor.deg_coord_y elif self.coordinate == 'linear': coord_azi = self.monitor.lin_coord_x coord_alt = self.monitor.lin_coord_y else: raise LookupError, "`coordinate` not in {'linear','degree'}" indicator_width_min = (self.indicator.center_width_pixel - self.indicator.width_pixel / 2) indicator_width_max = (self.indicator.center_width_pixel + self.indicator.width_pixel / 2) indicator_height_min = (self.indicator.center_height_pixel - self.indicator.height_pixel / 2) indicator_height_max = (self.indicator.center_height_pixel + self.indicator.height_pixel / 2) mov = self.background * np.ones((len(self.frames_unique), self.images_wrapped.shape[1], self.images_wrapped.shape[2]), dtype=np.float32) for i, frame in enumerate(self.frames_unique): if frame[0] == 1 and frame[1] != -1: # not a gap and not a blank block curr_img = self.images_wrapped[frame[1]] curr_img[np.isnan(curr_img)] = self.background mov[i] = curr_img # add sync square for photodiode mov[i, indicator_height_min:indicator_height_max, indicator_width_min:indicator_width_max] = frame[-1] mondict = dict(self.monitor.__dict__) indicator_dict = dict(self.indicator.__dict__) indicator_dict.pop('monitor') self_dict = dict(self.__dict__) self_dict.pop('monitor') self_dict.pop('indicator') log = {'stimulation': self_dict, 'monitor': mondict, 'indicator': indicator_dict} return mov, log class StimulusSeparator(Stim): """ a quick flash of indicator to separate different visual stimuli when displayed in the same session Parameters ---------- monitor : monitor object contains display monitor information indicator : indicator object contains indicator information coordinate : str from {'degree','linear'}, optional specifies coordinates, defaults to 'degree' background : float, optional color of background. Takes values in [-1,1] where -1 is black and 1 is white pregap_dur : float, optional amount of time (in seconds) before the stimulus is presented, defaults to `2.` postgap_dur : float, optional amount of time (in seconds) after the stimulus is presented, defaults to `3.` indicator_on_frame_num : int number of frames the indicator is white, should be positive. indicator_off_frame_num : int number of frames the indicator is black, should be positive. cycle_num : int number of repeat of the indicator flash, should be positive. """ def __init__(self, monitor, indicator, coordinate='degree', background=0., indicator_on_frame_num=4, indicator_off_frame_num=4, cycle_num=10, pregap_dur=0., postgap_dur=0.): """ Initialize `StimulusSeparator` stimulus object, inherits Parameters from `Stim` class """ super(StimulusSeparator, self).__init__(monitor=monitor, indicator=indicator, background=background, coordinate=coordinate, pregap_dur=pregap_dur, postgap_dur=postgap_dur) self.stim_name = 'StimulusSeparator' self.background = float(background) self.indicator_on_frame_num = int(indicator_on_frame_num) self.indicator_off_frame_num = int(indicator_off_frame_num) self.cycle_num = int(cycle_num) self.frame_config = ('is_display', 'indicator color [-1., 1.]') def _generate_frames_for_index_display(self): """ frame structure is as following first element: is_display second element: indicator color """ return ((0, -1), (1, 1.), (1, -1.)) def _generate_display_index(self): if self.indicator.is_sync: frames_unique = self._generate_frames_for_index_display() index_to_display = [0] * self.pregap_frame_num for cycle_ind in range(self.cycle_num): index_to_display += [1] * self.indicator_on_frame_num index_to_display += [2] * self.indicator_off_frame_num index_to_display += [0] * self.postgap_frame_num return frames_unique, index_to_display else: raise NotImplementedError, "method not available for non-sync indicator." def generate_movie_by_index(self): self.frames_unique, self.index_to_display = self._generate_display_index() if self.coordinate == 'degree': coord_azi = self.monitor.deg_coord_x coord_alt = self.monitor.deg_coord_y elif self.coordinate == 'linear': coord_azi = self.monitor.lin_coord_x coord_alt = self.monitor.lin_coord_y else: raise LookupError, "`coordinate` not in {'linear','degree'}" indicator_width_min = (self.indicator.center_width_pixel - self.indicator.width_pixel / 2) indicator_width_max = (self.indicator.center_width_pixel + self.indicator.width_pixel / 2) indicator_height_min = (self.indicator.center_height_pixel - self.indicator.height_pixel / 2) indicator_height_max = (self.indicator.center_height_pixel + self.indicator.height_pixel / 2) mov = self.background * np.ones((len(self.frames_unique), coord_azi.shape[0], coord_azi.shape[1]), dtype=np.float32) for i, frame in enumerate(self.frames_unique): # add sync square for photodiode mov[i, indicator_height_min:indicator_height_max, indicator_width_min:indicator_width_max] = frame[-1] mondict = dict(self.monitor.__dict__) indicator_dict = dict(self.indicator.__dict__) indicator_dict.pop('monitor') self_dict = dict(self.__dict__) self_dict.pop('monitor') self_dict.pop('indicator') log = {'stimulation': self_dict, 'monitor': mondict, 'indicator': indicator_dict} return mov, log class CombinedStimuli(Stim): """ the stimulus class that can combine different stimuli into one session. example: >>> import retinotopic_mapping.StimulusRoutines as stim >>> from retinotopic_mapping.MonitorSetup import Monitor, Indicator >>> from retinotopic_mapping.DisplayStimulus import DisplaySequence >>> mon = Monitor(resolution=(1200, 1920), dis=15., mon_width_cm=52., mon_height_cm=32.) >>> ind = Indicator(mon) >>> uc = stim.UniformContrast(mon, ind, duration=10., color=-1.) >>> ss = stim.StimulusSeparator(mon, ind) >>> cs = stim.CombinedStimuli(mon, ind) >>> cs.set_stimuli([ss, uc, ss]) >>> ds = DisplaySequence(log_dir='C:/data') >>> ds.set_stim(cs) >>> ds.trigger_display() Parameters ---------- monitor : monitor object contains display monitor information indicator : indicator object contains indicator information coordinate : str from {'degree','linear'}, optional specifies coordinates, defaults to 'degree' background : float, optional color of background. Takes values in [-1,1] where -1 is black and 1 is white pregap_dur : float, optional amount of time (in seconds) before the stimulus is presented, defaults to `2.` postgap_dur : float, optional amount of time (in seconds) after the stimulus is presented, defaults to `3.` """ def __init__(self, monitor, indicator, background=0., coordinate='degree', pregap_dur=2., postgap_dur=3.): super(CombinedStimuli, self).__init__(monitor=monitor, indicator=indicator, background=background, coordinate=coordinate, pregap_dur=pregap_dur, postgap_dur=postgap_dur) self.stim_name = 'CombinedStimuli' def set_stimuli(self, stimuli, static_images_path=None): """ parameters ---------- stimuli : list of above stimulus object static_images_path : str system path to the hdf5 file storing the wrapped images for display. If there is StaticImages stimulus in the stimuli list, it will try to load images and display """ for stimulus in stimuli: if not stimulus.stim_name in ['UniformContrast', 'FlashingCircle', 'SparseNoise', 'LocallySparseNoise', 'DriftingGratingCircle', 'StaticGratingCircle', 'StaticImages', 'StimulusSeparator', 'SinusoidalLuminance']: raise LookupError('Stimulus type "{}" is not currently supported.' .format(stimulus.stim_name)) self.stimuli = stimuli self.static_images_path = static_images_path def generate_movie_by_index(self): t0 = time.time() print ('\n{:04.1f} min : CombinedStimulus: generating stimuli ...'.format(time.time() - t0)) self.frames_unique = [] self.index_to_display = [] self.individual_logs = {} mov = [] curr_start_frame_ind = 0 for stim_ind, stimulus in enumerate(self.stimuli): curr_stim_name = stimulus.stim_name curr_stim_id = ft.int2str(stim_ind, 3) + '_' + curr_stim_name stimulus.set_monitor(self.monitor) stimulus.set_indicator(self.indicator) stimulus.set_pregap_dur(self.pregap_dur) stimulus.set_postgap_dur(self.postgap_dur) stimulus.set_background(self.background) stimulus.set_coordinate(self.coordinate) # load the images if the stimulus is StaticImages if curr_stim_name == 'StaticImages': stimulus.set_imgs_from_hdf5(imgs_file_path=self.static_images_path) curr_mov, curr_log = stimulus.generate_movie_by_index() curr_log.pop('monitor') curr_log.pop('indicator') self.individual_logs.update({curr_stim_id: curr_log['stimulation']}) curr_frames_unique = [[curr_stim_id] + list(f) for f in curr_log['stimulation']['frames_unique']] curr_index_to_display = np.array(curr_log['stimulation']['index_to_display'], dtype=np.uint64) self.frames_unique += curr_frames_unique self.index_to_display.append(curr_index_to_display + curr_start_frame_ind) mov.append(curr_mov) curr_start_frame_ind += len(curr_frames_unique) print ('{:04.1f} min : stimulus: {:<30}; estimated display duration: {:4.1f} minute(s).' .format((time.time() - t0) / 60., curr_stim_id, len(curr_index_to_display) / (60. * self.monitor.refresh_rate))) self.frames_unique = tuple([tuple(f) for f in self.frames_unique]) self.index_to_display = list(np.concatenate(self.index_to_display, axis=0)) mov = np.concatenate(mov, axis=0) mondict = dict(self.monitor.__dict__) indicator_dict = dict(self.indicator.__dict__) indicator_dict.pop('monitor') self_dict = dict(self.__dict__) self_dict.pop('monitor') self_dict.pop('indicator') stim_seq = [] for stim_ind, stim in enumerate(self.stimuli): stim_seq.append(ft.int2str(stim_ind, 3) + '_' + stim.stim_name) self_dict.pop('stimuli') self_dict.update({'stimuli_sequence':stim_seq}) log = {'stimulation': self_dict, 'monitor': mondict, 'indicator': indicator_dict} return mov, log def clear(self): super(CombinedStimuli, self).clear() if hasattr(self, 'stimuli'): del self.stimuli if hasattr(self, 'static_images_path'): del self.static_images_path class KSstim(Stim): """ generate Kalatsky & Stryker stimulus Kalatsky & Stryker (KS) stimulus routine presents checkerboard gratings that drift against a fixed `background` color. Parameters ---------- monitor : monitor object object storing experimental monitor setup information indicator : indicator object object storing photodiode indicator information background : float, optional background color of stimulus, takes values in [-1,1]. defaults to `0.` coordinate : str, optional coordinate representation, either 'degree' or 'linear', defaults to 'degree' square_size : float, optional size of flickering square, defaults to `25.` square_center: tuple, optional coordinate of center point, defaults to `(0,0)` flicker_frame : int, optional number of frames in one flicker, defaults to `10` sweep_width : float, optional width of sweeps measured in units cm or degs if coordinate value is 'linear' or 'degree' respectively. defaults to `20` step_width : float, optional width of steps measured in units cm or degs if coordinate value is 'linear' or 'degree' respectively. defaults to `0.15` direction : {'B2U','U2B','L2R','R2L'}, optional the direction of sweep movement, defaults to 'B2U'. 'B2U' means stim is presented from the bottom to the top of the screen, whereas 'U2B' is from the top to the bottom. 'L2R' is left to right and 'R2L' is right to left sweep_frame : int, optional roughly determines speed of the drifting grating, defaults to `1` iteration : int, optional number of times that the stimulus will be repeated, defaults to `1` pregap_dur : float, optional number of seconds before stimulus is presented, defaults to `2` postgap_dur : float, optional number of seconds after stimulus is presented, defaults to `2` """ def __init__(self, monitor, indicator, background=0., coordinate='degree', square_size=25., square_center=(0, 0), flicker_frame=10, sweep_width=20., step_width=0.15, direction='B2U', sweep_frame=1, iteration=1, pregap_dur=2., postgap_dur=3.): super(KSstim, self).__init__(monitor=monitor, indicator=indicator, coordinate=coordinate, background=background, pregap_dur=pregap_dur, postgap_dur=postgap_dur) """ Initialize Kalatsky & Stryker stimulus object """ self.stim_name = 'KSstim' self.square_size = square_size self.square_center = square_center self.flicker_frame = flicker_frame self.flicker_freq = self.monitor.refresh_rate / self.flicker_frame self.sweep_width = sweep_width self.step_width = step_width self.direction = direction self.sweep_frame = sweep_frame self.iteration = iteration self.frame_config = ('is_display', 'squarePolarity', 'sweep_index', 'indicator_color') self.sweep_config = ('orientation', 'sweepStartCoordinate', 'sweepEndCoordinate') self.sweep_speed = (self.monitor.refresh_rate * self.step_width / self.sweep_frame) self.flicker_hz = self.monitor.refresh_rate / self.flicker_frame self.clear() def generate_squares(self): """ generate checker board squares """ if self.coordinate == 'degree': map_x = self.monitor.deg_coord_x map_y = self.monitor.deg_coord_y elif self.coordinate == 'linear': map_x = self.monitor.lin_coord_x map_y = self.monitor.lin_coord_y else: raise LookupError, '`coordinate` not in {"degree","linear"}' min_x = map_x.min() max_x = map_x.max() min_y = map_y.min() max_y = map_y.max() neg_x = np.ceil(abs(((min_x - self.square_center[0]) / (2 * self.square_size)))) + 1 pos_x = np.ceil(abs(((max_x - self.square_center[0]) / (2 * self.square_size)))) + 1 neg_y = np.ceil(abs(((min_y - self.square_center[0]) / (2 * self.square_size)))) + 1 pos_y = np.ceil(abs(((max_y - self.square_center[0]) / (2 * self.square_size)))) + 1 squareV = np.ones((np.size(map_x, 0), np.size(map_x, 1)), dtype=np.float32) squareV = -1 * squareV stepV = np.arange(self.square_center[0] - (2 * neg_x + 0.5) * self.square_size, self.square_center[0] + (2 * pos_x - 0.5) * self.square_size, self.square_size * 2) for i in range(len(stepV)): squareV[np.where(np.logical_and(map_x >= stepV[i], map_x < (stepV[i] + self.square_size)))] = 1.0 squareH = np.ones((np.size(map_y, 0), np.size(map_y, 1)), dtype=np.float32) squareH = -1 * squareH stepH = np.arange(self.square_center[1] - (2 * neg_y + 0.5) * self.square_size, self.square_center[1] + (2 * pos_y - 0.5) * self.square_size, self.square_size * 2) for j in range(len(stepH)): squareH[np.where(np.logical_and(map_y >= stepH[j], map_y < (stepH[j] + self.square_size)))] = 1 squares = np.multiply(squareV, squareH) return squares def plot_squares(self): """ plot checkerboard squares """ plt.figure() plt.imshow(self.squares) def generate_sweeps(self): """ generate full screen sweep sequence """ sweep_width = self.sweep_width step_width = self.step_width direction = self.direction if self.coordinate == 'degree': map_x = self.monitor.deg_coord_x map_y = self.monitor.deg_coord_y elif self.coordinate == 'linear': map_x = self.monitor.lin_coord_x map_y = self.monitor.lin_coord_y else: raise LookupError, '`coordinate` not in {"degree", "linear"}' min_x = map_x.min() max_x = map_x.max() min_y = map_y.min() max_y = map_y.max() if direction == "B2U": step_y = np.arange(min_y - sweep_width, max_y + step_width, step_width) elif direction == "U2B": step_y = np.arange(min_y - sweep_width, max_y + step_width, step_width)[::-1] elif direction == "L2R": step_x = np.arange(min_x - sweep_width, max_x + step_width, step_width) elif direction == "R2L": step_x = np.arange(min_x - sweep_width, max_x + step_width, step_width)[::-1] else: raise LookupError, '`direction` not in {"B2U","U2B","L2R","R2L"}' sweep_table = [] if 'step_x' in locals(): sweeps = np.zeros((len(step_x), np.size(map_x, 0), np.size(map_x, 1)), dtype=np.float32) for i in range(len(step_x)): temp = sweeps[i, :, :] temp[np.where(np.logical_and(map_x >= step_x[i], map_x < (step_x[i] + sweep_width)))] = 1.0 sweep_table.append(('V', step_x[i], step_x[i] + sweep_width)) del temp if 'step_y' in locals(): sweeps = np.zeros((len(step_y), np.size(map_y, 0), np.size(map_y, 1)), dtype=np.float32) for j in range(len(step_y)): temp = sweeps[j, :, :] temp[np.where(np.logical_and(map_y >= step_y[j], map_y < (step_y[j] + sweep_width)))] = 1.0 sweep_table.append(('H', step_y[j], step_y[j] + sweep_width)) del temp return sweeps.astype(np.bool), sweep_table def generate_frames(self): """ function to generate all the frames needed for KS stimulation returnins a list of information of all frames as a list of tuples Information contained in each frame: first element - during stimulus value is equal to 1 and 0 otherwise second element - square polarity, 1->not reversed; -1->reversed third element: sweeps, index in sweep table forth element - color of indicator synchronized: gap->-1, sweep on -> 1 non-synchronized: alternating between -1 and 1 at defined frequency for gap frames the second and third elements should be 'None' """ sweeps, _ = self.generate_sweeps() sweep_frame = self.sweep_frame flicker_frame = self.flicker_frame iteration = self.iteration sweep_num = np.size(sweeps, 0) # Number of sweeps vertical or horizontal displayframe_num = sweep_frame * sweep_num # total frame number for 1 iter # frames for one iteration iter_frames = [] # add frames for gaps for i in range(self.pregap_frame_num): iter_frames.append([0, None, None, -1]) # add frames for display is_reverse = [] for i in range(displayframe_num): if (np.floor(i // flicker_frame)) % 2 == 0: is_reverse = -1 else: is_reverse = 1 sweep_index = int(np.floor(i // sweep_frame)) # add sychornized indicator if self.indicator.is_sync == True: indicator_color = 1 else: indicator_color = -1 iter_frames.append([1, is_reverse, sweep_index, indicator_color]) # add gap frames at the end for i in range(self.postgap_frame_num): iter_frames.append([0, None, None, -1]) full_frames = [] # add frames for multiple iteration for i in range(int(iteration)): full_frames += iter_frames # add non-synchronized indicator if self.indicator.is_sync == False: indicator_frame = self.indicator.frame_num for j in range(np.size(full_frames, 0)): if np.floor(j // indicator_frame) % 2 == 0: full_frames[j][3] = 1 else: full_frames[j][3] = -1 full_frames = [tuple(x) for x in full_frames] return tuple(full_frames) def generate_movie(self): """ Function to Generate Kalatsky & Stryker visual stimulus frame by frame """ self.squares = self.generate_squares() sweeps, self.sweep_table = self.generate_sweeps() self.frames = self.generate_frames() full_seq = np.zeros((len(self.frames), self.monitor.deg_coord_x.shape[0], self.monitor.deg_coord_x.shape[1]), dtype=np.float32) indicator_width_min = (self.indicator.center_width_pixel - (self.indicator.width_pixel / 2)) indicator_width_max = (self.indicator.center_width_pixel + (self.indicator.width_pixel / 2)) indicator_height_min = (self.indicator.center_height_pixel - (self.indicator.height_pixel / 2)) indicator_height_max = (self.indicator.center_height_pixel + (self.indicator.height_pixel / 2)) background = np.ones((np.size(self.monitor.deg_coord_x, 0), np.size(self.monitor.deg_coord_x, 1)), dtype=np.float32) * self.background for i in range(len(self.frames)): curr_frame = self.frames[i] if curr_frame[0] == 0: curr_NM_seq = background else: currSquare = self.squares * curr_frame[1] curr_sweep = sweeps[curr_frame[2]] curr_NM_seq = ((curr_sweep * currSquare) + ((-1 * (curr_sweep - 1)) * background)) curr_NM_seq[indicator_height_min:indicator_height_max, indicator_width_min:indicator_width_max] = curr_frame[3] full_seq[i] = curr_NM_seq if i in range(0, len(self.frames), len(self.frames) / 10): print('Generating numpy sequence: ' + str(int(100 * (i + 1) / len(self.frames))) + '%') mondict = dict(self.monitor.__dict__) indicator_dict = dict(self.indicator.__dict__) indicator_dict.pop('monitor') KSdict = dict(self.__dict__) KSdict.pop('monitor') KSdict.pop('indicator') full_dict = {'stimulation': KSdict, 'monitor': mondict, 'indicator': indicator_dict} return full_seq, full_dict def clear(self): self.sweep_table = None self.frames = None self.square = None def set_direction(self, direction): if direction in ['B2U', 'U2B', 'L2R', 'R2L']: self.direction = direction self.clear() else: raise LookupError, '`direction` not in {"B2U","U2B","L2R","R2L"}' def set_sweep_sigma(self, sweepSigma): self.sweepSigma = sweepSigma self.clear() def set_sweep_width(self, sweep_width): self.sweep_width = sweep_width self.clear() class KSstimAllDir(object): """ generate Kalatsky & Stryker stimulation in all four direction contiuously Generalizes the KS stimulus routine so that the drifting gratings can go in all four directions Parameters ---------- monitor : monitor object contains display monitor information indicator : indicator object contains indicator information coordinate : str from {'degree','linear'}, optional specifies coordinates, defaults to 'degree' background : float, optional color of background. Takes values in [-1,1] where -1 is black and 1 is white square_size : int, optional size of flickering square, defaults to 25. square_center : tuple, optional coordinate of center point of the square, defaults to (0,0) flicker_frame : int, optional number of frames per flicker while stimulus is being presented, defaults to `6` sweep_width : float, optional width of sweeps. defaults to `20.` step_width : float, optional width of steps. defaults to `0.15`. sweep_frame : int, optional roughly determines speed of the drifting grating, defaults to `1` iteration : int, optional number of times stimulus will be presented, defaults to `1` pregap_dur : float, optional number of seconds before stimulus is presented, defaults to `2.` postgap_dur : float, optional number of seconds after stimulus is presented, defaults to `3.` """ def __init__(self, monitor, indicator, coordinate='degree', background=0., square_size=25, square_center=(0, 0), flicker_frame=6, sweep_width=20., step_width=0.15, sweep_frame=1, iteration=1, pregap_dur=2., postgap_dur=3.): """ Initialize stimulus object """ self.stim_name = 'KSstimAllDir' self.monitor = monitor self.indicator = indicator self.background = background self.coordinate = coordinate self.square_size = square_size self.square_center = square_center self.flicker_frame = flicker_frame self.sweep_width = sweep_width self.step_width = step_width self.sweep_frame = sweep_frame self.iteration = iteration self.pregap_dur = pregap_dur self.postgap_dur = postgap_dur def generate_movie(self): """ Generate stimulus movie frame by frame """ KS_stim = KSstim(self.monitor, self.indicator, background=self.background, coordinate=self.coordinate, direction='B2U', square_size=self.square_size, square_center=self.square_center, flicker_frame=self.flicker_frame, sweep_width=self.sweep_width, step_width=self.step_width, sweep_frame=self.sweep_frame, iteration=self.iteration, pregap_dur=self.pregap_dur, postgap_dur=self.postgap_dur) mov_B2U, dict_B2U = KS_stim.generate_movie() KS_stim.set_direction('U2B') mov_U2B, dict_U2B = KS_stim.generate_movie() KS_stim.set_direction('L2R') mov_L2R, dict_L2R = KS_stim.generate_movie() KS_stim.set_direction('R2L') mov_R2L, dict_R2L = KS_stim.generate_movie() mov = np.vstack((mov_B2U, mov_U2B, mov_L2R, mov_R2L)) log = {'monitor': dict_B2U['monitor'], 'indicator': dict_B2U['indicator']} stimulation = dict(dict_B2U['stimulation']) stimulation['stim_name'] = 'KSstimAllDir' stimulation['direction'] = ['B2U', 'U2B', 'L2R', 'R2L'] sweep_table = [] frames = [] sweep_table_B2U = dict_B2U['stimulation']['sweep_table'] frames_B2U = dict_B2U['stimulation']['frames'] sweep_length_B2U = len(sweep_table_B2U) sweep_table_B2U = [['B2U', x[1], x[2]] for x in sweep_table_B2U] frames_B2U = [[x[0], x[1], x[2], x[3], 'B2U'] for x in frames_B2U] sweep_table += sweep_table_B2U frames += frames_B2U sweep_table_U2B = dict_U2B['stimulation']['sweep_table'] frames_U2B = dict_U2B['stimulation']['frames'] sweep_length_U2B = len(sweep_table_U2B) sweep_table_U2B = [['U2B', x[1], x[2]] for x in sweep_table_U2B] frames_U2B = [[x[0], x[1], x[2], x[3], 'U2B'] for x in frames_U2B] for frame in frames_U2B: if frame[2] is not None: frame[2] += sweep_length_B2U sweep_table += sweep_table_U2B frames += frames_U2B sweep_table_L2R = dict_L2R['stimulation']['sweep_table'] frames_L2R = dict_L2R['stimulation']['frames'] sweep_length_L2R = len(sweep_table_L2R) sweep_table_L2R = [['L2R', x[1], x[2]] for x in sweep_table_L2R] frames_L2R = [[x[0], x[1], x[2], x[3], 'L2R'] for x in frames_L2R] for frame in frames_L2R: if frame[2] is not None: frame[2] += sweep_length_B2U + sweep_length_U2B sweep_table += sweep_table_L2R frames += frames_L2R sweep_table_R2L = dict_R2L['stimulation']['sweep_table'] frames_R2L = dict_R2L['stimulation']['frames'] sweep_table_R2L = [['R2L', x[1], x[2]] for x in sweep_table_R2L] frames_R2L = [[x[0], x[1], x[2], x[3], 'R2L'] for x in frames_R2L] for frame in frames_R2L: if frame[2] is not None: frame[2] += sweep_length_B2U + sweep_length_U2B + sweep_length_L2R sweep_table += sweep_table_R2L frames += frames_R2L stimulation['frames'] = [tuple(x) for x in frames] stimulation['sweep_table'] = [tuple(x) for x in sweep_table] log['stimulation'] = stimulation log['stimulation']['frame_config'] = ('is_display', 'squarePolarity', 'sweep_index', 'indicator_color') log['stimulation']['sweep_config'] = ('orientation', 'sweepStartCoordinate', 'sweepEndCoordinate') return mov, log
gpl-3.0
gmorph/MAVProxy
setup.py
1
3043
from setuptools import setup import os version = "1.5.6" def package_files(directory): paths = [] for (path, directories, filenames) in os.walk(directory): for filename in filenames: paths.append(os.path.join('..', path, filename)) return paths package_data = ['modules/mavproxy_map/data/*.jpg', 'modules/mavproxy_map/data/*.png', 'tools/graphs/*.xml', ] package_data.extend(package_files('MAVProxy/modules/mavproxy_cesium/app')) setup(name='MAVProxy', version=version, zip_safe=True, description='MAVProxy MAVLink ground station', long_description='''A MAVLink protocol proxy and ground station. MAVProxy is oriented towards command line operation, and is suitable for embedding in small autonomous vehicles or for using on ground control stations. It also features a number of graphical tools such as a slipmap for satellite mapping view of the vehicles location, and status console and several useful vehicle control modules. MAVProxy is extensible via a modules system - see the modules subdirectory for some example modules. MAVProxy was developed by CanberraUAV for use in the 2012 Outback Challenge, and includes a module for the CanberraUAV search and rescue system. See http://ardupilot.github.io/MAVProxy/ for more information on how to use MAVProxy.''', url='https://github.com/ArduPilot/MAVProxy', author='Andrew Tridgell', author_email='[email protected]', classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: GNU General Public License v3 (GPLv3)', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2.7', 'Topic :: Scientific/Engineering'], license='GPLv3', packages=['MAVProxy', 'MAVProxy.modules', 'MAVProxy.modules.mavproxy_map', 'MAVProxy.modules.mavproxy_misseditor', 'MAVProxy.modules.mavproxy_smartcamera', 'MAVProxy.modules.mavproxy_cesium', 'MAVProxy.modules.lib', 'MAVProxy.modules.lib.ANUGA', 'MAVProxy.modules.lib.optparse_gui'], # note that we do not include all the real dependencies here (like matplotlib etc) # as that breaks the pip install. It seems that pip is not smart enough to # use the system versions of these dependencies, so it tries to download and install # large numbers of modules like numpy etc which may be already installed install_requires=['pymavlink>=1.1.73', 'pyserial>=3.0'], scripts=['MAVProxy/mavproxy.py', 'MAVProxy/tools/mavflightview.py', 'MAVProxy/tools/MAVExplorer.py', 'MAVProxy/modules/mavproxy_map/mp_slipmap.py', 'MAVProxy/modules/mavproxy_map/mp_tile.py'], package_data={'MAVProxy': package_data} )
gpl-3.0
google-code-export/nmrglue
doc/_build/html/examples/el/plotting/2d_spectrum/plot_spectrum_pts.py
10
1340
#! /usr/bin/env python # Create contour plots of a 2D NMRPipe spectrum import nmrglue as ng import numpy as np import matplotlib.pyplot as plt import matplotlib.cm # plot parameters cmap = matplotlib.cm.Blues_r # contour map (colors to use for contours) contour_start = 30000 # contour level start value contour_num = 20 # number of contour levels contour_factor = 1.20 # scaling factor between contour levels # calculate contour levels cl = [contour_start*contour_factor**x for x in xrange(contour_num)] # read in the data from a NMRPipe file dic,data = ng.pipe.read("../../common_data/2d_pipe/test.ft2") # create the figure fig = plt.figure() ax = fig.add_subplot(111) # plot the contours ax.contour(data,cl,cmap=cmap,extent=(0,data.shape[1]-1,0,data.shape[0]-1)) # add some labels ax.text(2006,1322,"T49",size=8,color='r') ax.text(2010,1290,"T11",size=8,color='k') # plot slices in each direction xslice = data[1187,:] ax.plot(xrange(data.shape[1]),xslice/3.e3+1187) yslice = data[:,1976] ax.plot(-yslice/3.e3+1976,xrange(data.shape[0])) # decorate the axes ax.set_ylabel("15N (points)") ax.set_xlabel("13C (points)") ax.set_title("Protein 2D NCa Spectrum") ax.set_xlim(1900,2200) ax.set_ylim(750,1400) # save the figure fig.savefig("spectrum_pts.png") #change to .pdf, .ps, etc for different formats
bsd-3-clause
dmelcaz/backPropagationNN
demo.py
1
1168
import numpy as np from BackPropagationNN import NeuralNetwork from sklearn import datasets from sklearn import preprocessing from sklearn import model_selection from sklearn import metrics def targetToVector(x): # Vector a = np.zeros([len(x),10]) for i in range(0,len(x)): a[i,x[i]] = 1 return a if __name__ == '__main__': # Digits dataset loading digits = datasets.load_digits() X = preprocessing.scale(digits.data.astype(float)) y = targetToVector(digits.target) # Cross valitation X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2, random_state=0) # Neural Network initialization NN = NeuralNetwork(64,60,10, output_act = 'softmax') NN.fit(X_train,y_train, epochs = 50, learning_rate = .1, learning_rate_decay = .01, verbose = 1) # NN predictions y_predicted = NN.predict(X_test) # Metrics y_predicted = np.argmax(y_predicted, axis=1).astype(int) y_test = np.argmax(y_test, axis=1).astype(int) print("\nClassification report for classifier:\n\n%s\n" % (metrics.classification_report(y_test, y_predicted))) print("Confusion matrix:\n\n%s" % metrics.confusion_matrix(y_test, y_predicted))
mit
LCAS/zoidbot
vrep_teleop/scripts/Linear_modelling.py
1
11680
