repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
decvalts/cartopy
docs/source/sphinxext/plot_directive.py
4
28779
# This file is lifted from the change proposed in # https://github.com/matplotlib/matplotlib/pull/6213. # License: matplotlib BSD-3. """ A directive for including a Matplotlib plot in a Sphinx document. By default, in HTML output, `plot` will include a .png file with a link to a high-res .png and .pdf. In LaTeX output, it will include a .pdf. The source code for the plot may be included in one of three ways: 1. **A path to a source file** as the argument to the directive:: .. plot:: path/to/plot.py When a path to a source file is given, the content of the directive may optionally contain a caption for the plot:: .. plot:: path/to/plot.py This is the caption for the plot Additionally, one may specify the name of a function to call (with no arguments) immediately after importing the module:: .. plot:: path/to/plot.py plot_function1 2. Included as **inline content** to the directive:: .. plot:: import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np img = mpimg.imread('_static/stinkbug.png') imgplot = plt.imshow(img) 3. Using **doctest** syntax:: .. plot:: A plotting example: >>> import matplotlib.pyplot as plt >>> plt.plot([1,2,3], [4,5,6]) Options ------- The ``plot`` directive supports the following options: format : {'python', 'doctest'} Specify the format of the input include-source : bool Whether to display the source code. The default can be changed using the `plot_include_source` variable in conf.py encoding : str If this source file is in a non-UTF8 or non-ASCII encoding, the encoding must be specified using the `:encoding:` option. The encoding will not be inferred using the ``-*- coding -*-`` metacomment. context : bool or str If provided, the code will be run in the context of all previous plot directives for which the `:context:` option was specified. This only applies to inline code plot directives, not those run from files. If the ``:context: reset`` option is specified, the context is reset for this and future plots, and previous figures are closed prior to running the code. ``:context:close-figs`` keeps the context but closes previous figures before running the code. nofigs : bool If specified, the code block will be run, but no figures will be inserted. This is usually useful with the ``:context:`` option. Additionally, this directive supports all of the options of the `image` directive, except for `target` (since plot will add its own target). These include `alt`, `height`, `width`, `scale`, `align` and `class`. Configuration options --------------------- The plot directive has the following configuration options: plot_include_source Default value for the include-source option plot_html_show_source_link Whether to show a link to the source in HTML. plot_pre_code Code that should be executed before each plot. plot_basedir Base directory, to which ``plot::`` file names are relative to. (If None or empty, file names are relative to the directory where the file containing the directive is.) plot_formats File formats to generate. List of tuples or strings:: [(suffix, dpi), suffix, ...] that determine the file format and the DPI. For entries whose DPI was omitted, sensible defaults are chosen. When passing from the command line through sphinx_build the list should be passed as suffix:dpi,suffix:dpi, .... plot_html_show_formats Whether to show links to the files in HTML. plot_rcparams A dictionary containing any non-standard rcParams that should be applied before each plot. plot_apply_rcparams By default, rcParams are applied when `context` option is not used in a plot directive. This configuration option overrides this behavior and applies rcParams before each plot. plot_working_directory By default, the working directory will be changed to the directory of the example, so the code can get at its data files, if any. Also its path will be added to `sys.path` so it can import any helper modules sitting beside it. This configuration option can be used to specify a central directory (also added to `sys.path`) where data files and helper modules for all code are located. plot_template Provide a customized template for preparing restructured text. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange import sys, os, shutil, io, re, textwrap from os.path import relpath import traceback import warnings if not six.PY3: import cStringIO from docutils.parsers.rst import directives from docutils.parsers.rst.directives.images import Image align = Image.align import sphinx sphinx_version = sphinx.__version__.split(".") # The split is necessary for sphinx beta versions where the string is # '6b1' sphinx_version = tuple([int(re.split('[^0-9]', x)[0]) for x in sphinx_version[:2]]) try: # Sphinx depends on either Jinja or Jinja2 import jinja2 def format_template(template, **kw): return jinja2.Template(template).render(**kw) except ImportError: import jinja def format_template(template, **kw): return jinja.from_string(template, **kw) import matplotlib import matplotlib.cbook as cbook try: with warnings.catch_warnings(record=True): warnings.simplefilter("error", UserWarning) matplotlib.use('Agg') except UserWarning: import matplotlib.pyplot as plt plt.switch_backend("Agg") else: import matplotlib.pyplot as plt from matplotlib import _pylab_helpers __version__ = 2 #------------------------------------------------------------------------------ # Registration hook #------------------------------------------------------------------------------ def plot_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): return run(arguments, content, options, state_machine, state, lineno) plot_directive.__doc__ = __doc__ def _option_boolean(arg): if not arg or not arg.strip(): # no argument given, assume used as a flag return True elif arg.strip().lower() in ('no', '0', 'false'): return False elif arg.strip().lower() in ('yes', '1', 'true'): return True else: raise ValueError('"%s" unknown boolean' % arg) def _option_context(arg): if arg in [None, 'reset', 'close-figs']: return arg raise ValueError("argument should be None or 'reset' or 'close-figs'") def _option_format(arg): return directives.choice(arg, ('python', 'doctest')) def _option_align(arg): return directives.choice(arg, ("top", "middle", "bottom", "left", "center", "right")) def mark_plot_labels(app, document): """ To make plots referenceable, we need to move the reference from the "htmlonly" (or "latexonly") node to the actual figure node itself. """ for name, explicit in six.iteritems(document.nametypes): if not explicit: continue labelid = document.nameids[name] if labelid is None: continue node = document.ids[labelid] if node.tagname in ('html_only', 'latex_only'): for n in node: if n.tagname == 'figure': sectname = name for c in n: if c.tagname == 'caption': sectname = c.astext() break node['ids'].remove(labelid) node['names'].remove(name) n['ids'].append(labelid) n['names'].append(name) document.settings.env.labels[name] = \ document.settings.env.docname, labelid, sectname break def setup(app): setup.app = app setup.config = app.config setup.confdir = app.confdir options = {'alt': directives.unchanged, 'height': directives.length_or_unitless, 'width': directives.length_or_percentage_or_unitless, 'scale': directives.nonnegative_int, 'align': _option_align, 'class': directives.class_option, 'include-source': _option_boolean, 'format': _option_format, 'context': _option_context, 'nofigs': directives.flag, 'encoding': directives.encoding } app.add_directive('plot', plot_directive, True, (0, 2, False), **options) app.add_config_value('plot_pre_code', None, True) app.add_config_value('plot_include_source', False, True) app.add_config_value('plot_html_show_source_link', True, True) app.add_config_value('plot_formats', ['png', 'hires.png', 'pdf'], True) app.add_config_value('plot_basedir', None, True) app.add_config_value('plot_html_show_formats', True, True) app.add_config_value('plot_rcparams', {}, True) app.add_config_value('plot_apply_rcparams', False, True) app.add_config_value('plot_working_directory', None, True) app.add_config_value('plot_template', None, True) app.connect(str('doctree-read'), mark_plot_labels) #------------------------------------------------------------------------------ # Doctest handling #------------------------------------------------------------------------------ def contains_doctest(text): try: # check if it's valid Python as-is compile(text, '<string>', 'exec') return False except SyntaxError: pass r = re.compile(r'^\s*>>>', re.M) m = r.search(text) return bool(m) def unescape_doctest(text): """ Extract code from a piece of text, which contains either Python code or doctests. """ if not contains_doctest(text): return text code = "" for line in text.split("\n"): m = re.match(r'^\s*(>>>|\.\.\.) (.*)$', line) if m: code += m.group(2) + "\n" elif line.strip(): code += "# " + line.strip() + "\n" else: code += "\n" return code def split_code_at_show(text): """ Split code at plt.show() """ parts = [] is_doctest = contains_doctest(text) part = [] for line in text.split("\n"): if (not is_doctest and line.strip() == 'plt.show()') or \ (is_doctest and line.strip() == '>>> plt.show()'): part.append(line) parts.append("\n".join(part)) part = [] else: part.append(line) if "\n".join(part).strip(): parts.append("\n".join(part)) return parts def remove_coding(text): """ Remove the coding comment, which six.exec_ doesn't like. """ sub_re = re.compile("^#\s*-\*-\s*coding:\s*.*-\*-$", flags=re.MULTILINE) return sub_re.sub("", text) #------------------------------------------------------------------------------ # Template #------------------------------------------------------------------------------ TEMPLATE = """ {{ source_code }} {{ only_html }} {% if source_link or (html_show_formats and not multi_image) %} ( {%- if source_link -%} `Source code <{{ source_link }}>`__ {%- endif -%} {%- if html_show_formats and not multi_image -%} {%- for img in images -%} {%- for fmt in img.formats -%} {%- if source_link or not loop.first -%}, {% endif -%} `{{ fmt }} <{{ dest_dir }}/{{ img.basename }}.{{ fmt }}>`__ {%- endfor -%} {%- endfor -%} {%- endif -%} ) {% endif %} {% for img in images %} .. figure:: {{ build_dir }}/{{ img.basename }}.png {% for option in options -%} {{ option }} {% endfor %} {% if html_show_formats and multi_image -%} ( {%- for fmt in img.formats -%} {%- if not loop.first -%}, {% endif -%} `{{ fmt }} <{{ dest_dir }}/{{ img.basename }}.{{ fmt }}>`__ {%- endfor -%} ) {%- endif -%} {{ caption }} {% endfor %} {{ only_latex }} {% for img in images %} {% if 'pdf' in img.formats -%} .. image:: {{ build_dir }}/{{ img.basename }}.pdf {% endif -%} {% endfor %} {{ only_texinfo }} {% for img in images %} .. image:: {{ build_dir }}/{{ img.basename }}.png {% for option in options -%} {{ option }} {% endfor %} {% endfor %} """ exception_template = """ .. htmlonly:: [`source code <%(linkdir)s/%(basename)s.py>`__] Exception occurred rendering plot. """ # the context of the plot for all directives specified with the # :context: option plot_context = dict() class ImageFile(object): def __init__(self, basename, dirname): self.basename = basename self.dirname = dirname self.formats = [] def filename(self, format): return os.path.join(self.dirname, "%s.%s" % (self.basename, format)) def filenames(self): return [self.filename(fmt) for fmt in self.formats] def out_of_date(original, derived): """ Return True if derivative is out-of-date wrt original, both of which are full file paths. """ return (not os.path.exists(derived) or (os.path.exists(original) and os.stat(derived).st_mtime < os.stat(original).st_mtime)) class PlotError(RuntimeError): pass def run_code(code, code_path, ns=None, function_name=None): """ Import a Python module from a path, and run the function given by name, if function_name is not None. """ # Change the working directory to the directory of the example, so # it can get at its data files, if any. Add its path to sys.path # so it can import any helper modules sitting beside it. if six.PY2: pwd = os.getcwdu() else: pwd = os.getcwd() old_sys_path = list(sys.path) if setup.config.plot_working_directory is not None: try: os.chdir(setup.config.plot_working_directory) except OSError as err: raise OSError(str(err) + '\n`plot_working_directory` option in' 'Sphinx configuration file must be a valid ' 'directory path') except TypeError as err: raise TypeError(str(err) + '\n`plot_working_directory` option in ' 'Sphinx configuration file must be a string or ' 'None') sys.path.insert(0, setup.config.plot_working_directory) elif code_path is not None: dirname = os.path.abspath(os.path.dirname(code_path)) os.chdir(dirname) sys.path.insert(0, dirname) # Reset sys.argv old_sys_argv = sys.argv sys.argv = [code_path] # Redirect stdout stdout = sys.stdout if six.PY3: sys.stdout = io.StringIO() else: sys.stdout = cStringIO.StringIO() # Assign a do-nothing print function to the namespace. There # doesn't seem to be any other way to provide a way to (not) print # that works correctly across Python 2 and 3. def _dummy_print(*arg, **kwarg): pass try: try: code = unescape_doctest(code) if ns is None: ns = {} if not ns: if setup.config.plot_pre_code is None: six.exec_(six.text_type("import numpy as np\n" + "from matplotlib import pyplot as plt\n"), ns) else: six.exec_(six.text_type(setup.config.plot_pre_code), ns) ns['print'] = _dummy_print if "__main__" in code: six.exec_("__name__ = '__main__'", ns) code = remove_coding(code) six.exec_(code, ns) if function_name is not None: six.exec_(function_name + "()", ns) except (Exception, SystemExit) as err: raise PlotError(traceback.format_exc()) finally: os.chdir(pwd) sys.argv = old_sys_argv sys.path[:] = old_sys_path sys.stdout = stdout return ns def clear_state(plot_rcparams, close=True): if close: plt.close('all') matplotlib.rc_file_defaults() matplotlib.rcParams.update(plot_rcparams) def render_figures(code, code_path, output_dir, output_base, context, function_name, config, context_reset=False, close_figs=False): """ Run a pyplot script and save the low and high res PNGs and a PDF in *output_dir*. Save the images under *output_dir* with file names derived from *output_base* """ # -- Parse format list default_dpi = {'png': 80, 'hires.png': 200, 'pdf': 200} formats = [] plot_formats = config.plot_formats if isinstance(plot_formats, six.string_types): # String Sphinx < 1.3, Split on , to mimic # Sphinx 1.3 and later. Sphinx 1.3 always # returns a list. plot_formats = plot_formats.split(',') for fmt in plot_formats: if isinstance(fmt, six.string_types): if ':' in fmt: suffix,dpi = fmt.split(':') formats.append((str(suffix), int(dpi))) else: formats.append((fmt, default_dpi.get(fmt, 80))) elif type(fmt) in (tuple, list) and len(fmt)==2: formats.append((str(fmt[0]), int(fmt[1]))) else: raise PlotError('invalid image format "%r" in plot_formats' % fmt) # -- Try to determine if all images already exist code_pieces = split_code_at_show(code) # Look for single-figure output files first all_exists = True img = ImageFile(output_base, output_dir) for format, dpi in formats: if out_of_date(code_path, img.filename(format)): all_exists = False break img.formats.append(format) if all_exists: return [(code, [img])] # Then look for multi-figure output files results = [] all_exists = True n_shows = -1 for code_piece in code_pieces: if len(code_pieces) > 1: if 'plt.show()' in code_piece: n_shows += 1 else: # We don't want to inspect whether an image exists for a code # piece without a show. continue images = [] for j in xrange(1000): if len(code_pieces) > 1: img = ImageFile('%s_%02d_%02d' % (output_base, n_shows, j), output_dir) else: img = ImageFile('%s_%02d' % (output_base, j), output_dir) for format, dpi in formats: if out_of_date(code_path, img.filename(format)): all_exists = False break img.formats.append(format) # assume that if we have one, we have them all if not all_exists: all_exists = (j > 0) break images.append(img) if not all_exists: break results.append((code_piece, images)) if all_exists: return results # We didn't find the files, so build them results = [] if context: ns = plot_context else: ns = {} if context_reset: clear_state(config.plot_rcparams) plot_context.clear() close_figs = not context or close_figs n_shows = -1 for code_piece in code_pieces: if len(code_pieces) > 1 and 'plt.show()' in code_piece: n_shows += 1 if not context or config.plot_apply_rcparams: clear_state(config.plot_rcparams, close_figs) elif close_figs: plt.close('all') run_code(code_piece, code_path, ns, function_name) images = [] fig_managers = _pylab_helpers.Gcf.get_all_fig_managers() for j, figman in enumerate(fig_managers): if len(fig_managers) == 1 and len(code_pieces) == 1: img = ImageFile(output_base, output_dir) elif len(code_pieces) == 1: img = ImageFile("%s_%02d" % (output_base, j), output_dir) else: img = ImageFile("%s_%02d_%02d" % (output_base, n_shows, j), output_dir) images.append(img) for format, dpi in formats: try: figman.canvas.figure.savefig(img.filename(format), dpi=dpi) except Exception as err: raise PlotError(traceback.format_exc()) img.formats.append(format) results.append((code_piece, images)) if not context or config.plot_apply_rcparams: clear_state(config.plot_rcparams, close=not context) return results def run(arguments, content, options, state_machine, state, lineno): # The user may provide a filename *or* Python code content, but not both if arguments and content: raise RuntimeError("plot:: directive can't have both args and content") document = state_machine.document config = document.settings.env.config nofigs = 'nofigs' in options options.setdefault('include-source', config.plot_include_source) keep_context = 'context' in options context_opt = None if not keep_context else options['context'] rst_file = document.attributes['source'] rst_dir = os.path.dirname(rst_file) if len(arguments): if not config.plot_basedir: source_file_name = os.path.join(setup.app.builder.srcdir, directives.uri(arguments[0])) else: source_file_name = os.path.join(setup.confdir, config.plot_basedir, directives.uri(arguments[0])) # If there is content, it will be passed as a caption. caption = '\n'.join(content) # If the optional function name is provided, use it if len(arguments) == 2: function_name = arguments[1] else: function_name = None with io.open(source_file_name, 'r', encoding='utf-8') as fd: code = fd.read() output_base = os.path.basename(source_file_name) else: source_file_name = rst_file code = textwrap.dedent("\n".join(map(str, content))) counter = document.attributes.get('_plot_counter', 0) + 1 document.attributes['_plot_counter'] = counter base, ext = os.path.splitext(os.path.basename(source_file_name)) output_base = '%s-%d.py' % (base, counter) function_name = None caption = '' base, source_ext = os.path.splitext(output_base) if source_ext in ('.py', '.rst', '.txt'): output_base = base else: source_ext = '' # ensure that LaTeX includegraphics doesn't choke in foo.bar.pdf filenames output_base = output_base.replace('.', '-') # is it in doctest format? is_doctest = contains_doctest(code) if 'format' in options: if options['format'] == 'python': is_doctest = False else: is_doctest = True # determine output directory name fragment source_rel_name = relpath(source_file_name, setup.confdir) source_rel_dir = os.path.dirname(source_rel_name) while source_rel_dir.startswith(os.path.sep): source_rel_dir = source_rel_dir[1:] # build_dir: where to place output files (temporarily) build_dir = os.path.join(os.path.dirname(setup.app.doctreedir), 'plot_directive', source_rel_dir) # get rid of .. in paths, also changes pathsep # see note in Python docs for warning about symbolic links on Windows. # need to compare source and dest paths at end build_dir = os.path.normpath(build_dir) if not os.path.exists(build_dir): os.makedirs(build_dir) # output_dir: final location in the builder's directory dest_dir = os.path.abspath(os.path.join(setup.app.builder.outdir, source_rel_dir)) if not os.path.exists(dest_dir): os.makedirs(dest_dir) # no problem here for me, but just use built-ins # how to link to files from the RST file dest_dir_link = os.path.join(relpath(setup.confdir, rst_dir), source_rel_dir).replace(os.path.sep, '/') try: build_dir_link = relpath(build_dir, rst_dir).replace(os.path.sep, '/') except ValueError: # on Windows, relpath raises ValueError when path and start are on # different mounts/drives build_dir_link = build_dir source_link = dest_dir_link + '/' + output_base + source_ext # make figures try: results = render_figures(code, source_file_name, build_dir, output_base, keep_context, function_name, config, context_reset=context_opt == 'reset', close_figs=context_opt == 'close-figs') errors = [] except PlotError as err: reporter = state.memo.reporter sm = reporter.system_message( 2, "Exception occurred in plotting %s\n from %s:\n%s" % (output_base, source_file_name, err), line=lineno) results = [(code, [])] errors = [sm] # Properly indent the caption caption = '\n'.join(' ' + line.strip() for line in caption.split('\n')) # generate output restructuredtext total_lines = [] for j, (code_piece, images) in enumerate(results): if options['include-source']: if is_doctest: lines = [''] lines += [row.rstrip() for row in code_piece.split('\n')] else: lines = ['.. code-block:: python', ''] lines += [' %s' % row.rstrip() for row in code_piece.split('\n')] source_code = "\n".join(lines) else: source_code = "" if nofigs: images = [] opts = [':%s: %s' % (key, val) for key, val in six.iteritems(options) if key in ('alt', 'height', 'width', 'scale', 'align', 'class')] only_html = ".. only:: html" only_latex = ".. only:: latex" only_texinfo = ".. only:: texinfo" # Not-None src_link signals the need for a source link in the generated # html if j == 0 and config.plot_html_show_source_link: src_link = source_link else: src_link = None result = format_template( config.plot_template or TEMPLATE, dest_dir=dest_dir_link, build_dir=build_dir_link, source_link=src_link, multi_image=len(images) > 1, only_html=only_html, only_latex=only_latex, only_texinfo=only_texinfo, options=opts, images=images, source_code=source_code, html_show_formats=config.plot_html_show_formats and not nofigs, caption=caption) total_lines.extend(result.split("\n")) total_lines.extend("\n") if total_lines: state_machine.insert_input(total_lines, source=source_file_name) # copy image files to builder's output directory, if necessary if not os.path.exists(dest_dir): cbook.mkdirs(dest_dir) for code_piece, images in results: for img in images: for fn in img.filenames(): destimg = os.path.join(dest_dir, os.path.basename(fn)) if fn != destimg: shutil.copyfile(fn, destimg) # copy script (if necessary) target_name = os.path.join(dest_dir, output_base + source_ext) with io.open(target_name, 'w', encoding="utf-8") as f: if source_file_name == rst_file: code_escaped = unescape_doctest(code) else: code_escaped = code f.write(code_escaped) return errors
gpl-3.0
WolfBerwouts/opengrid
opengrid/library/houseprint/site.py
2
3909
__author__ = 'Jan Pecinovsky' import pandas as pd """ A Site is a physical entity (a house, appartment, school, or other building). It may contain multiple devices and sensors. The Site contains most of the metadata, eg. the number of inhabitants, the size of the building, the location etc. """ class Site(object): def __init__(self, hp=None, key=None, size=None, inhabitants=None, postcode=None, construction_year=None, k_level=None, e_level=None, epc_cert=None, tmpos=None): self.hp = hp # backref to parent self.key = key self.size = size self.inhabitants = inhabitants self.postcode = postcode self.construction_year = construction_year self.k_level = k_level self.e_level = e_level self.epc_cert = epc_cert self.devices = [] self._tmpos = tmpos @property def tmpos(self): if self._tmpos is not None: return self._tmpos elif self.hp.tmpos is not None: return self.hp.tmpos else: raise AttributeError('TMPO session not defined') @property def sensors(self): s = [] for device in self.devices: for sensor in device.sensors: s.append(sensor) return s def __repr__(self): return """ Site Key: {} {} devices {} sensors """.format(self.key, len(self.devices), len(self.sensors) ) def get_sensors(self, sensortype = None): """ Return a list with all sensors in this site Parameters ---------- sensortype: gas, water, electricity: optional Returns ------- list of Sensors """ return [sensor for sensor in self.sensors if sensor.type == sensortype or sensortype is None] def get_data(self, sensortype=None, head=None, tail=None, diff='default', resample='min', unit='default'): """ Return a Pandas Dataframe with the joined data for all sensors in this device Parameters ---------- sensors : list of Sensor objects If None, use sensortype to make a selection sensortype : string (optional) gas, water, electricity. If None, and Sensors = None, all available sensors in the houseprint are fetched head, tail: timestamps, diff : bool or 'default' If True, the original data will be differentiated If 'default', the sensor will decide: if it has the attribute cumulative==True, the data will be differentiated. resample : str (default='min') Sampling rate, if any. Use 'raw' if no resampling. unit : str , default='default' String representation of the target unit, eg m**3/h, kW, ... Returns ------- Pandas DataFrame """ sensors = self.get_sensors(sensortype) series = [sensor.get_data(head=head, tail=tail, diff=diff, resample=resample, unit=unit) for sensor in sensors] # workaround for https://github.com/pandas-dev/pandas/issues/12985 series = [s for s in series if not s.empty] if series: df = pd.concat(series, axis=1) else: df = pd.DataFrame() # Add unit as string to each series in the df. This is not persistent: the attribute unit will get # lost when doing operations with df, but at least it can be checked once. for s in series: try: df[s.name].unit = s.unit except: pass return df def add_device(self, device): """ Parameters ---------- device : Device """ device.site = self self.devices.append(device)
apache-2.0
oaklandanalytics/cutting_board
scripts/shared.py
1
2826
import pandas as pd import numpy as np import geopandas as gpd from shapely import wkt # someday this will be in geopandas # setting the crs shouldn't be in here, but all my cases use it def read_geocsv(*args, **kwargs): df = pd.read_csv(*args, **kwargs) df["geometry"] = [wkt.loads(s) for s in df["geometry"]] gdf = gpd.GeoDataFrame(df) gdf.crs = {'init': 'epsg:4326'} return gdf gpd.read_geocsv = read_geocsv # make a link to look at google maps at a lat-lng def feature_to_maps_link(row): centroid = row.centroid return "http://www.google.com/maps/place/%f,%f" % (centroid.y, centroid.x) # geopandas plot two layers in relation to each other def two_layer_map(top_layer, bottom_layer, column=None): ax = bottom_layer.plot(figsize=(10, 8), column=column, legend=(column is not None)) return top_layer.plot(ax=ax, color='pink', alpha=0.5, edgecolor="black") # we're in 4326, so we need to convert the crs to meters and return the area def compute_area(gdf): gdf.crs = {'init': 'epsg:4326'} return gdf.to_crs(epsg=3395).area # compute the percent area contained in this shape from the shapes in the df def compute_pct_area(df, total_area): df["calc_area"] = compute_area(df).values df["pct_area"] = df["calc_area"] / total_area return df # returns true when shape1 is more than 50% overlapping shape2 def more_than_half_inside(shape1, shape2): overlap = gpd.overlay( gpd.GeoDataFrame([shape1]), gpd.GeoDataFrame([shape2]), how="intersection") if len(overlap) == 0: return False overlap_area = compute_area(overlap).values[0] poly1_area = compute_area(gpd.GeoDataFrame([shape1])).values[0] return overlap_area / poly1_area > .5 def compute_overlap_areas(overlaps, overlapees): ''' After a spatial join is done, this computes the actual area of the overlap. overlaps is the result of the spatial join (which contains geometry for the overlaper) overlapees is the geometry of the right side of the join the "index_right" column of overlaps should be the index of overlapees ''' total_overlaps = len(overlaps) cnt = 0 overlap_area = [] for index, overlap in overlaps.iterrows(): overlapee = overlapees.loc[overlap.index_right] try: overlap_poly = gpd.overlay( gpd.GeoDataFrame([overlap]), gpd.GeoDataFrame([overlapee]), how="intersection") except: overlap_area.append(np.nan) print("Failed:", index) continue if len(overlap_poly) == 0: overlap_area.append(0) continue overlap_area.append(compute_area(overlap_poly).values[0]) return pd.Series(overlap_area, index=overlaps.index)
bsd-3-clause
ChengeLi/VehicleTracking
foreground_blob.py
1
6824
# find blobs in the incPCP foreground mask and code different blobs using different colors import os import sys import cv2 import pdb import pickle import numpy as np import glob as glob import matplotlib.pyplot as plt from scipy.sparse import csr_matrix import h5py import scipy.ndimage as ndimg from scipy.io import loadmat from DataPathclass import * DataPathobj = DataPath(dataSource,VideoIndex) from parameterClass import * Parameterobj = parameter(dataSource,VideoIndex) def blobImg2blobmatrix(maskgray): # maskgray = cv2.cvtColor(mask,cv2.COLOR_BGR2GRAY) # ret,thresholded = cv2.threshold(maskgray,127,255,0) (blobLabelMatrix, numFgPixel) = ndimg.measurements.label(maskgray) # BlobCenters = np.array(ndimg.measurements.center_of_mass(thresholded,blobLabelMatrix,range(1,numFgPixel+1))) BlobCenters = np.array(ndimg.measurements.center_of_mass(maskgray,blobLabelMatrix,range(1,numFgPixel+1))) # blobCenter_X_Matrix = np.zeros_like(blobLabelMatrix) # blobCenter_Y_Matrix = np.zeros_like(blobLabelMatrix) # for ii in range(numFgPixel): # blobCenter_X_Matrix[blobCenterMatrix==ii]=BlobCenters[ii][0]; # blobCenter_Y_Matrix[blobCenterMatrix==ii]=BlobCenters[ii][1]; # pdb.set_trace() return blobLabelMatrix, BlobCenters def readData(userPCA): if userPCA: maskfiles = sorted(glob.glob(DataPathobj.blobPath + '*.mat')) if len(glob.glob(DataPathobj.blobPath + '*.p'))==2*len(glob.glob(DataPathobj.blobPath + '*.mat')): print "already processed" return None, None else: maskfiles = sorted(glob.glob(DataPathobj.blobPath + '*running_bgsub_mask_tensor*.p')) """===============================================================================""" """change the offset!!""" """===============================================================================""" offset = 0 maskfiles = maskfiles[offset:] return maskfiles,offset def readVideo(cap,subSampRate): """bug in cap.set, not accurate""" # cap.set ( cv2.cv.CV_CAP_PROP_POS_FRAMES , max(0,position)) # status, frame = cap.read() status, frame = cap.read() for ii in range(subSampRate-1): status, frameskip = cap.read() return frame if __name__ == '__main__': userPCA = True maskfiles, offset = readData(userPCA) if maskfiles is None and offset is None: print 'exit!!!' sys.exit() """this frame count is not the same with what Matlab detected! bug in opencv""" # nframe = np.int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT)) # fps = int(np.round(DataPathobj.cap.get(cv2.cv.CV_CAP_PROP_FPS))) # assert fps==30, "fps=%d" %fps fps = 30 existingFiles = sorted(glob.glob(DataPathobj.blobPath+'*.p')) existingFileNames = [] for jj in range(len(existingFiles)): existingFileNames.append(int(existingFiles[jj][-5:-2])) # for matidx, matfile in enumerate(maskfiles): for matidx in range(len(maskfiles)): if matidx in existingFileNames: print "alredy processed ", str(matidx) continue matfile = maskfiles[matidx] if userPCA: # try: #for matfile <-v7.3 # mask_tensor = loadmat(matfile) # except: #for matfile -v7.3 h5pymatfile = h5py.File(matfile,'r').items()[0] # variableName = h5pymatfile[0] variableData = h5pymatfile[1] mask_tensor = variableData.value else: mask_tensor_sparse = pickle.load(open(matfile,'rb')) mask_tensor = [] for ii in range(len(mask_tensor_sparse)): mask_tensor.append(csr_matrix(mask_tensor_sparse[ii]).toarray()) mask_tensor = np.array(mask_tensor) print 'mask_tensor.shape',mask_tensor.shape trunclen = Parameterobj.trunclen subSampRate = int(fps/Parameterobj.targetFPS) subSampRate_matlab = int(30/Parameterobj.targetFPS) ##IT'S JUST 6 blobLabelMtxList = [] blobCenterList = [] Nrows = DataPathobj.cap.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT) Ncols = DataPathobj.cap.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH) """in the incPCP code, mask file is saved as a mtx with width=fps/5*600""" # MaskMatfileShape=int((fps/5)*trunclen) MaskMatfileShape=int((30/5)*trunclen) frame_idx = 0 global_frame_idx = int(mask_tensor.shape[0]*(offset+matidx)+frame_idx*subSampRate_matlab) while frame_idx*subSampRate_matlab <mask_tensor.shape[0]: print "frame_idx: ", frame_idx print "global_frame_idx: ", global_frame_idx # ori_img = cv2.imread(ori_list[(fkltrame_idx*subSampRate)/choice_Interval]) # mask = cv2.imread(mask_list[(frame_idx*subSampRate)/choice_Interval]) if userPCA: ImgSlice = (mask_tensor[frame_idx*subSampRate_matlab,:].reshape((Ncols,Nrows))).transpose() #Careful!! Warning! It's transposed! else: ImgSlice = mask_tensor[frame_idx*subSampRate_matlab,:].reshape((Nrows,Ncols)) maskgray = ImgSlice # """see the foreground blob image""" # plt.imshow(np.uint8(ImgSlice),cmap = 'gray') # plt.draw() # plt.pause(0.0001) """visualization""" # frame = readVideo(DataPathobj.cap,subSampRate) # frame2 = frame # # # frame2[:,:,1] = frame[:,:,1]+(maskgray*100) # # # foreground = (np.array(frame2[:,:,1])*[np.array(maskgray==1)])[0,:,:] # maskedFrame = (frame[:,:,1]*maskgray) # maskedFrame[maskedFrame!=0]=255 # maskedFrame_inv = frame[:,:,1]*(1-maskgray) # frame2[:,:,1] = maskedFrame+maskedFrame_inv # # cv2.imwrite(DataPathobj.blobPath +str(frame_idx*subSampRate+subSampRate*trunclen*matidx).zfill(7)+'.jpg',frame2) # # cv2.imshow('frame2', frame2) # # cv2.waitKey(0) # plt.imshow(frame2[:,:,::-1]) # plt.draw() # plt.pause(0.001) """use ndimage.measurements""" blobLabelMatrix, BlobCenters = blobImg2blobmatrix(maskgray) sparse_slice = csr_matrix(blobLabelMatrix) blobLabelMtxList.append(sparse_slice) blobCenterList.append(BlobCenters) frame_idx = frame_idx+1 global_frame_idx = int(mask_tensor.shape[0]*(offset+matidx)+frame_idx*subSampRate) #end of while loop # if global_frame_idx<1800: # continue if ((frame_idx>0) and (np.mod(frame_idx,trunclen)==0)) or (frame_idx*subSampRate_matlab>=mask_tensor.shape[0]): print "Save the blob index tensor into a pickle file:" # savename = os.path.join(DataPathobj.blobPath,'blobLabelList'+str(matidx+1+offset).zfill(3)+'.p') # index = global_frame_idx/(trunclen*subSampRate) index = offset+matidx print 'index',index savename = os.path.join(DataPathobj.blobPath,'blobLabelList'+str(index).zfill(3)+'.p') pickle.dump(blobLabelMtxList, open( savename, "wb" )) blobLabelMtxList = [] print "Save the blob centers..." # savename = os.path.join(DataPathobj.blobPath,'blobCenterList'+str(matidx+1+offset).zfill(3)+'.p') savename = os.path.join(DataPathobj.blobPath,'blobCenterList'+str(index).zfill(3)+'.p') pickle.dump(blobCenterList, open( savename, "wb" )) blobCenterList = [] """directly dumping to pickle not allowed, memory error! """
mit
artmusic0/theano-learning.part02
Myfile_run-py_releasev5_SFMAKE/run_v5.0_predict.py
7
2332
# -*- coding: utf-8 -*- """ Created on Mon Dec 28 02:31:03 2015 @author: winpython """ import os import sys, getopt import time import numpy as np from cnn_training_computation import fit, predict import pickle, cPickle from matplotlib.pyplot import imshow import matplotlib.pyplot as plt from PIL import Image def run(): print '... loading data' test_set = np.zeros((200,147456),dtype=np.float32) pil_im = Image.open( "P_20160109_190757.jpg" ).convert('L') pil_im = pil_im.resize((512, 288), Image.BILINEAR ) pil_im = np.array(pil_im) fig = plt.figure() plotwindow = fig.add_subplot() plt.imshow(pil_im, cmap='gray') plt.show() note = 0 for j in range(288): for k in range(512): test_set[0][note]= ((255 - pil_im[j][k])/225.) note += 1 """ # read the data, labels data = np.genfromtxt("data/mnist_train.data") print ". .", test_data = np.genfromtxt("data/mnist_test.data") print ". .", valid_data = np.genfromtxt("data/mnist_valid.data") labels = np.genfromtxt("data/mnist_train.solution") """ print ". . finished reading" """ # DO argmax labels = np.argmax(labels, axis=1) print labels # normalization amean = np.mean(data) data = data - amean astd = np.std(data) data = data / astd # normalise using coefficients from training data test_data = (test_data - amean) / astd valid_data = (valid_data - amean) / astd """ #fit(data, labels) print "開始預測..." rv = predict(test_set) # UNDO argmax and save results x 2 r = rv N = len(r) res = np.zeros((N, 20)) for i in range(N): res[i][r[i]] = 1 print "==================================================================" print " " print " " print "predict Tag : [ 0 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 19 ]" print " " print " ---------------------------------------------------- " print " " print "predict Value:", print res[0] print res[1] print " " print " " print "==================================================================" #np.savetxt("test.predict", res, fmt='%i') print "finished predicting." if __name__ == '__main__': run()
gpl-3.0
adazey/Muzez
libs/nltk/tbl/demo.py
1
15081
# -*- coding: utf-8 -*- # Natural Language Toolkit: Transformation-based learning # # Copyright (C) 2001-2016 NLTK Project # Author: Marcus Uneson <[email protected]> # based on previous (nltk2) version by # Christopher Maloof, Edward Loper, Steven Bird # URL: <http://nltk.org/> # For license information, see LICENSE.TXT from __future__ import print_function, absolute_import, division import os import pickle import random import time from nltk.corpus import treebank from nltk.tbl import error_list, Template from nltk.tag.brill import Word, Pos from nltk.tag import BrillTaggerTrainer, RegexpTagger, UnigramTagger def demo(): """ Run a demo with defaults. See source comments for details, or docstrings of any of the more specific demo_* functions. """ postag() def demo_repr_rule_format(): """ Exemplify repr(Rule) (see also str(Rule) and Rule.format("verbose")) """ postag(ruleformat="repr") def demo_str_rule_format(): """ Exemplify repr(Rule) (see also str(Rule) and Rule.format("verbose")) """ postag(ruleformat="str") def demo_verbose_rule_format(): """ Exemplify Rule.format("verbose") """ postag(ruleformat="verbose") def demo_multiposition_feature(): """ The feature/s of a template takes a list of positions relative to the current word where the feature should be looked for, conceptually joined by logical OR. For instance, Pos([-1, 1]), given a value V, will hold whenever V is found one step to the left and/or one step to the right. For contiguous ranges, a 2-arg form giving inclusive end points can also be used: Pos(-3, -1) is the same as the arg below. """ postag(templates=[Template(Pos([-3,-2,-1]))]) def demo_multifeature_template(): """ Templates can have more than a single feature. """ postag(templates=[Template(Word([0]), Pos([-2,-1]))]) def demo_template_statistics(): """ Show aggregate statistics per template. Little used templates are candidates for deletion, much used templates may possibly be refined. Deleting unused templates is mostly about saving time and/or space: training is basically O(T) in the number of templates T (also in terms of memory usage, which often will be the limiting factor). """ postag(incremental_stats=True, template_stats=True) def demo_generated_templates(): """ Template.expand and Feature.expand are class methods facilitating generating large amounts of templates. See their documentation for details. Note: training with 500 templates can easily fill all available even on relatively small corpora """ wordtpls = Word.expand([-1,0,1], [1,2], excludezero=False) tagtpls = Pos.expand([-2,-1,0,1], [1,2], excludezero=True) templates = list(Template.expand([wordtpls, tagtpls], combinations=(1,3))) print("Generated {0} templates for transformation-based learning".format(len(templates))) postag(templates=templates, incremental_stats=True, template_stats=True) def demo_learning_curve(): """ Plot a learning curve -- the contribution on tagging accuracy of the individual rules. Note: requires matplotlib """ postag(incremental_stats=True, separate_baseline_data=True, learning_curve_output="learningcurve.png") def demo_error_analysis(): """ Writes a file with context for each erroneous word after tagging testing data """ postag(error_output="errors.txt") def demo_serialize_tagger(): """ Serializes the learned tagger to a file in pickle format; reloads it and validates the process. """ postag(serialize_output="tagger.pcl") def demo_high_accuracy_rules(): """ Discard rules with low accuracy. This may hurt performance a bit, but will often produce rules which are more interesting read to a human. """ postag(num_sents=3000, min_acc=0.96, min_score=10) def postag( templates=None, tagged_data=None, num_sents=1000, max_rules=300, min_score=3, min_acc=None, train=0.8, trace=3, randomize=False, ruleformat="str", incremental_stats=False, template_stats=False, error_output=None, serialize_output=None, learning_curve_output=None, learning_curve_take=300, baseline_backoff_tagger=None, separate_baseline_data=False, cache_baseline_tagger=None): """ Brill Tagger Demonstration :param templates: how many sentences of training and testing data to use :type templates: list of Template :param tagged_data: maximum number of rule instances to create :type tagged_data: C{int} :param num_sents: how many sentences of training and testing data to use :type num_sents: C{int} :param max_rules: maximum number of rule instances to create :type max_rules: C{int} :param min_score: the minimum score for a rule in order for it to be considered :type min_score: C{int} :param min_acc: the minimum score for a rule in order for it to be considered :type min_acc: C{float} :param train: the fraction of the the corpus to be used for training (1=all) :type train: C{float} :param trace: the level of diagnostic tracing output to produce (0-4) :type trace: C{int} :param randomize: whether the training data should be a random subset of the corpus :type randomize: C{bool} :param ruleformat: rule output format, one of "str", "repr", "verbose" :type ruleformat: C{str} :param incremental_stats: if true, will tag incrementally and collect stats for each rule (rather slow) :type incremental_stats: C{bool} :param template_stats: if true, will print per-template statistics collected in training and (optionally) testing :type template_stats: C{bool} :param error_output: the file where errors will be saved :type error_output: C{string} :param serialize_output: the file where the learned tbl tagger will be saved :type serialize_output: C{string} :param learning_curve_output: filename of plot of learning curve(s) (train and also test, if available) :type learning_curve_output: C{string} :param learning_curve_take: how many rules plotted :type learning_curve_take: C{int} :param baseline_backoff_tagger: the file where rules will be saved :type baseline_backoff_tagger: tagger :param separate_baseline_data: use a fraction of the training data exclusively for training baseline :type separate_baseline_data: C{bool} :param cache_baseline_tagger: cache baseline tagger to this file (only interesting as a temporary workaround to get deterministic output from the baseline unigram tagger between python versions) :type cache_baseline_tagger: C{string} Note on separate_baseline_data: if True, reuse training data both for baseline and rule learner. This is fast and fine for a demo, but is likely to generalize worse on unseen data. Also cannot be sensibly used for learning curves on training data (the baseline will be artificially high). """ # defaults baseline_backoff_tagger = baseline_backoff_tagger or REGEXP_TAGGER if templates is None: from nltk.tag.brill import describe_template_sets, brill24 # some pre-built template sets taken from typical systems or publications are # available. Print a list with describe_template_sets() # for instance: templates = brill24() (training_data, baseline_data, gold_data, testing_data) = \ _demo_prepare_data(tagged_data, train, num_sents, randomize, separate_baseline_data) # creating (or reloading from cache) a baseline tagger (unigram tagger) # this is just a mechanism for getting deterministic output from the baseline between # python versions if cache_baseline_tagger: if not os.path.exists(cache_baseline_tagger): baseline_tagger = UnigramTagger(baseline_data, backoff=baseline_backoff_tagger) with open(cache_baseline_tagger, 'w') as print_rules: pickle.dump(baseline_tagger, print_rules) print("Trained baseline tagger, pickled it to {0}".format(cache_baseline_tagger)) with open(cache_baseline_tagger, "r") as print_rules: baseline_tagger= pickle.load(print_rules) print("Reloaded pickled tagger from {0}".format(cache_baseline_tagger)) else: baseline_tagger = UnigramTagger(baseline_data, backoff=baseline_backoff_tagger) print("Trained baseline tagger") if gold_data: print(" Accuracy on test set: {0:0.4f}".format(baseline_tagger.evaluate(gold_data))) # creating a Brill tagger tbrill = time.time() trainer = BrillTaggerTrainer(baseline_tagger, templates, trace, ruleformat=ruleformat) print("Training tbl tagger...") brill_tagger = trainer.train(training_data, max_rules, min_score, min_acc) print("Trained tbl tagger in {0:0.2f} seconds".format(time.time() - tbrill)) if gold_data: print(" Accuracy on test set: %.4f" % brill_tagger.evaluate(gold_data)) # printing the learned rules, if learned silently if trace == 1: print("\nLearned rules: ") for (ruleno, rule) in enumerate(brill_tagger.rules(),1): print("{0:4d} {1:s}".format(ruleno, rule.format(ruleformat))) # printing template statistics (optionally including comparison with the training data) # note: if not separate_baseline_data, then baseline accuracy will be artificially high if incremental_stats: print("Incrementally tagging the test data, collecting individual rule statistics") (taggedtest, teststats) = brill_tagger.batch_tag_incremental(testing_data, gold_data) print(" Rule statistics collected") if not separate_baseline_data: print("WARNING: train_stats asked for separate_baseline_data=True; the baseline " "will be artificially high") trainstats = brill_tagger.train_stats() if template_stats: brill_tagger.print_template_statistics(teststats) if learning_curve_output: _demo_plot(learning_curve_output, teststats, trainstats, take=learning_curve_take) print("Wrote plot of learning curve to {0}".format(learning_curve_output)) else: print("Tagging the test data") taggedtest = brill_tagger.tag_sents(testing_data) if template_stats: brill_tagger.print_template_statistics() # writing error analysis to file if error_output is not None: with open(error_output, 'w') as f: f.write('Errors for Brill Tagger %r\n\n' % serialize_output) f.write(u'\n'.join(error_list(gold_data, taggedtest)).encode('utf-8') + '\n') print("Wrote tagger errors including context to {0}".format(error_output)) # serializing the tagger to a pickle file and reloading (just to see it works) if serialize_output is not None: taggedtest = brill_tagger.tag_sents(testing_data) with open(serialize_output, 'w') as print_rules: pickle.dump(brill_tagger, print_rules) print("Wrote pickled tagger to {0}".format(serialize_output)) with open(serialize_output, "r") as print_rules: brill_tagger_reloaded = pickle.load(print_rules) print("Reloaded pickled tagger from {0}".format(serialize_output)) taggedtest_reloaded = brill_tagger.tag_sents(testing_data) if taggedtest == taggedtest_reloaded: print("Reloaded tagger tried on test set, results identical") else: print("PROBLEM: Reloaded tagger gave different results on test set") def _demo_prepare_data(tagged_data, train, num_sents, randomize, separate_baseline_data): # train is the proportion of data used in training; the rest is reserved # for testing. if tagged_data is None: print("Loading tagged data from treebank... ") tagged_data = treebank.tagged_sents() if num_sents is None or len(tagged_data) <= num_sents: num_sents = len(tagged_data) if randomize: random.seed(len(tagged_data)) random.shuffle(tagged_data) cutoff = int(num_sents * train) training_data = tagged_data[:cutoff] gold_data = tagged_data[cutoff:num_sents] testing_data = [[t[0] for t in sent] for sent in gold_data] if not separate_baseline_data: baseline_data = training_data else: bl_cutoff = len(training_data) // 3 (baseline_data, training_data) = (training_data[:bl_cutoff], training_data[bl_cutoff:]) (trainseqs, traintokens) = corpus_size(training_data) (testseqs, testtokens) = corpus_size(testing_data) (bltrainseqs, bltraintokens) = corpus_size(baseline_data) print("Read testing data ({0:d} sents/{1:d} wds)".format(testseqs, testtokens)) print("Read training data ({0:d} sents/{1:d} wds)".format(trainseqs, traintokens)) print("Read baseline data ({0:d} sents/{1:d} wds) {2:s}".format( bltrainseqs, bltraintokens, "" if separate_baseline_data else "[reused the training set]")) return (training_data, baseline_data, gold_data, testing_data) def _demo_plot(learning_curve_output, teststats, trainstats=None, take=None): testcurve = [teststats['initialerrors']] for rulescore in teststats['rulescores']: testcurve.append(testcurve[-1] - rulescore) testcurve = [1 - x/teststats['tokencount'] for x in testcurve[:take]] traincurve = [trainstats['initialerrors']] for rulescore in trainstats['rulescores']: traincurve.append(traincurve[-1] - rulescore) traincurve = [1 - x/trainstats['tokencount'] for x in traincurve[:take]] import matplotlib.pyplot as plt r = list(range(len(testcurve))) plt.plot(r, testcurve, r, traincurve) plt.axis([None, None, None, 1.0]) plt.savefig(learning_curve_output) NN_CD_TAGGER = RegexpTagger( [(r'^-?[0-9]+(.[0-9]+)?$', 'CD'), (r'.*', 'NN')]) REGEXP_TAGGER = RegexpTagger( [(r'^-?[0-9]+(.[0-9]+)?$', 'CD'), # cardinal numbers (r'(The|the|A|a|An|an)$', 'AT'), # articles (r'.*able$', 'JJ'), # adjectives (r'.*ness$', 'NN'), # nouns formed from adjectives (r'.*ly$', 'RB'), # adverbs (r'.*s$', 'NNS'), # plural nouns (r'.*ing$', 'VBG'), # gerunds (r'.*ed$', 'VBD'), # past tense verbs (r'.*', 'NN') # nouns (default) ]) def corpus_size(seqs): return (len(seqs), sum(len(x) for x in seqs)) if __name__ == '__main__': demo_learning_curve()
gpl-3.0
fabioz/Pydev
plugins/org.python.pydev.core/pysrc/_pydev_bundle/pydev_console_utils.py
2
23983
import os import sys import traceback from _pydev_bundle.pydev_imports import xmlrpclib, _queue, Exec from _pydev_bundle._pydev_calltip_util import get_description from _pydevd_bundle import pydevd_vars from _pydevd_bundle import pydevd_xml from _pydevd_bundle.pydevd_constants import (IS_JYTHON, dict_iter_items, NEXT_VALUE_SEPARATOR, get_global_debugger, silence_warnings_decorator) from contextlib import contextmanager from _pydev_bundle import pydev_log from _pydevd_bundle.pydevd_utils import interrupt_main_thread try: import cStringIO as StringIO # may not always be available @UnusedImport except: try: import StringIO # @Reimport except: import io as StringIO # ======================================================================================================================= # BaseStdIn # ======================================================================================================================= class BaseStdIn: def __init__(self, original_stdin=sys.stdin, *args, **kwargs): try: self.encoding = sys.stdin.encoding except: # Not sure if it's available in all Python versions... pass self.original_stdin = original_stdin try: self.errors = sys.stdin.errors # Who knew? sys streams have an errors attribute! except: # Not sure if it's available in all Python versions... pass def readline(self, *args, **kwargs): # sys.stderr.write('Cannot readline out of the console evaluation\n') -- don't show anything # This could happen if the user had done input('enter number).<-- upon entering this, that message would appear, # which is not something we want. return '\n' def write(self, *args, **kwargs): pass # not available StdIn (but it can be expected to be in the stream interface) def flush(self, *args, **kwargs): pass # not available StdIn (but it can be expected to be in the stream interface) def read(self, *args, **kwargs): # in the interactive interpreter, a read and a readline are the same. return self.readline() def close(self, *args, **kwargs): pass # expected in StdIn def __iter__(self): # BaseStdIn would not be considered as Iterable in Python 3 without explicit `__iter__` implementation return self.original_stdin.__iter__() def __getattr__(self, item): # it's called if the attribute wasn't found if hasattr(self.original_stdin, item): return getattr(self.original_stdin, item) raise AttributeError("%s has no attribute %s" % (self.original_stdin, item)) # ======================================================================================================================= # StdIn # ======================================================================================================================= class StdIn(BaseStdIn): ''' Object to be added to stdin (to emulate it as non-blocking while the next line arrives) ''' def __init__(self, interpreter, host, client_port, original_stdin=sys.stdin): BaseStdIn.__init__(self, original_stdin) self.interpreter = interpreter self.client_port = client_port self.host = host def readline(self, *args, **kwargs): # Ok, callback into the client to get the new input try: server = xmlrpclib.Server('http://%s:%s' % (self.host, self.client_port)) requested_input = server.RequestInput() if not requested_input: return '\n' # Yes, a readline must return something (otherwise we can get an EOFError on the input() call). else: # readline should end with '\n' (not doing so makes IPython 5 remove the last *valid* character). requested_input += '\n' return requested_input except KeyboardInterrupt: raise # Let KeyboardInterrupt go through -- #PyDev-816: Interrupting infinite loop in the Interactive Console except: return '\n' def close(self, *args, **kwargs): pass # expected in StdIn #======================================================================================================================= # DebugConsoleStdIn #======================================================================================================================= class DebugConsoleStdIn(BaseStdIn): ''' Object to be added to stdin (to emulate it as non-blocking while the next line arrives) ''' def __init__(self, py_db, original_stdin): ''' :param py_db: If None, get_global_debugger() is used. ''' BaseStdIn.__init__(self, original_stdin) self._py_db = py_db self._in_notification = 0 def __send_input_requested_message(self, is_started): try: py_db = self._py_db if py_db is None: py_db = get_global_debugger() if py_db is None: return cmd = py_db.cmd_factory.make_input_requested_message(is_started) py_db.writer.add_command(cmd) except Exception: pydev_log.exception() @contextmanager def notify_input_requested(self): self._in_notification += 1 if self._in_notification == 1: self.__send_input_requested_message(True) try: yield finally: self._in_notification -= 1 if self._in_notification == 0: self.__send_input_requested_message(False) def readline(self, *args, **kwargs): with self.notify_input_requested(): return self.original_stdin.readline(*args, **kwargs) def read(self, *args, **kwargs): with self.notify_input_requested(): return self.original_stdin.read(*args, **kwargs) class CodeFragment: def __init__(self, text, is_single_line=True): self.text = text self.is_single_line = is_single_line def append(self, code_fragment): self.text = self.text + "\n" + code_fragment.text if not code_fragment.is_single_line: self.is_single_line = False # ======================================================================================================================= # BaseInterpreterInterface # ======================================================================================================================= class BaseInterpreterInterface: def __init__(self, mainThread, connect_status_queue=None): self.mainThread = mainThread self.interruptable = False self.exec_queue = _queue.Queue(0) self.buffer = None self.banner_shown = False self.connect_status_queue = connect_status_queue self.mpl_modules_for_patching = {} self.init_mpl_modules_for_patching() def build_banner(self): return 'print({0})\n'.format(repr(self.get_greeting_msg())) def get_greeting_msg(self): return 'PyDev console: starting.\n' def init_mpl_modules_for_patching(self): from pydev_ipython.matplotlibtools import activate_matplotlib, activate_pylab, activate_pyplot self.mpl_modules_for_patching = { "matplotlib": lambda: activate_matplotlib(self.enableGui), "matplotlib.pyplot": activate_pyplot, "pylab": activate_pylab } def need_more_for_code(self, source): # PyDev-502: PyDev 3.9 F2 doesn't support backslash continuations # Strangely even the IPython console is_complete said it was complete # even with a continuation char at the end. if source.endswith('\\'): return True if hasattr(self.interpreter, 'is_complete'): return not self.interpreter.is_complete(source) try: # At this point, it should always be single. # If we don't do this, things as: # # for i in range(10): print(i) # # (in a single line) don't work. # Note that it won't give an error and code will be None (so, it'll # use execMultipleLines in the next call in this case). symbol = 'single' code = self.interpreter.compile(source, '<input>', symbol) except (OverflowError, SyntaxError, ValueError): # Case 1 return False if code is None: # Case 2 return True # Case 3 return False def need_more(self, code_fragment): if self.buffer is None: self.buffer = code_fragment else: self.buffer.append(code_fragment) return self.need_more_for_code(self.buffer.text) def create_std_in(self, debugger=None, original_std_in=None): if debugger is None: return StdIn(self, self.host, self.client_port, original_stdin=original_std_in) else: return DebugConsoleStdIn(py_db=debugger, original_stdin=original_std_in) def add_exec(self, code_fragment, debugger=None): # In case sys.excepthook called, use original excepthook #PyDev-877: Debug console freezes with Python 3.5+ # (showtraceback does it on python 3.5 onwards) sys.excepthook = sys.__excepthook__ try: original_in = sys.stdin try: help = None if 'pydoc' in sys.modules: pydoc = sys.modules['pydoc'] # Don't import it if it still is not there. if hasattr(pydoc, 'help'): # You never know how will the API be changed, so, let's code defensively here help = pydoc.help if not hasattr(help, 'input'): help = None except: # Just ignore any error here pass more = False try: sys.stdin = self.create_std_in(debugger, original_in) try: if help is not None: # This will enable the help() function to work. try: try: help.input = sys.stdin except AttributeError: help._input = sys.stdin except: help = None if not self._input_error_printed: self._input_error_printed = True sys.stderr.write('\nError when trying to update pydoc.help.input\n') sys.stderr.write('(help() may not work -- please report this as a bug in the pydev bugtracker).\n\n') traceback.print_exc() try: self.start_exec() if hasattr(self, 'debugger'): self.debugger.enable_tracing() more = self.do_add_exec(code_fragment) if hasattr(self, 'debugger'): self.debugger.disable_tracing() self.finish_exec(more) finally: if help is not None: try: try: help.input = original_in except AttributeError: help._input = original_in except: pass finally: sys.stdin = original_in except SystemExit: raise except: traceback.print_exc() finally: sys.__excepthook__ = sys.excepthook return more def do_add_exec(self, codeFragment): ''' Subclasses should override. @return: more (True if more input is needed to complete the statement and False if the statement is complete). ''' raise NotImplementedError() def get_namespace(self): ''' Subclasses should override. @return: dict with namespace. ''' raise NotImplementedError() def __resolve_reference__(self, text): """ :type text: str """ obj = None if '.' not in text: try: obj = self.get_namespace()[text] except KeyError: pass if obj is None: try: obj = self.get_namespace()['__builtins__'][text] except: pass if obj is None: try: obj = getattr(self.get_namespace()['__builtins__'], text, None) except: pass else: try: last_dot = text.rindex('.') parent_context = text[0:last_dot] res = pydevd_vars.eval_in_context(parent_context, self.get_namespace(), self.get_namespace()) obj = getattr(res, text[last_dot + 1:]) except: pass return obj def getDescription(self, text): try: obj = self.__resolve_reference__(text) if obj is None: return '' return get_description(obj) except: return '' def do_exec_code(self, code, is_single_line): try: code_fragment = CodeFragment(code, is_single_line) more = self.need_more(code_fragment) if not more: code_fragment = self.buffer self.buffer = None self.exec_queue.put(code_fragment) return more except: traceback.print_exc() return False def execLine(self, line): return self.do_exec_code(line, True) def execMultipleLines(self, lines): if IS_JYTHON: more = False for line in lines.split('\n'): more = self.do_exec_code(line, True) return more else: return self.do_exec_code(lines, False) def interrupt(self): self.buffer = None # Also clear the buffer when it's interrupted. try: if self.interruptable: # Fix for #PyDev-500: Console interrupt can't interrupt on sleep interrupt_main_thread(self.mainThread) self.finish_exec(False) return True except: traceback.print_exc() return False def close(self): sys.exit(0) def start_exec(self): self.interruptable = True def get_server(self): if getattr(self, 'host', None) is not None: return xmlrpclib.Server('http://%s:%s' % (self.host, self.client_port)) else: return None server = property(get_server) def ShowConsole(self): server = self.get_server() if server is not None: server.ShowConsole() def finish_exec(self, more): self.interruptable = False server = self.get_server() if server is not None: return server.NotifyFinished(more) else: return True def getFrame(self): xml = StringIO.StringIO() hidden_ns = self.get_ipython_hidden_vars_dict() xml.write("<xml>") xml.write(pydevd_xml.frame_vars_to_xml(self.get_namespace(), hidden_ns)) xml.write("</xml>") return xml.getvalue() @silence_warnings_decorator def getVariable(self, attributes): xml = StringIO.StringIO() xml.write("<xml>") val_dict = pydevd_vars.resolve_compound_var_object_fields(self.get_namespace(), attributes) if val_dict is None: val_dict = {} for k, val in dict_iter_items(val_dict): val = val_dict[k] evaluate_full_value = pydevd_xml.should_evaluate_full_value(val) xml.write(pydevd_vars.var_to_xml(val, k, evaluate_full_value=evaluate_full_value)) xml.write("</xml>") return xml.getvalue() def getArray(self, attr, roffset, coffset, rows, cols, format): name = attr.split("\t")[-1] array = pydevd_vars.eval_in_context(name, self.get_namespace(), self.get_namespace()) return pydevd_vars.table_like_struct_to_xml(array, name, roffset, coffset, rows, cols, format) def evaluate(self, expression): xml = StringIO.StringIO() xml.write("<xml>") result = pydevd_vars.eval_in_context(expression, self.get_namespace(), self.get_namespace()) xml.write(pydevd_vars.var_to_xml(result, expression)) xml.write("</xml>") return xml.getvalue() @silence_warnings_decorator def loadFullValue(self, seq, scope_attrs): """ Evaluate full value for async Console variables in a separate thread and send results to IDE side :param seq: id of command :param scope_attrs: a sequence of variables with their attributes separated by NEXT_VALUE_SEPARATOR (i.e.: obj\tattr1\tattr2NEXT_VALUE_SEPARATORobj2\attr1\tattr2) :return: """ frame_variables = self.get_namespace() var_objects = [] vars = scope_attrs.split(NEXT_VALUE_SEPARATOR) for var_attrs in vars: if '\t' in var_attrs: name, attrs = var_attrs.split('\t', 1) else: name = var_attrs attrs = None if name in frame_variables: var_object = pydevd_vars.resolve_var_object(frame_variables[name], attrs) var_objects.append((var_object, name)) else: var_object = pydevd_vars.eval_in_context(name, frame_variables, frame_variables) var_objects.append((var_object, name)) from _pydevd_bundle.pydevd_comm import GetValueAsyncThreadConsole py_db = getattr(self, 'debugger', None) if py_db is None: py_db = get_global_debugger() if py_db is None: from pydevd import PyDB py_db = PyDB() t = GetValueAsyncThreadConsole(py_db, self.get_server(), seq, var_objects) t.start() def changeVariable(self, attr, value): def do_change_variable(): Exec('%s=%s' % (attr, value), self.get_namespace(), self.get_namespace()) # Important: it has to be really enabled in the main thread, so, schedule # it to run in the main thread. self.exec_queue.put(do_change_variable) def connectToDebugger(self, debuggerPort, debugger_options=None): ''' Used to show console with variables connection. Mainly, monkey-patches things in the debugger structure so that the debugger protocol works. ''' if debugger_options is None: debugger_options = {} env_key = "PYDEVD_EXTRA_ENVS" if env_key in debugger_options: for (env_name, value) in dict_iter_items(debugger_options[env_key]): existing_value = os.environ.get(env_name, None) if existing_value: os.environ[env_name] = "%s%c%s" % (existing_value, os.path.pathsep, value) else: os.environ[env_name] = value if env_name == "PYTHONPATH": sys.path.append(value) del debugger_options[env_key] def do_connect_to_debugger(): try: # Try to import the packages needed to attach the debugger import pydevd from _pydev_imps._pydev_saved_modules import threading except: # This happens on Jython embedded in host eclipse traceback.print_exc() sys.stderr.write('pydevd is not available, cannot connect\n') from _pydevd_bundle.pydevd_constants import set_thread_id from _pydev_bundle import pydev_localhost set_thread_id(threading.currentThread(), "console_main") VIRTUAL_FRAME_ID = "1" # matches PyStackFrameConsole.java VIRTUAL_CONSOLE_ID = "console_main" # matches PyThreadConsole.java f = FakeFrame() f.f_back = None f.f_globals = {} # As globals=locals here, let's simply let it empty (and save a bit of network traffic). f.f_locals = self.get_namespace() self.debugger = pydevd.PyDB() self.debugger.add_fake_frame(thread_id=VIRTUAL_CONSOLE_ID, frame_id=VIRTUAL_FRAME_ID, frame=f) try: pydevd.apply_debugger_options(debugger_options) self.debugger.connect(pydev_localhost.get_localhost(), debuggerPort) self.debugger.prepare_to_run() self.debugger.disable_tracing() except: traceback.print_exc() sys.stderr.write('Failed to connect to target debugger.\n') # Register to process commands when idle self.debugrunning = False try: import pydevconsole pydevconsole.set_debug_hook(self.debugger.process_internal_commands) except: traceback.print_exc() sys.stderr.write('Version of Python does not support debuggable Interactive Console.\n') # Important: it has to be really enabled in the main thread, so, schedule # it to run in the main thread. self.exec_queue.put(do_connect_to_debugger) return ('connect complete',) def handshake(self): if self.connect_status_queue is not None: self.connect_status_queue.put(True) return "PyCharm" def get_connect_status_queue(self): return self.connect_status_queue def hello(self, input_str): # Don't care what the input string is return ("Hello eclipse",) def enableGui(self, guiname): ''' Enable the GUI specified in guiname (see inputhook for list). As with IPython, enabling multiple GUIs isn't an error, but only the last one's main loop runs and it may not work ''' def do_enable_gui(): from _pydev_bundle.pydev_versioncheck import versionok_for_gui if versionok_for_gui(): try: from pydev_ipython.inputhook import enable_gui enable_gui(guiname) except: sys.stderr.write("Failed to enable GUI event loop integration for '%s'\n" % guiname) traceback.print_exc() elif guiname not in ['none', '', None]: # Only print a warning if the guiname was going to do something sys.stderr.write("PyDev console: Python version does not support GUI event loop integration for '%s'\n" % guiname) # Return value does not matter, so return back what was sent return guiname # Important: it has to be really enabled in the main thread, so, schedule # it to run in the main thread. self.exec_queue.put(do_enable_gui) def get_ipython_hidden_vars_dict(self): return None # ======================================================================================================================= # FakeFrame # ======================================================================================================================= class FakeFrame: ''' Used to show console with variables connection. A class to be used as a mock of a frame. '''
epl-1.0
osh/gr-eventsim
apps/plot_results_save2.py
1
1648
#!/usr/bin/env python import json, sys, pprint, re import matplotlib.pyplot as plt import numpy as np metrics = ["eps_final"] fn = sys.argv[1] print "loading %s"%(fn) records = json.loads(open(fn,"r").read()) # Compute and extract numbers from output strings for i in range(0,len(records)): e = filter(lambda y: not y == None, map(lambda x: re.search('events\W+= (\d+) \((\d+\.\d+)\/sec', x), records[i]['output'])) print len(e) if(len(e) >= 1): records[i]['e_final'] = float(e[-1].group(1)) records[i]['eps_final'] = float(e[-1].group(2)) records = filter(lambda x: x.has_key("eps_final"), records); nsinks = sorted(list(set(map(lambda x: x["nsinks"], records)))) nthreads = sorted(list(set(map(lambda x: x["nthreads"], records)))) names = set(map(lambda x: x["d"], records)) handles = [] for metric in metrics: plt.figure() for name in names: for ns in nsinks: perf = []; lbl = "Nsinks = %d"%(ns) for nt in nthreads: p = np.mean( map(lambda x: x[metric], filter( lambda y: y["d"]==name and y["nthreads"]==nt and y["nsinks"]==ns, records) ) ) perf.append(p) print len(nthreads), len(perf) h, = plt.plot(nthreads, perf, label=lbl) print nthreads,perf handles.append(h) plt.xlabel("Number of Threads"); plt.ylabel("Events Per Second"); plt.title("Event Performance vs. Number of Threads vs. Number of Sinks") ax = plt.subplot(111) handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels, loc="lower left") #plt.legend(handles=handles) plt.show()
gpl-3.0
ishanic/scikit-learn
sklearn/cluster/bicluster.py
211
19443
"""Spectral biclustering algorithms. Authors : Kemal Eren License: BSD 3 clause """ from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import dia_matrix from scipy.sparse import issparse from . import KMeans, MiniBatchKMeans from ..base import BaseEstimator, BiclusterMixin from ..externals import six from ..utils.arpack import eigsh, svds from ..utils.extmath import (make_nonnegative, norm, randomized_svd, safe_sparse_dot) from ..utils.validation import assert_all_finite, check_array __all__ = ['SpectralCoclustering', 'SpectralBiclustering'] def _scale_normalize(X): """Normalize ``X`` by scaling rows and columns independently. Returns the normalized matrix and the row and column scaling factors. """ X = make_nonnegative(X) row_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=1))).squeeze() col_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=0))).squeeze() row_diag = np.where(np.isnan(row_diag), 0, row_diag) col_diag = np.where(np.isnan(col_diag), 0, col_diag) if issparse(X): n_rows, n_cols = X.shape r = dia_matrix((row_diag, [0]), shape=(n_rows, n_rows)) c = dia_matrix((col_diag, [0]), shape=(n_cols, n_cols)) an = r * X * c else: an = row_diag[:, np.newaxis] * X * col_diag return an, row_diag, col_diag def _bistochastic_normalize(X, max_iter=1000, tol=1e-5): """Normalize rows and columns of ``X`` simultaneously so that all rows sum to one constant and all columns sum to a different constant. """ # According to paper, this can also be done more efficiently with # deviation reduction and balancing algorithms. X = make_nonnegative(X) X_scaled = X dist = None for _ in range(max_iter): X_new, _, _ = _scale_normalize(X_scaled) if issparse(X): dist = norm(X_scaled.data - X.data) else: dist = norm(X_scaled - X_new) X_scaled = X_new if dist is not None and dist < tol: break return X_scaled def _log_normalize(X): """Normalize ``X`` according to Kluger's log-interactions scheme.""" X = make_nonnegative(X, min_value=1) if issparse(X): raise ValueError("Cannot compute log of a sparse matrix," " because log(x) diverges to -infinity as x" " goes to 0.") L = np.log(X) row_avg = L.mean(axis=1)[:, np.newaxis] col_avg = L.mean(axis=0) avg = L.mean() return L - row_avg - col_avg + avg class BaseSpectral(six.with_metaclass(ABCMeta, BaseEstimator, BiclusterMixin)): """Base class for spectral biclustering.""" @abstractmethod def __init__(self, n_clusters=3, svd_method="randomized", n_svd_vecs=None, mini_batch=False, init="k-means++", n_init=10, n_jobs=1, random_state=None): self.n_clusters = n_clusters self.svd_method = svd_method self.n_svd_vecs = n_svd_vecs self.mini_batch = mini_batch self.init = init self.n_init = n_init self.n_jobs = n_jobs self.random_state = random_state def _check_parameters(self): legal_svd_methods = ('randomized', 'arpack') if self.svd_method not in legal_svd_methods: raise ValueError("Unknown SVD method: '{0}'. svd_method must be" " one of {1}.".format(self.svd_method, legal_svd_methods)) def fit(self, X): """Creates a biclustering for X. Parameters ---------- X : array-like, shape (n_samples, n_features) """ X = check_array(X, accept_sparse='csr', dtype=np.float64) self._check_parameters() self._fit(X) def _svd(self, array, n_components, n_discard): """Returns first `n_components` left and right singular vectors u and v, discarding the first `n_discard`. """ if self.svd_method == 'randomized': kwargs = {} if self.n_svd_vecs is not None: kwargs['n_oversamples'] = self.n_svd_vecs u, _, vt = randomized_svd(array, n_components, random_state=self.random_state, **kwargs) elif self.svd_method == 'arpack': u, _, vt = svds(array, k=n_components, ncv=self.n_svd_vecs) if np.any(np.isnan(vt)): # some eigenvalues of A * A.T are negative, causing # sqrt() to be np.nan. This causes some vectors in vt # to be np.nan. _, v = eigsh(safe_sparse_dot(array.T, array), ncv=self.n_svd_vecs) vt = v.T if np.any(np.isnan(u)): _, u = eigsh(safe_sparse_dot(array, array.T), ncv=self.n_svd_vecs) assert_all_finite(u) assert_all_finite(vt) u = u[:, n_discard:] vt = vt[n_discard:] return u, vt.T def _k_means(self, data, n_clusters): if self.mini_batch: model = MiniBatchKMeans(n_clusters, init=self.init, n_init=self.n_init, random_state=self.random_state) else: model = KMeans(n_clusters, init=self.init, n_init=self.n_init, n_jobs=self.n_jobs, random_state=self.random_state) model.fit(data) centroid = model.cluster_centers_ labels = model.labels_ return centroid, labels class SpectralCoclustering(BaseSpectral): """Spectral Co-Clustering algorithm (Dhillon, 2001). Clusters rows and columns of an array `X` to solve the relaxed normalized cut of the bipartite graph created from `X` as follows: the edge between row vertex `i` and column vertex `j` has weight `X[i, j]`. The resulting bicluster structure is block-diagonal, since each row and each column belongs to exactly one bicluster. Supports sparse matrices, as long as they are nonnegative. Read more in the :ref:`User Guide <spectral_coclustering>`. Parameters ---------- n_clusters : integer, optional, default: 3 The number of biclusters to find. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', use :func:`sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', use :func:`sklearn.utils.arpack.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used by the K-Means initialization. Attributes ---------- rows_ : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like, shape (n_rows,) The bicluster label of each row. column_labels_ : array-like, shape (n_cols,) The bicluster label of each column. References ---------- * Dhillon, Inderjit S, 2001. `Co-clustering documents and words using bipartite spectral graph partitioning <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.3011>`__. """ def __init__(self, n_clusters=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralCoclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) def _fit(self, X): normalized_data, row_diag, col_diag = _scale_normalize(X) n_sv = 1 + int(np.ceil(np.log2(self.n_clusters))) u, v = self._svd(normalized_data, n_sv, n_discard=1) z = np.vstack((row_diag[:, np.newaxis] * u, col_diag[:, np.newaxis] * v)) _, labels = self._k_means(z, self.n_clusters) n_rows = X.shape[0] self.row_labels_ = labels[:n_rows] self.column_labels_ = labels[n_rows:] self.rows_ = np.vstack(self.row_labels_ == c for c in range(self.n_clusters)) self.columns_ = np.vstack(self.column_labels_ == c for c in range(self.n_clusters)) class SpectralBiclustering(BaseSpectral): """Spectral biclustering (Kluger, 2003). Partitions rows and columns under the assumption that the data has an underlying checkerboard structure. For instance, if there are two row partitions and three column partitions, each row will belong to three biclusters, and each column will belong to two biclusters. The outer product of the corresponding row and column label vectors gives this checkerboard structure. Read more in the :ref:`User Guide <spectral_biclustering>`. Parameters ---------- n_clusters : integer or tuple (n_row_clusters, n_column_clusters) The number of row and column clusters in the checkerboard structure. method : string, optional, default: 'bistochastic' Method of normalizing and converting singular vectors into biclusters. May be one of 'scale', 'bistochastic', or 'log'. The authors recommend using 'log'. If the data is sparse, however, log normalization will not work, which is why the default is 'bistochastic'. CAUTION: if `method='log'`, the data must not be sparse. n_components : integer, optional, default: 6 Number of singular vectors to check. n_best : integer, optional, default: 3 Number of best singular vectors to which to project the data for clustering. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', uses `sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', uses `sklearn.utils.arpack.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used by the K-Means initialization. Attributes ---------- rows_ : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like, shape (n_rows,) Row partition labels. column_labels_ : array-like, shape (n_cols,) Column partition labels. References ---------- * Kluger, Yuval, et. al., 2003. `Spectral biclustering of microarray data: coclustering genes and conditions <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.1608>`__. """ def __init__(self, n_clusters=3, method='bistochastic', n_components=6, n_best=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralBiclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) self.method = method self.n_components = n_components self.n_best = n_best def _check_parameters(self): super(SpectralBiclustering, self)._check_parameters() legal_methods = ('bistochastic', 'scale', 'log') if self.method not in legal_methods: raise ValueError("Unknown method: '{0}'. method must be" " one of {1}.".format(self.method, legal_methods)) try: int(self.n_clusters) except TypeError: try: r, c = self.n_clusters int(r) int(c) except (ValueError, TypeError): raise ValueError("Incorrect parameter n_clusters has value:" " {}. It should either be a single integer" " or an iterable with two integers:" " (n_row_clusters, n_column_clusters)") if self.n_components < 1: raise ValueError("Parameter n_components must be greater than 0," " but its value is {}".format(self.n_components)) if self.n_best < 1: raise ValueError("Parameter n_best must be greater than 0," " but its value is {}".format(self.n_best)) if self.n_best > self.n_components: raise ValueError("n_best cannot be larger than" " n_components, but {} > {}" "".format(self.n_best, self.n_components)) def _fit(self, X): n_sv = self.n_components if self.method == 'bistochastic': normalized_data = _bistochastic_normalize(X) n_sv += 1 elif self.method == 'scale': normalized_data, _, _ = _scale_normalize(X) n_sv += 1 elif self.method == 'log': normalized_data = _log_normalize(X) n_discard = 0 if self.method == 'log' else 1 u, v = self._svd(normalized_data, n_sv, n_discard) ut = u.T vt = v.T try: n_row_clusters, n_col_clusters = self.n_clusters except TypeError: n_row_clusters = n_col_clusters = self.n_clusters best_ut = self._fit_best_piecewise(ut, self.n_best, n_row_clusters) best_vt = self._fit_best_piecewise(vt, self.n_best, n_col_clusters) self.row_labels_ = self._project_and_cluster(X, best_vt.T, n_row_clusters) self.column_labels_ = self._project_and_cluster(X.T, best_ut.T, n_col_clusters) self.rows_ = np.vstack(self.row_labels_ == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) self.columns_ = np.vstack(self.column_labels_ == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) def _fit_best_piecewise(self, vectors, n_best, n_clusters): """Find the ``n_best`` vectors that are best approximated by piecewise constant vectors. The piecewise vectors are found by k-means; the best is chosen according to Euclidean distance. """ def make_piecewise(v): centroid, labels = self._k_means(v.reshape(-1, 1), n_clusters) return centroid[labels].ravel() piecewise_vectors = np.apply_along_axis(make_piecewise, axis=1, arr=vectors) dists = np.apply_along_axis(norm, axis=1, arr=(vectors - piecewise_vectors)) result = vectors[np.argsort(dists)[:n_best]] return result def _project_and_cluster(self, data, vectors, n_clusters): """Project ``data`` to ``vectors`` and cluster the result.""" projected = safe_sparse_dot(data, vectors) _, labels = self._k_means(projected, n_clusters) return labels
bsd-3-clause
Asiant/trump
trump/extensions/symbol_aggs.py
1
8205
# -*- coding: utf-8 -*- ############################################################################### # # PyLint tests that will never be applied for this file. # # Unused variables, these functions are organized so that they can be called # from a string at runtime, from it's name being stored # in an SQLAlchemy object attribute. # pylint: disable-msg=W0612 ############################################################################### # # PyLint tests that will be eventually fixed. # # Unused argument, the functionality, once it's implemented, will use # the argument. # pylint: disable-msg=W0613 """ This module creates the functions that get used in symbol aggregation There are row-based, and column-based, function builders, just to stay organized. """ import pandas as pd nan = pd.np.nan def sorted_feed_cols(df): """ takes a dataframe's columns that would be of the form: ['feed003', 'failsafe_feed999', 'override_feed000', 'feed001', 'feed002'] and returns: ['override_feed000', 'feed001', 'feed002', 'feed003', 'failsafe_feed999'] """ cols = df.columns ind = [int(c.split("feed")[1]) for c in cols] cols = zip(ind,cols) cols.sort() cols = [c[1] for c in cols] return cols def _row_wise_priority(adf): adf = adf.dropna() if len(adf) > 0: return adf.values[0] else: return nan class ApplyRow(object): """ Mixer used to identify row-based logic methods for Trump's Feed aggregation step. All these functions, should take in a dataframe of multiple columns, and return a DataFrame with a single column, or a Series. """ @staticmethod def priority_fill(adf): """ Looks at each row, and chooses the value from the highest priority (lowest #) feed, one row at a time. """ # the logic to apply overrides, values from certain feeds, # or the failsafes, is needed for high-level functions # in this same file. # so "priority_fill" just wraps this, for organization # purposes. return _row_wise_priority(adf) @staticmethod def mean_fill(adf): """ Looks at each row, and calculates the mean. Honours the Trump override/failsafe logic. """ ordpt = adf.values[0] if not pd.isnull(ordpt): return ordpt fdmn = adf.iloc[1:-1].mean() if not pd.isnull(fdmn): return fdmn flspt = adf.values[-1] if not pd.isnull(flspt): return flspt return nan @staticmethod def median_fill(adf): """ Looks at each row, and chooses the median. Honours the Trump override/failsafe logic. """ ordpt = adf.values[0] if not pd.isnull(ordpt): return ordpt fdmn = adf.iloc[1:-1].median() if not pd.isnull(fdmn): return fdmn flspt = adf.values[-1] if not pd.isnull(flspt): return flspt return nan @staticmethod def custom(adf): """ A custom Apply-Row Aggregator can be defined, as any function which accepts a Series, and returns any number-like object, which will get assigned to the Dataframe's 'final' column in using the pandas .apply, function. """ return [0] * len(adf) class ChooseCol(object): """ Builds a dictionary of column-based logic to be applied by Trump's aggregation step. All these functions, should take in a dataframe of multiple columns, and return a DataFrame with a single column, or a Series. """ @staticmethod def most_populated(adf): """ Looks at each column, using the one with the most values Honours the Trump override/failsafe logic. """ # just look at the feeds, ignore overrides and failsafes: feeds_only = adf[adf.columns[1:-1]] # find the most populated feed cnt_df = feeds_only.count() cnt = cnt_df.max() selected_feeds = cnt_df[cnt_df == cnt] # if there aren't any feeds, the first feed will work... if len(selected_feeds) == 0: pre_final = adf['feed001'] # if they are all empty # they should all be # equally empty else: #if there's one or more, take the highest priority one pre_final = adf[selected_feeds.index[0]] # create the final, applying the override and failsafe logic... final_df = pd.concat([adf.override_feed000, pre_final, adf.failsafe_feed999], axis=1) final_df = final_df.apply(_row_wise_priority, axis=1) return final_df @staticmethod def most_recent(adf): """ Looks at each column, and chooses the feed with the most recent data point. Honours the Trump override/failsafe logic. """ # just look at the feeds, ignore overrides and failsafes: feeds_only = adf[adf.columns[1:-1]] # find the feeds with the most recent data... feeds_with_data = feeds_only.dropna(how='all') selected_feeds = feeds_with_data.T.dropna().index # if there aren't any feeds, the first feed will work... if len(selected_feeds) == 0: pre_final = adf['feed001'] # if there all empyty # they should all be # equally empty else: #if there's one or more, take the highest priority one pre_final = adf[selected_feeds[0]] # create the final, applying the override and failsafe logic... final_df = pd.concat([adf.override_feed000, pre_final, adf.failsafe_feed999], axis=1) final_df = final_df.apply(_row_wise_priority, axis=1) return final_df @staticmethod def custom(adf): """ A custom Choose-Column Aggregator can be defined, as any function which accepts a dataframe, and returns any Series-like object, which will get assigned to the Dataframe's 'final' column. """ return [0] * len(adf) class FeedAggregator(ApplyRow, ChooseCol): def __init__(self,method): try: self.meth = getattr(self, method) except: raise "{} is not an arggregator method".format(method) self.methname = method def aggregate(self,df): if self.methname in ApplyRow.__dict__: return df.apply(self.meth, axis=1) elif self.methname in ChooseCol.__dict__: return self.meth(df) else: NotImplemented("This code path could be an ugly implementation, " + \ "of a default?") if __name__ == '__main__': def make_fake_feed_data(l=10): dr = pd.date_range(start='2015-01-10', periods=l, freq='D') data = pd.np.random.rand(l) return pd.Series(data,dr) ors = make_fake_feed_data(1).shift(1,freq='D') s1 = make_fake_feed_data(10) s2 = make_fake_feed_data(5) s3 = make_fake_feed_data(7) fls = make_fake_feed_data(1).shift(8,freq='D') s1.iloc[6] = pd.np.nan s1.iloc[8] = pd.np.nan cols = ['override_'] + [''] * 3 cols = [c + "feed{0:03d}".format(i) for i, c in enumerate(cols)] cols = cols + ['failsafe_feed999'] df = pd.concat([ors, s1, s2, s3, fls], axis=1) df.columns = cols df['final'] = FeedAggregator('most_populated').aggregate(df) print df #assert df['final'].iloc[1] == df['override_feed000'].iloc[1] #assert df['final'].iloc[-1] == df['feed001'].iloc[-1] #assert df['final'].iloc[-2] == df['failsafe_feed999'].iloc[-2] #assert df['final'].iloc[-4] == df['feed003'].iloc[-4]
bsd-3-clause
billy-inn/scikit-learn
sklearn/externals/joblib/parallel.py
86
35087
""" Helpers for embarrassingly parallel code. """ # Author: Gael Varoquaux < gael dot varoquaux at normalesup dot org > # Copyright: 2010, Gael Varoquaux # License: BSD 3 clause from __future__ import division import os import sys import gc import warnings from math import sqrt import functools import time import threading import itertools from numbers import Integral try: import cPickle as pickle except: import pickle from ._multiprocessing_helpers import mp if mp is not None: from .pool import MemmapingPool from multiprocessing.pool import ThreadPool from .format_stack import format_exc, format_outer_frames from .logger import Logger, short_format_time from .my_exceptions import TransportableException, _mk_exception from .disk import memstr_to_kbytes from ._compat import _basestring VALID_BACKENDS = ['multiprocessing', 'threading'] # Environment variables to protect against bad situations when nesting JOBLIB_SPAWNED_PROCESS = "__JOBLIB_SPAWNED_PARALLEL__" # In seconds, should be big enough to hide multiprocessing dispatching # overhead. # This settings was found by running benchmarks/bench_auto_batching.py # with various parameters on various platforms. MIN_IDEAL_BATCH_DURATION = .2 # Should not be too high to avoid stragglers: long jobs running alone # on a single worker while other workers have no work to process any more. MAX_IDEAL_BATCH_DURATION = 2 class BatchedCalls(object): """Wrap a sequence of (func, args, kwargs) tuples as a single callable""" def __init__(self, iterator_slice): self.items = list(iterator_slice) self._size = len(self.items) def __call__(self): return [func(*args, **kwargs) for func, args, kwargs in self.items] def __len__(self): return self._size ############################################################################### # CPU count that works also when multiprocessing has been disabled via # the JOBLIB_MULTIPROCESSING environment variable def cpu_count(): """ Return the number of CPUs. """ if mp is None: return 1 return mp.cpu_count() ############################################################################### # For verbosity def _verbosity_filter(index, verbose): """ Returns False for indices increasingly apart, the distance depending on the value of verbose. We use a lag increasing as the square of index """ if not verbose: return True elif verbose > 10: return False if index == 0: return False verbose = .5 * (11 - verbose) ** 2 scale = sqrt(index / verbose) next_scale = sqrt((index + 1) / verbose) return (int(next_scale) == int(scale)) ############################################################################### class WorkerInterrupt(Exception): """ An exception that is not KeyboardInterrupt to allow subprocesses to be interrupted. """ pass ############################################################################### class SafeFunction(object): """ Wraps a function to make it exception with full traceback in their representation. Useful for parallel computing with multiprocessing, for which exceptions cannot be captured. """ def __init__(self, func): self.func = func def __call__(self, *args, **kwargs): try: return self.func(*args, **kwargs) except KeyboardInterrupt: # We capture the KeyboardInterrupt and reraise it as # something different, as multiprocessing does not # interrupt processing for a KeyboardInterrupt raise WorkerInterrupt() except: e_type, e_value, e_tb = sys.exc_info() text = format_exc(e_type, e_value, e_tb, context=10, tb_offset=1) if issubclass(e_type, TransportableException): raise else: raise TransportableException(text, e_type) ############################################################################### def delayed(function, check_pickle=True): """Decorator used to capture the arguments of a function. Pass `check_pickle=False` when: - performing a possibly repeated check is too costly and has been done already once outside of the call to delayed. - when used in conjunction `Parallel(backend='threading')`. """ # Try to pickle the input function, to catch the problems early when # using with multiprocessing: if check_pickle: pickle.dumps(function) def delayed_function(*args, **kwargs): return function, args, kwargs try: delayed_function = functools.wraps(function)(delayed_function) except AttributeError: " functools.wraps fails on some callable objects " return delayed_function ############################################################################### class ImmediateComputeBatch(object): """Sequential computation of a batch of tasks. This replicates the async computation API but actually does not delay the computations when joblib.Parallel runs in sequential mode. """ def __init__(self, batch): # Don't delay the application, to avoid keeping the input # arguments in memory self.results = batch() def get(self): return self.results ############################################################################### class BatchCompletionCallBack(object): """Callback used by joblib.Parallel's multiprocessing backend. This callable is executed by the parent process whenever a worker process has returned the results of a batch of tasks. It is used for progress reporting, to update estimate of the batch processing duration and to schedule the next batch of tasks to be processed. """ def __init__(self, dispatch_timestamp, batch_size, parallel): self.dispatch_timestamp = dispatch_timestamp self.batch_size = batch_size self.parallel = parallel def __call__(self, out): self.parallel.n_completed_tasks += self.batch_size this_batch_duration = time.time() - self.dispatch_timestamp if (self.parallel.batch_size == 'auto' and self.batch_size == self.parallel._effective_batch_size): # Update the smoothed streaming estimate of the duration of a batch # from dispatch to completion old_duration = self.parallel._smoothed_batch_duration if old_duration == 0: # First record of duration for this batch size after the last # reset. new_duration = this_batch_duration else: # Update the exponentially weighted average of the duration of # batch for the current effective size. new_duration = 0.8 * old_duration + 0.2 * this_batch_duration self.parallel._smoothed_batch_duration = new_duration self.parallel.print_progress() if self.parallel._original_iterator is not None: self.parallel.dispatch_next() ############################################################################### class Parallel(Logger): ''' Helper class for readable parallel mapping. Parameters ----------- n_jobs: int, default: 1 The maximum number of concurrently running jobs, such as the number of Python worker processes when backend="multiprocessing" or the size of the thread-pool when backend="threading". If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. backend: str or None, default: 'multiprocessing' Specify the parallelization backend implementation. Supported backends are: - "multiprocessing" used by default, can induce some communication and memory overhead when exchanging input and output data with the with the worker Python processes. - "threading" is a very low-overhead backend but it suffers from the Python Global Interpreter Lock if the called function relies a lot on Python objects. "threading" is mostly useful when the execution bottleneck is a compiled extension that explicitly releases the GIL (for instance a Cython loop wrapped in a "with nogil" block or an expensive call to a library such as NumPy). verbose: int, optional The verbosity level: if non zero, progress messages are printed. Above 50, the output is sent to stdout. The frequency of the messages increases with the verbosity level. If it more than 10, all iterations are reported. pre_dispatch: {'all', integer, or expression, as in '3*n_jobs'} The number of batches (of tasks) to be pre-dispatched. Default is '2*n_jobs'. When batch_size="auto" this is reasonable default and the multiprocessing workers shoud never starve. batch_size: int or 'auto', default: 'auto' The number of atomic tasks to dispatch at once to each worker. When individual evaluations are very fast, multiprocessing can be slower than sequential computation because of the overhead. Batching fast computations together can mitigate this. The ``'auto'`` strategy keeps track of the time it takes for a batch to complete, and dynamically adjusts the batch size to keep the time on the order of half a second, using a heuristic. The initial batch size is 1. ``batch_size="auto"`` with ``backend="threading"`` will dispatch batches of a single task at a time as the threading backend has very little overhead and using larger batch size has not proved to bring any gain in that case. temp_folder: str, optional Folder to be used by the pool for memmaping large arrays for sharing memory with worker processes. If None, this will try in order: - a folder pointed by the JOBLIB_TEMP_FOLDER environment variable, - /dev/shm if the folder exists and is writable: this is a RAMdisk filesystem available by default on modern Linux distributions, - the default system temporary folder that can be overridden with TMP, TMPDIR or TEMP environment variables, typically /tmp under Unix operating systems. Only active when backend="multiprocessing". max_nbytes int, str, or None, optional, 1M by default Threshold on the size of arrays passed to the workers that triggers automated memory mapping in temp_folder. Can be an int in Bytes, or a human-readable string, e.g., '1M' for 1 megabyte. Use None to disable memmaping of large arrays. Only active when backend="multiprocessing". Notes ----- This object uses the multiprocessing module to compute in parallel the application of a function to many different arguments. The main functionality it brings in addition to using the raw multiprocessing API are (see examples for details): * More readable code, in particular since it avoids constructing list of arguments. * Easier debugging: - informative tracebacks even when the error happens on the client side - using 'n_jobs=1' enables to turn off parallel computing for debugging without changing the codepath - early capture of pickling errors * An optional progress meter. * Interruption of multiprocesses jobs with 'Ctrl-C' * Flexible pickling control for the communication to and from the worker processes. * Ability to use shared memory efficiently with worker processes for large numpy-based datastructures. Examples -------- A simple example: >>> from math import sqrt >>> from sklearn.externals.joblib import Parallel, delayed >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] Reshaping the output when the function has several return values: >>> from math import modf >>> from sklearn.externals.joblib import Parallel, delayed >>> r = Parallel(n_jobs=1)(delayed(modf)(i/2.) for i in range(10)) >>> res, i = zip(*r) >>> res (0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5) >>> i (0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0) The progress meter: the higher the value of `verbose`, the more messages:: >>> from time import sleep >>> from sklearn.externals.joblib import Parallel, delayed >>> r = Parallel(n_jobs=2, verbose=5)(delayed(sleep)(.1) for _ in range(10)) #doctest: +SKIP [Parallel(n_jobs=2)]: Done 1 out of 10 | elapsed: 0.1s remaining: 0.9s [Parallel(n_jobs=2)]: Done 3 out of 10 | elapsed: 0.2s remaining: 0.5s [Parallel(n_jobs=2)]: Done 6 out of 10 | elapsed: 0.3s remaining: 0.2s [Parallel(n_jobs=2)]: Done 9 out of 10 | elapsed: 0.5s remaining: 0.1s [Parallel(n_jobs=2)]: Done 10 out of 10 | elapsed: 0.5s finished Traceback example, note how the line of the error is indicated as well as the values of the parameter passed to the function that triggered the exception, even though the traceback happens in the child process:: >>> from heapq import nlargest >>> from sklearn.externals.joblib import Parallel, delayed >>> Parallel(n_jobs=2)(delayed(nlargest)(2, n) for n in (range(4), 'abcde', 3)) #doctest: +SKIP #... --------------------------------------------------------------------------- Sub-process traceback: --------------------------------------------------------------------------- TypeError Mon Nov 12 11:37:46 2012 PID: 12934 Python 2.7.3: /usr/bin/python ........................................................................... /usr/lib/python2.7/heapq.pyc in nlargest(n=2, iterable=3, key=None) 419 if n >= size: 420 return sorted(iterable, key=key, reverse=True)[:n] 421 422 # When key is none, use simpler decoration 423 if key is None: --> 424 it = izip(iterable, count(0,-1)) # decorate 425 result = _nlargest(n, it) 426 return map(itemgetter(0), result) # undecorate 427 428 # General case, slowest method TypeError: izip argument #1 must support iteration ___________________________________________________________________________ Using pre_dispatch in a producer/consumer situation, where the data is generated on the fly. Note how the producer is first called a 3 times before the parallel loop is initiated, and then called to generate new data on the fly. In this case the total number of iterations cannot be reported in the progress messages:: >>> from math import sqrt >>> from sklearn.externals.joblib import Parallel, delayed >>> def producer(): ... for i in range(6): ... print('Produced %s' % i) ... yield i >>> out = Parallel(n_jobs=2, verbose=100, pre_dispatch='1.5*n_jobs')( ... delayed(sqrt)(i) for i in producer()) #doctest: +SKIP Produced 0 Produced 1 Produced 2 [Parallel(n_jobs=2)]: Done 1 jobs | elapsed: 0.0s Produced 3 [Parallel(n_jobs=2)]: Done 2 jobs | elapsed: 0.0s Produced 4 [Parallel(n_jobs=2)]: Done 3 jobs | elapsed: 0.0s Produced 5 [Parallel(n_jobs=2)]: Done 4 jobs | elapsed: 0.0s [Parallel(n_jobs=2)]: Done 5 out of 6 | elapsed: 0.0s remaining: 0.0s [Parallel(n_jobs=2)]: Done 6 out of 6 | elapsed: 0.0s finished ''' def __init__(self, n_jobs=1, backend='multiprocessing', verbose=0, pre_dispatch='2 * n_jobs', batch_size='auto', temp_folder=None, max_nbytes='1M', mmap_mode='r'): self.verbose = verbose self._mp_context = None if backend is None: # `backend=None` was supported in 0.8.2 with this effect backend = "multiprocessing" elif hasattr(backend, 'Pool') and hasattr(backend, 'Lock'): # Make it possible to pass a custom multiprocessing context as # backend to change the start method to forkserver or spawn or # preload modules on the forkserver helper process. self._mp_context = backend backend = "multiprocessing" if backend not in VALID_BACKENDS: raise ValueError("Invalid backend: %s, expected one of %r" % (backend, VALID_BACKENDS)) self.backend = backend self.n_jobs = n_jobs if (batch_size == 'auto' or isinstance(batch_size, Integral) and batch_size > 0): self.batch_size = batch_size else: raise ValueError( "batch_size must be 'auto' or a positive integer, got: %r" % batch_size) self.pre_dispatch = pre_dispatch self._temp_folder = temp_folder if isinstance(max_nbytes, _basestring): self._max_nbytes = 1024 * memstr_to_kbytes(max_nbytes) else: self._max_nbytes = max_nbytes self._mmap_mode = mmap_mode # Not starting the pool in the __init__ is a design decision, to be # able to close it ASAP, and not burden the user with closing it # unless they choose to use the context manager API with a with block. self._pool = None self._output = None self._jobs = list() self._managed_pool = False # This lock is used coordinate the main thread of this process with # the async callback thread of our the pool. self._lock = threading.Lock() def __enter__(self): self._managed_pool = True self._initialize_pool() return self def __exit__(self, exc_type, exc_value, traceback): self._terminate_pool() self._managed_pool = False def _effective_n_jobs(self): n_jobs = self.n_jobs if n_jobs == 0: raise ValueError('n_jobs == 0 in Parallel has no meaning') elif mp is None or n_jobs is None: # multiprocessing is not available or disabled, fallback # to sequential mode return 1 elif n_jobs < 0: n_jobs = max(mp.cpu_count() + 1 + n_jobs, 1) return n_jobs def _initialize_pool(self): """Build a process or thread pool and return the number of workers""" n_jobs = self._effective_n_jobs() # The list of exceptions that we will capture self.exceptions = [TransportableException] if n_jobs == 1: # Sequential mode: do not use a pool instance to avoid any # useless dispatching overhead self._pool = None elif self.backend == 'threading': self._pool = ThreadPool(n_jobs) elif self.backend == 'multiprocessing': if mp.current_process().daemon: # Daemonic processes cannot have children self._pool = None warnings.warn( 'Multiprocessing-backed parallel loops cannot be nested,' ' setting n_jobs=1', stacklevel=3) return 1 elif threading.current_thread().name != 'MainThread': # Prevent posix fork inside in non-main posix threads self._pool = None warnings.warn( 'Multiprocessing backed parallel loops cannot be nested' ' below threads, setting n_jobs=1', stacklevel=3) return 1 else: already_forked = int(os.environ.get(JOBLIB_SPAWNED_PROCESS, 0)) if already_forked: raise ImportError('[joblib] Attempting to do parallel computing ' 'without protecting your import on a system that does ' 'not support forking. To use parallel-computing in a ' 'script, you must protect your main loop using "if ' "__name__ == '__main__'" '". Please see the joblib documentation on Parallel ' 'for more information' ) # Set an environment variable to avoid infinite loops os.environ[JOBLIB_SPAWNED_PROCESS] = '1' # Make sure to free as much memory as possible before forking gc.collect() poolargs = dict( max_nbytes=self._max_nbytes, mmap_mode=self._mmap_mode, temp_folder=self._temp_folder, verbose=max(0, self.verbose - 50), context_id=0, # the pool is used only for one call ) if self._mp_context is not None: # Use Python 3.4+ multiprocessing context isolation poolargs['context'] = self._mp_context self._pool = MemmapingPool(n_jobs, **poolargs) # We are using multiprocessing, we also want to capture # KeyboardInterrupts self.exceptions.extend([KeyboardInterrupt, WorkerInterrupt]) else: raise ValueError("Unsupported backend: %s" % self.backend) return n_jobs def _terminate_pool(self): if self._pool is not None: self._pool.close() self._pool.terminate() # terminate does a join() self._pool = None if self.backend == 'multiprocessing': os.environ.pop(JOBLIB_SPAWNED_PROCESS, 0) def _dispatch(self, batch): """Queue the batch for computing, with or without multiprocessing WARNING: this method is not thread-safe: it should be only called indirectly via dispatch_one_batch. """ # If job.get() catches an exception, it closes the queue: if self._aborting: return if self._pool is None: job = ImmediateComputeBatch(batch) self._jobs.append(job) self.n_dispatched_batches += 1 self.n_dispatched_tasks += len(batch) self.n_completed_tasks += len(batch) if not _verbosity_filter(self.n_dispatched_batches, self.verbose): self._print('Done %3i tasks | elapsed: %s', (self.n_completed_tasks, short_format_time(time.time() - self._start_time) )) else: dispatch_timestamp = time.time() cb = BatchCompletionCallBack(dispatch_timestamp, len(batch), self) job = self._pool.apply_async(SafeFunction(batch), callback=cb) self._jobs.append(job) self.n_dispatched_tasks += len(batch) self.n_dispatched_batches += 1 def dispatch_next(self): """Dispatch more data for parallel processing This method is meant to be called concurrently by the multiprocessing callback. We rely on the thread-safety of dispatch_one_batch to protect against concurrent consumption of the unprotected iterator. """ if not self.dispatch_one_batch(self._original_iterator): self._iterating = False self._original_iterator = None def dispatch_one_batch(self, iterator): """Prefetch the tasks for the next batch and dispatch them. The effective size of the batch is computed here. If there are no more jobs to dispatch, return False, else return True. The iterator consumption and dispatching is protected by the same lock so calling this function should be thread safe. """ if self.batch_size == 'auto' and self.backend == 'threading': # Batching is never beneficial with the threading backend batch_size = 1 elif self.batch_size == 'auto': old_batch_size = self._effective_batch_size batch_duration = self._smoothed_batch_duration if (batch_duration > 0 and batch_duration < MIN_IDEAL_BATCH_DURATION): # The current batch size is too small: the duration of the # processing of a batch of task is not large enough to hide # the scheduling overhead. ideal_batch_size = int( old_batch_size * MIN_IDEAL_BATCH_DURATION / batch_duration) # Multiply by two to limit oscilations between min and max. batch_size = max(2 * ideal_batch_size, 1) self._effective_batch_size = batch_size if self.verbose >= 10: self._print("Batch computation too fast (%.4fs.) " "Setting batch_size=%d.", ( batch_duration, batch_size)) elif (batch_duration > MAX_IDEAL_BATCH_DURATION and old_batch_size >= 2): # The current batch size is too big. If we schedule overly long # running batches some CPUs might wait with nothing left to do # while a couple of CPUs a left processing a few long running # batches. Better reduce the batch size a bit to limit the # likelihood of scheduling such stragglers. self._effective_batch_size = batch_size = old_batch_size // 2 if self.verbose >= 10: self._print("Batch computation too slow (%.2fs.) " "Setting batch_size=%d.", ( batch_duration, batch_size)) else: # No batch size adjustment batch_size = old_batch_size if batch_size != old_batch_size: # Reset estimation of the smoothed mean batch duration: this # estimate is updated in the multiprocessing apply_async # CallBack as long as the batch_size is constant. Therefore # we need to reset the estimate whenever we re-tune the batch # size. self._smoothed_batch_duration = 0 else: # Fixed batch size strategy batch_size = self.batch_size with self._lock: tasks = BatchedCalls(itertools.islice(iterator, batch_size)) if not tasks: # No more tasks available in the iterator: tell caller to stop. return False else: self._dispatch(tasks) return True def _print(self, msg, msg_args): """Display the message on stout or stderr depending on verbosity""" # XXX: Not using the logger framework: need to # learn to use logger better. if not self.verbose: return if self.verbose < 50: writer = sys.stderr.write else: writer = sys.stdout.write msg = msg % msg_args writer('[%s]: %s\n' % (self, msg)) def print_progress(self): """Display the process of the parallel execution only a fraction of time, controlled by self.verbose. """ if not self.verbose: return elapsed_time = time.time() - self._start_time # This is heuristic code to print only 'verbose' times a messages # The challenge is that we may not know the queue length if self._original_iterator: if _verbosity_filter(self.n_dispatched_batches, self.verbose): return self._print('Done %3i tasks | elapsed: %s', (self.n_completed_tasks, short_format_time(elapsed_time), )) else: index = self.n_dispatched_batches # We are finished dispatching total_tasks = self.n_dispatched_tasks # We always display the first loop if not index == 0: # Display depending on the number of remaining items # A message as soon as we finish dispatching, cursor is 0 cursor = (total_tasks - index + 1 - self._pre_dispatch_amount) frequency = (total_tasks // self.verbose) + 1 is_last_item = (index + 1 == total_tasks) if (is_last_item or cursor % frequency): return remaining_time = (elapsed_time / (index + 1) * (self.n_dispatched_tasks - index - 1.)) self._print('Done %3i out of %3i | elapsed: %s remaining: %s', (index + 1, total_tasks, short_format_time(elapsed_time), short_format_time(remaining_time), )) def retrieve(self): self._output = list() while self._iterating or len(self._jobs) > 0: if len(self._jobs) == 0: # Wait for an async callback to dispatch new jobs time.sleep(0.01) continue # We need to be careful: the job list can be filling up as # we empty it and Python list are not thread-safe by default hence # the use of the lock with self._lock: job = self._jobs.pop(0) try: self._output.extend(job.get()) except tuple(self.exceptions) as exception: # Stop dispatching any new job in the async callback thread self._aborting = True if isinstance(exception, TransportableException): # Capture exception to add information on the local # stack in addition to the distant stack this_report = format_outer_frames(context=10, stack_start=1) report = """Multiprocessing exception: %s --------------------------------------------------------------------------- Sub-process traceback: --------------------------------------------------------------------------- %s""" % (this_report, exception.message) # Convert this to a JoblibException exception_type = _mk_exception(exception.etype)[0] exception = exception_type(report) # Kill remaining running processes without waiting for # the results as we will raise the exception we got back # to the caller instead of returning any result. with self._lock: self._terminate_pool() if self._managed_pool: # In case we had to terminate a managed pool, let # us start a new one to ensure that subsequent calls # to __call__ on the same Parallel instance will get # a working pool as they expect. self._initialize_pool() raise exception def __call__(self, iterable): if self._jobs: raise ValueError('This Parallel instance is already running') # A flag used to abort the dispatching of jobs in case an # exception is found self._aborting = False if not self._managed_pool: n_jobs = self._initialize_pool() else: n_jobs = self._effective_n_jobs() if self.batch_size == 'auto': self._effective_batch_size = 1 iterator = iter(iterable) pre_dispatch = self.pre_dispatch if pre_dispatch == 'all' or n_jobs == 1: # prevent further dispatch via multiprocessing callback thread self._original_iterator = None self._pre_dispatch_amount = 0 else: self._original_iterator = iterator if hasattr(pre_dispatch, 'endswith'): pre_dispatch = eval(pre_dispatch) self._pre_dispatch_amount = pre_dispatch = int(pre_dispatch) # The main thread will consume the first pre_dispatch items and # the remaining items will later be lazily dispatched by async # callbacks upon task completions. iterator = itertools.islice(iterator, pre_dispatch) self._start_time = time.time() self.n_dispatched_batches = 0 self.n_dispatched_tasks = 0 self.n_completed_tasks = 0 self._smoothed_batch_duration = 0.0 try: self._iterating = True while self.dispatch_one_batch(iterator): pass if pre_dispatch == "all" or n_jobs == 1: # The iterable was consumed all at once by the above for loop. # No need to wait for async callbacks to trigger to # consumption. self._iterating = False self.retrieve() # Make sure that we get a last message telling us we are done elapsed_time = time.time() - self._start_time self._print('Done %3i out of %3i | elapsed: %s finished', (len(self._output), len(self._output), short_format_time(elapsed_time))) finally: if not self._managed_pool: self._terminate_pool() self._jobs = list() output = self._output self._output = None return output def __repr__(self): return '%s(n_jobs=%s)' % (self.__class__.__name__, self.n_jobs)
bsd-3-clause
AnasGhrab/scikit-learn
sklearn/kernel_ridge.py
155
6545
"""Module :mod:`sklearn.kernel_ridge` implements kernel ridge regression.""" # Authors: Mathieu Blondel <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD 3 clause import numpy as np from .base import BaseEstimator, RegressorMixin from .metrics.pairwise import pairwise_kernels from .linear_model.ridge import _solve_cholesky_kernel from .utils import check_X_y from .utils.validation import check_is_fitted class KernelRidge(BaseEstimator, RegressorMixin): """Kernel ridge regression. Kernel ridge regression (KRR) combines ridge regression (linear least squares with l2-norm regularization) with the kernel trick. It thus learns a linear function in the space induced by the respective kernel and the data. For non-linear kernels, this corresponds to a non-linear function in the original space. The form of the model learned by KRR is identical to support vector regression (SVR). However, different loss functions are used: KRR uses squared error loss while support vector regression uses epsilon-insensitive loss, both combined with l2 regularization. In contrast to SVR, fitting a KRR model can be done in closed-form and is typically faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower than SVR, which learns a sparse model for epsilon > 0, at prediction-time. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]). Read more in the :ref:`User Guide <kernel_ridge>`. Parameters ---------- alpha : {float, array-like}, shape = [n_targets] Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. kernel : string or callable, default="linear" Kernel mapping used internally. A callable should accept two arguments and the keyword arguments passed to this object as kernel_params, and should return a floating point number. gamma : float, default=None Gamma parameter for the RBF, polynomial, exponential chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; see the documentation for sklearn.metrics.pairwise. Ignored by other kernels. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. kernel_params : mapping of string to any, optional Additional parameters (keyword arguments) for kernel function passed as callable object. Attributes ---------- dual_coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s) in kernel space X_fit_ : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data, which is also required for prediction References ---------- * Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press chapter 14.4.3, pp. 492-493 See also -------- Ridge Linear ridge regression. SVR Support Vector Regression implemented using libsvm. Examples -------- >>> from sklearn.kernel_ridge import KernelRidge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> rng = np.random.RandomState(0) >>> y = rng.randn(n_samples) >>> X = rng.randn(n_samples, n_features) >>> clf = KernelRidge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE KernelRidge(alpha=1.0, coef0=1, degree=3, gamma=None, kernel='linear', kernel_params=None) """ def __init__(self, alpha=1, kernel="linear", gamma=None, degree=3, coef0=1, kernel_params=None): self.alpha = alpha self.kernel = kernel self.gamma = gamma self.degree = degree self.coef0 = coef0 self.kernel_params = kernel_params def _get_kernel(self, X, Y=None): if callable(self.kernel): params = self.kernel_params or {} else: params = {"gamma": self.gamma, "degree": self.degree, "coef0": self.coef0} return pairwise_kernels(X, Y, metric=self.kernel, filter_params=True, **params) @property def _pairwise(self): return self.kernel == "precomputed" def fit(self, X, y=None, sample_weight=None): """Fit Kernel Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample, ignored if None is passed. Returns ------- self : returns an instance of self. """ # Convert data X, y = check_X_y(X, y, accept_sparse=("csr", "csc"), multi_output=True, y_numeric=True) K = self._get_kernel(X) alpha = np.atleast_1d(self.alpha) ravel = False if len(y.shape) == 1: y = y.reshape(-1, 1) ravel = True copy = self.kernel == "precomputed" self.dual_coef_ = _solve_cholesky_kernel(K, y, alpha, sample_weight, copy) if ravel: self.dual_coef_ = self.dual_coef_.ravel() self.X_fit_ = X return self def predict(self, X): """Predict using the the kernel ridge model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Samples. Returns ------- C : array, shape = [n_samples] or [n_samples, n_targets] Returns predicted values. """ check_is_fitted(self, ["X_fit_", "dual_coef_"]) K = self._get_kernel(X, self.X_fit_) return np.dot(K, self.dual_coef_)
bsd-3-clause
NMTHydro/Recharge
utils/ascii_file_plotter_vers_2.py
1
7569
# =============================================================================== # Copyright 2018 gabe-parrish # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= standard library imports ======================== import os import numpy as np import matplotlib.pyplot as plt import pandas as pd # ============= local library imports =========================== def parse_file(path, first_col, num_cols): """ :param path: :return: """ # initialize dicts and lists.... ascii_unformatted_dict = {} good_lines = [] ascii_dict = {} with open(path, 'r') as readfile: for line in readfile: # print "line ->{}".format(line) # kill the spaces, make a list, check by the length of the list. line_lst = line.split(" ") # print "line list -> {}".format(line_lst) #kill spaces space_free = list(filter(lambda a: a != '', line_lst)) # print "space free! -> {}".format(space_free) if len(space_free) == num_cols and space_free[0] != first_col: # print "spacefree in loop", space_free goodln = space_free # Turn the lines into floats... bestln = [float(i) for i in goodln] # ascii_unformatted_dict['good_lines'].append(bestln) good_lines.append(bestln) # print "the full goodlines list of lists \n", good_lines # put column numbers in a list rng_list = [] for i in range(num_cols): # print "eye", i+1 rng_list.append(i+1) # add empty lists to ascii_dict to append to later... for i in rng_list: ascii_dict["{}".format(i)] = [] # use zip() to pull the correct list item from each line of the ascii into the correct column heading set up in... # ...the ascii_dict for lst in good_lines: for h, val in zip(rng_list, lst): # print "h", h # print "val", val ascii_dict["{}".format(h)].append(val) # print "new ascii dict {}".format(ascii_dict) return ascii_dict def plotter(x, y): """ :param x: your dependent variable :param y: your independent variable :return: """ # todo - make little gridlines # create a variable for ideal ndvi ndvi = x ideal_etrf = [] for i in ndvi: if i >= 0.8: ideal_etrf.append(1) elif i < 0.8: ideal_etrf.append(i * 1.25) # turn your x and y into numpy arrays x = np.array(x) y = np.array(y) ideal_etrf = np.array(ideal_etrf) ETrF_vs_NDVI = plt.figure() aa = ETrF_vs_NDVI.add_subplot(111) aa.set_title('ETrF vs NDVI', fontweight='bold') aa.set_xlabel('NDVI', style='italic') aa.set_ylabel('ETrF', style='italic') aa.scatter(x, y, facecolors='none', edgecolors='blue') aa.scatter(x, ideal_etrf, facecolors='none', edgecolors='red') plt.minorticks_on() # aa.grid(b=True, which='major', color='k') aa.grid(b=True, which='minor', color='white') plt.tight_layout() # TODO - UNCOMMENT AND CHANGE THE PATH TO SAVE THE FIGURE AS A PDF TO A GIVEN LOCATION. # plt.savefig( # "/Volumes/SeagateExpansionDrive/jan_metric_PHX_GR/green_river_stack/stack_output/20150728_ETrF_NDVI_gr.pdf") plt.show() def simple_plot(x,y): """""" # turn your x and y into numpy arrays x = np.array(x) y = np.array(y) plt.scatter(x, y) plt.show() def df_filter(df, good_codes, code_col): """ :param df: pandas dataframe :param good_codes: is a list of ints of desirable codes :param code_col: is a string that indicates which col of dataframe your codes are in :return: filtered dataframe w only rows that contain good codes. """ # for code in good_codes: # # df = df[df[code_col] != code] # # print "filtered df {}".format(df) # # return df code = df[code_col] # print "CODE\n", code for i in code: if i not in good_codes: df = df[df[code_col] != i] return df def run_ascii(): """ JAN START HERE - G Reads in an ascii file from erdas, parses the information and stores it as a numpy array for plotting. :return: """ # TODO - CHANGE FOR EVERY NEW ASCII # Here's the path to a particular ascii file to start out. path = "/Users/Gabe/Desktop/hard_drive_overflow/lt50330372008128pac01_etrf_ndvi_alb_lst_bqa_nad83.asc" # Give the parser the string of the first column header so that the parsing can be done corectly first_col = "X" # TODO- CHANGE EVERY TIME YOU CHANGE THE NUMBER OF COLUMNS IN THE ASCII # Give the parser the number of cols num_cols = 7 # changed in function from the last version...... parsed_dict = parse_file(path, first_col, num_cols) # output the parsed_dict to a csv file and then proceed to filter the csv file for undesirable values... # first we turn the dictionary into a dataframe... # build the list of columns for dataframe conversion colums = [] for key in parsed_dict.keys(): colums.append(key) df = pd.DataFrame(parsed_dict, columns=colums) # TODO - CHANGE THE OUTPUT PATH/filename FOR YOUR SYSTEM FOR THE UNFILTERED FILE # put the unfiltered dataframe out to a .csv in a location of our choice filename = "landsat" # what do you want the files name to be? output_path = "/Users/Gabe/Desktop" # TODO - CHANGE header = True and index = True if you want headers or indices in the .csv df.to_csv("{}/unfiltered_{}.csv".format(output_path, filename), header=False, index=False) # Now, filter the data: # TODO - FILL this list with codes that you want to KEEP desirable_codes = [672, 676, 680, 684] # TODO - CHANGE THE CODE COL IF FOR WHATEVER REASON THE COLUMN WITH THE CODES CHANGES LOCATION IN THE ASCII FILE. code_col = '7' df = df_filter(df, desirable_codes, code_col) print "The Filtered Dataframe {}".format(df) # TODO - CHANGE header = True and index = True if you want headers or indices in the .csv df.to_csv("{}/filtered_{}.csv".format(output_path, filename), header=False, index=False) # TODO - CHANGE IF YOU WANT TO PLOT SOMETHING DIFFERENT # Note that you will need to know which column in the ascii file your variable was in order to plot it here. # what two variables do you want to plot? # in this we're plotting columns three and four... # Since we did df_filter() on the dataframe all we plot here are values that correspond to desirable codes... x = df['3'] y = df['4'] # TODO - LEAVE THIS UNCOMMENTED FOR PLOTS OF NDVI AND ETRF # this plotter function is customized for NDVI vs ETRF plotting plotter(x, y) # TODO - UNCOMMENT THESE LINES IF YOU ARENT PLOTTING ETRF AND NDVI AGAINST EACH OTHER # # for a simple x, y plot use # simple_plot(x, y) if __name__ == "__main__": run_ascii()
apache-2.0
marcsans/cnn-physics-perception
phy/lib/python2.7/site-packages/matplotlib/backends/backend_cocoaagg.py
8
10027
""" backend_cocoaagg.py A native Cocoa backend via PyObjC in OSX. Author: Charles Moad ([email protected]) Notes: - Requires PyObjC (currently testing v1.3.7) - The Tk backend works nicely on OSX. This code primarily serves as an example of embedding a matplotlib rendering context into a cocoa app using a NSImageView. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six from matplotlib.externals.six.moves import xrange import os, sys try: import objc except ImportError: raise ImportError('The CococaAgg backend required PyObjC to be installed!') from Foundation import * from AppKit import * from PyObjCTools import NibClassBuilder, AppHelper from matplotlib import cbook cbook.warn_deprecated( '1.3', message="The CocoaAgg backend is not a fully-functioning backend. " "It may be removed in matplotlib 1.4.") import matplotlib from matplotlib.figure import Figure from matplotlib.backend_bases import FigureManagerBase, FigureCanvasBase from matplotlib.backend_bases import ShowBase from .backend_agg import FigureCanvasAgg from matplotlib._pylab_helpers import Gcf mplBundle = NSBundle.bundleWithPath_(os.path.dirname(__file__)) def new_figure_manager(num, *args, **kwargs): FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass( *args, **kwargs ) return new_figure_manager_given_figure(num, thisFig) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ canvas = FigureCanvasCocoaAgg(figure) return FigureManagerCocoaAgg(canvas, num) ## Below is the original show() function: #def show(): # for manager in Gcf.get_all_fig_managers(): # manager.show() # ## It appears that this backend is unusual in having a separate ## run function invoked for each figure, instead of a single ## mainloop. Presumably there is no blocking at all. ## ## Using the Show class below should cause no difference in ## behavior. class Show(ShowBase): def mainloop(self): pass show = Show() def draw_if_interactive(): if matplotlib.is_interactive(): figManager = Gcf.get_active() if figManager is not None: figManager.show() class FigureCanvasCocoaAgg(FigureCanvasAgg): def draw(self): FigureCanvasAgg.draw(self) def blit(self, bbox): pass def start_event_loop(self,timeout): FigureCanvasBase.start_event_loop_default(self,timeout) start_event_loop.__doc__=FigureCanvasBase.start_event_loop_default.__doc__ def stop_event_loop(self): FigureCanvasBase.stop_event_loop_default(self) stop_event_loop.__doc__=FigureCanvasBase.stop_event_loop_default.__doc__ NibClassBuilder.extractClasses('Matplotlib.nib', mplBundle) class MatplotlibController(NibClassBuilder.AutoBaseClass): # available outlets: # NSWindow plotWindow # PlotView plotView def awakeFromNib(self): # Get a reference to the active canvas NSApp().setDelegate_(self) self.app = NSApp() self.canvas = Gcf.get_active().canvas self.plotView.canvas = self.canvas self.canvas.plotView = self.plotView self.plotWindow.setAcceptsMouseMovedEvents_(True) self.plotWindow.makeKeyAndOrderFront_(self) self.plotWindow.setDelegate_(self)#.plotView) self.plotView.setImageFrameStyle_(NSImageFrameGroove) self.plotView.image_ = NSImage.alloc().initWithSize_((0,0)) self.plotView.setImage_(self.plotView.image_) # Make imageview first responder for key events self.plotWindow.makeFirstResponder_(self.plotView) # Force the first update self.plotView.windowDidResize_(self) def windowDidResize_(self, sender): self.plotView.windowDidResize_(sender) def windowShouldClose_(self, sender): #NSApplication.sharedApplication().stop_(self) self.app.stop_(self) return objc.YES def saveFigure_(self, sender): p = NSSavePanel.savePanel() if(p.runModal() == NSFileHandlingPanelOKButton): self.canvas.print_figure(p.filename()) def printFigure_(self, sender): op = NSPrintOperation.printOperationWithView_(self.plotView) op.runOperation() class PlotWindow(NibClassBuilder.AutoBaseClass): pass class PlotView(NibClassBuilder.AutoBaseClass): def updatePlot(self): w,h = self.canvas.get_width_height() # Remove all previous images for i in xrange(self.image_.representations().count()): self.image_.removeRepresentation_(self.image_.representations().objectAtIndex_(i)) self.image_.setSize_((w,h)) brep = NSBitmapImageRep.alloc().initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bytesPerRow_bitsPerPixel_( (self.canvas.buffer_rgba(),'','','',''), # Image data w, # width h, # height 8, # bits per pixel 4, # components per pixel True, # has alpha? False, # is planar? NSCalibratedRGBColorSpace, # color space w*4, # row bytes 32) # bits per pixel self.image_.addRepresentation_(brep) self.setNeedsDisplay_(True) def windowDidResize_(self, sender): w,h = self.bounds().size dpi = self.canvas.figure.dpi self.canvas.figure.set_size_inches(w / dpi, h / dpi) self.canvas.draw() self.updatePlot() def mouseDown_(self, event): dblclick = (event.clickCount() == 2) loc = self.convertPoint_fromView_(event.locationInWindow(), None) type = event.type() if (type == NSLeftMouseDown): button = 1 else: print('Unknown mouse event type:', type, file=sys.stderr) button = -1 self.canvas.button_press_event(loc.x, loc.y, button, dblclick=dblclick) self.updatePlot() def mouseDragged_(self, event): loc = self.convertPoint_fromView_(event.locationInWindow(), None) self.canvas.motion_notify_event(loc.x, loc.y) self.updatePlot() def mouseUp_(self, event): loc = self.convertPoint_fromView_(event.locationInWindow(), None) type = event.type() if (type == NSLeftMouseUp): button = 1 else: print('Unknown mouse event type:', type, file=sys.stderr) button = -1 self.canvas.button_release_event(loc.x, loc.y, button) self.updatePlot() def keyDown_(self, event): self.canvas.key_press_event(event.characters()) self.updatePlot() def keyUp_(self, event): self.canvas.key_release_event(event.characters()) self.updatePlot() class MPLBootstrap(NSObject): # Loads the nib containing the PlotWindow and PlotView def startWithBundle_(self, bundle): #NSApplicationLoad() if not bundle.loadNibFile_externalNameTable_withZone_('Matplotlib.nib', {}, None): print('Unable to load Matplotlib Cocoa UI!', file=sys.stderr) sys.exit() class FigureManagerCocoaAgg(FigureManagerBase): def __init__(self, canvas, num): FigureManagerBase.__init__(self, canvas, num) try: WMEnable('Matplotlib') except: # MULTIPLE FIGURES ARE BUGGY! pass # If there are multiple figures we only need to enable once #self.bootstrap = MPLBootstrap.alloc().init().performSelectorOnMainThread_withObject_waitUntilDone_( # 'startWithBundle:', # mplBundle, # False) def show(self): # Load a new PlotWindow self.bootstrap = MPLBootstrap.alloc().init().performSelectorOnMainThread_withObject_waitUntilDone_( 'startWithBundle:', mplBundle, False) NSApplication.sharedApplication().run() #### Everything below taken from PyObjC examples #### This is a hack to allow python scripts to access #### the window manager without running pythonw. def S(*args): return ''.join(args) OSErr = objc._C_SHT OUTPSN = 'o^{ProcessSerialNumber=LL}' INPSN = 'n^{ProcessSerialNumber=LL}' FUNCTIONS=[ # These two are public API ( 'GetCurrentProcess', S(OSErr, OUTPSN) ), ( 'SetFrontProcess', S(OSErr, INPSN) ), # This is undocumented SPI ( 'CPSSetProcessName', S(OSErr, INPSN, objc._C_CHARPTR) ), ( 'CPSEnableForegroundOperation', S(OSErr, INPSN) ), ] def WMEnable(name='Python'): if isinstance(name, six.text_type): name = name.encode('utf8') mainBundle = NSBundle.mainBundle() bPath = os.path.split(os.path.split(os.path.split(sys.executable)[0])[0])[0] if mainBundle.bundlePath() == bPath: return True bndl = NSBundle.bundleWithPath_(objc.pathForFramework('/System/Library/Frameworks/ApplicationServices.framework')) if bndl is None: print('ApplicationServices missing', file=sys.stderr) return False d = {} objc.loadBundleFunctions(bndl, d, FUNCTIONS) for (fn, sig) in FUNCTIONS: if fn not in d: print('Missing', fn, file=sys.stderr) return False err, psn = d['GetCurrentProcess']() if err: print('GetCurrentProcess', (err, psn), file=sys.stderr) return False err = d['CPSSetProcessName'](psn, name) if err: print('CPSSetProcessName', (err, psn), file=sys.stderr) return False err = d['CPSEnableForegroundOperation'](psn) if err: #print >>sys.stderr, 'CPSEnableForegroundOperation', (err, psn) return False err = d['SetFrontProcess'](psn) if err: print('SetFrontProcess', (err, psn), file=sys.stderr) return False return True FigureCanvas = FigureCanvasCocoaAgg FigureManager = FigureManagerCocoaAgg
mit
dwillmer/fastats
tests/linear_algebra/test_qr.py
2
3368
