repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
nikitasingh981/scikit-learn
sklearn/neural_network/rbm.py
46
12291
"""Restricted Boltzmann Machine """ # Authors: Yann N. Dauphin <[email protected]> # Vlad Niculae # Gabriel Synnaeve # Lars Buitinck # License: BSD 3 clause import time import numpy as np import scipy.sparse as sp from ..base import BaseEstimator from ..base import TransformerMixin from ..externals.six.moves import xrange from ..utils import check_array from ..utils import check_random_state from ..utils import gen_even_slices from ..utils import issparse from ..utils.extmath import safe_sparse_dot from ..utils.extmath import log_logistic from ..utils.fixes import expit # logistic function from ..utils.validation import check_is_fitted class BernoulliRBM(BaseEstimator, TransformerMixin): """Bernoulli Restricted Boltzmann Machine (RBM). A Restricted Boltzmann Machine with binary visible units and binary hidden units. Parameters are estimated using Stochastic Maximum Likelihood (SML), also known as Persistent Contrastive Divergence (PCD) [2]. The time complexity of this implementation is ``O(d ** 2)`` assuming d ~ n_features ~ n_components. Read more in the :ref:`User Guide <rbm>`. Parameters ---------- n_components : int, optional Number of binary hidden units. learning_rate : float, optional The learning rate for weight updates. It is *highly* recommended to tune this hyper-parameter. Reasonable values are in the 10**[0., -3.] range. batch_size : int, optional Number of examples per minibatch. n_iter : int, optional Number of iterations/sweeps over the training dataset to perform during training. verbose : int, optional The verbosity level. The default, zero, means silent mode. random_state : integer or numpy.RandomState, optional A random number generator instance to define the state of the random permutations generator. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- intercept_hidden_ : array-like, shape (n_components,) Biases of the hidden units. intercept_visible_ : array-like, shape (n_features,) Biases of the visible units. components_ : array-like, shape (n_components, n_features) Weight matrix, where n_features in the number of visible units and n_components is the number of hidden units. Examples -------- >>> import numpy as np >>> from sklearn.neural_network import BernoulliRBM >>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) >>> model = BernoulliRBM(n_components=2) >>> model.fit(X) BernoulliRBM(batch_size=10, learning_rate=0.1, n_components=2, n_iter=10, random_state=None, verbose=0) References ---------- [1] Hinton, G. E., Osindero, S. and Teh, Y. A fast learning algorithm for deep belief nets. Neural Computation 18, pp 1527-1554. http://www.cs.toronto.edu/~hinton/absps/fastnc.pdf [2] Tieleman, T. Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient. International Conference on Machine Learning (ICML) 2008 """ def __init__(self, n_components=256, learning_rate=0.1, batch_size=10, n_iter=10, verbose=0, random_state=None): self.n_components = n_components self.learning_rate = learning_rate self.batch_size = batch_size self.n_iter = n_iter self.verbose = verbose self.random_state = random_state def transform(self, X): """Compute the hidden layer activation probabilities, P(h=1|v=X). Parameters ---------- X : {array-like, sparse matrix} shape (n_samples, n_features) The data to be transformed. Returns ------- h : array, shape (n_samples, n_components) Latent representations of the data. """ check_is_fitted(self, "components_") X = check_array(X, accept_sparse='csr', dtype=np.float64) return self._mean_hiddens(X) def _mean_hiddens(self, v): """Computes the probabilities P(h=1|v). Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer. Returns ------- h : array-like, shape (n_samples, n_components) Corresponding mean field values for the hidden layer. """ p = safe_sparse_dot(v, self.components_.T) p += self.intercept_hidden_ return expit(p, out=p) def _sample_hiddens(self, v, rng): """Sample from the distribution P(h|v). Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer to sample from. rng : RandomState Random number generator to use. Returns ------- h : array-like, shape (n_samples, n_components) Values of the hidden layer. """ p = self._mean_hiddens(v) return (rng.random_sample(size=p.shape) < p) def _sample_visibles(self, h, rng): """Sample from the distribution P(v|h). Parameters ---------- h : array-like, shape (n_samples, n_components) Values of the hidden layer to sample from. rng : RandomState Random number generator to use. Returns ------- v : array-like, shape (n_samples, n_features) Values of the visible layer. """ p = np.dot(h, self.components_) p += self.intercept_visible_ expit(p, out=p) return (rng.random_sample(size=p.shape) < p) def _free_energy(self, v): """Computes the free energy F(v) = - log sum_h exp(-E(v,h)). Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer. Returns ------- free_energy : array-like, shape (n_samples,) The value of the free energy. """ return (- safe_sparse_dot(v, self.intercept_visible_) - np.logaddexp(0, safe_sparse_dot(v, self.components_.T) + self.intercept_hidden_).sum(axis=1)) def gibbs(self, v): """Perform one Gibbs sampling step. Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer to start from. Returns ------- v_new : array-like, shape (n_samples, n_features) Values of the visible layer after one Gibbs step. """ check_is_fitted(self, "components_") if not hasattr(self, "random_state_"): self.random_state_ = check_random_state(self.random_state) h_ = self._sample_hiddens(v, self.random_state_) v_ = self._sample_visibles(h_, self.random_state_) return v_ def partial_fit(self, X, y=None): """Fit the model to the data X which should contain a partial segment of the data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. Returns ------- self : BernoulliRBM The fitted model. """ X = check_array(X, accept_sparse='csr', dtype=np.float64) if not hasattr(self, 'random_state_'): self.random_state_ = check_random_state(self.random_state) if not hasattr(self, 'components_'): self.components_ = np.asarray( self.random_state_.normal( 0, 0.01, (self.n_components, X.shape[1]) ), order='F') if not hasattr(self, 'intercept_hidden_'): self.intercept_hidden_ = np.zeros(self.n_components, ) if not hasattr(self, 'intercept_visible_'): self.intercept_visible_ = np.zeros(X.shape[1], ) if not hasattr(self, 'h_samples_'): self.h_samples_ = np.zeros((self.batch_size, self.n_components)) self._fit(X, self.random_state_) def _fit(self, v_pos, rng): """Inner fit for one mini-batch. Adjust the parameters to maximize the likelihood of v using Stochastic Maximum Likelihood (SML). Parameters ---------- v_pos : array-like, shape (n_samples, n_features) The data to use for training. rng : RandomState Random number generator to use for sampling. """ h_pos = self._mean_hiddens(v_pos) v_neg = self._sample_visibles(self.h_samples_, rng) h_neg = self._mean_hiddens(v_neg) lr = float(self.learning_rate) / v_pos.shape[0] update = safe_sparse_dot(v_pos.T, h_pos, dense_output=True).T update -= np.dot(h_neg.T, v_neg) self.components_ += lr * update self.intercept_hidden_ += lr * (h_pos.sum(axis=0) - h_neg.sum(axis=0)) self.intercept_visible_ += lr * (np.asarray( v_pos.sum(axis=0)).squeeze() - v_neg.sum(axis=0)) h_neg[rng.uniform(size=h_neg.shape) < h_neg] = 1.0 # sample binomial self.h_samples_ = np.floor(h_neg, h_neg) def score_samples(self, X): """Compute the pseudo-likelihood of X. Parameters ---------- X : {array-like, sparse matrix} shape (n_samples, n_features) Values of the visible layer. Must be all-boolean (not checked). Returns ------- pseudo_likelihood : array-like, shape (n_samples,) Value of the pseudo-likelihood (proxy for likelihood). Notes ----- This method is not deterministic: it computes a quantity called the free energy on X, then on a randomly corrupted version of X, and returns the log of the logistic function of the difference. """ check_is_fitted(self, "components_") v = check_array(X, accept_sparse='csr') rng = check_random_state(self.random_state) # Randomly corrupt one feature in each sample in v. ind = (np.arange(v.shape[0]), rng.randint(0, v.shape[1], v.shape[0])) if issparse(v): data = -2 * v[ind] + 1 v_ = v + sp.csr_matrix((data.A.ravel(), ind), shape=v.shape) else: v_ = v.copy() v_[ind] = 1 - v_[ind] fe = self._free_energy(v) fe_ = self._free_energy(v_) return v.shape[1] * log_logistic(fe_ - fe) def fit(self, X, y=None): """Fit the model to the data X. Parameters ---------- X : {array-like, sparse matrix} shape (n_samples, n_features) Training data. Returns ------- self : BernoulliRBM The fitted model. """ X = check_array(X, accept_sparse='csr', dtype=np.float64) n_samples = X.shape[0] rng = check_random_state(self.random_state) self.components_ = np.asarray( rng.normal(0, 0.01, (self.n_components, X.shape[1])), order='F') self.intercept_hidden_ = np.zeros(self.n_components, ) self.intercept_visible_ = np.zeros(X.shape[1], ) self.h_samples_ = np.zeros((self.batch_size, self.n_components)) n_batches = int(np.ceil(float(n_samples) / self.batch_size)) batch_slices = list(gen_even_slices(n_batches * self.batch_size, n_batches, n_samples)) verbose = self.verbose begin = time.time() for iteration in xrange(1, self.n_iter + 1): for batch_slice in batch_slices: self._fit(X[batch_slice], rng) if verbose: end = time.time() print("[%s] Iteration %d, pseudo-likelihood = %.2f," " time = %.2fs" % (type(self).__name__, iteration, self.score_samples(X).mean(), end - begin)) begin = end return self
bsd-3-clause
dpinney/omf
omf/scratch/Neural_Net_Experimentation/peak forecast model/peakForecast_m.py
1
3921
''' Calculate the costs and benefits of energy storage from a distribution utility perspective. ''' import os, sys, shutil, csv from datetime import datetime as dt, timedelta from os.path import isdir, join as pJoin import pandas as pd from omf.models import __neoMetaModel__ from __neoMetaModel__ import * from omf import forecast as lf from omf import peakForecast as pf # Model metadata: modelName, template = metadata(__file__) tooltip = "This model predicts whether the following day will be a monthly peak." hidden = True def work(modelDir, ind): ''' Model processing done here. ''' epochs = int(ind['epochs']) o = {} # See bottom of file for out's structure o['max_c'] = float(ind['max_c']) try: with open(pJoin(modelDir, 'hist.csv'), 'w') as f: f.write(ind['histCurve'].replace('\r', '')) df = pd.read_csv(pJoin(modelDir, 'hist.csv')) assert df.shape[0] >= 26280 # must be longer than 3 years df['dates'] = df.apply( lambda x: dt( int(x['year']), int(x['month']), int(x['day']), int(x['hour'])), axis=1 ) df['dayOfYear'] = df['dates'].dt.dayofyear except: raise Exception("CSV file is incorrect format.") this_year = max(list(df.year.unique())) o['startDate'] = "{}-01-01".format(this_year) # ---------------------- MAKE PREDICTIONS ------------------------------- # d_dict = pf.dispatch_strategy(df, EPOCHS=epochs) df_dispatch = d_dict['df_dispatch'] # -------------------- MODEL ACCURACY ANALYSIS -------------------------- # # load forecasting accuracy demand = df_dispatch['load'] o['demand'] = list(demand) o['one_day'] = list(df_dispatch['1-day']) o['two_day'] = list(df_dispatch['2-day']) o['one_day_train'] = 100 - round(d_dict['1-day_accuracy']['train'], 2) o['one_day_test'] = 100 - round(d_dict['1-day_accuracy']['test'], 2) o['two_day_train'] = 100 - round(d_dict['2-day_accuracy']['train'], 2) o['two_day_test'] = 100 - round(d_dict['2-day_accuracy']['test'], 2) # peak forecasting accuracy df_conf = pf.confidence_dispatch(df_dispatch, max_c=o['max_c']) # o['precision_g'] = list(df_conf['precision']) # o['recall_g'] = list(df_conf['recall']) # o['peaks_missed_g'] = list(df_conf['peaks_missed']) # o['unnecessary_dispatches_g'] = list(df_conf['unnecessary_dispatches']) ans = df_dispatch['should_dispatch'] pre = df_dispatch['dispatch'] days = [(dt(this_year, 1, 1)+timedelta(days=1)*i) for i, _ in enumerate(pre)] tp = list((ans & pre)*demand) fp = list(((~ans) & pre)*demand) fn = list((ans & (~pre)*demand)) o['true_positive'] = [[str(i)[:-9] + "T20:15:00.441844", j] for i, j in zip(days, tp)] o['false_positive'] = [[str(i)[:-9] + "T20:15:00.441844", j] for i, j in zip(days,fp)] o['false_negative'] = [[str(i)[:-9] + "T20:15:00.441844", j] for i, j in zip(days, fn)] # recommended confidence d = pf.find_lowest_confidence(df_conf) o['lowest_confidence'] = d['confidence'] o['lowest_dispatch'] = d['unnecessary_dispatches'] print(len(o['true_positive']), o['true_positive']) o['stderr'] = '' return o def new(modelDir): ''' Create a new instance of this model. Returns true on success, false on failure. ''' defaultInputs = { 'created': '2015-06-12 17:20:39.308239', 'modelType': modelName, 'runTime': '0:01:03', 'epochs': '1', 'max_c': '0.1', 'histFileName': 'd_Texas_17yr_TempAndLoad.csv', "histCurve": open(pJoin(__neoMetaModel__._omfDir,"static","testFiles","d_Texas_17yr_TempAndLoad.csv"), 'rU').read(), } return __neoMetaModel__.new(modelDir, defaultInputs) def _tests(): modelLoc = pJoin(__neoMetaModel__._omfDir,'data','Model','admin','Automated Testing of ' + modelName) # Blow away old test results if necessary. if isdir(modelLoc): shutil.rmtree(modelLoc) new(modelLoc) # Create New. renderAndShow(modelLoc) # Pre-run. runForeground(modelLoc) # Run the model. renderAndShow(modelLoc) # Show the output. if __name__ == '__main__': _tests()
gpl-2.0
pkruskal/scikit-learn
examples/preprocessing/plot_function_transformer.py
161
1949
""" ========================================================= Using FunctionTransformer to select columns ========================================================= Shows how to use a function transformer in a pipeline. If you know your dataset's first principle component is irrelevant for a classification task, you can use the FunctionTransformer to select all but the first column of the PCA transformed data. """ import matplotlib.pyplot as plt import numpy as np from sklearn.cross_validation import train_test_split from sklearn.decomposition import PCA from sklearn.pipeline import make_pipeline from sklearn.preprocessing import FunctionTransformer def _generate_vector(shift=0.5, noise=15): return np.arange(1000) + (np.random.rand(1000) - shift) * noise def generate_dataset(): """ This dataset is two lines with a slope ~ 1, where one has a y offset of ~100 """ return np.vstack(( np.vstack(( _generate_vector(), _generate_vector() + 100, )).T, np.vstack(( _generate_vector(), _generate_vector(), )).T, )), np.hstack((np.zeros(1000), np.ones(1000))) def all_but_first_column(X): return X[:, 1:] def drop_first_component(X, y): """ Create a pipeline with PCA and the column selector and use it to transform the dataset. """ pipeline = make_pipeline( PCA(), FunctionTransformer(all_but_first_column), ) X_train, X_test, y_train, y_test = train_test_split(X, y) pipeline.fit(X_train, y_train) return pipeline.transform(X_test), y_test if __name__ == '__main__': X, y = generate_dataset() plt.scatter(X[:, 0], X[:, 1], c=y, s=50) plt.show() X_transformed, y_transformed = drop_first_component(*generate_dataset()) plt.scatter( X_transformed[:, 0], np.zeros(len(X_transformed)), c=y_transformed, s=50, ) plt.show()
bsd-3-clause
NunoEdgarGub1/scikit-learn
sklearn/decomposition/tests/test_fastica.py
272
7798
""" Test the fastica algorithm. """ import itertools import warnings import numpy as np from scipy import stats from nose.tools import assert_raises from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns from sklearn.decomposition import FastICA, fastica, PCA from sklearn.decomposition.fastica_ import _gs_decorrelation from sklearn.externals.six import moves def center_and_norm(x, axis=-1): """ Centers and norms x **in place** Parameters ----------- x: ndarray Array with an axis of observations (statistical units) measured on random variables. axis: int, optional Axis along which the mean and variance are calculated. """ x = np.rollaxis(x, axis) x -= x.mean(axis=0) x /= x.std(axis=0) def test_gs(): # Test gram schmidt orthonormalization # generate a random orthogonal matrix rng = np.random.RandomState(0) W, _, _ = np.linalg.svd(rng.randn(10, 10)) w = rng.randn(10) _gs_decorrelation(w, W, 10) assert_less((w ** 2).sum(), 1.e-10) w = rng.randn(10) u = _gs_decorrelation(w, W, 5) tmp = np.dot(u, W.T) assert_less((tmp[:5] ** 2).sum(), 1.e-10) def test_fastica_simple(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) # scipy.stats uses the global RNG: np.random.seed(0) n_samples = 1000 # Generate two sources: s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1 s2 = stats.t.rvs(1, size=n_samples) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing angle phi = 0.6 mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]]) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(2, 1000) center_and_norm(m) # function as fun arg def g_test(x): return x ** 3, (3 * x ** 2).mean(axis=-1) algos = ['parallel', 'deflation'] nls = ['logcosh', 'exp', 'cube', g_test] whitening = [True, False] for algo, nl, whiten in itertools.product(algos, nls, whitening): if whiten: k_, mixing_, s_ = fastica(m.T, fun=nl, algorithm=algo) assert_raises(ValueError, fastica, m.T, fun=np.tanh, algorithm=algo) else: X = PCA(n_components=2, whiten=True).fit_transform(m.T) k_, mixing_, s_ = fastica(X, fun=nl, algorithm=algo, whiten=False) assert_raises(ValueError, fastica, X, fun=np.tanh, algorithm=algo) s_ = s_.T # Check that the mixing model described in the docstring holds: if whiten: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2) else: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=1) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=1) # Test FastICA class _, _, sources_fun = fastica(m.T, fun=nl, algorithm=algo, random_state=0) ica = FastICA(fun=nl, algorithm=algo, random_state=0) sources = ica.fit_transform(m.T) assert_equal(ica.components_.shape, (2, 2)) assert_equal(sources.shape, (1000, 2)) assert_array_almost_equal(sources_fun, sources) assert_array_almost_equal(sources, ica.transform(m.T)) assert_equal(ica.mixing_.shape, (2, 2)) for fn in [np.tanh, "exp(-.5(x^2))"]: ica = FastICA(fun=fn, algorithm=algo, random_state=0) assert_raises(ValueError, ica.fit, m.T) assert_raises(TypeError, FastICA(fun=moves.xrange(10)).fit, m.T) def test_fastica_nowhiten(): m = [[0, 1], [1, 0]] # test for issue #697 ica = FastICA(n_components=1, whiten=False, random_state=0) assert_warns(UserWarning, ica.fit, m) assert_true(hasattr(ica, 'mixing_')) def test_non_square_fastica(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) n_samples = 1000 # Generate two sources: t = np.linspace(0, 100, n_samples) s1 = np.sin(t) s2 = np.ceil(np.sin(np.pi * t)) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing matrix mixing = rng.randn(6, 2) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(6, n_samples) center_and_norm(m) k_, mixing_, s_ = fastica(m.T, n_components=2, random_state=rng) s_ = s_.T # Check that the mixing model described in the docstring holds: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=3) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=3) def test_fit_transform(): # Test FastICA.fit_transform rng = np.random.RandomState(0) X = rng.random_sample((100, 10)) for whiten, n_components in [[True, 5], [False, None]]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) Xt = ica.fit_transform(X) assert_equal(ica.components_.shape, (n_components_, 10)) assert_equal(Xt.shape, (100, n_components_)) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) ica.fit(X) assert_equal(ica.components_.shape, (n_components_, 10)) Xt2 = ica.transform(X) assert_array_almost_equal(Xt, Xt2) def test_inverse_transform(): # Test FastICA.inverse_transform n_features = 10 n_samples = 100 n1, n2 = 5, 10 rng = np.random.RandomState(0) X = rng.random_sample((n_samples, n_features)) expected = {(True, n1): (n_features, n1), (True, n2): (n_features, n2), (False, n1): (n_features, n2), (False, n2): (n_features, n2)} for whiten in [True, False]: for n_components in [n1, n2]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, random_state=rng, whiten=whiten) with warnings.catch_warnings(record=True): # catch "n_components ignored" warning Xt = ica.fit_transform(X) expected_shape = expected[(whiten, n_components_)] assert_equal(ica.mixing_.shape, expected_shape) X2 = ica.inverse_transform(Xt) assert_equal(X.shape, X2.shape) # reversibility test in non-reduction case if n_components == X.shape[1]: assert_array_almost_equal(X, X2)
bsd-3-clause
mbkumar/pymatgen
pymatgen/phonon/plotter.py
1
23979
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ This module implements plotter for DOS and band structure. """ import logging from collections import OrderedDict, namedtuple import numpy as np import scipy.constants as const from monty.json import jsanitize from pymatgen.electronic_structure.plotter import plot_brillouin_zone from pymatgen.phonon.bandstructure import PhononBandStructureSymmLine from pymatgen.util.plotting import pretty_plot, add_fig_kwargs, get_ax_fig_plt logger = logging.getLogger(__name__) FreqUnits = namedtuple("FreqUnits", ["factor", "label"]) def freq_units(units): """ Args: units: str, accepted values: thz, ev, mev, ha, cm-1, cm^-1 Returns: Returns conversion factor from THz to the requred units and the label in the form of a namedtuple """ d = {"thz": FreqUnits(1, "THz"), "ev": FreqUnits(const.value("hertz-electron volt relationship") * const.tera, "eV"), "mev": FreqUnits(const.value("hertz-electron volt relationship") * const.tera / const.milli, "meV"), "ha": FreqUnits(const.value("hertz-hartree relationship") * const.tera, "Ha"), "cm-1": FreqUnits(const.value("hertz-inverse meter relationship") * const.tera * const.centi, "cm^{-1}"), 'cm^-1': FreqUnits(const.value("hertz-inverse meter relationship") * const.tera * const.centi, "cm^{-1}") } try: return d[units.lower().strip()] except KeyError: raise KeyError('Value for units `{}` unknown\nPossible values are:\n {}'.format(units, list(d.keys()))) class PhononDosPlotter: """ Class for plotting phonon DOSs. Note that the interface is extremely flexible given that there are many different ways in which people want to view DOS. The typical usage is:: # Initializes plotter with some optional args. Defaults are usually # fine, plotter = PhononDosPlotter() # Adds a DOS with a label. plotter.add_dos("Total DOS", dos) # Alternatively, you can add a dict of DOSs. This is the typical # form returned by CompletePhononDos.get_element_dos(). """ def __init__(self, stack=False, sigma=None): """ Args: stack: Whether to plot the DOS as a stacked area graph sigma: A float specifying a standard deviation for Gaussian smearing the DOS for nicer looking plots. Defaults to None for no smearing. """ self.stack = stack self.sigma = sigma self._doses = OrderedDict() def add_dos(self, label, dos): """ Adds a dos for plotting. Args: label: label for the DOS. Must be unique. dos: PhononDos object """ densities = dos.get_smeared_densities(self.sigma) if self.sigma \ else dos.densities self._doses[label] = {'frequencies': dos.frequencies, 'densities': densities} def add_dos_dict(self, dos_dict, key_sort_func=None): """ Add a dictionary of doses, with an optional sorting function for the keys. Args: dos_dict: dict of {label: Dos} key_sort_func: function used to sort the dos_dict keys. """ if key_sort_func: keys = sorted(dos_dict.keys(), key=key_sort_func) else: keys = dos_dict.keys() for label in keys: self.add_dos(label, dos_dict[label]) def get_dos_dict(self): """ Returns the added doses as a json-serializable dict. Note that if you have specified smearing for the DOS plot, the densities returned will be the smeared densities, not the original densities. Returns: Dict of dos data. Generally of the form, {label: {'frequencies':.., 'densities': ...}} """ return jsanitize(self._doses) def get_plot(self, xlim=None, ylim=None, units="thz"): """ Get a matplotlib plot showing the DOS. Args: xlim: Specifies the x-axis limits. Set to None for automatic determination. ylim: Specifies the y-axis limits. units: units for the frequencies. Accepted values thz, ev, mev, ha, cm-1, cm^-1. """ u = freq_units(units) ncolors = max(3, len(self._doses)) ncolors = min(9, ncolors) import palettable colors = palettable.colorbrewer.qualitative.Set1_9.mpl_colors y = None alldensities = [] allfrequencies = [] plt = pretty_plot(12, 8) # Note that this complicated processing of frequencies is to allow for # stacked plots in matplotlib. for key, dos in self._doses.items(): frequencies = dos['frequencies'] * u.factor densities = dos['densities'] if y is None: y = np.zeros(frequencies.shape) if self.stack: y += densities newdens = y.copy() else: newdens = densities allfrequencies.append(frequencies) alldensities.append(newdens) keys = list(self._doses.keys()) keys.reverse() alldensities.reverse() allfrequencies.reverse() allpts = [] for i, (key, frequencies, densities) in enumerate(zip(keys, allfrequencies, alldensities)): allpts.extend(list(zip(frequencies, densities))) if self.stack: plt.fill(frequencies, densities, color=colors[i % ncolors], label=str(key)) else: plt.plot(frequencies, densities, color=colors[i % ncolors], label=str(key), linewidth=3) if xlim: plt.xlim(xlim) if ylim: plt.ylim(ylim) else: xlim = plt.xlim() relevanty = [p[1] for p in allpts if xlim[0] < p[0] < xlim[1]] plt.ylim((min(relevanty), max(relevanty))) ylim = plt.ylim() plt.plot([0, 0], ylim, 'k--', linewidth=2) plt.xlabel(r'$\mathrm{{Frequencies\ ({})}}$'.format(u.label)) plt.ylabel(r'$\mathrm{Density\ of\ states}$') plt.legend() leg = plt.gca().get_legend() ltext = leg.get_texts() # all the text.Text instance in the legend plt.setp(ltext, fontsize=30) plt.tight_layout() return plt def save_plot(self, filename, img_format="eps", xlim=None, ylim=None, units="thz"): """ Save matplotlib plot to a file. Args: filename: Filename to write to. img_format: Image format to use. Defaults to EPS. xlim: Specifies the x-axis limits. Set to None for automatic determination. ylim: Specifies the y-axis limits. units: units for the frequencies. Accepted values thz, ev, mev, ha, cm-1, cm^-1 """ plt = self.get_plot(xlim, ylim, units=units) plt.savefig(filename, format=img_format) plt.close() def show(self, xlim=None, ylim=None, units="thz"): """ Show the plot using matplotlib. Args: xlim: Specifies the x-axis limits. Set to None for automatic determination. ylim: Specifies the y-axis limits. units: units for the frequencies. Accepted values thz, ev, mev, ha, cm-1, cm^-1. """ plt = self.get_plot(xlim, ylim, units=units) plt.show() class PhononBSPlotter: """ Class to plot or get data to facilitate the plot of band structure objects. """ def __init__(self, bs): """ Args: bs: A PhononBandStructureSymmLine object. """ if not isinstance(bs, PhononBandStructureSymmLine): raise ValueError( "PhononBSPlotter only works with PhononBandStructureSymmLine objects. " "A PhononBandStructure object (on a uniform grid for instance and " "not along symmetry lines won't work)") self._bs = bs self._nb_bands = self._bs.nb_bands def _maketicks(self, plt): """ utility private method to add ticks to a band structure """ ticks = self.get_ticks() # Sanitize only plot the uniq values uniq_d = [] uniq_l = [] temp_ticks = list(zip(ticks['distance'], ticks['label'])) for i in range(len(temp_ticks)): if i == 0: uniq_d.append(temp_ticks[i][0]) uniq_l.append(temp_ticks[i][1]) logger.debug("Adding label {l} at {d}".format( l=temp_ticks[i][0], d=temp_ticks[i][1])) else: if temp_ticks[i][1] == temp_ticks[i - 1][1]: logger.debug("Skipping label {i}".format( i=temp_ticks[i][1])) else: logger.debug("Adding label {l} at {d}".format( l=temp_ticks[i][0], d=temp_ticks[i][1])) uniq_d.append(temp_ticks[i][0]) uniq_l.append(temp_ticks[i][1]) logger.debug("Unique labels are %s" % list(zip(uniq_d, uniq_l))) plt.gca().set_xticks(uniq_d) plt.gca().set_xticklabels(uniq_l) for i in range(len(ticks['label'])): if ticks['label'][i] is not None: # don't print the same label twice if i != 0: if ticks['label'][i] == ticks['label'][i - 1]: logger.debug("already print label... " "skipping label {i}".format(i=ticks['label'][i])) else: logger.debug("Adding a line at {d} for label {l}".format( d=ticks['distance'][i], l=ticks['label'][i])) plt.axvline(ticks['distance'][i], color='k') else: logger.debug("Adding a line at {d} for label {l}".format( d=ticks['distance'][i], l=ticks['label'][i])) plt.axvline(ticks['distance'][i], color='k') return plt def bs_plot_data(self): """ Get the data nicely formatted for a plot Returns: A dict of the following format: ticks: A dict with the 'distances' at which there is a qpoint (the x axis) and the labels (None if no label) frequencies: A list (one element for each branch) of frequencies for each qpoint: [branch][qpoint][mode]. The data is stored by branch to facilitate the plotting lattice: The reciprocal lattice. """ distance = [] frequency = [] ticks = self.get_ticks() for b in self._bs.branches: frequency.append([]) distance.append([self._bs.distance[j] for j in range(b['start_index'], b['end_index'] + 1)]) for i in range(self._nb_bands): frequency[-1].append( [self._bs.bands[i][j] for j in range(b['start_index'], b['end_index'] + 1)]) return {'ticks': ticks, 'distances': distance, 'frequency': frequency, 'lattice': self._bs.lattice_rec.as_dict()} def get_plot(self, ylim=None, units="thz"): """ Get a matplotlib object for the bandstructure plot. Args: ylim: Specify the y-axis (frequency) limits; by default None let the code choose. units: units for the frequencies. Accepted values thz, ev, mev, ha, cm-1, cm^-1. """ u = freq_units(units) plt = pretty_plot(12, 8) band_linewidth = 1 data = self.bs_plot_data() for d in range(len(data['distances'])): for i in range(self._nb_bands): plt.plot(data['distances'][d], [data['frequency'][d][i][j] * u.factor for j in range(len(data['distances'][d]))], 'b-', linewidth=band_linewidth) self._maketicks(plt) # plot y=0 line plt.axhline(0, linewidth=1, color='k') # Main X and Y Labels plt.xlabel(r'$\mathrm{Wave\ Vector}$', fontsize=30) ylabel = r'$\mathrm{{Frequencies\ ({})}}$'.format(u.label) plt.ylabel(ylabel, fontsize=30) # X range (K) # last distance point x_max = data['distances'][-1][-1] plt.xlim(0, x_max) if ylim is not None: plt.ylim(ylim) plt.tight_layout() return plt def show(self, ylim=None, units="thz"): """ Show the plot using matplotlib. Args: ylim: Specify the y-axis (frequency) limits; by default None let the code choose. units: units for the frequencies. Accepted values thz, ev, mev, ha, cm-1, cm^-1. """ plt = self.get_plot(ylim, units=units) plt.show() def save_plot(self, filename, img_format="eps", ylim=None, units="thz"): """ Save matplotlib plot to a file. Args: filename: Filename to write to. img_format: Image format to use. Defaults to EPS. ylim: Specifies the y-axis limits. units: units for the frequencies. Accepted values thz, ev, mev, ha, cm-1, cm^-1. """ plt = self.get_plot(ylim=ylim, units=units) plt.savefig(filename, format=img_format) plt.close() def get_ticks(self): """ Get all ticks and labels for a band structure plot. Returns: A dict with 'distance': a list of distance at which ticks should be set and 'label': a list of label for each of those ticks. """ tick_distance = [] tick_labels = [] previous_label = self._bs.qpoints[0].label previous_branch = self._bs.branches[0]['name'] for i, c in enumerate(self._bs.qpoints): if c.label is not None: tick_distance.append(self._bs.distance[i]) this_branch = None for b in self._bs.branches: if b['start_index'] <= i <= b['end_index']: this_branch = b['name'] break if c.label != previous_label \ and previous_branch != this_branch: label1 = c.label if label1.startswith("\\") or label1.find("_") != -1: label1 = "$" + label1 + "$" label0 = previous_label if label0.startswith("\\") or label0.find("_") != -1: label0 = "$" + label0 + "$" tick_labels.pop() tick_distance.pop() tick_labels.append(label0 + "$\\mid$" + label1) else: if c.label.startswith("\\") or c.label.find("_") != -1: tick_labels.append("$" + c.label + "$") else: tick_labels.append(c.label) previous_label = c.label previous_branch = this_branch return {'distance': tick_distance, 'label': tick_labels} def plot_compare(self, other_plotter, units="thz"): """ plot two band structure for comparison. One is in red the other in blue. The two band structures need to be defined on the same symmetry lines! and the distance between symmetry lines is the one of the band structure used to build the PhononBSPlotter Args: another PhononBSPlotter object defined along the same symmetry lines Returns: a matplotlib object with both band structures """ u = freq_units(units) data_orig = self.bs_plot_data() data = other_plotter.bs_plot_data() if len(data_orig['distances']) != len(data['distances']): raise ValueError('The two objects are not compatible.') plt = self.get_plot(units=units) band_linewidth = 1 for i in range(other_plotter._nb_bands): for d in range(len(data_orig['distances'])): plt.plot(data_orig['distances'][d], [data['frequency'][d][i][j] * u.factor for j in range(len(data_orig['distances'][d]))], 'r-', linewidth=band_linewidth) return plt def plot_brillouin(self): """ plot the Brillouin zone """ # get labels and lines labels = {} for q in self._bs.qpoints: if q.label: labels[q.label] = q.frac_coords lines = [] for b in self._bs.branches: lines.append([self._bs.qpoints[b['start_index']].frac_coords, self._bs.qpoints[b['end_index']].frac_coords]) plot_brillouin_zone(self._bs.lattice_rec, lines=lines, labels=labels) class ThermoPlotter: """ Plotter for thermodynamic properties obtained from phonon DOS. If the structure corresponding to the DOS, it will be used to extract the forumla unit and provide the plots in units of mol instead of mole-cell """ def __init__(self, dos, structure=None): """ Args: dos: A PhononDos object. structure: A Structure object corresponding to the structure used for the calculation. """ self.dos = dos self.structure = structure def _plot_thermo(self, func, temperatures, factor=1, ax=None, ylabel=None, label=None, ylim=None, **kwargs): """ Plots a thermodynamic property for a generic function from a PhononDos instance. Args: func: the thermodynamic function to be used to calculate the property temperatures: a list of temperatures factor: a multiplicative factor applied to the thermodynamic property calculated. Used to change the units. ax: matplotlib :class:`Axes` or None if a new figure should be created. ylabel: label for the y axis label: label of the plot ylim: tuple specifying the y-axis limits. kwargs: kwargs passed to the matplotlib function 'plot'. Returns: matplotlib figure """ ax, fig, plt = get_ax_fig_plt(ax) values = [] for t in temperatures: values.append(func(t, structure=self.structure) * factor) ax.plot(temperatures, values, label=label, **kwargs) if ylim: ax.set_ylim(ylim) ax.set_xlim((np.min(temperatures), np.max(temperatures))) ylim = plt.ylim() if ylim[0] < 0 < ylim[1]: plt.plot(plt.xlim(), [0, 0], 'k-', linewidth=1) ax.set_xlabel(r"$T$ (K)") if ylabel: ax.set_ylabel(ylabel) return fig @add_fig_kwargs def plot_cv(self, tmin, tmax, ntemp, ylim=None, **kwargs): """ Plots the constant volume specific heat C_v in a temperature range. Args: tmin: minimum temperature tmax: maximum temperature ntemp: number of steps ylim: tuple specifying the y-axis limits. kwargs: kwargs passed to the matplotlib function 'plot'. Returns: matplotlib figure """ temperatures = np.linspace(tmin, tmax, ntemp) if self.structure: ylabel = r"$C_v$ (J/K/mol)" else: ylabel = r"$C_v$ (J/K/mol-c)" fig = self._plot_thermo(self.dos.cv, temperatures, ylabel=ylabel, ylim=ylim, **kwargs) return fig @add_fig_kwargs def plot_entropy(self, tmin, tmax, ntemp, ylim=None, **kwargs): """ Plots the vibrational entrpy in a temperature range. Args: tmin: minimum temperature tmax: maximum temperature ntemp: number of steps ylim: tuple specifying the y-axis limits. kwargs: kwargs passed to the matplotlib function 'plot'. Returns: matplotlib figure """ temperatures = np.linspace(tmin, tmax, ntemp) if self.structure: ylabel = r"$S$ (J/K/mol)" else: ylabel = r"$S$ (J/K/mol-c)" fig = self._plot_thermo(self.dos.entropy, temperatures, ylabel=ylabel, ylim=ylim, **kwargs) return fig @add_fig_kwargs def plot_internal_energy(self, tmin, tmax, ntemp, ylim=None, **kwargs): """ Plots the vibrational internal energy in a temperature range. Args: tmin: minimum temperature tmax: maximum temperature ntemp: number of steps ylim: tuple specifying the y-axis limits. kwargs: kwargs passed to the matplotlib function 'plot'. Returns: matplotlib figure """ temperatures = np.linspace(tmin, tmax, ntemp) if self.structure: ylabel = r"$\Delta E$ (kJ/mol)" else: ylabel = r"$\Delta E$ (kJ/mol-c)" fig = self._plot_thermo(self.dos.internal_energy, temperatures, ylabel=ylabel, ylim=ylim, factor=1e-3, **kwargs) return fig @add_fig_kwargs def plot_helmholtz_free_energy(self, tmin, tmax, ntemp, ylim=None, **kwargs): """ Plots the vibrational contribution to the Helmoltz free energy in a temperature range. Args: tmin: minimum temperature tmax: maximum temperature ntemp: number of steps ylim: tuple specifying the y-axis limits. kwargs: kwargs passed to the matplotlib function 'plot'. Returns: matplotlib figure """ temperatures = np.linspace(tmin, tmax, ntemp) if self.structure: ylabel = r"$\Delta F$ (kJ/mol)" else: ylabel = r"$\Delta F$ (kJ/mol-c)" fig = self._plot_thermo(self.dos.helmholtz_free_energy, temperatures, ylabel=ylabel, ylim=ylim, factor=1e-3, **kwargs) return fig @add_fig_kwargs def plot_thermodynamic_properties(self, tmin, tmax, ntemp, ylim=None, **kwargs): """ Plots all the thermodynamic properties in a temperature range. Args: tmin: minimum temperature tmax: maximum temperature ntemp: number of steps ylim: tuple specifying the y-axis limits. kwargs: kwargs passed to the matplotlib function 'plot'. Returns: matplotlib figure """ temperatures = np.linspace(tmin, tmax, ntemp) mol = "" if self.structure else "-c" fig = self._plot_thermo(self.dos.cv, temperatures, ylabel="Thermodynamic properties", ylim=ylim, label=r"$C_v$ (J/K/mol{})".format(mol), **kwargs) self._plot_thermo(self.dos.entropy, temperatures, ylim=ylim, ax=fig.axes[0], label=r"$S$ (J/K/mol{})".format(mol), **kwargs) self._plot_thermo(self.dos.internal_energy, temperatures, ylim=ylim, ax=fig.axes[0], factor=1e-3, label=r"$\Delta E$ (kJ/mol{})".format(mol), **kwargs) self._plot_thermo(self.dos.helmholtz_free_energy, temperatures, ylim=ylim, ax=fig.axes[0], factor=1e-3, label=r"$\Delta F$ (kJ/mol{})".format(mol), **kwargs) fig.axes[0].legend(loc="best") return fig
mit
BIRDY-obspm/DOCKing_System
Module/Simulation/Trajectory/pykep/PyKEP/trajopt/_pl2pl_N_impulses.py
5
8898
from PyGMO.problem import base as base_problem from PyKEP.core import epoch, DAY2SEC, lambert_problem, propagate_lagrangian, SEC2DAY, AU, ic2par from PyKEP.planet import jpl_lp from math import pi, cos, sin, log, acos from scipy.linalg import norm class pl2pl_N_impulses(base_problem): """ This class is a PyGMO (http://esa.github.io/pygmo/) problem representing a single leg transfer between two planets allowing up to a maximum number of impulsive Deep Space Manouvres. The decision vector is:: [t0,T] + [alpha,u,v,V_inf]*(N-2) +[alpha] + ([tf]) ... in the units: [mjd2000, days] + [nd, nd, m/sec, nd] + [nd] + [mjd2000] Each leg time-of-flight can be decoded as follows, T_n = T log(alpha_n) / \sum_i(log(alpha_i)) .. note:: The resulting problem is box-bounded (unconstrained). The resulting trajectory is time-bounded. """ def __init__(self, start=jpl_lp('earth'), target=jpl_lp('venus'), N_max=3, tof=[20., 400.], vinf=[0., 4.], phase_free=True, multi_objective=False, t0=None ): """ prob = PyKEP.trajopt.pl2pl_N_impulses(start=jpl_lp('earth'), target=jpl_lp('venus'), N_max=3, tof=[20., 400.], vinf=[0., 4.], phase_free=True, multi_objective=False, t0=None) - start: a PyKEP planet defining the starting orbit - target: a PyKEP planet defining the target orbit - N_max: maximum number of impulses - tof: a list containing the box bounds [lower,upper] for the time of flight (days) - vinf: a list containing the box bounds [lower,upper] for each DV magnitude (km/sec) - phase_free: when True, no randezvous condition is enforced and the final orbit will be reached at an optimal true anomaly - multi_objective: when True, a multi-objective problem is constructed with DV and time of flight as objectives - t0: launch window defined as a list of two epochs [epoch,epoch] """ # Sanity checks # 1) all planets need to have the same mu_central_body if (start.mu_central_body != target.mu_central_body): raise ValueError('Starting and ending PyKEP.planet must have the same mu_central_body') # 2) Number of impulses must be at least 2 if N_max < 2: raise ValueError('Number of impulses N is less than 2') # 3) If phase_free is True, t0 does not make sense if (t0 is None and not phase_free): t0 = [epoch(0), epoch(1000)] if (t0 is not None and phase_free): raise ValueError('When phase_free is True no t0 can be specified') # We compute the PyGMO problem dimensions dim = 2 + 4 * (N_max - 2) + 1 + phase_free obj_dim = multi_objective + 1 # First we call the constructor for the base PyGMO problem # As our problem is n dimensional, box-bounded (may be multi-objective), we write # (dim, integer dim, number of obj, number of con, number of inequality con, tolerance on con violation) super(pl2pl_N_impulses, self).__init__(dim, 0, obj_dim, 0, 0, 0) # We then define all class data members self.start = start self.target = target self.N_max = N_max self.phase_free = phase_free self.multi_objective = multi_objective self.__common_mu = start.mu_central_body # And we compute the bounds if phase_free: lb = [start.ref_epoch.mjd2000, tof[0]] + [0.0, 0.0, 0.0, vinf[0] * 1000] * (N_max - 2) + [0.0] + [target.ref_epoch.mjd2000] ub = [start.ref_epoch.mjd2000 + 2 * start.period * SEC2DAY, tof[1]] + [1.0, 1.0, 1.0, vinf[1] * 1000] * (N_max - 2) + [1.0] + [target.ref_epoch.mjd2000 + 2 * target.period * SEC2DAY] else: lb = [t0[0].mjd2000, tof[0]] + [0.0, 0.0, 0.0, vinf[0] * 1000] * (N_max - 2) + [0.0] ub = [t0[1].mjd2000, tof[1]] + [1.0, 1.0, 1.0, vinf[1] * 1000] * (N_max - 2) + [1.0] # And we set them self.set_bounds(lb, ub) # Objective function def _objfun_impl(self, x): # 1 - we 'decode' the chromosome recording the various deep space # manouvres timing (days) in the list T T = list([0] * (self.N_max - 1)) for i in range(len(T)): T[i] = log(x[2 + 4 * i]) total = sum(T) T = [x[1] * time / total for time in T] # 2 - We compute the starting and ending position r_start, v_start = self.start.eph(epoch(x[0])) if self.phase_free: r_target, v_target = self.target.eph(epoch(x[-1])) else: r_target, v_target = self.target.eph(epoch(x[0] + x[1])) # 3 - We loop across inner impulses rsc = r_start vsc = v_start for i, time in enumerate(T[:-1]): theta = 2 * pi * x[3 + 4 * i] phi = acos(2 * x[4 + 4 * i] - 1) - pi / 2 Vinfx = x[5 + 4 * i] * cos(phi) * cos(theta) Vinfy = x[5 + 4 * i] * cos(phi) * sin(theta) Vinfz = x[5 + 4 * i] * sin(phi) # We apply the (i+1)-th impulse vsc = [a + b for a, b in zip(vsc, [Vinfx, Vinfy, Vinfz])] rsc, vsc = propagate_lagrangian( rsc, vsc, T[i] * DAY2SEC, self.__common_mu) cw = (ic2par(rsc, vsc, self.start.mu_central_body)[2] > pi / 2) # We now compute the remaining two final impulses # Lambert arc to reach seq[1] dt = T[-1] * DAY2SEC l = lambert_problem(rsc, r_target, dt, self.__common_mu, cw, False) v_end_l = l.get_v2()[0] v_beg_l = l.get_v1()[0] DV1 = norm([a - b for a, b in zip(v_beg_l, vsc)]) DV2 = norm([a - b for a, b in zip(v_end_l, v_target)]) DV_others = sum(x[5::4]) if self.f_dimension == 1: return (DV1 + DV2 + DV_others,) else: return (DV1 + DV2 + DV_others, x[1]) def plot(self, x, ax=None): """ ax = prob.plot(x, ax=None) - x: encoded trajectory - ax: matplotlib axis where to plot. If None figure and axis will be created - [out] ax: matplotlib axis where to plot Plots the trajectory represented by a decision vector x on the 3d axis ax Example:: ax = prob.plot(x) """ import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler if ax is None: mpl.rcParams['legend.fontsize'] = 10 fig = plt.figure() axis = fig.gca(projection='3d') else: axis = ax axis.scatter(0, 0, 0, color='y') # 1 - we 'decode' the chromosome recording the various deep space # manouvres timing (days) in the list T T = list([0] * (self.N_max - 1)) for i in range(len(T)): T[i] = log(x[2 + 4 * i]) total = sum(T) T = [x[1] * time / total for time in T] # 2 - We compute the starting and ending position r_start, v_start = self.start.eph(epoch(x[0])) if self.phase_free: r_target, v_target = self.target.eph(epoch(x[-1])) else: r_target, v_target = self.target.eph(epoch(x[0] + x[1])) plot_planet(self.start, t0=epoch(x[0]), color=(0.8, 0.6, 0.8), legend=True, units = AU, ax=axis) plot_planet(self.target, t0=epoch(x[0] + x[1]), color=(0.8, 0.6, 0.8), legend=True, units = AU, ax=axis) # 3 - We loop across inner impulses rsc = r_start vsc = v_start for i, time in enumerate(T[:-1]): theta = 2 * pi * x[3 + 4 * i] phi = acos(2 * x[4 + 4 * i] - 1) - pi / 2 Vinfx = x[5 + 4 * i] * cos(phi) * cos(theta) Vinfy = x[5 + 4 * i] * cos(phi) * sin(theta) Vinfz = x[5 + 4 * i] * sin(phi) # We apply the (i+1)-th impulse vsc = [a + b for a, b in zip(vsc, [Vinfx, Vinfy, Vinfz])] plot_kepler(rsc, vsc, T[ i] * DAY2SEC, self.__common_mu, N=200, color='b', legend=False, units=AU, ax=axis) rsc, vsc = propagate_lagrangian( rsc, vsc, T[i] * DAY2SEC, self.__common_mu) cw = (ic2par(rsc, vsc, self.start.mu_central_body)[2] > pi / 2) # We now compute the remaining two final impulses # Lambert arc to reach seq[1] dt = T[-1] * DAY2SEC l = lambert_problem(rsc, r_target, dt, self.__common_mu, cw, False) plot_lambert( l, sol=0, color='r', legend=False, units=AU, ax=axis, N=200) plt.show() return axis
lgpl-3.0
febert/DeepRL
ddpg_working/dashboard.py
1
5607
#!/usr/bin/env python import matplotlib matplotlib.use("Agg") import warnings warnings.filterwarnings("ignore", module="matplotlib") from IPython.display import display from ipywidgets import widgets import matplotlib.pyplot as plt import time import thread import numpy as np import json import shutil import cStringIO import webbrowser import os import subprocess import tensorflow as tf flags = tf.app.flags FLAGS = flags.FLAGS flags.DEFINE_string('exdir',os.getenv('DB_EXDIR',''),'path containing output folders') flags.DEFINE_boolean('browser',os.getenv('DB_BROWSER','True')=='True','create new jupyter browser tabs') PORT_DB = "8007" PORT_IP = "8008" PORT_TB = "8009" def main(): print('Experiment root folder at: ' + FLAGS.exdir) free_port(PORT_DB) free_port(PORT_IP) free_port(PORT_TB) subprocess.Popen(['jupyter','notebook', '--no-browser', '--port='+PORT_IP, FLAGS.exdir]) scriptdir = os.path.dirname(__file__) browser = "" if FLAGS.browser else "--no-browser" os.environ["DB_EXDIR"] = FLAGS.exdir os.environ["DB_BROWSER"] = 'True' if FLAGS.browser else 'False' os.system('jupyter notebook --port='+ PORT_DB + ' ' + scriptdir + ' ' + browser) def free_port(port): import signal for lsof in ["lsof","/usr/sbin/lsof"]: try: out = subprocess.check_output([lsof,"-t","-i:" + port]) for l in out.splitlines(): pid = int(l) os.kill(pid,signal.SIGTERM) # print("Killed process " + str(pid) + " to free port " + port) break except subprocess.CalledProcessError: pid = -1 except OSError: pass # TODO: remove ? def load(pattern): import glob import numpy as np data = [np.load(f) for f in glob.glob(FLAGS.exdir+'/'+pattern)] return data def dashboard(max=10): main_view = widgets.VBox() display(main_view) def loop(): views = {} while True: try: views2 = {} todisplay = [] i = 0 dirs = os.listdir(FLAGS.exdir) dirs.sort(reverse=True) for e in dirs: if i == max: break i = i+1 v = views[e] if e in views else ExpView(e) v.update() todisplay = todisplay + [v.view] views2[e] = v main_view.children = todisplay views = views2 time.sleep(1.) except Exception as ex: print(ex) pass thread.start_new_thread(loop,()) class ExpView: def __init__(self, name): self.outdir = FLAGS.exdir + '/' + name style_hlink = '<style>.hlink{padding: 5px 10px 5px 10px;display:inline-block;}</style>' bname = widgets.HTML(style_hlink + '<a class=hlink target="_blank"'+ 'href="http://localhost:'+ PORT_IP +'/tree/'+ name +'"> '+ name + ' </a> ') # self.env = widgets.Button() self.run_status = widgets.Button() killb = widgets.Button(description='kill') delb = widgets.Button(description='delete') killb.on_click(lambda _,self=self: exp_kill(self.outdir)) def delf(_,self=self): self.delete() exp_delete(self.outdir) delb.on_click(delf) self.plot = widgets.Image(format='png') tbb = widgets.Button(description='tensorboard') tbbb = widgets.HTML(style_hlink+'<a class=hlink target="_blank" href="http://localhost:'+ PORT_TB +'"> (open) </a> ') def ontb(_,self=self): free_port(PORT_TB) subprocess.Popen(['tensorboard','--port', PORT_TB, '--logdir', self.outdir]) if FLAGS.browser: webbrowser.open_new_tab('http://localhost:'+ PORT_TB) tbb.on_click(ontb) self.bar = widgets.HBox((bname, self.run_status,tbb,tbbb,killb,delb)) self.view = widgets.VBox((self.bar,self.plot,widgets.HTML('<br><br>'))) self.th_stop = False def loop_fig(self=self): while not self.th_stop: try: # update plot try: x = np.load(self.outdir+'/returns.npy') except: x = np.zeros([1,2]) f,ax = plt.subplots() f.set_size_inches((15,2.5)) f.set_tight_layout(True) ax.plot(x[:,0],x[:,1]) #ax.plot(i,r) sio = cStringIO.StringIO() f.savefig(sio, format='png',dpi=60) self.plot.value = sio.getvalue() sio.close() plt.close(f) except: pass self.th = thread.start_new_thread(loop_fig,()) def update(self): try: # update labels x = xread(self.outdir) job = x.get('job',False) if job: rt = 'job' jid = x['job_id'] try: out = subprocess.check_output("squeue --job {} -o %%T".format(jid).split(' '),stderr=subprocess.STDOUT) rs = out[6:] if rs == "": rs = "dead" except: rs = "dead" else: rt = 'local' rs = x['run_status'] # flags = x.get('__flags') or x.get('flags') # self.env.description = flags.get('env','') self.run_status.description = rt + ": " + rs except: pass def delete(self): self.th_stop = True def xwrite(path,data): with open(path+'/ezex.json','w+') as f: json.dump(data,f) def xread(path): with open(path+'/ezex.json') as f: return json.load(f) def exp_kill(outdir): ''' try to stop experiment slurm job with destination <outdir> ''' try: x = xread(outdir) jid = x['job_id'] cmd = 'scancel '+str(jid) subprocess.check_output(cmd,shell=True) except Exception: return False def exp_delete(outdir): exp_kill(outdir) shutil.rmtree(outdir,ignore_errors=False) if __name__ == '__main__': main()
gpl-3.0
pnedunuri/scikit-learn
examples/svm/plot_oneclass.py
249
2302
""" ========================================== One-class SVM with non-linear kernel (RBF) ========================================== An example using a one-class SVM for novelty detection. :ref:`One-class SVM <svm_outlier_detection>` is an unsupervised algorithm that learns a decision function for novelty detection: classifying new data as similar or different to the training set. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn import svm xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500)) # Generate train data X = 0.3 * np.random.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * np.random.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) y_pred_train = clf.predict(X_train) y_pred_test = clf.predict(X_test) y_pred_outliers = clf.predict(X_outliers) n_error_train = y_pred_train[y_pred_train == -1].size n_error_test = y_pred_test[y_pred_test == -1].size n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size # plot the line, the points, and the nearest vectors to the plane Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.title("Novelty Detection") plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.Blues_r) a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='red') plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='orange') b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white') b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green') c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red') plt.axis('tight') plt.xlim((-5, 5)) plt.ylim((-5, 5)) plt.legend([a.collections[0], b1, b2, c], ["learned frontier", "training observations", "new regular observations", "new abnormal observations"], loc="upper left", prop=matplotlib.font_manager.FontProperties(size=11)) plt.xlabel( "error train: %d/200 ; errors novel regular: %d/40 ; " "errors novel abnormal: %d/40" % (n_error_train, n_error_test, n_error_outliers)) plt.show()
bsd-3-clause
jcchin/MagnePlane
src/hyperloop/Python/pod/pod_group.py
4
9844