#!/usr/bin/env python # run the ReplaySavedTrajectory.ttt file on Vrep before running this import numpy as np import glob import errno import matplotlib.pyplot as plt import rospy from sensor_msgs.msg import JointState from std_msgs.msg import Header from std_msgs.msg import Float64 from std_msgs.msg import Float64MultiArray class Trajectory: trajectory_number = 0 def __init__(self, filename): self.__class__.trajectory_number = self.__class__.trajectory_number + 1 self.input_file = filename self.read_count = 0 self.phase = None self.joint_positions = None self.box_positions = None self.box_orientations = None self.context = None self.read() self.basis_centres = None self.phi = None self.weights = None self.linear_basis() self.weights_func() def read(self): with open(self.input_file) as f_in: content = f_in.readlines() new_content = [line.strip().split(' ') for line in content] data_dict = {} for line_pie in new_content: feature_name = line_pie.pop(0) this_v = [float(v) for v in line_pie] if feature_name not in data_dict: data_dict[feature_name] = [] data_dict[feature_name].append(this_v) ts = np.array(data_dict['simTime'])[:, 0] ts = (ts - ts[0]) self.read_count = len(ts) self.phase = ts / ts[self.read_count - 1] # scaling the time to [0,1] self.joint_positions = np.array(data_dict['currentPos']) self.box_positions = np.array(data_dict['boxPosition']) self.box_orientations = np.array(data_dict['boxOrientation']) context_start = np.array([self.box_positions[0, 0], self.box_positions[0, 1], self.box_orientations[0, 1]]) context_end = np.array([self.box_positions[self.read_count - 1, 0], self.box_positions[self.read_count - 1, 1], self.box_orientations[self.read_count - 1, 1]]) # context contains initial and final x,y,angle self.context = np.concatenate((context_start, context_end), axis=0) # [np.savez('/home/akhil/Downloads/data/trajectory' + str(self.__class__.trajectory_number) + '.npz', # phase=self.phase, joint_positions=self.joint_positions, box_positions=self.box_positions, # box_orientations=self.box_orientations, context=self.context) def linear_basis(self): num_basis_inside = 11 num_basis_outside = 4 num_basis_tot = num_basis_inside + num_basis_outside basis_centre_gap = 1.0 / (num_basis_inside - 1) basis_width = 2 * basis_centre_gap ** 2 self.basis_centres = np.linspace(-2*basis_centre_gap, 1+2*basis_centre_gap, num_basis_tot) self.phi = np.zeros((self.phase.shape[0], num_basis_tot)) for z in range(0, self.phase.shape[0]): b = np.exp(-(1/basis_width)*(self.phase[z] - self.basis_centres)**2) sum_bz = np.sum(b) self.phi[z, :] = b/sum_bz def weights_func(self): self.weights = np.zeros((self.basis_centres.shape[0], 14)) regularization_factor = 1e-10 i_mat = np.identity(self.basis_centres.shape[0]) self.weights = np.dot(np.linalg.inv(np.dot(self.phi.T, self.phi) + regularization_factor*i_mat), np.dot(self.phi.T, self.joint_positions)) # function to calculate a trajectory given the weight vectors def calc_trajectory(weights, steps): num_basis_tot = weights.shape[0] num_basis_outside = 4 num_basis_inside = num_basis_tot - num_basis_outside basis_centre_gap = 1.0 / (num_basis_inside - 1) basis_width = 2 * basis_centre_gap ** 2 phase = np.linspace(0, 1, steps) basis_centres = np.linspace(-2 * basis_centre_gap, 1 + 2 * basis_centre_gap, num_basis_tot) phi = np.zeros((steps, num_basis_tot)) for z in range(0, steps): b = np.exp(-(1 / basis_width) * (phase[z] - basis_centres) ** 2) sum_bz = np.sum(b) phi[z, :] = b / sum_bz traj = np.dot(phi, weights) return traj # function to play a trajectory in vrep given the trajectory joint positions and initial box data def baxter_play(traj, box_data): pub1 = rospy.Publisher('/replay/joint_states', JointState, queue_size=10) rate_value = 200 rate1 = rospy.Rate(rate_value) pub2 = rospy.Publisher('/stopSim', Float64, queue_size=1) rate2 = rospy.Rate(160) prev_pos = traj[0] for pos in traj: replay = JointState() replay.header = Header() replay.header.stamp = rospy.Time.now() replay.name = ['ljoint1', 'ljoint2', 'ljoint3', 'ljoint4', 'ljoint5', 'ljoint6', 'ljoint7', 'rjoint1', 'rjoint2', 'rjoint3', 'rjoint4', 'rjoint5', 'rjoint6', 'rjoint7'] replay.position = pos replay.velocity = (pos - prev_pos) * rate_value replay.effort = box_data pub1.publish(replay) rate1.sleep() prev_pos = pos # for vrep to know when a trajectory ends and to keep the joints from moving randomly for i in range(0, 5): replay = JointState() replay.header = Header() replay.header.stamp = rospy.Time.now() replay.name = [] replay.position = pos replay.velocity = (pos-pos) # to send 0s so that the joints don't go haywire replay.effort = [] pub1.publish(replay) pub2.publish(data=1) rate2.sleep() class ContextResult: def __init__(self, trajectory_list, context_indices): self.trajectory_list = trajectory_list self.trajectories_tot = len(trajectory_list) # self.plot([4,5,6]) self.context_indices = context_indices self.context_feature_matrix = None self.k = self.find_transformation_parameters() self.final_box_data = None rospy.Subscriber('boxData', Float64MultiArray, self.replay_box_data) def find_transformation_parameters(self): num_contexts = len(self.context_indices) num_basis = self.trajectory_list[0].basis_centres.shape[0] self.context_feature_matrix = np.ones((self.trajectories_tot, num_contexts + 1)) concatenated_weights = np.zeros((self.trajectories_tot, num_basis * 14)) for i in range(0, self.trajectories_tot): # saving the context feature vectors of a trajectory as rows for p in range(0, num_contexts): self.context_feature_matrix[i, 1 + p] = self.trajectory_list[i].context[self.context_indices[p]] # concatenating weights for each joint of a trajectory in a row for j in range(0, 14): concatenated_weights[i, num_basis * j:num_basis * (j + 1)] = self.trajectory_list[i].weights[:, j] regularization_factor = 1e-10 i_mat = np.identity(self.context_feature_matrix.shape[1]) k = np.dot(np.linalg.inv(np.dot(self.context_feature_matrix.T, self.context_feature_matrix) + regularization_factor * i_mat), np.dot(self.context_feature_matrix.T, concatenated_weights)) return k def plot(self, joints): for j in joints: plt.figure(j * 2) plt.title('left_arm joint' + str(j + 1)) for i in range(0, self.trajectories_tot): y = self.trajectory_list[i].joint_positions[:, j] x = self.trajectory_list[i].phase plt.plot(x, y, label=str(i)) plt.legend() plt.figure(j * 2 + 1) plt.title('right_arm joint' + str(j + 1)) for i in range(0, self.trajectories_tot): y = self.trajectory_list[i].joint_positions[:, j + 7] x = self.trajectory_list[i].phase plt.plot(x, y, label=str(i)) plt.legend() plt.show() def replay_box_data(self, msg): # print(msg.data) self.final_box_data = msg.data def find_linear_errors(self, num_divisions): num_contexts = len(self.context_indices) contexts_min = np.amin(self.context_feature_matrix, axis=0) contexts_max = np.amax(self.context_feature_matrix, axis=0) task_linear_features = np.ones((num_divisions, self.context_feature_matrix.shape[1])) errors = np.zeros((num_divisions, 3)) for p in range(0, num_contexts): # making task context features from min to max task_linear_features[:, p + 1] = np.linspace(contexts_min[p + 1], contexts_max[p + 1], num_divisions) box_data_default = np.concatenate((self.trajectory_list[0].box_positions[0], self.trajectory_list[0].box_orientations[0]), axis=0) for i in range(0, num_divisions): temp_result = np.dot(self.k.T, task_linear_features[i]) resulting_weights = np.reshape(temp_result, (14, 15)).T traj = calc_trajectory(resulting_weights, 1500) box_data = box_data_default # changing the initial box position if the context says so for p in range(0, num_contexts): if self.context_indices[p] < 2: box_data[p] = task_linear_features[i, p+1] elif self.context_indices[p] == 2: box_data[4] = task_linear_features[i, p+1] baxter_play(traj, box_data) # finding the errors in the final position for p in range(0, num_contexts): if self.context_indices[p] == 3 or self.context_indices[p] == 4: errors[i, self.context_indices[p]-3] = self.final_box_data[self.context_indices[p]-3] \ - task_linear_features[i, p+1] elif self.context_indices[p] == 5: errors[i, self.context_indices[p]-3] = self.final_box_data[4] - task_linear_features[i, p+1] plt.figure(100) if self.context_indices[0] == 5: plt.plot((task_linear_features[:, 1] - box_data[4])*180/3.14, errors[:, 2]*180/3.14, 'o') plt.xlabel('rotation angle(in deg)') plt.ylabel('error in angle(in deg)') if self.context_indices[0] == 4: plt.plot((task_linear_features[:, 1] - box_data[1])*100, errors[:, 1]*100, 'o') plt.xlabel('change in box position(in cms)') plt.ylabel('error in box position(in cms)') if self.context_indices[0] == 3: plt.plot((task_linear_features[:, 0] - box_data[0])*100, errors[:, 1]*100, 'o') plt.xlabel('change in box position(in cms)') plt.ylabel('error in box position(in cms)') plt.show() if __name__ == '__main__': rospy.init_node('trajectory_replay', anonymous=True) # Enter the file path of the recorded data input_files = glob.glob('/home/akhil/SampleData/turnDemoSlave_*.txt') trajectory_list = [] for name in input_files: try: trajectory_list.append(Trajectory(name)) except IOError as exc: # Not sure what error this is if exc.errno != errno.EISDIR: raise relevant_context_indices = [4] # the contexts that can be used are initial x,y,angle final x,y,angle in order 0-5 calc = ContextResult(trajectory_list, relevant_context_indices) num_linear_goal_positions = 5 calc.find_linear_errors(num_linear_goal_positions) # joints_to_plot = [0, 1, 2, 3, 4, 5, 6] # calc.plot(joints_to_plot) print('end')
mit
jpautom/scikit-learn
examples/svm/plot_separating_hyperplane_unbalanced.py
329
1850
""" ================================================= SVM: Separating hyperplane for unbalanced classes ================================================= Find the optimal separating hyperplane using an SVC for classes that are unbalanced. We first find the separating plane with a plain SVC and then plot (dashed) the separating hyperplane with automatically correction for unbalanced classes. .. currentmodule:: sklearn.linear_model .. note:: This example will also work by replacing ``SVC(kernel="linear")`` with ``SGDClassifier(loss="hinge")``. Setting the ``loss`` parameter of the :class:`SGDClassifier` equal to ``hinge`` will yield behaviour such as that of a SVC with a linear kernel. For example try instead of the ``SVC``:: clf = SGDClassifier(n_iter=100, alpha=0.01) """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm #from sklearn.linear_model import SGDClassifier # we create 40 separable points rng = np.random.RandomState(0) n_samples_1 = 1000 n_samples_2 = 100 X = np.r_[1.5 * rng.randn(n_samples_1, 2), 0.5 * rng.randn(n_samples_2, 2) + [2, 2]] y = [0] * (n_samples_1) + [1] * (n_samples_2) # fit the model and get the separating hyperplane clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, y) w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - clf.intercept_[0] / w[1] # get the separating hyperplane using weighted classes wclf = svm.SVC(kernel='linear', class_weight={1: 10}) wclf.fit(X, y) ww = wclf.coef_[0] wa = -ww[0] / ww[1] wyy = wa * xx - wclf.intercept_[0] / ww[1] # plot separating hyperplanes and samples h0 = plt.plot(xx, yy, 'k-', label='no weights') h1 = plt.plot(xx, wyy, 'k--', label='with weights') plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.legend() plt.axis('tight') plt.show()
bsd-3-clause
marakeby/udl
udl/model.py
1
1310
__author__ = 'haitham' import sklearn class UDLModel(sklearn.base.BaseEstimator): # self.estimator =None # self.configs= {} def __init__(self): # a dictionary of all configurable parameters. This dictionary will be used in get_params. see the note in get_params function self.configs = {} # there is no restriction on the internal implementation of you estimator. You estimator has to be able to transform input into output, see predict function self.estimator = None def fit(self, x_train, **kwargs): # fit() is model dependent raise NotImplementedError def predict(self, x_test): assert self.estimator pred = self.estimator(x_test) return pred def transform(self, x_test, y=None, **fit_params): pred = self.estimator(x_test) return pred def fit_transform(self, x, y=None, **fit_params): self.fit(x) return self.transform(x) def get_params(self, deep=True): # Note: Pylearn2 has a function with the same name, please replace with another name e.g. get_params_list return self.configs def set_params(self, **parameters): for parameter, value in parameters.items(): self.setattr(parameter, value) # return self
bsd-2-clause
gamer13/keras
tests/manual/check_callbacks.py
82
7540
import numpy as np import random import theano from keras.models import Sequential from keras.callbacks import Callback from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.regularizers import l2 from keras.layers.convolutional import Convolution2D, MaxPooling2D from keras.utils import np_utils from keras.datasets import mnist import keras.callbacks as cbks from matplotlib import pyplot as plt from matplotlib import animation ############################## # model DrawActivations test # ############################## print('Running DrawActivations test') nb_classes = 10 batch_size = 128 nb_epoch = 10 max_train_samples = 512 max_test_samples = 1 np.random.seed(1337) # the data, shuffled and split between tran and test sets (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.reshape(-1,1,28,28)[:max_train_samples] X_train = X_train.astype("float32") X_train /= 255 X_test = X_test.reshape(-1,1,28,28)[:max_test_samples] X_test = X_test.astype("float32") X_test /= 255 # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes)[:max_train_samples] class Frames(object): def __init__(self, n_plots=16): self._n_frames = 0 self._framedata = [] self._titles = [] for i in range(n_plots): self._framedata.append([]) def add_frame(self, i, frame): self._framedata[i].append(frame) def set_title(self, title): self._titles.append(title) class SubplotTimedAnimation(animation.TimedAnimation): def __init__(self, fig, frames, grid=(4, 4), interval=10, blit=False, **kwargs): self.n_plots = grid[0] * grid[1] self.axes = [fig.add_subplot(grid[0], grid[1], i + 1) for i in range(self.n_plots)] for axis in self.axes: axis.get_xaxis().set_ticks([]) axis.get_yaxis().set_ticks([]) self.frames = frames self.imgs = [self.axes[i].imshow(frames._framedata[i][0], interpolation='nearest', cmap='bone') for i in range(self.n_plots)] self.title = fig.suptitle('') super(SubplotTimedAnimation, self).__init__(fig, interval=interval, blit=blit, **kwargs) def _draw_frame(self, j): for i in range(self.n_plots): self.imgs[i].set_data(self.frames._framedata[i][j]) if len(self.frames._titles) > j: self.title.set_text(self.frames._titles[j]) self._drawn_artists = self.imgs def new_frame_seq(self): return iter(range(len(self.frames._framedata[0]))) def _init_draw(self): for img in self.imgs: img.set_data([[]]) def combine_imgs(imgs, grid=(1,1)): n_imgs, img_h, img_w = imgs.shape if n_imgs != grid[0] * grid[1]: raise ValueError() combined = np.zeros((grid[0] * img_h, grid[1] * img_w)) for i in range(grid[0]): for j in range(grid[1]): combined[img_h*i:img_h*(i+1),img_w*j:img_w*(j+1)] = imgs[grid[0] * i + j] return combined class DrawActivations(Callback): def __init__(self, figsize): self.fig = plt.figure(figsize=figsize) def on_train_begin(self, logs={}): self.imgs = Frames(n_plots=5) layers_0_ids = np.random.choice(32, 16, replace=False) self.test_layer0 = theano.function([self.model.get_input()], self.model.layers[1].get_output(train=False)[0, layers_0_ids]) layers_1_ids = np.random.choice(64, 36, replace=False) self.test_layer1 = theano.function([self.model.get_input()], self.model.layers[5].get_output(train=False)[0, layers_1_ids]) self.test_layer2 = theano.function([self.model.get_input()], self.model.layers[10].get_output(train=False)[0]) def on_epoch_begin(self, epoch, logs={}): self.epoch = epoch def on_batch_end(self, batch, logs={}): if batch % 5 == 0: self.imgs.add_frame(0, X_test[0,0]) self.imgs.add_frame(1, combine_imgs(self.test_layer0(X_test), grid=(4, 4))) self.imgs.add_frame(2, combine_imgs(self.test_layer1(X_test), grid=(6, 6))) self.imgs.add_frame(3, self.test_layer2(X_test).reshape((16,16))) self.imgs.add_frame(4, self.model._predict(X_test)[0].reshape((1,10))) self.imgs.set_title('Epoch #%d - Batch #%d' % (self.epoch, batch)) def on_train_end(self, logs={}): anim = SubplotTimedAnimation(self.fig, self.imgs, grid=(1,5), interval=10, blit=False, repeat_delay=1000) # anim.save('test_gif.gif', fps=15, writer='imagemagick') plt.show() # model = Sequential() # model.add(Dense(784, 50)) # model.add(Activation('relu')) # model.add(Dense(50, 10)) # model.add(Activation('softmax')) model = Sequential() model.add(Convolution2D(32, 1, 3, 3, border_mode='full')) model.add(Activation('relu')) model.add(MaxPooling2D(poolsize=(2, 2))) model.add(Dropout(0.25)) model.add(Convolution2D(64, 32, 3, 3, border_mode='full')) model.add(Activation('relu')) model.add(MaxPooling2D(poolsize=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(64*8*8, 256)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(256, 10, W_regularizer = l2(0.1))) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') # Fit the model draw_weights = DrawActivations(figsize=(5.4, 1.35)) model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, callbacks=[draw_weights]) ########################## # model checkpoint tests # ########################## print('Running ModelCheckpoint test') nb_classes = 10 batch_size = 128 nb_epoch = 20 # small sample size to overfit on training data max_train_samples = 50 max_test_samples = 1000 np.random.seed(1337) # for reproducibility # the data, shuffled and split between tran and test sets (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.reshape(60000,784)[:max_train_samples] X_test = X_test.reshape(10000,784)[:max_test_samples] X_train = X_train.astype("float32") X_test = X_test.astype("float32") X_train /= 255 X_test /= 255 # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes)[:max_train_samples] Y_test = np_utils.to_categorical(y_test, nb_classes)[:max_test_samples] # Create a slightly larger network than required to test best validation save only model = Sequential() model.add(Dense(784, 500)) model.add(Activation('relu')) model.add(Dense(500, 10)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') # test file location path = "/tmp" filename = "model_weights.hdf5" import os f = os.path.join(path, filename) print("Test model checkpointer") # only store best validation model in checkpointer checkpointer = cbks.ModelCheckpoint(filepath=f, verbose=1, save_best_only=True) model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, validation_data=(X_test, Y_test), callbacks =[checkpointer]) if not os.path.isfile(f): raise Exception("Model weights were not saved to %s" % (f)) print("Test model checkpointer without validation data") import warnings warnings.filterwarnings('error') try: # this should issue a warning model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, callbacks =[checkpointer]) except: print("Tests passed") import sys sys.exit(0) raise Exception("Modelcheckpoint tests did not pass")
mit
anaandresarroyo/Python-GarminDataAnalyser
database/gui.py
1
6886
import numpy as np import pandas as pd from PyQt5 import QtWidgets, QtCore def fill_table(df, table, max_rows=50): # TODO: threading # read indices of currently selected rows selected_indexes = table.selectedIndexes() selected_rows = [] for item in selected_indexes: selected_rows.append(item.row()) # initialise the GUI table columns table.clear() # disable sorting to solve issues with repopulating table.setSortingEnabled(False) number_of_rows = min(max_rows, len(df.index)) table.setRowCount(number_of_rows) table.setColumnCount(len(df.columns)) table.setHorizontalHeaderLabels(df.columns) # fill the GUI table for col in range(len(df.columns)): for row in range(number_of_rows): data = df.iloc[row, col] item = QtWidgets.QTableWidgetItem() if isinstance(data, (float, np.float64)): # pad the floats so they'll be sorted correctly formatted_data = '{:.3f}'.format(data).rjust(15) item.setTextAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter) elif isinstance(data, (int, np.int64)): # pad the integers so they'll be sorted correctly formatted_data = '{:d}'.format(data).rjust(15) item.setTextAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter) else: formatted_data = str(data) item.setData(QtCore.Qt.EditRole, formatted_data) table.setItem(row, col, item) table.resizeColumnToContents(col) # enable table sorting by columns table.setSortingEnabled(True) # temporarily set MultiSelection table.setSelectionMode(QtWidgets.QAbstractItemView.MultiSelection) # reselect the prevously selected rows # TODO: reselect by filename instead of table row number for row in selected_rows: table.selectRow(row) # revert MultiSelection to ExtendedSelection table.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection) def populate_combobox(items_list, item_default, combobox_list): # populate comboboxes for combobox in combobox_list: combobox.clear() for item in items_list: combobox.addItem(item, 0) if item_default in items_list: index = combobox.findText(item_default) else: index = 0 combobox.setCurrentIndex(index) def populate_comboboxes(config, df, numeric_comboboxes, units_comboboxes, trace_comboboxes, comboboxes): default_value_keys = [x[0] for x in config.items('DEFAULT VALUES')] # TODO: also include datetime.time values options = df.select_dtypes(include=['float64', 'int64', 'datetime64[ns]']).columns.values for key, value in numeric_comboboxes.items(): if key in default_value_keys: default_value = config['DEFAULT VALUES'][key] else: default_value = options[0] populate_combobox(sorted(np.unique(options)), default_value, value) for key, value in units_comboboxes.items(): options = [x[0] for x in config.items('%s UNIT FACTORS' % key.upper())] populate_combobox(options, options[0], # TODO: choose the one with value 1, in case it's not the first [value]) for key, value in trace_comboboxes.items(): if key in default_value_keys: default_value = config['DEFAULT VALUES'][key] else: default_value = None populate_combobox([default_value], default_value, value) for key, value in comboboxes.items(): options = list(filter(None, [x.strip() for x in config['GUI OPTIONS'][key].splitlines()])) if key in default_value_keys: default_value = config['DEFAULT VALUES'][key] else: default_value = options[0] populate_combobox(options, default_value, value) def populate_dates(column_date_local, df, start_date_edit, end_date_edit): if column_date_local in df.columns: start_date_edit.setDate(df[column_date_local].min()) end_date_edit.setDate(df[column_date_local].max()) def read_units(units_comboboxes): """Read units from GUI comboboxes.""" units = dict() for key in units_comboboxes.keys(): units[key] = units_comboboxes[key].currentText() return units def list_selection(widget): selected_options = [] for item in widget.selectedItems(): selected_options.append(item.text()) return selected_options def populate_list(df, column, widget): """Populate the list widget with items from the dataframe column.""" items = np.sort(df[column].unique()) widget.clear() for row, item in enumerate(items): widget.addItem(item) widget.item(row).setSelected(True) def read_table(table, rows=None): # read GUI table size if rows is None: rows = [] if not len(rows): rows = range(table.rowCount()) columns = range(table.columnCount()) # read column names from the GUI table column_names = [] for column in columns: column_names.append(table.horizontalHeaderItem(column).text()) # initialise dataframe with certain columns df = pd.DataFrame(columns=column_names) # read data from GUI table for row in rows: for column_number, column_name in enumerate(column_names): df.loc[row, column_name] = table.item(row, column_number).data(0) # TODO: make this formatting more automatic # format data types datetime_column_names = ['start time', 'start time local', 'end time', 'end time local', 'timestamp'] for column_name in column_names: # format dates if column_name in datetime_column_names: df[column_name] = pd.to_datetime(df[column_name]) elif 'position' in column_name: df[column_name] = pd.to_numeric(df[column_name], errors='coerce') # change strings to numbers # elif column_name != 'file_name': # df[column_name] = pd.to_numeric(df[column_name], errors='ignore') return df def read_selected_table_rows(table): selected_rows = [] for item in table.selectedIndexes(): selected_rows.append(item.row()) selected_rows = np.unique(selected_rows) # read the selected_rows from the table df = read_table(table, selected_rows) # return the dataframe return df def get_labels_text(labels): text = dict() for key, value in labels.items(): text[key] = value.text() return text def set_labels_text(labels, text): for key in labels.keys(): labels[key].setText(text[key])
mit
ahoyosid/scikit-learn
sklearn/metrics/tests/test_regression.py
272
6066
from __future__ import division, print_function import numpy as np from itertools import product from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.metrics import explained_variance_score from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import median_absolute_error from sklearn.metrics import r2_score from sklearn.metrics.regression import _check_reg_targets def test_regression_metrics(n_samples=50): y_true = np.arange(n_samples) y_pred = y_true + 1 assert_almost_equal(mean_squared_error(y_true, y_pred), 1.) assert_almost_equal(mean_absolute_error(y_true, y_pred), 1.) assert_almost_equal(median_absolute_error(y_true, y_pred), 1.) assert_almost_equal(r2_score(y_true, y_pred), 0.995, 2) assert_almost_equal(explained_variance_score(y_true, y_pred), 1.) def test_multioutput_regression(): y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]]) y_pred = np.array([[0, 0, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]) error = mean_squared_error(y_true, y_pred) assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.) # mean_absolute_error and mean_squared_error are equal because # it is a binary problem. error = mean_absolute_error(y_true, y_pred) assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.) error = r2_score(y_true, y_pred, multioutput='variance_weighted') assert_almost_equal(error, 1. - 5. / 2) error = r2_score(y_true, y_pred, multioutput='uniform_average') assert_almost_equal(error, -.875) def test_regression_metrics_at_limits(): assert_almost_equal(mean_squared_error([0.], [0.]), 0.00, 2) assert_almost_equal(mean_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(median_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(explained_variance_score([0.], [0.]), 1.00, 2) assert_almost_equal(r2_score([0., 1], [0., 1]), 1.00, 2) def test__check_reg_targets(): # All of length 3 EXAMPLES = [ ("continuous", [1, 2, 3], 1), ("continuous", [[1], [2], [3]], 1), ("continuous-multioutput", [[1, 1], [2, 2], [3, 1]], 2), ("continuous-multioutput", [[5, 1], [4, 2], [3, 1]], 2), ("continuous-multioutput", [[1, 3, 4], [2, 2, 2], [3, 1, 1]], 3), ] for (type1, y1, n_out1), (type2, y2, n_out2) in product(EXAMPLES, repeat=2): if type1 == type2 and n_out1 == n_out2: y_type, y_check1, y_check2, multioutput = _check_reg_targets( y1, y2, None) assert_equal(type1, y_type) if type1 == 'continuous': assert_array_equal(y_check1, np.reshape(y1, (-1, 1))) assert_array_equal(y_check2, np.reshape(y2, (-1, 1))) else: assert_array_equal(y_check1, y1) assert_array_equal(y_check2, y2) else: assert_raises(ValueError, _check_reg_targets, y1, y2, None) def test_regression_multioutput_array(): y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]] y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]] mse = mean_squared_error(y_true, y_pred, multioutput='raw_values') mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values') r = r2_score(y_true, y_pred, multioutput='raw_values') evs = explained_variance_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(mse, [0.125, 0.5625], decimal=2) assert_array_almost_equal(mae, [0.25, 0.625], decimal=2) assert_array_almost_equal(r, [0.95, 0.93], decimal=2) assert_array_almost_equal(evs, [0.95, 0.93], decimal=2) # mean_absolute_error and mean_squared_error are equal because # it is a binary problem. y_true = [[0, 0]]*4 y_pred = [[1, 1]]*4 mse = mean_squared_error(y_true, y_pred, multioutput='raw_values') mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values') r = r2_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(mse, [1., 1.], decimal=2) assert_array_almost_equal(mae, [1., 1.], decimal=2) assert_array_almost_equal(r, [0., 0.], decimal=2) r = r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='raw_values') assert_array_almost_equal(r, [0, -3.5], decimal=2) assert_equal(np.mean(r), r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='uniform_average')) evs = explained_variance_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='raw_values') assert_array_almost_equal(evs, [0, -1.25], decimal=2) # Checking for the condition in which both numerator and denominator is # zero. y_true = [[1, 3], [-1, 2]] y_pred = [[1, 4], [-1, 1]] r2 = r2_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(r2, [1., -3.], decimal=2) assert_equal(np.mean(r2), r2_score(y_true, y_pred, multioutput='uniform_average')) evs = explained_variance_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(evs, [1., -3.], decimal=2) assert_equal(np.mean(evs), explained_variance_score(y_true, y_pred)) def test_regression_custom_weights(): y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]] y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]] msew = mean_squared_error(y_true, y_pred, multioutput=[0.4, 0.6]) maew = mean_absolute_error(y_true, y_pred, multioutput=[0.4, 0.6]) rw = r2_score(y_true, y_pred, multioutput=[0.4, 0.6]) evsw = explained_variance_score(y_true, y_pred, multioutput=[0.4, 0.6]) assert_almost_equal(msew, 0.39, decimal=2) assert_almost_equal(maew, 0.475, decimal=3) assert_almost_equal(rw, 0.94, decimal=2) assert_almost_equal(evsw, 0.94, decimal=2)
bsd-3-clause
mjvakili/ccppabc
ccppabc/code/archive/knn_richness_hod.py
1
12403