from unittest import TestCase import numpy as np from numpy.testing import assert_allclose from pytest import mark from fastats.core.ast_transforms.convert_to_jit import convert_to_jit from fastats.linear_algebra import qr, qr_classical_gram_schmidt from fastats.scaling.scaling import standard from tests.data.datasets import SKLearnDataSets qr_jit = convert_to_jit(qr) qr_classical_gram_schmidt_jit = convert_to_jit(qr_classical_gram_schmidt) class QRTestMixin: @staticmethod def assert_orthonormal(Q): n = Q.shape[1] assert_allclose(Q.T @ Q, np.eye(n), atol=1e-10) @staticmethod def check_versus_expectations(Q, Q_expected, R, R_expected, A): assert_allclose(Q, Q_expected) assert_allclose(R, R_expected) assert_allclose(Q @ R, A) def test_ucla_4x3(self): """ QR decomposition of a 4x3 matrix, taken from literature directory 'ucla_qr_factorization.pdf': """ A = np.array([[-1, -1, 1], [1, 3, 3], [-1, -1, 5], [1, 3, 7]]) Q_expected = np.array([[-0.5, 0.5, -0.5], [0.5, 0.5, -0.5], [-0.5, 0.5, 0.5], [0.5, 0.5, 0.5]]) R_expected = np.array([[2, 4, 2], [0, 2, 8], [0, 0, 4]]) Q, R = self.fn(A) self.check_versus_expectations(Q, Q_expected, R, R_expected, A) self.assert_orthonormal(Q) def test_wikipedia_3x3(self): """ QR decomposition of a 3x3 matrix, per the following: https://en.wikipedia.org/wiki/QR_decomposition """ A = np.array([[12, -51, 4], [6, 167, -68], [-4, 24, -41]]) Q_expected = np.array([[6/7, -69/175, -58/175], [3/7, 158/175, 6/175], [-2/7, 6/35, -33/35]]) R_expected = np.array([[14, 21, -14], [0, 175, -70], [0, 0, 35]]) Q, R = self.fn(A) self.check_versus_expectations(Q, Q_expected, R, R_expected, A) self.assert_orthonormal(Q) class QRTests(QRTestMixin, TestCase): def setUp(self): self.fn = qr class QRClassicalGSTests(QRTestMixin, TestCase): def setUp(self): self.fn = qr_classical_gram_schmidt class QRJitTests(QRTestMixin, TestCase): def setUp(self): self.fn = qr_jit class QRClassicalGSJitTests(QRTestMixin, TestCase): def setUp(self): self.fn = qr_classical_gram_schmidt_jit def standardise(Q, R): """ QR decomposition may not be unique; here we chose to enforce positive R diagonals to facilitate comparison of solutions """ D = np.diag(np.sign(np.diag(R))) return Q @ D, D @ R def check_versus_numpy(A, fn): Q_expected, R_expected = standardise(*np.linalg.qr(A)) Q, R = standardise(*fn(A)) assert_allclose(Q, Q_expected) assert_allclose(R, R_expected) @mark.parametrize('dataset', SKLearnDataSets) def test_sklearn_dataset(dataset): data = standard(dataset.value) A = data.T @ data check_versus_numpy(A, qr_jit) if __name__ == '__main__': import pytest pytest.main([__file__])
mit
mihirkelkar/BuildingMachineLearningSystemsWithPython
ch09/fft.py
24
3673
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License import sys import os import glob import numpy as np import scipy import scipy.io.wavfile from utils import GENRE_DIR, CHART_DIR import matplotlib.pyplot as plt from matplotlib.ticker import EngFormatter def write_fft(fft_features, fn): """ Write the FFT features to separate files to speed up processing. """ base_fn, ext = os.path.splitext(fn) data_fn = base_fn + ".fft" np.save(data_fn, fft_features) print("Written "%data_fn) def create_fft(fn): sample_rate, X = scipy.io.wavfile.read(fn) fft_features = abs(scipy.fft(X)[:1000]) write_fft(fft_features, fn) def read_fft(genre_list, base_dir=GENRE_DIR): X = [] y = [] for label, genre in enumerate(genre_list): genre_dir = os.path.join(base_dir, genre, "*.fft.npy") file_list = glob.glob(genre_dir) assert(file_list), genre_dir for fn in file_list: fft_features = np.load(fn) X.append(fft_features[:2000]) y.append(label) return np.array(X), np.array(y) def plot_wav_fft(wav_filename, desc=None): plt.clf() plt.figure(num=None, figsize=(6, 4)) sample_rate, X = scipy.io.wavfile.read(wav_filename) spectrum = np.fft.fft(X) freq = np.fft.fftfreq(len(X), 1.0 / sample_rate) plt.subplot(211) num_samples = 200.0 plt.xlim(0, num_samples / sample_rate) plt.xlabel("time [s]") plt.title(desc or wav_filename) plt.plot(np.arange(num_samples) / sample_rate, X[:num_samples]) plt.grid(True) plt.subplot(212) plt.xlim(0, 5000) plt.xlabel("frequency [Hz]") plt.xticks(np.arange(5) * 1000) if desc: desc = desc.strip() fft_desc = desc[0].lower() + desc[1:] else: fft_desc = wav_filename plt.title("FFT of %s" % fft_desc) plt.plot(freq, abs(spectrum), linewidth=5) plt.grid(True) plt.tight_layout() rel_filename = os.path.split(wav_filename)[1] plt.savefig("%s_wav_fft.png" % os.path.splitext(rel_filename)[0], bbox_inches='tight') plt.show() def plot_wav_fft_demo(): plot_wav_fft("sine_a.wav", "400Hz sine wave") plot_wav_fft("sine_b.wav", "3,000Hz sine wave") plot_wav_fft("sine_mix.wav", "Mixed sine wave") def plot_specgram(ax, fn): sample_rate, X = scipy.io.wavfile.read(fn) ax.specgram(X, Fs=sample_rate, xextent=(0, 30)) def plot_specgrams(base_dir=CHART_DIR): """ Plot a bunch of spectrograms of wav files in different genres """ plt.clf() genres = ["classical", "jazz", "country", "pop", "rock", "metal"] num_files = 3 f, axes = plt.subplots(len(genres), num_files) for genre_idx, genre in enumerate(genres): for idx, fn in enumerate(glob.glob(os.path.join(GENRE_DIR, genre, "*.wav"))): if idx == num_files: break axis = axes[genre_idx, idx] axis.yaxis.set_major_formatter(EngFormatter()) axis.set_title("%s song %i" % (genre, idx + 1)) plot_specgram(axis, fn) specgram_file = os.path.join(base_dir, "Spectrogram_Genres.png") plt.savefig(specgram_file, bbox_inches="tight") plt.show() if __name__ == "__main__": # for fn in glob.glob(os.path.join(sys.argv[1], "*.wav")): # create_fft(fn) # plot_decomp() if len(sys.argv) > 1: plot_wav_fft(sys.argv[1], desc="some sample song") else: plot_wav_fft_demo() plot_specgrams()
mit
rgommers/statsmodels
statsmodels/examples/ex_regressionplots.py
34
4457
# -*- coding: utf-8 -*- """Examples for Regression Plots Author: Josef Perktold """ from __future__ import print_function import numpy as np import statsmodels.api as sm import matplotlib.pyplot as plt from statsmodels.sandbox.regression.predstd import wls_prediction_std import statsmodels.graphics.regressionplots as smrp #example from tut.ols with changes #fix a seed for these examples np.random.seed(9876789) # OLS non-linear curve but linear in parameters # --------------------------------------------- nsample = 100 sig = 0.5 x1 = np.linspace(0, 20, nsample) x2 = 5 + 3* np.random.randn(nsample) X = np.c_[x1, x2, np.sin(0.5*x1), (x2-5)**2, np.ones(nsample)] beta = [0.5, 0.5, 1, -0.04, 5.] y_true = np.dot(X, beta) y = y_true + sig * np.random.normal(size=nsample) #estimate only linear function, misspecified because of non-linear terms exog0 = sm.add_constant(np.c_[x1, x2], prepend=False) # plt.figure() # plt.plot(x1, y, 'o', x1, y_true, 'b-') res = sm.OLS(y, exog0).fit() #print res.params #print res.bse plot_old = 0 #True if plot_old: #current bug predict requires call to model.results #print res.model.predict prstd, iv_l, iv_u = wls_prediction_std(res) plt.plot(x1, res.fittedvalues, 'r-o') plt.plot(x1, iv_u, 'r--') plt.plot(x1, iv_l, 'r--') plt.title('blue: true, red: OLS') plt.figure() plt.plot(res.resid, 'o') plt.title('Residuals') fig2 = plt.figure() ax = fig2.add_subplot(2,1,1) #namestr = ' for %s' % self.name if self.name else '' plt.plot(x1, res.resid, 'o') ax.set_title('residuals versus exog')# + namestr) ax = fig2.add_subplot(2,1,2) plt.plot(x2, res.resid, 'o') fig3 = plt.figure() ax = fig3.add_subplot(2,1,1) #namestr = ' for %s' % self.name if self.name else '' plt.plot(x1, res.fittedvalues, 'o') ax.set_title('Fitted values versus exog')# + namestr) ax = fig3.add_subplot(2,1,2) plt.plot(x2, res.fittedvalues, 'o') fig4 = plt.figure() ax = fig4.add_subplot(2,1,1) #namestr = ' for %s' % self.name if self.name else '' plt.plot(x1, res.fittedvalues + res.resid, 'o') ax.set_title('Fitted values plus residuals versus exog')# + namestr) ax = fig4.add_subplot(2,1,2) plt.plot(x2, res.fittedvalues + res.resid, 'o') # see http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/partregr.htm fig5 = plt.figure() ax = fig5.add_subplot(2,1,1) #namestr = ' for %s' % self.name if self.name else '' res1a = sm.OLS(y, exog0[:,[0,2]]).fit() res1b = sm.OLS(x1, exog0[:,[0,2]]).fit() plt.plot(res1b.resid, res1a.resid, 'o') res1c = sm.OLS(res1a.resid, res1b.resid).fit() plt.plot(res1b.resid, res1c.fittedvalues, '-') ax.set_title('Partial Regression plot')# + namestr) ax = fig5.add_subplot(2,1,2) #plt.plot(x2, res.fittedvalues + res.resid, 'o') res2a = sm.OLS(y, exog0[:,[0,1]]).fit() res2b = sm.OLS(x2, exog0[:,[0,1]]).fit() plt.plot(res2b.resid, res2a.resid, 'o') res2c = sm.OLS(res2a.resid, res2b.resid).fit() plt.plot(res2b.resid, res2c.fittedvalues, '-') # see http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/ccpr.htm fig6 = plt.figure() ax = fig6.add_subplot(2,1,1) #namestr = ' for %s' % self.name if self.name else '' x1beta = x1*res.params[1] x2beta = x2*res.params[2] plt.plot(x1, x1beta + res.resid, 'o') plt.plot(x1, x1beta, '-') ax.set_title('X_i beta_i plus residuals versus exog (CCPR)')# + namestr) ax = fig6.add_subplot(2,1,2) plt.plot(x2, x2beta + res.resid, 'o') plt.plot(x2, x2beta, '-') #print res.summary() doplots = 1 if doplots: fig1 = smrp.plot_fit(res, 0, y_true=None) smrp.plot_fit(res, 1, y_true=None) smrp.plot_partregress_grid(res, exog_idx=[0,1]) smrp.plot_regress_exog(res, exog_idx=0) smrp.plot_ccpr(res, exog_idx=0) smrp.plot_ccpr_grid(res, exog_idx=[0,1]) from statsmodels.graphics.tests.test_regressionplots import TestPlot tp = TestPlot() tp.test_plot_fit() fig1 = smrp.plot_partregress_grid(res, exog_idx=[0,1]) #add lowess ax = fig1.axes[0] y0 = ax.get_lines()[0]._y x0 = ax.get_lines()[0]._x lres = sm.nonparametric.lowess(y0, x0, frac=0.2) ax.plot(lres[:,0], lres[:,1], 'r', lw=1.5) ax = fig1.axes[1] y0 = ax.get_lines()[0]._y x0 = ax.get_lines()[0]._x lres = sm.nonparametric.lowess(y0, x0, frac=0.2) ax.plot(lres[:,0], lres[:,1], 'r', lw=1.5) #plt.show()
bsd-3-clause
lancezlin/ml_template_py
lib/python2.7/site-packages/matplotlib/texmanager.py
8
25543
""" This module supports embedded TeX expressions in matplotlib via dvipng and dvips for the raster and postscript backends. The tex and dvipng/dvips information is cached in ~/.matplotlib/tex.cache for reuse between sessions Requirements: * latex * \*Agg backends: dvipng * PS backend: latex w/ psfrag, dvips, and Ghostscript 8.51 (older versions do not work properly) Backends: * \*Agg * PS * PDF For raster output, you can get RGBA numpy arrays from TeX expressions as follows:: texmanager = TexManager() s = ('\\TeX\\ is Number ' '$\\displaystyle\\sum_{n=1}^\\infty\\frac{-e^{i\pi}}{2^n}$!') Z = self.texmanager.get_rgba(s, size=12, dpi=80, rgb=(1,0,0)) To enable tex rendering of all text in your matplotlib figure, set text.usetex in your matplotlibrc file or include these two lines in your script:: from matplotlib import rc rc('text', usetex=True) """ from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six import copy import glob import os import shutil import sys import warnings from hashlib import md5 import distutils.version import numpy as np import matplotlib as mpl from matplotlib import rcParams from matplotlib._png import read_png from matplotlib.cbook import mkdirs from matplotlib.compat.subprocess import Popen, PIPE, STDOUT import matplotlib.dviread as dviread import re DEBUG = False if sys.platform.startswith('win'): cmd_split = '&' else: cmd_split = ';' def dvipng_hack_alpha(): try: p = Popen(['dvipng', '-version'], stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=(sys.platform != 'win32')) stdout, stderr = p.communicate() except OSError: mpl.verbose.report('No dvipng was found', 'helpful') return False lines = stdout.decode(sys.getdefaultencoding()).split('\n') for line in lines: if line.startswith('dvipng '): version = line.split()[-1] mpl.verbose.report('Found dvipng version %s' % version, 'helpful') version = distutils.version.LooseVersion(version) return version < distutils.version.LooseVersion('1.6') mpl.verbose.report('Unexpected response from dvipng -version', 'helpful') return False class TexManager(object): """ Convert strings to dvi files using TeX, caching the results to a working dir """ oldpath = mpl.get_home() if oldpath is None: oldpath = mpl.get_data_path() oldcache = os.path.join(oldpath, '.tex.cache') cachedir = mpl.get_cachedir() if cachedir is not None: texcache = os.path.join(cachedir, 'tex.cache') else: # Should only happen in a restricted environment (such as Google App # Engine). Deal with this gracefully by not creating a cache directory. texcache = None if os.path.exists(oldcache): if texcache is not None: try: shutil.move(oldcache, texcache) except IOError as e: warnings.warn('File could not be renamed: %s' % e) else: warnings.warn("""\ Found a TeX cache dir in the deprecated location "%s". Moving it to the new default location "%s".""" % (oldcache, texcache)) else: warnings.warn("""\ Could not rename old TeX cache dir "%s": a suitable configuration directory could not be found.""" % oldcache) if texcache is not None: mkdirs(texcache) _dvipng_hack_alpha = None #_dvipng_hack_alpha = dvipng_hack_alpha() # mappable cache of rgba_arrayd = {} grey_arrayd = {} postscriptd = {} pscnt = 0 serif = ('cmr', '') sans_serif = ('cmss', '') monospace = ('cmtt', '') cursive = ('pzc', '\\usepackage{chancery}') font_family = 'serif' font_families = ('serif', 'sans-serif', 'cursive', 'monospace') font_info = {'new century schoolbook': ('pnc', r'\renewcommand{\rmdefault}{pnc}'), 'bookman': ('pbk', r'\renewcommand{\rmdefault}{pbk}'), 'times': ('ptm', '\\usepackage{mathptmx}'), 'palatino': ('ppl', '\\usepackage{mathpazo}'), 'zapf chancery': ('pzc', '\\usepackage{chancery}'), 'cursive': ('pzc', '\\usepackage{chancery}'), 'charter': ('pch', '\\usepackage{charter}'), 'serif': ('cmr', ''), 'sans-serif': ('cmss', ''), 'helvetica': ('phv', '\\usepackage{helvet}'), 'avant garde': ('pag', '\\usepackage{avant}'), 'courier': ('pcr', '\\usepackage{courier}'), 'monospace': ('cmtt', ''), 'computer modern roman': ('cmr', ''), 'computer modern sans serif': ('cmss', ''), 'computer modern typewriter': ('cmtt', '')} _rc_cache = None _rc_cache_keys = (('text.latex.preamble', ) + tuple(['font.' + n for n in ('family', ) + font_families])) def __init__(self): if self.texcache is None: raise RuntimeError( ('Cannot create TexManager, as there is no cache directory ' 'available')) mkdirs(self.texcache) ff = rcParams['font.family'] if len(ff) == 1 and ff[0].lower() in self.font_families: self.font_family = ff[0].lower() elif isinstance(ff, six.string_types) and ff.lower() in self.font_families: self.font_family = ff.lower() else: mpl.verbose.report( 'font.family must be one of (%s) when text.usetex is True. ' 'serif will be used by default.' % ', '.join(self.font_families), 'helpful') self.font_family = 'serif' fontconfig = [self.font_family] for font_family, font_family_attr in [(ff, ff.replace('-', '_')) for ff in self.font_families]: for font in rcParams['font.' + font_family]: if font.lower() in self.font_info: setattr(self, font_family_attr, self.font_info[font.lower()]) if DEBUG: print('family: %s, font: %s, info: %s' % (font_family, font, self.font_info[font.lower()])) break else: if DEBUG: print('$s font is not compatible with usetex') else: mpl.verbose.report('No LaTeX-compatible font found for the ' '%s font family in rcParams. Using ' 'default.' % ff, 'helpful') setattr(self, font_family_attr, self.font_info[font_family]) fontconfig.append(getattr(self, font_family_attr)[0]) # Add a hash of the latex preamble to self._fontconfig so that the # correct png is selected for strings rendered with same font and dpi # even if the latex preamble changes within the session preamble_bytes = six.text_type(self.get_custom_preamble()).encode('utf-8') fontconfig.append(md5(preamble_bytes).hexdigest()) self._fontconfig = ''.join(fontconfig) # The following packages and commands need to be included in the latex # file's preamble: cmd = [self.serif[1], self.sans_serif[1], self.monospace[1]] if self.font_family == 'cursive': cmd.append(self.cursive[1]) while '\\usepackage{type1cm}' in cmd: cmd.remove('\\usepackage{type1cm}') cmd = '\n'.join(cmd) self._font_preamble = '\n'.join(['\\usepackage{type1cm}', cmd, '\\usepackage{textcomp}']) def get_basefile(self, tex, fontsize, dpi=None): """ returns a filename based on a hash of the string, fontsize, and dpi """ s = ''.join([tex, self.get_font_config(), '%f' % fontsize, self.get_custom_preamble(), str(dpi or '')]) # make sure hash is consistent for all strings, regardless of encoding: bytes = six.text_type(s).encode('utf-8') return os.path.join(self.texcache, md5(bytes).hexdigest()) def get_font_config(self): """Reinitializes self if relevant rcParams on have changed.""" if self._rc_cache is None: self._rc_cache = dict([(k, None) for k in self._rc_cache_keys]) changed = [par for par in self._rc_cache_keys if rcParams[par] != self._rc_cache[par]] if changed: if DEBUG: print('DEBUG following keys changed:', changed) for k in changed: if DEBUG: print('DEBUG %-20s: %-10s -> %-10s' % (k, self._rc_cache[k], rcParams[k])) # deepcopy may not be necessary, but feels more future-proof self._rc_cache[k] = copy.deepcopy(rcParams[k]) if DEBUG: print('DEBUG RE-INIT\nold fontconfig:', self._fontconfig) self.__init__() if DEBUG: print('DEBUG fontconfig:', self._fontconfig) return self._fontconfig def get_font_preamble(self): """ returns a string containing font configuration for the tex preamble """ return self._font_preamble def get_custom_preamble(self): """returns a string containing user additions to the tex preamble""" return '\n'.join(rcParams['text.latex.preamble']) def _get_shell_cmd(self, *args): """ On windows, changing directories can be complicated by the presence of multiple drives. get_shell_cmd deals with this issue. """ if sys.platform == 'win32': command = ['%s' % os.path.splitdrive(self.texcache)[0]] else: command = [] command.extend(args) return ' && '.join(command) def make_tex(self, tex, fontsize): """ Generate a tex file to render the tex string at a specific font size returns the file name """ basefile = self.get_basefile(tex, fontsize) texfile = '%s.tex' % basefile custom_preamble = self.get_custom_preamble() fontcmd = {'sans-serif': r'{\sffamily %s}', 'monospace': r'{\ttfamily %s}'}.get(self.font_family, r'{\rmfamily %s}') tex = fontcmd % tex if rcParams['text.latex.unicode']: unicode_preamble = """\\usepackage{ucs} \\usepackage[utf8x]{inputenc}""" else: unicode_preamble = '' s = """\\documentclass{article} %s %s %s \\usepackage[papersize={72in,72in},body={70in,70in},margin={1in,1in}]{geometry} \\pagestyle{empty} \\begin{document} \\fontsize{%f}{%f}%s \\end{document} """ % (self._font_preamble, unicode_preamble, custom_preamble, fontsize, fontsize * 1.25, tex) with open(texfile, 'wb') as fh: if rcParams['text.latex.unicode']: fh.write(s.encode('utf8')) else: try: fh.write(s.encode('ascii')) except UnicodeEncodeError as err: mpl.verbose.report("You are using unicode and latex, but " "have not enabled the matplotlib " "'text.latex.unicode' rcParam.", 'helpful') raise return texfile _re_vbox = re.compile( r"MatplotlibBox:\(([\d.]+)pt\+([\d.]+)pt\)x([\d.]+)pt") def make_tex_preview(self, tex, fontsize): """ Generate a tex file to render the tex string at a specific font size. It uses the preview.sty to determin the dimension (width, height, descent) of the output. returns the file name """ basefile = self.get_basefile(tex, fontsize) texfile = '%s.tex' % basefile custom_preamble = self.get_custom_preamble() fontcmd = {'sans-serif': r'{\sffamily %s}', 'monospace': r'{\ttfamily %s}'}.get(self.font_family, r'{\rmfamily %s}') tex = fontcmd % tex if rcParams['text.latex.unicode']: unicode_preamble = """\\usepackage{ucs} \\usepackage[utf8x]{inputenc}""" else: unicode_preamble = '' # newbox, setbox, immediate, etc. are used to find the box # extent of the rendered text. s = """\\documentclass{article} %s %s %s \\usepackage[active,showbox,tightpage]{preview} \\usepackage[papersize={72in,72in},body={70in,70in},margin={1in,1in}]{geometry} %% we override the default showbox as it is treated as an error and makes %% the exit status not zero \\def\\showbox#1{\\immediate\\write16{MatplotlibBox:(\\the\\ht#1+\\the\\dp#1)x\\the\\wd#1}} \\begin{document} \\begin{preview} {\\fontsize{%f}{%f}%s} \\end{preview} \\end{document} """ % (self._font_preamble, unicode_preamble, custom_preamble, fontsize, fontsize * 1.25, tex) with open(texfile, 'wb') as fh: if rcParams['text.latex.unicode']: fh.write(s.encode('utf8')) else: try: fh.write(s.encode('ascii')) except UnicodeEncodeError as err: mpl.verbose.report("You are using unicode and latex, but " "have not enabled the matplotlib " "'text.latex.unicode' rcParam.", 'helpful') raise return texfile def make_dvi(self, tex, fontsize): """ generates a dvi file containing latex's layout of tex string returns the file name """ if rcParams['text.latex.preview']: return self.make_dvi_preview(tex, fontsize) basefile = self.get_basefile(tex, fontsize) dvifile = '%s.dvi' % basefile if DEBUG or not os.path.exists(dvifile): texfile = self.make_tex(tex, fontsize) outfile = basefile + '.output' command = self._get_shell_cmd( 'cd "%s"' % self.texcache, 'latex -interaction=nonstopmode %s > "%s"' % (os.path.split(texfile)[-1], outfile)) mpl.verbose.report(command, 'debug') exit_status = os.system(command) try: with open(outfile) as fh: report = fh.read() except IOError: report = 'No latex error report available.' try: os.stat(dvifile) exists = True except OSError: exists = False if exit_status or not exists: raise RuntimeError( ('LaTeX was not able to process the following ' 'string:\n%s\nHere is the full report generated by ' 'LaTeX: \n\n' % repr(tex.encode('unicode_escape')) + report)) else: mpl.verbose.report(report, 'debug') for fname in glob.glob(basefile + '*'): if fname.endswith('dvi'): pass elif fname.endswith('tex'): pass else: try: os.remove(fname) except OSError: pass return dvifile def make_dvi_preview(self, tex, fontsize): """ generates a dvi file containing latex's layout of tex string. It calls make_tex_preview() method and store the size information (width, height, descent) in a separte file. returns the file name """ basefile = self.get_basefile(tex, fontsize) dvifile = '%s.dvi' % basefile baselinefile = '%s.baseline' % basefile if (DEBUG or not os.path.exists(dvifile) or not os.path.exists(baselinefile)): texfile = self.make_tex_preview(tex, fontsize) outfile = basefile + '.output' command = self._get_shell_cmd( 'cd "%s"' % self.texcache, 'latex -interaction=nonstopmode %s > "%s"' % (os.path.split(texfile)[-1], outfile)) mpl.verbose.report(command, 'debug') exit_status = os.system(command) try: with open(outfile) as fh: report = fh.read() except IOError: report = 'No latex error report available.' if exit_status: raise RuntimeError( ('LaTeX was not able to process the following ' 'string:\n%s\nHere is the full report generated by ' 'LaTeX: \n\n' % repr(tex)) + report) else: mpl.verbose.report(report, 'debug') # find the box extent information in the latex output # file and store them in ".baseline" file m = TexManager._re_vbox.search(report) with open(basefile + '.baseline', "w") as fh: fh.write(" ".join(m.groups())) for fname in glob.glob(basefile + '*'): if fname.endswith('dvi'): pass elif fname.endswith('tex'): pass elif fname.endswith('baseline'): pass else: try: os.remove(fname) except OSError: pass return dvifile def make_png(self, tex, fontsize, dpi): """ generates a png file containing latex's rendering of tex string returns the filename """ basefile = self.get_basefile(tex, fontsize, dpi) pngfile = '%s.png' % basefile # see get_rgba for a discussion of the background if DEBUG or not os.path.exists(pngfile): dvifile = self.make_dvi(tex, fontsize) outfile = basefile + '.output' command = self._get_shell_cmd( 'cd "%s"' % self.texcache, 'dvipng -bg Transparent -D %s -T tight -o "%s" "%s" > "%s"' % (dpi, os.path.split(pngfile)[-1], os.path.split(dvifile)[-1], outfile)) mpl.verbose.report(command, 'debug') exit_status = os.system(command) try: with open(outfile) as fh: report = fh.read() except IOError: report = 'No dvipng error report available.' if exit_status: raise RuntimeError( 'dvipng was not able to process the following ' 'file:\n%s\nHere is the full report generated by ' 'dvipng: \n\n' % dvifile + report) else: mpl.verbose.report(report, 'debug') try: os.remove(outfile) except OSError: pass return pngfile def make_ps(self, tex, fontsize): """ generates a postscript file containing latex's rendering of tex string returns the file name """ basefile = self.get_basefile(tex, fontsize) psfile = '%s.epsf' % basefile if DEBUG or not os.path.exists(psfile): dvifile = self.make_dvi(tex, fontsize) outfile = basefile + '.output' command = self._get_shell_cmd( 'cd "%s"' % self.texcache, 'dvips -q -E -o "%s" "%s" > "%s"' % (os.path.split(psfile)[-1], os.path.split(dvifile)[-1], outfile)) mpl.verbose.report(command, 'debug') exit_status = os.system(command) with open(outfile) as fh: if exit_status: raise RuntimeError( 'dvipng was not able to process the flowing ' 'file:\n%s\nHere is the full report generated by ' 'dvipng: \n\n' % dvifile + fh.read()) else: mpl.verbose.report(fh.read(), 'debug') os.remove(outfile) return psfile def get_ps_bbox(self, tex, fontsize): """ returns a list containing the postscript bounding box for latex's rendering of the tex string """ psfile = self.make_ps(tex, fontsize) with open(psfile) as ps: for line in ps: if line.startswith('%%BoundingBox:'): return [int(val) for val in line.split()[1:]] raise RuntimeError('Could not parse %s' % psfile) def get_grey(self, tex, fontsize=None, dpi=None): """returns the alpha channel""" key = tex, self.get_font_config(), fontsize, dpi alpha = self.grey_arrayd.get(key) if alpha is None: pngfile = self.make_png(tex, fontsize, dpi) X = read_png(os.path.join(self.texcache, pngfile)) if rcParams['text.dvipnghack'] is not None: hack = rcParams['text.dvipnghack'] else: if TexManager._dvipng_hack_alpha is None: TexManager._dvipng_hack_alpha = dvipng_hack_alpha() hack = TexManager._dvipng_hack_alpha if hack: # hack the alpha channel # dvipng assumed a constant background, whereas we want to # overlay these rasters with antialiasing over arbitrary # backgrounds that may have other figure elements under them. # When you set dvipng -bg Transparent, it actually makes the # alpha channel 1 and does the background compositing and # antialiasing itself and puts the blended data in the rgb # channels. So what we do is extract the alpha information # from the red channel, which is a blend of the default dvipng # background (white) and foreground (black). So the amount of # red (or green or blue for that matter since white and black # blend to a grayscale) is the alpha intensity. Once we # extract the correct alpha information, we assign it to the # alpha channel properly and let the users pick their rgb. In # this way, we can overlay tex strings on arbitrary # backgrounds with antialiasing # # red = alpha*red_foreground + (1-alpha)*red_background # # Since the foreground is black (0) and the background is # white (1) this reduces to red = 1-alpha or alpha = 1-red #alpha = npy.sqrt(1-X[:,:,0]) # should this be sqrt here? alpha = 1 - X[:, :, 0] else: alpha = X[:, :, -1] self.grey_arrayd[key] = alpha return alpha def get_rgba(self, tex, fontsize=None, dpi=None, rgb=(0, 0, 0)): """ Returns latex's rendering of the tex string as an rgba array """ if not fontsize: fontsize = rcParams['font.size'] if not dpi: dpi = rcParams['savefig.dpi'] r, g, b = rgb key = tex, self.get_font_config(), fontsize, dpi, tuple(rgb) Z = self.rgba_arrayd.get(key) if Z is None: alpha = self.get_grey(tex, fontsize, dpi) Z = np.zeros((alpha.shape[0], alpha.shape[1], 4), np.float) Z[:, :, 0] = r Z[:, :, 1] = g Z[:, :, 2] = b Z[:, :, 3] = alpha self.rgba_arrayd[key] = Z return Z def get_text_width_height_descent(self, tex, fontsize, renderer=None): """ return width, heigth and descent of the text. """ if tex.strip() == '': return 0, 0, 0 if renderer: dpi_fraction = renderer.points_to_pixels(1.) else: dpi_fraction = 1. if rcParams['text.latex.preview']: # use preview.sty basefile = self.get_basefile(tex, fontsize) baselinefile = '%s.baseline' % basefile if DEBUG or not os.path.exists(baselinefile): dvifile = self.make_dvi_preview(tex, fontsize) with open(baselinefile) as fh: l = fh.read().split() height, depth, width = [float(l1) * dpi_fraction for l1 in l] return width, height + depth, depth else: # use dviread. It sometimes returns a wrong descent. dvifile = self.make_dvi(tex, fontsize) dvi = dviread.Dvi(dvifile, 72 * dpi_fraction) try: page = next(iter(dvi)) finally: dvi.close() # A total height (including the descent) needs to be returned. return page.width, page.height + page.descent, page.descent
mit
HeraclesHX/scikit-learn
examples/ensemble/plot_adaboost_regression.py
311
1529
""" ====================================== Decision Tree Regression with AdaBoost ====================================== A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of boosts is increased the regressor can fit more detail. .. [1] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ print(__doc__) # Author: Noel Dawe <[email protected]> # # License: BSD 3 clause # importing necessary libraries import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import AdaBoostRegressor # Create the dataset rng = np.random.RandomState(1) X = np.linspace(0, 6, 100)[:, np.newaxis] y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0]) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=4) regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4), n_estimators=300, random_state=rng) regr_1.fit(X, y) regr_2.fit(X, y) # Predict y_1 = regr_1.predict(X) y_2 = regr_2.predict(X) # Plot the results plt.figure() plt.scatter(X, y, c="k", label="training samples") plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2) plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Boosted Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
liukaijv/XlsxWriter
examples/pandas_chart.py
9
1049
############################################################################## # # An example of converting a Pandas dataframe to an xlsx file with a chart # using Pandas and XlsxWriter. # # Copyright 2013-2015, John McNamara, [email protected] # import pandas as pd # Create a Pandas dataframe from some data. df = pd.DataFrame({'Data': [10, 20, 30, 20, 15, 30, 45]}) # Create a Pandas Excel writer using XlsxWriter as the engine. writer = pd.ExcelWriter('pandas_chart.xlsx', engine='xlsxwriter') # Convert the dataframe to an XlsxWriter Excel object. df.to_excel(writer, sheet_name='Sheet1') # Get the xlsxwriter workbook and worksheet objects. workbook = writer.book worksheet = writer.sheets['Sheet1'] # Create a chart object. chart = workbook.add_chart({'type': 'column'}) # Configure the series of the chart from the dataframe data. chart.add_series({'values': '=Sheet1!$B$2:$B$8'}) # Insert the chart into the worksheet. worksheet.insert_chart('D2', chart) # Close the Pandas Excel writer and output the Excel file. writer.save()
bsd-2-clause
tdhopper/scikit-learn
examples/plot_multilabel.py
236
4157
# Authors: Vlad Niculae, Mathieu Blondel # License: BSD 3 clause """ ========================= Multilabel classification ========================= This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both classes are plotted surrounded by two colored circles. The classification is performed by projecting to the first two principal components found by PCA and CCA for visualisation purposes, followed by using the :class:`sklearn.multiclass.OneVsRestClassifier` metaclassifier using two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an unsupervised dimensionality reduction, while CCA is used to perform a supervised one. Note: in the plot, "unlabeled samples" does not mean that we don't know the labels (as in semi-supervised learning) but that the samples simply do *not* have a label. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.preprocessing import LabelBinarizer from sklearn.decomposition import PCA from sklearn.cross_decomposition import CCA def plot_hyperplane(clf, min_x, max_x, linestyle, label): # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough yy = a * xx - (clf.intercept_[0]) / w[1] plt.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": X = CCA(n_components=2).fit(X, Y).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x = np.max(X[:, 0]) min_y = np.min(X[:, 1]) max_y = np.max(X[:, 1]) classif = OneVsRestClassifier(SVC(kernel='linear')) classif.fit(X, Y) plt.subplot(2, 2, subplot) plt.title(title) zero_class = np.where(Y[:, 0]) one_class = np.where(Y[:, 1]) plt.scatter(X[:, 0], X[:, 1], s=40, c='gray') plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b', facecolors='none', linewidths=2, label='Class 1') plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange', facecolors='none', linewidths=2, label='Class 2') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--', 'Boundary\nfor class 1') plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.', 'Boundary\nfor class 2') plt.xticks(()) plt.yticks(()) plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x) plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y) if subplot == 2: plt.xlabel('First principal component') plt.ylabel('Second principal component') plt.legend(loc="upper left") plt.figure(figsize=(8, 6)) X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=True, random_state=1) plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca") X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=1) plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca") plt.subplots_adjust(.04, .02, .97, .94, .09, .2) plt.show()
bsd-3-clause
numenta-archive/htmresearch
htmresearch/frameworks/dimensionality_reduction/proj.py
6
2368
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2017, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """Utility functions to project high-dimensional vectors (such as SDRs) in 2D""" import numpy as np from sklearn.manifold import TSNE, MDS def project_in_2D(distance_mat, method='mds'): """ Project SDRs onto a 2D space using manifold learning algorithms :param distance_mat: A square matrix with pairwise distances :param method: Select method from 'mds' and 'tSNE' :return: an array with dimension (numSDRs, 2). It contains the 2D projections of each SDR """ seed = np.random.RandomState(seed=3) if method == 'mds': mds = MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed, dissimilarity="precomputed", n_jobs=1) pos = mds.fit(distance_mat).embedding_ nmds = MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12, dissimilarity="precomputed", random_state=seed, n_jobs=1, n_init=1) pos = nmds.fit_transform(distance_mat, init=pos) elif method == 'tSNE': tsne = TSNE(n_components=2, init='pca', random_state=0) pos = tsne.fit_transform(distance_mat) else: raise NotImplementedError return pos def project_matrix(mat): tsne = TSNE(n_iter=1000, metric='precomputed', init='random') return tsne.fit_transform(mat) def project_vectors(vectors, distance): tsne = TSNE(metric=distance, n_iter=500, init='pca') return tsne.fit_transform(vectors)
agpl-3.0
leal26/AeroPy
aeropy/geometry/fitting.py
2
4127
import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np import math from scipy.optimize import minimize, differential_evolution from scipy.spatial.distance import directed_hausdorff from multiprocessing import Pool import time from aeropy.xfoil_module import output_reader class fitting(): def __init__(self, **params): def _callback(*args): return params.get('callback', None)(self.object, *args) self.object = params.get('object', np.linspace(10, 50, 9)) self.update = params.get('update', np.linspace(10, 50, 9)) self.x0 = params.get('x0', np.linspace(10, 50, 9)) self.p1 = params.get('p1', np.linspace(10, 50, 9)) self.p2 = params.get('p2', np.linspace(10, 50, 9)) self.p1_name = params.get('p1_name', 'Parameter 1') self.p2_name = params.get('p2_name', 'Parameter 2') self.calculate_points = params.get('calculate_points', 0) self.raw = params.get('raw', 0) self.callback = _callback def convergence_study(self, parallel=True): P1_f, P2_f = self._format_parameters() if parallel: p = Pool(len(P1_f)) else: p = Pool(1) input = np.vstack([P1_f, P2_f]).T self.solutions = p.map(self.find, input) self.error = np.array([self.solutions[i]['fun'] for i in range(len(self.solutions))]) self.error = self.error.reshape(self.P1.shape) self.rel_error = self.error/self.error[0][0] def find(self, param_i=[None, None]): ''' inputs: [location, XYZ, sy, ny, xshear]''' p1_i, p2_i = param_i x0 = self.x0(p1_i, p2_i) start = time.time() solution = minimize(self.shape_difference, x0, args=param_i) end = time.time() error = solution['fun'] if p1_i is None: print('error=%f\t time=%f' % (error, end-start)) else: print('p1=%i\t p2=%i\t error=%f\t time=%f' % (p1_i, p2_i, error, end-start)) if self.callback is not None: if p1_i is None: self.callback() else: self.callback(p1_i, p2_i) return solution def shape_difference(self, x, param_i): p1_i, p2_i = param_i self.update(self.object, x, p1_i, p2_i) points = self.calculate_points(self.object, self.raw) if self.raw.ndim == 3: error = 0 N = 0 for i in range(len(points)): error += np.linalg.norm(points[i] - self.raw[i])**2 N += len(points[i]) else: error = np.linalg.norm(points[0] - self.raw)**2 N = len(points) return(error/N) def plot_study(self, relative=True): if relative: z = self.rel_error else: z = self.error fig, ax = plt.subplots() cs = ax.contourf(self.P1, self.P2, z, np.linspace(0, 1, 101)) fig.colorbar(cs, ticks=np.linspace(0, 1, 6)) # plt.clim(0, 1) plt.xlabel(self.p1_name) plt.ylabel(self.p2_name) plt.show() def plot_fit(self): network = self.calculate_points(self.object, self.raw) plt.figure() if network.ndim == 3: for i in range(len(network)): plt.scatter(network[i, :, 0], network[i, :, 2], c='b', label='fit') plt.scatter(self.raw[i, :, 0], self.raw[i, :, 2], c='r', label='raw') else: plt.scatter(network[:, 0], network[:, 2], c='b', label='fit') plt.scatter(self.raw[:, 0], self.raw[:, 2], c='r', label='raw') plt.legend() plt.show() def _format_parameters(self, array_type=int): self.p1 = self.p1.astype(array_type) self.p2 = self.p2.astype(array_type) self.P1, self.P2 = np.meshgrid(self.p1, self.p2) P1_f = self.P1.flatten() P2_f = self.P2.flatten() return(P1_f, P2_f)
mit
kcavagnolo/astroML
book_figures/chapter10/fig_rrlyrae_reconstruct.py
3
2472
""" Fourier Reconstruction of RR-Lyrae Templates -------------------------------------------- Figure 10.1 An example of a truncated Fourier representation of an RR Lyrae light curve. The thick dashed line shows the true curve; the gray lines show the approximation based on 1, 3, and 8 Fourier modes (sinusoids). """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from matplotlib import pyplot as plt from astroML.datasets import fetch_rrlyrae_templates #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Load the RR Lyrae template templates = fetch_rrlyrae_templates() x, y = templates['115r'].T #------------------------------------------------------------ # Plot the results fig = plt.figure(figsize=(5, 5)) fig.subplots_adjust(hspace=0) kvals = [1, 3, 8] subplots = [311, 312, 313] for (k, subplot) in zip(kvals, subplots): ax = fig.add_subplot(subplot) # Use FFT to fit a truncated Fourier series y_fft = np.fft.fft(y) y_fft[k + 1:-k] = 0 y_fit = np.fft.ifft(y_fft).real # plot the true value and the k-term reconstruction ax.plot(np.concatenate([x, 1 + x]), np.concatenate([y, y]), '--k', lw=2) ax.plot(np.concatenate([x, 1 + x]), np.concatenate([y_fit, y_fit]), color='gray') label = "%i mode" % k if k > 1: label += 's' ax.text(0.02, 0.1, label, ha='left', va='bottom', transform=ax.transAxes) if subplot == subplots[-1]: ax.set_xlabel('phase') else: ax.xaxis.set_major_formatter(plt.NullFormatter()) if subplot == subplots[1]: ax.set_ylabel('amplitude') ax.yaxis.set_major_formatter(plt.NullFormatter()) ax.set_xlim(0, 2) ax.set_ylim(1.1, -0.1) plt.show()
bsd-2-clause
CarterBain/AlephNull
alephnull/examples/dual_ema_talib.py
1
3220
#!/usr/bin/env python # # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import matplotlib.pyplot as plt from alephnull.algorithm import TradingAlgorithm from alephnull.utils.factory import load_from_yahoo # Import exponential moving average from talib wrapper from alephnull.transforms.ta import EMA from datetime import datetime import pytz class DualEMATaLib(TradingAlgorithm): """Dual Moving Average Crossover algorithm. This algorithm buys apple once its short moving average crosses its long moving average (indicating upwards momentum) and sells its shares once the averages cross again (indicating downwards momentum). """ def initialize(self, short_window=20, long_window=40): # Add 2 mavg transforms, one with a long window, one # with a short window. self.short_ema_trans = EMA(timeperiod=short_window) self.long_ema_trans = EMA(timeperiod=long_window) # To keep track of whether we invested in the stock or not self.invested = False def handle_data(self, data): self.short_ema = self.short_ema_trans.handle_data(data) self.long_ema = self.long_ema_trans.handle_data(data) if self.short_ema is None or self.long_ema is None: return self.buy = False self.sell = False if self.short_ema > self.long_ema and not self.invested: self.order('AAPL', 100) self.invested = True self.buy = True elif self.short_ema < self.long_ema and self.invested: self.order('AAPL', -100) self.invested = False self.sell = True self.record(AAPL=data['AAPL'].price, short_ema=self.short_ema['AAPL'], long_ema=self.long_ema['AAPL'], buy=self.buy, sell=self.sell) if __name__ == '__main__': start = datetime(1990, 1, 1, 0, 0, 0, 0, pytz.utc) end = datetime(1991, 1, 1, 0, 0, 0, 0, pytz.utc) data = load_from_yahoo(stocks=['AAPL'], indexes={}, start=start, end=end) dma = DualEMATaLib() results = dma.run(data).dropna() fig = plt.figure() ax1 = fig.add_subplot(211, ylabel='portfolio value') results.portfolio_value.plot(ax=ax1) ax2 = fig.add_subplot(212) results[['AAPL', 'short_ema', 'long_ema']].plot(ax=ax2) ax2.plot(results.ix[results.buy].index, results.short_ema[results.buy], '^', markersize=10, color='m') ax2.plot(results.ix[results.sell].index, results.short_ema[results.sell], 'v', markersize=10, color='k') plt.legend(loc=0) plt.gcf().set_size_inches(18, 8)
apache-2.0
samkreter/SWE-project
db_populate.py
1
1242
#!flask/bin/python3 from app import db, models import numpy as np import pandas as pd from faker import Faker import bcrypt fake = Faker() data = pd.read_csv('companies.csv') for comName in data.columns: name = fake.name().split() u = models.User(first_name=name[0],last_name=name[1],email=fake.email(),password=bcrypt.hashpw('heythere'.encode('UTF_8'),bcrypt.gensalt(14))) p = models.Profile(user=u) c = models.Company(owner=u,name=comName,address=fake.address()) db.session.add(u) db.session.add(p) db.session.add(c) db.session.commit() for job in data[comName]: if pd.isnull(job): break db.session.add(models.Job(title=job,company=c)) db.session.commit() # for i in range(data[0,:].size): # name = fake.name().split() # u = models.User(first_name=name[0],last_name=name[1],email=fake.email(),password=bcrypt.hashpw('heythere'.encode('UTF_8'),bcrypt.gensalt(14))) # p = models.Profile(user=u) # c = models.Company(owner=u,name=data[0,i],address=fake.address()) # db.session.add(u) # db.session.add(p) # db.session.add(c) # for job in data[:,i]: # db.session.add(models.Job(title=job,company=c)) # db.session.commit()
mit
mlesniew/PiFmRds
src/generate_waveforms.py
15
2403
#!/usr/bin/python # PiFmRds - FM/RDS transmitter for the Raspberry Pi # Copyright (C) 2014 Christophe Jacquet, F8FTK # # See https://github.com/ChristopheJacquet/PiFmRds # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # This program generates the waveform of a single biphase symbol # # This program uses Pydemod, see https://github.com/ChristopheJacquet/Pydemod import pydemod.app.rds as rds import numpy import scipy.io.wavfile as wavfile import io import matplotlib.pyplot as plt sample_rate = 228000 outc = io.open("waveforms.c", mode="w", encoding="utf8") outh = io.open("waveforms.h", mode="w", encoding="utf8") header = u""" /* This file was automatically generated by "generate_waveforms.py". (C) 2014 Christophe Jacquet. Released under the GNU GPL v3 license. */ """ outc.write(header) outh.write(header) def generate_bit(name): offset = 240 l = 96 count = 2 sample = numpy.zeros(3*l) sample[l] = 1 sample[2*l] = -1 # Apply the data-shaping filter sf = rds.pulse_shaping_filter(96*8, 228000) shapedSamples = numpy.convolve(sample, sf) out = shapedSamples[528-288:528+288] #[offset:offset+l*count] #plt.plot(sf) #plt.plot(out) #plt.show() iout = (out * 20000./max(abs(out)) ).astype(numpy.dtype('>i2')) wavfile.write(u"waveform_{}.wav".format(name), sample_rate, iout) outc.write(u"float waveform_{name}[] = {{{values}}};\n\n".format( name = name, values = u", ".join(map(unicode, out/2.5)))) # note: need to limit the amplitude so as not to saturate when the biphase # waveforms are summed outh.write(u"extern float waveform_{name}[{size}];\n".format(name=name, size=len(out))) generate_bit("biphase") outc.close() outh.close()
gpl-3.0
alberto-antonietti/nest-simulator
pynest/examples/brette_gerstner_fig_3d.py
12
3030
# -*- coding: utf-8 -*- # # brette_gerstner_fig_3d.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """Testing the adapting exponential integrate and fire model in NEST (Brette and Gerstner Fig 3D) ---------------------------------------------------------------------------------------------------- This example tests the adaptive integrate and fire model (AdEx) according to Brette and Gerstner [1]_ reproduces Figure 3D of the paper. Note that Brette and Gerstner give the value for `b` in `nA`. To be consistent with the other parameters in the equations, `b` must be converted to `pA` (pico Ampere). References ~~~~~~~~~~~ .. [1] Brette R and Gerstner W (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity J. Neurophysiology. https://doi.org/10.1152/jn.00686.2005 """ import nest import nest.voltage_trace import matplotlib.pyplot as plt nest.ResetKernel() ############################################################################### # First we make sure that the resolution of the simulation is 0.1 ms. This is # important, since the slop of the action potential is very steep. res = 0.1 nest.SetKernelStatus({"resolution": res}) neuron = nest.Create("aeif_cond_exp") ############################################################################### # Set the parameters of the neuron according to the paper. neuron.set(V_peak=20., E_L=-60.0, a=80.0, b=80.5, tau_w=720.0) ############################################################################### # Create and configure the stimulus which is a step current. dc = nest.Create("dc_generator") dc.set(amplitude=-800.0, start=0.0, stop=400.0) ############################################################################### # We connect the DC generators. nest.Connect(dc, neuron, 'all_to_all') ############################################################################### # And add a ``voltmeter`` to sample the membrane potentials from the neuron # in intervals of 0.1 ms. voltmeter = nest.Create("voltmeter", params={'interval': 0.1}) nest.Connect(voltmeter, neuron) ############################################################################### # Finally, we simulate for 1000 ms and plot a voltage trace to produce the # figure. nest.Simulate(1000.0) nest.voltage_trace.from_device(voltmeter) plt.axis([0, 1000, -85, 0]) nest.voltage_trace.show()
gpl-2.0
louispotok/pandas
pandas/tests/indexes/timedeltas/test_astype.py
5
2934
from datetime import timedelta import pytest import numpy as np import pandas.util.testing as tm from pandas import (TimedeltaIndex, timedelta_range, Int64Index, Float64Index, Index, Timedelta, NaT) class TestTimedeltaIndex(object): def test_astype_object(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] result = idx.astype(object) expected = Index(expected_list, dtype=object, name='idx') tm.assert_index_equal(result, expected) assert idx.tolist() == expected_list def test_astype_object_with_nat(self): idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), NaT, Timedelta('4 days')] result = idx.astype(object) expected = Index(expected_list, dtype=object, name='idx') tm.assert_index_equal(result, expected) assert idx.tolist() == expected_list def test_astype(self): # GH 13149, GH 13209 idx = TimedeltaIndex([1e14, 'NaT', NaT, np.NaN]) result = idx.astype(object) expected = Index([Timedelta('1 days 03:46:40')] + [NaT] * 3, dtype=object) tm.assert_index_equal(result, expected) result = idx.astype(int) expected = Int64Index([100000000000000] + [-9223372036854775808] * 3, dtype=np.int64) tm.assert_index_equal(result, expected) result = idx.astype(str) expected = Index(str(x) for x in idx) tm.assert_index_equal(result, expected) rng = timedelta_range('1 days', periods=10) result = rng.astype('i8') tm.assert_index_equal(result, Index(rng.asi8)) tm.assert_numpy_array_equal(rng.asi8, result.values) def test_astype_timedelta64(self): # GH 13149, GH 13209 idx = TimedeltaIndex([1e14, 'NaT', NaT, np.NaN]) result = idx.astype('timedelta64') expected = Float64Index([1e+14] + [np.NaN] * 3, dtype='float64') tm.assert_index_equal(result, expected) result = idx.astype('timedelta64[ns]') tm.assert_index_equal(result, idx) assert result is not idx result = idx.astype('timedelta64[ns]', copy=False) tm.assert_index_equal(result, idx) assert result is idx @pytest.mark.parametrize('dtype', [ float, 'datetime64', 'datetime64[ns]']) def test_astype_raises(self, dtype): # GH 13149, GH 13209 idx = TimedeltaIndex([1e14, 'NaT', NaT, np.NaN]) msg = 'Cannot cast TimedeltaIndex to dtype' with tm.assert_raises_regex(TypeError, msg): idx.astype(dtype)
bsd-3-clause
asoliveira/NumShip
scripts/plot/xy-zz-plt.py
1
2276
#!/usr/bin/env python # -*- coding: utf-8 -*- #É adimensional? adi = False #É para salvar as figuras(True|False)? save = True #Caso seja para salvar, qual é o formato desejado? formato = 'jpg' #Caso seja para salvar, qual é o diretório que devo salvar? dircg = 'fig-sen' #Caso seja para salvar, qual é o nome do arquivo? nome = 'xy-zz' #Qual título colocar no gráficos? titulo = ''#'Curva de ZigZag' #Qual a cor dos gráficos? pc = 'k' bc = 'k' lc = 'k' brlc = 'k' rc = 'k' #Estilo de linha ps = '-' bs = '-.' rs = '.' ls = '+' brls = '^' import os import scipy as sp import matplotlib.pyplot as plt from libplot import * poshis = sp.genfromtxt('../entrada/padrao/CurvaZigZag/pos.dat') poshis2 = sp.genfromtxt('../entrada/beta/saida1.2/CurvaZigZag/pos.dat') poshis3 = sp.genfromtxt('../entrada/r/saida1.2/CurvaZigZag/pos.dat') poshis4 = sp.genfromtxt('../entrada/leme/saida1.2/CurvaZigZag/pos.dat') poshis5 = sp.genfromtxt('../entrada/brl/saida1.2/CurvaZigZag/pos.dat') axl = [0, 8000, -200, 600] #Plotando a Curva de ZigZag if adi: ylabel = r'$y\prime$' xposlabel = r'$x\prime$' else: ylabel = r'$y \quad m$' xposlabel = r'$x \quad m$' plt.subplot2grid((1,4),(0,0), colspan=3) #Padrao plt.plot(poshis[:, 1], poshis[:, 2], color = pc, linestyle = ps, linewidth = 1, label=ur'padrão') plt.plot(poshis2[:, 1], poshis2[:, 2], color = bc,linestyle = bs, linewidth = 2, label=ur'1.2beta') plt.scatter(somep(poshis3[:, 1], num = 200), somep(poshis3[:, 2], num = 200), color = rc, marker = rs, s = 8, label=ur'1.2r') plt.scatter(somep(poshis4[:, 1], num = 100), somep(poshis4[:, 2], num = 100), color = lc, marker = ls, s = 20, label=ur'1.2leme') plt.scatter(somep(poshis5[:, 1], num = 100), somep(poshis5[:, 2], num = 100), color = brlc, marker = brls, s = 14, label=ur'1.2brl') plt.title(titulo) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.ylabel(ylabel) plt.xlabel(xposlabel) plt.axis(axl) plt.grid(True) if save: if not os.path.exists(dircg): os.makedirs(dircg) if os.path.exists(dircg + '/' + nome + '.' + formato): os.remove(dircg + '/' + nome + '.' + formato) plt.savefig(dircg + '/' + nome + '.' + formato , format=formato) else: plt.show()
gpl-3.0
ZeeD26/pydougu
pydougu/matplotlib/colormaps/_viridis.py
1
12689
# -*- coding: utf-8 -*- from matplotlib.colors import ListedColormap __all__ = ['viridis'] _viridis_data = [[0.267004, 0.004874, 0.329415], [0.268510, 0.009605, 0.335427], [0.269944, 0.014625, 0.341379], [0.271305, 0.019942, 0.347269], [0.272594, 0.025563, 0.353093], [0.273809, 0.031497, 0.358853], [0.274952, 0.037752, 0.364543], [0.276022, 0.044167, 0.370164], [0.277018, 0.050344, 0.375715], [0.277941, 0.056324, 0.381191], [0.278791, 0.062145, 0.386592], [0.279566, 0.067836, 0.391917], [0.280267, 0.073417, 0.397163], [0.280894, 0.078907, 0.402329], [0.281446, 0.084320, 0.407414], [0.281924, 0.089666, 0.412415], [0.282327, 0.094955, 0.417331], [0.282656, 0.100196, 0.422160], [0.282910, 0.105393, 0.426902], [0.283091, 0.110553, 0.431554], [0.283197, 0.115680, 0.436115], [0.283229, 0.120777, 0.440584], [0.283187, 0.125848, 0.444960], [0.283072, 0.130895, 0.449241], [0.282884, 0.135920, 0.453427], [0.282623, 0.140926, 0.457517], [0.282290, 0.145912, 0.461510], [0.281887, 0.150881, 0.465405], [0.281412, 0.155834, 0.469201], [0.280868, 0.160771, 0.472899], [0.280255, 0.165693, 0.476498], [0.279574, 0.170599, 0.479997], [0.278826, 0.175490, 0.483397], [0.278012, 0.180367, 0.486697], [0.277134, 0.185228, 0.489898], [0.276194, 0.190074, 0.493001], [0.275191, 0.194905, 0.496005], [0.274128, 0.199721, 0.498911], [0.273006, 0.204520, 0.501721], [0.271828, 0.209303, 0.504434], [0.270595, 0.214069, 0.507052], [0.269308, 0.218818, 0.509577], [0.267968, 0.223549, 0.512008], [0.266580, 0.228262, 0.514349], [0.265145, 0.232956, 0.516599], [0.263663, 0.237631, 0.518762], [0.262138, 0.242286, 0.520837], [0.260571, 0.246922, 0.522828], [0.258965, 0.251537, 0.524736], [0.257322, 0.256130, 0.526563], [0.255645, 0.260703, 0.528312], [0.253935, 0.265254, 0.529983], [0.252194, 0.269783, 0.531579], [0.250425, 0.274290, 0.533103], [0.248629, 0.278775, 0.534556], [0.246811, 0.283237, 0.535941], [0.244972, 0.287675, 0.537260], [0.243113, 0.292092, 0.538516], [0.241237, 0.296485, 0.539709], [0.239346, 0.300855, 0.540844], [0.237441, 0.305202, 0.541921], [0.235526, 0.309527, 0.542944], [0.233603, 0.313828, 0.543914], [0.231674, 0.318106, 0.544834], [0.229739, 0.322361, 0.545706], [0.227802, 0.326594, 0.546532], [0.225863, 0.330805, 0.547314], [0.223925, 0.334994, 0.548053], [0.221989, 0.339161, 0.548752], [0.220057, 0.343307, 0.549413], [0.218130, 0.347432, 0.550038], [0.216210, 0.351535, 0.550627], [0.214298, 0.355619, 0.551184], [0.212395, 0.359683, 0.551710], [0.210503, 0.363727, 0.552206], [0.208623, 0.367752, 0.552675], [0.206756, 0.371758, 0.553117], [0.204903, 0.375746, 0.553533], [0.203063, 0.379716, 0.553925], [0.201239, 0.383670, 0.554294], [0.199430, 0.387607, 0.554642], [0.197636, 0.391528, 0.554969], [0.195860, 0.395433, 0.555276], [0.194100, 0.399323, 0.555565], [0.192357, 0.403199, 0.555836], [0.190631, 0.407061, 0.556089], [0.188923, 0.410910, 0.556326], [0.187231, 0.414746, 0.556547], [0.185556, 0.418570, 0.556753], [0.183898, 0.422383, 0.556944], [0.182256, 0.426184, 0.557120], [0.180629, 0.429975, 0.557282], [0.179019, 0.433756, 0.557430], [0.177423, 0.437527, 0.557565], [0.175841, 0.441290, 0.557685], [0.174274, 0.445044, 0.557792], [0.172719, 0.448791, 0.557885], [0.171176, 0.452530, 0.557965], [0.169646, 0.456262, 0.558030], [0.168126, 0.459988, 0.558082], [0.166617, 0.463708, 0.558119], [0.165117, 0.467423, 0.558141], [0.163625, 0.471133, 0.558148], [0.162142, 0.474838, 0.558140], [0.160665, 0.478540, 0.558115], [0.159194, 0.482237, 0.558073], [0.157729, 0.485932, 0.558013], [0.156270, 0.489624, 0.557936], [0.154815, 0.493313, 0.557840], [0.153364, 0.497000, 0.557724], [0.151918, 0.500685, 0.557587], [0.150476, 0.504369, 0.557430], [0.149039, 0.508051, 0.557250], [0.147607, 0.511733, 0.557049], [0.146180, 0.515413, 0.556823], [0.144759, 0.519093, 0.556572], [0.143343, 0.522773, 0.556295], [0.141935, 0.526453, 0.555991], [0.140536, 0.530132, 0.555659], [0.139147, 0.533812, 0.555298], [0.137770, 0.537492, 0.554906], [0.136408, 0.541173, 0.554483], [0.135066, 0.544853, 0.554029], [0.133743, 0.548535, 0.553541], [0.132444, 0.552216, 0.553018], [0.131172, 0.555899, 0.552459], [0.129933, 0.559582, 0.551864], [0.128729, 0.563265, 0.551229], [0.127568, 0.566949, 0.550556], [0.126453, 0.570633, 0.549841], [0.125394, 0.574318, 0.549086], [0.124395, 0.578002, 0.548287], [0.123463, 0.581687, 0.547445], [0.122606, 0.585371, 0.546557], [0.121831, 0.589055, 0.545623], [0.121148, 0.592739, 0.544641], [0.120565, 0.596422, 0.543611], [0.120092, 0.600104, 0.542530], [0.119738, 0.603785, 0.541400], [0.119512, 0.607464, 0.540218], [0.119423, 0.611141, 0.538982], [0.119483, 0.614817, 0.537692], [0.119699, 0.618490, 0.536347], [0.120081, 0.622161, 0.534946], [0.120638, 0.625828, 0.533488], [0.121380, 0.629492, 0.531973], [0.122312, 0.633153, 0.530398], [0.123444, 0.636809, 0.528763], [0.124780, 0.640461, 0.527068], [0.126326, 0.644107, 0.525311], [0.128087, 0.647749, 0.523491], [0.130067, 0.651384, 0.521608], [0.132268, 0.655014, 0.519661], [0.134692, 0.658636, 0.517649], [0.137339, 0.662252, 0.515571], [0.140210, 0.665859, 0.513427], [0.143303, 0.669459, 0.511215], [0.146616, 0.673050, 0.508936], [0.150148, 0.676631, 0.506589], [0.153894, 0.680203, 0.504172], [0.157851, 0.683765, 0.501686], [0.162016, 0.687316, 0.499129], [0.166383, 0.690856, 0.496502], [0.170948, 0.694384, 0.493803], [0.175707, 0.697900, 0.491033], [0.180653, 0.701402, 0.488189], [0.185783, 0.704891, 0.485273], [0.191090, 0.708366, 0.482284], [0.196571, 0.711827, 0.479221], [0.202219, 0.715272, 0.476084], [0.208030, 0.718701, 0.472873], [0.214000, 0.722114, 0.469588], [0.220124, 0.725509, 0.466226], [0.226397, 0.728888, 0.462789], [0.232815, 0.732247, 0.459277], [0.239374, 0.735588, 0.455688], [0.246070, 0.738910, 0.452024], [0.252899, 0.742211, 0.448284], [0.259857, 0.745492, 0.444467], [0.266941, 0.748751, 0.440573], [0.274149, 0.751988, 0.436601], [0.281477, 0.755203, 0.432552], [0.288921, 0.758394, 0.428426], [0.296479, 0.761561, 0.424223], [0.304148, 0.764704, 0.419943], [0.311925, 0.767822, 0.415586], [0.319809, 0.770914, 0.411152], [0.327796, 0.773980, 0.406640], [0.335885, 0.777018, 0.402049], [0.344074, 0.780029, 0.397381], [0.352360, 0.783011, 0.392636], [0.360741, 0.785964, 0.387814], [0.369214, 0.788888, 0.382914], [0.377779, 0.791781, 0.377939], [0.386433, 0.794644, 0.372886], [0.395174, 0.797475, 0.367757], [0.404001, 0.800275, 0.362552], [0.412913, 0.803041, 0.357269], [0.421908, 0.805774, 0.351910], [0.430983, 0.808473, 0.346476], [0.440137, 0.811138, 0.340967], [0.449368, 0.813768, 0.335384], [0.458674, 0.816363, 0.329727], [0.468053, 0.818921, 0.323998], [0.477504, 0.821444, 0.318195], [0.487026, 0.823929, 0.312321], [0.496615, 0.826376, 0.306377], [0.506271, 0.828786, 0.300362], [0.515992, 0.831158, 0.294279], [0.525776, 0.833491, 0.288127], [0.535621, 0.835785, 0.281908], [0.545524, 0.838039, 0.275626], [0.555484, 0.840254, 0.269281], [0.565498, 0.842430, 0.262877], [0.575563, 0.844566, 0.256415], [0.585678, 0.846661, 0.249897], [0.595839, 0.848717, 0.243329], [0.606045, 0.850733, 0.236712], [0.616293, 0.852709, 0.230052], [0.626579, 0.854645, 0.223353], [0.636902, 0.856542, 0.216620], [0.647257, 0.858400, 0.209861], [0.657642, 0.860219, 0.203082], [0.668054, 0.861999, 0.196293], [0.678489, 0.863742, 0.189503], [0.688944, 0.865448, 0.182725], [0.699415, 0.867117, 0.175971], [0.709898, 0.868751, 0.169257], [0.720391, 0.870350, 0.162603], [0.730889, 0.871916, 0.156029], [0.741388, 0.873449, 0.149561], [0.751884, 0.874951, 0.143228], [0.762373, 0.876424, 0.137064], [0.772852, 0.877868, 0.131109], [0.783315, 0.879285, 0.125405], [0.793760, 0.880678, 0.120005], [0.804182, 0.882046, 0.114965], [0.814576, 0.883393, 0.110347], [0.824940, 0.884720, 0.106217], [0.835270, 0.886029, 0.102646], [0.845561, 0.887322, 0.099702], [0.855810, 0.888601, 0.097452], [0.866013, 0.889868, 0.095953], [0.876168, 0.891125, 0.095250], [0.886271, 0.892374, 0.095374], [0.896320, 0.893616, 0.096335], [0.906311, 0.894855, 0.098125], [0.916242, 0.896091, 0.100717], [0.926106, 0.897330, 0.104071], [0.935904, 0.898570, 0.108131], [0.945636, 0.899815, 0.112838], [0.955300, 0.901065, 0.118128], [0.964894, 0.902323, 0.123941], [0.974417, 0.903590, 0.130215], [0.983868, 0.904867, 0.136897], [0.993248, 0.906157, 0.143936]] viridis = ListedColormap(_viridis_data, 'viridis')
mit
neuroidss/nupic.research
projects/sp_paper/plot_traces_with_errorbars.py
10
5345
#!/usr/bin/env python # ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2016, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Plot continuous learning experiment result with error bars Run './runRepeatedExperiment.sh' in terminal before using this script """ import pickle from matplotlib import pyplot as plt import matplotlib as mpl import numpy as np from pylab import rcParams from scipy import stats mpl.rcParams['pdf.fonttype'] = 42 plt.ion() plt.close('all') def convertToNumpyArray(trace): for k in trace.keys(): if k == 'expName': continue n = len(trace[k]) trace[k] = np.reshape(np.array(trace[k]), (n, 1)) return trace def concatenateTraces(trace1, trace2): metrics = {'numConnectedSyn': [], 'numNewSyn': [], 'numRemoveSyn': [], 'stability': [], 'entropy': [], 'maxEntropy': [], 'sparsity': [], 'noiseRobustness': [], 'classification': [], 'meanBoostFactor': [], 'reconstructionError': [], 'witnessError': []} for k in metrics.keys(): metrics[k] = np.concatenate((np.array(trace1[k]), np.array(trace2[k])), 1) return metrics def calculateMeanStd(trace): meanTrace = np.mean(trace, axis=1) stdTrace = np.std(trace, axis=1) return (meanTrace, stdTrace) def plotBarWithErr(ax, y, yerr, ylabel, xtickLabels): inds = np.arange(len(y)) ax.bar(inds+.2, y, yerr=yerr, width=0.6) ax.set_ylabel(ylabel) ax.set_xticks(inds+.5) ax.set_xticklabels(xtickLabels) for tick in ax.xaxis.get_major_ticks(): tick.label.set_rotation('vertical') if __name__ == "__main__": traceAll = None changeDataAt = 50 for seed in range(1, 11): expName = 'randomSDRVaryingSparsityContinuousLearning_seed_{}'.format(seed) trace = pickle.load(open('./results/traces/{}/trace'.format(expName), 'rb')) trace = convertToNumpyArray(trace) if traceAll is None: traceAll = trace else: traceAll = concatenateTraces(traceAll, trace) traceAll['stability'][changeDataAt, :] = traceAll['stability'][changeDataAt-1, :] tracesToPlot = ['stability', 'entropy', 'noiseRobustness', 'numNewSyn', 'numRemoveSyn'] ylabelList = ['Stability', 'Entropy (bits)', 'Noise Robustness', 'Synapses Formation', 'Synapse Removal'] numEpochs, numRpts = traceAll['entropy'].shape fig, axs = plt.subplots(nrows=len(tracesToPlot), ncols=1, sharex=True) for i in range(len(tracesToPlot)): traceName = tracesToPlot[i] (mean, std) = calculateMeanStd(traceAll[traceName]) color = 'k' x = range(numEpochs) axs[i].fill_between(x, mean - std, mean + std, alpha=0.3, edgecolor=color, facecolor=color) axs[i].plot(x, mean, color, color=color, linewidth=.5) axs[i].set_ylabel(ylabelList[i]) axs[i].plot([changeDataAt, changeDataAt], axs[i].get_ylim(), 'k--') # adjust axis limit and tick spacings for i in [3, 4]: yl = axs[i].get_ylim() axs[i].set_ylim([0, yl[1]]) axs[0].set_yticks(np.linspace(.6, 1, 5)) axs[1].set_yticks(np.linspace(.08, .14, 4)) axs[4].set_xlabel('Epochs') plt.savefig('figures/ContinuousLearning_WithErrBars.pdf') rcParams.update({'figure.autolayout': True}) fig, ax = plt.subplots(nrows=1, ncols=3) checkPoints = [0, 49, 50, 119] meanEntropy = np.mean(traceAll['entropy'][checkPoints, :], 1) stdEntropy = np.std(traceAll['entropy'][checkPoints, :], 1) maxEntropy = np.mean(np.mean(traceAll['maxEntropy'][10:, :], 1)) print "test entropy difference before/after learning: " print stats.ttest_rel(traceAll['entropy'][0, :], traceAll['entropy'][49, :]) meanNoiseRobustness = np.mean(traceAll['noiseRobustness'][checkPoints, :], 1) stdNoiseRobustness = np.std(traceAll['noiseRobustness'][checkPoints, :], 1) xtickLabels = ['Before Training', 'Before Change', 'After Change', 'After Recovery'] print "test noise robustness before/after learning: " print stats.ttest_rel(traceAll['noiseRobustness'][0, :], traceAll['noiseRobustness'][49, :]) plotBarWithErr(ax[0], meanEntropy, stdEntropy, 'Entropy (bits)', xtickLabels) ax[0].plot(ax[0].get_xlim(), [maxEntropy, maxEntropy], 'k--') plotBarWithErr(ax[1], meanNoiseRobustness, stdNoiseRobustness, 'Noise Robustness', xtickLabels) plt.savefig('figures/ContinuousLearning_BarChart.pdf')
agpl-3.0
gwpy/gwpy
gwpy/plot/tests/test_colors.py
3
1881
# -*- coding: utf-8 -*- # Copyright (C) Duncan Macleod (2018-2020) # # This file is part of GWpy. # # GWpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GWpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GWpy. If not, see <http://www.gnu.org/licenses/>. """Tests for `gwpy.plot.colors` """ import pytest from numpy.testing import assert_array_equal from matplotlib.colors import (Normalize, LogNorm) from .. import colors as plot_colors @pytest.mark.parametrize('in_, factor, out', [ ('red', 1., (1., 0., 0.)), ((1., 0., 0.), 1., (1., 0., 0.)), ('green', .75, (0.0, 0.37647058823529411, 0.0)), ]) def test_tint(in_, factor, out): assert_array_equal(plot_colors.tint(in_, factor=factor), out) def test_format_norm(): # defaults norm, kwargs = plot_colors.format_norm({}) assert isinstance(norm, Normalize) assert kwargs == {} # log norm norm, kwargs = plot_colors.format_norm( {'norm': 'log', 'vmin': 1, 'vmax': 10}) assert isinstance(norm, LogNorm) assert norm.vmin == 1 assert norm.vmax == 10 # existing norm, change limits n = LogNorm() norm, kwargs = plot_colors.format_norm( {'norm': n, 'clim': (10, 1000)}) assert norm is n assert norm.vmin == 10 assert norm.vmax == 1000 # check clim=None is honoured norm, kwargs = plot_colors.format_norm({'clim': None}) assert norm.vmin is None and norm.vmax is None
gpl-3.0
LiaoPan/scikit-learn
sklearn/utils/tests/test_linear_assignment.py
421
1349
# Author: Brian M. Clapper, G Varoquaux # License: BSD import numpy as np # XXX we should be testing the public API here from sklearn.utils.linear_assignment_ import _hungarian def test_hungarian(): matrices = [ # Square ([[400, 150, 400], [400, 450, 600], [300, 225, 300]], 850 # expected cost ), # Rectangular variant ([[400, 150, 400, 1], [400, 450, 600, 2], [300, 225, 300, 3]], 452 # expected cost ), # Square ([[10, 10, 8], [9, 8, 1], [9, 7, 4]], 18 ), # Rectangular variant ([[10, 10, 8, 11], [9, 8, 1, 1], [9, 7, 4, 10]], 15 ), # n == 2, m == 0 matrix ([[], []], 0 ), ] for cost_matrix, expected_total in matrices: cost_matrix = np.array(cost_matrix) indexes = _hungarian(cost_matrix) total_cost = 0 for r, c in indexes: x = cost_matrix[r, c] total_cost += x assert expected_total == total_cost indexes = _hungarian(cost_matrix.T) total_cost = 0 for c, r in indexes: x = cost_matrix[r, c] total_cost += x assert expected_total == total_cost
bsd-3-clause
edublancas/sklearn-model-evaluation
versioneer.py
1
7720
""" Script for creating new releases Maybe I should switch to this: https://blog.mozilla.org/warner/2012/01/31/version-string-management-in-python-introducing-python-versioneer/ """ import ast import re from subprocess import call as _call from functools import reduce import datetime import click TESTING = False PACKAGE = 'src/sklearn_evaluation' PACKAGE_NAME = 'sklearn_evaluation' def replace_in_file(path_to_file, original, replacement): """Replace string in file """ with open(path_to_file, 'r+') as f: content = f.read() updated = content.replace(original, replacement) f.seek(0) f.write(updated) f.truncate() def read_file(path_to_file): with open(path_to_file, 'r') as f: content = f.read() return content def call(*args, **kwargs): """Mocks call function for testing """ if TESTING: print(args, kwargs) return 0 else: return _call(*args, **kwargs) class Versioner(object): """Utility functions to manage versions """ @classmethod def current_version(cls): """Returns the current version in __init__.py """ _version_re = re.compile(r'__version__\s+=\s+(.*)') with open('{package}/__init__.py'.format(package=PACKAGE), 'rb') as f: VERSION = str(ast.literal_eval(_version_re.search( f.read().decode('utf-8')).group(1))) return VERSION @classmethod def release_version(cls): """ Returns a release version number e.g. 2.4.4dev -> v.2.2.4 """ current = cls.current_version() if 'dev' not in current: raise ValueError('Current version is not a dev version') return current.replace('dev', '') @classmethod def bump_up_version(cls): """ Gets gets a release version and returns a the next value value. e.g. 1.2.5 -> 1.2.6dev """ # Get current version current = cls.current_version() if 'dev' in current: raise ValueError('Current version is dev version, new dev ' 'versions can only be made from release versions') # Get Z from X.Y.Z and sum 1 new_subversion = int(current.split('.')[-1]) + 1 # Replace new_subversion in current version elements = current.split('.') elements[-1] = new_subversion new_version = reduce(lambda x, y: str(x)+'.'+str(y), elements)+'dev' return new_version @classmethod def commit_version(cls, new_version, tag=False): """ Replaces version in __init__ and optionally creates a tag in the git repository (also saves a commit) """ current = cls.current_version() # replace new version in __init__.py replace_in_file('{package}/__init__.py'.format(package=PACKAGE), current, new_version) # Create tag if tag: # Run git add and git status click.echo('Adding new changes to the repository...') call(['git', 'add', '--all']) call(['git', 'status']) # Commit repo with updated dev version click.echo('Creating new commit release version...') msg = 'Release {}'.format(new_version) call(['git', 'commit', '-m', msg]) click.echo('Creating tag {}...'.format(new_version)) message = '{} release {}'.format(PACKAGE_NAME, new_version) call(['git', 'tag', '-a', new_version, '-m', message]) click.echo('Pushing tags...') call(['git', 'push', 'origin', new_version]) @classmethod def update_changelog_release(cls, new_version): current = cls.current_version() # update CHANGELOG header header_current = '{ver}\n'.format(ver=current)+'-'*len(current) today = datetime.datetime.now().strftime('%Y-%m-%d') header_new = '{ver} ({today})\n'.format(ver=new_version, today=today) header_new = header_new+'-'*len(header_new) replace_in_file('CHANGELOG.rst', header_current, header_new) @classmethod def add_changelog_dev_section(cls, dev_version): # add new CHANGELOG section start_current = 'Changelog\n=========' start_new = (('Changelog\n=========\n\n{dev_version}\n' .format(dev_version=dev_version) + '-' * len(dev_version)) + '\n') replace_in_file('CHANGELOG.rst', start_current, start_new) @click.group() def cli(): """Automates release a new version and uploading it to PyPI 1. MANUAL: Merge whatever you want to publish to master 2. MANUAL: Update your CHANGELOG.rst 2. CREATE A NEW VERSION: python versioneer.py new 3. PUBLISH: python versioneer.py release [TAG] --production """ pass @cli.command(help='Sets a new version for the project: Updates __version__, changelog and commits') def new(): """ Create a new version for the project: updates __init__.py, CHANGELOG, creates new commit for released version (creating a tag) and commits to a new dev version """ current = Versioner.current_version() release = Versioner.release_version() release = click.prompt('Current version in app.yaml is {current}. Enter' ' release version'.format(current=current, release=release), default=release, type=str) Versioner.update_changelog_release(release) changelog = read_file('CHANGELOG.rst') click.confirm('\nCHANGELOG.rst:\n\n{}\n Continue?'.format(changelog), 'done', abort=True) # Replace version number and create tag click.echo('Commiting release version: {}'.format(release)) Versioner.commit_version(release, tag=True) # Create a new dev version and save it bumped_version = Versioner.bump_up_version() click.echo('Creating new section in CHANGELOG...') Versioner.add_changelog_dev_section(bumped_version) click.echo('Commiting dev version: {}'.format(bumped_version)) Versioner.commit_version(bumped_version) # Run git add and git status click.echo('Adding new changes to the repository...') call(['git', 'add', '--all']) call(['git', 'status']) # Commit repo with updated dev version click.echo('Creating new commit with new dev version...') msg = 'Bumps up project to version {}'.format(bumped_version) call(['git', 'commit', '-m', msg]) call(['git', 'push']) click.echo('Version {} was created, you are now in {}' .format(release, bumped_version)) @cli.command(help='Merges changes in dev with master') def tomaster(): """ Merges dev with master and pushes """ click.echo('Checking out master...') call(['git', 'checkout', 'master']) click.echo('Merging master with dev...') call(['git', 'merge', 'dev']) click.echo('Pushing changes...') call(['git', 'push']) @cli.command(help='Publishes to PyPI') @click.argument('tag') @click.option('--production', is_flag=True) def release(tag, production): """ Merges dev with master and pushes """ click.echo('Checking out tag {}'.format(tag)) call(['git', 'checkout', tag]) current = Versioner.current_version() click.confirm('Version in {} tag is {}. Do you want to continue?' .format(tag, current)) click.echo('Publishing to PyPI...') where = 'pypitest' if not production else 'pypi' call(['python', 'setup.py', 'sdist', 'upload', '-r', where]) if __name__ == '__main__': cli()
mit
yask123/scikit-learn
examples/linear_model/lasso_dense_vs_sparse_data.py
348
1862
""" ============================== Lasso on dense and sparse data ============================== We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse data the speed is improved. """ print(__doc__) from time import time from scipy import sparse from scipy import linalg from sklearn.datasets.samples_generator import make_regression from sklearn.linear_model import Lasso ############################################################################### # The two Lasso implementations on Dense data print("--- Dense matrices") X, y = make_regression(n_samples=200, n_features=5000, random_state=0) X_sp = sparse.coo_matrix(X) alpha = 1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) t0 = time() sparse_lasso.fit(X_sp, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(X, y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_)) ############################################################################### # The two Lasso implementations on Sparse data print("--- Sparse matrices") Xs = X.copy() Xs[Xs < 2.5] = 0.0 Xs = sparse.coo_matrix(Xs) Xs = Xs.tocsc() print("Matrix density : %s %%" % (Xs.nnz / float(X.size) * 100)) alpha = 0.1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) t0 = time() sparse_lasso.fit(Xs, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(Xs.toarray(), y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_))
bsd-3-clause
teonlamont/mne-python
mne/viz/evoked.py
2
94662
# -*- coding: utf-8 -*- """Functions to plot evoked M/EEG data (besides topographies).""" from __future__ import print_function # Authors: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # Martin Luessi <[email protected]> # Eric Larson <[email protected]> # Cathy Nangini <[email protected]> # Mainak Jas <[email protected]> # # License: Simplified BSD from functools import partial from copy import deepcopy from numbers import Integral import numpy as np from ..io.pick import (channel_type, _pick_data_channels, _VALID_CHANNEL_TYPES, channel_indices_by_type, _DATA_CH_TYPES_SPLIT, _pick_inst, _get_channel_types, _PICK_TYPES_DATA_DICT) from ..externals.six import string_types from ..defaults import _handle_default from .utils import (_draw_proj_checkbox, tight_layout, _check_delayed_ssp, plt_show, _process_times, DraggableColorbar, _setup_cmap, _setup_vmin_vmax, _grad_pair_pick_and_name, _check_cov, _validate_if_list_of_axes, _triage_rank_sss, _connection_line, _get_color_list, _setup_ax_spines, _setup_plot_projector, _prepare_joint_axes, _set_title_multiple_electrodes, _check_time_unit, _plot_masked_image) from ..utils import (logger, _clean_names, warn, _pl, verbose, _validate_type, _check_if_nan) from .topo import _plot_evoked_topo from .topomap import (_prepare_topo_plot, plot_topomap, _check_outlines, _draw_outlines, _prepare_topomap, _set_contour_locator) from ..channels.layout import _pair_grad_sensors, _auto_topomap_coords def _butterfly_onpick(event, params): """Add a channel name on click.""" params['need_draw'] = True ax = event.artist.axes ax_idx = np.where([ax is a for a in params['axes']])[0] if len(ax_idx) == 0: # this can happen if ax param is used return # let the other axes handle it else: ax_idx = ax_idx[0] lidx = np.where([l is event.artist for l in params['lines'][ax_idx]])[0][0] ch_name = params['ch_names'][params['idxs'][ax_idx][lidx]] text = params['texts'][ax_idx] x = event.artist.get_xdata()[event.ind[0]] y = event.artist.get_ydata()[event.ind[0]] text.set_x(x) text.set_y(y) text.set_text(ch_name) text.set_color(event.artist.get_color()) text.set_alpha(1.) text.set_zorder(len(ax.lines)) # to make sure it goes on top of the lines text.set_path_effects(params['path_effects']) # do NOT redraw here, since for butterfly plots hundreds of lines could # potentially be picked -- use on_button_press (happens once per click) # to do the drawing def _butterfly_on_button_press(event, params): """Only draw once for picking.""" if params['need_draw']: event.canvas.draw() else: idx = np.where([event.inaxes is ax for ax in params['axes']])[0] if len(idx) == 1: text = params['texts'][idx[0]] text.set_alpha(0.) text.set_path_effects([]) event.canvas.draw() params['need_draw'] = False def _line_plot_onselect(xmin, xmax, ch_types, info, data, times, text=None, psd=False, time_unit='s'): """Draw topomaps from the selected area.""" import matplotlib.pyplot as plt ch_types = [type_ for type_ in ch_types if type_ in ('eeg', 'grad', 'mag')] if len(ch_types) == 0: raise ValueError('Interactive topomaps only allowed for EEG ' 'and MEG channels.') if ('grad' in ch_types and len(_pair_grad_sensors(info, topomap_coords=False, raise_error=False)) < 2): ch_types.remove('grad') if len(ch_types) == 0: return vert_lines = list() if text is not None: text.set_visible(True) ax = text.axes vert_lines.append(ax.axvline(xmin, zorder=0, color='red')) vert_lines.append(ax.axvline(xmax, zorder=0, color='red')) fill = ax.axvspan(xmin, xmax, alpha=0.2, color='green') evoked_fig = plt.gcf() evoked_fig.canvas.draw() evoked_fig.canvas.flush_events() minidx = np.abs(times - xmin).argmin() maxidx = np.abs(times - xmax).argmin() fig, axarr = plt.subplots(1, len(ch_types), squeeze=False, figsize=(3 * len(ch_types), 3)) for idx, ch_type in enumerate(ch_types): if ch_type not in ('eeg', 'grad', 'mag'): continue picks, pos, merge_grads, _, ch_type = _prepare_topo_plot( info, ch_type, layout=None) if len(pos) < 2: fig.delaxes(axarr[0][idx]) continue this_data = data[picks, minidx:maxidx] if merge_grads: from ..channels.layout import _merge_grad_data method = 'mean' if psd else 'rms' this_data = _merge_grad_data(this_data, method=method) title = '%s %s' % (ch_type, method.upper()) else: title = ch_type this_data = np.average(this_data, axis=1) axarr[0][idx].set_title(title) vmin = min(this_data) if psd else None vmax = max(this_data) if psd else None # All negative for dB psd. cmap = 'Reds' if psd else None plot_topomap(this_data, pos, cmap=cmap, vmin=vmin, vmax=vmax, axes=axarr[0][idx], show=False) unit = 'Hz' if psd else time_unit fig.suptitle('Average over %.2f%s - %.2f%s' % (xmin, unit, xmax, unit), y=0.1) tight_layout(pad=2.0, fig=fig) plt_show() if text is not None: text.set_visible(False) close_callback = partial(_topo_closed, ax=ax, lines=vert_lines, fill=fill) fig.canvas.mpl_connect('close_event', close_callback) evoked_fig.canvas.draw() evoked_fig.canvas.flush_events() def _topo_closed(events, ax, lines, fill): """Remove lines from evoked plot as topomap is closed.""" for line in lines: ax.lines.remove(line) ax.patches.remove(fill) ax.get_figure().canvas.draw() def _rgb(x, y, z): """Transform x, y, z values into RGB colors.""" rgb = np.array([x, y, z]).T rgb -= rgb.min(0) rgb /= np.maximum(rgb.max(0), 1e-16) # avoid div by zero return rgb def _plot_legend(pos, colors, axis, bads, outlines, loc, size=30): """Plot (possibly colorized) channel legends for evoked plots.""" from mpl_toolkits.axes_grid1.inset_locator import inset_axes axis.get_figure().canvas.draw() bbox = axis.get_window_extent() # Determine the correct size. ratio = bbox.width / bbox.height ax = inset_axes(axis, width=str(size / ratio) + '%', height=str(size) + '%', loc=loc) ax.set_adjustable("box") pos_x, pos_y = _prepare_topomap(pos, ax, check_nonzero=False) ax.scatter(pos_x, pos_y, color=colors, s=size * .8, marker='.', zorder=1) if bads: bads = np.array(bads) ax.scatter(pos_x[bads], pos_y[bads], s=size / 6, marker='.', color='w', zorder=1) _draw_outlines(ax, outlines) def _plot_evoked(evoked, picks, exclude, unit, show, ylim, proj, xlim, hline, units, scalings, titles, axes, plot_type, cmap=None, gfp=False, window_title=None, spatial_colors=False, set_tight_layout=True, selectable=True, zorder='unsorted', noise_cov=None, colorbar=True, mask=None, mask_style=None, mask_cmap=None, mask_alpha=.25, time_unit='s', show_names=False, group_by=None): """Aux function for plot_evoked and plot_evoked_image (cf. docstrings). Extra param is: plot_type : str, value ('butterfly' | 'image') The type of graph to plot: 'butterfly' plots each channel as a line (x axis: time, y axis: amplitude). 'image' plots a 2D image where color depicts the amplitude of each channel at a given time point (x axis: time, y axis: channel). In 'image' mode, the plot is not interactive. """ import matplotlib.pyplot as plt # For evoked.plot_image ... # First input checks for group_by and axes if any of them is not None. # Either both must be dicts, or neither. # If the former, the two dicts provide picks and axes to plot them to. # Then, we call this function recursively for each entry in `group_by`. if plot_type == "image" and isinstance(group_by, dict): if axes is None: axes = dict() for sel in group_by: plt.figure() axes[sel] = plt.axes() if not isinstance(axes, dict): raise ValueError("If `group_by` is a dict, `axes` must be " "a dict of axes or None.") _validate_if_list_of_axes(list(axes.values())) remove_xlabels = any([ax.is_last_row() for ax in axes.values()]) for sel in group_by: # ... we loop over selections if sel not in axes: raise ValueError(sel + " present in `group_by`, but not " "found in `axes`") ax = axes[sel] # the unwieldy dict comp below defaults the title to the sel _plot_evoked(evoked, group_by[sel], exclude, unit, show, ylim, proj, xlim, hline, units, scalings, (titles if titles is not None else {channel_type(evoked.info, idx): sel for idx in group_by[sel]}), ax, plot_type, cmap=cmap, gfp=gfp, window_title=window_title, set_tight_layout=set_tight_layout, selectable=selectable, noise_cov=noise_cov, colorbar=colorbar, mask=mask, mask_style=mask_style, mask_cmap=mask_cmap, mask_alpha=mask_alpha, time_unit=time_unit, show_names=show_names) if remove_xlabels and not ax.is_last_row(): ax.set_xticklabels([]) ax.set_xlabel("") ims = [ax.images[0] for ax in axes.values()] clims = np.array([im.get_clim() for im in ims]) min, max = clims.min(), clims.max() for im in ims: im.set_clim(min, max) figs = [ax.get_figure() for ax in axes.values()] if len(set(figs)) is 1: return figs[0] else: return figs elif isinstance(axes, dict): raise ValueError("If `group_by` is not a dict, " "`axes` must not be a dict either.") time_unit, times = _check_time_unit(time_unit, evoked.times) info = evoked.info if axes is not None and proj == 'interactive': raise RuntimeError('Currently only single axis figures are supported' ' for interactive SSP selection.') if isinstance(gfp, string_types) and gfp != 'only': raise ValueError('gfp must be boolean or "only". Got %s' % gfp) scalings = _handle_default('scalings', scalings) titles = _handle_default('titles', titles) units = _handle_default('units', units) if picks is None: picks = list(range(info['nchan'])) if len(picks) != len(set(picks)): raise ValueError("`picks` are not unique. Please remove duplicates.") bad_ch_idx = [info['ch_names'].index(ch) for ch in info['bads'] if ch in info['ch_names']] if len(exclude) > 0: if isinstance(exclude, string_types) and exclude == 'bads': exclude = bad_ch_idx elif (isinstance(exclude, list) and all(isinstance(ch, string_types) for ch in exclude)): exclude = [info['ch_names'].index(ch) for ch in exclude] else: raise ValueError( 'exclude has to be a list of channel names or "bads"') picks = [pick for pick in picks if pick not in exclude] picks = np.array(picks) types = np.array([channel_type(info, idx) for idx in picks]) ch_types_used = list() for this_type in _VALID_CHANNEL_TYPES: if this_type in types: ch_types_used.append(this_type) fig = None if axes is None: fig, axes = plt.subplots(len(ch_types_used), 1) plt.subplots_adjust(0.175, 0.08, 0.94, 0.94, 0.2, 0.63) if isinstance(axes, plt.Axes): axes = [axes] fig.set_size_inches(6.4, 2 + len(axes)) if isinstance(axes, plt.Axes): axes = [axes] elif isinstance(axes, np.ndarray): axes = list(axes) if fig is None: fig = axes[0].get_figure() if window_title is not None: fig.canvas.set_window_title(window_title) if len(axes) != len(ch_types_used): raise ValueError('Number of axes (%g) must match number of channel ' 'types (%d: %s)' % (len(axes), len(ch_types_used), sorted(ch_types_used))) noise_cov = _check_cov(noise_cov, info) projector, whitened_ch_names = _setup_plot_projector( info, noise_cov, proj=proj is True, nave=evoked.nave) evoked = evoked.copy() if len(whitened_ch_names) > 0: unit = False if projector is not None: evoked.data[:] = np.dot(projector, evoked.data) if plot_type == 'butterfly': _plot_lines(evoked.data, info, picks, fig, axes, spatial_colors, unit, units, scalings, hline, gfp, types, zorder, xlim, ylim, times, bad_ch_idx, titles, ch_types_used, selectable, False, line_alpha=1., nave=evoked.nave, time_unit=time_unit) plt.setp(axes, xlabel='Time (%s)' % time_unit) elif plot_type == 'image': for ai, (ax, this_type) in enumerate(zip(axes, ch_types_used)): use_nave = evoked.nave if ai == 0 else None this_picks = list(picks[types == this_type]) _plot_image(evoked.data, ax, this_type, this_picks, cmap, unit, units, scalings, times, xlim, ylim, titles, colorbar=colorbar, mask=mask, mask_style=mask_style, mask_cmap=mask_cmap, mask_alpha=mask_alpha, nave=use_nave, time_unit=time_unit, show_names=show_names, ch_names=evoked.ch_names) if proj == 'interactive': _check_delayed_ssp(evoked) params = dict(evoked=evoked, fig=fig, projs=info['projs'], axes=axes, types=types, units=units, scalings=scalings, unit=unit, ch_types_used=ch_types_used, picks=picks, plot_update_proj_callback=_plot_update_evoked, plot_type=plot_type) _draw_proj_checkbox(None, params) plt.setp(fig.axes[:len(ch_types_used) - 1], xlabel='') fig.canvas.draw() # for axes plots update axes. if set_tight_layout: tight_layout(fig=fig) plt_show(show) return fig def _plot_lines(data, info, picks, fig, axes, spatial_colors, unit, units, scalings, hline, gfp, types, zorder, xlim, ylim, times, bad_ch_idx, titles, ch_types_used, selectable, psd, line_alpha, nave, time_unit='ms'): """Plot data as butterfly plot.""" from matplotlib import patheffects, pyplot as plt from matplotlib.widgets import SpanSelector assert len(axes) == len(ch_types_used) texts = list() idxs = list() lines = list() path_effects = [patheffects.withStroke(linewidth=2, foreground="w", alpha=0.75)] gfp_path_effects = [patheffects.withStroke(linewidth=5, foreground="w", alpha=0.75)] if selectable: selectables = np.ones(len(ch_types_used), dtype=bool) for type_idx, this_type in enumerate(ch_types_used): idx = picks[types == this_type] if len(idx) < 2 or (this_type == 'grad' and len(idx) < 4): # prevent unnecessary warnings for e.g. EOG if this_type in _DATA_CH_TYPES_SPLIT: logger.info('Need more than one channel to make ' 'topography for %s. Disabling interactivity.' % (this_type,)) selectables[type_idx] = False if selectable: # Parameters for butterfly interactive plots params = dict(axes=axes, texts=texts, lines=lines, ch_names=info['ch_names'], idxs=idxs, need_draw=False, path_effects=path_effects) fig.canvas.mpl_connect('pick_event', partial(_butterfly_onpick, params=params)) fig.canvas.mpl_connect('button_press_event', partial(_butterfly_on_button_press, params=params)) for ai, (ax, this_type) in enumerate(zip(axes, ch_types_used)): line_list = list() # 'line_list' contains the lines for this axes if unit is False: this_scaling = 1.0 ch_unit = 'NA' # no unit else: this_scaling = 1. if scalings is None else scalings[this_type] ch_unit = units[this_type] idx = list(picks[types == this_type]) idxs.append(idx) if len(idx) > 0: # Set amplitude scaling D = this_scaling * data[idx, :] _check_if_nan(D) gfp_only = (isinstance(gfp, string_types) and gfp == 'only') if not gfp_only: chs = [info['chs'][i] for i in idx] locs3d = np.array([ch['loc'][:3] for ch in chs]) if spatial_colors is True and (locs3d == 0).all(): warn('Channel locations not available. Disabling spatial ' 'colors.') spatial_colors = selectable = False if spatial_colors is True and len(idx) != 1: x, y, z = locs3d.T colors = _rgb(x, y, z) _handle_spatial_colors(colors, info, idx, this_type, psd, ax) else: if isinstance(spatial_colors, (tuple, string_types)): col = [spatial_colors] else: col = ['k'] colors = col * len(idx) for i in bad_ch_idx: if i in idx: colors[idx.index(i)] = 'r' if zorder == 'std': # find the channels with the least activity # to map them in front of the more active ones z_ord = D.std(axis=1).argsort() elif zorder == 'unsorted': z_ord = list(range(D.shape[0])) elif not callable(zorder): error = ('`zorder` must be a function, "std" ' 'or "unsorted", not {0}.') raise TypeError(error.format(type(zorder))) else: z_ord = zorder(D) # plot channels for ch_idx, z in enumerate(z_ord): line_list.append( ax.plot(times, D[ch_idx], picker=3., zorder=z + 1 if spatial_colors is True else 1, color=colors[ch_idx], alpha=line_alpha, linewidth=0.5)[0]) if gfp: # 'only' or boolean True gfp_color = 3 * (0.,) if spatial_colors is True else (0., 1., 0.) this_gfp = np.sqrt((D * D).mean(axis=0)) this_ylim = ax.get_ylim() if (ylim is None or this_type not in ylim.keys()) else ylim[this_type] if gfp_only: y_offset = 0. else: y_offset = this_ylim[0] this_gfp += y_offset ax.fill_between(times, y_offset, this_gfp, color='none', facecolor=gfp_color, zorder=1, alpha=0.2) line_list.append(ax.plot(times, this_gfp, color=gfp_color, zorder=3, alpha=line_alpha)[0]) ax.text(times[0] + 0.01 * (times[-1] - times[0]), this_gfp[0] + 0.05 * np.diff(ax.get_ylim())[0], 'GFP', zorder=4, color=gfp_color, path_effects=gfp_path_effects) for ii, line in zip(idx, line_list): if ii in bad_ch_idx: line.set_zorder(2) if spatial_colors is True: line.set_linestyle("--") ax.set_ylabel(ch_unit) # for old matplotlib, we actually need this to have a bounding # box (!), so we have to put some valid text here, change # alpha and path effects later texts.append(ax.text(0, 0, 'blank', zorder=3, verticalalignment='baseline', horizontalalignment='left', fontweight='bold', alpha=0)) if xlim is not None: if xlim == 'tight': xlim = (times[0], times[-1]) ax.set_xlim(xlim) if ylim is not None and this_type in ylim: ax.set_ylim(ylim[this_type]) ax.set(title=r'%s (%d channel%s)' % (titles[this_type], len(D), _pl(len(D)))) if ai == 0: _add_nave(ax, nave) if hline is not None: for h in hline: c = ('grey' if spatial_colors is True else 'r') ax.axhline(h, linestyle='--', linewidth=2, color=c) lines.append(line_list) if selectable: for ax in np.array(axes)[selectables]: if len(ax.lines) == 1: continue text = ax.annotate('Loading...', xy=(0.01, 0.1), xycoords='axes fraction', fontsize=20, color='green', zorder=3) text.set_visible(False) callback_onselect = partial(_line_plot_onselect, ch_types=ch_types_used, info=info, data=data, times=times, text=text, psd=psd, time_unit=time_unit) blit = False if plt.get_backend() == 'MacOSX' else True minspan = 0 if len(times) < 2 else times[1] - times[0] ax._span_selector = SpanSelector( ax, callback_onselect, 'horizontal', minspan=minspan, useblit=blit, rectprops=dict(alpha=0.5, facecolor='red')) def _add_nave(ax, nave): """Add nave to axes.""" if nave is not None: ax.annotate( r'N$_{\mathrm{ave}}$=%d' % nave, ha='left', va='bottom', xy=(0, 1), xycoords='axes fraction', xytext=(0, 5), textcoords='offset pixels') def _handle_spatial_colors(colors, info, idx, ch_type, psd, ax): """Set up spatial colors.""" used_nm = np.array(_clean_names(info['ch_names']))[idx] # find indices for bads bads = [np.where(used_nm == bad)[0][0] for bad in info['bads'] if bad in used_nm] pos = _auto_topomap_coords(info, idx, ignore_overlap=True, to_sphere=True) pos, outlines = _check_outlines(pos, np.array([1, 1]), {'center': (0, 0), 'scale': (0.5, 0.5)}) loc = 1 if psd else 2 # Legend in top right for psd plot. _plot_legend(pos, colors, ax, bads, outlines, loc) def _plot_image(data, ax, this_type, picks, cmap, unit, units, scalings, times, xlim, ylim, titles, colorbar=True, mask=None, mask_cmap=None, mask_style=None, mask_alpha=.25, nave=None, time_unit='s', show_names=False, ch_names=None): """Plot images.""" import matplotlib.pyplot as plt assert time_unit is not None if show_names == "auto": if picks is not None: show_names = "all" if len(picks) < 25 else True else: show_names = False cmap = _setup_cmap(cmap) ch_unit = units[this_type] this_scaling = scalings[this_type] if unit is False: this_scaling = 1.0 ch_unit = 'NA' # no unit if picks is not None: data = data[picks] if mask is not None: mask = mask[picks] # Show the image # Set amplitude scaling data = this_scaling * data if ylim is None or this_type not in ylim: vmax = np.abs(data).max() vmin = -vmax else: vmin, vmax = ylim[this_type] _check_if_nan(data) im, t_end = _plot_masked_image( ax, data, times, mask, picks=None, yvals=None, cmap=cmap[0], vmin=vmin, vmax=vmax, mask_style=mask_style, mask_alpha=mask_alpha, mask_cmap=mask_cmap) if xlim is not None: if xlim == 'tight': xlim = (times[0], times[-1]) ax.set_xlim(xlim) if colorbar: cbar = plt.colorbar(im, ax=ax) cbar.ax.set_title(ch_unit) if cmap[1]: ax.CB = DraggableColorbar(cbar, im) ylabel = "Channels" if show_names else 'Channel (index)' t = titles[this_type] + ' (%d channel%s' % (len(data), _pl(data)) + t_end ax.set(ylabel=ylabel, xlabel='Time (%s)' % (time_unit,), title=t) _add_nave(ax, nave) if show_names is not False: if show_names == "all": yticks = np.arange(len(picks)).astype(int) yticklabels = np.array(ch_names)[picks] else: max_tick = len(picks) yticks = [tick for tick in ax.get_yticks() if tick < max_tick] yticks = np.array(yticks).astype(int) # these should only ever be ints right? yticklabels = np.array(ch_names)[picks][yticks] ax.set(yticks=yticks + .5, yticklabels=yticklabels) @verbose def plot_evoked(evoked, picks=None, exclude='bads', unit=True, show=True, ylim=None, xlim='tight', proj=False, hline=None, units=None, scalings=None, titles=None, axes=None, gfp=False, window_title=None, spatial_colors=False, zorder='unsorted', selectable=True, noise_cov=None, time_unit='s', verbose=None): """Plot evoked data using butterfly plots. Left click to a line shows the channel name. Selecting an area by clicking and holding left mouse button plots a topographic map of the painted area. .. note:: If bad channels are not excluded they are shown in red. Parameters ---------- evoked : instance of Evoked The evoked data picks : array-like of int | None The indices of channels to plot. If None show all. exclude : list of str | 'bads' Channels names to exclude from being shown. If 'bads', the bad channels are excluded. unit : bool Scale plot with channel (SI) unit. show : bool Show figure if True. ylim : dict | None ylim for plots (after scaling has been applied). e.g. ylim = dict(eeg=[-20, 20]) Valid keys are eeg, mag, grad, misc. If None, the ylim parameter for each channel equals the pyplot default. xlim : 'tight' | tuple | None xlim for plots. proj : bool | 'interactive' If true SSP projections are applied before display. If 'interactive', a check box for reversible selection of SSP projection vectors will be shown. hline : list of floats | None The values at which to show an horizontal line. units : dict | None The units of the channel types used for axes labels. If None, defaults to `dict(eeg='uV', grad='fT/cm', mag='fT')`. scalings : dict | None The scalings of the channel types to be applied for plotting. If None, defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``. titles : dict | None The titles associated with the channels. If None, defaults to `dict(eeg='EEG', grad='Gradiometers', mag='Magnetometers')`. axes : instance of Axis | list | None The axes to plot to. If list, the list must be a list of Axes of the same length as the number of channel types. If instance of Axes, there must be only one channel type plotted. gfp : bool | 'only' Plot GFP in green if True or "only". If "only", then the individual channel traces will not be shown. window_title : str | None The title to put at the top of the figure. spatial_colors : bool If True, the lines are color coded by mapping physical sensor coordinates into color values. Spatially similar channels will have similar colors. Bad channels will be dotted. If False, the good channels are plotted black and bad channels red. Defaults to False. zorder : str | callable Which channels to put in the front or back. Only matters if `spatial_colors` is used. If str, must be `std` or `unsorted` (defaults to `unsorted`). If `std`, data with the lowest standard deviation (weakest effects) will be put in front so that they are not obscured by those with stronger effects. If `unsorted`, channels are z-sorted as in the evoked instance. If callable, must take one argument: a numpy array of the same dimensionality as the evoked raw data; and return a list of unique integers corresponding to the number of channels. .. versionadded:: 0.13.0 selectable : bool Whether to use interactive features. If True (default), it is possible to paint an area to draw topomaps. When False, the interactive features are disabled. Disabling interactive features reduces memory consumption and is useful when using ``axes`` parameter to draw multiaxes figures. .. versionadded:: 0.13.0 noise_cov : instance of Covariance | str | None Noise covariance used to whiten the data while plotting. Whitened data channel names are shown in italic. Can be a string to load a covariance from disk. See also :meth:`mne.Evoked.plot_white` for additional inspection of noise covariance properties when whitening evoked data. For data processed with SSS, the effective dependence between magnetometers and gradiometers may introduce differences in scaling, consider using :meth:`mne.Evoked.plot_white`. .. versionadded:: 0.16.0 time_unit : str The units for the time axis, can be "ms" or "s" (default). .. versionadded:: 0.16 verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- fig : instance of matplotlib.figure.Figure Figure containing the butterfly plots. See Also -------- mne.viz.plot_evoked_white """ return _plot_evoked( evoked=evoked, picks=picks, exclude=exclude, unit=unit, show=show, ylim=ylim, proj=proj, xlim=xlim, hline=hline, units=units, scalings=scalings, titles=titles, axes=axes, plot_type="butterfly", gfp=gfp, window_title=window_title, spatial_colors=spatial_colors, selectable=selectable, zorder=zorder, noise_cov=noise_cov, time_unit=time_unit) def plot_evoked_topo(evoked, layout=None, layout_scale=0.945, color=None, border='none', ylim=None, scalings=None, title=None, proj=False, vline=[0.0], fig_background=None, merge_grads=False, legend=True, axes=None, background_color='w', noise_cov=None, show=True): """Plot 2D topography of evoked responses. Clicking on the plot of an individual sensor opens a new figure showing the evoked response for the selected sensor. Parameters ---------- evoked : list of Evoked | Evoked The evoked response to plot. layout : instance of Layout | None Layout instance specifying sensor positions (does not need to be specified for Neuromag data). If possible, the correct layout is inferred from the data. layout_scale: float Scaling factor for adjusting the relative size of the layout on the canvas color : list of color objects | color object | None Everything matplotlib accepts to specify colors. If not list-like, the color specified will be repeated. If None, colors are automatically drawn. border : str matplotlib borders style to be used for each sensor plot. ylim : dict | None ylim for plots (after scaling has been applied). The value determines the upper and lower subplot limits. e.g. ylim = dict(eeg=[-20, 20]). Valid keys are eeg, mag, grad, misc. If None, the ylim parameter for each channel is determined by the maximum absolute peak. scalings : dict | None The scalings of the channel types to be applied for plotting. If None,` defaults to `dict(eeg=1e6, grad=1e13, mag=1e15)`. title : str Title of the figure. proj : bool | 'interactive' If true SSP projections are applied before display. If 'interactive', a check box for reversible selection of SSP projection vectors will be shown. vline : list of floats | None The values at which to show a vertical line. fig_background : None | numpy ndarray A background image for the figure. This must work with a call to plt.imshow. Defaults to None. merge_grads : bool Whether to use RMS value of gradiometer pairs. Only works for Neuromag data. Defaults to False. legend : bool | int | string | tuple If True, create a legend based on evoked.comment. If False, disable the legend. Otherwise, the legend is created and the parameter value is passed as the location parameter to the matplotlib legend call. It can be an integer (e.g. 0 corresponds to upper right corner of the plot), a string (e.g. 'upper right'), or a tuple (x, y coordinates of the lower left corner of the legend in the axes coordinate system). See matplotlib documentation for more details. axes : instance of matplotlib Axes | None Axes to plot into. If None, axes will be created. background_color : str | obj Background color. Typically 'k' (black) or 'w' (white; default). .. versionadded:: 0.15.0 noise_cov : instance of Covariance | str | None Noise covariance used to whiten the data while plotting. Whitened data channel names are shown in italic. Can be a string to load a covariance from disk. .. versionadded:: 0.16.0 show : bool Show figure if True. Returns ------- fig : instance of matplotlib.figure.Figure Images of evoked responses at sensor locations """ from matplotlib.colors import colorConverter if not type(evoked) in (tuple, list): evoked = [evoked] dark_background = \ np.mean(colorConverter.to_rgb(background_color)) < 0.5 if dark_background: fig_facecolor = background_color axis_facecolor = background_color font_color = 'w' else: fig_facecolor = background_color axis_facecolor = background_color font_color = 'k' if color is None: if dark_background: color = ['w'] + _get_color_list() else: color = _get_color_list() color = color * ((len(evoked) % len(color)) + 1) color = color[:len(evoked)] return _plot_evoked_topo(evoked=evoked, layout=layout, layout_scale=layout_scale, color=color, border=border, ylim=ylim, scalings=scalings, title=title, proj=proj, vline=vline, fig_facecolor=fig_facecolor, fig_background=fig_background, axis_facecolor=axis_facecolor, font_color=font_color, merge_grads=merge_grads, legend=legend, axes=axes, show=show, noise_cov=noise_cov) def plot_evoked_image(evoked, picks=None, exclude='bads', unit=True, show=True, clim=None, xlim='tight', proj=False, units=None, scalings=None, titles=None, axes=None, cmap='RdBu_r', colorbar=True, mask=None, mask_style=None, mask_cmap="Greys", mask_alpha=.25, time_unit='s', show_names="auto", group_by=None): """Plot evoked data as images. Parameters ---------- evoked : instance of Evoked The evoked data picks : array-like of int | None The indices of channels to plot. If None show all. This parameter can also be used to set the order the channels are shown in, as the channel image is sorted by the order of picks. exclude : list of str | 'bads' Channels names to exclude from being shown. If 'bads', the bad channels are excluded. unit : bool Scale plot with channel (SI) unit. show : bool Show figure if True. clim : dict | None clim for plots (after scaling has been applied). e.g. clim = dict(eeg=[-20, 20]) Valid keys are eeg, mag, grad, misc. If None, the clim parameter for each channel equals the pyplot default. xlim : 'tight' | tuple | None xlim for plots. proj : bool | 'interactive' If true SSP projections are applied before display. If 'interactive', a check box for reversible selection of SSP projection vectors will be shown. units : dict | None The units of the channel types used for axes labels. If None, defaults to ``dict(eeg='uV', grad='fT/cm', mag='fT')``. scalings : dict | None The scalings of the channel types to be applied for plotting. If None,` defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``. titles : dict | None The titles associated with the channels. If None, defaults to ``dict(eeg='EEG', grad='Gradiometers', mag='Magnetometers')``. axes : instance of Axis | list | dict | None The axes to plot to. If list, the list must be a list of Axes of the same length as the number of channel types. If instance of Axes, there must be only one channel type plotted. If `group_by` is a dict, this cannot be a list, but it can be a dict of lists of axes, with the keys matching those of `group_by`. In that case, the provided axes will be used for the corresponding groups. Defaults to `None`. cmap : matplotlib colormap | (colormap, bool) | 'interactive' Colormap. If tuple, the first value indicates the colormap to use and the second value is a boolean defining interactivity. In interactive mode the colors are adjustable by clicking and dragging the colorbar with left and right mouse button. Left mouse button moves the scale up and down and right mouse button adjusts the range. Hitting space bar resets the scale. Up and down arrows can be used to change the colormap. If 'interactive', translates to ``('RdBu_r', True)``. Defaults to ``'RdBu_r'``. colorbar : bool If True, plot a colorbar. Defaults to True. .. versionadded:: 0.16 mask : ndarray | None An array of booleans of the same shape as the data. Entries of the data that correspond to ```False`` in the mask are masked (see `do_mask` below). Useful for, e.g., masking for statistical significance. .. versionadded:: 0.16 mask_style: None | 'both' | 'contour' | 'mask' If `mask` is not None: if 'contour', a contour line is drawn around the masked areas (``True`` in `mask`). If 'mask', entries not ``True`` in `mask` are shown transparently. If 'both', both a contour and transparency are used. If ``None``, defaults to 'both' if `mask` is not None, and is ignored otherwise. .. versionadded:: 0.16 mask_cmap : matplotlib colormap | (colormap, bool) | 'interactive' The colormap chosen for masked parts of the image (see below), if `mask` is not ``None``. If None, `cmap` is reused. Defaults to ``Greys``. Not interactive. Otherwise, as `cmap`. mask_alpha : float A float between 0 and 1. If `mask` is not None, this sets the alpha level (degree of transparency) for the masked-out segments. I.e., if 0, masked-out segments are not visible at all. Defaults to .25. .. versionadded:: 0.16 time_unit : str The units for the time axis, can be "ms" or "s" (default). .. versionadded:: 0.16 show_names : bool | str Determines if channel names should be plotted on the y axis. If False, no names are shown. If True, ticks are set automatically and the corresponding channel names are shown. If str, must be "auto" or "all". If "all", all channel names are shown. If "auto", is set to False if `picks` is ``None``; to ``True`` if `picks` is not ``None`` and fewer than 25 picks are shown; to "all" if `picks` is not ``None`` and contains fewer than 25 entries. group_by : None | dict If a dict, the values must be picks, and `axes` must also be a dict with matching keys, or None. If `axes` is None, one figure and one axis will be created for each entry in `group_by`. Then, for each entry, the picked channels will be plotted to the corresponding axis. If `titles` are None, keys will become plot titles. This is useful for e.g. ROIs. Each entry must contain only one channel type. For example:: group_by=dict(Left_ROI=[1, 2, 3, 4], Right_ROI=[5, 6, 7, 8]) If None, all picked channels are plotted to the same axis. Returns ------- fig : instance of matplotlib.figure.Figure Figure containing the images. """ return _plot_evoked(evoked=evoked, picks=picks, exclude=exclude, unit=unit, show=show, ylim=clim, proj=proj, xlim=xlim, hline=None, units=units, scalings=scalings, titles=titles, axes=axes, plot_type="image", cmap=cmap, colorbar=colorbar, mask=mask, mask_style=mask_style, mask_cmap=mask_cmap, mask_alpha=mask_alpha, time_unit=time_unit, show_names=show_names, group_by=group_by) def _plot_update_evoked(params, bools): """Update the plot evoked lines.""" picks, evoked = [params[k] for k in ('picks', 'evoked')] projs = [proj for ii, proj in enumerate(params['projs']) if ii in np.where(bools)[0]] params['proj_bools'] = bools new_evoked = evoked.copy() new_evoked.info['projs'] = [] new_evoked.add_proj(projs) new_evoked.apply_proj() for ax, t in zip(params['axes'], params['ch_types_used']): this_scaling = params['scalings'][t] idx = [picks[i] for i in range(len(picks)) if params['types'][i] == t] D = this_scaling * new_evoked.data[idx, :] if params['plot_type'] == 'butterfly': for line, di in zip(ax.lines, D): line.set_ydata(di) else: ax.images[0].set_data(D) params['fig'].canvas.draw() @verbose def plot_evoked_white(evoked, noise_cov, show=True, rank=None, time_unit='s', verbose=None): u"""Plot whitened evoked response. Plots the whitened evoked response and the whitened GFP as described in [1]_. This function is especially useful for investigating noise covariance properties to determine if data are properly whitened (e.g., achieving expected values in line with model assumptions, see Notes below). Parameters ---------- evoked : instance of mne.Evoked The evoked response. noise_cov : list | instance of Covariance | str The noise covariance. Can be a string to load a covariance from disk. show : bool Show figure if True. rank : dict of int | None Dict of ints where keys are 'eeg', 'meg', mag' or 'grad'. If None, the rank is detected automatically. Defaults to None. 'mag' or 'grad' cannot be specified jointly with 'meg'. For SSS'd data, only 'meg' is valid. For non-SSS'd data, 'mag' and/or 'grad' must be specified separately. If only one is specified, the other one gets estimated. Note. The rank estimation will be printed by the logger for each noise covariance estimator that is passed. time_unit : str The units for the time axis, can be "ms" or "s" (default). .. versionadded:: 0.16 verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- fig : instance of matplotlib.figure.Figure The figure object containing the plot. See Also -------- mne.Evoked.plot Notes ----- If baseline signals match the assumption of Gaussian white noise, values should be centered at 0, and be within 2 standard deviations (±1.96) for 95% of the time points. For the global field power (GFP), we expect it to fluctuate around a value of 1. If one single covariance object is passed, the GFP panel (bottom) will depict different sensor types. If multiple covariance objects are passed as a list, the left column will display the whitened evoked responses for each channel based on the whitener from the noise covariance that has the highest log-likelihood. The left column will depict the whitened GFPs based on each estimator separately for each sensor type. Instead of numbers of channels the GFP display shows the estimated rank. Note. The rank estimation will be printed by the logger (if ``verbose=True``) for each noise covariance estimator that is passed. References ---------- .. [1] Engemann D. and Gramfort A. (2015) Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals, vol. 108, 328-342, NeuroImage. """ return _plot_evoked_white(evoked=evoked, noise_cov=noise_cov, scalings=None, rank=rank, show=show, time_unit=time_unit) def _plot_evoked_white(evoked, noise_cov, scalings=None, rank=None, show=True, time_unit='s'): """Help plot_evoked_white. Additional Parameters --------------------- scalings : dict | None The rescaling method to be applied to improve the accuracy of rank estimaiton. If dict, it will override the following default values (used if None):: dict(mag=1e12, grad=1e11, eeg=1e5) Note. Theses values were tested on different datests across various conditions. You should not need to update them. """ from ..cov import whiten_evoked, read_cov # recursive import import matplotlib.pyplot as plt time_unit, times = _check_time_unit(time_unit, evoked.times) if isinstance(noise_cov, string_types): noise_cov = read_cov(noise_cov) if not isinstance(noise_cov, (list, tuple)): noise_cov = [noise_cov] evoked = evoked.copy() # handle ref meg passive_idx = [idx for idx, proj in enumerate(evoked.info['projs']) if not proj['active']] # either applied already or not-- else issue for idx in passive_idx[::-1]: # reverse order so idx does not change evoked.del_proj(idx) evoked.pick_types(ref_meg=False, exclude='bads', **_PICK_TYPES_DATA_DICT) n_ch_used, rank_list, picks_list, has_sss = _triage_rank_sss( evoked.info, noise_cov, rank, scalings) del rank, scalings if has_sss: logger.info('SSS has been applied to data. Showing mag and grad ' 'whitening jointly.') # get one whitened evoked per cov evokeds_white = [whiten_evoked(evoked, cov, picks=None, rank=r) for cov, r in zip(noise_cov, rank_list)] def whitened_gfp(x, rank=None): """Whitened Global Field Power. The MNE inverse solver assumes zero mean whitened data as input. Therefore, a chi^2 statistic will be best to detect model violations. """ return np.sum(x ** 2, axis=0) / (len(x) if rank is None else rank) # prepare plot if len(noise_cov) > 1: n_columns = 2 n_extra_row = 0 else: n_columns = 1 n_extra_row = 1 n_rows = n_ch_used + n_extra_row fig, axes = plt.subplots(n_rows, n_columns, sharex=True, sharey=False, figsize=(8.8, 2.2 * n_rows)) if n_columns > 1: suptitle = ('Whitened evoked (left, best estimator = "%s")\n' 'and global field power ' '(right, comparison of estimators)' % noise_cov[0].get('method', 'empirical')) fig.suptitle(suptitle) if any(((n_columns == 1 and n_ch_used >= 1), (n_columns == 2 and n_ch_used == 1))): axes_evoked = axes[:n_ch_used] ax_gfp = axes[-1:] elif n_columns == 2 and n_ch_used > 1: axes_evoked = axes[:n_ch_used, 0] ax_gfp = axes[:, 1] else: raise RuntimeError('Wrong axes inputs') titles_ = _handle_default('titles') if has_sss: titles_['meg'] = 'MEG (combined)' colors = [plt.cm.Set1(i) for i in np.linspace(0, 0.5, len(noise_cov))] ch_colors = _handle_default('color', None) iter_gfp = zip(evokeds_white, noise_cov, rank_list, colors) # the first is by law the best noise cov, on the left we plot that one. if not has_sss: evokeds_white[0].plot(unit=False, axes=axes_evoked, hline=[-1.96, 1.96], show=False, time_unit=time_unit) else: for ((ch_type, picks), ax) in zip(picks_list, axes_evoked): ax.plot(times, evokeds_white[0].data[picks].T, color='k', lw=0.5) for hline in [-1.96, 1.96]: ax.axhline(hline, color='red', linestyle='--', lw=2) ax.set(title='%s (%d channel%s)' % (titles_[ch_type], len(picks), _pl(len(picks)))) # Now plot the GFP for all covs if indicated. for evoked_white, noise_cov, rank_, color in iter_gfp: i = 0 for ch, sub_picks in picks_list: this_rank = rank_[ch] title = '{0} ({2}{1})'.format( titles_[ch] if n_columns > 1 else ch, this_rank, 'rank ' if n_columns > 1 else '') label = noise_cov.get('method', 'empirical') ax = ax_gfp[i] ax.set_title(title if n_columns > 1 else 'Whitened GFP, method = "%s"' % label) data = evoked_white.data[sub_picks] gfp = whitened_gfp(data, rank=this_rank) # Wrap SSS-processed data (MEG) to the mag color color_ch = 'mag' if ch == 'meg' else ch ax.plot(times, gfp, label=label if n_columns > 1 else title, color=color if n_columns > 1 else ch_colors[color_ch], lw=0.5) ax.set(xlabel='Time (%s)' % (time_unit,), ylabel=r'GFP ($\chi^2$)', xlim=[times[0], times[-1]], ylim=(0, 10)) ax.axhline(1, color='red', linestyle='--', lw=2.) if n_columns > 1: i += 1 ax = ax_gfp[0] if n_columns == 1: ax.legend( # mpl < 1.2.1 compatibility: use prop instead of fontsize loc='upper right', bbox_to_anchor=(0.98, 0.9), prop=dict(size=12)) else: ax.legend(loc='upper right', prop=dict(size=10)) params = dict(top=[0.69, 0.82, 0.87][n_rows - 1], bottom=[0.22, 0.13, 0.09][n_rows - 1]) if has_sss: params['hspace'] = 0.49 fig.subplots_adjust(**params) fig.canvas.draw() plt_show(show) return fig @verbose def plot_snr_estimate(evoked, inv, show=True, verbose=None): """Plot a data SNR estimate. Parameters ---------- evoked : instance of Evoked The evoked instance. This should probably be baseline-corrected. inv : instance of InverseOperator The minimum-norm inverse operator. show : bool Show figure if True. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- fig : instance of matplotlib.figure.Figure The figure object containing the plot. Notes ----- The bluish green line is the SNR determined by the GFP of the whitened evoked data. The orange line is the SNR estimated based on the mismatch between the data and the data re-estimated from the regularized inverse. .. versionadded:: 0.9.0 """ import matplotlib.pyplot as plt from ..minimum_norm import estimate_snr snr, snr_est = estimate_snr(evoked, inv) fig, ax = plt.subplots(1, 1) lims = np.concatenate([evoked.times[[0, -1]], [-1, snr_est.max()]]) ax.axvline(0, color='k', ls=':', lw=1) ax.axhline(0, color='k', ls=':', lw=1) # Colors are "bluish green" and "vermilion" taken from: # http://bconnelly.net/2013/10/creating-colorblind-friendly-figures/ ax.plot(evoked.times, snr_est, color=[0.0, 0.6, 0.5]) ax.plot(evoked.times, snr - 1, color=[0.8, 0.4, 0.0]) ax.set(xlim=lims[:2], ylim=lims[2:], ylabel='SNR', xlabel='Time (s)') if evoked.comment is not None: ax.set_title(evoked.comment) plt_show(show) return fig def plot_evoked_joint(evoked, times="peaks", title='', picks=None, exclude=None, show=True, ts_args=None, topomap_args=None): """Plot evoked data as butterfly plot and add topomaps for time points. Parameters ---------- evoked : instance of Evoked The evoked instance. times : float | array of floats | "auto" | "peaks" The time point(s) to plot. If "auto", 5 evenly spaced topographies between the first and last time instant will be shown. If "peaks", finds time points automatically by checking for 3 local maxima in Global Field Power. Defaults to "peaks". title : str | None The title. If `None`, suppress printing channel type. If an empty string, a default title is created. Defaults to ''. picks : array-like of int | None The indices of channels to plot. If None show all. Defaults to None. exclude : None | list of str | 'bads' Channels names to exclude from being shown. If 'bads', the bad channels are excluded. Defaults to None. show : bool Show figure if True. Defaults to True. ts_args : None | dict A dict of `kwargs` that are forwarded to :meth:`mne.Evoked.plot` to style the butterfly plot. If they are not in this dict, the following defaults are passed: ``spatial_colors=True``, ``zorder='std'``. ``show`` and ``exclude`` are illegal. If None, no customizable arguments will be passed. Defaults to `None`. topomap_args : None | dict A dict of `kwargs` that are forwarded to :meth:`mne.Evoked.plot_topomap` to style the topomaps. If it is not in this dict, ``outlines='skirt'`` will be passed. `show`, `times`, `colorbar` are illegal` If None, no customizable arguments will be passed. Defaults to `None`. Returns ------- fig : instance of matplotlib.figure.Figure | list The figure object containing the plot. If `evoked` has multiple channel types, a list of figures, one for each channel type, is returned. Notes ----- .. versionadded:: 0.12.0 """ import matplotlib.pyplot as plt if ts_args is not None and not isinstance(ts_args, dict): raise TypeError('ts_args must be dict or None, got type %s' % (type(ts_args),)) ts_args = dict() if ts_args is None else ts_args.copy() ts_args['time_unit'], evoked_times = _check_time_unit( ts_args.get('time_unit', 's'), evoked.times) if topomap_args is None: topomap_args = dict() illegal_args = {"show", 'times', 'exclude'} for args in (ts_args, topomap_args): if any((x in args for x in illegal_args)): raise ValueError("Don't pass any of {} as *_args.".format( ", ".join(list(illegal_args)))) if ("axes" in ts_args) or ("axes" in topomap_args): if not ("axes" in ts_args) and ("axes" in topomap_args): raise ValueError("If one of `ts_args` and `topomap_args` contains " "'axes', the other must, too.") if "axes" in ts_args: _validate_if_list_of_axes([ts_args["axes"]], 1) n_topomaps = (3 if times is None else len(times)) + 1 if "axes" in topomap_args: _validate_if_list_of_axes(list(topomap_args["axes"]), n_topomaps) # channel selection # simply create a new evoked object with the desired channel selection evoked = _pick_inst(evoked, picks, exclude, copy=True) info = evoked.info ch_types = _get_channel_types(info, restrict_data_types=True) # if multiple sensor types: one plot per channel type, recursive call if len(ch_types) > 1: if "axes" in ts_args or "axes" in topomap_args: raise NotImplementedError( "Currently, passing axes manually (via `ts_args` or " "`topomap_args`) is not supported for multiple channel types.") figs = list() for this_type in ch_types: # pick only the corresponding channel type ev_ = evoked.copy().pick_channels( [info['ch_names'][idx] for idx in range(info['nchan']) if channel_type(info, idx) == this_type]) if len(_get_channel_types(ev_.info)) > 1: raise RuntimeError('Possibly infinite loop due to channel ' 'selection problem. This should never ' 'happen! Please check your channel types.') figs.append( plot_evoked_joint( ev_, times=times, title=title, show=show, ts_args=ts_args, exclude=list(), topomap_args=topomap_args)) return figs # set up time points to show topomaps for times_sec = _process_times(evoked, times, few=True) del times _, times_ts = _check_time_unit(ts_args['time_unit'], times_sec) # prepare axes for topomap if ("axes" not in topomap_args) or ("axes" not in ts_args): fig, ts_ax, map_ax, cbar_ax = _prepare_joint_axes(len(times_sec), figsize=(8.0, 4.2)) else: ts_ax = ts_args["axes"] del ts_args["axes"] map_ax = topomap_args["axes"][:-1] cbar_ax = topomap_args["axes"][-1] del topomap_args["axes"] fig = cbar_ax.figure # butterfly/time series plot # most of this code is about passing defaults on demand ts_args_def = dict(picks=None, unit=True, ylim=None, xlim='tight', proj=False, hline=None, units=None, scalings=None, titles=None, gfp=False, window_title=None, spatial_colors=True, zorder='std') ts_args_def.update(ts_args) _plot_evoked(evoked, axes=ts_ax, show=False, plot_type='butterfly', exclude=[], set_tight_layout=False, **ts_args_def) # handle title # we use a new axis for the title to handle scaling of plots old_title = ts_ax.get_title() ts_ax.set_title('') if title is not None: title_ax = plt.subplot(4, 3, 2) if title == '': title = old_title title_ax.text(.5, .5, title, transform=title_ax.transAxes, horizontalalignment='center', verticalalignment='center') title_ax.axis('off') # topomap contours = topomap_args.get('contours', 6) ch_type = ch_types.pop() # set should only contain one element # Since the data has all the ch_types, we get the limits from the plot. vmin, vmax = ts_ax.get_ylim() norm = ch_type == 'grad' vmin = 0 if norm else vmin vmin, vmax = _setup_vmin_vmax(evoked.data, vmin, vmax, norm) if not isinstance(contours, (list, np.ndarray)): locator, contours = _set_contour_locator(vmin, vmax, contours) else: locator = None topomap_args_pass = topomap_args.copy() topomap_args_pass['outlines'] = topomap_args.get('outlines', 'skirt') topomap_args_pass['contours'] = contours evoked.plot_topomap(times=times_sec, axes=map_ax, show=False, colorbar=False, **topomap_args_pass) if topomap_args.get('colorbar', True): from matplotlib import ticker cbar = plt.colorbar(map_ax[0].images[0], cax=cbar_ax) if isinstance(contours, (list, np.ndarray)): cbar.set_ticks(contours) else: if locator is None: locator = ticker.MaxNLocator(nbins=5) cbar.locator = locator cbar.update_ticks() plt.subplots_adjust(left=.1, right=.93, bottom=.14, top=1. if title is not None else 1.2) # connection lines # draw the connection lines between time series and topoplots lines = [_connection_line(timepoint, fig, ts_ax, map_ax_) for timepoint, map_ax_ in zip(times_ts, map_ax)] for line in lines: fig.lines.append(line) # mark times in time series plot for timepoint in times_ts: ts_ax.axvline(timepoint, color='grey', linestyle='-', linewidth=1.5, alpha=.66, zorder=0) # show and return it plt_show(show) return fig def _aux_setup_styles(conditions, style_dict, style, default): """Set linestyles and colors for plot_compare_evokeds.""" # check user-supplied style to condition matching tags = set([tag for cond in conditions for tag in cond.split("/")]) msg = ("Can't map between conditions and the provided {0}. Make sure " "you have provided keys in the format of '/'-separated tags, " "and that these correspond to '/'-separated tags for the condition " "names (e.g., conditions like 'Visual/Right', and styles like " "'colors=dict(Visual='red'))'. The offending tag was '{1}'.") for key in style_dict: for tag in key.split("/"): if tag not in tags: raise ValueError(msg.format(style, tag)) # check condition to style matching, and fill in defaults condition_warning = "Condition {0} could not be mapped to a " + style style_warning = ". Using the default of {0}.".format(default) for condition in conditions: if condition not in style_dict: if "/" not in condition: warn(condition_warning.format(condition) + style_warning) style_dict[condition] = default for style_ in style_dict: if style_ in condition.split("/"): style_dict[condition] = style_dict[style_] break return style_dict def _truncate_yaxis(axes, ymin, ymax, orig_ymin, orig_ymax, fraction, any_positive, any_negative, truncation_style): """Truncate the y axis in plot_compare_evokeds.""" if truncation_style != "max_ticks": abs_lims = (orig_ymax if orig_ymax > np.abs(orig_ymin) else np.abs(orig_ymin)) ymin_, ymax_ = (-(abs_lims // fraction), abs_lims // fraction) # user supplied ymin and ymax overwrite everything if ymin is not None and ymin > ymin_: ymin_ = ymin if ymax is not None and ymax < ymax_: ymax_ = ymax yticks = (ymin_ if any_negative else 0, ymax_ if any_positive else 0) axes.set_yticks(yticks) ymin_bound, ymax_bound = (-(abs_lims // fraction), abs_lims // fraction) # user supplied ymin and ymax still overwrite everything if ymin is not None and ymin > ymin_bound: ymin_bound = ymin if ymax is not None and ymax < ymax_bound: ymax_bound = ymax precision = 0.25 # round to .25 if ymin is None: ymin_bound = round(ymin_bound / precision) * precision if ymin is None: ymax_bound = round(ymax_bound / precision) * precision axes.spines['left'].set_bounds(ymin_bound, ymax_bound) else: # code stolen from seaborn yticks = axes.get_yticks() firsttick = np.compress(yticks >= min(axes.get_ylim()), yticks)[0] lasttick = np.compress(yticks <= max(axes.get_ylim()), yticks)[-1] axes.spines['left'].set_bounds(firsttick, lasttick) newticks = yticks.compress(yticks <= lasttick) newticks = newticks.compress(newticks >= firsttick) axes.set_yticks(newticks) ymin_bound, ymax_bound = newticks[[0, -1]] return ymin_bound, ymax_bound def _combine_grad(evoked, picks): """Create a new instance of Evoked with combined gradiometers (RMSE).""" def pair_and_combine(data): data = data ** 2 data = (data[::2, :] + data[1::2, :]) / 2 return np.sqrt(data) picks, ch_names = _grad_pair_pick_and_name(evoked.info, picks) this_data = pair_and_combine(evoked.data[picks, :]) ch_names = ch_names[::2] evoked = evoked.copy().pick_channels(ch_names) combined_ch_names = [ch_name[:-1] + "X" for ch_name in ch_names] evoked.rename_channels({c_old: c_new for c_old, c_new in zip(evoked.ch_names, combined_ch_names)}) evoked.data = this_data return evoked def _check_loc_legal(loc, what='your choice', default=1): """Check if loc is a legal location for MPL subordinate axes.""" true_default = {"show_legend": 3, "show_sensors": 4}.get(what, default) if isinstance(loc, bool) and loc: loc = true_default loc_dict = {'upper right': 1, 'upper left': 2, 'lower left': 3, 'lower right': 4, 'right': 5, 'center left': 6, 'center right': 7, 'lower center': 8, 'upper center': 9, 'center': 10} loc_ = loc_dict.get(loc, loc) if loc_ not in range(11): raise ValueError(str(loc) + " is not a legal MPL loc, please supply" "another value for " + what + ".") return loc_ def _format_evokeds_colors(evokeds, cmap, colors): """Set up to have evokeds as a dict as well as colors.""" from ..evoked import Evoked, _check_evokeds_ch_names_times if isinstance(evokeds, Evoked): evokeds = dict(Evoked=evokeds) # title becomes 'Evoked' elif not isinstance(evokeds, dict): # it's assumed to be a list if (cmap is not None) and (colors is None): colors = dict((str(ii + 1), ii) for ii, _ in enumerate(evokeds)) evokeds = dict((str(ii + 1), evoked) for ii, evoked in enumerate(evokeds)) else: assert isinstance(evokeds, dict) if (colors is None) and cmap is not None: raise ValueError('If evokeds is a dict and a cmap is passed, ' 'you must specify the colors.') for cond in evokeds.keys(): _validate_type(cond, 'str', "Conditions") # Now make sure all values are list of Evoked objects evokeds = {condition: [v] if isinstance(v, Evoked) else v for condition, v in evokeds.items()} # Check that all elements are of type evoked for this_evoked in evokeds.values(): for ev in this_evoked: _validate_type(ev, Evoked, "All evokeds entries ", "Evoked") # Check that all evoked objects have the same time axis and channels all_evoked = sum(evokeds.values(), []) _check_evokeds_ch_names_times(all_evoked) return evokeds, colors def _setup_styles(conditions, styles, cmap, colors, linestyles): """Set up plotting styles for each condition.""" import matplotlib.pyplot as plt # continuous colors the_colors, color_conds, color_order = None, None, None colors_are_float = False if cmap is not None: for color_value in colors.values(): try: float(color_value) except ValueError: raise TypeError("If ``cmap`` is not None, the values of " "``colors`` must be numeric. Got %s" % type(color_value)) cmapper = getattr(plt.cm, cmap, cmap) color_conds = list(colors.keys()) all_colors = [colors[cond] for cond in color_conds] color_order = np.array(all_colors).argsort() color_indices = color_order.argsort() if all([isinstance(color, Integral) for color in all_colors]): msg = "Integer colors detected, mapping to rank positions ..." n_colors = len(all_colors) colors_ = {cond: ind for cond, ind in zip(color_conds, color_indices)} def convert_colors(color): return colors_[color] else: for color in all_colors: if not 0 <= color <= 1: raise ValueError("Values of colors must be all-integer or " "floats between 0 and 1, got %s." % color) msg = "Float colors detected, mapping to percentiles ..." n_colors = 101 # percentiles plus 1 if we have 1.0s colors_old = colors.copy() def convert_colors(color): return int(colors_old[color] * 100) colors_are_float = True logger.info(msg) the_colors = cmapper(np.linspace(0, 1, n_colors)) colors = dict() for cond in conditions: cond_ = cond.split("/") for color in color_conds: if color in cond_: colors[cond] = the_colors[convert_colors(color)] continue # categorical colors if not isinstance(colors, dict): colors_ = _get_color_list() if len(conditions) > len(colors_): msg = ("Trying to plot more than {0} conditions. We provide" "only {0} default colors. Please supply colors manually.") raise ValueError(msg.format(len(colors_))) colors = dict((condition, color) for condition, color in zip(conditions, colors_)) else: colors = _aux_setup_styles(conditions, colors, "color", "grey") # linestyles if not isinstance(linestyles, dict): linestyles = dict((condition, linestyle) for condition, linestyle in zip(conditions, ['-'] * len(conditions))) else: linestyles = _aux_setup_styles(conditions, linestyles, "linestyle", "-") # finally, put it all together if styles is None: styles = dict() for condition, color, linestyle in zip(conditions, colors, linestyles): styles[condition] = styles.get(condition, dict()) styles[condition]['c'] = styles[condition].get('c', colors[condition]) styles[condition]['linestyle'] = styles[condition].get( 'linestyle', linestyles[condition]) return styles, the_colors, color_conds, color_order, colors_are_float def plot_compare_evokeds(evokeds, picks=None, gfp=False, colors=None, linestyles=['-'], styles=None, cmap=None, vlines="auto", ci=0.95, truncate_yaxis="max_ticks", truncate_xaxis=True, ylim=dict(), invert_y=False, show_sensors=None, show_legend=True, split_legend=False, axes=None, title=None, show=True): """Plot evoked time courses for one or more conditions and/or channels. Parameters ---------- evokeds : instance of mne.Evoked | list | dict If a single Evoked instance, it is plotted as a time series. If a dict whose values are Evoked objects, the contents are plotted as single time series each and the keys are used as condition labels. If a list of Evokeds, the contents are plotted with indices as labels. If a [dict/list] of lists, the unweighted mean is plotted as a time series and the parametric confidence interval is plotted as a shaded area. All instances must have the same shape - channel numbers, time points etc. If dict, keys must be of type str. picks : None | int | list of int If int or list of int, the indices of the sensors to average and plot. If multiple channel types are selected, one figure will be returned for each channel type. If the selected channels are gradiometers, the signal from corresponding (gradiometer) pairs will be combined. If None, it defaults to all data channels, in which case the global field power will be plotted for all channel type available. gfp : bool If True, the channel type wise GFP is plotted. If `picks` is an empty list (default), this is set to True. colors : list | dict | None If a list, will be sequentially used for line colors. If a dict, can map evoked keys or '/'-separated (HED) tags to conditions. For example, if `evokeds` is a dict with the keys "Aud/L", "Aud/R", "Vis/L", "Vis/R", `colors` can be `dict(Aud='r', Vis='b')` to map both Aud/L and Aud/R to the color red and both Visual conditions to blue. If None (default), a sequence of desaturated colors is used. If `cmap` is None, `colors` will indicate how each condition is colored with reference to its position on the colormap - see `cmap` below. In that case, the values of colors must be either integers, in which case they will be mapped to colors in rank order; or floats between 0 and 1, in which case they will be mapped to percentiles of the colormap. linestyles : list | dict If a list, will be sequentially and repeatedly used for evoked plot linestyles. If a dict, can map the `evoked` keys or '/'-separated (HED) tags to conditions. For example, if evokeds is a dict with the keys "Aud/L", "Aud/R", "Vis/L", "Vis/R", `linestyles` can be `dict(L='--', R='-')` to map both Aud/L and Vis/L to dashed lines and both Right-side conditions to straight lines. styles : dict | None If a dict, keys must map to evoked keys or conditions, and values must be a dict of legal inputs to `matplotlib.pyplot.plot`. These parameters will be passed to the line plot call of the corresponding condition, overriding defaults. E.g., if evokeds is a dict with the keys "Aud/L", "Aud/R", "Vis/L", "Vis/R", `styles` can be `{"Aud/L": {"linewidth": 1}}` to set the linewidth for "Aud/L" to 1. Note that HED ('/'-separated) tags are not supported. cmap : None | str | tuple If not None, plot evoked activity with colors from a color gradient (indicated by a str referencing a matplotlib colormap - e.g., "viridis" or "Reds"). If ``evokeds`` is a list and ``colors`` is `None`, the color will depend on the list position. If ``colors`` is a list, it must contain integers where the list positions correspond to ``evokeds``, and the value corresponds to the position on the colorbar. If ``evokeds`` is a dict, ``colors`` should be a dict mapping from (potentially HED-style) condition tags to numbers corresponding to positions on the colorbar - rank order for integers, or floats for percentiles. E.g., :: evokeds={"cond1/A": ev1, "cond2/A": ev2, "cond3/A": ev3, "B": ev4}, cmap='viridis', colors=dict(cond1=1 cond2=2, cond3=3), linestyles={"A": "-", "B": ":"} If ``cmap`` is a tuple of length 2, the first item must be a string which will become the colorbar label, and the second one must indicate a colormap, e.g. :: cmap=('conds', 'viridis'), colors=dict(cond1=1 cond2=2, cond3=3), vlines : "auto" | list of float A list in seconds at which to plot dashed vertical lines. If "auto" and the supplied data includes 0, it is set to [0.] and a vertical bar is plotted at time 0. If an empty list is passed, no vertical lines are plotted. ci : float | callable | None | bool If not None and ``evokeds`` is a [list/dict] of lists, a shaded confidence interval is drawn around the individual time series. If float, a percentile bootstrap method is used to estimate the confidence interval and this value determines the CI width. E.g., if this value is .95 (the default), the 95% confidence interval is drawn. If a callable, it must take as its single argument an array (observations x times) and return the upper and lower confidence bands. If None or False, no confidence band is plotted. If True, a 95% bootstrapped confidence interval is drawn. truncate_yaxis : bool | str If not False, the left y axis spine is truncated to reduce visual clutter. If 'max_ticks', the spine is truncated at the minimum and maximum ticks. Else, it is truncated to half the max absolute value, rounded to .25. Defaults to "max_ticks". truncate_xaxis : bool If True, the x axis is truncated to span from the first to the last. xtick. Defaults to True. ylim : dict | None ylim for plots (after scaling has been applied). e.g. ylim = dict(eeg=[-20, 20]) Valid keys are eeg, mag, grad, misc. If None, the ylim parameter for each channel equals the pyplot default. invert_y : bool If True, negative values are plotted up (as is sometimes done for ERPs out of tradition). Defaults to False. show_sensors: bool | int | str | None If not False, channel locations are plotted on a small head circle. If int or str, the position of the axes (forwarded to ``mpl_toolkits.axes_grid1.inset_locator.inset_axes``). If None, defaults to True if ``gfp`` is False, else to False. show_legend : bool | str | int If not False, show a legend. If int or str, it is the position of the legend axes (forwarded to ``mpl_toolkits.axes_grid1.inset_locator.inset_axes``). split_legend : bool If True, the legend shows color and linestyle separately; `colors` must not be None. Defaults to True if ``cmap`` is not None, else defaults to False. axes : None | `matplotlib.axes.Axes` instance | list of `axes` What axes to plot to. If None, a new axes is created. When plotting multiple channel types, can also be a list of axes, one per channel type. title : None | str If str, will be plotted as figure title. If None, the channel names will be shown. show : bool If True, show the figure. Returns ------- fig : Figure | list of Figures The figure(s) in which the plot is drawn. When plotting multiple channel types, a list of figures, one for each channel type is returned. Notes ----- When multiple channels are passed, this function combines them all, to get one time course for each condition. If gfp is True it combines channels using global field power (GFP) computation, else it is taking a plain mean. This function is useful for comparing multiple ER[P/F]s - e.g., for multiple conditions - at a specific location. It can plot: - a simple :class:`mne.Evoked` object, - a list or dict of :class:`mne.Evoked` objects (e.g., for multiple conditions), - a list or dict of lists of :class:`mne.Evoked` (e.g., for multiple subjects in multiple conditions). In the last case, it can show a confidence interval (across e.g. subjects) using parametric or bootstrap estimation. When ``picks`` includes more than one planar gradiometer, the planar gradiometers are combined with RMSE. For example data from a VectorView system with 204 gradiometers will be transformed to 102 channels. """ import matplotlib.pyplot as plt import matplotlib.lines as mlines evokeds, colors = _format_evokeds_colors(evokeds, cmap, colors) conditions = sorted(list(evokeds.keys())) # check ci parameter if ci is None: ci = False if ci is True: ci = .95 elif ci is not False and not (isinstance(ci, np.float) or callable(ci)): raise TypeError('ci must be None, bool, float or callable, got %s' % type(ci)) # get and set a few limits and variables (times, channels, units) one_evoked = evokeds[conditions[0]][0] times = one_evoked.times info = one_evoked.info tmin, tmax = times[0], times[-1] if vlines == "auto" and (tmin < 0 and tmax > 0): vlines = [0.] _validate_type(vlines, (list, tuple), "vlines", "list or tuple") if isinstance(picks, Integral): picks = [picks] elif picks is None: logger.info("No picks, plotting the GFP ...") gfp = True picks = _pick_data_channels(info, with_ref_meg=False) _validate_type(picks, (list, np.ndarray), "picks", "list or np.array of integers") for entry in picks: _validate_type(entry, 'int', "entries of picks", "integers") if len(picks) == 0: raise ValueError("No valid channels were found to plot the GFP. " + "Use 'picks' instead to select them manually.") if ylim is None: ylim = dict() # deal with picks: infer indices and names if gfp is True: if show_sensors is None: show_sensors = False # don't show sensors for GFP ch_names = ['Global Field Power'] if len(picks) < 2: raise ValueError("Cannot compute GFP for fewer than 2 channels, " "please pick more than %d channels." % len(picks)) else: if show_sensors is None: show_sensors = True # show sensors when not doing GFP ch_names = [one_evoked.ch_names[pick] for pick in picks] picks_by_types = channel_indices_by_type(info, picks) # keep only channel types for which there is a channel: ch_types = [t for t in picks_by_types if len(picks_by_types[t]) > 0] # let's take care of axis and figs if axes is not None: if not isinstance(axes, list): axes = [axes] _validate_if_list_of_axes(axes, obligatory_len=len(ch_types)) else: axes = [plt.subplots(figsize=(8, 6))[1] for _ in range(len(ch_types))] if len(ch_types) > 1: logger.info("Multiple channel types selected, returning one figure " "per type.") figs = list() for ii, t in enumerate(ch_types): picks_ = picks_by_types[t] title_ = "GFP, " + t if (title is None and gfp is True) else title figs.append(plot_compare_evokeds( evokeds, picks=picks_, gfp=gfp, colors=colors, linestyles=linestyles, styles=styles, vlines=vlines, ci=ci, truncate_yaxis=truncate_yaxis, ylim=ylim, invert_y=invert_y, axes=axes[ii], title=title_, show=show)) return figs # From now on there is only 1 channel type assert len(ch_types) == 1 ch_type = ch_types[0] all_positive = gfp # True if not gfp, False if gfp pos_picks = picks # keep locations to pick for plotting if ch_type == "grad" and len(picks) > 1: logger.info('Combining all planar gradiometers with RMSE.') pos_picks, _ = _grad_pair_pick_and_name(one_evoked.info, picks) pos_picks = pos_picks[::2] all_positive = True for cond, this_evokeds in evokeds.items(): evokeds[cond] = [_combine_grad(e, picks) for e in this_evokeds] ch_names = evokeds[cond][0].ch_names picks = range(len(ch_names)) del info ymin, ymax = ylim.get(ch_type, [None, None]) scaling = _handle_default("scalings")[ch_type] unit = _handle_default("units")[ch_type] if (ymin is None) and all_positive: ymin = 0. # 'grad' and GFP are plotted as all-positive # if we have a dict/list of lists, we compute the grand average and the CI _ci_fun = None if ci is not False: if callable(ci): _ci_fun = ci else: from ..stats import _ci _ci_fun = partial(_ci, ci=ci, method="bootstrap") # calculate the CI ci_dict, data_dict = dict(), dict() for cond in conditions: this_evokeds = evokeds[cond] # this will fail if evokeds do not have the same structure # (e.g. channel count) data = [e.data[picks, :] * scaling for e in this_evokeds] data = np.array(data) if gfp: data = np.sqrt(np.mean(data * data, axis=1)) else: data = np.mean(data, axis=1) # average across channels if _ci_fun is not None: # compute CI if requested: ci_dict[cond] = _ci_fun(data) # average across conditions: data_dict[cond] = data = np.mean(data, axis=0) _check_if_nan(data) del evokeds # we now have dicts for data ('evokeds' - grand averaged Evoked's) # and the CI ('ci_array') with cond name labels # style the individual condition time series # Styles (especially color and linestyle) are pulled from a dict 'styles'. # This dict has one entry per condition. Its color and linestyle entries # are pulled from the 'colors' and 'linestyles' dicts via '/'-tag matching # unless they are overwritten by entries from a user-provided 'styles'. # first, copy to avoid overwriting styles = deepcopy(styles) colors = deepcopy(colors) linestyles = deepcopy(linestyles) # second, check if input is valid if isinstance(styles, dict): for style_ in styles: if style_ not in conditions: raise ValueError("Could not map between 'styles' and " "conditions. Condition " + style_ + " was not found in the supplied data.") # third, color # check: is color a list? if (colors is not None and not isinstance(colors, string_types) and not isinstance(colors, dict) and len(colors) > 1): colors = dict((condition, color) for condition, color in zip(conditions, colors)) if cmap is not None: if not isinstance(cmap, string_types) and len(cmap) == 2: cmap_label, cmap = cmap else: cmap_label = "" # dealing with a split legend if split_legend is None: split_legend = cmap is not None # default to True iff cmap is given if split_legend is True: if colors is None: raise ValueError( "If `split_legend` is True, `colors` must not be None.") # mpl 1.3 requires us to split it like this. with recent mpl, # we could use the label parameter of the Line2D legend_lines, legend_labels = list(), list() if cmap is None: # ... one set of lines for the colors for color in sorted(colors.keys()): line = mlines.Line2D([], [], linestyle="-", color=colors[color]) legend_lines.append(line) legend_labels.append(color) if len(list(linestyles)) > 1: # ... one set for the linestyle for style, s in linestyles.items(): line = mlines.Line2D([], [], color='k', linestyle=s) legend_lines.append(line) legend_labels.append(style) styles, the_colors, color_conds, color_order, colors_are_float =\ _setup_styles(data_dict.keys(), styles, cmap, colors, linestyles) # We now have a 'styles' dict with one entry per condition, specifying at # least color and linestyles. ax, = axes del axes # the actual plot any_negative, any_positive = False, False for condition in conditions: # plot the actual data ('d') as a line d = data_dict[condition].T ax.plot(times, d, zorder=1000, label=condition, clip_on=False, **styles[condition]) if np.any(d > 0) or all_positive: any_positive = True if np.any(d < 0): any_negative = True # plot the confidence interval if available if _ci_fun is not None: ci_ = ci_dict[condition] ax.fill_between(times, ci_[0].flatten(), ci_[1].flatten(), zorder=9, color=styles[condition]['c'], alpha=.3, clip_on=False) # truncate the y axis orig_ymin, orig_ymax = ax.get_ylim() if not any_positive: orig_ymax = 0 if not any_negative: orig_ymin = 0 ax.set_ylim(orig_ymin if ymin is None else ymin, orig_ymax if ymax is None else ymax) fraction = 2 if ax.get_ylim()[0] >= 0 else 3 if truncate_yaxis is not False: _, ymax_bound = _truncate_yaxis( ax, ymin, ymax, orig_ymin, orig_ymax, fraction, any_positive, any_negative, truncate_yaxis) else: if truncate_yaxis is True and ymin is not None and ymin > 0: warn("ymin is all-positive, not truncating yaxis") ymax_bound = ax.get_ylim()[-1] title = _set_title_multiple_electrodes( title, "average" if gfp is False else "gfp", ch_names, ch_type=ch_type) ax.set_title(title) current_ymin = ax.get_ylim()[0] # plot v lines if invert_y is True and current_ymin < 0: upper_v, lower_v = -ymax_bound, ax.get_ylim()[-1] else: upper_v, lower_v = ax.get_ylim()[0], ymax_bound if vlines: ax.vlines(vlines, upper_v, lower_v, linestyles='--', colors='k', linewidth=1., zorder=1) _setup_ax_spines(ax, vlines, tmin, tmax, invert_y, ymax_bound, unit, truncate_xaxis) # and now for 3 "legends" .. # a head plot showing the sensors that are being plotted if show_sensors: if show_sensors is True: ymin, ymax = np.abs(ax.get_ylim()) show_sensors = "lower right" if ymin > ymax else "upper right" try: pos = _auto_topomap_coords(one_evoked.info, pos_picks, ignore_overlap=True, to_sphere=True) except ValueError: warn("Cannot find channel coordinates in the supplied Evokeds. " "Not showing channel locations.") else: head_pos = {'center': (0, 0), 'scale': (0.5, 0.5)} pos, outlines = _check_outlines(pos, np.array([1, 1]), head_pos) _validate_type(show_sensors, (np.int, bool, str), "show_sensors", "numeric, str or bool") show_sensors = _check_loc_legal(show_sensors, "show_sensors") _plot_legend(pos, ["k"] * len(picks), ax, list(), outlines, show_sensors, size=25) # the condition legend if len(conditions) > 1 and show_legend is not False: show_legend = _check_loc_legal(show_legend, "show_legend") legend_params = dict(loc=show_legend, frameon=True) if split_legend: if len(legend_lines) > 1: ax.legend(legend_lines, legend_labels, # see above: mpl 1.3 ncol=1 + (len(legend_lines) // 4), **legend_params) else: ax.legend(ncol=1 + (len(conditions) // 5), **legend_params) # the colormap, if `cmap` is provided if split_legend and cmap is not None: # plot the colorbar ... complicated cause we don't have a heatmap from mpl_toolkits.axes_grid1 import make_axes_locatable divider = make_axes_locatable(ax) ax_cb = divider.append_axes("right", size="5%", pad=0.05) if colors_are_float: ax_cb.imshow(the_colors[:, np.newaxis, :], interpolation='none', aspect=.05) color_ticks = np.array(list(set(colors.values()))) * 100 ax_cb.set_yticks(color_ticks) ax_cb.set_yticklabels(color_ticks) else: ax_cb.imshow(the_colors[:, np.newaxis, :], interpolation='none') ax_cb.set_yticks(np.arange(len(the_colors))) ax_cb.set_yticklabels(np.array(color_conds)[color_order]) ax_cb.yaxis.tick_right() ax_cb.set(xticks=(), ylabel=cmap_label) plt_show(show) return ax.figure
bsd-3-clause