""" Group for Pod components containing the following components: Cycle Group, Pod Mach (Aero), DriveTrain group, Geometry, Levitation group, and Pod Mass """ from openmdao.api import Component, Group, Problem, IndepVarComp from hyperloop.Python.pod.drag import Drag from hyperloop.Python.pod.pod_mass import PodMass from hyperloop.Python.pod.drivetrain.drivetrain import Drivetrain from hyperloop.Python.pod.pod_mach import PodMach from hyperloop.Python.pod.cycle.cycle_group import Cycle from hyperloop.Python.pod.pod_geometry import PodGeometry from hyperloop.Python.pod.magnetic_levitation.levitation_group import LevGroup from openmdao.api import Newton, ScipyGMRES from openmdao.units.units import convert_units as cu import numpy as np import matplotlib.pylab as plt class PodGroup(Group): """TODOs Params ------ pod_mach : float Vehicle mach number (unitless) tube_pressure : float Tube total pressure (Pa) tube_temp : float Tube total temperature (K) comp.map.PRdes : float Pressure ratio of compressor (unitless) nozzle.Ps_exhaust : float Exit pressure of nozzle (psi) comp_inlet_area : float Inlet area of compressor. (m**2) des_time : float time until design power point (h) time_of_flight : float total mission time (h) motor_max_current : float max motor phase current (A) motor_LD_ratio : float length to diameter ratio of motor (unitless) motor_oversize_factor : float scales peak motor power by this figure inverter_efficiency : float power out / power in (W) battery_cross_section_area : float cross_sectional area of battery used to compute length (cm^2) n_passengers : float Number of passengers per pod. Default value is 28 A_payload : float Cross sectional area of passenger compartment. Default value is 2.72 vel_b : float desired breakpoint levitation speed (m/s) h_lev : float Levitation height. Default value is .01 vel : float desired magnetic drag speed (m/s) Returns ------- nozzle.Fg : float Nozzle thrust (lbf) inlet.F_ram : float Ram drag (lbf) nozzle.Fl_O:tot:T : float Total temperature at nozzle exit (degR) nozzle.Fl_O:stat:W : float Total mass flow rate at nozzle exit (lbm/s) A_tube : float will return optimal tunnel area based on pod Mach number S : float Platform area of the pod mag_drag : float magnetic drag from levitation system (N) total_pod_mass : float Pod Mass (kg) References ---------- .. [1] Friend, Paul. Magnetic Levitation Train Technology 1. Thesis. Bradley University, 2004. N.p.: n.p., n.d. Print. """ def __init__(self): super(PodGroup, self).__init__() self.add('drag', Drag(), promotes = ['pod_mach', 'Cd']) self.add('cycle', Cycle(), promotes=['comp.map.PRdes', 'nozzle.Ps_exhaust', 'comp_inlet_area', 'nozzle.Fg', 'inlet.F_ram', 'nozzle.Fl_O:tot:T', 'nozzle.Fl_O:stat:W', 'tube_pressure', 'tube_temp']) self.add('pod_mach', PodMach(), promotes=['A_tube']) self.add('drivetrain', Drivetrain(), promotes=['des_time', 'time_of_flight', 'motor_max_current', 'motor_LD_ratio', 'inverter_efficiency', 'motor_oversize_factor', 'battery_cross_section_area']) self.add('pod_geometry', PodGeometry(), promotes=['A_payload', 'n_passengers', 'S', 'L_pod']) self.add('levitation_group', LevGroup(), promotes=['vel_b', 'h_lev', 'vel', 'mag_drag', 'total_pod_mass']) self.add('pod_mass', PodMass()) # Connects pod group level variables to downstream components self.connect('pod_mach', ['pod_mach.M_pod', 'cycle.pod_mach']) self.connect('tube_pressure', 'pod_mach.p_tube') self.connect('tube_temp', 'pod_mach.T_ambient') self.connect('n_passengers', 'pod_mass.n_passengers') self.connect('comp_inlet_area', 'pod_mach.comp_inlet_area') self.connect('L_pod', ['pod_mach.L', 'pod_mass.pod_len', 'levitation_group.l_pod']) # Connects cycle group outputs to downstream components self.connect('cycle.comp_len', 'pod_geometry.L_comp') self.connect('cycle.comp_mass', 'pod_mass.comp_mass') self.connect('cycle.comp.power', 'drivetrain.design_power') self.connect('cycle.comp.trq', 'drivetrain.design_torque') self.connect('cycle.comp.Fl_O:stat:area', 'pod_geometry.A_duct') # Connects Drivetrain outputs to downstream components self.connect('drivetrain.battery_mass', 'pod_mass.battery_mass') self.connect('drivetrain.battery_length', 'pod_geometry.L_bat') self.connect('drivetrain.motor_mass', 'pod_mass.motor_mass') self.connect('drivetrain.motor_length', 'pod_geometry.L_motor') # Connects Pod Geometry outputs to downstream components self.connect('pod_geometry.A_pod', 'pod_mach.A_pod') self.connect('pod_geometry.D_pod', ['pod_mass.podgeo_d', 'levitation_group.d_pod']) self.connect('pod_geometry.BF', 'pod_mass.BF') # Connects Levitation outputs to downstream components # Connects Pod Mass outputs to downstream components self.connect('pod_mass.pod_mass', 'levitation_group.m_pod') if __name__ == "__main__": prob = Problem() root = prob.root = Group() root.add('Pod', PodGroup()) params = (('comp_inlet_area', 2.3884, {'units': 'm**2'}), ('comp_PR', 6.0, {'units': 'unitless'}), ('PsE', 0.05588, {'units': 'psi'}), ('des_time', 1.0), ('time_of_flight', 1.0, {'units' : 'h'}), ('motor_max_current', 800.0), ('motor_LD_ratio', 0.83), ('motor_oversize_factor', 1.0), ('inverter_efficiency', 1.0), ('battery_cross_section_area', 15000.0, {'units': 'cm**2'}), ('n_passengers', 28.0), ('A_payload', 2.72), ('pod_mach_number', .8, {'units': 'unitless'}), ('tube_pressure', 850., {'units': 'Pa'}), ('tube_temp', 320., {'units': 'K'}), ('vel_b', 23.0, {'units': 'm/s'}), ('h_lev', 0.01, {'unit': 'm'}), ('vel', 350.0, {'units': 'm/s'})) prob.root.add('des_vars', IndepVarComp(params)) prob.root.connect('des_vars.comp_inlet_area', 'Pod.comp_inlet_area') prob.root.connect('des_vars.comp_PR', 'Pod.comp.map.PRdes') prob.root.connect('des_vars.PsE', 'Pod.nozzle.Ps_exhaust') prob.root.connect('des_vars.des_time', 'Pod.des_time') prob.root.connect('des_vars.time_of_flight', 'Pod.time_of_flight') prob.root.connect('des_vars.motor_max_current', 'Pod.motor_max_current') prob.root.connect('des_vars.motor_LD_ratio', 'Pod.motor_LD_ratio') prob.root.connect('des_vars.motor_oversize_factor', 'Pod.motor_oversize_factor') prob.root.connect('des_vars.inverter_efficiency', 'Pod.inverter_efficiency') prob.root.connect('des_vars.battery_cross_section_area', 'Pod.battery_cross_section_area') prob.root.connect('des_vars.n_passengers', 'Pod.n_passengers') prob.root.connect('des_vars.A_payload', 'Pod.A_payload') prob.root.connect('des_vars.pod_mach_number', 'Pod.pod_mach') prob.root.connect('des_vars.tube_pressure', 'Pod.tube_pressure') prob.root.connect('des_vars.tube_temp', 'Pod.tube_temp') prob.root.connect('des_vars.vel_b', 'Pod.vel_b') prob.root.connect('des_vars.h_lev', 'Pod.h_lev') prob.root.connect('des_vars.vel', 'Pod.vel') prob.setup() prob.root.list_connections() # A_comp = np.linspace(1, 2.5, num = 50) # L = np.zeros((1, 50)) #print(len(A_comp)) #print(len(L)) #for i in range(len(A_comp)): # prob['des_vars.comp_inlet_area'] = A_comp[i] # prob.run() # L[0, i] = prob['Pod.pod_geometry.L_pod'] prob.run() # plt.plot(A_comp, L[0, :]) # plt.show() #prob.run() print('\n') print('total pressure %f' % (prob['Pod.cycle.FlowPathInputs.Pt'])) print('total temp %f' % prob['Pod.cycle.FlowPathInputs.Tt']) print('mass flow %f' % prob['Pod.cycle.FlowPathInputs.m_dot']) print('\n') print('compressor mass %f' % prob['Pod.cycle.comp_mass']) print('compressor power %f' % prob['Pod.cycle.comp.power']) print('compressor trq %f' % prob['Pod.cycle.comp.trq']) print('ram drag %f' % prob['Pod.inlet.F_ram']) print('nozzle total temp %f' % prob['Pod.nozzle.Fl_O:tot:T']) print('\n') print('battery length %f' % prob['Pod.drivetrain.battery_length']) print('battery volume %f' % prob['Pod.drivetrain.battery_volume']) print('motor length %f' % prob['Pod.drivetrain.motor_length']) print('battery mass %f' % prob['Pod.drivetrain.battery_mass']) print('motor mass %f' % prob['Pod.drivetrain.motor_mass']) print('\n') print('pod length %f' % prob['Pod.L_pod']) print('pod area %f' % prob['Pod.S']) print('pod cross section %f' % prob['Pod.pod_geometry.A_pod']) print('pod diameter %f' % prob['Pod.pod_geometry.D_pod']) print('\n') print('Tube Area %f' % prob['Pod.A_tube']) print('\n') print('pod mass w/o magnets %f' % prob['Pod.pod_mass.pod_mass']) print('\n') print('magnetic drag %f' % prob['Pod.mag_drag']) print('mag mass %f' % prob['Pod.levitation_group.Mass.m_mag']) print('total pod mass %f' % prob['Pod.total_pod_mass'])
apache-2.0
RPGOne/Skynet
scipy-2017-sklearn-master/notebooks/figures/plot_pca.py
5
3131
from sklearn.decomposition import PCA import matplotlib.pyplot as plt import numpy as np def plot_pca_illustration(): rnd = np.random.RandomState(5) X_ = rnd.normal(size=(300, 2)) X_blob = np.dot(X_, rnd.normal(size=(2, 2))) + rnd.normal(size=2) pca = PCA() pca.fit(X_blob) X_pca = pca.transform(X_blob) S = X_pca.std(axis=0) fig, axes = plt.subplots(2, 2, figsize=(10, 10)) axes = axes.ravel() axes[0].set_title("Original data") axes[0].scatter(X_blob[:, 0], X_blob[:, 1], c=X_pca[:, 0], linewidths=0, s=60, cmap='viridis') axes[0].set_xlabel("feature 1") axes[0].set_ylabel("feature 2") axes[0].arrow(pca.mean_[0], pca.mean_[1], S[0] * pca.components_[0, 0], S[0] * pca.components_[0, 1], width=.1, head_width=.3, color='k') axes[0].arrow(pca.mean_[0], pca.mean_[1], S[1] * pca.components_[1, 0], S[1] * pca.components_[1, 1], width=.1, head_width=.3, color='k') axes[0].text(-1.5, -.5, "Component 2", size=14) axes[0].text(-4, -4, "Component 1", size=14) axes[0].set_aspect('equal') axes[1].set_title("Transformed data") axes[1].scatter(X_pca[:, 0], X_pca[:, 1], c=X_pca[:, 0], linewidths=0, s=60, cmap='viridis') axes[1].set_xlabel("First principal component") axes[1].set_ylabel("Second principal component") axes[1].set_aspect('equal') axes[1].set_ylim(-8, 8) pca = PCA(n_components=1) pca.fit(X_blob) X_inverse = pca.inverse_transform(pca.transform(X_blob)) axes[2].set_title("Transformed data w/ second component dropped") axes[2].scatter(X_pca[:, 0], np.zeros(X_pca.shape[0]), c=X_pca[:, 0], linewidths=0, s=60, cmap='viridis') axes[2].set_xlabel("First principal component") axes[2].set_aspect('equal') axes[2].set_ylim(-8, 8) axes[3].set_title("Back-rotation using only first component") axes[3].scatter(X_inverse[:, 0], X_inverse[:, 1], c=X_pca[:, 0], linewidths=0, s=60, cmap='viridis') axes[3].set_xlabel("feature 1") axes[3].set_ylabel("feature 2") axes[3].set_aspect('equal') axes[3].set_xlim(-8, 4) axes[3].set_ylim(-8, 4) def plot_pca_whitening(): rnd = np.random.RandomState(5) X_ = rnd.normal(size=(300, 2)) X_blob = np.dot(X_, rnd.normal(size=(2, 2))) + rnd.normal(size=2) pca = PCA(whiten=True) pca.fit(X_blob) X_pca = pca.transform(X_blob) fig, axes = plt.subplots(1, 2, figsize=(10, 10)) axes = axes.ravel() axes[0].set_title("Original data") axes[0].scatter(X_blob[:, 0], X_blob[:, 1], c=X_pca[:, 0], linewidths=0, s=60, cmap='viridis') axes[0].set_xlabel("feature 1") axes[0].set_ylabel("feature 2") axes[0].set_aspect('equal') axes[1].set_title("Whitened data") axes[1].scatter(X_pca[:, 0], X_pca[:, 1], c=X_pca[:, 0], linewidths=0, s=60, cmap='viridis') axes[1].set_xlabel("First principal component") axes[1].set_ylabel("Second principal component") axes[1].set_aspect('equal') axes[1].set_xlim(-3, 4)
bsd-3-clause
pombo-lab/gamtools
lib/gamtools/qc/fastqc.py
1
5995
""" ================= The qc.fastqc module ================= The qc.fastqc module contains functions for parsing fastqc output files. Code in this module was shamelessly stolen from https://code.google.com/p/bioinformatics-misc/source/browse/trunk/fastqc_to_pgtable.py?spec=svn93&r=93 """ import os import numpy as np import pandas as pd def fastqc_data_file(input_fastq): """Given an input fastq file, return the name fastqc will use for it's output file. :param str input_fastq: Path to a fastq file. :returns: Path to fastqc output files. """ base_folder = input_fastq.split('.')[0] #base_folder = '.'.join(input_fastq.split('.')[:-1]) fastqc_folder = base_folder + '_fastqc' return os.path.join(fastqc_folder, 'fastqc_data.txt') def parse_module(fastqc_module): """ Parse a fastqc module from the table format to a line format (list). Input is list containing the module. One list-item per line. E.g.: fastqc_module= [ '>>Per base sequence quality pass', '#Base Mean Median Lower Quartile Upper Quartile 10th Percentile 90th Percentile', '1 36.34 38.0 35.0 39.0 31.0 40.0', '2 35.64 38.0 35.0 39.0 28.0 40.0', '3 35.50 38.0 34.0 39.0 28.0 40.0', ... ] Return a list like this where each sublist after 1st is a column: ['pass', ['1', '2', '3', ...], ['36,34', '35.64', '35.50', ...], ['40.0', '40.0', '40.0', ...]] """ row_list = [] module_header = fastqc_module[0] module_name = module_header.split('\t')[0] # Line with module name >>Per base ... pass/warn/fail row_list.append(module_header.split('\t')[1]) # Handle odd cases: # Where no table is returned: if len(fastqc_module) == 1 and module_name == '>>Overrepresented sequences': return row_list + [[]] * 4 if len(fastqc_module) == 1 and module_name == '>>Kmer Content': return row_list + [[]] * 5 # Table is not the secod row: if module_name == '>>Sequence Duplication Levels': tot_dupl = fastqc_module[1].split('\t')[1] row_list.append(tot_dupl) del fastqc_module[1] # Conevrt table to list of lists: tbl = [] for line in fastqc_module[2:]: tbl.append(line.split('\t')) # Put each column in a list: nrows = len(tbl) ncols = len(tbl[0]) for i in range(0, ncols): col = [] for j in range(0, nrows): col.append(tbl[j][i]) row_list.append(col) return row_list def is_mono_repeat(kmer): """ Return true if kmer represents a mono-nucleotide repeat (e.g. AAAA). """ return bool(len(set(kmer)) == 1) def is_di_repeat(kmer): """ Return true if kmer represents a di-nucleotide repeat (e.g. ATATAT). """ if not len(set(kmer)) == 2: return False return bool(len(set(kmer[::2])) == 1 and len(set(kmer[1::2])) == 1) def get_kmer_summary(module): """ Calculate the total number of kmers that are either mono- or di- nucleotide repeats. """ kmer_data = parse_module(module) kmers = kmer_data[1] counts = list(map(float, kmer_data[3])) summary_data = {'dinucleotide_repeats': 0, 'mononucleotide_repeats': 0} for kmer, count in zip(kmers, counts): if is_mono_repeat(kmer): summary_data['mononucleotide_repeats'] += count elif is_di_repeat(kmer): summary_data['dinucleotide_repeats'] += count return summary_data def get_avg_qual(module): """ Get the average per-base-pair sequencing quality score. """ qual_data = parse_module(module) qualities, counts = np.array( list(map(int, qual_data[1]))), np.array(list(map(float, qual_data[2]))) avg = (qualities * counts).sum() / counts.sum() return {'avg_quality': avg} def get_sample(filename): """ Get the name of the input sample given the fastqc output file path. """ return os.path.basename(os.path.dirname(filename))[:-7] def process_file(filename): """ Process a fastqc output file and calculate some summary statistics. """ fq_lines = open(filename).readlines() fq_lines = [x.strip() for x in fq_lines] fastqc_dict = {} # Get start and end position of all modules: mod_start = [] mod_end = [] for i, line in enumerate(fq_lines): if line == '>>END_MODULE': mod_end.append(i) elif line.startswith('>>'): mod_start.append(i) else: pass # Start processing modules. First one (Basic statitics) is apart: for start, end in zip(mod_start[1:], mod_end[1:]): module = fq_lines[start:end] module_name = module[0].split('\t')[0] if module_name == '>>Kmer Content': fastqc_dict.update(get_kmer_summary(module)) if module_name == '>>Per sequence quality scores': fastqc_dict.update(get_avg_qual(module)) fastqc_dict['Sample'] = get_sample(filename) return fastqc_dict def get_quality_stats(input_fastqc_files): """ Iterate over a list of fastqc output files and generate a dataframe containing summary statistics for each file. """ sample_qualities = [] for filename in input_fastqc_files: sample_qualities.append(process_file(filename)) return pd.DataFrame(sample_qualities) def write_quality_stats(input_files, output_file): """ Iterate over a list of fastqc output files and generate a dataframe containing summary statistics for each file, then write the result to disk. """ quality_df = get_quality_stats(input_files) quality_df.to_csv(output_file, sep='\t', index=False) def quality_qc_from_doit(dependencies, targets): """ Wrapper function to call write_quality_stats from argparse. """ assert len(targets) == 1 write_quality_stats(dependencies, targets[0])
apache-2.0
nvoron23/scikit-learn
sklearn/mixture/tests/test_dpgmm.py
261
4490
import unittest import sys import numpy as np from sklearn.mixture import DPGMM, VBGMM from sklearn.mixture.dpgmm import log_normalize from sklearn.datasets import make_blobs from sklearn.utils.testing import assert_array_less, assert_equal from sklearn.mixture.tests.test_gmm import GMMTester from sklearn.externals.six.moves import cStringIO as StringIO np.seterr(all='warn') def test_class_weights(): # check that the class weights are updated # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50) dpgmm.fit(X) # get indices of components that are used: indices = np.unique(dpgmm.predict(X)) active = np.zeros(10, dtype=np.bool) active[indices] = True # used components are important assert_array_less(.1, dpgmm.weights_[active]) # others are not assert_array_less(dpgmm.weights_[~active], .05) def test_verbose_boolean(): # checks that the output for the verbose output is the same # for the flag values '1' and 'True' # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm_bool = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=True) dpgmm_int = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: # generate output with the boolean flag dpgmm_bool.fit(X) verbose_output = sys.stdout verbose_output.seek(0) bool_output = verbose_output.readline() # generate output with the int flag dpgmm_int.fit(X) verbose_output = sys.stdout verbose_output.seek(0) int_output = verbose_output.readline() assert_equal(bool_output, int_output) finally: sys.stdout = old_stdout def test_verbose_first_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout def test_verbose_second_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout def test_log_normalize(): v = np.array([0.1, 0.8, 0.01, 0.09]) a = np.log(2 * v) assert np.allclose(v, log_normalize(a), rtol=0.01) def do_model(self, **kwds): return VBGMM(verbose=False, **kwds) class DPGMMTester(GMMTester): model = DPGMM do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestDPGMMWithSphericalCovars(unittest.TestCase, DPGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestDPGMMWithDiagCovars(unittest.TestCase, DPGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestDPGMMWithTiedCovars(unittest.TestCase, DPGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestDPGMMWithFullCovars(unittest.TestCase, DPGMMTester): covariance_type = 'full' setUp = GMMTester._setUp class VBGMMTester(GMMTester): model = do_model do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestVBGMMWithSphericalCovars(unittest.TestCase, VBGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestVBGMMWithDiagCovars(unittest.TestCase, VBGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestVBGMMWithTiedCovars(unittest.TestCase, VBGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestVBGMMWithFullCovars(unittest.TestCase, VBGMMTester): covariance_type = 'full' setUp = GMMTester._setUp
bsd-3-clause
HBNLdev/DataStore
db/meta.py
1
8321
'''refining and describing''' from db import database as D from db.utils import text as tU from db.knowledge import drinking as drK import pandas as pd import numpy as np from sklearn.neighbors import KernelDensity from datetime import datetime as dt from numbers import Number from collections import Counter import sys default_sniff_guide = {'category cutoff':20, 'numeric tolerance':0, 'date tolerance':0} def find_fields(doc,guide): if not guide: skip_cols = ['_id'] return [ k for k in doc.keys() if k not in skip_cols ] else: pass def summarize_collection_meta(db,mdb,coll,coll_guide=None): ''' Scan collection and build description of fields. ''' D.set_db(db) cc = D.Mdb[coll].find() #collection_cursor fields = set() [ fields.update( find_fields(doc,coll_guide) ) for doc in cc ] D.set_db(mdb) D.Mdb['summaries'].insert_one({'name':coll, 'fields':list(fields)}) def sniff_field_type(vals,sniff_guide={}): ''' determines type as one of: - categorical - numeric - datetime - unknown ''' sg = default_sniff_guide.copy() sg.update(sniff_guide) if len(vals) <= sg['category cutoff']: return 'categorical' else: num_ck_cnts = Counter([isinstance(v,Number) for v in vals]) num_cnt = sorted([ (v,k) for k,v in num_ck_cnts.items() ]) if num_cnt[-1][1]: if len(num_cnt) == 1 or num_cnt[-2][0]/num_cnt[-1][0] < sg['numeric tolerance']: return 'numeric' else: date_ck_cnts = Counter([isinstance(v,dt) for v in vals]) date_cnt = sorted([ (v,k) for k,v in date_ck_cnts.items() ]) if date_cnt[-1][1]: if len(date_cnt) == 1 or date_cnt[-2][0]/date_cnt[-1][0] < sg['date tolerance']: return 'datetime' return 'unknown' def try_con(conF,v): try: ck = conF(v) return (ck,True) except: return (None,False) def field_ranges(db,mdb,coll,guide={},sniff_guide={}): D.set_db(mdb) summ = D.Mdb['summaries'].find_one({'name':coll}) ranges = {} D.set_db(db) for fd in summ['fields']: skip_col = False; con_flag = False if 'skip patterns' in guide: for sp in guide['skip patterns']: if sp in fd: skip_col = True if not skip_col: Dvals = D.Mdb[coll].distinct(fd) Ndocs = D.Mdb[coll].find().count() # should have query to skip descriptive docs if fd in guide: fgd = guide[fd] vtype = fgd['type'] if 'converter' in fgd: Dvals = [ fgd['converter'](v) for v in Dvals ] con_flag = True else: vtype = sniff_field_type(Dvals, sniff_guide ) if vtype in ['categorical','numeric','datetime']: raw_vals = [d[fd] for d in \ D.Mdb[coll].find({fd:{'$exists':True}},{fd:1}) ] rawV_Nnan = [ rv for rv in raw_vals if not pd.isnull(rv)] data_portion = len(rawV_Nnan)/len(raw_vals) if con_flag: Cvals_ck = [ try_con(fgd['converter'],v) for v in raw_vals ] if vtype == 'categorical': try: v_counts = sorted([ (v,k) for k,v in Counter(rawV_Nnan).items() ])[:20] if all([ v.replace('.','').isdigit() for c,v in v_counts if type(v)==str ]): converter = int if any([ ( type(v[1]) == str and '.' in v[1] ) or isinstance(v[1],Number)\ for v in v_counts ]): converter = float print('num cat conv:',converter) ranges[fd] = { 'type':'num cat', 'value counts':sorted([ ( converter(v),k ) for k,v in v_counts]), 'data portion':data_portion } else: print('cat') ranges[fd] = {'type':'categorical', 'value counts':[ (v,k) for k,v in v_counts], 'data portion':data_portion} except: ranges[fd] = {'skipped':'categorical error'} #print( fd, set([type(v) for v in raw_vals]), set(raw_vals) ) elif vtype == 'numeric': pres_vals = [v for v in rawV_Nnan if v] if not con_flag: Cvals_ck = [ try_con(float,v) for v in Dvals ] Cvals = [ cc[0] for cc in Cvals_ck if cc[1] ] try: mn = np.mean(Cvals) med = np.median(Cvals) std = np.std(Cvals) low = min(Cvals) hi = max(Cvals) ranges[fd] = {'type':'numeric', 'min':low, 'max':hi, 'mean':mn, 'median':med, 'std':std, 'portion':len(Cvals)/Ndocs, #add bad bad vals with trace 'Nmin':(low - mn)/std, 'Nmax':(hi - mn)/std, 'Nmedian':(med - mn)/std, 'data portion':data_portion, } for pct in [1,5,25,75,95,99]: pctV = np.percentile(Cvals,pct) spct = str(pct) ranges[fd]['p'+spct] = pctV ranges[fd]['Np'+spct] = (pctV - mn)/std kernel = KernelDensity(kernel='gaussian',bandwidth=4).fit(np.array(Cvals)[:,np.newaxis]) pdf_xs = np.linspace(ranges[fd]['p1'],ranges[fd]['p99'],150)[:,np.newaxis] pdf_vals = [np.exp(v) for v in kernel.score_samples(pdf_xs)] ranges[fd]['pdf_x'] = list( np.squeeze(pdf_xs) ) ranges[fd]['Npdf_x'] = list( np.squeeze((pdf_xs-mn)/std) ) ranges[fd]['pdf'] = list( np.squeeze(pdf_vals) ) except: D.set_db(mdb) D.Mdb['errors'].insert_one({'collection':coll, 'field':fd, #'data':list(set(Cvals)), 'error':str(sys.exc_info()[1]) }) D.set_db(db) elif vtype == 'datetime': if not con_flag: Cvals_ck = [ try_con(float,v) for v in Dvals ] Cvals = [ cc[0] for cc in Cvals_ck if cc[1] ] if len(Cvals) == 0: Cvals = [-1] try: ranges[fd] = {'type':'datetime', 'min':min(Cvals), 'max':max(Cvals), 'std':np.std(Cvals), 'portion':len(Cvals)/Ndocs, 'data portion':data_portion, } except: D.set_db(mdb) D.Mdb['errors'].insert_one({'collection':coll, 'field':fd, #'data':str(list(set(Cvals))), 'error':str(sys.exc_info()[1]) } ) D.set_db(db) elif vtype == 'unknown': ranges[fd] = {'type':'unknown', 'values subset':Dvals[:10] } else: ranges[fd] = {'type':vtype, 'count':len(Dvals)} else: ranges[fd] = {'skipped':'guide'} D.set_db(mdb) ranges['collection name'] = coll D.Mdb['ranges'].insert_one(ranges)
gpl-3.0
MPIBGC-TEE/CompartmentalSystems
tests/Test_myOdeResult.py
1
4986
import unittest from testinfrastructure.InDirTest import InDirTest import numpy as np import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt from sympy import Symbol, Piecewise from scipy.interpolate import interp1d from CompartmentalSystems.myOdeResult import get_sub_t_spans, solve_ivp_pwc class TestmyOdeResult(InDirTest): def test_solve_ivp_pwc(self): t = Symbol('t') ms = [1, -1, 1] disc_times = [410, 820] t_start = 0 t_end = 1000 ref_times = np.arange(t_start, t_end, 10) times = np.array([0, 300, 600, 900]) t_span = (t_start, t_end) # first build a single rhs m = Piecewise( (ms[0], t < disc_times[0]), (ms[1], t < disc_times[1]), (ms[2], True) ) def rhs(t, x): return m.subs({'t': t}) x0 = np.asarray([0]) # To see the differencte between a many piece and # a one piece solotion # we deliberately chose a combination # of method and first step where the # solver will get lost if it does not restart # at the disc times. sol_obj = solve_ivp_pwc( rhs, t_span, x0, t_eval=times, method='RK45', first_step=None ) def funcmaker(m): return lambda t, x: m rhss = [funcmaker(m) for m in ms] ref_func = interp1d( [t_start] + list(disc_times) + [t_end], [0.0, 410.0, 0.0, 180.0] ) self.assertFalse( np.allclose( ref_func(times), sol_obj.y[0, :], atol=400 ) ) sol_obj_pw = solve_ivp_pwc( rhss, t_span, x0, method='RK45', first_step=None, disc_times=disc_times ) self.assertTrue( np.allclose( ref_func(sol_obj_pw.t), sol_obj_pw.y[0, :] ) ) self.assertTrue( np.allclose( ref_func(ref_times), sol_obj_pw.sol(ref_times)[0, :] ) ) sol_obj_pw_t_eval = solve_ivp_pwc( rhss, t_span, x0, t_eval=times, method='RK45', first_step=None, disc_times=disc_times ) self.assertTrue( np.allclose( times, sol_obj_pw_t_eval.t ) ) self.assertTrue( np.allclose( ref_func(times), sol_obj_pw_t_eval.y[0, :] ) ) fig, ax = plt.subplots( nrows=1, ncols=1 ) ax.plot( ref_times, ref_func(ref_times), color='blue', label='ref' ) ax.plot( times, ref_func(times), '*', label='ref points', ) ax.plot( sol_obj.t, sol_obj.y[0, :], 'o', label='pure solve_ivp' ) ax.plot( sol_obj_pw.t, sol_obj_pw.y[0, :], '+', label='solve_ivp_pwc', ls='--' ) ax.legend() fig.savefig('inaccuracies.pdf')#, tight_layout=True) def test_sub_t_spans(self): disc_times = np.array([2, 3, 4]) t_spans = [ (0, 1), (0, 2), (0, 2.5), (0, 5), (2, 2), (2, 2.5), (2, 3.2), (2, 5), (3.2, 4), (3.5, 4.5), (4, 5), (5, 7) ] refs = [ [(0, 1), (), (), ()], [(0, 2), (2, 2), (), ()], [(0, 2), (2, 2.5), (), ()], [(0, 2), (2, 3), (3, 4), (4, 5)], [(2, 2), (2, 2), (), ()], [(2, 2), (2, 2.5), (), ()], [(2, 2), (2, 3), (3, 3.2), ()], [(2, 2), (2, 3), (3, 4), (4, 5)], [(), (), (3.2, 4), (4, 4)], [(), (), (3.5, 4), (4, 4.5)], [(), (), (4, 4), (4, 5)], [(), (), (), (5, 7)] ] for t_span, ref in zip(t_spans, refs): with self.subTest(): sub_t_spans = get_sub_t_spans(t_span, disc_times) self.assertEqual(sub_t_spans, ref) ############################################################################### if __name__ == '__main__': suite = unittest.defaultTestLoader.discover(".", pattern=__file__) # # Run same tests across 16 processes # concurrent_suite = ConcurrentTestSuite(suite, fork_for_tests(1)) # runner = unittest.TextTestRunner() # res=runner.run(concurrent_suite) # # to let the buildbot fail we set the exit value !=0 # # if either a failure or error occurs # if (len(res.errors)+len(res.failures))>0: # sys.exit(1) unittest.main()
mit
newemailjdm/scipy
scipy/spatial/_plotutils.py
53
4034
from __future__ import division, print_function, absolute_import import numpy as np from scipy._lib.decorator import decorator as _decorator __all__ = ['delaunay_plot_2d', 'convex_hull_plot_2d', 'voronoi_plot_2d'] @_decorator def _held_figure(func, obj, ax=None, **kw): import matplotlib.pyplot as plt if ax is None: fig = plt.figure() ax = fig.gca() was_held = ax.ishold() try: ax.hold(True) return func(obj, ax=ax, **kw) finally: ax.hold(was_held) def _adjust_bounds(ax, points): ptp_bound = points.ptp(axis=0) ax.set_xlim(points[:,0].min() - 0.1*ptp_bound[0], points[:,0].max() + 0.1*ptp_bound[0]) ax.set_ylim(points[:,1].min() - 0.1*ptp_bound[1], points[:,1].max() + 0.1*ptp_bound[1]) @_held_figure def delaunay_plot_2d(tri, ax=None): """ Plot the given Delaunay triangulation in 2-D Parameters ---------- tri : scipy.spatial.Delaunay instance Triangulation to plot ax : matplotlib.axes.Axes instance, optional Axes to plot on Returns ------- fig : matplotlib.figure.Figure instance Figure for the plot See Also -------- Delaunay matplotlib.pyplot.triplot Notes ----- Requires Matplotlib. """ if tri.points.shape[1] != 2: raise ValueError("Delaunay triangulation is not 2-D") ax.plot(tri.points[:,0], tri.points[:,1], 'o') ax.triplot(tri.points[:,0], tri.points[:,1], tri.simplices.copy()) _adjust_bounds(ax, tri.points) return ax.figure @_held_figure def convex_hull_plot_2d(hull, ax=None): """ Plot the given convex hull diagram in 2-D Parameters ---------- hull : scipy.spatial.ConvexHull instance Convex hull to plot ax : matplotlib.axes.Axes instance, optional Axes to plot on Returns ------- fig : matplotlib.figure.Figure instance Figure for the plot See Also -------- ConvexHull Notes ----- Requires Matplotlib. """ if hull.points.shape[1] != 2: raise ValueError("Convex hull is not 2-D") ax.plot(hull.points[:,0], hull.points[:,1], 'o') for simplex in hull.simplices: ax.plot(hull.points[simplex,0], hull.points[simplex,1], 'k-') _adjust_bounds(ax, hull.points) return ax.figure @_held_figure def voronoi_plot_2d(vor, ax=None): """ Plot the given Voronoi diagram in 2-D Parameters ---------- vor : scipy.spatial.Voronoi instance Diagram to plot ax : matplotlib.axes.Axes instance, optional Axes to plot on Returns ------- fig : matplotlib.figure.Figure instance Figure for the plot See Also -------- Voronoi Notes ----- Requires Matplotlib. """ if vor.points.shape[1] != 2: raise ValueError("Voronoi diagram is not 2-D") ax.plot(vor.points[:,0], vor.points[:,1], '.') ax.plot(vor.vertices[:,0], vor.vertices[:,1], 'o') for simplex in vor.ridge_vertices: simplex = np.asarray(simplex) if np.all(simplex >= 0): ax.plot(vor.vertices[simplex,0], vor.vertices[simplex,1], 'k-') ptp_bound = vor.points.ptp(axis=0) center = vor.points.mean(axis=0) for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices): simplex = np.asarray(simplex) if np.any(simplex < 0): i = simplex[simplex >= 0][0] # finite end Voronoi vertex t = vor.points[pointidx[1]] - vor.points[pointidx[0]] # tangent t /= np.linalg.norm(t) n = np.array([-t[1], t[0]]) # normal midpoint = vor.points[pointidx].mean(axis=0) direction = np.sign(np.dot(midpoint - center, n)) * n far_point = vor.vertices[i] + direction * ptp_bound.max() ax.plot([vor.vertices[i,0], far_point[0]], [vor.vertices[i,1], far_point[1]], 'k--') _adjust_bounds(ax, vor.points) return ax.figure
bsd-3-clause
zooniverse/aggregation
active_weather/old/learning.py
1
9971
# try: # import matplotlib # matplotlib.use('WXAgg') # except ImportError: # pass from skimage.transform import probabilistic_hough_line from skimage.feature import canny import numpy as np import math import matplotlib.pyplot as plt from sklearn.cluster import DBSCAN try: import Image except ImportError: from PIL import Image from sklearn import neighbors from sklearn.decomposition import PCA from sklearn import svm,metrics import sqlite3 class Classifier: def __init__(self): self.conn = sqlite3.connect('/home/ggdhines/example.db') def __p_classification__(self,array): pass def __set_image__(self,image): self.image = image def __normalize_pixels__(self,image,pts): X,Y = zip(*pts) max_x = max(X) min_x = min(X) max_y = max(Y) min_y = min(Y) # print (max_x-min_x),(max_y-min_y) if (12 <= (max_x-min_x) <= 14) and (12 <= (max_y-min_y) <= 14): return -2,-2,1. desired_height = 20. width_ratio = (max_x-min_x)/desired_height height_ratio = (max_y-min_y)/desired_height # calculate the resulting height or width - we want the maximum of these value to be 20 if width_ratio > height_ratio: # wider than taller # todo - probably not a digit width = int(desired_height) height = int(desired_height*(max_y-min_y)/float(max_x-min_x)) else: height = int(desired_height) # print (max_y-max_y)/float(max_x-min_x) width = int(desired_height*(max_x-min_x)/float(max_y-min_y)) # the easiest way to do the rescaling is to make a subimage which is a box around the digit # and just get the Python library to do the rescaling - takes care of anti-aliasing for you :) # obviously this box could contain ink that isn't a part of this digit in particular # so we just need to be careful about what pixel we extract from the r = range(min_y,max_y+1) c = range(min_x,max_x+1) # print (min_y,max_y+1) # print (min_x,max_x+1) # todo - this will probably include noise-pixels, so we need to redo this template = image[np.ix_(r, c)] zero_template = np.zeros((len(r),len(c),3)) for (x,y) in pts: # print (y-min_y,x-min_x),zero_template.shape # print zero_template[(y-min_y,x-min_x)] # print image[(y,x)] zero_template[(y-min_y,x-min_x)] = image[(y,x)] # cv2.imwrite("/home/ggdhines/aa.png",np.uint8(np.asarray(zero_template))) # i = Image.fromarray(np.uint8(np.asarray(zero_template))) # i.save("/home/ggdhines/aa.png") # assert False digit_image = Image.fromarray(np.uint8(np.asarray(zero_template))) # plt.show() # cv2.imwrite("/home/ggdhines/aa.png",np.uint8(np.asarray(template))) # raw_input("template extracted") # continue digit_image = digit_image.resize((width,height),Image.ANTIALIAS) # print zero_template.shape if min(digit_image.size) == 0: return # digit_image.save("/home/ggdhines/aa.png") # digit_image = digit_image.convert('L') grey_image = np.asarray(digit_image.convert('L')) # # we need to center subject # if height == 28: # # center width wise # # y_offset = 0 # else: # # x_offset = 0 x_offset = int(28/2 - width/2) y_offset = int(28/2 - height/2) digit_array = np.asarray(digit_image) centered_array = [0 for i in range(28**2)] for y in range(len(digit_array)): for x in range(len(digit_array[0])): # dist1 = math.sqrt(sum([(a-b)**2 for (a,b) in zip(digit_array[y][x],ref1)])) # if dist1 > 10: # if digit_array[y][x] > 0.4: # plt.plot(x+x_offset,y+y_offset,"o",color="blue") # digit_array[y][x] = digit_array[y][x]/255. # print digit_array[y][x] - most_common_colour # dist = math.sqrt(sum([(int(a)-int(b))**2 for (a,b) in zip(digit_array[y][x],most_common_colour)])) dist = math.sqrt(sum([(int(a)-int(b))**2 for (a,b) in zip(digit_array[y][x],(0,0,0))])) if dist > 30:#digit_array[y][x] > 10: centered_array[(y+y_offset)*28+(x+x_offset)] = grey_image[y][x]#/float(darkest_pixel) else: centered_array[(y+y_offset)*28+(x+x_offset)] = 0 return centered_array,28 def __identify_digit__(self,image,pts,collect_gold_standard=True): """ identify a cluster of pixels, given by pts image is needed for rescaling :param image: :param pts: :return: """ gold_standard_digits = [] digit_probabilities = [] # do dbscan centered_array,size = self.__normalize_pixels__(image,pts) algorithm_digit,digit_prob = self.__p_classification__(centered_array) # print digit_probabilities digit = "" if collect_gold_standard: for y in range(size): for x in range(size): p = y*size+x if centered_array[p] > 0: print "*", else: print " ", print print "knn thinks this is a " + str(algorithm_digit) + " with probability " + str(digit_prob) while digit == "": digit = raw_input("enter digit - ") if digit == "o": gold_standard = -1 else: gold_standard = int(digit) else: gold_standard = None return gold_standard,algorithm_digit,digit_prob class NearestNeighbours(Classifier): def __init__(self): Classifier.__init__(self) n_neighbors = 25 mndata = MNIST('/home/ggdhines/Databases/mnist') self.training = mndata.load_training() print type(self.training[0][0]) weight = "distance" self.clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weight) pca = PCA(n_components=50) self.T = pca.fit(self.training[0]) reduced_training = self.T.transform(self.training[0]) print sum(pca.explained_variance_ratio_) # clf.fit(training[0], training[1]) self.clf.fit(reduced_training, self.training[1]) def __p_classification__(self,centered_array): centered_array = np.asarray(centered_array) # print centered_array centered_array = self.T.transform(centered_array) t = self.clf.predict_proba(centered_array) digit_prob = max(t[0]) # digit_probabilities.append(max(t[0])) algorithm_digit = list(t[0]).index(max(t[0])) return algorithm_digit,digit_prob class SVM(Classifier): def __init__(self): Classifier.__init__(self) self.classifier = svm.SVC(gamma=0.001,probability=True) mndata = MNIST('/home/ggdhines/Databases/mnist') training = mndata.load_training() self.classifier.fit(training[0], training[1]) class HierarchicalNN(Classifier): def __init__(self): Classifier.__init__(self) cursor = self.conn.cursor() cursor.execute("select algorithm_classification, gold_classification from cells") r = cursor.fetchall() predicted,actual = zip(*r) confusion_matrix = metrics.confusion_matrix(predicted,actual,labels= np.asarray([0,1,2,3,4,5,6,7,8,9,-1,-2])) clusters = range(10) for i in range(10): for j in range(10): if i == j: continue if confusion_matrix[i][j] > 3: t = max(clusters[i],clusters[j]) t_old = min(clusters[i],clusters[j]) for k,c in enumerate(clusters): if c == t_old: clusters[k] = t print clusters mndata = MNIST('/home/ggdhines/Databases/mnist') training = mndata.load_training() testing = mndata.load_testing() labels = training[1]#[clusters[t] for t in training[1]] pca = PCA(n_components=50) self.T = pca.fit(training[0]) f = self.T.components_.reshape((50,28,28)) assert False reduced_training = self.T.transform(training[0]) # starting variance explained print sum(pca.explained_variance_ratio_) # map classes mapped_labels = [clusters[i] for i in labels] weight = "distance" n_neighbors = 15 self.clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weight) self.clf.fit(reduced_training, labels) test_labels = testing[1]#[clusters[t] for t in testing[1]] reduced_testing = self.T.transform(testing[0]) predictions = self.clf.predict(reduced_testing) print sum([1 for (t,p) in zip(test_labels,predictions) if t==p])/float(len(test_labels)) # # filter # filtered_training = [(training[0][i],training[1][i]) for i in range(len(training[0])) if labels[training[1][i]] == 6] # data,new_labels = zip(*filtered_training) # self.T = pca.fit(data) # reduced_training = self.T.transform(data) # self.clf.fit(reduced_training, new_labels) # # filtered_testing = [(testing[0][i],testing[1][i]) for i in range(len(testing[0])) if labels[testing[1][i]] == 6] # testing,new_labels = zip(*filtered_testing) # reduced_testing = self.T.transform(testing) # predictions = self.clf.predict(reduced_testing) # print sum([1 for (t,p) in zip(new_labels,predictions) if t==p])/float(len(new_labels))
apache-2.0
agartland/utils
ics/.ipynb_checkpoints/plotting-checkpoint.py
1
12289
import pandas as pd import numpy as np import matplotlib.pyplot as plt import palettable import itertools from hclusterplot import plotHCluster import re from myboxplot import myboxplot import networkx as nx import seaborn as sns sns.set(style='darkgrid', palette='muted', font_scale=1.5) __all__ = ['icsTicks', 'icsTickLabels', 'swarmBox'] from .loading import * from .analyzing import * icsTicks = np.log10([0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1]) icsTickLabels = ['0.01', '0.025', '0.05', '0.1', '0.25', '0.5', '1'] # icsTicks = np.log10([0.01, 0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1]) #icsTickLabels = ['0.01','0.025', '0.05', '0.1','0.2','0.4','0.6','0.8', '1'] def prepPlotDf(jDf, antigen, rxIDs, visitno, tcellsubset='CD4+', column='pvalue', cutoff='pvalue', pAdjust=True, allSubsets=False): cytokineSubsets = jDf.cytokine.unique() subset = cytokineSubsets[0].replace('-', '+').split('+')[:-1] cyCols = [c for c in cytokineSubsets if not c == '-'.join(subset)+'-'] ind = (jDf.tcellsub == tcellsubset) & (jDf.visitno == visitno) & (jDf.TreatmentGroupID.isin(rxIDs)) agInd = (jDf.antigen == antigen) & ind pvalueDf = pivotPvalues(jDf.loc[agInd], adjust=pAdjust) """Use cutoff from HVTN ICS SAP, p < 0.00001""" responseAlpha = 1e-5 callDf = (pvalueDf < responseAlpha).astype(float) magDf = jDf.loc[agInd].pivot(index='sample', columns='cytokine', values='mag') magAdjDf = jDf.loc[agInd].pivot(index='sample', columns='cytokine', values='mag_adj') bgDf = jDf.loc[agInd].pivot(index='sample', columns='cytokine', values='bg') """Positive subsets (to-be plotted) includes all columns unless a cutoff is specified""" if cutoff == 'mag': posSubsets = pvalueDf[cyCols].columns[(magDf[cyCols] > 0.00025).any(axis=0)] elif cutoff == 'mag_adj': posSubsets = pvalueDf[cyCols].columns[(magAdjDf[cyCols] > 0.00025).any(axis=0)] elif cutoff == 'bg': posSubsets = pvalueDf[cyCols].columns[(bgDf[cyCols] > 0).any(axis=0)] elif cutoff == 'pvalue': posSubsets = pvalueDf[cyCols].columns[(callDf[cyCols] > 0).any(axis=0)] else: posSubsets = pvalueDf[cyCols].columns if allSubsets: posSubsets = sorted(cytokineSubsets, key=lambda s: s.count('+'), reverse=True) else: posSubsets = sorted(posSubsets, key=lambda s: s.count('+'), reverse=True) if column == 'pvalue': plotDf = callDf elif column == 'mag': plotDf = magDf.applymap(np.log) elif column == 'mag_adj': plotDf = magAdjDf.applymap(np.log) elif column == 'bg': plotDf = bgDf.applymap(np.log) """Give labels a more readable look""" plotDf = plotDf.rename_axis(cytokineSubsetLabel, axis=1) posSubsets = list(map(cytokineSubsetLabel, posSubsets)) return plotDf[posSubsets] def plotPolyBP(jDf, antigen, rxIDs, visitno, tcellsubset='CD4+', column='pvalue', cutoff='pvalue', pAdjust=True, allSubsets=False, plotSubsets=None, returnPlotSubsets=False): if plotSubsets is None: plotDf = prepPlotDf(jDf, antigen, rxIDs, visitno, tcellsubset=tcellsubset, column=column, cutoff=cutoff, pAdjust=pAdjust, allSubsets=allSubsets) posSubsets = plotDf.columns else: plotDf = prepPlotDf(jDf, antigen, rxIDs, visitno, tcellsubset=tcellsubset, column=column, cutoff=cutoff, pAdjust=pAdjust, allSubsets=True) posSubsets = plotSubsets cbt = np.log([0.0001, 0.00025, 0.0005, 0.001, 0.002, 0.004, 0.006, 0.008, 0.01]) cbtl = ['0.01', '0.025', '0.05', '0.1', '0.2', '0.4', '0.6', '0.8', '1'] plt.clf() plotDf = pd.DataFrame(plotDf.stack().reset_index()) plotDf = plotDf.set_index('sample') plotDf = plotDf.join(ptidDf[['TreatmentGroupID', 'TreatmentGroupName']], how='left').sort_values(by='TreatmentGroupID') if column == 'mag' or column == 'mag_adj': plotDf[0].loc[(plotDf[0] < np.log(0.00025)) | plotDf[0].isnull()] = np.log(0.00025) yl = np.log([0.0002, 0.01]) elif column == 'bg': plotDf[0].loc[(plotDf[0] < np.log(0.00001)) | plotDf[0].isnull()] = np.log(0.00001) yl = np.log([0.00001, 0.01]) else: print('Must specify mag, mag_adj or bg (not %s)' % column) axh = plt.subplot(111) sns.boxplot(x='cytokine', y=0, data=plotDf, hue='TreatmentGroupName', fliersize=0, ax=axh, order=posSubsets) sns.stripplot(x='cytokine', y=0, data=plotDf, hue='TreatmentGroupName', jitter=True, ax=axh, order=posSubsets) plt.yticks(cbt, cbtl) plt.ylim(yl) plt.xticks(list(range(len(posSubsets))), posSubsets, fontsize='large', fontname='Consolas') plt.ylabel('% cytokine expressing cells') handles, labels = axh.get_legend_handles_labels() l = plt.legend(handles[len(rxIDs):], labels[len(rxIDs):], loc='upper right') if returnPlotSubsets: return axh, posSubsets else: return axh def plotPolyHeat(jDf, antigen, rxIDs, visitno, tcellsubset='CD4+', cluster=False, column='pvalue', cutoff='pvalue', pAdjust=True, allSubsets=False): plotDf = prepPlotDf(jDf, antigen, rxIDs, visitno, tcellsubset=tcellsubset, column=column, cutoff=cutoff, pAdjust=pAdjust, allSubsets=allSubsets) posSubsets = plotDf.columns plotDf = plotDf.join(ptidDf[['TreatmentGroupID', 'TreatmentGroupName']], how='left').sort_values(by='TreatmentGroupID') cbt = np.log([0.0001, 0.00025, 0.0005, 0.001, 0.002, 0.004, 0.006, 0.008, 0.01]) cbtl = ['0.01', '0.025', '0.05', '0.1', '0.2', '0.4', '0.6', '0.8', '1'] if cluster: clusterBool = [True, True] else: clusterBool = [False, False] if column == 'pvalue': vRange = [0, 2] elif column == 'mag': vRange = np.log([0.0001, 0.01]) elif column == 'mag_adj': vRange = np.log([0.0001, 0.01]) elif column == 'bg': vRange = np.log([0.0001, 0.01]) #valVec = tmp[posSubsets].values.flatten() #vRange = [log(valVec[valVec>0].min()),log(valVec.max())] ptidInd, cyColInd, handles = plotHCluster(plotDf[posSubsets], row_labels=plotDf.TreatmentGroupID, cmap=palettable.colorbrewer.sequential.YlOrRd_9.mpl_colormap, yTickSz=None, xTickSz='large', clusterBool=clusterBool, vRange=vRange) if column == 'pvalue': handles['cb'].remove() else: handles['cb'].set_ticks(cbt) handles['cb'].set_ticklabels(cbtl) handles['cb'].set_label('% cells') for xh in handles['xlabelsL']: xh.set_rotation(0) handles['heatmapAX'].grid(b=None) #handles['heatmapGS'].tight_layout(handles['fig'], h_pad=0.1, w_pad=0.5) return handles def plotResponsePattern(jDf, antigen, rxIDs, visitno, tcellsubset='CD4+', column='pvalue', cluster=False, cutoff='pvalue', pAdjust=True, boxplot=False, allSubsets=False): if column == 'pvalue' and boxplot: boxplot = False print('Forced heatmap for p-value plotting.') if boxplot: axh = plotPolyBP(jDf, antigen, rxIDs, visitno, tcellsubset=tcellsubset, column=column, cutoff=cutoff, pAdjust=pAdjust, allSubsets=allSubsets) else: axh = plotPolyHeat(jDf, antigen, rxIDs, visitno, tcellsubset=tcellsubset, cluster=cluster, column=column, cutoff=cutoff, pAdjust=pAdjust, allSubsets=allSubsets) return axh def _szscale(vec, mx=np.inf, mn=1): """Normalize values of vec to [mn, mx] interval such that sz ratios remain representative.""" factor = mn/np.nanmin(vec) vec = vec*factor vec[vec > mx] = mx vec[np.isnan(vec)] = mn return vec def plotPolyFunNetwork(cdf): """This visualization isn't promising, but its also the start to how I'd think about defining a pairwise sample distance matrix. Instead of considering each subset as independent they could be related by their distance on this graph (just the sum of the binayr vector representation), then the distance would be somekind of earth over's distance between the two graphs""" binSubsets = np.concatenate([m[None, :] for m in map(_subset2vec, cdf.cytokine.unique())], axis=0) nColors = (np.unique(binSubsets.sum(axis=1)) > 0).sum() cmap = sns.light_palette('red', as_cmap=True, n_colors=nColors) freqDf = cdf.groupby('cytokine')['mag'].agg(np.mean) freqDf = freqDf.drop(vec2subset([0]*len(binSubsets)), axis=0) g = nx.Graph() for ss,f in freqDf.iteritems(): g.add_node(ss, freq=f, fscore=subset2vec(ss).sum()) for ss1, ss2 in itertools.product(freqDf.index, freqDf.index): if np.abs(subset2vec(ss1) - subset2vec(ss2)).sum() <= 1: g.add_edge(ss1, ss2) nodesize = np.array([d['freq'] for n, d in g.nodes(data=True)]) nodecolor = np.array([d['fscore'] for n, d in g.nodes(data=True)]) nodecolor = (nodecolor - nodecolor.min() + 1) / (nodecolor.max() - nodecolor.min() + 1) freq = {n:d['freq'] for n, d in g.nodes(data=True)} pos = nx.nx_pydot.graphviz_layout(g, prog=layout, root=max(list(freq.keys()), key=freq.get)) #pos = spring_layout(g) #pos = spectral_layout(g) #layouts = ['twopi', 'fdp', 'circo', 'neato', 'dot', 'spring', 'spectral'] #pos = nx.graphviz_layout(g, prog=layout) plt.clf() figh = plt.gcf() axh = figh.add_axes([0.04, 0.04, 0.92, 0.92]) axh.axis('off') figh.set_facecolor('white') #nx.draw_networkx_edges(g,pos,alpha=0.5,width=sznorm(edgewidth,mn=0.5,mx=10), edge_color='k') #nx.draw_networkx_nodes(g,pos,node_size=sznorm(nodesize,mn=500,mx=5000),node_color=nodecolors,alpha=1) for e in g.edges_iter(): x1, y1=pos[e[0]] x2, y2=pos[e[1]] props = dict(color='black', alpha=0.4, zorder=1) plt.plot([x1, x2], [y1, y2], '-', lw=2, **props) plt.scatter(x=[pos[s][0] for s in g.nodes()], y=[pos[s][1] for s in g.nodes()], s=_szscale(nodesize, mn=20, mx=200), #Units for scatter is (size in points)**2 c=nodecolor, alpha=1, zorder=2, cmap=cmap) for n, d in g.nodes(data=True): if d['freq'] >= 0: plt.annotate(n, xy=pos[n], fontname='Arial', size=10, weight='bold', color='black', va='center', ha='center') def swarmBox(data, x, y, hue, palette=None, order=None, hue_order=None, connect=False): """Depends on plot order of the swarm plot which does not seem dependable at the moment. Better idea would be to adopt code from the actual swarm function for this, adding boxplots separately""" if palette is None: palette = sns.color_palette('Set2', n_colors=data[hue].unique().shape[0]) if hue_order is None: hue_order = sorted(data[hue].unique()) if order is None: order = sorted(data[x].unqiue()) params = dict(data=data, x=x, y=y, hue=hue, palette=palette, order=order, hue_order=hue_order) sns.boxplot(**params, fliersize=0, linewidth=0.5) swarm = sns.swarmplot(**params, linewidth=0.5, edgecolor='black', dodge=True) if connect: zipper = [order] + [swarm.collections[i::len(hue_order)] for i in range(len(hue_order))] for z in zip(*zipper): curx = z[0] collections = z[1:] offsets = [] for c,h in zip(collections, hue_order): ind = (data[x] == curx) & (data[hue] == h) sortii = np.argsort(np.argsort(data.loc[ind, y])) offsets.append(c.get_offsets()[sortii,:]) for zoffsets in zip(*offsets): xvec = [o[0] for o in zoffsets] yvec = [o[1] for o in zoffsets] plt.plot(xvec, yvec, '-', color='gray', linewidth=0.5) plt.legend([plt.Circle(1, color=c) for c in palette], hue_order, title=hue)
mit
MostafaGazar/tensorflow
tensorflow/examples/skflow/iris.py
25
1649
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of DNNClassifier for Iris plant dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from sklearn import cross_validation from sklearn import metrics import tensorflow as tf from tensorflow.contrib import learn def main(unused_argv): # Load dataset. iris = learn.datasets.load_dataset('iris') x_train, x_test, y_train, y_test = cross_validation.train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) # Build 3 layer DNN with 10, 20, 10 units respectively. feature_columns = learn.infer_real_valued_columns_from_input(x_train) classifier = learn.DNNClassifier( feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3) # Fit and predict. classifier.fit(x_train, y_train, steps=200) predictions = list(classifier.predict(x_test, as_iterable=True)) score = metrics.accuracy_score(y_test, predictions) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': tf.app.run()
apache-2.0
gibbons/scikit-rf
skrf/plotting.py
3
19735