import numpy as np import matplotlib.pyplot as plt from interruptible_pool import InterruptiblePool import time plt.switch_backend("Agg") from halotools.empirical_models import Zheng07 from astropy.table import Table import corner from scipy.stats import multivariate_normal from scipy.spatial import cKDTree model = Zheng07(threshold = -21.) print 'Data HOD Parameters ', model.param_dict N_threads = 10 N_particles = 100 N_iter = 40 eps0 = np.array([1.e34 , 1.e34])#, 1.e34, 1.e34, 1.e34, 1.e34]) def richness(group_id): gals = Table() gals['groupid'] = group_id gals['dummy'] = 1 grouped_table = gals.group_by('groupid') grp_richness = grouped_table['dummy'].groups.aggregate(np.sum) return grp_richness #generate data model.populate_mock() group_id = model.mock.compute_fof_group_ids() data_richness = richness(group_id) np.savetxt("richness.dat" , data_richness) nz = np.loadtxt("nz.dat") covar_nz = np.cov(nz) avg_nz = np.mean(nz) data = [avg_nz , data_richness] print data[0] print data[1] #n_mocks = 1000 #n_bins = 12 #print hist_bins #histograms = np.zeros((n_mocks , n_bins)) #avg_nz = [] #for i in xrange(n_mocks): # model.populate_mock() # number density # avg_nz.append(model.mock.number_density) # # richness histogram # group_id = model.mock.compute_fof_group_ids() # group_richness = richness(group_id) # # #print 'Group Richness computation takes ', time.time() - hod_time, ' seconds' # hist, bin_edge = np.histogram(group_richness, bins=hist_bins) # # #bin_mid = 0.5 * (bin_edge[1:] + bin_edge[:-1]) # # histograms[i,:] = hist # np.savetxt("group_rich.dat", histograms) #np.savetxt("nz.dat", avg_nz) """data and covariance """ """ nz = np.loadtxt("nz.dat") histograms = np.loadtxt("group_rich.dat") covar_nz = np.cov(nz) covar_gr = np.cov(histograms) #print covar_nz #print np.diag(covar_gr) snr_gr = 1./np.diag(covar_gr) avg_nz = np.mean(nz) avg_gr = np.mean(histograms.T , axis = 0) data = [avg_nz, avg_gr] #alpha , logMmin , sigma_logM , logM0 , logM1 """ data_hod = np.array([11.92 , 0.39 , 12.79 , 1.15 , 13.94]) """simulator""" class HODsim(object): def __init__(self): self.model = Zheng07(threshold = -21.) def sum_stat(self, theta_star): #print theta_star self.model.param_dict['alpha'] = theta_star[3] self.model.param_dict['logMmin'] = theta_star[2] self.model.param_dict['sigma_logM'] = theta_star[1] self.model.param_dict['logM0'] = theta_star[0] self.model.param_dict['logM1'] = theta_star[4] #print self.model.param_dict #a = time.time() try: self.model.populate_mock() #print "pop time", time.time() - a #a = time.time() nz = self.model.mock.number_density #print "nz time" , time.time() - a #hist = np.zeros((12)) #a = time.time() group_id =self. model.mock.compute_fof_group_ids() #print "fof time" , time.time() - a #a = time.time() group_richness = richness(group_id) #print "rich time" , time.time() - a #a = time.time() #hist_temp, bin_edge = np.histogram(group_richness, bins=hist_bins) #print hist , hist_temp #hist += hist_temp #self.model.populate_mock() return [nz , group_richness] except ValueError: return [0 , np.zeros(10000)] ourmodel = HODsim() simz = ourmodel.sum_stat from scipy.stats import ks_2samp """distance""" def distance(d_data, d_model, type = 'group distance'): if type == 'added distance': dist_nz = np.abs(d_data[0] - d_model[0])/d_data[0] dist_xi = np.sum(np.abs(d_data[1] - d_model[1])/d_data[1]) dist = dist_nz + dist_xi elif type == 'separate distance': dist_nz = (d_data[0] - d_model[0])**2. / covar_nz dist_xi = np.sum((d_data[1] - d_model[1])**2. * snr_gr) dist = np.array([dist_nz , dist_xi]) elif type == 'group distance': dist_nz = (d_data[0] - d_model[0])**2. / covar_nz dist_ri = ks_2samp(d_data[1] , d_model[1])[0] dist = np.array([dist_nz , dist_ri]) return np.atleast_1d(dist) """covariance matrix in abc sampler""" def covariance(theta , w , type = 'weighted'): if type == 'neutral': return np.cov(theta) if type == 'weighted': ww = w.sum() / (w.sum()**2 - (w**2).sum()) mean = np.sum(theta*w[None,:] , axis = 1)/ np.sum(w) tmm = theta - mean.reshape(theta.shape[0] , 1) sigma2 = ww * (tmm*w[None,:]).dot(tmm.T) return sigma2 def knn_cov(x , theta, k): tree = cKDTree(theta.T) index = tree.query(x, k, p=2)[1] knn_x = theta.T[index , :] sigma2 = np.cov(knn_x.T) + np.diag(1.e-16*np.ones(x.shape[0])) return sigma2 def transition_kernel(x, sigma): return multivariate_normal(mean = x , cov = sigma).rvs(1) """Prior""" from scipy.stats import uniform from scipy.stats import norm class Prior(object): def __init__(self, prior_dict): self.prior_dict = prior_dict.copy() def prior(self): priorz = [] for key in self.prior_dict.keys(): prior_key = self.prior_dict[key] if prior_key['shape'] == 'uniform': loc = prior_key['min'] scale = prior_key['max'] - prior_key['min'] priorz.append( uniform(loc, scale)) elif prior_key['shape'] == 'gauss': loc = prior_key['mean'] scale = prior_key['stddev'] priorz.append( norm(loc, scale) ) return priorz prior_dict = { 'logM0' : {'shape': 'uniform', 'min': 9. , 'max': 15.}, 'sigma_logM': {'shape': 'uniform', 'min': 0. , 'max': 1.}, 'logMmin': {'shape': 'uniform', 'min': 12.5, 'max': 13.09}, 'alpha': {'shape': 'uniform', 'min': .9 , 'max': 1.45}, 'logM1' : {'shape': 'uniform', 'min': 13.6 , 'max': 14.25}, } n_params = len(prior_dict.keys()) prior_obj = Prior(prior_dict) def prior_sampler(): """ Sample prior distribution and return theta_star """ theta_star = np.zeros(n_params) for i in xrange(n_params): np.random.seed() theta_star[i] = prior_obj.prior()[i].rvs(size=1)[0] return theta_star def pi_priors(tmp_theta): for i in xrange(n_params): try: p_theta *= prior_obj.prior()[i].pdf(tmp_theta[i]) except UnboundLocalError: p_theta = prior_obj.prior()[i].pdf(tmp_theta[i]) return p_theta def weighted_sampling(theta, w): #w_cdf = w.cumsum()/w.sum() # normalized CDF #np.random.seed() #rand1 = np.random.random(1) #cdf_closest_index = np.argmin( np.abs(w_cdf - rand1) ) #closest_theta = theta[:, cdf_closest_index] np.random.seed() index = np.random.choice(range(N_particles), 1, p = w/np.sum(w))[0] closest_theta = theta[:,index] return closest_theta def better_multinorm(theta_stst, theta_before, cov): n_par, n_part = theta_before.shape sig_inv = np.linalg.inv(cov) x_mu = theta_before.T - theta_stst nrmliz = 1.0 / np.sqrt( (2.0*np.pi)**n_par * np.linalg.det(cov)) multinorm = nrmliz * np.exp(-0.5 * np.sum( (x_mu.dot(sig_inv[None,:])[:,0,:]) * x_mu, axis=1 ) ) return multinorm prior_range = [] for key in ['logM0', 'sigma_logM', 'logMmin','alpha','logM1']: prior_range.append([prior_dict[key]['min'], prior_dict[key]['max']]) plot_range = prior_range prior_range = np.array(prior_range) print "prior range is = " , prior_range def plot_thetas(theta , w , t): fig = corner.corner( theta.T, weights = w.flatten() , truths= data_hod, truth_color="red", plot_datapoints=True, fill_contours=False, levels=[0.68], color='k', bins=25, smooth= True, range=plot_range, labels=[r"$\log M_{0}$", r"$\sigma_{log M}$", r"$\log M_{min}$" , r"$\alpha$" , r"$\log M_{1}$" ] ) plt.savefig("/home/mj/public_html/knn_hod5_flat_t"+str(t)+".png") plt.close() np.savetxt("/home/mj/public_html/knn_hod5_flat_t"+str(t)+".dat" , theta.T) np.savetxt("/home/mj/public_html/knn_hod5_flat_t"+str(t)+".dat" , w.T) def initial_pool_sampling(i_particle): """ Sample theta_star from prior distribution for the initial pool """ rho = eps0 + 1. while np.all(rho < eps0)==False: theta_star = prior_sampler() model_theta = simz(theta_star) rho = distance(data, model_theta) pool_list = [np.int(i_particle)] for i_param in xrange(n_params): pool_list.append(theta_star[i_param]) pool_list.append(1./np.float(N_particles)) for r in rho: pool_list.append(r) return np.array(pool_list) def initial_pool(): args_list = np.arange(N_particles) """serial""" #results = [] #for arg in args_list: # results.append(initial_pool_sampling(arg)) """parallel""" pool = InterruptiblePool(processes = N_threads) mapfn = pool.map results = mapfn(initial_pool_sampling, args_list) pool.close() pool.terminate() pool.join() results = np.array(results).T theta_t = results[1:n_params+1,:] w_t = results[n_params+1,:] w_t = w_t / np.sum(w_t) rhos = results[n_params+2:,:] sig_t = covariance(theta_t , w_t) return theta_t, w_t, rhos, sig_t def importance_pool_sampling(args): i_particle = args[0] theta_t_1 = args[1] w_t_1 = args[2] sig_t_1 = args[3] eps_t = args[4] rho = eps_t + 1. while np.all(rho < eps_t)==False: theta_star = weighted_sampling(theta_t_1, w_t_1) sigma_star = knn_cov(theta_star , theta_t_1, k = 10) theta_starstar = transition_kernel(theta_star , sigma_star) while np.all((prior_range[:,0] < theta_starstar)&(theta_starstar < prior_range[:,1]))==False: theta_star = weighted_sampling(theta_t_1, w_t_1) sigma_star = knn_cov(theta_star , theta_t_1, k = 10) theta_starstar = transition_kernel(theta_star , sigma_star) model_starstar = simz(theta_starstar) rho = distance(data, model_starstar) p_theta = pi_priors(theta_starstar) w_starstar = p_theta/np.sum( w_t_1 * better_multinorm(theta_starstar, theta_t_1, sig_t_1) ) pool_list = [np.int(i_particle)] for i_p in xrange(n_params): pool_list.append(theta_starstar[i_p]) pool_list.append(w_starstar) for r in rho: pool_list.append(r) return pool_list def pmc_abc(N_threads = N_threads): # initial pool theta_t, w_t, rhos, sig_t = initial_pool() w_t = w_t/np.sum(w_t) t = 0 # iternation number plot_thetas(theta_t , w_t, t) while t < N_iter: if t < 4 : eps_t = np.percentile(np.atleast_2d(rhos), 20, axis=1) else: eps_t = np.percentile(np.atleast_2d(rhos), 50, axis=1) print 'New Distance Threshold Eps_t = ', eps_t , "t=" , t theta_t_1 = theta_t.copy() w_t_1 = w_t.copy() sig_t_1 = sig_t.copy() args_list = [[i, theta_t_1, w_t_1, sig_t_1, eps_t] for i in xrange(N_particles)] """serial""" results = [] #for args in args_list: # pool_sample = importance_pool_sampling(args) # results.append( pool_sample ) """parallel""" pool = InterruptiblePool(processes = N_threads) mapfn = pool.map results = mapfn(importance_pool_sampling, args_list) pool.close() pool.terminate() pool.join() results = np.array(results).T theta_t = results[1:n_params+1,:] w_t = results[n_params+1,:] w_t = w_t/np.sum(w_t) rhos = results[n_params+2:,:] #sig_t = knn_sigma(theta_t , k = 10) sig_t = 2. * covariance(theta_t , w_t) t += 1 plot_thetas(theta_t, w_t , t) pmc_abc()
mit
mehdidc/scikit-learn
examples/linear_model/plot_iris_logistic.py
283
1678
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logistic Regression 3-class Classifier ========================================================= Show below is a logistic-regression classifiers decision boundaries on the `iris <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ dataset. The datapoints are colored according to their labels. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target h = .02 # step size in the mesh logreg = linear_model.LogisticRegression(C=1e5) # we create an instance of Neighbours Classifier and fit the data. logreg.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1, figsize=(4, 3)) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
3WiseMen/python
12. CSV2SQL/CSV2SQL.py
1
2697
import pandas as pd import os import time from datetime import datetime from matplotlib.dates import date2num import sqlite3 # Create NEW SQL database connect = sqlite3.connect('Yahoo_sqlite.db') cursor = connect.cursor() PATH = '/Users/insuyu/GitHub/historical.data/yahoo.csv/' #PATH = '/Users/insuyu/GitHub/python/12. CSV2SQL/' # Create a New Table for Code # DateStamp(REAL) | Date(TEXT) | Open(REAL) | High(REAL) | Low(REAL) # | Close(REAL) | Volume(REAL) | AdjClose(REAL) | MA20(REAL) | MA30(REAL) | MA200(REAL) | MA240 (REAL) command = "CREATE TABLE YAHOO(Code TEXT, DateStamp INT, Date TEXT, Open REAL, High REAL, Low REAL, Close REAL, Volume INT, AdjClose REAL, MA20 REAL, MA30 REAL, MA200 REAL, MA240 REAL)" print(command) cursor.execute(command) # For All Files in PATH nFiles = 0 for filename in os.listdir(PATH): # Find only *.csv files if filename.endswith(".csv"): print ("[%d] %s" % (nFiles, filename)) # Load CVS to Database DB = pd.read_csv(PATH+filename) # Generate Moving Average Data DB['MA20'] = pd.stats.moments.rolling_mean(DB['Adj Close'], 20) DB['MA30'] = pd.stats.moments.rolling_mean(DB['Adj Close'], 30) #DB['MA30'] = pd.stats.moments.rolling_mean(DB['Adj Close'], 30) #DB['MA60'] = pd.stats.moments.rolling_mean(DB['Adj Close'], 60) #DB['MA120'] = pd.stats.moments.rolling_mean(DB['Adj Close'], 120) DB['MA200'] = pd.stats.moments.rolling_mean(DB['Adj Close'], 200) DB['MA240'] = pd.stats.moments.rolling_mean(DB['Adj Close'], 240) DB['DateStamp'] = [ date2num(datetime.strptime(date,"%Y-%m-%d")) for date in DB['Date'] ] ########################################################################### Code = filename[:-4] # Trading Code command = "INSERT INTO YAHOO(Code, DateStamp, Date, Open, High, Low, Close, Volume, AdjClose, MA20, MA30, MA200, MA240) VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?)" #print(command) for i in range(len(DB)): DateStamp = DB['DateStamp'][i] Date = DB['Date'][i] Open = DB['Open'][i] High = DB['High'][i] Low = DB['Low'][i] Close = DB['Close'][i] Volume = int(DB['Volume'][i]) AdjClose = DB['Adj Close'][i] MA20 = DB['MA20'][i] MA30 = DB['MA30'][i] MA200 = DB['MA200'][i] MA240 = DB['MA240'][i] cursor.execute(command,(Code, DateStamp, Date, Open, High, Low, Close, Volume, AdjClose, MA20, MA30, MA200, MA240) ) connect.commit() nFiles += 1
mit
iismd17/scikit-learn
sklearn/manifold/tests/test_locally_linear.py
232
4761
from itertools import product from nose.tools import assert_true import numpy as np from numpy.testing import assert_almost_equal, assert_array_almost_equal from scipy import linalg from sklearn import neighbors, manifold from sklearn.manifold.locally_linear import barycenter_kneighbors_graph from sklearn.utils.testing import assert_less from sklearn.utils.testing import ignore_warnings eigen_solvers = ['dense', 'arpack'] #---------------------------------------------------------------------- # Test utility routines def test_barycenter_kneighbors_graph(): X = np.array([[0, 1], [1.01, 1.], [2, 0]]) A = barycenter_kneighbors_graph(X, 1) assert_array_almost_equal( A.toarray(), [[0., 1., 0.], [1., 0., 0.], [0., 1., 0.]]) A = barycenter_kneighbors_graph(X, 2) # check that columns sum to one assert_array_almost_equal(np.sum(A.toarray(), 1), np.ones(3)) pred = np.dot(A.toarray(), X) assert_less(linalg.norm(pred - X) / X.shape[0], 1) #---------------------------------------------------------------------- # Test LLE by computing the reconstruction error on some manifolds. def test_lle_simple_grid(): # note: ARPACK is numerically unstable, so this test will fail for # some random seeds. We choose 2 because the tests pass. rng = np.random.RandomState(2) tol = 0.1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(5), repeat=2))) X = X + 1e-10 * rng.uniform(size=X.shape) n_components = 2 clf = manifold.LocallyLinearEmbedding(n_neighbors=5, n_components=n_components, random_state=rng) tol = 0.1 N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray() reconstruction_error = linalg.norm(np.dot(N, X) - X, 'fro') assert_less(reconstruction_error, tol) for solver in eigen_solvers: clf.set_params(eigen_solver=solver) clf.fit(X) assert_true(clf.embedding_.shape[1] == n_components) reconstruction_error = linalg.norm( np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2 assert_less(reconstruction_error, tol) assert_almost_equal(clf.reconstruction_error_, reconstruction_error, decimal=1) # re-embed a noisy version of X using the transform method noise = rng.randn(*X.shape) / 100 X_reembedded = clf.transform(X + noise) assert_less(linalg.norm(X_reembedded - clf.embedding_), tol) def test_lle_manifold(): rng = np.random.RandomState(0) # similar test on a slightly more complex manifold X = np.array(list(product(np.arange(18), repeat=2))) X = np.c_[X, X[:, 0] ** 2 / 18] X = X + 1e-10 * rng.uniform(size=X.shape) n_components = 2 for method in ["standard", "hessian", "modified", "ltsa"]: clf = manifold.LocallyLinearEmbedding(n_neighbors=6, n_components=n_components, method=method, random_state=0) tol = 1.5 if method == "standard" else 3 N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray() reconstruction_error = linalg.norm(np.dot(N, X) - X) assert_less(reconstruction_error, tol) for solver in eigen_solvers: clf.set_params(eigen_solver=solver) clf.fit(X) assert_true(clf.embedding_.shape[1] == n_components) reconstruction_error = linalg.norm( np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2 details = ("solver: %s, method: %s" % (solver, method)) assert_less(reconstruction_error, tol, msg=details) assert_less(np.abs(clf.reconstruction_error_ - reconstruction_error), tol * reconstruction_error, msg=details) def test_pipeline(): # check that LocallyLinearEmbedding works fine as a Pipeline # only checks that no error is raised. # TODO check that it actually does something useful from sklearn import pipeline, datasets X, y = datasets.make_blobs(random_state=0) clf = pipeline.Pipeline( [('filter', manifold.LocallyLinearEmbedding(random_state=0)), ('clf', neighbors.KNeighborsClassifier())]) clf.fit(X, y) assert_less(.9, clf.score(X, y)) # Test the error raised when the weight matrix is singular def test_singular_matrix(): from nose.tools import assert_raises M = np.ones((10, 3)) f = ignore_warnings assert_raises(ValueError, f(manifold.locally_linear_embedding), M, 2, 1, method='standard', eigen_solver='arpack')
bsd-3-clause
akionakamura/scikit-learn
examples/cluster/plot_feature_agglomeration_vs_univariate_selection.py
218
3893
""" ============================================== Feature agglomeration vs. univariate selection ============================================== This example compares 2 dimensionality reduction strategies: - univariate feature selection with Anova - feature agglomeration with Ward hierarchical clustering Both methods are compared in a regression problem using a BayesianRidge as supervised estimator. """ # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) import shutil import tempfile import numpy as np import matplotlib.pyplot as plt from scipy import linalg, ndimage from sklearn.feature_extraction.image import grid_to_graph from sklearn import feature_selection from sklearn.cluster import FeatureAgglomeration from sklearn.linear_model import BayesianRidge from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.externals.joblib import Memory from sklearn.cross_validation import KFold ############################################################################### # Generate data n_samples = 200 size = 40 # image size roi_size = 15 snr = 5. np.random.seed(0) mask = np.ones([size, size], dtype=np.bool) coef = np.zeros((size, size)) coef[0:roi_size, 0:roi_size] = -1. coef[-roi_size:, -roi_size:] = 1. X = np.random.randn(n_samples, size ** 2) for x in X: # smooth data x[:] = ndimage.gaussian_filter(x.reshape(size, size), sigma=1.0).ravel() X -= X.mean(axis=0) X /= X.std(axis=0) y = np.dot(X, coef.ravel()) noise = np.random.randn(y.shape[0]) noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.)) / linalg.norm(noise, 2) y += noise_coef * noise # add noise ############################################################################### # Compute the coefs of a Bayesian Ridge with GridSearch cv = KFold(len(y), 2) # cross-validation generator for model selection ridge = BayesianRidge() cachedir = tempfile.mkdtemp() mem = Memory(cachedir=cachedir, verbose=1) # Ward agglomeration followed by BayesianRidge connectivity = grid_to_graph(n_x=size, n_y=size) ward = FeatureAgglomeration(n_clusters=10, connectivity=connectivity, memory=mem) clf = Pipeline([('ward', ward), ('ridge', ridge)]) # Select the optimal number of parcels with grid search clf = GridSearchCV(clf, {'ward__n_clusters': [10, 20, 30]}, n_jobs=1, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_agglomeration_ = coef_.reshape(size, size) # Anova univariate feature selection followed by BayesianRidge f_regression = mem.cache(feature_selection.f_regression) # caching function anova = feature_selection.SelectPercentile(f_regression) clf = Pipeline([('anova', anova), ('ridge', ridge)]) # Select the optimal percentage of features with grid search clf = GridSearchCV(clf, {'anova__percentile': [5, 10, 20]}, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_selection_ = coef_.reshape(size, size) ############################################################################### # Inverse the transformation to plot the results on an image plt.close('all') plt.figure(figsize=(7.3, 2.7)) plt.subplot(1, 3, 1) plt.imshow(coef, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("True weights") plt.subplot(1, 3, 2) plt.imshow(coef_selection_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Selection") plt.subplot(1, 3, 3) plt.imshow(coef_agglomeration_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Agglomeration") plt.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.16, 0.26) plt.show() # Attempt to remove the temporary cachedir, but don't worry if it fails shutil.rmtree(cachedir, ignore_errors=True)
bsd-3-clause
dhermes/bezier
docs/conf.py
1
11552
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # bezier documentation build configuration file, created by # sphinx-quickstart on Sun Nov 6 22:34:38 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import doctest import os import sys import sphinx.domains.c import sphinx_rtd_theme import bezier # ``bezier`` must be installed to build the docs. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath(os.path.dirname(__file__))) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = "3.5.1" nitpicky = True nitpick_ignore = [ ("py:class", "bezier._base.Base"), ] # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named "sphinx.ext.*") or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.coverage", "sphinx.ext.doctest", "sphinx.ext.intersphinx", "sphinx.ext.mathjax", "sphinx.ext.napoleon", "sphinx_docstring_typing", "custom_html_writer", "doctest_monkeypatch", ] # Add any paths that contain templates here, relative to this directory. templates_path = [] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = [".rst", ".md"] source_suffix = ".rst" # The encoding of source files. # # source_encoding = "utf-8-sig" # The primary toctree document. master_doc = "index" # General information about the project. project = u"bezier" copyright = u"2016, Danny Hermes" author = bezier.__author__ version = bezier.__version__ # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # ``version`` **can be** the short X.Y version. # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # # today = "" # # Else, today_fmt is used as the format for a strftime call. # # today_fmt = "%B %d, %Y" # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. # # default_role = None # If true, "()" will be appended to :func: etc. cross-reference text. # # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # ON_READ_THE_DOCS = os.environ.get("READTHEDOCS") == "True" if not ON_READ_THE_DOCS: html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. # "<project> v<release> documentation" by default. # # html_title = u"bezier v0.0.1" # A shorter title for the navigation bar. Default is the same as html_title. # # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # # html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or # 32x32 pixels large. # # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["images"] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # # html_extra_path = [] # If not None, a "Last updated on:" timestamp is inserted at every page # bottom, using the given strftime format. # The empty string is equivalent to "%b %d, %Y". # # html_last_updated_fmt = None # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # # html_additional_pages = {} # If false, no module index is generated. # # html_domain_indices = True # If false, no index is generated. # # html_use_index = True # If true, the index is split into individual pages for each letter. # # html_split_index = False # If true, links to the reST sources are added to the pages. # # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # # html_use_opensearch = "" # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # "da", "de", "en", "es", "fi", "fr", "hu", "it", "ja" # "nl", "no", "pt", "ro", "ru", "sv", "tr", "zh" # # html_search_language = "en" # A dictionary with options for the search language support, empty by default. # "ja" uses this config value. # "zh" user can custom change `jieba` dictionary path. # # html_search_options = {"type": "default"} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. # # html_search_scorer = "scorer.js" # Output file base name for HTML help builder. htmlhelp_basename = "bezier-doc" # -- Options for LaTeX output --------------------------------------------- latex_elements = {} # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ( master_doc, "bezier.tex", u"bezier Documentation", u"Danny Hermes", "manual", ) ] # The name of an image file (relative to this directory) to place at the top of # the title page. # # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # # latex_use_parts = False # If true, show page references after internal links. # # latex_show_pagerefs = False # If true, show URL addresses after external links. # # latex_show_urls = False # Documents to append as an appendix to all manuals. # # latex_appendices = [] # It false, will not define \strong, \code, \titleref, \crossref ... but only # \sphinxstrong, ..., \sphinxtitleref, ... To help avoid clash with user added # packages. # # latex_keep_old_macro_names = True # If false, no module index is generated. # # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [(master_doc, "bezier", u"bezier Documentation", [author], 1)] # If true, show URL addresses after external links. # # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( master_doc, "bezier", u"bezier Documentation", author, "bezier", "One line description of project.", "Miscellaneous", ) ] # Documents to append as an appendix to all manuals. # # texinfo_appendices = [] # If false, no module index is generated. # # texinfo_domain_indices = True # How to display URL addresses: "footnote", "no", or "inline". # # texinfo_show_urls = "footnote" # If true, do not generate a @detailmenu in the "Top" node's menu. # # texinfo_no_detailmenu = False # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { "matplotlib": ("https://matplotlib.org/", None), "numpy": ("https://numpy.org/doc/stable/", None), "python": ("https://docs.python.org/3/", None), "sympy": ("https://docs.sympy.org/latest/", None), } # Autodoc config autoclass_content = "both" autodoc_member_order = "bysource" autodoc_mock_imports = [] # -- Options for sphinx.ext.doctest -------------------------------------- # See: # (http://www.sphinx-doc.org/en/stable/ext/ # doctest.html#confval-doctest_default_flags) # Defaults (as of 1.7.1) are: # - ELLIPSIS # - IGNORE_EXCEPTION_DETAIL (TURN THIS ONE BACK ON) # - DONT_ACCEPT_TRUE_FOR_1 # We want to turn off # (https://docs.python.org/3/library/\ # doctest.html#doctest.IGNORE_EXCEPTION_DETAIL) doctest_default_flags = doctest.DONT_ACCEPT_TRUE_FOR_1 | doctest.ELLIPSIS
apache-2.0
quevedin/ThinkStats2
code/scatter.py
69
4281
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import sys import numpy as np import math import brfss import thinkplot import thinkstats2 def GetHeightWeight(df, hjitter=0.0, wjitter=0.0): """Get sequences of height and weight. df: DataFrame with htm3 and wtkg2 hjitter: float magnitude of random noise added to heights wjitter: float magnitude of random noise added to weights returns: tuple of sequences (heights, weights) """ heights = df.htm3 if hjitter: heights = thinkstats2.Jitter(heights, hjitter) weights = df.wtkg2 if wjitter: weights = thinkstats2.Jitter(weights, wjitter) return heights, weights def ScatterPlot(heights, weights, alpha=1.0): """Make a scatter plot and save it. heights: sequence of float weights: sequence of float alpha: float """ thinkplot.Scatter(heights, weights, alpha=alpha) thinkplot.Config(xlabel='height (cm)', ylabel='weight (kg)', axis=[140, 210, 20, 200], legend=False) def HexBin(heights, weights, bins=None): """Make a hexbin plot and save it. heights: sequence of float weights: sequence of float bins: 'log' or None for linear """ thinkplot.HexBin(heights, weights, bins=bins) thinkplot.Config(xlabel='height (cm)', ylabel='weight (kg)', axis=[140, 210, 20, 200], legend=False) def MakeFigures(df): """Make scatterplots. """ sample = thinkstats2.SampleRows(df, 5000) # simple scatter plot thinkplot.PrePlot(cols=2) heights, weights = GetHeightWeight(sample) ScatterPlot(heights, weights) # scatter plot with jitter thinkplot.SubPlot(2) heights, weights = GetHeightWeight(sample, hjitter=1.3, wjitter=0.5) ScatterPlot(heights, weights) thinkplot.Save(root='scatter1') # with jitter and transparency thinkplot.PrePlot(cols=2) ScatterPlot(heights, weights, alpha=0.1) # hexbin plot thinkplot.SubPlot(2) heights, weights = GetHeightWeight(df, hjitter=1.3, wjitter=0.5) HexBin(heights, weights) thinkplot.Save(root='scatter2') def BinnedPercentiles(df): """Bin the data by height and plot percentiles of weight for eachbin. df: DataFrame """ cdf = thinkstats2.Cdf(df.htm3) print('Fraction between 140 and 200 cm', cdf[200] - cdf[140]) bins = np.arange(135, 210, 5) indices = np.digitize(df.htm3, bins) groups = df.groupby(indices) heights = [group.htm3.mean() for i, group in groups][1:-1] cdfs = [thinkstats2.Cdf(group.wtkg2) for i, group in groups][1:-1] thinkplot.PrePlot(3) for percent in [75, 50, 25]: weights = [cdf.Percentile(percent) for cdf in cdfs] label = '%dth' % percent thinkplot.Plot(heights, weights, label=label) thinkplot.Save(root='scatter3', xlabel='height (cm)', ylabel='weight (kg)') def Correlations(df): print('pandas cov', df.htm3.cov(df.wtkg2)) #print('NumPy cov', np.cov(df.htm3, df.wtkg2, ddof=0)) print('thinkstats2 Cov', thinkstats2.Cov(df.htm3, df.wtkg2)) print() print('pandas corr', df.htm3.corr(df.wtkg2)) #print('NumPy corrcoef', np.corrcoef(df.htm3, df.wtkg2, ddof=0)) print('thinkstats2 Corr', thinkstats2.Corr(df.htm3, df.wtkg2)) print() print('pandas corr spearman', df.htm3.corr(df.wtkg2, method='spearman')) print('thinkstats2 SpearmanCorr', thinkstats2.SpearmanCorr(df.htm3, df.wtkg2)) print('thinkstats2 SpearmanCorr log wtkg3', thinkstats2.SpearmanCorr(df.htm3, np.log(df.wtkg2))) print() print('thinkstats2 Corr log wtkg3', thinkstats2.Corr(df.htm3, np.log(df.wtkg2))) print() def main(script): thinkstats2.RandomSeed(17) df = brfss.ReadBrfss(nrows=None) df = df.dropna(subset=['htm3', 'wtkg2']) Correlations(df) return MakeFigures(df) BinnedPercentiles(df) if __name__ == '__main__': main(*sys.argv)
gpl-3.0
RPGOne/Skynet
scikit-learn-0.18.1/sklearn/semi_supervised/label_propagation.py
17
15941