mirca/fsopy
build/lib/fsopy/distributions/exp_weibull.py
2
2292
import numpy as np from ..simulation.sampling import rejection_sampling __all__ = ['pdf', 'rvs'] def pdf(r, beta, alpha, eta): """ Computes the probability density function (pdf) of a random variable with Exponentiated Weibull distribution. Parameters ---------- r : numpy.ndarray Support of the random variable. Must be [a,b), a > 0, b > a. beta : float Shape parameter related to the scintillation index. alpha : float Shape parameter related to the receiver aperture size. It is also the number of multipath scatter components at the receiver. eta : float Scale parameter that depdens on ``beta``. Return ------ pdf : numpy.ndarray The expression of the pdf. """ return ((alpha * beta / eta) * np.power(r / eta, beta - 1.0) * np.exp(- np.power(r / eta, beta)) * np.power(1.0 - np.exp(- np.power(r / eta, beta)), alpha - 1.0)) def rvs(K, beta, alpha, eta, inter=None): """ Generates ``K`` i.i.d. samples according to the Exponentiadted Weibull (EW) distribution using the acceptance-rejection method. Parameters ---------- K : integer Number of i.i.d samples. beta : float Shape parameter related to the scintillation index. alpha : float Shape parameter related to the receiver aperture size. It is also the number of multipath scatter components at the receiver. eta : float Scale parameter that depdens on ``beta``. inter : float (optional) Interval on which the samples will be. Default values are ``a=1e-6`` and ``b=10.0``. Return ------ rvs : numpy.ndarray 1-D array of with ``K`` i.i.d samples from the EW distribution. Examples -------- >>> import numpy as np >>> from matplotlib import pyplot as plt >>> from fsopy import exp_weibull >>> samples = exp_weibull.rvs(int(1e6), 1, 1, 1, inter=(1e-6, 4.0)) >>> plt.hist(samples, bins=100, normed=True) >>> r = np.linspace(1e-6, 4., int(1e4)) >>> pdf = exp_weibull.pdf(r, 1, 1, 1) >>> plt.plot(r, pdf) >>> plt.show() """ if inter is None: inter = (1e-6, 10.0) return rejection_sampling(pdf, inter, K, beta, alpha, eta)
mit
microsoft/LightGBM
python-package/lightgbm/basic.py
1
161035
# coding: utf-8 """Wrapper for C API of LightGBM.""" import abc import ctypes import json import warnings from collections import OrderedDict from copy import deepcopy from functools import wraps from logging import Logger from os import SEEK_END from os.path import getsize from pathlib import Path from tempfile import NamedTemporaryFile from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, Union import numpy as np import scipy.sparse from .compat import PANDAS_INSTALLED, concat, dt_DataTable, is_dtype_sparse, pd_DataFrame, pd_Series from .libpath import find_lib_path ZERO_THRESHOLD = 1e-35 def _get_sample_count(total_nrow: int, params: str): sample_cnt = ctypes.c_int(0) _safe_call(_LIB.LGBM_GetSampleCount( ctypes.c_int32(total_nrow), c_str(params), ctypes.byref(sample_cnt), )) return sample_cnt.value class _DummyLogger: def info(self, msg): print(msg) def warning(self, msg): warnings.warn(msg, stacklevel=3) _LOGGER = _DummyLogger() def register_logger(logger): """Register custom logger. Parameters ---------- logger : logging.Logger Custom logger. """ if not isinstance(logger, Logger): raise TypeError("Logger should inherit logging.Logger class") global _LOGGER _LOGGER = logger def _normalize_native_string(func): """Join log messages from native library which come by chunks.""" msg_normalized = [] @wraps(func) def wrapper(msg): nonlocal msg_normalized if msg.strip() == '': msg = ''.join(msg_normalized) msg_normalized = [] return func(msg) else: msg_normalized.append(msg) return wrapper def _log_info(msg): _LOGGER.info(msg) def _log_warning(msg): _LOGGER.warning(msg) @_normalize_native_string def _log_native(msg): _LOGGER.info(msg) def _log_callback(msg): """Redirect logs from native library into Python.""" _log_native(str(msg.decode('utf-8'))) def _load_lib(): """Load LightGBM library.""" lib_path = find_lib_path() if len(lib_path) == 0: return None lib = ctypes.cdll.LoadLibrary(lib_path[0]) lib.LGBM_GetLastError.restype = ctypes.c_char_p callback = ctypes.CFUNCTYPE(None, ctypes.c_char_p) lib.callback = callback(_log_callback) if lib.LGBM_RegisterLogCallback(lib.callback) != 0: raise LightGBMError(lib.LGBM_GetLastError().decode('utf-8')) return lib _LIB = _load_lib() NUMERIC_TYPES = (int, float, bool) def _safe_call(ret): """Check the return value from C API call. Parameters ---------- ret : int The return value from C API calls. """ if ret != 0: raise LightGBMError(_LIB.LGBM_GetLastError().decode('utf-8')) def is_numeric(obj): """Check whether object is a number or not, include numpy number, etc.""" try: float(obj) return True except (TypeError, ValueError): # TypeError: obj is not a string or a number # ValueError: invalid literal return False def is_numpy_1d_array(data): """Check whether data is a numpy 1-D array.""" return isinstance(data, np.ndarray) and len(data.shape) == 1 def is_numpy_column_array(data): """Check whether data is a column numpy array.""" if not isinstance(data, np.ndarray): return False shape = data.shape return len(shape) == 2 and shape[1] == 1 def cast_numpy_1d_array_to_dtype(array, dtype): """Cast numpy 1d array to given dtype.""" if array.dtype == dtype: return array return array.astype(dtype=dtype, copy=False) def is_1d_list(data): """Check whether data is a 1-D list.""" return isinstance(data, list) and (not data or is_numeric(data[0])) def list_to_1d_numpy(data, dtype=np.float32, name='list'): """Convert data to numpy 1-D array.""" if is_numpy_1d_array(data): return cast_numpy_1d_array_to_dtype(data, dtype) elif is_numpy_column_array(data): _log_warning('Converting column-vector to 1d array') array = data.ravel() return cast_numpy_1d_array_to_dtype(array, dtype) elif is_1d_list(data): return np.array(data, dtype=dtype, copy=False) elif isinstance(data, pd_Series): if _get_bad_pandas_dtypes([data.dtypes]): raise ValueError('Series.dtypes must be int, float or bool') return np.array(data, dtype=dtype, copy=False) # SparseArray should be supported as well else: raise TypeError(f"Wrong type({type(data).__name__}) for {name}.\n" "It should be list, numpy 1-D array or pandas Series") def cfloat32_array_to_numpy(cptr, length): """Convert a ctypes float pointer array to a numpy array.""" if isinstance(cptr, ctypes.POINTER(ctypes.c_float)): return np.ctypeslib.as_array(cptr, shape=(length,)).copy() else: raise RuntimeError('Expected float pointer') def cfloat64_array_to_numpy(cptr, length): """Convert a ctypes double pointer array to a numpy array.""" if isinstance(cptr, ctypes.POINTER(ctypes.c_double)): return np.ctypeslib.as_array(cptr, shape=(length,)).copy() else: raise RuntimeError('Expected double pointer') def cint32_array_to_numpy(cptr, length): """Convert a ctypes int pointer array to a numpy array.""" if isinstance(cptr, ctypes.POINTER(ctypes.c_int32)): return np.ctypeslib.as_array(cptr, shape=(length,)).copy() else: raise RuntimeError('Expected int32 pointer') def cint64_array_to_numpy(cptr, length): """Convert a ctypes int pointer array to a numpy array.""" if isinstance(cptr, ctypes.POINTER(ctypes.c_int64)): return np.ctypeslib.as_array(cptr, shape=(length,)).copy() else: raise RuntimeError('Expected int64 pointer') def c_str(string): """Convert a Python string to C string.""" return ctypes.c_char_p(string.encode('utf-8')) def c_array(ctype, values): """Convert a Python array to C array.""" return (ctype * len(values))(*values) def json_default_with_numpy(obj): """Convert numpy classes to JSON serializable objects.""" if isinstance(obj, (np.integer, np.floating, np.bool_)): return obj.item() elif isinstance(obj, np.ndarray): return obj.tolist() else: return obj def param_dict_to_str(data): """Convert Python dictionary to string, which is passed to C API.""" if data is None or not data: return "" pairs = [] for key, val in data.items(): if isinstance(val, (list, tuple, set)) or is_numpy_1d_array(val): def to_string(x): if isinstance(x, list): return f"[{','.join(map(str, x))}]" else: return str(x) pairs.append(f"{key}={','.join(map(to_string, val))}") elif isinstance(val, (str, Path, NUMERIC_TYPES)) or is_numeric(val): pairs.append(f"{key}={val}") elif val is not None: raise TypeError(f'Unknown type of parameter:{key}, got:{type(val).__name__}') return ' '.join(pairs) class _TempFile: """Proxy class to workaround errors on Windows.""" def __enter__(self): with NamedTemporaryFile(prefix="lightgbm_tmp_", delete=True) as f: self.name = f.name self.path = Path(self.name) return self def __exit__(self, exc_type, exc_val, exc_tb): if self.path.is_file(): self.path.unlink() class LightGBMError(Exception): """Error thrown by LightGBM.""" pass # DeprecationWarning is not shown by default, so let's create our own with higher level class LGBMDeprecationWarning(UserWarning): """Custom deprecation warning.""" pass class _ConfigAliases: aliases = {"bin_construct_sample_cnt": {"bin_construct_sample_cnt", "subsample_for_bin"}, "boosting": {"boosting", "boosting_type", "boost"}, "categorical_feature": {"categorical_feature", "cat_feature", "categorical_column", "cat_column"}, "data_random_seed": {"data_random_seed", "data_seed"}, "early_stopping_round": {"early_stopping_round", "early_stopping_rounds", "early_stopping", "n_iter_no_change"}, "enable_bundle": {"enable_bundle", "is_enable_bundle", "bundle"}, "eval_at": {"eval_at", "ndcg_eval_at", "ndcg_at", "map_eval_at", "map_at"}, "group_column": {"group_column", "group", "group_id", "query_column", "query", "query_id"}, "header": {"header", "has_header"}, "ignore_column": {"ignore_column", "ignore_feature", "blacklist"}, "is_enable_sparse": {"is_enable_sparse", "is_sparse", "enable_sparse", "sparse"}, "label_column": {"label_column", "label"}, "linear_tree": {"linear_tree", "linear_trees"}, "local_listen_port": {"local_listen_port", "local_port", "port"}, "machines": {"machines", "workers", "nodes"}, "metric": {"metric", "metrics", "metric_types"}, "num_class": {"num_class", "num_classes"}, "num_iterations": {"num_iterations", "num_iteration", "n_iter", "num_tree", "num_trees", "num_round", "num_rounds", "num_boost_round", "n_estimators"}, "num_machines": {"num_machines", "num_machine"}, "num_threads": {"num_threads", "num_thread", "nthread", "nthreads", "n_jobs"}, "objective": {"objective", "objective_type", "app", "application"}, "pre_partition": {"pre_partition", "is_pre_partition"}, "tree_learner": {"tree_learner", "tree", "tree_type", "tree_learner_type"}, "two_round": {"two_round", "two_round_loading", "use_two_round_loading"}, "verbosity": {"verbosity", "verbose"}, "weight_column": {"weight_column", "weight"}} @classmethod def get(cls, *args): ret = set() for i in args: ret |= cls.aliases.get(i, {i}) return ret def _choose_param_value(main_param_name: str, params: Dict[str, Any], default_value: Any) -> Dict[str, Any]: """Get a single parameter value, accounting for aliases. Parameters ---------- main_param_name : str Name of the main parameter to get a value for. One of the keys of ``_ConfigAliases``. params : dict Dictionary of LightGBM parameters. default_value : Any Default value to use for the parameter, if none is found in ``params``. Returns ------- params : dict A ``params`` dict with exactly one value for ``main_param_name``, and all aliases ``main_param_name`` removed. If both ``main_param_name`` and one or more aliases for it are found, the value of ``main_param_name`` will be preferred. """ # avoid side effects on passed-in parameters params = deepcopy(params) # find a value, and remove other aliases with .pop() # prefer the value of 'main_param_name' if it exists, otherwise search the aliases found_value = None if main_param_name in params.keys(): found_value = params[main_param_name] for param in _ConfigAliases.get(main_param_name): val = params.pop(param, None) if found_value is None and val is not None: found_value = val if found_value is not None: params[main_param_name] = found_value else: params[main_param_name] = default_value return params MAX_INT32 = (1 << 31) - 1 """Macro definition of data type in C API of LightGBM""" C_API_DTYPE_FLOAT32 = 0 C_API_DTYPE_FLOAT64 = 1 C_API_DTYPE_INT32 = 2 C_API_DTYPE_INT64 = 3 """Matrix is row major in Python""" C_API_IS_ROW_MAJOR = 1 """Macro definition of prediction type in C API of LightGBM""" C_API_PREDICT_NORMAL = 0 C_API_PREDICT_RAW_SCORE = 1 C_API_PREDICT_LEAF_INDEX = 2 C_API_PREDICT_CONTRIB = 3 """Macro definition of sparse matrix type""" C_API_MATRIX_TYPE_CSR = 0 C_API_MATRIX_TYPE_CSC = 1 """Macro definition of feature importance type""" C_API_FEATURE_IMPORTANCE_SPLIT = 0 C_API_FEATURE_IMPORTANCE_GAIN = 1 """Data type of data field""" FIELD_TYPE_MAPPER = {"label": C_API_DTYPE_FLOAT32, "weight": C_API_DTYPE_FLOAT32, "init_score": C_API_DTYPE_FLOAT64, "group": C_API_DTYPE_INT32} """String name to int feature importance type mapper""" FEATURE_IMPORTANCE_TYPE_MAPPER = {"split": C_API_FEATURE_IMPORTANCE_SPLIT, "gain": C_API_FEATURE_IMPORTANCE_GAIN} def convert_from_sliced_object(data): """Fix the memory of multi-dimensional sliced object.""" if isinstance(data, np.ndarray) and isinstance(data.base, np.ndarray): if not data.flags.c_contiguous: _log_warning("Usage of np.ndarray subset (sliced data) is not recommended " "due to it will double the peak memory cost in LightGBM.") return np.copy(data) return data def c_float_array(data): """Get pointer of float numpy array / list.""" if is_1d_list(data): data = np.array(data, copy=False) if is_numpy_1d_array(data): data = convert_from_sliced_object(data) assert data.flags.c_contiguous if data.dtype == np.float32: ptr_data = data.ctypes.data_as(ctypes.POINTER(ctypes.c_float)) type_data = C_API_DTYPE_FLOAT32 elif data.dtype == np.float64: ptr_data = data.ctypes.data_as(ctypes.POINTER(ctypes.c_double)) type_data = C_API_DTYPE_FLOAT64 else: raise TypeError(f"Expected np.float32 or np.float64, met type({data.dtype})") else: raise TypeError(f"Unknown type({type(data).__name__})") return (ptr_data, type_data, data) # return `data` to avoid the temporary copy is freed def c_int_array(data): """Get pointer of int numpy array / list.""" if is_1d_list(data): data = np.array(data, copy=False) if is_numpy_1d_array(data): data = convert_from_sliced_object(data) assert data.flags.c_contiguous if data.dtype == np.int32: ptr_data = data.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)) type_data = C_API_DTYPE_INT32 elif data.dtype == np.int64: ptr_data = data.ctypes.data_as(ctypes.POINTER(ctypes.c_int64)) type_data = C_API_DTYPE_INT64 else: raise TypeError(f"Expected np.int32 or np.int64, met type({data.dtype})") else: raise TypeError(f"Unknown type({type(data).__name__})") return (ptr_data, type_data, data) # return `data` to avoid the temporary copy is freed def _get_bad_pandas_dtypes(dtypes): pandas_dtype_mapper = {'int8': 'int', 'int16': 'int', 'int32': 'int', 'int64': 'int', 'uint8': 'int', 'uint16': 'int', 'uint32': 'int', 'uint64': 'int', 'bool': 'int', 'float16': 'float', 'float32': 'float', 'float64': 'float'} bad_indices = [i for i, dtype in enumerate(dtypes) if (dtype.name not in pandas_dtype_mapper and (not is_dtype_sparse(dtype) or dtype.subtype.name not in pandas_dtype_mapper))] return bad_indices def _data_from_pandas(data, feature_name, categorical_feature, pandas_categorical): if isinstance(data, pd_DataFrame): if len(data.shape) != 2 or data.shape[0] < 1: raise ValueError('Input data must be 2 dimensional and non empty.') if feature_name == 'auto' or feature_name is None: data = data.rename(columns=str) cat_cols = list(data.select_dtypes(include=['category']).columns) cat_cols_not_ordered = [col for col in cat_cols if not data[col].cat.ordered] if pandas_categorical is None: # train dataset pandas_categorical = [list(data[col].cat.categories) for col in cat_cols] else: if len(cat_cols) != len(pandas_categorical): raise ValueError('train and valid dataset categorical_feature do not match.') for col, category in zip(cat_cols, pandas_categorical): if list(data[col].cat.categories) != list(category): data[col] = data[col].cat.set_categories(category) if len(cat_cols): # cat_cols is list data = data.copy() # not alter origin DataFrame data[cat_cols] = data[cat_cols].apply(lambda x: x.cat.codes).replace({-1: np.nan}) if categorical_feature is not None: if feature_name is None: feature_name = list(data.columns) if categorical_feature == 'auto': # use cat cols from DataFrame categorical_feature = cat_cols_not_ordered else: # use cat cols specified by user categorical_feature = list(categorical_feature) if feature_name == 'auto': feature_name = list(data.columns) bad_indices = _get_bad_pandas_dtypes(data.dtypes) if bad_indices: bad_index_cols_str = ', '.join(data.columns[bad_indices]) raise ValueError("DataFrame.dtypes for data must be int, float or bool.\n" "Did not expect the data types in the following fields: " f"{bad_index_cols_str}") data = data.values if data.dtype != np.float32 and data.dtype != np.float64: data = data.astype(np.float32) else: if feature_name == 'auto': feature_name = None if categorical_feature == 'auto': categorical_feature = None return data, feature_name, categorical_feature, pandas_categorical def _label_from_pandas(label): if isinstance(label, pd_DataFrame): if len(label.columns) > 1: raise ValueError('DataFrame for label cannot have multiple columns') if _get_bad_pandas_dtypes(label.dtypes): raise ValueError('DataFrame.dtypes for label must be int, float or bool') label = np.ravel(label.values.astype(np.float32, copy=False)) return label def _dump_pandas_categorical(pandas_categorical, file_name=None): categorical_json = json.dumps(pandas_categorical, default=json_default_with_numpy) pandas_str = f'\npandas_categorical:{categorical_json}\n' if file_name is not None: with open(file_name, 'a') as f: f.write(pandas_str) return pandas_str def _load_pandas_categorical(file_name=None, model_str=None): pandas_key = 'pandas_categorical:' offset = -len(pandas_key) if file_name is not None: max_offset = -getsize(file_name) with open(file_name, 'rb') as f: while True: if offset < max_offset: offset = max_offset f.seek(offset, SEEK_END) lines = f.readlines() if len(lines) >= 2: break offset *= 2 last_line = lines[-1].decode('utf-8').strip() if not last_line.startswith(pandas_key): last_line = lines[-2].decode('utf-8').strip() elif model_str is not None: idx = model_str.rfind('\n', 0, offset) last_line = model_str[idx:].strip() if last_line.startswith(pandas_key): return json.loads(last_line[len(pandas_key):]) else: return None class Sequence(abc.ABC): """ Generic data access interface. Object should support the following operations: .. code-block:: # Get total row number. >>> len(seq) # Random access by row index. Used for data sampling. >>> seq[10] # Range data access. Used to read data in batch when constructing Dataset. >>> seq[0:100] # Optionally specify batch_size to control range data read size. >>> seq.batch_size - With random access, **data sampling does not need to go through all data**. - With range data access, there's **no need to read all data into memory thus reduce memory usage**. .. versionadded:: 3.3.0 Attributes ---------- batch_size : int Default size of a batch. """ batch_size = 4096 # Defaults to read 4K rows in each batch. @abc.abstractmethod def __getitem__(self, idx: Union[int, slice]) -> np.ndarray: """Return data for given row index. A basic implementation should look like this: .. code-block:: python if isinstance(idx, numbers.Integral): return self.__get_one_line__(idx) elif isinstance(idx, slice): return np.stack(self.__get_one_line__(i) for i in range(idx.start, idx.stop)) else: raise TypeError(f"Sequence index must be integer or slice, got {type(idx).__name__}") Parameters ---------- idx : int, slice[int] Item index. Returns ------- result : numpy 1-D array, numpy 2-D array 1-D array if idx is int, 2-D array if idx is slice. """ raise NotImplementedError("Sub-classes of lightgbm.Sequence must implement __getitem__()") @abc.abstractmethod def __len__(self) -> int: """Return row count of this sequence.""" raise NotImplementedError("Sub-classes of lightgbm.Sequence must implement __len__()") class _InnerPredictor: """_InnerPredictor of LightGBM. Not exposed to user. Used only for prediction, usually used for continued training. .. note:: Can be converted from Booster, but cannot be converted to Booster. """ def __init__(self, model_file=None, booster_handle=None, pred_parameter=None): """Initialize the _InnerPredictor. Parameters ---------- model_file : string, pathlib.Path or None, optional (default=None) Path to the model file. booster_handle : object or None, optional (default=None) Handle of Booster. pred_parameter: dict or None, optional (default=None) Other parameters for the prediction. """ self.handle = ctypes.c_void_p() self.__is_manage_handle = True if model_file is not None: """Prediction task""" out_num_iterations = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterCreateFromModelfile( c_str(str(model_file)), ctypes.byref(out_num_iterations), ctypes.byref(self.handle))) out_num_class = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterGetNumClasses( self.handle, ctypes.byref(out_num_class))) self.num_class = out_num_class.value self.num_total_iteration = out_num_iterations.value self.pandas_categorical = _load_pandas_categorical(file_name=model_file) elif booster_handle is not None: self.__is_manage_handle = False self.handle = booster_handle out_num_class = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterGetNumClasses( self.handle, ctypes.byref(out_num_class))) self.num_class = out_num_class.value self.num_total_iteration = self.current_iteration() self.pandas_categorical = None else: raise TypeError('Need model_file or booster_handle to create a predictor') pred_parameter = {} if pred_parameter is None else pred_parameter self.pred_parameter = param_dict_to_str(pred_parameter) def __del__(self): try: if self.__is_manage_handle: _safe_call(_LIB.LGBM_BoosterFree(self.handle)) except AttributeError: pass def __getstate__(self): this = self.__dict__.copy() this.pop('handle', None) return this def predict(self, data, start_iteration=0, num_iteration=-1, raw_score=False, pred_leaf=False, pred_contrib=False, data_has_header=False, is_reshape=True): """Predict logic. Parameters ---------- data : string, pathlib.Path, numpy array, pandas DataFrame, H2O DataTable's Frame or scipy.sparse Data source for prediction. When data type is string or pathlib.Path, it represents the path of txt file. start_iteration : int, optional (default=0) Start index of the iteration to predict. num_iteration : int, optional (default=-1) Iteration used for prediction. raw_score : bool, optional (default=False) Whether to predict raw scores. pred_leaf : bool, optional (default=False) Whether to predict leaf index. pred_contrib : bool, optional (default=False) Whether to predict feature contributions. data_has_header : bool, optional (default=False) Whether data has header. Used only for txt data. is_reshape : bool, optional (default=True) Whether to reshape to (nrow, ncol). Returns ------- result : numpy array, scipy.sparse or list of scipy.sparse Prediction result. Can be sparse or a list of sparse objects (each element represents predictions for one class) for feature contributions (when ``pred_contrib=True``). """ if isinstance(data, Dataset): raise TypeError("Cannot use Dataset instance for prediction, please use raw data instead") data = _data_from_pandas(data, None, None, self.pandas_categorical)[0] predict_type = C_API_PREDICT_NORMAL if raw_score: predict_type = C_API_PREDICT_RAW_SCORE if pred_leaf: predict_type = C_API_PREDICT_LEAF_INDEX if pred_contrib: predict_type = C_API_PREDICT_CONTRIB int_data_has_header = 1 if data_has_header else 0 if isinstance(data, (str, Path)): with _TempFile() as f: _safe_call(_LIB.LGBM_BoosterPredictForFile( self.handle, c_str(str(data)), ctypes.c_int(int_data_has_header), ctypes.c_int(predict_type), ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), c_str(self.pred_parameter), c_str(f.name))) preds = np.loadtxt(f.name, dtype=np.float64) nrow = preds.shape[0] elif isinstance(data, scipy.sparse.csr_matrix): preds, nrow = self.__pred_for_csr(data, start_iteration, num_iteration, predict_type) elif isinstance(data, scipy.sparse.csc_matrix): preds, nrow = self.__pred_for_csc(data, start_iteration, num_iteration, predict_type) elif isinstance(data, np.ndarray): preds, nrow = self.__pred_for_np2d(data, start_iteration, num_iteration, predict_type) elif isinstance(data, list): try: data = np.array(data) except BaseException: raise ValueError('Cannot convert data list to numpy array.') preds, nrow = self.__pred_for_np2d(data, start_iteration, num_iteration, predict_type) elif isinstance(data, dt_DataTable): preds, nrow = self.__pred_for_np2d(data.to_numpy(), start_iteration, num_iteration, predict_type) else: try: _log_warning('Converting data to scipy sparse matrix.') csr = scipy.sparse.csr_matrix(data) except BaseException: raise TypeError(f'Cannot predict data for type {type(data).__name__}') preds, nrow = self.__pred_for_csr(csr, start_iteration, num_iteration, predict_type) if pred_leaf: preds = preds.astype(np.int32) is_sparse = scipy.sparse.issparse(preds) or isinstance(preds, list) if is_reshape and not is_sparse and preds.size != nrow: if preds.size % nrow == 0: preds = preds.reshape(nrow, -1) else: raise ValueError(f'Length of predict result ({preds.size}) cannot be divide nrow ({nrow})') return preds def __get_num_preds(self, start_iteration, num_iteration, nrow, predict_type): """Get size of prediction result.""" if nrow > MAX_INT32: raise LightGBMError('LightGBM cannot perform prediction for data ' f'with number of rows greater than MAX_INT32 ({MAX_INT32}).\n' 'You can split your data into chunks ' 'and then concatenate predictions for them') n_preds = ctypes.c_int64(0) _safe_call(_LIB.LGBM_BoosterCalcNumPredict( self.handle, ctypes.c_int(nrow), ctypes.c_int(predict_type), ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), ctypes.byref(n_preds))) return n_preds.value def __pred_for_np2d(self, mat, start_iteration, num_iteration, predict_type): """Predict for a 2-D numpy matrix.""" if len(mat.shape) != 2: raise ValueError('Input numpy.ndarray or list must be 2 dimensional') def inner_predict(mat, start_iteration, num_iteration, predict_type, preds=None): if mat.dtype == np.float32 or mat.dtype == np.float64: data = np.array(mat.reshape(mat.size), dtype=mat.dtype, copy=False) else: # change non-float data to float data, need to copy data = np.array(mat.reshape(mat.size), dtype=np.float32) ptr_data, type_ptr_data, _ = c_float_array(data) n_preds = self.__get_num_preds(start_iteration, num_iteration, mat.shape[0], predict_type) if preds is None: preds = np.empty(n_preds, dtype=np.float64) elif len(preds.shape) != 1 or len(preds) != n_preds: raise ValueError("Wrong length of pre-allocated predict array") out_num_preds = ctypes.c_int64(0) _safe_call(_LIB.LGBM_BoosterPredictForMat( self.handle, ptr_data, ctypes.c_int(type_ptr_data), ctypes.c_int32(mat.shape[0]), ctypes.c_int32(mat.shape[1]), ctypes.c_int(C_API_IS_ROW_MAJOR), ctypes.c_int(predict_type), ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), c_str(self.pred_parameter), ctypes.byref(out_num_preds), preds.ctypes.data_as(ctypes.POINTER(ctypes.c_double)))) if n_preds != out_num_preds.value: raise ValueError("Wrong length for predict results") return preds, mat.shape[0] nrow = mat.shape[0] if nrow > MAX_INT32: sections = np.arange(start=MAX_INT32, stop=nrow, step=MAX_INT32) # __get_num_preds() cannot work with nrow > MAX_INT32, so calculate overall number of predictions piecemeal n_preds = [self.__get_num_preds(start_iteration, num_iteration, i, predict_type) for i in np.diff([0] + list(sections) + [nrow])] n_preds_sections = np.array([0] + n_preds, dtype=np.intp).cumsum() preds = np.empty(sum(n_preds), dtype=np.float64) for chunk, (start_idx_pred, end_idx_pred) in zip(np.array_split(mat, sections), zip(n_preds_sections, n_preds_sections[1:])): # avoid memory consumption by arrays concatenation operations inner_predict(chunk, start_iteration, num_iteration, predict_type, preds[start_idx_pred:end_idx_pred]) return preds, nrow else: return inner_predict(mat, start_iteration, num_iteration, predict_type) def __create_sparse_native(self, cs, out_shape, out_ptr_indptr, out_ptr_indices, out_ptr_data, indptr_type, data_type, is_csr=True): # create numpy array from output arrays data_indices_len = out_shape[0] indptr_len = out_shape[1] if indptr_type == C_API_DTYPE_INT32: out_indptr = cint32_array_to_numpy(out_ptr_indptr, indptr_len) elif indptr_type == C_API_DTYPE_INT64: out_indptr = cint64_array_to_numpy(out_ptr_indptr, indptr_len) else: raise TypeError("Expected int32 or int64 type for indptr") if data_type == C_API_DTYPE_FLOAT32: out_data = cfloat32_array_to_numpy(out_ptr_data, data_indices_len) elif data_type == C_API_DTYPE_FLOAT64: out_data = cfloat64_array_to_numpy(out_ptr_data, data_indices_len) else: raise TypeError("Expected float32 or float64 type for data") out_indices = cint32_array_to_numpy(out_ptr_indices, data_indices_len) # break up indptr based on number of rows (note more than one matrix in multiclass case) per_class_indptr_shape = cs.indptr.shape[0] # for CSC there is extra column added if not is_csr: per_class_indptr_shape += 1 out_indptr_arrays = np.split(out_indptr, out_indptr.shape[0] / per_class_indptr_shape) # reformat output into a csr or csc matrix or list of csr or csc matrices cs_output_matrices = [] offset = 0 for cs_indptr in out_indptr_arrays: matrix_indptr_len = cs_indptr[cs_indptr.shape[0] - 1] cs_indices = out_indices[offset + cs_indptr[0]:offset + matrix_indptr_len] cs_data = out_data[offset + cs_indptr[0]:offset + matrix_indptr_len] offset += matrix_indptr_len # same shape as input csr or csc matrix except extra column for expected value cs_shape = [cs.shape[0], cs.shape[1] + 1] # note: make sure we copy data as it will be deallocated next if is_csr: cs_output_matrices.append(scipy.sparse.csr_matrix((cs_data, cs_indices, cs_indptr), cs_shape)) else: cs_output_matrices.append(scipy.sparse.csc_matrix((cs_data, cs_indices, cs_indptr), cs_shape)) # free the temporary native indptr, indices, and data _safe_call(_LIB.LGBM_BoosterFreePredictSparse(out_ptr_indptr, out_ptr_indices, out_ptr_data, ctypes.c_int(indptr_type), ctypes.c_int(data_type))) if len(cs_output_matrices) == 1: return cs_output_matrices[0] return cs_output_matrices def __pred_for_csr(self, csr, start_iteration, num_iteration, predict_type): """Predict for a CSR data.""" def inner_predict(csr, start_iteration, num_iteration, predict_type, preds=None): nrow = len(csr.indptr) - 1 n_preds = self.__get_num_preds(start_iteration, num_iteration, nrow, predict_type) if preds is None: preds = np.empty(n_preds, dtype=np.float64) elif len(preds.shape) != 1 or len(preds) != n_preds: raise ValueError("Wrong length of pre-allocated predict array") out_num_preds = ctypes.c_int64(0) ptr_indptr, type_ptr_indptr, __ = c_int_array(csr.indptr) ptr_data, type_ptr_data, _ = c_float_array(csr.data) assert csr.shape[1] <= MAX_INT32 csr_indices = csr.indices.astype(np.int32, copy=False) _safe_call(_LIB.LGBM_BoosterPredictForCSR( self.handle, ptr_indptr, ctypes.c_int(type_ptr_indptr), csr_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), ptr_data, ctypes.c_int(type_ptr_data), ctypes.c_int64(len(csr.indptr)), ctypes.c_int64(len(csr.data)), ctypes.c_int64(csr.shape[1]), ctypes.c_int(predict_type), ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), c_str(self.pred_parameter), ctypes.byref(out_num_preds), preds.ctypes.data_as(ctypes.POINTER(ctypes.c_double)))) if n_preds != out_num_preds.value: raise ValueError("Wrong length for predict results") return preds, nrow def inner_predict_sparse(csr, start_iteration, num_iteration, predict_type): ptr_indptr, type_ptr_indptr, __ = c_int_array(csr.indptr) ptr_data, type_ptr_data, _ = c_float_array(csr.data) csr_indices = csr.indices.astype(np.int32, copy=False) matrix_type = C_API_MATRIX_TYPE_CSR if type_ptr_indptr == C_API_DTYPE_INT32: out_ptr_indptr = ctypes.POINTER(ctypes.c_int32)() else: out_ptr_indptr = ctypes.POINTER(ctypes.c_int64)() out_ptr_indices = ctypes.POINTER(ctypes.c_int32)() if type_ptr_data == C_API_DTYPE_FLOAT32: out_ptr_data = ctypes.POINTER(ctypes.c_float)() else: out_ptr_data = ctypes.POINTER(ctypes.c_double)() out_shape = np.empty(2, dtype=np.int64) _safe_call(_LIB.LGBM_BoosterPredictSparseOutput( self.handle, ptr_indptr, ctypes.c_int(type_ptr_indptr), csr_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), ptr_data, ctypes.c_int(type_ptr_data), ctypes.c_int64(len(csr.indptr)), ctypes.c_int64(len(csr.data)), ctypes.c_int64(csr.shape[1]), ctypes.c_int(predict_type), ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), c_str(self.pred_parameter), ctypes.c_int(matrix_type), out_shape.ctypes.data_as(ctypes.POINTER(ctypes.c_int64)), ctypes.byref(out_ptr_indptr), ctypes.byref(out_ptr_indices), ctypes.byref(out_ptr_data))) matrices = self.__create_sparse_native(csr, out_shape, out_ptr_indptr, out_ptr_indices, out_ptr_data, type_ptr_indptr, type_ptr_data, is_csr=True) nrow = len(csr.indptr) - 1 return matrices, nrow if predict_type == C_API_PREDICT_CONTRIB: return inner_predict_sparse(csr, start_iteration, num_iteration, predict_type) nrow = len(csr.indptr) - 1 if nrow > MAX_INT32: sections = [0] + list(np.arange(start=MAX_INT32, stop=nrow, step=MAX_INT32)) + [nrow] # __get_num_preds() cannot work with nrow > MAX_INT32, so calculate overall number of predictions piecemeal n_preds = [self.__get_num_preds(start_iteration, num_iteration, i, predict_type) for i in np.diff(sections)] n_preds_sections = np.array([0] + n_preds, dtype=np.intp).cumsum() preds = np.empty(sum(n_preds), dtype=np.float64) for (start_idx, end_idx), (start_idx_pred, end_idx_pred) in zip(zip(sections, sections[1:]), zip(n_preds_sections, n_preds_sections[1:])): # avoid memory consumption by arrays concatenation operations inner_predict(csr[start_idx:end_idx], start_iteration, num_iteration, predict_type, preds[start_idx_pred:end_idx_pred]) return preds, nrow else: return inner_predict(csr, start_iteration, num_iteration, predict_type) def __pred_for_csc(self, csc, start_iteration, num_iteration, predict_type): """Predict for a CSC data.""" def inner_predict_sparse(csc, start_iteration, num_iteration, predict_type): ptr_indptr, type_ptr_indptr, __ = c_int_array(csc.indptr) ptr_data, type_ptr_data, _ = c_float_array(csc.data) csc_indices = csc.indices.astype(np.int32, copy=False) matrix_type = C_API_MATRIX_TYPE_CSC if type_ptr_indptr == C_API_DTYPE_INT32: out_ptr_indptr = ctypes.POINTER(ctypes.c_int32)() else: out_ptr_indptr = ctypes.POINTER(ctypes.c_int64)() out_ptr_indices = ctypes.POINTER(ctypes.c_int32)() if type_ptr_data == C_API_DTYPE_FLOAT32: out_ptr_data = ctypes.POINTER(ctypes.c_float)() else: out_ptr_data = ctypes.POINTER(ctypes.c_double)() out_shape = np.empty(2, dtype=np.int64) _safe_call(_LIB.LGBM_BoosterPredictSparseOutput( self.handle, ptr_indptr, ctypes.c_int(type_ptr_indptr), csc_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), ptr_data, ctypes.c_int(type_ptr_data), ctypes.c_int64(len(csc.indptr)), ctypes.c_int64(len(csc.data)), ctypes.c_int64(csc.shape[0]), ctypes.c_int(predict_type), ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), c_str(self.pred_parameter), ctypes.c_int(matrix_type), out_shape.ctypes.data_as(ctypes.POINTER(ctypes.c_int64)), ctypes.byref(out_ptr_indptr), ctypes.byref(out_ptr_indices), ctypes.byref(out_ptr_data))) matrices = self.__create_sparse_native(csc, out_shape, out_ptr_indptr, out_ptr_indices, out_ptr_data, type_ptr_indptr, type_ptr_data, is_csr=False) nrow = csc.shape[0] return matrices, nrow nrow = csc.shape[0] if nrow > MAX_INT32: return self.__pred_for_csr(csc.tocsr(), start_iteration, num_iteration, predict_type) if predict_type == C_API_PREDICT_CONTRIB: return inner_predict_sparse(csc, start_iteration, num_iteration, predict_type) n_preds = self.__get_num_preds(start_iteration, num_iteration, nrow, predict_type) preds = np.empty(n_preds, dtype=np.float64) out_num_preds = ctypes.c_int64(0) ptr_indptr, type_ptr_indptr, __ = c_int_array(csc.indptr) ptr_data, type_ptr_data, _ = c_float_array(csc.data) assert csc.shape[0] <= MAX_INT32 csc_indices = csc.indices.astype(np.int32, copy=False) _safe_call(_LIB.LGBM_BoosterPredictForCSC( self.handle, ptr_indptr, ctypes.c_int(type_ptr_indptr), csc_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), ptr_data, ctypes.c_int(type_ptr_data), ctypes.c_int64(len(csc.indptr)), ctypes.c_int64(len(csc.data)), ctypes.c_int64(csc.shape[0]), ctypes.c_int(predict_type), ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), c_str(self.pred_parameter), ctypes.byref(out_num_preds), preds.ctypes.data_as(ctypes.POINTER(ctypes.c_double)))) if n_preds != out_num_preds.value: raise ValueError("Wrong length for predict results") return preds, nrow def current_iteration(self): """Get the index of the current iteration. Returns ------- cur_iter : int The index of the current iteration. """ out_cur_iter = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterGetCurrentIteration( self.handle, ctypes.byref(out_cur_iter))) return out_cur_iter.value class Dataset: """Dataset in LightGBM.""" def __init__(self, data, label=None, reference=None, weight=None, group=None, init_score=None, silent=False, feature_name='auto', categorical_feature='auto', params=None, free_raw_data=True): """Initialize Dataset. Parameters ---------- data : string, pathlib.Path, numpy array, pandas DataFrame, H2O DataTable's Frame, scipy.sparse, Sequence, list of Sequences or list of numpy arrays Data source of Dataset. If string or pathlib.Path, it represents the path to txt file. label : list, numpy 1-D array, pandas Series / one-column DataFrame or None, optional (default=None) Label of the data. reference : Dataset or None, optional (default=None) If this is Dataset for validation, training data should be used as reference. weight : list, numpy 1-D array, pandas Series or None, optional (default=None) Weight for each instance. group : list, numpy 1-D array, pandas Series or None, optional (default=None) Group/query data. Only used in the learning-to-rank task. sum(group) = n_samples. For example, if you have a 100-document dataset with ``group = [10, 20, 40, 10, 10, 10]``, that means that you have 6 groups, where the first 10 records are in the first group, records 11-30 are in the second group, records 31-70 are in the third group, etc. init_score : list, numpy 1-D array, pandas Series or None, optional (default=None) Init score for Dataset. silent : bool, optional (default=False) Whether to print messages during construction. feature_name : list of strings or 'auto', optional (default="auto") Feature names. If 'auto' and data is pandas DataFrame, data columns names are used. categorical_feature : list of strings or int, or 'auto', optional (default="auto") Categorical features. If list of int, interpreted as indices. If list of strings, interpreted as feature names (need to specify ``feature_name`` as well). If 'auto' and data is pandas DataFrame, pandas unordered categorical columns are used. All values in categorical features should be less than int32 max value (2147483647). Large values could be memory consuming. Consider using consecutive integers starting from zero. All negative values in categorical features will be treated as missing values. The output cannot be monotonically constrained with respect to a categorical feature. params : dict or None, optional (default=None) Other parameters for Dataset. free_raw_data : bool, optional (default=True) If True, raw data is freed after constructing inner Dataset. """ self.handle = None self.data = data self.label = label self.reference = reference self.weight = weight self.group = group self.init_score = init_score self.silent = silent self.feature_name = feature_name self.categorical_feature = categorical_feature self.params = deepcopy(params) self.free_raw_data = free_raw_data self.used_indices = None self.need_slice = True self._predictor = None self.pandas_categorical = None self.params_back_up = None self.feature_penalty = None self.monotone_constraints = None self.version = 0 self._start_row = 0 # Used when pushing rows one by one. def __del__(self): try: self._free_handle() except AttributeError: pass def _create_sample_indices(self, total_nrow: int) -> np.ndarray: """Get an array of randomly chosen indices from this ``Dataset``. Indices are sampled without replacement. Parameters ---------- total_nrow : int Total number of rows to sample from. If this value is greater than the value of parameter ``bin_construct_sample_cnt``, only ``bin_construct_sample_cnt`` indices will be used. If Dataset has multiple input data, this should be the sum of rows of every file. Returns ------- indices : numpy array Indices for sampled data. """ param_str = param_dict_to_str(self.get_params()) sample_cnt = _get_sample_count(total_nrow, param_str) indices = np.empty(sample_cnt, dtype=np.int32) ptr_data, _, _ = c_int_array(indices) actual_sample_cnt = ctypes.c_int32(0) _safe_call(_LIB.LGBM_SampleIndices( ctypes.c_int32(total_nrow), c_str(param_str), ptr_data, ctypes.byref(actual_sample_cnt), )) return indices[:actual_sample_cnt.value] def _init_from_ref_dataset(self, total_nrow: int, ref_dataset: 'Dataset') -> 'Dataset': """Create dataset from a reference dataset. Parameters ---------- total_nrow : int Number of rows expected to add to dataset. ref_dataset : Dataset Reference dataset to extract meta from. Returns ------- self : Dataset Constructed Dataset object. """ self.handle = ctypes.c_void_p() _safe_call(_LIB.LGBM_DatasetCreateByReference( ref_dataset, ctypes.c_int64(total_nrow), ctypes.byref(self.handle), )) return self def _init_from_sample( self, sample_data: List[np.ndarray], sample_indices: List[np.ndarray], sample_cnt: int, total_nrow: int, ) -> "Dataset": """Create Dataset from sampled data structures. Parameters ---------- sample_data : list of numpy arrays Sample data for each column. sample_indices : list of numpy arrays Sample data row index for each column. sample_cnt : int Number of samples. total_nrow : int Total number of rows for all input files. Returns ------- self : Dataset Constructed Dataset object. """ ncol = len(sample_indices) assert len(sample_data) == ncol, "#sample data column != #column indices" for i in range(ncol): if sample_data[i].dtype != np.double: raise ValueError(f"sample_data[{i}] type {sample_data[i].dtype} is not double") if sample_indices[i].dtype != np.int32: raise ValueError(f"sample_indices[{i}] type {sample_indices[i].dtype} is not int32") # c type: double** # each double* element points to start of each column of sample data. sample_col_ptr = (ctypes.POINTER(ctypes.c_double) * ncol)() # c type int** # each int* points to start of indices for each column indices_col_ptr = (ctypes.POINTER(ctypes.c_int32) * ncol)() for i in range(ncol): sample_col_ptr[i] = c_float_array(sample_data[i])[0] indices_col_ptr[i] = c_int_array(sample_indices[i])[0] num_per_col = np.array([len(d) for d in sample_indices], dtype=np.int32) num_per_col_ptr, _, _ = c_int_array(num_per_col) self.handle = ctypes.c_void_p() params_str = param_dict_to_str(self.get_params()) _safe_call(_LIB.LGBM_DatasetCreateFromSampledColumn( ctypes.cast(sample_col_ptr, ctypes.POINTER(ctypes.POINTER(ctypes.c_double))), ctypes.cast(indices_col_ptr, ctypes.POINTER(ctypes.POINTER(ctypes.c_int32))), ctypes.c_int32(ncol), num_per_col_ptr, ctypes.c_int32(sample_cnt), ctypes.c_int32(total_nrow), c_str(params_str), ctypes.byref(self.handle), )) return self def _push_rows(self, data: np.ndarray) -> 'Dataset': """Add rows to Dataset. Parameters ---------- data : numpy 1-D array New data to add to the Dataset. Returns ------- self : Dataset Dataset object. """ nrow, ncol = data.shape data = data.reshape(data.size) data_ptr, data_type, _ = c_float_array(data) _safe_call(_LIB.LGBM_DatasetPushRows( self.handle, data_ptr, data_type, ctypes.c_int32(nrow), ctypes.c_int32(ncol), ctypes.c_int32(self._start_row), )) self._start_row += nrow return self def get_params(self): """Get the used parameters in the Dataset. Returns ------- params : dict or None The used parameters in this Dataset object. """ if self.params is not None: # no min_data, nthreads and verbose in this function dataset_params = _ConfigAliases.get("bin_construct_sample_cnt", "categorical_feature", "data_random_seed", "enable_bundle", "feature_pre_filter", "forcedbins_filename", "group_column", "header", "ignore_column", "is_enable_sparse", "label_column", "linear_tree", "max_bin", "max_bin_by_feature", "min_data_in_bin", "pre_partition", "precise_float_parser", "two_round", "use_missing", "weight_column", "zero_as_missing") return {k: v for k, v in self.params.items() if k in dataset_params} def _free_handle(self): if self.handle is not None: _safe_call(_LIB.LGBM_DatasetFree(self.handle)) self.handle = None self.need_slice = True if self.used_indices is not None: self.data = None return self def _set_init_score_by_predictor(self, predictor, data, used_indices=None): data_has_header = False if isinstance(data, (str, Path)): # check data has header or not data_has_header = any(self.params.get(alias, False) for alias in _ConfigAliases.get("header")) num_data = self.num_data() if predictor is not None: init_score = predictor.predict(data, raw_score=True, data_has_header=data_has_header, is_reshape=False) if used_indices is not None: assert not self.need_slice if isinstance(data, (str, Path)): sub_init_score = np.empty(num_data * predictor.num_class, dtype=np.float32) assert num_data == len(used_indices) for i in range(len(used_indices)): for j in range(predictor.num_class): sub_init_score[i * predictor.num_class + j] = init_score[used_indices[i] * predictor.num_class + j] init_score = sub_init_score if predictor.num_class > 1: # need to regroup init_score new_init_score = np.empty(init_score.size, dtype=np.float32) for i in range(num_data): for j in range(predictor.num_class): new_init_score[j * num_data + i] = init_score[i * predictor.num_class + j] init_score = new_init_score elif self.init_score is not None: init_score = np.zeros(self.init_score.shape, dtype=np.float32) else: return self self.set_init_score(init_score) def _lazy_init(self, data, label=None, reference=None, weight=None, group=None, init_score=None, predictor=None, silent=False, feature_name='auto', categorical_feature='auto', params=None): if data is None: self.handle = None return self if reference is not None: self.pandas_categorical = reference.pandas_categorical categorical_feature = reference.categorical_feature data, feature_name, categorical_feature, self.pandas_categorical = _data_from_pandas(data, feature_name, categorical_feature, self.pandas_categorical) label = _label_from_pandas(label) # process for args params = {} if params is None else params args_names = (getattr(self.__class__, '_lazy_init') .__code__ .co_varnames[:getattr(self.__class__, '_lazy_init').__code__.co_argcount]) for key in params.keys(): if key in args_names: _log_warning(f'{key} keyword has been found in `params` and will be ignored.\n' f'Please use {key} argument of the Dataset constructor to pass this parameter.') # user can set verbose with params, it has higher priority if not any(verbose_alias in params for verbose_alias in _ConfigAliases.get("verbosity")) and silent: params["verbose"] = -1 # get categorical features if categorical_feature is not None: categorical_indices = set() feature_dict = {} if feature_name is not None: feature_dict = {name: i for i, name in enumerate(feature_name)} for name in categorical_feature: if isinstance(name, str) and name in feature_dict: categorical_indices.add(feature_dict[name]) elif isinstance(name, int): categorical_indices.add(name) else: raise TypeError(f"Wrong type({type(name).__name__}) or unknown name({name}) in categorical_feature") if categorical_indices: for cat_alias in _ConfigAliases.get("categorical_feature"): if cat_alias in params: _log_warning(f'{cat_alias} in param dict is overridden.') params.pop(cat_alias, None) params['categorical_column'] = sorted(categorical_indices) params_str = param_dict_to_str(params) self.params = params # process for reference dataset ref_dataset = None if isinstance(reference, Dataset): ref_dataset = reference.construct().handle elif reference is not None: raise TypeError('Reference dataset should be None or dataset instance') # start construct data if isinstance(data, (str, Path)): self.handle = ctypes.c_void_p() _safe_call(_LIB.LGBM_DatasetCreateFromFile( c_str(str(data)), c_str(params_str), ref_dataset, ctypes.byref(self.handle))) elif isinstance(data, scipy.sparse.csr_matrix): self.__init_from_csr(data, params_str, ref_dataset) elif isinstance(data, scipy.sparse.csc_matrix): self.__init_from_csc(data, params_str, ref_dataset) elif isinstance(data, np.ndarray): self.__init_from_np2d(data, params_str, ref_dataset) elif isinstance(data, list) and len(data) > 0: if all(isinstance(x, np.ndarray) for x in data): self.__init_from_list_np2d(data, params_str, ref_dataset) elif all(isinstance(x, Sequence) for x in data): self.__init_from_seqs(data, ref_dataset) else: raise TypeError('Data list can only be of ndarray or Sequence') elif isinstance(data, Sequence): self.__init_from_seqs([data], ref_dataset) elif isinstance(data, dt_DataTable): self.__init_from_np2d(data.to_numpy(), params_str, ref_dataset) else: try: csr = scipy.sparse.csr_matrix(data) self.__init_from_csr(csr, params_str, ref_dataset) except BaseException: raise TypeError(f'Cannot initialize Dataset from {type(data).__name__}') if label is not None: self.set_label(label) if self.get_label() is None: raise ValueError("Label should not be None") if weight is not None: self.set_weight(weight) if group is not None: self.set_group(group) if isinstance(predictor, _InnerPredictor): if self._predictor is None and init_score is not None: _log_warning("The init_score will be overridden by the prediction of init_model.") self._set_init_score_by_predictor(predictor, data) elif init_score is not None: self.set_init_score(init_score) elif predictor is not None: raise TypeError(f'Wrong predictor type {type(predictor).__name__}') # set feature names return self.set_feature_name(feature_name) def __yield_row_from(self, seqs: List[Sequence], indices: Iterable[int]): offset = 0 seq_id = 0 seq = seqs[seq_id] for row_id in indices: assert row_id >= offset, "sample indices are expected to be monotonic" while row_id >= offset + len(seq): offset += len(seq) seq_id += 1 seq = seqs[seq_id] id_in_seq = row_id - offset row = seq[id_in_seq] yield row if row.flags['OWNDATA'] else row.copy() def __sample(self, seqs: List[Sequence], total_nrow: int) -> Tuple[List[np.ndarray], List[np.ndarray]]: """Sample data from seqs. Mimics behavior in c_api.cpp:LGBM_DatasetCreateFromMats() Returns ------- sampled_rows, sampled_row_indices """ indices = self._create_sample_indices(total_nrow) # Select sampled rows, transpose to column order. sampled = np.array([row for row in self.__yield_row_from(seqs, indices)]) sampled = sampled.T filtered = [] filtered_idx = [] sampled_row_range = np.arange(len(indices), dtype=np.int32) for col in sampled: col_predicate = (np.abs(col) > ZERO_THRESHOLD) | np.isnan(col) filtered_col = col[col_predicate] filtered_row_idx = sampled_row_range[col_predicate] filtered.append(filtered_col) filtered_idx.append(filtered_row_idx) return filtered, filtered_idx def __init_from_seqs(self, seqs: List[Sequence], ref_dataset: Optional['Dataset'] = None): """ Initialize data from list of Sequence objects. Sequence: Generic Data Access Object Supports random access and access by batch if properly defined by user Data scheme uniformity are trusted, not checked """ total_nrow = sum(len(seq) for seq in seqs) # create validation dataset from ref_dataset if ref_dataset is not None: self._init_from_ref_dataset(total_nrow, ref_dataset) else: param_str = param_dict_to_str(self.get_params()) sample_cnt = _get_sample_count(total_nrow, param_str) sample_data, col_indices = self.__sample(seqs, total_nrow) self._init_from_sample(sample_data, col_indices, sample_cnt, total_nrow) for seq in seqs: nrow = len(seq) batch_size = getattr(seq, 'batch_size', None) or Sequence.batch_size for start in range(0, nrow, batch_size): end = min(start + batch_size, nrow) self._push_rows(seq[start:end]) return self def __init_from_np2d(self, mat, params_str, ref_dataset): """Initialize data from a 2-D numpy matrix.""" if len(mat.shape) != 2: raise ValueError('Input numpy.ndarray must be 2 dimensional') self.handle = ctypes.c_void_p() if mat.dtype == np.float32 or mat.dtype == np.float64: data = np.array(mat.reshape(mat.size), dtype=mat.dtype, copy=False) else: # change non-float data to float data, need to copy data = np.array(mat.reshape(mat.size), dtype=np.float32) ptr_data, type_ptr_data, _ = c_float_array(data) _safe_call(_LIB.LGBM_DatasetCreateFromMat( ptr_data, ctypes.c_int(type_ptr_data), ctypes.c_int32(mat.shape[0]), ctypes.c_int32(mat.shape[1]), ctypes.c_int(C_API_IS_ROW_MAJOR), c_str(params_str), ref_dataset, ctypes.byref(self.handle))) return self def __init_from_list_np2d(self, mats, params_str, ref_dataset): """Initialize data from a list of 2-D numpy matrices.""" ncol = mats[0].shape[1] nrow = np.empty((len(mats),), np.int32) if mats[0].dtype == np.float64: ptr_data = (ctypes.POINTER(ctypes.c_double) * len(mats))() else: ptr_data = (ctypes.POINTER(ctypes.c_float) * len(mats))() holders = [] type_ptr_data = None for i, mat in enumerate(mats): if len(mat.shape) != 2: raise ValueError('Input numpy.ndarray must be 2 dimensional') if mat.shape[1] != ncol: raise ValueError('Input arrays must have same number of columns') nrow[i] = mat.shape[0] if mat.dtype == np.float32 or mat.dtype == np.float64: mats[i] = np.array(mat.reshape(mat.size), dtype=mat.dtype, copy=False) else: # change non-float data to float data, need to copy mats[i] = np.array(mat.reshape(mat.size), dtype=np.float32) chunk_ptr_data, chunk_type_ptr_data, holder = c_float_array(mats[i]) if type_ptr_data is not None and chunk_type_ptr_data != type_ptr_data: raise ValueError('Input chunks must have same type') ptr_data[i] = chunk_ptr_data type_ptr_data = chunk_type_ptr_data holders.append(holder) self.handle = ctypes.c_void_p() _safe_call(_LIB.LGBM_DatasetCreateFromMats( ctypes.c_int32(len(mats)), ctypes.cast(ptr_data, ctypes.POINTER(ctypes.POINTER(ctypes.c_double))), ctypes.c_int(type_ptr_data), nrow.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), ctypes.c_int32(ncol), ctypes.c_int(C_API_IS_ROW_MAJOR), c_str(params_str), ref_dataset, ctypes.byref(self.handle))) return self def __init_from_csr(self, csr, params_str, ref_dataset): """Initialize data from a CSR matrix.""" if len(csr.indices) != len(csr.data): raise ValueError(f'Length mismatch: {len(csr.indices)} vs {len(csr.data)}') self.handle = ctypes.c_void_p() ptr_indptr, type_ptr_indptr, __ = c_int_array(csr.indptr) ptr_data, type_ptr_data, _ = c_float_array(csr.data) assert csr.shape[1] <= MAX_INT32 csr_indices = csr.indices.astype(np.int32, copy=False) _safe_call(_LIB.LGBM_DatasetCreateFromCSR( ptr_indptr, ctypes.c_int(type_ptr_indptr), csr_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), ptr_data, ctypes.c_int(type_ptr_data), ctypes.c_int64(len(csr.indptr)), ctypes.c_int64(len(csr.data)), ctypes.c_int64(csr.shape[1]), c_str(params_str), ref_dataset, ctypes.byref(self.handle))) return self def __init_from_csc(self, csc, params_str, ref_dataset): """Initialize data from a CSC matrix.""" if len(csc.indices) != len(csc.data): raise ValueError(f'Length mismatch: {len(csc.indices)} vs {len(csc.data)}') self.handle = ctypes.c_void_p() ptr_indptr, type_ptr_indptr, __ = c_int_array(csc.indptr) ptr_data, type_ptr_data, _ = c_float_array(csc.data) assert csc.shape[0] <= MAX_INT32 csc_indices = csc.indices.astype(np.int32, copy=False) _safe_call(_LIB.LGBM_DatasetCreateFromCSC( ptr_indptr, ctypes.c_int(type_ptr_indptr), csc_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), ptr_data, ctypes.c_int(type_ptr_data), ctypes.c_int64(len(csc.indptr)), ctypes.c_int64(len(csc.data)), ctypes.c_int64(csc.shape[0]), c_str(params_str), ref_dataset, ctypes.byref(self.handle))) return self def construct(self): """Lazy init. Returns ------- self : Dataset Constructed Dataset object. """ if self.handle is None: if self.reference is not None: reference_params = self.reference.get_params() if self.get_params() != reference_params: _log_warning('Overriding the parameters from Reference Dataset.') self._update_params(reference_params) if self.used_indices is None: # create valid self._lazy_init(self.data, label=self.label, reference=self.reference, weight=self.weight, group=self.group, init_score=self.init_score, predictor=self._predictor, silent=self.silent, feature_name=self.feature_name, params=self.params) else: # construct subset used_indices = list_to_1d_numpy(self.used_indices, np.int32, name='used_indices') assert used_indices.flags.c_contiguous if self.reference.group is not None: group_info = np.array(self.reference.group).astype(np.int32, copy=False) _, self.group = np.unique(np.repeat(range(len(group_info)), repeats=group_info)[self.used_indices], return_counts=True) self.handle = ctypes.c_void_p() params_str = param_dict_to_str(self.params) _safe_call(_LIB.LGBM_DatasetGetSubset( self.reference.construct().handle, used_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), ctypes.c_int32(used_indices.shape[0]), c_str(params_str), ctypes.byref(self.handle))) if not self.free_raw_data: self.get_data() if self.group is not None: self.set_group(self.group) if self.get_label() is None: raise ValueError("Label should not be None.") if isinstance(self._predictor, _InnerPredictor) and self._predictor is not self.reference._predictor: self.get_data() self._set_init_score_by_predictor(self._predictor, self.data, used_indices) else: # create train self._lazy_init(self.data, label=self.label, weight=self.weight, group=self.group, init_score=self.init_score, predictor=self._predictor, silent=self.silent, feature_name=self.feature_name, categorical_feature=self.categorical_feature, params=self.params) if self.free_raw_data: self.data = None return self def create_valid(self, data, label=None, weight=None, group=None, init_score=None, silent=False, params=None): """Create validation data align with current Dataset. Parameters ---------- data : string, pathlib.Path, numpy array, pandas DataFrame, H2O DataTable's Frame, scipy.sparse, Sequence, list of Sequences or list of numpy arrays Data source of Dataset. If string or pathlib.Path, it represents the path to txt file. label : list, numpy 1-D array, pandas Series / one-column DataFrame or None, optional (default=None) Label of the data. weight : list, numpy 1-D array, pandas Series or None, optional (default=None) Weight for each instance. group : list, numpy 1-D array, pandas Series or None, optional (default=None) Group/query data. Only used in the learning-to-rank task. sum(group) = n_samples. For example, if you have a 100-document dataset with ``group = [10, 20, 40, 10, 10, 10]``, that means that you have 6 groups, where the first 10 records are in the first group, records 11-30 are in the second group, records 31-70 are in the third group, etc. init_score : list, numpy 1-D array, pandas Series or None, optional (default=None) Init score for Dataset. silent : bool, optional (default=False) Whether to print messages during construction. params : dict or None, optional (default=None) Other parameters for validation Dataset. Returns ------- valid : Dataset Validation Dataset with reference to self. """ ret = Dataset(data, label=label, reference=self, weight=weight, group=group, init_score=init_score, silent=silent, params=params, free_raw_data=self.free_raw_data) ret._predictor = self._predictor ret.pandas_categorical = self.pandas_categorical return ret def subset(self, used_indices, params=None): """Get subset of current Dataset. Parameters ---------- used_indices : list of int Indices used to create the subset. params : dict or None, optional (default=None) These parameters will be passed to Dataset constructor. Returns ------- subset : Dataset Subset of the current Dataset. """ if params is None: params = self.params ret = Dataset(None, reference=self, feature_name=self.feature_name, categorical_feature=self.categorical_feature, params=params, free_raw_data=self.free_raw_data) ret._predictor = self._predictor ret.pandas_categorical = self.pandas_categorical ret.used_indices = sorted(used_indices) return ret def save_binary(self, filename): """Save Dataset to a binary file. .. note:: Please note that `init_score` is not saved in binary file. If you need it, please set it again after loading Dataset. Parameters ---------- filename : string or pathlib.Path Name of the output file. Returns ------- self : Dataset Returns self. """ _safe_call(_LIB.LGBM_DatasetSaveBinary( self.construct().handle, c_str(str(filename)))) return self def _update_params(self, params): if not params: return self params = deepcopy(params) def update(): if not self.params: self.params = params else: self.params_back_up = deepcopy(self.params) self.params.update(params) if self.handle is None: update() elif params is not None: ret = _LIB.LGBM_DatasetUpdateParamChecking( c_str(param_dict_to_str(self.params)), c_str(param_dict_to_str(params))) if ret != 0: # could be updated if data is not freed if self.data is not None: update() self._free_handle() else: raise LightGBMError(_LIB.LGBM_GetLastError().decode('utf-8')) return self def _reverse_update_params(self): if self.handle is None: self.params = deepcopy(self.params_back_up) self.params_back_up = None return self def set_field(self, field_name, data): """Set property into the Dataset. Parameters ---------- field_name : string The field name of the information. data : list, numpy 1-D array, pandas Series or None The array of data to be set. Returns ------- self : Dataset Dataset with set property. """ if self.handle is None: raise Exception(f"Cannot set {field_name} before construct dataset") if data is None: # set to None _safe_call(_LIB.LGBM_DatasetSetField( self.handle, c_str(field_name), None, ctypes.c_int(0), ctypes.c_int(FIELD_TYPE_MAPPER[field_name]))) return self dtype = np.float32 if field_name == 'group': dtype = np.int32 elif field_name == 'init_score': dtype = np.float64 data = list_to_1d_numpy(data, dtype, name=field_name) if data.dtype == np.float32 or data.dtype == np.float64: ptr_data, type_data, _ = c_float_array(data) elif data.dtype == np.int32: ptr_data, type_data, _ = c_int_array(data) else: raise TypeError(f"Expected np.float32/64 or np.int32, met type({data.dtype})") if type_data != FIELD_TYPE_MAPPER[field_name]: raise TypeError("Input type error for set_field") _safe_call(_LIB.LGBM_DatasetSetField( self.handle, c_str(field_name), ptr_data, ctypes.c_int(len(data)), ctypes.c_int(type_data))) self.version += 1 return self def get_field(self, field_name): """Get property from the Dataset. Parameters ---------- field_name : string The field name of the information. Returns ------- info : numpy array or None A numpy array with information from the Dataset. """ if self.handle is None: raise Exception(f"Cannot get {field_name} before construct Dataset") tmp_out_len = ctypes.c_int(0) out_type = ctypes.c_int(0) ret = ctypes.POINTER(ctypes.c_void_p)() _safe_call(_LIB.LGBM_DatasetGetField( self.handle, c_str(field_name), ctypes.byref(tmp_out_len), ctypes.byref(ret), ctypes.byref(out_type))) if out_type.value != FIELD_TYPE_MAPPER[field_name]: raise TypeError("Return type error for get_field") if tmp_out_len.value == 0: return None if out_type.value == C_API_DTYPE_INT32: return cint32_array_to_numpy(ctypes.cast(ret, ctypes.POINTER(ctypes.c_int32)), tmp_out_len.value) elif out_type.value == C_API_DTYPE_FLOAT32: return cfloat32_array_to_numpy(ctypes.cast(ret, ctypes.POINTER(ctypes.c_float)), tmp_out_len.value) elif out_type.value == C_API_DTYPE_FLOAT64: return cfloat64_array_to_numpy(ctypes.cast(ret, ctypes.POINTER(ctypes.c_double)), tmp_out_len.value) else: raise TypeError("Unknown type") def set_categorical_feature(self, categorical_feature): """Set categorical features. Parameters ---------- categorical_feature : list of int or strings Names or indices of categorical features. Returns ------- self : Dataset Dataset with set categorical features. """ if self.categorical_feature == categorical_feature: return self if self.data is not None: if self.categorical_feature is None: self.categorical_feature = categorical_feature return self._free_handle() elif categorical_feature == 'auto': _log_warning('Using categorical_feature in Dataset.') return self else: _log_warning('categorical_feature in Dataset is overridden.\n' f'New categorical_feature is {sorted(list(categorical_feature))}') self.categorical_feature = categorical_feature return self._free_handle() else: raise LightGBMError("Cannot set categorical feature after freed raw data, " "set free_raw_data=False when construct Dataset to avoid this.") def _set_predictor(self, predictor): """Set predictor for continued training. It is not recommended for user to call this function. Please use init_model argument in engine.train() or engine.cv() instead. """ if predictor is self._predictor and (predictor is None or predictor.current_iteration() == self._predictor.current_iteration()): return self if self.handle is None: self._predictor = predictor elif self.data is not None: self._predictor = predictor self._set_init_score_by_predictor(self._predictor, self.data) elif self.used_indices is not None and self.reference is not None and self.reference.data is not None: self._predictor = predictor self._set_init_score_by_predictor(self._predictor, self.reference.data, self.used_indices) else: raise LightGBMError("Cannot set predictor after freed raw data, " "set free_raw_data=False when construct Dataset to avoid this.") return self def set_reference(self, reference): """Set reference Dataset. Parameters ---------- reference : Dataset Reference that is used as a template to construct the current Dataset. Returns ------- self : Dataset Dataset with set reference. """ self.set_categorical_feature(reference.categorical_feature) \ .set_feature_name(reference.feature_name) \ ._set_predictor(reference._predictor) # we're done if self and reference share a common upstream reference if self.get_ref_chain().intersection(reference.get_ref_chain()): return self if self.data is not None: self.reference = reference return self._free_handle() else: raise LightGBMError("Cannot set reference after freed raw data, " "set free_raw_data=False when construct Dataset to avoid this.") def set_feature_name(self, feature_name): """Set feature name. Parameters ---------- feature_name : list of strings Feature names. Returns ------- self : Dataset Dataset with set feature name. """ if feature_name != 'auto': self.feature_name = feature_name if self.handle is not None and feature_name is not None and feature_name != 'auto': if len(feature_name) != self.num_feature(): raise ValueError(f"Length of feature_name({len(feature_name)}) and num_feature({self.num_feature()}) don't match") c_feature_name = [c_str(name) for name in feature_name] _safe_call(_LIB.LGBM_DatasetSetFeatureNames( self.handle, c_array(ctypes.c_char_p, c_feature_name), ctypes.c_int(len(feature_name)))) return self def set_label(self, label): """Set label of Dataset. Parameters ---------- label : list, numpy 1-D array, pandas Series / one-column DataFrame or None The label information to be set into Dataset. Returns ------- self : Dataset Dataset with set label. """ self.label = label if self.handle is not None: label = list_to_1d_numpy(_label_from_pandas(label), name='label') self.set_field('label', label) self.label = self.get_field('label') # original values can be modified at cpp side return self def set_weight(self, weight): """Set weight of each instance. Parameters ---------- weight : list, numpy 1-D array, pandas Series or None Weight to be set for each data point. Returns ------- self : Dataset Dataset with set weight. """ if weight is not None and np.all(weight == 1): weight = None self.weight = weight if self.handle is not None and weight is not None: weight = list_to_1d_numpy(weight, name='weight') self.set_field('weight', weight) self.weight = self.get_field('weight') # original values can be modified at cpp side return self def set_init_score(self, init_score): """Set init score of Booster to start from. Parameters ---------- init_score : list, numpy 1-D array, pandas Series or None Init score for Booster. Returns ------- self : Dataset Dataset with set init score. """ self.init_score = init_score if self.handle is not None and init_score is not None: init_score = list_to_1d_numpy(init_score, np.float64, name='init_score') self.set_field('init_score', init_score) self.init_score = self.get_field('init_score') # original values can be modified at cpp side return self def set_group(self, group): """Set group size of Dataset (used for ranking). Parameters ---------- group : list, numpy 1-D array, pandas Series or None Group/query data. Only used in the learning-to-rank task. sum(group) = n_samples. For example, if you have a 100-document dataset with ``group = [10, 20, 40, 10, 10, 10]``, that means that you have 6 groups, where the first 10 records are in the first group, records 11-30 are in the second group, records 31-70 are in the third group, etc. Returns ------- self : Dataset Dataset with set group. """ self.group = group if self.handle is not None and group is not None: group = list_to_1d_numpy(group, np.int32, name='group') self.set_field('group', group) return self def get_feature_name(self): """Get the names of columns (features) in the Dataset. Returns ------- feature_names : list The names of columns (features) in the Dataset. """ if self.handle is None: raise LightGBMError("Cannot get feature_name before construct dataset") num_feature = self.num_feature() tmp_out_len = ctypes.c_int(0) reserved_string_buffer_size = 255 required_string_buffer_size = ctypes.c_size_t(0) string_buffers = [ctypes.create_string_buffer(reserved_string_buffer_size) for _ in range(num_feature)] ptr_string_buffers = (ctypes.c_char_p * num_feature)(*map(ctypes.addressof, string_buffers)) _safe_call(_LIB.LGBM_DatasetGetFeatureNames( self.handle, ctypes.c_int(num_feature), ctypes.byref(tmp_out_len), ctypes.c_size_t(reserved_string_buffer_size), ctypes.byref(required_string_buffer_size), ptr_string_buffers)) if num_feature != tmp_out_len.value: raise ValueError("Length of feature names doesn't equal with num_feature") actual_string_buffer_size = required_string_buffer_size.value # if buffer length is not long enough, reallocate buffers if reserved_string_buffer_size < actual_string_buffer_size: string_buffers = [ctypes.create_string_buffer(actual_string_buffer_size) for _ in range(num_feature)] ptr_string_buffers = (ctypes.c_char_p * num_feature)(*map(ctypes.addressof, string_buffers)) _safe_call(_LIB.LGBM_DatasetGetFeatureNames( self.handle, ctypes.c_int(num_feature), ctypes.byref(tmp_out_len), ctypes.c_size_t(actual_string_buffer_size), ctypes.byref(required_string_buffer_size), ptr_string_buffers)) return [string_buffers[i].value.decode('utf-8') for i in range(num_feature)] def get_label(self): """Get the label of the Dataset. Returns ------- label : numpy array or None The label information from the Dataset. """ if self.label is None: self.label = self.get_field('label') return self.label def get_weight(self): """Get the weight of the Dataset. Returns ------- weight : numpy array or None Weight for each data point from the Dataset. """ if self.weight is None: self.weight = self.get_field('weight') return self.weight def get_init_score(self): """Get the initial score of the Dataset. Returns ------- init_score : numpy array or None Init score of Booster. """ if self.init_score is None: self.init_score = self.get_field('init_score') return self.init_score def get_data(self): """Get the raw data of the Dataset. Returns ------- data : string, pathlib.Path, numpy array, pandas DataFrame, H2O DataTable's Frame, scipy.sparse, list of numpy arrays or None Raw data used in the Dataset construction. """ if self.handle is None: raise Exception("Cannot get data before construct Dataset") if self.need_slice and self.used_indices is not None and self.reference is not None: self.data = self.reference.data if self.data is not None: if isinstance(self.data, np.ndarray) or scipy.sparse.issparse(self.data): self.data = self.data[self.used_indices, :] elif isinstance(self.data, pd_DataFrame): self.data = self.data.iloc[self.used_indices].copy() elif isinstance(self.data, dt_DataTable): self.data = self.data[self.used_indices, :] else: _log_warning(f"Cannot subset {type(self.data).__name__} type of raw data.\n" "Returning original raw data") self.need_slice = False if self.data is None: raise LightGBMError("Cannot call `get_data` after freed raw data, " "set free_raw_data=False when construct Dataset to avoid this.") return self.data def get_group(self): """Get the group of the Dataset. Returns ------- group : numpy array or None Group/query data. Only used in the learning-to-rank task. sum(group) = n_samples. For example, if you have a 100-document dataset with ``group = [10, 20, 40, 10, 10, 10]``, that means that you have 6 groups, where the first 10 records are in the first group, records 11-30 are in the second group, records 31-70 are in the third group, etc. """ if self.group is None: self.group = self.get_field('group') if self.group is not None: # group data from LightGBM is boundaries data, need to convert to group size self.group = np.diff(self.group) return self.group def num_data(self): """Get the number of rows in the Dataset. Returns ------- number_of_rows : int The number of rows in the Dataset. """ if self.handle is not None: ret = ctypes.c_int(0) _safe_call(_LIB.LGBM_DatasetGetNumData(self.handle, ctypes.byref(ret))) return ret.value else: raise LightGBMError("Cannot get num_data before construct dataset") def num_feature(self): """Get the number of columns (features) in the Dataset. Returns ------- number_of_columns : int The number of columns (features) in the Dataset. """ if self.handle is not None: ret = ctypes.c_int(0) _safe_call(_LIB.LGBM_DatasetGetNumFeature(self.handle, ctypes.byref(ret))) return ret.value else: raise LightGBMError("Cannot get num_feature before construct dataset") def get_ref_chain(self, ref_limit=100): """Get a chain of Dataset objects. Starts with r, then goes to r.reference (if exists), then to r.reference.reference, etc. until we hit ``ref_limit`` or a reference loop. Parameters ---------- ref_limit : int, optional (default=100) The limit number of references. Returns ------- ref_chain : set of Dataset Chain of references of the Datasets. """ head = self ref_chain = set() while len(ref_chain) < ref_limit: if isinstance(head, Dataset): ref_chain.add(head) if (head.reference is not None) and (head.reference not in ref_chain): head = head.reference else: break else: break return ref_chain def add_features_from(self, other): """Add features from other Dataset to the current Dataset. Both Datasets must be constructed before calling this method. Parameters ---------- other : Dataset The Dataset to take features from. Returns ------- self : Dataset Dataset with the new features added. """ if self.handle is None or other.handle is None: raise ValueError('Both source and target Datasets must be constructed before adding features') _safe_call(_LIB.LGBM_DatasetAddFeaturesFrom(self.handle, other.handle)) was_none = self.data is None old_self_data_type = type(self.data).__name__ if other.data is None: self.data = None elif self.data is not None: if isinstance(self.data, np.ndarray): if isinstance(other.data, np.ndarray): self.data = np.hstack((self.data, other.data)) elif scipy.sparse.issparse(other.data): self.data = np.hstack((self.data, other.data.toarray())) elif isinstance(other.data, pd_DataFrame): self.data = np.hstack((self.data, other.data.values)) elif isinstance(other.data, dt_DataTable): self.data = np.hstack((self.data, other.data.to_numpy())) else: self.data = None elif scipy.sparse.issparse(self.data): sparse_format = self.data.getformat() if isinstance(other.data, np.ndarray) or scipy.sparse.issparse(other.data): self.data = scipy.sparse.hstack((self.data, other.data), format=sparse_format) elif isinstance(other.data, pd_DataFrame): self.data = scipy.sparse.hstack((self.data, other.data.values), format=sparse_format) elif isinstance(other.data, dt_DataTable): self.data = scipy.sparse.hstack((self.data, other.data.to_numpy()), format=sparse_format) else: self.data = None elif isinstance(self.data, pd_DataFrame): if not PANDAS_INSTALLED: raise LightGBMError("Cannot add features to DataFrame type of raw data " "without pandas installed. " "Install pandas and restart your session.") if isinstance(other.data, np.ndarray): self.data = concat((self.data, pd_DataFrame(other.data)), axis=1, ignore_index=True) elif scipy.sparse.issparse(other.data): self.data = concat((self.data, pd_DataFrame(other.data.toarray())), axis=1, ignore_index=True) elif isinstance(other.data, pd_DataFrame): self.data = concat((self.data, other.data), axis=1, ignore_index=True) elif isinstance(other.data, dt_DataTable): self.data = concat((self.data, pd_DataFrame(other.data.to_numpy())), axis=1, ignore_index=True) else: self.data = None elif isinstance(self.data, dt_DataTable): if isinstance(other.data, np.ndarray): self.data = dt_DataTable(np.hstack((self.data.to_numpy(), other.data))) elif scipy.sparse.issparse(other.data): self.data = dt_DataTable(np.hstack((self.data.to_numpy(), other.data.toarray()))) elif isinstance(other.data, pd_DataFrame): self.data = dt_DataTable(np.hstack((self.data.to_numpy(), other.data.values))) elif isinstance(other.data, dt_DataTable): self.data = dt_DataTable(np.hstack((self.data.to_numpy(), other.data.to_numpy()))) else: self.data = None else: self.data = None if self.data is None: err_msg = (f"Cannot add features from {type(other.data).__name__} type of raw data to " f"{old_self_data_type} type of raw data.\n") err_msg += ("Set free_raw_data=False when construct Dataset to avoid this" if was_none else "Freeing raw data") _log_warning(err_msg) self.feature_name = self.get_feature_name() _log_warning("Reseting categorical features.\n" "You can set new categorical features via ``set_categorical_feature`` method") self.categorical_feature = "auto" self.pandas_categorical = None return self def _dump_text(self, filename): """Save Dataset to a text file. This format cannot be loaded back in by LightGBM, but is useful for debugging purposes. Parameters ---------- filename : string or pathlib.Path Name of the output file. Returns ------- self : Dataset Returns self. """ _safe_call(_LIB.LGBM_DatasetDumpText( self.construct().handle, c_str(str(filename)))) return self class Booster: """Booster in LightGBM.""" def __init__(self, params=None, train_set=None, model_file=None, model_str=None, silent=False): """Initialize the Booster. Parameters ---------- params : dict or None, optional (default=None) Parameters for Booster. train_set : Dataset or None, optional (default=None) Training dataset. model_file : string, pathlib.Path or None, optional (default=None) Path to the model file. model_str : string or None, optional (default=None) Model will be loaded from this string. silent : bool, optional (default=False) Whether to print messages during construction. """ self.handle = None self.network = False self.__need_reload_eval_info = True self._train_data_name = "training" self.__attr = {} self.__set_objective_to_none = False self.best_iteration = -1 self.best_score = {} params = {} if params is None else deepcopy(params) # user can set verbose with params, it has higher priority if not any(verbose_alias in params for verbose_alias in _ConfigAliases.get("verbosity")) and silent: params["verbose"] = -1 if train_set is not None: # Training task if not isinstance(train_set, Dataset): raise TypeError(f'Training data should be Dataset instance, met {type(train_set).__name__}') params = _choose_param_value( main_param_name="machines", params=params, default_value=None ) # if "machines" is given, assume user wants to do distributed learning, and set up network if params["machines"] is None: params.pop("machines", None) else: machines = params["machines"] if isinstance(machines, str): num_machines_from_machine_list = len(machines.split(',')) elif isinstance(machines, (list, set)): num_machines_from_machine_list = len(machines) machines = ','.join(machines) else: raise ValueError("Invalid machines in params.") params = _choose_param_value( main_param_name="num_machines", params=params, default_value=num_machines_from_machine_list ) params = _choose_param_value( main_param_name="local_listen_port", params=params, default_value=12400 ) self.set_network( machines=machines, local_listen_port=params["local_listen_port"], listen_time_out=params.get("time_out", 120), num_machines=params["num_machines"] ) # construct booster object train_set.construct() # copy the parameters from train_set params.update(train_set.get_params()) params_str = param_dict_to_str(params) self.handle = ctypes.c_void_p() _safe_call(_LIB.LGBM_BoosterCreate( train_set.handle, c_str(params_str), ctypes.byref(self.handle))) # save reference to data self.train_set = train_set self.valid_sets = [] self.name_valid_sets = [] self.__num_dataset = 1 self.__init_predictor = train_set._predictor if self.__init_predictor is not None: _safe_call(_LIB.LGBM_BoosterMerge( self.handle, self.__init_predictor.handle)) out_num_class = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterGetNumClasses( self.handle, ctypes.byref(out_num_class))) self.__num_class = out_num_class.value # buffer for inner predict self.__inner_predict_buffer = [None] self.__is_predicted_cur_iter = [False] self.__get_eval_info() self.pandas_categorical = train_set.pandas_categorical self.train_set_version = train_set.version elif model_file is not None: # Prediction task out_num_iterations = ctypes.c_int(0) self.handle = ctypes.c_void_p() _safe_call(_LIB.LGBM_BoosterCreateFromModelfile( c_str(str(model_file)), ctypes.byref(out_num_iterations), ctypes.byref(self.handle))) out_num_class = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterGetNumClasses( self.handle, ctypes.byref(out_num_class))) self.__num_class = out_num_class.value self.pandas_categorical = _load_pandas_categorical(file_name=model_file) elif model_str is not None: self.model_from_string(model_str, not silent) else: raise TypeError('Need at least one training dataset or model file or model string ' 'to create Booster instance') self.params = params def __del__(self): try: if self.network: self.free_network() except AttributeError: pass try: if self.handle is not None: _safe_call(_LIB.LGBM_BoosterFree(self.handle)) except AttributeError: pass def __copy__(self): return self.__deepcopy__(None) def __deepcopy__(self, _): model_str = self.model_to_string(num_iteration=-1) booster = Booster(model_str=model_str) return booster def __getstate__(self): this = self.__dict__.copy() handle = this['handle'] this.pop('train_set', None) this.pop('valid_sets', None) if handle is not None: this["handle"] = self.model_to_string(num_iteration=-1) return this def __setstate__(self, state): model_str = state.get('handle', None) if model_str is not None: handle = ctypes.c_void_p() out_num_iterations = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterLoadModelFromString( c_str(model_str), ctypes.byref(out_num_iterations), ctypes.byref(handle))) state['handle'] = handle self.__dict__.update(state) def free_dataset(self): """Free Booster's Datasets. Returns ------- self : Booster Booster without Datasets. """ self.__dict__.pop('train_set', None) self.__dict__.pop('valid_sets', None) self.__num_dataset = 0 return self def _free_buffer(self): self.__inner_predict_buffer = [] self.__is_predicted_cur_iter = [] return self def set_network( self, machines: Union[List[str], Set[str], str], local_listen_port: int = 12400, listen_time_out: int = 120, num_machines: int = 1 ) -> "Booster": """Set the network configuration. Parameters ---------- machines : list, set or string Names of machines. local_listen_port : int, optional (default=12400) TCP listen port for local machines. listen_time_out : int, optional (default=120) Socket time-out in minutes. num_machines : int, optional (default=1) The number of machines for distributed learning application. Returns ------- self : Booster Booster with set network. """ if isinstance(machines, (list, set)): machines = ','.join(machines) _safe_call(_LIB.LGBM_NetworkInit(c_str(machines), ctypes.c_int(local_listen_port), ctypes.c_int(listen_time_out), ctypes.c_int(num_machines))) self.network = True return self def free_network(self): """Free Booster's network. Returns ------- self : Booster Booster with freed network. """ _safe_call(_LIB.LGBM_NetworkFree()) self.network = False return self def trees_to_dataframe(self): """Parse the fitted model and return in an easy-to-read pandas DataFrame. The returned DataFrame has the following columns. - ``tree_index`` : int64, which tree a node belongs to. 0-based, so a value of ``6``, for example, means "this node is in the 7th tree". - ``node_depth`` : int64, how far a node is from the root of the tree. The root node has a value of ``1``, its direct children are ``2``, etc. - ``node_index`` : string, unique identifier for a node. - ``left_child`` : string, ``node_index`` of the child node to the left of a split. ``None`` for leaf nodes. - ``right_child`` : string, ``node_index`` of the child node to the right of a split. ``None`` for leaf nodes. - ``parent_index`` : string, ``node_index`` of this node's parent. ``None`` for the root node. - ``split_feature`` : string, name of the feature used for splitting. ``None`` for leaf nodes. - ``split_gain`` : float64, gain from adding this split to the tree. ``NaN`` for leaf nodes. - ``threshold`` : float64, value of the feature used to decide which side of the split a record will go down. ``NaN`` for leaf nodes. - ``decision_type`` : string, logical operator describing how to compare a value to ``threshold``. For example, ``split_feature = "Column_10", threshold = 15, decision_type = "<="`` means that records where ``Column_10 <= 15`` follow the left side of the split, otherwise follows the right side of the split. ``None`` for leaf nodes. - ``missing_direction`` : string, split direction that missing values should go to. ``None`` for leaf nodes. - ``missing_type`` : string, describes what types of values are treated as missing. - ``value`` : float64, predicted value for this leaf node, multiplied by the learning rate. - ``weight`` : float64 or int64, sum of hessian (second-order derivative of objective), summed over observations that fall in this node. - ``count`` : int64, number of records in the training data that fall into this node. Returns ------- result : pandas DataFrame Returns a pandas DataFrame of the parsed model. """ if not PANDAS_INSTALLED: raise LightGBMError('This method cannot be run without pandas installed. ' 'You must install pandas and restart your session to use this method.') if self.num_trees() == 0: raise LightGBMError('There are no trees in this Booster and thus nothing to parse') def _is_split_node(tree): return 'split_index' in tree.keys() def create_node_record(tree, node_depth=1, tree_index=None, feature_names=None, parent_node=None): def _get_node_index(tree, tree_index): tree_num = f'{tree_index}-' if tree_index is not None else '' is_split = _is_split_node(tree) node_type = 'S' if is_split else 'L' # if a single node tree it won't have `leaf_index` so return 0 node_num = tree.get('split_index' if is_split else 'leaf_index', 0) return f"{tree_num}{node_type}{node_num}" def _get_split_feature(tree, feature_names): if _is_split_node(tree): if feature_names is not None: feature_name = feature_names[tree['split_feature']] else: feature_name = tree['split_feature'] else: feature_name = None return feature_name def _is_single_node_tree(tree): return set(tree.keys()) == {'leaf_value'} # Create the node record, and populate universal data members node = OrderedDict() node['tree_index'] = tree_index node['node_depth'] = node_depth node['node_index'] = _get_node_index(tree, tree_index) node['left_child'] = None node['right_child'] = None node['parent_index'] = parent_node node['split_feature'] = _get_split_feature(tree, feature_names) node['split_gain'] = None node['threshold'] = None node['decision_type'] = None node['missing_direction'] = None node['missing_type'] = None node['value'] = None node['weight'] = None node['count'] = None # Update values to reflect node type (leaf or split) if _is_split_node(tree): node['left_child'] = _get_node_index(tree['left_child'], tree_index) node['right_child'] = _get_node_index(tree['right_child'], tree_index) node['split_gain'] = tree['split_gain'] node['threshold'] = tree['threshold'] node['decision_type'] = tree['decision_type'] node['missing_direction'] = 'left' if tree['default_left'] else 'right' node['missing_type'] = tree['missing_type'] node['value'] = tree['internal_value'] node['weight'] = tree['internal_weight'] node['count'] = tree['internal_count'] else: node['value'] = tree['leaf_value'] if not _is_single_node_tree(tree): node['weight'] = tree['leaf_weight'] node['count'] = tree['leaf_count'] return node def tree_dict_to_node_list(tree, node_depth=1, tree_index=None, feature_names=None, parent_node=None): node = create_node_record(tree, node_depth=node_depth, tree_index=tree_index, feature_names=feature_names, parent_node=parent_node) res = [node] if _is_split_node(tree): # traverse the next level of the tree children = ['left_child', 'right_child'] for child in children: subtree_list = tree_dict_to_node_list( tree[child], node_depth=node_depth + 1, tree_index=tree_index, feature_names=feature_names, parent_node=node['node_index']) # In tree format, "subtree_list" is a list of node records (dicts), # and we add node to the list. res.extend(subtree_list) return res model_dict = self.dump_model() feature_names = model_dict['feature_names'] model_list = [] for tree in model_dict['tree_info']: model_list.extend(tree_dict_to_node_list(tree['tree_structure'], tree_index=tree['tree_index'], feature_names=feature_names)) return pd_DataFrame(model_list, columns=model_list[0].keys()) def set_train_data_name(self, name): """Set the name to the training Dataset. Parameters ---------- name : string Name for the training Dataset. Returns ------- self : Booster Booster with set training Dataset name. """ self._train_data_name = name return self def add_valid(self, data, name): """Add validation data. Parameters ---------- data : Dataset Validation data. name : string Name of validation data. Returns ------- self : Booster Booster with set validation data. """ if not isinstance(data, Dataset): raise TypeError(f'Validation data should be Dataset instance, met {type(data).__name__}') if data._predictor is not self.__init_predictor: raise LightGBMError("Add validation data failed, " "you should use same predictor for these data") _safe_call(_LIB.LGBM_BoosterAddValidData( self.handle, data.construct().handle)) self.valid_sets.append(data) self.name_valid_sets.append(name) self.__num_dataset += 1 self.__inner_predict_buffer.append(None) self.__is_predicted_cur_iter.append(False) return self def reset_parameter(self, params): """Reset parameters of Booster. Parameters ---------- params : dict New parameters for Booster. Returns ------- self : Booster Booster with new parameters. """ params_str = param_dict_to_str(params) if params_str: _safe_call(_LIB.LGBM_BoosterResetParameter( self.handle, c_str(params_str))) self.params.update(params) return self def update(self, train_set=None, fobj=None): """Update Booster for one iteration. Parameters ---------- train_set : Dataset or None, optional (default=None) Training data. If None, last training data is used. fobj : callable or None, optional (default=None) Customized objective function. Should accept two parameters: preds, train_data, and return (grad, hess). preds : list or numpy 1-D array The predicted values. Predicted values are returned before any transformation, e.g. they are raw margin instead of probability of positive class for binary task. train_data : Dataset The training dataset. grad : list or numpy 1-D array The value of the first order derivative (gradient) of the loss with respect to the elements of preds for each sample point. hess : list or numpy 1-D array The value of the second order derivative (Hessian) of the loss with respect to the elements of preds for each sample point. For multi-class task, the preds is group by class_id first, then group by row_id. If you want to get i-th row preds in j-th class, the access way is score[j * num_data + i] and you should group grad and hess in this way as well. Returns ------- is_finished : bool Whether the update was successfully finished. """ # need reset training data if train_set is None and self.train_set_version != self.train_set.version: train_set = self.train_set is_the_same_train_set = False else: is_the_same_train_set = train_set is self.train_set and self.train_set_version == train_set.version if train_set is not None and not is_the_same_train_set: if not isinstance(train_set, Dataset): raise TypeError(f'Training data should be Dataset instance, met {type(train_set).__name__}') if train_set._predictor is not self.__init_predictor: raise LightGBMError("Replace training data failed, " "you should use same predictor for these data") self.train_set = train_set _safe_call(_LIB.LGBM_BoosterResetTrainingData( self.handle, self.train_set.construct().handle)) self.__inner_predict_buffer[0] = None self.train_set_version = self.train_set.version is_finished = ctypes.c_int(0) if fobj is None: if self.__set_objective_to_none: raise LightGBMError('Cannot update due to null objective function.') _safe_call(_LIB.LGBM_BoosterUpdateOneIter( self.handle, ctypes.byref(is_finished))) self.__is_predicted_cur_iter = [False for _ in range(self.__num_dataset)] return is_finished.value == 1 else: if not self.__set_objective_to_none: self.reset_parameter({"objective": "none"}).__set_objective_to_none = True grad, hess = fobj(self.__inner_predict(0), self.train_set) return self.__boost(grad, hess) def __boost(self, grad, hess): """Boost Booster for one iteration with customized gradient statistics. .. note:: Score is returned before any transformation, e.g. it is raw margin instead of probability of positive class for binary task. For multi-class task, the score is group by class_id first, then group by row_id. If you want to get i-th row score in j-th class, the access way is score[j * num_data + i] and you should group grad and hess in this way as well. Parameters ---------- grad : list or numpy 1-D array The value of the first order derivative (gradient) of the loss with respect to the elements of score for each sample point. hess : list or numpy 1-D array The value of the second order derivative (Hessian) of the loss with respect to the elements of score for each sample point. Returns ------- is_finished : bool Whether the boost was successfully finished. """ grad = list_to_1d_numpy(grad, name='gradient') hess = list_to_1d_numpy(hess, name='hessian') assert grad.flags.c_contiguous assert hess.flags.c_contiguous if len(grad) != len(hess): raise ValueError(f"Lengths of gradient({len(grad)}) and hessian({len(hess)}) don't match") is_finished = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterUpdateOneIterCustom( self.handle, grad.ctypes.data_as(ctypes.POINTER(ctypes.c_float)), hess.ctypes.data_as(ctypes.POINTER(ctypes.c_float)), ctypes.byref(is_finished))) self.__is_predicted_cur_iter = [False for _ in range(self.__num_dataset)] return is_finished.value == 1 def rollback_one_iter(self): """Rollback one iteration. Returns ------- self : Booster Booster with rolled back one iteration. """ _safe_call(_LIB.LGBM_BoosterRollbackOneIter( self.handle)) self.__is_predicted_cur_iter = [False for _ in range(self.__num_dataset)] return self def current_iteration(self): """Get the index of the current iteration. Returns ------- cur_iter : int The index of the current iteration. """ out_cur_iter = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterGetCurrentIteration( self.handle, ctypes.byref(out_cur_iter))) return out_cur_iter.value def num_model_per_iteration(self): """Get number of models per iteration. Returns ------- model_per_iter : int The number of models per iteration. """ model_per_iter = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterNumModelPerIteration( self.handle, ctypes.byref(model_per_iter))) return model_per_iter.value def num_trees(self): """Get number of weak sub-models. Returns ------- num_trees : int The number of weak sub-models. """ num_trees = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterNumberOfTotalModel( self.handle, ctypes.byref(num_trees))) return num_trees.value def upper_bound(self): """Get upper bound value of a model. Returns ------- upper_bound : double Upper bound value of the model. """ ret = ctypes.c_double(0) _safe_call(_LIB.LGBM_BoosterGetUpperBoundValue( self.handle, ctypes.byref(ret))) return ret.value def lower_bound(self): """Get lower bound value of a model. Returns ------- lower_bound : double Lower bound value of the model. """ ret = ctypes.c_double(0) _safe_call(_LIB.LGBM_BoosterGetLowerBoundValue( self.handle, ctypes.byref(ret))) return ret.value def eval(self, data, name, feval=None): """Evaluate for data. Parameters ---------- data : Dataset Data for the evaluating. name : string Name of the data. feval : callable or None, optional (default=None) Customized evaluation function. Should accept two parameters: preds, eval_data, and return (eval_name, eval_result, is_higher_better) or list of such tuples. preds : list or numpy 1-D array The predicted values. If ``fobj`` is specified, predicted values are returned before any transformation, e.g. they are raw margin instead of probability of positive class for binary task in this case. eval_data : Dataset The evaluation dataset. eval_name : string The name of evaluation function (without whitespace). eval_result : float The eval result. is_higher_better : bool Is eval result higher better, e.g. AUC is ``is_higher_better``. For multi-class task, the preds is group by class_id first, then group by row_id. If you want to get i-th row preds in j-th class, the access way is preds[j * num_data + i]. Returns ------- result : list List with evaluation results. """ if not isinstance(data, Dataset): raise TypeError("Can only eval for Dataset instance") data_idx = -1 if data is self.train_set: data_idx = 0 else: for i in range(len(self.valid_sets)): if data is self.valid_sets[i]: data_idx = i + 1 break # need to push new valid data if data_idx == -1: self.add_valid(data, name) data_idx = self.__num_dataset - 1 return self.__inner_eval(name, data_idx, feval) def eval_train(self, feval=None): """Evaluate for training data. Parameters ---------- feval : callable or None, optional (default=None) Customized evaluation function. Should accept two parameters: preds, train_data, and return (eval_name, eval_result, is_higher_better) or list of such tuples. preds : list or numpy 1-D array The predicted values. If ``fobj`` is specified, predicted values are returned before any transformation, e.g. they are raw margin instead of probability of positive class for binary task in this case. train_data : Dataset The training dataset. eval_name : string The name of evaluation function (without whitespace). eval_result : float The eval result. is_higher_better : bool Is eval result higher better, e.g. AUC is ``is_higher_better``. For multi-class task, the preds is group by class_id first, then group by row_id. If you want to get i-th row preds in j-th class, the access way is preds[j * num_data + i]. Returns ------- result : list List with evaluation results. """ return self.__inner_eval(self._train_data_name, 0, feval) def eval_valid(self, feval=None): """Evaluate for validation data. Parameters ---------- feval : callable or None, optional (default=None) Customized evaluation function. Should accept two parameters: preds, valid_data, and return (eval_name, eval_result, is_higher_better) or list of such tuples. preds : list or numpy 1-D array The predicted values. If ``fobj`` is specified, predicted values are returned before any transformation, e.g. they are raw margin instead of probability of positive class for binary task in this case. valid_data : Dataset The validation dataset. eval_name : string The name of evaluation function (without whitespace). eval_result : float The eval result. is_higher_better : bool Is eval result higher better, e.g. AUC is ``is_higher_better``. For multi-class task, the preds is group by class_id first, then group by row_id. If you want to get i-th row preds in j-th class, the access way is preds[j * num_data + i]. Returns ------- result : list List with evaluation results. """ return [item for i in range(1, self.__num_dataset) for item in self.__inner_eval(self.name_valid_sets[i - 1], i, feval)] def save_model(self, filename, num_iteration=None, start_iteration=0, importance_type='split'): """Save Booster to file. Parameters ---------- filename : string or pathlib.Path Filename to save Booster. num_iteration : int or None, optional (default=None) Index of the iteration that should be saved. If None, if the best iteration exists, it is saved; otherwise, all iterations are saved. If <= 0, all iterations are saved. start_iteration : int, optional (default=0) Start index of the iteration that should be saved. importance_type : string, optional (default="split") What type of feature importance should be saved. If "split", result contains numbers of times the feature is used in a model. If "gain", result contains total gains of splits which use the feature. Returns ------- self : Booster Returns self. """ if num_iteration is None: num_iteration = self.best_iteration importance_type_int = FEATURE_IMPORTANCE_TYPE_MAPPER[importance_type] _safe_call(_LIB.LGBM_BoosterSaveModel( self.handle, ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), ctypes.c_int(importance_type_int), c_str(str(filename)))) _dump_pandas_categorical(self.pandas_categorical, filename) return self def shuffle_models(self, start_iteration=0, end_iteration=-1): """Shuffle models. Parameters ---------- start_iteration : int, optional (default=0) The first iteration that will be shuffled. end_iteration : int, optional (default=-1) The last iteration that will be shuffled. If <= 0, means the last available iteration. Returns ------- self : Booster Booster with shuffled models. """ _safe_call(_LIB.LGBM_BoosterShuffleModels( self.handle, ctypes.c_int(start_iteration), ctypes.c_int(end_iteration))) return self def model_from_string(self, model_str, verbose=True): """Load Booster from a string. Parameters ---------- model_str : string Model will be loaded from this string. verbose : bool, optional (default=True) Whether to print messages while loading model. Returns ------- self : Booster Loaded Booster object. """ if self.handle is not None: _safe_call(_LIB.LGBM_BoosterFree(self.handle)) self._free_buffer() self.handle = ctypes.c_void_p() out_num_iterations = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterLoadModelFromString( c_str(model_str), ctypes.byref(out_num_iterations), ctypes.byref(self.handle))) out_num_class = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterGetNumClasses( self.handle, ctypes.byref(out_num_class))) if verbose: _log_info(f'Finished loading model, total used {int(out_num_iterations.value)} iterations') self.__num_class = out_num_class.value self.pandas_categorical = _load_pandas_categorical(model_str=model_str) return self def model_to_string(self, num_iteration=None, start_iteration=0, importance_type='split'): """Save Booster to string. Parameters ---------- num_iteration : int or None, optional (default=None) Index of the iteration that should be saved. If None, if the best iteration exists, it is saved; otherwise, all iterations are saved. If <= 0, all iterations are saved. start_iteration : int, optional (default=0) Start index of the iteration that should be saved. importance_type : string, optional (default="split") What type of feature importance should be saved. If "split", result contains numbers of times the feature is used in a model. If "gain", result contains total gains of splits which use the feature. Returns ------- str_repr : string String representation of Booster. """ if num_iteration is None: num_iteration = self.best_iteration importance_type_int = FEATURE_IMPORTANCE_TYPE_MAPPER[importance_type] buffer_len = 1 << 20 tmp_out_len = ctypes.c_int64(0) string_buffer = ctypes.create_string_buffer(buffer_len) ptr_string_buffer = ctypes.c_char_p(*[ctypes.addressof(string_buffer)]) _safe_call(_LIB.LGBM_BoosterSaveModelToString( self.handle, ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), ctypes.c_int(importance_type_int), ctypes.c_int64(buffer_len), ctypes.byref(tmp_out_len), ptr_string_buffer)) actual_len = tmp_out_len.value # if buffer length is not long enough, re-allocate a buffer if actual_len > buffer_len: string_buffer = ctypes.create_string_buffer(actual_len) ptr_string_buffer = ctypes.c_char_p(*[ctypes.addressof(string_buffer)]) _safe_call(_LIB.LGBM_BoosterSaveModelToString( self.handle, ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), ctypes.c_int(importance_type_int), ctypes.c_int64(actual_len), ctypes.byref(tmp_out_len), ptr_string_buffer)) ret = string_buffer.value.decode('utf-8') ret += _dump_pandas_categorical(self.pandas_categorical) return ret def dump_model(self, num_iteration=None, start_iteration=0, importance_type='split'): """Dump Booster to JSON format. Parameters ---------- num_iteration : int or None, optional (default=None) Index of the iteration that should be dumped. If None, if the best iteration exists, it is dumped; otherwise, all iterations are dumped. If <= 0, all iterations are dumped. start_iteration : int, optional (default=0) Start index of the iteration that should be dumped. importance_type : string, optional (default="split") What type of feature importance should be dumped. If "split", result contains numbers of times the feature is used in a model. If "gain", result contains total gains of splits which use the feature. Returns ------- json_repr : dict JSON format of Booster. """ if num_iteration is None: num_iteration = self.best_iteration importance_type_int = FEATURE_IMPORTANCE_TYPE_MAPPER[importance_type] buffer_len = 1 << 20 tmp_out_len = ctypes.c_int64(0) string_buffer = ctypes.create_string_buffer(buffer_len) ptr_string_buffer = ctypes.c_char_p(*[ctypes.addressof(string_buffer)]) _safe_call(_LIB.LGBM_BoosterDumpModel( self.handle, ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), ctypes.c_int(importance_type_int), ctypes.c_int64(buffer_len), ctypes.byref(tmp_out_len), ptr_string_buffer)) actual_len = tmp_out_len.value # if buffer length is not long enough, reallocate a buffer if actual_len > buffer_len: string_buffer = ctypes.create_string_buffer(actual_len) ptr_string_buffer = ctypes.c_char_p(*[ctypes.addressof(string_buffer)]) _safe_call(_LIB.LGBM_BoosterDumpModel( self.handle, ctypes.c_int(start_iteration), ctypes.c_int(num_iteration), ctypes.c_int(importance_type_int), ctypes.c_int64(actual_len), ctypes.byref(tmp_out_len), ptr_string_buffer)) ret = json.loads(string_buffer.value.decode('utf-8')) ret['pandas_categorical'] = json.loads(json.dumps(self.pandas_categorical, default=json_default_with_numpy)) return ret def predict(self, data, start_iteration=0, num_iteration=None, raw_score=False, pred_leaf=False, pred_contrib=False, data_has_header=False, is_reshape=True, **kwargs): """Make a prediction. Parameters ---------- data : string, pathlib.Path, numpy array, pandas DataFrame, H2O DataTable's Frame or scipy.sparse Data source for prediction. If string or pathlib.Path, it represents the path to txt file. start_iteration : int, optional (default=0) Start index of the iteration to predict. If <= 0, starts from the first iteration. num_iteration : int or None, optional (default=None) Total number of iterations used in the prediction. If None, if the best iteration exists and start_iteration <= 0, the best iteration is used; otherwise, all iterations from ``start_iteration`` are used (no limits). If <= 0, all iterations from ``start_iteration`` are used (no limits). raw_score : bool, optional (default=False) Whether to predict raw scores. pred_leaf : bool, optional (default=False) Whether to predict leaf index. pred_contrib : bool, optional (default=False) Whether to predict feature contributions. .. note:: If you want to get more explanations for your model's predictions using SHAP values, like SHAP interaction values, you can install the shap package (https://github.com/slundberg/shap). Note that unlike the shap package, with ``pred_contrib`` we return a matrix with an extra column, where the last column is the expected value. data_has_header : bool, optional (default=False) Whether the data has header. Used only if data is string. is_reshape : bool, optional (default=True) If True, result is reshaped to [nrow, ncol]. **kwargs Other parameters for the prediction. Returns ------- result : numpy array, scipy.sparse or list of scipy.sparse Prediction result. Can be sparse or a list of sparse objects (each element represents predictions for one class) for feature contributions (when ``pred_contrib=True``). """ predictor = self._to_predictor(deepcopy(kwargs)) if num_iteration is None: if start_iteration <= 0: num_iteration = self.best_iteration else: num_iteration = -1 return predictor.predict(data, start_iteration, num_iteration, raw_score, pred_leaf, pred_contrib, data_has_header, is_reshape) def refit(self, data, label, decay_rate=0.9, **kwargs): """Refit the existing Booster by new data. Parameters ---------- data : string, pathlib.Path, numpy array, pandas DataFrame, H2O DataTable's Frame or scipy.sparse Data source for refit. If string or pathlib.Path, it represents the path to txt file. label : list, numpy 1-D array or pandas Series / one-column DataFrame Label for refit. decay_rate : float, optional (default=0.9) Decay rate of refit, will use ``leaf_output = decay_rate * old_leaf_output + (1.0 - decay_rate) * new_leaf_output`` to refit trees. **kwargs Other parameters for refit. These parameters will be passed to ``predict`` method. Returns ------- result : Booster Refitted Booster. """ if self.__set_objective_to_none: raise LightGBMError('Cannot refit due to null objective function.') predictor = self._to_predictor(deepcopy(kwargs)) leaf_preds = predictor.predict(data, -1, pred_leaf=True) nrow, ncol = leaf_preds.shape out_is_linear = ctypes.c_bool(False) _safe_call(_LIB.LGBM_BoosterGetLinear( self.handle, ctypes.byref(out_is_linear))) new_params = _choose_param_value( main_param_name="linear_tree", params=self.params, default_value=None ) new_params["linear_tree"] = out_is_linear.value train_set = Dataset(data, label, silent=True, params=new_params) new_params['refit_decay_rate'] = decay_rate new_booster = Booster(new_params, train_set) # Copy models _safe_call(_LIB.LGBM_BoosterMerge( new_booster.handle, predictor.handle)) leaf_preds = leaf_preds.reshape(-1) ptr_data, _, _ = c_int_array(leaf_preds) _safe_call(_LIB.LGBM_BoosterRefit( new_booster.handle, ptr_data, ctypes.c_int32(nrow), ctypes.c_int32(ncol))) new_booster.network = self.network new_booster.__attr = self.__attr.copy() return new_booster def get_leaf_output(self, tree_id, leaf_id): """Get the output of a leaf. Parameters ---------- tree_id : int The index of the tree. leaf_id : int The index of the leaf in the tree. Returns ------- result : float The output of the leaf. """ ret = ctypes.c_double(0) _safe_call(_LIB.LGBM_BoosterGetLeafValue( self.handle, ctypes.c_int(tree_id), ctypes.c_int(leaf_id), ctypes.byref(ret))) return ret.value def _to_predictor(self, pred_parameter=None): """Convert to predictor.""" predictor = _InnerPredictor(booster_handle=self.handle, pred_parameter=pred_parameter) predictor.pandas_categorical = self.pandas_categorical return predictor def num_feature(self): """Get number of features. Returns ------- num_feature : int The number of features. """ out_num_feature = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterGetNumFeature( self.handle, ctypes.byref(out_num_feature))) return out_num_feature.value def feature_name(self): """Get names of features. Returns ------- result : list List with names of features. """ num_feature = self.num_feature() # Get name of features tmp_out_len = ctypes.c_int(0) reserved_string_buffer_size = 255 required_string_buffer_size = ctypes.c_size_t(0) string_buffers = [ctypes.create_string_buffer(reserved_string_buffer_size) for _ in range(num_feature)] ptr_string_buffers = (ctypes.c_char_p * num_feature)(*map(ctypes.addressof, string_buffers)) _safe_call(_LIB.LGBM_BoosterGetFeatureNames( self.handle, ctypes.c_int(num_feature), ctypes.byref(tmp_out_len), ctypes.c_size_t(reserved_string_buffer_size), ctypes.byref(required_string_buffer_size), ptr_string_buffers)) if num_feature != tmp_out_len.value: raise ValueError("Length of feature names doesn't equal with num_feature") actual_string_buffer_size = required_string_buffer_size.value # if buffer length is not long enough, reallocate buffers if reserved_string_buffer_size < actual_string_buffer_size: string_buffers = [ctypes.create_string_buffer(actual_string_buffer_size) for _ in range(num_feature)] ptr_string_buffers = (ctypes.c_char_p * num_feature)(*map(ctypes.addressof, string_buffers)) _safe_call(_LIB.LGBM_BoosterGetFeatureNames( self.handle, ctypes.c_int(num_feature), ctypes.byref(tmp_out_len), ctypes.c_size_t(actual_string_buffer_size), ctypes.byref(required_string_buffer_size), ptr_string_buffers)) return [string_buffers[i].value.decode('utf-8') for i in range(num_feature)] def feature_importance(self, importance_type='split', iteration=None): """Get feature importances. Parameters ---------- importance_type : string, optional (default="split") How the importance is calculated. If "split", result contains numbers of times the feature is used in a model. If "gain", result contains total gains of splits which use the feature. iteration : int or None, optional (default=None) Limit number of iterations in the feature importance calculation. If None, if the best iteration exists, it is used; otherwise, all trees are used. If <= 0, all trees are used (no limits). Returns ------- result : numpy array Array with feature importances. """ if iteration is None: iteration = self.best_iteration importance_type_int = FEATURE_IMPORTANCE_TYPE_MAPPER[importance_type] result = np.empty(self.num_feature(), dtype=np.float64) _safe_call(_LIB.LGBM_BoosterFeatureImportance( self.handle, ctypes.c_int(iteration), ctypes.c_int(importance_type_int), result.ctypes.data_as(ctypes.POINTER(ctypes.c_double)))) if importance_type_int == 0: return result.astype(np.int32) else: return result def get_split_value_histogram(self, feature, bins=None, xgboost_style=False): """Get split value histogram for the specified feature. Parameters ---------- feature : int or string The feature name or index the histogram is calculated for. If int, interpreted as index. If string, interpreted as name. .. warning:: Categorical features are not supported. bins : int, string or None, optional (default=None) The maximum number of bins. If None, or int and > number of unique split values and ``xgboost_style=True``, the number of bins equals number of unique split values. If string, it should be one from the list of the supported values by ``numpy.histogram()`` function. xgboost_style : bool, optional (default=False) Whether the returned result should be in the same form as it is in XGBoost. If False, the returned value is tuple of 2 numpy arrays as it is in ``numpy.histogram()`` function. If True, the returned value is matrix, in which the first column is the right edges of non-empty bins and the second one is the histogram values. Returns ------- result_tuple : tuple of 2 numpy arrays If ``xgboost_style=False``, the values of the histogram of used splitting values for the specified feature and the bin edges. result_array_like : numpy array or pandas DataFrame (if pandas is installed) If ``xgboost_style=True``, the histogram of used splitting values for the specified feature. """ def add(root): """Recursively add thresholds.""" if 'split_index' in root: # non-leaf if feature_names is not None and isinstance(feature, str): split_feature = feature_names[root['split_feature']] else: split_feature = root['split_feature'] if split_feature == feature: if isinstance(root['threshold'], str): raise LightGBMError('Cannot compute split value histogram for the categorical feature') else: values.append(root['threshold']) add(root['left_child']) add(root['right_child']) model = self.dump_model() feature_names = model.get('feature_names') tree_infos = model['tree_info'] values = [] for tree_info in tree_infos: add(tree_info['tree_structure']) if bins is None or isinstance(bins, int) and xgboost_style: n_unique = len(np.unique(values)) bins = max(min(n_unique, bins) if bins is not None else n_unique, 1) hist, bin_edges = np.histogram(values, bins=bins) if xgboost_style: ret = np.column_stack((bin_edges[1:], hist)) ret = ret[ret[:, 1] > 0] if PANDAS_INSTALLED: return pd_DataFrame(ret, columns=['SplitValue', 'Count']) else: return ret else: return hist, bin_edges def __inner_eval(self, data_name, data_idx, feval=None): """Evaluate training or validation data.""" if data_idx >= self.__num_dataset: raise ValueError("Data_idx should be smaller than number of dataset") self.__get_eval_info() ret = [] if self.__num_inner_eval > 0: result = np.empty(self.__num_inner_eval, dtype=np.float64) tmp_out_len = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterGetEval( self.handle, ctypes.c_int(data_idx), ctypes.byref(tmp_out_len), result.ctypes.data_as(ctypes.POINTER(ctypes.c_double)))) if tmp_out_len.value != self.__num_inner_eval: raise ValueError("Wrong length of eval results") for i in range(self.__num_inner_eval): ret.append((data_name, self.__name_inner_eval[i], result[i], self.__higher_better_inner_eval[i])) if callable(feval): feval = [feval] if feval is not None: if data_idx == 0: cur_data = self.train_set else: cur_data = self.valid_sets[data_idx - 1] for eval_function in feval: if eval_function is None: continue feval_ret = eval_function(self.__inner_predict(data_idx), cur_data) if isinstance(feval_ret, list): for eval_name, val, is_higher_better in feval_ret: ret.append((data_name, eval_name, val, is_higher_better)) else: eval_name, val, is_higher_better = feval_ret ret.append((data_name, eval_name, val, is_higher_better)) return ret def __inner_predict(self, data_idx): """Predict for training and validation dataset.""" if data_idx >= self.__num_dataset: raise ValueError("Data_idx should be smaller than number of dataset") if self.__inner_predict_buffer[data_idx] is None: if data_idx == 0: n_preds = self.train_set.num_data() * self.__num_class else: n_preds = self.valid_sets[data_idx - 1].num_data() * self.__num_class self.__inner_predict_buffer[data_idx] = np.empty(n_preds, dtype=np.float64) # avoid to predict many time in one iteration if not self.__is_predicted_cur_iter[data_idx]: tmp_out_len = ctypes.c_int64(0) data_ptr = self.__inner_predict_buffer[data_idx].ctypes.data_as(ctypes.POINTER(ctypes.c_double)) _safe_call(_LIB.LGBM_BoosterGetPredict( self.handle, ctypes.c_int(data_idx), ctypes.byref(tmp_out_len), data_ptr)) if tmp_out_len.value != len(self.__inner_predict_buffer[data_idx]): raise ValueError(f"Wrong length of predict results for data {data_idx}") self.__is_predicted_cur_iter[data_idx] = True return self.__inner_predict_buffer[data_idx] def __get_eval_info(self): """Get inner evaluation count and names.""" if self.__need_reload_eval_info: self.__need_reload_eval_info = False out_num_eval = ctypes.c_int(0) # Get num of inner evals _safe_call(_LIB.LGBM_BoosterGetEvalCounts( self.handle, ctypes.byref(out_num_eval))) self.__num_inner_eval = out_num_eval.value if self.__num_inner_eval > 0: # Get name of eval metrics tmp_out_len = ctypes.c_int(0) reserved_string_buffer_size = 255 required_string_buffer_size = ctypes.c_size_t(0) string_buffers = [ ctypes.create_string_buffer(reserved_string_buffer_size) for _ in range(self.__num_inner_eval) ] ptr_string_buffers = (ctypes.c_char_p * self.__num_inner_eval)(*map(ctypes.addressof, string_buffers)) _safe_call(_LIB.LGBM_BoosterGetEvalNames( self.handle, ctypes.c_int(self.__num_inner_eval), ctypes.byref(tmp_out_len), ctypes.c_size_t(reserved_string_buffer_size), ctypes.byref(required_string_buffer_size), ptr_string_buffers)) if self.__num_inner_eval != tmp_out_len.value: raise ValueError("Length of eval names doesn't equal with num_evals") actual_string_buffer_size = required_string_buffer_size.value # if buffer length is not long enough, reallocate buffers if reserved_string_buffer_size < actual_string_buffer_size: string_buffers = [ ctypes.create_string_buffer(actual_string_buffer_size) for _ in range(self.__num_inner_eval) ] ptr_string_buffers = (ctypes.c_char_p * self.__num_inner_eval)(*map(ctypes.addressof, string_buffers)) _safe_call(_LIB.LGBM_BoosterGetEvalNames( self.handle, ctypes.c_int(self.__num_inner_eval), ctypes.byref(tmp_out_len), ctypes.c_size_t(actual_string_buffer_size), ctypes.byref(required_string_buffer_size), ptr_string_buffers)) self.__name_inner_eval = [ string_buffers[i].value.decode('utf-8') for i in range(self.__num_inner_eval) ] self.__higher_better_inner_eval = [ name.startswith(('auc', 'ndcg@', 'map@', 'average_precision')) for name in self.__name_inner_eval ] def attr(self, key): """Get attribute string from the Booster. Parameters ---------- key : string The name of the attribute. Returns ------- value : string or None The attribute value. Returns None if attribute does not exist. """ return self.__attr.get(key, None) def set_attr(self, **kwargs): """Set attributes to the Booster. Parameters ---------- **kwargs The attributes to set. Setting a value to None deletes an attribute. Returns ------- self : Booster Booster with set attributes. """ for key, value in kwargs.items(): if value is not None: if not isinstance(value, str): raise ValueError("Only string values are accepted") self.__attr[key] = value else: self.__attr.pop(key, None) return self
mit