''' .. module:: skrf.plotting ======================================== plotting (:mod:`skrf.plotting`) ======================================== This module provides general plotting functions. Plots and Charts ------------------ .. autosummary:: :toctree: generated/ smith plot_smith plot_rectangular plot_polar plot_complex_rectangular plot_complex_polar Misc Functions ----------------- .. autosummary:: :toctree: generated/ save_all_figs add_markers_to_lines legend_off func_on_all_figs scrape_legend ''' import pylab as plb import numpy as npy from matplotlib.patches import Circle # for drawing smith chart from matplotlib.pyplot import quiver from matplotlib import rcParams #from matplotlib.lines import Line2D # for drawing smith chart def smith(smithR=1, chart_type = 'z', draw_labels = False, border=False, ax=None, ref_imm = 1.0): ''' plots the smith chart of a given radius Parameters ----------- smithR : number radius of smith chart chart_type : ['z','y'] Contour type. Possible values are * *'z'* : lines of constant impedance * *'y'* : lines of constant admittance draw_labels : Boolean annotate real and imaginary parts of impedance on the chart (only if smithR=1) border : Boolean draw a rectangular border with axis ticks, around the perimeter of the figure. Not used if draw_labels = True ax : matplotlib.axes object existing axes to draw smith chart on ref_imm : number Reference immittance for center of Smith chart. Only changes labels, if printed. ''' ##TODO: fix this function so it doesnt suck if ax == None: ax1 = plb.gca() else: ax1 = ax # contour holds matplotlib instances of: pathes.Circle, and lines.Line2D, which # are the contours on the smith chart contour = [] # these are hard-coded on purpose,as they should always be present rHeavyList = [0,1] xHeavyList = [1,-1] #TODO: fix this # these could be dynamically coded in the future, but work good'nuff for now if not draw_labels: rLightList = plb.logspace(3,-5,9,base=.5) xLightList = plb.hstack([plb.logspace(2,-5,8,base=.5), -1*plb.logspace(2,-5,8,base=.5)]) else: rLightList = plb.array( [ 0.2, 0.5, 1.0, 2.0, 5.0 ] ) xLightList = plb.array( [ 0.2, 0.5, 1.0, 2.0 , 5.0, -0.2, -0.5, -1.0, -2.0, -5.0 ] ) # cheap way to make a ok-looking smith chart at larger than 1 radii if smithR > 1: rMax = (1.+smithR)/(1.-smithR) rLightList = plb.hstack([ plb.linspace(0,rMax,11) , rLightList ]) if chart_type is 'y': y_flip_sign = -1 else: y_flip_sign = 1 # loops through Light and Heavy lists and draws circles using patches # for analysis of this see R.M. Weikles Microwave II notes (from uva) for r in rLightList: center = (r/(1.+r)*y_flip_sign,0 ) radius = 1./(1+r) contour.append( Circle( center, radius, ec='grey',fc = 'none')) for x in xLightList: center = (1*y_flip_sign,1./x) radius = 1./x contour.append( Circle( center, radius, ec='grey',fc = 'none')) for r in rHeavyList: center = (r/(1.+r)*y_flip_sign,0 ) radius = 1./(1+r) contour.append( Circle( center, radius, ec= 'black', fc = 'none')) for x in xHeavyList: center = (1*y_flip_sign,1./x) radius = 1./x contour.append( Circle( center, radius, ec='black',fc = 'none')) # clipping circle clipc = Circle( [0,0], smithR, ec='k',fc='None',visible=True) ax1.add_patch( clipc) #draw x and y axis ax1.axhline(0, color='k', lw=.1, clip_path=clipc) ax1.axvline(1*y_flip_sign, color='k', clip_path=clipc) ax1.grid(0) # Set axis limits by plotting white points so zooming works properly ax1.plot(smithR*npy.array([-1.1, 1.1]), smithR*npy.array([-1.1, 1.1]), 'w.', markersize = 0) ax1.axis('image') # Combination of 'equal' and 'tight' if not border: ax1.yaxis.set_ticks([]) ax1.xaxis.set_ticks([]) for loc, spine in ax1.spines.items(): spine.set_color('none') if draw_labels: #Clear axis ax1.yaxis.set_ticks([]) ax1.xaxis.set_ticks([]) for loc, spine in ax1.spines.items(): spine.set_color('none') # Make annotations only if the radius is 1 if smithR is 1: #Make room for annotation ax1.plot(npy.array([-1.25, 1.25]), npy.array([-1.1, 1.1]), 'w.', markersize = 0) ax1.axis('image') #Annotate real part for value in rLightList: # Set radius of real part's label; offset slightly left (Z # chart, y_flip_sign == 1) or right (Y chart, y_flip_sign == -1) # so label doesn't overlap chart's circles rho = (value - 1)/(value + 1) - y_flip_sign*0.01 if y_flip_sign is 1: halignstyle = "right" else: halignstyle = "left" ax1.annotate(str(value*ref_imm), xy=(rho*smithR, 0.01), xytext=(rho*smithR, 0.01), ha = halignstyle, va = "baseline") #Annotate imaginary part radialScaleFactor = 1.01 # Scale radius of label position by this # factor. Making it >1 places the label # outside the Smith chart's circle for value in xLightList: #Transforms from complex to cartesian S = (1j*value - 1) / (1j*value + 1) S *= smithR * radialScaleFactor rhox = S.real rhoy = S.imag * y_flip_sign # Choose alignment anchor point based on label's value if ((value == 1.0) or (value == -1.0)): halignstyle = "center" elif (rhox < 0.0): halignstyle = "right" else: halignstyle = "left" if (rhoy < 0): valignstyle = "top" else: valignstyle = "bottom" #Annotate value ax1.annotate(str(value*ref_imm) + 'j', xy=(rhox, rhoy), xytext=(rhox, rhoy), ha = halignstyle, va = valignstyle) #Annotate 0 and inf ax1.annotate('0.0', xy=(-1.02, 0), xytext=(-1.02, 0), ha = "right", va = "center") ax1.annotate('$\infty$', xy=(radialScaleFactor, 0), xytext=(radialScaleFactor, 0), ha = "left", va = "center") # loop though contours and draw them on the given axes for currentContour in contour: cc=ax1.add_patch(currentContour) cc.set_clip_path(clipc) def plot_rectangular(x, y, x_label=None, y_label=None, title=None, show_legend=True, axis='tight', ax=None, *args, **kwargs): ''' plots rectangular data and optionally label axes. Parameters ------------ z : array-like, of complex data data to plot x_label : string x-axis label y_label : string y-axis label title : string plot title show_legend : Boolean controls the drawing of the legend ax : :class:`matplotlib.axes.AxesSubplot` object axes to draw on *args,**kwargs : passed to pylab.plot ''' if ax is None: ax = plb.gca() my_plot = ax.plot(x, y, *args, **kwargs) if x_label is not None: ax.set_xlabel(x_label) if y_label is not None: ax.set_ylabel(y_label) if title is not None: ax.set_title(title) if show_legend: # only show legend if they provide a label if 'label' in kwargs: ax.legend() if axis is not None: ax.autoscale(True, 'x', True) ax.autoscale(True, 'y', False) if plb.isinteractive(): plb.draw() return my_plot def plot_polar(theta, r, x_label=None, y_label=None, title=None, show_legend=True, axis_equal=False, ax=None, *args, **kwargs): ''' plots polar data on a polar plot and optionally label axes. Parameters ------------ theta : array-like data to plot r : array-like x_label : string x-axis label y_label : string y-axis label title : string plot title show_legend : Boolean controls the drawing of the legend ax : :class:`matplotlib.axes.AxesSubplot` object axes to draw on *args,**kwargs : passed to pylab.plot See Also ---------- plot_rectangular : plots rectangular data plot_complex_rectangular : plot complex data on complex plane plot_polar : plot polar data plot_complex_polar : plot complex data on polar plane plot_smith : plot complex data on smith chart ''' if ax is None: ax = plb.gca(polar=True) ax.plot(theta, r, *args, **kwargs) if x_label is not None: ax.set_xlabel(x_label) if y_label is not None: ax.set_ylabel(y_label) if title is not None: ax.set_title(title) if show_legend: # only show legend if they provide a label if 'label' in kwargs: ax.legend() if axis_equal: ax.axis('equal') if plb.isinteractive(): plb.draw() def plot_complex_rectangular(z, x_label='Real', y_label='Imag', title='Complex Plane', show_legend=True, axis='equal', ax=None, *args, **kwargs): ''' plot complex data on the complex plane Parameters ------------ z : array-like, of complex data data to plot x_label : string x-axis label y_label : string y-axis label title : string plot title show_legend : Boolean controls the drawing of the legend ax : :class:`matplotlib.axes.AxesSubplot` object axes to draw on *args,**kwargs : passed to pylab.plot See Also ---------- plot_rectangular : plots rectangular data plot_complex_rectangular : plot complex data on complex plane plot_polar : plot polar data plot_complex_polar : plot complex data on polar plane plot_smith : plot complex data on smith chart ''' x = npy.real(z) y = npy.imag(z) plot_rectangular(x=x, y=y, x_label=x_label, y_label=y_label, title=title, show_legend=show_legend, axis=axis, ax=ax, *args, **kwargs) def plot_complex_polar(z, x_label=None, y_label=None, title=None, show_legend=True, axis_equal=False, ax=None, *args, **kwargs): ''' plot complex data in polar format. Parameters ------------ z : array-like, of complex data data to plot x_label : string x-axis label y_label : string y-axis label title : string plot title show_legend : Boolean controls the drawing of the legend ax : :class:`matplotlib.axes.AxesSubplot` object axes to draw on *args,**kwargs : passed to pylab.plot See Also ---------- plot_rectangular : plots rectangular data plot_complex_rectangular : plot complex data on complex plane plot_polar : plot polar data plot_complex_polar : plot complex data on polar plane plot_smith : plot complex data on smith chart ''' theta = npy.angle(z) r = npy.abs(z) plot_polar(theta=theta, r=r, x_label=x_label, y_label=y_label, title=title, show_legend=show_legend, axis_equal=axis_equal, ax=ax, *args, **kwargs) def plot_smith(s, smith_r=1, chart_type='z', x_label='Real', y_label='Imaginary', title='Complex Plane', show_legend=True, axis='equal', ax=None, force_chart = False, *args, **kwargs): ''' plot complex data on smith chart Parameters ------------ s : complex array-like reflection-coeffient-like data to plot smith_r : number radius of smith chart chart_type : ['z','y'] Contour type for chart. * *'z'* : lines of constant impedance * *'y'* : lines of constant admittance x_label : string x-axis label y_label : string y-axis label title : string plot title show_legend : Boolean controls the drawing of the legend axis_equal: Boolean sets axis to be equal increments (calls axis('equal')) force_chart : Boolean forces the re-drawing of smith chart ax : :class:`matplotlib.axes.AxesSubplot` object axes to draw on *args,**kwargs : passed to pylab.plot See Also ---------- plot_rectangular : plots rectangular data plot_complex_rectangular : plot complex data on complex plane plot_polar : plot polar data plot_complex_polar : plot complex data on polar plane plot_smith : plot complex data on smith chart ''' if ax is None: ax = plb.gca() # test if smith chart is already drawn if not force_chart: if len(ax.patches) == 0: smith(ax=ax, smithR = smith_r, chart_type=chart_type) plot_complex_rectangular(s, x_label=x_label, y_label=y_label, title=title, show_legend=show_legend, axis=axis, ax=ax, *args, **kwargs) ax.axis(smith_r*npy.array([-1.1, 1.1, -1.1, 1.1])) if plb.isinteractive(): plb.draw() def subplot_params(ntwk, param='s', proj='db', size_per_port=4, newfig=True, add_titles=True, keep_it_tight=True, subplot_kw={}, *args, **kw): ''' Plot all networks parameters individually on subplots Parameters -------------- ''' if newfig: f,axs= plb.subplots(ntwk.nports,ntwk.nports, figsize =(size_per_port*ntwk.nports, size_per_port*ntwk.nports ), **subplot_kw) else: f = plb.gcf() axs = npy.array(f.get_axes()) for ports,ax in zip(ntwk.port_tuples, axs.flatten()): plot_func = ntwk.__getattribute__('plot_%s_%s'%(param, proj)) plot_func(m=ports[0], n=ports[1], ax=ax,*args, **kw) if add_titles: ax.set_title('%s%i%i'%(param.upper(),ports[0]+1, ports[1]+1)) if keep_it_tight: plb.tight_layout() return f,axs def shade_bands(edges, y_range=None,cmap='prism', **kwargs): ''' Shades frequency bands. when plotting data over a set of frequency bands it is nice to have each band visually separated from the other. The kwarg `alpha` is useful. Parameters -------------- edges : array-like x-values separating regions of a given shade y_range : tuple y-values to shade in cmap : str see matplotlib.cm or matplotlib.colormaps for acceptable values \*\* : key word arguments passed to `matplotlib.fill_between` Examples ----------- >>> rf.shade_bands([325,500,750,1100], alpha=.2) ''' cmap = plb.cm.get_cmap(cmap) y_range=plb.gca().get_ylim() axis = plb.axis() for k in range(len(edges)-1): plb.fill_between( [edges[k],edges[k+1]], y_range[0], y_range[1], color = cmap(1.0*k/len(edges)), **kwargs) plb.axis(axis) def save_all_figs(dir = './', format=None, replace_spaces = True, echo = True): ''' Save all open Figures to disk. Parameters ------------ dir : string path to save figures into format : None, or list of strings the types of formats to save figures as. The elements of this list are passed to :matplotlib:`savefig`. This is a list so that you can save each figure in multiple formats. echo : bool True prints filenames as they are saved ''' if dir[-1] != '/': dir = dir + '/' for fignum in plb.get_fignums(): fileName = plb.figure(fignum).get_axes()[0].get_title() if replace_spaces: fileName = fileName.replace(' ','_') if fileName == '': fileName = 'unnamedPlot' if format is None: plb.savefig(dir+fileName) if echo: print((dir+fileName)) else: for fmt in format: plb.savefig(dir+fileName+'.'+fmt, format=fmt) if echo: print((dir+fileName+'.'+fmt)) saf = save_all_figs def add_markers_to_lines(ax=None,marker_list=['o','D','s','+','x'], markevery=10): ''' adds markers to existing lings on a plot this is convinient if you have already have a plot made, but then need to add markers afterwards, so that it can be interpreted in black and white. The markevery argument makes the markers less frequent than the data, which is generally what you want. Parameters ----------- ax : matplotlib.Axes axis which to add markers to, defaults to gca() marker_list : list of marker characters see matplotlib.plot help for possible marker characters markevery : int markevery number of points with a marker. ''' if ax is None: ax=plb.gca() lines = ax.get_lines() if len(lines) > len (marker_list ): marker_list *= 3 [k[0].set_marker(k[1]) for k in zip(lines, marker_list)] [line.set_markevery(markevery) for line in lines] def legend_off(ax=None): ''' turn off the legend for a given axes. if no axes is given then it will use current axes. Parameters ----------- ax : matplotlib.Axes object axes to operate on ''' if ax is None: plb.gca().legend_.set_visible(0) else: ax.legend_.set_visible(0) def scrape_legend(n=None, ax=None): ''' scrapes a legend with redundant labels Given a legend of m entries of n groups, this will remove all but every m/nth entry. This is used when you plot many lines representing the same thing, and only want one label entry in the legend for the whole ensemble of lines ''' if ax is None: ax = plb.gca() handles, labels = ax.get_legend_handles_labels() if n is None: n =len ( set(labels)) if n>len(handles): raise ValueError('number of entries is too large') k_list = [int(k) for k in npy.linspace(0,len(handles)-1,n)] ax.legend([handles[k] for k in k_list], [labels[k] for k in k_list]) def func_on_all_figs(func, *args, **kwargs): ''' runs a function after making all open figures current. useful if you need to change the properties of many open figures at once, like turn off the grid. Parameters ---------- func : function function to call \*args, \*\*kwargs : pased to func Examples ---------- >>> rf.func_on_all_figs(grid,alpha=.3) ''' for fig_n in plb.get_fignums(): fig = plb.figure(fig_n) for ax_n in fig.axes: fig.add_axes(ax_n) # trick to make axes current func(*args, **kwargs) plb.draw() foaf = func_on_all_figs def plot_vector(a, off=0+0j, *args, **kwargs): ''' plot a 2d vector ''' return quiver(off.real,off.imag,a.real,a.imag,scale_units ='xy', angles='xy',scale=1, *args, **kwargs) def colors(): return rcParams['axes.color_cycle']
bsd-3-clause
seckcoder/lang-learn
python/sklearn/sklearn/linear_model/tests/test_perceptron.py
378
1815
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils import check_random_state from sklearn.datasets import load_iris from sklearn.linear_model import Perceptron iris = load_iris() random_state = check_random_state(12) indices = np.arange(iris.data.shape[0]) random_state.shuffle(indices) X = iris.data[indices] y = iris.target[indices] X_csr = sp.csr_matrix(X) X_csr.sort_indices() class MyPerceptron(object): def __init__(self, n_iter=1): self.n_iter = n_iter def fit(self, X, y): n_samples, n_features = X.shape self.w = np.zeros(n_features, dtype=np.float64) self.b = 0.0 for t in range(self.n_iter): for i in range(n_samples): if self.predict(X[i])[0] != y[i]: self.w += y[i] * X[i] self.b += y[i] def project(self, X): return np.dot(X, self.w) + self.b def predict(self, X): X = np.atleast_2d(X) return np.sign(self.project(X)) def test_perceptron_accuracy(): for data in (X, X_csr): clf = Perceptron(n_iter=30, shuffle=False) clf.fit(data, y) score = clf.score(data, y) assert_true(score >= 0.7) def test_perceptron_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 clf1 = MyPerceptron(n_iter=2) clf1.fit(X, y_bin) clf2 = Perceptron(n_iter=2, shuffle=False) clf2.fit(X, y_bin) assert_array_almost_equal(clf1.w, clf2.coef_.ravel()) def test_undefined_methods(): clf = Perceptron() for meth in ("predict_proba", "predict_log_proba"): assert_raises(AttributeError, lambda x: getattr(clf, x), meth)
unlicense
kelle/astropy
astropy/visualization/wcsaxes/frame.py
4
7481
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import print_function, division, absolute_import import abc from collections import OrderedDict import numpy as np from ...extern import six from matplotlib.lines import Line2D, Path from matplotlib.patches import PathPatch __all__ = ['Spine', 'BaseFrame', 'RectangularFrame', 'EllipticalFrame'] class Spine(object): """ A single side of an axes. This does not need to be a straight line, but represents a 'side' when determining which part of the frame to put labels and ticks on. """ def __init__(self, parent_axes, transform): self.parent_axes = parent_axes self.transform = transform self.data = None self.pixel = None self.world = None @property def data(self): return self._data @data.setter def data(self, value): if value is None: self._data = None self._pixel = None self._world = None else: self._data = value self._pixel = self.parent_axes.transData.transform(self._data) self._world = self.transform.transform(self._data) self._update_normal() @property def pixel(self): return self._pixel @pixel.setter def pixel(self, value): if value is None: self._data = None self._pixel = None self._world = None else: self._data = self.parent_axes.transData.inverted().transform(self._data) self._pixel = value self._world = self.transform.transform(self._data) self._update_normal() @property def world(self): return self._world @world.setter def world(self, value): if value is None: self._data = None self._pixel = None self._world = None else: self._data = self.transform.transform(value) self._pixel = self.parent_axes.transData.transform(self._data) self._world = value self._update_normal() def _update_normal(self): # Find angle normal to border and inwards, in display coordinate dx = self.pixel[1:, 0] - self.pixel[:-1, 0] dy = self.pixel[1:, 1] - self.pixel[:-1, 1] self.normal_angle = np.degrees(np.arctan2(dx, -dy)) @six.add_metaclass(abc.ABCMeta) class BaseFrame(OrderedDict): """ Base class for frames, which are collections of :class:`~astropy.visualization.wcsaxes.frame.Spine` instances. """ def __init__(self, parent_axes, transform, path=None): super(BaseFrame, self).__init__() self.parent_axes = parent_axes self._transform = transform self._linewidth = 1 self._color = 'black' self._path = path for axis in self.spine_names: self[axis] = Spine(parent_axes, transform) @property def origin(self): ymin, ymax = self.parent_axes.get_ylim() return 'lower' if ymin < ymax else 'upper' @property def transform(self): return self._transform @transform.setter def transform(self, value): self._transform = value for axis in self: self[axis].transform = value def _update_patch_path(self): self.update_spines() x, y = [], [] for axis in self: x.append(self[axis].data[:, 0]) y.append(self[axis].data[:, 1]) vertices = np.vstack([np.hstack(x), np.hstack(y)]).transpose() if self._path is None: self._path = Path(vertices) else: self._path.vertices = vertices @property def patch(self): self._update_patch_path() return PathPatch(self._path, transform=self.parent_axes.transData, facecolor='white', edgecolor='white') def draw(self, renderer): for axis in self: x, y = self[axis].pixel[:, 0], self[axis].pixel[:, 1] line = Line2D(x, y, linewidth=self._linewidth, color=self._color, zorder=1000) line.draw(renderer) def sample(self, n_samples): self.update_spines() spines = OrderedDict() for axis in self: data = self[axis].data p = np.linspace(0., 1., data.shape[0]) p_new = np.linspace(0., 1., n_samples) spines[axis] = Spine(self.parent_axes, self.transform) spines[axis].data = np.array([np.interp(p_new, p, data[:, 0]), np.interp(p_new, p, data[:, 1])]).transpose() return spines def set_color(self, color): """ Sets the color of the frame. Parameters ---------- color : string The color of the frame. """ self._color = color def get_color(self): return self._color def set_linewidth(self, linewidth): """ Sets the linewidth of the frame. Parameters ---------- linewidth : float The linewidth of the frame in points. """ self._linewidth = linewidth def get_linewidth(self): return self._linewidth @abc.abstractmethod def update_spines(self): raise NotImplementedError("") class RectangularFrame(BaseFrame): """ A classic rectangular frame. """ spine_names = 'brtl' def update_spines(self): xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() self['b'].data = np.array(([xmin, ymin], [xmax, ymin])) self['r'].data = np.array(([xmax, ymin], [xmax, ymax])) self['t'].data = np.array(([xmax, ymax], [xmin, ymax])) self['l'].data = np.array(([xmin, ymax], [xmin, ymin])) class EllipticalFrame(BaseFrame): """ An elliptical frame. """ spine_names = 'chv' def update_spines(self): xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() xmid = 0.5 * (xmax + xmin) ymid = 0.5 * (ymax + ymin) dx = xmid - xmin dy = ymid - ymin theta = np.linspace(0., 2 * np.pi, 1000) self['c'].data = np.array([xmid + dx * np.cos(theta), ymid + dy * np.sin(theta)]).transpose() self['h'].data = np.array([np.linspace(xmin, xmax, 1000), np.repeat(ymid, 1000)]).transpose() self['v'].data = np.array([np.repeat(xmid, 1000), np.linspace(ymin, ymax, 1000)]).transpose() def _update_patch_path(self): """Override path patch to include only the outer ellipse, not the major and minor axes in the middle.""" self.update_spines() vertices = self['c'].data if self._path is None: self._path = Path(vertices) else: self._path.vertices = vertices def draw(self, renderer): """Override to draw only the outer ellipse, not the major and minor axes in the middle. FIXME: we may want to add a general method to give the user control over which spines are drawn.""" axis = 'c' x, y = self[axis].pixel[:, 0], self[axis].pixel[:, 1] line = Line2D(x, y, linewidth=self._linewidth, color=self._color, zorder=1000) line.draw(renderer)
bsd-3-clause
AutonomyLab/deep_intent
code/autoencoder_model/scripts/thesis_scripts/latentspace_rendec16.py
1
24665
from __future__ import absolute_import from __future__ import division from __future__ import print_function import hickle as hkl import numpy as np np.random.seed(9 ** 10) from keras import backend as K K.set_image_dim_ordering('tf') from keras import regularizers from keras.layers import Dropout from keras.models import Sequential from keras.layers.core import Activation from keras.utils.vis_utils import plot_model from keras.layers.wrappers import TimeDistributed from keras.layers.convolutional import Conv3D from keras.layers.convolutional import Conv2D from keras.layers.convolutional import UpSampling3D from keras.layers.convolutional_recurrent import ConvLSTM2D from keras.layers.merge import add from keras.layers.normalization import BatchNormalization from keras.callbacks import LearningRateScheduler from keras.layers.advanced_activations import LeakyReLU from sklearn.metrics import mean_absolute_error as mae from sklearn.metrics import mean_squared_error as mse from plot_results import plot_err_variation from keras.layers import Input from keras.models import Model from config_latent import * from sys import stdout from keras.layers.core import Lambda import tb_callback import lrs_callback import argparse import cv2 import os def encoder_model(): inputs = Input(shape=(int(VIDEO_LENGTH/2), 128, 208, 3)) # 10x128x128 conv_1 = Conv3D(filters=128, strides=(1, 4, 4), dilation_rate=(1, 1, 1), kernel_size=(3, 11, 11), padding='same')(inputs) x = TimeDistributed(BatchNormalization())(conv_1) x = TimeDistributed(LeakyReLU(alpha=0.2))(x) out_1 = TimeDistributed(Dropout(0.5))(x) conv_2a = Conv3D(filters=64, strides=(1, 1, 1), dilation_rate=(2, 1, 1), kernel_size=(2, 5, 5), padding='same')(out_1) x = TimeDistributed(BatchNormalization())(conv_2a) x = TimeDistributed(LeakyReLU(alpha=0.2))(x) out_2a = TimeDistributed(Dropout(0.5))(x) conv_2b = Conv3D(filters=64, strides=(1, 1, 1), dilation_rate=(2, 1, 1), kernel_size=(2, 5, 5), padding='same')(out_2a) x = TimeDistributed(BatchNormalization())(conv_2b) x = TimeDistributed(LeakyReLU(alpha=0.2))(x) out_2b = TimeDistributed(Dropout(0.5))(x) conv_2c = TimeDistributed(Conv2D(filters=64, kernel_size=(1, 1), strides=(1, 1), padding='same'))(out_1) x = TimeDistributed(BatchNormalization())(conv_2c) out_1_less = TimeDistributed(LeakyReLU(alpha=0.2))(x) res_1 = add([out_1_less, out_2b]) # res_1 = LeakyReLU(alpha=0.2)(res_1) conv_3 = Conv3D(filters=64, strides=(1, 2, 2), dilation_rate=(1, 1, 1), kernel_size=(3, 5, 5), padding='same')(res_1) x = TimeDistributed(BatchNormalization())(conv_3) x = TimeDistributed(LeakyReLU(alpha=0.2))(x) out_3 = TimeDistributed(Dropout(0.5))(x) # 10x16x16 conv_4a = Conv3D(filters=64, strides=(1, 1, 1), dilation_rate=(2, 1, 1), kernel_size=(2, 3, 3), padding='same')(out_3) x = TimeDistributed(BatchNormalization())(conv_4a) x = TimeDistributed(LeakyReLU(alpha=0.2))(x) out_4a = TimeDistributed(Dropout(0.5))(x) conv_4b = Conv3D(filters=64, strides=(1, 1, 1), dilation_rate=(2, 1, 1), kernel_size=(2, 3, 3), padding='same')(out_4a) x = TimeDistributed(BatchNormalization())(conv_4b) x = TimeDistributed(LeakyReLU(alpha=0.2))(x) out_4b = TimeDistributed(Dropout(0.5))(x) z = add([out_3, out_4b]) # res_1 = LeakyReLU(alpha=0.2)(res_1) model = Model(inputs=inputs, outputs=[z, res_1]) return model def decoder_model(): inputs = Input(shape=(int(VIDEO_LENGTH/2), 16, 26, 64)) residual_input = Input(shape=(int(VIDEO_LENGTH/2), 32, 52, 64), name='res_input') # Adjust residual input def adjust_res(x): pad = K.zeros_like(x[:, 1:]) res = x[:, 0:1] return K.concatenate([res, pad], axis=1) enc_input = Lambda(adjust_res)(residual_input) # 10x16x16 convlstm_1 = ConvLSTM2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding='same', return_sequences=True, recurrent_dropout=0.2)(inputs) x = TimeDistributed(BatchNormalization())(convlstm_1) out_1 = TimeDistributed(Activation('tanh'))(x) convlstm_2 = ConvLSTM2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding='same', return_sequences=True, recurrent_dropout=0.2)(out_1) x = TimeDistributed(BatchNormalization())(convlstm_2) out_2 = TimeDistributed(Activation('tanh'))(x) res_1 = add([inputs, out_2]) res_1 = UpSampling3D(size=(1, 2, 2))(res_1) # 10x32x32 convlstm_3a = ConvLSTM2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding='same', return_sequences=True, recurrent_dropout=0.2)(res_1) x = TimeDistributed(BatchNormalization())(convlstm_3a) out_3a = TimeDistributed(Activation('tanh'))(x) convlstm_3b = ConvLSTM2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding='same', return_sequences=True, recurrent_dropout=0.2)(out_3a) x = TimeDistributed(BatchNormalization())(convlstm_3b) out_3b = TimeDistributed(Activation('tanh'))(x) res_2 = add([res_1, out_3b, enc_input]) res_2 = UpSampling3D(size=(1, 2, 2))(res_2) # 10x64x64 convlstm_4a = ConvLSTM2D(filters=16, kernel_size=(3, 3), strides=(1, 1), padding='same', return_sequences=True, recurrent_dropout=0.2)(res_2) x = TimeDistributed(BatchNormalization())(convlstm_4a) out_4a = TimeDistributed(Activation('tanh'))(x) convlstm_4b = ConvLSTM2D(filters=16, kernel_size=(3, 3), strides=(1, 1), padding='same', return_sequences=True, recurrent_dropout=0.2)(out_4a) x = TimeDistributed(BatchNormalization())(convlstm_4b) out_4b = TimeDistributed(Activation('tanh'))(x) conv_4c = TimeDistributed(Conv2D(filters=16, kernel_size=(1, 1), strides=(1, 1), padding='same'))(res_2) x = TimeDistributed(BatchNormalization())(conv_4c) res_2_less = TimeDistributed(Activation('tanh'))(x) res_3 = add([res_2_less, out_4b]) res_3 = UpSampling3D(size=(1, 2, 2))(res_3) # 10x128x128 convlstm_5 = ConvLSTM2D(filters=3, kernel_size=(3, 3), strides=(1, 1), padding='same', return_sequences=True, recurrent_dropout=0.2)(res_3) predictions = TimeDistributed(Activation('tanh'))(convlstm_5) model = Model(inputs=[inputs, residual_input], outputs=predictions) return model def set_trainability(model, trainable): model.trainable = trainable for layer in model.layers: layer.trainable = trainable def autoencoder_model(encoder, decoder): # model = Sequential() # model.add(encoder) # model.add(decoder) inputs = Input(shape=(int(VIDEO_LENGTH / 2), 128, 208, 3)) z, res = encoder(inputs) future = decoder([z, res]) model = Model(inputs=inputs, outputs=future) return model def arrange_images(video_stack): n_frames = video_stack.shape[0] * video_stack.shape[1] frames = np.zeros((n_frames,) + video_stack.shape[2:], dtype=video_stack.dtype) frame_index = 0 for i in range(video_stack.shape[0]): for j in range(video_stack.shape[1]): frames[frame_index] = video_stack[i, j] frame_index += 1 img_height = video_stack.shape[2] img_width = video_stack.shape[3] width = img_width * video_stack.shape[1] height = img_height * video_stack.shape[0] shape = frames.shape[1:] image = np.zeros((height, width, shape[2]), dtype=video_stack.dtype) frame_number = 0 for i in range(video_stack.shape[0]): for j in range(video_stack.shape[1]): image[(i * img_height):((i + 1) * img_height), (j * img_width):((j + 1) * img_width)] = frames[frame_number] frame_number = frame_number + 1 return image def load_weights(weights_file, model): model.load_weights(weights_file) def run_utilities(encoder, decoder, autoencoder, ENC_WEIGHTS, DEC_WEIGHTS): if PRINT_MODEL_SUMMARY: print(encoder.summary()) print(decoder.summary()) print(autoencoder.summary()) # exit(0) # Save model to file if SAVE_MODEL: print("Saving models to file...") model_json = encoder.to_json() with open(os.path.join(MODEL_DIR, "encoder.json"), "w") as json_file: json_file.write(model_json) model_json = decoder.to_json() with open(os.path.join(MODEL_DIR, "decoder.json"), "w") as json_file: json_file.write(model_json) model_json = autoencoder.to_json() with open(os.path.join(MODEL_DIR, "autoencoder.json"), "w") as json_file: json_file.write(model_json) if PLOT_MODEL: plot_model(encoder, to_file=os.path.join(MODEL_DIR, 'encoder.png'), show_shapes=True) plot_model(decoder, to_file=os.path.join(MODEL_DIR, 'decoder.png'), show_shapes=True) plot_model(autoencoder, to_file=os.path.join(MODEL_DIR, 'autoencoder.png'), show_shapes=True) if ENC_WEIGHTS != "None": print("Pre-loading encoder with weights...") load_weights(ENC_WEIGHTS, encoder) if DEC_WEIGHTS != "None": print("Pre-loading decoder with weights...") load_weights(DEC_WEIGHTS, decoder) def load_to_RAM(frames_source): frames = np.zeros(shape=((len(frames_source),) + IMG_SIZE)) print("Decimating RAM!") j = 1 for i in range(1, len(frames_source)): filename = "frame_" + str(j) + ".png" im_file = os.path.join(DATA_DIR, filename) try: frame = cv2.imread(im_file, cv2.IMREAD_COLOR) frames[i] = (frame.astype(np.float32) - 127.5) / 127.5 j = j + 1 except AttributeError as e: print(im_file) print(e) return frames def load_X_RAM(videos_list, index, frames): X = [] for i in range(BATCH_SIZE): start_index = videos_list[(index * BATCH_SIZE + i), 0] end_index = videos_list[(index * BATCH_SIZE + i), -1] X.append(frames[start_index:end_index + 1]) X = np.asarray(X) return X def load_X(videos_list, index, data_dir, img_size, batch_size=BATCH_SIZE): X = np.zeros((batch_size, VIDEO_LENGTH,) + img_size) for i in range(batch_size): for j in range(VIDEO_LENGTH): filename = "frame_" + str(videos_list[(index * batch_size + i), j]) + ".png" im_file = os.path.join(data_dir, filename) try: frame = cv2.imread(im_file, cv2.IMREAD_COLOR) X[i, j] = (frame.astype(np.float32) - 127.5) / 127.5 except AttributeError as e: print(im_file) print(e) return X def get_video_lists(frames_source, stride): # Build video progressions videos_list = [] start_frame_index = 1 end_frame_index = VIDEO_LENGTH + 1 while (end_frame_index <= len(frames_source)): frame_list = frames_source[start_frame_index:end_frame_index] if (len(set(frame_list)) == 1): videos_list.append(range(start_frame_index, end_frame_index)) start_frame_index = start_frame_index + stride end_frame_index = end_frame_index + stride else: start_frame_index = end_frame_index - 1 end_frame_index = start_frame_index + VIDEO_LENGTH videos_list = np.asarray(videos_list, dtype=np.int32) return np.asarray(videos_list) def train(BATCH_SIZE, ENC_WEIGHTS, DEC_WEIGHTS): print("Loading data definitions...") frames_source = hkl.load(os.path.join(DATA_DIR, 'sources_train_208.hkl')) videos_list = get_video_lists(frames_source=frames_source, stride=4) n_videos = videos_list.shape[0] # Setup test val_frames_source = hkl.load(os.path.join(VAL_DATA_DIR, 'sources_val_208.hkl')) val_videos_list = get_video_lists(frames_source=val_frames_source, stride=(int(VIDEO_LENGTH / 2))) n_val_videos = val_videos_list.shape[0] if RAM_DECIMATE: frames = load_to_RAM(frames_source=frames_source) if SHUFFLE: # Shuffle images to aid generalization videos_list = np.random.permutation(videos_list) # Build the Spatio-temporal Autoencoder print("Creating models...") encoder = encoder_model() decoder = decoder_model() autoencoder = autoencoder_model(encoder, decoder) autoencoder.compile(loss="mean_squared_error", optimizer=OPTIM_A) run_utilities(encoder, decoder, autoencoder, ENC_WEIGHTS, DEC_WEIGHTS) NB_ITERATIONS = int(n_videos / BATCH_SIZE) # NB_ITERATIONS = 5 NB_VAL_ITERATIONS = int(n_val_videos / BATCH_SIZE) # Setup TensorBoard Callback TC = tb_callback.TensorBoard(log_dir=TF_LOG_DIR, histogram_freq=0, write_graph=False, write_images=False) LRS = lrs_callback.LearningRateScheduler(schedule=schedule) LRS.set_model(autoencoder) print("Beginning Training...") # Begin Training for epoch in range(1, NB_EPOCHS_AUTOENCODER+1): if epoch == 21: autoencoder.compile(loss="mean_absolute_error", optimizer=OPTIM_B) load_weights(os.path.join(CHECKPOINT_DIR, 'encoder_epoch_20.h5'), encoder) load_weights(os.path.join(CHECKPOINT_DIR, 'decoder_epoch_20.h5'), decoder) print("\n\nEpoch ", epoch) loss = [] val_loss = [] # Set learning rate every epoch LRS.on_epoch_begin(epoch=epoch) lr = K.get_value(autoencoder.optimizer.lr) print("Learning rate: " + str(lr)) for index in range(NB_ITERATIONS): # Train Autoencoder if RAM_DECIMATE: X = load_X_RAM(videos_list, index, frames) else: X = load_X(videos_list, index, DATA_DIR, IMG_SIZE) X_train = np.flip(X[:, 0: int(VIDEO_LENGTH / 2)], axis=1) y_train = X[:, int(VIDEO_LENGTH / 2):] loss.append(autoencoder.train_on_batch(X_train, y_train)) arrow = int(index / (NB_ITERATIONS / 40)) stdout.write("\rIter: " + str(index) + "/" + str(NB_ITERATIONS - 1) + " " + "loss: " + str(loss[len(loss) - 1]) + "\t [" + "{0}>".format("=" * (arrow))) stdout.flush() if SAVE_GENERATED_IMAGES: # Save generated images to file predicted_images = autoencoder.predict(X_train, verbose=0) voila = np.concatenate((X_train, y_train), axis=1) truth_seq = arrange_images(voila) pred_seq = arrange_images(np.concatenate((X_train, predicted_images), axis=1)) truth_seq = truth_seq * 127.5 + 127.5 pred_seq = pred_seq * 127.5 + 127.5 if epoch == 1: cv2.imwrite(os.path.join(GEN_IMAGES_DIR, str(epoch) + "_" + str(index) + "_truth.png"), truth_seq) cv2.imwrite(os.path.join(GEN_IMAGES_DIR, str(epoch) + "_" + str(index) + "_pred.png"), pred_seq) # Run over test data print('') for index in range(NB_VAL_ITERATIONS): X = load_X(val_videos_list, index, VAL_DATA_DIR, IMG_SIZE) X_val = np.flip(X[:, 0: int(VIDEO_LENGTH / 2)], axis=1) y_val = X[:, int(VIDEO_LENGTH / 2):] val_loss.append(autoencoder.test_on_batch(X_val, y_val)) arrow = int(index / (NB_VAL_ITERATIONS / 40)) stdout.write("\rIter: " + str(index) + "/" + str(NB_VAL_ITERATIONS - 1) + " " + "val_loss: " + str(val_loss[len(val_loss) - 1]) + "\t [" + "{0}>".format("=" * (arrow))) stdout.flush() # then after each epoch/iteration avg_loss = sum(loss) / len(loss) avg_val_loss = sum(val_loss) / len(val_loss) logs = {'loss': avg_loss, 'val_loss': avg_val_loss} TC.on_epoch_end(epoch, logs) # Log the losses with open(os.path.join(LOG_DIR, 'losses_gen.json'), 'a') as log_file: log_file.write("{\"epoch\":%d, \"train_loss\":%f, \"val_loss\":%f}\n" % (epoch, avg_loss, avg_val_loss)) print("\nAvg train loss: " + str(avg_loss) + " Avg val loss: " + str(avg_val_loss)) # Save model weights per epoch to file if epoch > 15 and epoch < 21: encoder.save_weights(os.path.join(CHECKPOINT_DIR, 'encoder_epoch_' + str(epoch) + '.h5'), True) decoder.save_weights(os.path.join(CHECKPOINT_DIR, 'decoder_epoch_' + str(epoch) + '.h5'), True) if epoch > 25: encoder.save_weights(os.path.join(CHECKPOINT_DIR, 'encoder_epoch_' + str(epoch) + '.h5'), True) decoder.save_weights(os.path.join(CHECKPOINT_DIR, 'decoder_epoch_' + str(epoch) + '.h5'), True) # encoder.save_weights(os.path.join(CHECKPOINT_DIR, 'encoder_epoch_' + str(epoch) + '.h5'), True) # decoder.save_weights(os.path.join(CHECKPOINT_DIR, 'decoder_epoch_' + str(epoch) + '.h5'), True) # test(os.path.join(CHECKPOINT_DIR, 'encoder_epoch_' + str(epoch) + '.h5'), # os.path.join(CHECKPOINT_DIR, 'decoder_epoch_' + str(epoch) + '.h5')) def test(ENC_WEIGHTS, DEC_WEIGHTS): print('') # Setup test test_frames_source = hkl.load(os.path.join(TEST_DATA_DIR, 'sources_test_208.hkl')) test_videos_list = get_video_lists(frames_source=test_frames_source, stride=(int(VIDEO_LENGTH / 2))) n_test_videos = test_videos_list.shape[0] if not os.path.exists(TEST_RESULTS_DIR + '/truth/'): os.mkdir(TEST_RESULTS_DIR + '/truth/') if not os.path.exists(TEST_RESULTS_DIR + '/pred/'): os.mkdir(TEST_RESULTS_DIR + '/pred/') if not os.path.exists(TEST_RESULTS_DIR + '/graphs/'): os.mkdir(TEST_RESULTS_DIR + '/graphs/') os.mkdir(TEST_RESULTS_DIR + '/graphs/values/') print("Creating models...") encoder = encoder_model() decoder = decoder_model() autoencoder = autoencoder_model(encoder, decoder) autoencoder.compile(loss="mean_absolute_error", optimizer=OPTIM_B) # i = 0[[ # for layer in decoder.layers: # print(layer, i) # i = i + 1 # Build first decoder layer output # intermediate_decoder = Model(inputs=decoder.layers[0].input, outputs=decoder.layers[7].output) # print (intermediate_decoder.input_shape) # inputs = Input(shape=(int(VIDEO_LENGTH / 2), 128, 208, 3)) # z_rep, res_rep = encoder(inputs) # future = intermediate_decoder(z_rep) # z_model = Model(inputs=inputs, outputs=future) # z_model.compile(loss='mean_absolute_error', optimizer=OPTIM_B) run_utilities(encoder, decoder, autoencoder, ENC_WEIGHTS, DEC_WEIGHTS) NB_TEST_ITERATIONS = int(n_test_videos / TEST_BATCH_SIZE) test_loss = [] mae_errors = np.zeros(shape=(n_test_videos, int(VIDEO_LENGTH/2) + 1)) mse_errors = np.zeros(shape=(n_test_videos, int(VIDEO_LENGTH/2) + 1)) z_all = [] NB_TEST_ITERATIONS = [298, 341] for index in NB_TEST_ITERATIONS: X = load_X(test_videos_list, index, TEST_DATA_DIR, IMG_SIZE, batch_size=TEST_BATCH_SIZE) X_test = np.flip(X[:, 0: int(VIDEO_LENGTH / 2)], axis=1) y_test = X[:, int(VIDEO_LENGTH / 2):] test_loss.append(autoencoder.test_on_batch(X_test, y_test)) # arrow = int(index / (NB_TEST_ITERATIONS / 40)) stdout.write("\rIter: " + str(index) + "/" + " " + "test_loss: " + str(test_loss[len(test_loss) - 1])) stdout.flush() if SAVE_GENERATED_IMAGES: # Save generated images to file z, res = encoder.predict(X_test, verbose=0) # z = z_model.predict(X_test, verbose=0) # z_all.append(z) z_new = np.zeros(shape=(TEST_BATCH_SIZE, 1, 16, 26, 64)) z_new[0] = z[:, 16] z_new = np.repeat(z_new, int(VIDEO_LENGTH/2), axis=1) predicted_images = decoder.predict([z_new, res], verbose=0) voila = np.concatenate((X_test, y_test), axis=1) truth_seq = arrange_images(voila) pred_seq = arrange_images(np.concatenate((X_test, predicted_images), axis=1)) truth_seq = truth_seq * 127.5 + 127.5 pred_seq = pred_seq * 127.5 + 127.5 # mae_error = [] # mse_error = [] # for i in range(int(VIDEO_LENGTH / 2)): # mae_errors[index, i] = (mae(y_test[0, i].flatten(), predicted_images[0, i].flatten())) # mae_error.append(mae_errors[index, i]) # # # mse_errors[index, i] = (mse(y_test[0, i].flatten(), predicted_images[0, i].flatten())) # mse_error.append(mse_errors[index, i]) # # dc_mae = mae(X_test[0, 0].flatten(), y_test[0, 0].flatten()) # mae_errors[index, -1] = dc_mae # dc_mse = mse(X_test[0, 0].flatten(), y_test[0, 0].flatten()) # mse_errors[index, -1] = dc_mse cv2.imwrite(os.path.join(TEST_RESULTS_DIR + '/truth/', str(index) + "_truth.png"), truth_seq) cv2.imwrite(os.path.join(TEST_RESULTS_DIR + '/pred/', str(index) + "_pred.png"), pred_seq) # plot_err_variation(mae_error, index, dc_mae, 'mae') # plot_err_variation(mse_error, index, dc_mse, 'mse') np.save(os.path.join(TEST_RESULTS_DIR + '/graphs/values/', str(index) + "_mae.npy"), np.asarray(mae_errors)) np.save(os.path.join(TEST_RESULTS_DIR + '/graphs/values/', str(index) + "_mse.npy"), np.asarray(mse_errors)) np.save(os.path.join(TEST_RESULTS_DIR + '/graphs/values/', "z_all.npy"), np.asarray(z_all)) # then after each epoch/iteration avg_test_loss = sum(test_loss) / len(test_loss) np.save(TEST_RESULTS_DIR + 'test_loss.npy', np.asarray(test_loss)) print("\nAvg loss: " + str(avg_test_loss)) print("\n Std: " + str(np.std(np.asarray(test_loss)))) print("\n Variance: " + str(np.var(np.asarray(test_loss)))) print("\n Mean: " + str(np.mean(np.asarray(test_loss)))) print("\n Max: " + str(np.max(np.asarray(test_loss)))) print("\n Min: " + str(np.min(np.asarray(test_loss)))) def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--mode", type=str) parser.add_argument("--enc_weights", type=str, default="None") parser.add_argument("--dec_weights", type=str, default="None") parser.add_argument("--gen_weights", type=str, default="None") parser.add_argument("--dis_weights", type=str, default="None") parser.add_argument("--batch_size", type=int, default=BATCH_SIZE) parser.add_argument("--nice", dest="nice", action="store_true") parser.set_defaults(nice=False) args = parser.parse_args() return args if __name__ == "__main__": args = get_args() if args.mode == "train": train(BATCH_SIZE=args.batch_size, ENC_WEIGHTS=args.enc_weights, DEC_WEIGHTS=args.dec_weights) if args.mode == "test": test(ENC_WEIGHTS=args.enc_weights, DEC_WEIGHTS=args.dec_weights) # if args.mode == "test_ind": # test_ind(ENC_WEIGHTS=args.enc_weights, # DEC_WEIGHTS=args.dec_weights)
bsd-3-clause
meduz/scikit-learn
examples/missing_values.py
71
3055
""" ====================================================== Imputing missing values before building an estimator ====================================================== This example shows that imputing the missing values can give better results than discarding the samples containing any missing value. Imputing does not always improve the predictions, so please check via cross-validation. Sometimes dropping rows or using marker values is more effective. Missing values can be replaced by the mean, the median or the most frequent value using the ``strategy`` hyper-parameter. The median is a more robust estimator for data with high magnitude variables which could dominate results (otherwise known as a 'long tail'). Script output:: Score with the entire dataset = 0.56 Score without the samples containing missing values = 0.48 Score after imputation of the missing values = 0.55 In this case, imputing helps the classifier get close to the original score. """ import numpy as np from sklearn.datasets import load_boston from sklearn.ensemble import RandomForestRegressor from sklearn.pipeline import Pipeline from sklearn.preprocessing import Imputer from sklearn.model_selection import cross_val_score rng = np.random.RandomState(0) dataset = load_boston() X_full, y_full = dataset.data, dataset.target n_samples = X_full.shape[0] n_features = X_full.shape[1] # Estimate the score on the entire dataset, with no missing values estimator = RandomForestRegressor(random_state=0, n_estimators=100) score = cross_val_score(estimator, X_full, y_full).mean() print("Score with the entire dataset = %.2f" % score) # Add missing values in 75% of the lines missing_rate = 0.75 n_missing_samples = np.floor(n_samples * missing_rate) missing_samples = np.hstack((np.zeros(n_samples - n_missing_samples, dtype=np.bool), np.ones(n_missing_samples, dtype=np.bool))) rng.shuffle(missing_samples) missing_features = rng.randint(0, n_features, n_missing_samples) # Estimate the score without the lines containing missing values X_filtered = X_full[~missing_samples, :] y_filtered = y_full[~missing_samples] estimator = RandomForestRegressor(random_state=0, n_estimators=100) score = cross_val_score(estimator, X_filtered, y_filtered).mean() print("Score without the samples containing missing values = %.2f" % score) # Estimate the score after imputation of the missing values X_missing = X_full.copy() X_missing[np.where(missing_samples)[0], missing_features] = 0 y_missing = y_full.copy() estimator = Pipeline([("imputer", Imputer(missing_values=0, strategy="mean", axis=0)), ("forest", RandomForestRegressor(random_state=0, n_estimators=100))]) score = cross_val_score(estimator, X_missing, y_missing).mean() print("Score after imputation of the missing values = %.2f" % score)
bsd-3-clause
ephes/scikit-learn
sklearn/linear_model/randomized_l1.py
95
23365
""" Randomized Lasso/Logistic: feature selection based on Lasso and sparse Logistic Regression """ # Author: Gael Varoquaux, Alexandre Gramfort # # License: BSD 3 clause import itertools from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy.sparse import issparse from scipy import sparse from scipy.interpolate import interp1d from .base import center_data from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.joblib import Memory, Parallel, delayed from ..utils import (as_float_array, check_random_state, check_X_y, check_array, safe_mask, ConvergenceWarning) from ..utils.validation import check_is_fitted from .least_angle import lars_path, LassoLarsIC from .logistic import LogisticRegression ############################################################################### # Randomized linear model: feature selection def _resample_model(estimator_func, X, y, scaling=.5, n_resampling=200, n_jobs=1, verbose=False, pre_dispatch='3*n_jobs', random_state=None, sample_fraction=.75, **params): random_state = check_random_state(random_state) # We are generating 1 - weights, and not weights n_samples, n_features = X.shape if not (0 < scaling < 1): raise ValueError( "'scaling' should be between 0 and 1. Got %r instead." % scaling) scaling = 1. - scaling scores_ = 0.0 for active_set in Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)( delayed(estimator_func)( X, y, weights=scaling * random_state.random_integers( 0, 1, size=(n_features,)), mask=(random_state.rand(n_samples) < sample_fraction), verbose=max(0, verbose - 1), **params) for _ in range(n_resampling)): scores_ += active_set scores_ /= n_resampling return scores_ class BaseRandomizedLinearModel(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class to implement randomized linear models for feature selection This implements the strategy by Meinshausen and Buhlman: stability selection with randomized sampling, and random re-weighting of the penalty. """ @abstractmethod def __init__(self): pass _center_data = staticmethod(center_data) def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, sparse matrix shape = [n_samples, n_features] Training data. y : array-like, shape = [n_samples] Target values. Returns ------- self : object Returns an instance of self. """ X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], y_numeric=True) X = as_float_array(X, copy=False) n_samples, n_features = X.shape X, y, X_mean, y_mean, X_std = self._center_data(X, y, self.fit_intercept, self.normalize) estimator_func, params = self._make_estimator_and_params(X, y) memory = self.memory if isinstance(memory, six.string_types): memory = Memory(cachedir=memory) scores_ = memory.cache( _resample_model, ignore=['verbose', 'n_jobs', 'pre_dispatch'] )( estimator_func, X, y, scaling=self.scaling, n_resampling=self.n_resampling, n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=self.pre_dispatch, random_state=self.random_state, sample_fraction=self.sample_fraction, **params) if scores_.ndim == 1: scores_ = scores_[:, np.newaxis] self.all_scores_ = scores_ self.scores_ = np.max(self.all_scores_, axis=1) return self def _make_estimator_and_params(self, X, y): """Return the parameters passed to the estimator""" raise NotImplementedError def get_support(self, indices=False): """Return a mask, or list, of the features/indices selected.""" check_is_fitted(self, 'scores_') mask = self.scores_ > self.selection_threshold return mask if not indices else np.where(mask)[0] # XXX: the two function below are copy/pasted from feature_selection, # Should we add an intermediate base class? def transform(self, X): """Transform a new matrix using the selected features""" mask = self.get_support() X = check_array(X) if len(mask) != X.shape[1]: raise ValueError("X has a different shape than during fitting.") return check_array(X)[:, safe_mask(X, mask)] def inverse_transform(self, X): """Transform a new matrix using the selected features""" support = self.get_support() if X.ndim == 1: X = X[None, :] Xt = np.zeros((X.shape[0], support.size)) Xt[:, support] = X return Xt ############################################################################### # Randomized lasso: regression settings def _randomized_lasso(X, y, weights, mask, alpha=1., verbose=False, precompute=False, eps=np.finfo(np.float).eps, max_iter=500): X = X[safe_mask(X, mask)] y = y[mask] # Center X and y to avoid fit the intercept X -= X.mean(axis=0) y -= y.mean() alpha = np.atleast_1d(np.asarray(alpha, dtype=np.float)) X = (1 - weights) * X with warnings.catch_warnings(): warnings.simplefilter('ignore', ConvergenceWarning) alphas_, _, coef_ = lars_path(X, y, Gram=precompute, copy_X=False, copy_Gram=False, alpha_min=np.min(alpha), method='lasso', verbose=verbose, max_iter=max_iter, eps=eps) if len(alpha) > 1: if len(alphas_) > 1: # np.min(alpha) < alpha_min interpolator = interp1d(alphas_[::-1], coef_[:, ::-1], bounds_error=False, fill_value=0.) scores = (interpolator(alpha) != 0.0) else: scores = np.zeros((X.shape[1], len(alpha)), dtype=np.bool) else: scores = coef_[:, -1] != 0.0 return scores class RandomizedLasso(BaseRandomizedLinearModel): """Randomized Lasso. Randomized Lasso works by resampling the train data and computing a Lasso on each resampling. In short, the features selected more often are good features. It is also known as stability selection. Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- alpha : float, 'aic', or 'bic', optional The regularization parameter alpha parameter in the Lasso. Warning: this is not the alpha parameter in the stability selection article which is scaling. scaling : float, optional The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. sample_fraction : float, optional The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. n_resampling : int, optional Number of randomized models. selection_threshold: float, optional The score above which features should be selected. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default True If True, the regressors X will be normalized before regression. precompute : True | False | 'auto' Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform in the Lars algorithm. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the 'tol' parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' memory : Instance of joblib.Memory or string Used for internal caching. By default, no caching is done. If a string is given, it is the path to the caching directory. Attributes ---------- scores_ : array, shape = [n_features] Feature scores between 0 and 1. all_scores_ : array, shape = [n_features, n_reg_parameter] Feature scores between 0 and 1 for all values of the regularization \ parameter. The reference article suggests ``scores_`` is the max of \ ``all_scores_``. Examples -------- >>> from sklearn.linear_model import RandomizedLasso >>> randomized_lasso = RandomizedLasso() Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. References ---------- Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x See also -------- RandomizedLogisticRegression, LogisticRegression """ def __init__(self, alpha='aic', scaling=.5, sample_fraction=.75, n_resampling=200, selection_threshold=.25, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, random_state=None, n_jobs=1, pre_dispatch='3*n_jobs', memory=Memory(cachedir=None, verbose=0)): self.alpha = alpha self.scaling = scaling self.sample_fraction = sample_fraction self.n_resampling = n_resampling self.fit_intercept = fit_intercept self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.precompute = precompute self.eps = eps self.random_state = random_state self.n_jobs = n_jobs self.selection_threshold = selection_threshold self.pre_dispatch = pre_dispatch self.memory = memory def _make_estimator_and_params(self, X, y): assert self.precompute in (True, False, None, 'auto') alpha = self.alpha if alpha in ('aic', 'bic'): model = LassoLarsIC(precompute=self.precompute, criterion=self.alpha, max_iter=self.max_iter, eps=self.eps) model.fit(X, y) self.alpha_ = alpha = model.alpha_ return _randomized_lasso, dict(alpha=alpha, max_iter=self.max_iter, eps=self.eps, precompute=self.precompute) ############################################################################### # Randomized logistic: classification settings def _randomized_logistic(X, y, weights, mask, C=1., verbose=False, fit_intercept=True, tol=1e-3): X = X[safe_mask(X, mask)] y = y[mask] if issparse(X): size = len(weights) weight_dia = sparse.dia_matrix((1 - weights, 0), (size, size)) X = X * weight_dia else: X *= (1 - weights) C = np.atleast_1d(np.asarray(C, dtype=np.float)) scores = np.zeros((X.shape[1], len(C)), dtype=np.bool) for this_C, this_scores in zip(C, scores.T): # XXX : would be great to do it with a warm_start ... clf = LogisticRegression(C=this_C, tol=tol, penalty='l1', dual=False, fit_intercept=fit_intercept) clf.fit(X, y) this_scores[:] = np.any( np.abs(clf.coef_) > 10 * np.finfo(np.float).eps, axis=0) return scores class RandomizedLogisticRegression(BaseRandomizedLinearModel): """Randomized Logistic Regression Randomized Regression works by resampling the train data and computing a LogisticRegression on each resampling. In short, the features selected more often are good features. It is also known as stability selection. Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- C : float, optional, default=1 The regularization parameter C in the LogisticRegression. scaling : float, optional, default=0.5 The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. sample_fraction : float, optional, default=0.75 The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. n_resampling : int, optional, default=200 Number of randomized models. selection_threshold : float, optional, default=0.25 The score above which features should be selected. fit_intercept : boolean, optional, default=True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default=True If True, the regressors X will be normalized before regression. tol : float, optional, default=1e-3 tolerance for stopping criteria of LogisticRegression n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' memory : Instance of joblib.Memory or string Used for internal caching. By default, no caching is done. If a string is given, it is the path to the caching directory. Attributes ---------- scores_ : array, shape = [n_features] Feature scores between 0 and 1. all_scores_ : array, shape = [n_features, n_reg_parameter] Feature scores between 0 and 1 for all values of the regularization \ parameter. The reference article suggests ``scores_`` is the max \ of ``all_scores_``. Examples -------- >>> from sklearn.linear_model import RandomizedLogisticRegression >>> randomized_logistic = RandomizedLogisticRegression() Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. References ---------- Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x See also -------- RandomizedLasso, Lasso, ElasticNet """ def __init__(self, C=1, scaling=.5, sample_fraction=.75, n_resampling=200, selection_threshold=.25, tol=1e-3, fit_intercept=True, verbose=False, normalize=True, random_state=None, n_jobs=1, pre_dispatch='3*n_jobs', memory=Memory(cachedir=None, verbose=0)): self.C = C self.scaling = scaling self.sample_fraction = sample_fraction self.n_resampling = n_resampling self.fit_intercept = fit_intercept self.verbose = verbose self.normalize = normalize self.tol = tol self.random_state = random_state self.n_jobs = n_jobs self.selection_threshold = selection_threshold self.pre_dispatch = pre_dispatch self.memory = memory def _make_estimator_and_params(self, X, y): params = dict(C=self.C, tol=self.tol, fit_intercept=self.fit_intercept) return _randomized_logistic, params def _center_data(self, X, y, fit_intercept, normalize=False): """Center the data in X but not in y""" X, _, Xmean, _, X_std = center_data(X, y, fit_intercept, normalize=normalize) return X, y, Xmean, y, X_std ############################################################################### # Stability paths def _lasso_stability_path(X, y, mask, weights, eps): "Inner loop of lasso_stability_path" X = X * weights[np.newaxis, :] X = X[safe_mask(X, mask), :] y = y[mask] alpha_max = np.max(np.abs(np.dot(X.T, y))) / X.shape[0] alpha_min = eps * alpha_max # set for early stopping in path with warnings.catch_warnings(): warnings.simplefilter('ignore', ConvergenceWarning) alphas, _, coefs = lars_path(X, y, method='lasso', verbose=False, alpha_min=alpha_min) # Scale alpha by alpha_max alphas /= alphas[0] # Sort alphas in assending order alphas = alphas[::-1] coefs = coefs[:, ::-1] # Get rid of the alphas that are too small mask = alphas >= eps # We also want to keep the first one: it should be close to the OLS # solution mask[0] = True alphas = alphas[mask] coefs = coefs[:, mask] return alphas, coefs def lasso_stability_path(X, y, scaling=0.5, random_state=None, n_resampling=200, n_grid=100, sample_fraction=0.75, eps=4 * np.finfo(np.float).eps, n_jobs=1, verbose=False): """Stabiliy path based on randomized Lasso estimates Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- X : array-like, shape = [n_samples, n_features] training data. y : array-like, shape = [n_samples] target values. scaling : float, optional, default=0.5 The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. random_state : integer or numpy.random.RandomState, optional The generator used to randomize the design. n_resampling : int, optional, default=200 Number of randomized models. n_grid : int, optional, default=100 Number of grid points. The path is linearly reinterpolated on a grid between 0 and 1 before computing the scores. sample_fraction : float, optional, default=0.75 The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. eps : float, optional Smallest value of alpha / alpha_max considered n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs verbose : boolean or integer, optional Sets the verbosity amount Returns ------- alphas_grid : array, shape ~ [n_grid] The grid points between 0 and 1: alpha/alpha_max scores_path : array, shape = [n_features, n_grid] The scores for each feature along the path. Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. """ rng = check_random_state(random_state) if not (0 < scaling < 1): raise ValueError("Parameter 'scaling' should be between 0 and 1." " Got %r instead." % scaling) n_samples, n_features = X.shape paths = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(_lasso_stability_path)( X, y, mask=rng.rand(n_samples) < sample_fraction, weights=1. - scaling * rng.random_integers(0, 1, size=(n_features,)), eps=eps) for k in range(n_resampling)) all_alphas = sorted(list(set(itertools.chain(*[p[0] for p in paths])))) # Take approximately n_grid values stride = int(max(1, int(len(all_alphas) / float(n_grid)))) all_alphas = all_alphas[::stride] if not all_alphas[-1] == 1: all_alphas.append(1.) all_alphas = np.array(all_alphas) scores_path = np.zeros((n_features, len(all_alphas))) for alphas, coefs in paths: if alphas[0] != 0: alphas = np.r_[0, alphas] coefs = np.c_[np.ones((n_features, 1)), coefs] if alphas[-1] != all_alphas[-1]: alphas = np.r_[alphas, all_alphas[-1]] coefs = np.c_[coefs, np.zeros((n_features, 1))] scores_path += (interp1d(alphas, coefs, kind='nearest', bounds_error=False, fill_value=0, axis=-1)(all_alphas) != 0) scores_path /= n_resampling return all_alphas, scores_path