# coding=utf8 """ Label propagation in the context of this module refers to a set of semisupervised classification algorithms. In the high level, these algorithms work by forming a fully-connected graph between all points given and solving for the steady-state distribution of labels at each point. These algorithms perform very well in practice. The cost of running can be very expensive, at approximately O(N^3) where N is the number of (labeled and unlabeled) points. The theory (why they perform so well) is motivated by intuitions from random walk algorithms and geometric relationships in the data. For more information see the references below. Model Features -------------- Label clamping: The algorithm tries to learn distributions of labels over the dataset. In the "Hard Clamp" mode, the true ground labels are never allowed to change. They are clamped into position. In the "Soft Clamp" mode, they are allowed some wiggle room, but some alpha of their original value will always be retained. Hard clamp is the same as soft clamping with alpha set to 1. Kernel: A function which projects a vector into some higher dimensional space. This implementation supprots RBF and KNN kernels. Using the RBF kernel generates a dense matrix of size O(N^2). KNN kernel will generate a sparse matrix of size O(k*N) which will run much faster. See the documentation for SVMs for more info on kernels. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.randint(0, 2, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) Notes ----- References: [1] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux. In Semi-Supervised Learning (2006), pp. 193-216 [2] Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux. Efficient Non-Parametric Function Induction in Semi-Supervised Learning. AISTAT 2005 """ # Authors: Clay Woolam <[email protected]> # License: BSD from abc import ABCMeta, abstractmethod import numpy as np from scipy import sparse from ..base import BaseEstimator, ClassifierMixin from ..externals import six from ..metrics.pairwise import rbf_kernel from ..neighbors.unsupervised import NearestNeighbors from ..utils.extmath import safe_sparse_dot from ..utils.graph import graph_laplacian from ..utils.multiclass import check_classification_targets from ..utils.validation import check_X_y, check_is_fitted, check_array # Helper functions def _not_converged(y_truth, y_prediction, tol=1e-3): """basic convergence check""" return np.abs(y_truth - y_prediction).sum() > tol class BaseLabelPropagation(six.with_metaclass(ABCMeta, BaseEstimator, ClassifierMixin)): """Base class for label propagation module. Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported.. gamma : float Parameter for rbf kernel alpha : float Clamping factor max_iter : float Change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state n_neighbors : integer > 0 Parameter for knn kernel n_jobs : int, optional (default = 1) The number of parallel jobs to run. If ``-1``, then the number of jobs is set to the number of CPU cores. """ def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=1, max_iter=30, tol=1e-3, n_jobs=1): self.max_iter = max_iter self.tol = tol # kernel parameters self.kernel = kernel self.gamma = gamma self.n_neighbors = n_neighbors # clamping factor self.alpha = alpha self.n_jobs = n_jobs def _get_kernel(self, X, y=None): if self.kernel == "rbf": if y is None: return rbf_kernel(X, X, gamma=self.gamma) else: return rbf_kernel(X, y, gamma=self.gamma) elif self.kernel == "knn": if self.nn_fit is None: self.nn_fit = NearestNeighbors(self.n_neighbors, n_jobs=self.n_jobs).fit(X) if y is None: return self.nn_fit.kneighbors_graph(self.nn_fit._fit_X, self.n_neighbors, mode='connectivity') else: return self.nn_fit.kneighbors(y, return_distance=False) else: raise ValueError("%s is not a valid kernel. Only rbf and knn" " are supported at this time" % self.kernel) @abstractmethod def _build_graph(self): raise NotImplementedError("Graph construction must be implemented" " to fit a label propagation model.") def predict(self, X): """Performs inductive inference across the model. Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- y : array_like, shape = [n_samples] Predictions for input data """ probas = self.predict_proba(X) return self.classes_[np.argmax(probas, axis=1)].ravel() def predict_proba(self, X): """Predict probability for each possible outcome. Compute the probability estimates for each single sample in X and each possible outcome seen during training (categorical distribution). Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- probabilities : array, shape = [n_samples, n_classes] Normalized probability distributions across class labels """ check_is_fitted(self, 'X_') X_2d = check_array(X, accept_sparse=['csc', 'csr', 'coo', 'dok', 'bsr', 'lil', 'dia']) weight_matrices = self._get_kernel(self.X_, X_2d) if self.kernel == 'knn': probabilities = [] for weight_matrix in weight_matrices: ine = np.sum(self.label_distributions_[weight_matrix], axis=0) probabilities.append(ine) probabilities = np.array(probabilities) else: weight_matrices = weight_matrices.T probabilities = np.dot(weight_matrices, self.label_distributions_) normalizer = np.atleast_2d(np.sum(probabilities, axis=1)).T probabilities /= normalizer return probabilities def fit(self, X, y): """Fit a semi-supervised label propagation model based All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a dedicated marker value for unlabeled samples. Parameters ---------- X : array-like, shape = [n_samples, n_features] A {n_samples by n_samples} size matrix will be created from this y : array_like, shape = [n_samples] n_labeled_samples (unlabeled points are marked as -1) All unlabeled samples will be transductively assigned labels Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y) self.X_ = X check_classification_targets(y) # actual graph construction (implementations should override this) graph_matrix = self._build_graph() # label construction # construct a categorical distribution for classification only classes = np.unique(y) classes = (classes[classes != -1]) self.classes_ = classes n_samples, n_classes = len(y), len(classes) y = np.asarray(y) unlabeled = y == -1 clamp_weights = np.ones((n_samples, 1)) clamp_weights[unlabeled, 0] = self.alpha # initialize distributions self.label_distributions_ = np.zeros((n_samples, n_classes)) for label in classes: self.label_distributions_[y == label, classes == label] = 1 y_static = np.copy(self.label_distributions_) if self.alpha > 0.: y_static *= 1 - self.alpha y_static[unlabeled] = 0 l_previous = np.zeros((self.X_.shape[0], n_classes)) remaining_iter = self.max_iter if sparse.isspmatrix(graph_matrix): graph_matrix = graph_matrix.tocsr() while (_not_converged(self.label_distributions_, l_previous, self.tol) and remaining_iter > 1): l_previous = self.label_distributions_ self.label_distributions_ = safe_sparse_dot( graph_matrix, self.label_distributions_) # clamp self.label_distributions_ = np.multiply( clamp_weights, self.label_distributions_) + y_static remaining_iter -= 1 normalizer = np.sum(self.label_distributions_, axis=1)[:, np.newaxis] self.label_distributions_ /= normalizer # set the transduction item transduction = self.classes_[np.argmax(self.label_distributions_, axis=1)] self.transduction_ = transduction.ravel() self.n_iter_ = self.max_iter - remaining_iter return self class LabelPropagation(BaseLabelPropagation): """Label Propagation classifier Read more in the :ref:`User Guide <label_propagation>`. Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported.. gamma : float Parameter for rbf kernel n_neighbors : integer > 0 Parameter for knn kernel alpha : float Clamping factor max_iter : float Change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state Attributes ---------- X_ : array, shape = [n_samples, n_features] Input array. classes_ : array, shape = [n_classes] The distinct labels used in classifying instances. label_distributions_ : array, shape = [n_samples, n_classes] Categorical distribution for each item. transduction_ : array, shape = [n_samples] Label assigned to each item via the transduction. n_iter_ : int Number of iterations run. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.randint(0, 2, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) References ---------- Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002 http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf See Also -------- LabelSpreading : Alternate label propagation strategy more robust to noise """ def _build_graph(self): """Matrix representing a fully connected graph between each sample This basic implementation creates a non-stochastic affinity matrix, so class distributions will exceed 1 (normalization may be desired). """ if self.kernel == 'knn': self.nn_fit = None affinity_matrix = self._get_kernel(self.X_) normalizer = affinity_matrix.sum(axis=0) if sparse.isspmatrix(affinity_matrix): affinity_matrix.data /= np.diag(np.array(normalizer)) else: affinity_matrix /= normalizer[:, np.newaxis] return affinity_matrix class LabelSpreading(BaseLabelPropagation): """LabelSpreading model for semi-supervised learning This model is similar to the basic Label Propgation algorithm, but uses affinity matrix based on the normalized graph Laplacian and soft clamping across the labels. Read more in the :ref:`User Guide <label_propagation>`. Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported. gamma : float parameter for rbf kernel n_neighbors : integer > 0 parameter for knn kernel alpha : float clamping factor max_iter : float maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state n_jobs : int, optional (default = 1) The number of parallel jobs to run. If ``-1``, then the number of jobs is set to the number of CPU cores. Attributes ---------- X_ : array, shape = [n_samples, n_features] Input array. classes_ : array, shape = [n_classes] The distinct labels used in classifying instances. label_distributions_ : array, shape = [n_samples, n_classes] Categorical distribution for each item. transduction_ : array, shape = [n_samples] Label assigned to each item via the transduction. n_iter_ : int Number of iterations run. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelSpreading >>> label_prop_model = LabelSpreading() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.randint(0, 2, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelSpreading(...) References ---------- Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, Bernhard Schoelkopf. Learning with local and global consistency (2004) http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219 See Also -------- LabelPropagation : Unregularized graph based semi-supervised learning """ def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=0.2, max_iter=30, tol=1e-3, n_jobs=1): # this one has different base parameters super(LabelSpreading, self).__init__(kernel=kernel, gamma=gamma, n_neighbors=n_neighbors, alpha=alpha, max_iter=max_iter, tol=tol, n_jobs=n_jobs) def _build_graph(self): """Graph matrix for Label Spreading computes the graph laplacian""" # compute affinity matrix (or gram matrix) if self.kernel == 'knn': self.nn_fit = None n_samples = self.X_.shape[0] affinity_matrix = self._get_kernel(self.X_) laplacian = graph_laplacian(affinity_matrix, normed=True) laplacian = -laplacian if sparse.isspmatrix(laplacian): diag_mask = (laplacian.row == laplacian.col) laplacian.data[diag_mask] = 0.0 else: laplacian.flat[::n_samples + 1] = 0.0 # set diag to 0.0 return laplacian
bsd-3-clause
krez13/scikit-learn
sklearn/utils/graph.py
289
6239
""" Graph utilities and algorithms Graphs are represented with their adjacency matrices, preferably using sparse matrices. """ # Authors: Aric Hagberg <[email protected]> # Gael Varoquaux <[email protected]> # Jake Vanderplas <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from .validation import check_array from .graph_shortest_path import graph_shortest_path ############################################################################### # Path and connected component analysis. # Code adapted from networkx def single_source_shortest_path_length(graph, source, cutoff=None): """Return the shortest path length from source to all reachable nodes. Returns a dictionary of shortest path lengths keyed by target. Parameters ---------- graph: sparse matrix or 2D array (preferably LIL matrix) Adjacency matrix of the graph source : node label Starting node for path cutoff : integer, optional Depth to stop the search - only paths of length <= cutoff are returned. Examples -------- >>> from sklearn.utils.graph import single_source_shortest_path_length >>> import numpy as np >>> graph = np.array([[ 0, 1, 0, 0], ... [ 1, 0, 1, 0], ... [ 0, 1, 0, 1], ... [ 0, 0, 1, 0]]) >>> single_source_shortest_path_length(graph, 0) {0: 0, 1: 1, 2: 2, 3: 3} >>> single_source_shortest_path_length(np.ones((6, 6)), 2) {0: 1, 1: 1, 2: 0, 3: 1, 4: 1, 5: 1} """ if sparse.isspmatrix(graph): graph = graph.tolil() else: graph = sparse.lil_matrix(graph) seen = {} # level (number of hops) when seen in BFS level = 0 # the current level next_level = [source] # dict of nodes to check at next level while next_level: this_level = next_level # advance to next level next_level = set() # and start a new list (fringe) for v in this_level: if v not in seen: seen[v] = level # set the level of vertex v next_level.update(graph.rows[v]) if cutoff is not None and cutoff <= level: break level += 1 return seen # return all path lengths as dictionary if hasattr(sparse, 'connected_components'): connected_components = sparse.connected_components else: from .sparsetools import connected_components ############################################################################### # Graph laplacian def graph_laplacian(csgraph, normed=False, return_diag=False): """ Return the Laplacian matrix of a directed graph. For non-symmetric graphs the out-degree is used in the computation. Parameters ---------- csgraph : array_like or sparse matrix, 2 dimensions compressed-sparse graph, with shape (N, N). normed : bool, optional If True, then compute normalized Laplacian. return_diag : bool, optional If True, then return diagonal as well as laplacian. Returns ------- lap : ndarray The N x N laplacian matrix of graph. diag : ndarray The length-N diagonal of the laplacian matrix. diag is returned only if return_diag is True. Notes ----- The Laplacian matrix of a graph is sometimes referred to as the "Kirchoff matrix" or the "admittance matrix", and is useful in many parts of spectral graph theory. In particular, the eigen-decomposition of the laplacian matrix can give insight into many properties of the graph. For non-symmetric directed graphs, the laplacian is computed using the out-degree of each node. """ if csgraph.ndim != 2 or csgraph.shape[0] != csgraph.shape[1]: raise ValueError('csgraph must be a square matrix or array') if normed and (np.issubdtype(csgraph.dtype, np.int) or np.issubdtype(csgraph.dtype, np.uint)): csgraph = check_array(csgraph, dtype=np.float64, accept_sparse=True) if sparse.isspmatrix(csgraph): return _laplacian_sparse(csgraph, normed=normed, return_diag=return_diag) else: return _laplacian_dense(csgraph, normed=normed, return_diag=return_diag) def _laplacian_sparse(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] if not graph.format == 'coo': lap = (-graph).tocoo() else: lap = -graph.copy() diag_mask = (lap.row == lap.col) if not diag_mask.sum() == n_nodes: # The sparsity pattern of the matrix has holes on the diagonal, # we need to fix that diag_idx = lap.row[diag_mask] diagonal_holes = list(set(range(n_nodes)).difference(diag_idx)) new_data = np.concatenate([lap.data, np.ones(len(diagonal_holes))]) new_row = np.concatenate([lap.row, diagonal_holes]) new_col = np.concatenate([lap.col, diagonal_holes]) lap = sparse.coo_matrix((new_data, (new_row, new_col)), shape=lap.shape) diag_mask = (lap.row == lap.col) lap.data[diag_mask] = 0 w = -np.asarray(lap.sum(axis=1)).squeeze() if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap.data /= w[lap.row] lap.data /= w[lap.col] lap.data[diag_mask] = (1 - w_zeros[lap.row[diag_mask]]).astype( lap.data.dtype) else: lap.data[diag_mask] = w[lap.row[diag_mask]] if return_diag: return lap, w return lap def _laplacian_dense(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] lap = -np.asarray(graph) # minus sign leads to a copy # set diagonal to zero lap.flat[::n_nodes + 1] = 0 w = -lap.sum(axis=0) if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap /= w lap /= w[:, np.newaxis] lap.flat[::n_nodes + 1] = (1 - w_zeros).astype(lap.dtype) else: lap.flat[::n_nodes + 1] = w.astype(lap.dtype) if return_diag: return lap, w return lap
bsd-3-clause
wkfwkf/statsmodels
statsmodels/examples/ex_generic_mle_t.py
29
10826
# -*- coding: utf-8 -*- """ Created on Wed Jul 28 08:28:04 2010 Author: josef-pktd """ from __future__ import print_function import numpy as np from scipy import stats, special import statsmodels.api as sm from statsmodels.base.model import GenericLikelihoodModel #redefine some shortcuts np_log = np.log np_pi = np.pi sps_gamln = special.gammaln def maxabs(arr1, arr2): return np.max(np.abs(arr1 - arr2)) def maxabsrel(arr1, arr2): return np.max(np.abs(arr2 / arr1 - 1)) class MyT(GenericLikelihoodModel): '''Maximum Likelihood Estimation of Poisson Model This is an example for generic MLE which has the same statistical model as discretemod.Poisson. Except for defining the negative log-likelihood method, all methods and results are generic. Gradients and Hessian and all resulting statistics are based on numerical differentiation. ''' def loglike(self, params): return -self.nloglikeobs(params).sum(0) # copied from discretemod.Poisson def nloglikeobs(self, params): """ Loglikelihood of Poisson model Parameters ---------- params : array-like The parameters of the model. Returns ------- The log likelihood of the model evaluated at `params` Notes -------- .. math :: \\ln L=\\sum_{i=1}^{n}\\left[-\\lambda_{i}+y_{i}x_{i}^{\\prime}\\beta-\\ln y_{i}!\\right] """ #print len(params), beta = params[:-2] df = params[-2] scale = params[-1] loc = np.dot(self.exog, beta) endog = self.endog x = (endog - loc)/scale #next part is stats.t._logpdf lPx = sps_gamln((df+1)/2) - sps_gamln(df/2.) lPx -= 0.5*np_log(df*np_pi) + (df+1)/2.*np_log(1+(x**2)/df) lPx -= np_log(scale) # correction for scale return -lPx #Example: np.random.seed(98765678) nobs = 1000 rvs = np.random.randn(nobs,5) data_exog = sm.add_constant(rvs, prepend=False) xbeta = 0.9 + 0.1*rvs.sum(1) data_endog = xbeta + 0.1*np.random.standard_t(5, size=nobs) #print data_endog modp = MyT(data_endog, data_exog) modp.start_value = np.ones(data_exog.shape[1]+2) modp.start_value[-2] = 10 modp.start_params = modp.start_value resp = modp.fit(start_params = modp.start_value) print(resp.params) print(resp.bse) from statsmodels.tools.numdiff import approx_fprime, approx_hess hb=-approx_hess(modp.start_value, modp.loglike, epsilon=-1e-4) tmp = modp.loglike(modp.start_value) print(tmp.shape) ''' >>> tmp = modp.loglike(modp.start_value) 8 >>> tmp.shape (100,) >>> tmp.sum(0) -24220.877108016182 >>> tmp = modp.nloglikeobs(modp.start_value) 8 >>> tmp.shape (100, 100) >>> np.dot(modp.exog, beta).shape Traceback (most recent call last): File "<stdin>", line 1, in <module> NameError: name 'beta' is not defined >>> params = modp.start_value >>> beta = params[:-2] >>> beta.shape (6,) >>> np.dot(modp.exog, beta).shape (100,) >>> modp.endog.shape (100, 100) >>> xbeta.shape (100,) >>> ''' ''' C:\Programs\Python25\lib\site-packages\matplotlib-0.99.1-py2.5-win32.egg\matplotlib\rcsetup.py:117: UserWarning: rcParams key "numerix" is obsolete and has no effect; please delete it from your matplotlibrc file warnings.warn('rcParams key "numerix" is obsolete and has no effect;\n' repr(start_params) array([ 1., 1., 1., 1., 1., 1., 1., 1.]) Optimization terminated successfully. Current function value: 91.897859 Iterations: 108 Function evaluations: 173 Gradient evaluations: 173 [ 1.58253308e-01 1.73188603e-01 1.77357447e-01 2.06707494e-02 -1.31174789e-01 8.79915580e-01 6.47663840e+03 6.73457641e+02] [ NaN NaN NaN NaN NaN 28.26906182 NaN NaN] () >>> resp.params array([ 1.58253308e-01, 1.73188603e-01, 1.77357447e-01, 2.06707494e-02, -1.31174789e-01, 8.79915580e-01, 6.47663840e+03, 6.73457641e+02]) >>> resp.bse array([ NaN, NaN, NaN, NaN, NaN, 28.26906182, NaN, NaN]) >>> resp.jac Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: 'GenericLikelihoodModelResults' object has no attribute 'jac' >>> resp.bsejac array([ 45243.35919908, 51997.80776897, 41418.33021984, 42763.46575168, 50101.91631612, 42804.92083525, 3005625.35649203, 13826948.68708931]) >>> resp.bsejhj array([ 1.51643931, 0.80229636, 0.27720185, 0.4711138 , 0.9028682 , 0.31673747, 0.00524426, 0.69729368]) >>> resp.covjac array([[ 2.04696155e+09, 1.46643494e+08, 7.59932781e+06, -2.39993397e+08, 5.62644255e+08, 2.34300598e+08, -3.07824799e+09, -1.93425470e+10], [ 1.46643494e+08, 2.70377201e+09, 1.06005712e+08, 3.76824011e+08, -1.21778986e+08, 5.38612723e+08, -2.12575784e+10, -1.69503271e+11], [ 7.59932781e+06, 1.06005712e+08, 1.71547808e+09, -5.94451158e+07, -1.44586401e+08, -5.41830441e+06, 1.25899515e+10, 1.06372065e+11], [ -2.39993397e+08, 3.76824011e+08, -5.94451158e+07, 1.82871400e+09, -5.66930891e+08, 3.75061111e+08, -6.84681772e+09, -7.29993789e+10], [ 5.62644255e+08, -1.21778986e+08, -1.44586401e+08, -5.66930891e+08, 2.51020202e+09, -4.67886982e+08, 1.78890380e+10, 1.75428694e+11], [ 2.34300598e+08, 5.38612723e+08, -5.41830441e+06, 3.75061111e+08, -4.67886982e+08, 1.83226125e+09, -1.27484996e+10, -1.12550321e+11], [ -3.07824799e+09, -2.12575784e+10, 1.25899515e+10, -6.84681772e+09, 1.78890380e+10, -1.27484996e+10, 9.03378378e+12, 2.15188047e+13], [ -1.93425470e+10, -1.69503271e+11, 1.06372065e+11, -7.29993789e+10, 1.75428694e+11, -1.12550321e+11, 2.15188047e+13, 1.91184510e+14]]) >>> hb array([[ 33.68732564, -2.33209221, -13.51255321, -1.60840159, -13.03920385, -9.3506543 , 4.86239173, -9.30409101], [ -2.33209221, 3.12512611, -6.08530968, -6.79232244, 3.66804898, 1.26497071, 5.10113409, -2.53482995], [ -13.51255321, -6.08530968, 31.14883498, -5.01514705, -10.48819911, -2.62533035, 3.82241581, -12.51046342], [ -1.60840159, -6.79232244, -5.01514705, 28.40141917, -8.72489636, -8.82449456, 5.47584023, -18.20500017], [ -13.03920385, 3.66804898, -10.48819911, -8.72489636, 9.03650914, 3.65206176, 6.55926726, -1.8233635 ], [ -9.3506543 , 1.26497071, -2.62533035, -8.82449456, 3.65206176, 21.41825348, -1.28610793, 4.28101146], [ 4.86239173, 5.10113409, 3.82241581, 5.47584023, 6.55926726, -1.28610793, 46.52354448, -32.23861427], [ -9.30409101, -2.53482995, -12.51046342, -18.20500017, -1.8233635 , 4.28101146, -32.23861427, 178.61978279]]) >>> np.linalg.eigh(hb) (array([ -10.50373649, 0.7460258 , 14.73131793, 29.72453087, 36.24103832, 41.98042979, 48.99815223, 190.04303734]), array([[-0.40303259, 0.10181305, 0.18164206, 0.48201456, 0.03916688, 0.00903695, 0.74620692, 0.05853619], [-0.3201713 , -0.88444855, -0.19867642, 0.02828812, 0.16733946, -0.21440765, -0.02927317, 0.01176904], [-0.41847094, 0.00170161, 0.04973298, 0.43276118, -0.55894304, 0.26454728, -0.49745582, 0.07251685], [-0.3508729 , -0.08302723, 0.25004884, -0.73495077, -0.38936448, 0.20677082, 0.24464779, 0.11448238], [-0.62065653, 0.44662675, -0.37388565, -0.19453047, 0.29084735, -0.34151809, -0.19088978, 0.00342713], [-0.15119802, -0.01099165, 0.84377273, 0.00554863, 0.37332324, -0.17917015, -0.30371283, -0.03635211], [ 0.15813581, 0.0293601 , 0.09882271, 0.03515962, -0.48768565, -0.81960996, 0.05248464, 0.22533642], [-0.06118044, -0.00549223, 0.03205047, -0.01782649, -0.21128588, -0.14391393, 0.05973658, -0.96226835]])) >>> np.linalg.eigh(np.linalg.inv(hb)) (array([-0.09520422, 0.00526197, 0.02040893, 0.02382062, 0.02759303, 0.03364225, 0.06788259, 1.34043621]), array([[-0.40303259, 0.05853619, 0.74620692, -0.00903695, -0.03916688, 0.48201456, 0.18164206, 0.10181305], [-0.3201713 , 0.01176904, -0.02927317, 0.21440765, -0.16733946, 0.02828812, -0.19867642, -0.88444855], [-0.41847094, 0.07251685, -0.49745582, -0.26454728, 0.55894304, 0.43276118, 0.04973298, 0.00170161], [-0.3508729 , 0.11448238, 0.24464779, -0.20677082, 0.38936448, -0.73495077, 0.25004884, -0.08302723], [-0.62065653, 0.00342713, -0.19088978, 0.34151809, -0.29084735, -0.19453047, -0.37388565, 0.44662675], [-0.15119802, -0.03635211, -0.30371283, 0.17917015, -0.37332324, 0.00554863, 0.84377273, -0.01099165], [ 0.15813581, 0.22533642, 0.05248464, 0.81960996, 0.48768565, 0.03515962, 0.09882271, 0.0293601 ], [-0.06118044, -0.96226835, 0.05973658, 0.14391393, 0.21128588, -0.01782649, 0.03205047, -0.00549223]])) >>> np.diag(np.linalg.inv(hb)) array([ 0.01991288, 1.0433882 , 0.00516616, 0.02642799, 0.24732871, 0.05281555, 0.02236704, 0.00643486]) >>> np.sqrt(np.diag(np.linalg.inv(hb))) array([ 0.14111302, 1.02146375, 0.07187597, 0.16256686, 0.49732154, 0.22981633, 0.14955616, 0.08021756]) >>> hess = modp.hessian(resp.params) >>> np.sqrt(np.diag(np.linalg.inv(hess))) array([ 231.3823423 , 117.79508218, 31.46595143, 53.44753106, 132.4855704 , NaN, 5.47881705, 90.75332693]) >>> hb=-approx_hess(resp.params, modp.loglike, epsilon=-1e-4) >>> np.sqrt(np.diag(np.linalg.inv(hb))) array([ 31.93524822, 22.0333515 , NaN, 29.90198792, 38.82615785, NaN, NaN, NaN]) >>> hb=-approx_hess(resp.params, modp.loglike, epsilon=-1e-8) >>> np.sqrt(np.diag(np.linalg.inv(hb))) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Programs\Python25\lib\site-packages\numpy\linalg\linalg.py", line 423, in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype))) File "C:\Programs\Python25\lib\site-packages\numpy\linalg\linalg.py", line 306, in solve raise LinAlgError, 'Singular matrix' numpy.linalg.linalg.LinAlgError: Singular matrix >>> resp.params array([ 1.58253308e-01, 1.73188603e-01, 1.77357447e-01, 2.06707494e-02, -1.31174789e-01, 8.79915580e-01, 6.47663840e+03, 6.73457641e+02]) >>> '''
bsd-3-clause
sanja7s/SR_Twitter
src_general/sentiment_neighborhood_threshold.py
1
6934
#!/usr/bin/env python # -*- coding: UTF-8 -*- import matplotlib import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt import os import matplotlib.cm as cm from collections import defaultdict from igraph import * font = {'family' : 'monospace', 'variant' : 'normal', 'weight' : 'light', 'size' : 12} matplotlib.rc('font', **font) IN_DIR = "../../../DATA/taxonomy_stats/" f_sent_in = "sentiment/user_sentiment.tab" f_weighted_edges_in = "sentiment/mention_graph_weights.dat" def read_in_recip(): f = open(f_sent_in, "r") G = Graph.Read_Ncol(f_weighted_edges_in,names=True, directed=True, weights=True) summary(G) G.to_undirected(mode="mutual", combine_edges=min) summary(G) G.simplify(multiple=False, loops=True) summary(G) cnt = 0 for line in f: (vid, vsent, vsentval) = line[:-1].split('\t') vsentval = float(vsentval) v = G.vs.select(name = vid) v["sent"] = vsentval cnt += 1 print cnt to_delete_vertices = [v.index for v in G.vs if v["sent"] == None] print len(to_delete_vertices) G.delete_vertices(to_delete_vertices) summary(G) return G ######################################################################### def pairwise_assortativity(G): sa = [] ne = [] xaxis = [] f = open('sentiment/pairwise_assortativity.tab', 'w') for threshold in np.arange(1, 100): s, n = threshold_pairwise_assortativity(G, threshold) sa.append(s) ne.append(n) xaxis.append(threshold) f.write(str(threshold) + '\t' + str(s) + '\t' + str(n) + '\n') #plot_SA(xaxis, sa, ne, 'pairwise_assortativity_v4.png') return xaxis, sa, ne def threshold_pairwise_assortativity(G, threshold): print "stats for %d" % threshold summary(G) to_delete_edges = [e.index for e in G.es if float(e["weight"]) <= threshold] G.delete_edges(to_delete_edges) # just a check not_connected_nodes = G.vs(_degree_eq=0) print len(not_connected_nodes) G.delete_vertices(not_connected_nodes) summary(G) #r = G.assortativity(directed=False,types1=G.strength(weights='weight')) r = G.assortativity("sent", directed=False) print "Sentmiment value assortativity for threshold %d is %f " % (threshold, r) N = G.ecount() # - len(not_connected_nodes) return r, N def plot_SA(xaxis, sa, ne, img_out_plot): x = np.array(xaxis) y = np.array(sa) y1 = np.log(np.array(ne)) fig, ax1 = plt.subplots() ax1.plot(x, y, 'cp-') ax1.set_xlabel('# mention threshold') # Make the y-axis label and tick labels match the line color. ax1.set_ylabel('pairwise assortativity', color='c') for tl in ax1.get_yticklabels(): tl.set_color('c') ax2 = ax1.twinx() ax2.plot(x, y1, 'rd-') ax2.set_ylabel('log(# edges)', color='r') #ax2.set_yscale("log") for tl in ax2.get_yticklabels(): tl.set_color('r') plt.grid(True) plt.title('Sentiment pairwise assortativity') #plt.legend(bbox_to_anchor=(0, 1), bbox_transform=plt.gcf().transFigure) plt.savefig('sentiment/' + img_out_plot,format='png',dpi=200) ######################################################################### def neighborhood_assortativity(G): sa = [] ne = [] xaxis = [] f = open('sentiment/neighborhood/neighborhood_assortativity.tab', 'w') for threshold in np.arange(1, 100): s, n = threshold_neighborhood_assortativity(G, threshold) sa.append(s) ne.append(n) xaxis.append(threshold) f.write(str(threshold) + '\t' + str(s) + '\t' + str(n) + '\n') #plot_SA_neighborhood(xaxis, sa, ne, 'neighborhood_assortativity_v2.png') return xaxis, sa, ne def threshold_neighborhood_assortativity(G, threshold): print "stats for %d" % threshold summary(G) to_delete_edges = [e.index for e in G.es if float(e["weight"]) <= threshold] G.delete_edges(to_delete_edges) # just a check not_connected_nodes = G.vs(_degree_eq=0) print len(not_connected_nodes) G.delete_vertices(not_connected_nodes) summary(G) neighborhood_sent = [] self_sent = [] no_neighbors = [] cnt_no_neighbors = 0 for v in G.vs: nb = G.neighbors(v.index) NS = G.vs.select(nb)["sent"] if NS == []: cnt_no_neighbors += 1 print v.index, nb no_neighbors.append(v.index) continue ns = np.array(NS) ns_mean = np.average(ns) self_sent.append(v["sent"]) neighborhood_sent.append(ns_mean) print cnt_no_neighbors neighborhood_sent = np.array(neighborhood_sent) self_sent = np.array(self_sent) return np.corrcoef(self_sent, neighborhood_sent)[1,0], neighborhood_sent.size def plot_SA_neighborhood(xaxis, sa, ne, img_out_plot): x = np.array(xaxis) y = np.array(sa) y1 = np.log(np.array(ne)) fig, ax1 = plt.subplots() ax1.plot(x, y, 'gp-') ax1.set_xlabel('# mention threshold') # Make the y-axis label and tick labels match the line color. ax1.set_ylabel('neighborhood assortativity', color='g') for tl in ax1.get_yticklabels(): tl.set_color('g') ax2 = ax1.twinx() ax2.plot(x, y1, 'md-') ax2.set_ylabel('log(# edges)', color='m') #ax2.set_yscale("log", nonposy='clip') for tl in ax2.get_yticklabels(): tl.set_color('m') plt.grid(True) plt.title('Sentiment neighborhood assortativity') #plt.legend(bbox_to_anchor=(0, 1), bbox_transform=plt.gcf().transFigure) plt.savefig('sentiment/neighborhood/' + img_out_plot,format='png',dpi=200) ######################################################################### def plot_SA_both(xaxis, sa, ne, nsa, nne, img_out_plot): #from matplotlib.font_manager import FontProperties #fontP = FontProperties() #fontP.set_size('small') #legend([plot1], "title", prop = fontP) x = np.array(xaxis) y = np.array(sa) y1 = np.log(np.array(ne)) yn = np.array(nsa) yn1 = np.log(np.array(nne)) fig, ax1 = plt.subplots() ax1.plot(x, y, 'gp-', label='pairwise') ax1.plot(x, yn, 'gd-', label='neighborhood') ax1.set_xlabel('# mentions threshold') # Make the y-axis label and tick labels match the line color. ax1.set_ylabel('sentiment assortativity', color='g') for tl in ax1.get_yticklabels(): tl.set_color('g') plt.legend(loc='best',frameon=False) ax2 = ax1.twinx() ax2.plot(x, y1, 'mp-', label='pairwise') ax2.plot(x, yn1, 'md-', label='neighborhood') ax2.set_ylabel('log(# edges)', color='m') #ax2.set_yscale("log", nonposy='clip') for tl in ax2.get_yticklabels(): tl.set_color('m') plt.legend(loc='best',frameon=False) plt.grid(True) #plt.title('Sentiment parwise and neighborhood assortativity') #plt.legend(bbox_to_anchor=(0, 1), bbox_transform=plt.gcf().transFigure) plt.savefig('sentiment/both/' + img_out_plot,format='png',dpi=200) def main_pairwise(): os.chdir(IN_DIR) G = read_in_recip() pairwise_assortativity(G) #main_pairwise() def main_neighborhood(): os.chdir(IN_DIR) G = read_in_recip() neighborhood_assortativity(G) #main_neighborhood() def main(): os.chdir(IN_DIR) G = read_in_recip() xaxis, sa, ne = pairwise_assortativity(G) G = read_in_recip() nxaxis, nsa, nne = neighborhood_assortativity(G) plot_SA_both(xaxis, sa, ne, nsa, nne, 'sentimen_assortativity_100.png') main()
mit
mattgiguere/scikit-learn
examples/cluster/plot_dict_face_patches.py
337
2747