lmjohns3/movement-classify-experiment
scripts/train-classifier.py
1
2807
import climate import cPickle import gzip import lmj.plot import numpy as np import os from sklearn.cross_validation import train_test_split, cross_val_score from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC logging = climate.get_logger('train-classifier') PLOT_CM = False def main(filename): dataset = cPickle.load(gzip.open(filename)) filename = os.path.basename(filename) X = [] y = [] labels = [] for k in sorted(dataset): v = dataset[k] if len(v) < 11 or 'human subject' not in k: continue for x in v: X.append(x) y.append(len(labels)) logging.info('%s: %d examples', k, len(v)) labels.append(k) label_length = max(len(l) for l in labels) X = np.array(X) y = np.array(y) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=12345) Model = LogisticRegression scores = cross_val_score(Model(), X_train, y_train, cv=9, n_jobs=3) logging.info('%s: scores %.3f +/- %.3f', filename, scores.mean(), scores.std() / 3) f1s = cross_val_score(Model(), X_train, y_train, cv=9, n_jobs=3, scoring='f1') logging.info('%s: f1s %.3f +/- %.3f', filename, f1s.mean(), f1s.std() / 3) model = Model() y_predict = model.fit(X_train, y_train).predict(X_test) cm = confusion_matrix(y_test, y_predict) logging.info('%s: confusion?\n%s', filename, cm) for l, p, r, f in zip(labels, precision_score(y_test, y_predict, average=None), recall_score(y_test, y_predict, average=None), f1_score(y_test, y_predict, average=None)): logging.info('%s: %s P %.4f R %.4f F1 %.4f', filename, l.rjust(label_length), p, r, f) if Model == RandomForestClassifier: logging.info('top features: %s', (-model.feature_importances_).argsort()[:3]) if Model == LogisticRegression: for i, l in enumerate(labels[:-1]): coefs = model.coef_[i] tops = (-coefs).argsort() feats = ('{:3d} ({:5.2f})'.format(t, coefs[t]) for t in tops[:3]) logging.info('%s: %s: top features %s', filename, l.rjust(label_length), ', '.join(feats)) if PLOT_CM: ax = lmj.plot.axes(111, spines=False) ax.imshow(cm) ax.set_xticks(range(len(labels))) ax.set_xticklabels(labels) ax.set_xlabel('True label') ax.set_yticks(range(len(labels))) ax.set_yticklabels(labels) ax.set_ylabel('Predicted label') lmj.plot.show() if __name__ == '__main__': climate.call(main)
mit
mantidproject/mantid
Testing/SystemTests/scripts/performance/analysis.py
3
22562
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2018 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source, # Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS # SPDX - License - Identifier: GPL - 3.0 + """ Module containing functions for test performance analysis, plotting, and saving to other formats (CSV, PDF) """ import testresult import os import sys import sqlresults from sqlresults import get_results import matplotlib from pylab import * import numpy as np import datetime import random # This is the date string format as returned by the database DATE_STR_FORMAT = "%Y-%m-%d %H:%M:%S.%f" #============================================================================================ def get_orderby_clause(last_num): """Returns a order by clause that limits to the last # revisions """ if last_num > 0: return " ORDER BY revision DESC limit %d" % last_num else: return '' #============================================================================================ def get_data(name='', type='', x_field='revision', y_field='runtime', last_num=-1): """Get the test runtime/iteration as a function of an X variable. Parameters ---------- name :: full name of the test type :: type of test to filter by x_field :: name of the field for the X axis. e.g. 'revision' (default) or 'date' : exact date/time of launch or 'index' : using the date, but returning an index of build # instead of the date (better scaling) last_num :: only get the last this-many entries from the table, sorted by revision. if < 0, then get everything Returns ------- x :: list of X values, sorted increasing y :: list of runtime/iteration for each x """ results = get_results(name, type, where_clause='', orderby_clause=get_orderby_clause(last_num)) # Data dict. Key = X variable; Value = (iterations total, runtime total) data = {} for res in results: # Get the x field value if x_field == 'index': x = res['date'] else: x = res[x_field] if data.has_key(x): old = data[x] iters = old[0] + 1 # Iterations runtime = old[1] + res[y_field] else: iters = 1 runtime = res[y_field] # Save the # of iterations and runtime data[x] = (iters, runtime) # Now make a sorted list of (x, runtime/iteration) sorted = [(x, y[1]/y[0]) for (x,y) in data.items()] sorted.sort() x = [a for (a,b) in sorted] # For index, convert into an integer index if x_field == 'index': x = range( len(x) ) y = [b for (a,b) in sorted] return (x,y) #============================================================================================ def get_unique_fields(results, field): """Given a list of TestResult, return a list of all unique values of 'field'""" out = set() for res in results: out.add( res[field] ) return list(out) #============================================================================================ def get_results_matching(results, field, value): """Given a list of TestResult, return a list of TestResult's where 'field' matches 'value'.""" out = [] for res in results: if res[field] == value: out.append(res) return out #============================================================================================ def smart_ticks(index, values): """On the current figure, set the ticks at X positions given by index, with value given by values (ints). But it tries to space them out in a reasonable way. """ if type(values[0]).__name__ == "unicode": # Make the array of dates dates = [] for val in values: try: datetime.datetime.strptime(val, DATE_STR_FORMAT) dates.append(val) except: pass if len(dates) == 0: return td = dates[-1] - dates[0] if (td < datetime.timedelta(hours=1)): values_str = [d.strftime("%M:%S") for d in dates] elif (td < datetime.timedelta(days=1)): values_str = [d.strftime("%H:%M") for d in dates] else: values_str = [d.strftime("%m-%d, %H:%M") for d in dates] else: # convert to list of strings values_str = [str(val) for val in values] if len(values_str) == 0: return w = gcf().get_figwidth()*gcf().get_dpi() spacing = w/len(index) tick_index = [] tick_strings = [] space_available = 0 for i in range(len(index)): s = str(values_str[i]); s_width = (len(s)+1) * 12.0 # About 12 pixels per letter? And add a space space_available +=spacing if space_available >= s_width: space_available = 0 tick_index.append(i) tick_strings.append(s) xticks( tick_index, tick_strings ) #============================================================================================ def plot_success_count(type='system', last_num=-1, x_field='revision'): """ Plot the count of successful/failed tests vs revision number Parameters ---------- type :: 'system', or 'performance' """ results = get_results('', type, where_clause='', orderby_clause=get_orderby_clause(last_num)) revisions = get_unique_fields(results, x_field) # Go through each revision success = [] fail = [] for revision in revisions: these = get_results_matching(results, x_field, revision) succeeded = 0 failed = 0 for res in these: if res["success"]: succeeded += 1 else: failed += 1 # Keep the list of them success.append(succeeded) fail.append(failed) figure() revisions = np.array(revisions) fail = np.array(fail) success = np.array(success) index = np.arange(len(revisions)) # p1 = bar(index, fail, color='r') # p2 = bar(index, success, color='g', bottom=fail) # legend( (p1[0], p2[0]), ('Failure', 'Success') ) p1 = fill_between(index, fail, 0, color='r') p2 = fill_between(index, success+fail, fail, color='g') #legend( (p1, p2), ('Failure', 'Success') ) smart_ticks( index, revisions) ylabel('Success/Fail') xlabel(x_field) revsare = "all revs" if last_num > 0: revsare = "last %d revs" % last_num title("Success/Fail History of %s tests (%s)" % (type, revsare)) #============================================================================================ def plot_runtime(*args, **kwargs): """ Call get_data() Parameters ---------- - See get_data() for the full list """ (x,y) = get_data(*args, **kwargs) figure() index = np.arange(len(x)) plot(index,y,'-b.') smart_ticks( index, x) ylabel('Runtime/iteration (sec)') xlabel(kwargs['x_field']) last_num =kwargs.get('last_num',-1) if last_num > 0: title("Runtime History of %s (last %d revs)" % (kwargs['name'], kwargs["last_num"]) ) else: title("Runtime History of %s (all revs)" % kwargs['name']) #============================================================================================ def plot_memory(*args, **kwargs): """ Call get_data() Parameters ---------- - See get_data() for the full list """ (x,y) = get_data(*args, **kwargs) figure() index = np.arange(len(x)) plot(index,y,'-b.') smart_ticks( index, x) ylabel("Memory 'loss' (MB)") xlabel(kwargs['x_field']) last_num =kwargs.get('last_num',-1) if last_num > 0: title("Memory History of %s (last %d revs)" % (kwargs['name'], kwargs["last_num"]) ) else: title("Memory History of %s (all revs)" % kwargs['name']) # The default HTML header default_html_header = """<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html> <head><LINK href="report.css" rel="stylesheet" type="text/css"></head> """ default_html_footer = """</body></html>""" #============================================================================================ def make_css_file(path): """ Make a save the report.css file to be used by all html """ default_css = """ table { border-collapse:collapse; background-color:FFAAAA; } table, th, td { border: 1px solid black; padding: 2px 6px; } .failedrow, .failedrow TD, .failedrow TH { background-color:#FFAAAA; color:black; } .alternaterow, .alternaterow TD, .alternaterow TH { background-color:#FFFFAA; color:black; } .error { color:red; font-weight: bold; } """ f = open(os.path.join(path, "report.css"), 'w') f.write(default_css) f.close() #============================================================================================ def make_environment_html(res): """Return a HTML string with details of test environment, taken from the 'res' TestResult object""" html = """<table border=1> <tr><th>Host name:</th> <td>%s</td> </tr> <tr><th>Environment:</th> <td>%s</td> </tr> <tr><th>Type of runner:</th> <td>%s</td> </tr> </table> """ % (res['host'], res['environment'], res['runner']) return html #============================================================================================ def make_detailed_html_file(basedir, name, fig1, fig2, fig3, fig4, last_num): """ Create a detailed HTML report for the named test """ html = default_html_header html += """<h1>Detailed report for %s</h1><br>""" % (name) html += """<img src="%s" alt="runtime vs revision number (latest %d entries)" />\n""" % (fig1, last_num) html += """<img src="%s" alt="runtime vs revision number" />\n""" % (fig2) html += """<img src="%s" alt="memory vs revision number (latest %d entries)" />\n""" % (fig3, last_num) html += """<img src="%s" alt="memory vs revision number" />\n""" % (fig4) html += """<h3>Test Results</h3>""" fields = ['revision', 'date', 'commitid', 'compare', 'status', 'runtime', 'cpu_fraction', 'memory_change', 'variables'] table_row_header = "<tr>" for field in fields: if field == "runtime": field = "Runtime/Iter." if field == "memory_change": field = "Memory 'loss'" field = field[0].upper() + field[1:] table_row_header += "<th>%s</th>" % field table_row_header += "</tr>" html += """<table border="1">""" + table_row_header table_html = '' results = get_results(name, type='', where_clause='') sorted = [(res["revision"], res["variables"], res["date"], res) for res in results] sorted.sort(reverse=False) count = 0 last_rev = 0 commitid = '' last_commitid = '' row_class = '' table_rows = [] for (rev, variable, date, res) in sorted: table_row_html = '' if (rev != last_rev): # Changed SVN revision. Swap row color if row_class == '': row_class = "class=alternaterow" else: row_class = '' last_rev = rev if commitid != last_commitid: last_commitid = commitid if res["success"]: table_row_html += "<tr %s>\n" % row_class else: table_row_html += "<tr class=failedrow>\n" for field in fields: val = '' if field == 'compare': # Comparison to previous commit, if anything can be done if (last_commitid != ""): val = """<a href="https://github.com/mantidproject/mantid/compare/%s...%s">diff</a>""" % (last_commitid, commitid) else: # Normal fields val = res[field] # Trim the fractional seconds if field=="date": val = str(val)[0:19] # Add a trac link if field=="commitid": commitid = val partial_commitid = val if (len(partial_commitid) > 7): partial_commitid = partial_commitid[0:7]; val = """<a href="https://github.com/mantidproject/mantid/commit/%s">%s</a>""" % (commitid, partial_commitid) if field=="runtime": val = "%.3f" % (res["runtime"]) table_row_html += "<td>%s</td>" % val table_row_html += "\n</tr>\n" table_rows.append(table_row_html) # Now print out all the rows in reverse order table_rows.reverse() for row in table_rows: html += row # # Add the row header every 30 entries # count += 1 # if count % 30 == 0: html += table_row_header # And one more at the end for good measure html += table_row_header html += "</table>" if len(results)> 0: html += """<h3>Environment</h3> %s""" % make_environment_html(results[0]) html += default_html_footer # last_date = sorted[-1][1]["date"] # results = get_results(name, type='', get_log=False, where_clause=" date = '%s'" % last_date) # if len(results)>0: # html += f = open(os.path.join(basedir, "%s.htm" % name), "w") html = html.replace("\n", os.linesep) # Fix line endings for windows f.write(html) f.close() #============================================================================================ def how_long_ago(timestr): """Returns a string giving how long ago something happened, in human-friendly way """ import time now = datetime.datetime.now() then = datetime.datetime.strptime(timestr, DATE_STR_FORMAT) td = (now-then) sec = td.seconds min = int(sec / 60) hours = int(min / 60) days = td.days weeks = int(days / 7) sec = sec % 60 min = min % 60 hours = hours % 24 days = days % 7 if weeks > 0: return "%dw%dd" % (weeks,days) elif days > 0: return "%dd%dh" % (days, hours) elif hours > 0: return "%dh%dm" % (hours, min) elif min > 0: return "%dm%ds" % (min, sec) else: return "%ds" % (sec) return "" #============================================================================================ def get_html_summary_table(test_names): """Returns a html string summarizing the tests with these names """ html = """ <table ><tr> <th>Test Name</th> <th>Type</th> <th>Status</th> <th>When?</th> <th>Total runtime (s)</th> <th>Memory 'loss'</th> """ for name in test_names: res = sqlresults.get_latest_result(name) if not res is None: # Calculate how long ago if not res["success"]: html += """<tr class="failedrow">""" else: html += """<tr>""" html += """<td><a href="%s.htm">%s</a></td>""" % (name, name) html += """<td>%s</td>""" % res['type'] html += """<td>%s</td>""" % res['status'] # Friendly date try: date = datetime.datetime.strptime(res['date'], DATE_STR_FORMAT) html += """<td>%s</td>""" % date.strftime("%b %d, %H:%M:%S") except: html += """<td></td>""" html += """<td>%s</td>""" % res['runtime'] html += """<td>%s</td>""" % res['memory_change'] html += """</tr>""" html += """</table>""" return html #============================================================================================ def generate_html_subproject_report(path, last_num, x_field='revision', starts_with=""): """ HTML report for a subproject set of tests. starts_with : the prefix of the test name Returns: (filename saved, HTML for a page with ALL figures in it) """ basedir = os.path.abspath(path) if not os.path.exists(basedir): os.mkdir(basedir) # Detect if you can do figures dofigs = True try: figure() rcParams['axes.titlesize'] = 'small' except: dofigs = False # Start the HTML overview_html = "" # ------ Find the test names of interest ---------------- # Limit with only those tests that exist in the latest rev latest_rev = sqlresults.get_latest_revison() temp_names = list(sqlresults.get_all_test_names(" revision = %d" % latest_rev)) # Filter by their start test_names = [] for name in temp_names: if name.startswith(starts_with): test_names.append(name) test_names.sort() # -------- Report for each test ------------------------ for name in test_names: print("Plotting", name) overview_html += """<hr><h2>%s</h2>\n""" % name # Path to the figures fig1 = "%s.runtime.v.revision.png" % name fig2 = "%s.runtime.v.revision.ALL.png" % name fig3 = "%s.memory.v.revision.png" % name fig4 = "%s.memory.v.revision.ALL.png" % name if dofigs: # Only the latest X entries plot_runtime(name=name,x_field=x_field,last_num=last_num) savefig(os.path.join(basedir, fig1)) close() # Plot all svn times plot_runtime(name=name,x_field=x_field,last_num=-1) savefig(os.path.join(basedir, fig2)) close() # Only the latest X entries plot_memory(name=name,x_field=x_field,y_field='memory_change',last_num=last_num) savefig(os.path.join(basedir, fig3)) close() # Plot all svn times plot_memory(name=name,x_field=x_field,y_field='memory_change',last_num=-1) savefig(os.path.join(basedir, fig4)) close() overview_html += """<img src="%s" alt="runtime vs revision number" />""" % (fig1) overview_html += """<img src="%s" alt="memory vs revision number" />\n""" % (fig3) make_detailed_html_file(basedir, name, fig1, fig2, fig3, fig4, last_num) detailed_html = """<br><a href="%s.htm">Detailed test report for %s</a> <br><br> """ % (name, name) overview_html += detailed_html filename = starts_with + ".htm" return (filename, overview_html) #============================================================================================ def generate_html_report(path, last_num, x_field='revision'): """Make a comprehensive HTML report of runtime history for all tests. Parameters ---------- path :: base path to the report folder last_num :: in the shorter plot, how many SVN revs to show? x_field :: the field to use as the x-axis. 'revision' or 'date' make sense """ basedir = os.path.abspath(path) if not os.path.exists(basedir): os.mkdir(basedir) # Make the CSS file to be used by all HTML make_css_file(path) # Detect if you can do figures dofigs = True try: figure() except: dofigs = False # --------- Start the HTML -------------- html = default_html_header html += """<h1>Mantid System Tests Auto-Generated Report</h1>""" html += """<p><a href="overview_plot.htm">See an overview of performance plots for all tests by clicking here.</a></p> """ if not dofigs: html += """<p class="error">There was an error generating plots. No figures will be present in the report.</p>""" html += """<h2>Run Environment</h2> %s """ % ( make_environment_html(sqlresults.get_latest_result()) ) overview_html = "" # ------ Find the test names of interest ---------------- # Limit with only those tests that exist in the latest rev latest_rev = sqlresults.get_latest_revison() test_names = list(sqlresults.get_all_test_names(" revision = %d" % latest_rev)) test_names.sort() # ------ Find a list of subproject names -------- subprojects = set() for name in test_names: n = name.find(".") if n > 0: subprojects.add( name[:n] ) subprojects = list(subprojects) subprojects.sort() html += """<h2>Test Subprojects</h2> <big> <table cellpadding="10"> """ for subproject in subprojects: (filename, this_overview) = generate_html_subproject_report(path, last_num, x_field, subproject) overview_html += this_overview html += """<tr> <td> <a href="%s">%s</a> </td> </tr> """ % (filename, subproject) html += """</table></big>""" # --------- Table with the summary of latest results -------- html += """<h2>Overall Results Summary</h2>""" html += get_html_summary_table(test_names) # -------- Overall success history graphs ------------ #if dofigs: # # We report the overall success # fig_path = "OverallSuccess.png" # plot_success_count(type='',last_num=last_num, x_field=x_field) # savefig(os.path.join(basedir, fig_path)) # close() # # fig_path2 = "OverallSuccess.ALL.png" # plot_success_count(type='',last_num=-1, x_field=x_field) # savefig(os.path.join(basedir, fig_path2)) # close() # # html += """<h2>Overall Success/Failure</h2> # <img src="%s" /> # <img src="%s" /> # """ % (fig_path, fig_path2) html += default_html_footer f = open(os.path.join(basedir, "report.htm"), "w") html = html.replace("\n", os.linesep) # Fix line endings for windows f.write(html) f.close() # -------- Overview of plots ------------ f = open(os.path.join(basedir, "overview_plot.htm"), "w") overview_html = overview_html.replace("\n", os.linesep) # Fix line endings for windows f.write(overview_html) f.close() print("Report complete!") #============================================================================================ if __name__ == "__main__": sqlresults.set_database_filename("MyFakeData.db") # Make up some test data if 0: if os.path.exists("MyFakeData.db"): os.remove("MyFakeData.db") sqlresults.generate_fake_data(300) generate_html_report("../Report", 50) # plot_runtime(name='MyFakeTest', x_field='revision') # plot_runtime(name='MyFakeTest', x_field='date') # plot_success_count() # show()
gpl-3.0
Kitware/minerva
gaia_tasks/inputs.py
1
7301
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # Copyright Kitware Inc. and Epidemico Inc. # # Licensed under the Apache License, Version 2.0 ( the "License" ); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### import json import os import tempfile from base64 import b64encode import fiona import geopandas import requests from six import StringIO from gaia.core import GaiaException from gaia.filters import filter_pandas from gaia.inputs import GaiaIO from gaia import formats, types import girder_worker from girder.constants import PACKAGE_DIR import girder_client class MinervaVectorIO(GaiaIO): """ Interface to Minerva item geojson """ type = types.VECTOR default_output = formats.JSON def __init__(self, item_id=None, token=None, name='gaia_result.json', uri='', **kwargs): """ Read and write GeoJSON data to/from Girder :param item_id: Item id to read/write from/to :param uri: location of temporary file :param kwargs: Other keyword arguments """ self.id = item_id self.token = token if uri: self.uri = uri else: tmpdir = tempfile.mkdtemp() self.uri = tempfile.mkstemp(suffix='.json', dir=tmpdir)[1] self.filename = name girderHost = None girderPort = None girderScheme = None try: girderHost = girder_worker.config.get('minerva', 'girder_host_name') girderPort = girder_worker.config.get('minerva', 'girder_host_port') girderScheme = girder_worker.config.get('minerva', 'girder_host_scheme') except: girderHost = 'localhost' girderPort = '8080' girderScheme = 'http' client = girder_client.GirderClient(host=girderHost, port=girderPort, scheme=girderScheme) client.token = token self.client = client self.meta = self.client.getItem(item_id) super(MinervaVectorIO, self).__init__(uri=self.uri, **kwargs) def save_geojson(self): """ Save GeoJSON from a Minerva item TODO: Use caching like the girder_worker.girder_io plugin TODO: Separate methods for saving geojson from different sources TODO: Get geojson via WFS calls for local WMS vector layers """ minerva = self.meta['meta']['minerva'] if 'geojson_file' in minerva: # Uploaded GeoJSON is stored as a file in Girder self.client.downloadFile(minerva['geojson_file']['_id'], self.uri) elif 'geojson' in minerva: # Mongo collection is stored in item meta geojson = json.loads(minerva['geojson']['data']) # TODO: Don't use mongo metadata for filename with open(self.uri, 'w') as outjson: json.dump(geojson, outjson) # elif 'dataset_type' in minerva and minerva['dataset_type'] == 'wms': # from girder.plugins.minerva.utility.minerva_utility import decryptCredentials # servers = config.getConfig()['gaia_minerva_wms']['servers'] # if minerva['base_url'] in servers: # params = 'srsName=EPSG:4326&typename={name}&outputFormat=json'\ # + '&version=1.0.0&service=WFS&request=GetFeature' # url = '{base}?{params}'.format( # base=minerva['base_url'].replace('/wms', '/wfs'), # params=params.format(name=minerva['type_name']) # ) # headers = {} # if 'credentials' in minerva: # credentials = (minerva['credentials']) # basic_auth = 'Basic ' + b64encode( # decryptCredentials(credentials)) # headers = {'Authorization': basic_auth} # with open(self.uri, 'w') as outjson: # r = requests.get(url, headers=headers) # r.raise_for_status() # json.dump(r.json(), outjson) # else: # raise GaiaException('This server {} is not supported. \n{}'.format(minerva)) else: raise GaiaException('Unsupported data source. \n{}'.format(minerva)) def read(self, epsg=None, **kwargs): """ Read vector data from Girder :param format: Format to return data in (default is GeoDataFrame) :param epsg: EPSG code to reproject data to :return: Data in GeoJSON """ if self.data is None: self.save_geojson() self.data = geopandas.read_file(self.uri) if self.filters: self.filter_data() out_data = self.data if epsg and self.get_epsg() != epsg: out_data = geopandas.GeoDataFrame.copy(out_data) out_data[out_data.geometry.name] = \ self.data.geometry.to_crs(epsg=epsg) out_data.crs = fiona.crs.from_epsg(epsg) if format == formats.JSON: return out_data.to_json() else: return out_data def write(self, filename=None, as_type='json'): """ Write data (assumed geopandas) to geojson or shapefile :param filename: Base filename :param as_type: json or memory :return: file girder uri """ filedata = self.data.to_json() if not filename: filename = self.filename if as_type == 'json': self.uri = self.uri.replace(os.path.basename(self.uri), filename) self.create_output_dir(self.uri) with open(self.uri, 'w') as outfile: outfile.write(filedata) elif as_type == 'memory': pass else: raise NotImplementedError('{} not a valid type'.format(as_type)) fd = StringIO(filedata) upload = self.client.uploadFile(parentId=self.id, stream=fd, size=len(filedata), name=filename) item_meta = self.client.getItem(self.id)['meta'] item_meta['minerva']['geojson_file'] = { '_id': upload['_id'], 'name': upload['name'] } item_meta['minerva']['geo_render'] = { 'type': 'geojson', 'file_id': upload['_id'] } self.client.addMetadataToItem(self.id, item_meta) return os.path.join( self.client.urlBase, 'file', upload['_id'], 'download') def filter_data(self): """ Apply filters to the dataset :return: """ self.data = filter_pandas(self.data, self.filters) PLUGIN_CLASS_EXPORTS = [ MinervaVectorIO ]
apache-2.0
mkness/TheCannon
code/makeredclumpplot.py
1
10984
#!/usr/bin/python import pyfits import numpy as np import pickle from numpy import savetxt import matplotlib from matplotlib import pyplot #a.close() import scipy from scipy import interpolate from matplotlib.ticker import MultipleLocator, FormatStrFormatter from matplotlib.ticker import ScalarFormatter s = matplotlib.font_manager.FontProperties() s.set_family('serif') s.set_size(14) from matplotlib import rc rc('text', usetex=True) rc('text', usetex=True) rc('font', family='serif') from matplotlib.ticker import MultipleLocator, FormatStrFormatter from matplotlib import pyplot from matplotlib.pyplot import * import matplotlib from matplotlib import pyplot from matplotlib.ticker import MultipleLocator, FormatStrFormatter s = matplotlib.font_manager.FontProperties() import matplotlib as mpl mpl.rcParams['text.usetex']=True mpl.rcParams['text.latex.unicode']=True rcParams["xtick.labelsize"] = 14 rcParams["ytick.labelsize"] = 14 s = matplotlib.font_manager.FontProperties() s.set_size(18) from matplotlib.ticker import MultipleLocator, FormatStrFormatter s = matplotlib.font_manager.FontProperties() majorLocator = MultipleLocator(5) majorFormatter = FormatStrFormatter('%d') minorLocator = MultipleLocator(5) ymajorLocator1 = MultipleLocator(0.005) ymajorLocator2 = MultipleLocator(0.1) ymajorLocator3 = MultipleLocator(0.1) xminorLocator = MultipleLocator(5) yminorLocator = MultipleLocator(5) ymajorLocator = MultipleLocator(50) xmajorLocator = MultipleLocator(10) ######rcParams['figure.figsize'] = 22.0, 10.0 import pickle a = open('coeffs_2nd_order_5.pickle', 'r') # was originally just coeffs_2nd_order_5.pickle but that is corrupted bc = pickle.load(a) coeffs = bc[4] wl_star = bc[0][:,0,0] a.close() def makespec(t,g,feh,alpha,mass): nlabels = 5 features_data = np.ones((nlabels, 1)) labels = [t,g,feh,alpha,log(mass)] # put all in offsets = [4.85481344e+03, 2.58309295e+00, 8.87884779e-04 , 4.4598135e-02, 1] labels = array(labels) offsets = array(offsets) features_data = np.hstack((1, labels - offsets)) newfeatures_data = np.array([np.outer(labels-offsets, labels-offsets)[np.triu_indices(nlabels)] ]) newfeatures2_data = array([( labels[1] - offsets[1])**3]).T features_data_final = np.hstack((features_data, newfeatures_data.flatten(), newfeatures2_data.flatten())) jj= 0 model_gen2 = np.dot(coeffs,features_data_final.T) return model_gen2 #filein = './Jon/redclump_sample_A_updatedvalues_only.txt' #a = open(filein, 'r') #al = a.readlines() ##tvals,gvals,fehvals,alphavals, agevals, massvals = genfromtxt(filein, usecols = (5,6,7,8,9,10) , unpack =1) #ids = [] #for each in al: # ids.append(each.split()[0]) #plotstars(file1, wl_star,params1, "/Users/ness/new_laptop/TheCannon/TheCannon/documents/mass_and_age/plots/spectra_fits", cent_wl) def plotstars(filein, wl, params,prefix,cent_wl1, cent_wl2,cent_wl3, cent_wl4,cent_wl5, cent_wl6, cent_wl7, cent_wl8, bw): rcParams['figure.figsize'] = 14.0, 14.0 fig, temp = pyplot.subplots(4,2, sharex=False, sharey=False) ax1 = temp[0,0] ax2 = temp[1,0] ax3 = temp[2,0] ax4 = temp[3,0] ax5 = temp[0,1] ax6 = temp[1,1] ax7 = temp[2,1] ax8 = temp[3,1] t1,g1,feh1,alpha1,mass1 = params[0], params[1],params[2], params[3],params[4] param_str = " Teff="+str(np.int(t1))+", logg="+str(np.round(g1,1))+", [Fe/H]="+ str(np.round(feh1,2))+r", [$\alpha$/Fe]="+str(np.round(alpha1,2))+", Mass="+str(np.round(mass1,2)) def _plot_something(filein,params, ax, wl, indx, color, lw=1.0, label=""): a = pyfits.open(filein) data = a[1].data sigma = a[2].data bad = sigma > 0.1 data[bad] = None model_aspcap = a[3].data t1,g1,feh1,alpha1,mass1 = params[0], params[1],params[2], params[3],params[4] model_tc = makespec(t1,g1,feh1,alpha1,mass1 ) #if indx == 0: # ax.plot(wl,model_aspcap, color='r', lw=lw,alpha = 0.5) lw2 = 0.1 lw1 = 2. lw2 = 1. if indx == 1: ax.plot(wl,model_aspcap, color='gray', lw=lw1,alpha = 0.6, label= "ASPCAP model", linestyle = 'dashed') ax.plot(wl,model_tc, color='r', lw=lw1,alpha = 0.6, label = 'The Cannon model', linestyle = '-') ax.plot(wl,data , color='k', lw=lw2,label = 'data') #, label=label) return None axes = [ ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8] for ax in axes: _plot_something(filein, params,ax, wl_star, 1,'k') #_plot_something(filein, params,ax1, wl_star, 1,'k') #_plot_something(filein, params,ax3, wl_star,1, 'k') #_plot_something(filein, params,ax2, wl_star, 1,'k') #_plot_something(filein, params,ax4, wl_star,1, 'k') leg = ax1.legend(numpoints=1, fontsize = 12,loc = 3, frameon = False) ax5.text(cent_wl5 - 13, 0.72, param_str) #for legobj in leg.legendHandles: # legobj.set_linewidth(2.0) # ax3.plot(wl_star, model_tc, 'b',alpha=0.5) #fig.subplots_adjust(hspace=0) fig.subplots_adjust(wspace=0.09) fig.subplots_adjust(hspace=0.30) axlist = [ax1,ax2,ax3,ax4, ax5, ax6, ax7, ax8] axlist1 = [ax1,ax2,ax3,ax4] axlist2 = [ax3,ax4] fs = 16 for ax in axlist1: ax.set_ylabel("Normalized Flux", fontsize = fs) for ax in [ax1,ax1]: ax.set_xlim(cent_wl1-bw,cent_wl1+bw) # logg1 ax.set_xlabel("wavelength $\lambda$" + r" (\mbox{\AA})", fontsize = fs,labelpad = 5) ax.xaxis.set_major_formatter(FormatStrFormatter('%.0f')) #for ax in axlist2: for ax in [ax2,ax2]: ax.set_xlim(cent_wl2-bw,cent_wl2+bw) # logg1 ax.set_xlabel("wavelength $\lambda$" + r" (\mbox{\AA})", fontsize = fs,labelpad = 5) ax.xaxis.set_major_formatter(FormatStrFormatter('%.0f')) for ax in [ax3,ax3]: ax.set_xlim(cent_wl3-bw,cent_wl3+bw) # logg1 ax.set_xlabel("wavelength $\lambda$" + r" (\mbox{\AA})", fontsize = fs,labelpad = 5) ax.xaxis.set_major_formatter(FormatStrFormatter('%.0f')) for ax in [ax4,ax4]: ax.set_xlim(cent_wl4-bw,cent_wl4+bw) # logg1 ax.set_xlabel("wavelength $\lambda$" + r" (\mbox{\AA})", fontsize = fs,labelpad = 5) ax.xaxis.set_major_formatter(FormatStrFormatter('%.0f')) for ax in [ax5,ax5]: ax.set_xlim(cent_wl5-bw,cent_wl5+bw) # logg1 ax.set_xlabel("wavelength $\lambda$" + r" (\mbox{\AA})", fontsize = fs,labelpad = 5) ax.xaxis.set_major_formatter(FormatStrFormatter('%.0f')) for ax in [ax6,ax6]: ax.set_xlim(cent_wl6-bw,cent_wl6+bw) # logg1 ax.set_xlabel("wavelength $\lambda$" + r" (\mbox{\AA})", fontsize = fs,labelpad = 5) ax.xaxis.set_major_formatter(FormatStrFormatter('%.0f')) for ax in [ax7,ax7]: ax.set_xlim(cent_wl7-bw,cent_wl7+bw) # logg1 ax.set_xlabel("wavelength $\lambda$" + r" (\mbox{\AA})", fontsize = fs,labelpad = 5) ax.xaxis.set_major_formatter(FormatStrFormatter('%.0f')) for ax in [ax8,ax8]: ax.set_xlim(cent_wl8-bw,cent_wl8+bw) # logg1 ax.set_xlabel("wavelength $\lambda$" + r" (\mbox{\AA})", fontsize = fs,labelpad = 5) ax.xaxis.set_major_formatter(FormatStrFormatter('%.0f')) for ax in axlist: ax.set_ylim(0.69,1.05) # logg1 ax1.set_ylim(0.49,1.05) # logg1 #ax1.set_xticklabels([]) #ax3.set_xticklabels([]) ax5.set_yticklabels([]) ax6.set_yticklabels([]) ax7.set_yticklabels([]) ax8.set_yticklabels([]) #savefig_mkn(fig, prefix, transparent=False, bbox_inches='tight', pad_inches=0.5) return def savefig_mkn(fig, prefix, **kwargs): suffix1 = ".png" print "writing %s" % (prefix + suffix1) fig.savefig(prefix + suffix1, **kwargs) fn = '/Users/ness/new_laptop/Apogee_ages/Jon/aspcapStar-r5-v603-' nd = '.fits' file1,file2,file3,file4,file5 = fn+'2M00000211+6327470'+nd, fn+'2M00000446+5854329'+nd , fn+'2M00001242+5524391'+nd , fn+'2M23591255+5724354'+nd , fn+'2M00001962+6502429'+nd file6,file7 =fn+'2M23591931+6244094'+nd, fn+'2M00010744+6445170'+nd t1,g1,feh1,alpha1,age1, mass1 = 4708.49983734, 2.17652168722, 0.0617198884138, 0.015425129037, 1.55488236009, 1.88141910392 t2,g2,feh2,alpha2,age2, mass2 = 4745.52159963, 2.35896450654, -0.0142214905547, 0.0355349312863, 1.09579636191, 2.10351779915 t3,g3,feh3,alpha3,age3,mass3 = 4634.56555856, 2.27026176286, 0.148285193614, 0.0544413463398, 3.25464515338, 1.48482119829 t4,g4,feh4,alpha4,age4,mass4 = 5065.9005193, 2.65343988317, -0.272045304817, 0.0425327062973, 0.463644013007, 2.73168129836 t5,g5, feh5, alpha5, age5, mass5 = 4547.8021233, 2.36446969168, 0.149600284589, 0.0625720823962, 1.47742666725, 1.94314195429 t6,g6,feh6,alpha6,age6,mass6 = 4592.01662402, 2.37847512277, -0.0995352783245, 0.0849492206682 ,5.81821837085, 1.17919262914 t7,g7,feh7,alpha7,age7,mass7 = 4843.4531731, 2.49841383705, -0.0586235260442, 0.0386181490951, 10.5928384269, 1.00701251325 params1 = [4708,2.17,0.06,0.015,1.88] params4= [t4,g4,feh4,alpha4,mass4] params7= [t7,g7,feh7,alpha7,mass7] #logg cent_wl1 = 15770 # log g max cent_wl5 = 16810 # log g 2nd # t cent_wl2 = 15339 # teff 2nd max cent_wl6 = 15720 # teff max # feh,alpha cent_wl3 = 15221.5 # highest feh cent_wl7 = 16369 # highest alpha # mass cent_wl4 = 15241 # highest mass for _5 and _5 HWR cent_wl8 = 15332 # second highest mass for _5 cent_wl8 = 16191 # second highest mass for _5 # V cent_wla = 15929 # highest mass for _5 and _5 HWR cent_wlb = 16410.7 # second highest mass for _5 #plotdata('coeffs_2nd_order_5.pickle', wl3,100, "/Users/ness/new_laptop/TheCannon/TheCannon/documents/mass_and_age/plots/coeffs_t_3", cent_g1, cent_g2,0) # feh,alpha #cent_g1 = 15221.5 # highest feh #cent_g2 = 16369 # highest alpha #plotdata('coeffs_2nd_order_5.pickle', wl3,100, "/Users/ness/new_laptop/TheCannon/TheCannon/documents/mass_and_age/plots/coeffs_af_3", cent_g1, cent_g2,2) # mass #plotstars(file1, wl_star,params1, "/Users/ness/new_laptop/TheCannon/TheCannon/documents/mass_and_age/plots/spectra_fits_1", cent_wl1,cent_wl2,cent_wl3,cent_wl4, cent_wl5, cent_wl6, cent_wl7, cent_wl8, 14) #plotstars(file7, wl_star,params7, "/Users/ness/new_laptop/TheCannon/TheCannon/documents/mass_and_age/plots/spectra_fits_7", cent_wl1,cent_wl2,cent_wl3,cent_wl4,cent_wl5, cent_wl6, cent_wl7,cent_wl8, 14) plotstars(file1, wl_star,params1, "/Users/ness/new_laptop/TheCannon/TheCannon/documents/mass_and_age/plots/spectra_fits_1", cent_wl1,cent_wl2,cent_wl3,cent_wl4,cent_wl5, cent_wl6, cent_wl7,cent_wl8, 14) #plotstars(file2, wl_star,params2, "/Users/ness/new_laptop/TheCannon/TheCannon/documents/mass_and_age/plots/spectra_fits_2", cent_wl1,cent_wl2, cent_wl3, cent_wl4, cent_wl5, cent_wl6, cent_wl7,cent_wl8,14) plotstars(file7, wl_star,params7, "/Users/ness/new_laptop/TheCannon/TheCannon/documents/mass_and_age/plots/spectra_fits_7", cent_wl1,cent_wl2,cent_wl3,cent_wl4,cent_wl5, cent_wl6, cent_wl7,cent_wl8, 14) #plotstars(file7, wl_star,params7, "/Users/ness/new_laptop/TheCannon/TheCannon/documents/mass_and_age/plots/spectra_fits_elem", cent_wl1,cent_wl2,cent_wl3,cent_wl4,cent_wl5, cent_wl6, cent_wla,cent_wlb, 14) show()
mit
magnusax/ml-meta-wrapper
gazer/classifiers/random_forest.py
1
2959
from ..base import BaseClassifier from scipy.stats import randint from sklearn.ensemble import RandomForestClassifier class MetaRandomForestClassifier(BaseClassifier): """ Implementation of random forest classifier: http://scikit-learn.org/0.17/modules/generated/sklearn.ensemble.\ RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier """ def __init__(self, n_estimators=10, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): self.name = "random_forest" self.max_n_iter = 1000 self.init_params = {} self.init_params['n_estimators'] = n_estimators self.init_params['criterion'] = criterion self.init_params['max_depth'] = max_depth self.init_params['min_samples_split'] = min_samples_split self.init_params['min_samples_leaf'] = min_samples_leaf self.init_params['min_weight_fraction_leaf'] = min_weight_fraction_leaf self.init_params['max_features'] = max_features self.init_params['max_leaf_nodes'] = max_leaf_nodes self.init_params['bootstrap'] = bootstrap self.init_params['oob_score'] = oob_score self.init_params['random_state'] = random_state self.init_params['warm_start'] = warm_start self.init_params['class_weight'] = class_weight # Initialize algorithm and make it available self.estimator = self._get_clf() # Initialize dictionary with trainable parameters self.cv_params = self._set_cv_params() # Initialize list which can be populated with params to tune self.cv_params_to_tune = [] def _get_clf(self): return RandomForestClassifier(**self.init_params) def get_info(self): return {'does_classification': True, 'does_multiclass': True, 'does_regression': False, 'predict_probas': hasattr(self.estimator, 'predict_proba')} def adjust_params(self, d): return super().adjust_params(d) def set_tune_params(self, params, num_params=1, mode='random', keys=list()): return super().set_tune_params(params, num_params, mode, keys) def _set_cv_params(self): """ Trainable params available in self.cv_params[i].keys() for i in len(self.cv_params) """ return [{ "max_depth": [None, 3, 5, 7], "max_features": randint(1, 21), "min_samples_split": randint(2, 21), "min_samples_leaf": randint(1, 21), "bootstrap": [True, False], "criterion": ["gini", "entropy"], "n_estimators": [10, 64, 128, 512]}, ]
mit
chrisburr/scikit-learn
examples/semi_supervised/plot_label_propagation_structure.py
45
2433
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Andreas Mueller <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from sklearn.semi_supervised import label_propagation from sklearn.datasets import make_circles # generate ring with inner box n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = -np.ones(n_samples) labels[0] = outer labels[-1] = inner ############################################################################### # Learn with LabelSpreading label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=1.0) label_spread.fit(X, labels) ############################################################################### # Plot output labels output_labels = label_spread.transduction_ plt.figure(figsize=(8.5, 4)) plt.subplot(1, 2, 1) plt.scatter(X[labels == outer, 0], X[labels == outer, 1], color='navy', marker='s', lw=0, label="outer labeled", s=10) plt.scatter(X[labels == inner, 0], X[labels == inner, 1], color='c', marker='s', lw=0, label='inner labeled', s=10) plt.scatter(X[labels == -1, 0], X[labels == -1, 1], color='darkorange', marker='.', label='unlabeled') plt.legend(scatterpoints=1, shadow=False, loc='upper right') plt.title("Raw data (2 classes=outer and inner)") plt.subplot(1, 2, 2) output_label_array = np.asarray(output_labels) outer_numbers = np.where(output_label_array == outer)[0] inner_numbers = np.where(output_label_array == inner)[0] plt.scatter(X[outer_numbers, 0], X[outer_numbers, 1], color='navy', marker='s', lw=0, s=10, label="outer learned") plt.scatter(X[inner_numbers, 0], X[inner_numbers, 1], color='c', marker='s', lw=0, s=10, label="inner learned") plt.legend(scatterpoints=1, shadow=False, loc='upper right') plt.title("Labels learned with Label Spreading (KNN)") plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92) plt.show()
bsd-3-clause
dancingdan/tensorflow
tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined_test.py
30
70017
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DNNLinearCombinedEstimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import json import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.feature_column import feature_column as fc_core from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.losses import losses from tensorflow.python.platform import test from tensorflow.python.training import adagrad from tensorflow.python.training import ftrl from tensorflow.python.training import input as input_lib from tensorflow.python.training import learning_rate_decay from tensorflow.python.training import monitored_session from tensorflow.python.training import server_lib from tensorflow.python.training import session_run_hook from tensorflow.python.training import sync_replicas_optimizer from tensorflow.python.training import training_util def _assert_metrics_in_range(keys, metrics): epsilon = 0.00001 # Added for floating point edge cases. for key in keys: estimator_test_utils.assert_in_range(0.0 - epsilon, 1.0 + epsilon, key, metrics) class _CheckCallsHead(head_lib.Head): """Head that checks whether head_ops is called.""" def __init__(self): self._head_ops_called_times = 0 @property def logits_dimension(self): return 1 def create_model_fn_ops( self, mode, features, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """See `_Head`.""" self._head_ops_called_times += 1 loss = losses.mean_squared_error(labels, logits) return model_fn.ModelFnOps( mode, predictions={'loss': loss}, loss=loss, train_op=train_op_fn(loss), eval_metric_ops={'loss': loss}) @property def head_ops_called_times(self): return self._head_ops_called_times class _StepCounterHook(session_run_hook.SessionRunHook): """Counts the number of training steps.""" def __init__(self): self._steps = 0 def after_run(self, run_context, run_values): del run_context, run_values self._steps += 1 @property def steps(self): return self._steps class EmbeddingMultiplierTest(test.TestCase): """dnn_model_fn tests.""" def testRaisesNonEmbeddingColumn(self): one_hot_language = feature_column.one_hot_column( feature_column.sparse_column_with_hash_bucket('language', 10)) params = { 'dnn_feature_columns': [one_hot_language], 'head': head_lib.multi_class_head(2), 'dnn_hidden_units': [1], # Set lr mult to 0. to keep embeddings constant. 'embedding_lr_multipliers': { one_hot_language: 0.0 }, 'dnn_optimizer': 'Adagrad', } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) with self.assertRaisesRegexp(ValueError, 'can only be defined for embedding columns'): dnn_linear_combined._dnn_linear_combined_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) def testMultipliesGradient(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) embedding_wire = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('wire', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) params = { 'dnn_feature_columns': [embedding_language, embedding_wire], 'head': head_lib.multi_class_head(2), 'dnn_hidden_units': [1], # Set lr mult to 0. to keep language embeddings constant, whereas wire # embeddings will be trained. 'embedding_lr_multipliers': { embedding_language: 0.0 }, 'dnn_optimizer': 'Adagrad', } with ops.Graph().as_default(): features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), 'wire': sparse_tensor.SparseTensor( values=['omar', 'stringer', 'marlo'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) training_util.create_global_step() model_ops = dnn_linear_combined._dnn_linear_combined_model_fn( features, labels, model_fn.ModeKeys.TRAIN, params) with monitored_session.MonitoredSession() as sess: language_var = dnn_linear_combined._get_embedding_variable( embedding_language, 'dnn', 'dnn/input_from_feature_columns') language_initial_value = sess.run(language_var) for _ in range(2): _, language_value = sess.run([model_ops.train_op, language_var]) self.assertAllClose(language_value, language_initial_value) # We could also test that wire_value changed, but that test would be flaky. class DNNLinearCombinedEstimatorTest(test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, dnn_linear_combined.DNNLinearCombinedEstimator) def testNoFeatureColumns(self): with self.assertRaisesRegexp( ValueError, 'Either linear_feature_columns or dnn_feature_columns must be defined'): dnn_linear_combined.DNNLinearCombinedEstimator( head=_CheckCallsHead(), linear_feature_columns=None, dnn_feature_columns=None, dnn_hidden_units=[3, 3]) def testCheckCallsHead(self): """Tests binary classification using matrix data as input.""" head = _CheckCallsHead() iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [ feature_column.real_valued_column('feature', dimension=4)] bucketized_feature = [feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10))] estimator = dnn_linear_combined.DNNLinearCombinedEstimator( head, linear_feature_columns=bucketized_feature, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) estimator.fit(input_fn=test_data.iris_input_multiclass_fn, steps=10) self.assertEqual(1, head.head_ops_called_times) estimator.evaluate(input_fn=test_data.iris_input_multiclass_fn, steps=10) self.assertEqual(2, head.head_ops_called_times) estimator.predict(input_fn=test_data.iris_input_multiclass_fn) self.assertEqual(3, head.head_ops_called_times) class DNNLinearCombinedClassifierTest(test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, dnn_linear_combined.DNNLinearCombinedClassifier) def testExperimentIntegration(self): cont_features = [feature_column.real_valued_column('feature', dimension=4)] exp = experiment.Experiment( estimator=dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=cont_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testNoFeatureColumns(self): with self.assertRaisesRegexp( ValueError, 'Either linear_feature_columns or dnn_feature_columns must be defined'): dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=None, dnn_feature_columns=None, dnn_hidden_units=[3, 3]) def testNoDnnHiddenUnits(self): def _input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) age = feature_column.real_valued_column('age') with self.assertRaisesRegexp( ValueError, 'dnn_hidden_units must be defined when dnn_feature_columns is ' 'specified'): classifier = dnn_linear_combined.DNNLinearCombinedClassifier( dnn_feature_columns=[age, language]) classifier.fit(input_fn=_input_fn, steps=2) def testSyncReplicasOptimizerUnsupported(self): cont_features = [feature_column.real_valued_column('feature', dimension=4)] sync_optimizer = sync_replicas_optimizer.SyncReplicasOptimizer( opt=adagrad.AdagradOptimizer(learning_rate=0.1), replicas_to_aggregate=1, total_num_replicas=1) sync_hook = sync_optimizer.make_session_run_hook(is_chief=True) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer=sync_optimizer) with self.assertRaisesRegexp( ValueError, 'SyncReplicasOptimizer is not supported in DNNLinearCombined model'): classifier.fit( input_fn=test_data.iris_input_multiclass_fn, steps=100, monitors=[sync_hook]) def testEmbeddingMultiplier(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( dnn_feature_columns=[embedding_language], dnn_hidden_units=[3, 3], embedding_lr_multipliers={embedding_language: 0.8}) self.assertEqual({ embedding_language: 0.8 }, classifier.params['embedding_lr_multipliers']) def testInputPartitionSize(self): def _input_fn_float_label(num_epochs=None): features = { 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column(language_column, dimension=1), ] # Set num_ps_replica to be 10 and the min slice size to be extremely small, # so as to ensure that there'll be 10 partititions produced. config = run_config.RunConfig(tf_random_seed=1) config._num_ps_replicas = 10 classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=2, dnn_feature_columns=feature_columns, dnn_hidden_units=[3, 3], dnn_optimizer='Adagrad', config=config, input_layer_min_slice_size=1) # Ensure the param is passed in. self.assertTrue(callable(classifier.params['input_layer_partitioner'])) # Ensure the partition count is 10. classifier.fit(input_fn=_input_fn_float_label, steps=50) partition_count = 0 for name in classifier.get_variable_names(): if 'language_embedding' in name and 'Adagrad' in name: partition_count += 1 self.assertEqual(10, partition_count) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_feature = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_feature, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy', 'auc'), scores) def testLogisticRegression_TensorData(self): """Tests binary classification using Tensor data as input.""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() features = {} for i in range(4): # The following shows how to provide the Tensor data for # RealValuedColumns. features.update({ str(i): array_ops.reshape( constant_op.constant( iris.data[:, i], dtype=dtypes.float32), [-1, 1]) }) # The following shows how to provide the SparseTensor data for # a SparseColumn. features['dummy_sparse_column'] = sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [60, 0]], dense_shape=[len(iris.target), 2]) labels = array_ops.reshape( constant_op.constant( iris.target, dtype=dtypes.int32), [-1, 1]) return features, labels iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [ feature_column.real_valued_column(str(i)) for i in range(4) ] linear_features = [ feature_column.bucketized_column(cont_features[i], test_data.get_quantile_based_buckets( iris.data[:, i], 10)) for i in range(4) ] linear_features.append( feature_column.sparse_column_with_hash_bucket( 'dummy_sparse_column', hash_bucket_size=100)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=linear_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=100) _assert_metrics_in_range(('accuracy', 'auc'), scores) def testEstimatorWithCoreFeatureColumns(self): """Tests binary classification using Tensor data as input.""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() features = {} for i in range(4): # The following shows how to provide the Tensor data for # RealValuedColumns. features.update({ str(i): array_ops.reshape( constant_op.constant(iris.data[:, i], dtype=dtypes.float32), [-1, 1]) }) # The following shows how to provide the SparseTensor data for # a SparseColumn. features['dummy_sparse_column'] = sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [60, 0]], dense_shape=[len(iris.target), 2]) labels = array_ops.reshape( constant_op.constant(iris.target, dtype=dtypes.int32), [-1, 1]) return features, labels iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [fc_core.numeric_column(str(i)) for i in range(4)] linear_features = [ fc_core.bucketized_column( cont_features[i], sorted(set(test_data.get_quantile_based_buckets( iris.data[:, i], 10)))) for i in range(4) ] linear_features.append( fc_core.categorical_column_with_hash_bucket( 'dummy_sparse_column', hash_bucket_size=100)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=linear_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=100) _assert_metrics_in_range(('accuracy', 'auc'), scores) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(): features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[1], [0], [0]]) return features, labels sparse_features = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) ] embedding_features = [ feature_column.embedding_column( sparse_features[0], dimension=1) ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=sparse_features, dnn_feature_columns=embedding_features, dnn_hidden_units=[3, 3], config=config) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) _assert_metrics_in_range(('accuracy', 'auc'), scores) def testMultiClass(self): """Tests multi-class classification using matrix data as input. Please see testLogisticRegression_TensorData() for how to use Tensor data as input instead. """ iris = base.load_iris() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, linear_feature_columns=bucketized_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testMultiClassLabelKeys(self): """Tests n_classes > 2 with label_keys vocabulary for labels.""" # Byte literals needed for python3 test to pass. label_keys = [b'label0', b'label1', b'label2'] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant( [[label_keys[1]], [label_keys[0]], [label_keys[0]]], dtype=dtypes.string) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, linear_feature_columns=[language_column], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], label_keys=label_keys) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) _assert_metrics_in_range(('accuracy',), scores) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertEqual(3, len(predicted_classes)) for pred in predicted_classes: self.assertIn(pred, label_keys) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} labels = constant_op.constant([[1], [0], [0], [0]]) return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=2, linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_train, steps=1) # Cross entropy = -0.25*log(0.25)-0.75*log(0.75) = 0.562 self.assertAlmostEqual(0.562, scores['loss'], delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } labels = constant_op.constant([[1.], [0.], [0.], [0.]]) return features, labels def _input_fn_eval(): # 4 rows, with different weights. features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } labels = constant_op.constant([[1.], [0.], [0.], [0.]]) return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( weight_column_name='w', n_classes=2, linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted cross entropy = (-7*log(0.25)-3*log(0.75))/10 = 1.06 self.assertAlmostEqual(1.06, scores['loss'], delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x). labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( weight_column_name='w', linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) _assert_metrics_in_range(('accuracy',), scores) def testCustomOptimizerByObject(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_features, linear_optimizer=ftrl.FtrlOptimizer(learning_rate=0.1), dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer=adagrad.AdagradOptimizer(learning_rate=0.1)) classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testCustomOptimizerByString(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_features, linear_optimizer='Ftrl', dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer='Adagrad') classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testCustomOptimizerByFunction(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] def _optimizer_exp_decay(): global_step = training_util.get_global_step() learning_rate = learning_rate_decay.exponential_decay( learning_rate=0.1, global_step=global_step, decay_steps=100, decay_rate=0.001) return adagrad.AdagradOptimizer(learning_rate=learning_rate) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_features, linear_optimizer=_optimizer_exp_decay, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer=_optimizer_exp_decay) classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testPredict(self): """Tests weight column in evaluation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32)} return features, labels def _input_fn_predict(): y = input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=1) features = {'x': y} return features classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn_train, steps=100) probs = list(classifier.predict_proba(input_fn=_input_fn_predict)) self.assertAllClose([[0.75, 0.25]] * 4, probs, 0.05) classes = list(classifier.predict_classes(input_fn=_input_fn_predict)) self.assertListEqual([0] * 4, classes) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. labels = math_ops.to_float(labels) predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict_classes( input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Test the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={('bad_name', 'bad_type'): metric_ops.streaming_auc}) # Test the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ ('bad_length_name', 'classes', 'bad_length'): metric_ops.streaming_accuracy }) # Test the case where the prediction_key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testVariableQuery(self): """Tests get_variable_names and get_variable_value.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn_train, steps=500) var_names = classifier.get_variable_names() self.assertGreater(len(var_names), 3) for name in var_names: classifier.get_variable_value(name) def testExport(self): """Tests export model for servo.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[ feature_column.real_valued_column('age'), language, ], dnn_feature_columns=[ feature_column.embedding_column( language, dimension=1), ], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=input_fn, steps=100) export_dir = tempfile.mkdtemp() input_feature_key = 'examples' def serving_input_fn(): features, targets = input_fn() features[input_feature_key] = array_ops.placeholder(dtypes.string) return features, targets classifier.export( export_dir, serving_input_fn, input_feature_key, use_deprecated_input_fn=False) def testCenteredBias(self): """Tests bias is centered or not.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], enable_centered_bias=True) classifier.fit(input_fn=_input_fn_train, steps=1000) self.assertIn('binary_logistic_head/centered_bias_weight', classifier.get_variable_names()) # logodds(0.75) = 1.09861228867 self.assertAlmostEqual( 1.0986, float(classifier.get_variable_value( 'binary_logistic_head/centered_bias_weight')[0]), places=2) def testDisableCenteredBias(self): """Tests bias is centered or not.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], enable_centered_bias=False) classifier.fit(input_fn=_input_fn_train, steps=500) self.assertNotIn('centered_bias_weight', classifier.get_variable_names()) def testGlobalStepLinearOnly(self): """Tests global step update for linear-only model.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) age = feature_column.real_valued_column('age') step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) self.assertEqual(100, step_counter.steps) def testGlobalStepDNNOnly(self): """Tests global step update for dnn-only model.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( dnn_feature_columns=[ feature_column.embedding_column(language, dimension=1)], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) self.assertEqual(100, step_counter.steps) def testGlobalStepDNNLinearCombinedBug(self): """Tests global step update for dnn-linear combined model.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) age = feature_column.real_valued_column('age') step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language], dnn_feature_columns=[ feature_column.embedding_column(language, dimension=1)], dnn_hidden_units=[3, 3], fix_global_step_increment_bug=False) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) global_step = classifier.get_variable_value('global_step') if global_step == 100: # Expected is 100, but because of the global step increment bug, is 50. # Occasionally, step increments one more time due to a race condition, # reaching 51 steps. self.assertIn(step_counter.steps, [50, 51]) else: # Occasionally, training stops when global_step == 102, due to a race # condition. In addition, occasionally step increments one more time due # to a race condition reaching 52 steps. self.assertIn(step_counter.steps, [51, 52]) def testGlobalStepDNNLinearCombinedBugFixed(self): """Tests global step update for dnn-linear combined model.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) age = feature_column.real_valued_column('age') step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language], dnn_feature_columns=[ feature_column.embedding_column(language, dimension=1)], dnn_hidden_units=[3, 3], fix_global_step_increment_bug=True) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) self.assertEqual(100, step_counter.steps) def testLinearOnly(self): """Tests that linear-only instantiation works.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) age = feature_column.real_valued_column('age') classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) variable_names = classifier.get_variable_names() self.assertNotIn('dnn/logits/biases', variable_names) self.assertNotIn('dnn/logits/weights', variable_names) self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/age/weight', variable_names) self.assertIn('linear/language/weights', variable_names) self.assertEquals( 1, len(classifier.get_variable_value('linear/age/weight'))) self.assertEquals( 100, len(classifier.get_variable_value('linear/language/weights'))) def testLinearOnlyOneFeature(self): """Tests that linear-only instantiation works for one feature only.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 99) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) variable_names = classifier.get_variable_names() self.assertNotIn('dnn/logits/biases', variable_names) self.assertNotIn('dnn/logits/weights', variable_names) self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/language/weights', variable_names) self.assertEquals( 1, len(classifier.get_variable_value('linear/bias_weight'))) self.assertEquals( 99, len(classifier.get_variable_value('linear/language/weights'))) def testDNNOnly(self): """Tests that DNN-only instantiation works.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=1000) classifier.evaluate(input_fn=test_data.iris_input_multiclass_fn, steps=100) variable_names = classifier.get_variable_names() self.assertIn('dnn/hiddenlayer_0/weights', variable_names) self.assertIn('dnn/hiddenlayer_0/biases', variable_names) self.assertIn('dnn/hiddenlayer_1/weights', variable_names) self.assertIn('dnn/hiddenlayer_1/biases', variable_names) self.assertIn('dnn/logits/weights', variable_names) self.assertIn('dnn/logits/biases', variable_names) self.assertNotIn('linear/bias_weight', variable_names) self.assertNotIn('linear/feature_BUCKETIZED/weight', variable_names) def testDNNWeightsBiasesNames(self): """Tests the names of DNN weights and biases in the checkpoints.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn_train, steps=5) variable_names = classifier.get_variable_names() self.assertIn('dnn/hiddenlayer_0/weights', variable_names) self.assertIn('dnn/hiddenlayer_0/biases', variable_names) self.assertIn('dnn/hiddenlayer_1/weights', variable_names) self.assertIn('dnn/hiddenlayer_1/biases', variable_names) self.assertIn('dnn/logits/weights', variable_names) self.assertIn('dnn/logits/biases', variable_names) class DNNLinearCombinedRegressorTest(test.TestCase): def testExperimentIntegration(self): cont_features = [feature_column.real_valued_column('feature', dimension=4)] exp = experiment.Experiment( estimator=dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=cont_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, dnn_linear_combined.DNNLinearCombinedRegressor) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=cont_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=test_data.iris_input_logistic_fn, steps=10) scores = regressor.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=1) self.assertIn('loss', scores.keys()) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(): # Create 4 rows of (y = x) labels = constant_op.constant([[100.], [3.], [2.], [2.]]) features = {'x': constant_op.constant([[100.], [3.], [2.], [2.]])} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=10) classifier.evaluate(input_fn=_input_fn, steps=1) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) # Average square loss = (0.75^2 + 3*0.25^2) / 4 = 0.1875 self.assertAlmostEqual(0.1875, scores['loss'], delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = dnn_linear_combined.DNNLinearCombinedRegressor( weight_column_name='w', linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted average square loss = (7*0.75^2 + 3*0.25^2) / 10 = 0.4125 self.assertAlmostEqual(0.4125, scores['loss'], delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = dnn_linear_combined.DNNLinearCombinedRegressor( weight_column_name='w', linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # The model should learn (y = x) because of the weights, so the loss should # be close to zero. self.assertLess(scores['loss'], 0.2) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) regressor.predict_scores(input_fn=_input_fn, as_iterable=False) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) predict_input_fn = functools.partial(_input_fn, num_epochs=1) regressor.predict_scores(input_fn=predict_input_fn, as_iterable=True) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': metric_ops.streaming_mean_squared_error, ('my_metric', 'scores'): _my_metric_op }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case that the 2nd element of the key is not "scores". with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('my_error', 'predictions'): metric_ops.streaming_mean_squared_error }) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('bad_length_name', 'scores', 'bad_length'): metric_ops.streaming_mean_squared_error }) def testCustomMetricsWithMetricSpec(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testExport(self): """Tests export model for servo.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) export_dir = tempfile.mkdtemp() input_feature_key = 'examples' def serving_input_fn(): features, targets = _input_fn() features[input_feature_key] = array_ops.placeholder(dtypes.string) return features, targets regressor.export( export_dir, serving_input_fn, input_feature_key, use_deprecated_input_fn=False) def testTrainSaveLoad(self): """Tests regression with restarting training / evaluate.""" def _input_fn(num_epochs=None): # Create 4 rows of (y = x) labels = constant_op.constant([[100.], [3.], [2.], [2.]]) features = { 'x': input_lib.limit_epochs( constant_op.constant([[100.], [3.], [2.], [2.]]), num_epochs=num_epochs) } return features, labels model_dir = tempfile.mkdtemp() # pylint: disable=g-long-lambda new_regressor = lambda: dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], model_dir=model_dir, config=run_config.RunConfig(tf_random_seed=1)) predict_input_fn = functools.partial(_input_fn, num_epochs=1) regressor = new_regressor() regressor.fit(input_fn=_input_fn, steps=10) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor = new_regressor() predictions2 = list(regressor.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=config) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) def testLinearOnly(self): """Tests linear-only instantiation and training.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) def testDNNOnly(self): """Tests DNN-only instantiation and training.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) class FeatureEngineeringFunctionTest(test.TestCase): """Tests feature_engineering_fn.""" def testNoneFeatureEngineeringFn(self): def input_fn(): # Create 4 rows of (y = x) labels = constant_op.constant([[100.], [3.], [2.], [2.]]) features = {'x': constant_op.constant([[100.], [3.], [2.], [2.]])} return features, labels def feature_engineering_fn(features, labels): _, _ = features, labels labels = constant_op.constant([[1000.], [30.], [20.], [20.]]) features = {'x': constant_op.constant([[1000.], [30.], [20.], [20.]])} return features, labels estimator_with_fe_fn = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1), feature_engineering_fn=feature_engineering_fn) estimator_with_fe_fn.fit(input_fn=input_fn, steps=110) estimator_without_fe_fn = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) estimator_without_fe_fn.fit(input_fn=input_fn, steps=110) # predictions = y prediction_with_fe_fn = next( estimator_with_fe_fn.predict_scores( input_fn=input_fn, as_iterable=True)) self.assertAlmostEqual(1000., prediction_with_fe_fn, delta=10.0) prediction_without_fe_fn = next( estimator_without_fe_fn.predict_scores( input_fn=input_fn, as_iterable=True)) self.assertAlmostEqual(100., prediction_without_fe_fn, delta=1.0) if __name__ == '__main__': test.main()
apache-2.0
slabanja/ase
ase/io/png.py
3
1100
from ase.io.eps import EPS class PNG(EPS): def write_header(self): from matplotlib.backends.backend_agg import RendererAgg try: from matplotlib.transforms import Value except ImportError: dpi = 72 else: dpi = Value(72) self.renderer = RendererAgg(self.w, self.h, dpi) #self.gc = GraphicsContextBase() #self.gc.set_linewidth(2) def write_trailer(self): renderer = self.renderer if hasattr(renderer._renderer, 'write_png'): # Old version of matplotlib: renderer._renderer.write_png(self.filename) else: x = renderer._renderer.buffer_rgba(0, 0) from matplotlib import _png _png.write_png(renderer._renderer.buffer_rgba(0, 0), renderer.width, renderer.height, self.filename, 72) def write_png(filename, atoms, **parameters): if isinstance(atoms, list): assert len(atoms) == 1 atoms = atoms[0] PNG(atoms, **parameters).write(filename)
gpl-2.0
MaxNoe/cta_event_viewer
windows/__init__.py
1
1265
import Tkinter as tk import matplotlib matplotlib.use('tkagg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.figure import Figure from matplotlib.axes import Axes from plots import CameraPlot class TelescopeEventView(tk.Frame, object): """ A frame showing the camera view of a single telescope """ def __init__(self, root, telescope, data=None, *args, **kwargs): self.telescope = telescope super(TelescopeEventView, self).__init__(root) self.figure = Figure(figsize=(5, 5), facecolor='none') self.ax = Axes(self.figure, [0, 0, 1, 1], aspect=1) self.ax.set_axis_off() self.figure.add_axes(self.ax) self.camera_plot = CameraPlot(telescope, self.ax, data, *args, **kwargs) self.canvas = FigureCanvasTkAgg(self.figure, master=self) self.canvas.show() self.canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True) self.canvas._tkcanvas.pack(side=tk.BOTTOM, fill=tk.BOTH, expand=True) self.canvas._tkcanvas.config(highlightthickness=0) @property def data(self): return self.camera_plot.data @data.setter def data(self, value): self.camera_plot.data = value self.canvas.draw()
mit
arjoly/scikit-learn
sklearn/utils/tests/test_testing.py
107
4210
import warnings import unittest import sys from nose.tools import assert_raises from sklearn.utils.testing import ( _assert_less, _assert_greater, assert_less_equal, assert_greater_equal, assert_warns, assert_no_warnings, assert_equal, set_random_state, assert_raise_message) from sklearn.tree import DecisionTreeClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis try: from nose.tools import assert_less def test_assert_less(): # Check that the nose implementation of assert_less gives the # same thing as the scikit's assert_less(0, 1) _assert_less(0, 1) assert_raises(AssertionError, assert_less, 1, 0) assert_raises(AssertionError, _assert_less, 1, 0) except ImportError: pass try: from nose.tools import assert_greater def test_assert_greater(): # Check that the nose implementation of assert_less gives the # same thing as the scikit's assert_greater(1, 0) _assert_greater(1, 0) assert_raises(AssertionError, assert_greater, 0, 1) assert_raises(AssertionError, _assert_greater, 0, 1) except ImportError: pass def test_assert_less_equal(): assert_less_equal(0, 1) assert_less_equal(1, 1) assert_raises(AssertionError, assert_less_equal, 1, 0) def test_assert_greater_equal(): assert_greater_equal(1, 0) assert_greater_equal(1, 1) assert_raises(AssertionError, assert_greater_equal, 0, 1) def test_set_random_state(): lda = LinearDiscriminantAnalysis() tree = DecisionTreeClassifier() # Linear Discriminant Analysis doesn't have random state: smoke test set_random_state(lda, 3) set_random_state(tree, 3) assert_equal(tree.random_state, 3) def test_assert_raise_message(): def _raise_ValueError(message): raise ValueError(message) def _no_raise(): pass assert_raise_message(ValueError, "test", _raise_ValueError, "test") assert_raises(AssertionError, assert_raise_message, ValueError, "something else", _raise_ValueError, "test") assert_raises(ValueError, assert_raise_message, TypeError, "something else", _raise_ValueError, "test") assert_raises(AssertionError, assert_raise_message, ValueError, "test", _no_raise) # multiple exceptions in a tuple assert_raises(AssertionError, assert_raise_message, (ValueError, AttributeError), "test", _no_raise) # This class is inspired from numpy 1.7 with an alteration to check # the reset warning filters after calls to assert_warns. # This assert_warns behavior is specific to scikit-learn because #`clean_warning_registry()` is called internally by assert_warns # and clears all previous filters. class TestWarns(unittest.TestCase): def test_warn(self): def f(): warnings.warn("yo") return 3 # Test that assert_warns is not impacted by externally set # filters and is reset internally. # This is because `clean_warning_registry()` is called internally by # assert_warns and clears all previous filters. warnings.simplefilter("ignore", UserWarning) assert_equal(assert_warns(UserWarning, f), 3) # Test that the warning registry is empty after assert_warns assert_equal(sys.modules['warnings'].filters, []) assert_raises(AssertionError, assert_no_warnings, f) assert_equal(assert_no_warnings(lambda x: x, 1), 1) def test_warn_wrong_warning(self): def f(): warnings.warn("yo", DeprecationWarning) failed = False filters = sys.modules['warnings'].filters[:] try: try: # Should raise an AssertionError assert_warns(UserWarning, f) failed = True except AssertionError: pass finally: sys.modules['warnings'].filters = filters if failed: raise AssertionError("wrong warning caught by assert_warn")
bsd-3-clause
didmar/blokus3d-python
src/blokus3d/interface.py
1
4989
#!/usr/bin/env python #-*- coding:utf-8 -*- # XXX if wrong coords are passed, you get 0 variations to choose from and it bugs ! from numpy.core.numeric import array from numpy.core.fromnumeric import sort from numpy.lib.arraysetops import unique from matplotlib.pylab import flatten from blokus3d.block import blockToASCII, blockVarToASCII, \ blockNames, blocks, blocksVar from blokus3d.move import moveToASCII from blokus3d.utils import fst, snd, third, unik from itertools import takewhile def findMove(gs, askApply=True): moves = gs.legalMoves() if len(moves)==1: print "Only one move possible :\n", moveToASCII(moves[0]) else: ok = False while not ok: # First, pick a block blkId = findBlock(gs,candidates=unique(map(snd,moves))) assert blkId != None # since we checked that len(lm) was > 0 # Filter the moves that have the selected block id moves = filter(lambda m : m[1]==blkId, moves) # Then, find the coordinates on the board coords = findCoords(gs,candidates=unik(map(fst,moves))) # Filter the moves that have the selected coordinates moves = filter(lambda m : (m[0]==coords).all(), moves) # Finally, find its variation blkVarId = findVariation(gs,blkId, \ candidates=unique(map(third,moves))) move = (coords,blkId,blkVarId) print "You have selected :\n", moveToASCII(moves[0]) print "Is this the move you wanted ? [Y/n]" if raw_input("") in ["n","N"]: # Will start again with all legal moves possibles moves = gs.legalMoves() else: ok = True if askApply: print "Do you want to play this move over the current gamestate ?",\ " [Y/n]" if raw_input("") not in ["n","N"]: gs.playMove(move) return move def findBlock(gs, candidates=None): if candidates == None: candidates = gs.playerBlocks[gs.nextPlayer] if len(candidates)==0: return None print "Which block ?" for blkId in candidates: print "%d) %s" % (blkId+1, blockNames[blkId]) print blockToASCII(blocks[blkId]) return input("> ")-1 def findCoords(gs, candidates=None): if candidates == None: candidates=[] # List all the possible z-level (heights) zRange = list(takewhile(lambda x : x < gs.boardSize[2], \ sort(unique(flatten(gs.heightMap()))))) if zRange==[]: print "Board is full, cannot find legal coordinates !" return None else: zRange = sort(unique(map(third,candidates))) # Do we have a choice on the z-level ? if len(zRange)==1: z = zRange[0] else: print "\n",gs.boardToASCII(markedCubes=candidates) # Discard the z height max if zRange[-1]==gs.boardSize[2]: zRange = zRange[:-1] z = -1+input("Which z-level ? (%d-%d)\n> " \ % (zRange[0]+1,zRange[-1]+1)) candidates = filter(lambda c: c[2]==z, candidates) if len(candidates)>1: # Display the z-level with xy coordinates as letter-number print ' '+''.join(chr(97+x) for x in xrange(gs.boardSize[0])) print ' +'+'-'*gs.boardSize[0] lines = gs.boardToASCII(zRange=[z],markedCubes=candidates)\ .split('\n') for y in xrange(gs.boardSize[1]): print '%s |%s' % (str(y+1).zfill(2),lines[y]) print "\n" xy = raw_input("Which xy coordinates ?\n> ") return array([ord(xy[0])-97,int(xy[1:])-1,z]) else: return candidates[0] def findVariation(gs, blkId, candidates=None): assert blkId in gs.playerBlocks[gs.nextPlayer] # If no candidates are given, # then any variation id might be selected if candidates == None: candidates = range(blocksVar[blkId].shape[2]) # XXX doesn't work, fix me !! # # Associate each candidate variation id with its height # varHeights = map(lambda blkVarId: # blockHeight(blocksVar[blkId][:,:,blkVarId]),\ # candidates) # print "varHeights = ",varHeights # hRange = sort(unique(varHeights)) # print "hRange = ",hRange # if len(hRange) > 1: # h = input("What height does have the variation ? (%s)\n> " \ # % ','.join(map(str,hRange))) # else: # h = hRange[0] # print "h = ",h # candidates = [candidates[i] for i in find(array(varHeights)==h)] if len(candidates) == 1: return candidates[0] print "Which variation ?" for num, blkVarId in enumerate(candidates): print "%d) [varId:%d]" % (num+1, blkVarId) print blockVarToASCII(blkId, blkVarId, showOrigin=True) i = input("> ") - 1 return candidates[i]
mit
openelections/openelections-data-ca
src/parse_special_primary_2015.py
2
9037
import io import pandas as pd import requests import tempfile import zipfile import PyPDF2 from tabula import read_pdf candidates = {'JOHN M. W. MOORLACH': 'John M. W. Moorlach', 'DONALD P. WAGNER': 'Donald P. Wagner', 'NAZ NAMAZI': 'Naz Namazi', 'SHARON RUNNER': 'Sharon Runner', 'JOSHUA C. CHANDLER': 'Joshua C. Chandler', 'JOSHUA CONAWAY': 'Joshua Conaway', 'STEVE HILL': 'Steve Hill', 'JERRY J. LAWS': 'Jerry J. Laws', 'RICHARD E. MACIAS': 'Richard E. Macias', 'JASON ZINK': 'Jason Zink'} output_columns = ['county', 'precinct', 'office', 'district', 'party', 'candidate', 'votes'] p = {'Sharon Runner': 'REP', 'Terry Kremin': 'DEM', 'Susan Bonilla': 'DEM', 'Joan Buchanan': 'DEM', 'Michaela M. Hertle': 'REP', 'Steve Glazer': 'DEM', 'Joshua Conaway': 'DEM', 'Steve Hill': 'DEM', 'Richard E. Macias': 'DEM', 'Jerry J. Laws': 'REP', 'Joshua C. Chandler': 'NPP', 'Jason Zink': 'NPP'} def prepare_output(df, county, district, cand): df.columns = ['precinct'] + cand df = pd.melt(df, id_vars='precinct', value_vars=cand, var_name='candidate', value_name='votes').dropna() df['party'] = df.candidate.apply(lambda x: p[x]) df = df.assign(county=county, office='State Senate', district=district) df.votes = df.votes.astype(int) df = df.groupby( output_columns[:-1]).sum().reset_index()[output_columns] return df def parse_alameda(): sovc_xls = 'https://www.acgov.org/rov/elections/20150317/documents/sovc.xls' primary = pd.read_excel(sovc_xls, sheetname='Sheet1') # Select only contests of interest and the important columns primary = primary.loc[(primary.index > 3) & (primary.index < 385)][ ['Alameda County', 'Unnamed: 7', 'Unnamed: 8', 'Unnamed: 10', 'Unnamed: 11', 'Unnamed: 12']] table = prepare_output(primary, 'Alameda', 7, ['Terry Kremin', 'Susan Bonilla', 'Joan Buchanan', 'Michaela M. Hertle', 'Steve Glazer']) for x in ['candidate', 'district', 'office', 'precinct', 'county']: table = table.sort_values(by=x, kind='mergesort') table.to_csv( '2015/20150317__ca__special__primary__alameda__precinct.csv', header=output_columns, index=False) def parse_contra_costa(): sovc_xls = 'http://www.cocovote.us/wp-content/uploads/031715_ResultsByPct.xlsx' primary = pd.read_excel(sovc_xls, sheetname=2) primary = primary.loc[(primary.index > 2) & (primary.index < 458)][ ['Return to table of content', 'Unnamed: 4', 'Unnamed: 7', 'Unnamed: 10', 'Unnamed: 13', 'Unnamed: 16']] table = prepare_output(primary, 'Contra Costa', 7, ['Terry Kremin', 'Susan Bonilla', 'Joan Buchanan', 'Michaela M. Hertle', 'Steve Glazer']) for x in ['candidate', 'district', 'office', 'precinct', 'county']: table = table.sort_values(by=x, kind='mergesort') table.to_csv( '2015/20150317__ca__special__primary__contra_costa__precinct.csv', header=output_columns, index=False) def parse_orange(): sovc_zip_url = 'http://www.ocvote.com/fileadmin/live/37sd2015/media.zip' sovc_zip = requests.get(sovc_zip_url) if sovc_zip.status_code != 200: return f = tempfile.NamedTemporaryFile() f.write(sovc_zip.content) sovc_zf = zipfile.ZipFile(f.name) table = pd.read_csv(sovc_zf.open('contest_table.txt')) table['votes'] = table[ ['Absentee_votes', 'Early_votes', 'Election_Votes']].sum(axis=1) table.Choice_party.fillna('W/I', inplace=True) table = table.rename( columns={'Precinct_Name': 'precinct', 'Candidate_name': 'candidate', 'Choice_party': 'party'}).assign(county='Orange', office='State Senate', district='37').replace( {'candidate': candidates}) for x in ['candidate', 'district', 'office', 'precinct', 'county']: table = table.sort_values(by=x, kind='mergesort') table[output_columns].to_csv( '2015/20150317__ca__special__primary__orange__precinct.csv', header=output_columns, index=False) def los_angeles_sovc(): sovc_zip_url = 'https://www.lavote.net/documents/SVC/960_SVC_Excel.zip' sovc_zip = requests.get(sovc_zip_url) sovc_zip.raise_for_status() f = tempfile.NamedTemporaryFile() f.write(sovc_zip.content) sovc_zf = zipfile.ZipFile(f.name) df = pd.read_excel(sovc_zf.open( '21ST_STATE_SENATE_U-T_03-17-15_Voter_Nominated_by_Precinct_960-3760.xls')) df.columns = df.loc[1] df = df[df.TYPE == 'TOTAL'] return pd.melt(df, id_vars=['PRECINCT'], value_vars=df.columns.tolist()[ 8:-1], var_name='candidate', value_name='votes') def los_angeles_writeins(): writeins_url = 'https://www.lavote.net/Documents/Election_Info/03172015_Certificate-of-Write-in-Votes_FINAL.pdf' writeins_req = requests.get(writeins_url) writeins_req.raise_for_status() writeins_pdf = PyPDF2.PdfFileReader(io.BytesIO(writeins_req.content)) cands = writeins_pdf.getPage(0).extractText().split('\n')[58:82:2] return [{'candidate': c, 'votes': int(v), 'PRECINCT': 'Write-In'} for c, v in zip(cands[::2], cands[1::2])] def parse_los_angeles(): output_columns = ['county', 'precinct', 'office', 'district', 'party', 'candidate', 'votes'] table = los_angeles_sovc().append(los_angeles_writeins()) table = table.assign(county='Los Angeles', office='State Senate', district='21').rename( columns={'PRECINCT': 'precinct'}).replace({'candidate': candidates}) parties = {k: 'W/I' for k in candidates.values()} parties.update(p) table['party'] = table.candidate.apply(lambda x: parties[x]) for x in ['candidate', 'district', 'office', 'precinct', 'county']: table = table.sort_values(by=x, kind='mergesort') table[output_columns].to_csv( '2015/20150317__ca__special__primary__los_angeles__precinct.csv', index=False) def san_bernardino_sovc(): sovc_url = 'http://www.sbcountyelections.com/Portals/9/Elections/2015/0317/SOV%20Book.pdf' primary = read_pdf(sovc_url, pages="1-6", pandas_options={'error_bad_lines': False}) first = primary.loc[((primary.index > 2) & (primary.index < 64))][ ['Unnamed: 0', 'Unnamed: 5']].rename(columns={'Unnamed: 5': 'votes'}) second = primary.loc[((primary.index > 67) & (primary.index < 129)) | ((primary.index > 132) & (primary.index < 194)) | ((primary.index > 197) & (primary.index < 243))][ ['Unnamed: 0', 'Unnamed: 4']].rename(columns={'Unnamed: 4': 'votes'}) primary = read_pdf(sovc_url, pages="3,5", pandas_options={'error_bad_lines': False}) third = primary.loc[primary.index > 2][ ['Unnamed: 0', 'Unnamed: 5']].rename(columns={'Unnamed: 5': 'votes'}) pcand = 'SHARON RUNNER' merged = first.append(second).append(third) merged['precinct'] = merged['Unnamed: 0'].apply( lambda x: x[len(pcand):][:7] if str( x).startswith(pcand) else str(x)[:7]) return prepare_output(merged[['precinct', 'votes']], 'San Bernardino', 21, ['Sharon Runner']) def san_bernardino_writeins(): writeins_url = 'http://www.sbcountyelections.com/Portals/9/Elections/2015/0317/PublicNotice_QualifiedWrite-InResults_FINAL.pdf' writeins_req = requests.get(writeins_url) writeins_req.raise_for_status() writeins_pdf = PyPDF2.PdfFileReader(io.BytesIO(writeins_req.content)) cands = writeins_pdf.getPage(0).extractText().split('\n')[35:70:2] return [{'candidate': c, 'votes': int(v), 'PRECINCT': 'Write-In'} for c, v in zip(cands[::3], cands[2::3])] def parse_san_bernardino(): output_columns = ['county', 'precinct', 'office', 'district', 'party', 'candidate', 'votes'] table = san_bernardino_sovc().append(san_bernardino_writeins()) table = table.assign(county='San Bernardino', office='State Senate', district='21').replace({'candidate': candidates}) parties = {k: 'W/I' for k in candidates.values()} parties.update(p) table['party'] = table.candidate.apply(lambda x: parties[x]) for x in ['candidate', 'district', 'office', 'precinct', 'county']: table = table.sort_values(by=x, kind='mergesort') table[output_columns].to_csv( '2015/20150317__ca__special__primary__san_bernardino__precinct.csv', index=False) def main(): parse_alameda() parse_contra_costa() parse_orange() parse_los_angeles() parse_san_bernardino() if __name__ == "__main__": main()
mit
azukov/py-orbit
py/orbit/matching/matching.py
2
9703
import os import string import sys from numpy import * from scipy.optimize import fsolve from scipy.optimize import root from scipy.integrate import odeint from scipy.constants import c from matplotlib.pyplot import * from orbit.teapot import TEAPOT_MATRIX_Lattice class Twiss: # Create a simple MAD-like twiss object: def __init__(self): self.data = { 'keyword': '', 's': 0.0, 'L': 0.0, 'alfx': 0.0, 'alfy': 0.0, 'betx': 0.0, 'bety': 0.0, 'mux' : 0.0, 'muy' : 0.0, 'Dx': 0.0, 'Dpx': 0.0, 'angle': 0.0, 'k1': 0.0 } class Optics: # An container class for twiss objects: def __init__(self): self.line = [] def __len__(self): return len(self.line) def __getitem__(self,j): return self.line[j] def __setitem__(self,j,x): self.line[j]=x def add(self, x): self.line.append(x) def print_line(self): for j in xrange(0,len(self.line)): print j, self.line[j].data['keyword'], "s:", self.line[j].data['s'], "L:", self.line[j].data['L'], 360.0*self.line[j].data['mux'],self.line[j].data['bety'],self.line[j].data['alfy'] def get_element(self, s): Nb=len(self.line) if self.line[0].data['s'] >= s and s >= 0.0: return 0 for j in xrange(1,Nb): if self.line[j-1].data['s'] < s and self.line[j].data['s'] >=s : return j if self.line[Nb-1].data['s'] < s : return 0 if s < 0.0 : return Nb-1 else: print "error: s not in range" print "STOP." sys.exit(1) def get_length(self): Nb=len(self.line) return self.line[Nb-1].data['s'] def readtwiss_teapot(self,lattice, bunch): beamline=Optics() matrix_lattice = TEAPOT_MATRIX_Lattice(lattice,bunch) (arrmuX, arrPosAlphaX, arrPosBetaX) = matrix_lattice.getRingTwissDataX() (arrmuY, arrPosAlphaY, arrPosBetaY) = matrix_lattice.getRingTwissDataY() (DispersionX, DispersionXP) = matrix_lattice.getRingDispersionDataX() (DispersionY, DispersionYP) = matrix_lattice.getRingDispersionDataY() nodes = lattice.getNodes() for node in nodes: for j in range(len(arrPosBetaX)): if (round(lattice.getNodePositionsDict()[node][1],4)==round(arrPosBetaX[j][0],4)): muX = arrmuX[j][1] betaX = arrPosBetaX[j][1] alphaX = arrPosAlphaX[j][1] dx = DispersionX[j][1] dmux = DispersionXP[j][1] muY = arrmuY[j][1] betaY = arrPosBetaY[j][1] alphaY = arrPosAlphaY[j][1] dmuy = DispersionYP[j][1] if node.getType() == "quad teapot": k1l = node.getParam("kq")*node.getLength() else: k1l = 0.0 if node.getType() == "bend teapot": angle = node.getParam("theta") else: angle = 0.0 beamline.add(1) j=len(beamline)-1 beamline[j]=Twiss() beamline[j].data['keyword']=node.getName() beamline[j].data['marker']=node.getType() beamline[j].data['s']=round(lattice.getNodePositionsDict()[node][1],4) beamline[j].data['L']=node.getLength() beamline[j].data['alfx']=alphaX beamline[j].data['alfy']=alphaY beamline[j].data['betx']=betaX beamline[j].data['bety']=betaY beamline[j].data['Dx']=dx beamline[j].data['Dpx']=dmux beamline[j].data['mux']=muX beamline[j].data['muy']=muY beamline[j].data['angle']=angle beamline[j].data['k1']=k1l return beamline #------------------------------------------------------ # Read MADX TFS file #------------------------------------------------------- #------------------------------------------------------ # Envelope solver: # x0, xs0, y0, ys0: initial values # emitx/y: rms emittance # Ksc: space charge perveance #------------------------------------------------------- class EnvelopeSolver: def __init__(self,beamline): self.beamline = beamline def func_odeint(self,y,s,emitx,emity,sigma_p,Ksc): jb=self.beamline.get_element(s) k1=self.beamline[jb].data['k1'] lj=self.beamline[jb].data['L'] anglej=self.beamline[jb].data['angle'] f0=y[1] f1=-(k1/lj+(anglej/lj)**2)*y[0]+emitx**2/y[0]**3+0.5*Ksc/(y[0]+y[2])+y[4]*sigma_p**2*anglej/(y[0]*lj) f2=y[3] f3=(k1/lj)*y[2]+emity**2/y[2]**3+0.5*Ksc/(y[0]+y[2]) # - f4=y[5] f5=-(k1/lj+(anglej/lj)**2)*y[4]+0.5*Ksc/(y[0]*(y[0]+y[2]))*y[4]+anglej/lj return [f0,f1,f2,f3,f4,f5] def Dfunc_odeint(self,y,s,emitx,emity,sigma_p,Ksc): jb=self.beamline.get_element(s) k1=self.beamline[jb].data['k1'] lj=self.beamline[jb].data['L'] anglej=self.beamline[jb].data['angle'] a0=-(k1/lj+(anglej/lj)**2)*y[0]+emitx**2/y[0]**3+0.5*Ksc/(y[0]+y[2])+y[4]*sigma_p**2*anglej/(y[0]*lj) a1=-(k1/lj+(anglej/lj)**2)*y[1]-3.0*y[1]*emitx**2/y[0]**4-0.5*Ksc*(y[1]+y[3])/(y[0]+y[2])**2+y[5]*sigma_p**2*anglej/(y[0]*lj)-y[4]*y[1]*sigma_p**2*anglej/(y[0]**2*lj) a2=(k1/lj)*y[2]+emity**2/y[2]**3+0.5*Ksc/(y[0]+y[2]) # - a3=(k1/lj)*y[3]-3.0*y[3]*emity**2/y[2]**4-0.5*Ksc*(y[1]+y[3])/(y[0]+y[2])**2 # - a4=-(k1/lj+(anglej/lj)**2)*y[4]+0.5*Ksc/(y[0]*(y[0]+y[2]))*y[4]+anglej/lj a5=-(k1/lj+(anglej/lj)**2)*y[5]+0.5*Ksc/(y[0]*(y[0]+y[2]))*y[5]-0.5*Ksc/(y[0]*(y[0]+y[2]))**2*y[4]*(y[1]*(y[0]+y[2])+y[0]*(y[1]+y[3]) ) return [a0,a1,a2,a3,a4,a5] def envelope_odeint(self, emitx, emity, sigma_p, Ksc, x0, xs0, y0, ys0, Dx0, Dxs0): Np=1000 Nb=len(self.beamline) Lb=self.beamline[Nb-1].data['s'] s=linspace(0.0,Lb,num=Np) sol=odeint(self.func_odeint,[x0,xs0,y0,ys0,Dx0,Dxs0],s,args=(emitx,emity,sigma_p,Ksc),Dfun=self.Dfunc_odeint,rtol=1.0e-12,atol=1.0e-12) envx=sol[:,0] envxs=sol[:,1] envy=sol[:,2] envys=sol[:,3] Dx=sol[:,4] Dxs=sol[:,5] return envx,envxs,envy,envys,Dx,Dxs,s #------------------------------------------------------ # Match: Periodic solution starting from MADX result #------------------------------------------------------- # this is the function for the root searching routine (fsolve) def func_fsolve(self,x,emitx,emity,sigma_p,Ksc): envx,envxs,envy,envys,Dx,Dxs,s = self.envelope_odeint(emitx,emity,sigma_p,Ksc,x[0],x[1],x[2],x[3],x[4],x[5]) Nb=len(envx) return [envx[Nb-1]-x[0],envxs[Nb-1]-x[1],envy[Nb-1]-x[2],envys[Nb-1]-x[3],Dx[Nb-1]-x[4],Dxs[Nb-1]-x[5]] # root searching using fsolve and initial values from MADX # returns matched envelopes def match_root(self, emitx, emity, sigma_p, Ksc): Nb=len(self.beamline) # start values x0=sqrt(self.beamline[Nb-1].data['betx']*emitx) gamx=(1.0+(self.beamline[Nb-1].data['alfx'])**2)/self.beamline[Nb-1].data['betx'] xs0=-copysign(sqrt(gamx*emitx),self.beamline[Nb-1].data['alfx']) y0=sqrt(self.beamline[Nb-1].data['bety']*emity) gamy=(1.0+(self.beamline[Nb-1].data['alfy'])**2)/self.beamline[Nb-1].data['bety'] ys0=-copysign(sqrt(gamy*emity),self.beamline[Nb-1].data['alfy']) Dx0=self.beamline[Nb-1].data['Dx'] Dxs0=self.beamline[Nb-1].data['Dpx'] # solver sol = root(self.func_fsolve, [x0,xs0,y0,ys0,Dx0,Dxs0], args=(emitx,emity,sigma_p,Ksc),method='hybr') x0=sol.x[0] xs0=sol.x[1] y0=sol.x[2] ys0=sol.x[3] Dx0=sol.x[4] Dxs0=sol.x[5] envx,envxs,envy,envys,Dx,Dxs,s = self.envelope_odeint(emitx,emity,sigma_p,Ksc,x0,xs0,y0,ys0,Dx0,Dxs0) return envx, envxs, envy, envys, Dx, Dxs, s # returns the matchted twiss parameter at cell entrance def match_twiss(self, emitx, emity, sigma_p, Ksc): Nb=len(self.beamline) # start values x0=sqrt(self.beamline[Nb-1].data['betx']*emitx) gamx=(1.0+(self.beamline[Nb-1].data['alfx'])**2)/self.beamline[Nb-1].data['betx'] xs0=-copysign(sqrt(gamx*emitx),self.beamline[Nb-1].data['alfx']) y0=sqrt(self.beamline[Nb-1].data['bety']*emity) gamy=(1.0+(self.beamline[Nb-1].data['alfy'])**2)/self.beamline[Nb-1].data['bety'] ys0=-copysign(sqrt(gamy*emity),self.beamline[Nb-1].data['alfy']) Dx0=self.beamline[Nb-1].data['Dx'] Dxs0=self.beamline[Nb-1].data['Dpx'] # solver sol = root(self.func_fsolve, [x0,xs0,y0,ys0,Dx0,Dxs0], args=(self.beamline,emitx,emity,sigma_p,Ksc),method='hybr') x0=sol.x[0] xs0=sol.x[1] y0=sol.x[2] ys0=sol.x[3] Dx0=sol.x[4] Dxs0=sol.x[5] return x0**2/emitx,y0**2/emity,-copysign(sqrt(x0**2*xs0**2/emitx**2),xs0),-copysign(sqrt(y0**2*ys0**2/emity**2),ys0), Dx0, Dxs0 #------------------------------------------------------ # Smooth focusing #------------------------------------------------------- def func_smooth(self,x,phase0x,phase0y,length,emitx,emity,Ksc): kx=(phase0x/length)**2 ky=(phase0y/length)**2 return[emitx**2/x[0]**3-kx*x[0]+0.5*Ksc/(x[0]+x[1]),emity**2/x[1]**3-ky*x[1]+0.5*Ksc/(x[0]+x[1])] def match_smooth(self,phase0x,phase0y,length,emitx,emity,Ksc): kx=(phase0x/length)**2 ky=(phase0y/length)**2 x0=(emitx**2/kx)**(1.0/4.0) y0=(emity**2/ky)**(1.0/4.0) sol = root(self.func_smooth,[x0,y0],args=(phase0x,phase0y,length,emitx,emity,Ksc),method='hybr') return sol.x[0]**2/emitx,sol.x[1]**2/emity # beta functions #------------------------------------------------------ # Calculate phase advance for given envelopes #------------------------------------------------------- def phase_advance(self,envx,envy,Dx,emitx,emity,sigma_p,s): Np=len(s) phasex=0.0 phasey=0.0 ds=s[1]-s[0] for j in xrange(0,Np): phasex+=ds*emitx/(envx[j]**2-(Dx[j]*sigma_p)**2) phasey+=ds*emity/envy[j]**2 return phasex, phasey # analytic phase advance depression # lc: length of the cell def phase_analytic(self,emitx,emity,Ksc,lc): return 0.5*Ksc*lc/(4.0*emitx), 0.5*Ksc*lc/(4.0*emity) #------------------------------------------------------ # Entropy growth rate: pre-factor #------------------------------------------------------- def entropy_rate(self,envx,envy,emitx,emity,s,beta0): Np=len(s) ratet=0.0 ds=s[1]-s[0] for j in xrange(0,Np): Tx=envx[j]**2/emitx**2 Ty=envy[j]**2/emity**2 ratet+=ds/(beta0*c)*0.5*(Tx-Ty)**2/(Tx*Ty) return ratet
mit
siutanwong/scikit-learn
examples/svm/plot_rbf_parameters.py
57
8096
''' ================== RBF SVM parameters ================== This example illustrates the effect of the parameters ``gamma`` and ``C`` of the Radius Basis Function (RBF) kernel SVM. Intuitively, the ``gamma`` parameter defines how far the influence of a single training example reaches, with low values meaning 'far' and high values meaning 'close'. The ``gamma`` parameters can be seen as the inverse of the radius of influence of samples selected by the model as support vectors. The ``C`` parameter trades off misclassification of training examples against simplicity of the decision surface. A low ``C`` makes the decision surface smooth, while a high ``C`` aims at classifying all training examples correctly by giving the model freedom to select more samples as support vectors. The first plot is a visualization of the decision function for a variety of parameter values on a simplified classification problem involving only 2 input features and 2 possible target classes (binary classification). Note that this kind of plot is not possible to do for problems with more features or target classes. The second plot is a heatmap of the classifier's cross-validation accuracy as a function of ``C`` and ``gamma``. For this example we explore a relatively large grid for illustration purposes. In practice, a logarithmic grid from :math:`10^{-3}` to :math:`10^3` is usually sufficient. If the best parameters lie on the boundaries of the grid, it can be extended in that direction in a subsequent search. Note that the heat map plot has a special colorbar with a midpoint value close to the score values of the best performing models so as to make it easy to tell them appart in the blink of an eye. The behavior of the model is very sensitive to the ``gamma`` parameter. If ``gamma`` is too large, the radius of the area of influence of the support vectors only includes the support vector itself and no amount of regularization with ``C`` will be able to prevent overfitting. When ``gamma`` is very small, the model is too constrained and cannot capture the complexity or "shape" of the data. The region of influence of any selected support vector would include the whole training set. The resulting model will behave similarly to a linear model with a set of hyperplanes that separate the centers of high density of any pair of two classes. For intermediate values, we can see on the second plot that good models can be found on a diagonal of ``C`` and ``gamma``. Smooth models (lower ``gamma`` values) can be made more complex by selecting a larger number of support vectors (larger ``C`` values) hence the diagonal of good performing models. Finally one can also observe that for some intermediate values of ``gamma`` we get equally performing models when ``C`` becomes very large: it is not necessary to regularize by limiting the number of support vectors. The radius of the RBF kernel alone acts as a good structural regularizer. In practice though it might still be interesting to limit the number of support vectors with a lower value of ``C`` so as to favor models that use less memory and that are faster to predict. We should also note that small differences in scores results from the random splits of the cross-validation procedure. Those spurious variations can be smoothed out by increasing the number of CV iterations ``n_iter`` at the expense of compute time. Increasing the value number of ``C_range`` and ``gamma_range`` steps will increase the resolution of the hyper-parameter heat map. ''' print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import Normalize from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris from sklearn.cross_validation import StratifiedShuffleSplit from sklearn.grid_search import GridSearchCV # Utility function to move the midpoint of a colormap to be around # the values of interest. class MidpointNormalize(Normalize): def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): self.midpoint = midpoint Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y)) ############################################################################## # Load and prepare data set # # dataset for grid search iris = load_iris() X = iris.data y = iris.target # Dataset for decision function visualization: we only keep the first two # features in X and sub-sample the dataset to keep only 2 classes and # make it a binary classification problem. X_2d = X[:, :2] X_2d = X_2d[y > 0] y_2d = y[y > 0] y_2d -= 1 # It is usually a good idea to scale the data for SVM training. # We are cheating a bit in this example in scaling all of the data, # instead of fitting the transformation on the training set and # just applying it on the test set. scaler = StandardScaler() X = scaler.fit_transform(X) X_2d = scaler.fit_transform(X_2d) ############################################################################## # Train classifiers # # For an initial search, a logarithmic grid with basis # 10 is often helpful. Using a basis of 2, a finer # tuning can be achieved but at a much higher cost. C_range = np.logspace(-2, 10, 13) gamma_range = np.logspace(-9, 3, 13) param_grid = dict(gamma=gamma_range, C=C_range) cv = StratifiedShuffleSplit(y, n_iter=5, test_size=0.2, random_state=42) grid = GridSearchCV(SVC(), param_grid=param_grid, cv=cv) grid.fit(X, y) print("The best parameters are %s with a score of %0.2f" % (grid.best_params_, grid.best_score_)) # Now we need to fit a classifier for all parameters in the 2d version # (we use a smaller set of parameters here because it takes a while to train) C_2d_range = [1e-2, 1, 1e2] gamma_2d_range = [1e-1, 1, 1e1] classifiers = [] for C in C_2d_range: for gamma in gamma_2d_range: clf = SVC(C=C, gamma=gamma) clf.fit(X_2d, y_2d) classifiers.append((C, gamma, clf)) ############################################################################## # visualization # # draw visualization of parameter effects plt.figure(figsize=(8, 6)) xx, yy = np.meshgrid(np.linspace(-3, 3, 200), np.linspace(-3, 3, 200)) for (k, (C, gamma, clf)) in enumerate(classifiers): # evaluate decision function in a grid Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # visualize decision function for these parameters plt.subplot(len(C_2d_range), len(gamma_2d_range), k + 1) plt.title("gamma=10^%d, C=10^%d" % (np.log10(gamma), np.log10(C)), size='medium') # visualize parameter's effect on decision function plt.pcolormesh(xx, yy, -Z, cmap=plt.cm.RdBu) plt.scatter(X_2d[:, 0], X_2d[:, 1], c=y_2d, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.axis('tight') # plot the scores of the grid # grid_scores_ contains parameter settings and scores # We extract just the scores scores = [x[1] for x in grid.grid_scores_] scores = np.array(scores).reshape(len(C_range), len(gamma_range)) # Draw heatmap of the validation accuracy as a function of gamma and C # # The score are encoded as colors with the hot colormap which varies from dark # red to bright yellow. As the most interesting scores are all located in the # 0.92 to 0.97 range we use a custom normalizer to set the mid-point to 0.92 so # as to make it easier to visualize the small variations of score values in the # interesting range while not brutally collapsing all the low score values to # the same color. plt.figure(figsize=(8, 6)) plt.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95) plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot, norm=MidpointNormalize(vmin=0.2, midpoint=0.92)) plt.xlabel('gamma') plt.ylabel('C') plt.colorbar() plt.xticks(np.arange(len(gamma_range)), gamma_range, rotation=45) plt.yticks(np.arange(len(C_range)), C_range) plt.title('Validation accuracy') plt.show()
bsd-3-clause
ishanic/scikit-learn
sklearn/ensemble/tests/test_partial_dependence.py
365
6996
""" Testing for the partial dependence module. """ import numpy as np from numpy.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import if_matplotlib from sklearn.ensemble.partial_dependence import partial_dependence from sklearn.ensemble.partial_dependence import plot_partial_dependence from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn import datasets # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the boston dataset boston = datasets.load_boston() # also load the iris dataset iris = datasets.load_iris() def test_partial_dependence_classifier(): # Test partial dependence for classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) pdp, axes = partial_dependence(clf, [0], X=X, grid_resolution=5) # only 4 grid points instead of 5 because only 4 unique X[:,0] vals assert pdp.shape == (1, 4) assert axes[0].shape[0] == 4 # now with our own grid X_ = np.asarray(X) grid = np.unique(X_[:, 0]) pdp_2, axes = partial_dependence(clf, [0], grid=grid) assert axes is None assert_array_equal(pdp, pdp_2) def test_partial_dependence_multiclass(): # Test partial dependence for multi-class classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 n_classes = clf.n_classes_ pdp, axes = partial_dependence( clf, [0], X=iris.data, grid_resolution=grid_resolution) assert pdp.shape == (n_classes, grid_resolution) assert len(axes) == 1 assert axes[0].shape[0] == grid_resolution def test_partial_dependence_regressor(): # Test partial dependence for regressor clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 pdp, axes = partial_dependence( clf, [0], X=boston.data, grid_resolution=grid_resolution) assert pdp.shape == (1, grid_resolution) assert axes[0].shape[0] == grid_resolution def test_partial_dependecy_input(): # Test input validation of partial dependence. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_raises(ValueError, partial_dependence, clf, [0], grid=None, X=None) assert_raises(ValueError, partial_dependence, clf, [0], grid=[0, 1], X=X) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, partial_dependence, {}, [0], X=X) # Gradient boosting estimator must be fit assert_raises(ValueError, partial_dependence, GradientBoostingClassifier(), [0], X=X) assert_raises(ValueError, partial_dependence, clf, [-1], X=X) assert_raises(ValueError, partial_dependence, clf, [100], X=X) # wrong ndim for grid grid = np.random.rand(10, 2, 1) assert_raises(ValueError, partial_dependence, clf, [0], grid=grid) @if_matplotlib def test_plot_partial_dependence(): # Test partial dependence plot function. clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, boston.data, [0, 1, (0, 1)], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with str features and array feature names fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with list feature_names feature_names = boston.feature_names.tolist() fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) @if_matplotlib def test_plot_partial_dependence_input(): # Test partial dependence plot function input checks. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) # not fitted yet assert_raises(ValueError, plot_partial_dependence, clf, X, [0]) clf.fit(X, y) assert_raises(ValueError, plot_partial_dependence, clf, np.array(X)[:, :0], [0]) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, plot_partial_dependence, {}, X, [0]) # must be larger than -1 assert_raises(ValueError, plot_partial_dependence, clf, X, [-1]) # too large feature value assert_raises(ValueError, plot_partial_dependence, clf, X, [100]) # str feature but no feature_names assert_raises(ValueError, plot_partial_dependence, clf, X, ['foobar']) # not valid features value assert_raises(ValueError, plot_partial_dependence, clf, X, [{'foo': 'bar'}]) @if_matplotlib def test_plot_partial_dependence_multiclass(): # Test partial dependence plot function on multi-class input. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label=0, grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # now with symbol labels target = iris.target_names[iris.target] clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label='setosa', grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # label not in gbrt.classes_ assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], label='foobar', grid_resolution=grid_resolution) # label not provided assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], grid_resolution=grid_resolution)
bsd-3-clause
jacob-ruth/RuthNote
load_dataset.py
1
3007
# -*- coding: utf-8 -*- """ Created on Thu Jul 27 01:08:03 2017 @author: jacob """ import numpy as np from generate_dataset import Song import matplotlib.pyplot as plt max_tempo = 1500000 max_beats = 1500 num_notes = 128 def load_item(value): return value[0].toarray() def unique_notes(value): notes = np.transpose(load_item(value) != 0) return np.vstack({tuple(row) for row in notes}).shape[1] def num_beats(song): num_ticks = song.piano_roll.shape[1] return num_ticks/song.ticks_per_beat def validate(song): return max_tempo > song.tempo and num_beats(song) < max_beats def downsample_to(song, ticks_per_beat, errors=False, sample_many=False): num_ticks = song.piano_roll.shape[1] num_beats = num_ticks / song.ticks_per_beat old_roll = song.piano_roll.toarray() if(sample_many): downsample_slice_options = map(lambda start: np.round(np.linspace(start, num_ticks - 1 , num_beats * ticks_per_beat)).astype(int), range(0, ticks_per_beat)) def score_slice(slices): new_roll = old_roll[:,slices] return np.count_nonzero(np.sum(new_roll[:,:-1] != new_roll[:,1:], axis=0)) optimal_slice = max(downsample_slice_options, key=score_slice) else: optimal_slice = np.round(np.linspace(0, num_ticks - 1 , num_beats * ticks_per_beat)).astype(int) if errors: new_roll = old_roll[:, optimal_slice] num_difference_new = np.count_nonzero(np.sum(new_roll[:,:-1] != new_roll[:,1:], axis=0)) num_difference_old = np.count_nonzero(np.sum(old_roll[:,:-1] != old_roll[:,1:], axis=0)) return Song(old_roll[:,optimal_slice], ticks_per_beat, song.filepath, song.tempo), num_difference_new, num_difference_old else: return Song(old_roll[:,optimal_slice], ticks_per_beat, song.filepath, song.tempo) dataset = list(map(lambda song: downsample_to(song, 16, errors=True), filter(validate, np.load('dataset.npy')))) num_beats_in_songs = list(map(lambda song: num_beats(song[0]), dataset)) plt.hist(num_beats_in_songs, alpha=0.75, label=['Beats']) plt.title('beats in songs') plt.show() #See how much information we lost normal_changes = np.fromiter(map(lambda x: x[1], dataset), np.float) old_changes = np.fromiter(map(lambda x: x[2], dataset), np.float) data = np.divide(normal_changes, old_changes) plt.hist(data, alpha=0.75, label=['Accuracy']) plt.legend(loc='upper right') plt.title('niave start') plt.show() print('Average Accuracy:', np.mean(data)) dataset = list(map(lambda song: downsample_to(song, 16, errors=True, sample_many=True), filter(validate, np.load('dataset.npy')))) #See how much information we lost normal_changes = np.fromiter(map(lambda x: x[1], dataset), np.float) old_changes = np.fromiter(map(lambda x: x[2], dataset), np.float) data = np.divide(normal_changes, old_changes) plt.hist(data, alpha=0.75, label=['Accuracy']) plt.legend(loc='upper right') plt.title('smarter start') plt.show() print('Average Accuracy:', np.mean(data))
mit
bikong2/scikit-learn
examples/semi_supervised/plot_label_propagation_structure.py
247
2432
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Andreas Mueller <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from sklearn.semi_supervised import label_propagation from sklearn.datasets import make_circles # generate ring with inner box n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = -np.ones(n_samples) labels[0] = outer labels[-1] = inner ############################################################################### # Learn with LabelSpreading label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=1.0) label_spread.fit(X, labels) ############################################################################### # Plot output labels output_labels = label_spread.transduction_ plt.figure(figsize=(8.5, 4)) plt.subplot(1, 2, 1) plot_outer_labeled, = plt.plot(X[labels == outer, 0], X[labels == outer, 1], 'rs') plot_unlabeled, = plt.plot(X[labels == -1, 0], X[labels == -1, 1], 'g.') plot_inner_labeled, = plt.plot(X[labels == inner, 0], X[labels == inner, 1], 'bs') plt.legend((plot_outer_labeled, plot_inner_labeled, plot_unlabeled), ('Outer Labeled', 'Inner Labeled', 'Unlabeled'), 'upper left', numpoints=1, shadow=False) plt.title("Raw data (2 classes=red and blue)") plt.subplot(1, 2, 2) output_label_array = np.asarray(output_labels) outer_numbers = np.where(output_label_array == outer)[0] inner_numbers = np.where(output_label_array == inner)[0] plot_outer, = plt.plot(X[outer_numbers, 0], X[outer_numbers, 1], 'rs') plot_inner, = plt.plot(X[inner_numbers, 0], X[inner_numbers, 1], 'bs') plt.legend((plot_outer, plot_inner), ('Outer Learned', 'Inner Learned'), 'upper left', numpoints=1, shadow=False) plt.title("Labels learned with Label Spreading (KNN)") plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92) plt.show()
bsd-3-clause
nkmk/python-snippets
notebook/pandas_str_combine.py
1
3607
import pandas as pd df = pd.read_csv('data/src/sample_pandas_normal.csv').head(3) print(df) # name age state point # 0 Alice 24 NY 64 # 1 Bob 42 CA 92 # 2 Charlie 18 CA 70 print(df['name'].str.cat(df['state'])) # 0 AliceNY # 1 BobCA # 2 CharlieCA # Name: name, dtype: object print(df['name'].str.cat(df['state'], sep=' in ')) # 0 Alice in NY # 1 Bob in CA # 2 Charlie in CA # Name: name, dtype: object print(df['name'].str.cat(['X', 'Y', 'Z'], sep=' in ')) # 0 Alice in X # 1 Bob in Y # 2 Charlie in Z # Name: name, dtype: object print(df['name'].str.cat([df['state'], ['X', 'Y', 'Z']], sep='-')) # 0 Alice-NY-X # 1 Bob-CA-Y # 2 Charlie-CA-Z # Name: name, dtype: object # print(df['name'].str.cat('X', sep='-')) # ValueError: Did you mean to supply a `sep` keyword? print(df['name'] + df['state']) # 0 AliceNY # 1 BobCA # 2 CharlieCA # dtype: object print(df['name'] + ' in ' + df['state']) # 0 Alice in NY # 1 Bob in CA # 2 Charlie in CA # dtype: object print(df['name'] + ' in ' + df['state'] + ' - ' + ['X', 'Y', 'Z']) # 0 Alice in NY - X # 1 Bob in CA - Y # 2 Charlie in CA - Z # dtype: object df['col_NaN'] = ['X', pd.np.nan, 'Z'] print(df) # name age state point col_NaN # 0 Alice 24 NY 64 X # 1 Bob 42 CA 92 NaN # 2 Charlie 18 CA 70 Z print(df['name'].str.cat(df['col_NaN'], sep='-')) # 0 Alice-X # 1 NaN # 2 Charlie-Z # Name: name, dtype: object print(df['name'].str.cat(df['col_NaN'], sep='-', na_rep='No Data')) # 0 Alice-X # 1 Bob-No Data # 2 Charlie-Z # Name: name, dtype: object print(df['name'] + '-' + df['col_NaN']) # 0 Alice-X # 1 NaN # 2 Charlie-Z # dtype: object print(df['name'] + '-' + df['col_NaN'].fillna('No Data')) # 0 Alice-X # 1 Bob-No Data # 2 Charlie-Z # dtype: object # print(df['name'].str.cat(df['age'], sep='-')) # TypeError: sequence item 1: expected str instance, int found print(df['name'].str.cat(df['age'].astype(str), sep='-')) # 0 Alice-24 # 1 Bob-42 # 2 Charlie-18 # Name: name, dtype: object # print(df['name'] + '-' + df['age']) # TypeError: can only concatenate str (not "int") to str print(df['name'] + '-' + df['age'].astype(str)) # 0 Alice-24 # 1 Bob-42 # 2 Charlie-18 # dtype: object df['name_state'] = df['name'].str.cat(df['state'], sep=' in ') print(df) # name age state point col_NaN name_state # 0 Alice 24 NY 64 X Alice in NY # 1 Bob 42 CA 92 NaN Bob in CA # 2 Charlie 18 CA 70 Z Charlie in CA print(df.drop(columns=['name', 'state'])) # age point col_NaN name_state # 0 24 64 X Alice in NY # 1 42 92 NaN Bob in CA # 2 18 70 Z Charlie in CA df = pd.read_csv('data/src/sample_pandas_normal.csv').head(3) print(df) # name age state point # 0 Alice 24 NY 64 # 1 Bob 42 CA 92 # 2 Charlie 18 CA 70 print(df.assign(name_state=df['name'] + ' in ' + df['state'])) # name age state point name_state # 0 Alice 24 NY 64 Alice in NY # 1 Bob 42 CA 92 Bob in CA # 2 Charlie 18 CA 70 Charlie in CA print(df.assign(name_state=df['name'] + ' in ' + df['state']).drop(columns=['name', 'state'])) # age point name_state # 0 24 64 Alice in NY # 1 42 92 Bob in CA # 2 18 70 Charlie in CA
mit
kpeiruza/incubator-spot
spot-oa/oa/flow/flow_oa.py
1
18676
import logging import shutil import os import sys import json import numpy as np import linecache, bisect import csv import pandas as pd from collections import OrderedDict from multiprocessing import Process from utils import Util,ProgressBar from components.data.data import Data from components.geoloc.geoloc import GeoLocalization from components.reputation.gti import gti import time class OA(object): def __init__(self,date,limit=500,logger=None): self._initialize_members(date,limit,logger) def _initialize_members(self,date,limit,logger): # get logger if exists. if not, create new instance. self._logger = logging.getLogger('OA.Flow') if logger else Util.get_logger('OA.Flow',create_file=False) # initialize required parameters. self._scrtip_path = os.path.dirname(os.path.abspath(__file__)) self._date = date self._table_name = "flow" self._flow_results = [] self._limit = limit self._data_path = None self._ipynb_path = None self._ingest_summary_path = None self._flow_scores = [] self._results_delimiter = '\t' # get app configuration. self._spot_conf = Util.get_spot_conf() # get scores fields conf conf_file = "{0}/flow_conf.json".format(self._scrtip_path) self._conf = json.loads(open (conf_file).read(),object_pairs_hook=OrderedDict) # initialize data engine self._db = self._spot_conf.get('conf', 'DBNAME').replace("'", "").replace('"', '') self._engine = Data(self._db, self._table_name,self._logger) def start(self): #################### start = time.time() #################### self._create_folder_structure() self._add_ipynb() self._get_flow_results() self._add_network_context() self._add_geo_localization() self._add_reputation() self._create_flow_scores_csv() self._get_oa_details() self._ingest_summary() ################## end = time.time() print(end - start) ################## def _create_folder_structure(self): # create date folder structure if it does not exist. self._logger.info("Creating folder structure for OA (data and ipynb)") self._data_path,self._ingest_summary_path,self._ipynb_path = Util.create_oa_folders("flow",self._date) def _add_ipynb(self): if os.path.isdir(self._ipynb_path): self._logger.info("Adding edge investigation IPython Notebook") shutil.copy("{0}/ipynb_templates/Edge_Investigation_master.ipynb".format(self._scrtip_path),"{0}/Edge_Investigation.ipynb".format(self._ipynb_path)) self._logger.info("Adding threat investigation IPython Notebook") shutil.copy("{0}/ipynb_templates/Threat_Investigation_master.ipynb".format(self._scrtip_path),"{0}/Threat_Investigation.ipynb".format(self._ipynb_path)) else: self._logger.error("There was a problem adding the IPython Notebooks, please check the directory exists.") def _get_flow_results(self): self._logger.info("Getting {0} Machine Learning Results from HDFS".format(self._date)) flow_results = "{0}/flow_results.csv".format(self._data_path) # get hdfs path from conf file HUSER = self._spot_conf.get('conf', 'HUSER').replace("'", "").replace('"', '') hdfs_path = "{0}/flow/scored_results/{1}/scores/flow_results.csv".format(HUSER,self._date) # get results file from hdfs get_command = Util.get_ml_results_form_hdfs(hdfs_path,self._data_path) self._logger.info("{0}".format(get_command)) # valdiate files exists if os.path.isfile(flow_results): # read number of results based in the limit specified. self._logger.info("Reading {0} flow results file: {1}".format(self._date,flow_results)) self._flow_results = Util.read_results(flow_results,self._limit,self._results_delimiter) if len(self._flow_results) == 0: self._logger.error("There are not flow results.");sys.exit(1) else: self._logger.error("There was an error getting ML results from HDFS") sys.exit(1) # add headers. self._logger.info("Adding headers based on configuration file: score_fields.json") self._flow_scores = [ [ str(key) for (key,value) in self._conf['flow_score_fields'].items()] ] # filter results add sev and rank. self._logger.info("Filtering required columns based on configuration") self._flow_scores.extend([ [0] + [ conn[i] for i in self._conf['column_indexes_filter'] ] + [n] for n, conn in enumerate(self._flow_results) ]) def _create_flow_scores_csv(self): flow_scores_csv = "{0}/flow_scores.csv".format(self._data_path) Util.create_csv_file(flow_scores_csv,self._flow_scores) # create bk file flow_scores_bu_csv = "{0}/flow_scores_bu.csv".format(self._data_path) Util.create_csv_file(flow_scores_bu_csv,self._flow_scores) def _add_network_context(self): # use ipranges to see if the IPs are internals. ip_ranges_file = "{0}/context/ipranges.csv".format(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) # add new headers (srcIpInternal/destIpInternal). self._logger.info("Adding network context headers") flow_headers = self._flow_scores[0] flow_headers.extend(["srcIpInternal","destIpInternal"]) # add values to srcIpInternal and destIpInternal. flow_scores = iter(self._flow_scores) next(flow_scores) if os.path.isfile(ip_ranges_file): self._logger.info("Start adding network context...") # get ranges from configuration file. self._logger.info("Reading network context file: {0}".format(ip_ranges_file)) with open(ip_ranges_file, 'rb') as f: nc_ranges = [ map(Util.ip_to_int,line.strip('\n').split(',')) for line in f ] # get src and dst IPs src_ip_index = self._conf["flow_score_fields"]["srcIP"] dst_ip_index = self._conf["flow_score_fields"]["dstIP"] # add networkcontext per connection. ip_internal_ranges = filter(None,nc_ranges) self._logger.info("Adding networkcontext to suspicious connections.") self._flow_scores = [ conn + [ self._is_ip_internal(conn[src_ip_index],ip_internal_ranges)]+[ self._is_ip_internal(conn[dst_ip_index],ip_internal_ranges)] for conn in flow_scores] else: self._flow_scores = [ conn + ["",""] for conn in flow_scores ] self._logger.info("WARNING: Network context was not added because the file ipranges.csv does not exist.") self._flow_scores.insert(0,flow_headers) def _is_ip_internal(self,ip, ranges): result = 0 for row in ranges: if Util.ip_to_int(ip) >= row[0] and Util.ip_to_int(ip) <= row[1]: result = 1 break return result def _add_geo_localization(self): # use ipranges to see if the IPs are internals. iploc_file = "{0}/context/iploc.csv".format(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) # add new headers (srcIpInternal/destIpInternal). self._logger.info("Adding geo localization headers") flow_headers = self._flow_scores[0] flow_headers.extend(["srcGeo","dstGeo","srcDomain","dstDomain"]) # add values to srcIpInternal and destIpInternal. flow_scores = iter(self._flow_scores) next(flow_scores) if os.path.isfile(iploc_file): self._logger.info("Initializing geo localization component") geo = GeoLocalization(iploc_file,self._logger) src_ip_index = self._conf["flow_score_fields"]["srcIP"] dst_ip_index = self._conf["flow_score_fields"]["dstIP"] self._logger.info("Adding geo localization...") self._flow_scores = [] for conn in flow_scores: # get geo localizastin for src ip self._logger.debug("Searching geo for src ip {0}".format(conn[src_ip_index])) src_geo_dict = geo.get_ip_geo_localization(conn[src_ip_index]) # get goe localization for dst ip. self._logger.debug("Searching geo for dst ip {0}".format(conn[dst_ip_index])) dst_geo_dict = geo.get_ip_geo_localization(conn[dst_ip_index]) # adding columns to the current connection list. conn.extend([src_geo_dict["geo_loc"],dst_geo_dict["geo_loc"],src_geo_dict["domain"],dst_geo_dict["domain"]]) self._flow_scores.extend([conn]) else: self._flow_scores = [ conn + ["","","",""] for conn in flow_scores ] self._logger.info("WARNING: IP location was not added because the file {0} does not exist.".format(iploc_file)) self._flow_scores.insert(0,flow_headers) def _add_reputation(self): reputation_conf_file = "{0}/components/reputation/reputation_config.json".format(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # add new headers (gtiSrcRep/gtiDstRep). self._logger.info("Adding reputation headers") flow_headers_rep = self._flow_scores[0] flow_headers_rep.extend(["srcIP_rep","dstIP_rep"]) # read configuration. self._logger.info("Reading reputation configuration file: {0}".format(reputation_conf_file)) rep_conf = json.loads(open(reputation_conf_file).read()) if "gti" in rep_conf and os.path.isfile(rep_conf['gti']['refclient']): rep_conf = rep_conf['gti'] # initialize gti module. self._logger.info("Initializing GTI component") flow_gti = gti.Reputation(rep_conf,self._logger) # get all src ips. src_ip_index = self._conf["flow_score_fields"]["srcIP"] dst_ip_index = self._conf["flow_score_fields"]["dstIP"] self._logger.info("Getting GTI reputation for src IPs") flow_scores_src = iter(self._flow_scores) next(flow_scores_src) # getting reputation for src IPs src_ips = [ conn[src_ip_index] for conn in flow_scores_src ] src_rep_results = flow_gti.check(src_ips) self._logger.info("Getting GTI reputation for dst IPs") flow_scores_dst = iter(self._flow_scores) next(flow_scores_dst) # getting reputation for dst IPs dst_ips = [ conn[dst_ip_index] for conn in flow_scores_dst ] dst_rep_results = flow_gti.check(dst_ips) flow_scores_final = iter(self._flow_scores) next(flow_scores_final) self._flow_scores = [] flow_scores = [conn + [src_rep_results[conn[src_ip_index]]] + [dst_rep_results[conn[dst_ip_index]]] for conn in flow_scores_final ] self._flow_scores = flow_scores else: # add values to gtiSrcRep and gtiDstRep. flow_scores = iter(self._flow_scores) next(flow_scores) self._flow_scores = [ conn + ["",""] for conn in flow_scores ] self._logger.info("WARNING: IP reputation was not added. No refclient configured") self._flow_scores.insert(0,flow_headers_rep) def _get_oa_details(self): self._logger.info("Getting OA Flow suspicious details/chord diagram") # start suspicious connects details process. p_sp = Process(target=self._get_suspicious_details) p_sp.start() # start chord diagram process. p_ch = Process(target=self._get_chord_details) p_ch.start() p_sp.join() p_ch.join() def _get_suspicious_details(self,bar=None): # skip header sp_connections = iter(self._flow_scores) next(sp_connections) # loop connections. connections_added = [] for conn in sp_connections: # validate if the connection's details are not already extracted. if conn in connections_added: continue else: connections_added.append(conn) src_ip_index = self._conf["flow_score_fields"]["srcIP"] dst_ip_index = self._conf["flow_score_fields"]["dstIP"] # get src ip sip = conn[src_ip_index] # get dst ip dip = conn[dst_ip_index] # get hour and date (i.e. 2014-07-08 10:10:40) date_array = conn[1].split(' ') date_array_1 = date_array[0].split('-') date_array_2 = date_array[1].split(':') yr = date_array_1[0] dy = date_array_1[2] mh = date_array_1[1] hr = date_array_2[0] mm = date_array_2[1] # connection details query. sp_query = ("SELECT treceived as tstart,sip as srcip,dip as dstip,sport as sport,dport as dport,proto as proto,flag as flags,stos as TOS,ibyt as ibytes,ipkt as ipkts,input as input, output as output,rip as rip, obyt as obytes, opkt as opkts from {0}.{1} where ((sip='{2}' AND dip='{3}') or (sip='{3}' AND dip='{2}')) AND y={8} AND m={4} AND d={5} AND h={6} AND trminute={7} order by tstart limit 100") # sp query. sp_query = sp_query.format(self._db,self._table_name,sip,dip,mh,dy,hr,mm,yr) # output file. edge_file = "{0}/edge-{1}-{2}-{3}-{4}.tsv".format(self._data_path,sip.replace(".","_"),dip.replace(".","_"),hr,mm) # execute query self._engine.query(sp_query,output_file=edge_file,delimiter="\\t") def _get_chord_details(self,bar=None): # skip header sp_connections = iter(self._flow_scores) next(sp_connections) src_ip_index = self._conf["flow_score_fields"]["srcIP"] dst_ip_index = self._conf["flow_score_fields"]["dstIP"] # get date parameters. yr = self._date[:4] mn = self._date[4:6] dy = self._date[6:] # get number of times each IP appears. srcdict = {} for conn in sp_connections: if conn[src_ip_index] in srcdict:srcdict[conn[src_ip_index]] += 1 else:srcdict[conn[src_ip_index]] = 1 if conn[dst_ip_index] in srcdict:srcdict[conn[dst_ip_index]] += 1 else:srcdict[conn[dst_ip_index]] = 1 for (ip,n) in srcdict.items(): if n > 1: ip_list = [] sp_connections = iter(self._flow_scores) next(sp_connections) for row in sp_connections: if ip == row[2] : ip_list.append(row[3]) if ip == row[3] :ip_list.append(row[2]) ips = list(set(ip_list)) if len(ips) > 1: ips_filter = (",".join(str("'{0}'".format(ip)) for ip in ips)) chord_file = "{0}/chord-{1}.tsv".format(self._data_path,ip.replace(".","_")) ch_query = ("SELECT sip as srcip, dip as dstip, SUM(ibyt) as ibytes, SUM(ipkt) as ipkts from {0}.{1} where y={2} and m={3} \ and d={4} and ( (sip='{5}' and dip IN({6})) or (sip IN({6}) and dip='{5}') ) group by sip,dip") self._engine.query(ch_query.format(self._db,self._table_name,yr,mn,dy,ip,ips_filter),chord_file,delimiter="\\t") def _ingest_summary(self): # get date parameters. yr = self._date[:4] mn = self._date[4:6] dy = self._date[6:] self._logger.info("Getting ingest summary data for the day") ingest_summary_cols = ["date","total"] result_rows = [] df_filtered = pd.DataFrame() ingest_summary_file = "{0}/is_{1}{2}.csv".format(self._ingest_summary_path,yr,mn) ingest_summary_tmp = "{0}.tmp".format(ingest_summary_file) if os.path.isfile(ingest_summary_file): df = pd.read_csv(ingest_summary_file, delimiter=',',names=ingest_summary_cols, skiprows=1) df_filtered = df[df['date'].str.contains("{0}-{1}-{2}".format(yr, mn, dy)) == False] else: df = pd.DataFrame() # get ingest summary. ingest_summary_qry = ("SELECT tryear, trmonth, trday, trhour, trminute, COUNT(*) total" " FROM {0}.{1} " " WHERE " " y={2} " " AND m={3} " " AND d={4} " " AND unix_tstamp IS NOT NULL AND sip IS NOT NULL " " AND sport IS NOT NULL AND dip IS NOT NULL " " AND dport IS NOT NULL AND ibyt IS NOT NULL " " AND ipkt IS NOT NULL " " GROUP BY tryear, trmonth, trday, trhour, trminute;") ingest_summary_qry = ingest_summary_qry.format(self._db,self._table_name, yr, mn, dy) results_file = "{0}/results_{1}.csv".format(self._ingest_summary_path,self._date) self._engine.query(ingest_summary_qry,output_file=results_file,delimiter=",") if os.path.isfile(results_file): result_rows = pd.read_csv(results_file, delimiter=',') df_new = pd.DataFrame([["{0}-{1}-{2} {3}:{4}".format(yr, mn, dy, str(val['trhour']).zfill(2), str(val['trminute']).zfill(2)), int(val[5])] for key,val in result_rows.iterrows()],columns = ingest_summary_cols) df_filtered = df_filtered.append(df_new, ignore_index=True) df_filtered.to_csv(ingest_summary_tmp,sep=',', index=False) os.remove(results_file) os.rename(ingest_summary_tmp,ingest_summary_file) else: self._logger.info("No data found for the ingest summary")