bsd-3-clause
appapantula/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_02_sentiment.py
254
2795
"""Build a sentiment analysis / polarity model Sentiment analysis can be casted as a binary text classification problem, that is fitting a linear classifier on features extracted from the text of the user messages so as to guess wether the opinion of the author is positive or negative. In this examples we will use a movie review dataset. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics if __name__ == "__main__": # NOTE: we put the following in a 'if __name__ == "__main__"' protected # block to be able to use a multi-core grid search that also works under # Windows, see: http://docs.python.org/library/multiprocessing.html#windows # The multiprocessing module is used as the backend of joblib.Parallel # that is used when n_jobs != 1 in GridSearchCV # the training data folder must be passed as first argument movie_reviews_data_folder = sys.argv[1] dataset = load_files(movie_reviews_data_folder, shuffle=False) print("n_samples: %d" % len(dataset.data)) # split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.25, random_state=None) # TASK: Build a vectorizer / classifier pipeline that filters out tokens # that are too rare or too frequent pipeline = Pipeline([ ('vect', TfidfVectorizer(min_df=3, max_df=0.95)), ('clf', LinearSVC(C=1000)), ]) # TASK: Build a grid search to find out whether unigrams or bigrams are # more useful. # Fit the pipeline on the training set using grid search for the parameters parameters = { 'vect__ngram_range': [(1, 1), (1, 2)], } grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1) grid_search.fit(docs_train, y_train) # TASK: print the cross-validated scores for the each parameters set # explored by the grid search print(grid_search.grid_scores_) # TASK: Predict the outcome on the testing set and store it in a variable # named y_predicted y_predicted = grid_search.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Print and plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) # import matplotlib.pyplot as plt # plt.matshow(cm) # plt.show()
bsd-3-clause
bthirion/scikit-learn
examples/linear_model/plot_bayesian_ridge.py
5
3875
""" ========================= Bayesian Ridge Regression ========================= Computes a Bayesian Ridge Regression on a synthetic dataset. See :ref:`bayesian_ridge_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, which stabilises them. As the prior on the weights is a Gaussian prior, the histogram of the estimated weights is Gaussian. The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations. We also plot predictions and uncertainties for Bayesian Ridge Regression for one dimensional regression using polynomial feature expansion. Note the uncertainty starts going up on the right side of the plot. This is because these test samples are outside of the range of the training samples. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.linear_model import BayesianRidge, LinearRegression ############################################################################### # Generating simulated data with Gaussian weights np.random.seed(0) n_samples, n_features = 100, 100 X = np.random.randn(n_samples, n_features) # Create Gaussian data # Create weights with a precision lambda_ of 4. lambda_ = 4. w = np.zeros(n_features) # Only keep 10 weights of interest relevant_features = np.random.randint(0, n_features, 10) for i in relevant_features: w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_)) # Create noise with a precision alpha of 50. alpha_ = 50. noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples) # Create the target y = np.dot(X, w) + noise ############################################################################### # Fit the Bayesian Ridge Regression and an OLS for comparison clf = BayesianRidge(compute_score=True) clf.fit(X, y) ols = LinearRegression() ols.fit(X, y) ############################################################################### # Plot true weights, estimated weights, histogram of the weights, and # predictions with standard deviations lw = 2 plt.figure(figsize=(6, 5)) plt.title("Weights of the model") plt.plot(clf.coef_, color='lightgreen', linewidth=lw, label="Bayesian Ridge estimate") plt.plot(w, color='gold', linewidth=lw, label="Ground truth") plt.plot(ols.coef_, color='navy', linestyle='--', label="OLS estimate") plt.xlabel("Features") plt.ylabel("Values of the weights") plt.legend(loc="best", prop=dict(size=12)) plt.figure(figsize=(6, 5)) plt.title("Histogram of the weights") plt.hist(clf.coef_, bins=n_features, color='gold', log=True, edgecolor='black') plt.scatter(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)), color='navy', label="Relevant features") plt.ylabel("Features") plt.xlabel("Values of the weights") plt.legend(loc="upper left") plt.figure(figsize=(6, 5)) plt.title("Marginal log-likelihood") plt.plot(clf.scores_, color='navy', linewidth=lw) plt.ylabel("Score") plt.xlabel("Iterations") # Plotting some predictions for polynomial regression def f(x, noise_amount): y = np.sqrt(x) * np.sin(x) noise = np.random.normal(0, 1, len(x)) return y + noise_amount * noise degree = 10 X = np.linspace(0, 10, 100) y = f(X, noise_amount=0.1) clf_poly = BayesianRidge() clf_poly.fit(np.vander(X, degree), y) X_plot = np.linspace(0, 11, 25) y_plot = f(X_plot, noise_amount=0) y_mean, y_std = clf_poly.predict(np.vander(X_plot, degree), return_std=True) plt.figure(figsize=(6, 5)) plt.errorbar(X_plot, y_mean, y_std, color='navy', label="Polynomial Bayesian Ridge Regression", linewidth=lw) plt.plot(X_plot, y_plot, color='gold', linewidth=lw, label="Ground Truth") plt.ylabel("Output y") plt.xlabel("Feature X") plt.legend(loc="lower left") plt.show()
bsd-3-clause
dcherian/tools
ROMS/pmacc/tools/post_tools/rompy/trunk/make_standard_images.py
1
9610
#!/usr/bin/env python import os import glob from optparse import OptionParser import numpy as np import matplotlib.pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from rompy import rompy, plot_utils, utils, extract_utils def surface_map(file,img_file=None,varname='salt',clim=None): (data, coords) = rompy.extract(file,varname=varname,extraction_type='surface') # plot_utils.plot_surface(coords['xm'],coords['ym'],data) title = '%s %s %s %s' % ( extract_utils.run_title(file), os.path.basename(file), var_title_map[var], extract_utils.file_time(file).strftime(title_time_fmt) ) plot_utils.plot_map(coords['xm'],coords['ym'],data,filename=img_file, clim=clim, title=title, caxis_label=clabel_map[varname]) def main_basin_curtain(file,img_file,varname,n=4,clim=None): # Main Basin if varname == 'U': main_basin_U_curtain(file,img_file,n,clim) else: x,y = utils.high_res_main_basin_xy(n=n) (data, coords) = rompy.extract(file, varname=varname, extraction_type='profile', x=x, y=y) title = '%s %s Main Basin %s %s' % (extract_utils.run_title(file), os.path.basename(file), var_title_map[var], extract_utils.file_time(file).strftime(title_time_fmt)) plot_utils.plot_parker(coords=coords, data=data, varname=varname, region='Main Basin', filename=img_file, n=n, x_axis_offset=utils.offset_region(coords), clim=clim,cmap='banas_hsv_cm',labeled_contour_gap=2, title=title, caxis_label=clabel_map[varname]) def hood_canal_curtain(file,img_file,varname,n=1,clim=None): # Hood Canal if varname == 'U': hood_canal_U_curtain(file,img_file,n,clim) else: x,y = utils.high_res_hood_canal_xy(n=n) (data, coords) = rompy.extract(file, varname=varname, extraction_type='profile', x=x, y=y) title = '%s %s Hood Canal %s %s' % (extract_utils.run_title(file), os.path.basename(file), var_title_map[var], extract_utils.file_time(file).strftime(title_time_fmt)) plot_utils.plot_parker(coords=coords, data=data, varname=varname, region='Hood Canal', filename=img_file, n=n, x_axis_offset=utils.offset_region(coords), clim=clim, cmap='banas_hsv_cm',labeled_contour_gap=2, title=title, caxis_label=clabel_map[varname]) def hood_canal_U_curtain(file,img_file,n=1,clim=None): # velocity in Hood Canal x,y = utils.high_res_hood_canal_xy(n=n) (u, coords) = rompy.extract(file,varname='u',extraction_type='profile',x=x,y=y) (v, coords) = rompy.extract(file,varname='v',extraction_type='profile',x=x,y=y) data = np.zeros(u.shape) for i in range(u.shape[1]): if i == u.shape[1]-1: x_vec = np.array([x[i] - x[i-1], y[i] - y[i-1]]) else: x_vec = np.array([x[i+1] - x[i], y[i+1] - y[i]]) for j in range(u.shape[0]): u_vec = np.array([u[j,i], v[j,i]]) data[j,i] = np.dot(x_vec,u_vec)/(np.sqrt(np.dot(x_vec,x_vec))) data = np.ma.array(data, mask=np.abs(data) > 100) title = '%s %s Hood Canal %s %s' % (extract_utils.run_title(file), os.path.basename(file), var_title_map['U'], extract_utils.file_time(file).strftime(title_time_fmt)) hood_U_clim = (np.array(clim)/2.0).tolist() plot_utils.plot_parker(coords=coords,data=data,varname='U', region='Hood Canal', filename=img_file, n=n, clim=clim, x_axis_offset=utils.offset_region(coords), cmap='red_blue', title=title, caxis_label=clabel_map['U']) def main_basin_U_curtain(file,img_file,n=1,clim=None): # velocity in Main Basin x,y = utils.high_res_main_basin_xy(n=n) (u, coords) = rompy.extract(file,varname='u',extraction_type='profile',x=x,y=y) (v, coords) = rompy.extract(file,varname='v',extraction_type='profile',x=x,y=y) data = np.zeros(u.shape) for i in range(u.shape[1]): if i == u.shape[1]-1: x_vec = np.array([x[i] - x[i-1], y[i] - y[i-1]]) else: x_vec = np.array([x[i+1] - x[i], y[i+1] - y[i]]) for j in range(u.shape[0]): u_vec = np.array([u[j,i], v[j,i]]) data[j,i] = np.dot(x_vec,u_vec)/(np.sqrt(np.dot(x_vec,x_vec))) data = np.ma.array(data, mask=np.abs(data) > 100) title = '%s %s Main Basin %s %s' % (extract_utils.run_title(file), os.path.basename(file), var_title_map['U'], extract_utils.file_time(file).strftime(title_time_fmt)) plot_utils.plot_parker(coords=coords,data=data,varname='U', region=' Main Basin', filename=img_file, n=n, clim=clim, x_axis_offset=utils.offset_region(coords),cmap='red_blue', title=title, caxis_label=clabel_map['U']) def daves_curtain(file,img_file,section,varname,clim=None): if varname == 'U': daves_U_curtain(file,img_file,section,varname,clim) else: x = utils.get_daves_section_var(section=section,var='lon') y = utils.get_daves_section_var(section=section,var='lat') (data, coords) = rompy.extract(file, varname=varname, extraction_type='profile', x=x, y=y) title = '%s %s %s %s %s' % (extract_utils.run_title(file), os.path.basename(file), section, var_title_map[var], extract_utils.file_time(file).strftime(title_time_fmt)) plot_utils.plot_parker( coords=coords, data=data, filename=img_file, title=title, x_axis_offset=utils.offset_region(coords), clim=clim, cmap='banas_hsv_cm', labeled_contour_gap=2, caxis_label=clabel_map[varname], inset=inset_dict[section], ctd_ind=ctd_ind_dict[section], label=utils.get_daves_section_var(section=section,var='label'), label_ind=utils.get_daves_section_var(section=section,var='label_ind') ) return def daves_U_curtain(file,img_file,section,varname,clim): x = utils.get_daves_section_var(section=section,var='lon') y = utils.get_daves_section_var(section=section,var='lat') (u, coords) = rompy.extract(file,varname='u',extraction_type='profile',x=x,y=y) (v, coords) = rompy.extract(file,varname='v',extraction_type='profile',x=x,y=y) data = np.zeros(u.shape) for i in range(u.shape[1]): if i == u.shape[1]-1: x_vec = np.array([x[i] - x[i-1], y[i] - y[i-1]]) else: x_vec = np.array([x[i+1] - x[i], y[i+1] - y[i]]) for j in range(u.shape[0]): u_vec = np.array([u[j,i], v[j,i]]) data[j,i] = np.dot(x_vec,u_vec)/(np.sqrt(np.dot(x_vec,x_vec))) data = np.ma.array(data, mask=np.abs(data) > 100) title = '%s %s %s %s %s' % (extract_utils.run_title(file), os.path.basename(file), section, var_title_map['U'], extract_utils.file_time(file).strftime(title_time_fmt)) plot_utils.plot_parker( coords=coords, data=data, filename=img_file, title=title, x_axis_offset=utils.offset_region(coords), clim=clim, cmap='red_blue', caxis_label=clabel_map[varname], inset=inset_dict[section], ctd_ind=ctd_ind_dict[section], label=utils.get_daves_section_var(section=section,var='label'), label_ind=utils.get_daves_section_var(section=section,var='label_ind') ) return # begin actual code that runs. parser = OptionParser() parser.add_option('-i', '--img_dir', dest='img_dir', default='./image_sequence', help='Location to save images. Default is ./image_sequnce') (options, args) = parser.parse_args() if args == []: fl = glob.glob('ocean_his*.nc') print(fl) file_list = [fl[0]] else: file_list = args img_dir = options.img_dir var_list = ['salt','temp','U'] var_title_map = {'salt':'Salinity','temp':'Temperature','U':'Velocity'} title_time_fmt = '%Y-%m-%d %H:%M UTC' clims = {'salt':[0, 21,33, 33], 'temp': [8, 20], 'U':[-2,2]} clabel_map = {'temp': u'\u00B0 C', 'salt': 'psu', 'U': 'm/s'} inset_dict = {'AI_HC':'Puget Sound','AI_WB':'Puget Sound','JdF_SoG':'Strait of Georgia','JdF_SS':'Puget Sound','JdF_PS':'JdF_PS'} ctd_ind_dict = { 'AI_HC':utils.get_daves_section_var(section='AI_HC',var='PRISM_ctd_ind'), 'AI_WB':utils.get_daves_section_var(section='AI_WB',var='PRISM_ctd_ind'), 'JdF_SoG':utils.get_daves_section_var(section='JdF_SoG',var='IOS_ctd_ind'), 'JdF_SS':utils.get_daves_section_var(section='JdF_SS',var='PRISM_ctd_ind'), 'JdF_PS':utils.get_daves_section_var(section='JdF_PS',var='PRISM_ctd_ind') } ctd_ind_dict['JdF_SoG'].extend(utils.get_daves_section_var(section='JdF_SoG',var='JEMS_ctd_ind')) for file in file_list: ncf_index = os.path.basename(file)[:-3] print('%s' %ncf_index) if not os.path.exists(img_dir): os.makedirs(img_dir) for var in var_list: hood_img_file = '%s/%s_hood_%s.png' %(img_dir, ncf_index,var) main_img_file = '%s/%s_main_%s.png' %(img_dir, ncf_index,var) surface_img_file = '%s/%s_surface_%s.png' % (img_dir, ncf_index, var) AI_HC_img_file = '%s/AI_HC_%s_%s.png' %(img_dir,var,ncf_index) AI_WB_img_file = '%s/AI_WB_%s_%s.png' %(img_dir,var,ncf_index) JdF_SoG_img_file = '%s/JdF_SoG_%s_%s.png' %(img_dir,var,ncf_index) JdF_SS_img_file = '%s/JdF_SS_%s_%s.png' %(img_dir,var,ncf_index) JdF_PS_img_file = '%s/JdF_PS_%s_%s.png' %(img_dir,var,ncf_index) print('making hood canal %s' % var) hood_canal_curtain(file, hood_img_file, var, n=8, clim=clims[var]) print('making main basin %s' % var) main_basin_curtain(file, main_img_file, var, n=8, clim=clims[var]) print('making AI_HC %s' % var) daves_curtain(file,AI_HC_img_file,section='AI_HC',varname=var,clim=clims[var]) print('making AI_WB %s' % var) daves_curtain(file,AI_WB_img_file,section='AI_WB',varname=var,clim=clims[var]) print('making JdF_SoG %s' % var) daves_curtain(file,JdF_SoG_img_file,section='JdF_SoG',varname=var,clim=clims[var]) print('making JdF_SS %s' % var) daves_curtain(file,JdF_SS_img_file,section='JdF_SS',varname=var,clim=clims[var]) print('making JdF_PS %s' % var) daves_curtain(file,JdF_PS_img_file,section='JdF_PS',varname=var,clim=clims[var]) if not var == 'U': print('making surface %s' % var) surface_map(file,surface_img_file,var,clim=clims[var])
mit
joerocklin/gem5
util/stats/barchart.py
90
12472
# Copyright (c) 2005-2006 The Regents of The University of Michigan # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Nathan Binkert # Lisa Hsu import matplotlib, pylab from matplotlib.font_manager import FontProperties from matplotlib.numerix import array, arange, reshape, shape, transpose, zeros from matplotlib.numerix import Float from matplotlib.ticker import NullLocator matplotlib.interactive(False) from chart import ChartOptions class BarChart(ChartOptions): def __init__(self, default=None, **kwargs): super(BarChart, self).__init__(default, **kwargs) self.inputdata = None self.chartdata = None self.inputerr = None self.charterr = None def gen_colors(self, count): cmap = matplotlib.cm.get_cmap(self.colormap) if count == 1: return cmap([ 0.5 ]) if count < 5: return cmap(arange(5) / float(4))[:count] return cmap(arange(count) / float(count - 1)) # The input data format does not match the data format that the # graph function takes because it is intuitive. The conversion # from input data format to chart data format depends on the # dimensionality of the input data. Check here for the # dimensionality and correctness of the input data def set_data(self, data): if data is None: self.inputdata = None self.chartdata = None return data = array(data) dim = len(shape(data)) if dim not in (1, 2, 3): raise AttributeError, "Input data must be a 1, 2, or 3d matrix" self.inputdata = data # If the input data is a 1d matrix, then it describes a # standard bar chart. if dim == 1: self.chartdata = array([[data]]) # If the input data is a 2d matrix, then it describes a bar # chart with groups. The matrix being an array of groups of # bars. if dim == 2: self.chartdata = transpose([data], axes=(2,0,1)) # If the input data is a 3d matrix, then it describes an array # of groups of bars with each bar being an array of stacked # values. if dim == 3: self.chartdata = transpose(data, axes=(1,2,0)) def get_data(self): return self.inputdata data = property(get_data, set_data) def set_err(self, err): if err is None: self.inputerr = None self.charterr = None return err = array(err) dim = len(shape(err)) if dim not in (1, 2, 3): raise AttributeError, "Input err must be a 1, 2, or 3d matrix" self.inputerr = err if dim == 1: self.charterr = array([[err]]) if dim == 2: self.charterr = transpose([err], axes=(2,0,1)) if dim == 3: self.charterr = transpose(err, axes=(1,2,0)) def get_err(self): return self.inputerr err = property(get_err, set_err) # Graph the chart data. # Input is a 3d matrix that describes a plot that has multiple # groups, multiple bars in each group, and multiple values stacked # in each bar. The underlying bar() function expects a sequence of # bars in the same stack location and same group location, so the # organization of the matrix is that the inner most sequence # represents one of these bar groups, then those are grouped # together to make one full stack of bars in each group, and then # the outer most layer describes the groups. Here is an example # data set and how it gets plotted as a result. # # e.g. data = [[[10,11,12], [13,14,15], [16,17,18], [19,20,21]], # [[22,23,24], [25,26,27], [28,29,30], [31,32,33]]] # # will plot like this: # # 19 31 20 32 21 33 # 16 28 17 29 18 30 # 13 25 14 26 15 27 # 10 22 11 23 12 24 # # Because this arrangement is rather conterintuitive, the rearrange # function takes various matricies and arranges them to fit this # profile. # # This code deals with one of the dimensions in the matrix being # one wide. # def graph(self): if self.chartdata is None: raise AttributeError, "Data not set for bar chart!" dim = len(shape(self.inputdata)) cshape = shape(self.chartdata) if self.charterr is not None and shape(self.charterr) != cshape: raise AttributeError, 'Dimensions of error and data do not match' if dim == 1: colors = self.gen_colors(cshape[2]) colors = [ [ colors ] * cshape[1] ] * cshape[0] if dim == 2: colors = self.gen_colors(cshape[0]) colors = [ [ [ c ] * cshape[2] ] * cshape[1] for c in colors ] if dim == 3: colors = self.gen_colors(cshape[1]) colors = [ [ [ c ] * cshape[2] for c in colors ] ] * cshape[0] colors = array(colors) self.figure = pylab.figure(figsize=self.chart_size) outer_axes = None inner_axes = None if self.xsubticks is not None: color = self.figure.get_facecolor() self.metaaxes = self.figure.add_axes(self.figure_size, axisbg=color, frameon=False) for tick in self.metaaxes.xaxis.majorTicks: tick.tick1On = False tick.tick2On = False self.metaaxes.set_yticklabels([]) self.metaaxes.set_yticks([]) size = [0] * 4 size[0] = self.figure_size[0] size[1] = self.figure_size[1] + .12 size[2] = self.figure_size[2] size[3] = self.figure_size[3] - .12 self.axes = self.figure.add_axes(size) outer_axes = self.metaaxes inner_axes = self.axes else: self.axes = self.figure.add_axes(self.figure_size) outer_axes = self.axes inner_axes = self.axes bars_in_group = len(self.chartdata) width = 1.0 / ( bars_in_group + 1) center = width / 2 bars = [] for i,stackdata in enumerate(self.chartdata): bottom = array([0.0] * len(stackdata[0]), Float) stack = [] for j,bardata in enumerate(stackdata): bardata = array(bardata) ind = arange(len(bardata)) + i * width + center yerr = None if self.charterr is not None: yerr = self.charterr[i][j] bar = self.axes.bar(ind, bardata, width, bottom=bottom, color=colors[i][j], yerr=yerr) if self.xsubticks is not None: self.metaaxes.bar(ind, [0] * len(bardata), width) stack.append(bar) bottom += bardata bars.append(stack) if self.xlabel is not None: outer_axes.set_xlabel(self.xlabel) if self.ylabel is not None: inner_axes.set_ylabel(self.ylabel) if self.yticks is not None: ymin, ymax = self.axes.get_ylim() nticks = float(len(self.yticks)) ticks = arange(nticks) / (nticks - 1) * (ymax - ymin) + ymin inner_axes.set_yticks(ticks) inner_axes.set_yticklabels(self.yticks) elif self.ylim is not None: inner_axes.set_ylim(self.ylim) if self.xticks is not None: outer_axes.set_xticks(arange(cshape[2]) + .5) outer_axes.set_xticklabels(self.xticks) if self.xsubticks is not None: numticks = (cshape[0] + 1) * cshape[2] inner_axes.set_xticks(arange(numticks) * width + 2 * center) xsubticks = list(self.xsubticks) + [ '' ] inner_axes.set_xticklabels(xsubticks * cshape[2], fontsize=7, rotation=30) if self.legend is not None: if dim == 1: lbars = bars[0][0] if dim == 2: lbars = [ bars[i][0][0] for i in xrange(len(bars))] if dim == 3: number = len(bars[0]) lbars = [ bars[0][number - j - 1][0] for j in xrange(number)] if self.fig_legend: self.figure.legend(lbars, self.legend, self.legend_loc, prop=FontProperties(size=self.legend_size)) else: self.axes.legend(lbars, self.legend, self.legend_loc, prop=FontProperties(size=self.legend_size)) if self.title is not None: self.axes.set_title(self.title) def savefig(self, name): self.figure.savefig(name) def savecsv(self, name): f = file(name, 'w') data = array(self.inputdata) dim = len(data.shape) if dim == 1: #if self.xlabel: # f.write(', '.join(list(self.xlabel)) + '\n') f.write(', '.join([ '%f' % val for val in data]) + '\n') if dim == 2: #if self.xlabel: # f.write(', '.join([''] + list(self.xlabel)) + '\n') for i,row in enumerate(data): ylabel = [] #if self.ylabel: # ylabel = [ self.ylabel[i] ] f.write(', '.join(ylabel + [ '%f' % v for v in row]) + '\n') if dim == 3: f.write("don't do 3D csv files\n") pass f.close() if __name__ == '__main__': from random import randrange import random, sys dim = 3 number = 5 args = sys.argv[1:] if len(args) > 3: sys.exit("invalid number of arguments") elif len(args) > 0: myshape = [ int(x) for x in args ] else: myshape = [ 3, 4, 8 ] # generate a data matrix of the given shape size = reduce(lambda x,y: x*y, myshape) #data = [ random.randrange(size - i) + 10 for i in xrange(size) ] data = [ float(i)/100.0 for i in xrange(size) ] data = reshape(data, myshape) # setup some test bar charts if True: chart1 = BarChart() chart1.data = data chart1.xlabel = 'Benchmark' chart1.ylabel = 'Bandwidth (GBps)' chart1.legend = [ 'x%d' % x for x in xrange(myshape[-1]) ] chart1.xticks = [ 'xtick%d' % x for x in xrange(myshape[0]) ] chart1.title = 'this is the title' if len(myshape) > 2: chart1.xsubticks = [ '%d' % x for x in xrange(myshape[1]) ] chart1.graph() chart1.savefig('/tmp/test1.png') chart1.savefig('/tmp/test1.ps') chart1.savefig('/tmp/test1.eps') chart1.savecsv('/tmp/test1.csv') if False: chart2 = BarChart() chart2.data = data chart2.colormap = 'gray' chart2.graph() chart2.savefig('/tmp/test2.png') chart2.savefig('/tmp/test2.ps') # pylab.show()
bsd-3-clause
waterponey/scikit-learn
examples/applications/plot_species_distribution_modeling.py
55
7386
""" ============================= Species distribution modeling ============================= Modeling species' geographic distributions is an important problem in conservation biology. In this example we model the geographic distribution of two south american mammals given past observations and 14 environmental variables. Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density estimation problem and use the `OneClassSVM` provided by the package `sklearn.svm` as our modeling tool. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.org/basemap>`_ to plot the coast lines and national boundaries of South America. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: BSD 3 clause from __future__ import print_function from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.base import Bunch from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn import svm, metrics # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False print(__doc__) def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid): """Create a bunch with information about a particular organism This will use the test/train record arrays to extract the data specific to the given species name. """ bunch = Bunch(name=' '.join(species_name.split("_")[:2])) species_name = species_name.encode('ascii') points = dict(test=test, train=train) for label, pts in points.items(): # choose points associated with the desired species pts = pts[pts['species'] == species_name] bunch['pts_%s' % label] = pts # determine coverage values for each of the training & testing points ix = np.searchsorted(xgrid, pts['dd long']) iy = np.searchsorted(ygrid, pts['dd lat']) bunch['cov_%s' % label] = coverages[:, -iy, ix].T return bunch def plot_species_distribution(species=("bradypus_variegatus_0", "microryzomys_minutus_0")): """ Plot the species distribution. """ if len(species) > 2: print("Note: when more than two species are provided," " only the first two will be used") t0 = time() # Load the compressed data data = fetch_species_distributions() # Set up the data grid xgrid, ygrid = construct_grids(data) # The grid in x,y coordinates X, Y = np.meshgrid(xgrid, ygrid[::-1]) # create a bunch for each species BV_bunch = create_species_bunch(species[0], data.train, data.test, data.coverages, xgrid, ygrid) MM_bunch = create_species_bunch(species[1], data.train, data.test, data.coverages, xgrid, ygrid) # background points (grid coordinates) for evaluation np.random.seed(13) background_points = np.c_[np.random.randint(low=0, high=data.Ny, size=10000), np.random.randint(low=0, high=data.Nx, size=10000)].T # We'll make use of the fact that coverages[6] has measurements at all # land points. This will help us decide between land and water. land_reference = data.coverages[6] # Fit, predict, and plot for each species. for i, species in enumerate([BV_bunch, MM_bunch]): print("_" * 80) print("Modeling distribution of species '%s'" % species.name) # Standardize features mean = species.cov_train.mean(axis=0) std = species.cov_train.std(axis=0) train_cover_std = (species.cov_train - mean) / std # Fit OneClassSVM print(" - fit OneClassSVM ... ", end='') clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5) clf.fit(train_cover_std) print("done.") # Plot map of South America plt.subplot(1, 2, i + 1) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) print(" - predict species distribution") # Predict species distribution using the training data Z = np.ones((data.Ny, data.Nx), dtype=np.float64) # We'll predict only for the land points. idx = np.where(land_reference > -9999) coverages_land = data.coverages[:, idx[0], idx[1]].T pred = clf.decision_function((coverages_land - mean) / std)[:, 0] Z *= pred.min() Z[idx[0], idx[1]] = pred levels = np.linspace(Z.min(), Z.max(), 25) Z[land_reference == -9999] = -9999 # plot contours of the prediction plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) plt.colorbar(format='%.2f') # scatter training/testing points plt.scatter(species.pts_train['dd long'], species.pts_train['dd lat'], s=2 ** 2, c='black', marker='^', label='train') plt.scatter(species.pts_test['dd long'], species.pts_test['dd lat'], s=2 ** 2, c='black', marker='x', label='test') plt.legend() plt.title(species.name) plt.axis('equal') # Compute AUC with regards to background points pred_background = Z[background_points[0], background_points[1]] pred_test = clf.decision_function((species.cov_test - mean) / std)[:, 0] scores = np.r_[pred_test, pred_background] y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)] fpr, tpr, thresholds = metrics.roc_curve(y, scores) roc_auc = metrics.auc(fpr, tpr) plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right") print("\n Area under the ROC curve : %f" % roc_auc) print("\ntime elapsed: %.2fs" % (time() - t0)) plot_species_distribution() plt.show()
bsd-3-clause
HIPS/autograd
examples/data.py
3
2765
from __future__ import absolute_import import matplotlib.pyplot as plt import matplotlib.image import autograd.numpy as np import autograd.numpy.random as npr import data_mnist def load_mnist(): partial_flatten = lambda x : np.reshape(x, (x.shape[0], np.prod(x.shape[1:]))) one_hot = lambda x, k: np.array(x[:,None] == np.arange(k)[None, :], dtype=int) train_images, train_labels, test_images, test_labels = data_mnist.mnist() train_images = partial_flatten(train_images) / 255.0 test_images = partial_flatten(test_images) / 255.0 train_labels = one_hot(train_labels, 10) test_labels = one_hot(test_labels, 10) N_data = train_images.shape[0] return N_data, train_images, train_labels, test_images, test_labels def plot_images(images, ax, ims_per_row=5, padding=5, digit_dimensions=(28, 28), cmap=matplotlib.cm.binary, vmin=None, vmax=None): """Images should be a (N_images x pixels) matrix.""" N_images = images.shape[0] N_rows = (N_images - 1) // ims_per_row + 1 pad_value = np.min(images.ravel()) concat_images = np.full(((digit_dimensions[0] + padding) * N_rows + padding, (digit_dimensions[1] + padding) * ims_per_row + padding), pad_value) for i in range(N_images): cur_image = np.reshape(images[i, :], digit_dimensions) row_ix = i // ims_per_row col_ix = i % ims_per_row row_start = padding + (padding + digit_dimensions[0]) * row_ix col_start = padding + (padding + digit_dimensions[1]) * col_ix concat_images[row_start: row_start + digit_dimensions[0], col_start: col_start + digit_dimensions[1]] = cur_image cax = ax.matshow(concat_images, cmap=cmap, vmin=vmin, vmax=vmax) plt.xticks(np.array([])) plt.yticks(np.array([])) return cax def save_images(images, filename, **kwargs): fig = plt.figure(1) fig.clf() ax = fig.add_subplot(111) plot_images(images, ax, **kwargs) fig.patch.set_visible(False) ax.patch.set_visible(False) plt.savefig(filename) def make_pinwheel(radial_std, tangential_std, num_classes, num_per_class, rate, rs=npr.RandomState(0)): """Based on code by Ryan P. Adams.""" rads = np.linspace(0, 2*np.pi, num_classes, endpoint=False) features = rs.randn(num_classes*num_per_class, 2) \ * np.array([radial_std, tangential_std]) features[:, 0] += 1 labels = np.repeat(np.arange(num_classes), num_per_class) angles = rads[labels] + rate * np.exp(features[:,0]) rotations = np.stack([np.cos(angles), -np.sin(angles), np.sin(angles), np.cos(angles)]) rotations = np.reshape(rotations.T, (-1, 2, 2)) return np.einsum('ti,tij->tj', features, rotations)
mit
kchodorow/tensorflow
tensorflow/contrib/learn/python/learn/dataframe/dataframe.py
85
4704
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A DataFrame is a container for ingesting and preprocessing data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from .series import Series from .transform import Transform class DataFrame(object): """A DataFrame is a container for ingesting and preprocessing data.""" def __init__(self): self._columns = {} def columns(self): """Set of the column names.""" return frozenset(self._columns.keys()) def __len__(self): """The number of columns in the DataFrame.""" return len(self._columns) def assign(self, **kwargs): """Adds columns to DataFrame. Args: **kwargs: assignments of the form key=value where key is a string and value is an `inflow.Series`, a `pandas.Series` or a numpy array. Raises: TypeError: keys are not strings. TypeError: values are not `inflow.Series`, `pandas.Series` or `numpy.ndarray`. TODO(jamieas): pandas assign method returns a new DataFrame. Consider switching to this behavior, changing the name or adding in_place as an argument. """ for k, v in kwargs.items(): if not isinstance(k, str): raise TypeError("The only supported type for keys is string; got %s" % type(k)) if v is None: del self._columns[k] elif isinstance(v, Series): self._columns[k] = v elif isinstance(v, Transform) and v.input_valency() == 0: self._columns[k] = v() else: raise TypeError( "Column in assignment must be an inflow.Series, inflow.Transform," " or None; got type '%s'." % type(v).__name__) def select_columns(self, keys): """Returns a new DataFrame with a subset of columns. Args: keys: A list of strings. Each should be the name of a column in the DataFrame. Returns: A new DataFrame containing only the specified columns. """ result = type(self)() for key in keys: result[key] = self._columns[key] return result def exclude_columns(self, exclude_keys): """Returns a new DataFrame with all columns not excluded via exclude_keys. Args: exclude_keys: A list of strings. Each should be the name of a column in the DataFrame. These columns will be excluded from the result. Returns: A new DataFrame containing all columns except those specified. """ result = type(self)() for key, value in self._columns.items(): if key not in exclude_keys: result[key] = value return result def __getitem__(self, key): """Indexing functionality for DataFrames. Args: key: a string or an iterable of strings. Returns: A Series or list of Series corresponding to the given keys. """ if isinstance(key, str): return self._columns[key] elif isinstance(key, collections.Iterable): for i in key: if not isinstance(i, str): raise TypeError("Expected a String; entry %s has type %s." % (i, type(i).__name__)) return [self.__getitem__(i) for i in key] raise TypeError( "Invalid index: %s of type %s. Only strings or lists of strings are " "supported." % (key, type(key))) def __setitem__(self, key, value): if isinstance(key, str): key = [key] if isinstance(value, Series): value = [value] self.assign(**dict(zip(key, value))) def __delitem__(self, key): if isinstance(key, str): key = [key] value = [None for _ in key] self.assign(**dict(zip(key, value))) def build(self, **kwargs): # We do not allow passing a cache here, because that would encourage # working around the rule that DataFrames cannot be expected to be # synced with each other (e.g., they shuffle independently). cache = {} tensors = {name: c.build(cache, **kwargs) for name, c in self._columns.items()} return tensors
apache-2.0
matplotlib/mpl-probscale
probscale/transforms.py
1
3851
import numpy from matplotlib.transforms import Transform def _mask_out_of_bounds(a): """ Return a Numpy array where all values outside ]0, 1[ are replaced with NaNs. If all values are inside ]0, 1[, the original array is returned. """ a = numpy.array(a, float) mask = (a <= 0.0) | (a >= 1.0) if mask.any(): return numpy.where(mask, numpy.nan, a) return a def _clip_out_of_bounds(a): """ Return a Numpy array where all values outside ]0, 1[ are replaced with eps or 1 - eps. If all values are inside ]0, 1[ the original array is returned. (eps = 1e-300) """ a = numpy.array(a, float) a[a <= 0.0] = 1e-300 a[a >= 1.0] = 1 - 1e-300 return a class _ProbTransformMixin(Transform): """ Mixin for MPL axes transform for quantiles/probabilities or percentages. """ input_dims = 1 output_dims = 1 is_separable = True has_inverse = True def __init__(self, dist, as_pct=True, out_of_bounds='mask'): Transform.__init__(self) self.dist = dist self.as_pct = as_pct self.out_of_bounds = out_of_bounds if self.as_pct: self.factor = 100.0 else: self.factor = 1.0 if self.out_of_bounds == 'mask': self._handle_out_of_bounds = _mask_out_of_bounds elif self.out_of_bounds == 'clip': self._handle_out_of_bounds = _clip_out_of_bounds else: raise ValueError("`out_of_bounds` muse be either 'mask' or 'clip'") class ProbTransform(_ProbTransformMixin): """ MPL axes tranform class to convert quantiles to probabilities or percents. Parameters ---------- dist : scipy.stats distribution The distribution whose ``cdf`` and ``pdf`` methods wiil set the scale of the axis. as_pct : bool, optional (True) Toggles the formatting of the probabilities associated with the tick labels as percentanges (0 - 100) or fractions (0 - 1). out_of_bounds : string, optionals ('mask' or 'clip') Determines how data outside the range of valid values is handled. The default behavior is to mask the data. Alternatively, the data can be clipped to values arbitrarily close to the limits of the scale. """ def transform_non_affine(self, prob): with numpy.errstate(divide="ignore", invalid="ignore"): prob = self._handle_out_of_bounds( numpy.asarray(prob) / self.factor ) q = self.dist.ppf(prob) return q def inverted(self): return QuantileTransform(self.dist, as_pct=self.as_pct, out_of_bounds=self.out_of_bounds) class QuantileTransform(_ProbTransformMixin): """ MPL axes tranform class to convert probabilities or percents to quantiles. Parameters ---------- dist : scipy.stats distribution The distribution whose ``cdf`` and ``pdf`` methods wiil set the scale of the axis. as_pct : bool, optional (True) Toggles the formatting of the probabilities associated with the tick labels as percentanges (0 - 100) or fractions (0 - 1). out_of_bounds : string, optionals ('mask' or 'clip') Determines how data outside the range of valid values is handled. The default behavior is to mask the data. Alternatively, the data can be clipped to values arbitrarily close to the limits of the scale. """ def transform_non_affine(self, q): with numpy.errstate(divide="ignore", invalid="ignore"): prob = self.dist.cdf(q) * self.factor return prob def inverted(self): return ProbTransform(self.dist, as_pct=self.as_pct, out_of_bounds=self.out_of_bounds)
bsd-3-clause
cuemacro/chartpy
chartpy_examples/dashboard_examples/layoutchart.py
1
4000
__author__ = 'saeedamen' # Saeed Amen # # Copyright 2021 Cuemacro # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and limitations under the License. # import pandas as pd import datetime import math import quandl from chartpy import Chart, Style from chartpy.dashboard import LayoutCanvas, CallbackManager class LayoutChart(LayoutCanvas): def __init__(self, app=None, constants=None, quandl_api_key=None): super().__init__(app=app, constants=constants) self._callback_manager = CallbackManager(constants=constants) self._drop_down_width = 120 self._quandl_api_key = quandl_api_key quandl.ApiConfig.api_key = self._quandl_api_key self.attach_callbacks() def attach_callbacks(self): output = self._callback_manager.output_callback(self.page_id(), ['spot-fig', 'vol-fig', 'msg-status']) input = self._callback_manager.input_callback(self.page_id(), 'calculate-button') state = self._callback_manager.state_callback(self.page_id(), ['ticker-val']) self._app.callback(*output, *input, *state)(self.calculate_button) def calculate_button(self, *args): n_clicks, ticker = args if ticker == '': return {}, "Here is an example of using chartpy with dash" try: df = pd.DataFrame(quandl.get(ticker)) df_vol = (df / df.shift(1)).rolling(window=20).std()* math.sqrt(252) * 100.0 spot_fig = Chart(engine="plotly").plot(df, style=Style(title='Spot', plotly_plot_mode='dash', width=980, height=480, scale_factor=-1)) vol_fig = Chart(engine="plotly").plot(df_vol, style=Style(title='Realized Vol 1M', plotly_plot_mode='dash', width=980, height=480, scale_factor=-1)) msg = "Plotted " + ticker + " at " + datetime.datetime.utcnow().strftime("%b %d %Y %H:%M:%S") return spot_fig, vol_fig, msg except Exception as e: print(str(e)) pass return {}, "Failed to download" def page_name(self): return "Example" def page_id(self): return "example" def construct_layout(self): return self._sc.extra_width_row_cell( [ self._sc.header_bar( self.page_name(), img='logo.png', id=['msg-status', 'help-status'], prefix_id=self.page_id(), description=['Here is an example of using chartpy with dash', "Redrawn at " + datetime.datetime.utcnow().strftime("%b %d %Y %H:%M:%S")]), self._sc.horizontal_bar(), self._sc.row_cell([self._sc.inputbox(caption='Quandl Ticker', id='ticker-val', prefix_id=self.page_id(), start_values='FRED/DEXUSEU', width=980)]), self._sc.horizontal_bar(), self._sc.button(caption='Calculate', id='calculate-button', prefix_id=self.page_id()), self._sc.horizontal_bar(), self._sc.plot("Quandl Plot", id=['spot-fig', 'vol-fig'], prefix_id=self.page_id(), height=500), ] )
apache-2.0
fboers/jumeg
jumeg/jumeg_volmorpher.py
1
54621
#!/usr/bin/env python2 # -*- coding: utf-8 -*- # Authors: Daniel van de Velden ([email protected]) # # License: BSD (3-clause) import os import os.path as op import time as time2 import mne import numpy as np from mne.transforms import (rotation, rotation3d, scaling, translation, apply_trans) from mne.source_space import _get_lut, _get_lut_id, _get_mgz_header from mne.source_estimate import _write_stc import matplotlib.pyplot as plt from mne.source_estimate import VolSourceEstimate # from matplotlib import cm from matplotlib.ticker import LinearLocator from scipy.optimize import leastsq from scipy import linalg from scipy.spatial.distance import cdist from sklearn.neighbors import BallTree from scipy.interpolate import griddata import nibabel as nib from functools import reduce from jumeg.jumeg_utils import loadingBar from jumeg.jumeg_volume_plotting import plot_vstc import logging logger = logging.getLogger("root") # ============================================================================= # # ============================================================================= def convert_to_unicode(inlist): if type(inlist) != str: inlist = inlist.decode('utf-8') return inlist else: return inlist def read_vert_labelwise(fname_src, subject, subjects_dir): """Read the labelwise vertice file and remove duplicates. Parameters ---------- fname_src : string Path to a source space file. subject : str | None The subject name. It is necessary to set the subject parameter to avoid analysis errors. subjects_dir : string Path to SUBJECTS_DIR if it is not set in the environment. Returns ------- label_dict : dict A dict containing all labels available for the subject's source space and their respective vertex indices """ fname_labels = fname_src[:-4] + '_vertno_labelwise.npy' label_dict = np.load(fname_labels, encoding='latin1').item() subj_vert_src = mne.read_source_spaces(fname_src) label_dict = _remove_vert_duplicates(subject, subj_vert_src, label_dict, subjects_dir) del subj_vert_src return label_dict def _point_cloud_error_balltree(subj_p, temp_tree): """Find the distance from each source point to its closest target point. Uses sklearn.neighbors.BallTree for greater efficiency""" dist, _ = temp_tree.query(subj_p) err = dist.ravel() return err def _point_cloud_error(src_pts, tgt_pts): """Find the distance from each source point to its closest target point. Parameters.""" y = cdist(src_pts, tgt_pts, 'euclidean') dist = y.min(axis=1) return dist def _trans_from_est(params): """Convert transformation parameters into a transformation matrix.""" i = 0 trans = [] x, y, z = params[:3] trans.insert(0, translation(x, y, z)) i += 3 x, y, z = params[i:i + 3] trans.append(rotation(x, y, z)) i += 3 x, y, z = params[i:i + 3] trans.append(scaling(x, y, z)) i += 3 trans = reduce(np.dot, trans) return trans def _get_scaling_factors(s_pts, t_pts): """ Calculate scaling factors to match the size of the subject brain and the template brain. Paramters: ---------- s_pts : np.array Coordinates of the vertices in a given label from the subject source space. t_pts : np.array Coordinates of the vertices in a given label from the template source space. Returns: -------- """ # Get the x-,y-,z- min and max Limits to create the span for each axis s_x, s_y, s_z = s_pts.T s_x_diff = np.max(s_x) - np.min(s_x) s_y_diff = np.max(s_y) - np.min(s_y) s_z_diff = np.max(s_z) - np.min(s_z) t_x, t_y, t_z = t_pts.T t_x_diff = np.max(t_x) - np.min(t_x) t_y_diff = np.max(t_y) - np.min(t_y) t_z_diff = np.max(t_z) - np.min(t_z) # Calculate a scaling factor for the subject to match template size # and avoid 'Nan' by zero division # instead of comparing float with zero, check absolute value up to a given precision precision = 1e-18 if np.fabs(t_x_diff) < precision or np.fabs(s_x_diff) < precision: x_scale = 0. else: x_scale = t_x_diff / s_x_diff if np.fabs(t_y_diff) < precision or np.fabs(s_y_diff) < precision: y_scale = 0. else: y_scale = t_y_diff / s_y_diff if np.fabs(t_z_diff) < precision or np.fabs(s_z_diff) < precision: z_scale = 0. else: z_scale = t_z_diff / s_z_diff return x_scale, y_scale, z_scale def _get_best_trans_matrix(init_trans, s_pts, t_pts, template_spacing, e_func): """ Calculate the least squares error for different variations of the initial transformation and return the transformation with the minimum error Parameters: ----------- init_trans : np.array of shape (4, 4) Numpy array containing the initial transformation matrix. s_pts : np.array Coordinates of the vertices in a given label from the subject source space. t_pts : np.array Coordinates of the vertices in a given label from the template source space. template_spacing : float Grid spacing for the template source space. e_func : str Either 'balltree' or 'euclidean'. Returns: -------- trans : err_stats : [dist_mean, dist_max, dist_var, dist_err] """ if e_func == 'balltree': errfunc = _point_cloud_error_balltree temp_tree = BallTree(t_pts) else: # e_func == 'euclidean' errfunc = _point_cloud_error temp_tree = None # Find calculate the least squares error for variation of the initial transformation poss_trans = find_optimum_transformations(init_trans, s_pts, t_pts, template_spacing, e_func, temp_tree, errfunc) dist_max_list = [] dist_mean_list = [] dist_var_list = [] dist_err_list = [] for tra in poss_trans: points_to_match = s_pts points_to_match = apply_trans(tra, points_to_match) if e_func == 'balltree': template_pts = temp_tree else: # e_func == 'euclidean' template_pts = t_pts dist_mean_list.append(np.mean(errfunc(points_to_match[:, :3], template_pts))) dist_var_list.append(np.var(errfunc(points_to_match[:, :3], template_pts))) dist_max_list.append(np.max(errfunc(points_to_match[:, :3], template_pts))) dist_err_list.append(errfunc(points_to_match[:, :3], template_pts)) del points_to_match dist_mean_arr = np.asarray(dist_mean_list) # Select the best fitting Transformation-Matrix # (casting as int not necessary but avoids warning in pycharm) idx1 = int(np.argmin(dist_mean_arr)) # Collect all values belonging to the optimum solution trans = poss_trans[idx1] dist_max = dist_max_list[idx1] dist_mean = dist_mean_list[idx1] dist_var = dist_var_list[idx1] dist_err = dist_err_list[idx1] del poss_trans del dist_mean_arr del dist_mean_list del dist_max_list del dist_var_list del dist_err_list err_stats = [dist_mean, dist_max, dist_var, dist_err] return trans, err_stats def auto_match_labels(fname_subj_src, label_dict_subject, fname_temp_src, label_dict_template, subjects_dir, volume_labels, template_spacing, e_func, fname_save, save_trans=False): """ Matches a subject's volume source space labelwise to another volume source space Parameters ---------- fname_subj_src : string Filename of the first volume source space. label_dict_subject : dict Dictionary containing all labels and the numbers of the vertices belonging to these labels for the subject. fname_temp_src : string Filename of the second volume source space to match on. label_dict_template : dict Dictionary containing all labels and the numbers of the vertices belonging to these labels for the template. volume_labels : list of volume Labels List of the volume labels of interest subjects_dir : str Path to the subject directory. template_spacing : int | float The grid distances of the second volume source space in mm e_func : string | None Error function, either 'balltree' or 'euclidean'. If None, the default 'balltree' function is used. fname_save : str File name under which the transformation matrix is to be saved. save_trans : bool If it is True the transformation matrix for each label is saved as a dictionary. False is default Returns ------- label_trans_dic : dict Dictionary of all the labels transformation matrizes label_trans_dic_err : dict Dictionary of all the labels transformation matrizes distance errors (mm) label_trans_dic_mean_dist : dict Dictionary of all the labels transformation matrizes mean distances (mm) label_trans_dic_max_dist : dict Dictionary of all the labels transformation matrizes max distance (mm) label_trans_dic_var_dist : dict Dictionary of all the labels transformation matrizes distance error variance (mm) """ if e_func == 'balltree': err_function = 'BallTree Error Function' elif e_func == 'euclidean': err_function = 'Euclidean Error Function' else: print('No or invalid