""" Online learning of a dictionary of parts of faces ================================================== This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces. From the programming standpoint, it is interesting because it shows how to use the online API of the scikit-learn to process a very large dataset by chunks. The way we proceed is that we load an image at a time and extract randomly 50 patches from this image. Once we have accumulated 500 of these patches (using 10 images), we run the `partial_fit` method of the online KMeans object, MiniBatchKMeans. The verbose setting on the MiniBatchKMeans enables us to see that some clusters are reassigned during the successive calls to partial-fit. This is because the number of patches that they represent has become too low, and it is better to choose a random new cluster. """ print(__doc__) import time import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.cluster import MiniBatchKMeans from sklearn.feature_extraction.image import extract_patches_2d faces = datasets.fetch_olivetti_faces() ############################################################################### # Learn the dictionary of images print('Learning the dictionary... ') rng = np.random.RandomState(0) kmeans = MiniBatchKMeans(n_clusters=81, random_state=rng, verbose=True) patch_size = (20, 20) buffer = [] index = 1 t0 = time.time() # The online learning part: cycle over the whole dataset 6 times index = 0 for _ in range(6): for img in faces.images: data = extract_patches_2d(img, patch_size, max_patches=50, random_state=rng) data = np.reshape(data, (len(data), -1)) buffer.append(data) index += 1 if index % 10 == 0: data = np.concatenate(buffer, axis=0) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) kmeans.partial_fit(data) buffer = [] if index % 100 == 0: print('Partial fit of %4i out of %i' % (index, 6 * len(faces.images))) dt = time.time() - t0 print('done in %.2fs.' % dt) ############################################################################### # Plot the results plt.figure(figsize=(4.2, 4)) for i, patch in enumerate(kmeans.cluster_centers_): plt.subplot(9, 9, i + 1) plt.imshow(patch.reshape(patch_size), cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Patches of faces\nTrain time %.1fs on %d patches' % (dt, 8 * len(faces.images)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
INM-6/hybridLFPy
examples/Hagen_et_al_2016_cercor/figure_09.py
2
8384
#!/usr/bin/env python # -*- coding: utf-8 -*- from figure_10 import fig_exc_inh_contrib from plot_methods import plotPowers, plot_population, plot_signal_sum_colorplot, plot_signal_sum from cellsim16popsParams_modified_spontan import multicompartment_params import analysis_params import plotting_helpers as phlp import os import matplotlib.pyplot as plt import numpy as np import matplotlib.style matplotlib.style.use('classic') ###################################### ### OUTSIDE SCOPE DEFINITIONS ### ###################################### ###################################### ### IMPORT PANELS ### ###################################### ###################################### ### FIGURE ### ###################################### '''Plot signal (total power) decomposition as function of depth and show single population LFP''' def fig_lfp_decomposition( fig, axes, params, transient=200, X=[ 'L23E', 'L6E'], show_xlabels=True): # ana_params.set_PLOS_2column_fig_style(ratio=0.5) # fig, axes = plt.subplots(1,5) # fig.subplots_adjust(left=0.06, right=0.96, wspace=0.4, hspace=0.2) if analysis_params.bw: # linestyles = ['-', '-', '--', '--', '-.', '-.', ':', ':'] linestyles = ['-', '-', '-', '-', '-', '-', '-', '-'] markerstyles = ['s', 's', 'v', 'v', 'o', 'o', '^', '^'] else: if plt.matplotlib.__version__ == '1.5.x': linestyles = ['-', ':'] * (len(params.Y) // 2) print(('CSD variance semi log plots may fail with matplotlib.__version__ {}'.format( plt.matplotlib.__version__))) else: linestyles = ['-', (0, (1, 1))] * \ (len(params.Y) // 2) # cercor version # markerstyles = ['s', 's', 'v', 'v', 'o', 'o', '^', '^'] markerstyles = [None] * len(params.Y) linewidths = [1.25 for i in range(len(linestyles))] plt.delaxes(axes[0]) # population plot axes[0] = fig.add_subplot(261) axes[0].xaxis.set_ticks([]) axes[0].yaxis.set_ticks([]) axes[0].set_frame_on(False) plot_population(axes[0], params, aspect='tight', isometricangle=np.pi / 32, plot_somas=False, plot_morphos=True, num_unitsE=1, num_unitsI=1, clip_dendrites=False, main_pops=True, rasterized=False) phlp.annotate_subplot(axes[0], ncols=5, nrows=1, letter='A') axes[0].set_aspect('auto') axes[0].set_ylim(-1550, 50) axis = axes[0].axis() phlp.remove_axis_junk(axes[1]) plot_signal_sum(axes[1], params, fname=os.path.join(params.populations_path, X[0] + '_population_RecExtElectrode.h5'), unit='mV', T=[800, 1000], ylim=[axis[2], axis[3]], rasterized=False) # CSD background colorplot im = plot_signal_sum_colorplot(axes[1], params, os.path.join(params.populations_path, X[0] + '_population_LaminarCurrentSourceDensity.h5'), unit=r'$\mu$Amm$^{-3}$', T=[800, 1000], colorbar=False, ylim=[axis[2], axis[3]], fancy=False, cmap=plt.get_cmap( 'gray', 21) if analysis_params.bw else plt.get_cmap( 'bwr_r', 21), rasterized=False, scaling_factor=1E6 # unit nA um^-3 -> muA mm-3 ) cb = phlp.colorbar(fig, axes[1], im, width=0.05, height=0.5, hoffset=-0.05, voffset=0.5) cb.set_label('($\\mu$Amm$^{-3}$)', labelpad=0.) axes[1].set_ylim(-1550, 50) axes[1].set_title('LFP and CSD ({})'.format(X[0]), va='baseline') phlp.annotate_subplot(axes[1], ncols=3, nrows=1, letter='B') # quickfix on first axes axes[0].set_ylim(-1550, 50) if show_xlabels: axes[1].set_xlabel(r'$t$ (ms)', labelpad=0.) else: axes[1].set_xlabel('') phlp.remove_axis_junk(axes[2]) plot_signal_sum(axes[2], params, fname=os.path.join(params.populations_path, X[1] + '_population_RecExtElectrode.h5'), ylabels=False, unit='mV', T=[800, 1000], ylim=[axis[2], axis[3]], rasterized=False) # CSD background colorplot im = plot_signal_sum_colorplot(axes[2], params, os.path.join( params.populations_path, X[1] + '_population_LaminarCurrentSourceDensity.h5'), unit=r'$\mu$Amm$^{-3}$', T=[800, 1000], ylabels=False, colorbar=False, ylim=[axis[2], axis[3]], fancy=False, cmap=plt.get_cmap( 'gray', 21) if analysis_params.bw else plt.get_cmap( 'bwr_r', 21), rasterized=False, scaling_factor=1E6 # unit nA um^-3 -> muA mm-3 ) cb = phlp.colorbar(fig, axes[2], im, width=0.05, height=0.5, hoffset=-0.05, voffset=0.5) cb.set_label('($\\mu$Amm$^{-3}$)', labelpad=0.) axes[2].set_ylim(-1550, 50) axes[2].set_title('LFP and CSD ({})'.format(X[1]), va='baseline') phlp.annotate_subplot(axes[2], ncols=1, nrows=1, letter='C') if show_xlabels: axes[2].set_xlabel(r'$t$ (ms)', labelpad=0.) else: axes[2].set_xlabel('') plotPowers(axes[3], params, params.Y, 'LaminarCurrentSourceDensity', linestyles=linestyles, transient=transient, markerstyles=markerstyles, linewidths=linewidths, scaling_factor=1E6) axes[3].axis(axes[3].axis('tight')) axes[3].set_ylim(-1550, 50) axes[3].set_yticks(-np.arange(16) * 100) if show_xlabels: axes[3].set_xlabel(r'$\sigma^2$ ($(\mu$Amm$^{-3})^2$)', va='center') axes[3].set_title('CSD variance', va='baseline') axes[3].set_xlim(left=1E-7) phlp.remove_axis_junk(axes[3]) phlp.annotate_subplot(axes[3], ncols=1, nrows=1, letter='D') plotPowers( axes[4], params, params.Y, 'RecExtElectrode', linestyles=linestyles, transient=transient, markerstyles=markerstyles, linewidths=linewidths) axes[4].axis(axes[4].axis('tight')) axes[4].set_ylim(-1550, 50) axes[4].set_yticks(-np.arange(16) * 100) if show_xlabels: axes[4].set_xlabel(r'$\sigma^2$ (mV$^2$)', va='center') axes[4].set_title('LFP variance', va='baseline') axes[4].legend(bbox_to_anchor=(1.37, 1.0), frameon=False) axes[4].set_xlim(left=1E-7) phlp.remove_axis_junk(axes[4]) phlp.annotate_subplot(axes[4], ncols=1, nrows=1, letter='E') return fig if __name__ == '__main__': plt.close('all') params = multicompartment_params() ana_params = analysis_params.params() ana_params.set_PLOS_2column_fig_style(ratio=1) fig, axes = plt.subplots(2, 5) fig.subplots_adjust( left=0.06, right=0.96, wspace=0.4, hspace=0.2, bottom=0.05, top=0.95) # params.figures_path = os.path.join(params.savefolder, 'figures') # params.populations_path = os.path.join(params.savefolder, 'populations') # params.spike_output_path = os.path.join(params.savefolder, # 'processed_nest_output') # params.networkSimParams['spike_output_path'] = params.spike_output_path fig_lfp_decomposition( fig, axes[0], params, transient=200, show_xlabels=False) fig_exc_inh_contrib(fig, axes[1], params, savefolders=['simulation_output_modified_spontan_exc', 'simulation_output_modified_spontan_inh', 'simulation_output_modified_spontan'], T=[800, 1000], transient=200, panel_labels='FGHIJ') fig.savefig('figure_09.pdf', dpi=300, bbox_inches='tight', pad_inches=0) fig.savefig('figure_09.eps', bbox_inches='tight', pad_inches=0.01) plt.show()
gpl-3.0
xR86/ml-stuff
scripts/utils_keras.py
1
2773
'''Keras utility library Utilities for common Keras use. Oppinionated file naming. TODO: + use globs to set common naming templates: + `m_[model_name]_[graph/weight/plot] - model-specific files (folder structure ?) + `results_[plot...]` - general analysis plots + `spool_[summaries]` - saved spools (if needed separately from the notebook) Usual stages: + save the model + save model summaries + save/display model plots ''' # Assuming multiple models, you would represent them like this: # # models = { # 'autoencoder': autoencoder, # 'encoder': encoder, # 'decoder': decoder # } def model_save(model_name, model): '''Save model graph and weights. # eg: model_save('encoder', encoder) ''' # from keras.models import Model # serialize model to JSON model_json = model.to_json() with open('%s.json' % model_name, 'w') as f: f.write(model_json) # serialize weights to HDF5 model.save_weights('%s_weights.h5' % model_name) print('Saved %s to disk' % model_name) def model_save_mult(models_dict): '''Save multiple model graphs and weights. # eg: model_save_mult({'encoder': encoder}) ''' for name, model in models_dict.items(): model_save(name, model) def model_summary_spool_mult(models_dict, save_flag=True): '''Saves multiple model summaries to spool and returns it. # eg: summary_spool_mult({'encoder': encoder}, save_flag=False) ''' # from keras.models import Model # import numpy as np spool = str() for name, model in models_dict.items(): temp_lst = list() model.summary(print_fn = lambda x: temp_lst.append(x)) spool += '## %s ##\n' % name.title() # or .upper() spool += '\n'.join(temp_lst) + '\n' spool += '***' * 20 + '\n\n' if save_flag: np.savetxt('spool_summaries.txt', [spool], fmt='%s') return spool # single plot_model use # from keras.utils import plot_model # plot_model(model, to_file="model.png") def model_plot_save_mult(models_dict): '''Saves multiple models plot # eg: plot_model_mult({'model_name': model}) ''' # graphviz and pydot needed for plot_model from keras.utils import plot_model # single plot_model use # plot_model(model, to_file="model.png") for name, model in models_dict.items(): plot_model(model, to_file='%s_plot.png' % name) def model_display(model_name, figsize=(5,5)): '''Displays model plot (if it has been saved) # eg: model_display('encoder') ''' # import matplotlib.pyplot as plt # %matplotlib inline import matplotlib.image as mpimg from pathlib import Path model_path = '%s_plot.png' % model_name if Path(model_path).is_file(): # plt.rcParams.update({'figure.figsize': (30,30)}) plt.figure(figsize=figsize) img = mpimg.imread(model_path) plt.imshow(img) plt.axis('off') plt.show() if __name__ == '__main__': pass
mit
idlead/scikit-learn
examples/cluster/plot_birch_vs_minibatchkmeans.py
333
3694
""" ================================= Compare BIRCH and MiniBatchKMeans ================================= This example compares the timing of Birch (with and without the global clustering step) and MiniBatchKMeans on a synthetic dataset having 100,000 samples and 2 features generated using make_blobs. If ``n_clusters`` is set to None, the data is reduced from 100,000 samples to a set of 158 clusters. This can be viewed as a preprocessing step before the final (global) clustering step that further reduces these 158 clusters to 100 clusters. """ # Authors: Manoj Kumar <[email protected] # Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) from itertools import cycle from time import time import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from sklearn.preprocessing import StandardScaler from sklearn.cluster import Birch, MiniBatchKMeans from sklearn.datasets.samples_generator import make_blobs # Generate centers for the blobs so that it forms a 10 X 10 grid. xx = np.linspace(-22, 22, 10) yy = np.linspace(-22, 22, 10) xx, yy = np.meshgrid(xx, yy) n_centres = np.hstack((np.ravel(xx)[:, np.newaxis], np.ravel(yy)[:, np.newaxis])) # Generate blobs to do a comparison between MiniBatchKMeans and Birch. X, y = make_blobs(n_samples=100000, centers=n_centres, random_state=0) # Use all colors that matplotlib provides by default. colors_ = cycle(colors.cnames.keys()) fig = plt.figure(figsize=(12, 4)) fig.subplots_adjust(left=0.04, right=0.98, bottom=0.1, top=0.9) # Compute clustering with Birch with and without the final clustering step # and plot. birch_models = [Birch(threshold=1.7, n_clusters=None), Birch(threshold=1.7, n_clusters=100)] final_step = ['without global clustering', 'with global clustering'] for ind, (birch_model, info) in enumerate(zip(birch_models, final_step)): t = time() birch_model.fit(X) time_ = time() - t print("Birch %s as the final step took %0.2f seconds" % ( info, (time() - t))) # Plot result labels = birch_model.labels_ centroids = birch_model.subcluster_centers_ n_clusters = np.unique(labels).size print("n_clusters : %d" % n_clusters) ax = fig.add_subplot(1, 3, ind + 1) for this_centroid, k, col in zip(centroids, range(n_clusters), colors_): mask = labels == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') if birch_model.n_clusters is None: ax.plot(this_centroid[0], this_centroid[1], '+', markerfacecolor=col, markeredgecolor='k', markersize=5) ax.set_ylim([-25, 25]) ax.set_xlim([-25, 25]) ax.set_autoscaley_on(False) ax.set_title('Birch %s' % info) # Compute clustering with MiniBatchKMeans. mbk = MiniBatchKMeans(init='k-means++', n_clusters=100, batch_size=100, n_init=10, max_no_improvement=10, verbose=0, random_state=0) t0 = time() mbk.fit(X) t_mini_batch = time() - t0 print("Time taken to run MiniBatchKMeans %0.2f seconds" % t_mini_batch) mbk_means_labels_unique = np.unique(mbk.labels_) ax = fig.add_subplot(1, 3, 3) for this_centroid, k, col in zip(mbk.cluster_centers_, range(n_clusters), colors_): mask = mbk.labels_ == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') ax.plot(this_centroid[0], this_centroid[1], '+', markeredgecolor='k', markersize=5) ax.set_xlim([-25, 25]) ax.set_ylim([-25, 25]) ax.set_title("MiniBatchKMeans") ax.set_autoscaley_on(False) plt.show()
bsd-3-clause
hainm/statsmodels
statsmodels/regression/mixed_linear_model.py
19
91253
""" Linear mixed effects models are regression models for dependent data. They can be used to estimate regression relationships involving both means and variances. These models are also known as multilevel linear models, and hierachical linear models. The MixedLM class fits linear mixed effects models to data, and provides support for some common post-estimation tasks. This is a group-based implementation that is most efficient for models in which the data can be partitioned into independent groups. Some models with crossed effects can be handled by specifying a model with a single group. The data are partitioned into disjoint groups. The probability model for group i is: Y = X*beta + Z*gamma + epsilon where * n_i is the number of observations in group i * Y is a n_i dimensional response vector (called endog in MixedLM) * X is a n_i x k_fe dimensional design matrix for the fixed effects (called exog in MixedLM) * beta is a k_fe-dimensional vector of fixed effects parameters (called fe_params in MixedLM) * Z is a design matrix for the random effects with n_i rows (called exog_re in MixedLM). The number of columns in Z can vary by group as discussed below. * gamma is a random vector with mean 0. The covariance matrix for the first `k_re` elements of `gamma` (called cov_re in MixedLM) is common to all groups. The remaining elements of `gamma` are variance components as discussed in more detail below. Each group receives its own independent realization of gamma. * epsilon is a n_i dimensional vector of iid normal errors with mean 0 and variance sigma^2; the epsilon values are independent both within and between groups Y, X and Z must be entirely observed. beta, Psi, and sigma^2 are estimated using ML or REML estimation, and gamma and epsilon are random so define the probability model. The marginal mean structure is E[Y | X, Z] = X*beta. If only the mean structure is of interest, GEE is an alternative to using linear mixed models. Two types of random effects are supported. Standard random effects are correlated with each other in arbitary ways. Every group has the same number (`k_re`) of standard random effects, with the same joint distribution (but with independent realizations across the groups). Variance components are uncorrelated with each other, and with the standard random effects. Each variance component has mean zero, and all realizations of a given variance component have the same variance parameter. The number of realized variance components per variance parameter can differ across the groups. The primary reference for the implementation details is: MJ Lindstrom, DM Bates (1988). "Newton Raphson and EM algorithms for linear mixed effects models for repeated measures data". Journal of the American Statistical Association. Volume 83, Issue 404, pages 1014-1022. See also this more recent document: http://econ.ucsb.edu/~doug/245a/Papers/Mixed%20Effects%20Implement.pdf All the likelihood, gradient, and Hessian calculations closely follow Lindstrom and Bates 1988, adapted to support variance components. The following two documents are written more from the perspective of users: http://lme4.r-forge.r-project.org/lMMwR/lrgprt.pdf http://lme4.r-forge.r-project.org/slides/2009-07-07-Rennes/3Longitudinal-4.pdf Notation: * `cov_re` is the random effects covariance matrix (referred to above as Psi) and `scale` is the (scalar) error variance. For a single group, the marginal covariance matrix of endog given exog is scale*I + Z * cov_re * Z', where Z is the design matrix for the random effects in one group. * `vcomp` is a vector of variance parameters. The length of `vcomp` is determined by the number of keys in either the `exog_vc` argument to ``MixedLM``, or the `vc_formula` argument when using formulas to fit a model. Notes: 1. Three different parameterizations are used in different places. The regression slopes (usually called `fe_params`) are identical in all three parameterizations, but the variance parameters differ. The parameterizations are: * The "user parameterization" in which cov(endog) = scale*I + Z * cov_re * Z', as described above. This is the main parameterization visible to the user. * The "profile parameterization" in which cov(endog) = I + Z * cov_re1 * Z'. This is the parameterization of the profile likelihood that is maximized to produce parameter estimates. (see Lindstrom and Bates for details). The "user" cov_re is equal to the "profile" cov_re1 times the scale. * The "square root parameterization" in which we work with the Cholesky factor of cov_re1 instead of cov_re directly. This is hidden from the user. All three parameterizations can be packed into a vector by (optionally) concatenating `fe_params` together with the lower triangle or Cholesky square root of the dependence structure, followed by the variance parameters for the variance components. The are stored as square roots if (and only if) the random effects covariance matrix is stored as its Choleky factor. Note that when unpacking, it is important to either square or reflect the dependence structure depending on which parameterization is being used. Two score methods are implemented. One takes the score with respect to the elements of the random effects covariance matrix (used for inference once the MLE is reached), and the other takes the score with respect to the parameters of the Choleky square root of the random effects covariance matrix (used for optimization). The numerical optimization uses GLS to avoid explicitly optimizing over the fixed effects parameters. The likelihood that is optimized is profiled over both the scale parameter (a scalar) and the fixed effects parameters (if any). As a result of this profiling, it is difficult and unnecessary to calculate the Hessian of the profiled log likelihood function, so that calculation is not implemented here. Therefore, optimization methods requiring the Hessian matrix such as the Newton-Raphson algorihm cannot be used for model fitting. """ import numpy as np import statsmodels.base.model as base from scipy.optimize import fmin_ncg, fmin_cg, fmin_bfgs, fmin from statsmodels.tools.decorators import cache_readonly from statsmodels.tools import data as data_tools from scipy.stats.distributions import norm from scipy import sparse import pandas as pd import patsy from statsmodels.compat.collections import OrderedDict from statsmodels.compat import range import warnings from statsmodels.tools.sm_exceptions import ConvergenceWarning from statsmodels.base._penalties import Penalty from statsmodels.compat.numpy import np_matrix_rank from pandas import DataFrame def _dot(x, y): """ Returns the dot product of the arrays, works for sparse and dense. """ if isinstance(x, np.ndarray) and isinstance(y, np.ndarray): return np.dot(x, y) elif sparse.issparse(x): return x.dot(y) elif sparse.issparse(y): return y.T.dot(x.T).T # From numpy, adapted to work with sparse and dense arrays. def _multi_dot_three(A, B, C): """ Find best ordering for three arrays and do the multiplication. Doing in manually instead of using dynamic programing is approximately 15 times faster. """ # cost1 = cost((AB)C) cost1 = (A.shape[0] * A.shape[1] * B.shape[1] + # (AB) A.shape[0] * B.shape[1] * C.shape[1]) # (--)C # cost2 = cost((AB)C) cost2 = (B.shape[0] * B.shape[1] * C.shape[1] + # (BC) A.shape[0] * A.shape[1] * C.shape[1]) # A(--) if cost1 < cost2: return _dot(_dot(A, B), C) else: return _dot(A, _dot(B, C)) def _dotsum(x, y): """ Returns sum(x * y), where '*' is the pointwise product, computed efficiently for dense and sparse matrices. """ if sparse.issparse(x): return x.multiply(y).sum() else: # This way usually avoids allocating a temporary. return np.dot(x.ravel(), y.ravel()) def _get_exog_re_names(self, exog_re): """ Passes through if given a list of names. Otherwise, gets pandas names or creates some generic variable names as needed. """ if self.k_re == 0: return [] if isinstance(exog_re, pd.DataFrame): return exog_re.columns.tolist() elif isinstance(exog_re, pd.Series) and exog_re.name is not None: return [exog_re.name] elif isinstance(exog_re, list): return exog_re return ["Z{0}".format(k + 1) for k in range(exog_re.shape[1])] class MixedLMParams(object): """ This class represents a parameter state for a mixed linear model. Parameters ---------- k_fe : integer The number of covariates with fixed effects. k_re : integer The number of covariates with random coefficients (excluding variance components). k_vc : integer The number of variance components parameters. Notes ----- This object represents the parameter state for the model in which the scale parameter has been profiled out. """ def __init__(self, k_fe, k_re, k_vc): self.k_fe = k_fe self.k_re = k_re self.k_re2 = k_re * (k_re + 1) // 2 self.k_vc = k_vc self.k_tot = self.k_fe + self.k_re2 + self.k_vc self._ix = np.tril_indices(self.k_re) def from_packed(params, k_fe, k_re, use_sqrt, has_fe): """ Create a MixedLMParams object from packed parameter vector. Parameters ---------- params : array-like The mode parameters packed into a single vector. k_fe : integer The number of covariates with fixed effects k_re : integer The number of covariates with random effects (excluding variance components). use_sqrt : boolean If True, the random effects covariance matrix is provided as its Cholesky factor, otherwise the lower triangle of the covariance matrix is stored. has_fe : boolean If True, `params` contains fixed effects parameters. Otherwise, the fixed effects parameters are set to zero. Returns ------- A MixedLMParams object. """ k_re2 = int(k_re * (k_re + 1) / 2) # The number of covariance parameters. if has_fe: k_vc = len(params) - k_fe - k_re2 else: k_vc = len(params) - k_re2 pa = MixedLMParams(k_fe, k_re, k_vc) cov_re = np.zeros((k_re, k_re)) ix = pa._ix if has_fe: pa.fe_params = params[0:k_fe] cov_re[ix] = params[k_fe:k_fe+k_re2] else: pa.fe_params = np.zeros(k_fe) cov_re[ix] = params[0:k_re2] if use_sqrt: cov_re = np.dot(cov_re, cov_re.T) else: cov_re = (cov_re + cov_re.T) - np.diag(np.diag(cov_re)) pa.cov_re = cov_re if k_vc > 0: if use_sqrt: pa.vcomp = params[-k_vc:]**2 else: pa.vcomp = params[-k_vc:] else: pa.vcomp = np.array([]) return pa from_packed = staticmethod(from_packed) def from_components(fe_params=None, cov_re=None, cov_re_sqrt=None, vcomp=None): """ Create a MixedLMParams object from each parameter component. Parameters ---------- fe_params : array-like The fixed effects parameter (a 1-dimensional array). If None, there are no fixed effects. cov_re : array-like The random effects covariance matrix (a square, symmetric 2-dimensional array). cov_re_sqrt : array-like The Cholesky (lower triangular) square root of the random effects covariance matrix. vcomp : array-like The variance component parameters. If None, there are no variance components. Returns ------- A MixedLMParams object. """ if vcomp is None: vcomp = np.empty(0) if fe_params is None: fe_params = np.empty(0) if cov_re is None and cov_re_sqrt is None: cov_re = np.empty((0, 0)) k_fe = len(fe_params) k_vc = len(vcomp) k_re = cov_re.shape[0] if cov_re is not None else cov_re_sqrt.shape[0] pa = MixedLMParams(k_fe, k_re, k_vc) pa.fe_params = fe_params if cov_re_sqrt is not None: pa.cov_re = np.dot(cov_re_sqrt, cov_re_sqrt.T) elif cov_re is not None: pa.cov_re = cov_re pa.vcomp = vcomp return pa from_components = staticmethod(from_components) def copy(self): """ Returns a copy of the object. """ obj = MixedLMParams(self.k_fe, self.k_re, self.k_vc) obj.fe_params = self.fe_params.copy() obj.cov_re = self.cov_re.copy() obj.vcomp = self.vcomp.copy() return obj def get_packed(self, use_sqrt, has_fe=False): """ Return the model parameters packed into a single vector. Parameters ---------- use_sqrt : bool If True, the Cholesky square root of `cov_re` is included in the packed result. Otherwise the lower triangle of `cov_re` is included. has_fe : bool If True, the fixed effects parameters are included in the packed result, otherwise they are omitted. """ if self.k_re > 0: if use_sqrt: L = np.linalg.cholesky(self.cov_re) cpa = L[self._ix] else: cpa = self.cov_re[self._ix] else: cpa = np.zeros(0) if use_sqrt: vcomp = np.sqrt(self.vcomp) else: vcomp = self.vcomp if has_fe: pa = np.concatenate((self.fe_params, cpa, vcomp)) else: pa = np.concatenate((cpa, vcomp)) return pa def _smw_solver(s, A, AtA, BI, di): """ Solves the system (s*I + A*B*A') * x = rhs for an arbitrary rhs. The inverse matrix of B is block diagonal. The upper left block is BI and the lower right block is a diagonal matrix containing di. Parameters ---------- s : scalar See above for usage A : ndarray See above for usage AtA : square ndarray A.T * A BI : square symmetric ndarray The inverse of `B`. di : array-like Returns ------- A function that takes `rhs` as an input argument and returns a solution to the linear system defined above. """ # Use SMW identity qmat = AtA / s m = BI.shape[0] qmat[0:m, 0:m] += BI ix = np.arange(m, A.shape[1]) qmat[ix, ix] += di if sparse.issparse(A): qi = sparse.linalg.inv(qmat) qmati = A.dot(qi.T).T else: qmati = np.linalg.solve(qmat, A.T) def solver(rhs): if sparse.issparse(A): ql = qmati.dot(rhs) ql = A.dot(ql) else: ql = np.dot(qmati, rhs) ql = np.dot(A, ql) rslt = rhs / s - ql / s**2 if sparse.issparse(rslt): rslt = np.asarray(rslt.todense()) return rslt return solver def _smw_logdet(s, A, AtA, BI, di, B_logdet): """ Returns the log determinant of s*I + A*B*A'. Uses the matrix determinant lemma to accelerate the calculation. Parameters ---------- s : scalar See above for usage A : square symmetric ndarray See above for usage AtA : square matrix A.T * A BI : square symmetric ndarray The upper left block of B^-1. di : array-like The diagonal elements of the lower right block of B^-1. B_logdet : real The log determinant of B Returns ------- The log determinant of s*I + A*B*A'. """ p = A.shape[0] ld = p * np.log(s) qmat = AtA / s m = BI.shape[0] qmat[0:m, 0:m] += BI ix = np.arange(m, A.shape[1]) qmat[ix, ix] += di if sparse.issparse(qmat): qmat = qmat.todense() _, ld1 = np.linalg.slogdet(qmat) return B_logdet + ld + ld1 class MixedLM(base.LikelihoodModel): """ An object specifying a linear mixed effects model. Use the `fit` method to fit the model and obtain a results object. Parameters ---------- endog : 1d array-like The dependent variable exog : 2d array-like A matrix of covariates used to determine the mean structure (the "fixed effects" covariates). groups : 1d array-like A vector of labels determining the groups -- data from different groups are independent exog_re : 2d array-like A matrix of covariates used to determine the variance and covariance structure (the "random effects" covariates). If None, defaults to a random intercept for each group. exog_vc : dict-like A dicationary containing specifications of the variance component terms. See below for details. use_sqrt : bool If True, optimization is carried out using the lower triangle of the square root of the random effects covariance matrix, otherwise it is carried out using the lower triangle of the random effects covariance matrix. missing : string The approach to missing data handling Notes ----- `exog_vc` is a dictionary of dictionaries. Specifically, `exog_vc[a][g]` is a matrix whose columns are linearly combined using independent random coefficients. This random term then contributes to the variance structure of the data for group `g`. The random coefficients all have mean zero, and have the same variance. The matrix must be `m x k`, where `m` is the number of observations in group `g`. The number of columns may differ among the top-level groups. The covariates in `exog`, `exog_re` and `exog_vc` may (but need not) partially or wholly overlap. `use_sqrt` should almost always be set to True. The main use case for use_sqrt=False is when complicated patterns of fixed values in the covariance structure are set (using the `free` argument to `fit`) that cannot be expressed in terms of the Cholesky factor L. Examples -------- A basic mixed model with fixed effects for the columns of ``exog`` and a random intercept for each distinct value of ``group``: >>> model = sm.MixedLM(endog, exog, groups) >>> result = model.fit() A mixed model with fixed effects for the columns of ``exog`` and correlated random coefficients for the columns of ``exog_re``: >>> model = sm.MixedLM(endog, exog, groups, exog_re=exog_re) >>> result = model.fit() A mixed model with fixed effects for the columns of ``exog`` and independent random coefficients for the columns of ``exog_re``: >>> free = MixedLMParams.from_components(fe_params=np.ones(exog.shape[1]), cov_re=np.eye(exog_re.shape[1])) >>> model = sm.MixedLM(endog, exog, groups, exog_re=exog_re) >>> result = model.fit(free=free) A different way to specify independent random coefficients for the columns of ``exog_re``. In this example ``groups`` must be a Pandas Series with compatible indexing with ``exog_re``, and ``exog_re`` has two columns. >>> g = pd.groupby(groups, by=groups).groups >>> vc = {} >>> vc['1'] = {k : exog_re.loc[g[k], 0] for k in g} >>> vc['2'] = {k : exog_re.loc[g[k], 1] for k in g} >>> model = sm.MixedLM(endog, exog, groups, vcomp=vc) >>> result = model.fit() """ def __init__(self, endog, exog, groups, exog_re=None, exog_vc=None, use_sqrt=True, missing='none', **kwargs): _allowed_kwargs = ["missing_idx", "design_info", "formula"] for x in kwargs.keys(): if x not in _allowed_kwargs: raise ValueError("argument %s not permitted for MixedLM initialization" % x) self.use_sqrt = use_sqrt # Some defaults self.reml = True self.fe_pen = None self.re_pen = None # Needs to run early so that the names are sorted. self._setup_vcomp(exog_vc) # If there is one covariate, it may be passed in as a column # vector, convert these to 2d arrays. # TODO: Can this be moved up in the class hierarchy? # yes, it should be done up the hierarchy if (exog is not None and data_tools._is_using_ndarray_type(exog, None) and exog.ndim == 1): exog = exog[:, None] if (exog_re is not None and data_tools._is_using_ndarray_type(exog_re, None) and exog_re.ndim == 1): exog_re = exog_re[:, None] # Calling super creates self.endog, etc. as ndarrays and the # original exog, endog, etc. are self.data.endog, etc. super(MixedLM, self).