apache-2.0
varenius/salsa
USRP/usrp_gnuradio_dev/plot_array_files_sigref_vel.py
1
2832
import matplotlib.pyplot as plt import numpy as np import sys import time import scipy.signal as sig from scipy.constants import c nu0 = 1420.40575177 # MHz sigfile = sys.argv[1] reffile = sys.argv[2] files = [sigfile, reffile] result = [] for infile in files: indata = np.load(infile) spec = indata[0] samp_rate = indata[1] fftsize = indata[2] center_freq = indata[3] # MHz halffft = int(0.5*fftsize) freqs = 0.5*samp_rate*np.array(range(-halffft,halffft))/(halffft) delta_nu = samp_rate/fftsize RFI = [[1419.4-0.210, 0.02], [1419.4-1.937, 0.015], [1419.4-4.4, 0.015], [1419.4+3.0, 0.01], [center_freq, 4*delta_nu], # remove dip in the center of band, always about 4 fft points wide. Use 8, else errors [1416.4-0.8, 0.04], [1420.4-2, 0.01], [1425, 0.01], [1424.4-1.8, 0.01], [1424.4+0.5845, 0.01], [1424.4+0.483, 0.005], ] for item in RFI: RFI_freq = item[0] RFI_width = item[1] ch0_freq = center_freq - 0.5*samp_rate ind_low = int(np.floor((RFI_freq-0.5*RFI_width - ch0_freq)/delta_nu)) ind_high = int(np.ceil((RFI_freq+0.5*RFI_width - ch0_freq)/delta_nu)) if ind_low>0 and ind_high<len(spec): margin = min(ind_high-ind_low, ind_low, len(spec)-ind_high) RFI_part = spec[ind_low-margin:ind_high+margin] xdata = np.arange(len(RFI_part)) weights = np.ones_like(RFI_part) weights[margin:-margin] = 0.0 # Ignore RFI when fitting pf = np.polyfit(xdata, RFI_part, deg=1, w=weights) interpdata = np.polyval(pf, xdata) spec[ind_low:ind_high] = interpdata[margin:-margin] else: print 'Ignoring', item calspec = spec*230 # Determined from comparing with LAB survey at glong 80, glat 0 result.append(calspec[:]) specres = result[0]-result[1] plt.figure() indata = np.load(sigfile) samp_rate = indata[1] fftsize = indata[2] center_freq = indata[3] # MHz halffft = int(0.5*fftsize) freqs = 0.5*samp_rate*np.array(range(-halffft,halffft))/(halffft) vels = -1*1e-3* (freqs+center_freq -nu0)*c/nu0 # km/s, -1 to get sign right compared to LAB plt.xlabel('Offset from ' + str(round(center_freq, 2)) + 'MHz') plt.plot(freqs, result[0]) plt.plot(freqs, result[1]) plt.legend(['Sig', 'Ref']) plt.figure() plt.xlabel('km/s') print vels plt.plot(vels, result[0]) plt.plot(vels, result[1]) plt.legend(['Sig', 'Ref']) plt.figure() plt.plot(vels, specres) plt.title('Signal - ref * [Approx. LAB comparision at 80,0] ') l = len(specres) lind = 0.1*l hind = 0.9*l plt.figure() nout = 1024 dec = sig.decimate(specres, fftsize/nout, axis=0) plt.plot(dec) plt.title('Decimated to ' +str(nout) + 'ch.') plt.show()
mit
brentp/pedagree
scripts/extract-1kg.py
2
2267
import numpy as np from cyvcf2 import VCF from scipy.stats import chi2_contingency def get_hwe_likelihood(obs_hom_ref, obs_het, obs_hom_alt, aaf): """ Compute the likelihood of deviation from HWE using X^2, as well as the inbreeding coefficient. """ # Bail out if aaf is undefined. This occurs # when there are multiple alternate alleles q = aaf p = 1 - aaf obs = [obs_hom_ref, obs_het, obs_hom_alt] n = sum(obs) exp = [p ** 2, 2 * p * q, q ** 2] exp = [n * v for v in exp] return chi2_contingency(np.array([exp, obs])) if __name__ == "__main__": import sys #sites = [x.strip().split(":") for x in open('/uufs/chpc.utah.edu/common/home/u6000771/purcell5k.intervals')] sites = [x.strip().split(":") for x in open(sys.argv[1])] for s in sites: s[1] = int(s[1]) hwes = [] a = {} vcf = VCF('/uufs/chpc.utah.edu/common/home/u6000294/isilon/1kg_p3/up/ALL.phase3.autosome.vcf.gz', gts012=True) for i, (chrom, pos) in enumerate(sites): k = 0 for v in vcf('%s:%s-%s' % (chrom, pos, pos)): if len(v.ALT) != 1: continue if len(v.REF) != 1: continue if '>' in v.ALT[0]: continue if v.call_rate < 0.8: continue if not (0.04 < v.aaf < 0.99): continue key = (v.CHROM, v.POS, v.REF, v.ALT[0]) x = get_hwe_likelihood(v.num_hom_ref, v.num_het, v.num_hom_alt, v.aaf) if x[1] < 0.04: continue sites[i].extend((v.REF, v.ALT[0])) a[key] = np.array(v.gt_types) if k > 0: print sites[i] k += 1 hwes.append(x[1]) if len(hwes) % 500 == 0: print sites[i], len(hwes) print sites[i], len(hwes) from matplotlib import pyplot as plt plt.hist(hwes, 50) plt.show() a = np.array([a[tuple(s)] for s in sites if len(s) == 4], dtype=np.uint8) sites = [tuple(s) for s in sites if len(s) == 4] print(len(sites)) print(a.shape) with open('1kg.sites.%d.%d.bin' % a.shape, 'w') as fh: fh.write(a.tostring()) with open('1kg.sites', 'w') as fh: fh.write("\n".join("%s:%d:%s:%s" % tuple(s) for s in sites)) fh.write("\n")
mit
psychopy/psychopy
psychopy/app/themes/_themes.py
1
46279
import os import subprocess import sys import wx import wx.lib.agw.aui as aui import wx.stc as stc import wx.richtext from psychopy.localization import _translate from wx import py import numpy import keyword import builtins from pathlib import Path from psychopy import prefs from psychopy import logging import psychopy from ...experiment import components import json if sys.platform=='win32': from matplotlib import font_manager fm = font_manager.FontManager() thisFolder = Path(__file__).parent iconsPath = Path(prefs.paths['resources']) try: FileNotFoundError except NameError: # Py2 has no FileNotFoundError FileNotFoundError = IOError allCompons = components.getAllComponents() # ensures that the icons get checked # Create library of "on brand" colours cLib = { 'none': [127, 127, 127, 0], 'black': [0, 0, 0], 'grey': [102, 102, 110], 'white': [242, 242, 242], 'red': [242, 84, 91], 'green': [108, 204, 116], 'blue': [2, 169, 234], 'yellow': [241, 211, 2], 'orange': [236, 151, 3], 'purple': [195, 190, 247], 'darker': {}, 'lighter': {}, 'very': {'lighter': {}, 'darker': {}} } # Create light and dark variants of each colour by +-15 to each value for c in cLib: if not c in ['darker', 'lighter', 'none', 'very']: cLib['darker'][c] = [max(0, n-15) for n in cLib[c]] cLib['lighter'][c] = [min(255, n+15) for n in cLib[c]] # Create very light and very dark variants of each colour by a further +-30 to each value for c in cLib['lighter']: cLib['very']['lighter'][c] = [min(255, n+30) for n in cLib['lighter'][c]] for c in cLib['darker']: cLib['very']['darker'][c] = [max(0, n-30) for n in cLib['darker'][c]] class ThemeMixin: lexers = { stc.STC_LEX_PYTHON: "python", stc.STC_LEX_CPP: "c++", stc.STC_LEX_R: "R" #stc.STC_LEX_JSON: "json" } # these are populated and modified by PsychoPyApp.theme.setter spec = None codetheme = 'PsychopyLight' mode = 'light' icons = 'light' codeColors = {} appColors = {} appIcons = {'components': {}, 'resources': {}} def loadThemeSpec(self, themeName): """Load a spec file from disk""" # a theme spec contains the spec for the *code* theme as well as a mode # that determines which colorscheme to load for the app (separate) themesPath = Path(prefs.paths['themes']) # first load the *theme* which contains the mode name for the app try: with open(str(themesPath / (themeName+".json")), "rb") as fp: ThemeMixin.spec = themeSpec = json.load(fp) except FileNotFoundError: with open(str(themesPath / "PsychopyLight.json"), "rb") as fp: ThemeMixin.spec = themeSpec = json.load(fp) appColorMode = themeSpec['app'] # Get app spec try: with open(str(themesPath / "app/{}.json".format(appColorMode)), "rb") as fp: ThemeMixin.spec = appColors = json.load(fp) except FileNotFoundError: with open(str(themesPath / "app/light.json"), "rb") as fp: ThemeMixin.spec = appColors = json.load(fp) # Set app theme ThemeMixin.mode = appColorMode self._setAppColors(appColors) # Set app icons if 'icons' in themeSpec: ThemeMixin.icons = themeSpec['icons'] else: ThemeMixin.icons = themeSpec['app'] # Set coder theme codertheme = themeSpec ThemeMixin.codetheme = themeName self._setCodeColors(codertheme) def _applyAppTheme(self, target=None): """Applies colorScheme recursively to the target and its children Parameters ---------- colorScheme: the new color spec being applied (dict) target: the wx object to which being applied depth: depth in the tree of wx objects """ # Define subfunctions to handle different object types def applyToToolbar(target): target.SetBackgroundColour(ThemeMixin.appColors['frame_bg']) # Clear tools target.ClearTools() # Redraw tools target.makeTools() def applyToStatusBar(target): target.SetBackgroundColour(cLib['white']) def applyToFrame(target): target.SetBackgroundColour(ThemeMixin.appColors['frame_bg']) target.SetForegroundColour(ThemeMixin.appColors['text']) if hasattr(target, 'GetAuiManager'): target.GetAuiManager().SetArtProvider(PsychopyDockArt()) target.GetAuiManager().Update() for menu in target.GetMenuBar().GetMenus(): for submenu in menu[0].MenuItems: if isinstance(submenu.SubMenu, ThemeSwitcher): submenu.SubMenu._applyAppTheme() def applyToPanel(target): target.SetBackgroundColour(ThemeMixin.appColors['panel_bg']) target.SetForegroundColour(ThemeMixin.appColors['text']) def applyToNotebook(target): # Dict of icons to apply to specific tabs tabIcons = { "Structure": "coderclass16.png", "FileBrowser": "folder-open16.png", "PythonShell": "coderpython16.png", "ConsoleOutput": "stdout.png", } target.SetArtProvider(PsychopyTabArt()) target.GetAuiManager().SetArtProvider(PsychopyDockArt()) for index in range(target.GetPageCount()): page = target.GetPage(index) page.SetBackgroundColour(ThemeMixin.appColors['panel_bg']) if page.GetName() in tabIcons: bmp = IconCache.getBitmap(IconCache(), tabIcons[page.GetName()]) target.SetPageBitmap(index, bmp) page._applyAppTheme() def applyToCodeEditor(target): spec = ThemeMixin.codeColors.copy() base = spec['base'] # Set margin size according to text size if not isinstance(target, wx.py.shell.Shell): target.SetMarginWidth(0, 4 * prefs.coder['codeFontSize']) # Override base font with user spec if present prefkey = 'outputFont' if isinstance(target, wx.py.shell.Shell) else 'codeFont' if prefs.coder[prefkey].lower() != "From Theme...".lower(): for key in spec: if 'font' in spec[key]: spec[key]['font'] = prefs.coder[prefkey] if spec[key]['font'] == base['font'] \ else base['font'] base['font'] = prefs.coder[prefkey] # Check that key is in tag list invalid = [] for key in spec: if key not in self.tags: invalid += [key] for key in invalid: del spec[key] # Check for language specific spec if target.GetLexer() in target.lexers: lexer = target.lexers[target.GetLexer()] else: lexer = 'invlex' if lexer in spec: # If there is lang specific spec, delete subkey... lang = spec['lexer'] # ...and append spec to root, overriding any generic spec spec.update({key: lang[key] for key in lang}) else: lang = {} # Set style for undefined lexers for key in [getattr(wx._stc, item) for item in dir(wx._stc) if item.startswith("STC_LEX")]: target.StyleSetBackground(key, base['bg']) target.StyleSetForeground(key, base['fg']) target.StyleSetSpec(key, "face:%(font)s,size:%(size)d" % base) # Set style from universal data for key in spec: if target.tags[key] is not None: target.StyleSetBackground(target.tags[key], spec[key]['bg']) target.StyleSetForeground(target.tags[key], spec[key]['fg']) target.StyleSetSpec(target.tags[key], "face:%(font)s,size:%(size)d" % spec[key]) # Apply keywords for level, val in target.lexkw.items(): target.SetKeyWords(level, " ".join(val)) # Set margin target.SetFoldMarginColour(True, spec['margin']['bg']) target.SetFoldMarginHiColour(True, spec['margin']['bg']) # Set caret colour target.SetCaretForeground(spec['caret']['fg']) target.SetCaretLineBackground(spec['caret']['bg']) target.SetCaretWidth(1 + ('bold' in spec['caret']['font'])) # Set selection colour target.SetSelForeground(True, spec['select']['fg']) target.SetSelBackground(True, spec['select']['bg']) # Set wrap point target.edgeGuideColumn = target.prefs['edgeGuideColumn'] target.edgeGuideVisible = target.edgeGuideColumn > 0 # Set line spacing spacing = min(int(target.prefs['lineSpacing'] / 2), 64) # Max out at 64 target.SetExtraAscent(spacing) target.SetExtraDescent(spacing) def applyToRichText(target): base = ThemeMixin.codeColors['base'] # todo: Add element-specific styling (it must be possible...) # If dealing with a StdOut, set background from base target.SetBackgroundColour( self.hex2rgb(base['bg'], base['bg'])) # Then construct default styles bold = wx.FONTWEIGHT_BOLD if "bold" in base['font'] else wx.FONTWEIGHT_NORMAL italic = wx.FONTSTYLE_ITALIC if "italic" in base['font'] else wx.FONTSTYLE_NORMAL # Override base font with user spec if present if prefs.coder['outputFont'].lower() == "From Theme...".lower(): fontName = base['font'].replace("bold", "").replace("italic", "").replace(",", "") else: fontName = prefs.coder['outputFont'] _font = wx.Font( int(prefs.coder['outputFontSize']), wx.FONTFAMILY_TELETYPE, italic, bold, False, faceName=fontName ) _style = wx.TextAttr( colText=wx.Colour( self.hex2rgb(base['fg'], base['fg'])), colBack=wx.Colour( self.hex2rgb(base['bg'], base['bg'])), font=_font) # Then style all text as base i = 0 for ln in range(target.GetNumberOfLines()): i += target.GetLineLength( ln) + 1 # +1 as \n is not included in character count target.SetStyle(0, i, _style) def applyToTextCtrl(target): base = ThemeMixin.codeColors['base'] target.SetForegroundColour(base['fg']) target.SetBackgroundColour(base['bg']) # Define dict linking object types to subfunctions handlers = { wx.Frame: applyToFrame, wx.Panel: applyToPanel, aui.AuiNotebook: applyToNotebook, psychopy.app.coder.coder.BaseCodeEditor: applyToCodeEditor, wx.richtext.RichTextCtrl: applyToRichText, wx.py.shell.Shell: applyToCodeEditor, wx.ToolBar: applyToToolbar, wx.StatusBar: applyToStatusBar, wx.TextCtrl: applyToTextCtrl } # If no target supplied, default to using self if target is None: target = self if not hasattr(self, '_recursionDepth'): self._recursionDepth = 0 else: self._recursionDepth += 1 appCS = ThemeMixin.appColors base = ThemeMixin.codeColors['base'] # Abort if target is immune if hasattr(target, 'immune'): return # Style target isHandled = False for thisType in handlers: if isinstance(target, thisType): handlers[thisType](target) isHandled = True if not isHandled: # try and set colors for target try: target.SetBackgroundColour(ThemeMixin.appColors['panel_bg']) target.SetForegroundColour(ThemeMixin.appColors['text']) except AttributeError: pass # search for children (set in a second step) if isinstance(target, wx.Sizer): sizer = target children = sizer.Children else: children = [] if hasattr(target, 'Children'): children.extend(target.Children) elif hasattr(target, 'immune'): pass elif hasattr(target, 'paneManager'): for pane in target.paneManager.AllPanes: children.append(pane.window) elif hasattr(target, 'Sizer') and target.Sizer: children.append(target.Sizer) if hasattr(self, 'btnHandles'): for thisBtn in self.btnHandles: pass # then apply to all children as well for c in children: if hasattr(c, '_applyAppTheme'): # if the object understands themes then request that c._applyAppTheme() elif self._recursionDepth>10: return else: # if not then use our own recursive method to search if hasattr(c, 'Window') and c.Window is not None: ThemeMixin._applyAppTheme(c.Window) elif hasattr(c, 'Sizer') and c.Sizer is not None: ThemeMixin._applyAppTheme(c.Sizer) # and then apply # try: # ThemeMixin._applyAppTheme(c) # except AttributeError: # pass if hasattr(target, 'Refresh'): target.Refresh() if hasattr(target, '_mgr'): target._mgr.Update() @property def lexkw(self): baseC = { 0: ['typedef', 'if', 'else', 'return', 'struct', 'for', 'while', 'do', 'using', 'namespace', 'union', 'break', 'enum', 'new', 'case', 'switch', 'continue', 'volatile', 'finally', 'throw', 'try', 'delete', 'typeof', 'sizeof', 'class', 'volatile', 'int', 'float', 'double', 'char', 'short', 'byte', 'void', 'const', 'unsigned', 'signed', 'NULL', 'true', 'false', 'bool', 'size_t', 'long', 'long long'], 1: [] } if self.GetLexer() == stc.STC_LEX_PYTHON: # Python keywords = { 0: keyword.kwlist + ['cdef', 'ctypedef', 'extern', 'cimport', 'cpdef', 'include'], 1: dir(builtins) + ['self'] } elif self.GetLexer() == stc.STC_LEX_R: # R keywords = { 1: ['function', 'for', 'repeat', 'while', 'if', 'else', 'break', 'local', 'global'], 0: ['NA'] } elif self.GetLexer() == stc.STC_LEX_CPP: # C/C++ keywords = baseC.copy() if hasattr(self, 'filename'): if self.filename.endswith('.js'): # JavaScript keywords = { 0: ['var', 'const', 'let', 'import', 'function', 'if', 'else', 'return', 'struct', 'for', 'while', 'do', 'finally', 'throw', 'try', 'switch', 'case', 'break'], 1: ['null', 'false', 'true'] } elif any([self.filename.lower().endswith(ext) for ext in ( '.glsl', '.vert', '.frag')]): # keywords keywords[0] += [ 'invariant', 'precision', 'highp', 'mediump', 'lowp', 'coherent', 'sampler', 'sampler2D', 'layout', 'out', 'in', 'varying', 'uniform', 'attribute'] # types keywords[0] += [ 'vec2', 'vec3', 'vec4', 'mat2', 'mat3', 'mat4', 'ivec2', 'ivec3', 'ivec4', 'imat2', 'imat3', 'imat4', 'bvec2', 'bvec3', 'bvec4', 'bmat2', 'bmat3', 'bmat4', 'dvec2', 'dvec3', 'dvec4', 'dmat2', 'dmat3', 'dmat4'] # reserved keywords[1] += [ 'gl_Position', 'gl_LightSourceParameters', 'gl_MaterialParameters', 'gl_LightModelProducts', 'gl_FrontLightProduct', 'gl_BackLightProduct', 'gl_FrontMaterial', 'gl_BackMaterial', 'gl_FragColor', 'gl_ModelViewMatrix', 'gl_ModelViewProjectionMatrix', 'gl_Vertex', 'gl_NormalMatrix', 'gl_Normal', 'gl_ProjectionMatrix', 'gl_LightSource'] # elif self.GetLexer() == stc.STC_LEX_ARDUINO: # # Arduino # keywords = { # 0: baseC[0], # 1: baseC[1] + [ # 'BIN', 'HEX', 'OCT', 'DEC', 'INPUT', 'OUTPUT', 'HIGH', 'LOW', # 'INPUT_PULLUP', 'LED_BUILTIN', 'string', 'array'] # } # elif self.GetLexer() == stc.STC_LEX_GLSL: # # GLSL # glslTypes = [] # baseType = ['', 'i', 'b', 'd'] # dim = ['2', '3', '4'] # name = ['vec', 'mat'] # for i in baseType: # for j in name: # for k in dim: # glslTypes.append(i + j + k) # keywords = { # 0: baseC[0] + ['invariant', 'precision', 'highp', 'mediump', 'lowp', 'coherent', # 'sampler', 'sampler2D'], # 1: baseC[1] # } else: keywords = { 0: [], 1: [] } return keywords @property def tags(self): tags = { "base": stc.STC_STYLE_DEFAULT, "margin": stc.STC_STYLE_LINENUMBER, "caret": None, "select": None, "indent": stc.STC_STYLE_INDENTGUIDE, "brace": stc.STC_STYLE_BRACELIGHT, "controlchar": stc.STC_STYLE_CONTROLCHAR } if self.GetLexer() == stc.STC_LEX_PYTHON: # Python tags.update({ "operator": stc.STC_P_OPERATOR, "keyword": stc.STC_P_WORD, "keyword2": stc.STC_P_WORD2, "id": stc.STC_P_IDENTIFIER, "num": stc.STC_P_NUMBER, "char": stc.STC_P_CHARACTER, "str": stc.STC_P_STRING, "openstr": stc.STC_P_STRINGEOL, "decorator": stc.STC_P_DECORATOR, "def": stc.STC_P_DEFNAME, "class": stc.STC_P_CLASSNAME, "comment": stc.STC_P_COMMENTLINE, "commentblock": stc.STC_P_COMMENTBLOCK, "documentation": stc.STC_P_TRIPLE, "documentation2": stc.STC_P_TRIPLEDOUBLE, "whitespace": stc.STC_P_DEFAULT }) elif self.GetLexer() == stc.STC_LEX_R: # R tags.update({ "operator": stc.STC_R_OPERATOR, "keyword": stc.STC_R_BASEKWORD, "keyword2": stc.STC_R_KWORD, "id": stc.STC_R_IDENTIFIER, "num": stc.STC_R_NUMBER, "char": stc.STC_R_STRING2, "str": stc.STC_R_STRING, "infix": stc.STC_R_INFIX, "openinfix": stc.STC_R_INFIXEOL, "comment": stc.STC_R_COMMENT, "whitespace": stc.STC_R_DEFAULT }) elif self.GetLexer() == stc.STC_LEX_CPP: # C/C++ tags.update({ "operator": stc.STC_C_OPERATOR, "keyword": stc.STC_C_WORD, "keyword2": stc.STC_C_WORD2, "id": stc.STC_C_IDENTIFIER, "num": stc.STC_C_NUMBER, "char": stc.STC_C_CHARACTER, "str": stc.STC_C_STRING, "openstr": stc.STC_C_STRINGEOL, "class": stc.STC_C_GLOBALCLASS, "comment": stc.STC_C_COMMENT, "commentblock": stc.STC_C_COMMENTLINE, "commentkw": stc.STC_C_COMMENTDOCKEYWORD, "commenterror": stc.STC_C_COMMENTDOCKEYWORDERROR, "documentation": stc.STC_C_COMMENTLINEDOC, "documentation2": stc.STC_C_COMMENTDOC, "whitespace": stc.STC_C_DEFAULT, "preprocessor": stc.STC_C_PREPROCESSOR, "preprocessorcomment": stc.STC_C_PREPROCESSORCOMMENT }) # elif self.GetLexer() == stc.STC_LEX_JSON: # # JSON # tags.update({ # "operator": stc.STC_JSON_OPERATOR, # "keyword": stc.STC_JSON_KEYWORD, # "uri": stc.STC_JSON_URI, # "compactiri": stc.STC_JSON_COMPACTIRI, # "error": stc.STC_JSON_ERROR, # "espacesequence": stc.STC_JSON_ESCAPESEQUENCE, # "propertyname": stc.STC_JSON_PROPERTYNAME, # "ldkeyword": stc.STC_JSON_LDKEYWORD, # "num": stc.STC_JSON_NUMBER, # "str": stc.STC_JSON_STRING, # "openstr": stc.STC_JSON_STRINGEOL, # "comment": stc.STC_JSON_LINECOMMENT, # "commentblock": stc.STC_JSON_BLOCKCOMMENT, # "whitespace": stc.STC_JSON_DEFAULT # }) return tags def hex2rgb(self, hex, base=(0, 0, 0, 255)): if not isinstance(hex, str): return base # Make hex code case irrelevant hex = hex.lower() # dict of hex -> int conversions hexkeys = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9, 'a': 10, 'b': 11, 'c': 12, 'd': 13, 'e': 14, 'f': 15, '#': None} # Check that hex is a hex code if not all(c in hexkeys.keys() for c in hex) or not len(hex) == 7: # Default to transparent if not return wx.Colour(base) # Convert to rgb r = hexkeys[hex[1]] * 16 + hexkeys[hex[2]] g = hexkeys[hex[3]] * 16 + hexkeys[hex[4]] b = hexkeys[hex[5]] * 16 + hexkeys[hex[6]] return wx.Colour(r, g, b, 255) def shiftColour(self, col, offset=15): """Shift colour up or down by a set amount""" if not isinstance(col, wx.Colour): return if col.GetLuminance() < 0.5: newCol = wx.Colour( [c+offset for c in col.Get()] ) else: newCol = wx.Colour( [c - offset for c in col.Get()] ) return newCol def extractFont(self, fontList, base=[]): """Extract specified font from theme spec""" # Convert to list if not already if isinstance(base, str): base = base.split(",") base = base if isinstance(base, list) else [base] if isinstance(fontList, str): fontList = fontList.split(",") fontList = fontList if isinstance(fontList, list) else [fontList] # Extract styles bold, italic = [], [] if "bold" in fontList: bold = [fontList.pop(fontList.index("bold"))] if "italic" in fontList: italic = [fontList.pop(fontList.index("italic"))] # Extract styles from base, if needed if "bold" in base: bold = [base.pop(base.index("bold"))] if "italic" in base: italic = [base.pop(base.index("italic"))] # Append base and default fonts fontList.extend(base+["JetBrains Mono"]) if "" in fontList: del fontList[fontList.index("")] # Set starting font in case none are found try: finalFont = [wx.SystemSettings.GetFont(wx.SYS_ANSI_FIXED_FONT).GetFaceName()] except wx._core.wxAssertionError: finalFont = [wx.Font(10, wx.FONTFAMILY_TELETYPE, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL).GetFaceName()] # Cycle through font names, stop at first valid font if sys.platform == 'win32': for font in fontList: if font in wx.FontEnumerator().GetFacenames(): finalFont = [font] + bold + italic break return ','.join(finalFont) def _setCodeColors(self, spec): """To be called from _psychopyApp only""" #if not self.GetTopWindow() == self: # psychopy.logging.warning("This function should only be called from _psychopyApp") base = spec['base'] base['font'] = self.extractFont(base['font']) # Make sure there's some spec for margins if 'margin' not in spec: spec['margin'] = base # Make sure there's some spec for caret if 'caret' not in spec: spec['caret'] = base # Make sure there's some spec for selection if 'select' not in spec: spec['select'] = base spec['select']['bg'] = self.shiftColour(base['bg'], 30) # Pythonise the universal data (hex -> rgb, tag -> wx int) invalid = [] for key in spec: # Check that full spec is defined, discard if not if all(subkey in spec[key] for subkey in ['bg', 'fg', 'font']): spec[key]['bg'] = self.hex2rgb(spec[key]['bg'], base['bg']) spec[key]['fg'] = self.hex2rgb(spec[key]['fg'], base['fg']) spec[key]['font'] = self.extractFont(spec[key]['font'], base['font']) spec[key]['size'] = int(prefs.coder['codeFontSize']) elif key in ['app', 'icons']: pass else: invalid += [key] for key in invalid: del spec[key] # we have a valid theme so continue for key in spec: ThemeMixin.codeColors[key] = spec[key] # class attribute for all mixin subclasses def _setAppColors(self, spec): hexchars = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'] formats = { "hex|named": [str], "subnamed1": [str, str], "subnamed2": [str, str, str], "hex|named_opacity1": [str, int], "subnamed1_opacity1": [str, str, int], "subnamed2_opacity1": [str, str, str, int], "hex|named_opacity2": [str, float], "subnamed1_opacity2": [str, str, float], "subnamed2_opacity2": [str, str, str, float] } # Cycle through all values for key in spec: # if key not in output: # continue val = spec[key] color = ['invalid'] # Make sure every value is a list if not isinstance(val, list): val = [val] # Figure out what format current spec is in types = [type(v) for v in val] format = "invalid" for f in formats: if formats[f] == types: format = f # Pop out opacity so that it can be assumed not present if "_opacity" in format: opacity = round(val.pop(-1)) format = format.replace("_opacity", "") else: opacity = 255 # Tell the difference between hex and single named values if "hex|named" in format: if val[0] in cLib: # Extract named colour color = cLib[val[0]] format = format.replace("hex|", "") elif len(val[0]) == 7: hex = val[0] if hex[0] == "#" and all([h in hexchars for h in hex[1:].lower()]): # Convert hex colour format = format.replace("|named", "") wxcolor = ThemeMixin.hex2rgb(None, hex) color = list(wxcolor[:3]) else: format = "invalid" else: format = "invalid" if "subnamed" in format: if len(val) == 2 and all([v in cLib for v in val]): color = cLib[val[0]][val[1]] elif len(val) == 3 and all([v in cLib for v in val]): color = cLib[val[0]][val[1]][val[2]] else: format = "invalid" if format == "invalid" \ or "color" not in locals() \ or "opacity" not in locals() \ or "invalid" in color: raise Exception("Invalid app colour spec") else: ThemeMixin.appColors[key] = wx.Colour(color + [opacity]) def getBitmap(name, theme, size=None, emblem=None, emblemPos='bottom_right'): """Retrieves the wx.Bitmap based on name, theme, size and emblem""" global _allIcons return _allIcons.getBitmap(name, theme, size, emblem, emblemPos) class IconCache: """A class to load icons and store them just once as a dict of wx.Bitmap objects according to theme""" _theme = ThemeMixin _bitmaps = {} _buttons = [] # a list of all created buttons _lastBGColor = None _lastIcons = None # def _loadComponentIcons(self, folderList=(), theme=None, forceReload=False): # """load the icons for all the components # """ # if theme is None: # theme = _IconCache.iconTheme # if forceReload or len(self)==0: # compons = experiment.getAllComponents(folderList) # _allIcons = {} # for thisName, thisCompon in compons.items(): # if thisName in components.iconFiles: # # darkmode paths # if "base.png" not in components.iconFiles[thisName]: # iconFolder = theme # components.iconFiles[thisName] = join( # dirname(components.iconFiles[thisName]), # iconFolder, # basename(components.iconFiles[thisName]) # ) # _allIcons[thisName] = self._loadIcons( # components.iconFiles[thisName]) # else: # _allIcons[thisName] = self._loadIcons(None) # return _allIcons # else: # return _allIcons def _findImageFile(self, name, theme, emblem=None, size=None): """Tries to find a valid icon in a range of places with and without a size suffix""" orig = Path(name) if not orig.suffix: # check we have an image suffix orig = Path(name+'.png') if emblem: # add the emblem into the name orig = orig.with_name( "{}_{}{}".format(orig.stem, emblem, orig.suffix)) nameAndSize = orig.with_name(orig.stem+str(size)+orig.suffix) nameAndDouble = orig.with_name(orig.stem+str(size)+"@2x"+orig.suffix) for filename in [nameAndSize, orig, nameAndDouble]: # components with no themes folders (themes were added in 2020.2) if filename.exists(): return str(filename) # components with theme folders # try using the theme name (or 'light' as a default name) for themeName in [theme, 'light']: thisPath = filename.parent / themeName / filename.name if thisPath.exists(): return str(thisPath) # try in the app icons folder (e.g. for "run.png") thisPath = iconsPath / theme / filename if thisPath.exists(): return str(thisPath) # and in the root of the app icons thisPath = iconsPath / filename if thisPath.exists(): return str(thisPath) # still haven't returned nay path. Out of ideas! logging.warning("Failed to find icon name={}, theme={}, " "size={}, emblem={}" .format(name, theme, size, emblem)) def _loadBitmap(self, name, theme, size=None, emblem=None): """Creates wxBitmaps based on the image. png files work best, but anything that wx.Image can load should be fine Doesn't return the icons, just stores them in the dict """ filename = self._findImageFile(name, theme, emblem, size) if not filename: filename = self._findImageFile('unknown.png', theme, emblem, size) # load image with wx.LogNull() to stop libpng complaining about sRGB nologging = wx.LogNull() try: im = wx.Image(filename) except TypeError: raise FileNotFoundError("Failed to find icon name={}, theme={}, " "size={}, emblem={}" .format(name, theme, size, emblem)) del nologging # turns logging back on pix = im.GetSize()[0] if pix > size: im = im.Scale(pix, pix) nameMain = _getIdentifier(name, theme, emblem, size) self._bitmaps[nameMain] = wx.Bitmap(im) if pix > 24: # for bigger images lets create a 1/2 size one too nameSmall = _getIdentifier(name, theme, emblem, pix//2) self._bitmaps[nameSmall] = wx.Bitmap(im.Scale(pix//2, pix//2)) def getBitmap(self, name, theme=None, size=None, emblem=None, beta=False): """Retrieves an icon based on its name, theme, size and emblem either from the cache or loading from file as needed""" if theme is None: theme = ThemeMixin.icons if size is None: size = 48 identifier = _getIdentifier(name, theme=theme, emblem=emblem, size=size) # find/load the bitmaps first if identifier not in IconCache._bitmaps: # load all size icons for this name self._loadBitmap(name, theme, emblem=emblem, size=size) if beta: # If needed, append beta tag betaID = _getIdentifier("beta", theme=theme, emblem=emblem, size=size) if betaID not in IconCache._bitmaps: self._loadBitmap("beta", theme, emblem=emblem, size=size) # Get base icon and beta overlay betaImg = IconCache._bitmaps[betaID].ConvertToImage() baseImg = IconCache._bitmaps[identifier].ConvertToImage() # Get color data and alphas betaData = numpy.array(betaImg.GetData()) betaAlpha = numpy.array(betaImg.GetAlpha(), dtype=int) baseData = numpy.array(baseImg.GetData()) baseAlpha = numpy.array(baseImg.GetAlpha(), dtype=int) # Overlay colors combinedData = baseData r = numpy.where(betaAlpha > 0)[0] * 3 g = numpy.where(betaAlpha > 0)[0] * 3 + 1 b = numpy.where(betaAlpha > 0)[0] * 3 + 2 combinedData[r] = betaData[r] combinedData[g] = betaData[g] combinedData[b] = betaData[b] # Combine alphas combinedAlpha = numpy.add(baseAlpha, betaAlpha) combinedAlpha[combinedAlpha > 255] = 255 combinedAlpha = numpy.uint8(combinedAlpha) # Set these back to the base image combined = betaImg combined.SetData(combinedData) combined.SetAlpha(combinedAlpha) # Replace icon identifier += "_beta" IconCache._bitmaps[identifier] = combined.ConvertToBitmap() return IconCache._bitmaps[identifier] def makeBitmapButton(self, parent, filename, name="", # name of Component e.g. TextComponent label="", # label on the button, often short name emblem=None, toolbar=None, tip=None, size=None, tbKind=wx.ITEM_NORMAL, theme=None): if theme is None: theme = ThemeMixin.icons bmp = self.getBitmap(filename, theme, size, emblem) if toolbar: if 'phoenix' in wx.PlatformInfo: button = toolbar.AddTool(wx.ID_ANY, label=label, bitmap=bmp, shortHelp=tip, kind=tbKind) else: button = toolbar.AddSimpleTool(wx.ID_ANY, label=label, bitmap=bmp, shortHelp=tip, kind=tbKind) else: button = wx.Button(parent, wx.ID_ANY, label=label, name=name, style=wx.NO_BORDER) button.SetBitmap(bmp) button.SetBitmapPosition(wx.TOP) button.SetBackgroundColour(ThemeMixin.appColors['frame_bg']) # just for regular buttons (not toolbar objects) we can re-use buttonInfo = {'btn': button, 'filename': filename, 'size': size, 'emblem': emblem, 'theme': theme} self._buttons.append(buttonInfo) if tip: button.SetToolTip(wx.ToolTip(tip)) return button def getComponentButton(self, parent, name, label, theme=None, size=None, emblem=None, tip=""): """Checks in the experiment.components.iconFiles for filename and loads it into a wx.Bitmap""" if name in components.iconFiles: filename = components.iconFiles[name] btn = self.makeBitmapButton( parent=parent, filename=filename, name=name, label=label, tip=tip, size=size) return btn def getComponentBitmap(self, name, size=None): """Checks in the experiment.components.iconFiles for filename and loads it into a wx.Bitmap""" if type(name) != str: # got a class instead of a name? name = name.getType() if name in components.iconFiles: filename = components.iconFiles[name] bmp = self.getBitmap(name=filename, size=size) return bmp else: print(components.iconFiles) raise ValueError("Failed to find '{}' in components.iconFiles" .format(name)) def setTheme(self, theme): if theme.icons != IconCache._lastIcons: for thisBtn in IconCache._buttons: if thisBtn['btn']: # Check that button hasn't been deleted newBmp = self.getBitmap(name=thisBtn['filename'], size=thisBtn['size'], theme=theme.icons, emblem=thisBtn['emblem']) thisBtn['btn'].SetBitmap(newBmp) thisBtn['btn'].SetBitmapCurrent(newBmp) thisBtn['btn'].SetBitmapPressed(newBmp) thisBtn['btn'].SetBitmapFocus(newBmp) thisBtn['btn'].SetBitmapDisabled(newBmp) thisBtn['btn'].SetBitmapPosition(wx.TOP) IconCache._lastIcons = theme.icons if theme.appColors['frame_bg'] != IconCache._lastBGColor: for thisBtn in IconCache._buttons: try: thisBtn['btn'].SetBackgroundColour( theme.appColors['frame_bg']) except RuntimeError: pass IconCache._lastBGColor = theme def _getIdentifier(name, theme, emblem, size=None): if size is None: return "{}_{}_{}".format(name, theme, emblem) else: return "{}_{}_{}_{}".format(name, theme, emblem, size) class PsychopyTabArt(aui.AuiDefaultTabArt, ThemeMixin): def __init__(self): aui.AuiDefaultTabArt.__init__(self) self.SetDefaultColours() self.SetAGWFlags(aui.AUI_NB_NO_TAB_FOCUS) def SetDefaultColours(self): """ Sets the default colours, which are calculated from the given base colour. :param `base_colour`: an instance of :class:`wx.Colour`. If defaulted to ``None``, a colour is generated accordingly to the platform and theme. """ cs = ThemeMixin.appColors self.SetBaseColour( wx.Colour(cs['tab_bg']) ) self._background_top_colour = wx.Colour(cs['panel_bg']) self._background_bottom_colour = wx.Colour(cs['panel_bg']) self._tab_text_colour = lambda page: cs['text'] self._tab_top_colour = wx.Colour(cs['tab_bg']) self._tab_bottom_colour = wx.Colour(cs['tab_bg']) self._tab_gradient_highlight_colour = wx.Colour(cs['tab_bg']) self._border_colour = wx.Colour(cs['tab_bg']) self._border_pen = wx.Pen(self._border_colour) self._tab_disabled_text_colour = cs['text'] self._tab_inactive_top_colour = wx.Colour(cs['panel_bg']) self._tab_inactive_bottom_colour = wx.Colour(cs['panel_bg']) def DrawTab(self, dc, wnd, page, in_rect, close_button_state, paint_control=False): """ Extends AuiDefaultTabArt.DrawTab to add a transparent border to inactive tabs """ if page.active: self._border_pen = wx.Pen(self._border_colour) else: self._border_pen = wx.TRANSPARENT_PEN out_tab_rect, out_button_rect, x_extent = aui.AuiDefaultTabArt.DrawTab(self, dc, wnd, page, in_rect, close_button_state, paint_control) return out_tab_rect, out_button_rect, x_extent class PsychopyDockArt(aui.AuiDefaultDockArt): def __init__(self): aui.AuiDefaultDockArt.__init__(self) cs = ThemeMixin.appColors # Gradient self._gradient_type = aui.AUI_GRADIENT_NONE # Background self._background_colour = wx.Colour(cs['frame_bg']) self._background_gradient_colour = wx.Colour(cs['frame_bg']) self._background_brush = wx.Brush(self._background_colour) # Border self._border_size = 0 self._border_pen = wx.Pen(cs['frame_bg']) # Sash self._draw_sash = True self._sash_size = 5 self._sash_brush = wx.Brush(cs['frame_bg']) # Gripper self._gripper_brush = wx.Brush(cs['frame_bg']) self._gripper_pen1 = wx.Pen(cs['frame_bg']) self._gripper_pen2 = wx.Pen(cs['frame_bg']) self._gripper_pen3 = wx.Pen(cs['frame_bg']) self._gripper_size = 0 # Hint self._hint_background_colour = wx.Colour(cs['frame_bg']) # Caption bar self._inactive_caption_colour = wx.Colour(cs['docker_bg']) self._inactive_caption_gradient_colour = wx.Colour(cs['docker_bg']) self._inactive_caption_text_colour = wx.Colour(cs['docker_fg']) self._active_caption_colour = wx.Colour(cs['docker_bg']) self._active_caption_gradient_colour = wx.Colour(cs['docker_bg']) self._active_caption_text_colour = wx.Colour(cs['docker_fg']) # self._caption_font self._caption_size = 25 self._button_size = 20 class ThemeSwitcher(wx.Menu): """Class to make a submenu for switching theme, meaning that the menu will always be the same across frames.""" def __init__(self, frame): # Get list of themes themePath = Path(prefs.paths['themes']) themeList = {} for themeFile in themePath.glob("*.json"): try: with open(themeFile, "rb") as fp: theme = json.load(fp) # Add themes to list only if min spec is defined base = theme['base'] if all(key in base for key in ['bg', 'fg', 'font']): themeList[themeFile.stem] = theme['info'] if "info" in theme else "" except (FileNotFoundError, IsADirectoryError): pass # Make menu wx.Menu.__init__(self) # Make priority theme buttons priority = ["PsychopyDark", "PsychopyLight", "ClassicDark", "Classic"] for theme in priority: tooltip = themeList.pop(theme) item = self.AppendRadioItem(wx.ID_ANY, _translate(theme), tooltip) # Bind to theme change method frame.Bind(wx.EVT_MENU, frame.app.onThemeChange, item) # Make other theme buttons for theme in themeList: item = self.AppendRadioItem(wx.ID_ANY, _translate(theme), help=themeList[theme]) frame.Bind(wx.EVT_MENU, frame.app.onThemeChange, item) self.AppendSeparator() # Add Theme Folder button item = self.Append(wx.ID_ANY, _translate("Open theme folder")) frame.Bind(wx.EVT_MENU, self.openThemeFolder, item) def openThemeFolder(self, event): # Choose a command according to OS if sys.platform in ['win32']: comm = "explorer" elif sys.platform in ['darwin']: comm = "open" elif sys.platform in ['linux', 'linux2']: comm = "dolphin" # Use command to open themes folder subprocess.call(f"{comm} {prefs.paths['themes']}", shell=True) def _applyAppTheme(self): for item in self.GetMenuItems(): if item.IsRadio(): # This means it will not attempt to check the separator item.Check(item.ItemLabel.lower() == ThemeMixin.codetheme.lower())
gpl-3.0
tbs1980/Kaggle_DecMeg2014
source/StackedGeneralisation.py
1
11066
# method described in http://arxiv.org/abs/1404.4175 import numpy as np import Classify import RBMPipeline import Utils import sys from scipy.io import loadmat from sklearn.cross_validation import cross_val_score from sklearn.linear_model import LogisticRegression import pywt from statsmodels.robust import stand_mad class StackedGeneralisation: def __init__(self,path_to_data): self._Path2Data=path_to_data self._subjects_train=range(1,13) self._subjects_train_testing=range(12,17) self._subjects_test=range(17,24) self._tmin = 0.0 self._tmax = 0.5 self._first_layer_classifiers=[] self._first_layer_classifiers_1=[] self._data_X=[] self._data_y=[] self._data_layer_1_X=[] self._data_layer_1_y=[] self._clfr2=[] self._data_X_testing=[] self._data_y_testing=[] self._data_layer_1_X_testing=[] self._data_layer_1_y_testing=[] self._sample_weights=[] self._ids_test=[] self._ypred_test=[] self._acc_thr=0.2 self._sensor_scores=[] self._top_channels=[] def ApplyTimeWindow(self,XX, tmin, tmax, sfreq, tmin_original=-0.5): """ A function to apply the desired time window. @param XX a matrix of the shape [trial x channel x time] @param tmin start point of the time window @param tmax end point of the time window @param tmin_original original start point of the time window """ #print "Applying the desired time window." #print beginning = np.round((tmin - tmin_original) * sfreq).astype(np.int) end = np.round((tmax - tmin_original) * sfreq).astype(np.int) XX = XX[:, :, beginning:300].copy() #if np.shape(XX)[2] != 128 : #raise ValueError("the time series should have 128 elements") return XX def ComputeScores(self,X,y): print "Computing cross-validated accuracy for each channel." clf = LogisticRegression(random_state=0) score_channel = np.zeros(X.shape[1]) cv=5 for channel in range(X.shape[1]): X_channel = X[:,channel,:].copy() #X_channel -= X_channel.mean(0) #X_channel = np.nan_to_num(X_channel / X_channel.std(0)) scores = cross_val_score(clf, X_channel, y, cv=cv, scoring='accuracy') score_channel[channel] = scores.mean() #print "Channel :" ,channel," score: ",score_channel[channel] return score_channel def ApplyZnorm(self,XX): """ Apply normalisation. @param XX a matrix of the shape [trial x channel x time] """ #print "Features Normalization." #print XX -= XX.mean(0) XX = np.nan_to_num(XX / XX.std(0)) return XX def ApplySVD(self,XX,num_components): """ Apply SVD to each trial and take the most important componetns @param XX a matrix of the shape [trial x channel x time] @param num_components number of componetns to consider in reduction """ #print "appling svd with componetns",num_components #print for i in range(np.shape(XX)[0]): mat=XX[i,:,:] u,s,v=np.linalg.svd(mat,full_matrices=False) snew=np.zeros(np.shape(s)) if int(num_components) > snew.size-1 or num_components < 0: print "input num_components ",num_components print "changin to ",snew.size-1 num_components=snew.size-1 snew[0:int(num_components)]=s[0:int(num_components)] S=np.diag(snew) XX[i,:,:]=np.dot(u,np.dot(S,v)) return XX def ApplyWaveletTransform(self,XX): XXret = np.zeros( [np.shape(XX)[0],np.shape(XX)[1],188] ) for i in range(np.shape(XX)[0]): for j in range(np.shape(XX)[1]): #print "before ",np.mean(XX[i,j,0:128]) sig = XX[i,j,:] wcfs = pywt.wavedec(sig,wavelet='db2') #if i==0 and j==0 : #print "shape of wcfs= ",np.shape(wcfs) #wcfs[0] = np.zeros(np.shape(wcfs[0])) wcfs = np.concatenate(wcfs) XXret[i,j,:] = wcfs #sigma = stand_mad(wcfs[-1]) #uthresh = sigma*np.sqrt(2*np.log(len(sig))) #dewcfs = wcfs[:] #dewcfs[1:] = (pywt.thresholding.soft(k, value=uthresh) for k in dewcfs[1:]) #dewcfs = np.concatenate(dewcfs) #XXret[i,j,:] = dewcfs #print "after ",np.mean(XX[i,j,0:128]) return XXret def ApplySVDToFeatures(self,mat,num_components): u,s,v=np.linalg.svd(mat,full_matrices=False) snew=np.zeros(np.shape(s)) if int(num_components) > snew.size-1 or num_components < 0: print "input num_components ",num_components print "changin to ",snew.size-1 num_components=snew.size-1 snew[0:int(num_components)]=s[0:int(num_components)] S=np.diag(snew) return np.dot(u,np.dot(S,v)) def ReshapeToFeaturesVector(self,XX): """ Reshape the matrix to a set of features by concatenating the 306 timeseries of each trial in one long vector. @param XX a matrix of the shape [trial x channel x time] """ #print "2D Reshaping: concatenating all 306 timeseries." #print XX = XX.reshape(XX.shape[0], XX.shape[1] * XX.shape[2]) return XX def ProcessData(self,XX,sfreq,tmin_original): """ Process data @param XX a matrix of the shape [trial x channel x time] @param sfreq Frequency of the sampling @param tmin_original Original start point of the window. """ XX=self.ApplyTimeWindow(XX, self._tmin, self._tmax, sfreq,tmin_original) #XX=self.ApplySVD(XX,100) XX=self.ApplyZnorm(XX) #XX = self.ApplyWaveletTransform(XX) XX = self.ReshapeToFeaturesVector(XX) #XX = self.ApplySVDToFeatures(XX,570) return XX #now take only the good top channels #XXtop=XX[:,self._top_channels[:],:] #XXtop=XX[:,self._top_channels[0:200],:] #return self.ReshapeToFeaturesVector(XXtop) def GetTrainData(self,filename): print "Loading", filename data = loadmat(filename, squeeze_me=True) XX = data['X'] yy = data['y'] sfreq = data['sfreq'] tmin_original = data['tmin'] XX=self.ProcessData(XX,sfreq,tmin_original) return (XX,yy) def GetTestData(self,filename): print "Loading", filename data = loadmat(filename, squeeze_me=True) XX = data['X'] ids = data['Id'] sfreq = data['sfreq'] tmin_original = data['tmin'] XX=self.ProcessData(XX,sfreq,tmin_original) return (XX,ids) def FindTheBestChannels(self): for subject in self._subjects_train: filename = self._Path2Data+'/train_subject%02d.mat' % subject data = loadmat(filename, squeeze_me=True) XX = data['X'] yy = data['y'] sfreq = data['sfreq'] tmin_original = data['tmin'] XX=self.ApplyTimeWindow(XX, self._tmin, self._tmax, sfreq,tmin_original) XX=self.ApplyZnorm(XX) scr=self.ComputeScores(XX,yy) #print scr self._sensor_scores.append(scr) print "shape of secore= ",np.shape(self._sensor_scores) self._sensor_scores=np.vstack(self._sensor_scores) scr_means=np.zeros(np.shape(self._sensor_scores)[1]) for i in range(np.shape(self._sensor_scores)[1]): scr_means[i]=np.mean(self._sensor_scores[:,i]) self._top_channels=np.argsort(scr_means) def CreateFistLayer(self): for subject in self._subjects_train: filename = self._Path2Data+'/train_subject%02d.mat' % subject X,y=self.GetTrainData(filename) self._data_layer_1_y.append(y) self._data_X.append(X) self._data_y.append(y) clfr = Classify.LogisticRegression(X, y,None, None) #clfr = Classify.QuadraticDiscriminantAnalysis(X, y,None, None) #clfr_1 = Classify.SupportVectorMachine(X, y,None, None) #clfr = RBMPipeline.LogRegWithRBMFeatures(X, y,None, None) self._first_layer_classifiers.append(clfr) #self._first_layer_classifiers_1.append(clfr_1) #make all the predictions into one vector self._data_layer_1_y=np.concatenate(self._data_layer_1_y) #return #now create first layer of predictions for i in range(len(self._subjects_train)): ypred_1=[] #ypred_1_c1=[] for j in range(len(self._subjects_train)): ypred=self._first_layer_classifiers[i].predict(self._data_X[j]) #ypredc1=self._first_layer_classifiers_1[i].predict(self._data_X[j]) print "error of classifer 0 " ,i,"for data ",j,"=", float(sum(abs(ypred-self._data_y[j])))/float(len(self._data_y[j]))*100,"%" #print "error of classifer 1 " ,i,"for data ",j,"=", float(sum(abs(ypredc1-self._data_y[j])))/float(len(self._data_y[j]))*100,"%" ypred_1.append(ypred) #ypred_1_c1.append(ypredc1) #concatenate all the predictions into a feature vector ypred_1 = np.concatenate(ypred_1) #ypred_1_c1 = np.concatenate(ypred_1_c1) self._data_layer_1_X.append(ypred_1) #self._data_layer_1_X.append(ypred_1_c1) self._data_layer_1_X=np.vstack(self._data_layer_1_X).T #now the second layer print print "creating the second layer" print print "shape =",np.shape(self._data_layer_1_X),np.shape(self._data_layer_1_y) self._clfr2=Classify.LogisticRegression(self._data_layer_1_X, self._data_layer_1_y,None, None) #self._clfr2=Classify.RandomForest(self._data_layer_1_X, self._data_layer_1_y,None, None) #self._clfr2=RBMPipeline.LogRegWithRBMFeatures(self._data_layer_1_X, self._data_layer_1_y,None, None) def TestSeconLayer(self): for subject in self._subjects_train_testing: filename = self._Path2Data+'/train_subject%02d.mat' % subject X,y=self.GetTrainData(filename) self._data_layer_1_y_testing.append(y) self._data_X_testing.append(X) self._data_y_testing.append(y) self._data_layer_1_y_testing=np.concatenate(self._data_layer_1_y_testing) #now create first layer of predictions for i in range(len(self._subjects_train)):#since we have subjects_train number of features here ypred_1=[] #ypred_1_c1=[] for j in range(len(self._subjects_train_testing)): ypred=self._first_layer_classifiers[i].predict(self._data_X_testing[j]) #ypredc1=self._first_layer_classifiers_1[i].predict(self._data_X_testing[j]) ypred_1.append(ypred) #ypred_1_c1.append(ypredc1) ypred_1 = np.concatenate(ypred_1) #ypred_1_c1 = np.concatenate(ypred_1_c1) self._data_layer_1_X_testing.append(ypred_1) #self._data_layer_1_X_testing.append(ypred_1_c1) self._data_layer_1_X_testing=np.vstack(self._data_layer_1_X_testing).T ypred_test = self._clfr2.predict(self._data_layer_1_X_testing) print "error for 2nd classifer =", float(sum(abs(ypred_test-self._data_layer_1_y_testing)))/float(len(self._data_layer_1_y_testing))*100,"%" def PredictTestData(self): print "prediction" for subject in self._subjects_test: filename = self._Path2Data+'/test_subject%02d.mat' % subject X,ids=self.GetTestData(filename) self._data_X_testing.append(X) self._ids_test.append(ids) self._ids_test = np.concatenate(self._ids_test) #now create first layer of predictions for i in range(len(self._subjects_train)):#since we have subjects_train number of features here ypred_1=[] for j in range(len(self._subjects_test)): ypred=self._first_layer_classifiers[i].predict(self._data_X_testing[j]) ypred_1.append(ypred) ypred_1 = np.concatenate(ypred_1) self._data_layer_1_X_testing.append(ypred_1) self._data_layer_1_X_testing=np.vstack(self._data_layer_1_X_testing).T self._ypred_test = self._clfr2.predict(self._data_layer_1_X_testing) return (self._ypred_test,self._ids_test)
gpl-2.0
makersauce/stocks
strategy3.py
1
5995
#Stragegy File ###INTERSECTING WATERFALL STRATEGY ###When 5,10,30 day moving averages intersect and make a triangle ## with 30 day on top, 10 day in middle and 5 day on the bottom, ## Buy at when the percent increase from MARKET to 30_DAY reaches threshold UNLESS the 5 day average exceeds the 10 day or 30 day. ## Sell when the 5 Day decreases import os import random import datetime from stock import Stock, piggy from sys import argv from sym2 import symbols def strategy(symbol): stock = Stock(symbol) stock.update_history() stock.analyze() buy_dates = [] buy_prices = [] sell_dates = [] sell_prices = [] wiggly = piggy(sim=True,holdings=300) buy_flag = False staleness = 0 sell_flag = False earn_flag = False last_bought = 0 for itx, date in enumerate(stock.history_data['Date']): ptrn_lookahead = 5 prox_thres = .02 * float(stock.history_data['Close'][itx]) if float(stock.history_data['30_Day'][itx-ptrn_lookahead]) - prox_thres <= float(stock.history_data['10_Day'][itx-ptrn_lookahead]) <= float(stock.history_data['30_Day'][itx-ptrn_lookahead]) + prox_thres\ and float(stock.history_data['30_Day'][itx-ptrn_lookahead]) - prox_thres <= float(stock.history_data['5_Day'][itx-ptrn_lookahead]) <= float(stock.history_data['30_Day'][itx-ptrn_lookahead]) + prox_thres\ and float(stock.history_data['30_Day'][itx]) > float(stock.history_data['10_Day'][itx]) > float(stock.history_data['5_Day'][itx]): buy_flag = True staleness = 0 gains_thres = 1.1 buy_slop_err = 0.001 if buy_flag \ and float(stock.history_data['5_Day'][itx]) * gains_thres < float(stock.history_data['30_Day'][itx]) \ and float(stock.history_data['5_Day'][itx]) > float(stock.history_data['5_Day'][itx-1]) * (1+buy_slop_err): ##Once there is enough margin betweet the 5 day and 30 day, buy buy_dates.append(date) buy_prices.append(float(stock.history_data['Close'][itx])) buy_flag = False staleness = 0 earn_flag = True num = int(wiggly.holdings * .5 / float(stock.history_data['Close'][itx])) wiggly.buy(stock,num,date=date) buy_dates.append(date) buy_prices.append(float(stock.history_data['Close'][itx])) last_bought = itx if (buy_flag and staleness > 20 or (float(stock.history_data['5_Day'][itx]) > float(stock.history_data['10_Day'][itx]))): buy_flag = False staleness = 0 earn_thres = 1.2 if (earn_flag and float(stock.history_data['10_Day'][itx]) > float(stock.history_data['10_Day'][itx-1]) * (1+buy_slop_err) and float(stock.history_data['Close'][itx]) > float(stock.history_data['5_Day'][last_bought]) * earn_thres): ## and the 5 Day is increasing, then throw the EARNING flag earn_flag = False sell_flag = True ceiling = .5 if (sell_flag and float(stock.history_data['5_Day'][itx]) < float(stock.history_data['5_Day'][itx-1])) \ or (sell_flag and float(stock.history_data['5_Day'][itx]) > float(stock.history_data['5_Day'][itx]) * (ceiling + 1)): sell_flag = False wiggly.sell(stock,-1,date=date) sell_dates.append(date) sell_prices.append(float(stock.history_data['Close'][itx])) staleness += 1 if wiggly.current_stock[stock.symbol] > 0: print "\n\n#####Closing Out######" wiggly.sell(stock,-1,date=date) ##Make a plot import matplotlib.pyplot as plt import matplotlib.dates as plotdate import matplotlib.lines as line import numpy as np months = plotdate.MonthLocator() # every year days = plotdate.DayLocator() # every month monthsFmt = plotdate.DateFormatter('%m %d') fig, ax = plt.subplots() #ax2 = ax.twinx() t = [datetime.datetime.strptime(date,'%Y-%m-%d') for date in stock.history_data['Date']] ax.axis('auto') # format the ticks ax.xaxis.set_major_locator(months) ax.xaxis.set_major_formatter(monthsFmt) ax.xaxis.set_minor_locator(days) fig.autofmt_xdate() ax.plot(t, stock.history_data['5_Day'], '#0000FF') ax.plot(t, stock.history_data['10_Day'], '#5555FF') ax.plot(t, stock.history_data['30_Day'], '#9999FF') #ax.plot(t, stock.history_data['80_Day'], '#AAAAFF') #ax2.plot(t, stock.history_data['Volume'], '#CCFFCC') #ax2.plot(t, stock.history_data['10_Day_Vol'], '#88AA88') buy_dates = [datetime.datetime.strptime(date,'%Y-%m-%d') for date in buy_dates] ax.plot(buy_dates,buy_prices, 'g|',ms=100) sell_dates = [datetime.datetime.strptime(date,'%Y-%m-%d') for date in sell_dates] ax.plot(sell_dates,sell_prices, 'b|',ms=100) ax.plot(t, stock.history_data['Close'], 'r-') plt.title(stock.symbol) #ax.text(t[12], 250, 'hello') plt.show() return {'gains': wiggly.gains, 'symbol': stock.symbol, 'initial_value':stock.history_data['Open'][1]} if __name__ == '__main__': if len(argv) > 1: for arg in argv[1:]: try: strategy(arg) except: exit() else: final_earnings = [] rando = random.randint(0,len(symbols['nasdaq'])-20) for symbol in symbols['nasdaq'][rando:rando+20]: try: final_earnings.append(strategy(symbol)) except: pass i = 0 while os.path.exists("results/test%s.csv" % i): i += 1 f = open('results/test%s.csv' % i,'w+') f.write('Test Results\n') f.write('Symbol\tInitial\tGains\n') for earnings in final_earnings: f.write(earnings['symbol'] + '\t') f.write(str(earnings['initial_value']) + '\t') f.write(str(earnings['gains']) + '\t\n') f.close()
mit
dkushner/zipline
tests/test_sources.py
17
7041
# # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import pytz import numpy as np from six import integer_types from unittest import TestCase import zipline.utils.factory as factory from zipline.sources import (DataFrameSource, DataPanelSource, RandomWalkSource) from zipline.utils import tradingcalendar as calendar_nyse from zipline.assets import AssetFinder class TestDataFrameSource(TestCase): def test_df_source(self): source, df = factory.create_test_df_source() assert isinstance(source.start, pd.lib.Timestamp) assert isinstance(source.end, pd.lib.Timestamp) for expected_dt, expected_price in df.iterrows(): sid0 = next(source) assert expected_dt == sid0.dt assert expected_price[0] == sid0.price def test_df_sid_filtering(self): _, df = factory.create_test_df_source() source = DataFrameSource(df) assert 1 not in [event.sid for event in source], \ "DataFrameSource should only stream selected sid 0, not sid 1." def test_panel_source(self): source, panel = factory.create_test_panel_source(source_type=5) assert isinstance(source.start, pd.lib.Timestamp) assert isinstance(source.end, pd.lib.Timestamp) for event in source: self.assertTrue('sid' in event) self.assertTrue('arbitrary' in event) self.assertTrue('type' in event) self.assertTrue(hasattr(event, 'volume')) self.assertTrue(hasattr(event, 'price')) self.assertEquals(event['type'], 5) self.assertEquals(event['arbitrary'], 1.) self.assertEquals(event['sid'], 0) self.assertTrue(isinstance(event['volume'], int)) self.assertTrue(isinstance(event['arbitrary'], float)) def test_yahoo_bars_to_panel_source(self): finder = AssetFinder() stocks = ['AAPL', 'GE'] start = pd.datetime(1993, 1, 1, 0, 0, 0, 0, pytz.utc) end = pd.datetime(2002, 1, 1, 0, 0, 0, 0, pytz.utc) data = factory.load_bars_from_yahoo(stocks=stocks, indexes={}, start=start, end=end) check_fields = ['sid', 'open', 'high', 'low', 'close', 'volume', 'price'] copy_panel = data.copy() sids = finder.map_identifier_index_to_sids( data.items, data.major_axis[0] ) copy_panel.items = sids source = DataPanelSource(copy_panel) for event in source: for check_field in check_fields: self.assertIn(check_field, event) self.assertTrue(isinstance(event['volume'], (integer_types))) self.assertTrue(event['sid'] in sids) def test_nan_filter_dataframe(self): dates = pd.date_range('1/1/2000', periods=2, freq='B', tz='UTC') df = pd.DataFrame(np.random.randn(2, 2), index=dates, columns=[4, 5]) # should be filtered df.loc[dates[0], 4] = np.nan # should not be filtered, should have been ffilled df.loc[dates[1], 5] = np.nan source = DataFrameSource(df) event = next(source) self.assertEqual(5, event.sid) event = next(source) self.assertEqual(4, event.sid) event = next(source) self.assertEqual(5, event.sid) self.assertFalse(np.isnan(event.price)) def test_nan_filter_panel(self): dates = pd.date_range('1/1/2000', periods=2, freq='B', tz='UTC') df = pd.Panel(np.random.randn(2, 2, 2), major_axis=dates, items=[4, 5], minor_axis=['price', 'volume']) # should be filtered df.loc[4, dates[0], 'price'] = np.nan # should not be filtered, should have been ffilled df.loc[5, dates[1], 'price'] = np.nan source = DataPanelSource(df) event = next(source) self.assertEqual(5, event.sid) event = next(source) self.assertEqual(4, event.sid) event = next(source) self.assertEqual(5, event.sid) self.assertFalse(np.isnan(event.price)) class TestRandomWalkSource(TestCase): def test_minute(self): np.random.seed(123) start_prices = {0: 100, 1: 500} start = pd.Timestamp('1990-01-01', tz='UTC') end = pd.Timestamp('1991-01-01', tz='UTC') source = RandomWalkSource(start_prices=start_prices, calendar=calendar_nyse, start=start, end=end) self.assertIsInstance(source.start, pd.lib.Timestamp) self.assertIsInstance(source.end, pd.lib.Timestamp) for event in source: self.assertIn(event.sid, start_prices.keys()) self.assertIn(event.dt.replace(minute=0, hour=0), calendar_nyse.trading_days) self.assertGreater(event.dt, start) self.assertLess(event.dt, end) self.assertGreater(event.price, 0, "price should never go negative.") self.assertTrue(13 <= event.dt.hour <= 21, "event.dt.hour == %i, not during market \ hours." % event.dt.hour) def test_day(self): np.random.seed(123) start_prices = {0: 100, 1: 500} start = pd.Timestamp('1990-01-01', tz='UTC') end = pd.Timestamp('1992-01-01', tz='UTC') source = RandomWalkSource(start_prices=start_prices, calendar=calendar_nyse, start=start, end=end, freq='daily') self.assertIsInstance(source.start, pd.lib.Timestamp) self.assertIsInstance(source.end, pd.lib.Timestamp) for event in source: self.assertIn(event.sid, start_prices.keys()) self.assertIn(event.dt.replace(minute=0, hour=0), calendar_nyse.trading_days) self.assertGreater(event.dt, start) self.assertLess(event.dt, end) self.assertGreater(event.price, 0, "price should never go negative.") self.assertEqual(event.dt.hour, 0)
apache-2.0
cjayb/mne-python
examples/time_frequency/plot_time_frequency_simulated.py
18
8475
""" ====================================================================== Time-frequency on simulated data (Multitaper vs. Morlet vs. Stockwell) ====================================================================== This example demonstrates the different time-frequency estimation methods on simulated data. It shows the time-frequency resolution trade-off and the problem of estimation variance. In addition it highlights alternative functions for generating TFRs without averaging across trials, or by operating on numpy arrays. """ # Authors: Hari Bharadwaj <[email protected]> # Denis Engemann <[email protected]> # Chris Holdgraf <[email protected]> # # License: BSD (3-clause) import numpy as np from matplotlib import pyplot as plt from mne import create_info, EpochsArray from mne.baseline import rescale from mne.time_frequency import (tfr_multitaper, tfr_stockwell, tfr_morlet, tfr_array_morlet) from mne.viz import centers_to_edges print(__doc__) ############################################################################### # Simulate data # ------------- # # We'll simulate data with a known spectro-temporal structure. sfreq = 1000.0 ch_names = ['SIM0001', 'SIM0002'] ch_types = ['grad', 'grad'] info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types) n_times = 1024 # Just over 1 second epochs n_epochs = 40 seed = 42 rng = np.random.RandomState(seed) noise = rng.randn(n_epochs, len(ch_names), n_times) # Add a 50 Hz sinusoidal burst to the noise and ramp it. t = np.arange(n_times, dtype=np.float64) / sfreq signal = np.sin(np.pi * 2. * 50. * t) # 50 Hz sinusoid signal signal[np.logical_or(t < 0.45, t > 0.55)] = 0. # Hard windowing on_time = np.logical_and(t >= 0.45, t <= 0.55) signal[on_time] *= np.hanning(on_time.sum()) # Ramping data = noise + signal reject = dict(grad=4000) events = np.empty((n_epochs, 3), dtype=int) first_event_sample = 100 event_id = dict(sin50hz=1) for k in range(n_epochs): events[k, :] = first_event_sample + k * n_times, 0, event_id['sin50hz'] epochs = EpochsArray(data=data, info=info, events=events, event_id=event_id, reject=reject) epochs.average().plot() ############################################################################### # Calculate a time-frequency representation (TFR) # ----------------------------------------------- # # Below we'll demonstrate the output of several TFR functions in MNE: # # * :func:`mne.time_frequency.tfr_multitaper` # * :func:`mne.time_frequency.tfr_stockwell` # * :func:`mne.time_frequency.tfr_morlet` # # Multitaper transform # ==================== # First we'll use the multitaper method for calculating the TFR. # This creates several orthogonal tapering windows in the TFR estimation, # which reduces variance. We'll also show some of the parameters that can be # tweaked (e.g., ``time_bandwidth``) that will result in different multitaper # properties, and thus a different TFR. You can trade time resolution or # frequency resolution or both in order to get a reduction in variance. freqs = np.arange(5., 100., 3.) vmin, vmax = -3., 3. # Define our color limits. ############################################################################### # **(1) Least smoothing (most variance/background fluctuations).** n_cycles = freqs / 2. time_bandwidth = 2.0 # Least possible frequency-smoothing (1 taper) power = tfr_multitaper(epochs, freqs=freqs, n_cycles=n_cycles, time_bandwidth=time_bandwidth, return_itc=False) # Plot results. Baseline correct based on first 100 ms. power.plot([0], baseline=(0., 0.1), mode='mean', vmin=vmin, vmax=vmax, title='Sim: Least smoothing, most variance') ############################################################################### # **(2) Less frequency smoothing, more time smoothing.** n_cycles = freqs # Increase time-window length to 1 second. time_bandwidth = 4.0 # Same frequency-smoothing as (1) 3 tapers. power = tfr_multitaper(epochs, freqs=freqs, n_cycles=n_cycles, time_bandwidth=time_bandwidth, return_itc=False) # Plot results. Baseline correct based on first 100 ms. power.plot([0], baseline=(0., 0.1), mode='mean', vmin=vmin, vmax=vmax, title='Sim: Less frequency smoothing, more time smoothing') ############################################################################### # **(3) Less time smoothing, more frequency smoothing.** n_cycles = freqs / 2. time_bandwidth = 8.0 # Same time-smoothing as (1), 7 tapers. power = tfr_multitaper(epochs, freqs=freqs, n_cycles=n_cycles, time_bandwidth=time_bandwidth, return_itc=False) # Plot results. Baseline correct based on first 100 ms. power.plot([0], baseline=(0., 0.1), mode='mean', vmin=vmin, vmax=vmax, title='Sim: Less time smoothing, more frequency smoothing') ############################################################################## # Stockwell (S) transform # ======================= # # Stockwell uses a Gaussian window to balance temporal and spectral resolution. # Importantly, frequency bands are phase-normalized, hence strictly comparable # with regard to timing, and, the input signal can be recoverd from the # transform in a lossless way if we disregard numerical errors. In this case, # we control the spectral / temporal resolution by specifying different widths # of the gaussian window using the ``width`` parameter. fig, axs = plt.subplots(1, 3, figsize=(15, 5), sharey=True) fmin, fmax = freqs[[0, -1]] for width, ax in zip((0.2, .7, 3.0), axs): power = tfr_stockwell(epochs, fmin=fmin, fmax=fmax, width=width) power.plot([0], baseline=(0., 0.1), mode='mean', axes=ax, show=False, colorbar=False) ax.set_title('Sim: Using S transform, width = {:0.1f}'.format(width)) plt.tight_layout() ############################################################################### # Morlet Wavelets # =============== # # Finally, show the TFR using morlet wavelets, which are a sinusoidal wave # with a gaussian envelope. We can control the balance between spectral and # temporal resolution with the ``n_cycles`` parameter, which defines the # number of cycles to include in the window. fig, axs = plt.subplots(1, 3, figsize=(15, 5), sharey=True) all_n_cycles = [1, 3, freqs / 2.] for n_cycles, ax in zip(all_n_cycles, axs): power = tfr_morlet(epochs, freqs=freqs, n_cycles=n_cycles, return_itc=False) power.plot([0], baseline=(0., 0.1), mode='mean', vmin=vmin, vmax=vmax, axes=ax, show=False, colorbar=False) n_cycles = 'scaled by freqs' if not isinstance(n_cycles, int) else n_cycles ax.set_title('Sim: Using Morlet wavelet, n_cycles = %s' % n_cycles) plt.tight_layout() ############################################################################### # Calculating a TFR without averaging over epochs # ----------------------------------------------- # # It is also possible to calculate a TFR without averaging across trials. # We can do this by using ``average=False``. In this case, an instance of # :class:`mne.time_frequency.EpochsTFR` is returned. n_cycles = freqs / 2. power = tfr_morlet(epochs, freqs=freqs, n_cycles=n_cycles, return_itc=False, average=False) print(type(power)) avgpower = power.average() avgpower.plot([0], baseline=(0., 0.1), mode='mean', vmin=vmin, vmax=vmax, title='Using Morlet wavelets and EpochsTFR', show=False) ############################################################################### # Operating on arrays # ------------------- # # MNE also has versions of the functions above which operate on numpy arrays # instead of MNE objects. They expect inputs of the shape # ``(n_epochs, n_channels, n_times)``. They will also return a numpy array # of shape ``(n_epochs, n_channels, n_freqs, n_times)``. power = tfr_array_morlet(epochs.get_data(), sfreq=epochs.info['sfreq'], freqs=freqs, n_cycles=n_cycles, output='avg_power') # Baseline the output rescale(power, epochs.times, (0., 0.1), mode='mean', copy=False) fig, ax = plt.subplots() x, y = centers_to_edges(epochs.times * 1000, freqs) mesh = ax.pcolormesh(x, y, power[0], cmap='RdBu_r', vmin=vmin, vmax=vmax) ax.set_title('TFR calculated on a numpy array') ax.set(ylim=freqs[[0, -1]], xlabel='Time (ms)') fig.colorbar(mesh) plt.tight_layout() plt.show()
bsd-3-clause
jpautom/scikit-learn
sklearn/decomposition/pca.py
20
23579
""" Principal Component Analysis """ # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Michael Eickenberg <[email protected]> # # License: BSD 3 clause from math import log, sqrt import numpy as np from scipy import linalg from scipy.special import gammaln from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, as_float_array from ..utils import check_array from ..utils.extmath import fast_dot, fast_logdet, randomized_svd from ..utils.validation import check_is_fitted def _assess_dimension_(spectrum, rank, n_samples, n_features): """Compute the likelihood of a rank ``rank`` dataset The dataset is assumed to be embedded in gaussian noise of shape(n, dimf) having spectrum ``spectrum``. Parameters ---------- spectrum: array of shape (n) Data spectrum. rank: int Tested rank value. n_samples: int Number of samples. n_features: int Number of features. Returns ------- ll: float, The log-likelihood Notes ----- This implements the method of `Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604` """ if rank > len(spectrum): raise ValueError("The tested rank cannot exceed the rank of the" " dataset") pu = -rank * log(2.) for i in range(rank): pu += (gammaln((n_features - i) / 2.) - log(np.pi) * (n_features - i) / 2.) pl = np.sum(np.log(spectrum[:rank])) pl = -pl * n_samples / 2. if rank == n_features: pv = 0 v = 1 else: v = np.sum(spectrum[rank:]) / (n_features - rank) pv = -np.log(v) * n_samples * (n_features - rank) / 2. m = n_features * rank - rank * (rank + 1.) / 2. pp = log(2. * np.pi) * (m + rank + 1.) / 2. pa = 0. spectrum_ = spectrum.copy() spectrum_[rank:n_features] = v for i in range(rank): for j in range(i + 1, len(spectrum)): pa += log((spectrum[i] - spectrum[j]) * (1. / spectrum_[j] - 1. / spectrum_[i])) + log(n_samples) ll = pu + pl + pv + pp - pa / 2. - rank * log(n_samples) / 2. return ll def _infer_dimension_(spectrum, n_samples, n_features): """Infers the dimension of a dataset of shape (n_samples, n_features) The dataset is described by its spectrum `spectrum`. """ n_spectrum = len(spectrum) ll = np.empty(n_spectrum) for rank in range(n_spectrum): ll[rank] = _assess_dimension_(spectrum, rank, n_samples, n_features) return ll.argmax() class PCA(BaseEstimator, TransformerMixin): """Principal component analysis (PCA) Linear dimensionality reduction using Singular Value Decomposition of the data and keeping only the most significant singular vectors to project the data to a lower dimensional space. This implementation uses the scipy.linalg implementation of the singular value decomposition. It only works for dense arrays and is not scalable to large dimensional data. The time complexity of this implementation is ``O(n ** 3)`` assuming n ~ n_samples ~ n_features. Read more in the :ref:`User Guide <PCA>`. Parameters ---------- n_components : int, None or string Number of components to keep. if n_components is not set all components are kept:: n_components == min(n_samples, n_features) if n_components == 'mle', Minka\'s MLE is used to guess the dimension if ``0 < n_components < 1``, select the number of components such that the amount of variance that needs to be explained is greater than the percentage specified by n_components copy : bool If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. whiten : bool, optional When True (False by default) the `components_` vectors are divided by n_samples times singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making there data respect some hard-wired assumptions. Attributes ---------- components_ : array, [n_components, n_features] Principal axes in feature space, representing the directions of maximum variance in the data. The components are sorted by explained_variance_. explained_variance_ : array, [n_components] The amount of variance explained by each of the selected components. explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. If ``n_components`` is not set then all components are stored and the sum of explained variances is equal to 1.0. mean_ : array, [n_features] Per-feature empirical mean, estimated from the training set. Equal to `X.mean(axis=1)`. n_components_ : int The estimated number of components. Relevant when `n_components` is set to 'mle' or a number between 0 and 1 to select using explained variance. noise_variance_ : float The estimated noise covariance following the Probabilistic PCA model from Tipping and Bishop 1999. See "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf. It is required to computed the estimated data covariance and score samples. Notes ----- For n_components='mle', this class uses the method of `Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604` Implements the probabilistic PCA model from: M. Tipping and C. Bishop, Probabilistic Principal Component Analysis, Journal of the Royal Statistical Society, Series B, 61, Part 3, pp. 611-622 via the score and score_samples methods. See http://www.miketipping.com/papers/met-mppca.pdf Due to implementation subtleties of the Singular Value Decomposition (SVD), which is used in this implementation, running fit twice on the same matrix can lead to principal components with signs flipped (change in direction). For this reason, it is important to always use the same estimator object to transform data in a consistent fashion. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import PCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = PCA(n_components=2) >>> pca.fit(X) PCA(copy=True, n_components=2, whiten=False) >>> print(pca.explained_variance_) # doctest: +ELLIPSIS [ 6.6162... 0.05038...] >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] See also -------- RandomizedPCA KernelPCA SparsePCA TruncatedSVD """ def __init__(self, n_components=None, copy=True, whiten=False): self.n_components = n_components self.copy = copy self.whiten = whiten def fit(self, X, y=None): """Fit the model with X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ self._fit(X) return self def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ U, S, V = self._fit(X) U = U[:, :self.n_components_] if self.whiten: # X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples) U *= sqrt(X.shape[0]) else: # X_new = X * V = U * S * V^T * V = U * S U *= S[:self.n_components_] return U def _fit(self, X): """Fit the model on X Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- U, s, V : ndarrays The SVD of the input data, copied and centered when requested. """ X = check_array(X) n_samples, n_features = X.shape X = as_float_array(X, copy=self.copy) # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ U, S, V = linalg.svd(X, full_matrices=False) explained_variance_ = (S ** 2) / n_samples explained_variance_ratio_ = (explained_variance_ / explained_variance_.sum()) components_ = V n_components = self.n_components if n_components is None: n_components = n_features elif n_components == 'mle': if n_samples < n_features: raise ValueError("n_components='mle' is only supported " "if n_samples >= n_features") n_components = _infer_dimension_(explained_variance_, n_samples, n_features) elif not 0 <= n_components <= n_features: raise ValueError("n_components=%r invalid for n_features=%d" % (n_components, n_features)) if 0 < n_components < 1.0: # number of components for which the cumulated explained variance # percentage is superior to the desired threshold ratio_cumsum = explained_variance_ratio_.cumsum() n_components = np.sum(ratio_cumsum < n_components) + 1 # Compute noise covariance using Probabilistic PCA model # The sigma2 maximum likelihood (cf. eq. 12.46) if n_components < min(n_features, n_samples): self.noise_variance_ = explained_variance_[n_components:].mean() else: self.noise_variance_ = 0. # store n_samples to revert whitening when getting covariance self.n_samples_ = n_samples self.components_ = components_[:n_components] self.explained_variance_ = explained_variance_[:n_components] explained_variance_ratio_ = explained_variance_ratio_[:n_components] self.explained_variance_ratio_ = explained_variance_ratio_ self.n_components_ = n_components return (U, S, V) def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision def transform(self, X): """Apply the dimensionality reduction on X. X is projected on the first principal components previous extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'mean_') X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = fast_dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X): """Transform data back to its original space using `n_components_`. Returns an input X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. X represents data from the projection on to the principal components. Returns ------- X_original array-like, shape (n_samples, n_features) """ check_is_fitted(self, 'mean_') if self.whiten: return fast_dot( X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return fast_dot(X, self.components_) + self.mean_ def score_samples(self, X): """Return the log-likelihood of each sample. See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X: array, shape(n_samples, n_features) The data. Returns ------- ll: array, shape (n_samples,) Log-likelihood of each sample under the current model """ check_is_fitted(self, 'mean_') X = check_array(X) Xr = X - self.mean_ n_features = X.shape[1] log_like = np.zeros(X.shape[0]) precision = self.get_precision() log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1) log_like -= .5 * (n_features * log(2. * np.pi) - fast_logdet(precision)) return log_like def score(self, X, y=None): """Return the average log-likelihood of all samples. See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X: array, shape(n_samples, n_features) The data. Returns ------- ll: float Average log-likelihood of the samples under the current model """ return np.mean(self.score_samples(X)) class RandomizedPCA(BaseEstimator, TransformerMixin): """Principal component analysis (PCA) using randomized SVD Linear dimensionality reduction using approximated Singular Value Decomposition of the data and keeping only the most significant singular vectors to project the data to a lower dimensional space. Read more in the :ref:`User Guide <RandomizedPCA>`. Parameters ---------- n_components : int, optional Maximum number of components to keep. When not given or None, this is set to n_features (the second dimension of the training data). copy : bool If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. iterated_power : int, optional Number of iterations for the power method. 2 by default. .. versionchanged:: 0.18 whiten : bool, optional When True (False by default) the `components_` vectors are divided by the singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making their data respect some hard-wired assumptions. random_state : int or RandomState instance or None (default) Pseudo Random Number generator seed control. If None, use the numpy.random singleton. Attributes ---------- components_ : array, [n_components, n_features] Components with maximum variance. explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. k is not set then all components are stored and the sum of explained variances is equal to 1.0 mean_ : array, [n_features] Per-feature empirical mean, estimated from the training set. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import RandomizedPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = RandomizedPCA(n_components=2) >>> pca.fit(X) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE RandomizedPCA(copy=True, iterated_power=2, n_components=2, random_state=None, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] See also -------- PCA TruncatedSVD References ---------- .. [Halko2009] `Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909)` .. [MRT] `A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert` """ def __init__(self, n_components=None, copy=True, iterated_power=2, whiten=False, random_state=None): self.n_components = n_components self.copy = copy self.iterated_power = iterated_power self.whiten = whiten self.random_state = random_state def fit(self, X, y=None): """Fit the model with X by extracting the first principal components. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ self._fit(check_array(X)) return self def _fit(self, X): """Fit the model to the data X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X : ndarray, shape (n_samples, n_features) The input data, copied, centered and whitened when requested. """ random_state = check_random_state(self.random_state) X = np.atleast_2d(as_float_array(X, copy=self.copy)) n_samples = X.shape[0] # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ if self.n_components is None: n_components = X.shape[1] else: n_components = self.n_components U, S, V = randomized_svd(X, n_components, n_iter=self.iterated_power, random_state=random_state) self.explained_variance_ = exp_var = (S ** 2) / n_samples full_var = np.var(X, axis=0).sum() self.explained_variance_ratio_ = exp_var / full_var if self.whiten: self.components_ = V / S[:, np.newaxis] * sqrt(n_samples) else: self.components_ = V return X def transform(self, X, y=None): """Apply dimensionality reduction on X. X is projected on the first principal components previous extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'mean_') X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X = fast_dot(X, self.components_.T) return X def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ X = check_array(X) X = self._fit(X) return fast_dot(X, self.components_.T) def inverse_transform(self, X, y=None): """Transform data back to its original space. Returns an array X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples in the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform does not compute the exact inverse operation of transform. """ check_is_fitted(self, 'mean_') X_original = fast_dot(X, self.components_) if self.mean_ is not None: X_original = X_original + self.mean_ return X_original
bsd-3-clause
borisz264/mod_seq
structure_ROC_curves/roc_curves_compare_annotations.py
1
5995
__author__ = 'boris' """ THIS IS FOR TROUBLESHOOTING AND COMPARING DIFFERENT TRUE POSITIVE AND TRUE NEGATIVE ANNOTATIONS 5'e end data is a pickled dict of form srt_dict[strand][chrom][position] = counts at position take the 5' end data from count_reads_and_mismatches.py, as well as any number of files output by compute_true_positive_negative.py and compute: 1) 90% windorize the input data (All data above 95th percentile set to 95th percentile) 2) normalize to highest position in rRNA (should just stick to the rRNA of interest, which will be 18S for my initial test) 3) slide a cutoff from 0 to 1 in ~10,000 steps, computing % of true positives and true negatives called positive at each step 4) plot these two percentages against each other for each step, also output these values as a spreadsheet also plot y=x for reference """ import sys, mod_utils, os import numpy from scipy.stats.mstats import winsorize import matplotlib.pyplot as plt plt.rcParams['pdf.fonttype'] = 42 #leaves most text as actual text in PDFs, not outlines from collections import defaultdict def winsorize_norm_chromosome_data(read_5p_ends, chromosome, strand, genome_dict, nucs_to_count, to_winsorize = True, low = 0, high = 0.95): """ :param read_5p_ends: :param chromosome: :param strand: :param genome_dict: :param nucs_to_count: :param low: :param high: :return: an array (now zero-indexed from 1-indexed) of densities for the given chromosome on the given strand, winsorized, and only for the given nucleotides """ max_position = max(read_5p_ends[strand][chromosome].keys()) density_array =numpy.array([0] * max_position) for position in read_5p_ends[strand][chromosome].keys(): if genome_dict[chromosome][position-1] in nucs_to_count: density_array[position-1] = read_5p_ends[strand][chromosome][position] if to_winsorize: winsorize(density_array, limits = (low, 1-high), inplace = True) normed_array = density_array/float(max(density_array)) return normed_array def get_tp_tn(tp_tn_file): TP = set() TN = set() f = open(tp_tn_file) for line in f: ll= line.strip('\n').split('\t') if ll[2] == 'TP': TP.add(int(ll[0])) if ll[2] =='TN': TN.add(int(ll[0])) f.close() return TP, TN def call_positives(density_array, chromosome, strand, genome_dict, nucs_to_count, cutoff): """ :param density_array: :return:a set of called positive positions I've reverted these to 1-indexed to match the TP and TN calls from the structures """ positives = set() for i in range(len(density_array)): if genome_dict[chromosome][i-1] in nucs_to_count: if density_array[i] >= cutoff: positives.add(i)#adding 1 not necessary, since the modified nucleotide is the one 1 upstream of the RT stop!!! return positives def plot_ROC_curves(roc_curves, out_prefix): fig = plt.figure(figsize=(8,8)) plot = fig.add_subplot(111)#first a pie chart of mutated nts color_index = 0 for name in roc_curves: x, y = roc_curves[name] plot.plot(x, y, lw =2, label = name, color = mod_utils.rainbow[color_index]) color_index +=1 plot.plot(x, x, lw =1, ls = 'dashed', color = mod_utils.rainbow[color_index], label = 'y=x') plot.set_xlabel('False positive rate (%) (100-specificity)') plot.set_ylabel('True positive rate (%) (sensitivity)') lg=plt.legend(loc=2,prop={'size':10}, labelspacing=0.2) lg.draw_frame(False) plt.savefig(out_prefix + '.pdf', transparent='True', format='pdf') plt.clf() def pie_read_5p_ends(read_5p_ends, genome_dict, out_prefix): nuc_counts = defaultdict(int) for chromosome in read_5p_ends['+']: for position in read_5p_ends['+'][chromosome]: if position-2 > 0 : nuc = genome_dict[chromosome][position-1] nuc_counts[nuc] += read_5p_ends['+'][chromosome][position] fig = plt.figure(figsize=(8,8)) plot = fig.add_subplot(111)#first a pie chart of mutated nts labels = sorted(nuc_counts.keys()) sizes = [nuc_counts[nt] for nt in labels] plot.pie(sizes, labels = labels, colors = mod_utils.rainbow) plot.set_title('nt exactly at read 5p ends across rRNA') plt.savefig(out_prefix + '_nt_5p_ends.pdf', transparent='True', format='pdf') plt.clf() def main(): read_5p_ends_file, genome_fasta, outprefix = sys.argv[1:4] tp_tn_annotations = sys.argv[4:]#true positive and true negative annotations genome_dict = mod_utils.convertFastaToDict(genome_fasta) read_5p_ends = mod_utils.unPickle(read_5p_ends_file) normed_density_array = winsorize_norm_chromosome_data(read_5p_ends, 'S.c.18S_rRNA', '+', genome_dict, 'ACTG') real_tp_tn_data = [] for filename in tp_tn_annotations: real_tp, real_tn = get_tp_tn(filename) real_tp_tn_data.append((os.path.basename(filename), real_tp, real_tn)) roc_curves = {} for entry in real_tp_tn_data: roc_curves[entry[0]] = [[],[]]#x and y value arrays for each stepsize = 0.0001 for cutoff in numpy.arange(0,1.+5*stepsize, stepsize): called_p = call_positives(normed_density_array, 'S.c.18S_rRNA', '+', genome_dict, 'AC', cutoff) for entry in real_tp_tn_data: #print called_p.intersection(entry[1]) num_tp_called = len(called_p.intersection(entry[1]))#how many true positives called at this cutoff num_fp_called = len(called_p.intersection(entry[2]))#how many fp positives called at this cutoff roc_curves[entry[0]][0].append(100.*num_fp_called/float(len(entry[2])))#FP rate on x axis roc_curves[entry[0]][1].append(100.*num_tp_called/float(len(entry[1])))#TP rate on y axis plot_ROC_curves(roc_curves, outprefix) #pie_read_5p_ends(read_5p_ends, genome_dict, outprefix) if __name__ == '__main__': main()
mit
bgroveben/python3_machine_learning_projects
oreilly_GANs_for_beginners/oreilly_GANs_for_beginners/introduction_to_ml_with_python/mglearn/mglearn/plot_scaling.py
4
1505
import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_blobs from sklearn.preprocessing import (StandardScaler, MinMaxScaler, Normalizer, RobustScaler) from .plot_helpers import cm2 def plot_scaling(): X, y = make_blobs(n_samples=50, centers=2, random_state=4, cluster_std=1) X += 3 plt.figure(figsize=(15, 8)) main_ax = plt.subplot2grid((2, 4), (0, 0), rowspan=2, colspan=2) main_ax.scatter(X[:, 0], X[:, 1], c=y, cmap=cm2, s=60) maxx = np.abs(X[:, 0]).max() maxy = np.abs(X[:, 1]).max() main_ax.set_xlim(-maxx + 1, maxx + 1) main_ax.set_ylim(-maxy + 1, maxy + 1) main_ax.set_title("Original Data") other_axes = [plt.subplot2grid((2, 4), (i, j)) for j in range(2, 4) for i in range(2)] for ax, scaler in zip(other_axes, [StandardScaler(), RobustScaler(), MinMaxScaler(), Normalizer(norm='l2')]): X_ = scaler.fit_transform(X) ax.scatter(X_[:, 0], X_[:, 1], c=y, cmap=cm2, s=60) ax.set_xlim(-2, 2) ax.set_ylim(-2, 2) ax.set_title(type(scaler).__name__) other_axes.append(main_ax) for ax in other_axes: ax.spines['left'].set_position('center') ax.spines['right'].set_color('none') ax.spines['bottom'].set_position('center') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left')
mit
rexshihaoren/scikit-learn
sklearn/datasets/mldata.py
309
7838
"""Automatically download MLdata datasets.""" # Copyright (c) 2011 Pietro Berkes # License: BSD 3 clause import os from os.path import join, exists import re import numbers try: # Python 2 from urllib2 import HTTPError from urllib2 import quote from urllib2 import urlopen except ImportError: # Python 3+ from urllib.error import HTTPError from urllib.parse import quote from urllib.request import urlopen import numpy as np import scipy as sp from scipy import io from shutil import copyfileobj from .base import get_data_home, Bunch MLDATA_BASE_URL = "http://mldata.org/repository/data/download/matlab/%s" def mldata_filename(dataname): """Convert a raw name for a data set in a mldata.org filename.""" dataname = dataname.lower().replace(' ', '-') return re.sub(r'[().]', '', dataname) def fetch_mldata(dataname, target_name='label', data_name='data', transpose_data=True, data_home=None): """Fetch an mldata.org data set If the file does not exist yet, it is downloaded from mldata.org . mldata.org does not have an enforced convention for storing data or naming the columns in a data set. The default behavior of this function works well with the most common cases: 1) data values are stored in the column 'data', and target values in the column 'label' 2) alternatively, the first column stores target values, and the second data values 3) the data array is stored as `n_features x n_samples` , and thus needs to be transposed to match the `sklearn` standard Keyword arguments allow to adapt these defaults to specific data sets (see parameters `target_name`, `data_name`, `transpose_data`, and the examples below). mldata.org data sets may have multiple columns, which are stored in the Bunch object with their original name. Parameters ---------- dataname: Name of the data set on mldata.org, e.g.: "leukemia", "Whistler Daily Snowfall", etc. The raw name is automatically converted to a mldata.org URL . target_name: optional, default: 'label' Name or index of the column containing the target values. data_name: optional, default: 'data' Name or index of the column containing the data. transpose_data: optional, default: True If True, transpose the downloaded data array. data_home: optional, default: None Specify another download and cache folder for the data sets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'DESCR', the full description of the dataset, and 'COL_NAMES', the original names of the dataset columns. Examples -------- Load the 'iris' dataset from mldata.org: >>> from sklearn.datasets.mldata import fetch_mldata >>> import tempfile >>> test_data_home = tempfile.mkdtemp() >>> iris = fetch_mldata('iris', data_home=test_data_home) >>> iris.target.shape (150,) >>> iris.data.shape (150, 4) Load the 'leukemia' dataset from mldata.org, which needs to be transposed to respects the sklearn axes convention: >>> leuk = fetch_mldata('leukemia', transpose_data=True, ... data_home=test_data_home) >>> leuk.data.shape (72, 7129) Load an alternative 'iris' dataset, which has different names for the columns: >>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1, ... data_name=0, data_home=test_data_home) >>> iris3 = fetch_mldata('datasets-UCI iris', ... target_name='class', data_name='double0', ... data_home=test_data_home) >>> import shutil >>> shutil.rmtree(test_data_home) """ # normalize dataset name dataname = mldata_filename(dataname) # check if this data set has been already downloaded data_home = get_data_home(data_home=data_home) data_home = join(data_home, 'mldata') if not exists(data_home): os.makedirs(data_home) matlab_name = dataname + '.mat' filename = join(data_home, matlab_name) # if the file does not exist, download it if not exists(filename): urlname = MLDATA_BASE_URL % quote(dataname) try: mldata_url = urlopen(urlname) except HTTPError as e: if e.code == 404: e.msg = "Dataset '%s' not found on mldata.org." % dataname raise # store Matlab file try: with open(filename, 'w+b') as matlab_file: copyfileobj(mldata_url, matlab_file) except: os.remove(filename) raise mldata_url.close() # load dataset matlab file with open(filename, 'rb') as matlab_file: matlab_dict = io.loadmat(matlab_file, struct_as_record=True) # -- extract data from matlab_dict # flatten column names col_names = [str(descr[0]) for descr in matlab_dict['mldata_descr_ordering'][0]] # if target or data names are indices, transform then into names if isinstance(target_name, numbers.Integral): target_name = col_names[target_name] if isinstance(data_name, numbers.Integral): data_name = col_names[data_name] # rules for making sense of the mldata.org data format # (earlier ones have priority): # 1) there is only one array => it is "data" # 2) there are multiple arrays # a) copy all columns in the bunch, using their column name # b) if there is a column called `target_name`, set "target" to it, # otherwise set "target" to first column # c) if there is a column called `data_name`, set "data" to it, # otherwise set "data" to second column dataset = {'DESCR': 'mldata.org dataset: %s' % dataname, 'COL_NAMES': col_names} # 1) there is only one array => it is considered data if len(col_names) == 1: data_name = col_names[0] dataset['data'] = matlab_dict[data_name] # 2) there are multiple arrays else: for name in col_names: dataset[name] = matlab_dict[name] if target_name in col_names: del dataset[target_name] dataset['target'] = matlab_dict[target_name] else: del dataset[col_names[0]] dataset['target'] = matlab_dict[col_names[0]] if data_name in col_names: del dataset[data_name] dataset['data'] = matlab_dict[data_name] else: del dataset[col_names[1]] dataset['data'] = matlab_dict[col_names[1]] # set axes to sklearn conventions if transpose_data: dataset['data'] = dataset['data'].T if 'target' in dataset: if not sp.sparse.issparse(dataset['target']): dataset['target'] = dataset['target'].squeeze() return Bunch(**dataset) # The following is used by nosetests to setup the docstring tests fixture def setup_module(module): # setup mock urllib2 module to avoid downloading from mldata.org from sklearn.utils.testing import install_mldata_mock install_mldata_mock({ 'iris': { 'data': np.empty((150, 4)), 'label': np.empty(150), }, 'datasets-uci-iris': { 'double0': np.empty((150, 4)), 'class': np.empty((150,)), }, 'leukemia': { 'data': np.empty((72, 7129)), }, }) def teardown_module(module): from sklearn.utils.testing import uninstall_mldata_mock uninstall_mldata_mock()
bsd-3-clause
anugrah-saxena/pycroscopy
pycroscopy/analysis/utils/atom_finding_general_gaussian.py
1
29551
# -*- coding: utf-8 -*- """ @author: Ondrej Dyck """ from __future__ import division, print_function, absolute_import, unicode_literals import os import numpy as np from scipy.optimize import least_squares import itertools as itt import multiprocessing as mp import time as tm from _warnings import warn from sklearn.neighbors import KNeighborsClassifier import h5py import matplotlib.pyplot as plt import matplotlib.patches as patches import sys from ...io.io_utils import recommendCores, realToCompound from ...io.microdata import MicroDataset, MicroDataGroup from ...io.io_hdf5 import ioHDF5 from ...viz import plot_utils from ..model import Model def do_fit(single_parm): parms = single_parm[0] coef_guess_mat = parms[1] fit_region = parms[2] s1 = parms[3] s2 = parms[4] lb_mat = parms[5] ub_mat = parms[6] kwargs = single_parm[1] max_function_evals = kwargs['max_function_evals'] plsq = least_squares(gauss_2d_residuals, coef_guess_mat.ravel(), args=(fit_region.ravel(), s1.T, s2.T), kwargs=kwargs, bounds=(lb_mat.ravel(), ub_mat.ravel()), jac='2-point', max_nfev=max_function_evals) coef_fit_mat = np.reshape(plsq.x, (-1, 7)) #if verbose: # return coef_guess_mat, lb_mat, ub_mat, coef_fit_mat, fit_region, s_mat, plsq #else: return coef_fit_mat def gauss_2d_residuals(parms_vec, orig_data_mat, x_data, y_data, **kwargs): """ Calculates the residual Parameters ---------- parms_vec : 1D numpy.ndarray Raveled version of the parameters matrix orig_data_mat : 2D numpy array Section of the image being fitted x_data : 3D numpy.ndarray y_data : numpy.ndarray Returns ------- err_vec : 1D numpy.ndarray Difference between the original data and the matrix obtained by evaluating parms_vec with x_data_mat """ # Only need to reshape the parms from 1D to 2D parms_mat = np.reshape(parms_vec, (-1, 7)) # print(parms_mat) err = orig_data_mat - gauss2d(x_data, y_data, *parms_mat, **kwargs).ravel() return err def gauss2d(X, Y, *parms, **kwargs): """ Calculates a general 2d elliptic gaussian Parameters ---------- X, Y : the x and y matrix values from the call "X, Y = np.meshgrid(x,y)" where x and y are defined by x = np.arange(-width/2,width/2) and y = np.arange(-height/2,height/2). params: List of 7 parameters defining the gaussian. The parameters are [A, x0, y0, sigma_x, sigma_y, theta, background] A : amplitude x0: x position y0: y position sigma_x: standard deviation in x sigma_y: standard deviation in y theta: rotation angle background: a background constant Returns ------- Returns a width x height matrix of values representing the call to the gaussian function at each position. """ symmetric = kwargs['symmetric'] background = kwargs['background'] Z = np.zeros(np.shape(X)) background_value = parms[0][-1] # we can only have one background value for the fit region for guess in parms: # each gaussian has a background associated with it but we only use the center atom background A, x0, y0, sigma_x, sigma_y, theta, background_unused = guess # determine which type of gaussian we want if symmetric: sigma_y = sigma_x if not background: background = 0 else: if not background: background = 0 # define some variables a = np.cos(theta) ** 2 / (2 * sigma_x ** 2) + np.sin(theta) ** 2 / (2 * sigma_y ** 2) b = -np.sin(2 * theta) / (4 * sigma_x ** 2) + np.sin(2 * theta) / (4 * sigma_y ** 2) c = np.sin(theta) ** 2 / (2 * sigma_x ** 2) + np.cos(theta) ** 2 / (2 * sigma_y ** 2) # calculate the final value Z += A * np.exp(- (a * (X - x0) ** 2 - 2 * b * (X - x0) * (Y - y0) + c * (Y - y0) ** 2)) + background_value return Z class Gauss_Fit(object): """ Initializes the gaussian fitting routines: fit_motif() fit_atom_positions_parallel() write_to_disk() Parameters ---------- atom_grp : h5py.Group reference Parent group containing the atom guess positions, cropped clean image and motif positions fitting_parms : dictionary Parameters used for atom position fitting 'fit_region_size': region to consider when fitting. Should be large enough to see the nearest neighbors. 'num_nearest_neighbors': the number of nearest neighbors to fit 'sigma_guess': starting guess for gaussian standard deviation. Should be about the size of an atom width in pixels. 'position_range': range that the fitted position can move from initial guess position in pixels 'max_function_evals': maximum allowed function calls; passed to the least squares fitter 'fitting_tolerance': target difference between the fit and the data 'symmetric': flag to signal if a symmetric gaussian is desired (i.e. sigma_x == sigma_y) 'background': flag to signal if a background constant is desired 'movement_allowance': percent of movement allowed (on all parameters except x and y positions """ def __init__(self, atom_grp, fitting_parms): # we should do some initial checks here to ensure the data is at the correct stage for atom fitting print('Initializing Gauss Fit') # check that the data is appropriate (does nothing yet) self.check_data(atom_grp) # set dtypes self.atom_coeff_dtype = np.dtype([('type', np.float32), ('amplitude', np.float32), ('x', np.float32), ('y', np.float32), ('sigma_x', np.float32), ('sigma_y', np.float32), ('theta', np.float32), ('background', np.float32)]) self.motif_coeff_dtype = np.dtype([('amplitude', np.float32), ('x', np.float32), ('y', np.float32), ('sigma_x', np.float32), ('sigma_y', np.float32), ('theta', np.float32), ('background', np.float32)]) # initialize some variables self.atom_grp = atom_grp self.cropped_clean_image = self.atom_grp['Cropped_Clean_Image'][()] self.h5_guess = self.atom_grp['Guess_Positions'] self.fitting_parms = fitting_parms self.win_size = self.atom_grp.attrs['motif_win_size'] half_wind = int(self.win_size * 0.5) self.motif_centers = self.atom_grp['Motif_Centers'][:] - half_wind # << correction for double cropped image self.psf_width = self.atom_grp.attrs['psf_width'] # grab the initial guesses self.all_atom_guesses = np.transpose(np.vstack((self.h5_guess['x'], self.h5_guess['y'], self.h5_guess['type']))) self.num_atoms = self.all_atom_guesses.shape[0] # number of atoms # build distance matrix pos_vec = self.all_atom_guesses[:, 0] + 1j * self.all_atom_guesses[:, 1] pos_mat1 = np.tile(np.transpose(np.atleast_2d(pos_vec)), [1, self.num_atoms]) pos_mat2 = np.transpose(pos_mat1) d_mat = np.abs(pos_mat2 - pos_mat1) # matrix of distances between all atoms # sort the distance matrix and keep only the atoms within the nearest neighbor limit neighbor_dist_order = np.argsort(d_mat) self.num_nearest_neighbors = self.fitting_parms['num_nearest_neighbors'] # neighbor dist order has the (indices of the) neighbors for each atom sorted by distance self.closest_neighbors_mat = neighbor_dist_order[:, 1:self.num_nearest_neighbors + 1] # find which atoms are at the centers of the motifs self.center_atom_vec = (self.motif_centers[:, 0]) + (1j * self.motif_centers[:, 1]) self.center_atom_dists = [np.abs(pos_vec - item) for item in self.center_atom_vec] self.center_atom_sorted = np.argsort(self.center_atom_dists) self.center_atom_indices = self.center_atom_sorted[:, 0] def fit_atom_positions_parallel(self, plot_results=True, num_cores=None): """ Fits the positions of N atoms in parallel Parameters ---------- plot_results : optional boolean (default is True) Specifies whether to output a visualization of the fitting results num_cores : unsigned int (Optional. Default = available logical cores - 2) Number of cores to compute with Creates guess_dataset and fit_dataset with the results. Returns ------- fit_dataset: NxM numpy array of tuples where N is the number of atoms fit and M is the number of nearest neighbors considered. Each tuple contains the converged values for each gaussian. The value names are stored in the dtypes. """ t_start = tm.time() if num_cores is None: num_cores = recommendCores(self.num_atoms, requested_cores=num_cores, lengthy_computation=False) print('Setting up guesses') self.guess_parms = [] for i in range(self.num_atoms): self.guess_parms.append(self.do_guess(i)) print('Fitting...') if num_cores > 1: pool = mp.Pool(processes=num_cores) parm_list = itt.izip(self.guess_parms, itt.repeat(self.fitting_parms)) chunk = int(self.num_atoms / num_cores) jobs = pool.imap(do_fit, parm_list, chunksize=chunk) self.fitting_results = [j for j in jobs] pool.close() else: parm_list = itt.izip(self.guess_parms, itt.repeat(self.fitting_parms)) self.fitting_results = [do_fit(parm) for parm in parm_list] print ('Finalizing datasets...') self.guess_dataset = np.zeros(shape=(self.num_atoms, self.num_nearest_neighbors + 1), dtype=self.atom_coeff_dtype) self.fit_dataset = np.zeros(shape=self.guess_dataset.shape, dtype=self.guess_dataset.dtype) for atom_ind, single_atom_results in enumerate(self.fitting_results): types = np.hstack((self.h5_guess['type'][atom_ind], [self.h5_guess['type'][neighbor] for neighbor in self.closest_neighbors_mat[atom_ind]])) atom_data = np.hstack((np.vstack(types), single_atom_results)) atom_data = [tuple(element) for element in atom_data] self.fit_dataset[atom_ind] = atom_data single_atom_guess = self.guess_parms[atom_ind] atom_guess_data = np.hstack((np.vstack(types), single_atom_guess[1])) atom_guess_data = [tuple(element) for element in atom_guess_data] self.guess_dataset[atom_ind] = atom_guess_data tot_time = np.round(tm.time() - t_start) print('Took {} sec to find {} atoms with {} cores'.format(tot_time, len(self.fitting_results), num_cores)) # if plotting is desired if plot_results: fig, axis = plt.subplots(figsize=(14, 14)) axis.hold(True) axis.imshow(self.cropped_clean_image, interpolation='none', cmap="gray") axis.scatter(self.guess_dataset[:, 0]['y'], self.guess_dataset[:, 0]['x'], color='yellow', label='Guess') axis.scatter(self.fit_dataset[:, 0]['y'], self.fit_dataset[:, 0]['x'], color='red', label='Fit') axis.legend() fig.tight_layout() fig.show() return self.fit_dataset def do_guess(self, atom_ind, initial_motifs=False): """ Fits the position of a single atom. Parameters ---------- atom_ind : int The index of the atom to generate guess parameters for initial_motifs : optional boolean (default is False) Specifies whether we are generating guesses for the initial motifs. Subsequent guesses have the advantage of the fits from the motifs and will be much better starting values. Returns ------- atom_ind : int The index of the atom to generate guess parameters for coef_guess_mat : 2D numpy array Initial guess parameters for all the gaussians. fit_region : 2D numpy array The fit region cropped from the image s1 and s2 : 2D numpy arrays The required input for the X and Y parameters of gauss2d lb_mat and ub_mat : 2D numpy arrays The lower and upper bounds for the fitting. """ fit_region_size = self.fitting_parms['fit_region_size'] movement_allowance = self.fitting_parms['movement_allowance'] position_range = self.fitting_parms['position_range'] # start writing down initial guesses x_center_atom = self.h5_guess['x'][atom_ind] y_center_atom = self.h5_guess['y'][atom_ind] x_neighbor_atoms = [self.h5_guess['x'][self.closest_neighbors_mat[atom_ind][i]] for i in range(self.num_nearest_neighbors)] y_neighbor_atoms = [self.h5_guess['y'][self.closest_neighbors_mat[atom_ind][i]] for i in range(self.num_nearest_neighbors)] # select the window we're going to be fitting x_range = slice(max(int(np.round(x_center_atom - fit_region_size)), 0), min(int(np.round(x_center_atom + fit_region_size)), self.cropped_clean_image.shape[0])) y_range = slice(max(int(np.round(y_center_atom - fit_region_size)), 0), min(int(np.round(y_center_atom + fit_region_size)), self.cropped_clean_image.shape[1])) fit_region = self.cropped_clean_image[x_range, y_range] # define x and y fitting range s1, s2 = np.meshgrid(range(x_range.start, x_range.stop), range(y_range.start, y_range.stop)) # guesses are different if we're fitting the initial windows if initial_motifs: # If true, we need to generate more crude guesses # for the initial motif window fitting. # Once these have been fit properly they will act # as the starting point for future guesses. # put the initial guesses into the proper form x_guess = np.hstack((x_center_atom, x_neighbor_atoms)) y_guess = np.hstack((y_center_atom, y_neighbor_atoms)) sigma_x_center_atom = self.fitting_parms['sigma_guess'] sigma_y_center_atom = self.fitting_parms['sigma_guess'] sigma_x_neighbor_atoms = [self.fitting_parms['sigma_guess'] for i in range(self.num_nearest_neighbors)] sigma_y_neighbor_atoms = [self.fitting_parms['sigma_guess'] for i in range(self.num_nearest_neighbors)] theta_center_atom = 0 theta_neighbor_atoms = np.zeros(self.num_nearest_neighbors) background_center_atom = np.min(fit_region) # The existence of a background messes up a straight forward gaussian amplitude guess, # so we add/subtract the background value from the straight forward guess depending # on if the background is positive or negative. if np.min(fit_region) < 0: a_guess = self.cropped_clean_image[ np.rint(x_guess).astype(int), np.rint(y_guess).astype(int)] - background_center_atom else: a_guess = self.cropped_clean_image[ np.rint(x_guess).astype(int), np.rint(y_guess).astype(int)] + background_center_atom sigma_x_guess = np.hstack((sigma_x_center_atom, sigma_x_neighbor_atoms)) sigma_y_guess = np.hstack((sigma_y_center_atom, sigma_y_neighbor_atoms)) theta_guess = np.hstack((theta_center_atom, theta_neighbor_atoms)) background_guess = np.hstack([background_center_atom for num in range( self.num_nearest_neighbors + 1)]) # we will only need one background coef_guess_mat = np.transpose(np.vstack((a_guess, x_guess, y_guess, sigma_x_guess, sigma_y_guess, theta_guess, background_guess))) else: # otherwise better guesses are assumed to exist motif_type = self.h5_guess['type'][atom_ind] coef_guess_mat = np.copy(self.motif_converged_parms[motif_type]) coef_guess_mat[:, 1] = self.h5_guess['x'][atom_ind] + coef_guess_mat[:, 1] coef_guess_mat[:, 2] = self.h5_guess['y'][atom_ind] + coef_guess_mat[:, 2] # Choose upper and lower bounds for the fitting # # Address negatives first lb_a = [] ub_a = [] for item in coef_guess_mat[:, 0]: # amplitudes if item < 0: lb_a.append(item + item * movement_allowance) ub_a.append(item - item * movement_allowance) else: lb_a.append(item - item * movement_allowance) ub_a.append(item + item * movement_allowance) lb_background = [] ub_background = [] for item in coef_guess_mat[:, 6]: # background if item < 0: lb_background.append(item + item * movement_allowance) ub_background.append(item - item * movement_allowance) else: lb_background.append(item - item * movement_allowance) ub_background.append(item + item * movement_allowance) # Set up upper and lower bounds: lb_mat = [lb_a, # amplitude coef_guess_mat[:, 1] - position_range, # x position coef_guess_mat[:, 2] - position_range, # y position [np.max([0, value - value * movement_allowance]) for value in coef_guess_mat[:, 3]], # sigma x [np.max([0, value - value * movement_allowance]) for value in coef_guess_mat[:, 4]], # sigma y coef_guess_mat[:, 5] - 2 * 3.14159, # theta lb_background] # background ub_mat = [ub_a, # amplitude coef_guess_mat[:, 1] + position_range, # x position coef_guess_mat[:, 2] + position_range, # y position coef_guess_mat[:, 3] + coef_guess_mat[:, 3] * movement_allowance, # sigma x coef_guess_mat[:, 4] + coef_guess_mat[:, 4] * movement_allowance, # sigma y coef_guess_mat[:, 5] + 2 * 3.14159, # theta ub_background] # background lb_mat = np.transpose(lb_mat) ub_mat = np.transpose(ub_mat) check_bounds = False if check_bounds: for i, item in enumerate(coef_guess_mat): for j, value in enumerate(item): if lb_mat[i][j] > value or ub_mat[i][j] < value: print('Atom number: {}'.format(atom_ind)) print('Guess: {}'.format(item)) print('Lower bound: {}'.format(lb_mat[i])) print('Upper bound: {}'.format(ub_mat[i])) print('dtypes: {}'.format(self.atom_coeff_dtype.names)) raise ValueError('{} guess is out of bounds'.format(self.atom_coeff_dtype.names[j])) return atom_ind, coef_guess_mat, fit_region, s1, s2, lb_mat, ub_mat def check_data(self, atom_grp): # some data checks here try: img = atom_grp['Cropped_Clean_Image'] except KeyError: raise KeyError('The data \'Cropped_Clean_Image\' must exist before fitting') try: guesses = atom_grp['Guess_Positions'] except KeyError: raise KeyError('The data \'Guess_Positions\' must exist before fitting') try: motifs = atom_grp['Motif_Centers'] except KeyError: raise KeyError('The data \'Motif_Centers\' must exist before fitting') if np.shape(img)[0] < 1 or np.shape(img)[1] < 1: raise Exception('\'Cropped_Clean_Image\' data must have two dimensions with lengths greater than one') if len(guesses) < 1: raise Exception('\'Guess_Positions\' data length must be greater than one') if len(guesses[0]) < 3: raise Exception('\'Guess_Positions\' data must have at least three values for each entry: ' 'type, x position, and y position') if motifs.shape[0] < 1: raise Exception('\'Motif_Centers\' data must contain at least one motif') if motifs.shape[1] != 2: raise Exception('\'Motif_Centers\' data is expected to have a shape of (n, 2). ' 'The second dimension is not 2.') def write_to_disk(self): """ Writes the gaussian fitting results to disk Parameters ---------- None Returns ------- Returns the atom parent group containing the original data and the newly written data: Gaussian_Guesses Gaussian_Fits Motif_Guesses Motif_Fits Nearest_Neighbor_Indices """ ds_atom_guesses = MicroDataset('Gaussian_Guesses', data=self.guess_dataset) ds_atom_fits = MicroDataset('Gaussian_Fits', data=self.fit_dataset) ds_motif_guesses = MicroDataset('Motif_Guesses', data=self.motif_guess_dataset) ds_motif_fits = MicroDataset('Motif_Fits', data=self.motif_converged_dataset) ds_nearest_neighbors = MicroDataset('Nearest_Neighbor_Indices', data=self.closest_neighbors_mat, dtype=np.uint32) dgrp_atom_finding = MicroDataGroup(self.atom_grp.name.split('/')[-1], parent=self.atom_grp.parent.name) dgrp_atom_finding.attrs = self.fitting_parms dgrp_atom_finding.addChildren([ds_atom_guesses, ds_atom_fits, ds_motif_guesses, ds_motif_fits, ds_nearest_neighbors]) hdf = ioHDF5(self.atom_grp.file) h5_atom_refs = hdf.writeData(dgrp_atom_finding) hdf.flush() return self.atom_grp def fit_motif(self, plot_results=True): ''' Parameters ---------- plot_results: boolean (default = True) Flag to specify whether a result summary should be plotted Returns ------- motif_converged_dataset: NxM numpy array of tuples where N is the number of motifs and M is the number of nearest neighbors considered. Each tuple contains the converged parameters for a gaussian fit to an atom in a motif window. ''' self.motif_guesses = [] self.motif_parms = [] self.motif_converged_parms = [] self.fit_motifs = [] fit_region = [] # generate final dataset forms self.motif_guess_dataset = np.zeros(shape=(self.motif_centers.shape[0], self.num_nearest_neighbors + 1), dtype=self.motif_coeff_dtype) self.motif_converged_dataset = np.zeros(shape=(self.motif_centers.shape[0], self.num_nearest_neighbors + 1), dtype=self.motif_coeff_dtype) for motif in range(len(self.motif_centers)): # get guesses self.motif_parms.append(self.do_guess(self.center_atom_indices[motif], initial_motifs=True)) # pull out parameters for generating the gaussians coef_guess_mat = self.motif_parms[motif][1] s1 = self.motif_parms[motif][3].T s2 = self.motif_parms[motif][4].T fit_region.append(self.motif_parms[motif][2]) # put guesses into final dataset form self.motif_guess_dataset[motif] = [tuple(element) for element in coef_guess_mat] # store the guess results for plotting self.motif_guesses.append(gauss2d(s1, s2, *coef_guess_mat, **self.fitting_parms)) # fit the motif with num_nearest_neighbors + 1 gaussians parm_list = [self.motif_parms[motif], self.fitting_parms] fitting_results = do_fit(parm_list) # store the converged results self.motif_converged_parms.append(fitting_results) self.motif_converged_dataset[motif] = [tuple(element) for element in fitting_results] # store the images of the converged gaussians self.fit_motifs.append(gauss2d(s1, s2, *fitting_results, **self.fitting_parms)) # calculate the relative atom positions (instead of absolute) fitting_results[:, 1] = fitting_results[:, 1] - self.motif_centers[motif][0] fitting_results[:, 2] = fitting_results[:, 2] - self.motif_centers[motif][1] # plot results if desired if plot_results: # initialize the figure fig, axes = plt.subplots(ncols=3, nrows=len(self.motif_centers), figsize=(14, 6 * len(self.motif_centers))) for i, ax_row in enumerate(np.atleast_2d(axes)): # plot the original windows ax_row[0].imshow(fit_region[i], interpolation='none', cmap=plot_utils.cmap_jet_white_center()) ax_row[0].set_title('Original Window') # plot the initial guess windows ax_row[1].imshow(self.motif_guesses[i], interpolation='none', cmap=plot_utils.cmap_jet_white_center()) ax_row[1].set_title('Initial Gaussian Guesses') # plot the converged gaussians ax_row[2].imshow(self.fit_motifs[i], interpolation='none', cmap=plot_utils.cmap_jet_white_center()) ax_row[2].set_title('Converged Gaussians') fig.show() return self.motif_converged_dataset # if __name__=='__main__': # file_name = r"C:\Users\o2d\Documents\pycroscopy\\test_scripts\\testing_gauss_fit\image 04.h5" # folder_path, file_path = os.path.split(file_name) # # file_base_name, file_extension = file_name.rsplit('.') # h5_file = h5py.File(file_name, mode='r+') # # look at the data tree in the h5 # ''' # # define a small function called 'print_tree' to look at the folder tree structure # def print_tree(parent): # print(parent.name) # if isinstance(parent, h5py.Group): # for child in parent: # print_tree(parent[child]) # ''' # # #print('Datasets and datagroups within the file:') # file_handle = h5_file # #print_tree(file_handle) # # cropped_clean_image = h5_file['/Measurement_000/Channel_000/Raw_Data-Windowing_000/Image_Windows-SVD_000/U-Cluster_000/Labels-Atom_Finding_000/Cropped_Clean_Image'] # atom_grp = cropped_clean_image.parent # guess_params = atom_grp['Guess_Positions'] # # num_nearest_neighbors = 4 # psf_width = atom_grp.attrs['psf_width'] # win_size = atom_grp.attrs['motif_win_size'] # # fitting_parms = {'fit_region_size': win_size * 0.5, # region to consider when fitting # 'num_nearest_neighbors': num_nearest_neighbors, # 'sigma_guess': 3, # starting guess for gaussian standard deviation # 'position_range': win_size / 4,# range that the fitted position can go from initial guess position[pixels] # 'max_function_evals': 100, # 'fitting_tolerance': 1E-4, # 'symmetric': True, # 'background': True, # 'movement_allowance': 5.0} # percent of movement allowed (on some parameters) # # foo = Gauss_Fit(atom_grp, fitting_parms) # #
mit
sabyasachi087/sp17-i524
project/S17-IR-P012/code/binarize.py
21
1096
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue Apr 4 15:56:31 2017 I524 Project: OCR Preprocessing Binarization @author: saber """ import numpy as np import cv2 import matplotlib.pyplot as plt image_path = 'sample1.png' image_arr = cv2.imread(image_path, 0) plt.figure(1) plt.subplot(311) # Plot histogram of data plt.hist(image_arr.flatten()) hist, bin_centers = np.histogram(image_arr) weight1 = np.cumsum(hist) weight2 = np.cumsum(hist[::-1])[::-1] mean1 = np.cumsum(hist * bin_centers[1:]) / weight1 mean2 = np.cumsum((hist * bin_centers[1:]) / weight2[::-1])[::-1] variance12 = weight1[:-1] * weight2[1:] * (mean1[:-1] - mean2[1:])**2 idx = np.argmax(variance12) threshold = bin_centers[:-1][idx] img_bin = np.zeros(image_arr.shape) for i in range(image_arr.shape[0]): for j in range(image_arr.shape[1]): if image_arr[i, j] > threshold: img_bin[i, j] = 255 else: img_bin[i, j] = 0 #plt.imshow(image_arr) #plt.imshow(img_bin) plt.subplot(312) plt.imshow(image_arr, 'gray') plt.subplot(313) plt.imshow(img_bin, 'gray')
apache-2.0
tosolveit/scikit-learn
sklearn/mixture/tests/test_dpgmm.py
261
4490
import unittest import sys import numpy as np from sklearn.mixture import DPGMM, VBGMM from sklearn.mixture.dpgmm import log_normalize from sklearn.datasets import make_blobs from sklearn.utils.testing import assert_array_less, assert_equal from sklearn.mixture.tests.test_gmm import GMMTester from sklearn.externals.six.moves import cStringIO as StringIO np.seterr(all='warn') def test_class_weights(): # check that the class weights are updated # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50) dpgmm.fit(X) # get indices of components that are used: indices = np.unique(dpgmm.predict(X)) active = np.zeros(10, dtype=np.bool) active[indices] = True # used components are important assert_array_less(.1, dpgmm.weights_[active]) # others are not assert_array_less(dpgmm.weights_[~active], .05) def test_verbose_boolean(): # checks that the output for the verbose output is the same # for the flag values '1' and 'True' # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm_bool = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=True) dpgmm_int = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: # generate output with the boolean flag dpgmm_bool.fit(X) verbose_output = sys.stdout verbose_output.seek(0) bool_output = verbose_output.readline() # generate output with the int flag dpgmm_int.fit(X) verbose_output = sys.stdout verbose_output.seek(0) int_output = verbose_output.readline() assert_equal(bool_output, int_output) finally: sys.stdout = old_stdout def test_verbose_first_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout def test_verbose_second_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout def test_log_normalize(): v = np.array([0.1, 0.8, 0.01, 0.09]) a = np.log(2 * v) assert np.allclose(v, log_normalize(a), rtol=0.01) def do_model(self, **kwds): return VBGMM(verbose=False, **kwds) class DPGMMTester(GMMTester): model = DPGMM do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestDPGMMWithSphericalCovars(unittest.TestCase, DPGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestDPGMMWithDiagCovars(unittest.TestCase, DPGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestDPGMMWithTiedCovars(unittest.TestCase, DPGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestDPGMMWithFullCovars(unittest.TestCase, DPGMMTester): covariance_type = 'full' setUp = GMMTester._setUp class VBGMMTester(GMMTester): model = do_model do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestVBGMMWithSphericalCovars(unittest.TestCase, VBGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestVBGMMWithDiagCovars(unittest.TestCase, VBGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestVBGMMWithTiedCovars(unittest.TestCase, VBGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestVBGMMWithFullCovars(unittest.TestCase, VBGMMTester): covariance_type = 'full' setUp = GMMTester._setUp
bsd-3-clause
ky822/scikit-learn
sklearn/ensemble/tests/test_partial_dependence.py
365
6996
""" Testing for the partial dependence module. """ import numpy as np from numpy.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import if_matplotlib from sklearn.ensemble.partial_dependence import partial_dependence from sklearn.ensemble.partial_dependence import plot_partial_dependence from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn import datasets # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the boston dataset boston = datasets.load_boston() # also load the iris dataset iris = datasets.load_iris() def test_partial_dependence_classifier(): # Test partial dependence for classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) pdp, axes = partial_dependence(clf, [0], X=X, grid_resolution=5) # only 4 grid points instead of 5 because only 4 unique X[:,0] vals assert pdp.shape == (1, 4) assert axes[0].shape[0] == 4 # now with our own grid X_ = np.asarray(X) grid = np.unique(X_[:, 0]) pdp_2, axes = partial_dependence(clf, [0], grid=grid) assert axes is None assert_array_equal(pdp, pdp_2) def test_partial_dependence_multiclass(): # Test partial dependence for multi-class classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 n_classes = clf.n_classes_ pdp, axes = partial_dependence( clf, [0], X=iris.data, grid_resolution=grid_resolution) assert pdp.shape == (n_classes, grid_resolution) assert len(axes) == 1 assert axes[0].shape[0] == grid_resolution def test_partial_dependence_regressor(): # Test partial dependence for regressor clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 pdp, axes = partial_dependence( clf, [0], X=boston.data, grid_resolution=grid_resolution) assert pdp.shape == (1, grid_resolution) assert axes[0].shape[0] == grid_resolution def test_partial_dependecy_input(): # Test input validation of partial dependence. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_raises(ValueError, partial_dependence, clf, [0], grid=None, X=None) assert_raises(ValueError, partial_dependence, clf, [0], grid=[0, 1], X=X) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, partial_dependence, {}, [0], X=X) # Gradient boosting estimator must be fit assert_raises(ValueError, partial_dependence, GradientBoostingClassifier(), [0], X=X) assert_raises(ValueError, partial_dependence, clf, [-1], X=X) assert_raises(ValueError, partial_dependence, clf, [100], X=X) # wrong ndim for grid grid = np.random.rand(10, 2, 1) assert_raises(ValueError, partial_dependence, clf, [0], grid=grid) @if_matplotlib def test_plot_partial_dependence(): # Test partial dependence plot function. clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, boston.data, [0, 1, (0, 1)], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with str features and array feature names fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with list feature_names feature_names = boston.feature_names.tolist() fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) @if_matplotlib def test_plot_partial_dependence_input(): # Test partial dependence plot function input checks. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) # not fitted yet assert_raises(ValueError, plot_partial_dependence, clf, X, [0]) clf.fit(X, y) assert_raises(ValueError, plot_partial_dependence, clf, np.array(X)[:, :0], [0]) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, plot_partial_dependence, {}, X, [0]) # must be larger than -1 assert_raises(ValueError, plot_partial_dependence, clf, X, [-1]) # too large feature value assert_raises(ValueError, plot_partial_dependence, clf, X, [100]) # str feature but no feature_names assert_raises(ValueError, plot_partial_dependence, clf, X, ['foobar']) # not valid features value assert_raises(ValueError, plot_partial_dependence, clf, X, [{'foo': 'bar'}]) @if_matplotlib def test_plot_partial_dependence_multiclass(): # Test partial dependence plot function on multi-class input. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label=0, grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # now with symbol labels target = iris.target_names[iris.target] clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label='setosa', grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # label not in gbrt.classes_ assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], label='foobar', grid_resolution=grid_resolution) # label not provided assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], grid_resolution=grid_resolution)
bsd-3-clause
rajat1994/scikit-learn
sklearn/feature_selection/variance_threshold.py
238
2594
# Author: Lars Buitinck <[email protected]> # License: 3-clause BSD import numpy as np from ..base import BaseEstimator from .base import SelectorMixin from ..utils import check_array from ..utils.sparsefuncs import mean_variance_axis from ..utils.validation import check_is_fitted class VarianceThreshold(BaseEstimator, SelectorMixin): """Feature selector that removes all low-variance features. This feature selection algorithm looks only at the features (X), not the desired outputs (y), and can thus be used for unsupervised learning. Read more in the :ref:`User Guide <variance_threshold>`. Parameters ---------- threshold : float, optional Features with a training-set variance lower than this threshold will be removed. The default is to keep all features with non-zero variance, i.e. remove the features that have the same value in all samples. Attributes ---------- variances_ : array, shape (n_features,) Variances of individual features. Examples -------- The following dataset has integer features, two of which are the same in every sample. These are removed with the default setting for threshold:: >>> X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]] >>> selector = VarianceThreshold() >>> selector.fit_transform(X) array([[2, 0], [1, 4], [1, 1]]) """ def __init__(self, threshold=0.): self.threshold = threshold def fit(self, X, y=None): """Learn empirical variances from X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Sample vectors from which to compute variances. y : any Ignored. This parameter exists only for compatibility with sklearn.pipeline.Pipeline. Returns ------- self """ X = check_array(X, ('csr', 'csc'), dtype=np.float64) if hasattr(X, "toarray"): # sparse matrix _, self.variances_ = mean_variance_axis(X, axis=0) else: self.variances_ = np.var(X, axis=0) if np.all(self.variances_ <= self.threshold): msg = "No feature in X meets the variance threshold {0:.5f}" if X.shape[0] == 1: msg += " (X contains only one sample)" raise ValueError(msg.format(self.threshold)) return self def _get_support_mask(self): check_is_fitted(self, 'variances_') return self.variances_ > self.threshold
bsd-3-clause
siutanwong/scikit-learn
examples/linear_model/plot_sgd_iris.py
286
2202
""" ======================================== Plot multi-class SGD on the iris dataset ======================================== Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import SGDClassifier # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target colors = "bry" # shuffle idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std h = .02 # step size in the mesh clf = SGDClassifier(alpha=0.001, n_iter=100).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('tight') # Plot also the training points for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.Paired) plt.title("Decision surface of multi-class SGD") plt.axis('tight') # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.legend() plt.show()
bsd-3-clause
jaj42/phystream
python/toinfluxdb/toinflux.py
2
3005
import asyncio import zmq import zmq.asyncio import msgpack import pandas as pd zmqhost = '127.0.0.1' numport = 4201 wavport = 4202 influxhost = '127.0.0.1' influxport = 8089 #<measurement>[,<tag_key>=<tag_value>[,<tag_key>=<tag_value>]] <field_key>=<field_value>[,<field_key>=<field_value>] [<timestamp>] def run(): loop = asyncio.get_event_loop() queue = asyncio.Queue(loop=loop) ctx = zmq.asyncio.Context() asyncio.ensure_future(recvFromZmq(loop, ctx, queue, zmqhost, numport, numEncode)) asyncio.ensure_future(recvFromZmq(loop, ctx, queue, zmqhost, wavport, wavEncode)) asyncio.ensure_future(sendToInfluxdb(loop, queue, influxhost, influxport)) loop.run_forever() async def recvFromZmq(loop, ctx, queue, host, port, encoder): sock = ctx.socket(zmq.SUB, io_loop=loop) #sock.connect(f'tcp://{host}:{port}') sock.bind(f'tcp://{host}:{port}') sock.subscribe(b'') while loop.is_running(): msg = await sock.recv() print(f'Received {msg}') try: decoded = decodeMsg(msg) request = encoder(decoded) except ValueError: print(f'Failed to parse: {msg}') continue await queue.put(request) async def sendToInfluxdb(loop, queue, host, port): udpproto = lambda: asyncio.DatagramProtocol() transport, proto = await loop.create_datagram_endpoint(udpproto, remote_addr=(host, port)) while loop.is_running(): request = await queue.get() print(f'Sending: {request}') transport.sendto(request) transport.close() def decodeMsg(msg, wave=False): # Parse incoming message topic, msgpackdata = msg.split(b' ', 1) frame = msgpack.unpackb(msgpackdata, encoding='utf-8') topic = topic.decode('ASCII') frame['topic'] = topic return frame def numEncode(frame): # Encode numerics for InfluxDB tagdata = frame['tags'].copy() tagdata['origin'] = frame['topic'] tags = [f"{tag}={value}" for tag, value in tagdata.items()] str_tags = ','.join(tags) data = frame['data'] fields = [f"{field}={value}" for field, value in data.items()] str_fields = ','.join(fields) time = frame['basetime'] line = f'numerics,{str_tags} {str_fields} {time}' return line.encode('ASCII') def wavEncode(frame): # Encode waves for InfluxDB tagdata = frame['tags'].copy() tagdata['origin'] = frame['topic'] tags = [f"{tag}={value}" for tag, value in tagdata.items()] str_tags = ','.join(tags) #basetime = frame['basetime'] wavedata = pd.DataFrame(frame['data']).set_index('time') lines = [] for time, waves in wavedata.iterrows(): fields = [] for metric, value in waves.iteritems(): fields.append(f'{metric}={value}') str_fields = ','.join(fields) line = f'waves,{str_tags} {str_fields} {time}' lines.append(line) request = '\n'.join(lines) return request.encode('ASCII') if __name__ == "__main__": run()
isc
ahhda/sympy
examples/intermediate/sample.py
107
3494
""" Utility functions for plotting sympy functions. See examples\mplot2d.py and examples\mplot3d.py for usable 2d and 3d graphing functions using matplotlib. """ from sympy.core.sympify import sympify, SympifyError from sympy.external import import_module np = import_module('numpy') def sample2d(f, x_args): """ Samples a 2d function f over specified intervals and returns two arrays (X, Y) suitable for plotting with matlab (matplotlib) syntax. See examples\mplot2d.py. f is a function of one variable, such as x**2. x_args is an interval given in the form (var, min, max, n) """ try: f = sympify(f) except SympifyError: raise ValueError("f could not be interpretted as a SymPy function") try: x, x_min, x_max, x_n = x_args except AttributeError: raise ValueError("x_args must be a tuple of the form (var, min, max, n)") x_l = float(x_max - x_min) x_d = x_l/float(x_n) X = np.arange(float(x_min), float(x_max) + x_d, x_d) Y = np.empty(len(X)) for i in range(len(X)): try: Y[i] = float(f.subs(x, X[i])) except TypeError: Y[i] = None return X, Y def sample3d(f, x_args, y_args): """ Samples a 3d function f over specified intervals and returns three 2d arrays (X, Y, Z) suitable for plotting with matlab (matplotlib) syntax. See examples\mplot3d.py. f is a function of two variables, such as x**2 + y**2. x_args and y_args are intervals given in the form (var, min, max, n) """ x, x_min, x_max, x_n = None, None, None, None y, y_min, y_max, y_n = None, None, None, None try: f = sympify(f) except SympifyError: raise ValueError("f could not be interpreted as a SymPy function") try: x, x_min, x_max, x_n = x_args y, y_min, y_max, y_n = y_args except AttributeError: raise ValueError("x_args and y_args must be tuples of the form (var, min, max, intervals)") x_l = float(x_max - x_min) x_d = x_l/float(x_n) x_a = np.arange(float(x_min), float(x_max) + x_d, x_d) y_l = float(y_max - y_min) y_d = y_l/float(y_n) y_a = np.arange(float(y_min), float(y_max) + y_d, y_d) def meshgrid(x, y): """ Taken from matplotlib.mlab.meshgrid. """ x = np.array(x) y = np.array(y) numRows, numCols = len(y), len(x) x.shape = 1, numCols X = np.repeat(x, numRows, 0) y.shape = numRows, 1 Y = np.repeat(y, numCols, 1) return X, Y X, Y = np.meshgrid(x_a, y_a) Z = np.ndarray((len(X), len(X[0]))) for j in range(len(X)): for k in range(len(X[0])): try: Z[j][k] = float(f.subs(x, X[j][k]).subs(y, Y[j][k])) except (TypeError, NotImplementedError): Z[j][k] = 0 return X, Y, Z def sample(f, *var_args): """ Samples a 2d or 3d function over specified intervals and returns a dataset suitable for plotting with matlab (matplotlib) syntax. Wrapper for sample2d and sample3d. f is a function of one or two variables, such as x**2. var_args are intervals for each variable given in the form (var, min, max, n) """ if len(var_args) == 1: return sample2d(f, var_args[0]) elif len(var_args) == 2: return sample3d(f, var_args[0], var_args[1]) else: raise ValueError("Only 2d and 3d sampling are supported at this time.")