error function provided, using BallTree instead') err_function = 'BallTree Error Function' subj_src = mne.read_source_spaces(fname_subj_src) x, y, z = subj_src[0]['rr'].T # subj_p contains the coordinates of the vertices subj_p = np.c_[x, y, z] subject = subj_src[0]['subject_his_id'] temp_src = mne.read_source_spaces(fname_temp_src) x1, y1, z1 = temp_src[0]['rr'].T # temp_p contains the coordinates of the vertices temp_p = np.c_[x1, y1, z1] template = temp_src[0]['subject_his_id'] print("""\n#### Attempting to match %d volume source space labels from Subject: '%s' to Template: '%s' with %s...""" % (len(volume_labels), subject, template, err_function)) # make sure to remove duplicate vertices before matching label_dict_subject = _remove_vert_duplicates(subject, subj_src, label_dict_subject, subjects_dir) label_dict_template = _remove_vert_duplicates(template, temp_src, label_dict_template, subjects_dir) vert_sum = 0 vert_sum_temp = 0 for label_i in volume_labels: vert_sum = vert_sum + label_dict_subject[label_i].shape[0] vert_sum_temp = vert_sum_temp + label_dict_template[label_i].shape[0] # check for overlapping labels for label_j in volume_labels: if label_i != label_j: h = np.intersect1d(label_dict_subject[label_i], label_dict_subject[label_j]) if h.shape[0] > 0: raise ValueError("Label %s contains %d vertices from label %s" % (label_i, h.shape[0], label_j)) print(' # N subject vertices:', vert_sum) print(' # N template vertices:', vert_sum_temp) # Prepare empty containers to store the possible transformation results label_trans_dic = {} label_trans_dic_err = {} label_trans_dic_var_dist = {} label_trans_dic_mean_dist = {} label_trans_dic_max_dist = {} start_time = time2.time() del subj_src, temp_src for label_idx, label in enumerate(volume_labels): loadingBar(count=label_idx, total=len(volume_labels), task_part='%s' % label) print('') # Select coords for label and check if they exceed the label size limit s_pts = subj_p[label_dict_subject[label]] t_pts = temp_p[label_dict_template[label]] # IIRC: the error function in find_optimum_transformations needs at least # 6 points. if all points are the same then this point is taken as # minimum -> for clarifications ask Daniel if s_pts.shape[0] == 0: raise ValueError("The label does not contain any vertices for the subject.") elif s_pts.shape[0] < 6: while s_pts.shape[0] < 6: s_pts = np.concatenate((s_pts, s_pts)) if t_pts.shape[0] == 0: # Append the Dictionaries with the zeros since there is no label to # match the points trans = _trans_from_est(np.zeros([9, 1])) trans[0, 0], trans[1, 1], trans[2, 2] = 1., 1., 1. label_trans_dic.update({label: trans}) label_trans_dic_mean_dist.update({label: np.min(0)}) label_trans_dic_max_dist.update({label: np.min(0)}) label_trans_dic_var_dist.update({label: np.min(0)}) label_trans_dic_err.update({label: 0}) else: # Calculate a scaling factor for the subject to match template size x_scale, y_scale, z_scale = _get_scaling_factors(s_pts, t_pts) # Find center of mass cm_s = np.mean(s_pts, axis=0) cm_t = np.mean(t_pts, axis=0) initial_transl = (cm_t - cm_s) # Create the the initial transformation matrix init_trans = np.zeros([4, 4]) init_trans[:3, :3] = rotation3d(0., 0., 0.) * [x_scale, y_scale, z_scale] init_trans[0, 3] = initial_transl[0] init_trans[1, 3] = initial_transl[1] init_trans[2, 3] = initial_transl[2] init_trans[3, 3] = 1. # Calculate the least squares error for different variations of # the initial transformation and return the transformation with # the minimum error trans, err_stats = _get_best_trans_matrix(init_trans, s_pts, t_pts, template_spacing, e_func) # TODO: test that the results are still the same [dist_mean, dist_max, dist_var, dist_err] = err_stats # Append the Dictionaries with the result and error values label_trans_dic.update({label: trans}) label_trans_dic_mean_dist.update({label: dist_mean}) label_trans_dic_max_dist.update({label: dist_max}) label_trans_dic_var_dist.update({label: dist_var}) label_trans_dic_err.update({label: dist_err}) if save_trans: print('\n Writing Transformation matrices to file..') fname_lw_trans = fname_save mat_mak_trans_dict = dict() mat_mak_trans_dict['ID'] = '%s -> %s' % (subject, template) mat_mak_trans_dict['Labeltransformation'] = label_trans_dic mat_mak_trans_dict['Transformation Error[mm]'] = label_trans_dic_err mat_mak_trans_dict['Mean Distance Error [mm]'] = label_trans_dic_mean_dist mat_mak_trans_dict['Max Distance Error [mm]'] = label_trans_dic_max_dist mat_mak_trans_dict['Distance Variance Error [mm]'] = label_trans_dic_var_dist mat_mak_trans_dict_arr = np.array([mat_mak_trans_dict]) np.save(fname_lw_trans, mat_mak_trans_dict_arr) print(' [done] -> Calculation Time: %.2f minutes.' % ( ((time2.time() - start_time) / 60))) return else: return (label_trans_dic, label_trans_dic_err, label_trans_dic_mean_dist, label_trans_dic_max_dist, label_trans_dic_var_dist) def find_optimum_transformations(init_trans, s_pts, t_pts, template_spacing, e_func, temp_tree, errfunc): """ Vary the initial transformation by a translation of up to three times the grid spacing and compute the transformation with the smallest least square error. Parameters: ----------- init_trans : 4-D transformation matrix Initial guess of the transformation matrix from the subject brain to the template brain. s_pts : Vertex coordinates in the subject brain. t_pts : Vertex coordinates in the template brain. template_spacing : float Grid spacing of the vertices in the template brain. e_func : str Error function to use. Either 'balltree' or 'euclidian'. temp_tree : BallTree(t_pts) if e_func is 'balltree'. errfunc : The error function for the computation of the least squares error. Returns: -------- poss_trans : list of 4-D transformation matrices List of one transformation matrix for each variation of the intial transformation with the smallest least squares error. """ # template spacing in meters tsm = template_spacing / 1e3 # Try different initial translations in space to avoid local minima # No label should require a translation by more than 3 times the grid spacing (tsm) auto_match_iters = np.array([[0., 0., 0.], [0., 0., tsm], [0., 0., tsm * 2], [0., 0., tsm * 3], [tsm, 0., 0.], [tsm * 2, 0., 0.], [tsm * 3, 0., 0.], [0., tsm, 0.], [0., tsm * 2, 0.], [0., tsm * 3, 0.], [0., 0., -tsm], [0., 0., -tsm * 2], [0., 0., -tsm * 3], [-tsm, 0., 0.], [-tsm * 2, 0., 0.], [-tsm * 3, 0., 0.], [0., -tsm, 0.], [0., -tsm * 2, 0.], [0., -tsm * 3, 0.]]) # possible translation matrices poss_trans = [] for p, ami in enumerate(auto_match_iters): # vary the initial translation value by adding ami tx, ty, tz = init_trans[0, 3] + ami[0], init_trans[1, 3] + ami[1], init_trans[2, 3] + ami[2] sx, sy, sz = init_trans[0, 0], init_trans[1, 1], init_trans[2, 2] rx, ry, rz = 0, 0, 0 # starting point for finding the transformation matrix trans which # minimizes the error between np.dot(s_pts, trans) and t_pts x0 = np.array([tx, ty, tz, rx, ry, rz]) def error(x): tx_, ty_, tz_, rx_, ry_, rz_ = x trans0 = np.zeros([4, 4]) trans0[:3, :3] = rotation3d(rx_, ry_, rz_) * [sx, sy, sz] trans0[0, 3] = tx_ trans0[1, 3] = ty_ trans0[2, 3] = tz_ # rotate and scale estim = np.dot(s_pts, trans0[:3, :3].T) # translate estim += trans0[:3, 3] if e_func == 'balltree': err = errfunc(estim[:, :3], temp_tree) else: # e_func == 'euclidean' err = errfunc(estim[:, :3], t_pts) return err est, _, info, msg, _ = leastsq(error, x0, full_output=True) est = np.concatenate((est, (init_trans[0, 0], init_trans[1, 1], init_trans[2, 2]) )) trans = _trans_from_est(est) poss_trans.append(trans) return poss_trans def _transform_src_lw(vsrc_subject_from, label_dict_subject_from, volume_labels, subject_to, subjects_dir, label_trans_dic=None): """Transformes given Labels of interest from one subjects' to another. Parameters ---------- vsrc_subject_from : instance of SourceSpaces The source spaces that will be transformed. label_dict_subject_from : dict volume_labels : list List of the volume labels of interest subject_to : str | None The template subject. subjects_dir : string, or None Path to SUBJECTS_DIR if it is not set in the environment. label_trans_dic : dict | None Dictionary containing transformation matrices for all labels (acquired by auto_match_labels function). If label_trans_dic is None the method will attempt to read the file from disc. Returns ------- transformed_p : array Transformed points from subject volume source space to volume source space of the template subject. idx_vertices : array Array of idxs for all transformed vertices in the volume source space. """ subj_vol = vsrc_subject_from subject = subj_vol[0]['subject_his_id'] x, y, z = subj_vol[0]['rr'].T subj_p = np.c_[x, y, z] label_dict = label_dict_subject_from print("""\n#### Attempting to transform %s source space labelwise to %s source space..""" % (subject, subject_to)) if label_trans_dic is None: print('\n#### Attempting to read MatchMaking Transformations from file..') indiv_spacing = (np.abs(subj_vol[0]['rr'][0, 0]) - np.abs(subj_vol[0]['rr'][1, 0])) * 1e3 fname_lw_trans = op.join(subjects_dir, subject, '%s_%s_vol-%.2f_lw-trans.npy' % (subject, subject_to, indiv_spacing)) try: mat_mak_trans_dict_arr = np.load(fname_lw_trans, encoding='latin1') except IOError: print('MatchMaking Transformations file NOT found:') print(fname_lw_trans, '\n') print('Please calculate the transformation matrix dictionary by using') print('the jumeg.jumeg_volmorpher.auto_match_labels function.') import sys sys.exit(-1) label_trans_id = mat_mak_trans_dict_arr[0]['ID'] print(' Reading MatchMaking file %s..' % label_trans_id) label_trans_dic = mat_mak_trans_dict_arr[0]['Labeltransformation'] else: label_trans_dic = label_trans_dic vert_sum = [] for label_i in volume_labels: vert_sum.append(label_dict[label_i].shape[0]) for label_j in volume_labels: if label_i != label_j: h = np.intersect1d(label_dict[label_i], label_dict[label_j]) if h.shape[0] > 0: print("In Label:", label_i, """ are vertices from Label:""", label_j, "(", h.shape[0], ")") break transformed_p = np.array([[0, 0, 0]]) idx_vertices = [] for idx, label in enumerate(volume_labels): loadingBar(idx, len(volume_labels), task_part=label) idx_vertices.append(label_dict[label]) trans_p = subj_p[label_dict[label]] trans = label_trans_dic[label] # apply trans trans_p = apply_trans(trans, trans_p) del trans transformed_p = np.concatenate((transformed_p, trans_p)) del trans_p transformed_p = transformed_p[1:] idx_vertices = np.concatenate(np.asarray(idx_vertices)) print(' [done]') return transformed_p, idx_vertices def set_unwanted_to_zero(vsrc, stc_data, volume_labels, label_dict): """ Parameters: ----------- vsrc : mne.VolSourceSpace stc_data : np.array data from source time courses. volume_labels : list of str List with volume labels of interest label_dict : dict Dictionary containing for each label the indices of the vertices which are part of the label. Returns: -------- stc_data_mod : np.array() The modified stc_data array with data set to zero for vertices which are not part of the labels of interest. """ # label of interest loi_idx = list() for p, labels in enumerate(volume_labels): label_verts = label_dict[labels] for i in range(0, label_verts.shape[0]): loi_idx.append(np.where(label_verts[i] == vsrc[0]['vertno'])) loi_idx = np.asarray(loi_idx) stc_data_mod = np.zeros(stc_data.shape) stc_data_mod[loi_idx, :] = stc_data[loi_idx, :] return stc_data_mod def volume_morph_stc(fname_stc_orig, subject_from, fname_vsrc_subject_from, volume_labels, subject_to, fname_vsrc_subject_to, cond, interpolation_method, normalize, subjects_dir, unwanted_to_zero=True, label_trans_dic=None, run=None, n_iter=None, fname_save_stc=None, save_stc=False, plot=False): """ Perform volume morphing from one subject to a template. Parameters ---------- fname_stc_orig : string Filepath of the original stc subject_from : string Name of the original subject as named in the SUBJECTS_DIR fname_vsrc_subject_from : str Filepath of the subjects volume source space volume_labels : list of volume Labels List of the volume labels of interest subject_to : string Name of the subject on which to morph as named in the SUBJECTS_DIR fname_vsrc_subject_to : string Filepath of the template subjects volume source space interpolation_method : str Only 'linear' seeems to be working for 3D data. 'balltree' and 'euclidean' only work for 2D?. cond : str (Not really needed) Experimental condition under which the data was recorded. normalize : bool If True, normalize activity patterns label by label before and after morphing. subjects_dir : str | None Path to SUBJECTS_DIR if it is not set in the environment. unwanted_to_zero : bool If True, set all non-Labels-of-interest in resulting stc to zero. label_trans_dic : dict | None Dictionary containing transformation matrices for all labels (acquired by auto_match_labels function). If label_trans_dic is None the method will attempt to read the file from disc. run : int | None Specifies the run if multiple measurements for the same condition were performed. n_iter : int | None If MFT was used for the inverse solution, n_iter is the number of iterations. fname_save_stc : str | None File name for the morphed volume stc file to be saved under. If fname_save_stc is None, use the standard file name convention. save_stc : bool True to save. False is default plot : bool Plot the morphed stc. Returns ------- In Case of save_stc=True: stc_morphed : VolSourceEstimate Volume source estimate for the destination subject. In Case of save_stc=False: new_data : dict One or more new stc data array """ print('#### START ####') print('#### Volume Morphing ####') if cond is None: str_cond = '' else: str_cond = ' | Cond.: %s' % cond if run is None: str_run = '' else: str_run = ' | Run: %d' % run if n_iter is None: str_niter = '' else: str_niter = ' | Iter. :%d' % n_iter string = ' Subject: %s' % subject_from + str_run + str_cond + str_niter print(string) print('\n#### Reading essential data files..') # STC stc_orig = mne.read_source_estimate(fname_stc_orig) stcdata = stc_orig.data nvert, ntimes = stc_orig.shape tmin, tstep = stc_orig.times[0], stc_orig.tstep # Source Spaces subj_vol = mne.read_source_spaces(fname_vsrc_subject_from) temp_vol = mne.read_source_spaces(fname_vsrc_subject_to) ########################################################################### # get dictionaries with labels and their respective vertices ########################################################################### fname_label_dict_subject_from = (fname_vsrc_subject_from[:-4] + '_vertno_labelwise.npy') label_dict_subject_from = np.load(fname_label_dict_subject_from, encoding='latin1').item() fname_label_dict_subject_to = (fname_vsrc_subject_to[:-4] + '_vertno_labelwise.npy') label_dict_subject_to = np.load(fname_label_dict_subject_to, encoding='latin1').item() # Check for vertex duplicates label_dict_subject_from = _remove_vert_duplicates(subject_from, subj_vol, label_dict_subject_from, subjects_dir) ########################################################################### # Labelwise transform the whole subject source space ########################################################################### transformed_p, idx_vertices = _transform_src_lw(subj_vol, label_dict_subject_from, volume_labels, subject_to, subjects_dir, label_trans_dic) xn, yn, zn = transformed_p.T stcdata_sel = [] for p, i in enumerate(idx_vertices): stcdata_sel.append(np.where(idx_vertices[p] == subj_vol[0]['vertno'])) stcdata_sel = np.asarray(stcdata_sel).flatten() stcdata_ch = stcdata[stcdata_sel] ########################################################################### # Interpolate the data ########################################################################### print('\n#### Attempting to interpolate STC Data for every time sample..') print(' Interpolation method: ', interpolation_method) st_time = time2.time() xt, yt, zt = temp_vol[0]['rr'][temp_vol[0]['inuse'].astype(bool)].T inter_data = np.zeros([xt.shape[0], ntimes]) for i in range(0, ntimes): loadingBar(i, ntimes, task_part='Time slice: %i' % (i + 1)) inter_data[:, i] = griddata((xn, yn, zn), stcdata_ch[:, i], (xt, yt, zt), method=interpolation_method, rescale=True) if interpolation_method == 'linear': inter_data = np.nan_to_num(inter_data) if unwanted_to_zero: print('#### Setting all unknown vertex values to zero..') # set all vertices that do not belong to a label of interest (given by # label_dict IIRC) to zero inter_data = set_unwanted_to_zero(temp_vol, inter_data, volume_labels, label_dict_subject_to) # do the same for the original data for normalization purposes (I think) data_utz = set_unwanted_to_zero(subj_vol, stc_orig.data, volume_labels, label_dict_subject_from) stc_orig.data = data_utz if normalize: print('\n#### Attempting to normalize the vol-morphed stc..') normalized_new_data = inter_data.copy() for p, labels in enumerate(volume_labels): lab_verts = label_dict_subject_from[labels] lab_verts_temp = label_dict_subject_to[labels] # get for the subject brain the indices of all vertices for the given label subj_vert_idx = [] for i in range(0, lab_verts.shape[0]): subj_vert_idx.append(np.where(lab_verts[i] == subj_vol[0]['vertno'])) subj_vert_idx = np.asarray(subj_vert_idx) # get for the template brain the indices of all vertices for the given label temp_vert_idx = [] for i in range(0, lab_verts_temp.shape[0]): temp_vert_idx.append(np.where(lab_verts_temp[i] == temp_vol[0]['vertno'])) temp_vert_idx = np.asarray(temp_vert_idx) # The original implementation by Daniel did not use the absolute # value for normalization. This is probably because he used MFT # for the inverse solution which only provides positive activity # values. # a = np.sum(stc_orig.data[subj_vert_idx], axis=0) # b = np.sum(inter_data[temp_vert_idx], axis=0) # norm_m_score = a / b # The LCMV beamformer can result in positive as well as negative # values which can cancel each other out, e.g., after morphing # there are more vertices in a "negative value area" than before # resulting in a smaller sum 'b' -> norm_m_score becomes large. afabs = np.sum(np.fabs(stc_orig.data[subj_vert_idx]), axis=0) bfabs = np.sum(np.fabs(inter_data[temp_vert_idx]), axis=0) norm_m_score = afabs / bfabs normalized_new_data[temp_vert_idx] *= norm_m_score new_data = normalized_new_data else: new_data = inter_data print(' [done] -> Calculation Time: %.2f minutes.' % ( (time2.time() - st_time) / 60. )) if save_stc: print('\n#### Attempting to write interpolated STC Data to file..') if fname_save_stc is None: fname_stc_morphed = fname_stc_orig[:-7] + '_morphed_to_%s_%s-vl.stc' fname_stc_morphed = fname_stc_morphed % (subject_to, interpolation_method) else: fname_stc_morphed = fname_save_stc print(' Destination:', fname_stc_morphed) _write_stc(fname_stc_morphed, tmin=tmin, tstep=tstep, vertices=temp_vol[0]['vertno'], data=new_data) stc_morphed = mne.read_source_estimate(fname_stc_morphed) if plot: _volumemorphing_plot_results(stc_orig, stc_morphed, subj_vol, label_dict_subject_from, temp_vol, label_dict_subject_to, volume_labels, subjects_dir=subjects_dir, cond=cond, run=run, n_iter=n_iter, save=True) print('#### Volume Morphing ####') print('#### DONE ####') return stc_morphed print('#### Volume morphed stc data NOT saved.. ####\n') print('#### Volume Morphing ####') print('#### DONE ####') return new_data def _volumemorphing_plot_results(stc_orig, stc_morphed, volume_orig, label_dict_from, volume_temp, label_dict_to, volume_labels, subjects_dir, cond, run=None, n_iter=None, save=False): """ Plot before and after morphing results. Parameters ---------- stc_orig : VolSourceEstimate Volume source estimate for the original subject. stc_morphed : VolSourceEstimate Volume source estimate for the destination subject. volume_orig : instance of SourceSpaces The original source space that were morphed to the current subject. label_dict_from : dict Equivalent label vertex dict to the original source space volume_temp : instance of SourceSpaces The template source space that is morphed on. label_dict_to : dict Equivalent label vertex dict to the template source space volume_labels : list of volume Labels List of the volume labels of interest subjects_dir : string, or None Path to SUBJECTS_DIR if it is not set in the environment. cond : str Evoked condition as a string to give the plot more intel. run : int | None Specifies the run if multiple measurements for the same condition were performed. n_iter : int | None If MFT was used for the inverse solution, n_iter is the number of iterations. Returns ------- if save == True : None Automatically creates matplotlib.figure and writes it to disk. if save == False : returns matplotlib.figure """ if run is None: run_title = '' run_fname = '' else: run_title = ' | Run: %d' % run run_fname = ',run%d' % run if n_iter is None: n_iter_title = '' n_iter_fname = '' else: n_iter_title = ' | Iter.: %d' % n_iter n_iter_fname = ',iter-%d' % n_iter subj_vol = volume_orig subject_from = volume_orig[0]['subject_his_id'] temp_vol = volume_temp temp_spacing = (abs(temp_vol[0]['rr'][0, 0] - temp_vol[0]['rr'][1, 0]) * 1000).round() subject_to = volume_temp[0]['subject_his_id'] label_dict = label_dict_from label_dict_template = label_dict_to new_data = stc_morphed.data indiv_spacing = make_indiv_spacing(subject_from, subject_to, temp_spacing, subjects_dir) print('\n#### Attempting to save the volume morphing results ..') directory = op.join(subjects_dir , subject_from, 'plots', 'VolumeMorphing') if not op.exists(directory): os.makedirs(directory) # Create new figure and two subplots, sharing both axes fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, sharey=True, num=999, figsize=(16, 9)) fig.text(0.985, 0.75, 'Amplitude [T]', color='white', size='large', horizontalalignment='right', verticalalignment='center', rotation=-90, transform=ax1.transAxes) fig.text(0.985, 0.25, 'Amplitude [T]', color='white', size='large', horizontalalignment='right', verticalalignment='center', rotation=-90, transform=ax2.transAxes) suptitle = 'VolumeMorphing from %s to %s' % (subject_from, subject_to) suptitle = suptitle + ' | Cond.: %s' % cond suptitle = suptitle + run_title + n_iter_title plt.suptitle(suptitle, fontsize=16, color='white') fig.set_facecolor('black') plt.tight_layout() fig.subplots_adjust(bottom=0.04, top=0.94, left=0.0, right=0.97) t = int(np.where(np.sum(stc_orig.data, axis=0) == np.max(np.sum(stc_orig.data, axis=0)))[0]) plot_vstc(vstc=stc_orig, vsrc=volume_orig, tstep=stc_orig.tstep, subjects_dir=subjects_dir, time_sample=t, coords=None, figure=999, axes=ax1, save=False) plot_vstc(vstc=stc_morphed, vsrc=volume_temp, tstep=stc_orig.tstep, subjects_dir=subjects_dir, time_sample=t, coords=None, figure=999, axes=ax2, save=False) if save: fname_save_fig = '%s_to_%s' + run_fname fname_save_fig = fname_save_fig + ',vol-%.2f,%s' fname_save_fig = fname_save_fig % (subject_from, subject_to, indiv_spacing, cond) fname_save_fig = fname_save_fig + n_iter_fname fname_save_fig = op.join(directory, fname_save_fig + ',volmorphing-result.png') plt.savefig(fname_save_fig, facecolor=fig.get_facecolor(), format='png', edgecolor='none') plt.close() else: plt.show() print("""\n#### Attempting to compare subjects activity and interpolated activity in template for all labels..""") subj_lab_act = {} temp_lab_act = {} for label in volume_labels: lab_arr = label_dict[str(label)] lab_arr_temp = label_dict_template[str(label)] subj_vert_idx = np.array([], dtype=int) temp_vert_idx = np.array([], dtype=int) for i in range(0, lab_arr.shape[0]): subj_vert_idx = np.append(subj_vert_idx, np.where(lab_arr[i] == subj_vol[0]['vertno'])) for i in range(0, lab_arr_temp.shape[0]): temp_vert_idx = np.append(temp_vert_idx, np.where(lab_arr_temp[i] == temp_vol[0]['vertno'])) lab_act_sum = np.array([]) lab_act_sum_temp = np.array([]) for t in range(0, stc_orig.times.shape[0]): lab_act_sum = np.append(lab_act_sum, np.sum(stc_orig.data[subj_vert_idx, t])) lab_act_sum_temp = np.append(lab_act_sum_temp, np.sum(stc_morphed.data[temp_vert_idx, t])) subj_lab_act.update({label: lab_act_sum}) temp_lab_act.update({label: lab_act_sum_temp}) print(' [done]') # Stc per label # fig, axs = plt.subplots(len(volume_labels) / 5, 5, figsize=(15, 15), # facecolor='w', edgecolor='k') fig, axs = plt.subplots(int(np.ceil(len(volume_labels) / 5.)), 5, figsize=(15, 15), facecolor='w', edgecolor='k') fig.subplots_adjust(hspace=.6, wspace=.255, bottom=0.089, top=.9, left=0.03, right=0.985) axs = axs.ravel() for idx, label in enumerate(volume_labels): axs[idx].plot(stc_orig.times, subj_lab_act[label], '#00868B', linewidth=0.9, label=('%s vol-%.2f' % (subject_from, indiv_spacing))) axs[idx].plot(stc_orig.times, temp_lab_act[label], '#CD7600', ls=':', linewidth=0.9, label=('%s volume morphed vol-%.2f' % (subject_from, temp_spacing))) axs[idx].set_title(label, fontsize='medium', loc='right') axs[idx].ticklabel_format(style='sci', axis='both') axs[idx].set_xlabel('Time [s]') axs[idx].set_ylabel('Amplitude [T]') axs[idx].set_xlim(stc_orig.times[0], stc_orig.times[-1]) axs[idx].get_xaxis().grid(True) suptitle = 'Summed activity in volume labels - %s[%.2f]' % (subject_from, indiv_spacing) suptitle = suptitle + ' -> %s [%.2f] | Cond.: %s' % (subject_to, temp_spacing, cond) suptitle = suptitle + run_title + n_iter_title fig.suptitle(suptitle, fontsize=16) if save: fname_save_fig = '%s_to_%s' + run_fname fname_save_fig = fname_save_fig + ',vol-%.2f,%s' fname_save_fig = fname_save_fig % (subject_from, subject_to, indiv_spacing, cond) fname_save_fig = fname_save_fig + n_iter_fname fname_save_fig = op.join(directory, fname_save_fig + ',labelwise-stc.png') plt.savefig(fname_save_fig, facecolor=fig.get_facecolor(), format='png', edgecolor='none') plt.close() else: plt.show() orig_act_sum = np.sum(stc_orig.data.sum(axis=0)) morphed_act_sum = np.sum(new_data.sum(axis=0)) act_diff_perc = ((morphed_act_sum - orig_act_sum) / orig_act_sum) * 100 act_sum_morphed_normed = np.sum(new_data.sum(axis=0)) act_diff_perc_morphed_normed = ((act_sum_morphed_normed - orig_act_sum) / orig_act_sum) * 100 f, (ax1) = plt.subplots(1, figsize=(16, 5)) ax1.plot(stc_orig.times, stc_orig.data.sum(axis=0), '#00868B', linewidth=1, label='%s' % subject_from) ax1.plot(stc_orig.times, new_data.sum(axis=0), '#CD7600', linewidth=1, label='%s morphed' % subject_from) title = 'Summed Source Amplitude - %s[%.2f] ' % (subject_from, indiv_spacing) title = title + '-> %s [%.2f] | Cond.: %s' % (subject_to, temp_spacing, cond) title = title + run_title + n_iter_title ax1.set_title(title) ax1.text(stc_orig.times[0], np.maximum(stc_orig.data.sum(axis=0), new_data.sum(axis=0)).max(), """Total Amplitude Difference: %+.2f %% Total Amplitude Difference (norm): %+.2f %%""" % (act_diff_perc, act_diff_perc_morphed_normed), size=12, ha="left", va="top", bbox=dict(boxstyle="round", ec="grey", fc="white", ) ) ax1.set_ylabel('Summed Source Amplitude') ax1.legend(fontsize='large', facecolor="white", edgecolor="grey") ax1.get_xaxis().grid(True) plt.tight_layout() if save: fname_save_fig = '%s_to_%s' + run_fname fname_save_fig = fname_save_fig + ',vol-%.2f,%s' fname_save_fig = fname_save_fig % (subject_from, subject_to, indiv_spacing, cond) fname_save_fig = fname_save_fig + n_iter_fname fname_save_fig = op.join(directory, fname_save_fig + ',stc.png') plt.savefig(fname_save_fig, facecolor=fig.get_facecolor(), format='png', edgecolor='none') plt.close() else: plt.show() return def make_indiv_spacing(subject, ave_subject, template_spacing, subjects_dir): """ Identifies the suiting grid space difference of a subject's volume source space to a template's volume source space, before a planned morphing takes place. Parameters: ----------- subject : str Subject ID. ave_subject : str Name or ID of the template brain, e.g., fsaverage. template_spacing : float Grid spacing used for the template brain. subjects_dir : str Path to the subjects directory. Returns: -------- trans : SourceEstimate The generated source time courses. """ fname_surf = op.join(subjects_dir, subject, 'bem', 'watershed', '%s_inner_skull_surface' % subject) fname_surf_temp = op.join(subjects_dir, ave_subject, 'bem', 'watershed', '%s_inner_skull_surface' % ave_subject) surf = mne.read_surface(fname_surf, return_dict=True, verbose='ERROR')[-1] surf_temp = mne.read_surface(fname_surf_temp, return_dict=True, verbose='ERROR')[-1] mins = np.min(surf['rr'], axis=0) maxs = np.max(surf['rr'], axis=0) mins_temp = np.min(surf_temp['rr'], axis=0) maxs_temp = np.max(surf_temp['rr'], axis=0) # Check which dimension (x,y,z) has greatest difference diff = (maxs - mins) diff_temp = (maxs_temp - mins_temp) # print additional information # for c, mi, ma, md in zip('xyz', mins, maxs, diff): # logger.info(' %s = %6.1f ... %6.1f mm --> Difference: %6.1f mm' # % (c, mi, ma, md)) # for c, mi, ma, md in zip('xyz', mins_temp, maxs_temp, diff_temp): # logger.info(' %s = %6.1f ... %6.1f mm --> Difference: %6.1f mm' # % (c, mi, ma, md)) prop = (diff / diff_temp).mean() indiv_spacing = (prop * template_spacing) print(" '%s' individual-spacing to '%s'[%.2f] is: %.4fmm" % ( subject, ave_subject, template_spacing, indiv_spacing)) return indiv_spacing def _remove_vert_duplicates(subject, subj_src, label_dict_subject, subjects_dir): """ Removes all vertex duplicates from the vertex label list. (Those appear because of an unsuitable process of creating labelwise volume source spaces in mne-python) Parameters: ----------- subject : str Subject ID. subj_src : mne.SourceSpaces Volume source space for the subject brain. label_dict_subject : dict Dictionary with the labels and their respective vertices for the subject. subjects_dir : str Path to the subjects directory. Returns: -------- label_dict_subject : dict Dictionary with the labels and their respective vertices for the subject where duplicate vertices have been removed. """ fname_s_aseg = op.join(subjects_dir, subject, 'mri', 'aseg.mgz') mgz = nib.load(fname_s_aseg) mgz_data = mgz.get_data() lut = _get_lut() vox2rastkr_trans = _get_mgz_header(fname_s_aseg)['vox2ras_tkr'] vox2rastkr_trans[:3] /= 1000. inv_vox2rastkr_trans = linalg.inv(vox2rastkr_trans) all_volume_labels = mne.get_volume_labels_from_aseg(fname_s_aseg) all_volume_labels.remove('Unknown') print("""\n#### Attempting to check for vertice duplicates in labels due to spatial aliasing in %s's volume source creation..""" % subject) del_count = 0 for p, label in enumerate(all_volume_labels): loadingBar(p, len(all_volume_labels), task_part=None) lab_arr = label_dict_subject[label] # get freesurfer LUT ID for the label lab_id = _get_lut_id(lut, label, True)[0] del_ver_idx_list = [] for arr_id, i in enumerate(lab_arr, 0): # get the coordinates of the vertex in subject source space lab_vert_coord = subj_src[0]['rr'][i] # transform to mgz indices lab_vert_mgz_idx = mne.transforms.apply_trans(inv_vox2rastkr_trans, lab_vert_coord) # get ID from the mgt indices orig_idx = mgz_data[int(round(lab_vert_mgz_idx[0])), int(round(lab_vert_mgz_idx[1])), int(round(lab_vert_mgz_idx[2]))] # if ID and LUT ID do not match the vertex is removed if orig_idx != lab_id: del_ver_idx_list.append(arr_id) del_count += 1 del_ver_idx = np.asarray(del_ver_idx_list) label_dict_subject[label] = np.delete(label_dict_subject[label], del_ver_idx) print(' Deleted', del_count, 'vertice duplicates.\n') return label_dict_subject # %% =========================================================================== # # Statistical Analysis Section # ============================================================================= def sum_up_vol_cluster(clu, p_thresh=0.05, tstep=1e-3, tmin=0, subject=None, vertices=None): """Assemble summary VolSourceEstimate from spatiotemporal cluster results. This helps visualizing results from spatio-temporal-clustering permutation tests. Parameters ---------- clu : tuple the output from clustering permutation tests. p_thresh : float The significance threshold for inclusion of clusters. tstep : float The temporal difference between two time samples. tmin : float | int The time of the first sample. subject : str The name of the subject. vertices : list of arrays | None The vertex numbers associated with the source space locations. Returns ------- out : instance of VolSourceEstimate A summary of the clusters. The first time point in this VolSourceEstimate object is the summation of all the clusters. Subsequent time points contain each individual cluster. The magnitude of the activity corresponds to the length the cluster spans in time (in samples). """ T_obs, clusters, clu_pvals, _ = clu n_times, n_vertices = T_obs.shape good_cluster_inds = np.where(clu_pvals < p_thresh)[0] # Build a convenient representation of each cluster, where each # cluster becomes a "time point" in the VolSourceEstimate if len(good_cluster_inds) > 0: data = np.zeros((n_vertices, n_times)) data_summary = np.zeros((n_vertices, len(good_cluster_inds) + 1)) print('Data_summary is in shape of:', data_summary.shape) for ii, cluster_ind in enumerate(good_cluster_inds): loadingBar(ii + 1, len(good_cluster_inds), task_part='Cluster Idx %i' % cluster_ind) data.fill(0) v_inds = clusters[cluster_ind][1] t_inds = clusters[cluster_ind][0] data[v_inds, t_inds] = T_obs[t_inds, v_inds] # Store a nice visualization of the cluster by summing across time data = np.sign(data) * np.logical_not(data == 0) * tstep data_summary[:, ii + 1] = 1e3 * np.sum(data, axis=1) # Make the first "time point" a sum across all clusters for easy # visualization data_summary[:, 0] = np.sum(data_summary, axis=1) return VolSourceEstimate(data_summary, vertices, tmin=tmin, tstep=tstep, subject=subject) else: raise RuntimeError('No significant clusters available. Please adjust ' 'your threshold or check your statistical ' 'analysis.') def plot_T_obs(T_obs, threshold, tail, save, fname_save): """ Visualize the Volume Source Estimate as an Nifti1 file """ # T_obs plot code T_obs_flat = T_obs.flatten() plt.figure('T-Statistics', figsize=(8, 8)) T_max = T_obs.max() T_min = T_obs.min() T_mean = T_obs.mean() str_tail = 'one tail' if tail is 0 or tail is None: plt.xlim([-20, 20]) str_tail = 'two tail' elif tail is -1: plt.xlim([-20, 0]) else: plt.xlim([0, T_obs_flat.max() * 1.05]) y, bin_edges = np.histogram(T_obs_flat, range=(0, T_obs_flat.max()), bins=500) bin_centers = 0.5 * (bin_edges[1:] + bin_edges[:-1]) if threshold is not None: plt.plot([threshold, threshold], (0, y[bin_centers >= 0.].max()), color='#CD7600', linestyle=':', linewidth=2) legend = ('T-Statistics:\n' ' Mean: %.2f\n' ' Minimum: %.2f\n' ' Maximum: %.2f\n' ' Threshold: %.2f \n' ' ') % (T_mean, T_min, T_max, threshold) plt.ylim(None, y[bin_centers >= 0.].max() * 1.1) plt.xlabel('T-scores', fontsize=12) plt.ylabel('T-values count', fontsize=12) plt.title('T statistics distribution of t-test - %s' % str_tail, fontsize=15) plt.plot(bin_centers, y, label=legend, color='#00868B') # plt.xlim([]) plt.tight_layout() legend = plt.legend(loc='upper right', shadow=True, fontsize='large', frameon=True) if save: plt.savefig(fname_save) plt.close() return def plot_T_obs_3D(T_obs, save, fname_save): """ Visualize the Volume Source Estimate as an Nifti1 file """ from matplotlib import cm as cm_mpl fig = plt.figure(facecolor='w', figsize=(8, 8)) ax = fig.gca(projection='3d') vertc, timez = np.mgrid[0:T_obs.shape[0], 0:T_obs.shape[1]] Ts = T_obs title = 'T Obs' t_obs_stats = ax.plot_surface(vertc, timez, Ts, cmap=cm_mpl.hot) # , **kwargs) # plt.set_xticks([]) # plt.set_yticks([]) ax.set_xlabel('times [ms]') ax.set_ylabel('Vertice No') ax.set_zlabel('Statistical Amplitude') ax.w_zaxis.set_major_locator(LinearLocator(6)) ax.set_zlim(0, np.max(T_obs)) ax.set_title(title) fig.colorbar(t_obs_stats, shrink=0.5) plt.tight_layout() plt.show() if save: plt.savefig(fname_save) plt.close() return
bsd-3-clause
NorfolkDataSci/presentations
2018-01_chatbot/serverless-chatbots-workshop-master/LambdaFunctions/sentiment-analysis/nltk/draw/dispersion.py
7
1744
# Natural Language Toolkit: Dispersion Plots # # Copyright (C) 2001-2016 NLTK Project # Author: Steven Bird <[email protected]> # URL: <http://nltk.org/> # For license information, see LICENSE.TXT """ A utility for displaying lexical dispersion. """ def dispersion_plot(text, words, ignore_case=False, title="Lexical Dispersion Plot"): """ Generate a lexical dispersion plot. :param text: The source text :type text: list(str) or enum(str) :param words: The target words :type words: list of str :param ignore_case: flag to set if case should be ignored when searching text :type ignore_case: bool """ try: from matplotlib import pylab except ImportError: raise ValueError('The plot function requires matplotlib to be installed.' 'See http://matplotlib.org/') text = list(text) words.reverse() if ignore_case: words_to_comp = list(map(str.lower, words)) text_to_comp = list(map(str.lower, text)) else: words_to_comp = words text_to_comp = text points = [(x,y) for x in range(len(text_to_comp)) for y in range(len(words_to_comp)) if text_to_comp[x] == words_to_comp[y]] if points: x, y = list(zip(*points)) else: x = y = () pylab.plot(x, y, "b|", scalex=.1) pylab.yticks(list(range(len(words))), words, color="b") pylab.ylim(-1, len(words)) pylab.title(title) pylab.xlabel("Word Offset") pylab.show() if __name__ == '__main__': import nltk.compat from nltk.corpus import gutenberg words = ['Elinor', 'Marianne', 'Edward', 'Willoughby'] dispersion_plot(gutenberg.words('austen-sense.txt'), words)
mit
caganze/wisps
wisps/simulations/sample_distances.py
1
3737
import numpy as np from astropy.coordinates import SkyCoord #from multiprocessing import Pool from pathos.multiprocessing import ProcessingPool as Pool from scipy.interpolate import interp1d import scipy.integrate as integrate import wisps import pandas as pd import wisps.simulations as wispsim import pickle from tqdm import tqdm #contants POINTINGS= pd.read_pickle(wisps.OUTPUT_FILES+'/pointings_correctedf110.pkl') DISTANCE_LIMITS=[] SPGRID=wispsim.SPGRID Rsun=8300. Zsun=27. HS=[100, 150,200,250, 300,350, 400, 450, 500, 600, 700, 800, 1000] dist_arrays=pd.DataFrame.from_records([x.dist_limits for x in POINTINGS]).applymap(lambda x:np.vstack(x).astype(float)) DISTANCE_LIMITS={} for s in SPGRID: DISTANCE_LIMITS[s]=dist_arrays[s].mean(axis=0) #redefine magnitude limits by taking into account the scatter for each pointing #use these to compute volumes #REDEFINED_MAG_LIMITS={'F110': 23.054573, 'F140': 23.822972, 'F160' : 23.367867} #------------------------------------------- def density_function(r, z, h=300.): """pw4observer A custom juric density function that only uses numpy arrays for speed All units are in pc """ l = 2600. # radial length scale of exponential thin disk zpart=np.exp(-abs(z-Zsun)/h) rpart=np.exp(-(r-Rsun)/l) return zpart*rpart def custom_volume(l,b,dmin, dmax, h): nsamp=10000 ds = np.linspace(dmin,dmax,nsamp) rd=np.sqrt( (ds * np.cos( b ) )**2 + Rsun * (Rsun - 2 * ds * np.cos( b ) * np.cos( l ) ) ) zd=Zsun+ ds * np.sin( b - np.arctan( Zsun / Rsun) ) rh0=density_function(rd, zd,h=h ) val=integrate.trapz(rh0*(ds**2), x=ds) return val def interpolated_cdf(pnt, h): l, b= pnt.coord.galactic.l.radian, pnt.coord.galactic.b.radian d=np.concatenate([[0], np.logspace(-1, 4, int(1e3))]) #print (d) cdfvals=np.array([custom_volume(l,b,0, dx, h) for dx in d]) cdfvals= cdfvals/np.nanmax(cdfvals) return interp1d(d, cdfvals) def draw_distance_with_cdf(pntname, dmin, dmax, nsample, h, interpolated_cdfs): #draw distances using inversion of the cumulative distribution d=np.logspace(np.log10(dmin), np.log10(dmax), int(nsample)) #print (d, dmin, dmax) cdfvals=(interpolated_cdfs[pntname])(d) return wisps.random_draw(d, cdfvals/np.nanmax(cdfvals), int(nsample)) def load_interpolated_cdfs(h, recompute=False): if recompute: small_inter={} for p in tqdm(POINTINGS): small_inter.update({p.name: interpolated_cdf(p, h)}) fl=wisps.OUTPUT_FILES+'/distance_sample_interpolations{}'.format(h) with open(fl, 'wb') as file: pickle.dump(small_inter,file, protocol=pickle.HIGHEST_PROTOCOL) return else: return pd.read_pickle(wisps.OUTPUT_FILES+'/distance_sample_interpolations{}'.format(h)) def paralle_sample(recompute=False): #INTERPOLATED_CDFS= {} #for h in HS: # small_inter={} # for p in POINTINGS: # small_inter.update({p.name: interpolated_cdf(p, h)}) # INTERPOLATED_CDFS.update({h: small_inter }) DISTANCE_SAMPLES={} PNTAMES=[x.name for x in POINTINGS] dis={} for h in HS: for s in tqdm(DISTANCE_LIMITS.keys()): cdf=load_interpolated_cdfs(h, recompute=recompute) dlts=np.array(DISTANCE_LIMITS[s]).flatten() fx= lambda x: draw_distance_with_cdf(x, 1., 2*dlts[0], int(5e4), h, cdf) with Pool() as pool: dx=pool.map(fx, PNTAMES) dis.update({s: dx}) del dx DISTANCE_SAMPLES.update({h: dis}) fl=wisps.OUTPUT_FILES+'/distance_samples{}'.format(h) with open(fl, 'wb') as file: pickle.dump(DISTANCE_SAMPLES[h],file, protocol=pickle.HIGHEST_PROTOCOL) if __name__ =='__main__': #for h in HS: # _=load_interpolated_cdfs(h, recompute=True) paralle_sample(recompute=False)
mit
wazeerzulfikar/scikit-learn
sklearn/linear_model/tests/test_bayes.py
23
3376
# Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import SkipTest from sklearn.linear_model.bayes import BayesianRidge, ARDRegression from sklearn.linear_model import Ridge from sklearn import datasets def test_bayesian_on_diabetes(): # Test BayesianRidge on diabetes raise SkipTest("XFailed Test") diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target clf = BayesianRidge(compute_score=True) # Test with more samples than features clf.fit(X, y) # Test that scores are increasing at each iteration assert_array_equal(np.diff(clf.scores_) > 0, True) # Test with more features than samples X = X[:5, :] y = y[:5] clf.fit(X, y) # Test that scores are increasing at each iteration assert_array_equal(np.diff(clf.scores_) > 0, True) def test_bayesian_ridge_parameter(): # Test correctness of lambda_ and alpha_ parameters (Github issue #8224) X = np.array([[1, 1], [3, 4], [5, 7], [4, 1], [2, 6], [3, 10], [3, 2]]) y = np.array([1, 2, 3, 2, 0, 4, 5]).T # A Ridge regression model using an alpha value equal to the ratio of # lambda_ and alpha_ from the Bayesian Ridge model must be identical br_model = BayesianRidge(compute_score=True).fit(X, y) rr_model = Ridge(alpha=br_model.lambda_ / br_model.alpha_).fit(X, y) assert_array_almost_equal(rr_model.coef_, br_model.coef_) assert_almost_equal(rr_model.intercept_, br_model.intercept_) def test_toy_bayesian_ridge_object(): # Test BayesianRidge on toy X = np.array([[1], [2], [6], [8], [10]]) Y = np.array([1, 2, 6, 8, 10]) clf = BayesianRidge(compute_score=True) clf.fit(X, Y) # Check that the model could approximately learn the identity function test = [[1], [3], [4]] assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2) def test_toy_ard_object(): # Test BayesianRegression ARD classifier X = np.array([[1], [2], [3]]) Y = np.array([1, 2, 3]) clf = ARDRegression(compute_score=True) clf.fit(X, Y) # Check that the model could approximately learn the identity function test = [[1], [3], [4]] assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2) def test_return_std(): # Test return_std option for both Bayesian regressors def f(X): return np.dot(X, w) + b def f_noise(X, noise_mult): return f(X) + np.random.randn(X.shape[0]) * noise_mult d = 5 n_train = 50 n_test = 10 w = np.array([1.0, 0.0, 1.0, -1.0, 0.0]) b = 1.0 X = np.random.random((n_train, d)) X_test = np.random.random((n_test, d)) for decimal, noise_mult in enumerate([1, 0.1, 0.01]): y = f_noise(X, noise_mult) m1 = BayesianRidge() m1.fit(X, y) y_mean1, y_std1 = m1.predict(X_test, return_std=True) assert_array_almost_equal(y_std1, noise_mult, decimal=decimal) m2 = ARDRegression() m2.fit(X, y) y_mean2, y_std2 = m2.predict(X_test, return_std=True) assert_array_almost_equal(y_std2, noise_mult, decimal=decimal)
bsd-3-clause
tedunderwood/horizon
chapter2/surprise/create_surprise_metric.py
1
2323
#!/usr/bin/env python3 # main_experiment.py import sys, os, csv, random import numpy as np import pandas as pd date = int(sys.argv[1]) def addtodict(adict, afilename): path = '../modeloutput/' + afilename + '.coefs.csv' with open(path, encoding = 'utf-8') as f: reader = csv.reader(f) for row in reader: word = row[0] if len(word) < 1 or not word[0].isalpha(): continue # we're just using alphabetic words for this coef = float(row[2]) # note that a great deal depends on the difference between # row[1] (the unadjusted coefficient) and row[2] (the # coefficient divided by the .variance of the scaler for # this word, aka "how much a single instance of the word # moves the needle.") if word in adict: adict[word].append(coef) else: adict[word] = [coef] return adict periods = [(1870, 1899), (1900, 1929), (1930, 1959), (1960, 1989), (1990, 2010), (1880, 1909), (1910, 1939), (1940, 1969), (1970, 1999), (1890, 1919), (1920, 1949), (1950, 1979), (1980, 2009)] # identify the periods at issue for floor, ceiling in periods: if ceiling+ 1 == date: f1, c1 = floor, ceiling if floor == date: f2, c2 = floor, ceiling new = dict() old = dict() for i in range(5): for j in range(5): for part in [1, 2]: name1 = 'rccsf'+ str(f1) + '_' + str(c1) + '_' + str(i) + '_' + str(part) name2 = 'rccsf'+ str(f2) + '_' + str(c2) + '_' + str(j) + '_' + str(part) addtodict(old, name1) addtodict(new, name2) allwords = set([x for x in old.keys()]).union(set([x for x in new.keys()])) with open('crudemetrics/surprise_in_' + str(date) + '.csv', mode = 'w', encoding = 'utf-8') as f: scribe = csv.DictWriter(f, fieldnames = ['word', 'coef']) scribe.writeheader() for w in allwords: if w in old: oldcoef = sum(old[w]) / len(old[w]) else: oldcoef = 0 if w in new: newcoef = sum(new[w]) / len(new[w]) else: newcoef = 0 o = dict() o['word'] = w o['coef'] = (newcoef - oldcoef) / 1000000 scribe.writerow(o)
mit
Myasuka/scikit-learn
examples/ensemble/plot_forest_iris.py
335
6271
""" ==================================================================== Plot the decision surfaces of ensembles of trees on the iris dataset ==================================================================== Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset. This plot compares the decision surfaces learned by a decision tree classifier (first column), by a random forest classifier (second column), by an extra- trees classifier (third column) and by an AdaBoost classifier (fourth column). In the first row, the classifiers are built using the sepal width and the sepal length features only, on the second row using the petal length and sepal length only, and on the third row using the petal width and the petal length only. In descending order of quality, when trained (outside of this example) on all 4 features using 30 estimators and scored using 10 fold cross validation, we see:: ExtraTreesClassifier() # 0.95 score RandomForestClassifier() # 0.94 score AdaBoost(DecisionTree(max_depth=3)) # 0.94 score DecisionTree(max_depth=None) # 0.94 score Increasing `max_depth` for AdaBoost lowers the standard deviation of the scores (but the average score does not improve). See the console's output for further details about each model. In this example you might try to: 1) vary the ``max_depth`` for the ``DecisionTreeClassifier`` and ``AdaBoostClassifier``, perhaps try ``max_depth=3`` for the ``DecisionTreeClassifier`` or ``max_depth=None`` for ``AdaBoostClassifier`` 2) vary ``n_estimators`` It is worth noting that RandomForests and ExtraTrees can be fitted in parallel on many cores as each tree is built independently of the others. AdaBoost's samples are built sequentially and so do not use multiple cores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import clone from sklearn.datasets import load_iris from sklearn.ensemble import (RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier) from sklearn.externals.six.moves import xrange from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 n_estimators = 30 plot_colors = "ryb" cmap = plt.cm.RdYlBu plot_step = 0.02 # fine step width for decision surface contours plot_step_coarser = 0.5 # step widths for coarse classifier guesses RANDOM_SEED = 13 # fix the seed on each iteration # Load data iris = load_iris() plot_idx = 1 models = [DecisionTreeClassifier(max_depth=None), RandomForestClassifier(n_estimators=n_estimators), ExtraTreesClassifier(n_estimators=n_estimators), AdaBoostClassifier(DecisionTreeClassifier(max_depth=3), n_estimators=n_estimators)] for pair in ([0, 1], [0, 2], [2, 3]): for model in models: # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Shuffle idx = np.arange(X.shape[0]) np.random.seed(RANDOM_SEED) np.random.shuffle(idx) X = X[idx] y = y[idx] # Standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std # Train clf = clone(model) clf = model.fit(X, y) scores = clf.score(X, y) # Create a title for each column and the console by using str() and # slicing away useless parts of the string model_title = str(type(model)).split(".")[-1][:-2][:-len("Classifier")] model_details = model_title if hasattr(model, "estimators_"): model_details += " with {} estimators".format(len(model.estimators_)) print( model_details + " with features", pair, "has a score of", scores ) plt.subplot(3, 4, plot_idx) if plot_idx <= len(models): # Add a title at the top of each column plt.title(model_title) # Now plot the decision boundary using a fine mesh as input to a # filled contour plot x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) # Plot either a single DecisionTreeClassifier or alpha blend the # decision surfaces of the ensemble of classifiers if isinstance(model, DecisionTreeClassifier): Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=cmap) else: # Choose alpha blend level with respect to the number of estimators # that are in use (noting that AdaBoost can use fewer estimators # than its maximum if it achieves a good enough fit early on) estimator_alpha = 1.0 / len(model.estimators_) for tree in model.estimators_: Z = tree.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, alpha=estimator_alpha, cmap=cmap) # Build a coarser grid to plot a set of ensemble classifications # to show how these are different to what we see in the decision # surfaces. These points are regularly space and do not have a black outline xx_coarser, yy_coarser = np.meshgrid(np.arange(x_min, x_max, plot_step_coarser), np.arange(y_min, y_max, plot_step_coarser)) Z_points_coarser = model.predict(np.c_[xx_coarser.ravel(), yy_coarser.ravel()]).reshape(xx_coarser.shape) cs_points = plt.scatter(xx_coarser, yy_coarser, s=15, c=Z_points_coarser, cmap=cmap, edgecolors="none") # Plot the training points, these are clustered together and have a # black outline for i, c in zip(xrange(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=c, label=iris.target_names[i], cmap=cmap) plot_idx += 1 # move on to the next plot in sequence plt.suptitle("Classifiers on feature subsets of the Iris dataset") plt.axis("tight") plt.show()
bsd-3-clause
ultracoldYEG/cycle-control
CycleControl/cycle_plotter.py
1
6041
from PyQt5 import QtCore from PyQt5.QtWidgets import * from PyQt5.QtGui import * import matplotlib.pyplot as plt from matplotlib.backends.backend_qt5agg import ( FigureCanvasQTAgg as FigureCanvas, NavigationToolbar2QT as NavigationToolbar) from CycleControl.objects.cycle import * def prepare_sample_plot_data(domain, data): new_domain = [] new_data = [] for i in range(1, len(domain)): new_domain.append(domain[i - 1]) new_data.append(data[i - 1]) new_domain.append(domain[i]) new_data.append(data[i - 1]) new_domain.append(domain[-1]) new_data.append(data[-1]) return new_domain, new_data class CyclePlotter(object): def __init__(self, gui): self.gui = gui self.controller = gui.controller self.fig = plt.Figure() self.ax = self.fig.add_subplot(111) self.step = 1 self.canvas = FigureCanvas(self.fig) self.gui.plot_layout.addWidget(self.canvas) self.toolbar = NavigationToolbar(self.canvas, self.gui.widget, coordinates=True) self.gui.plot_layout.addWidget(self.toolbar) self.toolbar.setFixedHeight(24) self.canvas.draw() self.cycle = None self.gui.digital_channel_combo = CheckableComboBox() self.gui.analog_channel_combo = CheckableComboBox() self.gui.novatech_channel_combo = CheckableComboBox() self.gui.gridLayout_10.addWidget(self.gui.digital_channel_combo, 2, 0) self.gui.gridLayout_10.addWidget(self.gui.analog_channel_combo, 2, 1) self.gui.gridLayout_10.addWidget(self.gui.novatech_channel_combo, 2, 2) self.gui.plot_button.clicked.connect(self.update_data) self.gui.cycle_plot_number.valueChanged.connect(self.update_step) self.update_channels() def update_channels(self): self.gui.digital_channel_combo.clear() self.gui.analog_channel_combo.clear() self.gui.novatech_channel_combo.clear() for board in self.controller.hardware.pulseblasters: for i, channel in enumerate(board.channels): if channel.enabled: label = 'Board {} - {} {}'.format(board.id, i, channel.label) self.add_checkable_combo_item(self.gui.digital_channel_combo, label, board.id, i) for board in self.controller.hardware.ni_boards: for i, channel in enumerate(board.channels): if channel.enabled: label = '{} - {} {}'.format(board.id, i, channel.label) self.add_checkable_combo_item(self.gui.analog_channel_combo, label, board.id, i) for board in self.controller.hardware.novatechs: for i, channel in enumerate(board.channels): if channel.enabled: for j, param in enumerate(['Amp', 'Freq', 'Phase']): label = '{} - {} {} ({})'.format(board.id, i, channel.label, param) self.add_checkable_combo_item(self.gui.novatech_channel_combo, label, board.id, 3*i + j) def update_step(self, val): self.step = val self.update_data() def update_data(self): if not len(self.controller.proc_params.instructions): print('Put in more instructions') return self.fig.clf() self.ax = self.fig.add_subplot(111) self.ax.grid() self.cycle = Cycle(self.controller.proc_params.instructions, self.controller.proc_params.get_cycle_variables(self.step - 1)) self.cycle.create_waveforms() self.plot_digital_channels() self.plot_analog_channels() self.plot_novatech_channels() self.canvas.draw() def add_checkable_combo_item(self, combo, name, board_id, channel_num): combo.addItem(str(name)) item = combo.model().item(combo.count()-1, 0) item.setCheckState(QtCore.Qt.Unchecked) item.appendColumn([QStandardItem('test!')]) item.setData((board_id, channel_num)) def plot_analog_channels(self): for i in range(self.gui.analog_channel_combo.count()): item = self.gui.analog_channel_combo.model().item(i, 0) if item.checkState(): analog_domain = self.cycle.analog_domain analog_data = self.cycle.analog_data.get(item.data()[0])[item.data()[1]] x, y = prepare_sample_plot_data(analog_domain, analog_data) self.ax.plot(x, y, marker='o', markersize=2) def plot_novatech_channels(self): for i in range(self.gui.novatech_channel_combo.count()): item = self.gui.novatech_channel_combo.model().item(i, 0) if item.checkState(): novatech_domain = self.cycle.novatech_domain novatech_data = self.cycle.novatech_data.get(item.data()[0])[item.data()[1]] x, y = prepare_sample_plot_data(novatech_domain, novatech_data) self.ax.plot(x, y, marker='o', markersize=2) def plot_digital_channels(self): for i in range(self.gui.digital_channel_combo.count()): item = self.gui.digital_channel_combo.model().item(i, 0) if item.checkState(): digital_domain = self.cycle.digital_domain board_data = self.cycle.digital_data.get(item.data()[0]) digital_data = [int(x[item.data()[1]]) for x in board_data] x, y = prepare_sample_plot_data(digital_domain, digital_data) self.ax.plot(x, y, marker='o', markersize=2) class CheckableComboBox(QComboBox): def __init__(self): super(CheckableComboBox, self).__init__() self.view().pressed.connect(self.handleItemPressed) self.setModel(QStandardItemModel(self)) def handleItemPressed(self, index): item = self.model().itemFromIndex(index) if item.checkState() == QtCore.Qt.Checked: item.setCheckState(QtCore.Qt.Unchecked) else: item.setCheckState(QtCore.Qt.Checked)