__init__(endog, exog, groups=groups, exog_re=exog_re, missing=missing, **kwargs) self._init_keys.extend(["use_sqrt", "exog_vc"]) self.k_fe = exog.shape[1] # Number of fixed effects parameters if exog_re is None and exog_vc is None: # Default random effects structure (random intercepts). self.k_re = 1 self.k_re2 = 1 self.exog_re = np.ones((len(endog), 1), dtype=np.float64) self.data.exog_re = self.exog_re self.data.param_names = self.exog_names + ['Group RE'] elif exog_re is not None: # Process exog_re the same way that exog is handled # upstream # TODO: this is wrong and should be handled upstream wholly self.data.exog_re = exog_re self.exog_re = np.asarray(exog_re) if self.exog_re.ndim == 1: self.exog_re = self.exog_re[:, None] # Model dimensions # Number of random effect covariates self.k_re = self.exog_re.shape[1] # Number of covariance parameters self.k_re2 = self.k_re * (self.k_re + 1) // 2 else: # All random effects are variance components self.k_re = 0 self.k_re2 = 0 if not self.data._param_names: # HACK: could've been set in from_formula already # needs refactor (param_names, exog_re_names, exog_re_names_full) = self._make_param_names(exog_re) self.data.param_names = param_names self.data.exog_re_names = exog_re_names self.data.exog_re_names_full = exog_re_names_full self.k_params = self.k_fe + self.k_re2 # Convert the data to the internal representation, which is a # list of arrays, corresponding to the groups. group_labels = list(set(groups)) group_labels.sort() row_indices = dict((s, []) for s in group_labels) for i,g in enumerate(groups): row_indices[g].append(i) self.row_indices = row_indices self.group_labels = group_labels self.n_groups = len(self.group_labels) # Split the data by groups self.endog_li = self.group_list(self.endog) self.exog_li = self.group_list(self.exog) self.exog_re_li = self.group_list(self.exog_re) # Precompute this. if self.exog_re is None: self.exog_re2_li = None else: self.exog_re2_li = [np.dot(x.T, x) for x in self.exog_re_li] # The total number of observations, summed over all groups self.nobs = len(self.endog) self.n_totobs = self.nobs # Set the fixed effects parameter names if self.exog_names is None: self.exog_names = ["FE%d" % (k + 1) for k in range(self.exog.shape[1])] # Precompute this self._aex_r = [] self._aex_r2 = [] for i in range(self.n_groups): a = self._augment_exog(i) self._aex_r.append(a) self._aex_r2.append(_dot(a.T, a)) # Precompute this self._lin, self._quad = self._reparam() def _setup_vcomp(self, exog_vc): if exog_vc is None: exog_vc = {} self.exog_vc = exog_vc self.k_vc = len(exog_vc) vc_names = list(set(exog_vc.keys())) vc_names.sort() self._vc_names = vc_names def _make_param_names(self, exog_re): """ Returns the full parameter names list, just the exogenous random effects variables, and the exogenous random effects variables with the interaction terms. """ exog_names = list(self.exog_names) exog_re_names = _get_exog_re_names(self, exog_re) param_names = [] jj = self.k_fe for i in range(len(exog_re_names)): for j in range(i + 1): if i == j: param_names.append(exog_re_names[i] + " RE") else: param_names.append(exog_re_names[j] + " RE x " + exog_re_names[i] + " RE") jj += 1 vc_names = [x + " RE" for x in self._vc_names] return exog_names + param_names + vc_names, exog_re_names, param_names @classmethod def from_formula(cls, formula, data, re_formula=None, vc_formula=None, subset=None, use_sparse=False, *args, **kwargs): """ Create a Model from a formula and dataframe. Parameters ---------- formula : str or generic Formula object The formula specifying the model data : array-like The data for the model. See Notes. re_formula : string A one-sided formula defining the variance structure of the model. The default gives a random intercept for each group. vc_formula : dict-like Formulas describing variance components. `vc_formula[vc]` is the formula for the component with variance parameter named `vc`. The formula is processed into a matrix, and the columns of this matrix are linearly combined with independent random coefficients having mean zero and a common variance. subset : array-like An array-like object of booleans, integers, or index values that indicate the subset of df to use in the model. Assumes df is a `pandas.DataFrame` args : extra arguments These are passed to the model kwargs : extra keyword arguments These are passed to the model with one exception. The ``eval_env`` keyword is passed to patsy. It can be either a :class:`patsy:patsy.EvalEnvironment` object or an integer indicating the depth of the namespace to use. For example, the default ``eval_env=0`` uses the calling namespace. If you wish to use a "clean" environment set ``eval_env=-1``. Returns ------- model : Model instance Notes ------ `data` must define __getitem__ with the keys in the formula terms args and kwargs are passed on to the model instantiation. E.g., a numpy structured or rec array, a dictionary, or a pandas DataFrame. If the variance component is intended to produce random intercepts for disjoint subsets of a group, specified by string labels or a categorical data value, always use '0 +' in the formula so that no overall intercept is included. If the variance components specify random slopes and you do not also want a random group-level intercept in the model, then use '0 +' in the formula to exclude the intercept. The variance components formulas are processed separately for each group. If a variable is categorical the results will not be affected by whether the group labels are distinct or re-used over the top-level groups. This method currently does not correctly handle missing values, so missing values should be explicitly dropped from the DataFrame before calling this method. Examples -------- Suppose we have an educational data set with students nested in classrooms nested in schools. The students take a test, and we want to relate the test scores to the students' ages, while accounting for the effects of classrooms and schools. The school will be the top-level group, and the classroom is a nested group that is specified as a variance component. Note that the schools may have different number of classrooms, and the classroom labels may (but need not be) different across the schools. >>> vc = {'classroom': '0 + C(classroom)'} >>> MixedLM.from_formula('test_score ~ age', vc_formula=vc, re_formula='1', groups='school', data=data) Now suppose we also have a previous test score called 'pretest'. If we want the relationship between pretest scores and the current test to vary by classroom, we can specify a random slope for the pretest score >>> vc = {'classroom': '0 + C(classroom)', 'pretest': '0 + pretest'} >>> MixedLM.from_formula('test_score ~ age + pretest', vc_formula=vc, re_formula='1', groups='school', data=data) The following model is almost equivalent to the previous one, but here the classroom random intercept and pretest slope may be correlated. >>> vc = {'classroom': '0 + C(classroom)'} >>> MixedLM.from_formula('test_score ~ age + pretest', vc_formula=vc, re_formula='1 + pretest', groups='school', data=data) """ if "groups" not in kwargs.keys(): raise AttributeError("'groups' is a required keyword argument in MixedLM.from_formula") # If `groups` is a variable name, retrieve the data for the # groups variable. group_name = "Group" if type(kwargs["groups"]) == str: group_name = kwargs["groups"] kwargs["groups"] = np.asarray(data[kwargs["groups"]]) if re_formula is not None: if re_formula.strip() == "1": # Work around Patsy bug, fixed by 0.3. exog_re = np.ones((data.shape[0], 1)) exog_re_names = ["Group"] else: eval_env = kwargs.get('eval_env', None) if eval_env is None: eval_env = 1 elif eval_env == -1: from patsy import EvalEnvironment eval_env = EvalEnvironment({}) exog_re = patsy.dmatrix(re_formula, data, eval_env=eval_env) exog_re_names = exog_re.design_info.column_names exog_re = np.asarray(exog_re) if exog_re.ndim == 1: exog_re = exog_re[:, None] else: exog_re = None if vc_formula is None: exog_re_names = ["groups"] else: exog_re_names = [] if vc_formula is not None: eval_env = kwargs.get('eval_env', None) if eval_env is None: eval_env = 1 elif eval_env == -1: from patsy import EvalEnvironment eval_env = EvalEnvironment({}) exog_vc = {} data["_group"] = kwargs["groups"] gb = data.groupby("_group") kylist = list(gb.groups.keys()) kylist.sort() for vc_name in vc_formula.keys(): exog_vc[vc_name] = {} for group_ix, group in enumerate(kylist): ii = gb.groups[group] vcg = vc_formula[vc_name] mat = patsy.dmatrix(vcg, data.loc[ii, :], eval_env=eval_env, return_type='dataframe') if use_sparse: exog_vc[vc_name][group] = sparse.csr_matrix(mat) else: exog_vc[vc_name][group] = np.asarray(mat) exog_vc = exog_vc else: exog_vc = None mod = super(MixedLM, cls).from_formula(formula, data, subset=None, exog_re=exog_re, exog_vc=exog_vc, *args, **kwargs) # expand re names to account for pairs of RE (param_names, exog_re_names, exog_re_names_full) = mod._make_param_names(exog_re_names) mod.data.param_names = param_names mod.data.exog_re_names = exog_re_names mod.data.exog_re_names_full = exog_re_names_full mod.data.vcomp_names = mod._vc_names return mod def predict(self, params, exog=None): """ Return predicted values from a design matrix. Parameters ---------- params : array-like Parameters of a mixed linear model. Can be either a MixedLMParams instance, or a vector containing the packed model parameters in which the fixed effects parameters are at the beginning of the vector, or a vector containing only the fixed effects parameters. exog : array-like, optional Design / exogenous data for the fixed effects. Model exog is used if None. Returns ------- An array of fitted values. Note that these predicted values only reflect the fixed effects mean structure of the model. """ if exog is None: exog = self.exog if isinstance(params, MixedLMParams): params = params.fe_params else: params = params[0:self.k_fe] return np.dot(exog, params) def group_list(self, array): """ Returns `array` split into subarrays corresponding to the grouping structure. """ if array is None: return None if array.ndim == 1: return [np.array(array[self.row_indices[k]]) for k in self.group_labels] else: return [np.array(array[self.row_indices[k], :]) for k in self.group_labels] def fit_regularized(self, start_params=None, method='l1', alpha=0, ceps=1e-4, ptol=1e-6, maxit=200, **fit_kwargs): """ Fit a model in which the fixed effects parameters are penalized. The dependence parameters are held fixed at their estimated values in the unpenalized model. Parameters ---------- method : string of Penalty object Method for regularization. If a string, must be 'l1'. alpha : array-like Scalar or vector of penalty weights. If a scalar, the same weight is applied to all coefficients; if a vector, it contains a weight for each coefficient. If method is a Penalty object, the weights are scaled by alpha. For L1 regularization, the weights are used directly. ceps : positive real scalar Fixed effects parameters smaller than this value in magnitude are treaded as being zero. ptol : positive real scalar Convergence occurs when the sup norm difference between successive values of `fe_params` is less than `ptol`. maxit : integer The maximum number of iterations. fit_kwargs : keywords Additional keyword arguments passed to fit. Returns ------- A MixedLMResults instance containing the results. Notes ----- The covariance structure is not updated as the fixed effects parameters are varied. The algorithm used here for L1 regularization is a"shooting" or cyclic coordinate descent algorithm. If method is 'l1', then `fe_pen` and `cov_pen` are used to obtain the covariance structure, but are ignored during the L1-penalized fitting. References ---------- Friedman, J. H., Hastie, T. and Tibshirani, R. Regularized Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1) (2008) http://www.jstatsoft.org/v33/i01/paper http://statweb.stanford.edu/~tibs/stat315a/Supplements/fuse.pdf """ if type(method) == str and (method.lower() != 'l1'): raise ValueError("Invalid regularization method") # If method is a smooth penalty just optimize directly. if isinstance(method, Penalty): # Scale the penalty weights by alpha method.alpha = alpha fit_kwargs.update({"fe_pen": method}) return self.fit(**fit_kwargs) if np.isscalar(alpha): alpha = alpha * np.ones(self.k_fe, dtype=np.float64) # Fit the unpenalized model to get the dependence structure. mdf = self.fit(**fit_kwargs) fe_params = mdf.fe_params cov_re = mdf.cov_re vcomp = mdf.vcomp scale = mdf.scale try: cov_re_inv = np.linalg.inv(cov_re) except np.linalg.LinAlgError: cov_re_inv = None for itr in range(maxit): fe_params_s = fe_params.copy() for j in range(self.k_fe): if abs(fe_params[j]) < ceps: continue # The residuals fe_params[j] = 0. expval = np.dot(self.exog, fe_params) resid_all = self.endog - expval # The loss function has the form # a*x^2 + b*x + pwt*|x| a, b = 0., 0. for group_ix, group in enumerate(self.group_labels): vc_var = self._expand_vcomp(vcomp, group) exog = self.exog_li[group_ix] ex_r, ex2_r = self._aex_r[group_ix], self._aex_r2[group_ix] resid = resid_all[self.row_indices[group]] solver = _smw_solver(scale, ex_r, ex2_r, cov_re_inv, 1 / vc_var) x = exog[:, j] u = solver(x) a += np.dot(u, x) b -= 2 * np.dot(u, resid) pwt1 = alpha[j] if b > pwt1: fe_params[j] = -(b - pwt1) / (2 * a) elif b < -pwt1: fe_params[j] = -(b + pwt1) / (2 * a) if np.abs(fe_params_s - fe_params).max() < ptol: break # Replace the fixed effects estimates with their penalized # values, leave the dependence parameters in their unpenalized # state. params_prof = mdf.params.copy() params_prof[0:self.k_fe] = fe_params scale = self.get_scale(fe_params, mdf.cov_re_unscaled, mdf.vcomp) # Get the Hessian including only the nonzero fixed effects, # then blow back up to the full size after inverting. hess = self.hessian(params_prof) pcov = np.nan * np.ones_like(hess) ii = np.abs(params_prof) > ceps ii[self.k_fe:] = True ii = np.flatnonzero(ii) hess1 = hess[ii, :][:, ii] pcov[np.ix_(ii,ii)] = np.linalg.inv(-hess1) params_object = MixedLMParams.from_components(fe_params, cov_re=cov_re) results = MixedLMResults(self, params_prof, pcov / scale) results.params_object = params_object results.fe_params = fe_params results.cov_re = cov_re results.scale = scale results.cov_re_unscaled = mdf.cov_re_unscaled results.method = mdf.method results.converged = True results.cov_pen = self.cov_pen results.k_fe = self.k_fe results.k_re = self.k_re results.k_re2 = self.k_re2 results.k_vc = self.k_vc return MixedLMResultsWrapper(results) def get_fe_params(self, cov_re, vcomp): """ Use GLS to update the fixed effects parameter estimates. Parameters ---------- cov_re : array-like The covariance matrix of the random effects. Returns ------- The GLS estimates of the fixed effects parameters. """ if self.k_fe == 0: return np.array([]) if self.k_re == 0: cov_re_inv = np.empty((0,0)) else: cov_re_inv = np.linalg.inv(cov_re) # Cache these quantities that don't change. if not hasattr(self, "_endex_li"): self._endex_li = [] for group_ix, _ in enumerate(self.group_labels): mat = np.concatenate((self.exog_li[group_ix], self.endog_li[group_ix][:, None]), axis=1) self._endex_li.append(mat) xtxy = 0. for group_ix, group in enumerate(self.group_labels): vc_var = self._expand_vcomp(vcomp, group) exog = self.exog_li[group_ix] ex_r, ex2_r = self._aex_r[group_ix], self._aex_r2[group_ix] solver = _smw_solver(1., ex_r, ex2_r, cov_re_inv, 1 / vc_var) u = solver(self._endex_li[group_ix]) xtxy += np.dot(exog.T, u) fe_params = np.linalg.solve(xtxy[:, 0:-1], xtxy[:, -1]) return fe_params def _reparam(self): """ Returns parameters of the map converting parameters from the form used in optimization to the form returned to the user. Returns ------- lin : list-like Linear terms of the map quad : list-like Quadratic terms of the map Notes ----- If P are the standard form parameters and R are the transformed parameters (i.e. with the Cholesky square root covariance and square root transformed variane components), then P[i] = lin[i] * R + R' * quad[i] * R """ k_fe, k_re, k_re2, k_vc = self.k_fe, self.k_re, self.k_re2, self.k_vc k_tot = k_fe + k_re2 + k_vc ix = np.tril_indices(self.k_re) lin = [] for k in range(k_fe): e = np.zeros(k_tot) e[k] = 1 lin.append(e) for k in range(k_re2): lin.append(np.zeros(k_tot)) for k in range(k_vc): lin.append(np.zeros(k_tot)) quad = [] # Quadratic terms for fixed effects. for k in range(k_tot): quad.append(np.zeros((k_tot, k_tot))) # Quadratic terms for random effects covariance. ii = np.tril_indices(k_re) ix = [(a,b) for a,b in zip(ii[0], ii[1])] for i1 in range(k_re2): for i2 in range(k_re2): ix1 = ix[i1] ix2 = ix[i2] if (ix1[1] == ix2[1]) and (ix1[0] <= ix2[0]): ii = (ix2[0], ix1[0]) k = ix.index(ii) quad[k_fe+k][k_fe+i2, k_fe+i1] += 1 for k in range(k_tot): quad[k] = 0.5*(quad[k] + quad[k].T) # Quadratic terms for variance components. km = k_fe + k_re2 for k in range(km, km+k_vc): quad[k][k, k] = 1 return lin, quad def _expand_vcomp(self, vcomp, group): """ Replicate variance parameters to match a group's design. Parameters ---------- vcomp : array-like The variance parameters for the variance components. group : string The group label Returns an expaded version of vcomp, in which each variance parameter is copied as many times as there are independent realizations of the variance component in the given group. """ if len(vcomp) == 0: return np.empty(0) vc_var = [] for j, k in enumerate(self._vc_names): if group in self.exog_vc[k]: vc_var.append(vcomp[j] * np.ones(self.exog_vc[k][group].shape[1])) if len(vc_var) > 0: return np.concatenate(vc_var) else: 1/0 return np.empty(0) def _augment_exog(self, group_ix): """ Concatenate the columns for variance components to the columns for other random effects to obtain a single random effects exog matrix for a given group. """ ex_r = self.exog_re_li[group_ix] if self.k_re > 0 else None if self.k_vc == 0: return ex_r group = self.group_labels[group_ix] ex = [ex_r] if self.k_re > 0 else [] any_sparse = False for j,k in enumerate(self._vc_names): if group not in self.exog_vc[k]: continue ex.append(self.exog_vc[k][group]) any_sparse |= sparse.issparse(ex[-1]) if any_sparse: for j, x in enumerate(ex): if not sparse.issparse(x): ex[j] = sparse.csr_matrix(x) ex = sparse.hstack(ex) ex = sparse.csr_matrix(ex) else: ex = np.concatenate(ex, axis=1) return ex def loglike(self, params, profile_fe=True): """ Evaluate the (profile) log-likelihood of the linear mixed effects model. Parameters ---------- params : MixedLMParams, or array-like. The parameter value. If array-like, must be a packed parameter vector containing only the covariance parameters. profile_fe : boolean If True, replace the provided value of `fe_params` with the GLS estimates. Returns ------- The log-likelihood value at `params`. Notes ----- The scale parameter `scale` is always profiled out of the log-likelihood. In addition, if `profile_fe` is true the fixed effects parameters are also profiled out. """ if type(params) is not MixedLMParams: params = MixedLMParams.from_packed(params, self.k_fe, self.k_re, self.use_sqrt, has_fe=False) cov_re = params.cov_re vcomp = params.vcomp # Move to the profile set if profile_fe: fe_params = self.get_fe_params(cov_re, vcomp) else: fe_params = params.fe_params if self.k_re > 0: try: cov_re_inv = np.linalg.inv(cov_re) except np.linalg.LinAlgError: cov_re_inv = None _, cov_re_logdet = np.linalg.slogdet(cov_re) else: cov_re_inv = np.zeros((0, 0)) cov_re_logdet = 0 # The residuals expval = np.dot(self.exog, fe_params) resid_all = self.endog - expval likeval = 0. # Handle the covariance penalty if (self.cov_pen is not None) and (self.k_re > 0): likeval -= self.cov_pen.func(cov_re, cov_re_inv) # Handle the fixed effects penalty if (self.fe_pen is not None): likeval -= self.fe_pen.func(fe_params) xvx, qf = 0., 0. for k, group in enumerate(self.group_labels): vc_var = self._expand_vcomp(vcomp, group) cov_aug_logdet = cov_re_logdet + np.sum(np.log(vc_var)) exog = self.exog_li[k] ex_r, ex2_r = self._aex_r[k], self._aex_r2[k] solver = _smw_solver(1., ex_r, ex2_r, cov_re_inv, 1 / vc_var) resid = resid_all[self.row_indices[group]] # Part 1 of the log likelihood (for both ML and REML) ld = _smw_logdet(1., ex_r, ex2_r, cov_re_inv, 1 / vc_var, cov_aug_logdet) likeval -= ld / 2. # Part 2 of the log likelihood (for both ML and REML) u = solver(resid) qf += np.dot(resid, u) # Adjustment for REML if self.reml: mat = solver(exog) xvx += np.dot(exog.T, mat) if self.reml: likeval -= (self.n_totobs - self.k_fe) * np.log(qf) / 2. _,ld = np.linalg.slogdet(xvx) likeval -= ld / 2. likeval -= (self.n_totobs - self.k_fe) * np.log(2 * np.pi) / 2. likeval += ((self.n_totobs - self.k_fe) * np.log(self.n_totobs - self.k_fe) / 2.) likeval -= (self.n_totobs - self.k_fe) / 2. else: likeval -= self.n_totobs * np.log(qf) / 2. likeval -= self.n_totobs * np.log(2 * np.pi) / 2. likeval += self.n_totobs * np.log(self.n_totobs) / 2. likeval -= self.n_totobs / 2. return likeval def _gen_dV_dPar(self, ex_r, solver, group, max_ix=None): """ A generator that yields the element-wise derivative of the marginal covariance matrix with respect to the random effects variance and covariance parameters. ex_r : array-like The random effects design matrix solver : function A function that given x returns V^{-1}x, where V is the group's marginal covariance matrix. group : scalar The group label max_ix : integer or None If not None, the generator ends when this index is reached. """ axr = solver(ex_r) # Regular random effects jj = 0 for j1 in range(self.k_re): for j2 in range(j1 + 1): if max_ix is not None and jj > max_ix: return mat_l, mat_r = ex_r[:,j1:j1+1], ex_r[:,j2:j2+1] # Need 2d vsl, vsr = axr[:,j1:j1+1], axr[:,j2:j2+1] yield jj, mat_l, mat_r, vsl, vsr, j1 == j2 jj += 1 # Variance components for ky in self._vc_names: if group in self.exog_vc[ky]: if max_ix is not None and jj > max_ix: return mat = self.exog_vc[ky][group] axmat = solver(mat) yield jj, mat, mat, axmat, axmat, True jj += 1 def score(self, params, profile_fe=True): """ Returns the score vector of the profile log-likelihood. Notes ----- The score vector that is returned is computed with respect to the parameterization defined by this model instance's `use_sqrt` attribute. """ if type(params) is not MixedLMParams: params = MixedLMParams.from_packed(params, self.k_fe, self.k_re, self.use_sqrt, has_fe=False) if profile_fe: params.fe_params = self.get_fe_params(params.cov_re, params.vcomp) if self.use_sqrt: score_fe, score_re, score_vc = self.score_sqrt(params, calc_fe=not profile_fe) else: score_fe, score_re, score_vc = self.score_full(params, calc_fe=not profile_fe) if self._freepat is not None: score_fe *= self._freepat.fe_params score_re *= self._freepat.cov_re[self._freepat._ix] score_vc *= self._freepat.vcomp if profile_fe: return np.concatenate((score_re, score_vc)) else: return np.concatenate((score_fe, score_re, score_vc)) def score_full(self, params, calc_fe): """ Returns the score with respect to untransformed parameters. Calculates the score vector for the profiled log-likelihood of the mixed effects model with respect to the parameterization in which the random effects covariance matrix is represented in its full form (not using the Cholesky factor). Parameters ---------- params : MixedLMParams or array-like The parameter at which the score function is evaluated. If array-like, must contain the packed random effects parameters (cov_re and vcomp) without fe_params. calc_fe : boolean If True, calculate the score vector for the fixed effects parameters. If False, this vector is not calculated, and a vector of zeros is returned in its place. Returns ------- score_fe : array-like The score vector with respect to the fixed effects parameters. score_re : array-like The score vector with respect to the random effects parameters (excluding variance components parameters). score_vc : array-like The score vector with respect to variance components parameters. Notes ----- `score_re` is taken with respect to the parameterization in which `cov_re` is represented through its lower triangle (without taking the Cholesky square root). """ fe_params = params.fe_params cov_re = params.cov_re vcomp = params.vcomp try: cov_re_inv = np.linalg.inv(cov_re) except np.linalg.LinAlgError: cov_re_inv = None score_fe = np.zeros(self.k_fe) score_re = np.zeros(self.k_re2) score_vc = np.zeros(self.k_vc) # Handle the covariance penalty. if self.cov_pen is not None: score_re -= self.cov_pen.grad(cov_re, cov_re_inv) # Handle the fixed effects penalty. if calc_fe and (self.fe_pen is not None): score_fe -= self.fe_pen.grad(fe_params) # resid' V^{-1} resid, summed over the groups (a scalar) rvir = 0. # exog' V^{-1} resid, summed over the groups (a k_fe # dimensional vector) xtvir = 0. # exog' V^{_1} exog, summed over the groups (a k_fe x k_fe # matrix) xtvix = 0. # V^{-1} exog' dV/dQ_jj exog V^{-1}, where Q_jj is the jj^th # covariance parameter. xtax = [0.,] * (self.k_re2 + self.k_vc) # Temporary related to the gradient of log |V| dlv = np.zeros(self.k_re2 + self.k_vc) # resid' V^{-1} dV/dQ_jj V^{-1} resid (a scalar) rvavr = np.zeros(self.k_re2 + self.k_vc) for group_ix, group in enumerate(self.group_labels): vc_var = self._expand_vcomp(vcomp, group) exog = self.exog_li[group_ix] ex_r, ex2_r = self._aex_r[group_ix], self._aex_r2[group_ix] solver = _smw_solver(1., ex_r, ex2_r, cov_re_inv, 1 / vc_var) # The residuals resid = self.endog_li[group_ix] if self.k_fe > 0: expval = np.dot(exog, fe_params) resid = resid - expval if self.reml: viexog = solver(exog) xtvix += np.dot(exog.T, viexog) # Contributions to the covariance parameter gradient vir = solver(resid) for jj, matl, matr, vsl, vsr, sym in self._gen_dV_dPar(ex_r, solver, group): dlv[jj] = _dotsum(matr, vsl) if not sym: dlv[jj] += _dotsum(matl, vsr) ul = _dot(vir, matl) ur = ul.T if sym else _dot(matr.T, vir) ulr = np.dot(ul, ur) rvavr[jj] += ulr if not sym: rvavr[jj] += ulr.T if self.reml: ul = _dot(viexog.T, matl) ur = ul.T if sym else _dot(matr.T, viexog) ulr = np.dot(ul, ur) xtax[jj] += ulr if not sym: xtax[jj] += ulr.T # Contribution of log|V| to the covariance parameter # gradient. if self.k_re > 0: score_re -= 0.5 * dlv[0:self.k_re2] if self.k_vc > 0: score_vc -= 0.5 * dlv[self.k_re2:] rvir += np.dot(resid, vir) if calc_fe: xtvir += np.dot(exog.T, vir) fac = self.n_totobs if self.reml: fac -= self.k_fe if calc_fe and self.k_fe > 0: score_fe += fac * xtvir / rvir if self.k_re > 0: score_re += 0.5 * fac * rvavr[0:self.k_re2] / rvir if self.k_vc > 0: score_vc += 0.5 * fac * rvavr[self.k_re2:] / rvir if self.reml: xtvixi = np.linalg.inv(xtvix) for j in range(self.k_re2): score_re[j] += 0.5 * _dotsum(xtvixi.T, xtax[j]) for j in range(self.k_vc): score_vc[j] += 0.5 * _dotsum(xtvixi.T, xtax[self.k_re2 + j]) return score_fe, score_re, score_vc def score_sqrt(self, params, calc_fe=True): """ Returns the score with respect to transformed parameters. Calculates the score vector with respect to the parameterization in which the random effects covariance matrix is represented through its Cholesky square root. Parameters ---------- params : MixedLMParams or array-like The model parameters. If array-like must contain packed parameters that are compatible with this model instance. calc_fe : boolean If True, calculate the score vector for the fixed effects parameters. If False, this vector is not calculated, and a vector of zeros is returned in its place. Returns ------- score_fe : array-like The score vector with respect to the fixed effects parameters. score_re : array-like The score vector with respect to the random effects parameters (excluding variance components parameters). score_vc : array-like The score vector with respect to variance components parameters. """ score_fe, score_re, score_vc = self.score_full(params, calc_fe=calc_fe) params_vec = params.get_packed(use_sqrt=True, has_fe=True) score_full = np.concatenate((score_fe, score_re, score_vc)) scr = 0. for i in range(len(params_vec)): v = self._lin[i] + 2 * np.dot(self._quad[i], params_vec) scr += score_full[i] * v score_fe = scr[0:self.k_fe] score_re = scr[self.k_fe:self.k_fe + self.k_re2] score_vc = scr[self.k_fe + self.k_re2:] return score_fe, score_re, score_vc def hessian(self, params): """ Returns the model's Hessian matrix. Calculates the Hessian matrix for the linear mixed effects model with respect to the parameterization in which the covariance matrix is represented directly (without square-root transformation). Parameters ---------- params : MixedLMParams or array-like The model parameters at which the Hessian is calculated. If array-like, must contain the packed parameters in a form that is compatible with this model instance. Returns ------- hess : 2d ndarray The Hessian matrix, evaluated at `params`. """ if type(params) is not MixedLMParams: params = MixedLMParams.from_packed(params, self.k_fe, self.k_re, use_sqrt=self.use_sqrt, has_fe=True) fe_params = params.fe_params vcomp = params.vcomp cov_re = params.cov_re if self.k_re > 0: cov_re_inv = np.linalg.inv(cov_re) else: cov_re_inv = np.empty((0, 0)) # Blocks for the fixed and random effects parameters. hess_fe = 0. hess_re = np.zeros((self.k_re2 + self.k_vc, self.k_re2 + self.k_vc)) hess_fere = np.zeros((self.k_re2 + self.k_vc, self.k_fe)) fac = self.n_totobs if self.reml: fac -= self.exog.shape[1] rvir = 0. xtvix = 0. xtax = [0.,] * (self.k_re2 + self.k_vc) m = self.k_re2 + self.k_vc B = np.zeros(m) D = np.zeros((m, m)) F = [[0.] * m for k in range(m)] for k, group in enumerate(self.group_labels): vc_var = self._expand_vcomp(vcomp, group) exog = self.exog_li[k] ex_r, ex2_r = self._aex_r[k], self._aex_r2[k] solver = _smw_solver(1., ex_r, ex2_r, cov_re_inv, 1 / vc_var) # The residuals resid = self.endog_li[k] if self.k_fe > 0: expval = np.dot(exog, fe_params) resid = resid - expval viexog = solver(exog) xtvix += np.dot(exog.T, viexog) vir = solver(resid) rvir += np.dot(resid, vir) for jj1, matl1, matr1, vsl1, vsr1, sym1 in self._gen_dV_dPar(ex_r, solver, group): ul = _dot(viexog.T, matl1) ur = _dot(matr1.T, vir) hess_fere[jj1, :] += np.dot(ul, ur) if not sym1: ul = _dot(viexog.T, matr1) ur = _dot(matl1.T, vir) hess_fere[jj1, :] += np.dot(ul, ur) if