bsd-3-clause
davidgbe/scikit-learn
benchmarks/bench_random_projections.py
397
8900
""" =========================== Random projection benchmark =========================== Benchmarks for random projections. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import collections import numpy as np import scipy.sparse as sp from sklearn import clone from sklearn.externals.six.moves import xrange from sklearn.random_projection import (SparseRandomProjection, GaussianRandomProjection, johnson_lindenstrauss_min_dim) def type_auto_or_float(val): if val == "auto": return "auto" else: return float(val) def type_auto_or_int(val): if val == "auto": return "auto" else: return int(val) def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_scikit_transformer(X, transfomer): gc.collect() clf = clone(transfomer) # start time t_start = datetime.now() clf.fit(X) delta = (datetime.now() - t_start) # stop time time_to_fit = compute_time(t_start, delta) # start time t_start = datetime.now() clf.transform(X) delta = (datetime.now() - t_start) # stop time time_to_transform = compute_time(t_start, delta) return time_to_fit, time_to_transform # Make some random data with uniformly located non zero entries with # Gaussian distributed values def make_sparse_random_data(n_samples, n_features, n_nonzeros, random_state=None): rng = np.random.RandomState(random_state) data_coo = sp.coo_matrix( (rng.randn(n_nonzeros), (rng.randint(n_samples, size=n_nonzeros), rng.randint(n_features, size=n_nonzeros))), shape=(n_samples, n_features)) return data_coo.toarray(), data_coo.tocsr() def print_row(clf_type, time_fit, time_transform): print("%s | %s | %s" % (clf_type.ljust(30), ("%.4fs" % time_fit).center(12), ("%.4fs" % time_transform).center(12))) if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-features", dest="n_features", default=10 ** 4, type=int, help="Number of features in the benchmarks") op.add_option("--n-components", dest="n_components", default="auto", help="Size of the random subspace." " ('auto' or int > 0)") op.add_option("--ratio-nonzeros", dest="ratio_nonzeros", default=10 ** -3, type=float, help="Number of features in the benchmarks") op.add_option("--n-samples", dest="n_samples", default=500, type=int, help="Number of samples in the benchmarks") op.add_option("--random-seed", dest="random_seed", default=13, type=int, help="Seed used by the random number generators.") op.add_option("--density", dest="density", default=1 / 3, help="Density used by the sparse random projection." " ('auto' or float (0.0, 1.0]") op.add_option("--eps", dest="eps", default=0.5, type=float, help="See the documentation of the underlying transformers.") op.add_option("--transformers", dest="selected_transformers", default='GaussianRandomProjection,SparseRandomProjection', type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. Available: " "GaussianRandomProjection,SparseRandomProjection") op.add_option("--dense", dest="dense", default=False, action="store_true", help="Set input space as a dense matrix.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) opts.n_components = type_auto_or_int(opts.n_components) opts.density = type_auto_or_float(opts.density) selected_transformers = opts.selected_transformers.split(',') ########################################################################### # Generate dataset ########################################################################### n_nonzeros = int(opts.ratio_nonzeros * opts.n_features) print('Dataset statics') print("===========================") print('n_samples \t= %s' % opts.n_samples) print('n_features \t= %s' % opts.n_features) if opts.n_components == "auto": print('n_components \t= %s (auto)' % johnson_lindenstrauss_min_dim(n_samples=opts.n_samples, eps=opts.eps)) else: print('n_components \t= %s' % opts.n_components) print('n_elements \t= %s' % (opts.n_features * opts.n_samples)) print('n_nonzeros \t= %s per feature' % n_nonzeros) print('ratio_nonzeros \t= %s' % opts.ratio_nonzeros) print('') ########################################################################### # Set transformer input ########################################################################### transformers = {} ########################################################################### # Set GaussianRandomProjection input gaussian_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed } transformers["GaussianRandomProjection"] = \ GaussianRandomProjection(**gaussian_matrix_params) ########################################################################### # Set SparseRandomProjection input sparse_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed, "density": opts.density, "eps": opts.eps, } transformers["SparseRandomProjection"] = \ SparseRandomProjection(**sparse_matrix_params) ########################################################################### # Perform benchmark ########################################################################### time_fit = collections.defaultdict(list) time_transform = collections.defaultdict(list) print('Benchmarks') print("===========================") print("Generate dataset benchmarks... ", end="") X_dense, X_sparse = make_sparse_random_data(opts.n_samples, opts.n_features, n_nonzeros, random_state=opts.random_seed) X = X_dense if opts.dense else X_sparse print("done") for name in selected_transformers: print("Perform benchmarks for %s..." % name) for iteration in xrange(opts.n_times): print("\titer %s..." % iteration, end="") time_to_fit, time_to_transform = bench_scikit_transformer(X_dense, transformers[name]) time_fit[name].append(time_to_fit) time_transform[name].append(time_to_transform) print("done") print("") ########################################################################### # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Transformer performance:") print("===========================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") print("%s | %s | %s" % ("Transformer".ljust(30), "fit".center(12), "transform".center(12))) print(31 * "-" + ("|" + "-" * 14) * 2) for name in sorted(selected_transformers): print_row(name, np.mean(time_fit[name]), np.mean(time_transform[name])) print("") print("")
bsd-3-clause
paurichardson/trading-with-python
spreadApp/makeDist.py
77
1720
from distutils.core import setup import py2exe manifest_template = ''' <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0"> <assemblyIdentity version="5.0.0.0" processorArchitecture="x86" name="%(prog)s" type="win32" /> <description>%(prog)s Program</description> <dependency> <dependentAssembly> <assemblyIdentity type="win32" name="Microsoft.Windows.Common-Controls" version="6.0.0.0" processorArchitecture="X86" publicKeyToken="6595b64144ccf1df" language="*" /> </dependentAssembly> </dependency> </assembly> ''' RT_MANIFEST = 24 import matplotlib opts = { 'py2exe': { "compressed": 1, "bundle_files" : 3, "includes" : ["sip", "matplotlib.backends", "matplotlib.backends.backend_qt4agg", "pylab", "numpy", "matplotlib.backends.backend_tkagg"], 'excludes': ['_gtkagg', '_tkagg', '_agg2', '_cairo', '_cocoaagg', '_fltkagg', '_gtk', '_gtkcairo', ], 'dll_excludes': ['libgdk-win32-2.0-0.dll', 'libgobject-2.0-0.dll'] } } setup(name="triton", version = "0.1", scripts=["spreadScanner.pyw"], windows=[{"script": "spreadScanner.pyw"}], options=opts, data_files=matplotlib.get_py2exe_datafiles(), other_resources = [(RT_MANIFEST, 1, manifest_template % dict(prog="spreadDetective"))], zipfile = None)
bsd-3-clause
elkingtonmcb/scikit-learn
examples/linear_model/plot_ols.py
220
1940
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Linear Regression Example ========================================================= This example uses the only the first feature of the `diabetes` dataset, in order to illustrate a two-dimensional plot of this regression technique. The straight line can be seen in the plot, showing how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. The coefficients, the residual sum of squares and the variance score are also calculated. """ print(__doc__) # Code source: Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model # Load the diabetes dataset diabetes = datasets.load_diabetes() # Use only one feature diabetes_X = diabetes.data[:, np.newaxis, 2] # Split the data into training/testing sets diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # The coefficients print('Coefficients: \n', regr.coef_) # The mean square error print("Residual sum of squares: %.2f" % np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test)) # Plot outputs plt.scatter(diabetes_X_test, diabetes_y_test, color='black') plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue', linewidth=3) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
moberweger/deep-prior-pp
src/data/importers.py
1
49986
"""Provides importer classes for importing data from different datasets. DepthImporter provides interface for loading the data from a dataset, esp depth images. ICVLImporter, NYUImporter, MSRAImporter are specific instances of different importers. Copyright 2015 Markus Oberweger, ICG, Graz University of Technology <[email protected]> This file is part of DeepPrior. DeepPrior is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. DeepPrior is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with DeepPrior. If not, see <http://www.gnu.org/licenses/>. """ import scipy.io import numpy as np from PIL import Image import os import progressbar as pb import struct from data.basetypes import DepthFrame, NamedImgSequence from util.handdetector import HandDetector from data.transformations import transformPoints2D import cPickle __author__ = "Paul Wohlhart <[email protected]>, Markus Oberweger <[email protected]>" __copyright__ = "Copyright 2015, ICG, Graz University of Technology, Austria" __credits__ = ["Paul Wohlhart", "Markus Oberweger"] __license__ = "GPL" __version__ = "1.0" __maintainer__ = "Markus Oberweger" __email__ = "[email protected]" __status__ = "Development" class DepthImporter(object): """ provide basic functionality to load depth data """ def __init__(self, fx, fy, ux, uy, hand=None): """ Initialize object :param fx: focal length in x direction :param fy: focal length in y direction :param ux: principal point in x direction :param uy: principal point in y direction """ self.fx = fx self.fy = fy self.ux = ux self.uy = uy self.depth_map_size = (320, 240) self.refineNet = None self.crop_joint_idx = 0 self.hand = hand def jointsImgTo3D(self, sample): """ Normalize sample to metric 3D :param sample: joints in (x,y,z) with x,y in image coordinates and z in mm :return: normalized joints in mm """ ret = np.zeros((sample.shape[0], 3), np.float32) for i in range(sample.shape[0]): ret[i] = self.jointImgTo3D(sample[i]) return ret def jointImgTo3D(self, sample): """ Normalize sample to metric 3D :param sample: joints in (x,y,z) with x,y in image coordinates and z in mm :return: normalized joints in mm """ ret = np.zeros((3,), np.float32) # convert to metric using f ret[0] = (sample[0]-self.ux)*sample[2]/self.fx ret[1] = (sample[1]-self.uy)*sample[2]/self.fy ret[2] = sample[2] return ret def joints3DToImg(self, sample): """ Denormalize sample from metric 3D to image coordinates :param sample: joints in (x,y,z) with x,y and z in mm :return: joints in (x,y,z) with x,y in image coordinates and z in mm """ ret = np.zeros((sample.shape[0], 3), np.float32) for i in range(sample.shape[0]): ret[i] = self.joint3DToImg(sample[i]) return ret def joint3DToImg(self, sample): """ Denormalize sample from metric 3D to image coordinates :param sample: joints in (x,y,z) with x,y and z in mm :return: joints in (x,y,z) with x,y in image coordinates and z in mm """ ret = np.zeros((3,), np.float32) # convert to metric using f if sample[2] == 0.: ret[0] = self.ux ret[1] = self.uy return ret ret[0] = sample[0]/sample[2]*self.fx+self.ux ret[1] = sample[1]/sample[2]*self.fy+self.uy ret[2] = sample[2] return ret def getCameraProjection(self): """ Get homogenous camera projection matrix :return: 4x4 camera projection matrix """ ret = np.zeros((4, 4), np.float32) ret[0, 0] = self.fx ret[1, 1] = self.fy ret[2, 2] = 1. ret[0, 2] = self.ux ret[1, 2] = self.uy ret[3, 2] = 1. return ret def getCameraIntrinsics(self): """ Get intrinsic camera matrix :return: 3x3 intrinsic camera matrix """ ret = np.zeros((3, 3), np.float32) ret[0, 0] = self.fx ret[1, 1] = self.fy ret[2, 2] = 1. ret[0, 2] = self.ux ret[1, 2] = self.uy return ret def showAnnotatedDepth(self, frame): """ Show the depth image :param frame: image to show :return: """ raise NotImplementedError("Must be overloaded by base!") @staticmethod def depthToPCL(dpt, T, background_val=0.): # get valid points and transform pts = np.asarray(np.where(~np.isclose(dpt, background_val))).transpose() pts = np.concatenate([pts[:, [1, 0]] + 0.5, np.ones((pts.shape[0], 1), dtype='float32')], axis=1) pts = np.dot(np.linalg.inv(np.asarray(T)), pts.T).T pts = (pts[:, 0:2] / pts[:, 2][:, None]).reshape((pts.shape[0], 2)) # replace the invalid data depth = dpt[(~np.isclose(dpt, background_val))] # get x and y data in a vectorized way row = (pts[:, 0] - 160.) / 241.42 * depth col = (pts[:, 1] - 120.) / 241.42 * depth # combine x,y,depth return np.column_stack((row, col, depth)) def loadRefineNetLazy(self, net): if isinstance(net, basestring): if os.path.exists(net): from net.scalenet import ScaleNet, ScaleNetParams comrefNetParams = ScaleNetParams(type=5, nChan=1, wIn=128, hIn=128, batchSize=1, resizeFactor=2, numJoints=1, nDims=3) self.refineNet = ScaleNet(np.random.RandomState(23455), cfgParams=comrefNetParams) self.refineNet.load(net) else: raise EnvironmentError("File not found: {}".format(net)) class ICVLImporter(DepthImporter): """ provide functionality to load data from the ICVL dataset """ def __init__(self, basepath, useCache=True, cacheDir='./cache/', refineNet=None, hand=None): """ Constructor :param basepath: base path of the ICVL dataset :return: """ super(ICVLImporter, self).__init__(241.42, 241.42, 160., 120., hand) # see Qian et.al. self.depth_map_size = (320, 240) self.basepath = basepath self.useCache = useCache self.cacheDir = cacheDir self.numJoints = 16 self.crop_joint_idx = 0 self.refineNet = refineNet self.default_cubes = {'train': (250, 250, 250), 'test_seq_1': (250, 250, 250), 'test_seq_2': (250, 250, 250)} self.sides = {'train': 'right', 'test_seq1': 'right', 'test_seq_2': 'right'} def loadDepthMap(self, filename): """ Read a depth-map :param filename: file name to load :return: image data of depth image """ img = Image.open(filename) # open image assert len(img.getbands()) == 1 # ensure depth image imgdata = np.asarray(img, np.float32) return imgdata def getDepthMapNV(self): """ Get the value of invalid depth values in the depth map :return: value """ return 32001 def loadSequence(self, seqName, subSeq=None, Nmax=float('inf'), shuffle=False, rng=None, docom=False, cube=None): """ Load an image sequence from the dataset :param seqName: sequence name, e.g. train :param subSeq: list of subsequence names, e.g. 0, 45, 122-5 :param Nmax: maximum number of samples to load :return: returns named image sequence """ if (subSeq is not None) and (not isinstance(subSeq, list)): raise TypeError("subSeq must be None or list") if cube is None: config = {'cube': self.default_cubes[seqName]} else: assert isinstance(cube, tuple) assert len(cube) == 3 config = {'cube': cube} if subSeq is None: pickleCache = '{}/{}_{}_{}_{}_{}_cache.pkl'.format(self.cacheDir, self.__class__.__name__, seqName, self.hand, HandDetector.detectionModeToString(docom, self.refineNet is not None), config['cube'][0]) else: pickleCache = '{}/{}_{}_{}_{}_{}_{}_cache.pkl'.format(self.cacheDir, self.__class__.__name__, seqName, ''.join(subSeq), self.hand, HandDetector.detectionModeToString(docom, self.refineNet is not None), config['cube'][0]) if self.useCache: if os.path.isfile(pickleCache): print("Loading cache data from {}".format(pickleCache)) f = open(pickleCache, 'rb') (seqName, data, config) = cPickle.load(f) f.close() # shuffle data if shuffle and rng is not None: print("Shuffling") rng.shuffle(data) if not(np.isinf(Nmax)): return NamedImgSequence(seqName, data[0:Nmax], config) else: return NamedImgSequence(seqName, data, config) # check for multiple subsequences if subSeq is not None: if len(subSeq) > 1: missing = False for i in range(len(subSeq)): if not os.path.isfile('{}/{}_{}_{}_{}_{}_cache.pkl'.format(self.cacheDir, self.__class__.__name__, seqName, self.hand, subSeq[i], HandDetector.detectionModeToString(docom, self.refineNet is not None))): missing = True print("missing: {}".format(subSeq[i])) break if not missing: # load first data pickleCache = '{}/{}_{}_{}_{}_{}_cache.pkl'.format(self.cacheDir, self.__class__.__name__, seqName, self.hand, subSeq[0], HandDetector.detectionModeToString(docom, self.refineNet is not None)) print("Loading cache data from {}".format(pickleCache)) f = open(pickleCache, 'rb') (seqName, fullData, config) = cPickle.load(f) f.close() # load rest of data for i in range(1, len(subSeq)): pickleCache = '{}/{}_{}_{}_{}_{}_cache.pkl'.format(self.cacheDir, self.__class__.__name__, seqName, self.hand, subSeq[i], HandDetector.detectionModeToString(docom, self.refineNet is not None)) print("Loading cache data from {}".format(pickleCache)) f = open(pickleCache, 'rb') (seqName, data, config) = cPickle.load(f) fullData.extend(data) f.close() # shuffle data if shuffle and rng is not None: print("Shuffling") rng.shuffle(fullData) if not(np.isinf(Nmax)): return NamedImgSequence(seqName, fullData[0:Nmax], config) else: return NamedImgSequence(seqName, fullData, config) self.loadRefineNetLazy(self.refineNet) # Load the dataset objdir = '{}/Depth/'.format(self.basepath) trainlabels = '{}/{}.txt'.format(self.basepath, seqName) inputfile = open(trainlabels) txt = 'Loading {}'.format(seqName) pbar = pb.ProgressBar(maxval=len(inputfile.readlines()), widgets=[txt, pb.Percentage(), pb.Bar()]) pbar.start() inputfile.seek(0) data = [] i = 0 for line in inputfile: # early stop if len(data) >= Nmax: break part = line.split(' ') # check for subsequences and skip them if necessary subSeqName = '' if subSeq is not None: p = part[0].split('/') # handle original data (unrotated '0') separately if ('0' in subSeq) and len(p[0]) > 6: pass elif not('0' in subSeq) and len(p[0]) > 6: i += 1 continue elif (p[0] in subSeq) and len(p[0]) <= 6: pass elif not(p[0] in subSeq) and len(p[0]) <= 6: i += 1 continue if len(p[0]) <= 6: subSeqName = p[0] else: subSeqName = '0' dptFileName = '{}/{}'.format(objdir, part[0]) if not os.path.isfile(dptFileName): print("File {} does not exist!".format(dptFileName)) i += 1 continue dpt = self.loadDepthMap(dptFileName) if self.hand is not None: if self.hand != self.sides[seqName]: raise NotImplementedError() dpt = dpt[:, ::-1] # joints in image coordinates gtorig = np.zeros((self.numJoints, 3), np.float32) for joint in range(self.numJoints): for xyz in range(0, 3): gtorig[joint, xyz] = part[joint*3+xyz+1] # normalized joints in 3D coordinates gt3Dorig = self.jointsImgTo3D(gtorig) # print gt3D # self.showAnnotatedDepth(DepthFrame(dpt,gtorig,gtorig,0,gt3Dorig,gt3Dcrop,0,dptFileName,subSeqName,'')) # Detect hand hd = HandDetector(dpt, self.fx, self.fy, refineNet=self.refineNet, importer=self) if not hd.checkImage(1): print("Skipping image {}, no content".format(dptFileName)) i += 1 continue try: dpt, M, com = hd.cropArea3D(com=gtorig[self.crop_joint_idx], size=config['cube'], docom=docom) except UserWarning: print("Skipping image {}, no hand detected".format(dptFileName)) i += 1 continue com3D = self.jointImgTo3D(com) gt3Dcrop = gt3Dorig - com3D # normalize to com gtcrop = transformPoints2D(gtorig, M) # print("{}".format(gt3Dorig)) # self.showAnnotatedDepth(DepthFrame(dpt,gtorig,gtcrop,M,gt3Dorig,gt3Dcrop,com3D,dptFileName,subSeqName,'')) data.append(DepthFrame(dpt.astype(np.float32), gtorig, gtcrop, M, gt3Dorig, gt3Dcrop, com3D, dptFileName, subSeqName, 'left', {})) pbar.update(i) i += 1 inputfile.close() pbar.finish() print("Loaded {} samples.".format(len(data))) if self.useCache: print("Save cache data to {}".format(pickleCache)) f = open(pickleCache, 'wb') cPickle.dump((seqName, data, config), f, protocol=cPickle.HIGHEST_PROTOCOL) f.close() # shuffle data if shuffle and rng is not None: print("Shuffling") rng.shuffle(data) return NamedImgSequence(seqName, data, config) def loadBaseline(self, filename, firstName=False): """ Load baseline data :param filename: file name of data :return: list with joint coordinates """ def nonblank_lines(f): for l in f: line = l.rstrip() if line: yield line inputfile = open(filename) inputfile.seek(0) if firstName == True: off = 1 else: off = 0 data = [] for line in nonblank_lines(inputfile): part = line.strip().split(' ') # joints in image coordinates ev = np.zeros((self.numJoints, 3), np.float32) for joint in range(ev.shape[0]): for xyz in range(0, 3): ev[joint, xyz] = part[joint*3+xyz+off] gt3Dworld = self.jointsImgTo3D(ev) data.append(gt3Dworld) return data def loadBaseline2D(self, filename, firstName=False): """ Load baseline data :param filename: file name of data :return: list with joint coordinates """ inputfile = open(filename) inputfile.seek(0) if firstName is True: off = 1 else: off = 0 data = [] for line in inputfile: part = line.split(' ') # joints in image coordinates ev = np.zeros((self.numJoints,2),np.float32) for joint in range(ev.shape[0]): for xyz in range(0, 2): ev[joint,xyz] = part[joint*3+xyz+off] data.append(ev) return data def showAnnotatedDepth(self, frame): """ Show the depth image :param frame: image to show :return: """ import matplotlib import matplotlib.pyplot as plt print("img min {}, max {}".format(frame.dpt.min(), frame.dpt.max())) fig = plt.figure() ax = fig.add_subplot(111) ax.imshow(frame.dpt, cmap=matplotlib.cm.jet, interpolation='nearest') ax.scatter(frame.gtcrop[:, 0], frame.gtcrop[:, 1]) ax.plot(frame.gtcrop[0:4, 0], frame.gtcrop[0:4, 1], c='r') ax.plot(np.hstack((frame.gtcrop[0, 0], frame.gtcrop[4:7, 0])), np.hstack((frame.gtcrop[0, 1], frame.gtcrop[4:7, 1])), c='r') ax.plot(np.hstack((frame.gtcrop[0, 0], frame.gtcrop[7:10, 0])), np.hstack((frame.gtcrop[0, 1], frame.gtcrop[7:10, 1])), c='r') ax.plot(np.hstack((frame.gtcrop[0, 0], frame.gtcrop[10:13, 0])), np.hstack((frame.gtcrop[0, 1], frame.gtcrop[10:13, 1])), c='r') ax.plot(np.hstack((frame.gtcrop[0, 0], frame.gtcrop[13:16, 0])), np.hstack((frame.gtcrop[0, 1], frame.gtcrop[13:16, 1])), c='r') def format_coord(x, y): numrows, numcols = frame.dpt.shape col = int(x + 0.5) row = int(y + 0.5) if col >= 0 and col < numcols and row >= 0 and row < numrows: z = frame.dpt[row, col] return 'x=%1.4f, y=%1.4f, z=%1.4f' % (x, y, z) else: return 'x=%1.4f, y=%1.4f' % (x, y) ax.format_coord = format_coord for i in range(frame.gtcrop.shape[0]): ax.annotate(str(i), (int(frame.gtcrop[i, 0]), int(frame.gtcrop[i, 1]))) plt.show() class MSRA15Importer(DepthImporter): """ provide functionality to load data from the MSRA 2015 dataset faulty images: - P2/TIP: 172, 173,174 - P2/MP: 173, 174, 175, 345-354, 356, 359, 360 - P3/T: 120, 489 - P8/4: 168 """ def __init__(self, basepath, useCache=True, cacheDir='./cache/', refineNet=None, detectorNet=None, derotNet=None, hand=None): """ Constructor :param basepath: base path of the MSRA dataset :return: """ super(MSRA15Importer, self).__init__(241.42, 241.42, 160., 120., hand) # see Sun et.al. self.depth_map_size = (320, 240) self.basepath = basepath self.useCache = useCache self.cacheDir = cacheDir self.refineNet = refineNet self.derotNet = derotNet self.detectorNet = detectorNet self.numJoints = 21 self.crop_joint_idx = 5 self.default_cubes = {'P0': (200, 200, 200), 'P1': (200, 200, 200), 'P2': (200, 200, 200), 'P3': (180, 180, 180), 'P4': (180, 180, 180), 'P5': (180, 180, 180), 'P6': (170, 170, 170), 'P7': (160, 160, 160), 'P8': (150, 150, 150)} self.sides = {'P0': 'right', 'P1': 'right', 'P2': 'right', 'P3': 'right', 'P4': 'right', 'P5': 'right', 'P6': 'right', 'P7': 'right', 'P8': 'right'} def loadDepthMap(self, filename): """ Read a depth-map :param filename: file name to load :return: image data of depth image """ with open(filename, 'rb') as f: # first 6 uint define the full image width = struct.unpack('i', f.read(4))[0] height = struct.unpack('i', f.read(4))[0] left = struct.unpack('i', f.read(4))[0] top = struct.unpack('i', f.read(4))[0] right = struct.unpack('i', f.read(4))[0] bottom = struct.unpack('i', f.read(4))[0] patch = np.fromfile(f, dtype='float32', sep="") imgdata = np.zeros((height, width), dtype='float32') imgdata[top:bottom, left:right] = patch.reshape([bottom-top, right-left]) return imgdata def getDepthMapNV(self): """ Get the value of invalid depth values in the depth map :return: value """ return 32001 def loadSequence(self, seqName, subSeq=None, Nmax=float('inf'), shuffle=False, rng=None, docom=False, cube=None): """ Load an image sequence from the dataset :param seqName: sequence name, e.g. subject1 :param Nmax: maximum number of samples to load :return: returns named image sequence """ if (subSeq is not None) and (not isinstance(subSeq, list)): raise TypeError("subSeq must be None or list") if cube is None: config = {'cube': self.default_cubes[seqName]} else: assert isinstance(cube, tuple) assert len(cube) == 3 config = {'cube': cube} if subSeq is None: pickleCache = '{}/{}_{}_{}_{}_{}_cache.pkl'.format(self.cacheDir, self.__class__.__name__, seqName, self.hand, HandDetector.detectionModeToString(docom, self.refineNet is not None), config['cube'][0]) else: pickleCache = '{}/{}_{}_{}_{}_{}_{}_cache.pkl'.format(self.cacheDir, self.__class__.__name__, seqName, self.hand, ''.join(subSeq), HandDetector.detectionModeToString(docom, self.refineNet is not None), config['cube'][0]) if self.useCache & os.path.isfile(pickleCache): print("Loading cache data from {}".format(pickleCache)) f = open(pickleCache, 'rb') (seqName, data, config) = cPickle.load(f) f.close() # shuffle data if shuffle and rng is not None: print("Shuffling") rng.shuffle(data) if not(np.isinf(Nmax)): return NamedImgSequence(seqName, data[0:Nmax], config) else: return NamedImgSequence(seqName, data, config) self.loadRefineNetLazy(self.refineNet) # Load the dataset objdir = '{}/{}/'.format(self.basepath, seqName) subdirs = sorted([name for name in os.listdir(objdir) if os.path.isdir(os.path.join(objdir, name))]) txt = 'Loading {}'.format(seqName) nImgs = sum([len(files) for r, d, files in os.walk(objdir)]) // 2 pbar = pb.ProgressBar(maxval=nImgs, widgets=[txt, pb.Percentage(), pb.Bar()]) pbar.start() data = [] pi = 0 for subdir in subdirs: # check for subsequences and skip them if necessary subSeqName = '' if subSeq is not None: if subdir not in subSeq: continue subSeqName = subdir # iterate all subdirectories trainlabels = '{}/{}/joint.txt'.format(objdir, subdir) inputfile = open(trainlabels) # read number of samples nImgs = int(inputfile.readline()) for i in range(nImgs): # early stop if len(data) >= Nmax: break line = inputfile.readline() part = line.split(' ') dptFileName = '{}/{}/{}_depth.bin'.format(objdir, subdir, str(i).zfill(6)) if not os.path.isfile(dptFileName): print("File {} does not exist!".format(dptFileName)) continue dpt = self.loadDepthMap(dptFileName) # joints in image coordinates gt3Dorig = np.zeros((self.numJoints, 3), np.float32) for joint in range(gt3Dorig.shape[0]): for xyz in range(0, 3): gt3Dorig[joint, xyz] = part[joint*3+xyz] # invert axis # gt3Dorig[:, 0] *= (-1.) # gt3Dorig[:, 1] *= (-1.) gt3Dorig[:, 2] *= (-1.) # normalized joints in 3D coordinates gtorig = self.joints3DToImg(gt3Dorig) if self.hand is not None: if self.hand != self.sides[seqName]: gtorig[:, 0] -= dpt.shape[1] / 2. gtorig[:, 0] *= (-1) gtorig[:, 0] += dpt.shape[1] / 2. gt3Dorig = self.jointsImgTo3D(gtorig) dpt = dpt[:, ::-1] # print gt3D # self.showAnnotatedDepth(DepthFrame(dpt,gtorig,gtorig,0,gt3Dorig,gt3Dcrop,com3D,dptFileName,'','')) # Detect hand hd = HandDetector(dpt, self.fx, self.fy, refineNet=self.refineNet, importer=self) if not hd.checkImage(1.): print("Skipping image {}, no content".format(dptFileName)) continue try: dpt, M, com = hd.cropArea3D(com=gtorig[self.crop_joint_idx], size=config['cube'], docom=docom) except UserWarning: print("Skipping image {}, no hand detected".format(dptFileName)) continue com3D = self.jointImgTo3D(com) gt3Dcrop = gt3Dorig - com3D # normalize to com gtcrop = transformPoints2D(gtorig, M) # print("{}".format(gt3Dorig)) # self.showAnnotatedDepth(DepthFrame(dpt,gtorig,gtcrop,M,gt3Dorig,gt3Dcrop,com3D,dptFileName,'','',{})) data.append(DepthFrame(dpt.astype(np.float32), gtorig, gtcrop, M, gt3Dorig, gt3Dcrop, com3D, dptFileName, subSeqName, self.sides[seqName], {})) pbar.update(pi) pi += 1 inputfile.close() pbar.finish() print("Loaded {} samples.".format(len(data))) if self.useCache: print("Save cache data to {}".format(pickleCache)) f = open(pickleCache, 'wb') cPickle.dump((seqName, data, config), f, protocol=cPickle.HIGHEST_PROTOCOL) f.close() # shuffle data if shuffle and rng is not None: print("Shuffling") rng.shuffle(data) return NamedImgSequence(seqName, data, config) def jointsImgTo3D(self, sample): """ Normalize sample to metric 3D :param sample: joints in (x,y,z) with x,y in image coordinates and z in mm :return: normalized joints in mm """ ret = np.zeros((sample.shape[0], 3), np.float32) for i in xrange(sample.shape[0]): ret[i] = self.jointImgTo3D(sample[i]) return ret def jointImgTo3D(self, sample): """ Normalize sample to metric 3D :param sample: joints in (x,y,z) with x,y in image coordinates and z in mm :return: normalized joints in mm """ ret = np.zeros((3,), np.float32) ret[0] = (sample[0] - self.ux) * sample[2] / self.fx ret[1] = (self.uy - sample[1]) * sample[2] / self.fy ret[2] = sample[2] return ret def joints3DToImg(self, sample): """ Denormalize sample from metric 3D to image coordinates :param sample: joints in (x,y,z) with x,y and z in mm :return: joints in (x,y,z) with x,y in image coordinates and z in mm """ ret = np.zeros((sample.shape[0], 3), np.float32) for i in xrange(sample.shape[0]): ret[i] = self.joint3DToImg(sample[i]) return ret def joint3DToImg(self, sample): """ Denormalize sample from metric 3D to image coordinates :param sample: joints in (x,y,z) with x,y and z in mm :return: joints in (x,y,z) with x,y in image coordinates and z in mm """ ret = np.zeros((3, ), np.float32) if sample[2] == 0.: ret[0] = self.ux ret[1] = self.uy return ret ret[0] = sample[0]/sample[2]*self.fx+self.ux ret[1] = self.uy-sample[1]/sample[2]*self.fy ret[2] = sample[2] return ret def getCameraIntrinsics(self): """ Get intrinsic camera matrix :return: 3x3 intrinsic camera matrix """ ret = np.zeros((3, 3), np.float32) ret[0, 0] = self.fx ret[1, 1] = -self.fy ret[2, 2] = 1 ret[0, 2] = self.ux ret[1, 2] = self.uy return ret def getCameraProjection(self): """ Get homogenous camera projection matrix :return: 4x4 camera projection matrix """ ret = np.zeros((4, 4), np.float32) ret[0, 0] = self.fx ret[1, 1] = -self.fy ret[2, 2] = 1. ret[0, 2] = self.ux ret[1, 2] = self.uy ret[3, 2] = 1. return ret def showAnnotatedDepth(self, frame): """ Show the depth image :param frame: image to show :return: """ import matplotlib import matplotlib.pyplot as plt print("img min {}, max {}".format(frame.dpt.min(),frame.dpt.max())) fig = plt.figure() ax = fig.add_subplot(111) ax.imshow(frame.dpt, cmap=matplotlib.cm.jet, interpolation='nearest') ax.scatter(frame.gtcrop[:, 0], frame.gtcrop[:, 1]) ax.plot(frame.gtcrop[0:5, 0], frame.gtcrop[0:5, 1], c='r') ax.plot(np.hstack((frame.gtcrop[0, 0], frame.gtcrop[5:9, 0])), np.hstack((frame.gtcrop[0, 1], frame.gtcrop[5:9, 1])), c='r') ax.plot(np.hstack((frame.gtcrop[0, 0], frame.gtcrop[9:13, 0])), np.hstack((frame.gtcrop[0, 1], frame.gtcrop[9:13, 1])), c='r') ax.plot(np.hstack((frame.gtcrop[0, 0], frame.gtcrop[13:17, 0])), np.hstack((frame.gtcrop[0, 1], frame.gtcrop[13:17, 1])), c='r') ax.plot(np.hstack((frame.gtcrop[0, 0], frame.gtcrop[17:21, 0])), np.hstack((frame.gtcrop[0, 1], frame.gtcrop[17:21, 1])), c='r') def format_coord(x, y): numrows, numcols = frame.dpt.shape col = int(x+0.5) row = int(y+0.5) if 0 <= col < numcols and 0 <= row < numrows: z = frame.dpt[row, col] return 'x=%1.4f, y=%1.4f, z=%1.4f'%(x, y, z) else: return 'x=%1.4f, y=%1.4f'%(x, y) ax.format_coord = format_coord for i in range(frame.gtcrop.shape[0]): ax.annotate(str(i), (int(frame.gtcrop[i, 0]), int(frame.gtcrop[i, 1]))) plt.show() @staticmethod def depthToPCL(dpt, T, background_val=0.): # get valid points and transform pts = np.asarray(np.where(~np.isclose(dpt, background_val))).transpose() pts = np.concatenate([pts[:, [1, 0]] + 0.5, np.ones((pts.shape[0], 1), dtype='float32')], axis=1) pts = np.dot(np.linalg.inv(np.asarray(T)), pts.T).T pts = (pts[:, 0:2] / pts[:, 2][:, None]).reshape((pts.shape[0], 2)) # replace the invalid data depth = dpt[(~np.isclose(dpt, background_val))] # get x and y data in a vectorized way row = (pts[:, 0] - 160.) / 241.42 * depth col = (120. - pts[:, 1]) / 241.42 * depth # combine x,y,depth return np.column_stack((row, col, depth)) class NYUImporter(DepthImporter): """ provide functionality to load data from the NYU hand dataset """ def __init__(self, basepath, useCache=True, cacheDir='./cache/', refineNet=None, allJoints=False, hand=None): """ Constructor :param basepath: base path of the ICVL dataset :return: """ super(NYUImporter, self).__init__(588.03, 587.07, 320., 240., hand) self.depth_map_size = (640, 480) self.basepath = basepath self.useCache = useCache self.cacheDir = cacheDir self.allJoints = allJoints self.numJoints = 36 if self.allJoints: self.crop_joint_idx = 32 else: self.crop_joint_idx = 13 self.default_cubes = {'train': (300, 300, 300), 'test_1': (300, 300, 300), 'test_2': (250, 250, 250), 'test': (300, 300, 300), 'train_synth': (300, 300, 300), 'test_synth_1': (300, 300, 300), 'test_synth_2': (250, 250, 250), 'test_synth': (300, 300, 300)} self.sides = {'train': 'right', 'test_1': 'right', 'test_2': 'right', 'test': 'right', 'train_synth': 'right', 'test_synth_1': 'right', 'test_synth_2': 'right', 'test_synth': 'right'} # joint indices used for evaluation of Tompson et al. self.restrictedJointsEval = [0, 3, 6, 9, 12, 15, 18, 21, 24, 25, 27, 30, 31, 32] self.refineNet = refineNet def loadDepthMap(self, filename): """ Read a depth-map :param filename: file name to load :return: image data of depth image """ img = Image.open(filename) # top 8 bits of depth are packed into green channel and lower 8 bits into blue assert len(img.getbands()) == 3 r, g, b = img.split() r = np.asarray(r, np.int32) g = np.asarray(g, np.int32) b = np.asarray(b, np.int32) dpt = np.bitwise_or(np.left_shift(g, 8), b) imgdata = np.asarray(dpt, np.float32) return imgdata def getDepthMapNV(self): """ Get the value of invalid depth values in the depth map :return: value """ return 32001 def loadSequence(self, seqName, Nmax=float('inf'), shuffle=False, rng=None, docom=False, cube=None): """ Load an image sequence from the dataset :param seqName: sequence name, e.g. train :param Nmax: maximum number of samples to load :return: returns named image sequence """ if cube is None: config = {'cube': self.default_cubes[seqName]} else: assert isinstance(cube, tuple) assert len(cube) == 3 config = {'cube': cube} pickleCache = '{}/{}_{}_{}_{}_{}_{}__cache.pkl'.format(self.cacheDir, self.__class__.__name__, seqName, self.hand, self.allJoints, HandDetector.detectionModeToString(docom, self.refineNet is not None), config['cube'][0]) if self.useCache: if os.path.isfile(pickleCache): print("Loading cache data from {}".format(pickleCache)) f = open(pickleCache, 'rb') (seqName, data, config) = cPickle.load(f) f.close() # shuffle data if shuffle and rng is not None: print("Shuffling") rng.shuffle(data) if not(np.isinf(Nmax)): return NamedImgSequence(seqName, data[0:Nmax], config) else: return NamedImgSequence(seqName, data, config) self.loadRefineNetLazy(self.refineNet) # Load the dataset objdir = '{}/{}/'.format(self.basepath, seqName) trainlabels = '{}/{}/joint_data.mat'.format(self.basepath, seqName) mat = scipy.io.loadmat(trainlabels) joints3D = mat['joint_xyz'][0] joints2D = mat['joint_uvd'][0] if self.allJoints: eval_idxs = np.arange(36) else: eval_idxs = self.restrictedJointsEval self.numJoints = len(eval_idxs) txt = 'Loading {}'.format(seqName) pbar = pb.ProgressBar(maxval=joints3D.shape[0], widgets=[txt, pb.Percentage(), pb.Bar()]) pbar.start() data = [] i = 0 for line in range(joints3D.shape[0]): dptFileName = '{0:s}/depth_1_{1:07d}.png'.format(objdir, line+1) if not os.path.isfile(dptFileName): print("File {} does not exist!".format(dptFileName)) i += 1 continue dpt = self.loadDepthMap(dptFileName) if self.hand is not None: if self.hand != self.sides[seqName]: raise NotImplementedError() dpt = dpt[:, ::-1] # joints in image coordinates gtorig = np.zeros((self.numJoints, 3), np.float32) jt = 0 for ii in range(joints2D.shape[1]): if ii not in eval_idxs: continue gtorig[jt, 0] = joints2D[line, ii, 0] gtorig[jt, 1] = joints2D[line, ii, 1] gtorig[jt, 2] = joints2D[line, ii, 2] jt += 1 # normalized joints in 3D coordinates gt3Dorig = np.zeros((self.numJoints, 3), np.float32) jt = 0 for jj in range(joints3D.shape[1]): if jj not in eval_idxs: continue gt3Dorig[jt, 0] = joints3D[line, jj, 0] gt3Dorig[jt, 1] = joints3D[line, jj, 1] gt3Dorig[jt, 2] = joints3D[line, jj, 2] jt += 1 # print gt3D # self.showAnnotatedDepth(DepthFrame(dpt,gtorig,gtorig,0,gt3Dorig,gt3Dorig,0,dptFileName,'','')) # Detect hand hd = HandDetector(dpt, self.fx, self.fy, refineNet=self.refineNet, importer=self) if not hd.checkImage(1): print("Skipping image {}, no content".format(dptFileName)) i += 1 continue try: dpt, M, com = hd.cropArea3D(com=gtorig[self.crop_joint_idx], size=config['cube'], docom=docom) except UserWarning: print("Skipping image {}, no hand detected".format(dptFileName)) i += 1 continue com3D = self.jointImgTo3D(com) gt3Dcrop = gt3Dorig - com3D # normalize to com gtcrop = transformPoints2D(gtorig, M) # print("{}".format(gt3Dorig)) # self.showAnnotatedDepth(DepthFrame(dpt,gtorig,gtcrop,M,gt3Dorig,gt3Dcrop,com3D,dptFileName,'','',{})) data.append(DepthFrame(dpt.astype(np.float32), gtorig, gtcrop, M, gt3Dorig, gt3Dcrop, com3D, dptFileName, '', self.sides[seqName], {})) pbar.update(i) i += 1 # early stop if len(data) >= Nmax: break pbar.finish() print("Loaded {} samples.".format(len(data))) if self.useCache: print("Save cache data to {}".format(pickleCache)) f = open(pickleCache, 'wb') cPickle.dump((seqName, data, config), f, protocol=cPickle.HIGHEST_PROTOCOL) f.close() # shuffle data if shuffle and rng is not None: print("Shuffling") rng.shuffle(data) return NamedImgSequence(seqName, data, config) def loadBaseline(self, filename, gt=None): """ Load baseline data :param filename: file name of data :return: list with joint coordinates """ if gt is not None: mat = scipy.io.loadmat(filename) names = mat['conv_joint_names'][0] joints = mat['pred_joint_uvconf'][0] self.numJoints = names.shape[0] data = [] for dat in range(min(joints.shape[0], gt.shape[0])): fname = '{0:s}/depth_1_{1:07d}.png'.format(os.path.split(filename)[0], dat+1) if not os.path.isfile(fname): continue dm = self.loadDepthMap(fname) # joints in image coordinates ev = np.zeros((self.numJoints, 3), np.float32) jt = 0 for i in range(joints.shape[1]): if np.count_nonzero(joints[dat, i, :]) == 0: continue ev[jt, 0] = joints[dat, i, 0] ev[jt, 1] = joints[dat, i, 1] ev[jt, 2] = dm[int(ev[jt, 1]), int(ev[jt, 0])] jt += 1 for jt in range(ev.shape[0]): #if ev[jt,2] == 2001. or ev[jt,2] == 0.: if abs(ev[jt, 2] - gt[dat, 13, 2]) > 150.: ev[jt, 2] = gt[dat, jt, 2]#np.clip(ev[jt,2],gt[dat,13,2]-150.,gt[dat,13,2]+150.) # set to groundtruth if unknown ev3D = self.jointsImgTo3D(ev) data.append(ev3D) return data else: def nonblank_lines(f): for l in f: line = l.rstrip() if line: yield line inputfile = open(filename) # first line specifies the number of 3D joints self.numJoints = len(inputfile.readline().split(' ')) / 3 inputfile.seek(0) data = [] for line in nonblank_lines(inputfile): part = line.split(' ') # joints in image coordinates ev = np.zeros((self.numJoints, 3), np.float32) for joint in range(ev.shape[0]): for xyz in range(0, 3): ev[joint, xyz] = part[joint*3+xyz] gt3Dworld = self.jointsImgTo3D(ev) data.append(gt3Dworld) return data def loadBaseline2D(self, filename): """ Load baseline data :param filename: file name of data :return: list with joint coordinates """ mat = scipy.io.loadmat(filename) names = mat['conv_joint_names'][0] joints = mat['pred_joint_uvconf'][0] self.numJoints = names.shape[0] data = [] for dat in range(joints.shape[0]): # joints in image coordinates ev = np.zeros((self.numJoints, 2), np.float32) jt = 0 for i in range(joints.shape[1]): if np.count_nonzero(joints[dat, i, :]) == 0: continue ev[jt, 0] = joints[dat, i, 0] ev[jt, 1] = joints[dat, i, 1] jt += 1 data.append(ev) return data def jointsImgTo3D(self, sample): """ Normalize sample to metric 3D :param sample: joints in (x,y,z) with x,y in image coordinates and z in mm :return: normalized joints in mm """ ret = np.zeros((sample.shape[0], 3), np.float32) for i in xrange(sample.shape[0]): ret[i] = self.jointImgTo3D(sample[i]) return ret def jointImgTo3D(self, sample): """ Normalize sample to metric 3D :param sample: joints in (x,y,z) with x,y in image coordinates and z in mm :return: normalized joints in mm """ ret = np.zeros((3,), np.float32) ret[0] = (sample[0] - self.ux) * sample[2] / self.fx ret[1] = (self.uy - sample[1]) * sample[2] / self.fy ret[2] = sample[2] return ret def joints3DToImg(self, sample): """ Denormalize sample from metric 3D to image coordinates :param sample: joints in (x,y,z) with x,y and z in mm :return: joints in (x,y,z) with x,y in image coordinates and z in mm """ ret = np.zeros((sample.shape[0], 3), np.float32) for i in xrange(sample.shape[0]): ret[i] = self.joint3DToImg(sample[i]) return ret def joint3DToImg(self, sample): """ Denormalize sample from metric 3D to image coordinates :param sample: joints in (x,y,z) with x,y and z in mm :return: joints in (x,y,z) with x,y in image coordinates and z in mm """ ret = np.zeros((3, ), np.float32) if sample[2] == 0.: ret[0] = self.ux ret[1] = self.uy return ret ret[0] = sample[0]/sample[2]*self.fx+self.ux ret[1] = self.uy-sample[1]/sample[2]*self.fy ret[2] = sample[2] return ret def getCameraIntrinsics(self): """ Get intrinsic camera matrix :return: 3x3 intrinsic camera matrix """ ret = np.zeros((3, 3), np.float32) ret[0, 0] = self.fx ret[1, 1] = -self.fy ret[2, 2] = 1 ret[0, 2] = self.ux ret[1, 2] = self.uy return ret def getCameraProjection(self): """ Get homogenous camera projection matrix :return: 4x4 camera projection matrix """ ret = np.zeros((4, 4), np.float32) ret[0, 0] = self.fx ret[1, 1] = -self.fy ret[2, 2] = 1. ret[0, 2] = self.ux ret[1, 2] = self.uy ret[3, 2] = 1. return ret def showAnnotatedDepth(self, frame): """ Show the depth image :param frame: image to show :return: """ import matplotlib import matplotlib.pyplot as plt print("img min {}, max {}".format(frame.dpt.min(), frame.dpt.max())) fig = plt.figure() ax = fig.add_subplot(111) ax.imshow(frame.dpt, cmap=matplotlib.cm.jet, interpolation='nearest') ax.scatter(frame.gtcrop[:, 0], frame.gtcrop[:, 1]) ax.plot(np.hstack((frame.gtcrop[13, 0], frame.gtcrop[1::-1, 0])), np.hstack((frame.gtcrop[13, 1], frame.gtcrop[1::-1, 1])), c='r') ax.plot(np.hstack((frame.gtcrop[13, 0], frame.gtcrop[3:1:-1, 0])), np.hstack((frame.gtcrop[13, 1], frame.gtcrop[3:1:-1, 1])), c='r') ax.plot(np.hstack((frame.gtcrop[13, 0], frame.gtcrop[5:3:-1, 0])), np.hstack((frame.gtcrop[13, 1], frame.gtcrop[5:3:-1, 1])), c='r') ax.plot(np.hstack((frame.gtcrop[13, 0], frame.gtcrop[7:5:-1, 0])), np.hstack((frame.gtcrop[13, 1], frame.gtcrop[7:5:-1, 1])), c='r') ax.plot(np.hstack((frame.gtcrop[13, 0], frame.gtcrop[10:7:-1, 0])), np.hstack((frame.gtcrop[13, 1], frame.gtcrop[10:7:-1, 1])), c='r') ax.plot(np.hstack((frame.gtcrop[13, 0], frame.gtcrop[11, 0])), np.hstack((frame.gtcrop[13, 1], frame.gtcrop[11, 1])), c='r') ax.plot(np.hstack((frame.gtcrop[13, 0], frame.gtcrop[12, 0])), np.hstack((frame.gtcrop[13, 1], frame.gtcrop[12, 1])), c='r') def format_coord(x, y): numrows, numcols = frame.dpt.shape col = int(x+0.5) row = int(y+0.5) if col>=0 and col<numcols and row>=0 and row<numrows: z = frame.dpt[row,col] return 'x=%1.4f, y=%1.4f, z=%1.4f' % (x, y, z) else: return 'x=%1.4f, y=%1.4f' % (x, y) ax.format_coord = format_coord for i in range(frame.gtcrop.shape[0]): ax.annotate(str(i), (int(frame.gtcrop[i, 0]), int(frame.gtcrop[i, 1]))) plt.show() @staticmethod def depthToPCL(dpt, T, background_val=0.): # get valid points and transform pts = np.asarray(np.where(~np.isclose(dpt, background_val))).transpose() pts = np.concatenate([pts[:, [1, 0]] + 0.5, np.ones((pts.shape[0], 1), dtype='float32')], axis=1) pts = np.dot(np.linalg.inv(np.asarray(T)), pts.T).T pts = (pts[:, 0:2] / pts[:, 2][:, None]).reshape((pts.shape[0], 2)) # replace the invalid data depth = dpt[(~np.isclose(dpt, background_val))] # get x and y data in a vectorized way row = (pts[:, 0] - 320.) / 588.03 * depth col = (240. - pts[:, 1]) / 587.07 * depth # combine x,y,depth return np.column_stack((row, col, depth))
gpl-3.0
aetilley/scikit-learn
examples/neighbors/plot_approximate_nearest_neighbors_hyperparameters.py
227
5170
""" ================================================= Hyper-parameters of Approximate Nearest Neighbors ================================================= This example demonstrates the behaviour of the accuracy of the nearest neighbor queries of Locality Sensitive Hashing Forest as the number of candidates and the number of estimators (trees) vary. In the first plot, accuracy is measured with the number of candidates. Here, the term "number of candidates" refers to maximum bound for the number of distinct points retrieved from each tree to calculate the distances. Nearest neighbors are selected from this pool of candidates. Number of estimators is maintained at three fixed levels (1, 5, 10). In the second plot, the number of candidates is fixed at 50. Number of trees is varied and the accuracy is plotted against those values. To measure the accuracy, the true nearest neighbors are required, therefore :class:`sklearn.neighbors.NearestNeighbors` is used to compute the exact neighbors. """ from __future__ import division print(__doc__) # Author: Maheshakya Wijewardena <[email protected]> # # License: BSD 3 clause ############################################################################### import numpy as np from sklearn.datasets.samples_generator import make_blobs from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors import matplotlib.pyplot as plt # Initialize size of the database, iterations and required neighbors. n_samples = 10000 n_features = 100 n_queries = 30 rng = np.random.RandomState(42) # Generate sample data X, _ = make_blobs(n_samples=n_samples + n_queries, n_features=n_features, centers=10, random_state=0) X_index = X[:n_samples] X_query = X[n_samples:] # Get exact neighbors nbrs = NearestNeighbors(n_neighbors=1, algorithm='brute', metric='cosine').fit(X_index) neighbors_exact = nbrs.kneighbors(X_query, return_distance=False) # Set `n_candidate` values n_candidates_values = np.linspace(10, 500, 5).astype(np.int) n_estimators_for_candidate_value = [1, 5, 10] n_iter = 10 stds_accuracies = np.zeros((len(n_estimators_for_candidate_value), n_candidates_values.shape[0]), dtype=float) accuracies_c = np.zeros((len(n_estimators_for_candidate_value), n_candidates_values.shape[0]), dtype=float) # LSH Forest is a stochastic index: perform several iteration to estimate # expected accuracy and standard deviation displayed as error bars in # the plots for j, value in enumerate(n_estimators_for_candidate_value): for i, n_candidates in enumerate(n_candidates_values): accuracy_c = [] for seed in range(n_iter): lshf = LSHForest(n_estimators=value, n_candidates=n_candidates, n_neighbors=1, random_state=seed) # Build the LSH Forest index lshf.fit(X_index) # Get neighbors neighbors_approx = lshf.kneighbors(X_query, return_distance=False) accuracy_c.append(np.sum(np.equal(neighbors_approx, neighbors_exact)) / n_queries) stds_accuracies[j, i] = np.std(accuracy_c) accuracies_c[j, i] = np.mean(accuracy_c) # Set `n_estimators` values n_estimators_values = [1, 5, 10, 20, 30, 40, 50] accuracies_trees = np.zeros(len(n_estimators_values), dtype=float) # Calculate average accuracy for each value of `n_estimators` for i, n_estimators in enumerate(n_estimators_values): lshf = LSHForest(n_estimators=n_estimators, n_neighbors=1) # Build the LSH Forest index lshf.fit(X_index) # Get neighbors neighbors_approx = lshf.kneighbors(X_query, return_distance=False) accuracies_trees[i] = np.sum(np.equal(neighbors_approx, neighbors_exact))/n_queries ############################################################################### # Plot the accuracy variation with `n_candidates` plt.figure() colors = ['c', 'm', 'y'] for i, n_estimators in enumerate(n_estimators_for_candidate_value): label = 'n_estimators = %d ' % n_estimators plt.plot(n_candidates_values, accuracies_c[i, :], 'o-', c=colors[i], label=label) plt.errorbar(n_candidates_values, accuracies_c[i, :], stds_accuracies[i, :], c=colors[i]) plt.legend(loc='upper left', fontsize='small') plt.ylim([0, 1.2]) plt.xlim(min(n_candidates_values), max(n_candidates_values)) plt.ylabel("Accuracy") plt.xlabel("n_candidates") plt.grid(which='both') plt.title("Accuracy variation with n_candidates") # Plot the accuracy variation with `n_estimators` plt.figure() plt.scatter(n_estimators_values, accuracies_trees, c='k') plt.plot(n_estimators_values, accuracies_trees, c='g') plt.ylim([0, 1.2]) plt.xlim(min(n_estimators_values), max(n_estimators_values)) plt.ylabel("Accuracy") plt.xlabel("n_estimators") plt.grid(which='both') plt.title("Accuracy variation with n_estimators") plt.show()
bsd-3-clause
astyl/wxPlotLab
mplotlab/graphics/Navigation.py
2
2676
# -*-coding:Utf-8 -* from mplotlab import App from matplotlib.backend_bases import NavigationToolbar2 import wx class Cursors: # this class is only used as a simple namespace HAND, POINTER, SELECT_REGION, MOVE = list(range(4)) cursors = Cursors() cursord = { cursors.MOVE : wx.CURSOR_HAND, cursors.HAND : wx.CURSOR_HAND, cursors.POINTER : wx.CURSOR_ARROW, cursors.SELECT_REGION : wx.CURSOR_CROSS, } class Navigation(NavigationToolbar2): def __init__(self,*a,**k): NavigationToolbar2.__init__(self, *a,**k) def _init_toolbar(self,*args,**kwargs): pass def set_message(self,s): """ display in the status bar the mouseover data (x,y) """ try: App().mainWin.GetStatusBar().SetStatusText(s,0) except: pass def set_cursor(self, cursor): cursor =wx.StockCursor(cursord[cursor]) self.canvas.SetCursor( cursor ) def dynamic_update(self): d = self._idle self._idle = False if d: self.canvas.draw() self._idle = True def press(self, event): if self._active == 'ZOOM': self.wxoverlay = wx.Overlay() def release(self, event): if self._active == 'ZOOM': # When the mouse is released we reset the overlay and it # restores the former content to the window. self.wxoverlay.Reset() del self.wxoverlay def draw_rubberband(self, event, x0, y0, x1, y1): # Use an Overlay to draw a rubberband-like bounding box. dc = wx.ClientDC(self.canvas) odc = wx.DCOverlay(self.wxoverlay, dc) odc.Clear() # Mac's DC is already the same as a GCDC, and it causes # problems with the overlay if we try to use an actual # wx.GCDC so don't try it. if 'wxMac' not in wx.PlatformInfo: dc = wx.GCDC(dc) height = self.canvas.figure.bbox.height y1 = height - y1 y0 = height - y0 if y1<y0: y0, y1 = y1, y0 if x1<y0: x0, x1 = x1, x0 w = x1 - x0 h = y1 - y0 rect = wx.Rect(x0, y0, w, h) rubberBandColor = '#C0C0FF' # or load from config? # Set a pen for the border color = wx.NamedColour(rubberBandColor) dc.SetPen(wx.Pen(color, 1)) # use the same color, plus alpha for the brush r, g, b = color.Get() color.Set(r,g,b, 0x60) dc.SetBrush(wx.Brush(color)) dc.DrawRectangleRect(rect)
mit
cdegroc/scikit-learn
sklearn/decomposition/dict_learning.py
2
41775
""" Dictionary learning """ # Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort # License: BSD import time import sys import itertools import warnings from math import sqrt, floor, ceil import numpy as np from scipy import linalg from numpy.lib.stride_tricks import as_strided from ..base import BaseEstimator, TransformerMixin from ..externals.joblib import Parallel, delayed, cpu_count from ..utils import array2d, check_random_state, gen_even_slices, deprecated from ..utils.extmath import randomized_svd from ..linear_model import Lasso, orthogonal_mp_gram, lars_path def _sparse_encode(X, dictionary, gram=None, cov=None, algorithm='lasso_lars', n_nonzero_coefs=None, alpha=None, copy_gram=True, copy_cov=True, init=None, max_iter=1000): """Generic sparse coding Each column of the result is the solution to a Lasso problem. Parameters ---------- X: array of shape (n_samples, n_features) Data matrix. dictionary: array of shape (n_atoms, n_features) The dictionary matrix against which to solve the sparse coding of the data. Some of the algorithms assume normalized rows. gram: array, shape=(n_atoms, n_atoms) Precomputed Gram matrix, dictionary * dictionary' cov: array, shape=(n_atoms, n_samples) Precomputed covariance, dictionary * X' algorithm: {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'} lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection dictionary * data' n_nonzero_coefs: int, 0.1 * n_features by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. alpha: float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. init: array of shape (n_samples, n_atoms) Initialization value of the sparse code. Only used if `algorithm='lasso_cd'`. max_iter: int, 1000 by default Maximum number of iterations to perform if `algorithm='lasso_cd'`. copy_gram: boolean, optional Whether to copy the precomputed Gram matrix; if False, it may be overwritten. copy_cov: boolean, optional Whether to copy the precomputed covariance matrix; if False, it may be overwritten. Returns ------- code: array of shape (n_components, n_features) The sparse codes See also -------- sklearn.linear_model.lars_path sklearn.linear_model.orthogonal_mp sklearn.linear_model.Lasso SparseCoder """ alpha = float(alpha) if alpha is not None else None dictionary = np.asarray(dictionary) X = np.asarray(X) if X.ndim == 1: X = X[:, np.newaxis] n_samples, n_features = X.shape n_atoms = dictionary.shape[0] # This will always use Gram if gram is None: # I think it's never safe to overwrite Gram when n_features > 1 # but I'd like to avoid the complicated logic. # The parameter could be removed in this case. Discuss. gram = np.dot(dictionary, dictionary.T) if cov is None and algorithm != 'lasso_cd': # overwriting cov is safe copy_cov = False cov = np.dot(dictionary, X.T) if algorithm == 'lasso_lars': if alpha is None: alpha = 1. alpha /= n_features # account for scaling try: new_code = np.empty((n_samples, n_atoms)) err_mgt = np.seterr(all='ignore') for k in range(n_samples): # A huge amount of time is spent in this loop. It needs to be # tight. _, _, coef_path_ = lars_path(dictionary.T, X[k], Xy=cov[:, k], Gram=gram, alpha_min=alpha, method='lasso') new_code[k] = coef_path_[:, -1] finally: np.seterr(**err_mgt) elif algorithm == 'lasso_cd': if alpha is None: alpha = 1. alpha /= n_features # account for scaling new_code = np.empty((n_samples, n_atoms)) clf = Lasso(alpha=alpha, fit_intercept=False, precompute=gram, max_iter=1000) for k in xrange(n_samples): # A huge amount of time is spent in this loop. It needs to be # tight if init is not None: clf.coef_ = init[k] # Init with previous value of the code clf.fit(dictionary.T, X[k]) new_code[k] = clf.coef_ elif algorithm == 'lars': if n_nonzero_coefs is None: n_nonzero_coefs = max(n_features / 10, 1) try: new_code = np.empty((n_samples, n_atoms)) err_mgt = np.seterr(all='ignore') for k in xrange(n_samples): # A huge amount of time is spent in this loop. It needs to be # tight. _, _, coef_path_ = lars_path(dictionary.T, X[k], Xy=cov[:, k], Gram=gram, method='lar', max_iter=n_nonzero_coefs) new_code[k] = coef_path_[:, -1] finally: np.seterr(**err_mgt) elif algorithm == 'threshold': if alpha is None: alpha = 1. new_code = (np.sign(cov) * np.maximum(np.abs(cov) - alpha, 0)).T elif algorithm == 'omp': if n_nonzero_coefs is None and alpha is None: n_nonzero_coefs = max(n_features / 10, 1) norms_squared = np.sum((X ** 2), axis=1) new_code = orthogonal_mp_gram(gram, cov, n_nonzero_coefs, alpha, norms_squared, copy_Xy=copy_cov ).T else: raise NotImplemented('Sparse coding method %s not implemented' % algorithm) return new_code def sparse_encode(X, dictionary, gram=None, cov=None, algorithm='lasso_lars', n_nonzero_coefs=None, alpha=None, copy_gram=True, copy_cov=True, init=None, max_iter=1000, n_jobs=1): """Sparse coding Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array `code` such that:: X ~= code * dictionary Parameters ---------- X: array of shape (n_samples, n_features) Data matrix dictionary: array of shape (n_atoms, n_features) The dictionary matrix against which to solve the sparse coding of the data. Some of the algorithms assume normalized rows for meaningful output. gram: array, shape=(n_atoms, n_atoms) Precomputed Gram matrix, dictionary * dictionary' cov: array, shape=(n_atoms, n_samples) Precomputed covariance, dictionary' * X algorithm: {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'} lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection dictionary * X' n_nonzero_coefs: int, 0.1 * n_features by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. alpha: float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threhold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. init: array of shape (n_samples, n_atoms) Initialization value of the sparse codes. Only used if `algorithm='lasso_cd'`. max_iter: int, 1000 by default Maximum number of iterations to perform if `algorithm='lasso_cd'`. copy_gram: boolean, optional Whether to copy the precomputed Gram matrix; if False, it may be overwritten. copy_cov: boolean, optional Whether to copy the precomputed covariance matrix; if False, it may be overwritten. n_jobs: int, optional Number of parallel jobs to run. Returns ------- code: array of shape (n_samples, n_atoms) The sparse codes See also -------- sklearn.linear_model.lars_path sklearn.linear_model.orthogonal_mp sklearn.linear_model.Lasso SparseCoder """ warnings.warn("Please note: the interface of sparse_encode has changed: " "It now follows the dictionary learning API and it also " "handles parallelization. Please read the docstring for " "more information.") dictionary = np.asarray(dictionary) X = np.asarray(X) n_samples, n_features = X.shape n_atoms = dictionary.shape[0] if gram is None: copy_gram = False gram = np.dot(dictionary, dictionary.T) if cov is None and algorithm != 'lasso_cd': copy_cov = False cov = np.dot(dictionary, X.T) if n_jobs == 1 or algorithm == 'threshold': return _sparse_encode(X, dictionary, gram, cov, algorithm, n_nonzero_coefs, alpha, copy_gram, copy_cov, init) code = np.empty((n_samples, n_atoms)) slices = list(gen_even_slices(n_samples, n_jobs)) code_views = Parallel(n_jobs=n_jobs)( delayed(sparse_encode)(X[this_slice], dictionary, gram, cov[:, this_slice], algorithm, n_nonzero_coefs, alpha, copy_gram, copy_cov, init=init[this_slice] if init is not None else None) for this_slice in slices) for this_slice, this_view in zip(slices, code_views): code[this_slice] = this_view return code @deprecated('Use sparse_encode instead') def sparse_encode_parallel(): pass def _update_dict(dictionary, Y, code, verbose=False, return_r2=False, random_state=None): """Update the dense dictionary factor in place. Parameters ---------- dictionary: array of shape (n_features, n_atoms) Value of the dictionary at the previous iteration. Y: array of shape (n_features, n_samples) Data matrix. code: array of shape (n_atoms, n_samples) Sparse coding of the data against which to optimize the dictionary. verbose: Degree of output the procedure will print. return_r2: bool Whether to compute and return the residual sum of squares corresponding to the computed solution. random_state: int or RandomState Pseudo number generator state used for random sampling. Returns ------- dictionary: array of shape (n_features, n_atoms) Updated dictionary. """ n_atoms = len(code) n_samples = Y.shape[0] random_state = check_random_state(random_state) # Residuals, computed 'in-place' for efficiency R = -np.dot(dictionary, code) R += Y R = np.asfortranarray(R) ger, = linalg.get_blas_funcs(('ger',), (dictionary, code)) for k in xrange(n_atoms): # R <- 1.0 * U_k * V_k^T + R R = ger(1.0, dictionary[:, k], code[k, :], a=R, overwrite_a=True) dictionary[:, k] = np.dot(R, code[k, :].T) # Scale k'th atom atom_norm_square = np.dot(dictionary[:, k], dictionary[:, k]) if atom_norm_square < 1e-20: if verbose == 1: sys.stdout.write("+") sys.stdout.flush() elif verbose: print "Adding new random atom" dictionary[:, k] = random_state.randn(n_samples) # Setting corresponding coefs to 0 code[k, :] = 0.0 dictionary[:, k] /= sqrt(np.dot(dictionary[:, k], dictionary[:, k])) else: dictionary[:, k] /= sqrt(atom_norm_square) # R <- -1.0 * U_k * V_k^T + R R = ger(-1.0, dictionary[:, k], code[k, :], a=R, overwrite_a=True) if return_r2: R **= 2 # R is fortran-ordered. For numpy version < 1.6, sum does not # follow the quick striding first, and is thus inefficient on # fortran ordered data. We take a flat view of the data with no # striding R = as_strided(R, shape=(R.size, ), strides=(R.dtype.itemsize,)) R = np.sum(R) return dictionary, R return dictionary def dict_learning(X, n_atoms, alpha, max_iter=100, tol=1e-8, method='lars', n_jobs=1, dict_init=None, code_init=None, callback=None, verbose=False, random_state=None): """Solves a dictionary learning matrix factorization problem. Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:: (U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_atoms where V is the dictionary and U is the sparse code. Parameters ---------- X: array of shape (n_samples, n_features) Data matrix. n_atoms: int, Number of dictionary atoms to extract. alpha: int, Sparsity controlling parameter. max_iter: int, Maximum number of iterations to perform. tol: float, Tolerance for the stopping condition. method: {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. n_jobs: int, Number of parallel jobs to run, or -1 to autodetect. dict_init: array of shape (n_atoms, n_features), Initial value for the dictionary for warm restart scenarios. code_init: array of shape (n_samples, n_atoms), Initial value for the sparse code for warm restart scenarios. callback: Callable that gets invoked every five iterations. verbose: Degree of output the procedure will print. random_state: int or RandomState Pseudo number generator state used for random sampling. Returns ------- code: array of shape (n_samples, n_atoms) The sparse code factor in the matrix factorization. dictionary: array of shape (n_atoms, n_features), The dictionary factor in the matrix factorization. errors: array Vector of errors at each iteration. See also -------- dict_learning_online DictionaryLearning MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA """ if method not in ('lars', 'cd'): raise ValueError('Coding method not supported as a fit algorithm.') method = 'lasso_' + method t0 = time.time() # Avoid integer division problems alpha = float(alpha) random_state = check_random_state(random_state) if n_jobs == -1: n_jobs = cpu_count() # Init U and V with SVD of Y if code_init is not None and code_init is not None: code = np.array(code_init, order='F') # Don't copy V, it will happen below dictionary = dict_init else: code, S, dictionary = linalg.svd(X, full_matrices=False) dictionary = S[:, np.newaxis] * dictionary r = len(dictionary) if n_atoms <= r: # True even if n_atoms=None code = code[:, :n_atoms] dictionary = dictionary[:n_atoms, :] else: code = np.c_[code, np.zeros((len(code), n_atoms - r))] dictionary = np.r_[dictionary, np.zeros((n_atoms - r, dictionary.shape[1]))] # Fortran-order dict, as we are going to access its row vectors dictionary = np.array(dictionary, order='F') residuals = 0 errors = [] current_cost = np.nan if verbose == 1: print '[dict_learning]', for ii in xrange(max_iter): dt = (time.time() - t0) if verbose == 1: sys.stdout.write(".") sys.stdout.flush() elif verbose: print ("Iteration % 3i " "(elapsed time: % 3is, % 4.1fmn, current cost % 7.3f)" % (ii, dt, dt / 60, current_cost)) # Update code code = sparse_encode(X, dictionary, algorithm=method, alpha=alpha, init=code, n_jobs=n_jobs) # Update dictionary dictionary, residuals = _update_dict(dictionary.T, X.T, code.T, verbose=verbose, return_r2=True, random_state=random_state) dictionary = dictionary.T # Cost function current_cost = 0.5 * residuals + alpha * np.sum(np.abs(code)) errors.append(current_cost) if ii > 0: dE = errors[-2] - errors[-1] # assert(dE >= -tol * errors[-1]) if dE < tol * errors[-1]: if verbose == 1: # A line return print "" elif verbose: print "--- Convergence reached after %d iterations" % ii break if ii % 5 == 0 and callback is not None: callback(locals()) return code, dictionary, errors def dict_learning_online(X, n_atoms, alpha, n_iter=100, return_code=True, dict_init=None, callback=None, chunk_size=3, verbose=False, shuffle=True, n_jobs=1, method='lars', iter_offset=0, random_state=None): """Solves a dictionary learning matrix factorization problem online. Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:: (U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_atoms where V is the dictionary and U is the sparse code. This is accomplished by repeatedly iterating over mini-batches by slicing the input data. Parameters ---------- X: array of shape (n_samples, n_features) data matrix n_atoms: int, number of dictionary atoms to extract alpha: int, sparsity controlling parameter n_iter: int, number of iterations to perform return_code: boolean, whether to also return the code U or just the dictionary V dict_init: array of shape (n_atoms, n_features), initial value for the dictionary for warm restart scenarios callback: callable that gets invoked every five iterations chunk_size: int, the number of samples to take in each batch verbose: degree of output the procedure will print shuffle: boolean, whether to shuffle the data before splitting it in batches n_jobs: int, number of parallel jobs to run, or -1 to autodetect. method: {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. iter_offset: int, default 0 number of previous iterations completed on the dictionary used for initialization random_state: int or RandomState Pseudo number generator state used for random sampling. Returns ------- code: array of shape (n_samples, n_atoms), the sparse code (only returned if `return_code=True`) dictionary: array of shape (n_atoms, n_features), the solutions to the dictionary learning problem See also -------- dict_learning DictionaryLearning MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA """ if method not in ('lars', 'cd'): raise ValueError('Coding method not supported as a fit algorithm.') method = 'lasso_' + method t0 = time.time() n_samples, n_features = X.shape # Avoid integer division problems alpha = float(alpha) random_state = check_random_state(random_state) if n_jobs == -1: n_jobs = cpu_count() # Init V with SVD of X if dict_init is not None: dictionary = dict_init else: _, S, dictionary = randomized_svd(X, n_atoms) dictionary = S[:, np.newaxis] * dictionary r = len(dictionary) if n_atoms <= r: dictionary = dictionary[:n_atoms, :] else: dictionary = np.r_[dictionary, np.zeros((n_atoms - r, dictionary.shape[1]))] dictionary = np.ascontiguousarray(dictionary.T) if verbose == 1: print '[dict_learning]', n_batches = floor(float(len(X)) / chunk_size) if shuffle: X_train = X.copy() random_state.shuffle(X_train) else: X_train = X batches = np.array_split(X_train, n_batches) batches = itertools.cycle(batches) # The covariance of the dictionary A = np.zeros((n_atoms, n_atoms)) # The data approximation B = np.zeros((n_features, n_atoms)) for ii, this_X in itertools.izip(xrange(iter_offset, iter_offset + n_iter), batches): dt = (time.time() - t0) if verbose == 1: sys.stdout.write(".") sys.stdout.flush() elif verbose: if verbose > 10 or ii % ceil(100. / verbose) == 0: print ("Iteration % 3i (elapsed time: % 3is, % 4.1fmn)" % (ii, dt, dt / 60)) this_code = sparse_encode(this_X, dictionary.T, algorithm=method, alpha=alpha).T # Update the auxiliary variables if ii < chunk_size - 1: theta = float((ii + 1) * chunk_size) else: theta = float(chunk_size ** 2 + ii + 1 - chunk_size) beta = (theta + 1 - chunk_size) / (theta + 1) A *= beta A += np.dot(this_code, this_code.T) B *= beta B += np.dot(this_X.T, this_code.T) # Update dictionary dictionary = _update_dict(dictionary, B, A, verbose=verbose, random_state=random_state) # XXX: Can the residuals be of any use? # Maybe we need a stopping criteria based on the amount of # modification in the dictionary if callback is not None: callback(locals()) if return_code: if verbose > 1: print 'Learning code...', elif verbose == 1: print '|', code = sparse_encode(X, dictionary.T, algorithm=method, alpha=alpha, n_jobs=n_jobs) if verbose > 1: dt = (time.time() - t0) print 'done (total time: % 3is, % 4.1fmn)' % (dt, dt / 60) return code, dictionary.T return dictionary.T class SparseCodingMixin(TransformerMixin): """Sparse coding mixin""" def _set_sparse_coding_params(self, n_atoms, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, split_sign=False, n_jobs=1): self.n_atoms = n_atoms self.transform_algorithm = transform_algorithm self.transform_n_nonzero_coefs = transform_n_nonzero_coefs self.transform_alpha = transform_alpha self.split_sign = split_sign self.n_jobs = n_jobs def transform(self, X, y=None): """Encode the data as a sparse combination of the dictionary atoms. Coding method is determined by the object parameter `transform_algorithm`. Parameters ---------- X : array of shape (n_samples, n_features) Test data to be transformed, must have the same number of features as the data used to train the model. Returns ------- X_new : array, shape (n_samples, n_components) Transformed data """ # XXX : kwargs is not documented X = array2d(X) n_samples, n_features = X.shape code = sparse_encode( X, self.components_, algorithm=self.transform_algorithm, n_nonzero_coefs=self.transform_n_nonzero_coefs, alpha=self.transform_alpha, n_jobs=self.n_jobs) if self.split_sign: # feature vector is split into a positive and negative side n_samples, n_features = code.shape split_code = np.empty((n_samples, 2 * n_features)) split_code[:, :n_features] = np.maximum(code, 0) split_code[:, n_features:] = -np.minimum(code, 0) code = split_code return code class SparseCoder(BaseEstimator, SparseCodingMixin): """Sparse coding Finds a sparse representation of data against a fixed, precomputed dictionary. Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array `code` such that:: X ~= code * dictionary Parameters ---------- dictionary : array, [n_atoms, n_features] The dictionary atoms used for sparse coding. Lines are assumed to be normalized to unit norm. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \ 'threshold'} Algorithm used to transform the data: lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection ``dictionary * X'`` transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. transform_alpha : float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. n_jobs : int, number of parallel jobs to run Attributes ---------- `components_` : array, [n_atoms, n_features] The unchanged dictionary atoms See also -------- DictionaryLearning MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA sparse_encode """ def __init__(self, dictionary, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, split_sign=False, n_jobs=1): self._set_sparse_coding_params(dictionary.shape[0], transform_algorithm, transform_n_nonzero_coefs, transform_alpha, split_sign, n_jobs) self.components_ = dictionary def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ return self class DictionaryLearning(BaseEstimator, SparseCodingMixin): """Dictionary learning Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code. Solves the optimization problem:: (U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_atoms Parameters ---------- n_atoms : int, number of dictionary elements to extract alpha : int, sparsity controlling parameter max_iter : int, maximum number of iterations to perform tol : float, tolerance for numerical error fit_algorithm : {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \ 'threshold'} Algorithm used to transform the data lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection ``dictionary * X'`` transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. transform_alpha : float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. n_jobs : int, number of parallel jobs to run code_init : array of shape (n_samples, n_atoms), initial value for the code, for warm restart dict_init : array of shape (n_atoms, n_features), initial values for the dictionary, for warm restart verbose : degree of verbosity of the printed output random_state : int or RandomState Pseudo number generator state used for random sampling. Attributes ---------- `components_` : array, [n_atoms, n_features] dictionary atoms extracted from the data `error_` : array vector of errors at each iteration Notes ----- **References:** J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (http://www.di.ens.fr/sierra/pdfs/icml09.pdf) See also -------- SparseCoder MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA """ def __init__(self, n_atoms, alpha=1, max_iter=1000, tol=1e-8, fit_algorithm='lars', transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, n_jobs=1, code_init=None, dict_init=None, verbose=False, split_sign=False, random_state=None): self._set_sparse_coding_params(n_atoms, transform_algorithm, transform_n_nonzero_coefs, transform_alpha, split_sign, n_jobs) self.alpha = alpha self.max_iter = max_iter self.tol = tol self.fit_algorithm = fit_algorithm self.code_init = code_init self.dict_init = dict_init self.verbose = verbose self.random_state = random_state def fit(self, X, y=None): """Fit the model from data in X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- self: object Returns the object itself """ self.random_state = check_random_state(self.random_state) X = np.asarray(X) V, U, E = dict_learning(X, self.n_atoms, self.alpha, tol=self.tol, max_iter=self.max_iter, method=self.fit_algorithm, n_jobs=self.n_jobs, code_init=self.code_init, dict_init=self.dict_init, verbose=self.verbose, random_state=self.random_state) self.components_ = U self.error_ = E return self class MiniBatchDictionaryLearning(BaseEstimator, SparseCodingMixin): """Mini-batch dictionary learning Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code. Solves the optimization problem:: (U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_atoms Parameters ---------- n_atoms : int, number of dictionary elements to extract alpha : int, sparsity controlling parameter n_iter : int, total number of iterations to perform fit_algorithm : {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \ 'threshold'} Algorithm used to transform the data. lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection dictionary * X' transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. transform_alpha : float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. n_jobs : int, number of parallel jobs to run dict_init : array of shape (n_atoms, n_features), initial value of the dictionary for warm restart scenarios verbose : degree of verbosity of the printed output chunk_size : int, number of samples in each mini-batch shuffle : bool, whether to shuffle the samples before forming batches random_state : int or RandomState Pseudo number generator state used for random sampling. Attributes ---------- `components_` : array, [n_atoms, n_features] components extracted from the data Notes ----- **References:** J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (http://www.di.ens.fr/sierra/pdfs/icml09.pdf) See also -------- SparseCoder DictionaryLearning SparsePCA MiniBatchSparsePCA """ def __init__(self, n_atoms, alpha=1, n_iter=1000, fit_algorithm='lars', n_jobs=1, chunk_size=3, shuffle=True, dict_init=None, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, verbose=False, split_sign=False, random_state=None): self._set_sparse_coding_params(n_atoms, transform_algorithm, transform_n_nonzero_coefs, transform_alpha, split_sign, n_jobs) self.alpha = alpha self.n_iter = n_iter self.fit_algorithm = fit_algorithm self.dict_init = dict_init self.verbose = verbose self.shuffle = shuffle self.chunk_size = chunk_size self.split_sign = split_sign self.random_state = random_state def fit(self, X, y=None): """Fit the model from data in X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ self.random_state = check_random_state(self.random_state) X = np.asarray(X) U = dict_learning_online(X, self.n_atoms, self.alpha, n_iter=self.n_iter, return_code=False, method=self.fit_algorithm, n_jobs=self.n_jobs, dict_init=self.dict_init, chunk_size=self.chunk_size, shuffle=self.shuffle, verbose=self.verbose, random_state=self.random_state) self.components_ = U return self def partial_fit(self, X, y=None, iter_offset=0): """Updates the model using the data in X as a mini-batch. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ self.random_state = check_random_state(self.random_state) X = array2d(X) if hasattr(self, 'components_'): dict_init = self.components_ else: dict_init = self.dict_init U = dict_learning_online(X, self.n_atoms, self.alpha, n_iter=self.n_iter, method=self.fit_algorithm, n_jobs=self.n_jobs, dict_init=dict_init, chunk_size=len(X), shuffle=False, verbose=self.verbose, return_code=False, iter_offset=iter_offset, random_state=self.random_state) self.components_ = U return self
bsd-3-clause
mailhexu/pyDFTutils
pyDFTutils/wannier90/pythtb_forj.py
2
153581
from __future__ import print_function # PythTB python tight binding module. # December 22, 2016 __version__='1.7.1' # Copyright 2010, 2012, 2016 by Sinisa Coh and David Vanderbilt # # This file is part of PythTB. PythTB is free software: you can # redistribute it and/or modify it under the terms of the GNU General # Public License as published by the Free Software Foundation, either # version 3 of the License, or (at your option) any later version. # # PythTB is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY # or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public # License for more details. # # A copy of the GNU General Public License should be available # alongside this source in a file named gpl-3.0.txt. If not, # see <http://www.gnu.org/licenses/>. # # PythTB is availabe at http://www.physics.rutgers.edu/pythtb/ import numpy as np # numerics for matrices import sys # for exiting import copy # for deepcopying class tb_model(object): r""" This is the main class of the PythTB package which contains all information for the tight-binding model. :param dim_k: Dimensionality of reciprocal space, i.e., specifies how many directions are considered to be periodic. :param dim_r: Dimensionality of real space, i.e., specifies how many real space lattice vectors there are and how many coordinates are needed to specify the orbital coordinates. .. note:: Parameter *dim_r* can be larger than *dim_k*! For example, a polymer is a three-dimensional molecule (one needs three coordinates to specify orbital positions), but it is periodic along only one direction. For a polymer, therefore, we should have *dim_k* equal to 1 and *dim_r* equal to 3. See similar example here: :ref:`trestle-example`. :param lat: Array containing lattice vectors in Cartesian coordinates (in arbitrary units). In example the below, the first lattice vector has coordinates [1.0,0.5] while the second one has coordinates [0.0,2.0]. By default, lattice vectors are an identity matrix. :param orb: Array containing reduced coordinates of all tight-binding orbitals. In the example below, the first orbital is defined with reduced coordinates [0.2,0.3]. Its Cartesian coordinates are therefore 0.2 times the first lattice vector plus 0.3 times the second lattice vector. If *orb* is an integer code will assume that there are these many orbitals all at the origin of the unit cell. By default the code will assume a single orbital at the origin. :param per: This is an optional parameter giving a list of lattice vectors which are considered to be periodic. In the example below, only the vector [0.0,2.0] is considered to be periodic (since per=[1]). By default, all lattice vectors are assumed to be periodic. If dim_k is smaller than dim_r, then by default the first dim_k vectors are considered to be periodic. :param nspin: Number of explicit spin components assumed for each orbital in *orb*. Allowed values of *nspin* are *1* and *2*. If *nspin* is 1 then the model is spinless, if *nspin* is 2 then it is explicitly a spinfull model and each orbital is assumed to have two spin components. Default value of this parameter is *1*. Of course one can make spinfull calculation even with *nspin* set to 1, but then the user must keep track of which orbital corresponds to which spin component. Example usage:: # Creates model that is two-dimensional in real space but only # one-dimensional in reciprocal space. Second lattice vector is # chosen to be periodic (since per=[1]). Three orbital # coordinates are specified. tb = tb_model(1, 2, lat=[[1.0, 0.5], [0.0, 2.0]], orb=[[0.2, 0.3], [0.1, 0.1], [0.2, 0.2]], per=[1]) """ def __init__(self,dim_k,dim_r,lat=None,orb=None,per=None,nspin=1): # initialize _dim_k = dimensionality of k-space (integer) if type(dim_k).__name__!='int': raise Exception("\n\nArgument dim_k not an integer") if dim_k < 0 or dim_k > 4: raise Exception("\n\nArgument dim_k out of range. Must be between 0 and 4.") self._dim_k=dim_k # initialize _dim_r = dimensionality of r-space (integer) if type(dim_r).__name__!='int': raise Exception("\n\nArgument dim_r not an integer") if dim_r < dim_k or dim_r > 4: raise Exception("\n\nArgument dim_r out of range. Must be dim_r>=dim_k and dim_r<=4.") self._dim_r=dim_r # initialize _lat = lattice vectors, array of dim_r*dim_r # format is _lat(lat_vec_index,cartesian_index) # special option: 'unit' implies unit matrix, also default value if lat is 'unit' or lat is None: self._lat=np.identity(dim_r,float) print(" Lattice vectors not specified! I will use identity matrix.") elif type(lat).__name__ not in ['list','ndarray']: raise Exception("\n\nArgument lat is not a list.") else: self._lat=np.array(lat,dtype=float) if self._lat.shape!=(dim_r,dim_r): raise Exception("\n\nWrong lat array dimensions") # check that volume is not zero and that have right handed system if dim_r>0: if np.abs(np.linalg.det(self._lat))<1.0E-6: raise Exception("\n\nLattice vectors length/area/volume too close to zero, or zero.") if np.linalg.det(self._lat)<0.0: raise Exception("\n\nLattice vectors need to form right handed system.") # initialize _norb = number of basis orbitals per cell # and _orb = orbital locations, in reduced coordinates # format is _orb(orb_index,lat_vec_index) # special option: 'bravais' implies one atom at origin if orb is 'bravais' or orb is None: self._norb=1 self._orb=np.zeros((1,dim_r)) print(" Orbital positions not specified. I will assume a single orbital at the origin.") elif type(orb).__name__=='int': self._norb=orb self._orb=np.zeros((orb,dim_r)) print(" Orbital positions not specified. I will assume ",orb," orbitals at the origin") elif type(orb).__name__ not in ['list','ndarray']: raise Exception("\n\nArgument orb is not a list or an integer") else: self._orb=np.array(orb,dtype=float) if len(self._orb.shape)!=2: raise Exception("\n\nWrong orb array rank") self._norb=self._orb.shape[0] # number of orbitals if self._orb.shape[1]!=dim_r: raise Exception("\n\nWrong orb array dimensions") # choose which self._dim_k out of self._dim_r dimensions are # to be considered periodic. if per==None: # by default first _dim_k dimensions are periodic self._per=list(range(self._dim_k)) else: if len(per)!=self._dim_k: raise Exception("\n\nWrong choice of periodic/infinite direction!") # store which directions are the periodic ones self._per=per # remember number of spin components if nspin not in [1,2]: raise Exception("\n\nWrong value of nspin, must be 1 or 2!") self._nspin=nspin # by default, assume model did not come from w90 object and that # position operator is diagonal self._assume_position_operator_diagonal=True # compute number of electronic states at each k-point self._nsta=self._norb*self._nspin # Initialize onsite energies to zero if self._nspin==1: self._site_energies=np.zeros((self._norb),dtype=float) elif self._nspin==2: self._site_energies=np.zeros((self._norb,2,2),dtype=complex) # remember which onsite energies user has specified self._site_energies_specified=np.zeros(self._norb,dtype=bool) self._site_energies_specified[:]=False # Initialize hoppings to empty list self._hoppings=[] # The onsite energies and hoppings are not specified # when creating a 'tb_model' object. They are speficied # subsequently by separate function calls defined below. def set_onsite(self,onsite_en,ind_i=None,mode="set"): r""" Defines on-site energies for tight-binding orbitals. One can either set energy for one tight-binding orbital, or all at once. .. warning:: In previous version of PythTB this function was called *set_sites*. For backwards compatibility one can still use that name but that feature will be removed in future releases. :param onsite_en: Either a list of on-site energies (in arbitrary units) for each orbital, or a single on-site energy (in this case *ind_i* parameter must be given). In the case when *nspin* is *1* (spinless) then each on-site energy is a single number. If *nspin* is *2* then on-site energy can be given either as a single number, or as an array of four numbers, or 2x2 matrix. If a single number is given, it is interpreted as on-site energy for both up and down spin component. If an array of four numbers is given, these are the coefficients of I, sigma_x, sigma_y, and sigma_z (that is, the 2x2 identity and the three Pauli spin matrices) respectively. Finally, full 2x2 matrix can be given as well. If this function is never called, on-site energy is assumed to be zero. :param ind_i: Index of tight-binding orbital whose on-site energy you wish to change. This parameter should be specified only when *onsite_en* is a single number (not a list). :param mode: Similar to parameter *mode* in function set_hop*. Speficies way in which parameter *onsite_en* is used. It can either set value of on-site energy from scratch, reset it, or add to it. * "set" -- Default value. On-site energy is set to value of *onsite_en* parameter. One can use "set" on each tight-binding orbital only once. * "reset" -- Specifies on-site energy to given value. This function can be called multiple times for the same orbital(s). * "add" -- Adds to the previous value of on-site energy. This function can be called multiple times for the same orbital(s). Example usage:: # Defines on-site energy of first orbital to be 0.0, # second 1.0, and third 2.0 tb.set_onsite([0.0, 1.0, 2.0]) # Increases value of on-site energy for second orbital tb.set_onsite(100.0, 1, mode="add") # Changes on-site energy of second orbital to zero tb.set_onsite(0.0, 1, mode="reset") # Sets all three on-site energies at once tb.set_onsite([2.0, 3.0, 4.0], mode="reset") """ if ind_i==None: if (len(onsite_en)!=self._norb): raise Exception("\n\nWrong number of site energies") # make sure ind_i is not out of scope if ind_i!=None: if ind_i<0 or ind_i>=self._norb: raise Exception("\n\nIndex ind_i out of scope.") # make sure that onsite terms are real/hermitian if ind_i!=None: to_check=[onsite_en] else: to_check=onsite_en for ons in to_check: if np.array(ons).shape==(): if np.abs(np.array(ons)-np.array(ons).conjugate())>1.0E-8: raise Exception("\n\nOnsite energy should not have imaginary part!") elif np.array(ons).shape==(4,): if np.max(np.abs(np.array(ons)-np.array(ons).conjugate()))>1.0E-8: raise Exception("\n\nOnsite energy or Zeeman field should not have imaginary part!") elif np.array(ons).shape==(2,2): if np.max(np.abs(np.array(ons)-np.array(ons).T.conjugate()))>1.0E-8: raise Exception("\n\nOnsite matrix should be Hermitian!") # specifying onsite energies from scratch, can be called only once if mode.lower()=="set": # specifying only one site at a time if ind_i!=None: # make sure we specify things only once if self._site_energies_specified[ind_i]==True: raise Exception("\n\nOnsite energy for this site was already specified! Use mode=\"reset\" or mode=\"add\".") else: self._site_energies[ind_i]=self._val_to_block(onsite_en) self._site_energies_specified[ind_i]=True # specifying all sites at once else: # make sure we specify things only once if True in self._site_energies_specified[ind_i]: raise Exception("\n\nSome or all onsite energies were already specified! Use mode=\"reset\" or mode=\"add\".") else: for i in range(self._norb): self._site_energies[i]=self._val_to_block(onsite_en[i]) self._site_energies_specified[:]=True # reset values of onsite terms, without adding to previous value elif mode.lower()=="reset": # specifying only one site at a time if ind_i!=None: self._site_energies[ind_i]=self._val_to_block(onsite_en) self._site_energies_specified[ind_i]=True # specifying all sites at once else: for i in range(self._norb): self._site_energies[i]=self._val_to_block(onsite_en[i]) self._site_energies_specified[:]=True # add to previous value elif mode.lower()=="add": # specifying only one site at a time if ind_i!=None: self._site_energies[ind_i]+=self._val_to_block(onsite_en) self._site_energies_specified[ind_i]=True # specifying all sites at once else: for i in range(self._norb): self._site_energies[i]+=self._val_to_block(onsite_en[i]) self._site_energies_specified[:]=True else: raise Exception("\n\nWrong value of mode parameter") def set_hop(self,hop_amp,ind_i,ind_j,ind_R=None,mode="set",allow_conjugate_pair=False): r""" Defines hopping parameters between tight-binding orbitals. In the notation used in section 3.1 equation 3.6 of :download:`notes on tight-binding formalism <misc/pythtb-formalism.pdf>` this function specifies the following object .. math:: H_{ij}({\bf R})= \langle \phi_{{\bf 0} i} \vert H \vert \phi_{{\bf R},j} \rangle Where :math:`\langle \phi_{{\bf 0} i} \vert` is i-th tight-binding orbital in the home unit cell and :math:`\vert \phi_{{\bf R},j} \rangle` is j-th tight-binding orbital in unit cell shifted by lattice vector :math:`{\bf R}`. :math:`H` is the Hamiltonian. (Strictly speaking, this term specifies hopping amplitude for hopping from site *j+R* to site *i*, not vice-versa.) Hopping in the opposite direction is automatically included by the code since .. math:: H_{ji}(-{\bf R})= \left[ H_{ij}({\bf R}) \right]^{*} .. warning:: There is no need to specify hoppings in both :math:`i \rightarrow j+R` direction and opposite :math:`j \rightarrow i-R` direction since that is done automatically. If you want to specifiy hoppings in both directions, see description of parameter *allow_conjugate_pair*. .. warning:: In previous version of PythTB this function was called *add_hop*. For backwards compatibility one can still use that name but that feature will be removed in future releases. :param hop_amp: Hopping amplitude; can be real or complex number, equals :math:`H_{ij}({\bf R})`. If *nspin* is *2* then hopping amplitude can be given either as a single number, or as an array of four numbers, or as 2x2 matrix. If a single number is given, it is interpreted as hopping amplitude for both up and down spin component. If an array of four numbers is given, these are the coefficients of I, sigma_x, sigma_y, and sigma_z (that is, the 2x2 identity and the three Pauli spin matrices) respectively. Finally, full 2x2 matrix can be given as well. :param ind_i: Index of bra orbital from the bracket :math:`\langle \phi_{{\bf 0} i} \vert H \vert \phi_{{\bf R},j} \rangle`. This orbital is assumed to be in the home unit cell. :param ind_j: Index of ket orbital from the bracket :math:`\langle \phi_{{\bf 0} i} \vert H \vert \phi_{{\bf R},j} \rangle`. This orbital does not have to be in the home unit cell; its unit cell position is determined by parameter *ind_R*. :param ind_R: Specifies, in reduced coordinates, the shift of the ket orbital. The number of coordinates must equal the dimensionality in real space (*dim_r* parameter) for consistency, but only the periodic directions of ind_R will be considered. If reciprocal space is zero-dimensional (as in a molecule), this parameter does not need to be specified. :param mode: Similar to parameter *mode* in function *set_onsite*. Speficies way in which parameter *hop_amp* is used. It can either set value of hopping term from scratch, reset it, or add to it. * "set" -- Default value. Hopping term is set to value of *hop_amp* parameter. One can use "set" for each triplet of *ind_i*, *ind_j*, *ind_R* only once. * "reset" -- Specifies on-site energy to given value. This function can be called multiple times for the same triplet *ind_i*, *ind_j*, *ind_R*. * "add" -- Adds to the previous value of hopping term This function can be called multiple times for the same triplet *ind_i*, *ind_j*, *ind_R*. If *set_hop* was ever called with *allow_conjugate_pair* set to True, then it is possible that user has specified both :math:`i \rightarrow j+R` and conjugate pair :math:`j \rightarrow i-R`. In this case, "set", "reset", and "add" parameters will treat triplet *ind_i*, *ind_j*, *ind_R* and conjugate triplet *ind_j*, *ind_i*, *-ind_R* as distinct. :param allow_conjugate_pair: Default value is *False*. If set to *True* code will allow user to specify hopping :math:`i \rightarrow j+R` even if conjugate-pair hopping :math:`j \rightarrow i-R` has been specified. If both terms are specified, code will still count each term two times. Example usage:: # Specifies complex hopping amplitude between first orbital in home # unit cell and third orbital in neigbouring unit cell. tb.set_hop(0.3+0.4j, 0, 2, [0, 1]) # change value of this hopping tb.set_hop(0.1+0.2j, 0, 2, [0, 1], mode="reset") # add to previous value (after this function call below, # hopping term amplitude is 100.1+0.2j) tb.set_hop(100.0, 0, 2, [0, 1], mode="add") """ # if self._dim_k!=0 and (ind_R is None): raise Exception("\n\nNeed to specify ind_R!") # if necessary convert from integer to array if self._dim_k==1 and type(ind_R).__name__=='int': tmpR=np.zeros(self._dim_r,dtype=int) tmpR[self._per]=ind_R ind_R=tmpR # check length of ind_R if self._dim_k!=0: if len(ind_R)!=self._dim_r: raise Exception("\n\nLength of input ind_R vector must equal dim_r! Even if dim_k<dim_r.") # make sure ind_i and ind_j are not out of scope if ind_i<0 or ind_i>=self._norb: raise Exception("\n\nIndex ind_i out of scope.") if ind_j<0 or ind_j>=self._norb: raise Exception("\n\nIndex ind_j out of scope.") # do not allow onsite hoppings to be specified here because then they # will be double-counted if self._dim_k==0: if ind_i==ind_j: raise Exception("\n\nDo not use set_hop for onsite terms. Use set_onsite instead!") else: if ind_i==ind_j: all_zer=True for k in self._per: if int(ind_R[k])!=0: all_zer=False if all_zer==True: raise Exception("\n\nDo not use set_hop for onsite terms. Use set_onsite instead!") # # make sure that if <i|H|j+R> is specified that <j|H|i-R> is not! if allow_conjugate_pair==False: for h in self._hoppings: if ind_i==h[2] and ind_j==h[1]: if self._dim_k==0: raise Exception(\ """\n Following matrix element was already implicitely specified: i="""+str(ind_i)+" j="+str(ind_j)+""" Remember, specifying <i|H|j> automatically specifies <j|H|i>. For consistency, specify all hoppings for a given bond in the same direction. (Or, alternatively, see the documentation on the 'allow_conjugate_pair' flag.) """) elif False not in (np.array(ind_R)[self._per]==(-1)*np.array(h[3])[self._per]): raise Exception(\ """\n Following matrix element was already implicitely specified: i="""+str(ind_i)+" j="+str(ind_j)+" R="+str(ind_R)+""" Remember,specifying <i|H|j+R> automatically specifies <j|H|i-R>. For consistency, specify all hoppings for a given bond in the same direction. (Or, alternatively, see the documentation on the 'allow_conjugate_pair' flag.) """) # convert to 2by2 matrix if needed hop_use=self._val_to_block(hop_amp) # hopping term parameters to be stored if self._dim_k==0: new_hop=[hop_use,int(ind_i),int(ind_j)] else: new_hop=[hop_use,int(ind_i),int(ind_j),np.array(ind_R)] # # see if there is a hopping term with same i,j,R use_index=None for iih,h in enumerate(self._hoppings): # check if the same same_ijR=False if ind_i==h[1] and ind_j==h[2]: if self._dim_k==0: same_ijR=True else: if False not in (np.array(ind_R)[self._per]==np.array(h[3])[self._per]): same_ijR=True # if they are the same then store index of site at which they are the same if same_ijR==True: use_index=iih # # specifying hopping terms from scratch, can be called only once if mode.lower()=="set": # make sure we specify things only once if use_index!=None: raise Exception("\n\nHopping energy for this site was already specified! Use mode=\"reset\" or mode=\"add\".") else: self._hoppings.append(new_hop) # reset value of hopping term, without adding to previous value elif mode.lower()=="reset": if use_index!=None: self._hoppings[use_index]=new_hop else: self._hoppings.append(new_hop) # add to previous value elif mode.lower()=="add": if use_index!=None: self._hoppings[use_index][0]+=new_hop[0] else: self._hoppings.append(new_hop) else: raise Exception("\n\nWrong value of mode parameter") def _val_to_block(self,val): """If nspin=2 then returns a 2 by 2 matrix from the input parameters. If only one real number is given in the input then assume that this is the diagonal term. If array with four elements is given then first one is the diagonal term, and other three are Zeeman field direction. If given a 2 by 2 matrix, just return it. If nspin=1 then just returns val.""" # spinless case if self._nspin==1: return val # spinfull case elif self._nspin==2: # matrix to return ret=np.zeros((2,2),dtype=complex) # use_val=np.array(val) # only one number is given if use_val.shape==(): ret[0,0]+=use_val ret[1,1]+=use_val # if four numbers are given elif use_val.shape==(4,): # diagonal ret[0,0]+=use_val[0] ret[1,1]+=use_val[0] # sigma_x ret[0,1]+=use_val[1] ret[1,0]+=use_val[1] # sigma_y ret[0,1]+=use_val[2]*(-1.0j) ret[1,0]+=use_val[2]*( 1.0j) # sigma_z ret[0,0]+=use_val[3] ret[1,1]+=use_val[3]*(-1.0) # if 2 by 2 matrix is given elif use_val.shape==(2,2): return use_val else: raise Exception(\ """\n Wrong format of the on-site or hopping term. Must be single number, or in the case of a spinfull model can be array of four numbers or 2x2 matrix.""") return ret def display(self): r""" Prints on the screen some information about this tight-binding model. This function doesn't take any parameters. """ print('---------------------------------------') print('report of tight-binding model') print('---------------------------------------') print('k-space dimension =',self._dim_k) print('r-space dimension =',self._dim_r) print('number of spin components =',self._nspin) print('periodic directions =',self._per) print('number of orbitals =',self._norb) print('number of electronic states =',self._nsta) print('lattice vectors:') for i,o in enumerate(self._lat): print(" #",_nice_int(i,2)," ===> [", end=' ') for j,v in enumerate(o): print(_nice_float(v,7,4), end=' ') if j!=len(o)-1: print(",", end=' ') print("]") print('positions of orbitals:') for i,o in enumerate(self._orb): print(" #",_nice_int(i,2)," ===> [", end=' ') for j,v in enumerate(o): print(_nice_float(v,7,4), end=' ') if j!=len(o)-1: print(",", end=' ') print("]") print('site energies:') for i,site in enumerate(self._site_energies): print(" #",_nice_int(i,2)," ===> ", end=' ') if self._nspin==1: print(_nice_float(site,7,4)) elif self._nspin==2: print(str(site).replace("\n"," ")) print('hoppings:') for i,hopping in enumerate(self._hoppings): print("<",_nice_int(hopping[1],2),"| H |",_nice_int(hopping[2],2), end=' ') if len(hopping)==4: print("+ [", end=' ') for j,v in enumerate(hopping[3]): print(_nice_int(v,2), end=' ') if j!=len(hopping[3])-1: print(",", end=' ') else: print("]", end=' ') print("> ===> ", end=' ') if self._nspin==1: print(_nice_complex(hopping[0],7,4)) elif self._nspin==2: print(str(hopping[0]).replace("\n"," ")) print() def visualize(self,dir_first,dir_second=None,eig_dr=None,draw_hoppings=True,ph_color="black"): r""" Rudimentary function for visualizing tight-binding model geometry, hopping between tight-binding orbitals, and electron eigenstates. If eigenvector is not drawn, then orbitals in home cell are drawn as red circles, and those in neighboring cells are drawn with different shade of red. Hopping term directions are drawn with green lines connecting two orbitals. Origin of unit cell is indicated with blue dot, while real space unit vectors are drawn with blue lines. If eigenvector is drawn, then electron eigenstate on each orbital is drawn with a circle whose size is proportional to wavefunction amplitude while its color depends on the phase. There are various coloring schemes for the phase factor; see more details under *ph_color* parameter. If eigenvector is drawn and coloring scheme is "red-blue" or "wheel", all other elements of the picture are drawn in gray or black. :param dir_first: First index of Cartesian coordinates used for plotting. :param dir_second: Second index of Cartesian coordinates used for plotting. For example if dir_first=0 and dir_second=2, and Cartesian coordinates of some orbital is [2.0,4.0,6.0] then it will be drawn at coordinate [2.0,6.0]. If dimensionality of real space (*dim_r*) is zero or one then dir_second should not be specified. :param eig_dr: Optional parameter specifying eigenstate to plot. If specified, this should be one-dimensional array of complex numbers specifying wavefunction at each orbital in the tight-binding basis. If not specified, eigenstate is not drawn. :param draw_hoppings: Optional parameter specifying whether to draw all allowed hopping terms in the tight-binding model. Default value is True. :param ph_color: Optional parameter determining the way eigenvector phase factors are translated into color. Default value is "black". Convention of the wavefunction phase is as in convention 1 in section 3.1 of :download:`notes on tight-binding formalism <misc/pythtb-formalism.pdf>`. In other words, these wavefunction phases are in correspondence with cell-periodic functions :math:`u_{n {\bf k}} ({\bf r})` not :math:`\Psi_{n {\bf k}} ({\bf r})`. * "black" -- phase of eigenvectors are ignored and wavefunction is always colored in black. * "red-blue" -- zero phase is drawn red, while phases or pi or -pi are drawn blue. Phases in between are interpolated between red and blue. Some phase information is lost in this coloring becase phase of +phi and -phi have same color. * "wheel" -- each phase is given unique color. In steps of pi/3 starting from 0, colors are assigned (in increasing hue) as: red, yellow, green, cyan, blue, magenta, red. :returns: * **fig** -- Figure object from matplotlib.pyplot module that can be used to save the figure in PDF, EPS or similar format, for example using fig.savefig("name.pdf") command. * **ax** -- Axes object from matplotlib.pyplot module that can be used to tweak the plot, for example by adding a plot title ax.set_title("Title goes here"). Example usage:: # Draws x-y projection of tight-binding model # tweaks figure and saves it as a PDF. (fig, ax) = tb.visualize(0, 1) ax.set_title("Title goes here") fig.savefig("model.pdf") See also these examples: :ref:`edge-example`, :ref:`visualize-example`. """ # check the format of eig_dr if not (eig_dr is None): if eig_dr.shape!=(self._norb,): raise Exception("\n\nWrong format of eig_dr! Must be array of size norb.") # check that ph_color is correct if ph_color not in ["black","red-blue","wheel"]: raise Exception("\n\nWrong value of ph_color parameter!") # check if dir_second had to be specified if dir_second==None and self._dim_r>1: raise Exception("\n\nNeed to specify index of second coordinate for projection!") # start a new figure import pylab as plt fig=plt.figure(figsize=[plt.rcParams["figure.figsize"][0], plt.rcParams["figure.figsize"][0]]) ax=fig.add_subplot(111, aspect='equal') def proj(v): "Project vector onto drawing plane" coord_x=v[dir_first] if dir_second==None: coord_y=0.0 else: coord_y=v[dir_second] return [coord_x,coord_y] def to_cart(red): "Convert reduced to Cartesian coordinates" return np.dot(red,self._lat) # define colors to be used in plotting everything # except eigenvectors if (eig_dr is None) or ph_color=="black": c_cell="b" c_orb="r" c_nei=[0.85,0.65,0.65] c_hop="g" else: c_cell=[0.4,0.4,0.4] c_orb=[0.0,0.0,0.0] c_nei=[0.6,0.6,0.6] c_hop=[0.0,0.0,0.0] # determine color scheme for eigenvectors def color_to_phase(ph): if ph_color=="black": return "k" if ph_color=="red-blue": ph=np.abs(ph/np.pi) return [1.0-ph,0.0,ph] if ph_color=="wheel": if ph<0.0: ph=ph+2.0*np.pi ph=6.0*ph/(2.0*np.pi) x_ph=1.0-np.abs(ph%2.0-1.0) if ph>=0.0 and ph<1.0: ret_col=[1.0 ,x_ph,0.0 ] if ph>=1.0 and ph<2.0: ret_col=[x_ph,1.0 ,0.0 ] if ph>=2.0 and ph<3.0: ret_col=[0.0 ,1.0 ,x_ph] if ph>=3.0 and ph<4.0: ret_col=[0.0 ,x_ph,1.0 ] if ph>=4.0 and ph<5.0: ret_col=[x_ph,0.0 ,1.0 ] if ph>=5.0 and ph<=6.0: ret_col=[1.0 ,0.0 ,x_ph] return ret_col # draw origin ax.plot([0.0],[0.0],"o",c=c_cell,mec="w",mew=0.0,zorder=7,ms=4.5) # first draw unit cell vectors which are considered to be periodic for i in self._per: # pick a unit cell vector and project it down to the drawing plane vec=proj(self._lat[i]) ax.plot([0.0,vec[0]],[0.0,vec[1]],"-",c=c_cell,lw=1.5,zorder=7) # now draw all orbitals for i in range(self._norb): # find position of orbital in cartesian coordinates pos=to_cart(self._orb[i]) pos=proj(pos) ax.plot([pos[0]],[pos[1]],"o",c=c_orb,mec="w",mew=0.0,zorder=10,ms=4.0) # draw hopping terms if draw_hoppings==True: for h in self._hoppings: # draw both i->j+R and i-R->j hop for s in range(2): # get "from" and "to" coordinates pos_i=np.copy(self._orb[h[1]]) pos_j=np.copy(self._orb[h[2]]) # add also lattice vector if not 0-dim if self._dim_k!=0: if s==0: pos_j[self._per]=pos_j[self._per]+h[3][self._per] if s==1: pos_i[self._per]=pos_i[self._per]-h[3][self._per] # project down vector to the plane pos_i=np.array(proj(to_cart(pos_i))) pos_j=np.array(proj(to_cart(pos_j))) # add also one point in the middle to bend the curve prcnt=0.05 # bend always by this ammount pos_mid=(pos_i+pos_j)*0.5 dif=pos_j-pos_i # difference vector orth=np.array([dif[1],-1.0*dif[0]]) # orthogonal to difference vector orth=orth/np.sqrt(np.dot(orth,orth)) # normalize pos_mid=pos_mid+orth*prcnt*np.sqrt(np.dot(dif,dif)) # shift mid point in orthogonal direction # draw hopping all_pnts=np.array([pos_i,pos_mid,pos_j]).T ax.plot(all_pnts[0],all_pnts[1],"-",c=c_hop,lw=0.75,zorder=8) # draw "from" and "to" sites ax.plot([pos_i[0]],[pos_i[1]],"o",c=c_nei,zorder=9,mew=0.0,ms=4.0,mec="w") ax.plot([pos_j[0]],[pos_j[1]],"o",c=c_nei,zorder=9,mew=0.0,ms=4.0,mec="w") # now draw the eigenstate if not (eig_dr is None): for i in range(self._norb): # find position of orbital in cartesian coordinates pos=to_cart(self._orb[i]) pos=proj(pos) # find norm of eigenfunction at this point nrm=(eig_dr[i]*eig_dr[i].conjugate()).real # rescale and get size of circle nrm_rad=2.0*nrm*float(self._norb) # get color based on the phase of the eigenstate phase=np.angle(eig_dr[i]) c_ph=color_to_phase(phase) ax.plot([pos[0]],[pos[1]],"o",c=c_ph,mec="w",mew=0.0,ms=nrm_rad,zorder=11,alpha=0.8) # center the image # first get the current limit, which is probably tight xl=ax.set_xlim() yl=ax.set_ylim() # now get the center of current limit centx=(xl[1]+xl[0])*0.5 centy=(yl[1]+yl[0])*0.5 # now get the maximal size (lengthwise or heightwise) mx=max([xl[1]-xl[0],yl[1]-yl[0]]) # set new limits extr=0.05 # add some boundary as well ax.set_xlim(centx-mx*(0.5+extr),centx+mx*(0.5+extr)) ax.set_ylim(centy-mx*(0.5+extr),centy+mx*(0.5+extr)) # return a figure and axes to the user return (fig,ax) def get_num_orbitals(self): "Returns number of orbitals in the model." return self._norb def get_orb(self): "Returns reduced coordinates of orbitals in format [orbital,coordinate.]" return self._orb.copy() def get_lat(self): "Returns lattice vectors in format [vector,coordinate]." return self._lat.copy() def _gen_ham(self,k_input=None): """Generate Hamiltonian for a certain k-point, K-point is given in reduced coordinates!""" kpnt=np.array(k_input) if not (k_input is None): # if kpnt is just a number then convert it to an array if len(kpnt.shape)==0: kpnt=np.array([kpnt]) # check that k-vector is of corect size if kpnt.shape!=(self._dim_k,): raise Exception("\n\nk-vector of wrong shape!") else: if self._dim_k!=0: raise Exception("\n\nHave to provide a k-vector!") # zero the Hamiltonian matrix if self._nspin==1: ham=np.zeros((self._norb,self._norb),dtype=complex) elif self._nspin==2: ham=np.zeros((self._norb,2,self._norb,2),dtype=complex) # modify diagonal elements for i in range(self._norb): if self._nspin==1: ham[i,i]=self._site_energies[i] elif self._nspin==2: ham[i,:,i,:]=self._site_energies[i] # go over all hoppings for hopping in self._hoppings: # get all data for the hopping parameter if self._nspin==1: amp=complex(hopping[0]) elif self._nspin==2: amp=np.array(hopping[0],dtype=complex) i=hopping[1] j=hopping[2] # in 0-dim case there is no phase factor if self._dim_k>0: ind_R=np.array(hopping[3],dtype=float) # vector from one site to another #rv=-self._orb[i,:]+self._orb[j,:]+ind_R rv=ind_R # Take only components of vector which are periodic rv=rv[self._per] # Calculate the hopping, see details in info/tb/tb.pdf phase=np.exp((2.0j)*np.pi*np.dot(kpnt,rv)) amp=amp*phase # add this hopping into a matrix and also its conjugate if self._nspin==1: ham[i,j]+=amp ham[j,i]+=amp.conjugate() elif self._nspin==2: ham[i,:,j,:]+=amp ham[j,:,i,:]+=amp.T.conjugate() return ham def _sol_ham(self,ham,eig_vectors=False): """Solves Hamiltonian and returns eigenvectors, eigenvalues""" # reshape matrix first if self._nspin==1: ham_use=ham elif self._nspin==2: ham_use=ham.reshape((2*self._norb,2*self._norb)) # check that matrix is hermitian if np.max(ham_use-ham_use.T.conj())>1.0E-9: raise Exception("\n\nHamiltonian matrix is not hermitian?!") #solve matrix if eig_vectors==False: # only find eigenvalues eval=np.linalg.eigvalsh(ham_use) # sort eigenvalues and convert to real numbers eval=_nicefy_eig(eval) return np.array(eval,dtype=float) else: # find eigenvalues and eigenvectors (eval,eig)=np.linalg.eigh(ham_use) # transpose matrix eig since otherwise it is confusing # now eig[i,:] is eigenvector for eval[i]-th eigenvalue eig=eig.T # sort evectors, eigenvalues and convert to real numbers (eval,eig)=_nicefy_eig(eval,eig) # reshape eigenvectors if doing a spinfull calculation if self._nspin==2: eig=eig.reshape((self._nsta,self._norb,2)) return (eval,eig) def solve_all(self,k_list=None,eig_vectors=False): r""" Solves for eigenvalues and (optionally) eigenvectors of the tight-binding model on a given one-dimensional list of k-vectors. .. note:: Eigenvectors (wavefunctions) returned by this function and used throughout the code are exclusively given in convention 1 as described in section 3.1 of :download:`notes on tight-binding formalism <misc/pythtb-formalism.pdf>`. In other words, they are in correspondence with cell-periodic functions :math:`u_{n {\bf k}} ({\bf r})` not :math:`\Psi_{n {\bf k}} ({\bf r})`. .. note:: In some cases class :class:`pythtb.wf_array` provides a more elegant way to deal with eigensolutions on a regular mesh of k-vectors. :param k_list: One-dimensional array of k-vectors. Each k-vector is given in reduced coordinates of the reciprocal space unit cell. For example, for real space unit cell vectors [1.0,0.0] and [0.0,2.0] and associated reciprocal space unit vectors [2.0*pi,0.0] and [0.0,pi], k-vector with reduced coordinates [0.25,0.25] corresponds to k-vector [0.5*pi,0.25*pi]. Dimensionality of each vector must equal to the number of periodic directions (i.e. dimensionality of reciprocal space, *dim_k*). This parameter shouldn't be specified for system with zero-dimensional k-space (*dim_k* =0). :param eig_vectors: Optional boolean parameter, specifying whether eigenvectors should be returned. If *eig_vectors* is True, then both eigenvalues and eigenvectors are returned, otherwise only eigenvalues are returned. :returns: * **eval** -- Two dimensional array of eigenvalues for all bands for all kpoints. Format is eval[band,kpoint] where first index (band) corresponds to the electron band in question and second index (kpoint) corresponds to the k-point as listed in the input parameter *k_list*. Eigenvalues are sorted from smallest to largest at each k-point seperately. In the case when reciprocal space is zero-dimensional (as in a molecule) kpoint index is dropped and *eval* is of the format eval[band]. * **evec** -- Three dimensional array of eigenvectors for all bands and all kpoints. If *nspin* equals 1 the format of *evec* is evec[band,kpoint,orbital] where "band" is the electron band in question, "kpoint" is index of k-vector as given in input parameter *k_list*. Finally, "orbital" refers to the tight-binding orbital basis function. Ordering of bands is the same as in *eval*. Eigenvectors evec[n,k,j] correspond to :math:`C^{n {\bf k}}_{j}` from section 3.1 equation 3.5 and 3.7 of the :download:`notes on tight-binding formalism <misc/pythtb-formalism.pdf>`. In the case when reciprocal space is zero-dimensional (as in a molecule) kpoint index is dropped and *evec* is of the format evec[band,orbital]. In the spinfull calculation (*nspin* equals 2) evec has additional component evec[...,spin] corresponding to the spin component of the wavefunction. Example usage:: # Returns eigenvalues for three k-vectors eval = tb.solve_all([[0.0, 0.0], [0.0, 0.2], [0.0, 0.5]]) # Returns eigenvalues and eigenvectors for two k-vectors (eval, evec) = tb.solve_all([[0.0, 0.0], [0.0, 0.2]], eig_vectors=True) """ # if not 0-dim case if not (k_list is None): nkp=len(k_list) # number of k points # first initialize matrices for all return data # indices are [band,kpoint] ret_eval=np.zeros((self._nsta,nkp),dtype=float) # indices are [band,kpoint,orbital,spin] if self._nspin==1: ret_evec=np.zeros((self._nsta,nkp,self._norb),dtype=complex) elif self._nspin==2: ret_evec=np.zeros((self._nsta,nkp,self._norb,2),dtype=complex) # go over all kpoints for i,k in enumerate(k_list): # generate Hamiltonian at that point ham=self._gen_ham(k) # solve Hamiltonian if eig_vectors==False: eval=self._sol_ham(ham,eig_vectors=eig_vectors) ret_eval[:,i]=eval[:] else: (eval,evec)=self._sol_ham(ham,eig_vectors=eig_vectors) ret_eval[:,i]=eval[:] if self._nspin==1: ret_evec[:,i,:]=evec[:,:] elif self._nspin==2: ret_evec[:,i,:,:]=evec[:,:,:] # return stuff if eig_vectors==False: # indices of eval are [band,kpoint] return ret_eval else: # indices of eval are [band,kpoint] for evec are [band,kpoint,orbital,(spin)] return (ret_eval,ret_evec) else: # 0 dim case # generate Hamiltonian ham=self._gen_ham() # solve if eig_vectors==False: eval=self._sol_ham(ham,eig_vectors=eig_vectors) # indices of eval are [band] return eval else: (eval,evec)=self._sol_ham(ham,eig_vectors=eig_vectors) # indices of eval are [band] and of evec are [band,orbital,spin] return (eval,evec) def solve_one(self,k_point=None,eig_vectors=False): r""" Similar to :func:`pythtb.tb_model.solve_all` but solves tight-binding model for only one k-vector. """ # if not 0-dim case if not (k_point is None): if eig_vectors==False: eval=self.solve_all([k_point],eig_vectors=eig_vectors) # indices of eval are [band] return eval[:,0] else: (eval,evec)=self.solve_all([k_point],eig_vectors=eig_vectors) # indices of eval are [band] for evec are [band,orbital,spin] if self._nspin==1: return (eval[:,0],evec[:,0,:]) elif self._nspin==2: return (eval[:,0],evec[:,0,:,:]) else: # do the same as solve_all return self.solve_all(eig_vectors=eig_vectors) def cut_piece(self,num,fin_dir,glue_edgs=False): r""" Constructs a (d-1)-dimensional tight-binding model out of a d-dimensional one by repeating the unit cell a given number of times along one of the periodic lattice vectors. The real-space lattice vectors of the returned model are the same as those of the original model; only the dimensionality of reciprocal space is reduced. :param num: How many times to repeat the unit cell. :param fin_dir: Index of the real space lattice vector along which you no longer wish to maintain periodicity. :param glue_edgs: Optional boolean parameter specifying whether to allow hoppings from one edge to the other of a cut model. :returns: * **fin_model** -- Object of type :class:`pythtb.tb_model` representing a cutout tight-binding model. Orbitals in *fin_model* are numbered so that the i-th orbital of the n-th unit cell has index i+norb*n (here norb is the number of orbitals in the original model). Example usage:: A = tb_model(3, 3, ...) # Construct two-dimensional model B out of three-dimensional # model A by repeating model along second lattice vector ten times B = A.cut_piece(10, 1) # Further cut two-dimensional model B into one-dimensional model # A by repeating unit cell twenty times along third lattice # vector and allow hoppings from one edge to the other C = B.cut_piece(20, 2, glue_edgs=True) See also these examples: :ref:`haldane_fin-example`, :ref:`edge-example`. """ if self._dim_k ==0: raise Exception("\n\nModel is already finite") if type(num).__name__!='int': raise Exception("\n\nArgument num not an integer") # check value of num if num<1: raise Exception("\n\nArgument num must be positive!") if num==1 and glue_edgs==True: raise Exception("\n\nCan't have num==1 and glueing of the edges!") # generate orbitals of a finite model fin_orb=[] onsite=[] # store also onsite energies for i in range(num): # go over all cells in finite direction for j in range(self._norb): # go over all orbitals in one cell # make a copy of j-th orbital orb_tmp=np.copy(self._orb[j,:]) # change coordinate along finite direction orb_tmp[fin_dir]+=float(i) # add to the list fin_orb.append(orb_tmp) # do the onsite energies at the same time onsite.append(self._site_energies[j]) onsite=np.array(onsite) fin_orb=np.array(fin_orb) # generate periodic directions of a finite model fin_per=copy.deepcopy(self._per) # find if list of periodic directions contains the one you # want to make finite if fin_per.count(fin_dir)!=1: raise Exception("\n\nCan not make model finite along this direction!") # remove index which is no longer periodic fin_per.remove(fin_dir) # generate object of tb_model type that will correspond to a cutout fin_model=tb_model(self._dim_k-1, self._dim_r, copy.deepcopy(self._lat), fin_orb, fin_per, self._nspin) # remember if came from w90 fin_model._assume_position_operator_diagonal=self._assume_position_operator_diagonal # now put all onsite terms for the finite model fin_model.set_onsite(onsite,mode="reset") # put all hopping terms for c in range(num): # go over all cells in finite direction for h in range(len(self._hoppings)): # go over all hoppings in one cell # amplitude of the hop is the same amp=self._hoppings[h][0] # lattice vector of the hopping ind_R=copy.deepcopy(self._hoppings[h][3]) jump_fin=ind_R[fin_dir] # store by how many cells is the hopping in finite direction if fin_model._dim_k!