mit
DStauffman/dstauffman2
dstauffman2/games/fiver.py
1
25942
""" The "fiver" file solves the geometric puzzle with twelve pieces made of all unique combinations of five squares that share adjacent edges. Then these 12 pieces are layed out into boards of sixty possible places in different orientations. I'm unaware of a generic name for this game. Notes ----- #. Written by David C. Stauffer in October 2015 when he found the puzzle on his dresser while acquiring and rearranging some furniture. """ #%% Imports import doctest import os import pickle import unittest from datetime import datetime import matplotlib.pyplot as plt import numpy as np from matplotlib.patches import Rectangle from dstauffman import setup_dir from dstauffman.plotting import ColorMap, Opts, setup_plots from dstauffman2 import get_root_dir #%% Hard-coded values SIZE_PIECES = 5 NUM_PIECES = 12 NUM_ORIENTS = 8 # build colormap cm = ColorMap('Paired', 0, NUM_PIECES-1) COLORS = ['w'] + [cm.get_color(i) for i in range(NUM_PIECES)] + ['k'] # make boards BOARD1 = np.full((14, 18), NUM_PIECES+1, dtype=int) BOARD1[4:10,4:14] = 0 BOARD2 = np.full((16, 16), NUM_PIECES+1, dtype=int) BOARD2[4:12, 4:12] = 0 BOARD2[7:9, 7:9] = NUM_PIECES+1 #%% Functions - _pad_piece def _pad_piece(piece, max_size, pad_value=0): r""" Pads a piece to a given size. Parameters ---------- piece : 2D ndarray Piece or board to pad max_size : int, or 2 element list of int Maximum size of each axis pad_value : int, optional, default is 0 Value to use when padding Returns ------- new_piece : 2D ndarray of int Padded piece or board Notes ----- #. Written by David C. Stauffer in October 2015. Examples -------- >>> from dstauffman2.games.fiver import _pad_piece >>> import numpy as np >>> piece = np.array([[1, 1, 1, 1], [0, 0, 0, 1]], dtype=int) >>> max_size = 5 >>> new_piece = _pad_piece(piece, max_size) >>> print(new_piece) [[1 1 1 1 0] [0 0 0 1 0] [0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0]] """ # determine if max_size is a scalar or specified per axis if np.isscalar(max_size): max_size = [max_size, max_size] # get the current size (i, j) = piece.shape # initialize the output new_piece = piece.copy() # pad the horizontal direction if j < max_size[0]: new_piece = np.hstack((new_piece, np.full((i, max_size[1]-j), pad_value, dtype=int))) # pad the vertical direction if i < max_size[1]: new_piece = np.vstack((new_piece, np.full((max_size[0]-i, max_size[1]), pad_value, dtype=int))) # return the resulting piece return new_piece #%% Functions - _shift_piece def _shift_piece(piece): r""" Shifts a piece to the most upper left location within an array. Parameters ---------- piece : 2D ndarray of int Piece Returns ------- new_piece : 2D ndarray of int Shifted piece Notes ----- #. Written by David C. Stauffer in October 2015. Examples -------- >>> from dstauffman2.games.fiver import _shift_piece >>> import numpy as np >>> x = np.zeros((5,5), dtype=int) >>> x[1, :] = 1 >>> y = _shift_piece(x) >>> print(y) [[1 1 1 1 1] [0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0]] """ new_piece = piece.copy() ix = [1, 2, 3, 4, 0] while np.all(new_piece[0, :] == 0): new_piece = new_piece[ix, :] while np.all(new_piece[:, 0] == 0): new_piece = new_piece[:, ix] return new_piece #%% Functions - _rotate_piece def _rotate_piece(piece): r""" Rotates a piece 90 degrees to the left. Parameters ---------- piece : 2D ndarray of int Piece Returns ------- new_piece : 2D ndarray of int Rotated piece Notes ----- #. Written by David C. Stauffer in October 2015. Examples -------- >>> from dstauffman2.games.fiver import _rotate_piece >>> import numpy as np >>> x = np.arange(25).reshape((5, 5)) >>> y = _rotate_piece(x) >>> print(y) [[ 4 9 14 19 24] [ 3 8 13 18 23] [ 2 7 12 17 22] [ 1 6 11 16 21] [ 0 5 10 15 20]] """ # rotate the piece temp_piece = np.rot90(piece) # shift to upper left most position new_piece = _shift_piece(temp_piece) return new_piece #%% Functions - _flip_piece def _flip_piece(piece): r""" Flips a piece about the horizontal axis. Parameters ---------- piece : 2D ndarray of int Piece Returns ------- new_piece : 2D ndarray of int Shifted piece Notes ----- #. Written by David C. Stauffer in October 2015. Examples -------- >>> from dstauffman2.games.fiver import _flip_piece >>> import numpy as np >>> x = np.arange(25).reshape((5, 5)) >>> y = _flip_piece(x) >>> print(y) [[20 21 22 23 24] [15 16 17 18 19] [10 11 12 13 14] [ 5 6 7 8 9] [ 0 1 2 3 4]] """ # flip and shift to upper left most position return _shift_piece(np.flipud(piece)) #%% Functions - _get_unique_pieces def _get_unique_pieces(pieces): r""" Returns the indices to the first dimension for the unique pieces. Parameters ---------- pieces : 3D ndarray of int 3D array of pieces Returns ------- ix_unique : ndarray of int Unique indices Notes ----- #. Written by David C. Stauffer in October 2015. Examples -------- >>> from dstauffman2.games.fiver import _get_unique_pieces, _rotate_piece >>> import numpy as np >>> pieces = np.zeros((3, 5, 5), dtype=int) >>> pieces[0, :, 0] = 1 >>> pieces[1, :, 1] = 1 >>> pieces[2, :, 0] = 1 >>> ix_unique = _get_unique_pieces(pieces) >>> print(ix_unique) [0, 1] """ # find the number of pieces num = pieces.shape[0] # initialize some lists ix_unique = [] sets = [] # loop through pieces for ix in range(num): # alias this piece this_piece = pieces[ix] # find the indices in the single vector version of the array and convert to a unique set inds = set(np.flatnonzero(this_piece.ravel())) # see if this set is in the master set if inds not in sets: # if not, then this is a new unique piece, so keep it ix_unique.append(ix) sets.append(inds) return ix_unique #%% Functions - _display_progress def _display_progress(ix, nums, last_ratio=0): r""" Displays the total progress to the command window. Parameters ---------- ix : 1D ndarray of int Index into which pieces are being evaluated nums : 1D ndarray of int Possible permutations for each individual piece Returns ------- ratio : float The amount of possible permutations that have been evaluated Notes ----- #. Written by David C. Stauffer in November 2015. Examples -------- >>> from dstauffman2.games.fiver import _display_progress >>> import numpy as np >>> ix = np.array([1, 0, 4, 0]) >>> nums = np.array([2, 4, 8, 16]) >>> ratio = _display_progress(ix, nums) # ratio = (512+64)/1024 Progess: 56.2% """ # determine the number of permutations in each piece level complete = np.flipud(np.cumprod(np.flipud(nums.astype(np.float)))) # count how many branches have been evaluated done = 0 for i in range(len(ix)): done = done + ix[i]*complete[i]/nums[i] # determine the completion ratio ratio = done / complete[0] # print the status if np.round(1000*ratio) > np.round(1000*last_ratio): print('Progess: {:.1f}%'.format(ratio*100)) return ratio else: return last_ratio #%% Functions - _blobbing def _blobbing(board): r"""Blobbing algorithm 2. Checks that all empty blobs are multiples of 5 squares.""" # set sizes (m, n) = board.shape # initialize some lists, labels and counter linked = [] labels = np.zeros((m, n), dtype=int) counter = 0 # first pass for i in range(m): for j in range(n): # see if this is an empty piece if board[i, j]: # get the north and west neighbors if i > 0: north = labels[i-1, j] else: north = 0 if j > 0: west = labels[i, j-1] else: west = 0 # check one of four conditions if north > 0: if west > 0: # both neighbors are valid if north == west: # simple case with same labels labels[i, j] = north else: # neighbors have different labels, so combine the sets min_label = min(north, west) labels[i, j] = min_label linked[north-1] = linked[north-1] | {west} linked[west-1] = linked[west-1] | {north} else: # join with north neighbor labels[i, j] = north else: if west > 0: # join with west neighbor labels[i, j] = west else: # not part of a previous blob, so start a new one counter += 1 labels[i, j] = counter linked.append({counter}) # second pass for i in range(m): for j in range(n): if board[i, j]: labels[i, j] = min(linked[labels[i, j] - 1]) # check for valid blob sizes for s in range(np.max(labels)): size = np.count_nonzero(labels == s + 1) if np.mod(size, SIZE_PIECES) != 0: return False return True #%% Functions - _save_solution def _save_solution(solutions, this_board): r"""Saves the given solution if it's unique.""" if len(solutions) == 0: # if this is the first solution, then simply save it solutions.append(this_board.copy()) else: # determine if unique temp = this_board.copy() (m, n) = temp.shape rots = NUM_ORIENTS//2 for i in range(rots): temp = _rotate_piece(temp) if temp.shape[0] != m or temp.shape[1] != n: continue for j in range(len(solutions)): if not np.any(solutions[j] - temp): return temp = _flip_piece(temp) for i in range(rots): temp = _rotate_piece(temp) if temp.shape[0] != m or temp.shape[1] != n: continue for j in range(len(solutions)): if not np.any(solutions[j] - temp): return solutions.append(this_board.copy()) print('Solution {} found!'.format(len(solutions))) #%% Functions - make_all_pieces def make_all_pieces(): r""" Makes all the possible pieces of the game. Returns ------- pieces : 3D ndarray of int 3D array of pieces Notes ----- #. Written by David C. Stauffer in October 2015. Examples -------- >>> from dstauffman2.games.fiver import make_all_pieces >>> pieces = make_all_pieces() >>> print(pieces[0]) [[1 1 1 1 1] [0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0]] """ # Hard-coded values p1 = np.array([[1, 1, 1, 1, 1]]) p2 = np.array([\ [1, 1, 1, 1], \ [0, 0, 0, 1]]) p3 = np.array([\ [1, 1, 1, 1], \ [0, 0, 1, 0]]) p4 = np.array([\ [1, 1, 1, 0], \ [0, 0, 1, 1]]) p5 = np.array([\ [1, 1, 1], \ [1, 0, 0], \ [1, 0, 0]]) p6 = np.array([\ [1, 1, 1], \ [0, 1, 0], \ [0, 1, 0]]) p7 = np.array([\ [0, 1, 0], \ [1, 1, 1], \ [0, 1, 0]]) p8 = np.array([\ [1, 1, 1], \ [1, 1, 0]]) p9 = np.array([\ [1, 1, 0], \ [0, 1, 0], \ [0, 1, 1]]) p10 = np.array([\ [1, 1], \ [1, 0], \ [1, 1]]) p11 = np.array([\ [1, 1, 0], \ [0, 1, 1], \ [0, 1, 0]]) p12 = np.array([\ [0, 1, 1], \ [1, 1, 0], \ [1, 0, 0]]) # preallocate output pieces = np.full((NUM_PIECES, SIZE_PIECES, SIZE_PIECES), -1, dtype=int); for (ix, this_piece) in enumerate([p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12]): # pad each piece new_piece = _pad_piece(this_piece, SIZE_PIECES) # save this piece with an appropriate numerical value pieces[ix] = (ix + 1) * new_piece return pieces #%% Functions - make_all_permutations def make_all_permutations(pieces): r""" Makes all the possible permutations of every possible piece. Parameters ---------- pieces : 3D ndarray of int 3D array of pieces Returns ------- all_pieces : list of 3D ndarray of int List of all 3D array of piece permutations Notes ----- #. Written by David C. Stauffer in October 2015. Examples -------- >>> from dstauffman2.games.fiver import make_all_pieces, make_all_permutations >>> pieces = make_all_pieces() >>> all_pieces = make_all_permutations(pieces) """ # initialize the output all_pieces = [] # loop through all the pieces for ix in range(NUM_PIECES): # preallocate the array all_this_piece = np.full((NUM_ORIENTS, SIZE_PIECES, SIZE_PIECES), -1, dtype=int) # alias this piece this_piece = pieces[ix] # find the number of rotations (4) rots = NUM_ORIENTS//2 # do the rotations and keep each piece for counter in range(rots): this_piece = _rotate_piece(this_piece) all_this_piece[counter] = this_piece # flip the piece this_piece = _flip_piece(this_piece) # do another set of rotations and keep each piece for counter in range(rots): this_piece = _rotate_piece(this_piece) all_this_piece[counter+rots] = this_piece # find the indices to the unique pieces ix_unique = _get_unique_pieces(all_this_piece) # gather the unique combinations all_pieces.append(all_this_piece[ix_unique]) return all_pieces #%% Functions - is_valid def is_valid(board, piece, use_blobbing=True): r""" Determines if the piece is valid for the given board. Parameters ---------- board : 2D ndarray Board piece : 2D or 3D ndarray Piece use_blobbing : bool, optional Whether to look for continuous blobs that show the board will not work Returns ------- out : ndarray of bool True/False flags for whether the pieces were valid. Notes ----- #. Written by David C. Stauffer in November 2015. Examples -------- >>> from dstauffman2.games.fiver import is_valid >>> import numpy as np >>> board = np.ones((5, 5), dtype=int) >>> board[1:-1, 1:-1] = 0 >>> piece = np.zeros((5,5), dtype=int) >>> piece[1, 1:4] = 2 >>> piece[2, 2] = 2 >>> out = is_valid(board, piece) >>> print(out) True """ # check if only one piece if piece.ndim == 2: # do simple test first out = np.logical_not(np.any(board * piece)) # see if blobbing if out and use_blobbing: out = _blobbing((board + piece) == 0) elif piece.ndim == 3: # do multiple pieces temp = np.expand_dims(board, axis=0) * piece out = np.logical_not(np.any(np.any(temp, axis=2), axis=1)) if np.any(out) and use_blobbing: for k in range(piece.shape[0]): if out[k]: out[k] = _blobbing((board + piece[k]) == 0) else: raise ValueError('Unexpected number of dimensions for piece = "{}"'.format(piece.ndim)) return out #%% Functions - find_all_valid_locations def find_all_valid_locations(board, all_pieces): r"""Finds all the valid locations for each piece on the board.""" (m, n) = board.shape max_pieces = (m - SIZE_PIECES - 1)*(n - SIZE_PIECES - 1) * NUM_ORIENTS locations = [] for these_pieces in all_pieces: # over-allocate a possible array these_locs = np.zeros((max_pieces, m, n), dtype=int) counter = 0 for ix in range(these_pieces.shape[0]): start_piece = _pad_piece(these_pieces[ix,:,:], board.shape) for i in range(m - SIZE_PIECES + 1): this_piece = np.roll(start_piece, i, axis=0) if is_valid(board, this_piece): these_locs[counter] = this_piece counter += 1 for j in range(1, n - SIZE_PIECES + 1): this_piece2 = np.roll(this_piece, j, axis=1) if is_valid(board, this_piece2): these_locs[counter] = this_piece2 counter += 1 locations.append(these_locs[:counter]) # resort pieces based on numbers, for lowest to highest sort_ix = np.array([x.shape[0] for x in locations]).argsort() locations = [locations[ix] for ix in sort_ix] return locations #%% Functions - solve_puzzle def solve_puzzle(board, locations, find_all=False): r"""Solves the puzzle for the given board and all possible piece locations.""" # initialize the solutions solutions = [] # create a working board this_board = board.copy() # get the number of permutations for each piece nums = np.array([x.shape[0] for x in locations]) # start solving last_ratio = 0 ix0 = np.arange(locations[0].shape[0]) for i0 in ix0: np.add(this_board, locations[0][i0], this_board) ix1 = np.flatnonzero(is_valid(this_board, locations[1])) for i1 in ix1: np.add(this_board, locations[1][i1], this_board) ix2 = np.flatnonzero(is_valid(this_board, locations[2])) for i2 in ix2: np.add(this_board, locations[2][i2], this_board) ix3 = np.flatnonzero(is_valid(this_board, locations[3])) for i3 in ix3: # display progress last_ratio = _display_progress(np.array([i0, i1, i2, i3]), nums, last_ratio) np.add(this_board, locations[3][i3], this_board) ix4 = np.flatnonzero(is_valid(this_board, locations[4])) for i4 in ix4: np.add(this_board, locations[4][i4], this_board) ix5 = np.flatnonzero(is_valid(this_board, locations[5])) for i5 in ix5: np.add(this_board, locations[5][i5], this_board) ix6 = np.flatnonzero(is_valid(this_board, locations[6])) for i6 in ix6: np.add(this_board, locations[6][i6], this_board) ix7 = np.flatnonzero(is_valid(this_board, locations[7])) for i7 in ix7: np.add(this_board, locations[7][i7], this_board) ix8 = np.flatnonzero(is_valid(this_board, locations[8])) for i8 in ix8: np.add(this_board, locations[8][i8], this_board) ix9 = np.flatnonzero(is_valid(this_board, locations[9])) for i9 in ix9: np.add(this_board, locations[9][i9], this_board) ix10 = np.flatnonzero(is_valid(this_board, locations[10])) for i10 in ix10: np.add(this_board, locations[10][i10], this_board) ix11 = np.flatnonzero(is_valid(this_board, locations[11])) for i11 in ix11: np.add(this_board, locations[11][i11], this_board) # keep solution _save_solution(solutions, this_board) if not find_all: return solutions np.subtract(this_board, locations[11][i11], this_board) np.subtract(this_board, locations[10][i10], this_board) np.subtract(this_board, locations[9][i9], this_board) np.subtract(this_board, locations[8][i8], this_board) np.subtract(this_board, locations[7][i7], this_board) np.subtract(this_board, locations[6][i6], this_board) np.subtract(this_board, locations[5][i5], this_board) np.subtract(this_board, locations[4][i4], this_board) np.subtract(this_board, locations[3][i3], this_board) np.subtract(this_board, locations[2][i2], this_board) np.subtract(this_board, locations[1][i1], this_board) np.subtract(this_board, locations[0][i0], this_board) return solutions #%% Functions - plot_board def plot_board(board, title, opts=None): r"""Plots the board or the individual pieces.""" # hard-coded square size box_size = 1 # check for opts if opts is None: opts = Opts() # turn interactive plotting off plt.ioff() # create the figure fig = plt.figure() # create the axis ax = fig.add_subplot(111) # set the title fig.canvas.manager.set_window_title(title) ax.set_title(title) # draw each square for i in range(board.shape[0]): for j in range(board.shape[1]): # add the rectangle patch to the existing axis ax.add_patch(Rectangle((box_size*i,box_size*j),box_size, box_size, \ facecolor=COLORS[board[i,j]], edgecolor='k')) # make square ax.set_aspect('equal') # set limits ax.set_xlim(0, board.shape[0]) ax.set_ylim(0, board.shape[1]) # flip the vertical axis ax.invert_yaxis() # configure the plot setup_plots(fig, opts) # return the resulting figure handle return fig #%% Functions - test_docstrings def test_docstrings(): r"""Tests the docstrings within this file.""" unittest.main(module='dstauffman2.games.test_fiver', exit=False) doctest.testmod(verbose=False) #%% Main script if __name__ == '__main__': # flags for running code run_tests = True make_plots = True make_soln = True find_all = True save_results = True if run_tests: # Run docstring test test_docstrings() # make all the pieces pieces = make_all_pieces() # create all the possible permutations of all the pieces all_pieces = make_all_permutations(pieces) # Create and set Opts date = datetime.now() opts = Opts() opts.save_path = os.path.join(get_root_dir(), 'results', date.strftime('%Y-%m-%d') + '_fiver') opts.save_plot = True opts.show_plot = False # Save plots of the possible piece orientations if make_plots: setup_dir(opts.save_path, rec=True) for (ix, these_pieces) in enumerate(all_pieces): for ix2 in range(these_pieces.shape[0]): this_title = 'Piece {}, Permutation {}'.format(ix+1, ix2+1) fig = plot_board(these_pieces[ix2], this_title, opts=opts) plt.close(fig) # print empty boards fig = plot_board(BOARD1[3:-3,3:-3], 'Empty Board 1', opts=opts) plt.close(fig) fig = plot_board(BOARD2[3:-3,3:-3], 'Empty Board 2', opts=opts) plt.close(fig) # solve the puzzle locations1 = find_all_valid_locations(BOARD1, all_pieces) locations2 = find_all_valid_locations(BOARD2, all_pieces) if make_soln: print('Solving puzzle 1.') solutions1 = solve_puzzle(BOARD1, locations1, find_all=find_all) print('Solving puzzle 2.') solutions2 = solve_puzzle(BOARD2, locations2, find_all=find_all) # save the results if save_results: with open(os.path.join(opts.save_path, 'solutions1.pkl'), 'wb') as file: pickle.dump(solutions1, file) with open(os.path.join(opts.save_path, 'solutions2.pkl'), 'wb') as file: pickle.dump(solutions2, file) # plot the results if make_soln and solutions1: opts.show_plot = True figs1 = [] for i in range(len(solutions1)): this_title = 'Puzzle 1, Solution {}'.format(i+1) figs1.append(plot_board(solutions1[i][3:-3,3:-3], this_title, opts=opts)) if np.mod(i, 10) == 0: while figs1: plt.close(figs1.pop()) if make_soln and solutions2: opts.show_plot = True figs2 = [] for i in range(len(solutions2)): this_title = 'Puzzle 2, Solution {}'.format(i+1) figs2.append(plot_board(solutions2[i][3:-3,3:-3], this_title, opts=opts)) if np.mod(i, 10) == 0: while figs2: plt.close(figs2.pop())
lgpl-3.0
assisi/assisipy-lib
assisipy_utils/arena/constructors.py
2
15774
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' Author : Rob Mills, BioISI, FCUL. : ASSISIbf project Abstract : Constructor classes of enclosures for agents. ''' from math import pi from transforms import Point, Transformation from transforms import rotate_polygon, translate_seq, apply_transform_to_group, xy_from_seq from minimal_arenas import create_arc_with_width import yaml import itertools ORIGIN = (0, 0, 0) #{{{ Base class class BaseArena(object): inst_id = itertools.count().next def __init__(self, ww=1.0, **kwargs): self.ww = ww self.bl_bound = (0,0) self.tr_bound = (0,0) self.trans = Transformation() self.segs = [] self.color = kwargs.get('color', (0.5, 0.5, 0.5)) label_default = "arena-{}".format(BaseArena.inst_id()) self.label_stub = kwargs.get('label_stub', label_default) self.height = kwargs.get('height', 1.0) # not much point in getter/setter is there def set_wall_color(self, clr): self.color = clr def transform(self, trans): ''' apply transform to segments, in place ''' self.trans = Transformation(dx=trans.dx, dy=trans.dy, theta=trans.theta) self.segs = apply_transform_to_group(self.segs, trans) def write_bounds_spec(self, fname, ): ''' write in a consistent way the specification of an arena to include the bounds and the transform. ''' # construct spec dictionary bs = { 'base_bl': self.bl_bound, 'base_tr': self.tr_bound, 'trans' : { 'dx' : self.trans.dx, 'dy' : self.trans.dy, 'theta' : self.trans.theta, }, } # write it to yaml file with open(fname, 'w') as f: yaml.safe_dump(bs, f, default_flow_style=False) def transformed(self, trans): ''' apply a transform to a COPY of segments, and return/ ''' return apply_transform_to_group(self.segs, trans) def get_valid_zone(self): return (self.bl_bound, self.tr_bound) def get_valid_zone_rect(self): ''' return parameters xy, xspan, yspan suitable for rendering a rectangle by matplotlib.patches.Rectangle (or similar). ''' dx = (self.tr_bound[0] - self.bl_bound[0]) dy = (self.tr_bound[1] - self.bl_bound[1]) return self.bl_bound, dx, dy def _spawn_polygon(self, simctrl, poly, label, height=1, color=(0,0,1)): simctrl.spawn('Physical', label, ORIGIN, polygon=poly, color=color, height=height) def spawn(self, simctrl, verb=False, offset=0): ''' spawn the arena in the ASSISI playground instance with handle `simctrl`. The segments obtain names with numerical suffix. Optional int argument `offset` increments the starting index. ''' for i, poly in enumerate(self.segs): label = "{}-{:03d}".format(self.label_stub, i+offset) pts = xy_from_seq(poly) if verb: print "[I] attempting to spawn segment {}".format(label) self._spawn_polygon(simctrl, pts, label, height=self.height, color=self.color) #}}} #{{{ StadiumArena class StadiumArena(BaseArena): def __init__(self, width=6.0, length=16.0, arc_steps=9, ww=1.0, bee_len=1.5, **kwargs): ''' A rectangle with semi-circular ends. This corresponds to one of the enclosures used in the Graz bee lab, and is suitable for two CASUs. By default, this arena will be positioned horizontally, about (0, 0). Transforms can be applied. ''' super(StadiumArena, self).__init__(ww=ww, **kwargs) self.width = width self.length = length # compute geometry arc_rad = width / 2.0 - ww / 2.0 l_middle_seg = length - width # 2 * arc_rad # create polygons for the two long/parallel walls #wall_long = ( (0, 0), (l_middle_seg, 0), (l_middle_seg, ww), (0, ww), (0, 0) ) lms = l_middle_seg # shorthand wall_long = ( (-lms/2.0, -ww/2.0), (+lms/2.0, -ww/2.0), (+lms/2.0, +ww/2.0), (-lms/2.0, +ww/2.0), (-lms/2.0, -ww/2.0)) poly_wl = [Point(x, y, 0) for (x, y) in wall_long] s = [(0, -width/2.0+ww/2.0, 0), poly_wl] n = [(0, +width/2.0-ww/2.0, 0), poly_wl] # now we need two arcs. # centre of the RH arc is ... # c_r = [(ex+2)*l , 3*l / 2.0 ] # c_l = [(0, 3*l / 2.0 ] arc_r = create_arc_with_width(cx=+lms/2.0, cy=0, radius=arc_rad, theta_0=pi/2.0, theta_end=-pi/2, steps=arc_steps, width=ww) arc_l = create_arc_with_width(cx=-lms/2.0, cy=0, radius=arc_rad, theta_0=pi/2.0, theta_end=3*pi/2.0, steps=arc_steps, width=ww) # compile a list of segments segs = [] for origin, poly in [s, n]: # create relevant polygon with correct offset/position (xo, yo, theta) = origin ctr = Point(poly[0].x, poly[0].y) # rotate segment about its bottom left corner seg = rotate_polygon(poly, ctr, theta) # do the rotation seg = translate_seq(seg, dx=xo, dy=yo) # now translate the segment segs.append(seg) segs.extend(arc_r) segs.extend(arc_l) self.segs = segs ### compute the bounds within which agent bees can be spawned ### # for simplicity, we assume that the valid zone is only between the # parallel section, since random generation with curved bounds is likely # going to be a pain (unless we do generate & test - then have to write # something to do a 'hit test') k = bee_len /2.0 # don't allow bees to be spawned in the wall s_x, s_y, s_yaw = s[0] n_x, n_y, n_yaw = n[0] self.bl_bound = (s_x + poly_wl[0].x + k, s_y + poly_wl[3].y + k ) self.tr_bound = (n_x + poly_wl[2].x - k, n_y + poly_wl[1].y - k ) #}}} #{{{ RoundedRectArena class RoundedRectArena(BaseArena): def __init__(self, width=6.0, length=16.0, arc_steps=9, ww=1.0, corner_rad=1.5, bee_len=1.5, **kwargs): ''' A rectangle with rounded corners. Warning... It may be patented by apple (if you use this to design your own tablet) D670,286S. By default, this arena will be positioned horizontally, about (0, 0). Transforms can be applied. ''' super(RoundedRectArena, self).__init__(ww=ww, **kwargs) self.width = width self.length = length if (corner_rad > width / 2.0 or corner_rad > length/2.0): raise ValueError("[E] cannot construct arena with bigger corners than either dimension") # compute geometry l_horiz_seg = length - (2.0 * corner_rad) l_verti_seg = width - (2.0 * corner_rad) # shorthands lhz = l_horiz_seg lvt = l_verti_seg wall_horiz = ( (-lhz/2.0, -ww/2.0), (+lhz/2.0, -ww/2.0), (+lhz/2.0, +ww/2.0), (-lhz/2.0, +ww/2.0), (-lhz/2.0, -ww/2.0)) wall_verti = ( (-ww/2.0, -lvt/2.0), # 1 (+ww/2.0, -lvt/2.0), # 4 (+ww/2.0, +lvt/2.0), # 3 (-ww/2.0, +lvt/2.0), # 2 (-ww/2.0, -lvt/2.0), # 1 ) poly_wh = [Point(x, y, 0) for (x, y) in wall_horiz] poly_wv = [Point(x, y, 0) for (x, y) in wall_verti] # create polygons for the two long/parallel walls s = [(0, -width/2.0+ww/2.0, 0), poly_wh] n = [(0, +width/2.0-ww/2.0, 0), poly_wh] w = [(-length/2.0+ww/2.0, 0, 0), poly_wv] e = [(+length/2.0-ww/2.0, 0, 0), poly_wv] # now we need an arc for each corner ww2 = ww/2.0 arc_tl = create_arc_with_width(cx=-lhz/2.0+ww2, cy=+lvt/2.0-ww2, radius=corner_rad, theta_0=pi/2.0, theta_end=pi, width=ww) arc_tr = create_arc_with_width(cx=+lhz/2.0-ww2, cy=+lvt/2.0-ww2, radius=corner_rad, theta_0=pi/2.0, theta_end=0, width=ww) arc_bl = create_arc_with_width(cx=-lhz/2.0+ww2, cy=-lvt/2.0+ww2, radius=corner_rad, theta_0=pi, theta_end=1.5*pi, width=ww) arc_br = create_arc_with_width(cx=+lhz/2.0-ww2, cy=-lvt/2.0+ww2, radius=corner_rad, theta_0=0, theta_end=-pi/2.0, width=ww) # compile a list of segments segs = [] for origin, poly in [s, n, e, w]: # create relevant polygon with correct offset/position (xo, yo, theta) = origin ctr = Point(poly[0].x, poly[0].y) # rotate segment about its bottom left corner seg = rotate_polygon(poly, ctr, theta) # do the rotation seg = translate_seq(seg, dx=xo, dy=yo) # now translate the segment segs.append(seg) segs += arc_tl + arc_tr + arc_bl + arc_br self.segs = segs ### compute the bounds within which agent bees can be spawned ### # for simplicity, we assume that the valid zone is only between the # parallel section, since random generation with curved bounds is likely # going to be a pain (unless we do generate & test - then have to write # something to do a 'hit test') k = bee_len /2.0 # don't allow bees to be spawned in the wall s_x, s_y, s_yaw = s[0] n_x, n_y, n_yaw = n[0] self.bl_bound = (s_x + poly_wh[0].x + k, s_y + poly_wh[3].y + k ) self.tr_bound = (n_x + poly_wh[2].x - k, n_y + poly_wh[1].y - k ) #}}} #{{{ RoundedRectBarrier class RoundedRectBarrier(BaseArena): def __init__(self, width=6.0, length=16.0, arc_steps=9, ww=1.0, corner_rad=1.5, bee_len=1.5, edges=['n','e','s','w'], **kwargs): ''' A barrier that is a subset of the RoundedRect. Specify from [n,e,s,w] edges. Appropriate corners are retained. ''' # TODO: consolidate all shared code with roundedrectArena if possible. super(RoundedRectBarrier, self).__init__(ww=ww, **kwargs) self.width = width self.length = length if (corner_rad > width / 2.0 or corner_rad > length/2.0): raise ValueError("[E] cannot construct arena with bigger corners than either dimension") # compute geometry l_horiz_seg = length - (2.0 * corner_rad) l_verti_seg = width - (2.0 * corner_rad) # shorthands lhz = l_horiz_seg lvt = l_verti_seg wall_horiz = ( (-lhz/2.0, -ww/2.0), (+lhz/2.0, -ww/2.0), (+lhz/2.0, +ww/2.0), (-lhz/2.0, +ww/2.0), (-lhz/2.0, -ww/2.0)) wall_verti = ( (-ww/2.0, -lvt/2.0), # 1 (+ww/2.0, -lvt/2.0), # 4 (+ww/2.0, +lvt/2.0), # 3 (-ww/2.0, +lvt/2.0), # 2 (-ww/2.0, -lvt/2.0), # 1 ) poly_wh = [Point(x, y, 0) for (x, y) in wall_horiz] poly_wv = [Point(x, y, 0) for (x, y) in wall_verti] # create polygons for the two long/parallel walls s = [(0, -width/2.0+ww/2.0, 0), poly_wh] n = [(0, +width/2.0-ww/2.0, 0), poly_wh] w = [(-length/2.0+ww/2.0, 0, 0), poly_wv] e = [(+length/2.0-ww/2.0, 0, 0), poly_wv] polys = [] if 'e' in edges: polys.append(e) if 'n' in edges: polys.append(n) if 'w' in edges: polys.append(w) if 's' in edges: polys.append(s) # now we need an arc for each corner ww2 = ww/2.0 arc_tl = create_arc_with_width(cx=-lhz/2.0+ww2, cy=+lvt/2.0-ww2, radius=corner_rad, theta_0=pi/2.0, theta_end=pi, width=ww) arc_tr = create_arc_with_width(cx=+lhz/2.0-ww2, cy=+lvt/2.0-ww2, radius=corner_rad, theta_0=pi/2.0, theta_end=0, width=ww) arc_bl = create_arc_with_width(cx=-lhz/2.0+ww2, cy=-lvt/2.0+ww2, radius=corner_rad, theta_0=pi, theta_end=1.5*pi, width=ww) arc_br = create_arc_with_width(cx=+lhz/2.0-ww2, cy=-lvt/2.0+ww2, radius=corner_rad, theta_0=0, theta_end=-pi/2.0, width=ww) # compile a list of segments segs = [] for origin, poly in polys: # create relevant polygon with correct offset/position (xo, yo, theta) = origin ctr = Point(poly[0].x, poly[0].y) # rotate segment about its bottom left corner seg = rotate_polygon(poly, ctr, theta) # do the rotation seg = translate_seq(seg, dx=xo, dy=yo) # now translate the segment segs.append(seg) if 'e' in edges and 'n' in edges: segs += arc_tr if 'e' in edges and 's' in edges: segs += arc_br if 'w' in edges and 'n' in edges: segs += arc_tl if 'w' in edges and 's' in edges: segs += arc_bl self.segs = segs ### compute the bounds within which agent bees can be spawned ### # for simplicity, we assume that the valid zone is only between the # parallel section, since random generation with curved bounds is likely # going to be a pain (unless we do generate & test - then have to write # something to do a 'hit test') k = bee_len /2.0 # don't allow bees to be spawned in the wall s_x, s_y, s_yaw = s[0] n_x, n_y, n_yaw = n[0] self.bl_bound = (s_x + poly_wh[0].x + k, s_y + poly_wh[3].y + k ) self.tr_bound = (n_x + poly_wh[2].x - k, n_y + poly_wh[1].y - k ) #}}} #{{{ CircleArena class CircleArena(BaseArena): def __init__(self, radius=15.5, arc_steps=36, ww=1.0, bee_len=1.5, **kwargs): ''' A circular arena, corresponding to an enclosure used in the Graz bee lab, suitable for four CASUs. By default, this arena will be positioned horizontally, about (0, 0). Transforms can be applied. ''' super(CircleArena, self).__init__(ww=ww, **kwargs) self.radius = radius # compute geometry arc_rad = self.radius - ww # can we do it with a single arc? arc_t = create_arc_with_width(cx=0, cy=0, radius=arc_rad, theta_0=0, theta_end=2*pi, steps=arc_steps, width=ww) self.segs = arc_t ### compute the bounds within which agent bees can be spawned ### # for simplicity, we define a square inside the circle that is valid. k = bee_len /2.0 # don't allow bees to be spawned in the wall # the side length of the square inside the cirle is sqrt(2)*r _dim = (2.0**0.5 * radius * 0.5 ) - k - ww self.bl_bound = (-_dim, -_dim) self.tr_bound = (+_dim, +_dim) #}}}
lgpl-3.0
vinodkc/spark
python/pyspark/sql/dataframe.py
4
100392
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import random import warnings from functools import reduce from html import escape as html_escape from pyspark import copy_func, since, _NoValue from pyspark.rdd import RDD, _load_from_socket, _local_iterator_from_socket from pyspark.serializers import BatchedSerializer, PickleSerializer, \ UTF8Deserializer from pyspark.storagelevel import StorageLevel from pyspark.traceback_utils import SCCallSiteSync from pyspark.sql.types import _parse_datatype_json_string from pyspark.sql.column import Column, _to_seq, _to_list, _to_java_column from pyspark.sql.readwriter import DataFrameWriter, DataFrameWriterV2 from pyspark.sql.streaming import DataStreamWriter from pyspark.sql.types import StructType, StructField, StringType, IntegerType from pyspark.sql.pandas.conversion import PandasConversionMixin from pyspark.sql.pandas.map_ops import PandasMapOpsMixin __all__ = ["DataFrame", "DataFrameNaFunctions", "DataFrameStatFunctions"] class DataFrame(PandasMapOpsMixin, PandasConversionMixin): """A distributed collection of data grouped into named columns. A :class:`DataFrame` is equivalent to a relational table in Spark SQL, and can be created using various functions in :class:`SparkSession`:: people = spark.read.parquet("...") Once created, it can be manipulated using the various domain-specific-language (DSL) functions defined in: :class:`DataFrame`, :class:`Column`. To select a column from the :class:`DataFrame`, use the apply method:: ageCol = people.age A more concrete example:: # To create DataFrame using SparkSession people = spark.read.parquet("...") department = spark.read.parquet("...") people.filter(people.age > 30).join(department, people.deptId == department.id) \\ .groupBy(department.name, "gender").agg({"salary": "avg", "age": "max"}) .. versionadded:: 1.3.0 """ def __init__(self, jdf, sql_ctx): self._jdf = jdf self.sql_ctx = sql_ctx self._sc = sql_ctx and sql_ctx._sc self.is_cached = False self._schema = None # initialized lazily self._lazy_rdd = None # Check whether _repr_html is supported or not, we use it to avoid calling _jdf twice # by __repr__ and _repr_html_ while eager evaluation opened. self._support_repr_html = False @property @since(1.3) def rdd(self): """Returns the content as an :class:`pyspark.RDD` of :class:`Row`. """ if self._lazy_rdd is None: jrdd = self._jdf.javaToPython() self._lazy_rdd = RDD(jrdd, self.sql_ctx._sc, BatchedSerializer(PickleSerializer())) return self._lazy_rdd @property @since("1.3.1") def na(self): """Returns a :class:`DataFrameNaFunctions` for handling missing values. """ return DataFrameNaFunctions(self) @property @since(1.4) def stat(self): """Returns a :class:`DataFrameStatFunctions` for statistic functions. """ return DataFrameStatFunctions(self) def toJSON(self, use_unicode=True): """Converts a :class:`DataFrame` into a :class:`RDD` of string. Each row is turned into a JSON document as one element in the returned RDD. .. versionadded:: 1.3.0 Examples -------- >>> df.toJSON().first() '{"age":2,"name":"Alice"}' """ rdd = self._jdf.toJSON() return RDD(rdd.toJavaRDD(), self._sc, UTF8Deserializer(use_unicode)) def registerTempTable(self, name): """Registers this DataFrame as a temporary table using the given name. The lifetime of this temporary table is tied to the :class:`SparkSession` that was used to create this :class:`DataFrame`. .. versionadded:: 1.3.0 .. deprecated:: 2.0.0 Use :meth:`DataFrame.createOrReplaceTempView` instead. Examples -------- >>> df.registerTempTable("people") >>> df2 = spark.sql("select * from people") >>> sorted(df.collect()) == sorted(df2.collect()) True >>> spark.catalog.dropTempView("people") """ warnings.warn( "Deprecated in 2.0, use createOrReplaceTempView instead.", FutureWarning ) self._jdf.createOrReplaceTempView(name) def createTempView(self, name): """Creates a local temporary view with this :class:`DataFrame`. The lifetime of this temporary table is tied to the :class:`SparkSession` that was used to create this :class:`DataFrame`. throws :class:`TempTableAlreadyExistsException`, if the view name already exists in the catalog. .. versionadded:: 2.0.0 Examples -------- >>> df.createTempView("people") >>> df2 = spark.sql("select * from people") >>> sorted(df.collect()) == sorted(df2.collect()) True >>> df.createTempView("people") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AnalysisException: u"Temporary table 'people' already exists;" >>> spark.catalog.dropTempView("people") """ self._jdf.createTempView(name) def createOrReplaceTempView(self, name): """Creates or replaces a local temporary view with this :class:`DataFrame`. The lifetime of this temporary table is tied to the :class:`SparkSession` that was used to create this :class:`DataFrame`. .. versionadded:: 2.0.0 Examples -------- >>> df.createOrReplaceTempView("people") >>> df2 = df.filter(df.age > 3) >>> df2.createOrReplaceTempView("people") >>> df3 = spark.sql("select * from people") >>> sorted(df3.collect()) == sorted(df2.collect()) True >>> spark.catalog.dropTempView("people") """ self._jdf.createOrReplaceTempView(name) def createGlobalTempView(self, name): """Creates a global temporary view with this :class:`DataFrame`. The lifetime of this temporary view is tied to this Spark application. throws :class:`TempTableAlreadyExistsException`, if the view name already exists in the catalog. .. versionadded:: 2.1.0 Examples -------- >>> df.createGlobalTempView("people") >>> df2 = spark.sql("select * from global_temp.people") >>> sorted(df.collect()) == sorted(df2.collect()) True >>> df.createGlobalTempView("people") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AnalysisException: u"Temporary table 'people' already exists;" >>> spark.catalog.dropGlobalTempView("people") """ self._jdf.createGlobalTempView(name) def createOrReplaceGlobalTempView(self, name): """Creates or replaces a global temporary view using the given name. The lifetime of this temporary view is tied to this Spark application. .. versionadded:: 2.2.0 Examples -------- >>> df.createOrReplaceGlobalTempView("people") >>> df2 = df.filter(df.age > 3) >>> df2.createOrReplaceGlobalTempView("people") >>> df3 = spark.sql("select * from global_temp.people") >>> sorted(df3.collect()) == sorted(df2.collect()) True >>> spark.catalog.dropGlobalTempView("people") """ self._jdf.createOrReplaceGlobalTempView(name) @property def write(self): """ Interface for saving the content of the non-streaming :class:`DataFrame` out into external storage. .. versionadded:: 1.4.0 Returns ------- :class:`DataFrameWriter` """ return DataFrameWriter(self) @property def writeStream(self): """ Interface for saving the content of the streaming :class:`DataFrame` out into external storage. .. versionadded:: 2.0.0 Notes ----- This API is evolving. Returns ------- :class:`DataStreamWriter` """ return DataStreamWriter(self) @property def schema(self): """Returns the schema of this :class:`DataFrame` as a :class:`pyspark.sql.types.StructType`. .. versionadded:: 1.3.0 Examples -------- >>> df.schema StructType(List(StructField(age,IntegerType,true),StructField(name,StringType,true))) """ if self._schema is None: try: self._schema = _parse_datatype_json_string(self._jdf.schema().json()) except Exception as e: raise ValueError( "Unable to parse datatype from schema. %s" % e) from e return self._schema def printSchema(self): """Prints out the schema in the tree format. .. versionadded:: 1.3.0 Examples -------- >>> df.printSchema() root |-- age: integer (nullable = true) |-- name: string (nullable = true) <BLANKLINE> """ print(self._jdf.schema().treeString()) def explain(self, extended=None, mode=None): """Prints the (logical and physical) plans to the console for debugging purpose. .. versionadded:: 1.3.0 parameters ---------- extended : bool, optional default ``False``. If ``False``, prints only the physical plan. When this is a string without specifying the ``mode``, it works as the mode is specified. mode : str, optional specifies the expected output format of plans. * ``simple``: Print only a physical plan. * ``extended``: Print both logical and physical plans. * ``codegen``: Print a physical plan and generated codes if they are available. * ``cost``: Print a logical plan and statistics if they are available. * ``formatted``: Split explain output into two sections: a physical plan outline \ and node details. .. versionchanged:: 3.0.0 Added optional argument `mode` to specify the expected output format of plans. Examples -------- >>> df.explain() == Physical Plan == *(1) Scan ExistingRDD[age#0,name#1] >>> df.explain(True) == Parsed Logical Plan == ... == Analyzed Logical Plan == ... == Optimized Logical Plan == ... == Physical Plan == ... >>> df.explain(mode="formatted") == Physical Plan == * Scan ExistingRDD (1) (1) Scan ExistingRDD [codegen id : 1] Output [2]: [age#0, name#1] ... >>> df.explain("cost") == Optimized Logical Plan == ...Statistics... ... """ if extended is not None and mode is not None: raise ValueError("extended and mode should not be set together.") # For the no argument case: df.explain() is_no_argument = extended is None and mode is None # For the cases below: # explain(True) # explain(extended=False) is_extended_case = isinstance(extended, bool) and mode is None # For the case when extended is mode: # df.explain("formatted") is_extended_as_mode = isinstance(extended, str) and mode is None # For the mode specified: # df.explain(mode="formatted") is_mode_case = extended is None and isinstance(mode, str) if not (is_no_argument or is_extended_case or is_extended_as_mode or is_mode_case): argtypes = [ str(type(arg)) for arg in [extended, mode] if arg is not None] raise TypeError( "extended (optional) and mode (optional) should be a string " "and bool; however, got [%s]." % ", ".join(argtypes)) # Sets an explain mode depending on a given argument if is_no_argument: explain_mode = "simple" elif is_extended_case: explain_mode = "extended" if extended else "simple" elif is_mode_case: explain_mode = mode elif is_extended_as_mode: explain_mode = extended print(self._sc._jvm.PythonSQLUtils.explainString(self._jdf.queryExecution(), explain_mode)) def exceptAll(self, other): """Return a new :class:`DataFrame` containing rows in this :class:`DataFrame` but not in another :class:`DataFrame` while preserving duplicates. This is equivalent to `EXCEPT ALL` in SQL. As standard in SQL, this function resolves columns by position (not by name). .. versionadded:: 2.4.0 Examples -------- >>> df1 = spark.createDataFrame( ... [("a", 1), ("a", 1), ("a", 1), ("a", 2), ("b", 3), ("c", 4)], ["C1", "C2"]) >>> df2 = spark.createDataFrame([("a", 1), ("b", 3)], ["C1", "C2"]) >>> df1.exceptAll(df2).show() +---+---+ | C1| C2| +---+---+ | a| 1| | a| 1| | a| 2| | c| 4| +---+---+ """ return DataFrame(self._jdf.exceptAll(other._jdf), self.sql_ctx) @since(1.3) def isLocal(self): """Returns ``True`` if the :func:`collect` and :func:`take` methods can be run locally (without any Spark executors). """ return self._jdf.isLocal() @property def isStreaming(self): """Returns ``True`` if this :class:`Dataset` contains one or more sources that continuously return data as it arrives. A :class:`Dataset` that reads data from a streaming source must be executed as a :class:`StreamingQuery` using the :func:`start` method in :class:`DataStreamWriter`. Methods that return a single answer, (e.g., :func:`count` or :func:`collect`) will throw an :class:`AnalysisException` when there is a streaming source present. .. versionadded:: 2.0.0 Notes ----- This API is evolving. """ return self._jdf.isStreaming() def show(self, n=20, truncate=True, vertical=False): """Prints the first ``n`` rows to the console. .. versionadded:: 1.3.0 Parameters ---------- n : int, optional Number of rows to show. truncate : bool or int, optional If set to ``True``, truncate strings longer than 20 chars by default. If set to a number greater than one, truncates long strings to length ``truncate`` and align cells right. vertical : bool, optional If set to ``True``, print output rows vertically (one line per column value). Examples -------- >>> df DataFrame[age: int, name: string] >>> df.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ >>> df.show(truncate=3) +---+----+ |age|name| +---+----+ | 2| Ali| | 5| Bob| +---+----+ >>> df.show(vertical=True) -RECORD 0----- age | 2 name | Alice -RECORD 1----- age | 5 name | Bob """ if not isinstance(n, int) or isinstance(n, bool): raise TypeError("Parameter 'n' (number of rows) must be an int") if not isinstance(vertical, bool): raise TypeError("Parameter 'vertical' must be a bool") if isinstance(truncate, bool) and truncate: print(self._jdf.showString(n, 20, vertical)) else: try: int_truncate = int(truncate) except ValueError: raise TypeError( "Parameter 'truncate={}' should be either bool or int.".format(truncate)) print(self._jdf.showString(n, int_truncate, vertical)) def __repr__(self): if not self._support_repr_html and self.sql_ctx._conf.isReplEagerEvalEnabled(): vertical = False return self._jdf.showString( self.sql_ctx._conf.replEagerEvalMaxNumRows(), self.sql_ctx._conf.replEagerEvalTruncate(), vertical) else: return "DataFrame[%s]" % (", ".join("%s: %s" % c for c in self.dtypes)) def _repr_html_(self): """Returns a :class:`DataFrame` with html code when you enabled eager evaluation by 'spark.sql.repl.eagerEval.enabled', this only called by REPL you are using support eager evaluation with HTML. """ if not self._support_repr_html: self._support_repr_html = True if self.sql_ctx._conf.isReplEagerEvalEnabled(): max_num_rows = max(self.sql_ctx._conf.replEagerEvalMaxNumRows(), 0) sock_info = self._jdf.getRowsToPython( max_num_rows, self.sql_ctx._conf.replEagerEvalTruncate()) rows = list(_load_from_socket(sock_info, BatchedSerializer(PickleSerializer()))) head = rows[0] row_data = rows[1:] has_more_data = len(row_data) > max_num_rows row_data = row_data[:max_num_rows] html = "<table border='1'>\n" # generate table head html += "<tr><th>%s</th></tr>\n" % "</th><th>".join(map(lambda x: html_escape(x), head)) # generate table rows for row in row_data: html += "<tr><td>%s</td></tr>\n" % "</td><td>".join( map(lambda x: html_escape(x), row)) html += "</table>\n" if has_more_data: html += "only showing top %d %s\n" % ( max_num_rows, "row" if max_num_rows == 1 else "rows") return html else: return None def checkpoint(self, eager=True): """Returns a checkpointed version of this Dataset. Checkpointing can be used to truncate the logical plan of this :class:`DataFrame`, which is especially useful in iterative algorithms where the plan may grow exponentially. It will be saved to files inside the checkpoint directory set with :meth:`SparkContext.setCheckpointDir`. .. versionadded:: 2.1.0 Parameters ---------- eager : bool, optional Whether to checkpoint this :class:`DataFrame` immediately Notes ----- This API is experimental. """ jdf = self._jdf.checkpoint(eager) return DataFrame(jdf, self.sql_ctx) def localCheckpoint(self, eager=True): """Returns a locally checkpointed version of this Dataset. Checkpointing can be used to truncate the logical plan of this :class:`DataFrame`, which is especially useful in iterative algorithms where the plan may grow exponentially. Local checkpoints are stored in the executors using the caching subsystem and therefore they are not reliable. .. versionadded:: 2.3.0 Parameters ---------- eager : bool, optional Whether to checkpoint this :class:`DataFrame` immediately Notes ----- This API is experimental. """ jdf = self._jdf.localCheckpoint(eager) return DataFrame(jdf, self.sql_ctx) def withWatermark(self, eventTime, delayThreshold): """Defines an event time watermark for this :class:`DataFrame`. A watermark tracks a point in time before which we assume no more late data is going to arrive. Spark will use this watermark for several purposes: - To know when a given time window aggregation can be finalized and thus can be emitted when using output modes that do not allow updates. - To minimize the amount of state that we need to keep for on-going aggregations. The current watermark is computed by looking at the `MAX(eventTime)` seen across all of the partitions in the query minus a user specified `delayThreshold`. Due to the cost of coordinating this value across partitions, the actual watermark used is only guaranteed to be at least `delayThreshold` behind the actual event time. In some cases we may still process records that arrive more than `delayThreshold` late. .. versionadded:: 2.1.0 Parameters ---------- eventTime : str the name of the column that contains the event time of the row. delayThreshold : str the minimum delay to wait to data to arrive late, relative to the latest record that has been processed in the form of an interval (e.g. "1 minute" or "5 hours"). Notes ----- This API is evolving. >>> from pyspark.sql.functions import timestamp_seconds >>> sdf.select( ... 