self.reml: ul = _dot(viexog.T, matl1) ur = ul if sym1 else np.dot(viexog.T, matr1) ulr = _dot(ul, ur.T) xtax[jj1] += ulr if not sym1: xtax[jj1] += ulr.T ul = _dot(vir, matl1) ur = ul if sym1 else _dot(vir, matr1) B[jj1] += np.dot(ul, ur) * (1 if sym1 else 2) # V^{-1} * dV/d_theta E = [(vsl1, matr1)] if not sym1: E.append((vsr1, matl1)) for jj2, matl2, matr2, vsl2, vsr2, sym2 in self._gen_dV_dPar(ex_r, solver, group, jj1): re = sum([_multi_dot_three(matr2.T, x[0], x[1].T) for x in E]) vt = 2 * _dot(_multi_dot_three(vir[None, :], matl2, re), vir[:, None]) if not sym2: le = sum([_multi_dot_three(matl2.T, x[0], x[1].T) for x in E]) vt += 2 * _dot(_multi_dot_three(vir[None, :], matr2, le), vir[:, None]) D[jj1, jj2] += vt if jj1 != jj2: D[jj2, jj1] += vt rt = _dotsum(vsl2, re.T) / 2 if not sym2: rt += _dotsum(vsr2, le.T) / 2 hess_re[jj1, jj2] += rt if jj1 != jj2: hess_re[jj2, jj1] += rt if self.reml: ev = sum([_dot(x[0], _dot(x[1].T, viexog)) for x in E]) u1 = _dot(viexog.T, matl2) u2 = _dot(matr2.T, ev) um = np.dot(u1, u2) F[jj1][jj2] += um + um.T if not sym2: u1 = np.dot(viexog.T, matr2) u2 = np.dot(matl2.T, ev) um = np.dot(u1, u2) F[jj1][jj2] += um + um.T hess_fe -= fac * xtvix / rvir hess_re = hess_re - 0.5 * fac * (D/rvir - np.outer(B, B) / rvir**2) hess_fere = -fac * hess_fere / rvir if self.reml: QL = [np.linalg.solve(xtvix, x) for x in xtax] for j1 in range(self.k_re2 + self.k_vc): for j2 in range(j1 + 1): a = _dotsum(QL[j1].T, QL[j2]) a -= np.trace(np.linalg.solve(xtvix, F[j1][j2])) a *= 0.5 hess_re[j1, j2] += a if j1 > j2: hess_re[j2, j1] += a # Put the blocks together to get the Hessian. m = self.k_fe + self.k_re2 + self.k_vc hess = np.zeros((m, m)) hess[0:self.k_fe, 0:self.k_fe] = hess_fe hess[0:self.k_fe, self.k_fe:] = hess_fere.T hess[self.k_fe:, 0:self.k_fe] = hess_fere hess[self.k_fe:, self.k_fe:] = hess_re return hess def get_scale(self, fe_params, cov_re, vcomp): """ Returns the estimated error variance based on given estimates of the slopes and random effects covariance matrix. Parameters ---------- fe_params : array-like The regression slope estimates cov_re : 2d array-like Estimate of the random effects covariance matrix vcomp : array-like Estimate of the variance components Returns ------- scale : float The estimated error variance. """ try: cov_re_inv = np.linalg.inv(cov_re) except np.linalg.LinAlgError: cov_re_inv = None qf = 0. for group_ix, group in enumerate(self.group_labels): vc_var = self._expand_vcomp(vcomp, group) exog = self.exog_li[group_ix] ex_r, ex2_r = self._aex_r[group_ix], self._aex_r2[group_ix] solver = _smw_solver(1., ex_r, ex2_r, cov_re_inv, 1 / vc_var) # The residuals resid = self.endog_li[group_ix] if self.k_fe > 0: expval = np.dot(exog, fe_params) resid = resid - expval mat = solver(resid) qf += np.dot(resid, mat) if self.reml: qf /= (self.n_totobs - self.k_fe) else: qf /= self.n_totobs return qf def fit(self, start_params=None, reml=True, niter_sa=0, do_cg=True, fe_pen=None, cov_pen=None, free=None, full_output=False, method='bfgs', **kwargs): """ Fit a linear mixed model to the data. Parameters ---------- start_params: array-like or MixedLMParams Starting values for the profile log-likeihood. If not a `MixedLMParams` instance, this should be an array containing the packed parameters for the profile log-likelihood, including the fixed effects parameters. reml : bool If true, fit according to the REML likelihood, else fit the standard likelihood using ML. cov_pen : CovariancePenalty object A penalty for the random effects covariance matrix fe_pen : Penalty object A penalty on the fixed effects free : MixedLMParams object If not `None`, this is a mask that allows parameters to be held fixed at specified values. A 1 indicates that the correspondinig parameter is estimated, a 0 indicates that it is fixed at its starting value. Setting the `cov_re` component to the identity matrix fits a model with independent random effects. Note that some optimization methods do not respect this contraint (bfgs and lbfgs both work). full_output : bool If true, attach iteration history to results method : string Optimization method. Returns ------- A MixedLMResults instance. """ _allowed_kwargs = ['gtol', 'maxiter'] for x in kwargs.keys(): if x not in _allowed_kwargs: raise ValueError("Argument %s not allowed for MixedLM.fit" % x) if method.lower() in ["newton", "ncg"]: raise ValueError("method %s not available for MixedLM" % method) self.reml = reml self.cov_pen = cov_pen self.fe_pen = fe_pen self._freepat = free if full_output: hist = [] else: hist = None success = False if start_params is None: params = MixedLMParams(self.k_fe, self.k_re, self.k_vc) params.fe_params = np.zeros(self.k_fe) params.cov_re = np.eye(self.k_re) params.vcomp = np.ones(self.k_vc) else: if isinstance(start_params, MixedLMParams): params = start_params else: # It's a packed array if len(start_params) == self.k_fe + self.k_re2 + self.k_vc: params = MixedLMParams.from_packed(start_params, self.k_fe, self.k_re, self.use_sqrt, has_fe=True) elif len(start_params) == self.k_re2 + self.k_vc: params = MixedLMParams.from_packed(start_params, self.k_fe, self.k_re, self.use_sqrt, has_fe=False) else: raise ValueError("invalid start_params") if do_cg: kwargs["retall"] = hist is not None if "disp" not in kwargs: kwargs["disp"] = False packed = params.get_packed(use_sqrt=self.use_sqrt, has_fe=False) # It seems that the optimizers sometimes stop too soon, so # we run a few times. for rep in range(5): rslt = super(MixedLM, self).fit(start_params=packed, skip_hessian=True, method=method, **kwargs) if rslt.mle_retvals['converged']: break packed = rslt.params # The optimization succeeded params = np.atleast_1d(rslt.params) if hist is not None: hist.append(rslt.mle_retvals) converged = rslt.mle_retvals['converged'] if not converged: msg = "Gradient optimization failed." warnings.warn(msg, ConvergenceWarning) # Convert to the final parameterization (i.e. undo the square # root transform of the covariance matrix, and the profiling # over the error variance). params = MixedLMParams.from_packed(params, self.k_fe, self.k_re, use_sqrt=self.use_sqrt, has_fe=False) cov_re_unscaled = params.cov_re vcomp_unscaled = params.vcomp fe_params = self.get_fe_params(cov_re_unscaled, vcomp_unscaled) params.fe_params = fe_params scale = self.get_scale(fe_params, cov_re_unscaled, vcomp_unscaled) cov_re = scale * cov_re_unscaled vcomp = scale * vcomp_unscaled if (((self.k_re > 0) and (np.min(np.abs(np.diag(cov_re))) < 0.01)) or ((self.k_vc > 0) and (np.min(np.abs(vcomp)) < 0.01))): msg = "The MLE may be on the boundary of the parameter space." warnings.warn(msg, ConvergenceWarning) # Compute the Hessian at the MLE. Note that this is the # Hessian with respect to the random effects covariance matrix # (not its square root). It is used for obtaining standard # errors, not for optimization. hess = self.hessian(params) hess_diag = np.diag(hess) if free is not None: pcov = np.zeros_like(hess) pat = self._freepat.get_packed(use_sqrt=False, has_fe=True) ii = np.flatnonzero(pat) hess_diag = hess_diag[ii] if len(ii) > 0: hess1 = hess[np.ix_(ii, ii)] pcov[np.ix_(ii, ii)] = np.linalg.inv(-hess1) else: pcov = np.linalg.inv(-hess) if np.any(hess_diag >= 0): msg = "The Hessian matrix at the estimated parameter values is not positive definite." warnings.warn(msg, ConvergenceWarning) # Prepare a results class instance params_packed = params.get_packed(use_sqrt=False, has_fe=True) results = MixedLMResults(self, params_packed, pcov / scale) results.params_object = params results.fe_params = fe_params results.cov_re = cov_re results.vcomp = vcomp results.scale = scale results.cov_re_unscaled = cov_re_unscaled results.method = "REML" if self.reml else "ML" results.converged = converged results.hist = hist results.reml = self.reml results.cov_pen = self.cov_pen results.k_fe = self.k_fe results.k_re = self.k_re results.k_re2 = self.k_re2 results.k_vc = self.k_vc results.use_sqrt = self.use_sqrt results.freepat = self._freepat return MixedLMResultsWrapper(results) class MixedLMResults(base.LikelihoodModelResults, base.ResultMixin): ''' Class to contain results of fitting a linear mixed effects model. MixedLMResults inherits from statsmodels.LikelihoodModelResults Parameters ---------- See statsmodels.LikelihoodModelResults Returns ------- **Attributes** model : class instance Pointer to PHreg model instance that called fit. normalized_cov_params : array The sampling covariance matrix of the estimates fe_params : array The fitted fixed-effects coefficients re_params : array The fitted random-effects covariance matrix bse_fe : array The standard errors of the fitted fixed effects coefficients bse_re : array The standard errors of the fitted random effects covariance matrix See Also -------- statsmodels.LikelihoodModelResults ''' def __init__(self, model, params, cov_params): super(MixedLMResults, self).__init__(model, params, normalized_cov_params=cov_params) self.nobs = self.model.nobs self.df_resid = self.nobs - np_matrix_rank(self.model.exog) @cache_readonly def fittedvalues(self): """ Returns the fitted values for the model. The fitted values reflect the mean structure specified by the fixed effects and the predicted random effects. """ fit = np.dot(self.model.exog, self.fe_params) re = self.random_effects for group_ix, group in enumerate(self.model.group_labels): ix = self.model.row_indices[group] mat = [self.model.exog_re_li[group_ix]] for c in self.model._vc_names: if group in self.model.exog_vc[c]: mat.append(self.model.exog_vc[c][group]) mat = np.concatenate(mat, axis=1) fit[ix] += np.dot(mat, re[group]) return fit @cache_readonly def resid(self): """ Returns the residuals for the model. The residuals reflect the mean structure specified by the fixed effects and the predicted random effects. """ return self.model.endog - self.fittedvalues @cache_readonly def bse_fe(self): """ Returns the standard errors of the fixed effect regression coefficients. """ p = self.model.exog.shape[1] return np.sqrt(np.diag(self.cov_params())[0:p]) @cache_readonly def bse_re(self): """ Returns the standard errors of the variance parameters. Note that the sampling distribution of variance parameters is strongly skewed unless the sample size is large, so these standard errors may not give meaningful confidence intervals of p-values if used in the usual way. """ p = self.model.exog.shape[1] return np.sqrt(self.scale * np.diag(self.cov_params())[p:]) def _expand_re_names(self, group): names = list(self.model.data.exog_re_names) for v in self.model._vc_names: if group in self.model.exog_vc[v]: ix = range(self.model.exog_vc[v][group].shape[1]) na = ["%s[%d]" % (v, j + 1) for j in ix] names.extend(na) return names @cache_readonly def random_effects(self): """ The conditional means of random effects given the data. Returns ------- random_effects : dict A dictionary mapping the distinct `group` values to the means of the random effects for the group. """ try: cov_re_inv = np.linalg.inv(self.cov_re) except np.linalg.LinAlgError: raise ValueError("Cannot predict random effects from singular covariance structure.") vcomp = self.vcomp k_re = self.k_re ranef_dict = {} for group_ix, group in enumerate(self.model.group_labels): endog = self.model.endog_li[group_ix] exog = self.model.exog_li[group_ix] ex_r, ex2_r = self.model._aex_r[group_ix], self.model._aex_r2[group_ix] vc_var = self.model._expand_vcomp(vcomp, group) # Get the residuals relative to fixed effects resid = endog if self.k_fe > 0: expval = np.dot(exog, self.fe_params) resid = resid - expval solver = _smw_solver(self.scale, ex_r, ex2_r, cov_re_inv, 1 / vc_var) vir = solver(resid) xtvir = _dot(ex_r.T, vir) xtvir[0:k_re] = np.dot(self.cov_re, xtvir[0:k_re]) xtvir[k_re:] *= vc_var ranef_dict[group] = pd.Series(xtvir, index=self._expand_re_names(group)) return ranef_dict @cache_readonly def random_effects_cov(self): """ Returns the conditional covariance matrix of the random effects for each group given the data. Returns ------- random_effects_cov : dict A dictionary mapping the distinct values of the `group` variable to the conditional covariance matrix of the random effects given the data. """ try: cov_re_inv = np.linalg.inv(self.cov_re) except np.linalg.LinAlgError: cov_re_inv = None vcomp = self.vcomp ranef_dict = {} for group_ix in range(self.model.n_groups): ex_r, ex2_r = self.model._aex_r[group_ix], self.model._aex_r2[group_ix] label = self.model.group_labels[group_ix] vc_var = self.model._expand_vcomp(vcomp, group_ix) solver = _smw_solver(self.scale, ex_r, ex2_r, cov_re_inv, 1 / vc_var) n = ex_r.shape[0] m = self.cov_re.shape[0] mat1 = np.empty((n, m)) mat1[:, 0:m] = np.dot(ex_r[:, 0:m], self.cov_re) mat1[:, m:] = np.dot(ex_r[:, m:], np.diag(vc_var)) mat2 = solver(mat1) mat2 = np.dot(mat1.T, mat2) v = -mat2 v[0:m, 0:m] += self.cov_re ix = np.arange(m, v.shape[0]) v[ix, ix] += vc_var na = self._expand_re_names(group_ix) v = pd.DataFrame(v, index=na, columns=na) ranef_dict[label] = v return ranef_dict # Need to override since t-tests are only used for fixed effects parameters. def t_test(self, r_matrix, scale=None, use_t=None): """ Compute a t-test for a each linear hypothesis of the form Rb = q Parameters ---------- r_matrix : array-like If an array is given, a p x k 2d array or length k 1d array specifying the linear restrictions. It is assumed that the linear combination is equal to zero. scale : float, optional An optional `scale` to use. Default is the scale specified by the model fit. use_t : bool, optional If use_t is None, then the default of the model is used. If use_t is True, then the p-values are based on the t distribution. If use_t is False, then the p-values are based on the normal distribution. Returns ------- res : ContrastResults instance The results for the test are attributes of this results instance. The available results have the same elements as the parameter table in `summary()`. """ if r_matrix.shape[1] != self.k_fe: raise ValueError("r_matrix for t-test should have %d columns" % self.k_fe) d = self.k_re2 + self.k_vc z0 = np.zeros((r_matrix.shape[0], d)) r_matrix = np.concatenate((r_matrix, z0), axis=1) tst_rslt = super(MixedLMResults, self).t_test(r_matrix, scale=scale, use_t=use_t) return tst_rslt def summary(self, yname=None, xname_fe=None, xname_re=None, title=None, alpha=.05): """ Summarize the mixed model regression results. Parameters ----------- yname : string, optional Default is `y` xname_fe : list of strings, optional Fixed effects covariate names xname_re : list of strings, optional Random effects covariate names title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : class to hold summary results """ from statsmodels.iolib import summary2 smry = summary2.Summary() info = OrderedDict() info["Model:"] = "MixedLM" if yname is None: yname = self.model.endog_names info["No. Observations:"] = str(self.model.n_totobs) info["No. Groups:"] = str(self.model.n_groups) gs = np.array([len(x) for x in self.model.endog_li]) info["Min. group size:"] = "%.0f" % min(gs) info["Max. group size:"] = "%.0f" % max(gs) info["Mean group size:"] = "%.1f" % np.mean(gs) info["Dependent Variable:"] = yname info["Method:"] = self.method info["Scale:"] = self.scale info["Likelihood:"] = self.llf info["Converged:"] = "Yes" if self.converged else "No" smry.add_dict(info) smry.add_title("Mixed Linear Model Regression Results") float_fmt = "%.3f" sdf = np.nan * np.ones((self.k_fe + self.k_re2 + self.k_vc, 6)) # Coefficient estimates sdf[0:self.k_fe, 0] = self.fe_params # Standard errors sdf[0:self.k_fe, 1] = np.sqrt(np.diag(self.cov_params()[0:self.k_fe])) # Z-scores sdf[0:self.k_fe, 2] = sdf[0:self.k_fe, 0] / sdf[0:self.k_fe, 1] # p-values sdf[0:self.k_fe, 3] = 2 * norm.cdf(-np.abs(sdf[0:self.k_fe, 2])) # Confidence intervals qm = -norm.ppf(alpha / 2) sdf[0:self.k_fe, 4] = sdf[0:self.k_fe, 0] - qm * sdf[0:self.k_fe, 1] sdf[0:self.k_fe, 5] = sdf[0:self.k_fe, 0] + qm * sdf[0:self.k_fe, 1] # All random effects variances and covariances jj = self.k_fe for i in range(self.k_re): for j in range(i + 1): sdf[jj, 0] = self.cov_re[i, j] sdf[jj, 1] = np.sqrt(self.scale) * self.bse[jj] jj += 1 # Variance components for i in range(self.k_vc): sdf[jj, 0] = self.vcomp[i] sdf[jj, 1] = np.sqrt(self.scale) * self.bse[jj] jj += 1 sdf = pd.DataFrame(index=self.model.data.param_names, data=sdf) sdf.columns = ['Coef.', 'Std.Err.', 'z', 'P>|z|', '[' + str(alpha/2), str(1-alpha/2) + ']'] for col in sdf.columns: sdf[col] = [float_fmt % x if np.isfinite(x) else "" for x in sdf[col]] smry.add_df(sdf, align='r') return smry @cache_readonly def llf(self): return self.model.loglike(self.params_object, profile_fe=False) @cache_readonly def aic(self): if self.reml: return np.nan if self.freepat is not None: df = self.freepat.get_packed(use_sqrt=False, has_fe=True).sum() + 1 else: df = self.params.size + 1 return -2 * (self.llf - df) @cache_readonly def bic(self): if self.reml: return np.nan if self.freepat is not None: df = self.freepat.get_packed(use_sqrt=False, has_fe=True).sum() + 1 else: df = self.params.size + 1 return -2 * self.llf + np.log(self.nobs) * df def profile_re(self, re_ix, vtype, num_low=5, dist_low=1., num_high=5, dist_high=1.): """ Profile-likelihood inference for variance parameters. Parameters ---------- re_ix : integer If vtype is `re`, this value is the index of the variance parameter for which to construct a profile likelihood. If `vtype` is 'vc' then `re_ix` is the name of the variance parameter to be profiled. vtype : string Either 're' or 'vc', depending on whether the profile analysis is for a random effect or a variance component. num_low : integer The number of points at which to calculate the likelihood below the MLE of the parameter of interest. dist_low : float The distance below the MLE of the parameter of interest to begin calculating points on the profile likelihood. num_high : integer The number of points at which to calculate the likelihood abov the MLE of the parameter of interest. dist_high : float The distance above the MLE of the parameter of interest to begin calculating points on the profile likelihood. Returns ------- An array with two columns. The first column contains the values to which the parameter of interest is constrained. The second column contains the corresponding likelihood values. Notes ----- Only variance parameters can be profiled. """ pmodel = self.model k_fe = pmodel.k_fe k_re = pmodel.k_re k_vc = pmodel.k_vc endog, exog, groups = pmodel.endog, pmodel.exog, pmodel.groups # Need to permute the columns of the random effects design # matrix so that the profiled variable is in the first column. if vtype == 're': ix = np.arange(k_re) ix[0] = re_ix ix[re_ix] = 0 exog_re = pmodel.exog_re.copy()[:, ix] # Permute the covariance structure to match the permuted # design matrix. params = self.params_object.copy() cov_re_unscaled = params.cov_re cov_re_unscaled = cov_re_unscaled[np.ix_(ix, ix)] params.cov_re = cov_re_unscaled ru0 = cov_re_unscaled[0, 0] # Convert dist_low and dist_high to the profile # parameterization cov_re = self.scale * cov_re_unscaled low = (cov_re[0, 0] - dist_low) / self.scale high = (cov_re[0, 0] + dist_high) / self.scale elif vtype == 'vc': re_ix = self.model._vc_names.index(re_ix) params = self.params_object.copy() vcomp = self.vcomp low = (vcomp[re_ix] - dist_low) / self.scale high = (vcomp[re_ix] + dist_high) / self.scale ru0 = vcomp[re_ix] / self.scale # Define the sequence of values to which the parameter of # interest will be constrained. if low <= 0: raise ValueError("dist_low is too large and would result in a " "negative variance. Try a smaller value.") left = np.linspace(low, ru0, num_low + 1) right = np.linspace(ru0, high, num_high+1)[1:] rvalues = np.concatenate((left, right)) # Indicators of which parameters are free and fixed. free = MixedLMParams(k_fe, k_re, k_vc) if self.freepat is None: free.fe_params = np.ones(k_fe) vcomp = np.ones(k_vc) mat = np.ones((k_re, k_re)) else: # If a freepat already has been specified, we add the # constraint to it. free.fe_params = self.freepat.fe_params vcomp = self.freepat.vcomp mat = self.freepat.cov_re if vtype == 're': mat = mat[np.ix_(ix, ix)] if vtype == 're': mat[0, 0] = 0 else: vcomp[re_ix] = 0 free.cov_re = mat free.vcomp = vcomp klass = self.model.__class__ init_kwargs = pmodel._get_init_kwds() if vtype == 're': init_kwargs['exog_re'] = exog_re likev = [] for x in rvalues: model = klass(endog, exog, **init_kwargs) if vtype == 're': cov_re = params.cov_re.copy() cov_re[0, 0] = x params.cov_re = cov_re else: params.vcomp[re_ix] = x # TODO should use fit_kwargs rslt = model.fit(start_params=params, free=free, reml=self.reml, cov_pen=self.cov_pen)._results likev.append([x * rslt.scale, rslt.llf]) likev = np.asarray(likev) return likev class MixedLMResultsWrapper(base.LikelihoodResultsWrapper): _attrs = {'bse_re': ('generic_columns', 'exog_re_names_full'), 'fe_params': ('generic_columns', 'xnames'), 'bse_fe': ('generic_columns', 'xnames'), 'cov_re': ('generic_columns_2d', 'exog_re_names'), 'cov_re_unscaled': ('generic_columns_2d', 'exog_re_names'), } _upstream_attrs = base.LikelihoodResultsWrapper._wrap_attrs _wrap_attrs = base.wrap.union_dicts(_attrs, _upstream_attrs) _methods = {} _upstream_methods = base.LikelihoodResultsWrapper._wrap_methods _wrap_methods = base.wrap.union_dicts(_methods, _upstream_methods)
bsd-3-clause
jat255/seaborn
seaborn/tests/test_utils.py
11
11338
"""Tests for plotting utilities.""" import warnings import tempfile import shutil import numpy as np import pandas as pd import matplotlib.pyplot as plt import nose import nose.tools as nt from nose.tools import assert_equal, raises import numpy.testing as npt import pandas.util.testing as pdt from distutils.version import LooseVersion pandas_has_categoricals = LooseVersion(pd.__version__) >= "0.15" from pandas.util.testing import network try: from bs4 import BeautifulSoup except ImportError: BeautifulSoup = None from . import PlotTestCase from .. import utils, rcmod from ..utils import get_dataset_names, load_dataset a_norm = np.random.randn(100) def test_pmf_hist_basics(): """Test the function to return barplot args for pmf hist.""" out = utils.pmf_hist(a_norm) assert_equal(len(out), 3) x, h, w = out assert_equal(len(x), len(h)) # Test simple case a = np.arange(10) x, h, w = utils.pmf_hist(a, 10) nose.tools.assert_true(np.all(h == h[0])) def test_pmf_hist_widths(): """Test histogram width is correct.""" x, h, w = utils.pmf_hist(a_norm) assert_equal(x[1] - x[0], w) def test_pmf_hist_normalization(): """Test that output data behaves like a PMF.""" x, h, w = utils.pmf_hist(a_norm) nose.tools.assert_almost_equal(sum(h), 1) nose.tools.assert_less_equal(h.max(), 1) def test_pmf_hist_bins(): """Test bin specification.""" x, h, w = utils.pmf_hist(a_norm, 20) assert_equal(len(x), 20) def test_ci_to_errsize(): """Test behavior of ci_to_errsize.""" cis = [[.5, .5], [1.25, 1.5]] heights = [1, 1.5] actual_errsize = np.array([[.5, 1], [.25, 0]]) test_errsize = utils.ci_to_errsize(cis, heights) npt.assert_array_equal(actual_errsize, test_errsize) def test_desaturate(): """Test color desaturation.""" out1 = utils.desaturate("red", .5) assert_equal(out1, (.75, .25, .25)) out2 = utils.desaturate("#00FF00", .5) assert_equal(out2, (.25, .75, .25)) out3 = utils.desaturate((0, 0, 1), .5) assert_equal(out3, (.25, .25, .75)) out4 = utils.desaturate("red", .5) assert_equal(out4, (.75, .25, .25)) @raises(ValueError) def test_desaturation_prop(): """Test that pct outside of [0, 1] raises exception.""" utils.desaturate("blue", 50) def test_saturate(): """Test performance of saturation function.""" out = utils.saturate((.75, .25, .25)) assert_equal(out, (1, 0, 0)) def test_iqr(): """Test the IQR function.""" a = np.arange(5) iqr = utils.iqr(a) assert_equal(iqr, 2) class TestSpineUtils(PlotTestCase): sides = ["left", "right", "bottom", "top"] outer_sides = ["top", "right"] inner_sides = ["left", "bottom"] offset = 10 original_position = ("outward", 0) offset_position = ("outward", offset) def test_despine(self): f, ax = plt.subplots() for side in self.sides: nt.assert_true(ax.spines[side].get_visible()) utils.despine() for side in self.outer_sides: nt.assert_true(~ax.spines[side].get_visible()) for side in self.inner_sides: nt.assert_true(ax.spines[side].get_visible()) utils.despine(**dict(zip(self.sides, [True] * 4))) for side in self.sides: nt.assert_true(~ax.spines[side].get_visible()) def test_despine_specific_axes(self): f, (ax1, ax2) = plt.subplots(2, 1) utils.despine(ax=ax2) for side in self.sides: nt.assert_true(ax1.spines[side].get_visible()) for side in self.outer_sides: nt.assert_true(~ax2.spines[side].get_visible()) for side in self.inner_sides: nt.assert_true(ax2.spines[side].get_visible()) def test_despine_with_offset(self): f, ax = plt.subplots() for side in self.sides: nt.assert_equal(ax.spines[side].get_position(), self.original_position) utils.despine(ax=ax, offset=self.offset) for side in self.sides: is_visible = ax.spines[side].get_visible() new_position = ax.spines[side].get_position() if is_visible: nt.assert_equal(new_position, self.offset_position) else: nt.assert_equal(new_position, self.original_position) def test_despine_with_offset_specific_axes(self): f, (ax1, ax2) = plt.subplots(2, 1) utils.despine(offset=self.offset, ax=ax2) for side in self.sides: nt.assert_equal(ax1.spines[side].get_position(), self.original_position) if ax2.spines[side].get_visible(): nt.assert_equal(ax2.spines[side].get_position(), self.offset_position) else: nt.assert_equal(ax2.spines[side].get_position(), self.original_position) def test_despine_trim_spines(self): f, ax = plt.subplots() ax.plot([1, 2, 3], [1, 2, 3]) ax.set_xlim(.75, 3.25) utils.despine(trim=True) for side in self.inner_sides: bounds = ax.spines[side].get_bounds() nt.assert_equal(bounds, (1, 3)) def test_despine_trim_inverted(self): f, ax = plt.subplots() ax.plot([1, 2, 3], [1, 2, 3]) ax.set_ylim(.85, 3.15) ax.invert_yaxis() utils.despine(trim=True) for side in self.inner_sides: bounds = ax.spines[side].get_bounds() nt.assert_equal(bounds, (1, 3)) def test_despine_trim_noticks(self): f, ax = plt.subplots() ax.plot([1, 2, 3], [1, 2, 3]) ax.set_yticks([]) utils.despine(trim=True) nt.assert_equal(ax.get_yticks().size, 0) def test_offset_spines_warns(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", category=UserWarning) f, ax = plt.subplots() utils.offset_spines(offset=self.offset) nt.assert_true('deprecated' in str(w[0].message)) nt.assert_true(issubclass(w[0].category, UserWarning)) def test_offset_spines(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", category=UserWarning) f, ax = plt.subplots() for side in self.sides: nt.assert_equal(ax.spines[side].get_position(), self.original_position) utils.offset_spines(offset=self.offset) for side in self.sides: nt.assert_equal(ax.spines[side].get_position(), self.offset_position) def test_offset_spines_specific_axes(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", category=UserWarning) f, (ax1, ax2) = plt.subplots(2, 1) utils.offset_spines(offset=self.offset, ax=ax2) for side in self.sides: nt.assert_equal(ax1.spines[side].get_position(), self.original_position) nt.assert_equal(ax2.spines[side].get_position(), self.offset_position) def test_ticklabels_overlap(): rcmod.set() f, ax = plt.subplots(figsize=(2, 2)) f.tight_layout() # This gets the Agg renderer working assert not utils.axis_ticklabels_overlap(ax.get_xticklabels()) big_strings = "abcdefgh", "ijklmnop" ax.set_xlim(-.5, 1.5) ax.set_xticks([0, 1]) ax.set_xticklabels(big_strings) assert utils.axis_ticklabels_overlap(ax.get_xticklabels()) x, y = utils.axes_ticklabels_overlap(ax) assert x assert not y def test_categorical_order(): x = ["a", "c", "c", "b", "a", "d"] y = [3, 2, 5, 1, 4] order = ["a", "b", "c", "d"] out = utils.categorical_order(x) nt.assert_equal(out, ["a", "c", "b", "d"]) out = utils.categorical_order(x, order) nt.assert_equal(out, order) out = utils.categorical_order(x, ["b", "a"]) nt.assert_equal(out, ["b", "a"]) out = utils.categorical_order(np.array(x)) nt.assert_equal(out, ["a", "c", "b", "d"]) out = utils.categorical_order(pd.Series(x)) nt.assert_equal(out, ["a", "c", "b", "d"]) out = utils.categorical_order(y) nt.assert_equal(out, [1, 2, 3, 4, 5]) out = utils.categorical_order(np.array(y)) nt.assert_equal(out, [1, 2, 3, 4, 5]) out = utils.categorical_order(pd.Series(y)) nt.assert_equal(out, [1, 2, 3, 4, 5]) if pandas_has_categoricals: x = pd.Categorical(x, order) out = utils.categorical_order(x) nt.assert_equal(out, list(x.categories)) x = pd.Series(x) out = utils.categorical_order(x) nt.assert_equal(out, list(x.cat.categories)) out = utils.categorical_order(x, ["b", "a"]) nt.assert_equal(out, ["b", "a"]) x = ["a", np.nan, "c", "c", "b", "a", "d"] out = utils.categorical_order(x) nt.assert_equal(out, ["a", "c", "b", "d"]) if LooseVersion(pd.__version__) >= "0.15": def check_load_dataset(name): ds = load_dataset(name, cache=False) assert(isinstance(ds, pd.DataFrame)) def check_load_cached_dataset(name): # Test the cacheing using a temporary file. # With Python 3.2+, we could use the tempfile.TemporaryDirectory() # context manager instead of this try...finally statement tmpdir = tempfile.mkdtemp() try: # download and cache ds = load_dataset(name, cache=True, data_home=tmpdir) # use cached version ds2 = load_dataset(name, cache=True, data_home=tmpdir) pdt.assert_frame_equal(ds, ds2) finally: shutil.rmtree(tmpdir) @network(url="https://github.com/mwaskom/seaborn-data") def test_get_dataset_names(): if not BeautifulSoup: raise nose.SkipTest("No BeautifulSoup available for parsing html") names = get_dataset_names() assert(len(names) > 0) assert(u"titanic" in names) @network(url="https://github.com/mwaskom/seaborn-data") def test_load_datasets(): if not BeautifulSoup: raise nose.SkipTest("No BeautifulSoup available for parsing html") # Heavy test to verify that we can load all available datasets for name in get_dataset_names(): # unfortunately @network somehow obscures this generator so it # does not get in effect, so we need to call explicitly # yield check_load_dataset, name check_load_dataset(name) @network(url="https://github.com/mwaskom/seaborn-data") def test_load_cached_datasets(): if not BeautifulSoup: raise nose.SkipTest("No BeautifulSoup available for parsing html") # Heavy test to verify that we can load all available datasets for name in get_dataset_names(): # unfortunately @network somehow obscures this generator so it # does not get in effect, so we need to call explicitly # yield check_load_dataset, name check_load_cached_dataset(name)
bsd-3-clause
Hbl15/ThinkStats2
code/hinc.py
67
1494