=0: ind_R[fin_dir]=0 # one of the directions now becomes finite # index of "from" and "to" hopping indices hi=self._hoppings[h][1] + c*self._norb # have to compensate for the fact that ind_R in finite direction # will not be used in the finite model hj=self._hoppings[h][2] + (c + jump_fin)*self._norb # decide whether this hopping should be added or not to_add=True # if edges are not glued then neglect all jumps that spill out if glue_edgs==False: if hj<0 or hj>=self._norb*num: to_add=False # if edges are glued then do mod division to wrap up the hopping else: hj=int(hj)%int(self._norb*num) # add hopping to a finite model if to_add==True: if fin_model._dim_k==0: fin_model.set_hop(amp,hi,hj,mode="add",allow_conjugate_pair=True) else: fin_model.set_hop(amp,hi,hj,ind_R,mode="add",allow_conjugate_pair=True) return fin_model def reduce_dim(self,remove_k,value_k): r""" Reduces dimensionality of the model by taking a reciprocal-space slice of the Bloch Hamiltonian :math:`{\cal H}_{\bf k}`. The Bloch Hamiltonian (defined in :download:`notes on tight-binding formalism <misc/pythtb-formalism.pdf>` in section 3.1 equation 3.7) of a d-dimensional model is a function of d-dimensional k-vector. This function returns a d-1 dimensional tight-binding model obtained by constraining one of k-vector components in :math:`{\cal H}_{\bf k}` to be a constant. :param remove_k: Which reciprocal space unit vector component you wish to keep constant. :param value_k: Value of the k-vector component to which you are constraining this model. Must be given in reduced coordinates. :returns: * **red_tb** -- Object of type :class:`pythtb.tb_model` representing a reduced tight-binding model. Example usage:: # Constrains second k-vector component to equal 0.3 red_tb = tb.reduce_dim(1, 0.3) """ # if self._dim_k==0: raise Exception("\n\nCan not reduce dimensionality even further!") # make a copy red_tb=copy.deepcopy(self) # make one of the directions not periodic red_tb._per.remove(remove_k) red_tb._dim_k=len(red_tb._per) # check that really removed one and only one direction if red_tb._dim_k!=self._dim_k-1: raise Exception("\n\nSpecified wrong dimension to reduce!") # specify hopping terms from scratch red_tb._hoppings=[] # set all hopping parameters for this value of value_k for h in range(len(self._hoppings)): hop=self._hoppings[h] if self._nspin==1: amp=complex(hop[0]) elif self._nspin==2: amp=np.array(hop[0],dtype=complex) i=hop[1]; j=hop[2] ind_R=np.array(hop[3],dtype=int) # vector from one site to another rv=-red_tb._orb[i,:]+red_tb._orb[j,:]+np.array(ind_R,dtype=float) # take only r-vector component along direction you are not making periodic rv=rv[remove_k] # Calculate the part of hopping phase, only for this direction phase=np.exp((2.0j)*np.pi*(value_k*rv)) # store modified version of the hop # Since we are getting rid of one dimension, it could be that now # one of the hopping terms became onsite term because one direction # is no longer periodic if i==j and (False not in (np.array(ind_R[red_tb._per],dtype=int)==0)): if ind_R[remove_k]==0: # in this case this is really an onsite term red_tb.set_onsite(amp*phase,i,mode="add") else: # in this case must treat both R and -R because that term would # have been counted twice without dimensional reduction if self._nspin==1: red_tb.set_onsite(amp*phase+(amp*phase).conj(),i,mode="add") elif self._nspin==2: red_tb.set_onsite(amp*phase+(amp.T*phase).conj(),i,mode="add") else: # just in case make the R vector zero along the reduction dimension ind_R[remove_k]=0 # add hopping term red_tb.set_hop(amp*phase,i,j,ind_R,mode="add",allow_conjugate_pair=True) return red_tb def make_supercell(self, sc_red_lat, return_sc_vectors=False, to_home=True): r""" Returns tight-binding model :class:`pythtb.tb_model` representing a super-cell of a current object. This function can be used together with *cut_piece* in order to create slabs with arbitrary surfaces. By default all orbitals will be shifted to the home cell after unit cell has been created. That way all orbitals will have reduced coordinates between 0 and 1. If you wish to avoid this behavior, you need to set, *to_home* argument to *False*. :param sc_red_lat: Array of integers with size *dim_r*dim_r* defining a super-cell lattice vectors in terms of reduced coordinates of the original tight-binding model. First index in the array specifies super-cell vector, while second index specifies coordinate of that super-cell vector. If *dim_k<dim_r* then still need to specify full array with size *dim_r*dim_r* for consistency, but non-periodic directions must have 0 on off-diagonal elemets s and 1 on diagonal. :param return_sc_vectors: Optional parameter. Default value is *False*. If *True* returns also lattice vectors inside the super-cell. Internally, super-cell tight-binding model will have orbitals repeated in the same order in which these super-cell vectors are given, but if argument *to_home* is set *True* (which it is by default) then additionally, orbitals will be shifted to the home cell. :param to_home: Optional parameter, if *True* will shift all orbitals to the home cell. Default value is *True*. :returns: * **sc_tb** -- Object of type :class:`pythtb.tb_model` representing a tight-binding model in a super-cell. * **sc_vectors** -- Super-cell vectors, returned only if *return_sc_vectors* is set to *True* (default value is *False*). Example usage:: # Creates super-cell out of 2d tight-binding model tb sc_tb = tb.make_supercell([[2, 1], [-1, 2]]) """ # Can't make super cell for model without periodic directions if self._dim_r==0: raise Exception("\n\nMust have at least one periodic direction to make a super-cell") # convert array to numpy array use_sc_red_lat=np.array(sc_red_lat) # checks on super-lattice array if use_sc_red_lat.shape!=(self._dim_r,self._dim_r): raise Exception("\n\nDimension of sc_red_lat array must be dim_r*dim_r") if use_sc_red_lat.dtype!=int: raise Exception("\n\nsc_red_lat array elements must be integers") for i in range(self._dim_r): for j in range(self._dim_r): if (i==j) and (i not in self._per) and use_sc_red_lat[i,j]!=1: raise Exception("\n\nDiagonal elements of sc_red_lat for non-periodic directions must equal 1.") if (i!=j) and ((i not in self._per) or (j not in self._per)) and use_sc_red_lat[i,j]!=0: raise Exception("\n\nOff-diagonal elements of sc_red_lat for non-periodic directions must equal 0.") if np.abs(np.linalg.det(use_sc_red_lat))<1.0E-6: raise Exception("\n\nSuper-cell lattice vectors length/area/volume too close to zero, or zero.") if np.linalg.det(use_sc_red_lat)<0.0: raise Exception("\n\nSuper-cell lattice vectors need to form right handed system.") # converts reduced vector in original lattice to reduced vector in super-cell lattice def to_red_sc(red_vec_orig): return np.linalg.solve(np.array(use_sc_red_lat.T,dtype=float), np.array(red_vec_orig,dtype=float)) # conservative estimate on range of search for super-cell vectors max_R=np.max(np.abs(use_sc_red_lat))*self._dim_r # candidates for super-cell vectors # this is hard-coded and can be improved! sc_cands=[] if self._dim_r==1: for i in range(-max_R,max_R+1): sc_cands.append(np.array([i])) elif self._dim_r==2: for i in range(-max_R,max_R+1): for j in range(-max_R,max_R+1): sc_cands.append(np.array([i,j])) elif self._dim_r==3: for i in range(-max_R,max_R+1): for j in range(-max_R,max_R+1): for k in range(-max_R,max_R+1): sc_cands.append(np.array([i,j,k])) elif self._dim_r==4: for i in range(-max_R,max_R+1): for j in range(-max_R,max_R+1): for k in range(-max_R,max_R+1): for l in range(-max_R,max_R+1): sc_cands.append(np.array([i,j,k,l])) else: raise Exception("\n\nWrong dimensionality of dim_r!") # find all vectors inside super-cell # store them here sc_vec=[] eps_shift=np.sqrt(2.0)*1.0E-8 # shift of the grid, so to avoid double counting # for vec in sc_cands: # compute reduced coordinates of this candidate vector in the super-cell frame tmp_red=to_red_sc(vec).tolist() # check if in the interior inside=True for t in tmp_red: if t<=-1.0*eps_shift or t>1.0-eps_shift: inside=False if inside==True: sc_vec.append(np.array(vec)) # number of times unit cell is repeated in the super-cell num_sc=len(sc_vec) # check that found enough super-cell vectors if int(round(np.abs(np.linalg.det(use_sc_red_lat))))!=num_sc: raise Exception("\n\nSuper-cell generation failed! Wrong number of super-cell vectors found.") # cartesian vectors of the super lattice sc_cart_lat=np.dot(use_sc_red_lat,self._lat) # orbitals of the super-cell tight-binding model sc_orb=[] for cur_sc_vec in sc_vec: # go over all super-cell vectors for orb in self._orb: # go over all orbitals # shift orbital and compute coordinates in # reduced coordinates of super-cell sc_orb.append(to_red_sc(orb+cur_sc_vec)) # create super-cell tb_model object to be returned sc_tb=tb_model(self._dim_k,self._dim_r,sc_cart_lat,sc_orb,per=self._per,nspin=self._nspin) # remember if came from w90 sc_tb._assume_position_operator_diagonal=self._assume_position_operator_diagonal # repeat onsite energies for i in range(num_sc): for j in range(self._norb): sc_tb.set_onsite(self._site_energies[j],i*self._norb+j) # set hopping terms for c,cur_sc_vec in enumerate(sc_vec): # go over all super-cell vectors for h in range(len(self._hoppings)): # go over all hopping terms of the original model # amplitude of the hop is the same amp=self._hoppings[h][0] # lattice vector of the hopping ind_R=copy.deepcopy(self._hoppings[h][3]) # super-cell component of hopping lattice vector # shift also by current super cell vector sc_part=np.floor(to_red_sc(ind_R+cur_sc_vec)) # round down! sc_part=np.array(sc_part,dtype=int) # find remaining vector in the original reduced coordinates orig_part=ind_R+cur_sc_vec-np.dot(sc_part,use_sc_red_lat) # remaining vector must equal one of the super-cell vectors pair_ind=None for p,pair_sc_vec in enumerate(sc_vec): if False not in (pair_sc_vec==orig_part): if pair_ind!=None: raise Exception("\n\nFound duplicate super cell vector!") pair_ind=p if pair_ind==None: raise Exception("\n\nDid not find super cell vector!") # index of "from" and "to" hopping indices hi=self._hoppings[h][1] + c*self._norb hj=self._hoppings[h][2] + pair_ind*self._norb # add hopping term sc_tb.set_hop(amp,hi,hj,sc_part,mode="add",allow_conjugate_pair=True) # put orbitals to home cell if asked for if to_home==True: sc_tb._shift_to_home() # return new tb model and vectors if needed if return_sc_vectors==False: return sc_tb else: return (sc_tb,sc_vec) def _shift_to_home(self): """Shifts all orbital positions to the home unit cell. After this function is called all reduced coordiantes of orbitals will be between 0 and 1. It may be useful to call this function after using make_supercell.""" # go over all orbitals for i in range(self._norb): cur_orb=self._orb[i] # compute orbital in the home cell round_orb=(np.array(cur_orb)+1.0E-6)%1.0 # find displacement vector needed to bring back to home cell disp_vec=np.array(np.round(cur_orb-round_orb),dtype=int) # check if have at least one non-zero component if True in (disp_vec!=0): # shift orbital self._orb[i]-=np.array(disp_vec,dtype=float) # shift also hoppings if self._dim_k!=0: for h in range(len(self._hoppings)): if self._hoppings[h][1]==i: self._hoppings[h][3]-=disp_vec if self._hoppings[h][2]==i: self._hoppings[h][3]+=disp_vec def k_uniform_mesh(self,mesh_size): r""" Returns a uniform grid of k-points that can be passed to passed to function :func:`pythtb.tb_model.solve_all`. This function is useful for plotting density of states histogram and similar. Returned uniform grid of k-points always contains the origin. :param mesh_size: Number of k-points in the mesh in each periodic direction of the model. :returns: * **k_vec** -- Array of k-vectors on the mesh that can be directly passed to function :func:`pythtb.tb_model.solve_all`. Example usage:: # returns a 10x20x30 mesh of a tight binding model # with three periodic directions k_vec = my_model.k_uniform_mesh([10,20,30]) # solve model on the uniform mesh my_model.solve_all(k_vec) """ # get the mesh size and checks for consistency use_mesh=np.array(list(map(round,mesh_size)),dtype=int) if use_mesh.shape!=(self._dim_k,): print(use_mesh.shape) raise Exception("\n\nIncorrect size of the specified k-mesh!") if np.min(use_mesh)<=0: raise Exception("\n\nMesh must have positive non-zero number of elements.") # construct the mesh if self._dim_k==1: # get a mesh k_vec=np.mgrid[0:use_mesh[0]] # normalize the mesh norm=np.tile(np.array(use_mesh,dtype=float),use_mesh) norm=norm.reshape(use_mesh.tolist()+[1]) norm=norm.transpose([1,0]) k_vec=k_vec/norm # final reshape k_vec=k_vec.transpose([1,0]).reshape([use_mesh[0],1]) elif self._dim_k==2: # get a mesh k_vec=np.mgrid[0:use_mesh[0],0:use_mesh[1]] # normalize the mesh norm=np.tile(np.array(use_mesh,dtype=float),use_mesh) norm=norm.reshape(use_mesh.tolist()+[2]) norm=norm.transpose([2,0,1]) k_vec=k_vec/norm # final reshape k_vec=k_vec.transpose([1,2,0]).reshape([use_mesh[0]*use_mesh[1],2]) elif self._dim_k==3: # get a mesh k_vec=np.mgrid[0:use_mesh[0],0:use_mesh[1],0:use_mesh[2]] # normalize the mesh norm=np.tile(np.array(use_mesh,dtype=float),use_mesh) norm=norm.reshape(use_mesh.tolist()+[3]) norm=norm.transpose([3,0,1,2]) k_vec=k_vec/norm # final reshape k_vec=k_vec.transpose([1,2,3,0]).reshape([use_mesh[0]*use_mesh[1]*use_mesh[2],3]) else: raise Exception("\n\nUnsupported dim_k!") return k_vec def k_path(self,kpts,nk,report=True): r""" Interpolates a path in reciprocal space between specified k-points. In 2D or 3D the k-path can consist of several straight segments connecting high-symmetry points ("nodes"), and the results can be used to plot the bands along this path. The interpolated path that is returned contains as equidistant k-points as possible. :param kpts: Array of k-vectors in reciprocal space between which interpolated path should be constructed. These k-vectors must be given in reduced coordinates. As a special case, in 1D k-space kpts may be a string: * *"full"* -- Implies *[ 0.0, 0.5, 1.0]* (full BZ) * *"fullc"* -- Implies *[-0.5, 0.0, 0.5]* (full BZ, centered) * *"half"* -- Implies *[ 0.0, 0.5]* (half BZ) :param nk: Total number of k-points to be used in making the plot. :param report: Optional parameter specifying whether printout is desired (default is True). :returns: * **k_vec** -- Array of (nearly) equidistant interpolated k-points. The distance between the points is calculated in the Cartesian frame, however coordinates themselves are given in dimensionless reduced coordinates! This is done so that this array can be directly passed to function :func:`pythtb.tb_model.solve_all`. * **k_dist** -- Array giving accumulated k-distance to each k-point in the path. Unlike array *k_vec* this one has dimensions! (Units are defined here so that for an one-dimensional crystal with lattice constant equal to for example *10* the length of the Brillouin zone would equal *1/10=0.1*. In other words factors of :math:`2\pi` are absorbed into *k*.) This array can be used to plot path in the k-space so that the distances between the k-points in the plot are exact. * **k_node** -- Array giving accumulated k-distance to each node on the path in Cartesian coordinates. This array is typically used to plot nodes (typically special points) on the path in k-space. Example usage:: # Construct a path connecting four nodal points in k-space # Path will contain 401 k-points, roughly equally spaced path = [[0.0, 0.0], [0.0, 0.5], [0.5, 0.5], [0.0, 0.0]] (k_vec,k_dist,k_node) = my_model.k_path(path,401) # solve for eigenvalues on that path evals = tb.solve_all(k_vec) # then use evals, k_dist, and k_node to plot bandstructure # (see examples) """ # processing of special cases for kpts if kpts=='full': # full Brillouin zone for 1D case k_list=np.array([[0.],[0.5],[1.]]) elif kpts=='fullc': # centered full Brillouin zone for 1D case k_list=np.array([[-0.5],[0.],[0.5]]) elif kpts=='half': # half Brillouin zone for 1D case k_list=np.array([[0.],[0.5]]) else: k_list=np.array(kpts) # in 1D case if path is specified as a vector, convert it to an (n,1) array if len(k_list.shape)==1 and self._dim_k==1: k_list=np.array([k_list]).T # make sure that k-points in the path have correct dimension if k_list.shape[1]!=self._dim_k: print('input k-space dimension is',k_list.shape[1]) print('k-space dimension taken from model is',self._dim_k) raise Exception("\n\nk-space dimensions do not match") # must have more k-points in the path than number of nodes if nk<k_list.shape[0]: raise Exception("\n\nMust have more points in the path than number of nodes.") # number of nodes n_nodes=k_list.shape[0] # extract the lattice vectors from the TB model lat_per=np.copy(self._lat) # choose only those that correspond to periodic directions lat_per=lat_per[self._per] # compute k_space metric tensor k_metric = np.linalg.inv(np.dot(lat_per,lat_per.T)) # Find distances between nodes and set k_node, which is # accumulated distance since the start of the path # initialize array k_node k_node=np.zeros(n_nodes,dtype=float) for n in range(1,n_nodes): dk = k_list[n]-k_list[n-1] dklen = np.sqrt(np.dot(dk,np.dot(k_metric,dk))) k_node[n]=k_node[n-1]+dklen # Find indices of nodes in interpolated list node_index=[0] for n in range(1,n_nodes-1): frac=k_node[n]/k_node[-1] node_index.append(int(round(frac*(nk-1)))) node_index.append(nk-1) # initialize two arrays temporarily with zeros # array giving accumulated k-distance to each k-point k_dist=np.zeros(nk,dtype=float) # array listing the interpolated k-points k_vec=np.zeros((nk,self._dim_k),dtype=float) # go over all kpoints k_vec[0]=k_list[0] for n in range(1,n_nodes): n_i=node_index[n-1] n_f=node_index[n] kd_i=k_node[n-1] kd_f=k_node[n] k_i=k_list[n-1] k_f=k_list[n] for j in range(n_i,n_f+1): frac=float(j-n_i)/float(n_f-n_i) k_dist[j]=kd_i+frac*(kd_f-kd_i) k_vec[j]=k_i+frac*(k_f-k_i) if report==True: if self._dim_k==1: print(' Path in 1D BZ defined by nodes at '+str(k_list.flatten())) else: print('----- k_path report begin ----------') original=np.get_printoptions() np.set_printoptions(precision=5) print('real-space lattice vectors\n', lat_per) print('k-space metric tensor\n', k_metric) print('internal coordinates of nodes\n', k_list) if (lat_per.shape[0]==lat_per.shape[1]): # lat_per is invertible lat_per_inv=np.linalg.inv(lat_per).T print('reciprocal-space lattice vectors\n', lat_per_inv) # cartesian coordinates of nodes kpts_cart=np.tensordot(k_list,lat_per_inv,axes=1) print('cartesian coordinates of nodes\n',kpts_cart) print('list of segments:') for n in range(1,n_nodes): dk=k_node[n]-k_node[n-1] dk_str=_nice_float(dk,7,5) print(' length = '+dk_str+' from ',k_list[n-1],' to ',k_list[n]) print('node distance list:', k_node) print('node index list: ', np.array(node_index)) np.set_printoptions(precision=original["precision"]) print('----- k_path report end ------------') print() return (k_vec,k_dist,k_node) def ignore_position_operator_offdiagonal(self): """Call to this function enables one to approximately compute Berry-like objects from tight-binding models that were obtained from Wannier90.""" self._assume_position_operator_diagonal=True def position_matrix(self, evec, dir): r""" Returns matrix elements of the position operator along direction *dir* for eigenvectors *evec* at a single k-point. Position operator is defined in reduced coordinates. The returned object :math:`X` is .. math:: X_{m n {\bf k}}^{\alpha} = \langle u_{m {\bf k}} \vert r^{\alpha} \vert u_{n {\bf k}} \rangle Here :math:`r^{\alpha}` is the position operator along direction :math:`\alpha` that is selected by *dir*. :param evec: Eigenvectors for which we are computing matrix elements of the position operator. The shape of this array is evec[band,orbital] if *nspin* equals 1 and evec[band,orbital,spin] if *nspin* equals 2. :param dir: Direction along which we are computing the center. This integer must not be one of the periodic directions since position operator matrix element in that case is not well defined. :returns: * **pos_mat** -- Position operator matrix :math:`X_{m n}` as defined above. This is a square matrix with size determined by number of bands given in *evec* input array. First index of *pos_mat* corresponds to bra vector (*m*) and second index to ket (*n*). Example usage:: # diagonalizes Hamiltonian at some k-points (evals, evecs) = my_model.solve_all(k_vec,eig_vectors=True) # computes position operator matrix elements for 3-rd kpoint # and bottom five bands along first coordinate pos_mat = my_model.position_matrix(evecs[:5,2], 0) See also this example: :ref:`haldane_hwf-example`, """ # make sure specified direction is not periodic! if dir in self._per: raise Exception("Can not compute position matrix elements along periodic direction!") # make sure direction is not out of range if dir<0 or dir>=self._dim_r: raise Exception("Direction out of range!") # check if model came from w90 if self._assume_position_operator_diagonal==False: _offdiag_approximation_warning_and_stop() # get coordinates of orbitals along the specified direction pos_tmp=self._orb[:,dir] # reshape arrays in the case of spinfull calculation if self._nspin==2: # tile along spin direction if needed pos_use=np.tile(pos_tmp,(2,1)).transpose().flatten() # also flatten the state along the spin index evec_use=evec.reshape((evec.shape[0],evec.shape[1]*evec.shape[2])) else: pos_use=pos_tmp evec_use=evec # position matrix elements pos_mat=np.zeros((evec_use.shape[0],evec_use.shape[0]),dtype=complex) # go over all bands for i in range(evec_use.shape[0]): for j in range(evec_use.shape[0]): pos_mat[i,j]=np.dot(evec_use[i].conj(),pos_use*evec_use[j]) # make sure matrix is hermitian if np.max(pos_mat-pos_mat.T.conj())>1.0E-9: raise Exception("\n\n Position matrix is not hermitian?!") return pos_mat def position_expectation(self,evec,dir): r""" Returns diagonal matrix elements of the position operator. These elements :math:`X_{n n}` can be interpreted as an average position of n-th Bloch state *evec[n]* along direction *dir*. Generally speaking these centers are *not* hybrid Wannier function centers (which are instead returned by :func:`pythtb.tb_model.position_hwf`). See function :func:`pythtb.tb_model.position_matrix` for definition of matrix :math:`X`. :param evec: Eigenvectors for which we are computing matrix elements of the position operator. The shape of this array is evec[band,orbital] if *nspin* equals 1 and evec[band,orbital,spin] if *nspin* equals 2. :param dir: Direction along which we are computing matrix elements. This integer must not be one of the periodic directions since position operator matrix element in that case is not well defined. :returns: * **pos_exp** -- Diagonal elements of the position operator matrix :math:`X`. Length of this vector is determined by number of bands given in *evec* input array. Example usage:: # diagonalizes Hamiltonian at some k-points (evals, evecs) = my_model.solve_all(k_vec,eig_vectors=True) # computes average position for 3-rd kpoint # and bottom five bands along first coordinate pos_exp = my_model.position_expectation(evecs[:5,2], 0) See also this example: :ref:`haldane_hwf-example`. """ # check if model came from w90 if self._assume_position_operator_diagonal==False: _offdiag_approximation_warning_and_stop() pos_exp=self.position_matrix(evec,dir).diagonal() return np.array(np.real(pos_exp),dtype=float) def position_hwf(self,evec,dir,hwf_evec=False,basis="orbital"): r""" Returns eigenvalues and optionally eigenvectors of the position operator matrix :math:`X` in either Bloch or orbital basis. These eigenvectors can be interpreted as linear combinations of Bloch states *evec* that have minimal extent (or spread :math:`\Omega` in the sense of maximally localized Wannier functions) along direction *dir*. The eigenvalues are average positions of these localized states. Note that these eigenvectors are not maximally localized Wannier functions in the usual sense because they are localized only along one direction. They are also not the average positions of the Bloch states *evec*, which are instead computed by :func:`pythtb.tb_model.position_expectation`. See function :func:`pythtb.tb_model.position_matrix` for the definition of the matrix :math:`X`. See also Fig. 3 in Phys. Rev. Lett. 102, 107603 (2009) for a discussion of the hybrid Wannier function centers in the context of a Chern insulator. :param evec: Eigenvectors for which we are computing matrix elements of the position operator. The shape of this array is evec[band,orbital] if *nspin* equals 1 and evec[band,orbital,spin] if *nspin* equals 2. :param dir: Direction along which we are computing matrix elements. This integer must not be one of the periodic directions since position operator matrix element in that case is not well defined. :param hwf_evec: Optional boolean variable. If set to *True* this function will return not only eigenvalues but also eigenvectors of :math:`X`. Default value is *False*. :param basis: Optional parameter. If basis="bloch" then hybrid Wannier function *hwf_evec* is written in the Bloch basis. I.e. hwf[i,j] correspond to the weight of j-th Bloch state from *evec* in the i-th hybrid Wannier function. If basis="orbital" and nspin=1 then hwf[i,orb] correspond to the weight of orb-th orbital in the i-th hybrid Wannier function. If basis="orbital" and nspin=2 then hwf[i,orb,spin] correspond to the weight of orb-th orbital, spin-th spin component in the i-th hybrid Wannier function. Default value is "orbital". :returns: * **hwfc** -- Eigenvalues of the position operator matrix :math:`X` (also called hybrid Wannier function centers). Length of this vector equals number of bands given in *evec* input array. Hybrid Wannier function centers are ordered in ascending order. Note that in general *n*-th hwfc does not correspond to *n*-th electronic state *evec*. * **hwf** -- Eigenvectors of the position operator matrix :math:`X`. (also called hybrid Wannier functions). These are returned only if parameter *hwf_evec* is set to *True*. The shape of this array is [h,x] or [h,x,s] depending on value of *basis* and *nspin*. If *basis* is "bloch" then x refers to indices of Bloch states *evec*. If *basis* is "orbital" then *x* (or *x* and *s*) correspond to orbital index (or orbital and spin index if *nspin* is 2). Example usage:: # diagonalizes Hamiltonian at some k-points (evals, evecs) = my_model.solve_all(k_vec,eig_vectors=True) # computes hybrid Wannier centers (and functions) for 3-rd kpoint # and bottom five bands along first coordinate (hwfc, hwf) = my_model.position_hwf(evecs[:5,2], 0, hwf_evec=True, basis="orbital") See also this example: :ref:`haldane_hwf-example`, """ # check if model came from w90 if self._assume_position_operator_diagonal==False: _offdiag_approximation_warning_and_stop() # get position matrix pos_mat=self.position_matrix(evec,dir) # diagonalize if hwf_evec==False: hwfc=np.linalg.eigvalsh(pos_mat) # sort eigenvalues and convert to real numbers hwfc=_nicefy_eig(hwfc) return np.array(hwfc,dtype=float) else: # find eigenvalues and eigenvectors (hwfc,hwf)=np.linalg.eigh(pos_mat) # transpose matrix eig since otherwise it is confusing # now eig[i,:] is eigenvector for eval[i]-th eigenvalue hwf=hwf.T # sort evectors, eigenvalues and convert to real numbers (hwfc,hwf)=_nicefy_eig(hwfc,hwf) # convert to right basis if basis.lower().strip()=="bloch": return (hwfc,hwf) elif basis.lower().strip()=="orbital": if self._nspin==1: ret_hwf=np.zeros((hwf.shape[0],self._norb),dtype=complex) # sum over bloch states to get hwf in orbital basis for i in range(ret_hwf.shape[0]): ret_hwf[i]=np.dot(hwf[i],evec) hwf=ret_hwf else: ret_hwf=np.zeros((hwf.shape[0],self._norb*2),dtype=complex) # get rid of spin indices evec_use=evec.reshape([hwf.shape[0],self._norb*2]) # sum over states for i in range(ret_hwf.shape[0]): ret_hwf[i]=np.dot(hwf[i],evec_use) # restore spin indices hwf=ret_hwf.reshape([hwf.shape[0],self._norb,2]) return (hwfc,hwf) else: raise Exception("\n\nBasis must be either bloch or orbital!") # keeping old name for backwards compatibility # will be removed in future tb_model.set_sites=tb_model.set_onsite tb_model.add_hop=tb_model.set_hop tbmodel=tb_model class wf_array(object): r""" This class is used to solve a tight-binding model :class:`pythtb.tb_model` on a regular or non-regular grid of points in reciprocal space and/or parameter space, and perform on it various calculations. For example it can be used to calculate the Berry phase, Berry curvature, 1st Chern number, etc. *Regular k-space grid*: If the grid is a regular k-mesh (no parametric dimensions), a single call to the function :func:`pythtb.wf_array.solve_on_grid` will both construct a k-mesh that uniformly covers the Brillouin zone, and populate it with wavefunctions (eigenvectors) computed on this grid. The last point in each k-dimension is set so that it represents the same Bloch function as the first one (this involves the insertion of some orbital-position-dependent phase factors). Example :ref:`haldane_bp-example` shows how to use wf_array on a regular grid of points in k-space. Examples :ref:`cone-example` and :ref:`3site_cycle-example` show how to use non-regular grid of points. *Parametric or irregular k-space grid grid*: An irregular grid of points, or a grid that includes also one or more parametric dimensions, can be populated manually with the help of the *[]* operator. For example, to copy eigenvectors *evec* into coordinate (2,3) in the *wf_array* object *wf* one can simply do:: wf[2,3]=evec The eigenvectors (wavefunctions) *evec* in the example above are expected to be in the format *evec[band,orbital]* (or *evec[band,orbital,spin]* for the spinfull calculation). This is the same format as returned by :func:`pythtb.tb_model.solve_one` or :func:`pythtb.tb_model.solve_all` (in the latter case one needs to restrict it to a single k-point as *evec[:,kpt,:]* if the model has *dim_k>=1*). If wf_array is used for closed paths, either in a reciprocal-space or parametric direction, then one needs to include both the starting and ending eigenfunctions even though they are physically equivalent. If the array dimension in question is a k-vector direction and the path traverses the Brillouin zone in a primitive reciprocal-lattice direction, :func:`pythtb.wf_array.impose_pbc` can be used to associate the starting and ending points with each other; if it is a non-winding loop in k-space or a loop in parameter space, then :func:`pythtb.wf_array.impose_loop` can be used instead. (These may not be necessary if only Berry fluxes are needed.) Example :ref:`3site_cycle-example` shows how one of the directions of *wf_array* object need not be a k-vector direction, but can instead be a Hamiltonian parameter :math:`\lambda` (see also discussion after equation 4.1 in :download:`notes on tight-binding formalism <misc/pythtb-formalism.pdf>`). :param model: Object of type :class:`pythtb.tb_model` representing tight-binding model associated with this array of eigenvectors. :param mesh_arr: Array giving a dimension of the grid of points in each reciprocal-space or parametric direction. Example usage:: # Construct wf_array capable of storing an 11x21 array of # wavefunctions wf = wf_array(tb, [11, 21]) # populate this wf_array with regular grid of points in # Brillouin zone wf.solve_on_grid([0.0, 0.0]) # Compute set of eigenvectors at one k-point (eval, evec) = tb.solve_one([kx, ky], eig_vectors = True) # Store it manually into a specified location in the array wf[3, 4] = evec # To access the eigenvectors from the same position print wf[3, 4] """ def __init__(self,model,mesh_arr): # number of electronic states for each k-point self._nsta=model._nsta # number of spin components self._nspin=model._nspin # number of orbitals self._norb=model._norb # store orbitals from the model self._orb=np.copy(model._orb) # store entire model as well self._model=copy.deepcopy(model) # store dimension of array of points on which to keep wavefunctions self._mesh_arr=np.array(mesh_arr) self._dim_arr=len(self._mesh_arr) # all dimensions should be 2 or larger, because pbc can be used if True in (self._mesh_arr<=1).tolist(): raise Exception("\n\nDimension of wf_array object in each direction must be 2 or larger.") # generate temporary array used later to generate object ._wfs wfs_dim=np.copy(self._mesh_arr) wfs_dim=np.append(wfs_dim,self._nsta) wfs_dim=np.append(wfs_dim,self._norb) if self._nspin==2: wfs_dim=np.append(wfs_dim,self._nspin) # store wavefunctions here in the form _wfs[kx_index,ky_index, ... ,band,orb,spin] self._wfs=np.zeros(wfs_dim,dtype=complex) def solve_on_grid(self,start_k): r""" Solve a tight-binding model on a regular mesh of k-points covering the entire reciprocal-space unit cell. Both points at the opposite sides of reciprocal-space unit cell are included in the array. This function also automatically imposes periodic boundary conditions on the eigenfunctions. See also the discussion in :func:`pythtb.wf_array.impose_pbc`. :param start_k: Origin of a regular grid of points in the reciprocal space. :returns: * **gaps** -- returns minimal direct bandgap between n-th and n+1-th band on all the k-points in the mesh. Note that in the case of band crossings one may have to use very dense k-meshes to resolve the crossing. Example usage:: # Solve eigenvectors on a regular grid anchored # at a given point wf.solve_on_grid([-0.5, -0.5]) """ # check dimensionality if self._dim_arr!=self._model._dim_k: raise Exception("\n\nIf using solve_on_grid method, dimension of wf_array must equal dim_k of the tight-binding model!") # to return gaps at all k-points if self._norb<=1: all_gaps=None # trivial case since there is only one band else: gap_dim=np.copy(self._mesh_arr)-1 gap_dim=np.append(gap_dim,self._norb*self._nspin-1) all_gaps=np.zeros(gap_dim,dtype=float) # if self._dim_arr==1: # don't need to go over the last point because that will be # computed in the impose_pbc call for i in range(self._mesh_arr[0]-1): # generate a kpoint kpt=[start_k[0]+float(i)/float(self._mesh_arr[0]-1)] # solve at that point (eval,evec)=self._model.solve_one(kpt,eig_vectors=True) # store wavefunctions self[i]=evec # store gaps if all_gaps is not None: all_gaps[i,:]=eval[1:]-eval[:-1] # impose boundary conditions self.impose_pbc(0,self._model._per[0]) elif self._dim_arr==2: for i in range(self._mesh_arr[0]-1): for j in range(self._mesh_arr[1]-1): kpt=[start_k[0]+float(i)/float(self._mesh_arr[0]-1),\ start_k[1]+float(j)/float(self._mesh_arr[1]-1)] (eval,evec)=self._model.solve_one(kpt,eig_vectors=True) self[i,j]=evec if all_gaps is not None: all_gaps[i,j,:]=eval[1:]-eval[:-1] for dir in range(2): self.impose_pbc(dir,self._model._per[dir]) elif self._dim_arr==3: for i in range(self._mesh_arr[0]-1): for j in range(self._mesh_arr[1]-1): for k in range(self._mesh_arr[2]-1): kpt=[start_k[0]+float(i)/float(self._mesh_arr[0]-1),\ start_k[1]+float(j)/float(self._mesh_arr[1]-1),\ start_k[2]+float(k)/float(self._mesh_arr[2]-1)] (eval,evec)=self._model.solve_one(kpt,eig_vectors=True) self[i,j,k]=evec if all_gaps is not None: all_gaps[i,j,k,:]=eval[1:]-eval[:-1] for dir in range(3): self.impose_pbc(dir,self._model._per[dir]) elif self._dim_arr==4: for i in range(self._mesh_arr[0]-1): for j in range(self._mesh_arr[1]-1): for k in range(self._mesh_arr[2]-1): for l in range(self._mesh_arr[3]-1): kpt=[start_k[0]+float(i)/float(self._mesh_arr[0]-1),\ start_k[1]+float(j)/float(self._mesh_arr[1]-1),\ start_k[2]+float(k)/float(self._mesh_arr[2]-1),\ start_k[3]+float(l)/float(self._mesh_arr[3]-1)] (eval,evec)=self._model.solve_one(kpt,eig_vectors=True) self[i,j,k,l]=evec if all_gaps is not None: all_gaps[i,j,k,l,:]=eval[1:]-eval[:-1] for dir in range(4): self.impose_pbc(dir,self._model._per[dir]) else: raise Exception("\n\nWrong dimensionality!") return all_gaps.min(axis=tuple(range(self._dim_arr))) def __check_key(self,key): # do some checks for 1D if self._dim_arr==1: if type(key).__name__!='int': raise TypeError("Key should be an integer!") if key<(-1)*self._mesh_arr[0] or key>=self._mesh_arr[0]: raise IndexError("Key outside the range!") # do checks for higher dimension else: if len(key)!=self._dim_arr: raise TypeError("Wrong dimensionality of key!") for i,k in enumerate(key): if type(k).__name__!='int': raise TypeError("Key should be set of integers!") if k<(-1)*self._mesh_arr[i] or k>=self._mesh_arr[i]: raise IndexError("Key outside the range!") def __getitem__(self,key): # check that key is in the correct range self.__check_key(key) # return wavefunction return self._wfs[key] def __setitem__(self,key,value): # check that key is in the correct range self.__check_key(key) # store wavefunction self._wfs[key]=np.array(value,dtype=complex) def impose_pbc(self,mesh_dir,k_dir): r""" If the *wf_array* object was populated using the :func:`pythtb.wf_array.solve_on_grid` method, this function should not be used since it will be called automatically by the code. The eigenfunctions :math:`\Psi_{n {\bf k}}` are by convention chosen to obey a periodic gauge, i.e., :math:`\Psi_{n,{\bf k+G}}=\Psi_{n {\bf k}}` not only up to a phase, but they are also equal in phase. It follows that the cell-periodic Bloch functions are related by :math:`u_{n,{\bf k+G}}=e^{-i{\bf G}\cdot{\bf r}}\Psi_{n {\bf k}}`. See :download:`notes on tight-binding formalism <misc/pythtb-formalism.pdf>` section 4.4 and equation 4.18 for more detail. This routine sets the cell-periodic Bloch function at the end of the string in direction :math:`{\bf G}` according to this formula, overwriting the previous value. This function will impose these periodic boundary conditions along one direction of the array. We are assuming that the k-point mesh increases by exactly one reciprocal lattice vector along this direction. This is currently **not** checked by the code; it is the responsibility of the user. Currently *wf_array* does not store the k-vectors on which the model was solved; it only stores the eigenvectors (wavefunctions). :param mesh_dir: Direction of wf_array along which you wish to impose periodic boundary conditions. :param k_dir: Corresponding to the periodic k-vector direction in the Brillouin zone of the underlying *tb_model*. Since version 1.7.0 this parameter is defined so that it is specified between 0 and *dim_r-1*. See example :ref:`3site_cycle-example`, where the periodic boundary condition is applied only along one direction of *wf_array*. Example usage:: # Imposes periodic boundary conditions along the mesh_dir=0 # direction of the wf_array object, assuming that along that # direction the k_dir=1 component of the k-vector is increased # by one reciprocal lattice vector. This could happen, for # example, if the underlying tb_model is two dimensional but # wf_array is a one-dimensional path along k_y direction. wf.impose_pbc(mesh_dir=0,k_dir=1) """ if k_dir not in self._model._per: raise Exception("Periodic boundary condition can be specified only along periodic directions!") # Compute phase factors ffac=np.exp(-2.j*np.pi*self._orb[:,k_dir]) if self._nspin==1: phase=ffac else: # for spinors, same phase multiplies both components phase=np.zeros((self._norb,2),dtype=complex) phase[:,0]=ffac phase[:,1]=ffac # Copy first eigenvector onto last one, multiplying by phase factors # We can use numpy broadcasting since the orbital index is last if mesh_dir==0: self._wfs[-1,...]=self._wfs[0,...]*phase elif mesh_dir==1: self._wfs[:,-1,...]=self._wfs[:,0,...]*phase elif mesh_dir==2: self._wfs[:,:,-1,...]=self._wfs[:,:,0,...]*phase elif mesh_dir==3: self._wfs[:,:,:,-1,...]=self._wfs[:,:,:,0,...]*phase else: raise Exception("\n\nWrong value of mesh_dir.") def impose_loop(self,mesh_dir): r""" If the user knows that the first and last points along the *mesh_dir* direction correspond to the same Hamiltonian (this is **not** checked), then this routine can be used to set the eigenvectors equal (with equal phase), by replacing the last eigenvector with the first one (for each band, and for each other mesh direction, if any). This routine should not be used if the first and last points are related by a reciprocal lattice vector; in that case, :func:`pythtb.wf_array.impose_pbc` should be used instead. :param mesh_dir: Direction of wf_array along which you wish to impose periodic boundary conditions. Example usage:: # Suppose the wf_array object is three-dimensional # corresponding to (kx,ky,lambda) where (kx,ky) are # wavevectors of a 2D insulator and lambda is an # adiabatic parameter that goes around a closed loop. # Then to insure that the states at the ends of the lambda # path are equal (with equal phase) in preparation for # computing Berry phases in lambda for given (kx,ky), # do wf.impose_loop(mesh_dir=2) """ # Copy first eigenvector onto last one if mesh_dir==0: self._wfs[-1,...]=self._wfs[0,...] elif mesh_dir==1: self._wfs[:,-1,...]=self._wfs[:,0,...] elif mesh_dir==2: self._wfs[:,:,-1,...]=self._wfs[:,:,0,...] elif mesh_dir==3: self._wfs[:,:,:,-1,...]=self._wfs[:,:,:,0,...] else: raise Exception("\n\nWrong value of mesh_dir.") def berry_phase(self,occ,dir=None,contin=True,berry_evals=False): r""" Computes the Berry phase along a given array direction and for a given set of occupied states. This assumes that the occupied bands are well separated in energy from unoccupied bands. It is the responsibility of the user to check that this is satisfied. By default, the Berry phase traced over occupied bands is returned, but optionally the individual phases of the eigenvalues of the global unitary rotation matrix (corresponding to "maximally localized Wannier centers" or "Wilson loop eigenvalues") can be requested (see parameter *berry_evals* for more details). For an array of size *N* in direction $dir$, the Berry phase is computed from the *N-1* inner products of neighboring eigenfunctions. This corresponds to an "open-path Berry phase" if the first and last points have no special relation. If they correspond to the same physical Hamiltonian, and have been properly aligned in phase using :func:`pythtb.wf_array.impose_pbc` or :func:`pythtb.wf_array.impose_loop`, then a closed-path Berry phase will be computed. For a one-dimensional wf_array (i.e., a single string), the computed Berry phases are always chosen to be between -pi and pi. For a higher dimensional wf_array, the Berry phase is computed for each one-dimensional string of points, and an array of Berry phases is returned. The Berry phase for the first string (with lowest index) is always constrained to be between -pi and pi. The range of the remaining phases depends on the value of the input parameter *contin*. The discretized formula used to compute Berry phase is described in Sec. 4.5 of :download:`notes on tight-binding formalism <misc/pythtb-formalism.pdf>`. :param occ: Array of indices of energy bands which are considered to be occupied. :param dir: Index of wf_array direction along which Berry phase is computed. This parameters needs not be specified for a one-dimensional wf_array. :param contin: Optional boolean parameter. If True then the branch choice of the Berry phase (which is indeterminate modulo 2*pi) is made so that neighboring strings (in the direction of increasing index value) have as close as possible phases. The phase of the first string (with lowest index) is always constrained to be between -pi and pi. If False, the Berry phase for every string is constrained to be between -pi and pi. The default value is True. :param berry_evals: Optional boolean parameter. If True then will compute and return the phases of the eigenvalues of the product of overlap matrices. (These numbers correspond also to hybrid Wannier function centers.) These phases are either forced to be between -pi and pi (if *contin* is *False*) or they are made to be continuous (if *contin* is True). :returns: * **pha** -- If *berry_evals* is False (default value) then returns the Berry phase for each string. For a one-dimensional wf_array this is just one number. For a higher-dimensional wf_array *pha* contains one phase for each one-dimensional string in the following format. For example, if *wf_array* contains k-points on mesh with indices [i,j,k] and if direction along which Berry phase is computed is *dir=1* then *pha* will be two dimensional array with indices [i,k], since Berry phase is computed along second direction. If *berry_evals* is True then for each string returns phases of all eigenvalues of the product of overlap matrices. In the convention used for previous example, *pha* in this case would have indices [i,k,n] where *n* refers to index of individual phase of the product matrix eigenvalue. Example usage:: # Computes Berry phases along second direction for three lowest # occupied states. For example, if wf is threedimensional, then # pha[2,3] would correspond to Berry phase of string of states # along wf[2,:,3] pha = wf.berry_phase([0, 1, 2], 1) See also these examples: :ref:`haldane_bp-example`, :ref:`cone-example`, :ref:`3site_cycle-example`, """ # check if model came from w90 if self._model._assume_position_operator_diagonal==False: _offdiag_approximation_warning_and_stop() #if dir<0 or dir>self._dim_arr-1: # raise Exception("\n\nDirection key out of range") # # This could be coded more efficiently, but it is hard-coded for now. # # 1D case if self._dim_arr==1: # pick which wavefunctions to use wf_use=self._wfs[:,occ,:] # calculate berry phase ret=_one_berry_loop(wf_use,berry_evals) # 2D case elif self._dim_arr==2: # choice along which direction you wish to calculate berry phase if dir==0: ret=[] for i in range(self._mesh_arr[1]): wf_use=self._wfs[:,i,:,:][:,occ,:] ret.append(_one_berry_loop(wf_use,berry_evals)) elif dir==1: ret=[] for i in range(self._mesh_arr[0]): wf_use=self._wfs[i,:,:,:][:,occ,:] ret.append(_one_berry_loop(wf_use,berry_evals)) else: raise Exception("\n\nWrong direction for Berry phase calculation!") # 3D case elif self._dim_arr==3: # choice along which direction you wish to calculate berry phase if dir==0: ret=[] for i in range(self._mesh_arr[1]): ret_t=[] for j in range(self._mesh_arr[2]): wf_use=self._wfs[:,i,j,:,:][:,occ,:] ret_t.append(_one_berry_loop(wf_use,berry_evals)) ret.append(ret_t) elif dir==1: ret=[] for i in range(self._mesh_arr[0]): ret_t=[] for j in range(self._mesh_arr[2]): wf_use=self._wfs[i,:,j,:,:][:,occ,:] ret_t.append(_one_berry_loop(wf_use,berry_evals)) ret.append(ret_t) elif dir==2: ret=[] for i in range(self._mesh_arr[0]): ret_t=[] for j in range(self._mesh_arr[1]): wf_use=self._wfs[i,j,:,:,:][:,occ,:] ret_t.append(_one_berry_loop(wf_use,berry_evals)) ret.append(ret_t) else: raise Exception("\n\nWrong direction for Berry phase calculation!") else: raise Exception("\n\nWrong dimensionality!") # convert phases to numpy array if self._dim_arr>1 or berry_evals==True: ret=np.array(ret,dtype=float) # make phases of eigenvalues continuous if contin==True: # iron out 2pi jumps, make the gauge choice such that first phase in the # list is fixed, others are then made continuous. if berry_evals==False: # 2D case if self._dim_arr==2: ret=_one_phase_cont(ret,ret[0]) # 3D case elif self._dim_arr==3: for i in range(ret.shape[1]): if i==0: clos=ret[0,0] else: clos=ret[0,i-1] ret[:,i]=_one_phase_cont(ret[:,i],clos) elif self._dim_arr!=1: raise Exception("\n\nWrong dimensionality!") # make eigenvalues continuous. This does not take care of band-character # at band crossing for example it will just connect pairs that are closest # at neighboring points. else: # 2D case if self._dim_arr==2: ret=_array_phases_cont(ret,ret[0,:]) # 3D case elif self._dim_arr==3: for i in range(ret.shape[1]): if i==0: clos=ret[0,0,:] else: clos=ret[0,i-1,:] ret[:,i]=_array_phases_cont(ret[:,i],clos) elif self._dim_arr!=1: raise Exception("\n\nWrong dimensionality!") return ret def position_matrix(self, key, occ, dir): """Similar to :func:`pythtb.tb_model.position_matrix`. Only difference is that states are now specified with key in the mesh *key* and indices of bands *occ*.""" # check if model came from w90 if self._model._assume_position_operator_diagonal==False: _offdiag_approximation_warning_and_stop() # evec=self._wfs[tuple(key)][occ] return self._model.position_matrix(evec,dir) def position_expectation(self, key, occ, dir): """Similar to :func:`pythtb.tb_model.position_expectation`. Only difference is that states are now specified with key in the mesh *key* and indices of bands *occ*.""" # check if model came from w90 if self._model._assume_position_operator_diagonal==False: _offdiag_approximation_warning_and_stop() # evec=self._wfs[tuple(key)][occ] return self._model.position_expectation(evec,dir) def position_hwf(self, key, occ, dir, hwf_evec=False, basis="bloch"): """Similar to :func:`pythtb.tb_model.position_hwf`. Only difference is that states are now specified with key in the mesh *key* and indices of bands *occ*.""" # check if model came from w90 if self._model._assume_position_operator_diagonal==False: _offdiag_approximation_warning_and_stop() # evec=self._wfs[tuple(key)][occ] return self._model.position_hwf(evec,dir,hwf_evec,basis) def berry_flux(self,occ,dirs=None,individual_phases=False): r""" In the case of a 2-dimensional *wf_array* array calculates the integral of Berry curvature over the entire plane. In higher dimensional case (3 or 4) it will compute integrated curvature over all 2-dimensional slices of a higher-dimensional *wf_array*. :param occ: Array of indices of energy bands which are considered to be occupied. :param dirs: Array of indices of two wf_array directions on which the Berry flux is computed. This parameter needs not be specified for a two-dimensional wf_array. By default *dirs* takes first two directions in the array. :param individual_phases: If *True* then returns Berry phase for each plaquette (small square) in the array. Default value is *False*. :returns: * **flux** -- In a 2-dimensional case returns and integral of Berry curvature (if *individual_phases* is *True* then returns integral of Berry phase around each plaquette). In higher dimensional case returns integral of Berry curvature over all slices defined with directions *dirs*. Returned value is an array over the remaining indices of *wf_array*. (If *individual_phases* is *True* then it returns again phases around each plaquette for each slice. First indices define the slice, last two indices index the plaquette.) Example usage:: # Computes integral of Berry curvature of first three bands flux = wf.berry_flux([0, 1, 2]) """ # check if model came from w90 if self._model._assume_position_operator_diagonal==False: _offdiag_approximation_warning_and_stop() # default case is to take first two directions for flux calculation if dirs==None: dirs=[0,1] # consistency checks if dirs[0]==dirs[1]: raise Exception("Need to specify two different directions for Berry flux calculation.") if dirs[0]>=self._dim_arr or dirs[1]>=self._dim_arr or dirs[0]<0 or dirs[1]<0: raise Exception("Direction for Berry flux calculation out of bounds.") # 2D case if self._dim_arr==2: # compute the fluxes through all plaquettes on the entire plane ord=list(range(len(self._wfs.shape))) # select two directions from dirs ord[0]=dirs[0] ord[1]=dirs[1] plane_wfs=self._wfs.transpose(ord) # take bands of choice plane_wfs=plane_wfs[:,:,occ] # compute fluxes all_phases=_one_flux_plane(plane_wfs) # return either total flux or individual phase for each plaquete if individual_phases==False: return all_phases.sum() else: return all_phases # 3D or 4D case elif self._dim_arr in [3,4]: # compute the fluxes through all plaquettes on the entire plane ord=list(range(len(self._wfs.shape))) # select two directions from dirs ord[0]=dirs[0] ord[1]=dirs[1] # find directions over which we wish to loop ld=list(range(self._dim_arr)) ld.remove(dirs[0]) ld.remove(dirs[1]) if len(ld)!=self._dim_arr-2: raise Exception("Hm, this should not happen? Inconsistency with the mesh size.") # add remaining indices if self._dim_arr==3: ord[2]=ld[0] if self._dim_arr==4: ord[2]=ld[0] ord[3]=ld[1] # reorder wavefunctions use_wfs=self._wfs.transpose(ord) # loop over the the remaining direction if self._dim_arr==3: slice_phases=np.zeros((self._mesh_arr[ord[2]],self._mesh_arr[dirs[0]]-1,self._mesh_arr[dirs[1]]-1),dtype=float) for i in range(self._mesh_arr[ord[2]]): # take a 2d slice plane_wfs=use_wfs[:,:,i] # take bands of choice plane_wfs=plane_wfs[:,:,occ] # compute fluxes on the slice slice_phases[i,:,:]=_one_flux_plane(plane_wfs) elif self._dim_arr==4: slice_phases=np.zeros((self._mesh_arr[ord[2]],self._mesh_arr[ord[3]],self._mesh_arr[dirs[0]]-1,self._mesh_arr[dirs[1]]-1),dtype=float) for i in range(self._mesh_arr[ord[2]]): for j in range(self._mesh_arr[ord[3]]): # take a 2d slice plane_wfs=use_wfs[:,:,i,j] # take bands of choice plane_wfs=plane_wfs[:,:,occ] # compute fluxes on the slice slice_phases[i,j,:,:]=_one_flux_plane(plane_wfs) # return either total flux or individual phase for each plaquete if individual_phases==False: return slice_phases.sum(axis=(-2,-1)) else: return slice_phases else: raise Exception("\n\nWrong dimensionality!") def berry_curv(self,occ,individual_phases=False): r""" .. warning:: This function has been renamed as :func:`pythtb.berry_flux` and is provided here only for backwards compatibility with versions of pythtb prior to 1.7.0. Please use related :func:`pythtb.berry_flux` as this function may not exist in future releases. """ print(""" Warning: Usage of function berry_curv is discouraged. It has been renamed as berry_flux, which should be used instead. """) return self.berry_flux(occ,individual_phases) def k_path(kpts,nk,endpoint=True): r""" .. warning:: This function is here only for backwards compatibility with version of pythtb prior to 1.7.0. Please use related :func:`pythtb.tb_model.k_path` function as this function might not exist in the future releases of the code. """ print(""" Warning: Usage of function k_path is discouraged. Instead of the following code: k_vec=k_path(...) please use the following code: (k_vec,k_dist,k_node)=my_model.k_path(...) Note that this k_path function is a member of the tb_model class. """) if kpts=='full': # this means the full Brillouin zone for 1D case if endpoint==True: return np.arange(nk+1,dtype=float)/float(nk) else: return np.arange(nk,dtype=float)/float(nk) elif kpts=='half': # this means the half Brillouin zone for 1D case if endpoint==True: return np.arange(nk+1,dtype=float)/float(2.*nk) else: return np.arange(nk,dtype=float)/float(2.*nk) else: # general case kint=[] k_list=np.array(kpts) # go over all kpoints for i in range(len(k_list)-1): # go over all steps for j in range(nk): cur=k_list[i]+(k_list[i+1]-k_list[i])*float(j)/float(nk) kint.append(cur) # add last point if endpoint==True: kint.append(k_list[-1]) # kint=np.array(kint) return kint def _nicefy_eig(eval,eig=None): "Sort eigenvaules and eigenvectors, if given, and convert to real numbers" # first take only real parts of the eigenvalues eval=np.array(eval.real,dtype=float) # sort energies args=eval.argsort() eval=eval[args] if not (eig is None): eig=eig[args] return (eval,eig) return eval # for nice justified printout def _nice_float(x,just,rnd): return str(round(x,rnd)).rjust(just) def _nice_int(x,just): return str(x).rjust(just) def _nice_complex(x,just,rnd): ret="" ret+=_nice_float(complex(x).real,just,rnd) if complex(x).imag<0.0: ret+=" - " else: ret+=" + " ret+=_nice_float(abs(complex(x).imag),just,rnd) ret+=" i" return ret def _wf_dpr(wf1,wf2): """calculate dot product between two wavefunctions. wf1 and wf2 are of the form [orbital,spin]""" return np.dot(wf1.flatten().conjugate(),wf2.flatten()) def _one_berry_loop(wf,berry_evals=False): """Do one Berry phase calculation (also returns a product of M matrices). Always returns numbers between -pi and pi. wf has format [kpnt,band,orbital,spin] and kpnt has to be one dimensional. Assumes that first and last k-point are the same. Therefore if there are n wavefunctions in total, will calculate phase along n-1 links only! If berry_evals is True then will compute phases for individual states, these corresponds to 1d hybrid Wannier function centers. Otherwise just return one number, Berry phase.""" # number of occupied states nocc=wf.shape[1] # temporary matrices prd=np.identity(nocc,dtype=complex) ovr=np.zeros([nocc,nocc],dtype=complex) # go over all pairs of k-points, assuming that last point is overcounted! for i in range(wf.shape[0]-1): # generate overlap matrix, go over all bands for j in range(nocc): for k in range(nocc): ovr[j,k]=_wf_dpr(wf[i,j,:],wf[i+1,k,:]) # only find Berry phase if berry_evals==False: # multiply overlap matrices prd=np.dot(prd,ovr) # also find phases of individual eigenvalues else: # cleanup matrices with SVD then take product matU,sing,matV=np.linalg.svd(ovr) prd=np.dot(prd,np.dot(matU,matV)) # calculate Berry phase if berry_evals==False: det=np.linalg.det(prd) pha=(-1.0)*np.angle(det) return pha # calculate phases of all eigenvalues else: evals=np.linalg.eigvals(prd) eval_pha=(-1.0)*np.angle(evals) # sort these numbers as well eval_pha=np.sort(eval_pha) return eval_pha def _one_flux_plane(wfs2d): "Compute fluxes on a two-dimensional plane of states." # size of the mesh nk0=wfs2d.shape[0] nk1=wfs2d.shape[1] # number of bands (will compute flux of all bands taken together) nbnd=wfs2d.shape[2] # here store flux through each plaquette of the mesh all_phases=np.zeros((nk0-1,nk1-1),dtype=float) # go over all plaquettes for i in range(nk0-1): for j in range(nk1-1): # generate a small loop made out of four pieces wf_use=[] wf_use.append(wfs2d[i,j]) wf_use.append(wfs2d[i+1,j]) wf_use.append(wfs2d[i+1,j+1]) wf_use.append(wfs2d[i,j+1]) wf_use.append(wfs2d[i,j]) wf_use=np.array(wf_use,dtype=complex) # calculate phase around one plaquette all_phases[i,j]=_one_berry_loop(wf_use) return all_phases def no_2pi(x,clos): "Make x as close to clos by adding or removing 2pi" while abs(clos-x)>np.pi: if clos-x>np.pi: x+=2.0*np.pi elif clos-x<-1.0*np.pi: x-=2.0*np.pi return x def _one_phase_cont(pha,clos): """Reads in 1d array of numbers *pha* and makes sure that they are continuous, i.e., that there are no jumps of 2pi. First number is made as close to *clos* as possible.""" ret=np.copy(pha) # go through entire list and "iron out" 2pi jumps for i in range(len(ret)): # which number to compare to if i==0: cmpr=clos else: cmpr=ret[i-1] # make sure there are no 2pi jumps ret[i]=no_2pi(ret[i],cmpr) return ret def _array_phases_cont(arr_pha,clos): """Reads in 2d array of phases *arr_pha* and makes sure that they are continuous along first index, i.e., that there are no jumps of 2pi. First array of phasese is made as close to *clos* as possible.""" ret=np.zeros_like(arr_pha) # go over all points for i in range(arr_pha.shape[0]): # which phases to compare to if i==0: cmpr=clos else: cmpr=ret[i-1,:] # remember which indices are still available to be matched avail=list(range(arr_pha.shape[1])) # go over all phases in cmpr[:] for j in range(cmpr.shape[0]): # minimal distance between pairs min_dist=1.0E10 # closest index best_k=None # go over each phase in arr_pha[i,:] for k in avail: cur_dist=np.abs(np.exp(1.0j*cmpr[j])-np.exp(1.0j*arr_pha[i,k])) if cur_dist<=min_dist: min_dist=cur_dist best_k=k # remove this index from being possible pair later avail.pop(avail.index(best_k)) # store phase in correct place ret[i,j]=arr_pha[i,best_k] # make sure there are no 2pi jumps ret[i,j]=no_2pi(ret[i,j],cmpr[j]) return ret class w90(object): r""" This class of the PythTB package imports tight-binding model parameters from an output of a `Wannier90 <http://www.wannier.org>`_ code. The `Wannier90 <http://www.wannier.org>`_ code is a post-processing tool that takes as an input electron wavefunctions and energies computed from first-principles using any of the following codes: Quantum-Espresso (PWscf), AbInit, SIESTA, FLEUR, Wien2k, VASP. As an output Wannier90 will create files that contain parameters for a tight-binding model that exactly reproduces the first-principles calculated electron band structure. The interface from Wannier90 to PythTB will use only the following files created by Wannier90: - *prefix*.win - *prefix*\_hr.dat - *prefix*\_centres.xyz - *prefix*\_band.kpt (optional) - *prefix*\_band.dat (optional) The first file (*prefix*.win) is an input file to Wannier90 itself. This file is needed so that PythTB can read in the unit cell vectors. To correctly create the second and the third file (*prefix*\_hr.dat and *prefix*\_centres.dat) one needs to include the following flags in the win file:: hr_plot = True write_xyz = True translate_home_cell = False These lines ensure that *prefix*\_hr.dat and *prefix*\_centres.dat are written and that the centers of the Wannier functions written in the *prefix*\_centres.dat file are not translated to the home cell. The *prefix*\_hr.dat file contains the onsite and hopping terms. The final two files (*prefix*\_band.kpt and *prefix*\_band.dat) are optional. Please see documentation of function :func:`pythtb.w90.w90_bands_consistency` for more detail. So far we tested only Wannier90 version 2.0.1. .. warning:: For the time being PythTB is not optimized to be used with very large tight-binding models. Therefore it is not advisable to use the interface to Wannier90 with large first-principles calculations that contain many k-points and/or electron bands. One way to reduce the computational cost is to wannierize with Wannier90 only the bands of interest (for example, bands near the Fermi level). Units used throught this interface with Wannier90 are electron-volts (eV) and Angstroms. .. warning:: User needs to make sure that the Wannier functions computed using Wannier90 code are well localized. Otherwise the tight-binding model might not interpolate well the band structure. To ensure that the Wannier functions are well localized it is often enough to check that the total spread at the beginning of the minimization procedure (first total spread printed in .wout file) is not more than 20% larger than the total spread at the end of the minimization procedure. If those spreads differ by much more than 20% user needs to specify better initial projection functions. In addition, please note that the interpolation is valid only within the frozen energy window of the disentanglement procedure. .. warning:: So far PythTB assumes that the position operator is diagonal in the tight-binding basis. This is discussed in the :download:`notes on tight-binding formalism <misc/pythtb-formalism.pdf>` in Eq. 2.7., :math:`\langle\phi_{{\bf R} i} \vert {\bf r} \vert \phi_{{\bf R}' j} \rangle = ({\bf R} + {\bf t}_j) \delta_{{\bf R} {\bf R}'} \delta_{ij}`. However, this relation does not hold for Wannier functions! Therefore, if you use tight-binding model derived from this class in computing Berry-like objects that involve position operator such as Berry phase or Berry flux, you would not get the same result as if you computed those objects directly from the first-principles code! Nevertheless, this approximation does not affect other properties such as band structure dispersion. For the testing purposes user can download the following :download:`wannier90 output example <misc/wannier90_example.tar.gz>` and use the following :ref:`script <w90_quick>` to test the functionality of the interface to PythTB. Run the following command in unix terminal to decompress the tarball:: tar -zxf wannier90_example.tar.gz and then run the following :ref:`script <w90_quick>` in the same folder. :param path: Relative path to the folder that contains Wannier90 files. These are *prefix*.win, *prefix*\_hr.dat, *prefix*\_centres.dat and optionally *prefix*\_band.kpt and *prefix*\_band.dat. :param prefix: This is the prefix used by Wannier90 code. Typically the input to the Wannier90 code is name *prefix*.win. Initially this function will read in the entire Wannier90 output. To create :class:`pythtb.tb_model` object user needs to call :func:`pythtb.w90.model`. Example usage:: # reads Wannier90 from folder called *example_a* # it assumes that that folder contains files "silicon.win" and so on silicon=w90("example_a", "silicon") """ def __init__(self,path,prefix): # store path and prefix self.path=path self.prefix=prefix # read in lattice_vectors f=open(self.path+"/"+self.prefix+".win","r") ln=f.readlines() f.close() # get lattice vector self.lat=np.zeros((3,3),dtype=float) found=False for i in range(len(ln)): sp=ln[i].split() if len(sp)>=2: if sp[0].lower()=="begin" and sp[1].lower()=="unit_cell_cart": # get units right if ln[i+1].strip().lower()=="bohr": pref=0.5291772108 skip=1 elif ln[i+1].strip().lower() in ["ang","angstrom"]: pref=1.0 skip=1 else: pref=1.0 skip=0 # now get vectors for j in range(3): sp=ln[i+skip+1+j].split() for k in range(3): self.lat[j,k]=float(sp[k])*pref found=True break if found==False: raise Exception("Unable to find unit_cell_cart block in the .win file.") # read in hamiltonian matrix, in eV f=open(self.path+"/"+self.prefix+"_hr.dat","r") ln=f.readlines() f.close() # # get number of wannier functions self.num_wan=int(ln[1]) # get number of Wigner-Seitz points num_ws=int(ln[2]) # get degenereacies of Wigner-Seitz points deg_ws=[] for j in range(3,len(ln)): sp=ln[j].split() for s in sp: deg_ws.append(int(s)) if len(deg_ws)==num_ws: last_j=j break if len(deg_ws)>num_ws: raise Exception("Too many degeneracies for WS points!") deg_ws=np.array(deg_ws,dtype=int) # now read in matrix elements # Convention used in w90 is to write out: # R1, R2, R3, i, j, ham_r(i,j,R) # where ham_r(i,j,R) corresponds to matrix element < i | H | j+R > self.ham_r={} # format is ham_r[(R1,R2,R3)]["h"][i,j] for < i | H | j+R > ind_R=0 # which R vector in line is this? for j in range(last_j+1,len(ln)): sp=ln[j].split() # get reduced lattice vector components ham_R1=int(sp[0]) ham_R2=int(sp[1]) ham_R3=int(sp[2]) # get Wannier indices ham_i=int(sp[3])-1 ham_j=int(sp[4])-1 # get matrix element ham_val=float(sp[5])+1.0j*float(sp[6]) # store stuff, for each R store hamiltonian and degeneracy ham_key=(ham_R1,ham_R2,ham_R3) if (ham_key in self.ham_r)==False: self.ham_r[ham_key]={ "h":np.zeros((self.num_wan,self.num_wan),dtype=complex), "deg":deg_ws[ind_R] } ind_R+=1 self.ham_r[ham_key]["h"][ham_i,ham_j]=ham_val # check if for every non-zero R there is also -R for R in self.ham_r: if not (R[0]==0 and R[1]==0 and R[2]==0): found_pair=False for P in self.ham_r: if not (R[0]==0 and R[1]==0 and R[2]==0): # check if they are opposite if R[0]==-P[0] and R[1]==-P[1] and R[2]==-P[2]: if found_pair==True: raise Exception("Found duplicate negative R!") found_pair=True if found_pair==False: raise Exception("Did not find negative R for R = "+R+"!") # read in wannier centers f=open(self.path+"/"+self.prefix+"_centres.xyz","r") ln=f.readlines() f.close() # Wannier centers in Cartesian, Angstroms xyz_cen=[] for i in range(2,2+self.num_wan): sp=ln[i].split() if sp[0]=="X": tmp=[] for j in range(3): tmp.append(float(sp[j+1])) xyz_cen.append(tmp) else: raise Exception("Inconsistency in the centres file.") self.xyz_cen=np.array(xyz_cen,dtype=float) # get orbital positions in reduced coordinates self.red_cen=_cart_to_red((self.lat[0],self.lat[1],self.lat[2]),self.xyz_cen) def model(self,zero_energy=0.0,min_hopping_norm=None,max_distance=None,ignorable_imaginary_part=None): """ This function returns :class:`pythtb.tb_model` object that can be used to interpolate the band structure at arbitrary k-point, analyze the wavefunction character, etc. The tight-binding basis orbitals in the returned object are maximally localized Wannier functions as computed by Wannier90. The orbital character of these functions can be inferred either from the *projections* block in the *prefix*.win or from the *prefix*.nnkp file. Please note that the character of the maximally localized Wannier functions is not exactly the same as that specified by the initial projections. One way to ensure that the Wannier functions are as close to the initial projections as possible is to first choose a good set of initial projections (for these initial and final spread should not differ more than 20%) and then perform another Wannier90 run setting *num_iter=0* in the *prefix*.win file. Number of spin components is always set to 1, even if the underlying DFT calculation includes spin. Please refer to the *projections* block or the *prefix*.nnkp file to see which orbitals correspond to which spin. Locations of the orbitals in the returned :class:`pythtb.tb_model` object are equal to the centers of the Wannier functions computed by Wannier90. :param zero_energy: Sets the zero of the energy in the band structure. This value is typically set to the Fermi level computed by the density-functional code (or to the top of the valence band). Units are electron-volts. :param min_hopping_norm: Hopping terms read from Wannier90 with complex norm less than *min_hopping_norm* will not be included in the returned tight-binding model. This parameters is specified in electron-volts. By default all terms regardless of their norm are included. :param max_distance: Hopping terms from site *i* to site *j+R* will be ignored if the distance from orbital *i* to *j+R* is larger than *max_distance*. This parameter is given in Angstroms. By default all terms regardless of the distance are included. :param ignorable_imaginary_part: The hopping term will be assumed to be exactly real if the absolute value of the imaginary part as computed by Wannier90 is less than *ignorable_imaginary_part*. By default imaginary terms are not ignored. Units are again eV. :returns: * **tb** -- The object of type :class:`pythtb.tb_model` that can be used to interpolate Wannier90 band structure to an arbitrary k-point as well as to analyze the character of the wavefunctions. Please note Example usage:: # returns tb_model with all hopping parameters my_model=silicon.model() # simplified model that contains only hopping terms above 0.01 eV my_model_simple=silicon.model(min_hopping_norm=0.01) my_model_simple.display() """ # make the model object tb=tb_model(3,3,self.lat,self.red_cen) # remember that this model was computed from w90 tb._assume_position_operator_diagonal=False # add onsite energies onsite=np.zeros(self.num_wan,dtype=float) for i in range(self.num_wan): tmp_ham=self.ham_r[(0,0,0)]["h"][i,i]/float(self.ham_r[(0,0,0)]["deg"]) onsite[i]=tmp_ham.real if np.abs(tmp_ham.imag)>1.0E-9: raise Exception("Onsite terms should be real!") tb.set_onsite(onsite-zero_energy) # add hopping terms for R in self.ham_r: # avoid double counting use_this_R=True # avoid onsite terms if R[0]==0 and R[1]==0 and R[2]==0: avoid_diagonal=True else: avoid_diagonal=False # avoid taking both R and -R if R[0]!=0: if R[0]<0: use_this_R=False else: if R[1]!=0: if R[1]<0: use_this_R=False else: if R[2]<0: use_this_R=False # get R vector vecR=_red_to_cart((self.lat[0],self.lat[1],self.lat[2]),[R])[0] # scan through unique R if use_this_R==True: for i in range(self.num_wan): vec_i=self.xyz_cen[i] for j in range(self.num_wan): vec_j=self.xyz_cen[j] # get distance between orbitals dist_ijR=np.sqrt(np.dot(-vec_i+vec_j+vecR, -vec_i+vec_j+vecR)) # to prevent double counting if not (avoid_diagonal==True and j<=i): # only if distance between orbitals is small enough if max_distance is not None: if dist_ijR>max_distance: continue # divide the matrix element from w90 with the degeneracy tmp_ham=self.ham_r[R]["h"][i,j]/float(self.ham_r[R]["deg"]) # only if big enough matrix element if min_hopping_norm is not None: if np.abs(tmp_ham)<min_hopping_norm: continue # remove imaginary part if needed if ignorable_imaginary_part is not None: if np.abs(tmp_ham.imag)<ignorable_imaginary_part: tmp_ham=tmp_ham.real+0.0j # set the hopping term tb.set_hop(tmp_ham,i,j,list(R)) return tb def dist_hop(self): """ This is one of the diagnostic tools that can be used to help in determining *min_hopping_norm* and *max_distance* parameter in :func:`pythtb.w90.model` function call. This function returns all hopping terms (from orbital *i* to *j+R*) as well as the distances between the *i* and *j+R* orbitals. For well localized Wannier functions hopping term should decay exponentially with distance. :returns: * **dist** -- Distances between Wannier function centers (*i* and *j+R*) in Angstroms. * **ham** -- Corresponding hopping terms in eV. Example usage:: # get distances and hopping terms (dist,ham)=silicon.dist_hop() # plot logarithm of the hopping term as a function of distance import pylab as plt fig, ax = plt.subplots() ax.scatter(dist,np.log(np.abs(ham))) fig.savefig("localization.pdf") """ ret_ham=[] ret_dist=[] for R in self.ham_r: # treat diagonal terms differently if R[0]==0 and R[1]==0 and R[2]==0: avoid_diagonal=True else: avoid_diagonal=False # get R vector vecR=_red_to_cart((self.lat[0],self.lat[1],self.lat[2]),[R])[0] for i in range(self.num_wan): vec_i=self.xyz_cen[i] for j in range(self.num_wan): vec_j=self.xyz_cen[j] # diagonal terms if not (avoid_diagonal==True and i==j): # divide the matrix element from w90 with the degeneracy ret_ham.append(self.ham_r[R]["h"][i,j]/float(self.ham_r[R]["deg"])) # get distance between orbitals ret_dist.append(np.sqrt(np.dot(-vec_i+vec_j+vecR,-vec_i+vec_j+vecR))) return (np.array(ret_dist),np.array(ret_ham)) def shells(self,num_digits=2): """ This is one of the diagnostic tools that can be used to help in determining *max_distance* parameter in :func:`pythtb.w90.model` function call. :param num_digits: Distances will be rounded up to these many digits. Default value is 2. :returns: * **shells** -- All distances between all Wannier function centers (*i* and *j+R*) in Angstroms. Example usage:: # prints on screen all shells print silicon.shells() """ shells=[] for R in self.ham_r: # get R vector vecR=_red_to_cart((self.lat[0],self.lat[1],self.lat[2]),[R])[0] for i in range(self.num_wan): vec_i=self.xyz_cen[i] for j in range(self.num_wan): vec_j=self.xyz_cen[j] # get distance between orbitals dist_ijR=np.sqrt(np.dot(-vec_i+vec_j+vecR, -vec_i+vec_j+vecR)) # round it up shells.append(round(dist_ijR,num_digits)) # remove duplicates and sort shells=np.sort(list(set(shells))) return shells def w90_bands_consistency(self): """ This function reads in band structure as interpolated by Wannier90. Please note that this is not the same as the band structure calculated by the underlying DFT code. The two will agree only on the coarse set of k-points that were used in Wannier90 generation. The purpose of this function is to compare the interpolation in Wannier90 with that in PythTB. If no terms were ignored in the call to :func:`pythtb.w90.model` then the two should be exactly the same (up to numerical precision). Otherwise one should expect deviations. However, if one carefully chooses the cutoff parameters in :func:`pythtb.w90.model` it is likely that one could reproduce the full band-structure with only few dominant hopping terms. Please note that this tests only the eigenenergies, not eigenvalues (wavefunctions). The code assumes that the following files were generated by Wannier90, - *prefix*\_band.kpt - *prefix*\_band.dat These files will be generated only if the *prefix*.win file contains the *kpoint_path* block. :returns: * **kpts** -- k-points in reduced coordinates used in the interpolation in Wannier90 code. The format of *kpts* is the same as the one used by the input to :func:`pythtb.tb_model.solve_all`. * **ene** -- energies interpolated by Wannier90 in eV. Format is ene[band,kpoint]. Example usage:: # get band structure from wannier90 (w90_kpt,w90_evals)=silicon.w90_bands_consistency() # get simplified model my_model_simple=silicon.model(min_hopping_norm=0.01) # solve simplified model on the same k-path as in wannier90 evals=my_model.solve_all(w90_kpt) # plot comparison of the two import pylab as plt fig, ax = plt.subplots() for i in range(evals.shape[0]): ax.plot(range(evals.shape[1]),evals[i],"r-",zorder=-50) for i in range(w90_evals.shape[0]): ax.plot(range(w90_evals.shape[1]),w90_evals[i],"k-",zorder=-100) fig.savefig("comparison.pdf") """ # read in kpoints in reduced coordinates kpts=np.loadtxt(self.path+"/"+self.prefix+"_band.kpt",skiprows=1) # ignore weights kpts=kpts[:,:3] # read in energies ene=np.loadtxt(self.path+"/"+self.prefix+"_band.dat") # ignore kpath distance ene=ene[:,1] # correct shape ene=ene.reshape((self.num_wan,kpts.shape[0])) return (kpts,ene) def _cart_to_red(tmp,cart): "Convert cartesian vectors cart to reduced coordinates of a1,a2,a3 vectors" (a1,a2,a3)=tmp # matrix with lattice vectors cnv=np.array([a1,a2,a3]) # transpose a matrix cnv=cnv.T # invert a matrix cnv=np.linalg.inv(cnv) # reduced coordinates red=np.zeros_like(cart,dtype=float) for i in range(0,len(cart)): red[i]=np.dot(cnv,cart[i]) return red def _red_to_cart(tmp,red): "Convert reduced to cartesian vectors." (a1,a2,a3)=tmp # cartesian coordinates cart=np.zeros_like(red,dtype=float) for i in range(0,len(cart)): cart[i,:]=a1*red[i][0]+a2*red[i][1]+a3*red[i][2] return cart def _offdiag_approximation_warning_and_stop(): raise Exception(""" ---------------------------------------------------------------------- It looks like you are trying to calculate Berry-like object that involves position operator. However, you are using a tight-binding model that was generated from Wannier90. This procedure introduces approximation as it ignores off-diagonal elements of the position operator in the Wannier basis. This is discussed here in more detail: http://physics.rutgers.edu/pythtb/usage.html#pythtb.w90 If you know what you are doing and wish to continue with the calculation despite this approximation, please call the following function on your tb_model object my_model.ignore_position_operator_offdiagonal() ---------------------------------------------------------------------- """)
lgpl-3.0
saikatgomes/recsys
code/lamdaMART.py
1
7445
import math import numpy as np import math # import pandas from optparse import OptionParser from sklearn.tree import DecisionTreeRegressor from collections import defaultdict from copy import deepcopy from multiprocessing import Pool from itertools import chain import time class Ensemble: def __init__(self, rate): self.trees = [] self.rate = rate def __len__(self): return len(self.trees) def add(self, tree): self.trees.append(tree) def eval_one(self, object): return self.eval([object])[0] def eval(self, objects): results = np.zeros(len(objects)) for tree in self.trees: results += tree.predict(objects) * self.rate return results def remove(self, number): self.trees = self.trees[:-number] def groupby(score, query): result = [] this_query = None this_list = -1 for s, q in zip(score, query): if q != this_query: result.append([]) this_query = q this_list += 1 result[this_list].append(s) result = map(np.array, result) return result def compute_point_dcg(arg): rel, i = arg return (2 ** rel - 1) / math.log(i + 2, 2) def compute_point_dcg2(arg): rel, i = arg if i == 0: return rel else: return rel / (math.log(1 + i, 2)) return def compute_dcg(array): dcg = map(compute_point_dcg, zip(array, range(len(array)))) return sum(dcg) def compute_ndcg(page, k=10): idcg = compute_dcg(np.sort(page)[::-1][:k]) dcg = compute_dcg(page[:k]) if idcg == 0: return 1 return dcg / idcg def ndcg(prediction, true_score, query, k=10): true_pages = groupby(true_score, query) pred_pages = groupby(prediction, query) total_ndcg = [] for q in range(len(true_pages)): total_ndcg.append(compute_ndcg(true_pages[q][np.argsort(pred_pages[q])[::-1]], k)) return sum(total_ndcg) / len(total_ndcg) def query_lambdas(page): true_page, pred_page = page worst_order = np.argsort(true_page) true_page = true_page[worst_order] pred_page = pred_page[worst_order] page = true_page[np.argsort(pred_page)] idcg = compute_dcg(np.sort(page)[::-1]) position_score = np.zeros((len(true_page), len(true_page))) for i in xrange(len(true_page)): for j in xrange(len(true_page)): position_score[i, j] = compute_point_dcg((page[i], j)) lambdas = np.zeros(len(true_page)) for i in xrange(len(true_page)): for j in xrange(len(true_page)): if page[i] > page[j]: delta_dcg = position_score[i][j] - position_score[i][i] delta_dcg += position_score[j][i] - position_score[j][j] delta_ndcg = abs(delta_dcg / idcg) rho = 1 / (1 + math.exp(page[i] - page[j])) lam = rho * delta_ndcg lambdas[i] -= lam lambdas[j] += lam return lambdas def compute_lambdas(prediction, true_score, query, k=10): true_pages = groupby(true_score, query) pred_pages = groupby(prediction, query) print len(true_pages), "pages" pool = Pool() lambdas = pool.map(query_lambdas, zip(true_pages, pred_pages)) return list(chain(*lambdas)) def mart_responces(prediction, true_score): return true_score - prediction def learn(train_file, n_trees=10, learning_rate=0.1, k=10): print "Loading train file" train = np.loadtxt(train_file, delimiter=",", skiprows=1) # validation = np.loadtxt(validation_file, delimiter=",", skiprows=1) scores = train[:, 0] # val_scores = train[:, 0] queries = train[:, 1] # val_queries = validation[:, 1] features = train[:, 3:] # val_features = validation[:, 3:] ensemble = Ensemble(learning_rate) print "Training starts..." model_output = np.array([float(0)] * len(features)) # val_output = np.array([float(0)] * len(validation)) # print model_output # best_validation_score = 0 time.clock() for i in range(n_trees): print " Iteration: " + str(i + 1) # Compute psedo responces (lambdas) # witch act as training label for document start = time.clock() print " --generating labels" # lambdas = compute_lambdas(model_output, scores, queries, k) lambdas = mart_responces(model_output, scores) print " --done", str(time.clock() - start) + "sec" # create tree and append it to the model print " --fitting tree" start = time.clock() tree = DecisionTreeRegressor(max_depth=2) # print "Distinct lambdas", set(lambdas) tree.fit(features, lambdas) print " ---done", str(time.clock() - start) + "sec" print " --adding tree to ensemble" ensemble.add(tree) # update model score print " --generating step prediction" prediction = tree.predict(features) # print "Distinct answers", set(prediction) print " --updating full model output" model_output += learning_rate * prediction # print set(model_output) # train_score start = time.clock() print " --scoring on train" train_score = ndcg(model_output, scores, queries, 10) print " --iteration train score " + str(train_score) + ", took " + str(time.clock() - start) + "sec to calculate" # # validation score # print " --scoring on validation" # val_output += learning_rate * tree.predict(val_features) # val_score = ndcg(val_output, val_scores, val_queries, 10) # print " --iteration validation score " + str(val_score) # if(validation_score > best_validation_score): # best_validation_score = validation_score # best_model_len = len(ensemble) # # have we assidently break the celling? # if (best_validation_score > 0.9): # break # rollback to best # if len(ensemble) > best_model_len: # ensemble.remove(len(ensemble) - best_model_len) # finishing up # print "final quality evaluation" train_score = compute_ndcg(ensemble.eval(features), scores) # test_score = compute_ndcg(ensemble.eval(validation), validation_score) # print "train %s, test %s" % (train_score, test_score) print "Finished sucessfully." print "------------------------------------------------" return ensemble def evaluate(model, fn): predict = np.loadtxt(fn, delimiter=",", skiprows=1) queries = predict[:, 1] doc_id = predict[:, 2] features = predict[:, 3:] results = model.eval(features) writer = csv.writer(open("result.csv")) for line in zip(queries, results, doc_id): writer.writerow(line) return "OK" if __name__ == "__main__": parser = OptionParser() parser.add_option("-t", "--train", action="store", type="string", dest="train_file") # parser.add_option("-v", "--validation", action="store", type="string", dest="val_file") parser.add_option("-p", "--predict", action="store", type="string", dest="predict_file") options, args = parser.parse_args() iterations = 30 learning_rate = 0.001 model = learn(options.train_file, # options.val_file, n_trees=200) evaluate(model, options.predict_file)
apache-2.0
briancoutinho0905/2dsampling
util/stats/output.py
90
7981
# Copyright (c) 2005-2006 The Regents of The University of Michigan # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Nathan Binkert from chart import ChartOptions class StatOutput(ChartOptions): def __init__(self, jobfile, info, stat=None): super(StatOutput, self).__init__() self.jobfile = jobfile self.stat = stat self.invert = False self.info = info def display(self, name, printmode = 'G'): import info if printmode == 'G': valformat = '%g' elif printmode != 'F' and value > 1e6: valformat = '%0.5e' else: valformat = '%f' for job in self.jobfile.jobs(): value = self.info.get(job, self.stat) if value is None: return if not isinstance(value, list): value = [ value ] if self.invert: for i,val in enumerate(value): if val != 0.0: value[i] = 1 / val valstring = ', '.join([ valformat % val for val in value ]) print '%-50s %s' % (job.name + ':', valstring) def graph(self, name, graphdir, proxy=None): from os.path import expanduser, isdir, join as joinpath from barchart import BarChart from matplotlib.numerix import Float, array, zeros import os, re, urllib from jobfile import crossproduct confgroups = self.jobfile.groups() ngroups = len(confgroups) skiplist = [ False ] * ngroups groupopts = [] baropts = [] groups = [] for i,group in enumerate(confgroups): if group.flags.graph_group: groupopts.append(group.subopts()) skiplist[i] = True elif group.flags.graph_bars: baropts.append(group.subopts()) skiplist[i] = True else: groups.append(group) has_group = bool(groupopts) if has_group: groupopts = [ group for group in crossproduct(groupopts) ] else: groupopts = [ None ] if baropts: baropts = [ bar for bar in crossproduct(baropts) ] else: raise AttributeError, 'No group selected for graph bars' directory = expanduser(graphdir) if not isdir(directory): os.mkdir(directory) html = file(joinpath(directory, '%s.html' % name), 'w') print >>html, '<html>' print >>html, '<title>Graphs for %s</title>' % name print >>html, '<body>' html.flush() for options in self.jobfile.options(groups): chart = BarChart(self) data = [ [ None ] * len(baropts) for i in xrange(len(groupopts)) ] enabled = False stacked = 0 for g,gopt in enumerate(groupopts): for b,bopt in enumerate(baropts): if gopt is None: gopt = [] job = self.jobfile.job(options + gopt + bopt) if not job: continue if proxy: import db proxy.dict['system'] = self.info[job.system] val = self.info.get(job, self.stat) if val is None: print 'stat "%s" for job "%s" not found' % \ (self.stat, job) if isinstance(val, (list, tuple)): if len(val) == 1: val = val[0] else: stacked = len(val) data[g][b] = val if stacked == 0: for i in xrange(len(groupopts)): for j in xrange(len(baropts)): if data[i][j] is None: data[i][j] = 0.0 else: for i in xrange(len(groupopts)): for j in xrange(len(baropts)): val = data[i][j] if val is None: data[i][j] = [ 0.0 ] * stacked elif len(val) != stacked: raise ValueError, "some stats stacked, some not" data = array(data) if data.sum() == 0: continue dim = len(data.shape) x = data.shape[0] xkeep = [ i for i in xrange(x) if data[i].sum() != 0 ] y = data.shape[1] ykeep = [ i for i in xrange(y) if data[:,i].sum() != 0 ] data = data.take(xkeep, axis=0) data = data.take(ykeep, axis=1) if not has_group: data = data.take([ 0 ], axis=0) chart.data = data bopts = [ baropts[i] for i in ykeep ] bdescs = [ ' '.join([o.desc for o in opt]) for opt in bopts] if has_group: gopts = [ groupopts[i] for i in xkeep ] gdescs = [ ' '.join([o.desc for o in opt]) for opt in gopts] if chart.legend is None: if stacked: try: chart.legend = self.info.rcategories except: chart.legend = [ str(i) for i in xrange(stacked) ] else: chart.legend = bdescs if chart.xticks is None: if has_group: chart.xticks = gdescs else: chart.xticks = [] chart.graph() names = [ opt.name for opt in options ] descs = [ opt.desc for opt in options ] if names[0] == 'run': names = names[1:] descs = descs[1:] basename = '%s-%s' % (name, ':'.join(names)) desc = ' '.join(descs) pngname = '%s.png' % basename psname = '%s.eps' % re.sub(':', '-', basename) epsname = '%s.ps' % re.sub(':', '-', basename) chart.savefig(joinpath(directory, pngname)) chart.savefig(joinpath(directory, epsname)) chart.savefig(joinpath(directory, psname)) html_name = urllib.quote(pngname) print >>html, '''%s<br><img src="%s"><br>''' % (desc, html_name) html.flush() print >>html, '</body>' print >>html, '</html>' html.close()
bsd-3-clause
ruiminshen/yolo-tf
model/yolo2/__init__.py
1
6597
""" Copyright (C) 2017, 申瑞珉 (Ruimin Shen) This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import configparser import os import numpy as np import pandas as pd import tensorflow as tf import utils from . import inference from .. import yolo class Model(object): def __init__(self, net, classes, anchors, training=False): _, self.cell_height, self.cell_width, _ = net.get_shape().as_list() cells = self.cell_height * self.cell_width inputs = tf.reshape(net, [-1, cells, len(anchors), 5 + classes], name='inputs') with tf.name_scope('regress'): with tf.name_scope('inputs'): with tf.name_scope('inputs_sigmoid') as name: inputs_sigmoid = tf.nn.sigmoid(inputs[:, :, :, :3], name=name) self.iou = tf.identity(inputs_sigmoid[:, :, :, 0], name='iou') self.offset_xy = tf.identity(inputs_sigmoid[:, :, :, 1:3], name='offset_xy') with tf.name_scope('wh') as name: self.wh = tf.identity(tf.exp(inputs[:, :, :, 3:5]) * np.reshape(anchors, [1, 1, len(anchors), -1]), name=name) with tf.name_scope('prob') as name: self.prob = tf.identity(tf.nn.softmax(inputs[:, :, :, 5:]), name=name) self.areas = tf.reduce_prod(self.wh, -1, name='areas') _wh = self.wh / 2 self.offset_xy_min = tf.identity(self.offset_xy - _wh, name='offset_xy_min') self.offset_xy_max = tf.identity(self.offset_xy + _wh, name='offset_xy_max') self.wh01 = tf.identity(self.wh / np.reshape([self.cell_width, self.cell_height], [1, 1, 1, 2]), name='wh01') self.wh01_sqrt = tf.sqrt(self.wh01, name='wh01_sqrt') self.coords = tf.concat([self.offset_xy, self.wh01_sqrt], -1, name='coords') if not training: with tf.name_scope('detection'): cell_xy = yolo.calc_cell_xy(self.cell_height, self.cell_width).reshape([1, cells, 1, 2]) self.xy = tf.identity(cell_xy + self.offset_xy, name='xy') self.xy_min = tf.identity(cell_xy + self.offset_xy_min, name='xy_min') self.xy_max = tf.identity(cell_xy + self.offset_xy_max, name='xy_max') self.conf = tf.identity(tf.expand_dims(self.iou, -1) * self.prob, name='conf') self.inputs = net self.classes = classes self.anchors = anchors class Objectives(dict): def __init__(self, model, mask, prob, coords, offset_xy_min, offset_xy_max, areas): self.model = model with tf.name_scope('true'): self.mask = tf.identity(mask, name='mask') self.prob = tf.identity(prob, name='prob') self.coords = tf.identity(coords, name='coords') self.offset_xy_min = tf.identity(offset_xy_min, name='offset_xy_min') self.offset_xy_max = tf.identity(offset_xy_max, name='offset_xy_max') self.areas = tf.identity(areas, name='areas') with tf.name_scope('iou') as name: _offset_xy_min = tf.maximum(model.offset_xy_min, self.offset_xy_min, name='_offset_xy_min') _offset_xy_max = tf.minimum(model.offset_xy_max, self.offset_xy_max, name='_offset_xy_max') _wh = tf.maximum(_offset_xy_max - _offset_xy_min, 0.0, name='_wh') _areas = tf.reduce_prod(_wh, -1, name='_areas') areas = tf.maximum(self.areas + model.areas - _areas, 1e-10, name='areas') iou = tf.truediv(_areas, areas, name=name) with tf.name_scope('mask'): best_box_iou = tf.reduce_max(iou, 2, True, name='best_box_iou') best_box = tf.to_float(tf.equal(iou, best_box_iou), name='best_box') mask_best = tf.identity(self.mask * best_box, name='mask_best') mask_normal = tf.identity(1 - mask_best, name='mask_normal') with tf.name_scope('dist'): iou_dist = tf.square(model.iou - mask_best, name='iou_dist') coords_dist = tf.square(model.coords - self.coords, name='coords_dist') prob_dist = tf.square(model.prob - self.prob, name='prob_dist') with tf.name_scope('objectives'): cnt = np.multiply.reduce(iou_dist.get_shape().as_list()) self['iou_best'] = tf.identity(tf.reduce_sum(mask_best * iou_dist) / cnt, name='iou_best') self['iou_normal'] = tf.identity(tf.reduce_sum(mask_normal * iou_dist) / cnt, name='iou_normal') _mask_best = tf.expand_dims(mask_best, -1) self['coords'] = tf.identity(tf.reduce_sum(_mask_best * coords_dist) / cnt, name='coords') self['prob'] = tf.identity(tf.reduce_sum(_mask_best * prob_dist) / cnt, name='prob') class Builder(yolo.Builder): def __init__(self, args, config): section = __name__.split('.')[-1] self.args = args self.config = config with open(os.path.join(utils.get_cachedir(config), 'names'), 'r') as f: self.names = [line.strip() for line in f] self.width = config.getint(section, 'width') self.height = config.getint(section, 'height') self.anchors = pd.read_csv(os.path.expanduser(os.path.expandvars(config.get(section, 'anchors'))), sep='\t').values self.func = getattr(inference, config.get(section, 'inference')) def __call__(self, data, training=False): _, self.output = self.func(data, len(self.names), len(self.anchors), training=training) with tf.name_scope(__name__.split('.')[-1]): self.model = Model(self.output, len(self.names), self.anchors, training=training) def create_objectives(self, labels): section = __name__.split('.')[-1] self.objectives = Objectives(self.model, *labels) with tf.name_scope('weighted_objectives'): for key in self.objectives: tf.add_to_collection(tf.GraphKeys.LOSSES, tf.multiply(self.objectives[key], self.config.getfloat(section + '_hparam', key), name='weighted_' + key))
lgpl-3.0
simonzhangsm/voltdb
tools/vis2.py
2
29097
#!/usr/bin/env python # This is a visualizer which pulls TPC-C benchmark results from the MySQL # databases and visualizes them. Four graphs will be generated, latency graph on # sinigle node and multiple nodes, and throughput graph on single node and # multiple nodes. # # Run it without any arguments to see what arguments are needed. import sys import os sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))) + os.sep + 'tests/scripts/') import matplotlib matplotlib.use('Agg') from matplotlib.colors import rgb2hex import matplotlib.pyplot as plt import matplotlib.ticker as ticker from voltdbclient import * from operator import itemgetter, attrgetter import numpy as np import csv import time import datetime STATS_SERVER = 'volt2' NaN = float("nan") # These are the "Tableau 20" colors as RGB. COLORS = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120), (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150), (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148), (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199), (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)] # Scale the RGB values to the [0, 1] range, which is the format matplotlib accepts. for i in range(len(COLORS)): r, g, b = COLORS[i] COLORS[i] = (r / 255., g / 255., b / 255.) MARKERS = ['+', '*', '<', '>', '^', '_', 'D', 'H', 'd', 'h', 'o', 'p'] WIDTH = 1700 HEIGHT = 850 APX = 80 APY = 10 last = -1 DATA_HEADER = "branch|chart|master-last|master-ma-last|master-stdev|branch-last|no-stdev-vs-master(neg=worse)|pct-vs-master(neg=worse)".split( "|") branch_colors = {} def get_stats(hostname, port, days): """Get most recent run statistics of all apps within the last 'days' """ conn = FastSerializer(hostname, port) proc = VoltProcedure(conn, 'AverageOfPeriod', [FastSerializer.VOLTTYPE_SMALLINT]) resp = proc.call([days]) conn.close() # keyed on app name, value is a list of runs sorted chronologically maxdate = datetime.datetime(1970, 1, 1, 0, 0, 0) mindate = datetime.datetime(2038, 1, 19, 0, 0, 0) stats = dict() run_stat_keys = ['app', 'nodes', 'branch', 'date', 'tps', 'lat95', 'lat99'] # print resp for row in resp.tables[0].tuples: group = (row[0], row[1]) app_stats = [] maxdate = max(maxdate, row[3]) mindate = min(mindate, row[3]) if group not in stats: stats[group] = app_stats else: app_stats = stats[group] run_stats = dict(zip(run_stat_keys, row)) app_stats.append(run_stats) return (stats, mindate, maxdate) class Plot: DPI = 100.0 def __init__(self, title, xlabel, ylabel, filename, w, h, xmin, xmax, series): self.filename = filename self.legends = {} self.xmax = xmax self.xmin = xmin self.series = series self.title = title self.fig = plt.figure(figsize=(w / self.DPI, h / self.DPI), dpi=self.DPI) self.ax = self.fig.add_subplot(111) self.ax.set_title(title) plt.tick_params(axis='x', which='major', labelsize=16) plt.tick_params(axis='y', labelright=True, labelleft=False, labelsize=16) plt.Locator.MAXTICKS = 2000 plt.grid(True, color='black', alpha=0.5) self.fig.autofmt_xdate() plt.autoscale(enable=True, axis='x', tight=None) plt.ylabel(ylabel) plt.xlabel(xlabel) def plot(self, x, y, color, marker_shape, legend, linestyle): self.ax.plot(x, y, linestyle, label=legend, color=color, marker=marker_shape, markerfacecolor=color, markersize=8) def close(self): plt.axvline(x=datetime.datetime(2016, 1, 11, 12, 00, 0), color='black') x_formatter = matplotlib.dates.DateFormatter("%b %d %y") self.ax.xaxis.set_major_formatter(x_formatter) xmin, xmax = plt.xlim() if (self.xmax - self.xmin).days >= 365: l = 13 loc = matplotlib.dates.WeekdayLocator(byweekday=matplotlib.dates.MO, interval=13) minloc = None else: l = 7 loc = matplotlib.dates.WeekdayLocator(byweekday=matplotlib.dates.MO, interval=1) minloc = matplotlib.ticker.AutoMinorLocator(n=l) if loc: self.ax.xaxis.set_major_locator(loc) if minloc: self.ax.xaxis.set_minor_locator(minloc) y_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) self.ax.yaxis.set_major_formatter(y_formatter) ymin, ymax = plt.ylim() plt.xlim((self.xmin.toordinal(), (self.xmax + datetime.timedelta(1)).replace(minute=0, hour=0, second=0, microsecond=0).toordinal())) if self.series.startswith('lat'): lloc = 2 else: lloc = 3 plt.legend(prop={'size': 10}, loc=lloc) plt.savefig(self.filename, format="png", transparent=False, bbox_inches="tight", pad_inches=0.2) plt.close('all') class Bdata(dict): def __init__(self, *args, **kwargs): dict.update(self, *args, **kwargs) def __getitem__(self, key): try: return dict.__getitem__(self, key) except KeyError: return None def __setitem__(self, key, value): return dict.__setitem__(self, key, value) def __delitem__(self, key): return dict.__delitem__(self, key) def __contains__(self, key): return dict.__contains__(self, key) def update(self, *args, **kwargs): dict.update(self, *args, **kwargs) def __getattribute__(self, *args, **kwargs): if dict.__contains__(self, args[0]): return self.__getitem__(args[0]) return dict.__getattribute__(self, args[0]) def __setattr__(self, key, value): return dict.__setitem__(self, key, value) def plot(title, xlabel, ylabel, filename, width, height, app, data, series, mindate, maxdate, polarity, analyze): global branch_colors plot_data = dict() for run in data: if run['branch'] not in plot_data: plot_data[run['branch']] = {series: []} if series == 'tppn': value = run['tps'] / run['nodes'] else: value = run[series] if value != 0.0: datenum = matplotlib.dates.date2num(run['date']) plot_data[run['branch']][series].append((datenum, value)) if len(plot_data) == 0: return runs = 0 for run in plot_data.itervalues(): runs += len(run.values()[0]) if runs == 0: pl = Plot(title, xlabel, ylabel, filename, width, height, mindate, maxdate, series) pl.ax.annotate("Intentionally blank", xy=(.5, .5), xycoords='axes fraction', horizontalalignment='center', verticalalignment='center') pl.close() return # increase the figure size to allow for annotations branches_sort = sorted(plot_data.keys()) height = (height or HEIGHT) + APY * len(branches_sort) pl = Plot(title, xlabel, ylabel, filename, width, height, mindate, maxdate, series) toc = dict() branches_sort = sorted(plot_data.keys()) if 'master' in branches_sort: branches_sort.remove('master') branches_master_first = ['master'] + branches_sort else: branches_master_first = branches_sort print "WARN: has no master: %s" % title # loop thru branches, 'master' is first bn = 0 for b in branches_master_first: bd = plot_data[b] bn += 1 # k is the chart type like lat95, lat99, thpt, etc # v is the chart's data list[tuples(float,float),] for k, v in bd.items(): if len(v) == 0: print "branch %s, chart %s has no data points, skipping..." % (b, k) continue if k not in toc.keys(): toc[k] = [] v = sorted(v, key=lambda x: x[0]) # u is the chart data u = zip(*v) # get the colors and markers if b not in branch_colors: branch_colors[b] = ( COLORS[len(branch_colors.keys()) % len(COLORS)], MARKERS[len(branch_colors.keys()) % len(MARKERS)]) # compute and saved master's average, median, std on raw (all) data bdata = Bdata(branch=b, title=title, chart=k, color=None, seriescolor=branch_colors[b][0], seriesmarker=branch_colors[b][1], xdata=u[0], ydata=u[1], last=u[1][-1], avg=np.average(u[1]), median=np.median(u[1]), stdev=np.std(u[1]), ma=[NaN], ama=NaN, mstd=[NaN], pctmadiff=NaN, mnstddiff=NaN, failed=None, bgcolor=None) analyze.append(bdata) # plot the series pl.plot(u[0], u[1], bdata.seriescolor, bdata.seriesmarker, bdata.branch, '-') # master is processed first, but set this up in case there is no master data for a chart master = analyze[-1] # remember master MOVING_AVERAGE_DAYS = 10 (ma, ama, mstd, mastd) = moving_average(bdata.ydata, MOVING_AVERAGE_DAYS) if len(ma) > MOVING_AVERAGE_DAYS: pl.plot(bdata.xdata, ma, bdata.seriescolor, None, None, ":") if b == 'master': # if we have enough data compute moving average and moving std dev # std is std of data correspoinding to each ma window # nb. std is used only in the charts for the 2-sigma line # ama is mean of moving average population # mstd is std of moving average all values if len(ma) >= MOVING_AVERAGE_DAYS: bdata.update(ma=ma, ama=ama, mstd=mstd, mastd=mastd) # plot the moving average # see if the series should be flagged out of spec failed = 0 if polarity == 1: # increasing is bad bestpoint = np.nanmin(ma) localminormax = (bdata.xdata[np.nanargmin(ma)], bestpoint) if b == 'master' and bdata.ma[last] > bdata.median * 1.05: failed = 1 else: # decreasing is bad bestpoint = np.nanmax(ma) localminormax = (bdata.xdata[np.nanargmax(ma)], bestpoint) if b == 'master' and bdata.ma[last] < bdata.median * 0.95: failed = 1 # plot the 2-sigma line twosigma = np.sum([np.convolve(bdata.mstd, polarity * 2), bdata.ma], axis=0) pl.plot(bdata.xdata, twosigma, bdata.seriescolor, None, None, '-.') pl.ax.annotate(r"$2\sigma$", xy=(bdata.xdata[last], twosigma[last]), xycoords='data', xytext=(20, 0), textcoords='offset points', ha='right', color=bdata.seriescolor, alpha=0.5) # plot the 20% line twntypercent = np.sum([np.convolve(bdata.ma, polarity * 0.2), bdata.ma], axis=0) pl.plot(bdata.xdata, twntypercent, bdata.seriescolor, None, None, '-.') pl.ax.annotate(r"20%", xy=(bdata.xdata[last], twntypercent[last]), xycoords='data', xytext=(20, 0), textcoords='offset points', ha='right', color=bdata.seriescolor, alpha=0.5) #pctmaxdev = (bestpoint - master.ma[last]) / bestpoint * 100. * polarity # pct diff min/max pctmaxdev = (ama - master.ma[last]) / ama * 100. * polarity # pct diff ma deviation # pctmedian = (master.ma[last] - bdata.median) / master.median * 100. #pct diff median pctmadiff = (master.ma[last] - bdata.ydata[last]) / master.ma[last] * 100. * polarity # pct diff last vs ma mean mnstddiff = (master.ma[last] - bdata.ydata[last]) / master.stdev * polarity # no std diff last vs ma mnstdmadiff = (master.ma[last] - bdata.ydata[last]) / master.mstd[last] * polarity # no std diff std of most recent window bdata.update(pctmadiff=pctmadiff, mnstddiff=mnstddiff) # when do we flag a chart? standard deviation is easy to use for an estimator but since it relies # on squares it will tend to give poor results if the deviations are large. Also, we'll just assume # that our distribution is Normal, so 95% of data points should lie withing 2 stddev of the mean # set background color of chart if there's a data point outside 2sigma or if the moving # average has negatively deviated from its mean by more than 5 or 10% # yellow if > 5% # red if >= 10% # negative values are worse failed = False color = None # moving average has degraded by 5+ (yellow) or 10+ (red) pct # last has degraded from ma (mean) by 5+ or 10+ pcs AND last >= 1.5 stdev off the last mean if pctmaxdev <= -10.0 or \ pctmadiff <= -10.0 and mnstddiff <= -1.5: color = 'red' elif pctmaxdev <= -5.0 or \ pctmadiff > -10.0 and pctmadiff <= -5.0 and mnstddiff <= -1.5: color = 'yellow' if color: failed = True print title, b, k, pctmaxdev, pctmadiff, mnstddiff, str(color) toc[k].append((b, color)) if failed: for pos in ['top', 'bottom', 'right', 'left']: pl.ax.spines[pos].set_edgecolor(color) pl.ax.set_axis_bgcolor(color) pl.ax.patch.set_alpha(0.1) bdata.update(failed=failed, bgcolor=color) # annotate value of the best point aka localminormax pl.ax.annotate("%.2f" % bestpoint, xy=localminormax, xycoords='data', xytext=(0, -10 * polarity), textcoords='offset points', ha='center', color=bdata.seriescolor, alpha=0.5) # annotate value and percent vs reference point of most recent moving average on master pl.ax.annotate("%.2f" % bdata.ma[last], xy=(bdata.xdata[last], bdata.ma[last]), xycoords='data', xytext=(5, +5), textcoords='offset points', ha='left', alpha=0.5) pl.ax.annotate("(%+.2f%%)" % pctmaxdev, xy=(bdata.xdata[last], bdata.ma[last]), xycoords='data', xytext=(5, -5), textcoords='offset points', ha='left', alpha=0.5) # annotation with moving average values # bdata.update(pctmedian=pctmedian, bestpoint=bestpoint, pctmaxdev=pctmaxdev) # raw data to the chart pl.ax.annotate('%s %s: %s n: %d last: %.2f avg: %.2f sdev: %.2f (%.2f%% avg) (%.2f%% ma) ma: %.2f' ' (%+.2f%% of bestma) (%+.2f%% of lastma) (%+.2f #stdev) (%.2f #mstd) avg(ma):' ' %.2f std(ma): %.2f' % ( bdata.seriesmarker, bdata.branch, bdata.bgcolor, len(bdata.ydata), bdata.ydata[last], bdata.avg, bdata.stdev, bdata.stdev / bdata.avg * 100., bdata.stdev / bdata.ma[last] * 100., bdata.ma[last], pctmaxdev, bdata.pctmadiff, bdata.mnstddiff, mnstdmadiff, bdata.ama, bdata.mastd), xy=(APX, APY * bn), xycoords='figure points', horizontalalignment='left', verticalalignment='top', color=bdata.seriescolor, fontsize=10, alpha=1.0) else: # branches comparing to master (no moving average component) if master.ama is not NaN: pctmadiff = (master.ama - bdata.ydata[ last]) / master.ama * 100. * polarity # pct diff last vs ma mean mnstddiff = (master.ama - bdata.ydata[last]) / master.stdev * polarity # no std diff last vs ma color = 'black' if pctmadiff > -10.0 and pctmadiff <= -5.0: color = 'yellow' elif pctmadiff <= -10.0: color = 'red' if mnstddiff >= 2.0: color = 'red' bdata.update(bgcolor=color, pctmadiff=pctmadiff, mnstddiff=mnstddiff) pl.ax.annotate( bdata.seriesmarker + ' %s: %s n: %d last %.2f avg: %.2f sdev: %.2f (%.2f%% of ma) no-std-master-avg(ma): %.2f pct-master-avg(ma): %.2f' % (bdata.branch, bdata.bgcolor, len(bdata.ydata), bdata.ydata[last], bdata.avg, bdata.stdev, bdata.stdev / master.ama * 100., bdata.mnstddiff, bdata.pctmadiff), xy=(APX, APY * bn), xycoords='figure points', horizontalalignment='left', verticalalignment='top', color=bdata.seriescolor, fontsize=10, alpha=1.0) if len(analyze) == 1: pl.ax.annotate(datetime.datetime.today().strftime("%Y/%m/%d %H:%M:%S"), xy=(.20, .95), xycoords='figure fraction', horizontalalignment='left', verticalalignment='top', fontsize=8) pl.close() return toc def generate_index_file(filenames, branches): row = """ <tr> <td><a href="%s"><img src="%s" width="100%%" height="35%%"/></a></td> <td><a href="%s"><img src="%s" width="100%%" height="35%%"/></a></td> <td><a href="%s"><img src="%s" width="100%%" height="35%%"/></a></td> </tr> """ sep = """ </table> <table frame="box" width="100%%"> <tr> <th colspan="3"><a name="%s">%s</a></th> </tr> """ full_content = """ <html> <head> <title>Performance Graphs</title> </head> <body> Generated on %s<br> %s <table frame="box" width="100%%"> %s </table> </body> </html> """ branch_studies = """ <a href=%s>%s</a> """ hrow = """ <tr> <td %s><a href=#%s>%s</a></td> <td %s><a href=#%s>%s</a></td> <td %s><a href=#%s>%s</a></td> <td %s><a href=#%s>%s</a></td> </tr> """ toc = [] for x in filenames: tdattr = "<span></span>" if len(x) == 6: color = None # rollup worse case color flag condition for type in x[5].values(): for branch in type: if branch[1] == 'red': color = 'red' break elif color is None and branch[1] == 'yellow': color = 'yellow' if color == 'red': break if color: tdattr = '<span style="color:%s">&#9658;</span>' % color toc.append(("", x[0].replace(' ', '%20'), tdattr + x[0])) n = 4 z = n - len(toc) % n while z > 0 and z < n: toc.append(('', '', '')) z -= 1 rows = [] t = () for i in range(1, len(toc) + 1): t += tuple(toc[i - 1]) if i % n == 0: rows.append(hrow % t) t = () last_app = None for i in filenames: if i[0] != last_app: rows.append(sep % (i[0], i[0])) last_app = i[0] rows.append(row % (i[1], i[1], i[2], i[2], i[3], i[3])) return full_content % (time.strftime("%Y/%m/%d %H:%M:%S"), branches, ''.join(rows)) def generate_data_file(data, branches, prefix): row = """ <tr> <td align="center"><span style="color:%s">&#9658;</span></td> <td align="left" width="40%%"><a href="%s">%s</a></td> <td align="right">%s</td> <td align="right">%s</td> <td align="right">%s</td> <td align="right">%s</td> <td align="right">%s</td> <td align="right">%s</td> </tr> """ sep = """ </table> <table frame="box" width="100%%"> <tr> <th colspan="8"><a name="%s">%s</a></th> </tr> %s """ full_content = """ <html> <head> <title>Performance Raw Data</title> </head> <body> Generated on %s<br> %s <table frame="box" width="100%%"> %s </table> </body> </html> """ hrow = """ <tr> <th>Flag</th> <th>%s</th> <th>%s</th> <th>%s</th> <th>%s</th> <th>%s</th> <th>%s</th> <th>%s</th> </tr> """ rows = [] header2 = DATA_HEADER[1:] #for i in range(0, len(header2) * 2, 2): # header2.insert(i + 1, header2[i]) last_app = None bgcolors = {'black': 'white', 'None': 'white'} # data is an numpy ndarray = trouble for d in range(len(data)): i = tuple(data[d]) if i[0] != last_app: rows.append(sep % ((i[0], i[0], hrow % tuple(header2)))) last_app = i[0] bgcolor = bgcolors.get(i[1], i[1] or 'white') rows.append(row % ((bgcolor, png_filename(i[2], prefix), i[2]) + tuple([round(x, 3) for x in i[3:]]))) return full_content % (time.strftime("%Y/%m/%d %H:%M:%S"), branches, ''.join(rows)) def png_filename(filename, prefix): return prefix + "_" + filename.replace(" ", "_") + ".png" def moving_average(x, n, type='simple'): """ compute an n period moving average. type is 'simple' | 'exponential' """ if len(x) < n: return ([], NaN, [], NaN) x = np.asarray(x) if type == 'simple': weights = np.ones(n) else: weights = np.exp(np.linspace(-1., 0., n)) weights /= weights.sum() a = [NaN]*(n-1) + list(np.convolve(x, weights, mode='valid')) # compute the mean of the moving avearage population # over the most recent ma group ama = np.average(a[len(a)-n:]) # compute the standard deviation of the set of data # corresponding to each moving average window s = [NaN]*(n-1) for d in range(0, len(x)-n+1): s.append(np.std(x[d : d+n])) # also compute the standard deviation of the moving avg # all available data points. scalar result z = np.std(a[n - 1:]) return (a, ama, s, z) def usage(): print "Usage:" print "\t", sys.argv[0], "output_dir filename_base [ndays]" \ " [width] [height]" print print "\t", "width in pixels" print "\t", "height in pixels" def main(): if len(sys.argv) < 3: usage() exit(-1) if not os.path.exists(sys.argv[1]): print sys.argv[1], "does not exist" exit(-1) prefix = sys.argv[2] path = os.path.join(sys.argv[1], sys.argv[2]) ndays = 2000 if len(sys.argv) >= 4: ndays = int(sys.argv[3]) width = WIDTH height = HEIGHT if len(sys.argv) >= 5: width = int(sys.argv[4]) if len(sys.argv) >= 6: height = int(sys.argv[5]) # show all the history (stats, mindate, maxdate) = get_stats(STATS_SERVER, 21212, ndays) mindate = (mindate).replace(hour=0, minute=0, second=0, microsecond=0) maxdate = (maxdate + datetime.timedelta(days=1)).replace(minute=0, hour=0, second=0, microsecond=0) root_path = path filenames = [] # (appname, latency, throughput) iorder = 0 analyze = [] for group, data in stats.iteritems(): (study, nodes) = group study = study.replace('/', '') #if study != 'CSV-narrow-ix': # continue conn = FastSerializer(STATS_SERVER, 21212) proc = VoltProcedure(conn, "@AdHoc", [FastSerializer.VOLTTYPE_STRING]) resp = proc.call(["select chart_order, series, chart_heading, x_label, y_label, polarity from charts where appname = '%s' order by chart_order" % study]) conn.close() app = study + " %d %s" % (nodes, ["node", "nodes"][nodes > 1]) # chart polarity: -1 for tps (decreasing is bad), 1 for latencies (increasing is bad) legend = {1: dict(series="lat95", heading="95tile latency", xlabel="Time", ylabel="Latency (ms)", polarity=1), 2: dict(series="lat99", heading="99tile latency", xlabel="Time", ylabel="Latency (ms)", polarity=1), 3: dict(series="tppn", heading="avg throughput per node", xlabel="Time", ylabel="ops/sec per node", polarity=-1) } for r in resp.tables[0].tuples: legend[r[0]] = dict(series=r[1], heading=r[2], xlabel=r[3], ylabel=r[4], polarity=r[5]) fns = [app] tocs = dict() for r in legend.itervalues(): aanalyze = [] title = app + " " + r['heading'] fn = "_" + title.replace(" ", "_") + ".png" fns.append(prefix + fn) toc = plot(title, r['xlabel'], r['ylabel'], path + fn, width, height, app, data, r['series'], mindate, maxdate, r['polarity'], aanalyze) master = Bdata() if len(aanalyze): master = aanalyze[0] for branch in aanalyze: analyze.append(tuple( [branch['branch'], branch['bgcolor'], branch['title'], master['last'], master['ma'][last], master['stdev'], branch['last'], branch['mnstddiff'], branch['pctmadiff']])) if toc: tocs.update(toc) #if len(analyze)/3 >= 6: # break fns.append(iorder) fns.append(tocs) filenames.append(tuple(fns)) filenames.append(("KVBenchmark-five9s-nofail-latency", "", "", "http://ci/job/performance-nextrelease-5nines-nofail/lastSuccessfulBuild/artifact/pro/tests/apptests/savedlogs/5nines-histograms.png", iorder)) filenames.append(("KVBenchmark-five9s-nofail-nocl-latency", "", "", "http://ci/job/performance-nextrelease-5nines-nofail-nocl/lastSuccessfulBuild/artifact/pro/tests/apptests/savedlogs/5nines-histograms.png", iorder)) filenames.append(("KVBenchmark-five9s-nofail-nocl-kvm-latency", "", "", "http://ci/job/performance-nextrelease-5nines-nofail-nocl-kvm/lastSuccessfulBuild/artifact/pro/tests/apptests/savedlogs/5nines-histograms.png", iorder)) filenames.append(("Openet-Shocker-three9s-latency", "", "", "http://ci/job/performance-nextrelease-shocker/lastSuccessfulBuild/artifact/pro/tests/apptests/savedlogs/3nines-histograms.png", iorder)) filenames.append(("Openet-Shocker-three9s-4x2-latency", "", "", "http://ci/job/performance-nextrelease-shocker-4x2/lastSuccessfulBuild/artifact/pro/tests/apptests/savedlogs/3nines-histograms.png", iorder)) # sort and save the raw data analyze file with open(root_path + "-analyze.csv", "wb") as f: writer = csv.writer(f, delimiter='|') writer.writerows(DATA_HEADER) aa = np.array(analyze, dtype=[('branch-name', 'S99'), ('bgcolor', 'S99'), ('file', 'S99'), ('master', float), ('ma', float), ('std', float), ('branch-last', float), ('nstd', float), ('pct', float)]) branches = [] sanalyze = np.sort(aa, order=['branch-name', 'nstd']) for r in sanalyze: if r[0] not in branches: branches.append(r[0]) writer.writerows(sanalyze) # make convenient links to the branch studies tables branches = '\n'.join( ["<a href=" + prefix + "-analyze.html#" + b + ">" + b + "</a><br>" for b in sorted(np.unique(branches))]) # generate branch study html page with open(root_path + '-analyze.html', 'w') as data_file: data_file.write(generate_data_file(sanalyze, branches, prefix)) # generate index file index_file = open(root_path + '-index.html', 'w') sorted_filenames = sorted(filenames, key=lambda f: f[0].lower() + str(f[1])) index_file.write(generate_index_file(sorted_filenames, branches)) index_file.close() if __name__ == "__main__": main()
agpl-3.0
Nyker510/scikit-learn
examples/linear_model/plot_robust_fit.py
238
2414
""" Robust linear estimator fitting =============================== Here a sine function is fit with a polynomial of order 3, for values close to zero. Robust fitting is demoed in different situations: - No measurement errors, only modelling errors (fitting a sine with a polynomial) - Measurement errors in X - Measurement errors in y The median absolute deviation to non corrupt new data is used to judge the quality of the prediction. What we can see that: - RANSAC is good for strong outliers in the y direction - TheilSen is good for small outliers, both in direction X and y, but has a break point above which it performs worst than OLS. """ from matplotlib import pyplot as plt import numpy as np from sklearn import linear_model, metrics from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline np.random.seed(42) X = np.random.normal(size=400) y = np.sin(X) # Make sure that it X is 2D X = X[:, np.newaxis] X_test = np.random.normal(size=200) y_test = np.sin(X_test) X_test = X_test[:, np.newaxis] y_errors = y.copy() y_errors[::3] = 3 X_errors = X.copy() X_errors[::3] = 3 y_errors_large = y.copy() y_errors_large[::3] = 10 X_errors_large = X.copy() X_errors_large[::3] = 10 estimators = [('OLS', linear_model.LinearRegression()), ('Theil-Sen', linear_model.TheilSenRegressor(random_state=42)), ('RANSAC', linear_model.RANSACRegressor(random_state=42)), ] x_plot = np.linspace(X.min(), X.max()) for title, this_X, this_y in [ ('Modeling errors only', X, y), ('Corrupt X, small deviants', X_errors, y), ('Corrupt y, small deviants', X, y_errors), ('Corrupt X, large deviants', X_errors_large, y), ('Corrupt y, large deviants', X, y_errors_large)]: plt.figure(figsize=(5, 4)) plt.plot(this_X[:, 0], this_y, 'k+') for name, estimator in estimators: model = make_pipeline(PolynomialFeatures(3), estimator) model.fit(this_X, this_y) mse = metrics.mean_squared_error(model.predict(X_test), y_test) y_plot = model.predict(x_plot[:, np.newaxis]) plt.plot(x_plot, y_plot, label='%s: error = %.3f' % (name, mse)) plt.legend(loc='best', frameon=False, title='Error: mean absolute deviation\n to non corrupt data') plt.xlim(-4, 10.2) plt.ylim(-2, 10.2) plt.title(title) plt.show()
bsd-3-clause
Averroes/statsmodels
statsmodels/regression/mixed_linear_model.py
19
91253