'name', ... timestamp_seconds(sdf.time).alias('time')).withWatermark('time', '10 minutes') DataFrame[name: string, time: timestamp] """ if not eventTime or type(eventTime) is not str: raise TypeError("eventTime should be provided as a string") if not delayThreshold or type(delayThreshold) is not str: raise TypeError("delayThreshold should be provided as a string interval") jdf = self._jdf.withWatermark(eventTime, delayThreshold) return DataFrame(jdf, self.sql_ctx) def hint(self, name, *parameters): """Specifies some hint on the current :class:`DataFrame`. .. versionadded:: 2.2.0 Parameters ---------- name : str A name of the hint. parameters : str, list, float or int Optional parameters. Returns ------- :class:`DataFrame` Examples -------- >>> df.join(df2.hint("broadcast"), "name").show() +----+---+------+ |name|age|height| +----+---+------+ | Bob| 5| 85| +----+---+------+ """ if len(parameters) == 1 and isinstance(parameters[0], list): parameters = parameters[0] if not isinstance(name, str): raise TypeError("name should be provided as str, got {0}".format(type(name))) allowed_types = (str, list, float, int) for p in parameters: if not isinstance(p, allowed_types): raise TypeError( "all parameters should be in {0}, got {1} of type {2}".format( allowed_types, p, type(p))) jdf = self._jdf.hint(name, self._jseq(parameters)) return DataFrame(jdf, self.sql_ctx) def count(self): """Returns the number of rows in this :class:`DataFrame`. .. versionadded:: 1.3.0 Examples -------- >>> df.count() 2 """ return int(self._jdf.count()) def collect(self): """Returns all the records as a list of :class:`Row`. .. versionadded:: 1.3.0 Examples -------- >>> df.collect() [Row(age=2, name='Alice'), Row(age=5, name='Bob')] """ with SCCallSiteSync(self._sc) as css: sock_info = self._jdf.collectToPython() return list(_load_from_socket(sock_info, BatchedSerializer(PickleSerializer()))) def toLocalIterator(self, prefetchPartitions=False): """ Returns an iterator that contains all of the rows in this :class:`DataFrame`. The iterator will consume as much memory as the largest partition in this :class:`DataFrame`. With prefetch it may consume up to the memory of the 2 largest partitions. .. versionadded:: 2.0.0 Parameters ---------- prefetchPartitions : bool, optional If Spark should pre-fetch the next partition before it is needed. Examples -------- >>> list(df.toLocalIterator()) [Row(age=2, name='Alice'), Row(age=5, name='Bob')] """ with SCCallSiteSync(self._sc) as css: sock_info = self._jdf.toPythonIterator(prefetchPartitions) return _local_iterator_from_socket(sock_info, BatchedSerializer(PickleSerializer())) def limit(self, num): """Limits the result count to the number specified. .. versionadded:: 1.3.0 Examples -------- >>> df.limit(1).collect() [Row(age=2, name='Alice')] >>> df.limit(0).collect() [] """ jdf = self._jdf.limit(num) return DataFrame(jdf, self.sql_ctx) def take(self, num): """Returns the first ``num`` rows as a :class:`list` of :class:`Row`. .. versionadded:: 1.3.0 Examples -------- >>> df.take(2) [Row(age=2, name='Alice'), Row(age=5, name='Bob')] """ return self.limit(num).collect() def tail(self, num): """ Returns the last ``num`` rows as a :class:`list` of :class:`Row`. Running tail requires moving data into the application's driver process, and doing so with a very large ``num`` can crash the driver process with OutOfMemoryError. .. versionadded:: 3.0.0 Examples -------- >>> df.tail(1) [Row(age=5, name='Bob')] """ with SCCallSiteSync(self._sc): sock_info = self._jdf.tailToPython(num) return list(_load_from_socket(sock_info, BatchedSerializer(PickleSerializer()))) def foreach(self, f): """Applies the ``f`` function to all :class:`Row` of this :class:`DataFrame`. This is a shorthand for ``df.rdd.foreach()``. .. versionadded:: 1.3.0 Examples -------- >>> def f(person): ... print(person.name) >>> df.foreach(f) """ self.rdd.foreach(f) def foreachPartition(self, f): """Applies the ``f`` function to each partition of this :class:`DataFrame`. This a shorthand for ``df.rdd.foreachPartition()``. .. versionadded:: 1.3.0 Examples -------- >>> def f(people): ... for person in people: ... print(person.name) >>> df.foreachPartition(f) """ self.rdd.foreachPartition(f) def cache(self): """Persists the :class:`DataFrame` with the default storage level (`MEMORY_AND_DISK`). .. versionadded:: 1.3.0 Notes ----- The default storage level has changed to `MEMORY_AND_DISK` to match Scala in 2.0. """ self.is_cached = True self._jdf.cache() return self def persist(self, storageLevel=StorageLevel.MEMORY_AND_DISK_DESER): """Sets the storage level to persist the contents of the :class:`DataFrame` across operations after the first time it is computed. This can only be used to assign a new storage level if the :class:`DataFrame` does not have a storage level set yet. If no storage level is specified defaults to (`MEMORY_AND_DISK_DESER`) .. versionadded:: 1.3.0 Notes ----- The default storage level has changed to `MEMORY_AND_DISK_DESER` to match Scala in 3.0. """ self.is_cached = True javaStorageLevel = self._sc._getJavaStorageLevel(storageLevel) self._jdf.persist(javaStorageLevel) return self @property def storageLevel(self): """Get the :class:`DataFrame`'s current storage level. .. versionadded:: 2.1.0 Examples -------- >>> df.storageLevel StorageLevel(False, False, False, False, 1) >>> df.cache().storageLevel StorageLevel(True, True, False, True, 1) >>> df2.persist(StorageLevel.DISK_ONLY_2).storageLevel StorageLevel(True, False, False, False, 2) """ java_storage_level = self._jdf.storageLevel() storage_level = StorageLevel(java_storage_level.useDisk(), java_storage_level.useMemory(), java_storage_level.useOffHeap(), java_storage_level.deserialized(), java_storage_level.replication()) return storage_level def unpersist(self, blocking=False): """Marks the :class:`DataFrame` as non-persistent, and remove all blocks for it from memory and disk. .. versionadded:: 1.3.0 Notes ----- `blocking` default has changed to ``False`` to match Scala in 2.0. """ self.is_cached = False self._jdf.unpersist(blocking) return self def coalesce(self, numPartitions): """ Returns a new :class:`DataFrame` that has exactly `numPartitions` partitions. Similar to coalesce defined on an :class:`RDD`, this operation results in a narrow dependency, e.g. if you go from 1000 partitions to 100 partitions, there will not be a shuffle, instead each of the 100 new partitions will claim 10 of the current partitions. If a larger number of partitions is requested, it will stay at the current number of partitions. However, if you're doing a drastic coalesce, e.g. to numPartitions = 1, this may result in your computation taking place on fewer nodes than you like (e.g. one node in the case of numPartitions = 1). To avoid this, you can call repartition(). This will add a shuffle step, but means the current upstream partitions will be executed in parallel (per whatever the current partitioning is). .. versionadded:: 1.4.0 Parameters ---------- numPartitions : int specify the target number of partitions Examples -------- >>> df.coalesce(1).rdd.getNumPartitions() 1 """ return DataFrame(self._jdf.coalesce(numPartitions), self.sql_ctx) def repartition(self, numPartitions, *cols): """ Returns a new :class:`DataFrame` partitioned by the given partitioning expressions. The resulting :class:`DataFrame` is hash partitioned. .. versionadded:: 1.3.0 Parameters ---------- numPartitions : int can be an int to specify the target number of partitions or a Column. If it is a Column, it will be used as the first partitioning column. If not specified, the default number of partitions is used. cols : str or :class:`Column` partitioning columns. .. versionchanged:: 1.6 Added optional arguments to specify the partitioning columns. Also made numPartitions optional if partitioning columns are specified. Examples -------- >>> df.repartition(10).rdd.getNumPartitions() 10 >>> data = df.union(df).repartition("age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 5| Bob| | 5| Bob| | 2|Alice| | 2|Alice| +---+-----+ >>> data = data.repartition(7, "age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| | 2|Alice| | 5| Bob| +---+-----+ >>> data.rdd.getNumPartitions() 7 >>> data = data.repartition("name", "age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 5| Bob| | 5| Bob| | 2|Alice| | 2|Alice| +---+-----+ """ if isinstance(numPartitions, int): if len(cols) == 0: return DataFrame(self._jdf.repartition(numPartitions), self.sql_ctx) else: return DataFrame( self._jdf.repartition(numPartitions, self._jcols(*cols)), self.sql_ctx) elif isinstance(numPartitions, (str, Column)): cols = (numPartitions, ) + cols return DataFrame(self._jdf.repartition(self._jcols(*cols)), self.sql_ctx) else: raise TypeError("numPartitions should be an int or Column") def repartitionByRange(self, numPartitions, *cols): """ Returns a new :class:`DataFrame` partitioned by the given partitioning expressions. The resulting :class:`DataFrame` is range partitioned. At least one partition-by expression must be specified. When no explicit sort order is specified, "ascending nulls first" is assumed. .. versionadded:: 2.4.0 Parameters ---------- numPartitions : int can be an int to specify the target number of partitions or a Column. If it is a Column, it will be used as the first partitioning column. If not specified, the default number of partitions is used. cols : str or :class:`Column` partitioning columns. Notes ----- Due to performance reasons this method uses sampling to estimate the ranges. Hence, the output may not be consistent, since sampling can return different values. The sample size can be controlled by the config `spark.sql.execution.rangeExchange.sampleSizePerPartition`. Examples -------- >>> df.repartitionByRange(2, "age").rdd.getNumPartitions() 2 >>> df.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ >>> df.repartitionByRange(1, "age").rdd.getNumPartitions() 1 >>> data = df.repartitionByRange("age") >>> df.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ """ if isinstance(numPartitions, int): if len(cols) == 0: return ValueError("At least one partition-by expression must be specified.") else: return DataFrame( self._jdf.repartitionByRange(numPartitions, self._jcols(*cols)), self.sql_ctx) elif isinstance(numPartitions, (str, Column)): cols = (numPartitions,) + cols return DataFrame(self._jdf.repartitionByRange(self._jcols(*cols)), self.sql_ctx) else: raise TypeError("numPartitions should be an int, string or Column") def distinct(self): """Returns a new :class:`DataFrame` containing the distinct rows in this :class:`DataFrame`. .. versionadded:: 1.3.0 Examples -------- >>> df.distinct().count() 2 """ return DataFrame(self._jdf.distinct(), self.sql_ctx) def sample(self, withReplacement=None, fraction=None, seed=None): """Returns a sampled subset of this :class:`DataFrame`. .. versionadded:: 1.3.0 Parameters ---------- withReplacement : bool, optional Sample with replacement or not (default ``False``). fraction : float, optional Fraction of rows to generate, range [0.0, 1.0]. seed : int, optional Seed for sampling (default a random seed). Notes ----- This is not guaranteed to provide exactly the fraction specified of the total count of the given :class:`DataFrame`. `fraction` is required and, `withReplacement` and `seed` are optional. Examples -------- >>> df = spark.range(10) >>> df.sample(0.5, 3).count() 7 >>> df.sample(fraction=0.5, seed=3).count() 7 >>> df.sample(withReplacement=True, fraction=0.5, seed=3).count() 1 >>> df.sample(1.0).count() 10 >>> df.sample(fraction=1.0).count() 10 >>> df.sample(False, fraction=1.0).count() 10 """ # For the cases below: # sample(True, 0.5 [, seed]) # sample(True, fraction=0.5 [, seed]) # sample(withReplacement=False, fraction=0.5 [, seed]) is_withReplacement_set = \ type(withReplacement) == bool and isinstance(fraction, float) # For the case below: # sample(faction=0.5 [, seed]) is_withReplacement_omitted_kwargs = \ withReplacement is None and isinstance(fraction, float) # For the case below: # sample(0.5 [, seed]) is_withReplacement_omitted_args = isinstance(withReplacement, float) if not (is_withReplacement_set or is_withReplacement_omitted_kwargs or is_withReplacement_omitted_args): argtypes = [ str(type(arg)) for arg in [withReplacement, fraction, seed] if arg is not None] raise TypeError( "withReplacement (optional), fraction (required) and seed (optional)" " should be a bool, float and number; however, " "got [%s]." % ", ".join(argtypes)) if is_withReplacement_omitted_args: if fraction is not None: seed = fraction fraction = withReplacement withReplacement = None seed = int(seed) if seed is not None else None args = [arg for arg in [withReplacement, fraction, seed] if arg is not None] jdf = self._jdf.sample(*args) return DataFrame(jdf, self.sql_ctx) def sampleBy(self, col, fractions, seed=None): """ Returns a stratified sample without replacement based on the fraction given on each stratum. .. versionadded:: 1.5.0 Parameters ---------- col : :class:`Column` or str column that defines strata .. versionchanged:: 3.0 Added sampling by a column of :class:`Column` fractions : dict sampling fraction for each stratum. If a stratum is not specified, we treat its fraction as zero. seed : int, optional random seed Returns ------- a new :class:`DataFrame` that represents the stratified sample Examples -------- >>> from pyspark.sql.functions import col >>> dataset = sqlContext.range(0, 100).select((col("id") % 3).alias("key")) >>> sampled = dataset.sampleBy("key", fractions={0: 0.1, 1: 0.2}, seed=0) >>> sampled.groupBy("key").count().orderBy("key").show() +---+-----+ |key|count| +---+-----+ | 0| 3| | 1| 6| +---+-----+ >>> dataset.sampleBy(col("key"), fractions={2: 1.0}, seed=0).count() 33 """ if isinstance(col, str): col = Column(col) elif not isinstance(col, Column): raise TypeError("col must be a string or a column, but got %r" % type(col)) if not isinstance(fractions, dict): raise TypeError("fractions must be a dict but got %r" % type(fractions)) for k, v in fractions.items(): if not isinstance(k, (float, int, str)): raise TypeError("key must be float, int, or string, but got %r" % type(k)) fractions[k] = float(v) col = col._jc seed = seed if seed is not None else random.randint(0, sys.maxsize) return DataFrame(self._jdf.stat().sampleBy(col, self._jmap(fractions), seed), self.sql_ctx) def randomSplit(self, weights, seed=None): """Randomly splits this :class:`DataFrame` with the provided weights. .. versionadded:: 1.4.0 Parameters ---------- weights : list list of doubles as weights with which to split the :class:`DataFrame`. Weights will be normalized if they don't sum up to 1.0. seed : int, optional The seed for sampling. Examples -------- >>> splits = df4.randomSplit([1.0, 2.0], 24) >>> splits[0].count() 2 >>> splits[1].count() 2 """ for w in weights: if w < 0.0: raise ValueError("Weights must be positive. Found weight value: %s" % w) seed = seed if seed is not None else random.randint(0, sys.maxsize) rdd_array = self._jdf.randomSplit(_to_list(self.sql_ctx._sc, weights), int(seed)) return [DataFrame(rdd, self.sql_ctx) for rdd in rdd_array] @property def dtypes(self): """Returns all column names and their data types as a list. .. versionadded:: 1.3.0 Examples -------- >>> df.dtypes [('age', 'int'), ('name', 'string')] """ return [(str(f.name), f.dataType.simpleString()) for f in self.schema.fields] @property def columns(self): """Returns all column names as a list. .. versionadded:: 1.3.0 Examples -------- >>> df.columns ['age', 'name'] """ return [f.name for f in self.schema.fields] def colRegex(self, colName): """ Selects column based on the column name specified as a regex and returns it as :class:`Column`. .. versionadded:: 2.3.0 Parameters ---------- colName : str string, column name specified as a regex. Examples -------- >>> df = spark.createDataFrame([("a", 1), ("b", 2), ("c", 3)], ["Col1", "Col2"]) >>> df.select(df.colRegex("`(Col1)?+.+`")).show() +----+ |Col2| +----+ | 1| | 2| | 3| +----+ """ if not isinstance(colName, str): raise TypeError("colName should be provided as string") jc = self._jdf.colRegex(colName) return Column(jc) def alias(self, alias): """Returns a new :class:`DataFrame` with an alias set. .. versionadded:: 1.3.0 Parameters ---------- alias : str an alias name to be set for the :class:`DataFrame`. Examples -------- >>> from pyspark.sql.functions import * >>> df_as1 = df.alias("df_as1") >>> df_as2 = df.alias("df_as2") >>> joined_df = df_as1.join(df_as2, col("df_as1.name") == col("df_as2.name"), 'inner') >>> joined_df.select("df_as1.name", "df_as2.name", "df_as2.age") \ .sort(desc("df_as1.name")).collect() [Row(name='Bob', name='Bob', age=5), Row(name='Alice', name='Alice', age=2)] """ assert isinstance(alias, str), "alias should be a string" return DataFrame(getattr(self._jdf, "as")(alias), self.sql_ctx) def crossJoin(self, other): """Returns the cartesian product with another :class:`DataFrame`. .. versionadded:: 2.1.0 Parameters ---------- other : :class:`DataFrame` Right side of the cartesian product. Examples -------- >>> df.select("age", "name").collect() [Row(age=2, name='Alice'), Row(age=5, name='Bob')] >>> df2.select("name", "height").collect() [Row(name='Tom', height=80), Row(name='Bob', height=85)] >>> df.crossJoin(df2.select("height")).select("age", "name", "height").collect() [Row(age=2, name='Alice', height=80), Row(age=2, name='Alice', height=85), Row(age=5, name='Bob', height=80), Row(age=5, name='Bob', height=85)] """ jdf = self._jdf.crossJoin(other._jdf) return DataFrame(jdf, self.sql_ctx) def join(self, other, on=None, how=None): """Joins with another :class:`DataFrame`, using the given join expression. .. versionadded:: 1.3.0 Parameters ---------- other : :class:`DataFrame` Right side of the join on : str, list or :class:`Column`, optional a string for the join column name, a list of column names, a join expression (Column), or a list of Columns. If `on` is a string or a list of strings indicating the name of the join column(s), the column(s) must exist on both sides, and this performs an equi-join. how : str, optional default ``inner``. Must be one of: ``inner``, ``cross``, ``outer``, ``full``, ``fullouter``, ``full_outer``, ``left``, ``leftouter``, ``left_outer``, ``right``, ``rightouter``, ``right_outer``, ``semi``, ``leftsemi``, ``left_semi``, ``anti``, ``leftanti`` and ``left_anti``. Examples -------- The following performs a full outer join between ``df1`` and ``df2``. >>> from pyspark.sql.functions import desc >>> df.join(df2, df.name == df2.name, 'outer').select(df.name, df2.height) \ .sort(desc("name")).collect() [Row(name='Bob', height=85), Row(name='Alice', height=None), Row(name=None, height=80)] >>> df.join(df2, 'name', 'outer').select('name', 'height').sort(desc("name")).collect() [Row(name='Tom', height=80), Row(name='Bob', height=85), Row(name='Alice', height=None)] >>> cond = [df.name == df3.name, df.age == df3.age] >>> df.join(df3, cond, 'outer').select(df.name, df3.age).collect() [Row(name='Alice', age=2), Row(name='Bob', age=5)] >>> df.join(df2, 'name').select(df.name, df2.height).collect() [Row(name='Bob', height=85)] >>> df.join(df4, ['name', 'age']).select(df.name, df.age).collect() [Row(name='Bob', age=5)] """ if on is not None and not isinstance(on, list): on = [on] if on is not None: if isinstance(on[0], str): on = self._jseq(on) else: assert isinstance(on[0], Column), "on should be Column or list of Column" on = reduce(lambda x, y: x.__and__(y), on) on = on._jc if on is None and how is None: jdf = self._jdf.join(other._jdf) else: if how is None: how = "inner" if on is None: on = self._jseq([]) assert isinstance(how, str), "how should be a string" jdf = self._jdf.join(other._jdf, on, how) return DataFrame(jdf, self.sql_ctx) def sortWithinPartitions(self, *cols, **kwargs): """Returns a new :class:`DataFrame` with each partition sorted by the specified column(s). .. versionadded:: 1.6.0 Parameters ---------- cols : str, list or :class:`Column`, optional list of :class:`Column` or column names to sort by. Other Parameters ---------------- ascending : bool or list, optional boolean or list of boolean (default ``True``). Sort ascending vs. descending. Specify list for multiple sort orders. If a list is specified, length of the list must equal length of the `cols`. Examples -------- >>> df.sortWithinPartitions("age", ascending=False).show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ """ jdf = self._jdf.sortWithinPartitions(self._sort_cols(cols, kwargs)) return DataFrame(jdf, self.sql_ctx) def sort(self, *cols, **kwargs): """Returns a new :class:`DataFrame` sorted by the specified column(s). .. versionadded:: 1.3.0 Parameters ---------- cols : str, list, or :class:`Column`, optional list of :class:`Column` or column names to sort by. Other Parameters ---------------- ascending : bool or list, optional boolean or list of boolean (default ``True``). Sort ascending vs. descending. Specify list for multiple sort orders. If a list is specified, length of the list must equal length of the `cols`. Examples -------- >>> df.sort(df.age.desc()).collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')] >>> df.sort("age", ascending=False).collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')] >>> df.orderBy(df.age.desc()).collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')] >>> from pyspark.sql.functions import * >>> df.sort(asc("age")).collect() [Row(age=2, name='Alice'), Row(age=5, name='Bob')] >>> df.orderBy(desc("age"), "name").collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')] >>> df.orderBy(["age", "name"], ascending=[0, 1]).collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')] """ jdf = self._jdf.sort(self._sort_cols(cols, kwargs)) return DataFrame(jdf, self.sql_ctx) orderBy = sort def _jseq(self, cols, converter=None): """Return a JVM Seq of Columns from a list of Column or names""" return _to_seq(self.sql_ctx._sc, cols, converter) def _jmap(self, jm): """Return a JVM Scala Map from a dict""" return _to_scala_map(self.sql_ctx._sc, jm) def _jcols(self, *cols): """Return a JVM Seq of Columns from a list of Column or column names If `cols` has only one list in it, cols[0] will be used as the list. """ if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] return self._jseq(cols, _to_java_column) def _sort_cols(self, cols, kwargs): """ Return a JVM Seq of Columns that describes the sort order """ if not cols: raise ValueError("should sort by at least one column") if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] jcols = [_to_java_column(c) for c in cols] ascending = kwargs.get('ascending', True) if isinstance(ascending, (bool, int)): if not ascending: jcols = [jc.desc() for jc in jcols] elif isinstance(ascending, list): jcols = [jc if asc else jc.desc() for asc, jc in zip(ascending, jcols)] else: raise TypeError("ascending can only be boolean or list, but got %s" % type(ascending)) return self._jseq(jcols) def describe(self, *cols): """Computes basic statistics for numeric and string columns. .. versionadded:: 1.3.1 This include count, mean, stddev, min, and max. If no columns are given, this function computes statistics for all numerical or string columns. Notes ----- This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting :class:`DataFrame`. Use summary for expanded statistics and control over which statistics to compute. Examples -------- >>> df.describe(['age']).show() +-------+------------------+ |summary| age| +-------+------------------+ | count| 2| | mean| 3.5| | stddev|2.1213203435596424| | min| 2| | max| 5| +-------+------------------+ >>> df.describe().show() +-------+------------------+-----+ |summary| age| name| +-------+------------------+-----+ | count| 2| 2| | mean| 3.5| null| | stddev|2.1213203435596424| null| | min| 2|Alice| | max| 5| Bob| +-------+------------------+-----+ See Also -------- DataFrame.summary """ if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] jdf = self._jdf.describe(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx) def summary(self, *statistics): """Computes specified statistics for numeric and string columns. Available statistics are: - count - mean - stddev - min - max - arbitrary approximate percentiles specified as a percentage (e.g., 75%) If no statistics are given, this function computes count, mean, stddev, min, approximate quartiles (percentiles at 25%, 50%, and 75%), and max. .. versionadded:: 2.3.0 Notes ----- This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting :class:`DataFrame`. Examples -------- >>> df.summary().show() +-------+------------------+-----+ |summary| age| name| +-------+------------------+-----+ | count| 2| 2| | mean| 3.5| null| | stddev|2.1213203435596424| null| | min| 2|Alice| | 25%| 2| null| | 50%| 2| null| | 75%| 5| null| | max| 5| Bob| +-------+------------------+-----+ >>> df.summary("count", "min", "25%", "75%", "max").show() +-------+---+-----+ |summary|age| name| +-------+---+-----+ | count| 2| 2| | min| 2|Alice| | 25%| 2| null| | 75%| 5| null| | max| 5| Bob| +-------+---+-----+ To do a summary for specific columns first select them: >>> df.select("age", "name").summary("count").show() +-------+---+----+ |summary|age|name| +-------+---+----+ | count| 2| 2| +-------+---+----+ See Also -------- DataFrame.display """ if len(statistics) == 1 and isinstance(statistics[0], list): statistics = statistics[0] jdf = self._jdf.summary(self._jseq(statistics)) return DataFrame(jdf, self.sql_ctx) def head(self, n=None): """Returns the first ``n`` rows. .. versionadded:: 1.3.0 Notes ----- This method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. Parameters ---------- n : int, optional default 1. Number of rows to return. Returns ------- If n is greater than 1, return a list of :class:`Row`. If n is 1, return a single Row. Examples -------- >>> df.head() Row(age=2, name='Alice') >>> df.head(1) [Row(age=2, name='Alice')] """ if n is None: rs = self.head(1) return rs[0] if rs else None return self.take(n) def first(self): """Returns the first row as a :class:`Row`. .. versionadded:: 1.3.0 Examples -------- >>> df.first() Row(age=2, name='Alice') """ return self.head() def __getitem__(self, item): """Returns the column as a :class:`Column`. .. versionadded:: 1.3.0 Examples -------- >>> df.select(df['age']).collect() [Row(age=2), Row(age=5)] >>> df[ ["name", "age"]].collect() [Row(name='Alice', age=2), Row(name='Bob', age=5)] >>> df[ df.age > 3 ].collect() [Row(age=5, name='Bob')] >>> df[df[0] > 3].collect() [Row(age=5, name='Bob')] """ if isinstance(item, str): jc = self._jdf.apply(item) return Column(jc) elif isinstance(item, Column): return self.filter(item) elif isinstance(item, (list, tuple)): return self.select(*item) elif isinstance(item, int): jc = self._jdf.apply(self.columns[item]) return Column(jc) else: raise TypeError("unexpected item type: %s" % type(item)) def __getattr__(self, name): """Returns the :class:`Column` denoted by ``name``. .. versionadded:: 1.3.0 Examples -------- >>> df.select(df.age).collect() [Row(age=2), Row(age=5)] """ if name not in self.columns: raise AttributeError( "'%s' object has no attribute '%s'" % (self.__class__.__name__, name)) jc = self._jdf.apply(name) return Column(jc) def select(self, *cols): """Projects a set of expressions and returns a new :class:`DataFrame`. .. versionadded:: 1.3.0 Parameters ---------- cols : str, :class:`Column`, or list column names (string) or expressions (:class:`Column`). If one of the column names is '*', that column is expanded to include all columns in the current :class:`DataFrame`. Examples -------- >>> df.select('*').collect() [Row(age=2, name='Alice'), Row(age=5, name='Bob')] >>> df.select('name', 'age').collect() [Row(name='Alice', age=2), Row(name='Bob', age=5)] >>> df.select(df.name, (df.age + 10).alias('age')).collect() [Row(name='Alice', age=12), Row(name='Bob', age=15)] """ jdf = self._jdf.select(self._jcols(*cols)) return DataFrame(jdf, self.sql_ctx) def selectExpr(self, *expr): """Projects a set of SQL expressions and returns a new :class:`DataFrame`. This is a variant of :func:`select` that accepts SQL expressions. .. versionadded:: 1.3.0 Examples -------- >>> df.selectExpr("age * 2", "abs(age)").collect() [Row((age * 2)=4, abs(age)=2), Row((age * 2)=10, abs(age)=5)] """ if len(expr) == 1 and isinstance(expr[0], list): expr = expr[0] jdf = self._jdf.selectExpr(self._jseq(expr)) return DataFrame(jdf, self.sql_ctx) def filter(self, condition): """Filters rows using the given condition. :func:`where` is an alias for :func:`filter`. .. versionadded:: 1.3.0 Parameters ---------- condition : :class:`Column` or str a :class:`Column` of :class:`types.BooleanType` or a string of SQL expression. Examples -------- >>> df.filter(df.age > 3).collect() [Row(age=5, name='Bob')] >>> df.where(df.age == 2).collect() [Row(age=2, name='Alice')] >>> df.filter("age > 3").collect() [Row(age=5, name='Bob')] >>> df.where("age = 2").collect() [Row(age=2, name='Alice')] """ if isinstance(condition, str): jdf = self._jdf.filter(condition) elif isinstance(condition, Column): jdf = self._jdf.filter(condition._jc) else: raise TypeError("condition should be string or Column") return DataFrame(jdf, self.sql_ctx) def groupBy(self, *cols): """Groups the :class:`DataFrame` using the specified columns, so we can run aggregation on them. See :class:`GroupedData` for all the available aggregate functions. :func:`groupby` is an alias for :func:`groupBy`. .. versionadded:: 1.3.0 Parameters ---------- cols : list, str or :class:`Column` columns to group by. Each element should be a column name (string) or an expression (:class:`Column`). Examples -------- >>> df.groupBy().avg().collect() [Row(avg(age)=3.5)] >>> sorted(df.groupBy('name').agg({'age': 'mean'}).collect()) [Row(name='Alice', avg(age)=2.0), Row(name='Bob', avg(age)=5.0)] >>> sorted(df.groupBy(df.name).avg().collect()) [Row(name='Alice', avg(age)=2.0), Row(name='Bob', avg(age)=5.0)] >>> sorted(df.groupBy(['name', df.age]).count().collect()) [Row(name='Alice', age=2, count=1), Row(name='Bob', age=5, count=1)] """ jgd = self._jdf.groupBy(self._jcols(*cols)) from pyspark.sql.group import GroupedData return GroupedData(jgd, self) def rollup(self, *cols): """ Create a multi-dimensional rollup for the current :class:`DataFrame` using the specified columns, so we can run aggregation on them. .. versionadded:: 1.4.0 Examples -------- >>> df.rollup("name", df.age).count().orderBy("name", "age").show() +-----+----+-----+ | name| age|count| +-----+----+-----+ | null|null| 2| |Alice|null| 1| |Alice| 2| 1| | Bob|null| 1| | Bob| 5| 1| +-----+----+-----+ """ jgd = self._jdf.rollup(self._jcols(*cols)) from pyspark.sql.group import GroupedData return GroupedData(jgd, self) def cube(self, *cols): """ Create a multi-dimensional cube for the current :class:`DataFrame` using the specified columns, so we can run aggregations on them. .. versionadded:: 1.4.0 Examples -------- >>> df.cube("name", df.age).count().orderBy("name", "age").show() +-----+----+-----+ | name| age|count| +-----+----+-----+ | null|null| 2| | null| 2| 1| | null| 5| 1| |Alice|null| 1| |Alice| 2| 1| | Bob|null| 1| | Bob| 5| 1| +-----+----+-----+ """ jgd = self._jdf.cube(self._jcols(*cols)) from pyspark.sql.group import GroupedData return GroupedData(jgd, self) def agg(self, *exprs): """ Aggregate on the entire :class:`DataFrame` without groups (shorthand for ``df.groupBy().agg()``). .. versionadded:: 1.3.0 Examples -------- >>> df.agg({"age": "max"}).collect() [Row(max(age)=5)] >>> from pyspark.sql import functions as F >>> df.agg(F.min(df.age)).collect() [Row(min(age)=2)] """ return self.groupBy().agg(*exprs) @since(2.0) def union(self, other): """ Return a new :class:`DataFrame` containing union of rows in this and another :class:`DataFrame`. This is equivalent to `UNION ALL` in SQL. To do a SQL-style set union (that does deduplication of elements), use this function followed by :func:`distinct`. Also as standard in SQL, this function resolves columns by position (not by name). """ return DataFrame(self._jdf.union(other._jdf), self.sql_ctx) @since(1.3) def unionAll(self, other): """ Return a new :class:`DataFrame` containing union of rows in this and another :class:`DataFrame`. This is equivalent to `UNION ALL` in SQL. To do a SQL-style set union (that does deduplication of elements), use this function followed by :func:`distinct`. Also as standard in SQL, this function resolves columns by position (not by name). """ return self.union(other) def unionByName(self, other, allowMissingColumns=False): """ Returns a new :class:`DataFrame` containing union of rows in this and another :class:`DataFrame`. This is different from both `UNION ALL` and `UNION DISTINCT` in SQL. To do a SQL-style set union (that does deduplication of elements), use this function followed by :func:`distinct`. .. versionadded:: 2.3.0 Examples -------- The difference between this function and :func:`union` is that this function resolves columns by name (not by position): >>> df1 = spark.createDataFrame([[1, 2, 3]], ["col0", "col1", "col2"]) >>> df2 = spark.createDataFrame([[4, 5, 6]], ["col1", "col2", "col0"]) >>> df1.unionByName(df2).show() +----+----+----+ |col0|col1|col2| +----+----+----+ | 1| 2| 3| | 6| 4| 5| +----+----+----+ When the parameter `allowMissingColumns` is ``True``, the set of column names in this and other :class:`DataFrame` can differ; missing columns will be filled with null. Further, the missing columns of this :class:`DataFrame` will be added at the end in the schema of the union result: >>> df1 = spark.createDataFrame([[1, 2, 3]], ["col0", "col1", "col2"]) >>> df2 = spark.createDataFrame([[4, 5, 6]], ["col1", "col2", "col3"]) >>> df1.unionByName(df2, allowMissingColumns=True).show() +----+----+----+----+ |col0|col1|col2|col3| +----+----+----+----+ | 1| 2| 3|null| |null| 4| 5| 6| +----+----+----+----+ .. versionchanged:: 3.1.0 Added optional argument `allowMissingColumns` to specify whether to allow missing columns. """ return DataFrame(self._jdf.unionByName(other._jdf, allowMissingColumns), self.sql_ctx) @since(1.3) def intersect(self, other): """ Return a new :class:`DataFrame` containing rows only in both this :class:`DataFrame` and another :class:`DataFrame`. This is equivalent to `INTERSECT` in SQL. """ return DataFrame(self._jdf.intersect(other._jdf), self.sql_ctx) def intersectAll(self, other): """ Return a new :class:`DataFrame` containing rows in both this :class:`DataFrame` and another :class:`DataFrame` while preserving duplicates. This is equivalent to `INTERSECT ALL` in SQL. As standard in SQL, this function resolves columns by position (not by name). .. versionadded:: 2.4.0 Examples -------- >>> df1 = spark.createDataFrame([("a", 1), ("a", 1), ("b", 3), ("c", 4)], ["C1", "C2"]) >>> df2 = spark.createDataFrame([("a", 1), ("a", 1), ("b", 3)], ["C1", "C2"]) >>> df1.intersectAll(df2).sort("C1", "C2").show() +---+---+ | C1| C2| +---+---+ | a| 1| | a| 1| | b| 3| +---+---+ """ return DataFrame(self._jdf.intersectAll(other._jdf), self.sql_ctx) @since(1.3) def subtract(self, other): """ Return a new :class:`DataFrame` containing rows in this :class:`DataFrame` but not in another :class:`DataFrame`. This is equivalent to `EXCEPT DISTINCT` in SQL. """ return DataFrame(getattr(self._jdf, "except")(other._jdf), self.sql_ctx) def dropDuplicates(self, subset=None): """Return a new :class:`DataFrame` with duplicate rows removed, optionally only considering certain columns. For a static batch :class:`DataFrame`, it just drops duplicate rows. For a streaming :class:`DataFrame`, it will keep all data across triggers as intermediate state to drop duplicates rows. You can use :func:`withWatermark` to limit how late the duplicate data can be and system will accordingly limit the state. In addition, too late data older than watermark will be dropped to avoid any possibility of duplicates. :func:`drop_duplicates` is an alias for :func:`dropDuplicates`. .. versionadded:: 1.4.0 Examples -------- >>> from pyspark.sql import Row >>> df = sc.parallelize([ \\ ... Row(name='Alice', age=5, height=80), \\ ... Row(name='Alice', age=5, height=80), \\ ... Row(name='Alice', age=10, height=80)]).toDF() >>> df.dropDuplicates().show() +-----+---+------+ | name|age|height| +-----+---+------+ |Alice| 5| 80| |Alice| 10| 80| +-----+---+------+ >>> df.dropDuplicates(['name', 'height']).show() +-----+---+------+ | name|age|height| +-----+---+------+ |Alice| 5| 80| +-----+---+------+ """ if subset is None: jdf = self._jdf.dropDuplicates() else: jdf = self._jdf.dropDuplicates(self._jseq(subset)) return DataFrame(jdf, self.sql_ctx) def dropna(self, how='any', thresh=None, subset=None): """Returns a new :class:`DataFrame` omitting rows with null values. :func:`DataFrame.dropna` and :func:`DataFrameNaFunctions.drop` are aliases of each other. .. versionadded:: 1.3.1 Parameters ---------- how : str, optional 'any' or 'all'. If 'any', drop a row if it contains any nulls. If 'all', drop a row only if all its values are null. thresh: int, optional default None If specified, drop rows that have less than `thresh` non-null values. This overwrites the `how` parameter. subset : str, tuple or list, optional optional list of column names to consider. Examples -------- >>> df4.na.drop().show() +---+------+-----+ |age|height| name| +---+------+-----+ | 10| 80|Alice| +---+------+-----+ """ if how is not None and how not in ['any', 'all']: raise ValueError("how ('" + how + "') should be 'any' or 'all'") if subset is None: subset = self.columns elif isinstance(subset, str): subset = [subset] elif not isinstance(subset, (list, tuple)): raise TypeError("subset should be a list or tuple of column names") if thresh is None: thresh = len(subset) if how == 'any' else 1 return DataFrame(self._jdf.na().drop(thresh, self._jseq(subset)), self.sql_ctx) def fillna(self, value, subset=None): """Replace null values, alias for ``na.fill()``. :func:`DataFrame.fillna` and :func:`DataFrameNaFunctions.fill` are aliases of each other. .. versionadded:: 1.3.1 Parameters ---------- value : int, float, string, bool or dict Value to replace null values with. If the value is a dict, then `subset` is ignored and `value` must be a mapping from column name (string) to replacement value. The replacement value must be an int, float, boolean, or string. subset : str, tuple or list, optional optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if `value` is a string, and subset contains a non-string column, then the non-string column is simply ignored. Examples -------- >>> df4.na.fill(50).show() +---+------+-----+ |age|height| name| +---+------+-----+ | 10| 80|Alice| | 5| 50| Bob| | 50| 50| Tom| | 50| 50| null| +---+------+-----+ >>> df5.na.fill(False).show() +----+-------+-----+ | age| name| spy| +----+-------+-----+ | 10| Alice|false| | 5| Bob|false| |null|Mallory| true| +----+-------+-----+ >>> df4.na.fill({'age': 50, 'name': 'unknown'}).show() +---+------+-------+ |age|height| name| +---+------+-------+ | 10| 80| Alice| | 5| null| Bob| | 50| null| Tom| | 50| null|unknown| +---+------+-------+ """ if not isinstance(value, (float, int, str, bool, dict)): raise TypeError("value should be a float, int, string, bool or dict") # Note that bool validates isinstance(int), but we don't want to # convert bools to floats if not isinstance(value, bool) and isinstance(value, int): value = float(value) if isinstance(value, dict): return DataFrame(self._jdf.na().fill(value), self.sql_ctx) elif subset is None: return DataFrame(self._jdf.na().fill(value), self.sql_ctx) else: if isinstance(subset, str): subset = [subset] elif not isinstance(subset, (list, tuple)): raise TypeError("subset should be a list or tuple of column names") return DataFrame(self._jdf.na().fill(value, self._jseq(subset)), self.sql_ctx) def replace(self, to_replace, value=_NoValue, subset=None): """Returns a new :class:`DataFrame` replacing a value with another value. :func:`DataFrame.replace` and :func:`DataFrameNaFunctions.replace` are aliases of each other. Values to_replace and value must have the same type and can only be numerics, booleans, or strings. Value can have None. When replacing, the new value will be cast to the type of the existing column. For numeric replacements all values to be replaced should have unique floating point representation. In case of conflicts (for example with `{42: -1, 42.0: 1}`) and arbitrary replacement will be used. .. versionadded:: 1.4.0 Parameters ---------- to_replace : bool, int, float, string, list or dict Value to be replaced. If the value is a dict, then `value` is ignored or can be omitted, and `to_replace` must be a mapping between a value and a replacement. value : bool, int, float, string or None, optional The replacement value must be a bool, int, float, string or None. If `value` is a list, `value` should be of the same length and type as `to_replace`. If `value` is a scalar and `to_replace` is a sequence, then `value` is used as a replacement for each item in `to_replace`. subset : list, optional optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if `value` is a string, and subset contains a non-string column, then the non-string column is simply ignored. Examples -------- >>> df4.na.replace(10, 20).show() +----+------+-----+ | age|height| name| +----+------+-----+ | 20| 80|Alice| | 5| null| Bob| |null| null| Tom| |null| null| null| +----+------+-----+ >>> df4.na.replace('Alice', None).show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80|null| | 5| null| Bob| |null| null| Tom| |null| null|null| +----+------+----+ >>> df4.na.replace({'Alice': None}).show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80|null| | 5| null| Bob| |null| null| Tom| |null| null|null| +----+------+----+ >>> df4.na.replace(['Alice', 'Bob'], ['A', 'B'], 'name').show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80| A| | 5| null| B| |null| null| Tom| |null| null|null| +----+------+----+ """ if value is _NoValue: if isinstance(to_replace, dict): value = None else: raise TypeError("value argument is required when to_replace is not a dictionary.") # Helper functions def all_of(types): """Given a type or tuple of types and a sequence of xs check if each x is instance of type(s) >>> all_of(bool)([True, False]) True >>> all_of(str)(["a", 1]) False """ def all_of_(xs): return all(isinstance(x, types) for x in xs) return all_of_ all_of_bool = all_of(bool) all_of_str = all_of(str) all_of_numeric = all_of((float, int)) # Validate input types valid_types = (bool, float, int, str, list, tuple) if not isinstance(to_replace, valid_types + (dict, )): raise TypeError( "to_replace should be a bool, float, int, string, list, tuple, or dict. " "Got {0}".format(type(to_replace))) if not isinstance(value, valid_types) and value is not None \ and not isinstance(to_replace, dict): raise TypeError("If to_replace is not a dict, value should be " "a bool, float, int, string, list, tuple or None. " "Got {0}".format(type(value))) if isinstance(to_replace, (list, tuple)) and isinstance(value, (list, tuple)): if len(to_replace) != len(value): raise ValueError("to_replace and value lists should be of the same length. " "Got {0} and {1}".format(len(to_replace), len(value))) if not (subset is None or isinstance(subset, (list, tuple, str))): raise TypeError("subset should be a list or tuple of column names, " "column name or None. Got {0}".format(type(subset))) # Reshape input arguments if necessary if isinstance(to_replace, (float, int, str)): to_replace = [to_replace] if isinstance(to_replace, dict): rep_dict = to_replace if value is not None: warnings.warn("to_replace is a dict and value is not None. value will be ignored.") else: if isinstance(value, (float, int, str)) or value is None: value = [value for _ in range(len(to_replace))] rep_dict = dict(zip(to_replace, value)) if isinstance(subset, str): subset = [subset] # Verify we were not passed in mixed type generics. if not any(all_of_type(rep_dict.keys()) and all_of_type(x for x in rep_dict.values() if x is not None) for all_of_type in [all_of_bool, all_of_str, all_of_numeric]): raise ValueError("Mixed type replacements are not supported") if subset is None: return DataFrame(self._jdf.na().replace('*', rep_dict), self.sql_ctx) else: return DataFrame( self._jdf.na().replace(self._jseq(subset), self._jmap(rep_dict)), self.sql_ctx) def approxQuantile(self, col, probabilities, relativeError): """ Calculates the approximate quantiles of numerical columns of a :class:`DataFrame`. The result of this algorithm has the following deterministic bound: If the :class:`DataFrame` has N elements and if we request the quantile at probability `p` up to error `err`, then the algorithm will return a sample `x` from the :class:`DataFrame` so that the *exact* rank of `x` is close to (p * N). More precisely, floor((p - err) * N) <= rank(x) <= ceil((p + err) * N). This method implements a variation of the Greenwald-Khanna algorithm (with some speed optimizations). The algorithm was first present in [[https://doi.org/10.1145/375663.375670 Space-efficient Online Computation of Quantile Summaries]] by Greenwald and Khanna. Note that null values will be ignored in numerical columns before calculation. For columns only containing null values, an empty list is returned. .. versionadded:: 2.0.0 Parameters ---------- col: str, tuple or list Can be a single column name, or a list of names for multiple columns. .. versionchanged:: 2.2 Added support for multiple columns. probabilities : list or tuple a list of quantile probabilities Each number must belong to [0, 1]. For example 0 is the minimum, 0.5 is the median, 1 is the maximum. relativeError : float The relative target precision to achieve (>= 0). If set to zero, the exact quantiles are computed, which could be very expensive. Note that values greater than 1 are accepted but give the same result as 1. Returns ------- list the approximate quantiles at the given probabilities. If the input `col` is a string, the output is a list of floats. If the input `col` is a list or tuple of strings, the output is also a list, but each element in it is a list of floats, i.e., the output is a list of list of floats. """ if not isinstance(col, (str, list, tuple)): raise TypeError("col should be a string, list or tuple, but got %r" % type(col)) isStr = isinstance(col, str) if isinstance(col, tuple): col = list(col) elif isStr: col = [col] for c in col: if not isinstance(c, str): raise TypeError("columns should be strings, but got %r" % type(c)) col = _to_list(self._sc, col) if not isinstance(probabilities, (list, tuple)): raise TypeError("probabilities should be a list or tuple") if isinstance(probabilities, tuple): probabilities = list(probabilities) for p in probabilities: if not isinstance(p, (float, int)) or p < 0 or p > 1: raise ValueError("probabilities should be numerical (float, int) in [0,1].") probabilities = _to_list(self._sc, probabilities) if not isinstance(relativeError, (float, int)): raise TypeError("relativeError should be numerical (float, int)") if relativeError < 0: raise ValueError("relativeError should be >= 0.") relativeError = float(relativeError) jaq = self._jdf.stat().approxQuantile(col, probabilities, relativeError) jaq_list = [list(j) for j in jaq] return jaq_list[0] if isStr else jaq_list def corr(self, col1, col2, method=None): """ Calculates the correlation of two columns of a :class:`DataFrame` as a double value. Currently only supports the Pearson Correlation Coefficient. :func:`DataFrame.corr` and :func:`DataFrameStatFunctions.corr` are aliases of each other. .. versionadded:: 1.4.0 Parameters ---------- col1 : str The name of the first column col2 : str The name of the second column method : str, optional The correlation method. Currently only supports "pearson" """ if not isinstance(col1, str): raise TypeError("col1 should be a string.") if not isinstance(col2, str): raise TypeError("col2 should be a string.") if not method: method = "pearson" if not method == "pearson": raise ValueError("Currently only the calculation of the Pearson Correlation " + "coefficient is supported.") return self._jdf.stat().corr(col1, col2, method) def cov(self, col1, col2): """ Calculate the sample covariance for the given columns, specified by their names, as a double value. :func:`DataFrame.cov` and :func:`DataFrameStatFunctions.cov` are aliases. .. versionadded:: 1.4.0 Parameters ---------- col1 : str The name of the first column col2 : str The name of the second column """ if not isinstance(col1, str): raise TypeError("col1 should be a string.") if not isinstance(col2, str): raise TypeError("col2 should be a string.") return self._jdf.stat().cov(col1, col2) def crosstab(self, col1, col2): """ Computes a pair-wise frequency table of the given columns. Also known as a contingency table. The number of distinct values for each column should be less than 1e4. At most 1e6 non-zero pair frequencies will be returned. The first column of each row will be the distinct values of `col1` and the column names will be the distinct values of `col2`. The name of the first column will be `$col1_$col2`. Pairs that have no occurrences will have zero as their counts. :func:`DataFrame.crosstab` and :func:`DataFrameStatFunctions.crosstab` are aliases. .. versionadded:: 1.4.0 Parameters ---------- col1 : str The name of the first column. Distinct items will make the first item of each row. col2 : str The name of the second column. Distinct items will make the column names of the :class:`DataFrame`. """ if not isinstance(col1, str): raise TypeError("col1 should be a string.") if not isinstance(col2, str): raise TypeError("col2 should be a string.") return DataFrame(self._jdf.stat().crosstab(col1, col2), self.sql_ctx) def freqItems(self, cols, support=None): """ Finding frequent items for columns, possibly with false positives. Using the frequent element count algorithm described in "https://doi.org/10.1145/762471.762473, proposed by Karp, Schenker, and Papadimitriou". :func:`DataFrame.freqItems` and :func:`DataFrameStatFunctions.freqItems` are aliases. .. versionadded:: 1.4.0 Parameters ---------- cols : list or tuple Names of the columns to calculate frequent items for as a list or tuple of strings. support : float, optional The frequency with which to consider an item 'frequent'. Default is 1%. The support must be greater than 1e-4. Notes ----- This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting :class:`DataFrame`. """ if isinstance(cols, tuple): cols = list(cols) if not isinstance(cols, list): raise TypeError("cols must be a list or tuple of column names as strings.") if not support: support = 0.01 return DataFrame(self._jdf.stat().freqItems(_to_seq(self._sc, cols), support), self.sql_ctx) def withColumn(self, colName, col): """ Returns a new :class:`DataFrame` by adding a column or replacing the existing column that has the same name. The column expression must be an expression over this :class:`DataFrame`; attempting to add a column from some other :class:`DataFrame` will raise an error. .. versionadded:: 1.3.0 Parameters ---------- colName : str string, name of the new column. col : :class:`Column` a :class:`Column` expression for the new column. Notes ----- This method introduces a projection internally. Therefore, calling it multiple times, for instance, via loops in order to add multiple columns can generate big plans which can cause performance issues and even `StackOverflowException`. To avoid this, use :func:`select` with the multiple columns at once. Examples -------- >>> df.withColumn('age2', df.age + 2).collect() [Row(age=2, name='Alice', age2=4), Row(age=5, name='Bob', age2=7)] """ if not isinstance(col, Column): raise TypeError("col should be Column") return DataFrame(self._jdf.withColumn(colName, col._jc), self.sql_ctx) def withColumnRenamed(self, existing, new): """Returns a new :class:`DataFrame` by renaming an existing column. This is a no-op if schema doesn't contain the given column name. .. versionadded:: 1.3.0 Parameters ---------- existing : str string, name of the existing column to rename. new : str string, new name of the column. Examples -------- >>> df.withColumnRenamed('age', 'age2').collect() [Row(age2=2, name='Alice'), Row(age2=5, name='Bob')] """ return DataFrame(self._jdf.withColumnRenamed(existing, new), self.sql_ctx) def drop(self, *cols): """Returns a new :class:`DataFrame` that drops the specified column. This is a no-op if schema doesn't contain the given column name(s). .. versionadded:: 1.4.0 Parameters ---------- cols: str or :class:`Column` a name of the column, or the :class:`Column` to drop Examples -------- >>> df.drop('age').collect() [Row(name='Alice'), Row(name='Bob')] >>> df.drop(df.age).collect() [Row(name='Alice'), Row(name='Bob')] >>> df.join(df2, df.name == df2.name, 'inner').drop(df.name).collect() [Row(age=5, height=85, name='Bob')] >>> df.join(df2, df.name == df2.name, 'inner').drop(df2.name).collect() [Row(age=5, name='Bob', height=85)] >>> df.join(df2, 'name', 'inner').drop('age', 'height').collect() [Row(name='Bob')] """ if len(cols) == 1: col = cols[0] if isinstance(col, str): jdf = self._jdf.drop(col) elif isinstance(col, Column): jdf = self._jdf.drop(col._jc) else: raise TypeError("col should be a string or a Column") else: for col in cols: if not isinstance(col, str): raise TypeError("each col in the param list should be a string") jdf = self._jdf.drop(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx) def toDF(self, *cols): """Returns a new :class:`DataFrame` that with new specified column names Parameters ---------- cols : str new column names Examples -------- >>> df.toDF('f1', 'f2').collect() [Row(f1=2, f2='Alice'), Row(f1=5, f2='Bob')] """ jdf = self._jdf.toDF(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx) def transform(self, func): """Returns a new :class:`DataFrame`. Concise syntax for chaining custom transformations. .. versionadded:: 3.0.0 Parameters ---------- func : function a function that takes and returns a :class:`DataFrame`. Examples -------- >>> from pyspark.sql.functions import col >>> df = spark.createDataFrame([(1, 1.0), (2, 2.0)], ["int", "float"]) >>> def cast_all_to_int(input_df): ... return input_df.select([col(col_name).cast("int") for col_name in input_df.columns]) >>> def sort_columns_asc(input_df): ... return input_df.select(*sorted(input_df.columns)) >>> df.transform(cast_all_to_int).transform(sort_columns_asc).show() +-----+---+ |float|int| +-----+---+ | 1| 1| | 2| 2| +-----+---+ """ result = func(self) assert isinstance(result, DataFrame), "Func returned an instance of type [%s], " \ "should have been DataFrame." % type(result) return result def sameSemantics(self, other): """ Returns `True` when the logical query plans inside both :class:`DataFrame`\\s are equal and therefore return same results. .. versionadded:: 3.1.0 Notes ----- The equality comparison here is simplified by tolerating the cosmetic differences such as attribute names. This API can compare both :class:`DataFrame`\\s very fast but can still return `False` on the :class:`DataFrame` that return the same results, for instance, from different plans. Such false negative semantic can be useful when caching as an example. This API is a developer API. Examples -------- >>> df1 = spark.range(10) >>> df2 = spark.range(10) >>> df1.withColumn("col1", df1.id * 2).sameSemantics(df2.withColumn("col1", df2.id * 2)) True >>> df1.withColumn("col1", df1.id * 2).sameSemantics(df2.withColumn("col1", df2.id + 2)) False >>> df1.withColumn("col1", df1.id * 2).sameSemantics(df2.withColumn("col0", df2.id * 2)) True """ if not isinstance(other, DataFrame): raise TypeError("other parameter should be of DataFrame; however, got %s" % type(other)) return self._jdf.sameSemantics(other._jdf) def semanticHash(self): """ Returns a hash code of the logical query plan against this :class:`DataFrame`. .. versionadded:: 3.1.0 Notes ----- Unlike the standard hash code, the hash is calculated against the query plan simplified by tolerating the cosmetic differences such as attribute names. This API is a developer API. Examples -------- >>> spark.range(10).selectExpr("id as col0").semanticHash() # doctest: +SKIP 1855039936 >>> spark.range(10).selectExpr("id as col1").semanticHash() # doctest: +SKIP 1855039936 """ return self._jdf.semanticHash() def inputFiles(self): """ Returns a best-effort snapshot of the files that compose this :class:`DataFrame`. This method simply asks each constituent BaseRelation for its respective files and takes the union of all results. Depending on the source relations, this may not find all input files. Duplicates are removed. .. versionadded:: 3.1.0 Examples -------- >>> df = spark.read.load("examples/src/main/resources/people.json", format="json") >>> len(df.inputFiles()) 1 """ return list(self._jdf.inputFiles()) where = copy_func( filter, sinceversion=1.3, doc=":func:`where` is an alias for :func:`filter`.") # Two aliases below were added for pandas compatibility many years ago. # There are too many differences compared to pandas and we cannot just # make it "compatible" by adding aliases. Therefore, we stop adding such # aliases as of Spark 3.0. Two methods below remain just # for legacy users currently. groupby = copy_func( groupBy, sinceversion=1.4, doc=":func:`groupby` is an alias for :func:`groupBy`.") drop_duplicates = copy_func( dropDuplicates, sinceversion=1.4, doc=":func:`drop_duplicates` is an alias for :func:`dropDuplicates`.") def writeTo(self, table): """ Create a write configuration builder for v2 sources. This builder is used to configure and execute write operations. For example, to append or create or replace existing tables. .. versionadded:: 3.1.0 Examples -------- >>> df.writeTo("catalog.db.table").append() # doctest: +SKIP >>> df.writeTo( # doctest: +SKIP ... "catalog.db.table" ... ).partitionedBy("col").createOrReplace() """ return DataFrameWriterV2(self, table) def _to_scala_map(sc, jm): """ Convert a dict into a JVM Map. """ return sc._jvm.PythonUtils.toScalaMap(jm) class DataFrameNaFunctions(object): """Functionality for working with missing data in :class:`DataFrame`. .. versionadded:: 1.4 """ def __init__(self, df): self.df = df def drop(self, how='any', thresh=None, subset=None): return self.df.dropna(how=how, thresh=thresh, subset=subset) drop.__doc__ = DataFrame.dropna.__doc__ def fill(self, value, subset=None): return self.df.fillna(value=value, subset=subset) fill.__doc__ = DataFrame.fillna.__doc__ def replace(self, to_replace, value=_NoValue, subset=None): return self.df.replace(to_replace, value, subset) replace.__doc__ = DataFrame.replace.__doc__ class DataFrameStatFunctions(object): """Functionality for statistic functions with :class:`DataFrame`. .. versionadded:: 1.4 """ def __init__(self, df): self.df = df def approxQuantile(self, col, probabilities, relativeError): return self.df.approxQuantile(col, probabilities, relativeError) approxQuantile.__doc__ = DataFrame.approxQuantile.__doc__ def corr(self, col1, col2, method=None): return self.df.corr(col1, col2, method) corr.__doc__ = DataFrame.corr.__doc__ def cov(self, col1, col2): return self.df.cov(col1, col2) cov.__doc__ = DataFrame.cov.__doc__ def crosstab(self, col1, col2): return self.df.crosstab(col1, col2) crosstab.__doc__ = DataFrame.crosstab.__doc__ def freqItems(self, cols, support=None): return self.df.freqItems(cols, support) freqItems.__doc__ = DataFrame.freqItems.__doc__ def sampleBy(self, col, fractions, seed=None): return self.df.sampleBy(col, fractions, seed) sampleBy.__doc__ = DataFrame.sampleBy.__doc__ def _test(): import doctest from pyspark.context import SparkContext from pyspark.sql import Row, SQLContext, SparkSession import pyspark.sql.dataframe globs = pyspark.sql.dataframe.__dict__.copy() sc = SparkContext('local[4]', 'PythonTest') globs['sc'] = sc globs['sqlContext'] = SQLContext(sc) globs['spark'] = SparkSession(sc) globs['df'] = sc.parallelize([(2, 'Alice'), (5, 'Bob')])\ .toDF(StructType([StructField('age', IntegerType()), StructField('name', StringType())])) globs['df2'] = sc.parallelize([Row(height=80, name='Tom'), Row(height=85, name='Bob')]).toDF() globs['df3'] = sc.parallelize([Row(age=2, name='Alice'), Row(age=5, name='Bob')]).toDF() globs['df4'] = sc.parallelize([Row(age=10, height=80, name='Alice'), Row(age=5, height=None, name='Bob'), Row(age=None, height=None, name='Tom'), Row(age=None, height=None, name=None)]).toDF() globs['df5'] = sc.parallelize([Row(age=10, name='Alice', spy=False), Row(age=5, name='Bob', spy=None), Row(age=None, name='Mallory', spy=True)]).toDF() globs['sdf'] = sc.parallelize([Row(name='Tom', time=1479441846), Row(name='Bob', time=1479442946)]).toDF() (failure_count, test_count) = doctest.testmod( pyspark.sql.dataframe, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_NDIFF) globs['sc'].stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