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import numpy as np import pandas import thinkplot import thinkstats2 def Clean(s): """Converts dollar amounts to integers.""" try: return int(s.lstrip('$').replace(',', '')) except ValueError: if s == 'Under': return 0 elif s == 'over': return np.inf return None def ReadData(filename='hinc06.csv'): """Reads filename and returns populations in thousands filename: string returns: pandas Series of populations in thousands """ data = pandas.read_csv(filename, header=None, skiprows=9) cols = data[[0, 1]] res = [] for _, row in cols.iterrows(): label, freq = row.values freq = int(freq.replace(',', '')) t = label.split() low, high = Clean(t[0]), Clean(t[-1]) res.append((high, freq)) df = pandas.DataFrame(res) # correct the first range df[0][0] -= 1 # compute the cumulative sum of the freqs df[2] = df[1].cumsum() # normalize the cumulative freqs total = df[2][41] df[3] = df[2] / total # add column names df.columns = ['income', 'freq', 'cumsum', 'ps'] return df def main(): df = ReadData() print(df) if __name__ == "__main__": main()
gpl-3.0
higex/qpath
scripts/wsi_bot_codebook4_l1.py
1
4554
#!/usr/bin/env python2 # Takes a level-0 coding and constructs the level-1 coding, applying the # same B-o-F approach, but on larger neighborhoods and per subtype. from __future__ import print_function import numpy as np import numpy.linalg import glob import argparse as opt from sklearn.cluster import MiniBatchKMeans from util.storage import ModelPersistence from util.explore import sliding_window __version__ = 0.1 __author__ = 'Vlad Popovici' def load_image_l0_codes(img_path, encoding_type, subtype, w): """ Loads the l0-coding for a series of images, apply max-pooling for constructing a local descriptor and saves the results. Args: img_path: string the images are loaded from a path of the form <img_path>/encoded_<encoding_type>_l0/<subtype>/ encoding_type: string see img_path subtype: string see img_path w: int local neighborhood size (w x w), in coordinates of the l0-image Returns: """ # get the IDs for the subtype: sample_paths = glob.glob(img_path + '/encoded_{}_l0/'.format(encoding_type) + subtype + '/*.npz') # print(img_path + '/encoded_{}_l0/'.format(encoding_type) + subtype + '/*.npz') if len(sample_paths) == 0: return None xlist = list() for sp in sample_paths: sid = sp.split('/')[-1].split('_')[0] # print(sp) # print(sid) # read data l0 Xl0 = np.load(sp)['Xl0'] # W x H x K coords_l0 = np.load(sp)['coords'] wsize_l0 = np.load(sp)['wsize'] r, c, k = Xl0.shape # work on l0-image st_r = int(np.floor((r % w) / 2)) st_c = int(np.floor((c % w) / 2)) nr = int(np.floor(r / w)) nc = int(np.floor(c / w)) Xl0_mp = np.zeros((nr, nc, k)) it = sliding_window( (r, c), (w, w), start=(st_r, st_c), step=(w, w) ) for r0, r1, c0, c1 in it: # max-pooling over W x W Xl0_mp[int((r0-st_r)/w), int((c0-st_c)/w), :] = Xl0[r0:r1, c0:c1, :].reshape((w*w, k)).max(axis=0) # save l1-image dst_file = img_path + '/encoded_{}_l1/'.format(encoding_type) + subtype + '/' + sid + '_l1.npz' # print(dst_file) np.savez_compressed(dst_file, Xl0_maxpool=Xl0_mp, coords_l0=coords_l0, coords_l1=np.array([st_r, st_r+nr*w, st_c, st_c+nc*w]), wsize_l0=wsize_l0, wsize_l1=np.array([w])) xlist.append(Xl0_mp.reshape((nr*nc, k))) return xlist def main(): p = opt.ArgumentParser(description=""" Builds an L0-maxpool representation based on a l0 local features and learns an l1 codebook. """) p.add_argument('data_folder', action='store', help='path to a folder containing all the files for the subtypes') p.add_argument('encoding_type', action='store', choices=['sda', 'cnn'], help='specifies the encoding type for the data file (mainly for file name inference') p.add_argument('subtype', action='store', choices=['a','b','c','d','e','outlier'], help='subtype') p.add_argument('codebook_file', action='store', help='resulting l1-codebook model file name') p.add_argument('codebook_size', action='store', help='codebook size', type=int) p.add_argument('-v', '--verbose', action='store_true', help='verbose?') args = p.parse_args() x = load_image_l0_codes(args.data_folder, args.encoding_type, args.subtype, 16) Z = np.vstack(x) rng = np.random.RandomState(123456) vq = MiniBatchKMeans(n_clusters=args.codebook_size, random_state=rng, batch_size=500, compute_labels=True, verbose=False) # vector quantizer vq.fit(Z) # compute the average distance and std.dev. of the points in each cluster: avg_dist = np.zeros(args.codebook_size) sd_dist = np.zeros(args.codebook_size) for k in range(0, args.codebook_size): d = numpy.linalg.norm(Z[vq.labels_ == k, :] - vq.cluster_centers_[k, :], axis=1) avg_dist[k] = d.mean() sd_dist[k] = d.std() with ModelPersistence(args.codebook_file, 'c', format='pickle') as d: d['codebook'] = vq d['avg_dist_to_centroid'] = avg_dist d['stddev_dist_to_centroid'] = sd_dist return 0 if __name__ == '__main__': main()
mit
vshtanko/scikit-learn
sklearn/linear_model/tests/test_base.py
120
10082
# Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import sparse from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.linear_model.base import LinearRegression from sklearn.linear_model.base import center_data, sparse_center_data from sklearn.utils import check_random_state from sklearn.datasets.samples_generator import make_sparse_uncorrelated from sklearn.datasets.samples_generator import make_regression def test_linear_regression(): # Test LinearRegression on a simple dataset. # a simple dataset X = [[1], [2]] Y = [1, 2] clf = LinearRegression() clf.fit(X, Y) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.predict(X), [1, 2]) # test it also for degenerate input X = [[1]] Y = [0] clf = LinearRegression() clf.fit(X, Y) assert_array_almost_equal(clf.coef_, [0]) assert_array_almost_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.predict(X), [0]) def test_fit_intercept(): # Test assertions on betas shape. X2 = np.array([[0.38349978, 0.61650022], [0.58853682, 0.41146318]]) X3 = np.array([[0.27677969, 0.70693172, 0.01628859], [0.08385139, 0.20692515, 0.70922346]]) y = np.array([1, 1]) lr2_without_intercept = LinearRegression(fit_intercept=False).fit(X2, y) lr2_with_intercept = LinearRegression(fit_intercept=True).fit(X2, y) lr3_without_intercept = LinearRegression(fit_intercept=False).fit(X3, y) lr3_with_intercept = LinearRegression(fit_intercept=True).fit(X3, y) assert_equal(lr2_with_intercept.coef_.shape, lr2_without_intercept.coef_.shape) assert_equal(lr3_with_intercept.coef_.shape, lr3_without_intercept.coef_.shape) assert_equal(lr2_without_intercept.coef_.ndim, lr3_without_intercept.coef_.ndim) def test_linear_regression_sparse(random_state=0): "Test that linear regression also works with sparse data" random_state = check_random_state(random_state) for i in range(10): n = 100 X = sparse.eye(n, n) beta = random_state.rand(n) y = X * beta[:, np.newaxis] ols = LinearRegression() ols.fit(X, y.ravel()) assert_array_almost_equal(beta, ols.coef_ + ols.intercept_) assert_array_almost_equal(ols.residues_, 0) def test_linear_regression_multiple_outcome(random_state=0): "Test multiple-outcome linear regressions" X, y = make_regression(random_state=random_state) Y = np.vstack((y, y)).T n_features = X.shape[1] clf = LinearRegression(fit_intercept=True) clf.fit((X), Y) assert_equal(clf.coef_.shape, (2, n_features)) Y_pred = clf.predict(X) clf.fit(X, y) y_pred = clf.predict(X) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3) def test_linear_regression_sparse_multiple_outcome(random_state=0): "Test multiple-outcome linear regressions with sparse data" random_state = check_random_state(random_state) X, y = make_sparse_uncorrelated(random_state=random_state) X = sparse.coo_matrix(X) Y = np.vstack((y, y)).T n_features = X.shape[1] ols = LinearRegression() ols.fit(X, Y) assert_equal(ols.coef_.shape, (2, n_features)) Y_pred = ols.predict(X) ols.fit(X, y.ravel()) y_pred = ols.predict(X) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3) def test_center_data(): n_samples = 200 n_features = 2 rng = check_random_state(0) X = rng.rand(n_samples, n_features) y = rng.rand(n_samples) expected_X_mean = np.mean(X, axis=0) # XXX: currently scaled to variance=n_samples expected_X_std = np.std(X, axis=0) * np.sqrt(X.shape[0]) expected_y_mean = np.mean(y, axis=0) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=False, normalize=False) assert_array_almost_equal(X_mean, np.zeros(n_features)) assert_array_almost_equal(y_mean, 0) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt, X) assert_array_almost_equal(yt, y) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True, normalize=False) assert_array_almost_equal(X_mean, expected_X_mean) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt, X - expected_X_mean) assert_array_almost_equal(yt, y - expected_y_mean) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True, normalize=True) assert_array_almost_equal(X_mean, expected_X_mean) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(X_std, expected_X_std) assert_array_almost_equal(Xt, (X - expected_X_mean) / expected_X_std) assert_array_almost_equal(yt, y - expected_y_mean) def test_center_data_multioutput(): n_samples = 200 n_features = 3 n_outputs = 2 rng = check_random_state(0) X = rng.rand(n_samples, n_features) y = rng.rand(n_samples, n_outputs) expected_y_mean = np.mean(y, axis=0) args = [(center_data, X), (sparse_center_data, sparse.csc_matrix(X))] for center, X in args: _, yt, _, y_mean, _ = center(X, y, fit_intercept=False, normalize=False) assert_array_almost_equal(y_mean, np.zeros(n_outputs)) assert_array_almost_equal(yt, y) _, yt, _, y_mean, _ = center(X, y, fit_intercept=True, normalize=False) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(yt, y - y_mean) _, yt, _, y_mean, _ = center(X, y, fit_intercept=True, normalize=True) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(yt, y - y_mean) def test_center_data_weighted(): n_samples = 200 n_features = 2 rng = check_random_state(0) X = rng.rand(n_samples, n_features) y = rng.rand(n_samples) sample_weight = rng.rand(n_samples) expected_X_mean = np.average(X, axis=0, weights=sample_weight) expected_y_mean = np.average(y, axis=0, weights=sample_weight) # XXX: if normalize=True, should we expect a weighted standard deviation? # Currently not weighted, but calculated with respect to weighted mean # XXX: currently scaled to variance=n_samples expected_X_std = (np.sqrt(X.shape[0]) * np.mean((X - expected_X_mean) ** 2, axis=0) ** .5) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True, normalize=False, sample_weight=sample_weight) assert_array_almost_equal(X_mean, expected_X_mean) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt, X - expected_X_mean) assert_array_almost_equal(yt, y - expected_y_mean) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True, normalize=True, sample_weight=sample_weight) assert_array_almost_equal(X_mean, expected_X_mean) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(X_std, expected_X_std) assert_array_almost_equal(Xt, (X - expected_X_mean) / expected_X_std) assert_array_almost_equal(yt, y - expected_y_mean) def test_sparse_center_data(): n_samples = 200 n_features = 2 rng = check_random_state(0) # random_state not supported yet in sparse.rand X = sparse.rand(n_samples, n_features, density=.5) # , random_state=rng X = X.tolil() y = rng.rand(n_samples) XA = X.toarray() # XXX: currently scaled to variance=n_samples expected_X_std = np.std(XA, axis=0) * np.sqrt(X.shape[0]) Xt, yt, X_mean, y_mean, X_std = sparse_center_data(X, y, fit_intercept=False, normalize=False) assert_array_almost_equal(X_mean, np.zeros(n_features)) assert_array_almost_equal(y_mean, 0) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt.A, XA) assert_array_almost_equal(yt, y) Xt, yt, X_mean, y_mean, X_std = sparse_center_data(X, y, fit_intercept=True, normalize=False) assert_array_almost_equal(X_mean, np.mean(XA, axis=0)) assert_array_almost_equal(y_mean, np.mean(y, axis=0)) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt.A, XA) assert_array_almost_equal(yt, y - np.mean(y, axis=0)) Xt, yt, X_mean, y_mean, X_std = sparse_center_data(X, y, fit_intercept=True, normalize=True) assert_array_almost_equal(X_mean, np.mean(XA, axis=0)) assert_array_almost_equal(y_mean, np.mean(y, axis=0)) assert_array_almost_equal(X_std, expected_X_std) assert_array_almost_equal(Xt.A, XA / expected_X_std) assert_array_almost_equal(yt, y - np.mean(y, axis=0)) def test_csr_sparse_center_data(): # Test output format of sparse_center_data, when input is csr X, y = make_regression() X[X < 2.5] = 0.0 csr = sparse.csr_matrix(X) csr_, y, _, _, _ = sparse_center_data(csr, y, True) assert_equal(csr_.getformat(), 'csr')
bsd-3-clause
frank-tancf/scikit-learn
benchmarks/bench_sample_without_replacement.py
397
8008
""" Benchmarks for sampling without replacement of integer. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import operator import matplotlib.pyplot as plt import numpy as np import random from sklearn.externals.six.moves import xrange from sklearn.utils.random import sample_without_replacement def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_sample(sampling, n_population, n_samples): gc.collect() # start time t_start = datetime.now() sampling(n_population, n_samples) delta = (datetime.now() - t_start) # stop time time = compute_time(t_start, delta) return time if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-population", dest="n_population", default=100000, type=int, help="Size of the population to sample from.") op.add_option("--n-step", dest="n_steps", default=5, type=int, help="Number of step interval between 0 and n_population.") default_algorithms = "custom-tracking-selection,custom-auto," \ "custom-reservoir-sampling,custom-pool,"\ "python-core-sample,numpy-permutation" op.add_option("--algorithm", dest="selected_algorithm", default=default_algorithms, type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. \nAvailable: %default") # op.add_option("--random-seed", # dest="random_seed", default=13, type=int, # help="Seed used by the random number generators.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) selected_algorithm = opts.selected_algorithm.split(',') for key in selected_algorithm: if key not in default_algorithms.split(','): raise ValueError("Unknown sampling algorithm \"%s\" not in (%s)." % (key, default_algorithms)) ########################################################################### # List sampling algorithm ########################################################################### # We assume that sampling algorithm has the following signature: # sample(n_population, n_sample) # sampling_algorithm = {} ########################################################################### # Set Python core input sampling_algorithm["python-core-sample"] = \ lambda n_population, n_sample: \ random.sample(xrange(n_population), n_sample) ########################################################################### # Set custom automatic method selection sampling_algorithm["custom-auto"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="auto", random_state=random_state) ########################################################################### # Set custom tracking based method sampling_algorithm["custom-tracking-selection"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="tracking_selection", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-reservoir-sampling"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="reservoir_sampling", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-pool"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="pool", random_state=random_state) ########################################################################### # Numpy permutation based sampling_algorithm["numpy-permutation"] = \ lambda n_population, n_sample: \ np.random.permutation(n_population)[:n_sample] ########################################################################### # Remove unspecified algorithm sampling_algorithm = dict((key, value) for key, value in sampling_algorithm.items() if key in selected_algorithm) ########################################################################### # Perform benchmark ########################################################################### time = {} n_samples = np.linspace(start=0, stop=opts.n_population, num=opts.n_steps).astype(np.int) ratio = n_samples / opts.n_population print('Benchmarks') print("===========================") for name in sorted(sampling_algorithm): print("Perform benchmarks for %s..." % name, end="") time[name] = np.zeros(shape=(opts.n_steps, opts.n_times)) for step in xrange(opts.n_steps): for it in xrange(opts.n_times): time[name][step, it] = bench_sample(sampling_algorithm[name], opts.n_population, n_samples[step]) print("done") print("Averaging results...", end="") for name in sampling_algorithm: time[name] = np.mean(time[name], axis=1) print("done\n") # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Sampling algorithm performance:") print("===============================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") fig = plt.figure('scikit-learn sample w/o replacement benchmark results') plt.title("n_population = %s, n_times = %s" % (opts.n_population, opts.n_times)) ax = fig.add_subplot(111) for name in sampling_algorithm: ax.plot(ratio, time[name], label=name) ax.set_xlabel('ratio of n_sample / n_population') ax.set_ylabel('Time (s)') ax.legend() # Sort legend labels handles, labels = ax.get_legend_handles_labels() hl = sorted(zip(handles, labels), key=operator.itemgetter(1)) handles2, labels2 = zip(*hl) ax.legend(handles2, labels2, loc=0) plt.show()
bsd-3-clause
SU-ECE-17-7/hotspotter
_graveyard/_broken/MainWindow.py
2
17501
from PyQt4 import QtCore, QtGui from PyQt4.Qt import QObject, pyqtSignal, QFileDialog from MainSkel import Ui_mainSkel import multiprocessing from PyQt4.Qt import QMainWindow, QTableWidgetItem, QMessageBox, \ QAbstractItemView, QWidget, Qt, pyqtSlot, pyqtSignal, \ QStandardItem, QStandardItemModel, QString, QObject from _tpl.other.matplotlibwidget import MatplotlibWidget # http://stackoverflow.com/questions/2312210/window-icon-of-exe-in-pyqt4 #------------------------------------------- def gui_log(fn): 'log what happens in the GUI for debugging' def gui_log_wrapper(hsgui, *args, **kwargs): try: function_name = fn.func_name into_str = 'In hsgui.'+function_name outo_str = 'Out hsgui.'+function_name+'\n' hsgui.logdbgSignal.emit(into_str) ret = fn(hsgui, *args, **kwargs) hsgui.logdbgSignal.emit(outo_str) return ret except Exception as ex: import traceback logmsg('\n\n *!!* HotSpotter GUI Raised Exception: '+str(ex)) logmsg('\n\n *!!* HotSpotter GUI Exception Traceback: \n\n'+traceback.format_exc()) return gui_log_wrapper class EditPrefWidget(QWidget): 'The Settings Pane; Subclass of Main Windows.' def __init__(epw, fac): super( EditPrefWidget, epw ).__init__() epw.pref_skel = Ui_editPrefSkel() epw.pref_skel.setupUi(epw) epw.pref_model = None epw.pref_skel.redrawBUT.clicked.connect(fac.redraw) epw.pref_skel.defaultPrefsBUT.clicked.connect(fac.default_prefs) epw.pref_skel.unloadFeaturesAndModelsBUT.clicked.connect(fac.unload_features_and_models) @pyqtSlot(Pref, name='populatePrefTreeSlot') def populatePrefTreeSlot(epw, pref_struct): 'Populates the Preference Tree Model' logdbg('Bulding Preference Model of: '+repr(pref_struct)) epw.pref_model = pref_struct.createQPreferenceModel() logdbg('Built: '+repr(epw.pref_model)) epw.pref_skel.prefTreeView.setModel(epw.pref_model) epw.pref_skel.prefTreeView.header().resizeSection(0,250) class MainWindow(QtGui.QMainWindow): populateChipTblSignal = pyqtSignal(list, list, list, list) def __init__(self, hs=None): super(HotSpotterMainWindow, self).__init__() self.hs = None self.ui=Ui_mainSkel() self.ui.setupUi(self) self.show() if hs is None: self.connect_api(hs) def connect_api(self, hs): print('[win] connecting api') self.hs = hs hsgui.epw = EditPrefWidget(fac) hsgui.plotWidget = MatplotlibWidget(hsgui.main_skel.centralwidget) hsgui.plotWidget.setObjectName(_fromUtf8('plotWidget')) hsgui.main_skel.root_hlayout.addWidget(hsgui.plotWidget) hsgui.prev_tbl_item = None hsgui.prev_cid = None hsgui.prev_gid = None hsgui.non_modal_qt_handles = [] def connectSignals(hsgui, fac): 'Connects GUI signals to Facade Actions' logdbg('Connecting GUI >> to >> Facade') # Base Signals hsgui.selectCidSignal.connect(fac.selc) hsgui.selectGidSignal.connect(fac.selg) hsgui.renameChipIdSignal.connect(fac.rename_cid) hsgui.changeChipPropSignal.connect(fac.change_chip_prop) hsgui.logdbgSignal.connect(fac.logdbgSlot) # SKEL SIGNALS main_skel = hsgui.main_skel # Widget hsgui.main_skel.fignumSPIN.valueChanged.connect( fac.set_fignum) # File main_skel.actionOpen_Database.triggered.connect( fac.open_db) main_skel.actionSave_Database.triggered.connect( fac.save_db) main_skel.actionImport_Images.triggered.connect( fac.import_images) main_skel.actionQuit.triggered.connect( hsgui.close) # Actions main_skel.actionQuery.triggered.connect( fac.query) main_skel.actionAdd_ROI.triggered.connect( fac.add_chip) main_skel.actionReselect_Orientation.triggered.connect( fac.reselect_orientation) main_skel.actionReselect_ROI.triggered.connect( fac.reselect_roi) main_skel.actionRemove_Chip.triggered.connect( fac.remove_cid) main_skel.actionNext.triggered.connect( fac.select_next) # Options main_skel.actionTogEll.triggered.connect( fac.toggle_ellipse) main_skel.actionTogPts.triggered.connect( fac.toggle_points) main_skel.actionTogPlt.triggered.connect( hsgui.setPlotWidgetVisibleSlot) main_skel.actionPreferences.triggered.connect( hsgui.epw.show ) # Help main_skel.actionView_Documentation.triggered.connect( fac.view_documentation) main_skel.actionHelpCMD.triggered.connect( lambda:hsgui.msgbox('Command Line Help', cmd_help)) main_skel.actionHelpWorkflow.triggered.connect( lambda:hsgui.msgbox('Workflow HOWTO', workflow_help)) main_skel.actionHelpTroubles.triggered.connect( lambda:hsgui.msgbox('Troubleshooting Help', troubles_help)) main_skel.actionWriteLogs.triggered.connect( fac.write_logs) # Convinience main_skel.actionOpen_Source_Directory.triggered.connect( fac.vd) main_skel.actionOpen_Data_Directory.triggered.connect( fac.vdd) main_skel.actionOpen_Internal_Directory.triggered.connect( fac.vdi) main_skel.actionConvertImage2Chip.triggered.connect( fac.convert_all_images_to_chips) main_skel.actionBatch_Change_Name.triggered.connect( fac._quick_and_dirty_batch_rename) main_skel.actionAdd_Metadata_Property.triggered.connect( fac.add_new_prop) main_skel.actionAssign_Matches_Above_Threshold.triggered.connect( fac.match_all_above_thresh) main_skel.actionIncrease_ROI_Size.triggered.connect( fac.expand_rois) # Experiments main_skel.actionMatching_Experiment.triggered.connect( fac.run_matching_experiment) main_skel.actionName_Consistency_Experiment.triggered.connect( fac.run_name_consistency_experiment) # # Gui Components # Tables Widgets main_skel.chip_TBL.itemClicked.connect( hsgui.chipTableClickedSlot) main_skel.chip_TBL.itemChanged.connect( hsgui.chipTableChangedSlot) main_skel.image_TBL.itemClicked.connect( hsgui.imageTableClickedSlot) main_skel.res_TBL.itemChanged.connect( hsgui.resultTableChangedSlot) # Tab Widget # This signal slot setup is very bad. Needs rewrite main_skel.tablesTabWidget.currentChanged.connect( fac.change_view) main_skel.chip_TBL.sortByColumn(0, Qt.AscendingOrder) main_skel.res_TBL.sortByColumn(0, Qt.AscendingOrder) main_skel.image_TBL.sortByColumn(0, Qt.AscendingOrder) @pyqtSlot(name='setPlotWidgetVisible') def setPlotWidgetVisibleSlot(hsgui, bit=None): #None = toggle if hsgui.plotWidget != None: logdbg('Disabling Plot Widget') if bit is None: bit = not hsgui.plotWidget.isVisible() was_visible = hsgui.plotWidget.setVisible(bit) if was_visible != bit: if bit: hsgui.main_skel.fignumSPIN.setValue(0) else: hsgui.main_skel.fignumSPIN.setValue(1) #hsgui.setFignumSignal.emit(int(1 - bit)) # plotwidget fignum = 0 # Internal GUI Functions def populate_tbl_helper(hsgui, tbl, col_headers, col_editable, row_list, row2_data_tup ): #tbl = main_skel.chip_TBL hheader = tbl.horizontalHeader() sort_col = hheader.sortIndicatorSection() sort_ord = hheader.sortIndicatorOrder() tbl.sortByColumn(0, Qt.AscendingOrder) # Basic Sorting prevBlockSignals = tbl.blockSignals(True) tbl.clear() tbl.setColumnCount(len(col_headers)) tbl.setRowCount(len(row_list)) tbl.verticalHeader().hide() tbl.setHorizontalHeaderLabels(col_headers) tbl.setSelectionMode( QAbstractItemView.SingleSelection ) tbl.setSelectionBehavior( QAbstractItemView.SelectRows) tbl.setSortingEnabled(False) for row in iter(row_list): data_tup = row2_data_tup[row] for col, data in enumerate(data_tup): item = QTableWidgetItem() try: int_data = int(data) item.setData(Qt.DisplayRole, int_data) except ValueError: # for strings item.setText(str(data)) except TypeError: #for lists item.setText(str(data)) item.setTextAlignment(Qt.AlignHCenter) if col_editable[col]: item.setFlags(item.flags() | Qt.ItemIsEditable) else: item.setFlags(item.flags() ^ Qt.ItemIsEditable) tbl.setItem(row, col, item) tbl.setSortingEnabled(True) tbl.sortByColumn(sort_col,sort_ord) # Move back to old sorting tbl.show() tbl.blockSignals(prevBlockSignals) @pyqtSlot(dict, name='updateDBStatsSlot') @gui_log def updateDBStatsSlot(hsgui, stats): hsgui.setWindowTitle(stats['title']) def updateSelSpinsSlot(hsgui, cid, gid): hsgui.prev_cid = cid hsgui.prev_gid = gid hsgui.main_skel.sel_cid_SPIN.setValue(cid) hsgui.main_skel.sel_gid_SPIN.setValue(gid) def redrawGuiSlot(hsgui): hsgui.show() if hsgui.plotWidget != None and\ hsgui.plotWidget.isVisible(): hsgui.plotWidget.show() hsgui.plotWidget.draw() def updateStateLabelSlot(hsgui, state): hsgui.main_skel.state_LBL.setText(state) @pyqtSlot(list, list, list, list, name='populateChipTblSlot') def populateChipTblSlot(hsgui, col_headers, col_editable, row_list, row2_data_tup): hsgui.populate_tbl_helper(hsgui.main_skel.chip_TBL, col_headers, col_editable, row_list, row2_data_tup) @pyqtSlot(list, list, list, list, name='populateImageTblSlot') def populateImageTblSlot(hsgui, col_headers, col_editable, row_list, row2_data_tup): hsgui.populate_tbl_helper(hsgui.main_skel.image_TBL, col_headers, col_editable, row_list, row2_data_tup) @pyqtSlot(list, list, list, list, name='populateResultTblSlot') def populateResultTblSlot(hsgui, col_headers, col_editable, row_list, row2_data_tup): hsgui.populate_tbl_helper(hsgui.main_skel.res_TBL, col_headers, col_editable, row_list, row2_data_tup) @gui_log def chipTableChangedSlot(hsgui, item): 'A Chip had a data member changed ' hsgui.logdbgSignal.emit('chip table changed') sel_row = item.row() sel_col = item.column() sel_cid = int(hsgui.main_skel.chip_TBL.item(sel_row,0).text()) new_val = str(item.text()).replace(',',';;') header_lbl = str(hsgui.main_skel.chip_TBL.horizontalHeaderItem(sel_col).text()) hsgui.selectCidSignal.emit(sel_cid) # Rename the chip! if header_lbl == 'Chip Name': hsgui.renameChipIdSignal.emit(new_val, sel_cid) # Change the user property instead else: hsgui.changeChipPropSignal.emit(header_lbl, new_val, sel_cid) @gui_log def resultTableChangedSlot(hsgui, item): 'A Chip was Renamed in Result View' hsgui.logdbgSignal.emit('result table changed') sel_row = item.row() sel_cid = int(hsgui.main_skel.res_TBL.item(sel_row,1).text()) new_name = str(item.text()) hsgui.renameChipIdSignal.emit(new_name, int(sel_cid)) def imageTableClickedSlot(hsgui, item): 'Select Image ID' if item == hsgui.prev_tbl_item: return hsgui.prev_tbl_item = item sel_row = item.row() sel_gid = int(hsgui.main_skel.image_TBL.item(sel_row,0).text()) hsgui.selectGidSignal.emit(sel_gid) def chipTableClickedSlot(hsgui, item): 'Select Chip ID' hsgui.logdbgSignal.emit('chip table clicked') if item == hsgui.prev_tbl_item: return hsgui.prev_tbl_item = item sel_row = item.row() sel_cid = int(hsgui.main_skel.chip_TBL.item(sel_row,0).text()) hsgui.selectCidSignal.emit(sel_cid) def update_image_table(self): uim.populateImageTblSignal.connect( uim.hsgui.populateImageTblSlot ) pass def select_tab(uim, tabname, block_draw=False): logdbg('Selecting the '+tabname+' Tab') if block_draw: prevBlock = uim.hsgui.main_skel.tablesTabWidget.blockSignals(True) tab_index = uim.tab_order.index(tabname) uim.selectTabSignal.emit(tab_index) if block_draw: uim.hsgui.main_skel.tablesTabWidget.blockSignals(prevBlock) def get_gui_figure(uim): 'returns the matplotlib.pyplot.figure' if uim.hsgui != None and uim.hsgui.plotWidget != None: fig = uim.hsgui.plotWidget.figure fig.show = lambda: uim.hsgui.plotWidget.show() #HACKY HACK HACK return fig return None @func_log def redraw_gui(uim): if not uim.hsgui is None and uim.hsgui.isVisible(): uim.redrawGuiSignal.emit() # --- UIManager things that deal with the GUI Through Signals @func_log def populate_chip_table(uim): #tbl = uim.hsgui.main_skel.chip_TBL cm = uim.hs.cm col_headers = ['Chip ID', 'Chip Name', 'Name ID', 'Image ID', 'Other CIDS'] col_editable = [ False , True , False , False , False ] # Add User Properties to headers col_headers += cm.user_props.keys() col_editable += [True for key in cm.user_props.keys()] # Create Data List cx_list = cm.get_valid_cxs() data_list = [None]*len(cx_list) row_list = range(len(cx_list)) for (i,cx) in enumerate(cx_list): # Get Indexing Data cid = cm.cx2_cid[cx] gid = cm.cx2_gid(cx) nid = cm.cx2_nid(cx) # Get Useful Data name = cm.cx2_name(cx) other_cxs_ = setdiff1d(cm.cx2_other_cxs([cx])[0], cx) other_cids = cm.cx2_cid[other_cxs_] # Get User Data cm.user_props.keys() user_data = [cm.user_props[key][cx] for key in cm.user_props.iterkeys()] # Pack data to sent to Qt data_list[i] = (cid, name, nid, gid, other_cids)+tuple(user_data) #(cid, name, nid, gid, other_cids, *user_data) uim.populateChipTblSignal.emit(col_headers, col_editable, row_list, data_list) @func_log def populate_image_table(uim): col_headers = ['Image ID', 'Image Name', 'Chip IDs', 'Chip Names'] col_editable = [ False , False , False , False ] # Populate table with valid image indexes cm, gm = uim.hs.get_managers('cm','gm') gx_list = gm.get_valid_gxs() data_list = [None]*len(gx_list) row_list = range(len(gx_list)) for (i,gx) in enumerate(gx_list): gid = gm.gx2_gid[gx] gname = gm.gx2_gname[gx] cid_list = gm.gx2_cids(gx) name_list = str([cm.cid2_(cid, 'name') for cid in cid_list]) data_list[i] = (gid, gname, cid_list, name_list) uim.populateImageTblSignal.emit(col_headers, col_editable, row_list, data_list) @func_log def populate_result_table(uim): col_headers = ['Rank', 'Chip ID', 'Chip Name', 'score'] col_editable = [False , False , True , False ] # Check to see if results exist res = uim.sel_res if res is None: logdbg('Not populating. selected results are None.') return None logmsg(res) gm, cm, am = uim.hs.get_managers('gm','cm','am') dynargs =\ ('cid', 'name' ) (qcid , qname ) = res.qcid2_(*dynargs) (tcid , tname , tscore ) = res.tcid2_(*dynargs+('score',)) num_results = len(tcid) data_list = [None]*(num_results+1) row_list = range(num_results+1) data_list[0] = [0, qcid, qname, 'Queried Chip'] for (ix, (cid, name, score)) in enumerate(zip(tcid, tname, tscore)): rank = ix+1 data_list[ix+1] = (rank, cid, name, score) uim.populateResultTblSignal.emit(col_headers, col_editable, row_list, data_list) def populate_algo_settings(uim): logdbg('Populating the Preference Tree... Sending Signal') uim.populatePrefTreeSignal.emit(uim.hs.all_pref) def set_fignum(uim, fignum): if uim.hsgui != None: prevBlockSignals = uim.hsgui.main_skel.fignumSPIN.blockSignals(True) uim.setfignumSignal.emit(fignum) uim.hsgui.main_skel.fignumSPIN.blockSignals(prevBlockSignals) if __name__ == '__main__': import sys multiprocessing.freeze_support() def test(): app = QtGui.QApplication(sys.argv) main_win = HotSpotterMainWindow() app.setActiveWindow(main_win) sys.exit(app.exec_()) test()
apache-2.0