""" Linear mixed effects models are regression models for dependent data. They can be used to estimate regression relationships involving both means and variances. These models are also known as multilevel linear models, and hierachical linear models. The MixedLM class fits linear mixed effects models to data, and provides support for some common post-estimation tasks. This is a group-based implementation that is most efficient for models in which the data can be partitioned into independent groups. Some models with crossed effects can be handled by specifying a model with a single group. The data are partitioned into disjoint groups. The probability model for group i is: Y = X*beta + Z*gamma + epsilon where * n_i is the number of observations in group i * Y is a n_i dimensional response vector (called endog in MixedLM) * X is a n_i x k_fe dimensional design matrix for the fixed effects (called exog in MixedLM) * beta is a k_fe-dimensional vector of fixed effects parameters (called fe_params in MixedLM) * Z is a design matrix for the random effects with n_i rows (called exog_re in MixedLM). The number of columns in Z can vary by group as discussed below. * gamma is a random vector with mean 0. The covariance matrix for the first `k_re` elements of `gamma` (called cov_re in MixedLM) is common to all groups. The remaining elements of `gamma` are variance components as discussed in more detail below. Each group receives its own independent realization of gamma. * epsilon is a n_i dimensional vector of iid normal errors with mean 0 and variance sigma^2; the epsilon values are independent both within and between groups Y, X and Z must be entirely observed. beta, Psi, and sigma^2 are estimated using ML or REML estimation, and gamma and epsilon are random so define the probability model. The marginal mean structure is E[Y | X, Z] = X*beta. If only the mean structure is of interest, GEE is an alternative to using linear mixed models. Two types of random effects are supported. Standard random effects are correlated with each other in arbitary ways. Every group has the same number (`k_re`) of standard random effects, with the same joint distribution (but with independent realizations across the groups). Variance components are uncorrelated with each other, and with the standard random effects. Each variance component has mean zero, and all realizations of a given variance component have the same variance parameter. The number of realized variance components per variance parameter can differ across the groups. The primary reference for the implementation details is: MJ Lindstrom, DM Bates (1988). "Newton Raphson and EM algorithms for linear mixed effects models for repeated measures data". Journal of the American Statistical Association. Volume 83, Issue 404, pages 1014-1022. See also this more recent document: http://econ.ucsb.edu/~doug/245a/Papers/Mixed%20Effects%20Implement.pdf All the likelihood, gradient, and Hessian calculations closely follow Lindstrom and Bates 1988, adapted to support variance components. The following two documents are written more from the perspective of users: http://lme4.r-forge.r-project.org/lMMwR/lrgprt.pdf http://lme4.r-forge.r-project.org/slides/2009-07-07-Rennes/3Longitudinal-4.pdf Notation: * `cov_re` is the random effects covariance matrix (referred to above as Psi) and `scale` is the (scalar) error variance. For a single group, the marginal covariance matrix of endog given exog is scale*I + Z * cov_re * Z', where Z is the design matrix for the random effects in one group. * `vcomp` is a vector of variance parameters. The length of `vcomp` is determined by the number of keys in either the `exog_vc` argument to ``MixedLM``, or the `vc_formula` argument when using formulas to fit a model. Notes: 1. Three different parameterizations are used in different places. The regression slopes (usually called `fe_params`) are identical in all three parameterizations, but the variance parameters differ. The parameterizations are: * The "user parameterization" in which cov(endog) = scale*I + Z * cov_re * Z', as described above. This is the main parameterization visible to the user. * The "profile parameterization" in which cov(endog) = I + Z * cov_re1 * Z'. This is the parameterization of the profile likelihood that is maximized to produce parameter estimates. (see Lindstrom and Bates for details). The "user" cov_re is equal to the "profile" cov_re1 times the scale. * The "square root parameterization" in which we work with the Cholesky factor of cov_re1 instead of cov_re directly. This is hidden from the user. All three parameterizations can be packed into a vector by (optionally) concatenating `fe_params` together with the lower triangle or Cholesky square root of the dependence structure, followed by the variance parameters for the variance components. The are stored as square roots if (and only if) the random effects covariance matrix is stored as its Choleky factor. Note that when unpacking, it is important to either square or reflect the dependence structure depending on which parameterization is being used. Two score methods are implemented. One takes the score with respect to the elements of the random effects covariance matrix (used for inference once the MLE is reached), and the other takes the score with respect to the parameters of the Choleky square root of the random effects covariance matrix (used for optimization). The numerical optimization uses GLS to avoid explicitly optimizing over the fixed effects parameters. The likelihood that is optimized is profiled over both the scale parameter (a scalar) and the fixed effects parameters (if any). As a result of this profiling, it is difficult and unnecessary to calculate the Hessian of the profiled log likelihood function, so that calculation is not implemented here. Therefore, optimization methods requiring the Hessian matrix such as the Newton-Raphson algorihm cannot be used for model fitting. """ import numpy as np import statsmodels.base.model as base from scipy.optimize import fmin_ncg, fmin_cg, fmin_bfgs, fmin from statsmodels.tools.decorators import cache_readonly from statsmodels.tools import data as data_tools from scipy.stats.distributions import norm from scipy import sparse import pandas as pd import patsy from statsmodels.compat.collections import OrderedDict from statsmodels.compat import range import warnings from statsmodels.tools.sm_exceptions import ConvergenceWarning from statsmodels.base._penalties import Penalty from statsmodels.compat.numpy import np_matrix_rank from pandas import DataFrame def _dot(x, y): """ Returns the dot product of the arrays, works for sparse and dense. """ if isinstance(x, np.ndarray) and isinstance(y, np.ndarray): return np.dot(x, y) elif sparse.issparse(x): return x.dot(y) elif sparse.issparse(y): return y.T.dot(x.T).T # From numpy, adapted to work with sparse and dense arrays. def _multi_dot_three(A, B, C): """ Find best ordering for three arrays and do the multiplication. Doing in manually instead of using dynamic programing is approximately 15 times faster. """ # cost1 = cost((AB)C) cost1 = (A.shape[0] * A.shape[1] * B.shape[1] + # (AB) A.shape[0] * B.shape[1] * C.shape[1]) # (--)C # cost2 = cost((AB)C) cost2 = (B.shape[0] * B.shape[1] * C.shape[1] + # (BC) A.shape[0] * A.shape[1] * C.shape[1]) # A(--) if cost1 < cost2: return _dot(_dot(A, B), C) else: return _dot(A, _dot(B, C)) def _dotsum(x, y): """ Returns sum(x * y), where '*' is the pointwise product, computed efficiently for dense and sparse matrices. """ if sparse.issparse(x): return x.multiply(y).sum() else: # This way usually avoids allocating a temporary. return np.dot(x.ravel(), y.ravel()) def _get_exog_re_names(self, exog_re): """ Passes through if given a list of names. Otherwise, gets pandas names or creates some generic variable names as needed. """ if self.k_re == 0: return [] if isinstance(exog_re, pd.DataFrame): return exog_re.columns.tolist() elif isinstance(exog_re, pd.Series) and exog_re.name is not None: return [exog_re.name] elif isinstance(exog_re, list): return exog_re return ["Z{0}".format(k + 1) for k in range(exog_re.shape[1])] class MixedLMParams(object): """ This class represents a parameter state for a mixed linear model. Parameters ---------- k_fe : integer The number of covariates with fixed effects. k_re : integer The number of covariates with random coefficients (excluding variance components). k_vc : integer The number of variance components parameters. Notes ----- This object represents the parameter state for the model in which the scale parameter has been profiled out. """ def __init__(self, k_fe, k_re, k_vc): self.k_fe = k_fe self.k_re = k_re self.k_re2 = k_re * (k_re + 1) // 2 self.k_vc = k_vc self.k_tot = self.k_fe + self.k_re2 + self.k_vc self._ix = np.tril_indices(self.k_re) def from_packed(params, k_fe, k_re, use_sqrt, has_fe): """ Create a MixedLMParams object from packed parameter vector. Parameters ---------- params : array-like The mode parameters packed into a single vector. k_fe : integer The number of covariates with fixed effects k_re : integer The number of covariates with random effects (excluding variance components). use_sqrt : boolean If True, the random effects covariance matrix is provided as its Cholesky factor, otherwise the lower triangle of the covariance matrix is stored. has_fe : boolean If True, `params` contains fixed effects parameters. Otherwise, the fixed effects parameters are set to zero. Returns ------- A MixedLMParams object. """ k_re2 = int(k_re * (k_re + 1) / 2) # The number of covariance parameters. if has_fe: k_vc = len(params) - k_fe - k_re2 else: k_vc = len(params) - k_re2 pa = MixedLMParams(k_fe, k_re, k_vc) cov_re = np.zeros((k_re, k_re)) ix = pa._ix if has_fe: pa.fe_params = params[0:k_fe] cov_re[ix] = params[k_fe:k_fe+k_re2] else: pa.fe_params = np.zeros(k_fe) cov_re[ix] = params[0:k_re2] if use_sqrt: cov_re = np.dot(cov_re, cov_re.T) else: cov_re = (cov_re + cov_re.T) - np.diag(np.diag(cov_re)) pa.cov_re = cov_re if k_vc > 0: if use_sqrt: pa.vcomp = params[-k_vc:]**2 else: pa.vcomp = params[-k_vc:] else: pa.vcomp = np.array([]) return pa from_packed = staticmethod(from_packed) def from_components(fe_params=None, cov_re=None, cov_re_sqrt=None, vcomp=None): """ Create a MixedLMParams object from each parameter component. Parameters ---------- fe_params : array-like The fixed effects parameter (a 1-dimensional array). If None, there are no fixed effects. cov_re : array-like The random effects covariance matrix (a square, symmetric 2-dimensional array). cov_re_sqrt : array-like The Cholesky (lower triangular) square root of the random effects covariance matrix. vcomp : array-like The variance component parameters. If None, there are no variance components. Returns ------- A MixedLMParams object. """ if vcomp is None: vcomp = np.empty(0) if fe_params is None: fe_params = np.empty(0) if cov_re is None and cov_re_sqrt is None: cov_re = np.empty((0, 0)) k_fe = len(fe_params) k_vc = len(vcomp) k_re = cov_re.shape[0] if cov_re is not None else cov_re_sqrt.shape[0] pa = MixedLMParams(k_fe, k_re, k_vc) pa.fe_params = fe_params if cov_re_sqrt is not None: pa.cov_re = np.dot(cov_re_sqrt, cov_re_sqrt.T) elif cov_re is not None: pa.cov_re = cov_re pa.vcomp = vcomp return pa from_components = staticmethod(from_components) def copy(self): """ Returns a copy of the object. """ obj = MixedLMParams(self.k_fe, self.k_re, self.k_vc) obj.fe_params = self.fe_params.copy() obj.cov_re = self.cov_re.copy() obj.vcomp = self.vcomp.copy() return obj def get_packed(self, use_sqrt, has_fe=False): """ Return the model parameters packed into a single vector. Parameters ---------- use_sqrt : bool If True, the Cholesky square root of `cov_re` is included in the packed result. Otherwise the lower triangle of `cov_re` is included. has_fe : bool If True, the fixed effects parameters are included in the packed result, otherwise they are omitted. """ if self.k_re > 0: if use_sqrt: L = np.linalg.cholesky(self.cov_re) cpa = L[self._ix] else: cpa = self.cov_re[self._ix] else: cpa = np.zeros(0) if use_sqrt: vcomp = np.sqrt(self.vcomp) else: vcomp = self.vcomp if has_fe: pa = np.concatenate((self.fe_params, cpa, vcomp)) else: pa = np.concatenate((cpa, vcomp)) return pa def _smw_solver(s, A, AtA, BI, di): """ Solves the system (s*I + A*B*A') * x = rhs for an arbitrary rhs. The inverse matrix of B is block diagonal. The upper left block is BI and the lower right block is a diagonal matrix containing di. Parameters ---------- s : scalar See above for usage A : ndarray See above for usage AtA : square ndarray A.T * A BI : square symmetric ndarray The inverse of `B`. di : array-like Returns ------- A function that takes `rhs` as an input argument and returns a solution to the linear system defined above. """ # Use SMW identity qmat = AtA / s m = BI.shape[0] qmat[0:m, 0:m] += BI ix = np.arange(m, A.shape[1]) qmat[ix, ix] += di if sparse.issparse(A): qi = sparse.linalg.inv(qmat) qmati = A.dot(qi.T).T else: qmati = np.linalg.solve(qmat, A.T) def solver(rhs): if sparse.issparse(A): ql = qmati.dot(rhs) ql = A.dot(ql) else: ql = np.dot(qmati, rhs) ql = np.dot(A, ql) rslt = rhs / s - ql / s**2 if sparse.issparse(rslt): rslt = np.asarray(rslt.todense()) return rslt return solver def _smw_logdet(s, A, AtA, BI, di, B_logdet): """ Returns the log determinant of s*I + A*B*A'. Uses the matrix determinant lemma to accelerate the calculation. Parameters ---------- s : scalar See above for usage A : square symmetric ndarray See above for usage AtA : square matrix A.T * A BI : square symmetric ndarray The upper left block of B^-1. di : array-like The diagonal elements of the lower right block of B^-1. B_logdet : real The log determinant of B Returns ------- The log determinant of s*I + A*B*A'. """ p = A.shape[0] ld = p * np.log(s) qmat = AtA / s m = BI.shape[0] qmat[0:m, 0:m] += BI ix = np.arange(m, A.shape[1]) qmat[ix, ix] += di if sparse.issparse(qmat): qmat = qmat.todense() _, ld1 = np.linalg.slogdet(qmat) return B_logdet + ld + ld1 class MixedLM(base.LikelihoodModel): """ An object specifying a linear mixed effects model. Use the `fit` method to fit the model and obtain a results object. Parameters ---------- endog : 1d array-like The dependent variable exog : 2d array-like A matrix of covariates used to determine the mean structure (the "fixed effects" covariates). groups : 1d array-like A vector of labels determining the groups -- data from different groups are independent exog_re : 2d array-like A matrix of covariates used to determine the variance and covariance structure (the "random effects" covariates). If None, defaults to a random intercept for each group. exog_vc : dict-like A dicationary containing specifications of the variance component terms. See below for details. use_sqrt : bool If True, optimization is carried out using the lower triangle of the square root of the random effects covariance matrix, otherwise it is carried out using the lower triangle of the random effects covariance matrix. missing : string The approach to missing data handling Notes ----- `exog_vc` is a dictionary of dictionaries. Specifically, `exog_vc[a][g]` is a matrix whose columns are linearly combined using independent random coefficients. This random term then contributes to the variance structure of the data for group `g`. The random coefficients all have mean zero, and have the same variance. The matrix must be `m x k`, where `m` is the number of observations in group `g`. The number of columns may differ among the top-level groups. The covariates in `exog`, `exog_re` and `exog_vc` may (but need not) partially or wholly overlap. `use_sqrt` should almost always be set to True. The main use case for use_sqrt=False is when complicated patterns of fixed values in the covariance structure are set (using the `free` argument to `fit`) that cannot be expressed in terms of the Cholesky factor L. Examples -------- A basic mixed model with fixed effects for the columns of ``exog`` and a random intercept for each distinct value of ``group``: >>> model = sm.MixedLM(endog, exog, groups) >>> result = model.fit() A mixed model with fixed effects for the columns of ``exog`` and correlated random coefficients for the columns of ``exog_re``: >>> model = sm.MixedLM(endog, exog, groups, exog_re=exog_re) >>> result = model.fit() A mixed model with fixed effects for the columns of ``exog`` and independent random coefficients for the columns of ``exog_re``: >>> free = MixedLMParams.from_components(fe_params=np.ones(exog.shape[1]), cov_re=np.eye(exog_re.shape[1])) >>> model = sm.MixedLM(endog, exog, groups, exog_re=exog_re) >>> result = model.fit(free=free) A different way to specify independent random coefficients for the columns of ``exog_re``. In this example ``groups`` must be a Pandas Series with compatible indexing with ``exog_re``, and ``exog_re`` has two columns. >>> g = pd.groupby(groups, by=groups).groups >>> vc = {} >>> vc['1'] = {k : exog_re.loc[g[k], 0] for k in g} >>> vc['2'] = {k : exog_re.loc[g[k], 1] for k in g} >>> model = sm.MixedLM(endog, exog, groups, vcomp=vc) >>> result = model.fit() """ def __init__(self, endog, exog, groups, exog_re=None, exog_vc=None, use_sqrt=True, missing='none', **kwargs): _allowed_kwargs = ["missing_idx", "design_info", "formula"] for x in kwargs.keys(): if x not in _allowed_kwargs: raise ValueError("argument %s not permitted for MixedLM initialization" % x) self.use_sqrt = use_sqrt # Some defaults self.reml = True self.fe_pen = None self.re_pen = None # Needs to run early so that the names are sorted. self._setup_vcomp(exog_vc) # If there is one covariate, it may be passed in as a column # vector, convert these to 2d arrays. # TODO: Can this be moved up in the class hierarchy? # yes, it should be done up the hierarchy if (exog is not None and data_tools._is_using_ndarray_type(exog, None) and exog.ndim == 1): exog = exog[:, None] if (exog_re is not None and data_tools._is_using_ndarray_type(exog_re, None) and exog_re.ndim == 1): exog_re = exog_re[:, None] # Calling super creates self.endog, etc. as ndarrays and the # original exog, endog, etc. are self.data.endog, etc. super(MixedLM, self).__init__(endog, exog, groups=groups, exog_re=exog_re, missing=missing, **kwargs) self._init_keys.extend(["use_sqrt", "exog_vc"]) self.k_fe = exog.shape[1] # Number of fixed effects parameters if exog_re is None and exog_vc is None: # Default random effects structure (random intercepts). self.k_re = 1 self.k_re2 = 1 self.exog_re = np.ones((len(endog), 1), dtype=np.float64) self.data.exog_re = self.exog_re self.data.param_names = self.exog_names + ['Group RE'] elif exog_re is not None: # Process exog_re the same way that exog is handled # upstream # TODO: this is wrong and should be handled upstream wholly self.data.exog_re = exog_re self.exog_re = np.asarray(exog_re) if self.exog_re.ndim == 1: self.exog_re = self.exog_re[:, None] # Model dimensions # Number of random effect covariates self.k_re = self.exog_re.shape[1] # Number of covariance parameters self.k_re2 = self.k_re * (self.k_re + 1) // 2 else: # All random effects are variance components self.k_re = 0 self.k_re2 = 0 if not self.data._param_names: # HACK: could've been set in from_formula already # needs refactor (param_names, exog_re_names, exog_re_names_full) = self._make_param_names(exog_re) self.data.param_names = param_names self.data.exog_re_names = exog_re_names self.data.exog_re_names_full = exog_re_names_full self.k_params = self.k_fe + self.k_re2 # Convert the data to the internal representation, which is a # list of arrays, corresponding to the groups. group_labels = list(set(groups)) group_labels.sort() row_indices = dict((s, []) for s in group_labels) for i,g in enumerate(groups): row_indices[g].append(i) self.row_indices = row_indices self.group_labels = group_labels self.n_groups = len(self.group_labels) # Split the data by groups self.endog_li = self.group_list(self.endog) self.exog_li = self.group_list(self.exog) self.exog_re_li = self.group_list(self.exog_re) # Precompute this. if self.exog_re is None: self.exog_re2_li = None else: self.exog_re2_li = [np.dot(x.T, x) for x in self.exog_re_li] # The total number of observations, summed over all groups self.nobs = len(self.endog) self.n_totobs = self.nobs # Set the fixed effects parameter names if self.exog_names is None: self.exog_names = ["FE%d" % (k + 1) for k in range(self.exog.shape[1])] # Precompute this self._aex_r = [] self._aex_r2 = [] for i in range(self.n_groups): a = self._augment_exog(i) self._aex_r.append(a) self._aex_r2.append(_dot(a.T, a)) # Precompute this self._lin, self._quad = self._reparam() def _setup_vcomp(self, exog_vc): if exog_vc is None: exog_vc = {} self.exog_vc = exog_vc self.k_vc = len(exog_vc) vc_names = list(set(exog_vc.keys())) vc_names.sort() self._vc_names = vc_names def _make_param_names(self, exog_re): """ Returns the full parameter names list, just the exogenous random effects variables, and the exogenous random effects variables with the interaction terms. """ exog_names = list(self.exog_names) exog_re_names = _get_exog_re_names(self, exog_re) param_names = [] jj = self.k_fe for i in range(len(exog_re_names)): for j in range(i + 1): if i == j: param_names.append(exog_re_names[i] + " RE") else: param_names.append(exog_re_names[j] + " RE x " + exog_re_names[i] + " RE") jj += 1 vc_names = [x + " RE" for x in self._vc_names] return exog_names + param_names + vc_names, exog_re_names, param_names @classmethod def from_formula(cls, formula, data, re_formula=None, vc_formula=None, subset=None, use_sparse=False, *args, **kwargs): """ Create a Model from a formula and dataframe. Parameters ---------- formula : str or generic Formula object The formula specifying the model data : array-like The data for the model. See Notes. re_formula : string A one-sided formula defining the variance structure of the model. The default gives a random intercept for each group. vc_formula : dict-like Formulas describing variance components. `vc_formula[vc]` is the formula for the component with variance parameter named `vc`. The formula is processed into a matrix, and the columns of this matrix are linearly combined with independent random coefficients having mean zero and a common variance. subset : array-like An array-like object of booleans, integers, or index values that indicate the subset of df to use in the model. Assumes df is a `pandas.DataFrame` args : extra arguments These are passed to the model kwargs : extra keyword arguments These are passed to the model with one exception. The ``eval_env`` keyword is passed to patsy. It can be either a :class:`patsy:patsy.EvalEnvironment` object or an integer indicating the depth of the namespace to use. For example, the default ``eval_env=0`` uses the calling namespace. If you wish to use a "clean" environment set ``eval_env=-1``. Returns ------- model : Model instance Notes ------ `data` must define __getitem__ with the keys in the formula terms args and kwargs are passed on to the model instantiation. E.g., a numpy structured or rec array, a dictionary, or a pandas DataFrame. If the variance component is intended to produce random intercepts for disjoint subsets of a group, specified by string labels or a categorical data value, always use '0 +' in the formula so that no overall intercept is included. If the variance components specify random slopes and you do not also want a random group-level intercept in the model, then use '0 +' in the formula to exclude the intercept. The variance components formulas are processed separately for each group. If a variable is categorical the results will not be affected by whether the group labels are distinct or re-used over the top-level groups. This method currently does not correctly handle missing values, so missing values should be explicitly dropped from the DataFrame before calling this method. Examples -------- Suppose we have an educational data set with students nested in classrooms nested in schools. The students take a test, and we want to relate the test scores to the students' ages, while accounting for the effects of classrooms and schools. The school will be the top-level group, and the classroom is a nested group that is specified as a variance component. Note that the schools may have different number of classrooms, and the classroom labels may (but need not be) different across the schools. >>> vc = {'classroom': '0 + C(classroom)'} >>> MixedLM.from_formula('test_score ~ age', vc_formula=vc, re_formula='1', groups='school', data=data) Now suppose we also have a previous test score called 'pretest'. If we want the relationship between pretest scores and the current test to vary by classroom, we can specify a random slope for the pretest score >>> vc = {'classroom': '0 + C(classroom)', 'pretest': '0 + pretest'} >>> MixedLM.from_formula('test_score ~ age + pretest', vc_formula=vc, re_formula='1', groups='school', data=data) The following model is almost equivalent to the previous one, but here the classroom random intercept and pretest slope may be correlated. >>> vc = {'classroom': '0 + C(classroom)'} >>> MixedLM.from_formula('test_score ~ age + pretest', vc_formula=vc, re_formula='1 + pretest', groups='school', data=data) """ if "groups" not in kwargs.keys(): raise AttributeError("'groups' is a required keyword argument in MixedLM.from_formula") # If `groups` is a variable name, retrieve the data for the # groups variable. group_name = "Group" if type(kwargs["groups"]) == str: group_name = kwargs["groups"] kwargs["groups"] = np.asarray(data[kwargs["groups"]]) if re_formula is not None: if re_formula.strip() == "1": # Work around Patsy bug, fixed by 0.3. exog_re = np.ones((data.shape[0], 1)) exog_re_names = ["Group"] else: eval_env = kwargs.get('eval_env', None) if eval_env is None: eval_env = 1 elif eval_env == -1: from patsy import EvalEnvironment eval_env = EvalEnvironment({}) exog_re = patsy.dmatrix(re_formula, data, eval_env=eval_env) exog_re_names = exog_re.design_info.column_names exog_re = np.asarray(exog_re) if exog_re.ndim == 1: exog_re = exog_re[:, None] else: exog_re = None if vc_formula is None: exog_re_names = ["groups"] else: exog_re_names = [] if vc_formula is not None: eval_env = kwargs.get('eval_env', None) if eval_env is None: eval_env = 1 elif eval_env == -1: from patsy import EvalEnvironment eval_env = EvalEnvironment({}) exog_vc = {} data["_group"] = kwargs["groups"] gb = data.groupby("_group") kylist = list(gb.groups.keys()) kylist.sort() for vc_name in vc_formula.keys(): exog_vc[vc_name] = {} for group_ix, group in enumerate(kylist): ii = gb.groups[group] vcg = vc_formula[vc_name] mat = patsy.dmatrix(vcg, data.loc[ii, :], eval_env=eval_env, return_type='dataframe') if use_sparse: exog_vc[vc_name][group] = sparse.csr_matrix(mat) else: exog_vc[vc_name][group] = np.asarray(mat) exog_vc = exog_vc else: exog_vc = None mod = super(MixedLM, cls).from_formula(formula, data, subset=None, exog_re=exog_re, exog_vc=exog_vc, *args, **kwargs) # expand re names to account for pairs of RE (param_names, exog_re_names, exog_re_names_full) = mod._make_param_names(exog_re_names) mod.data.param_names = param_names mod.data.exog_re_names = exog_re_names mod.data.exog_re_names_full = exog_re_names_full mod.data.vcomp_names = mod._vc_names return mod def predict(self, params, exog=None): """ Return predicted values from a design matrix. Parameters ---------- params : array-like Parameters of a mixed linear model. Can be either a MixedLMParams instance, or a vector containing the packed model parameters in which the fixed effects parameters are at the beginning of the vector, or a vector containing only the fixed effects parameters. exog : array-like, optional Design / exogenous data for the fixed effects. Model exog is used if None. Returns ------- An array of fitted values. Note that these predicted values only reflect the fixed effects mean structure of the model. """ if exog is None: exog = self.exog if isinstance(params, MixedLMParams): params = params.fe_params else: params = params[0:self.k_fe] return np.dot(exog, params) def group_list(self, array): """ Returns `array` split into subarrays corresponding to the grouping structure. """ if array is None: return None if array.ndim == 1: return [np.array(array[self.row_indices[k]]) for k in self.group_labels] else: return [np.array(array[self.row_indices[k], :]) for k in self.group_labels] def fit_regularized(self, start_params=None, method='l1', alpha=0, ceps=1e-4, ptol=1e-6, maxit=200, **fit_kwargs): """ Fit a model in which the fixed effects parameters are penalized. The dependence parameters are held fixed at their estimated values in the unpenalized model. Parameters ---------- method : string of Penalty object Method for regularization. If a string, must be 'l1'. alpha : array-like Scalar or vector of penalty weights. If a scalar, the same weight is applied to all coefficients; if a vector, it contains a weight for each coefficient. If method is a Penalty object, the weights are scaled by alpha. For L1 regularization, the weights are used directly. ceps : positive real scalar Fixed effects parameters smaller than this value in magnitude are treaded as being zero. ptol : positive real scalar Convergence occurs when the sup norm difference between successive values of `fe_params` is less than `ptol`. maxit : integer The maximum number of iterations. fit_kwargs : keywords Additional keyword arguments passed to fit. Returns ------- A MixedLMResults instance containing the results. Notes ----- The covariance structure is not updated as the fixed effects parameters are varied. The algorithm used here for L1 regularization is a"shooting" or cyclic coordinate descent algorithm. If method is 'l1', then `fe_pen` and `cov_pen` are used to obtain the covariance structure, but are ignored during the L1-penalized fitting. References ---------- Friedman, J. H., Hastie, T. and Tibshirani, R. Regularized Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1) (2008) http://www.jstatsoft.org/v33/i01/paper http://statweb.stanford.edu/~tibs/stat315a/Supplements/fuse.pdf """ if type(method) == str and (method.lower() != 'l1'): raise ValueError("Invalid regularization method") # If method is a smooth penalty just optimize directly. if isinstance(method, Penalty): # Scale the penalty weights by alpha method.alpha = alpha fit_kwargs.update({"fe_pen": method}) return self.fit(**fit_kwargs) if np.isscalar(alpha): alpha = alpha * np.ones(self.k_fe, dtype=np.float64) # Fit the unpenalized model to get the dependence structure. mdf = self.fit(**fit_kwargs) fe_params = mdf.fe_params cov_re = mdf.cov_re vcomp = mdf.vcomp scale = mdf.scale try: cov_re_inv = np.linalg.inv(cov_re) except np.linalg.LinAlgError: cov_re_inv = None for itr in range(maxit): fe_params_s = fe_params.copy() for j in range(self.k_fe): if abs(fe_params[j]) < ceps: continue # The residuals fe_params[j] = 0. expval = np.dot(self.exog, fe_params) resid_all = self.endog - expval # The loss function has the form # a*x^2 + b*x + pwt*|x| a, b = 0., 0. for group_ix, group in enumerate(self.group_labels): vc_var = self._expand_vcomp(vcomp, group) exog = self.exog_li[group_ix] ex_r, ex2_r = self._aex_r[group_ix], self._aex_r2[group_ix] resid = resid_all[self.row_indices[group]] solver = _smw_solver(scale, ex_r, ex2_r, cov_re_inv, 1 / vc_var) x = exog[:, j] u = solver(x) a += np.dot(u, x) b -= 2 * np.dot(u, resid) pwt1 = alpha[j] if b > pwt1: fe_params[j] = -(b - pwt1) / (2 * a) elif b < -pwt1: fe_params[j] = -(b + pwt1) / (2 * a) if np.abs(fe_params_s - fe_params).max() < ptol: break # Replace the fixed effects estimates with their penalized # values, leave the dependence parameters in their unpenalized # state. params_prof = mdf.params.copy() params_prof[0:self.k_fe] = fe_params scale = self.get_scale(fe_params, mdf.cov_re_unscaled, mdf.vcomp) # Get the Hessian including only the nonzero fixed effects, # then blow back up to the full size after inverting. hess = self.hessian(params_prof) pcov = np.nan * np.ones_like(hess) ii = np.abs(params_prof) > ceps ii[self.k_fe:] = True ii = np.flatnonzero(ii) hess1 = hess[ii, :][:, ii] pcov[np.ix_(ii,ii)] = np.linalg.inv(-hess1) params_object = MixedLMParams.from_components(fe_params, cov_re=cov_re) results = MixedLMResults(self, params_prof, pcov / scale) results.params_object = params_object results.fe_params = fe_params results.cov_re = cov_re results.scale = scale results.cov_re_unscaled = mdf.cov_re_unscaled results.method = mdf.method results.converged = True results.cov_pen = self.cov_pen results.k_fe = self.k_fe results.k_re = self.k_re results.k_re2 = self.k_re2 results.k_vc = self.k_vc return MixedLMResultsWrapper(results) def get_fe_params(self, cov_re, vcomp): """ Use GLS to update the fixed effects parameter estimates. Parameters ---------- cov_re : array-like The covariance matrix of the random effects. Returns ------- The GLS estimates of the fixed effects parameters. """ if self.k_fe == 0: return np.array([]) if self.k_re == 0: cov_re_inv = np.empty((0,0)) else: cov_re_inv = np.linalg.inv(cov_re) # Cache these quantities that don't change. if not hasattr(self, "_endex_li"): self._endex_li = [] for group_ix, _ in enumerate(self.group_labels): mat = np.concatenate((self.exog_li[group_ix], self.endog_li[group_ix][:, None]), axis=1) self._endex_li.append(mat) xtxy = 0. for group_ix, group in enumerate(self.group_labels): vc_var = self._expand_vcomp(vcomp, group) exog = self.exog_li[group_ix] ex_r, ex2_r = self._aex_r[group_ix], self._aex_r2[group_ix] solver = _smw_solver(1., ex_r, ex2_r, cov_re_inv, 1 / vc_var) u = solver(self._endex_li[group_ix]) xtxy += np.dot(exog.T, u) fe_params = np.linalg.solve(xtxy[:, 0:-1], xtxy[:, -1]) return fe_params def _reparam(self): """ Returns parameters of the map converting parameters from the form used in optimization to the form returned to the user. Returns ------- lin : list-like Linear terms of the map quad : list-like Quadratic terms of the map Notes ----- If P are the standard form parameters and R are the transformed parameters (i.e. with the Cholesky square root covariance and square root transformed variane components), then P[i] = lin[i] * R + R' * quad[i] * R """ k_fe, k_re, k_re2, k_vc = self.k_fe, self.k_re, self.k_re2, self.k_vc k_tot = k_fe + k_re2 + k_vc ix = np.tril_indices(self.k_re) lin = [] for k in range(k_fe): e = np.zeros(k_tot) e[k] = 1 lin.append(e) for k in range(k_re2): lin.append(np.zeros(k_tot)) for k in range(k_vc): lin.append(np.zeros(k_tot)) quad = [] # Quadratic terms for fixed effects. for k in range(k_tot): quad.append(np.zeros((k_tot, k_tot))) # Quadratic terms for random effects covariance. ii = np.tril_indices(k_re) ix = [(a,b) for a,b in zip(ii[0], ii[1])] for i1 in range(k_re2): for i2 in range(k_re2): ix1 = ix[i1] ix2 = ix[i2] if (ix1[1] == ix2[1]) and (ix1[0] <= ix2[0]): ii = (ix2[0], ix1[0]) k = ix.index(ii) quad[k_fe+k][k_fe+i2, k_fe+i1] += 1 for k in range(k_tot): quad[k] = 0.5*(quad[k] + quad[k].T) # Quadratic terms for variance components. km = k_fe + k_re2 for k in range(km, km+k_vc): quad[k][k, k] = 1 return lin, quad def _expand_vcomp(self, vcomp, group): """ Replicate variance parameters to match a group's design. Parameters ---------- vcomp : array-like The variance parameters for the variance components. group : string The group label Returns an expaded version of vcomp, in which each variance parameter is copied as many times as there are independent realizations of the variance component in the given group. """ if len(vcomp) == 0: return np.empty(0) vc_var = [] for j, k in enumerate(self._vc_names): if group in self.exog_vc[k]: vc_var.append(vcomp[j] * np.ones(self.exog_vc[k][group].shape[1])) if len(vc_var) > 0: return np.concatenate(vc_var) else: 1/0 return np.empty(0) def _augment_exog(self, group_ix): """ Concatenate the columns for variance components to the columns for other random effects to obtain a single random effects exog matrix for a given group. """ ex_r = self.exog_re_li[group_ix] if self.k_re > 0 else None if self.k_vc == 0: return ex_r group = self.group_labels[group_ix] ex = [ex_r] if self.k_re > 0 else [] any_sparse = False for j,k in enumerate(self._vc_names): if group not in self.exog_vc[k]: continue ex.append(self.exog_vc[k][group]) any_sparse |= sparse.issparse(ex[-1]) if any_sparse: for j, x in enumerate(ex): if not sparse.issparse(x): ex[j] = sparse.csr_matrix(x) ex = sparse.hstack(ex) ex = sparse.csr_matrix(ex) else: ex = np.concatenate(ex, axis=1) return ex def loglike(self, params, profile_fe=True): """ Evaluate the (profile) log-likelihood of the linear mixed effects model. Parameters ---------- params : MixedLMParams, or array-like. The parameter value. If array-like, must be a packed parameter vector containing only the covariance parameters. profile_fe : boolean If True, replace the provided value of `fe_params` with the GLS estimates. Returns ------- The log-likelihood value at `params`. Notes ----- The scale parameter `scale` is always profiled out of the log-likelihood. In addition, if `profile_fe` is true the fixed effects parameters are also profiled out. """ if type(params) is not MixedLMParams: params = MixedLMParams.from_packed(params, self.k_fe, self.k_re, self.use_sqrt, has_fe=False) cov_re = params.cov_re vcomp = params.vcomp # Move to the profile set if profile_fe: fe_params = self.get_fe_params(cov_re, vcomp) else: fe_params = params.fe_params if self.k_re > 0: try: cov_re_inv = np.linalg.inv(cov_re) except np.linalg.LinAlgError: cov_re_inv = None _, cov_re_logdet = np.linalg.slogdet(cov_re) else: cov_re_inv = np.zeros((0, 0)) cov_re_logdet = 0 # The residuals expval = np.dot(self.exog, fe_params) resid_all = self.endog - expval likeval = 0. # Handle the covariance penalty if (self.cov_pen is not None) and (self.k_re > 0): likeval -= self.cov_pen.func(cov_re, cov_re_inv) # Handle the fixed effects penalty if (self.fe_pen is not None): likeval -= self.fe_pen.func(fe_params) xvx, qf = 0., 0. for k, group in enumerate(self.group_labels): vc_var = self._expand_vcomp(vcomp, group) cov_aug_logdet = cov_re_logdet + np.sum(np.log(vc_var)) exog = self.exog_li[k] ex_r, ex2_r = self._aex_r[k], self._aex_r2[k] solver = _smw_solver(1., ex_r, ex2_r, cov_re_inv, 1 / vc_var) resid = resid_all[self.row_indices[group]] # Part 1 of the log likelihood (for both ML and REML) ld = _smw_logdet(1., ex_r, ex2_r, cov_re_inv, 1 / vc_var, cov_aug_logdet) likeval -= ld / 2. # Part 2 of the log likelihood (for both ML and REML) u = solver(resid) qf += np.dot(resid, u) # Adjustment for REML if self.reml: mat = solver(exog) xvx += np.dot(exog.T, mat) if self.reml: likeval -= (self.n_totobs - self.k_fe) * np.log(qf) / 2. _,ld = np.linalg.slogdet(xvx) likeval -= ld / 2. likeval -= (self.n_totobs - self.k_fe) * np.log(2 * np.pi) / 2. likeval += ((self.n_totobs - self.k_fe) * np.log(self.n_totobs - self.k_fe) / 2.) likeval -= (self.n_totobs - self.k_fe) / 2. else: likeval -= self.n_totobs * np.log(qf) / 2. likeval -= self.n_totobs * np.log(2 * np.pi) / 2. likeval += self.n_totobs * np.log(self.n_totobs) / 2. likeval -= self.n_totobs / 2. return likeval def _gen_dV_dPar(self, ex_r, solver, group, max_ix=None): """ A generator that yields the element-wise derivative of the marginal covariance matrix with respect to the random effects variance and covariance parameters. ex_r : array-like The random effects design matrix solver : function A function that given x returns V^{-1}x, where V is the group's marginal covariance matrix. group : scalar The group label max_ix : integer or None If not None, the generator ends when this index is reached. """ axr = solver(ex_r) # Regular random effects jj = 0 for j1 in range(self.k_re): for j2 in range(j1 + 1): if max_ix is not None and jj > max_ix: return mat_l, mat_r = ex_r[:,j1:j1+1], ex_r[:,j2:j2+1] # Need 2d vsl, vsr = axr[:,j1:j1+1], axr[:,j2:j2+1] yield jj, mat_l, mat_r, vsl, vsr, j1 == j2 jj += 1 # Variance components for ky in self._vc_names: if group in self.exog_vc[ky]: if max_ix is not None and jj > max_ix: return mat = self.exog_vc[ky][group] axmat = solver(mat) yield jj, mat, mat, axmat, axmat, True jj += 1 def score(self, params, profile_fe=True): """ Returns the score vector of the profile log-likelihood. Notes ----- The score vector that is returned is computed with respect to the parameterization defined by this model instance's `use_sqrt` attribute. """ if type(params) is not MixedLMParams: params = MixedLMParams.from_packed(params, self.k_fe, self.k_re, self.use_sqrt, has_fe=False) if profile_fe: params.fe_params = self.get_fe_params(params.cov_re, params.vcomp) if self.use_sqrt: score_fe, score_re, score_vc = self.score_sqrt(params, calc_fe=not profile_fe) else: score_fe, score_re, score_vc = self.score_full(params, calc_fe=not profile_fe) if self._freepat is not None: score_fe *= self._freepat.fe_params score_re *= self._freepat.cov_re[self._freepat._ix] score_vc *= self._freepat.vcomp if profile_fe: return np.concatenate((score_re, score_vc)) else: return np.concatenate((score_fe, score_re, score_vc)) def score_full(self, params, calc_fe): """ Returns the score with respect to untransformed parameters. Calculates the score vector for the profiled log-likelihood of the mixed effects model with respect to the parameterization in which the random effects covariance matrix is represented in its full form (not using the Cholesky factor). Parameters ---------- params : MixedLMParams or array-like The parameter at which the score function is evaluated. If array-like, must contain the packed random effects parameters (cov_re and vcomp) without fe_params. calc_fe : boolean If True, calculate the score vector for the fixed effects parameters. If False, this vector is not calculated, and a vector of zeros is returned in its place. Returns ------- score_fe : array-like The score vector with respect to the fixed effects parameters. score_re : array-like The score vector with respect to the random effects parameters (excluding variance components parameters). score_vc : array-like The score vector with respect to variance components parameters. Notes ----- `score_re` is taken with respect to the parameterization in which `cov_re` is represented through its lower triangle (without taking the Cholesky square root). """ fe_params = params.fe_params cov_re = params.cov_re vcomp = params.vcomp try: cov_re_inv = np.linalg.inv(cov_re) except np.linalg.LinAlgError: cov_re_inv = None score_fe = np.zeros(self.k_fe) score_re = np.zeros(self.k_re2) score_vc = np.zeros(self.k_vc) # Handle the covariance penalty. if self.cov_pen is not None: score_re -= self.cov_pen.grad(cov_re, cov_re_inv) # Handle the fixed effects penalty. if calc_fe and (self.fe_pen is not None): score_fe -= self.fe_pen.grad(fe_params) # resid' V^{-1} resid, summed over the groups (a scalar) rvir = 0. # exog' V^{-1} resid, summed over the groups (a k_fe # dimensional vector) xtvir = 0. # exog' V^{_1} exog, summed over the groups (a k_fe x k_fe # matrix) xtvix = 0. # V^{-1} exog' dV/dQ_jj exog V^{-1}, where Q_jj is the jj^th # covariance parameter. xtax = [0.,] * (self.k_re2 + self.k_vc) # Temporary related to the gradient of log |V| dlv = np.zeros(self.k_re2 + self.k_vc) # resid' V^{-1} dV/dQ_jj V^{-1} resid (a scalar) rvavr = np.zeros(self.k_re2 + self.k_vc) for group_ix, group in enumerate(self.group_labels): vc_var = self._expand_vcomp(vcomp, group) exog = self.exog_li[group_ix] ex_r, ex2_r = self._aex_r[group_ix], self._aex_r2[group_ix] solver = _smw_solver(1., ex_r, ex2_r, cov_re_inv, 1 / vc_var) # The residuals resid = self.endog_li[group_ix] if self.k_fe > 0: expval = np.dot(exog, fe_params) resid = resid - expval if self.reml: viexog = solver(exog) xtvix += np.dot(exog.T, viexog) # Contributions to the covariance parameter gradient vir = solver(resid) for jj, matl, matr, vsl, vsr, sym in self._gen_dV_dPar(ex_r, solver, group): dlv[jj] = _dotsum(matr, vsl) if not sym: dlv[jj] += _dotsum(matl, vsr) ul = _dot(vir, matl) ur = ul.T if sym else _dot(matr.T, vir) ulr = np.dot(ul, ur) rvavr[jj] += ulr if not sym: rvavr[jj] += ulr.T if self.reml: ul = _dot(viexog.T, matl) ur = ul.T if sym else _dot(matr.T, viexog) ulr = np.dot(ul, ur) xtax[jj] += ulr if not sym: xtax[jj] += ulr.T # Contribution of log|V| to the covariance parameter # gradient. if self.k_re > 0: score_re -= 0.5 * dlv[0:self.k_re2] if self.k_vc > 0: score_vc -= 0.5 * dlv[self.k_re2:] rvir += np.dot(resid, vir) if calc_fe: xtvir += np.dot(exog.T, vir) fac = self.n_totobs if self.reml: fac -= self.k_fe if calc_fe and self.k_fe > 0: score_fe += fac * xtvir / rvir if self.k_re > 0: score_re += 0.5 * fac * rvavr[0:self.k_re2] / rvir if self.k_vc > 0: score_vc += 0.5 * fac * rvavr[self.k_re2:] / rvir if self.reml: xtvixi = np.linalg.inv(xtvix) for j in range(self.k_re2): score_re[j] += 0.5 * _dotsum(xtvixi.T, xtax[j]) for j in range(self.k_vc): score_vc[j] += 0.5 * _dotsum(xtvixi.T, xtax[self.k_re2 + j]) return score_fe, score_re, score_vc def score_sqrt(self, params, calc_fe=True): """ Returns the score with respect to transformed parameters. Calculates the score vector with respect to the parameterization in which the random effects covariance matrix is represented through its Cholesky square root. Parameters ---------- params : MixedLMParams or array-like The model parameters. If array-like must contain packed parameters that are compatible with this model instance. calc_fe : boolean If True, calculate the score vector for the fixed effects parameters. If False, this vector is not calculated, and a vector of zeros is returned in its place. Returns ------- score_fe : array-like The score vector with respect to the fixed effects parameters. score_re : array-like The score vector with respect to the random effects parameters (excluding variance components parameters). score_vc : array-like The score vector with respect to variance components parameters. """ score_fe, score_re, score_vc = self.score_full(params, calc_fe=calc_fe) params_vec = params.get_packed(use_sqrt=True, has_fe=True) score_full = np.concatenate((score_fe, score_re, score_vc)) scr = 0. for i in range(len(params_vec)): v = self._lin[i] + 2 * np.dot(self._quad[i], params_vec) scr += score_full[i] * v score_fe = scr[0:self.k_fe] score_re = scr[self.k_fe:self.k_fe + self.k_re2] score_vc = scr[self.k_fe + self.k_re2:] return score_fe, score_re, score_vc def hessian(self, params): """ Returns the model's Hessian matrix. Calculates the Hessian matrix for the linear mixed effects model with respect to the parameterization in which the covariance matrix is represented directly (without square-root transformation). Parameters ---------- params : MixedLMParams or array-like The model parameters at which the Hessian is calculated. If array-like, must contain the packed parameters in a form that is compatible with this model instance. Returns ------- hess : 2d ndarray The Hessian matrix, evaluated at `params`. """ if type(params) is not MixedLMParams: params = MixedLMParams.from_packed(params, self.k_fe, self.k_re, use_sqrt=self.use_sqrt, has_fe=True) fe_params = params.fe_params vcomp = params.vcomp cov_re = params.cov_re if self.k_re > 0: cov_re_inv = np.linalg.inv(cov_re) else: cov_re_inv = np.empty((0, 0)) # Blocks for the fixed and random effects parameters. hess_fe = 0. hess_re = np.zeros((self.k_re2 + self.k_vc, self.k_re2 + self.k_vc)) hess_fere = np.zeros((self.k_re2 + self.k_vc, self.k_fe)) fac = self.n_totobs if self.reml: fac -= self.exog.shape[1] rvir = 0. xtvix = 0. xtax = [0.,] * (self.k_re2 + self.k_vc) m = self.k_re2 + self.k_vc B = np.zeros(m) D = np.zeros((m, m)) F = [[0.] * m for k in range(m)] for k, group in enumerate(self.group_labels): vc_var = self._expand_vcomp(vcomp, group) exog = self.exog_li[k] ex_r, ex2_r = self._aex_r[k], self._aex_r2[k] solver = _smw_solver(1., ex_r, ex2_r, cov_re_inv, 1 / vc_var) # The residuals resid = self.endog_li[k] if self.k_fe > 0: expval = np.dot(exog, fe_params) resid = resid - expval viexog = solver(exog) xtvix += np.dot(exog.T, viexog) vir = solver(resid) rvir += np.dot(resid, vir) for jj1, matl1, matr1, vsl1, vsr1, sym1 in self._gen_dV_dPar(ex_r, solver, group): ul = _dot(viexog.T, matl1) ur = _dot(matr1.T, vir) hess_fere[jj1, :] += np.dot(ul, ur) if not sym1: ul = _dot(viexog.T, matr1) ur = _dot(matl1.T, vir) hess_fere[jj1, :] += np.dot(ul, ur) if self.reml: ul = _dot(viexog.T, matl1) ur = ul if sym1 else np.dot(viexog.T, matr1) ulr = _dot(ul, ur.T) xtax[jj1] += ulr if not sym1: xtax[jj1] += ulr.T ul = _dot(vir, matl1) ur = ul if sym1 else _dot(vir, matr1) B[jj1] += np.dot(ul, ur) * (1 if sym1 else 2) # V^{-1} * dV/d_theta E = [(vsl1, matr1)] if not sym1: E.append((vsr1, matl1)) for jj2, matl2, matr2, vsl2, vsr2, sym2 in self._gen_dV_dPar(ex_r, solver, group, jj1): re = sum([_multi_dot_three(matr2.T, x[0], x[1].T) for x in E]) vt = 2 * _dot(_multi_dot_three(vir[None, :], matl2, re), vir[:, None]) if not sym2: le = sum([_multi_dot_three(matl2.T, x[0], x[1].T) for x in E]) vt += 2 * _dot(_multi_dot_three(vir[None, :], matr2, le), vir[:, None]) D[jj1, jj2] += vt if jj1 != jj2: D[jj2, jj1] += vt rt = _dotsum(vsl2, re.T) / 2 if not sym2: rt += _dotsum(vsr2, le.T) / 2 hess_re[jj1, jj2] += rt if jj1 != jj2: hess_re[jj2, jj1] += rt if self.reml: ev = sum([_dot(x[0], _dot(x[1].T, viexog)) for x in E]) u1 = _dot(viexog.T, matl2) u2 = _dot(matr2.T, ev) um = np.dot(u1, u2) F[jj1][jj2] += um + um.T if not sym2: u1 = np.dot(viexog.T, matr2) u2 = np.dot(matl2.T, ev) um = np.dot(u1, u2) F[jj1][jj2] += um + um.T hess_fe -= fac * xtvix / rvir hess_re = hess_re - 0.5 * fac * (D/rvir - np.outer(B, B) / rvir**2) hess_fere = -fac * hess_fere / rvir if self.reml: QL = [np.linalg.solve(xtvix, x) for x in xtax] for j1 in range(self.k_re2 + self.k_vc): for j2 in range(j1 + 1): a = _dotsum(QL[j1].T, QL[j2]) a -= np.trace(np.linalg.solve(xtvix, F[j1][j2])) a *= 0.5 hess_re[j1, j2] += a if j1 > j2: hess_re[j2, j1] += a # Put the blocks together to get the Hessian. m = self.k_fe + self.k_re2 + self.k_vc hess = np.zeros((m, m)) hess[0:self.k_fe, 0:self.k_fe] = hess_fe hess[0:self.k_fe, self.k_fe:] = hess_fere.T hess[self.k_fe:, 0:self.k_fe] = hess_fere hess[self.k_fe:, self.k_fe:] = hess_re return hess def get_scale(self, fe_params, cov_re, vcomp): """ Returns the estimated error variance based on given estimates of the slopes and random effects covariance matrix. Parameters ---------- fe_params : array-like The regression slope estimates cov_re : 2d array-like Estimate of the random effects covariance matrix vcomp : array-like Estimate of the variance components Returns ------- scale : float The estimated error variance. """ try: cov_re_inv = np.linalg.inv(cov_re) except np.linalg.LinAlgError: cov_re_inv = None qf = 0. for group_ix, group in enumerate(self.group_labels): vc_var = self._expand_vcomp(vcomp, group) exog = self.exog_li[group_ix] ex_r, ex2_r = self._aex_r[group_ix], self._aex_r2[group_ix] solver = _smw_solver(1., ex_r, ex2_r, cov_re_inv, 1 / vc_var) # The residuals resid = self.endog_li[group_ix] if self.k_fe > 0: expval = np.dot(exog, fe_params) resid = resid - expval mat = solver(resid) qf += np.dot(resid, mat) if self.reml: qf /= (self.n_totobs - self.k_fe) else: qf /= self.n_totobs return qf def fit(self, start_params=None, reml=True, niter_sa=0, do_cg=True, fe_pen=None, cov_pen=None, free=None, full_output=False, method='bfgs', **kwargs): """ Fit a linear mixed model to the data. Parameters ---------- start_params: array-like or MixedLMParams Starting values for the profile log-likeihood. If not a `MixedLMParams` instance, this should be an array containing the packed parameters for the profile log-likelihood, including the fixed effects parameters. reml : bool If true, fit according to the REML likelihood, else fit the standard likelihood using ML. cov_pen : CovariancePenalty object A penalty for the random effects covariance matrix fe_pen : Penalty object A penalty on the fixed effects free : MixedLMParams object If not `None`, this is a mask that allows parameters to be held fixed at specified values. A 1 indicates that the correspondinig parameter is estimated, a 0 indicates that it is fixed at its starting value. Setting the `cov_re` component to the identity matrix fits a model with independent random effects. Note that some optimization methods do not respect this contraint (bfgs and lbfgs both work). full_output : bool If true, attach iteration history to results method : string Optimization method. Returns ------- A MixedLMResults instance. """ _allowed_kwargs = ['gtol', 'maxiter'] for x in kwargs.keys(): if x not in _allowed_kwargs: raise ValueError("Argument %s not allowed for MixedLM.fit" % x) if method.lower() in ["newton", "ncg"]: raise ValueError("method %s not available for MixedLM" % method) self.reml = reml self.cov_pen = cov_pen self.fe_pen = fe_pen self._freepat = free if full_output: hist = [] else: hist = None success = False if start_params is None: params = MixedLMParams(self.k_fe, self.k_re, self.k_vc) params.fe_params = np.zeros(self.k_fe) params.cov_re = np.eye(self.k_re) params.vcomp = np.ones(self.k_vc) else: if isinstance(start_params, MixedLMParams): params = start_params else: # It's a packed array if len(start_params) == self.k_fe + self.k_re2 + self.k_vc: params = MixedLMParams.from_packed(start_params, self.k_fe, self.k_re, self.use_sqrt, has_fe=True) elif len(start_params) == self.k_re2 + self.k_vc: params = MixedLMParams.from_packed(start_params, self.k_fe, self.k_re, self.use_sqrt, has_fe=False) else: raise ValueError("invalid start_params") if do_cg: kwargs["retall"] = hist is not None if "disp" not in kwargs: kwargs["disp"] = False packed = params.get_packed(use_sqrt=self.use_sqrt, has_fe=False) # It seems that the optimizers sometimes stop too soon, so # we run a few times. for rep in range(5): rslt = super(MixedLM, self).fit(start_params=packed, skip_hessian=True, method=method, **kwargs) if rslt.mle_retvals['converged']: break packed = rslt.params # The optimization succeeded params = np.atleast_1d(rslt.params) if hist is not None: hist.append(rslt.mle_retvals) converged = rslt.mle_retvals['converged'] if not converged: msg = "Gradient optimization failed." warnings.warn(msg, ConvergenceWarning) # Convert to the final parameterization (i.e. undo the square # root transform of the covariance matrix, and the profiling # over the error variance). params = MixedLMParams.from_packed(params, self.k_fe, self.k_re, use_sqrt=self.use_sqrt, has_fe=False) cov_re_unscaled = params.cov_re vcomp_unscaled = params.vcomp fe_params = self.get_fe_params(cov_re_unscaled, vcomp_unscaled) params.fe_params = fe_params scale = self.get_scale(fe_params, cov_re_unscaled, vcomp_unscaled) cov_re = scale * cov_re_unscaled vcomp = scale * vcomp_unscaled if (((self.k_re > 0) and (np.min(np.abs(np.diag(cov_re))) < 0.01)) or ((self.k_vc > 0) and (np.min(np.abs(vcomp)) < 0.01))): msg = "The MLE may be on the boundary of the parameter space." warnings.warn(msg, ConvergenceWarning) # Compute the Hessian at the MLE. Note that this is the # Hessian with respect to the random effects covariance matrix # (not its square root). It is used for obtaining standard # errors, not for optimization. hess = self.hessian(params) hess_diag = np.diag(hess) if free is not None: pcov = np.zeros_like(hess) pat = self._freepat.get_packed(use_sqrt=False, has_fe=True) ii = np.flatnonzero(pat) hess_diag = hess_diag[ii] if len(ii) > 0: hess1 = hess[np.ix_(ii, ii)] pcov[np.ix_(ii, ii)] = np.linalg.inv(-hess1) else: pcov = np.linalg.inv(-hess) if np.any(hess_diag >= 0): msg = "The Hessian matrix at the estimated parameter values is not positive definite." warnings.warn(msg, ConvergenceWarning) # Prepare a results class instance params_packed = params.get_packed(use_sqrt=False, has_fe=True) results = MixedLMResults(self, params_packed, pcov / scale) results.params_object = params results.fe_params = fe_params results.cov_re = cov_re results.vcomp = vcomp results.scale = scale results.cov_re_unscaled = cov_re_unscaled results.method = "REML" if self.reml else "ML" results.converged = converged results.hist = hist results.reml = self.reml results.cov_pen = self.cov_pen results.k_fe = self.k_fe results.k_re = self.k_re results.k_re2 = self.k_re2 results.k_vc = self.k_vc results.use_sqrt = self.use_sqrt results.freepat = self._freepat return MixedLMResultsWrapper(results) class MixedLMResults(base.LikelihoodModelResults, base.ResultMixin): ''' Class to contain results of fitting a linear mixed effects model. MixedLMResults inherits from statsmodels.LikelihoodModelResults Parameters ---------- See statsmodels.LikelihoodModelResults Returns ------- **Attributes** model : class instance Pointer to PHreg model instance that called fit. normalized_cov_params : array The sampling covariance matrix of the estimates fe_params : array The fitted fixed-effects coefficients re_params : array The fitted random-effects covariance matrix bse_fe : array The standard errors of the fitted fixed effects coefficients bse_re : array The standard errors of the fitted random effects covariance matrix See Also -------- statsmodels.LikelihoodModelResults ''' def __init__(self, model, params, cov_params): super(MixedLMResults, self).__init__(model, params, normalized_cov_params=cov_params) self.nobs = self.model.nobs self.df_resid = self.nobs - np_matrix_rank(self.model.exog) @cache_readonly def fittedvalues(self): """ Returns the fitted values for the model. The fitted values reflect the mean structure specified by the fixed effects and the predicted random effects. """ fit = np.dot(self.model.exog, self.fe_params) re = self.random_effects for group_ix, group in enumerate(self.model.group_labels): ix = self.model.row_indices[group] mat = [self.model.exog_re_li[group_ix]] for c in self.model._vc_names: if group in self.model.exog_vc[c]: mat.append(self.model.exog_vc[c][group]) mat = np.concatenate(mat, axis=1) fit[ix] += np.dot(mat, re[group]) return fit @cache_readonly def resid(self): """ Returns the residuals for the model. The residuals reflect the mean structure specified by the fixed effects and the predicted random effects. """ return self.model.endog - self.fittedvalues @cache_readonly def bse_fe(self): """ Returns the standard errors of the fixed effect regression coefficients. """ p = self.model.exog.shape[1] return np.sqrt(np.diag(self.cov_params())[0:p]) @cache_readonly def bse_re(self): """ Returns the standard errors of the variance parameters. Note that the sampling distribution of variance parameters is strongly skewed unless the sample size is large, so these standard errors may not give meaningful confidence intervals of p-values if used in the usual way. """ p = self.model.exog.shape[1] return np.sqrt(self.scale * np.diag(self.cov_params())[p:]) def _expand_re_names(self, group): names = list(self.model.data.exog_re_names) for v in self.model._vc_names: if group in self.model.exog_vc[v]: ix = range(self.model.exog_vc[v][group].shape[1]) na = ["%s[%d]" % (v, j + 1) for j in ix] names.extend(na) return names @cache_readonly def random_effects(self): """ The conditional means of random effects given the data. Returns ------- random_effects : dict A dictionary mapping the distinct `group` values to the means of the random effects for the group. """ try: cov_re_inv = np.linalg.inv(self.cov_re) except np.linalg.LinAlgError: raise ValueError("Cannot predict random effects from singular covariance structure.") vcomp = self.vcomp k_re = self.k_re ranef_dict = {} for group_ix, group in enumerate(self.model.group_labels): endog = self.model.endog_li[group_ix] exog = self.model.exog_li[group_ix] ex_r, ex2_r = self.model._aex_r[group_ix], self.model._aex_r2[group_ix] vc_var = self.model._expand_vcomp(vcomp, group) # Get the residuals relative to fixed effects resid = endog if self.k_fe > 0: expval = np.dot(exog, self.fe_params) resid = resid - expval solver = _smw_solver(self.scale, ex_r, ex2_r, cov_re_inv, 1 / vc_var) vir = solver(resid) xtvir = _dot(ex_r.T, vir) xtvir[0:k_re] = np.dot(self.cov_re, xtvir[0:k_re]) xtvir[k_re:] *= vc_var ranef_dict[group] = pd.Series(xtvir, index=self._expand_re_names(group)) return ranef_dict @cache_readonly def random_effects_cov(self): """ Returns the conditional covariance matrix of the random effects for each group given the data. Returns ------- random_effects_cov : dict A dictionary mapping the distinct values of the `group` variable to the conditional covariance matrix of the random effects given the data. """ try: cov_re_inv = np.linalg.inv(self.cov_re) except np.linalg.LinAlgError: cov_re_inv = None vcomp = self.vcomp ranef_dict = {} for group_ix in range(self.model.n_groups): ex_r, ex2_r = self.model._aex_r[group_ix], self.model._aex_r2[group_ix] label = self.model.group_labels[group_ix] vc_var = self.model._expand_vcomp(vcomp, group_ix) solver = _smw_solver(self.scale, ex_r, ex2_r, cov_re_inv, 1 / vc_var) n = ex_r.shape[0] m = self.cov_re.shape[0] mat1 = np.empty((n, m)) mat1[:, 0:m] = np.dot(ex_r[:, 0:m], self.cov_re) mat1[:, m:] = np.dot(ex_r[:, m:], np.diag(vc_var)) mat2 = solver(mat1) mat2 = np.dot(mat1.T, mat2) v = -mat2 v[0:m, 0:m] += self.cov_re ix = np.arange(m, v.shape[0]) v[ix, ix] += vc_var na = self._expand_re_names(group_ix) v = pd.DataFrame(v, index=na, columns=na) ranef_dict[label] = v return ranef_dict # Need to override since t-tests are only used for fixed effects parameters. def t_test(self, r_matrix, scale=None, use_t=None): """ Compute a t-test for a each linear hypothesis of the form Rb = q Parameters ---------- r_matrix : array-like If an array is given, a p x k 2d array or length k 1d array specifying the linear restrictions. It is assumed that the linear combination is equal to zero. scale : float, optional An optional `scale` to use. Default is the scale specified by the model fit. use_t : bool, optional If use_t is None, then the default of the model is used. If use_t is True, then the p-values are based on the t distribution. If use_t is False, then the p-values are based on the normal distribution. Returns ------- res : ContrastResults instance The results for the test are attributes of this results instance. The available results have the same elements as the parameter table in `summary()`. """ if r_matrix.shape[1] != self.k_fe: raise ValueError("r_matrix for t-test should have %d columns" % self.k_fe) d = self.k_re2 + self.k_vc z0 = np.zeros((r_matrix.shape[0], d)) r_matrix = np.concatenate((r_matrix, z0), axis=1) tst_rslt = super(MixedLMResults, self).t_test(r_matrix, scale=scale, use_t=use_t) return tst_rslt def summary(self, yname=None, xname_fe=None, xname_re=None, title=None, alpha=.05): """ Summarize the mixed model regression results. Parameters ----------- yname : string, optional Default is `y` xname_fe : list of strings, optional Fixed effects covariate names xname_re : list of strings, optional Random effects covariate names title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : class to hold summary results """ from statsmodels.iolib import summary2 smry = summary2.Summary() info = OrderedDict() info["Model:"] = "MixedLM" if yname is None: yname = self.model.endog_names info["No. Observations:"] = str(self.model.n_totobs) info["No. Groups:"] = str(self.model.n_groups) gs = np.array([len(x) for x in self.model.endog_li]) info["Min. group size:"] = "%.0f" % min(gs) info["Max. group size:"] = "%.0f" % max(gs) info["Mean group size:"] = "%.1f" % np.mean(gs) info["Dependent Variable:"] = yname info["Method:"] = self.method info["Scale:"] = self.scale info["Likelihood:"] = self.llf info["Converged:"] = "Yes" if self.converged else "No" smry.add_dict(info) smry.add_title("Mixed Linear Model Regression Results") float_fmt = "%.3f" sdf = np.nan * np.ones((self.k_fe + self.k_re2 + self.k_vc, 6)) # Coefficient estimates sdf[0:self.k_fe, 0] = self.fe_params # Standard errors sdf[0:self.k_fe, 1] = np.sqrt(np.diag(self.cov_params()[0:self.k_fe])) # Z-scores sdf[0:self.k_fe, 2] = sdf[0:self.k_fe, 0] / sdf[0:self.k_fe, 1] # p-values sdf[0:self.k_fe, 3] = 2 * norm.cdf(-np.abs(sdf[0:self.k_fe, 2])) # Confidence intervals qm = -norm.ppf(alpha / 2) sdf[0:self.k_fe, 4] = sdf[0:self.k_fe, 0] - qm * sdf[0:self.k_fe, 1] sdf[0:self.k_fe, 5] = sdf[0:self.k_fe, 0] + qm * sdf[0:self.k_fe, 1] # All random effects variances and covariances jj = self.k_fe for i in range(self.k_re): for j in range(i + 1): sdf[jj, 0] = self.cov_re[i, j] sdf[jj, 1] = np.sqrt(self.scale) * self.bse[jj] jj += 1 # Variance components for i in range(self.k_vc): sdf[jj, 0] = self.vcomp[i] sdf[jj, 1] = np.sqrt(self.scale) * self.bse[jj] jj += 1 sdf = pd.DataFrame(index=self.model.data.param_names, data=sdf) sdf.columns = ['Coef.', 'Std.Err.', 'z', 'P>|z|', '[' + str(alpha/2), str(1-alpha/2) + ']'] for col in sdf.columns: sdf[col] = [float_fmt % x if np.isfinite(x) else "" for x in sdf[col]] smry.add_df(sdf, align='r') return smry @cache_readonly def llf(self): return self.model.loglike(self.params_object, profile_fe=False) @cache_readonly def aic(self): if self.reml: return np.nan if self.freepat is not None: df = self.freepat.get_packed(use_sqrt=False, has_fe=True).sum() + 1 else: df = self.params.size + 1 return -2 * (self.llf - df) @cache_readonly def bic(self): if self.reml: return np.nan if self.freepat is not None: df = self.freepat.get_packed(use_sqrt=False, has_fe=True).sum() + 1 else: df = self.params.size + 1 return -2 * self.llf + np.log(self.nobs) * df def profile_re(self, re_ix, vtype, num_low=5, dist_low=1., num_high=5, dist_high=1.): """ Profile-likelihood inference for variance parameters. Parameters ---------- re_ix : integer If vtype is `re`, this value is the index of the variance parameter for which to construct a profile likelihood. If `vtype` is 'vc' then `re_ix` is the name of the variance parameter to be profiled. vtype : string Either 're' or 'vc', depending on whether the profile analysis is for a random effect or a variance component. num_low : integer The number of points at which to calculate the likelihood below the MLE of the parameter of interest. dist_low : float The distance below the MLE of the parameter of interest to begin calculating points on the profile likelihood. num_high : integer The number of points at which to calculate the likelihood abov the MLE of the parameter of interest. dist_high : float The distance above the MLE of the parameter of interest to begin calculating points on the profile likelihood. Returns ------- An array with two columns. The first column contains the values to which the parameter of interest is constrained. The second column contains the corresponding likelihood values. Notes ----- Only variance parameters can be profiled. """ pmodel = self.model k_fe = pmodel.k_fe k_re = pmodel.k_re k_vc = pmodel.k_vc endog, exog, groups = pmodel.endog, pmodel.exog, pmodel.groups # Need to permute the columns of the random effects design # matrix so that the profiled variable is in the first column. if vtype == 're': ix = np.arange(k_re) ix[0] = re_ix ix[re_ix] = 0 exog_re = pmodel.exog_re.copy()[:, ix] # Permute the covariance structure to match the permuted # design matrix. params = self.params_object.copy() cov_re_unscaled = params.cov_re cov_re_unscaled = cov_re_unscaled[np.ix_(ix, ix)] params.cov_re = cov_re_unscaled ru0 = cov_re_unscaled[0, 0] # Convert dist_low and dist_high to the profile # parameterization cov_re = self.scale * cov_re_unscaled low = (cov_re[0, 0] - dist_low) / self.scale high = (cov_re[0, 0] + dist_high) / self.scale elif vtype == 'vc': re_ix = self.model._vc_names.index(re_ix) params = self.params_object.copy() vcomp = self.vcomp low = (vcomp[re_ix] - dist_low) / self.scale high = (vcomp[re_ix] + dist_high) / self.scale ru0 = vcomp[re_ix] / self.scale # Define the sequence of values to which the parameter of # interest will be constrained. if low <= 0: raise ValueError("dist_low is too large and would result in a " "negative variance. Try a smaller value.") left = np.linspace(low, ru0, num_low + 1) right = np.linspace(ru0, high, num_high+1)[1:] rvalues = np.concatenate((left, right)) # Indicators of which parameters are free and fixed. free = MixedLMParams(k_fe, k_re, k_vc) if self.freepat is None: free.fe_params = np.ones(k_fe) vcomp = np.ones(k_vc) mat = np.ones((k_re, k_re)) else: # If a freepat already has been specified, we add the # constraint to it. free.fe_params = self.freepat.fe_params vcomp = self.freepat.vcomp mat = self.freepat.cov_re if vtype == 're': mat = mat[np.ix_(ix, ix)] if vtype == 're': mat[0, 0] = 0 else: vcomp[re_ix] = 0 free.cov_re = mat free.vcomp = vcomp klass = self.model.__class__ init_kwargs = pmodel._get_init_kwds() if vtype == 're': init_kwargs['exog_re'] = exog_re likev = [] for x in rvalues: model = klass(endog, exog, **init_kwargs) if vtype == 're': cov_re = params.cov_re.copy() cov_re[0, 0] = x params.cov_re = cov_re else: params.vcomp[re_ix] = x # TODO should use fit_kwargs rslt = model.fit(start_params=params, free=free, reml=self.reml, cov_pen=self.cov_pen)._results likev.append([x * rslt.scale, rslt.llf]) likev = np.asarray(likev) return likev class MixedLMResultsWrapper(base.LikelihoodResultsWrapper): _attrs = {'bse_re': ('generic_columns', 'exog_re_names_full'), 'fe_params': ('generic_columns', 'xnames'), 'bse_fe': ('generic_columns', 'xnames'), 'cov_re': ('generic_columns_2d', 'exog_re_names'), 'cov_re_unscaled': ('generic_columns_2d', 'exog_re_names'), } _upstream_attrs = base.LikelihoodResultsWrapper._wrap_attrs _wrap_attrs = base.wrap.union_dicts(_attrs, _upstream_attrs) _methods = {} _upstream_methods = base.LikelihoodResultsWrapper._wrap_methods _wrap_methods = base.wrap.union_dicts(_methods, _upstream_methods)
bsd-3-clause
phobson/wqio
wqio/tests/test_viz.py
2
22176
import pytest import numpy.testing as nptest import numpy import pandas from matplotlib import pyplot import seaborn from wqio import viz from wqio import utils from wqio.tests import helpers BASELINE_IMAGES = "_baseline_images/viz_tests" TOLERANCE = helpers.get_img_tolerance() seaborn.set(style="ticks") @pytest.fixture def plot_data(): data = numpy.array( [ 3.113, 3.606, 4.046, 4.046, 4.710, 6.140, 6.978, 2.000, 4.200, 4.620, 5.570, 5.660, 5.860, 6.650, 6.780, 6.790, 7.500, 7.500, 7.500, 8.630, 8.710, 8.990, 9.850, 10.820, 11.250, 11.250, 12.200, 14.920, 16.770, 17.810, 19.160, 19.190, 19.640, 20.180, 22.970, ] ) return data @pytest.fixture def boxplot_data(plot_data): bs = [ { "cihi": 10.82, "cilo": 6.1399999999999997, "fliers": numpy.array([22.97]), "iqr": 6.1099999999999994, "mean": 9.5888285714285733, "med": 7.5, "q1": 5.6150000000000002, "q3": 11.725, "whishi": 20.18, "whislo": 2.0, } ] return bs @pytest.fixture def whisk_flier_data(): data = [ 2.20e-01, 2.70e-01, 3.08e-01, 3.20e-01, 4.10e-01, 4.44e-01, 4.82e-01, 5.46e-01, 6.05e-01, 6.61e-01, 7.16e-01, 7.70e-01, 8.24e-01, 1.00e-03, 4.90e-02, 5.60e-02, 1.40e-01, 1.69e-01, 1.83e-01, 2.06e-01, 2.10e-01, 2.13e-01, 2.86e-01, 3.16e-01, 3.40e-01, 3.57e-01, 3.71e-01, 3.72e-01, 3.78e-01, 3.81e-01, 3.86e-01, 3.89e-01, 3.90e-01, 3.93e-01, 4.00e-01, 4.03e-01, 4.10e-01, 4.10e-01, 4.29e-01, 4.40e-01, 4.40e-01, 4.40e-01, 4.46e-01, 4.46e-01, 4.50e-01, 4.51e-01, 4.52e-01, 4.56e-01, 4.60e-01, 4.66e-01, 4.72e-01, 4.78e-01, 4.81e-01, 4.83e-01, 4.86e-01, 4.89e-01, 4.98e-01, 5.00e-01, 5.00e-01, 5.03e-01, 5.18e-01, 5.32e-01, 5.37e-01, 5.38e-01, 5.68e-01, 5.69e-01, 5.78e-01, 5.88e-01, 5.94e-01, 5.96e-01, 6.02e-01, 6.10e-01, 6.10e-01, 6.10e-01, 6.19e-01, 6.20e-01, 6.20e-01, 6.28e-01, 6.38e-01, 6.39e-01, 6.42e-01, 6.61e-01, 6.71e-01, 6.75e-01, 6.80e-01, 6.96e-01, 7.00e-01, 7.01e-01, 7.09e-01, 7.16e-01, 7.17e-01, 7.30e-01, 7.62e-01, 7.64e-01, 7.69e-01, 7.70e-01, 7.77e-01, 7.80e-01, 8.06e-01, 8.10e-01, 8.23e-01, 8.30e-01, 8.50e-01, 8.50e-01, 8.56e-01, 8.56e-01, 8.80e-01, 8.80e-01, 8.93e-01, 8.96e-01, 8.97e-01, 8.99e-01, 9.22e-01, 9.28e-01, 9.30e-01, 9.64e-01, 9.65e-01, 9.76e-01, 9.79e-01, 9.90e-01, 9.99e-01, 1.00e00, 1.00e00, 1.01e00, 1.02e00, 1.03e00, 1.03e00, 1.03e00, 1.04e00, 1.05e00, 1.05e00, 1.05e00, 1.06e00, 1.07e00, 1.08e00, 1.08e00, 1.10e00, 1.10e00, 1.11e00, 1.12e00, 1.12e00, 1.13e00, 1.14e00, 1.14e00, 1.14e00, 1.15e00, 1.16e00, 1.17e00, 1.17e00, 1.17e00, 1.19e00, 1.19e00, 1.20e00, 1.20e00, 1.21e00, 1.22e00, 1.22e00, 1.23e00, 1.23e00, 1.23e00, 1.25e00, 1.25e00, 1.26e00, 1.26e00, 1.27e00, 1.27e00, 1.28e00, 1.29e00, 1.29e00, 1.30e00, 1.30e00, 1.30e00, 1.31e00, 1.31e00, 1.31e00, 1.32e00, 1.33e00, 1.34e00, 1.35e00, 1.35e00, 1.35e00, 1.36e00, 1.36e00, 1.36e00, 1.36e00, 1.37e00, 1.38e00, 1.39e00, 1.39e00, 1.40e00, 1.41e00, 1.43e00, 1.44e00, 1.44e00, 1.47e00, 1.47e00, 1.48e00, 1.51e00, 1.51e00, 1.53e00, 1.55e00, 1.55e00, 1.55e00, 1.57e00, 1.57e00, 1.57e00, 1.59e00, 1.59e00, 1.60e00, 1.60e00, 1.61e00, 1.62e00, 1.62e00, 1.62e00, 1.62e00, 1.63e00, 1.63e00, 1.63e00, 1.64e00, 1.66e00, 1.68e00, 1.68e00, 1.68e00, 1.68e00, 1.70e00, 1.70e00, 1.71e00, 1.71e00, 1.71e00, 1.74e00, 1.75e00, 1.75e00, 1.75e00, 1.76e00, 1.76e00, 1.77e00, 1.77e00, 1.77e00, 1.78e00, 1.78e00, 1.79e00, 1.79e00, 1.80e00, 1.81e00, 1.81e00, 1.82e00, 1.82e00, 1.82e00, 1.83e00, 1.85e00, 1.85e00, 1.85e00, 1.85e00, 1.86e00, 1.86e00, 1.86e00, 1.86e00, 1.87e00, 1.87e00, 1.89e00, 1.90e00, 1.91e00, 1.92e00, 1.92e00, 1.92e00, 1.94e00, 1.95e00, 1.95e00, 1.95e00, 1.96e00, 1.96e00, 1.97e00, 1.97e00, 1.97e00, 1.97e00, 1.98e00, 1.99e00, 1.99e00, 1.99e00, 2.00e00, 2.00e00, 2.00e00, 2.01e00, 2.01e00, 2.01e00, 2.02e00, 2.04e00, 2.05e00, 2.06e00, 2.06e00, 2.06e00, 2.07e00, 2.08e00, 2.09e00, 2.09e00, 2.10e00, 2.10e00, 2.11e00, 2.11e00, 2.12e00, 2.12e00, 2.12e00, 2.13e00, 2.13e00, 2.13e00, 2.14e00, 2.14e00, 2.14e00, 2.14e00, 2.14e00, 2.15e00, 2.16e00, 2.17e00, 2.18e00, 2.18e00, 2.18e00, 2.19e00, 2.19e00, 2.19e00, 2.19e00, 2.19e00, 2.21e00, 2.23e00, 2.23e00, 2.23e00, 2.25e00, 2.25e00, 2.25e00, 2.25e00, 2.26e00, 2.26e00, 2.26e00, 2.26e00, 2.26e00, 2.27e00, 2.27e00, 2.28e00, 2.28e00, 2.28e00, 2.29e00, 2.29e00, 2.29e00, 2.30e00, 2.31e00, 2.32e00, 2.33e00, 2.33e00, 2.33e00, 2.33e00, 2.34e00, 2.36e00, 2.38e00, 2.38e00, 2.39e00, 2.39e00, 2.39e00, 2.41e00, 2.42e00, 2.43e00, 2.45e00, 2.45e00, 2.47e00, 2.48e00, 2.49e00, 2.49e00, 2.49e00, 2.50e00, 2.51e00, 2.51e00, 2.52e00, 2.53e00, 2.53e00, 2.54e00, 2.54e00, 2.56e00, 2.58e00, 2.59e00, 2.59e00, 2.60e00, 2.61e00, 2.61e00, 2.61e00, 2.62e00, 2.62e00, 2.63e00, 2.65e00, 2.65e00, 2.66e00, 2.66e00, 2.68e00, 2.69e00, 2.69e00, 2.70e00, 2.72e00, 2.72e00, 2.73e00, 2.75e00, 2.77e00, 2.78e00, 2.79e00, 2.81e00, 2.81e00, 2.82e00, 2.84e00, 2.84e00, 2.85e00, 2.85e00, 2.86e00, 2.86e00, 2.88e00, 2.92e00, 2.93e00, 2.93e00, 2.95e00, 2.96e00, 2.96e00, 2.99e00, 3.00e00, 3.01e00, 3.02e00, 3.03e00, 3.03e00, 3.14e00, 3.15e00, 3.16e00, 3.17e00, 3.17e00, 3.18e00, 3.18e00, 3.19e00, 3.20e00, 3.22e00, 3.24e00, 3.25e00, 3.29e00, 3.31e00, 3.32e00, 3.32e00, 3.34e00, 3.35e00, 3.36e00, 3.38e00, 3.44e00, 3.45e00, 3.46e00, 3.48e00, 3.49e00, 3.53e00, 3.59e00, 3.63e00, 3.70e00, 3.70e00, 3.76e00, 3.80e00, 3.80e00, 3.80e00, 3.83e00, 3.84e00, 3.88e00, 3.90e00, 3.91e00, 3.96e00, 3.97e00, 3.97e00, 4.02e00, 4.03e00, 4.06e00, 4.12e00, 4.19e00, 4.21e00, 4.53e00, 4.56e00, 4.61e00, 4.62e00, 4.73e00, 5.13e00, 5.21e00, 5.40e00, 5.98e00, 6.12e00, 6.94e00, 7.38e00, 7.56e00, 8.06e00, 1.38e01, 1.51e01, 1.82e01, ] return data @pytest.fixture @helpers.seed def jp_data(): pyplot.rcdefaults() N = 37 df = pandas.DataFrame( { "A": numpy.random.normal(size=N), "B": numpy.random.lognormal(mean=0.25, sigma=1.25, size=N), "C": numpy.random.lognormal(mean=1.25, sigma=0.75, size=N), } ) return df @pytest.fixture @helpers.seed def cat_hist_data(): N = 100 years = [2011, 2012, 2013, 2014] df = pandas.DataFrame( { "depth": numpy.random.uniform(low=0.2, high=39, size=N), "year": numpy.random.choice(years, size=N), "has_outflow": numpy.random.choice([False, True], size=N), } ) return df @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_rotateTickLabels_xaxis(): fig, ax = pyplot.subplots() ax.set_xticks([1, 2, 3]) ax.set_xticklabels(["AAA", "BBB", "CCC"]) viz.rotateTickLabels(ax, 60, "x") return fig @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_rotateTickLabels_yaxis(): fig, ax = pyplot.subplots() ax.set_yticks([1, 2, 3]) ax.set_yticklabels(["AAA", "BBB", "CCC"]) viz.rotateTickLabels(ax, -30, "y") return fig @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_rotateTickLabels_both(): fig, ax = pyplot.subplots() ax.set_xticks([1, 2, 3]) ax.set_xticklabels(["XXX", "YYY", "ZZZ"]) ax.set_yticks([1, 2, 3]) ax.set_yticklabels(["AAA", "BBB", "CCC"]) viz.rotateTickLabels(ax, 45, "both") return fig @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_log_formatter(): fig, ax = pyplot.subplots() ax.plot([1, 5], [0.0005, 5e6]) ax.set_yscale("log") ax.set_ylim([0.0001, 1e7]) ax.yaxis.set_major_formatter(viz.log_formatter()) return fig @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_log_formatter_alt(): fig, ax = pyplot.subplots() ax.plot([1, 5], [0.0005, 5e6]) ax.set_yscale("log") ax.set_ylim([0.0001, 1e7]) ax.yaxis.set_major_formatter(viz.log_formatter(use_1x=False)) return fig @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_log_formatter_alt_2(): fig, (ax1, ax2) = pyplot.subplots(ncols=2) ax1.set_yscale("log") ax1.set_ylim((1e-4, 1e5)) ax1.yaxis.set_major_formatter(viz.log_formatter(threshold=4)) ax2.set_yscale("log") ax2.set_ylim((1e-7, 1e5)) ax2.yaxis.set_major_formatter(viz.log_formatter(threshold=4, use_1x=False)) return fig @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_gridlines_basic(plot_data): fig, ax = pyplot.subplots() ax.plot(plot_data) viz.gridlines(ax, "xlabel", "ylabel") return fig @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_gridlines_ylog(plot_data): fig, ax = pyplot.subplots() ax.plot(plot_data) viz.gridlines(ax, "xlabel", "ylabel", yscale="log") return fig @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_gridlines_ylog_noyminor(plot_data): fig, ax = pyplot.subplots() ax.plot(plot_data) viz.gridlines(ax, "xlabel", "ylabel", yscale="log", yminor=False) return fig @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_one2one(): fig, ax = pyplot.subplots() ax.set_xlim([-2, 5]) ax.set_ylim([-3, 3]) viz.one2one(ax, label="Equality", lw=5, ls="--") ax.legend() return fig def test_jointplot_defaultlabels(jp_data): jg1 = viz.jointplot(x="B", y="C", data=jp_data, one2one=False, color="b") assert jg1.ax_joint.get_xlabel() == "B" assert jg1.ax_joint.get_ylabel() == "C" nptest.assert_array_equal(numpy.round(jg1.ax_joint.get_xlim()), [0, 17]) nptest.assert_array_equal(numpy.round(jg1.ax_joint.get_ylim()), [0, 23]) return jg1.fig def test_jointplot_xlabeled(jp_data): jg2 = viz.jointplot( x="B", y="C", data=jp_data, one2one=False, color="g", xlabel="Quantity B" ) assert jg2.ax_joint.get_xlabel() == "Quantity B" return jg2.fig def test_jointplot_ylabeled(jp_data): jg3 = viz.jointplot( x="B", y="C", data=jp_data, one2one=False, color="r", ylabel="Quantity C" ) assert jg3.ax_joint.get_ylabel() == "Quantity C" return jg3.fig def test_jointplot_bothlabeled(jp_data): jg4 = viz.jointplot( x="B", y="C", data=jp_data, one2one=False, color="k", xlabel="Quantity B", ylabel="Quantity C", ) assert jg4.ax_joint.get_xlabel() == "Quantity B" assert jg4.ax_joint.get_ylabel() == "Quantity C" return jg4.fig def test_jointplot_zerominFalse(jp_data): jg1 = viz.jointplot(x="A", y="C", data=jp_data, zeromin=False, one2one=False) nptest.assert_array_equal(numpy.round(jg1.ax_joint.get_xlim()), [-4, 4]) nptest.assert_array_equal(numpy.round(jg1.ax_joint.get_ylim()), [-7, 23]) return jg1.fig def test_jointplot_one2one(jp_data): jg1 = viz.jointplot(x="B", y="C", data=jp_data, one2one=True) nptest.assert_array_equal(numpy.round(jg1.ax_joint.get_xlim()), [0, 23]) nptest.assert_array_equal(numpy.round(jg1.ax_joint.get_ylim()), [0, 23]) return jg1.fig def test_jointplot_one2one_zerominFalse(jp_data): jg1 = viz.jointplot(x="A", y="C", data=jp_data, one2one=True, zeromin=False) nptest.assert_array_equal(numpy.round(jg1.ax_joint.get_xlim()), [-7, 23]) nptest.assert_array_equal(numpy.round(jg1.ax_joint.get_ylim()), [-7, 23]) return jg1.fig @pytest.mark.parametrize( ("case", "xform_in", "xform_out"), [ ("linear", utils.no_op, utils.no_op), ("natlog", numpy.log, numpy.exp), ("log10", numpy.log10, lambda x: 10 ** x), ], ) @pytest.mark.parametrize("key", ["whishi", "whislo", "fliers"]) def test_whiskers_and_fliers(whisk_flier_data, case, xform_in, xform_out, key): expected_results = { "linear": { "whishi": 4.62, "whislo": 0.00111, "fliers": numpy.array( [ 4.730, 5.130, 5.210, 5.400, 5.980, 6.120, 6.940, 7.380, 7.560, 8.060, 13.800, 15.100, 18.200, ] ), }, "natlog": { "whishi": 8.060, "whislo": 0.2700, "fliers": numpy.array( [ 2.200e-01, 1.000e-03, 4.900e-02, 5.600e-02, 1.400e-01, 1.690e-01, 1.830e-01, 2.060e-01, 2.100e-01, 2.130e-01, 1.380e01, 1.510e01, 1.820e01, ] ), }, "log10": { "whishi": 8.060, "whislo": 0.2700, "fliers": numpy.array( [ 2.200e-01, 1.000e-03, 4.900e-02, 5.600e-02, 1.400e-01, 1.690e-01, 1.830e-01, 2.060e-01, 2.100e-01, 2.130e-01, 1.380e01, 1.510e01, 1.820e01, ] ), }, } q1 = numpy.percentile(whisk_flier_data, 25) q3 = numpy.percentile(whisk_flier_data, 75) result = viz.whiskers_and_fliers( xform_in(whisk_flier_data), xform_in(q1), xform_in(q3), transformout=xform_out ) expected = expected_results[case] nptest.assert_array_almost_equal(result[key], expected[key], decimal=3) @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_boxplot_basic(boxplot_data): fig, ax = pyplot.subplots() viz.boxplot(boxplot_data, ax=ax, shownotches=True, patch_artist=False) ax.set_xlim((0, 2)) return fig @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_boxplot_with_mean(boxplot_data): fig, ax = pyplot.subplots() viz.boxplot( boxplot_data, ax=ax, shownotches=True, patch_artist=True, marker="^", color="red", showmean=True, ) ax.set_xlim((0, 2)) return fig @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_probplot_prob(plot_data): fig, ax = pyplot.subplots() fig = viz.probplot(plot_data, ax=ax, xlabel="Test xlabel") assert isinstance(fig, pyplot.Figure) return fig @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_probplot_qq(plot_data): fig, ax = pyplot.subplots() fig = viz.probplot( plot_data, ax=ax, axtype="qq", ylabel="Test label", scatter_kws=dict(color="r") ) return fig @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_probplot_pp(plot_data): fig, ax = pyplot.subplots() scatter_kws = dict( color="b", linestyle="--", markeredgecolor="g", markerfacecolor="none" ) fig = viz.probplot( plot_data, ax=ax, axtype="pp", yscale="linear", xlabel="test x", ylabel="test y", scatter_kws=scatter_kws, ) return fig @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_probplot_prob_bestfit(plot_data): fig, ax = pyplot.subplots() fig = viz.probplot(plot_data, ax=ax, xlabel="Test xlabel", bestfit=True) assert isinstance(fig, pyplot.Figure) return fig @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_probplot_qq_bestfit(plot_data): fig, ax = pyplot.subplots() fig = viz.probplot(plot_data, ax=ax, axtype="qq", bestfit=True, ylabel="Test label") return fig @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_probplot_pp_bestfit(plot_data): fig, ax = pyplot.subplots() scatter_kws = {"marker": "s", "color": "red"} line_kws = {"linestyle": "--", "linewidth": 3} fig = viz.probplot( plot_data, ax=ax, axtype="pp", yscale="linear", xlabel="test x", bestfit=True, ylabel="test y", scatter_kws=scatter_kws, line_kws=line_kws, ) return fig @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test__connect_spines(): fig, ((ax1, ax2), (ax3, ax4)) = pyplot.subplots(ncols=2, nrows=2) viz._connect_spines(ax1, ax2, 0.5, 0.75) viz._connect_spines(ax3, ax4, 0.9, 0.1, linewidth=2, color="r", linestyle="dashed") return fig @pytest.mark.xfail @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_parallel_coordinates(): df = seaborn.load_dataset("iris") fig = viz.parallel_coordinates(df, hue="species") return fig @pytest.mark.xfail(TOLERANCE > 15, reason="GH Action weirdness") @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_categorical_histogram_simple(cat_hist_data): bins = numpy.arange(5, 35, 5) fig = viz.categorical_histogram(cat_hist_data, "depth", bins) return fig.fig @pytest.mark.xfail(TOLERANCE > 15, reason="GH Action weirdness") @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_IMAGES, tolerance=TOLERANCE) def test_categorical_histogram_complex(cat_hist_data): bins = numpy.arange(5, 35, 5) fig = viz.categorical_histogram( cat_hist_data, "depth", bins, hue="year", row="has_outflow" ) return fig.fig
bsd-3-clause
rongzh/unbiased-pscale
data/storage/database/data-files/Jamieson1982/Jamieson1982-UpUsplot.py
2
1117
import numpy as np import matplotlib.pyplot as plt Audat = np.loadtxt(fname='Au-Los-Alamos.md', delimiter='|', skiprows=3) Audat1 = np.loadtxt(fname='Au-Jones.md', delimiter='|',skiprows=3) Audat2 = np.loadtxt(fname='Au-Altschuler.md',delimiter='|',skiprows=3) plt.ion() plt.plot(Audat[:,0],Audat[:,1],'ko') plt.plot(Audat1[:,0],Audat1[:,1],'ko',markerfacecolor = 'red') plt.plot(Audat2[:,0],Audat2[:,1],'ko',markerfacecolor = 'blue') plt.xlabel('Up') plt.ylabel('Us') plt.xlim([0,4]) plt.ylim([2,12]) plt.title('Jamieson1982 Au Plot') plt.draw() import numpy as np import matplotlib.pyplot as plt Ptdat = np.loadtxt(fname='Pt.md', delimiter='|', skiprows=3) plt.ion() plt.plot(Ptdat[:,0],Ptdat[:,1],'ko') plt.xlabel('Up') plt.ylabel('Us') plt.xlim([0,4]) plt.ylim([2,12]) plt.title('Jamieson1982 Pt Plot') plt.draw() import numpy as np import matplotlib.pyplot as plt MgOdat = np.loadtxt(fname='MgO-Los-Alamos.md', delimiter='|', skiprows=3) plt.ion() plt.plot(MgOdat[:,0],MgOdat[:,1],'ko') plt.xlabel('Up') plt.ylabel('Us') plt.xlim([0,4]) plt.ylim([2,12]) plt.title('Jamieson1982 MgO Plot') plt.draw()
mit
StefReck/Km3-Autoencoder
scripts/Deconv_Test.py
1
5890
# -*- coding: utf-8 -*- from keras import initializers from keras.models import Sequential, Model from keras.layers import Dense, Lambda, Input, Activation, Conv3D, Conv2D, Conv2DTranspose, Conv3DTranspose, MaxPooling2D, MaxPooling3D, AveragePooling3D, UpSampling3D, UpSampling2D, Input, Lambda import numpy as np import matplotlib.pyplot as plt from keras import backend as K import h5py from util.custom_layers import MaxUnpooling3D from compare_hists import reshape_3d_to_3d def make_3d_plots_xyz(hist_org, hist_pred, title1, title2, suptitle=None): #Plot original and predicted histogram side by side in one plot #input format: [x,y,z,val] fig = plt.figure(figsize=(10,5)) ax1 = fig.add_subplot(121, projection='3d', aspect='equal') max_value1= np.amax(hist_org) min_value1 = np.amin(hist_org) #min value is usually 0, but who knows if the autoencoder screwed up fraction1=(hist_org[3]-min_value1)/max_value1 plot1 = ax1.scatter(hist_org[0],hist_org[1],hist_org[2], c=hist_org[3], s=8*36*fraction1, rasterized=True) cbar1=fig.colorbar(plot1,fraction=0.046, pad=0.1) cbar1.set_label('Hits', rotation=270, labelpad=0.1) ax1.set_xlabel('X') ax1.set_ylabel('Y') ax1.set_zlabel('Z') ax1.set_title(title1) ax2 = fig.add_subplot(122, projection='3d', aspect='equal') max_value2=np.amax(hist_pred) min_value2=np.amin(hist_pred) fraction2=(hist_pred[3]-min_value2)/max_value2 plot2 = ax2.scatter(hist_pred[0],hist_pred[1],hist_pred[2], c=hist_pred[3], s=8*36*fraction2, rasterized=True) cbar2=fig.colorbar(plot2,fraction=0.046, pad=0.1) cbar2.set_label('Hits', rotation=270, labelpad=0.1) ax2.set_xlabel('X') ax2.set_ylabel('Y') ax2.set_zlabel('Z') ax2.set_title(title2) if suptitle is not None: fig.suptitle(suptitle) fig.tight_layout() def compare_hists_xyz(hist_org, hist_pred, name, suptitle=None): make_3d_plots_xyz(reshape_3d_to_3d(hist_org), reshape_3d_to_3d(hist_pred), title1="MaxPooling", title2="AveragePooling", suptitle=suptitle) plt.savefig(name) plt.close() #2D Model """ inputs=Input(shape=(2,2,1)) x = Lambda(MaxUnpooling2D,MaxUnpooling2D_output_shape)(inputs) model = Model(inputs=inputs, outputs=x) mat=np.linspace(1,8,8).reshape((2,2,2,1)) res=model.predict(mat) print(res) """ def make_updown_array(): datafile = "/home/woody/capn/mppi033h/Data/ORCA_JTE_NEMOWATER/h5_input_projections_3-100GeV/4dTo3d/h5/xzt/concatenated/test_muon-CC_and_elec-CC_each_60_xzt_shuffled.h5" file = h5py.File(datafile, "r") labels=file["y"] energy = labels[:,2] dir_z = labels[:,7] down_going_events=energy[dir_z>0] tot_events = len(energy) average= float(len(down_going_events))/len(energy) print("Total percentage of down-going events: ", average) plot_range=(3,100) hist_1d_energy = np.histogram(energy, bins=98, range=plot_range) #häufigkeit von energien hist_1d_energy_correct = np.histogram(down_going_events, bins=98, range=plot_range) #häufigkeit von richtigen energien bin_edges = hist_1d_energy[1] hist_1d_energy_accuracy_bins = np.divide(hist_1d_energy_correct[0], hist_1d_energy[0], dtype=np.float32) #rel häufigkeit von richtigen energien # For making it work with matplotlib step plot #hist_1d_energy_accuracy_bins_leading_zero = np.hstack((0, hist_1d_energy_accuracy_bins)) bin_edges_centered = bin_edges[:-1] + 0.5 return [bin_edges_centered, hist_1d_energy_accuracy_bins, average] #bin_edges_centered, hist_1d_energy_accuracy_bins, average = make_up_down_array() bin_edges_centered, hist_1d_energy_accuracy_bins = np.load("Daten/xzt_test_data_updown.npy") #The average percentage average=0.5367258059801829 plt.axhline(average, color="orange", ls="--") plt_bar_1d_energy_accuracy = plt.step(bin_edges_centered, hist_1d_energy_accuracy_bins, where='mid') x_ticks_major = np.arange(0, 101, 10) plt.xticks(x_ticks_major) plt.yticks(np.arange(0.4,0.6,0.02)) plt.minorticks_on() plt.xlabel('Energy [GeV]') plt.ylabel('Fraction') plt.ylim((0.4, 0.6)) plt.title("Fraction of down-going events in xzt simulated test data") plt.grid(True) plt.text(11, average+0.005, "Total avg.: "+str(average*100)[:5]+" %", color="orange", fontsize=10, bbox=dict(facecolor='white', color="white", alpha=0.5)) plt.show() test_file = 'Daten/JTE_KM3Sim_gseagen_muon-CC_3-100GeV-9_1E7-1bin-3_0gspec_ORCA115_9m_2016_588_xyz.h5' file=h5py.File(test_file , 'r') which=[3] hists = file["x"][which].reshape((1,11,13,18,1)) # event_track: [event_id, particle_type, energy, isCC, bjorkeny, dir_x/y/z, time] labels=file["y"][which] #compare_hists_xzt(hists[0], model3.predict(hists)[0], suptitle="C Average Pooling") #compare_hists_xzt(hists[0], layer_1_output[0], suptitle="Max Pooling Intermediate Layer") #compare_hists_xzt(hists[0], layer_1_output_2[0], suptitle="Average Pooling Intermediate Layer") #plot_hist(layer_1_output[0]) #plot_hist(layer_1_output_2[0]) """ mat=np.linspace(1,8,8).reshape((1,2,2,2,1)) res=model.predict(mat) print(res) inputs = Input(shape=(5,1)) x = Lambda(MaxUnpooling1D, output_shape=out_shape)(inputs) model = Model(inputs, x) model.compile(optimizer='rmsprop', loss='mse', metrics=['accuracy']) """ """ inp = np.ones((1,3,3,1)) prediction = model.predict_on_batch(inp).astype(int) def display(): print(inp.reshape(2,2,2)) print(prediction.reshape(3,3,3)) weights=[] for layer in model.layers: weights.append(layer.get_weights()) model.save('test.h5') del model inputs2 = Input(shape=(3,3,1)) x2 = Conv2D(filters=2, kernel_size=(2,2), padding='valid', activation='relu', kernel_initializer=initializers.Constant(value=1))(inputs2) encoder = Model(inputs2, x2) encoder.load_weights('test.h5', by_name=True) weights2=[] for layer in encoder.layers: weights2.append(layer.get_weights()) """
mit
ruiminshen/yolo-tf
demo_data_augmentation.py
1
3788
""" Copyright (C) 2017, 申瑞珉 (Ruimin Shen) This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import os import argparse import configparser import multiprocessing import numpy as np import matplotlib.pyplot as plt import tensorflow as tf import utils.data import utils.visualize def main(): model = config.get('config', 'model') cachedir = utils.get_cachedir(config) with open(os.path.join(cachedir, 'names'), 'r') as f: names = [line.strip() for line in f] width = config.getint(model, 'width') height = config.getint(model, 'height') cell_width, cell_height = utils.calc_cell_width_height(config, width, height) tf.logging.info('(width, height)=(%d, %d), (cell_width, cell_height)=(%d, %d)' % (width, height, cell_width, cell_height)) batch_size = args.rows * args.cols paths = [os.path.join(cachedir, profile + '.tfrecord') for profile in args.profile] num_examples = sum(sum(1 for _ in tf.python_io.tf_record_iterator(path)) for path in paths) tf.logging.warn('num_examples=%d' % num_examples) with tf.Session() as sess: with tf.name_scope('batch'): image_rgb, labels = utils.data.load_image_labels(paths, len(names), width, height, cell_width, cell_height, config) batch = tf.train.shuffle_batch((tf.cast(image_rgb, tf.uint8),) + labels, batch_size=batch_size, capacity=config.getint('queue', 'capacity'), min_after_dequeue=config.getint('queue', 'min_after_dequeue'), num_threads=multiprocessing.cpu_count() ) tf.global_variables_initializer().run() coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess, coord) batch_image, batch_labels = sess.run([batch[0], batch[1:]]) coord.request_stop() coord.join(threads) batch_image = batch_image.astype(np.uint8) fig, axes = plt.subplots(args.rows, args.cols) for b, (ax, image) in enumerate(zip(axes.flat, batch_image)): ax.imshow(image) utils.visualize.draw_labels(ax, names, width, height, cell_width, cell_height, *[l[b] for l in batch_labels]) if args.grid: ax.set_xticks(np.arange(0, width, width / cell_width)) ax.set_yticks(np.arange(0, height, height / cell_height)) ax.grid(which='both') ax.tick_params(labelbottom='off', labelleft='off') else: ax.set_xticks([]) ax.set_yticks([]) fig.tight_layout() plt.show() def make_args(): parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', nargs='+', default=['config.ini'], help='config file') parser.add_argument('-p', '--profile', nargs='+', default=['train', 'val']) parser.add_argument('-g', '--grid', action='store_true') parser.add_argument('--rows', default=5, type=int) parser.add_argument('--cols', default=5, type=int) parser.add_argument('--level', default='info', help='logging level') return parser.parse_args() if __name__ == '__main__': args = make_args() config = configparser.ConfigParser() utils.load_config(config, args.config) if args.level: tf.logging.set_verbosity(args.level.upper()) main()
lgpl-3.0
nborggren/zipline
tests/data/test_us_equity_pricing.py
2
11697
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import TestCase from nose_parameterized import parameterized from numpy import ( arange, datetime64, ) from numpy.testing import ( assert_array_equal, ) from pandas import ( DataFrame, DatetimeIndex, Timestamp, ) from pandas.util.testing import assert_index_equal from testfixtures import TempDirectory from zipline.pipeline.loaders.synthetic import ( SyntheticDailyBarWriter, ) from zipline.data.us_equity_pricing import ( BcolzDailyBarReader, NoDataOnDate ) from zipline.finance.trading import TradingEnvironment from zipline.pipeline.data import USEquityPricing from zipline.utils.test_utils import ( seconds_to_timestamp, ) TEST_CALENDAR_START = Timestamp('2015-06-01', tz='UTC') TEST_CALENDAR_STOP = Timestamp('2015-06-30', tz='UTC') TEST_QUERY_START = Timestamp('2015-06-10', tz='UTC') TEST_QUERY_STOP = Timestamp('2015-06-19', tz='UTC') # One asset for each of the cases enumerated in load_raw_arrays_from_bcolz. EQUITY_INFO = DataFrame( [ # 1) The equity's trades start and end before query. {'start_date': '2015-06-01', 'end_date': '2015-06-05'}, # 2) The equity's trades start and end after query. {'start_date': '2015-06-22', 'end_date': '2015-06-30'}, # 3) The equity's data covers all dates in range. {'start_date': '2015-06-02', 'end_date': '2015-06-30'}, # 4) The equity's trades start before the query start, but stop # before the query end. {'start_date': '2015-06-01', 'end_date': '2015-06-15'}, # 5) The equity's trades start and end during the query. {'start_date': '2015-06-12', 'end_date': '2015-06-18'}, # 6) The equity's trades start during the query, but extend through # the whole query. {'start_date': '2015-06-15', 'end_date': '2015-06-25'}, ], index=arange(1, 7), columns=['start_date', 'end_date'], ).astype(datetime64) TEST_QUERY_ASSETS = EQUITY_INFO.index class BcolzDailyBarTestCase(TestCase): @classmethod def setUpClass(cls): all_trading_days = TradingEnvironment().trading_days cls.trading_days = all_trading_days[ all_trading_days.get_loc(TEST_CALENDAR_START): all_trading_days.get_loc(TEST_CALENDAR_STOP) + 1 ] def setUp(self): self.asset_info = EQUITY_INFO self.writer = SyntheticDailyBarWriter( self.asset_info, self.trading_days, ) self.dir_ = TempDirectory() self.dir_.create() self.dest = self.dir_.getpath('daily_equity_pricing.bcolz') def tearDown(self): self.dir_.cleanup() @property def assets(self): return self.asset_info.index def trading_days_between(self, start, end): return self.trading_days[self.trading_days.slice_indexer(start, end)] def asset_start(self, asset_id): return self.writer.asset_start(asset_id) def asset_end(self, asset_id): return self.writer.asset_end(asset_id) def dates_for_asset(self, asset_id): start, end = self.asset_start(asset_id), self.asset_end(asset_id) return self.trading_days_between(start, end) def test_write_ohlcv_content(self): result = self.writer.write(self.dest, self.trading_days, self.assets) for column in SyntheticDailyBarWriter.OHLCV: idx = 0 data = result[column][:] multiplier = 1 if column == 'volume' else 1000 for asset_id in self.assets: for date in self.dates_for_asset(asset_id): self.assertEqual( SyntheticDailyBarWriter.expected_value( asset_id, date, column ) * multiplier, data[idx], ) idx += 1 self.assertEqual(idx, len(data)) def test_write_day_and_id(self): result = self.writer.write(self.dest, self.trading_days, self.assets) idx = 0 ids = result['id'] days = result['day'] for asset_id in self.assets: for date in self.dates_for_asset(asset_id): self.assertEqual(ids[idx], asset_id) self.assertEqual(date, seconds_to_timestamp(days[idx])) idx += 1 def test_write_attrs(self): result = self.writer.write(self.dest, self.trading_days, self.assets) expected_first_row = { '1': 0, '2': 5, # Asset 1 has 5 trading days. '3': 12, # Asset 2 has 7 trading days. '4': 33, # Asset 3 has 21 trading days. '5': 44, # Asset 4 has 11 trading days. '6': 49, # Asset 5 has 5 trading days. } expected_last_row = { '1': 4, '2': 11, '3': 32, '4': 43, '5': 48, '6': 57, # Asset 6 has 9 trading days. } expected_calendar_offset = { '1': 0, # Starts on 6-01, 1st trading day of month. '2': 15, # Starts on 6-22, 16th trading day of month. '3': 1, # Starts on 6-02, 2nd trading day of month. '4': 0, # Starts on 6-01, 1st trading day of month. '5': 9, # Starts on 6-12, 10th trading day of month. '6': 10, # Starts on 6-15, 11th trading day of month. } self.assertEqual(result.attrs['first_row'], expected_first_row) self.assertEqual(result.attrs['last_row'], expected_last_row) self.assertEqual( result.attrs['calendar_offset'], expected_calendar_offset, ) assert_index_equal( self.trading_days, DatetimeIndex(result.attrs['calendar'], tz='UTC'), ) def _check_read_results(self, columns, assets, start_date, end_date): table = self.writer.write(self.dest, self.trading_days, self.assets) reader = BcolzDailyBarReader(table) results = reader.load_raw_arrays(columns, start_date, end_date, assets) dates = self.trading_days_between(start_date, end_date) for column, result in zip(columns, results): assert_array_equal( result, self.writer.expected_values_2d( dates, assets, column.name, ) ) @parameterized.expand([ ([USEquityPricing.open],), ([USEquityPricing.close, USEquityPricing.volume],), ([USEquityPricing.volume, USEquityPricing.high, USEquityPricing.low],), (USEquityPricing.columns,), ]) def test_read(self, columns): self._check_read_results( columns, self.assets, TEST_QUERY_START, TEST_QUERY_STOP, ) def test_start_on_asset_start(self): """ Test loading with queries that starts on the first day of each asset's lifetime. """ columns = [USEquityPricing.high, USEquityPricing.volume] for asset in self.assets: self._check_read_results( columns, self.assets, start_date=self.asset_start(asset), end_date=self.trading_days[-1], ) def test_start_on_asset_end(self): """ Test loading with queries that start on the last day of each asset's lifetime. """ columns = [USEquityPricing.close, USEquityPricing.volume] for asset in self.assets: self._check_read_results( columns, self.assets, start_date=self.asset_end(asset), end_date=self.trading_days[-1], ) def test_end_on_asset_start(self): """ Test loading with queries that end on the first day of each asset's lifetime. """ columns = [USEquityPricing.close, USEquityPricing.volume] for asset in self.assets: self._check_read_results( columns, self.assets, start_date=self.trading_days[0], end_date=self.asset_start(asset), ) def test_end_on_asset_end(self): """ Test loading with queries that end on the last day of each asset's lifetime. """ columns = [USEquityPricing.close, USEquityPricing.volume] for asset in self.assets: self._check_read_results( columns, self.assets, start_date=self.trading_days[0], end_date=self.asset_end(asset), ) def test_unadjusted_spot_price(self): table = self.writer.write(self.dest, self.trading_days, self.assets) reader = BcolzDailyBarReader(table) # At beginning price = reader.spot_price(1, Timestamp('2015-06-01', tz='UTC'), 'close') # Synthetic writes price for date. self.assertEqual(135630.0, price) # Middle price = reader.spot_price(1, Timestamp('2015-06-02', tz='UTC'), 'close') self.assertEqual(135631.0, price) # End price = reader.spot_price(1, Timestamp('2015-06-05', tz='UTC'), 'close') self.assertEqual(135634.0, price) # Another sid at beginning. price = reader.spot_price(2, Timestamp('2015-06-22', tz='UTC'), 'close') self.assertEqual(235651.0, price) # Ensure that volume does not have float adjustment applied. volume = reader.spot_price(1, Timestamp('2015-06-02', tz='UTC'), 'volume') self.assertEqual(145631, volume) def test_unadjusted_spot_price_no_data(self): table = self.writer.write(self.dest, self.trading_days, self.assets) reader = BcolzDailyBarReader(table) # before with self.assertRaises(NoDataOnDate): reader.spot_price(2, Timestamp('2015-06-08', tz='UTC'), 'close') # after with self.assertRaises(NoDataOnDate): reader.spot_price(4, Timestamp('2015-06-16', tz='UTC'), 'close') def test_unadjusted_spot_price_empty_value(self): table = self.writer.write(self.dest, self.trading_days, self.assets) reader = BcolzDailyBarReader(table) # A sid, day and corresponding index into which to overwrite a zero. zero_sid = 1 zero_day = Timestamp('2015-06-02', tz='UTC') zero_ix = reader.sid_day_index(zero_sid, zero_day) # Write a zero into the synthetic pricing data at the day and sid, # so that a read should now return -1. # This a little hacky, in lieu of changing the synthetic data set. reader._spot_col('close')[zero_ix] = 0 close = reader.spot_price(zero_sid, zero_day, 'close') self.assertEqual(-1, close)
apache-2.0
rupakc/Kaggle-Compendium
Personalized Medicine - Redefining Cancer Treatment/preprocess.py
4
9418
# -*- coding: utf-8 -*- """ Created on Mon Dec 14 22:25:49 2016 Preprocessing Utilities for cleaning and processing of data @author: Rupak Chakraborty """ import pandas as pd from nltk.corpus import stopwords import string from nltk.stem import PorterStemmer stopword_list = set(stopwords.words("english")) punctuation_list = list(string.punctuation) ps = PorterStemmer() months_list = ["january","february","march","april","may","june","july","august", "september","october","november","december"] digit_list = ["0","1","2","3","4","5","6","7","8","9"] month_list_short = ["jan","feb","mar","apr","may","jun","jul","aug","sept","oct","nov","dec"] emoticon_list = [":)",":(","^_^","-_-","<3",":D",":P",":/"] html_tag_list = ["&nbsp","&lt","&gt","&amp",";","<strong>","<em>","[1]","</strong>","</em>","<div>","</div>","<b>","</b>","[2]","[3]","...","[img]","[/img]","<u>","</u>","<p>","</p>","\n","\\t","<span>", "</span>","[Moved]","<br/>","<a>","</a>","&quot","<br>","<br />","Â","<a rel=\"nofollow\" class=\"ot-hashtag\"","&#39","<a","’","&#39;"] extend_punct_list = [' ',',',':',';','\'','\t','\n','?','-','$',"!!","?","w/","!","!!!","w/","'","RT","rt","@","#","/",":)", ":(",":D","^_^","^","...","&","\\",":","?","<",">","$","%","*","`","~","-","_", "+","=","{","}","[","]","|","\"",",",";",")","(","r/","/u/","*","-"] punctuation_list.extend(extend_punct_list) #punctuation_list.remove(".") months_list.extend(month_list_short) """ Given a string normalizes it, i.e. converts it to lowercase and strips it of extra spaces Params: -------- s - String which is to be normalized Returns: --------- String in the normalized form """ def normalize_string(s): s = s.lower() s = s.strip() return s """ Given a list of strings normalizes the strings Params: ------- string_list - List containing the strings which are to be normalized Returns: --------- Returns a list containing the normalized string list """ def normalize_string_list(string_list): normalized_list = [] for sentence in string_list: normalized_list.append(normalize_string(sentence)) return normalized_list """ Given a string and a separator splits up the string in the tokens Params: -------- s - string which has to be tokenized separator - separator based on which the string is to be tokenized Returns: --------- A list of words in the sentence based on the separator """ def tokenize_string(s,separator): word_list = list([]) if isinstance(s,basestring): word_list = s.split(separator) return word_list """ Given a list of sentences tokenizes each sentence in the list Params: -------- string_list - List of sentences which have to be tokenized separator - Separator based on which the sentences have to be tokenized """ def tokenize_string_list(string_list,separator): tokenized_sentence_list = [] for sentence in string_list: #sentence = sentence.encode("ascii","ignore") tokenized_sentence_list.append(tokenize_string(sentence,separator)) return tokenized_sentence_list """ Given a string containing stopwords removes all the stopwords Params: -------- s - String containing the stopwords which are to be removed Returns: --------- String sans the stopwords """ def remove_stopwords(s): s = s.lower() removed_string = '' words = s.split() for word in words: if word not in stopword_list: removed_string = removed_string + word.strip() + " " return removed_string.strip() """ Given a list of sentences and a filename, writes the sentences to the file Params: -------- sentence_list - List of sentences which have to be written to the file filename - File to which the sentences have to be written Returns: --------- Nothing quite just writes the sentences to the file """ def write_sentences_to_file(sentence_list,filename): write_file = open(filename,'w') for sentence in sentence_list: write_file.write(encode_ascii(sentence) + '\n') write_file.flush() write_file.close() """ Removes all the punctuations from a given string Params: -------- s - String containing the possible punctuations Returns: -------- String without the punctuations (including new lines and tabs) """ def remove_punctuations(s): s = s.lower() s = s.strip() for punctuation in punctuation_list: s = s.replace(punctuation,' ') return s.strip() """ Strips a given string of HTML tags Params: -------- s - String from which the HTML tags have to be removed Returns: --------- String sans the HTML tags """ def remove_html_tags(s): for tag in html_tag_list: s = s.replace(tag,' ') return s """ Given a string removes all the digits from them Params: ------- s - String from which the digits need to be removed Returns: --------- String without occurence of the digits """ def remove_digits(s): for digit in digit_list: s = s.replace(digit,'') return s """ Given a string returns all occurences of a month from it Params: -------- s - String containing possible month names Returns: -------- String wihtout the occurence of the months """ def remove_months(s): s = s.lower() words = s.split() without_month_list = [word for word in words if word not in months_list] month_clean_string = "" for word in without_month_list: month_clean_string = month_clean_string + word + " " return month_clean_string.strip() """ Checks if a given string contains all ASCII characters Params: ------- s - String which is to be checked for ASCII characters Returns: -------- True if the string contains all ASCII characters, False otherwise """ def is_ascii(s): if isinstance(s,basestring): return all(ord(c) < 128 for c in s) return False """ Given a string encodes it in ascii format Params: -------- s - String which is to be encoded Returns: -------- String encoded in ascii format """ def encode_ascii(s): return s.encode('ascii','ignore') """ Stems each word of a given sentence to it's root word using Porters Stemmer Params: -------- sentence - String containing the sentence which is to be stemmed Returns: --------- Sentence where each word has been stemmed to it's root word """ def stem_sentence(sentence): words = sentence.split() stemmed_sentence = "" for word in words: try: if is_ascii(word): stemmed_sentence = stemmed_sentence + ps.stem_word(word) + " " except: pass return stemmed_sentence.strip() """ Given a string removes urls from the string Params: -------- s - String containing urls which have to be removed Returns: -------- String without the occurence of the urls """ def remove_url(s): s = s.lower() words = s.split() without_url = "" for word in words: if word.count('http:') == 0 and word.count('https:') == 0 and word.count('ftp:') == 0 and word.count('www.') == 0 and word.count('.com') == 0 and word.count('.ly') == 0 and word.count('.st') == 0: without_url = without_url + word + " " return without_url.strip() """ Given a string removes all the words whose length is less than 3 Params: -------- s - String from which small words have to be removed. Returns: --------- Returns a string without occurence of small words """ def remove_small_words(s): words = s.split() clean_string = "" for word in words: if len(word) >= 3: clean_string = clean_string + word + " " return clean_string.strip() """ Defines the pipeline for cleaning and preprocessing of text Params: -------- s - String containing the text which has to be preprocessed Returns: --------- String which has been passed through the preprocessing pipeline """ def text_clean_pipeline(s): s = remove_url(s) s = remove_punctuations(s) s = remove_html_tags(s) s = remove_stopwords(s) s = remove_months(s) s = remove_digits(s) #s = stem_sentence(s) s = remove_small_words(s) return s """ Given a list of sentences processes the list through the pre-preprocessing pipeline and returns the list Params: -------- sentence_list - List of sentences which are to be cleaned Returns: --------- The cleaned and pre-processed sentence list """ def text_clean_pipeline_list(sentence_list): clean_sentence_list = list([]) for s in sentence_list: s = remove_digits(s) s = remove_punctuations(s) s = remove_html_tags(s) s = remove_stopwords(s) s = remove_months(s) s = remove_small_words(s) #s = encode_ascii(s) #s = remove_url(s) #s = stem_sentence(s) clean_sentence_list.append(s) return clean_sentence_list """ Given a excel filepath and a corresponding sheetname reads it and converts it into a dataframe Params: -------- filename - Filepath containing the location and name of the file sheetname - Name of the sheet containing the data Returns: --------- pandas dataframe containing the data from the excel file """ def get_dataframe_from_excel(filename,sheetname): xl_file = pd.ExcelFile(filename) data_frame = xl_file.parse(sheetname) return data_frame
mit
q1ang/scikit-learn
sklearn/kernel_ridge.py
155
6545
"""Module :mod:`sklearn.kernel_ridge` implements kernel ridge regression.""" # Authors: Mathieu Blondel <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD 3 clause import numpy as np from .base import BaseEstimator, RegressorMixin from .metrics.pairwise import pairwise_kernels from .linear_model.ridge import _solve_cholesky_kernel from .utils import check_X_y from .utils.validation import check_is_fitted class KernelRidge(BaseEstimator, RegressorMixin): """Kernel ridge regression. Kernel ridge regression (KRR) combines ridge regression (linear least squares with l2-norm regularization) with the kernel trick. It thus learns a linear function in the space induced by the respective kernel and the data. For non-linear kernels, this corresponds to a non-linear function in the original space. The form of the model learned by KRR is identical to support vector regression (SVR). However, different loss functions are used: KRR uses squared error loss while support vector regression uses epsilon-insensitive loss, both combined with l2 regularization. In contrast to SVR, fitting a KRR model can be done in closed-form and is typically faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower than SVR, which learns a sparse model for epsilon > 0, at prediction-time. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]). Read more in the :ref:`User Guide <kernel_ridge>`. Parameters ---------- alpha : {float, array-like}, shape = [n_targets] Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. kernel : string or callable, default="linear" Kernel mapping used internally. A callable should accept two arguments and the keyword arguments passed to this object as kernel_params, and should return a floating point number. gamma : float, default=None Gamma parameter for the RBF, polynomial, exponential chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; see the documentation for sklearn.metrics.pairwise. Ignored by other kernels. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. kernel_params : mapping of string to any, optional Additional parameters (keyword arguments) for kernel function passed as callable object. Attributes ---------- dual_coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s) in kernel space X_fit_ : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data, which is also required for prediction References ---------- * Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press chapter 14.4.3, pp. 492-493 See also -------- Ridge Linear ridge regression. SVR Support Vector Regression implemented using libsvm. Examples -------- >>> from sklearn.kernel_ridge import KernelRidge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> rng = np.random.RandomState(0) >>> y = rng.randn(n_samples) >>> X = rng.randn(n_samples, n_features) >>> clf = KernelRidge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE KernelRidge(alpha=1.0, coef0=1, degree=3, gamma=None, kernel='linear', kernel_params=None) """ def __init__(self, alpha=1, kernel="linear", gamma=None, degree=3, coef0=1, kernel_params=None): self.alpha = alpha self.kernel = kernel self.gamma = gamma self.degree = degree self.coef0 = coef0 self.kernel_params = kernel_params def _get_kernel(self, X, Y=None): if callable(self.kernel): params = self.kernel_params or {} else: params = {"gamma": self.gamma, "degree": self.degree, "coef0": self.coef0} return pairwise_kernels(X, Y, metric=self.kernel, filter_params=True, **params) @property def _pairwise(self): return self.kernel == "precomputed" def fit(self, X, y=None, sample_weight=None): """Fit Kernel Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample, ignored if None is passed. Returns ------- self : returns an instance of self. """ # Convert data X, y = check_X_y(X, y, accept_sparse=("csr", "csc"), multi_output=True, y_numeric=True) K = self._get_kernel(X) alpha = np.atleast_1d(self.alpha) ravel = False if len(y.shape) == 1: y = y.reshape(-1, 1) ravel = True copy = self.kernel == "precomputed" self.dual_coef_ = _solve_cholesky_kernel(K, y, alpha, sample_weight, copy) if ravel: self.dual_coef_ = self.dual_coef_.ravel() self.X_fit_ = X return self def predict(self, X): """Predict using the the kernel ridge model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Samples. Returns ------- C : array, shape = [n_samples] or [n_samples, n_targets] Returns predicted values. """ check_is_fitted(self, ["X_fit_", "dual_coef_"]) K = self._get_kernel(X, self.X_fit_) return np.dot(K, self.dual_coef_)
bsd-3-clause
JackKelly/neuralnilm_prototype
scripts/e484.py
2
5509
from __future__ import print_function, division import matplotlib import logging from sys import stdout matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import (Net, RealApplianceSource, BLSTMLayer, BidirectionalRecurrentLayer) from neuralnilm.source import (standardise, discretize, fdiff, power_and_fdiff, RandomSegments, RandomSegmentsInMemory, SameLocation) from neuralnilm.experiment import run_experiment, init_experiment from neuralnilm.net import TrainingError from neuralnilm.layers import (MixtureDensityLayer, DeConv1DLayer, SharedWeightsDenseLayer, PolygonOutputLayer) from neuralnilm.objectives import (scaled_cost, mdn_nll, scaled_cost_ignore_inactive, ignore_inactive, scaled_cost3) from neuralnilm.plot import MDNPlotter, CentralOutputPlotter, Plotter from neuralnilm.updates import clipped_nesterov_momentum from neuralnilm.disaggregate import disaggregate from lasagne.nonlinearities import sigmoid, rectify, tanh, identity from lasagne.objectives import mse, binary_crossentropy from lasagne.init import Uniform, Normal, Identity from lasagne.layers import (LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer, RecurrentLayer, DimshuffleLayer) from lasagne.layers.batch_norm import BatchNormLayer from lasagne.updates import nesterov_momentum, momentum from functools import partial import os import __main__ from copy import deepcopy from math import sqrt import numpy as np import theano.tensor as T import gc NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] #PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" PATH = "/data/dk3810/figures" SAVE_PLOT_INTERVAL = 1000 N_SEQ_PER_BATCH = 2 source_dict = dict( filename='/data/dk3810/ukdale.h5', window=("2013-03-18", "2013-04-18"), train_buildings=[1], validation_buildings=[1], n_seq_per_batch=N_SEQ_PER_BATCH, standardise_input=True, standardise_targets=True, independently_center_inputs=True # ignore_incomplete=True # offset_probability=0.5, # ignore_offset_activations=True ) net_dict = dict( save_plot_interval=SAVE_PLOT_INTERVAL, # loss_function=partial(ignore_inactive, loss_func=mdn_nll, seq_length=SEQ_LENGTH), # loss_function=lambda x, t: mdn_nll(x, t).mean(), # loss_function=lambda x, t: (mse(x, t) * MASK).mean(), loss_function=lambda x, t: mse(x, t).mean(), # loss_function=lambda x, t: binary_crossentropy(x, t).mean(), # loss_function=partial(scaled_cost, loss_func=mse), # loss_function=ignore_inactive, # loss_function=partial(scaled_cost3, ignore_inactive=False), # updates_func=momentum, updates_func=clipped_nesterov_momentum, updates_kwargs={'clip_range': (0, 10)}, learning_rate=1e-9, learning_rate_changes_by_iteration={ # 1000: 1e-4, # 5000: 1e-5 }, do_save_activations=True, auto_reshape=False, # plotter=CentralOutputPlotter plotter=Plotter(n_seq_to_plot=32) ) def exp_a(name, target_appliance, seq_length): global source source_dict_copy = deepcopy(source_dict) source_dict_copy.update(dict( target_appliance=target_appliance, logger=logging.getLogger(name), seq_length=seq_length )) source = RandomSegmentsInMemory(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) net_dict_copy['layers_config'] = [ { 'type': DenseLayer, 'num_units': seq_length, 'nonlinearity': rectify }, { 'type': PolygonOutputLayer, 'num_units': 2, 'seq_length': seq_length }, { 'type': ReshapeLayer, 'shape': source.output_shape() } ] net = Net(**net_dict_copy) return net def main(): APPLIANCES = [ ('a', ['fridge freezer', 'fridge', 'freezer'], 512), ('b', "'coffee maker'", 512), ('c', "'dish washer'", 2000), ('d', "'hair dryer'", 256), ('e', "'kettle'", 256), ('f', "'oven'", 2000), ('g', "'toaster'", 256), ('h', "'light'", 2000), ('i', ['washer dryer', 'washing machine'], 1500) ] for experiment, appliance, seq_length in APPLIANCES[:1]: full_exp_name = NAME + experiment func_call = init_experiment(PATH, 'a', full_exp_name) func_call = func_call[:-1] + ", {}, {})".format(appliance, seq_length) logger = logging.getLogger(full_exp_name) try: net = eval(func_call) run_experiment(net, epochs=None) except KeyboardInterrupt: logger.info("KeyboardInterrupt") break except Exception as exception: logger.exception("Exception") import ipdb; ipdb.set_trace() # raise else: del net.source del net gc.collect() finally: logging.shutdown() if __name__ == "__main__": main() """ Emacs variables Local Variables: compile-command: "cp /home/jack/workspace/python/neuralnilm/scripts/e484.py /mnt/sshfs/imperial/workspace/python/neuralnilm/scripts/" End: """
mit
ilyes14/scikit-learn
benchmarks/bench_20newsgroups.py
377
3555
from __future__ import print_function, division from time import time import argparse import numpy as np from sklearn.dummy import DummyClassifier from sklearn.datasets import fetch_20newsgroups_vectorized from sklearn.metrics import accuracy_score from sklearn.utils.validation import check_array from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import MultinomialNB ESTIMATORS = { "dummy": DummyClassifier(), "random_forest": RandomForestClassifier(n_estimators=100, max_features="sqrt", min_samples_split=10), "extra_trees": ExtraTreesClassifier(n_estimators=100, max_features="sqrt", min_samples_split=10), "logistic_regression": LogisticRegression(), "naive_bayes": MultinomialNB(), "adaboost": AdaBoostClassifier(n_estimators=10), } ############################################################################### # Data if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-e', '--estimators', nargs="+", required=True, choices=ESTIMATORS) args = vars(parser.parse_args()) data_train = fetch_20newsgroups_vectorized(subset="train") data_test = fetch_20newsgroups_vectorized(subset="test") X_train = check_array(data_train.data, dtype=np.float32, accept_sparse="csc") X_test = check_array(data_test.data, dtype=np.float32, accept_sparse="csr") y_train = data_train.target y_test = data_test.target print("20 newsgroups") print("=============") print("X_train.shape = {0}".format(X_train.shape)) print("X_train.format = {0}".format(X_train.format)) print("X_train.dtype = {0}".format(X_train.dtype)) print("X_train density = {0}" "".format(X_train.nnz / np.product(X_train.shape))) print("y_train {0}".format(y_train.shape)) print("X_test {0}".format(X_test.shape)) print("X_test.format = {0}".format(X_test.format)) print("X_test.dtype = {0}".format(X_test.dtype)) print("y_test {0}".format(y_test.shape)) print() print("Classifier Training") print("===================") accuracy, train_time, test_time = {}, {}, {} for name in sorted(args["estimators"]): clf = ESTIMATORS[name] try: clf.set_params(random_state=0) except (TypeError, ValueError): pass print("Training %s ... " % name, end="") t0 = time() clf.fit(X_train, y_train) train_time[name] = time() - t0 t0 = time() y_pred = clf.predict(X_test) test_time[name] = time() - t0 accuracy[name] = accuracy_score(y_test, y_pred) print("done") print() print("Classification performance:") print("===========================") print() print("%s %s %s %s" % ("Classifier ", "train-time", "test-time", "Accuracy")) print("-" * 44) for name in sorted(accuracy, key=accuracy.get): print("%s %s %s %s" % (name.ljust(16), ("%.4fs" % train_time[name]).center(10), ("%.4fs" % test_time[name]).center(10), ("%.4f" % accuracy[name]).center(10))) print()
bsd-3-clause