Jimmy-Morzaria/scikit-learn
sklearn/metrics/tests/test_regression.py
31
3010
from __future__ import division, print_function import numpy as np from itertools import product from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.metrics import explained_variance_score from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import median_absolute_error from sklearn.metrics import r2_score from sklearn.metrics.regression import _check_reg_targets def test_regression_metrics(n_samples=50): y_true = np.arange(n_samples) y_pred = y_true + 1 assert_almost_equal(mean_squared_error(y_true, y_pred), 1.) assert_almost_equal(mean_absolute_error(y_true, y_pred), 1.) assert_almost_equal(median_absolute_error(y_true, y_pred), 1.) assert_almost_equal(r2_score(y_true, y_pred), 0.995, 2) assert_almost_equal(explained_variance_score(y_true, y_pred), 1.) def test_multioutput_regression(): y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]]) y_pred = np.array([[0, 0, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]) error = mean_squared_error(y_true, y_pred) assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.) # mean_absolute_error and mean_squared_error are equal because # it is a binary problem. error = mean_absolute_error(y_true, y_pred) assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.) error = r2_score(y_true, y_pred) assert_almost_equal(error, 1 - 5. / 2) def test_regression_metrics_at_limits(): assert_almost_equal(mean_squared_error([0.], [0.]), 0.00, 2) assert_almost_equal(mean_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(median_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(explained_variance_score([0.], [0.]), 1.00, 2) assert_almost_equal(r2_score([0., 1], [0., 1]), 1.00, 2) def test__check_reg_targets(): # All of length 3 EXAMPLES = [ ("continuous", [1, 2, 3], 1), ("continuous", [[1], [2], [3]], 1), ("continuous-multioutput", [[1, 1], [2, 2], [3, 1]], 2), ("continuous-multioutput", [[5, 1], [4, 2], [3, 1]], 2), ("continuous-multioutput", [[1, 3, 4], [2, 2, 2], [3, 1, 1]], 3), ] for (type1, y1, n_out1), (type2, y2, n_out2) in product(EXAMPLES, repeat=2): if type1 == type2 and n_out1 == n_out2: y_type, y_check1, y_check2 = _check_reg_targets(y1, y2) assert_equal(type1, y_type) if type1 == 'continuous': assert_array_equal(y_check1, np.reshape(y1, (-1, 1))) assert_array_equal(y_check2, np.reshape(y2, (-1, 1))) else: assert_array_equal(y_check1, y1) assert_array_equal(y_check2, y2) else: assert_raises(ValueError, _check_reg_targets, y1, y2)
bsd-3-clause
necozay/tulip-control
examples/developer/fuel_tank/continuous_switched_test.py
1
2638
"""test hybrid construction""" import logging logging.basicConfig(level=logging.INFO) import time import numpy as np import matplotlib as mpl mpl.use('Agg') from tulip import abstract, hybrid from polytope import box2poly input_bound = 0.4 uncertainty = 0.05 cont_state_space = box2poly([[0., 3.], [0., 2.]]) cont_props = {} cont_props['home'] = box2poly([[0., 1.], [0., 1.]]) cont_props['lot'] = box2poly([[2., 3.], [1., 2.]]) sys_dyn = dict() allh = [0.5, 1.1, 1.5] modes = [] modes.append(('normal', 'fly')) modes.append(('refuel', 'fly')) modes.append(('emergency', 'fly')) """First PWA mode""" def subsys0(h): A = np.array([[1.1052, 0.], [ 0., 1.1052]]) B = np.array([[1.1052, 0.], [ 0., 1.1052]]) E = np.array([[1,0], [0,1]]) U = box2poly([[-1., 1.], [-1., 1.]]) U.scale(input_bound) W = box2poly([[-1., 1.], [-1., 1.]]) W.scale(uncertainty) dom = box2poly([[0., 3.], [h, 2.]]) sys_dyn = hybrid.LtiSysDyn(A, B, E, None, U, W, dom) return sys_dyn def subsys1(h): A = np.array([[0.9948, 0.], [0., 1.1052]]) B = np.array([[-1.1052, 0.], [0., 1.1052]]) E = np.array([[1, 0], [0, 1]]) U = box2poly([[-1., 1.], [-1., 1.]]) U.scale(input_bound) W = box2poly([[-1., 1.], [-1., 1.]]) W.scale(uncertainty) dom = box2poly([[0., 3.], [0., h]]) sys_dyn = hybrid.LtiSysDyn(A, B, E, None, U, W, dom) return sys_dyn for mode, h in zip(modes, allh): subsystems = [subsys0(h), subsys1(h)] sys_dyn[mode] = hybrid.PwaSysDyn(subsystems, cont_state_space) """Switched Dynamics""" # collect env, sys_modes env_modes, sys_modes = zip(*modes) msg = 'Found:\n' msg += '\t Environment modes: ' + str(env_modes) msg += '\t System modes: ' + str(sys_modes) switched_dynamics = hybrid.SwitchedSysDyn( disc_domain_size=(len(env_modes), len(sys_modes)), dynamics=sys_dyn, env_labels=env_modes, disc_sys_labels=sys_modes, cts_ss=cont_state_space ) print(switched_dynamics) ppp = abstract.prop2part(cont_state_space, cont_props) ppp, new2old = abstract.part2convex(ppp) """Discretize to establish transitions""" start = time.time() N = 8 trans_len=1 disc_params = {} for mode in modes: disc_params[mode] = {'N':N, 'trans_length':trans_len} swab = abstract.multiproc_discretize_switched( ppp, switched_dynamics, disc_params, plot=True, show_ts=True ) print(swab) axs = swab.plot(show_ts=True) for i, ax in enumerate(axs): ax.figure.savefig('swab_' + str(i) + '.pdf') #ax = sys_ts.ts.plot() elapsed = (time.time() - start) print('Discretization lasted: ' + str(elapsed))
bsd-3-clause
khkaminska/scikit-learn
sklearn/mixture/tests/test_gmm.py
200
17427
import unittest import copy import sys from nose.tools import assert_true import numpy as np from numpy.testing import (assert_array_equal, assert_array_almost_equal, assert_raises) from scipy import stats from sklearn import mixture from sklearn.datasets.samples_generator import make_spd_matrix from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raise_message from sklearn.metrics.cluster import adjusted_rand_score from sklearn.externals.six.moves import cStringIO as StringIO rng = np.random.RandomState(0) def test_sample_gaussian(): # Test sample generation from mixture.sample_gaussian where covariance # is diagonal, spherical and full n_features, n_samples = 2, 300 axis = 1 mu = rng.randint(10) * rng.rand(n_features) cv = (rng.rand(n_features) + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='diag', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(samples.var(axis), cv, atol=1.5)) # the same for spherical covariances cv = (rng.rand() + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='spherical', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.5)) assert_true(np.allclose( samples.var(axis), np.repeat(cv, n_features), atol=1.5)) # and for full covariances A = rng.randn(n_features, n_features) cv = np.dot(A.T, A) + np.eye(n_features) samples = mixture.sample_gaussian( mu, cv, covariance_type='full', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(np.cov(samples), cv, atol=2.5)) # Numerical stability check: in SciPy 0.12.0 at least, eigh may return # tiny negative values in its second return value. from sklearn.mixture import sample_gaussian x = sample_gaussian([0, 0], [[4, 3], [1, .1]], covariance_type='full', random_state=42) print(x) assert_true(np.isfinite(x).all()) def _naive_lmvnpdf_diag(X, mu, cv): # slow and naive implementation of lmvnpdf ref = np.empty((len(X), len(mu))) stds = np.sqrt(cv) for i, (m, std) in enumerate(zip(mu, stds)): ref[:, i] = np.log(stats.norm.pdf(X, m, std)).sum(axis=1) return ref def test_lmvnpdf_diag(): # test a slow and naive implementation of lmvnpdf and # compare it to the vectorized version (mixture.lmvnpdf) to test # for correctness n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) ref = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, cv, 'diag') assert_array_almost_equal(lpr, ref) def test_lmvnpdf_spherical(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) spherecv = rng.rand(n_components, 1) ** 2 + 1 X = rng.randint(10) * rng.rand(n_samples, n_features) cv = np.tile(spherecv, (n_features, 1)) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, spherecv, 'spherical') assert_array_almost_equal(lpr, reference) def test_lmvnpdf_full(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) fullcv = np.array([np.diag(x) for x in cv]) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, fullcv, 'full') assert_array_almost_equal(lpr, reference) def test_lvmpdf_full_cv_non_positive_definite(): n_features, n_samples = 2, 10 rng = np.random.RandomState(0) X = rng.randint(10) * rng.rand(n_samples, n_features) mu = np.mean(X, 0) cv = np.array([[[-1, 0], [0, 1]]]) expected_message = "'covars' must be symmetric, positive-definite" assert_raise_message(ValueError, expected_message, mixture.log_multivariate_normal_density, X, mu, cv, 'full') def test_GMM_attributes(): n_components, n_features = 10, 4 covariance_type = 'diag' g = mixture.GMM(n_components, covariance_type, random_state=rng) weights = rng.rand(n_components) weights = weights / weights.sum() means = rng.randint(-20, 20, (n_components, n_features)) assert_true(g.n_components == n_components) assert_true(g.covariance_type == covariance_type) g.weights_ = weights assert_array_almost_equal(g.weights_, weights) g.means_ = means assert_array_almost_equal(g.means_, means) covars = (0.1 + 2 * rng.rand(n_components, n_features)) ** 2 g.covars_ = covars assert_array_almost_equal(g.covars_, covars) assert_raises(ValueError, g._set_covars, []) assert_raises(ValueError, g._set_covars, np.zeros((n_components - 2, n_features))) assert_raises(ValueError, mixture.GMM, n_components=20, covariance_type='badcovariance_type') class GMMTester(): do_test_eval = True def _setUp(self): self.n_components = 10 self.n_features = 4 self.weights = rng.rand(self.n_components) self.weights = self.weights / self.weights.sum() self.means = rng.randint(-20, 20, (self.n_components, self.n_features)) self.threshold = -0.5 self.I = np.eye(self.n_features) self.covars = { 'spherical': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'tied': (make_spd_matrix(self.n_features, random_state=0) + 5 * self.I), 'diag': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'full': np.array([make_spd_matrix(self.n_features, random_state=0) + 5 * self.I for x in range(self.n_components)])} def test_eval(self): if not self.do_test_eval: return # DPGMM does not support setting the means and # covariances before fitting There is no way of fixing this # due to the variational parameters being more expressive than # covariance matrices g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = self.covars[self.covariance_type] g.weights_ = self.weights gaussidx = np.repeat(np.arange(self.n_components), 5) n_samples = len(gaussidx) X = rng.randn(n_samples, self.n_features) + g.means_[gaussidx] ll, responsibilities = g.score_samples(X) self.assertEqual(len(ll), n_samples) self.assertEqual(responsibilities.shape, (n_samples, self.n_components)) assert_array_almost_equal(responsibilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(responsibilities.argmax(axis=1), gaussidx) def test_sample(self, n=100): g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = np.maximum(self.covars[self.covariance_type], 0.1) g.weights_ = self.weights samples = g.sample(n) self.assertEqual(samples.shape, (n, self.n_features)) def test_train(self, params='wmc'): g = mixture.GMM(n_components=self.n_components, covariance_type=self.covariance_type) g.weights_ = self.weights g.means_ = self.means g.covars_ = 20 * self.covars[self.covariance_type] # Create a training set by sampling from the predefined distribution. X = g.sample(n_samples=100) g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-1, n_iter=1, init_params=params) g.fit(X) # Do one training iteration at a time so we can keep track of # the log likelihood to make sure that it increases after each # iteration. trainll = [] for _ in range(5): g.params = params g.init_params = '' g.fit(X) trainll.append(self.score(g, X)) g.n_iter = 10 g.init_params = '' g.params = params g.fit(X) # finish fitting # Note that the log likelihood will sometimes decrease by a # very small amount after it has more or less converged due to # the addition of min_covar to the covariance (to prevent # underflow). This is why the threshold is set to -0.5 # instead of 0. delta_min = np.diff(trainll).min() self.assertTrue( delta_min > self.threshold, "The min nll increase is %f which is lower than the admissible" " threshold of %f, for model %s. The likelihoods are %s." % (delta_min, self.threshold, self.covariance_type, trainll)) def test_train_degenerate(self, params='wmc'): # Train on degenerate data with 0 in some dimensions # Create a training set by sampling from the predefined distribution. X = rng.randn(100, self.n_features) X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-3, n_iter=5, init_params=params) g.fit(X) trainll = g.score(X) self.assertTrue(np.sum(np.abs(trainll / 100 / X.shape[1])) < 5) def test_train_1d(self, params='wmc'): # Train on 1-D data # Create a training set by sampling from the predefined distribution. X = rng.randn(100, 1) # X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-7, n_iter=5, init_params=params) g.fit(X) trainll = g.score(X) if isinstance(g, mixture.DPGMM): self.assertTrue(np.sum(np.abs(trainll / 100)) < 5) else: self.assertTrue(np.sum(np.abs(trainll / 100)) < 2) def score(self, g, X): return g.score(X).sum() class TestGMMWithSphericalCovars(unittest.TestCase, GMMTester): covariance_type = 'spherical' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithDiagonalCovars(unittest.TestCase, GMMTester): covariance_type = 'diag' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithTiedCovars(unittest.TestCase, GMMTester): covariance_type = 'tied' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithFullCovars(unittest.TestCase, GMMTester): covariance_type = 'full' model = mixture.GMM setUp = GMMTester._setUp def test_multiple_init(): # Test that multiple inits does not much worse than a single one X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, covariance_type='spherical', random_state=rng, min_covar=1e-7, n_iter=5) train1 = g.fit(X).score(X).sum() g.n_init = 5 train2 = g.fit(X).score(X).sum() assert_true(train2 >= train1 - 1.e-2) def test_n_parameters(): # Test that the right number of parameters is estimated n_samples, n_dim, n_components = 7, 5, 2 X = rng.randn(n_samples, n_dim) n_params = {'spherical': 13, 'diag': 21, 'tied': 26, 'full': 41} for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_true(g._n_parameters() == n_params[cv_type]) def test_1d_1component(): # Test all of the covariance_types return the same BIC score for # 1-dimensional, 1 component fits. n_samples, n_dim, n_components = 100, 1, 1 X = rng.randn(n_samples, n_dim) g_full = mixture.GMM(n_components=n_components, covariance_type='full', random_state=rng, min_covar=1e-7, n_iter=1) g_full.fit(X) g_full_bic = g_full.bic(X) for cv_type in ['tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_array_almost_equal(g.bic(X), g_full_bic) def assert_fit_predict_correct(model, X): model2 = copy.deepcopy(model) predictions_1 = model.fit(X).predict(X) predictions_2 = model2.fit_predict(X) assert adjusted_rand_score(predictions_1, predictions_2) == 1.0 def test_fit_predict(): """ test that gmm.fit_predict is equivalent to gmm.fit + gmm.predict """ lrng = np.random.RandomState(101) n_samples, n_dim, n_comps = 100, 2, 2 mu = np.array([[8, 8]]) component_0 = lrng.randn(n_samples, n_dim) component_1 = lrng.randn(n_samples, n_dim) + mu X = np.vstack((component_0, component_1)) for m_constructor in (mixture.GMM, mixture.VBGMM, mixture.DPGMM): model = m_constructor(n_components=n_comps, covariance_type='full', min_covar=1e-7, n_iter=5, random_state=np.random.RandomState(0)) assert_fit_predict_correct(model, X) model = mixture.GMM(n_components=n_comps, n_iter=0) z = model.fit_predict(X) assert np.all(z == 0), "Quick Initialization Failed!" def test_aic(): # Test the aic and bic criteria n_samples, n_dim, n_components = 50, 3, 2 X = rng.randn(n_samples, n_dim) SGH = 0.5 * (X.var() + np.log(2 * np.pi)) # standard gaussian entropy for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7) g.fit(X) aic = 2 * n_samples * SGH * n_dim + 2 * g._n_parameters() bic = (2 * n_samples * SGH * n_dim + np.log(n_samples) * g._n_parameters()) bound = n_dim * 3. / np.sqrt(n_samples) assert_true(np.abs(g.aic(X) - aic) / n_samples < bound) assert_true(np.abs(g.bic(X) - bic) / n_samples < bound) def check_positive_definite_covars(covariance_type): r"""Test that covariance matrices do not become non positive definite Due to the accumulation of round-off errors, the computation of the covariance matrices during the learning phase could lead to non-positive definite covariance matrices. Namely the use of the formula: .. math:: C = (\sum_i w_i x_i x_i^T) - \mu \mu^T instead of: .. math:: C = \sum_i w_i (x_i - \mu)(x_i - \mu)^T while mathematically equivalent, was observed a ``LinAlgError`` exception, when computing a ``GMM`` with full covariance matrices and fixed mean. This function ensures that some later optimization will not introduce the problem again. """ rng = np.random.RandomState(1) # we build a dataset with 2 2d component. The components are unbalanced # (respective weights 0.9 and 0.1) X = rng.randn(100, 2) X[-10:] += (3, 3) # Shift the 10 last points gmm = mixture.GMM(2, params="wc", covariance_type=covariance_type, min_covar=1e-3) # This is a non-regression test for issue #2640. The following call used # to trigger: # numpy.linalg.linalg.LinAlgError: 2-th leading minor not positive definite gmm.fit(X) if covariance_type == "diag" or covariance_type == "spherical": assert_greater(gmm.covars_.min(), 0) else: if covariance_type == "tied": covs = [gmm.covars_] else: covs = gmm.covars_ for c in covs: assert_greater(np.linalg.det(c), 0) def test_positive_definite_covars(): # Check positive definiteness for all covariance types for covariance_type in ["full", "tied", "diag", "spherical"]: yield check_positive_definite_covars, covariance_type def test_verbose_first_level(): # Create sample data X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, n_init=2, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: g.fit(X) finally: sys.stdout = old_stdout def test_verbose_second_level(): # Create sample data X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, n_init=2, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: g.fit(X) finally: sys.stdout = old_stdout
bsd-3-clause
TakakiNishio/grasp_planning
depth/random_planning_for_motoman/planning_average.py
2
4288
# -*- coding: utf-8 -*- #python library import matplotlib.pyplot as plt import numpy as np from numpy.random import * import sys from scipy import misc import shutil import os import random import time # OpenCV import cv2 #chainer library import chainer import chainer.functions as F import chainer.links as L from chainer import training from chainer import serializers #python script import network_structure as nn import pickup_object as po import random_rectangle as rr import path as p # label preparation def label_handling(data_label_1,data_label_2): data_label = [] if data_label_1 < 10 : data_label.append(str(0)+str(data_label_1)) else: data_label.append(str(data_label_1)) if data_label_2 < 10 : data_label.append(str(0)+str(data_label_2)) else: data_label.append(str(data_label_2)) return data_label # load the depth image data def load_depth_image(path,scale): img = cv2.imread(path) grayed = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) resized_img = cv2.resize(grayed,(img.shape[0]/scale,img.shape[1]/scale)) img_array = np.asanyarray(resized_img,dtype=np.float32) img_shape = img_array.shape img_array = np.reshape(img_array,(resized_img.size,1)) img_list = [] for i in range(len(img_array)): img_list.append(img_array[i][0]/255.0) return img,img_list # generate input data for CNN def generate_input_data(path,rec_list,scale): img,img_list = load_depth_image(path,scale) x = rec_list + img_list x = np.array(x,dtype=np.float32).reshape((1,33008)) return x,img # calculate z (gripper height) def calculate_z(path,rec,scale): img = cv2.imread(path) grayed = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img_array = np.asarray(grayed) x1 = int(rec[1]*scale) y1 = int(rec[0]*scale) x2 = int(rec[5]*scale) y2 = int(rec[4]*scale) ml = np.max(img_array[np.min([x1,x2]):np.max([x1,x2]),np.min([y1,y2]):np.max([y1,y2])]) z =round(ml*(150/255.0),2) return z # draw the object area def draw_object_area(img,object_area,rec_area): for i in range(len(rec_area)): for j in range(len(object_area[i])): for k in range(2): object_area[i][j][0][k] = object_area[i][j][0][k] - 100 cv2.rectangle(img, (rec_area[i][0]-100, rec_area[i][1]-100), (rec_area[i][0]+rec_area[i][2]-100, rec_area[i][1]+rec_area[i][3]-100), (255,0,0), 1) cv2.drawContours(img, object_area, -1, (255,0,255),1) # draw the grasp rectangle def draw_grasp_rectangle(img,rec,scale): color = [(0,255,255), (0,255,0)] rec = (np.array(rec)*scale).astype(np.int32) cv2.line(img,(rec[0],rec[1]),(rec[2],rec[3]), color[0], 2) cv2.line(img,(rec[2],rec[3]),(rec[4],rec[5]), color[1], 2) cv2.line(img,(rec[4],rec[5]),(rec[6],rec[7]), color[0], 2) cv2.line(img,(rec[6],rec[7]),(rec[0],rec[1]), color[1], 2) plt.figure(1) plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.axis('off') cv2.imwrite('pictures/depth.png',img) #main if __name__ == '__main__': #directory_n = input('Directory No > ') #picture_n = input('Image No > ') # random checking directory_n = randint(9)+1 picture_n = randint(40)+1 scale = 2 print 'directory:'+str(directory_n)+' picture:'+str(picture_n) data_label = label_handling(directory_n,picture_n) path = p.data_path()+data_label[0]+'/dp'+data_label[0]+data_label[1]+'r.png' model = nn.CNN_classification() serializers.load_npz('cnn.model', model) optimizer = chainer.optimizers.Adam() optimizer.setup(model) search_area,rec_area = po.find_object_from_RGB(data_label) while(1): rec,center,angle,w,p1,p2,p3,p4 = rr.random_rec(search_area,rec_area,scale) x,img = generate_input_data(path,rec,scale) test_output = model.forward(chainer.Variable(x)) test_label = np.argmax(test_output.data[0]) if test_label == 1: break angle = round(angle*180/np.pi,2) z = calculate_z(path,rec,scale) print '\n'+'(xc,yc): '+str(center)+', zc[mm]: '+str(z) print 'theta[deg]: '+str(angle)+', gripper_width: '+str(w)+'\n' draw_object_area(img,search_area,rec_area) draw_grasp_rectangle(img,rec,scale) plt.show()
gpl-3.0
python27/NetworkControllability
NetworkControllability/test.py
1
2990
import numpy as np import networkx as nx import exact_controllability as ECT import strutral_controllability as SCT import matplotlib.pyplot as plt import matplotlib.pylab as plb import csv import operator import random import os import subprocess import threading import time import math import UtilityFunctions as UF #G = nx.Graph() #G.add_nodes_from([0, 1, 2, 3]) #G.add_edge(0, 1) #G.add_edge(0, 2) #G.add_edge(0, 3) #G.add_edge(1, 2) #print nx.transitivity(G) #DG = G.to_directed() #print DG.edges() def ReadPajek(filename): '''Read pajek file to construct Graph''' G = nx.Graph() fp = open(filename, 'r') line = fp.readline() while line: if line[0] == '*': line = line.strip().split() #print "line = ", line label = line[0] number = int(line[1]) if label == '*Vertices' or label == '*vertices': NodeNum = number for i in range(NodeNum): NodeLine = fp.readline() NodeLine = NodeLine.strip().split() NodeID = int(NodeLine[0]) NodeLabel = NodeLine[1] G.add_node(NodeID) elif label == '*Edges' or label == '*edges': EdgeNum = number for i in range(EdgeNum): EdgeLine = fp.readline() EdgeLine = EdgeLine.strip().split() u = int(EdgeLine[0]) v = int(EdgeLine[1]) #w = float(EdgeLine[2]) G.add_edge(u, v) else: pass line = fp.readline() fp.close() return G if __name__ == "__main__": """ NOTE: The core effects on controllability on USAir97 is calculated by PAJEK software not using NetworkX """ #G = ReadPajek("dataset/TEST_USAir97.net") M = ReadPajek("dataset/Erdos971_revised.net") G = max(nx.connected_component_subgraphs(M),key=len) N = G.number_of_nodes() L = G.number_of_edges() remove_fraction = 0.20 N_rm = int(N * remove_fraction) nodes = nx.nodes(G) print "Before Removing:\n" print "N = ", N print "L = ", L random.shuffle(nodes) rm_nodes = nodes[0:N_rm] G.remove_nodes_from(rm_nodes) print "\n after removing:" print "N = ", G.number_of_nodes() print "L = ", G.number_of_edges() print "<k> = ", float(2 * G.number_of_edges()) / G.number_of_nodes() avg_deg = UF.average_degree(G); print "<k>: ", avg_deg; avg_bet = UF.average_betweenness_centrality(G); print "<B>: ", avg_bet; #APL = nx.average_shortest_path_length(G) #print "APL: ", APL N_core = nx.core_number(G) core_values = N_core.values() leaves = [x for x in core_values if x <= 1] print "#leaves:", len(leaves) print "#core:", G.number_of_nodes() - len(leaves) print "#core/#N:", (G.number_of_nodes() - len(leaves))/float(G.number_of_nodes())
bsd-2-clause
krischer/wfdiff
doc/convert.py
3
1940
#! /usr/bin/env python """ Convert empty IPython notebook to a sphinx doc page. """ import io import os import sys from IPython.nbformat import current def clean_for_doc(nb): """ Cleans the notebook to be suitable for inclusion in the docs. """ new_cells = [] for cell in nb.worksheets[0].cells: # Remove the pylab inline line. if "input" in cell and cell["input"].strip() == "%pylab inline": continue # Remove output resulting from the stream/trace method chaining. if "outputs" in cell: outputs = [_i for _i in cell["outputs"] if "text" not in _i or not _i["text"].startswith("<obspy.core")] cell["outputs"] = outputs new_cells.append(cell) nb.worksheets[0].cells = new_cells return nb def strip_output(nb): """ strip the outputs from a notebook object """ for cell in nb.worksheets[0].cells: if 'outputs' in cell: cell['outputs'] = [] if 'prompt_number' in cell: cell['prompt_number'] = None return nb def convert_nb(nbname): os.system("runipy --o %s.ipynb --matplotlib --quiet" % nbname) os.system("rm -rf ./index_files") filename = "%s.ipynb" % nbname with io.open(filename, 'r', encoding='utf8') as f: nb = current.read(f, 'json') nb = clean_for_doc(nb) print("Writing to", filename) with io.open(filename, 'w', encoding='utf8') as f: current.write(nb, f, 'json') os.system("ipython nbconvert --to rst %s.ipynb" % nbname) filename = "%s.ipynb" % nbname with io.open(filename, 'r', encoding='utf8') as f: nb = current.read(f, 'json') nb = strip_output(nb) print("Writing to", filename) with io.open(filename, 'w', encoding='utf8') as f: current.write(nb, f, 'json') if __name__ == "__main__": for nbname in sys.argv[1:]: convert_nb(nbname)
gpl-3.0
HeraclesHX/scikit-learn
examples/text/document_classification_20newsgroups.py
222
10500
""" ====================================================== Classification of text documents using sparse features ====================================================== This is an example showing how scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features and demonstrates various classifiers that can efficiently handle sparse matrices. The dataset used in this example is the 20 newsgroups dataset. It will be automatically downloaded, then cached. The bar plot indicates the accuracy, training time (normalized) and test time (normalized) of each classifier. """ # Author: Peter Prettenhofer <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Lars Buitinck <[email protected]> # License: BSD 3 clause from __future__ import print_function import logging import numpy as np from optparse import OptionParser import sys from time import time import matplotlib.pyplot as plt from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_selection import SelectKBest, chi2 from sklearn.linear_model import RidgeClassifier from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.naive_bayes import BernoulliNB, MultinomialNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import NearestCentroid from sklearn.ensemble import RandomForestClassifier from sklearn.utils.extmath import density from sklearn import metrics # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--report", action="store_true", dest="print_report", help="Print a detailed classification report.") op.add_option("--chi2_select", action="store", type="int", dest="select_chi2", help="Select some number of features using a chi-squared test") op.add_option("--confusion_matrix", action="store_true", dest="print_cm", help="Print the confusion matrix.") op.add_option("--top10", action="store_true", dest="print_top10", help="Print ten most discriminative terms per class" " for every classifier.") op.add_option("--all_categories", action="store_true", dest="all_categories", help="Whether to use all categories or not.") op.add_option("--use_hashing", action="store_true", help="Use a hashing vectorizer.") op.add_option("--n_features", action="store", type=int, default=2 ** 16, help="n_features when using the hashing vectorizer.") op.add_option("--filtered", action="store_true", help="Remove newsgroup information that is easily overfit: " "headers, signatures, and quoting.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) print(__doc__) op.print_help() print() ############################################################################### # Load some categories from the training set if opts.all_categories: categories = None else: categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] if opts.filtered: remove = ('headers', 'footers', 'quotes') else: remove = () print("Loading 20 newsgroups dataset for categories:") print(categories if categories else "all") data_train = fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=42, remove=remove) data_test = fetch_20newsgroups(subset='test', categories=categories, shuffle=True, random_state=42, remove=remove) print('data loaded') categories = data_train.target_names # for case categories == None def size_mb(docs): return sum(len(s.encode('utf-8')) for s in docs) / 1e6 data_train_size_mb = size_mb(data_train.data) data_test_size_mb = size_mb(data_test.data) print("%d documents - %0.3fMB (training set)" % ( len(data_train.data), data_train_size_mb)) print("%d documents - %0.3fMB (test set)" % ( len(data_test.data), data_test_size_mb)) print("%d categories" % len(categories)) print() # split a training set and a test set y_train, y_test = data_train.target, data_test.target print("Extracting features from the training data using a sparse vectorizer") t0 = time() if opts.use_hashing: vectorizer = HashingVectorizer(stop_words='english', non_negative=True, n_features=opts.n_features) X_train = vectorizer.transform(data_train.data) else: vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5, stop_words='english') X_train = vectorizer.fit_transform(data_train.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_train_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_train.shape) print() print("Extracting features from the test data using the same vectorizer") t0 = time() X_test = vectorizer.transform(data_test.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_test_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_test.shape) print() # mapping from integer feature name to original token string if opts.use_hashing: feature_names = None else: feature_names = vectorizer.get_feature_names() if opts.select_chi2: print("Extracting %d best features by a chi-squared test" % opts.select_chi2) t0 = time() ch2 = SelectKBest(chi2, k=opts.select_chi2) X_train = ch2.fit_transform(X_train, y_train) X_test = ch2.transform(X_test) if feature_names: # keep selected feature names feature_names = [feature_names[i] for i in ch2.get_support(indices=True)] print("done in %fs" % (time() - t0)) print() if feature_names: feature_names = np.asarray(feature_names) def trim(s): """Trim string to fit on terminal (assuming 80-column display)""" return s if len(s) <= 80 else s[:77] + "..." ############################################################################### # Benchmark classifiers def benchmark(clf): print('_' * 80) print("Training: ") print(clf) t0 = time() clf.fit(X_train, y_train) train_time = time() - t0 print("train time: %0.3fs" % train_time) t0 = time() pred = clf.predict(X_test) test_time = time() - t0 print("test time: %0.3fs" % test_time) score = metrics.accuracy_score(y_test, pred) print("accuracy: %0.3f" % score) if hasattr(clf, 'coef_'): print("dimensionality: %d" % clf.coef_.shape[1]) print("density: %f" % density(clf.coef_)) if opts.print_top10 and feature_names is not None: print("top 10 keywords per class:") for i, category in enumerate(categories): top10 = np.argsort(clf.coef_[i])[-10:] print(trim("%s: %s" % (category, " ".join(feature_names[top10])))) print() if opts.print_report: print("classification report:") print(metrics.classification_report(y_test, pred, target_names=categories)) if opts.print_cm: print("confusion matrix:") print(metrics.confusion_matrix(y_test, pred)) print() clf_descr = str(clf).split('(')[0] return clf_descr, score, train_time, test_time results = [] for clf, name in ( (RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"), (Perceptron(n_iter=50), "Perceptron"), (PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"), (KNeighborsClassifier(n_neighbors=10), "kNN"), (RandomForestClassifier(n_estimators=100), "Random forest")): print('=' * 80) print(name) results.append(benchmark(clf)) for penalty in ["l2", "l1"]: print('=' * 80) print("%s penalty" % penalty.upper()) # Train Liblinear model results.append(benchmark(LinearSVC(loss='l2', penalty=penalty, dual=False, tol=1e-3))) # Train SGD model results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty=penalty))) # Train SGD with Elastic Net penalty print('=' * 80) print("Elastic-Net penalty") results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty="elasticnet"))) # Train NearestCentroid without threshold print('=' * 80) print("NearestCentroid (aka Rocchio classifier)") results.append(benchmark(NearestCentroid())) # Train sparse Naive Bayes classifiers print('=' * 80) print("Naive Bayes") results.append(benchmark(MultinomialNB(alpha=.01))) results.append(benchmark(BernoulliNB(alpha=.01))) print('=' * 80) print("LinearSVC with L1-based feature selection") # The smaller C, the stronger the regularization. # The more regularization, the more sparsity. results.append(benchmark(Pipeline([ ('feature_selection', LinearSVC(penalty="l1", dual=False, tol=1e-3)), ('classification', LinearSVC()) ]))) # make some plots indices = np.arange(len(results)) results = [[x[i] for x in results] for i in range(4)] clf_names, score, training_time, test_time = results training_time = np.array(training_time) / np.max(training_time) test_time = np.array(test_time) / np.max(test_time) plt.figure(figsize=(12, 8)) plt.title("Score") plt.barh(indices, score, .2, label="score", color='r') plt.barh(indices + .3, training_time, .2, label="training time", color='g') plt.barh(indices + .6, test_time, .2, label="test time", color='b') plt.yticks(()) plt.legend(loc='best') plt.subplots_adjust(left=.25) plt.subplots_adjust(top=.95) plt.subplots_adjust(bottom=.05) for i, c in zip(indices, clf_names): plt.text(-.3, i, c) plt.show()
bsd-3-clause
dingocuster/scikit-learn
examples/ensemble/plot_forest_importances_faces.py
403
1519
""" ================================================= Pixel importances with a parallel forest of trees ================================================= This example shows the use of forests of trees to evaluate the importance of the pixels in an image classification task (faces). The hotter the pixel, the more important. The code below also illustrates how the construction and the computation of the predictions can be parallelized within multiple jobs. """ print(__doc__) from time import time import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.ensemble import ExtraTreesClassifier # Number of cores to use to perform parallel fitting of the forest model n_jobs = 1 # Load the faces dataset data = fetch_olivetti_faces() X = data.images.reshape((len(data.images), -1)) y = data.target mask = y < 5 # Limit to 5 classes X = X[mask] y = y[mask] # Build a forest and compute the pixel importances print("Fitting ExtraTreesClassifier on faces data with %d cores..." % n_jobs) t0 = time() forest = ExtraTreesClassifier(n_estimators=1000, max_features=128, n_jobs=n_jobs, random_state=0) forest.fit(X, y) print("done in %0.3fs" % (time() - t0)) importances = forest.feature_importances_ importances = importances.reshape(data.images[0].shape) # Plot pixel importances plt.matshow(importances, cmap=plt.cm.hot) plt.title("Pixel importances with forests of trees") plt.show()
bsd-3-clause
phoebe-project/phoebe2-docs
2.3/tutorials/solver_times.py
2
9274
#!/usr/bin/env python # coding: utf-8 # # Advanced: solver_times # ## Setup # # Let's first make sure we have the latest version of PHOEBE 2.3 installed (uncomment this line if running in an online notebook session such as colab). # In[1]: #!pip install -I "phoebe>=2.3,<2.4" # Let's get started with some basic imports # In[2]: import phoebe import numpy as np import matplotlib.pyplot as plt # And then we'll build a synthetic "dataset" and initialize a new bundle with those data # In[3]: b = phoebe.default_binary() b.add_dataset('lc', times=phoebe.linspace(0,5,1001)) b.add_compute('ellc', compute='ellc01') b.set_value_all('ld_mode', 'lookup') b.run_compute('ellc01') times = b.get_value('times@model') fluxes = b.get_value('fluxes@model') sigmas = np.ones_like(times) * 0.01 b = phoebe.default_binary() b.add_dataset('lc', compute_phases=phoebe.linspace(0,1,101), times=times, fluxes=fluxes, sigmas=sigmas) b.add_compute('ellc', compute='ellc01') b.set_value_all('ld_mode', 'lookup') b.add_solver('optimizer.nelder_mead', compute='ellc01', fit_parameters=['teff'], solver='nm_solver') # ## solver_times parameter and options # In[4]: print(b.filter(qualifier='solver_times')) # In[5]: print(b.get_parameter(qualifier='solver_times', dataset='lc01').choices) # The logic for solver times is generally only used internally within [b.run_solver](../api/phoebe.frontend.bundle.Bundle.run_solver.md) (for optimizers and samplers which require a forward-model to be computed). However, it is useful (in order to diagnose any issues, for example) to be able to see how the combination of `solver_times`, `times`, `compute_times`/`compute_phases`, `mask_enabled`, and `mask_phases` will be interpretted within PHOEBE during [b.run_solver](../api/phoebe.bundle.Bundle.run_solver.md). # # See also: # * [Advanced: mask_phases](./mask_phases.ipynb) # * [Advanced: Compute Times & Phases](./compute_times_phases.ipynb) # # To access the underlying times that would be used, we can call [b.parse_solver_times](../api/phoebe.frontend.bundle.Bundle.parse_solver_times.md). Let's first look at the docstring (also available from the link above): # In[6]: help(b.parse_solver_times) # Additionally, we can pass `solver` to [b.run_compute](../api/phoebe.frontend.bundle.Bundle.run_compute.md) to have the forward-model computed as it would be within the solver itself (this just calls `run_compute` with the compute option referenced by the solver and with the parsed `solver_times`). # # Below we'll go through each of the scenarios listed above and demonstrate how that logic changes the times at which the forward model will be computed within [b.run_solver](../api/phoebe.frontend.bundle.Bundle.run_solver.md) (with the cost-function interpolating between the resulting forward-model and the observations as necessary). # # The messages regarding the internal choice of logic for `solver_times` will be exposed at the 'info' level of the logger. We'll leave that off here to avoid the noise of the logger messages from `run_compute` calls, but you can uncomment the following line to see those messages. # In[7]: #logger = phoebe.logger('info') # ## solver_times = 'times' # ### without phase_mask enabled # In[8]: b.set_value('solver_times', 'times') b.set_value('compute_phases', phoebe.linspace(0,1,101)) b.set_value('mask_enabled', False) b.set_value('dperdt', 0.0) # In[9]: dataset_times = b.get_value('times', context='dataset') _ = plt.plot(times, np.ones_like(times)*1, 'k.') compute_times = b.get_value('compute_times', context='dataset') _ = plt.plot(compute_times, np.ones_like(compute_times)*2, 'b.') solver_times = b.parse_solver_times() print(solver_times) _ = plt.plot(solver_times['lc01'], np.ones_like(solver_times['lc01'])*3, 'g.') # In[10]: b.run_compute(solver='nm_solver') _ = b.plot(show=True) # ### with phase_mask enabled # In[11]: b.set_value('solver_times', 'times') b.set_value('compute_phases', phoebe.linspace(0,1,101)) b.set_value('mask_enabled', True) b.set_value('mask_phases', [(-0.1, 0.1), (0.45,0.55)]) b.set_value('dperdt', 0.0) # In[12]: dataset_times = b.get_value('times', context='dataset') _ = plt.plot(times, np.ones_like(times)*1, 'k.') compute_times = b.get_value('compute_times', context='dataset') _ = plt.plot(compute_times, np.ones_like(compute_times)*2, 'b.') solver_times = b.parse_solver_times() _ = plt.plot(solver_times['lc01'], np.ones_like(solver_times['lc01'])*3, 'g.') # In[13]: b.run_compute(solver='nm_solver') _ = b.plot(show=True) # ## solver_times = 'compute_times' # ### without phase_mask enabled # In[14]: b.set_value('solver_times', 'compute_times') b.set_value('compute_phases', phoebe.linspace(0,1,101)) b.set_value('mask_enabled', False) b.set_value('dperdt', 0.0) # In[15]: dataset_times = b.get_value('times', context='dataset') _ = plt.plot(times, np.ones_like(times)*1, 'k.') compute_times = b.get_value('compute_times', context='dataset') _ = plt.plot(compute_times, np.ones_like(compute_times)*2, 'b.') solver_times = b.parse_solver_times() _ = plt.plot(solver_times['lc01'], np.ones_like(solver_times['lc01'])*3, 'g.') # In[16]: b.run_compute(solver='nm_solver') _ = b.plot(show=True) # ### with phase_mask enabled and time-independent hierarchy # In[17]: b.set_value('solver_times', 'compute_times') b.set_value('compute_phases', phoebe.linspace(0,1,101)) b.set_value('mask_enabled', True) b.set_value('mask_phases', [(-0.1, 0.1), (0.45,0.55)]) b.set_value('dperdt', 0.0) # In[18]: dataset_times = b.get_value('times', context='dataset') _ = plt.plot(times, np.ones_like(times)*1, 'k.') compute_times = b.get_value('compute_times', context='dataset') _ = plt.plot(compute_times, np.ones_like(compute_times)*2, 'b.') solver_times = b.parse_solver_times() _ = plt.plot(solver_times['lc01'], np.ones_like(solver_times['lc01'])*3, 'g.') # In[19]: b.run_compute(solver='nm_solver') _ = b.plot(show=True) # ### with phase_mask enabled and time-dependent hierarchy # In[20]: b.set_value('solver_times', 'compute_times') b.set_value('compute_phases', phoebe.linspace(0,1,101)) b.set_value('mask_enabled', True) b.set_value('mask_phases', [(-0.1, 0.1), (0.45,0.55)]) b.set_value('dperdt', 0.1) print(b.hierarchy.is_time_dependent()) # In the case where we have a time-dependent system [b.run_solver](../api/phoebe.frontend.bundle.Bundle.run_solver.md) will fail with an error from [b.run_checks_solver](../api/phoebe.frontend.bundle.Bundle.run_checks_solver.md) if `compute_times` does not fully encompass the dataset times. # In[21]: print(b.run_checks_solver()) # This will always be the case when providing `compute_phases` when the dataset times cover more than a single cycle. Here we'll follow the advice from the error and provide `compute_times` instead. # In[22]: b.flip_constraint('compute_times', solve_for='compute_phases') b.set_value('compute_times', phoebe.linspace(0,5,501)) # In[23]: print(b.run_checks_solver()) # In[24]: dataset_times = b.get_value('times', context='dataset') _ = plt.plot(times, np.ones_like(times)*1, 'k.') compute_times = b.get_value('compute_times', context='dataset') _ = plt.plot(compute_times, np.ones_like(compute_times)*2, 'b.') solver_times = b.parse_solver_times() _ = plt.plot(solver_times['lc01'], np.ones_like(solver_times['lc01'])*3, 'g.') # In[25]: b.run_compute(solver='nm_solver') _ = b.plot(show=True) # Now we'll just flip the constraint back for the remaining examples # In[26]: _ = b.flip_constraint('compute_phases', solve_for='compute_times') # ## solver_times = 'auto' # # `solver_times='auto'` determines the times array under both conditions (`solver_times='times'` and `solver_times='compute_times'`) and ultimately chooses whichever of the two is shorter. # # To see this, we'll stick with the no-mask, time-independent case and change the length of `compute_phases` to show the switch to the shorter of the available options. # ### compute_times shorter # In[27]: b.set_value('solver_times', 'auto') b.set_value('compute_phases', phoebe.linspace(0,1,101)) b.set_value('mask_enabled', False) b.set_value('dperdt', 0.0) # In[28]: dataset_times = b.get_value('times', context='dataset') _ = plt.plot(times, np.ones_like(times)*1, 'k.') compute_times = b.get_value('compute_times', context='dataset') _ = plt.plot(compute_times, np.ones_like(compute_times)*2, 'b.') solver_times = b.parse_solver_times() _ = plt.plot(solver_times['lc01'], np.ones_like(solver_times['lc01'])*3, 'g.') # In[29]: b.run_compute(solver='nm_solver') _ = b.plot(show=True) # ### times shorter # In[30]: b.set_value('solver_times', 'auto') b.set_value('compute_phases', phoebe.linspace(0,1,2001)) b.set_value('mask_enabled', False) b.set_value('dperdt', 0.0) # In[31]: dataset_times = b.get_value('times', context='dataset') _ = plt.plot(times, np.ones_like(times)*1, 'k.') compute_times = b.get_value('compute_times', context='dataset') _ = plt.plot(compute_times, np.ones_like(compute_times)*2, 'b.') solver_times = b.parse_solver_times() _ = plt.plot(solver_times['lc01'], np.ones_like(solver_times['lc01'])*3, 'g.') # In[32]: b.run_compute(solver='nm_solver') _ = b.plot(show=True)
gpl-3.0
18padx08/PPTex
PPTexEnv_x86_64/lib/python2.7/site-packages/matplotlib/tests/test_delaunay.py
14
7090
from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange import warnings import numpy as np from matplotlib.testing.decorators import image_comparison, knownfailureif from matplotlib.cbook import MatplotlibDeprecationWarning with warnings.catch_warnings(): # the module is deprecated. The tests should be removed when the module is. warnings.simplefilter('ignore', MatplotlibDeprecationWarning) from matplotlib.delaunay.triangulate import Triangulation from matplotlib import pyplot as plt import matplotlib as mpl def constant(x, y): return np.ones(x.shape, x.dtype) constant.title = 'Constant' def xramp(x, y): return x xramp.title = 'X Ramp' def yramp(x, y): return y yramp.title = 'Y Ramp' def exponential(x, y): x = x*9 y = y*9 x1 = x+1.0 x2 = x-2.0 x4 = x-4.0 x7 = x-7.0 y1 = x+1.0 y2 = y-2.0 y3 = y-3.0 y7 = y-7.0 f = (0.75 * np.exp(-(x2*x2+y2*y2)/4.0) + 0.75 * np.exp(-x1*x1/49.0 - y1/10.0) + 0.5 * np.exp(-(x7*x7 + y3*y3)/4.0) - 0.2 * np.exp(-x4*x4 -y7*y7)) return f exponential.title = 'Exponential and Some Gaussians' def cliff(x, y): f = np.tanh(9.0*(y-x) + 1.0)/9.0 return f cliff.title = 'Cliff' def saddle(x, y): f = (1.25 + np.cos(5.4*y))/(6.0 + 6.0*(3*x-1.0)**2) return f saddle.title = 'Saddle' def gentle(x, y): f = np.exp(-5.0625*((x-0.5)**2+(y-0.5)**2))/3.0 return f gentle.title = 'Gentle Peak' def steep(x, y): f = np.exp(-20.25*((x-0.5)**2+(y-0.5)**2))/3.0 return f steep.title = 'Steep Peak' def sphere(x, y): circle = 64-81*((x-0.5)**2 + (y-0.5)**2) f = np.where(circle >= 0, np.sqrt(np.clip(circle,0,100)) - 0.5, 0.0) return f sphere.title = 'Sphere' def trig(x, y): f = 2.0*np.cos(10.0*x)*np.sin(10.0*y) + np.sin(10.0*x*y) return f trig.title = 'Cosines and Sines' def gauss(x, y): x = 5.0-10.0*x y = 5.0-10.0*y g1 = np.exp(-x*x/2) g2 = np.exp(-y*y/2) f = g1 + 0.75*g2*(1 + g1) return f gauss.title = 'Gaussian Peak and Gaussian Ridges' def cloverleaf(x, y): ex = np.exp((10.0-20.0*x)/3.0) ey = np.exp((10.0-20.0*y)/3.0) logitx = 1.0/(1.0+ex) logity = 1.0/(1.0+ey) f = (((20.0/3.0)**3 * ex*ey)**2 * (logitx*logity)**5 * (ex-2.0*logitx)*(ey-2.0*logity)) return f cloverleaf.title = 'Cloverleaf' def cosine_peak(x, y): circle = np.hypot(80*x-40.0, 90*y-45.) f = np.exp(-0.04*circle) * np.cos(0.15*circle) return f cosine_peak.title = 'Cosine Peak' allfuncs = [exponential, cliff, saddle, gentle, steep, sphere, trig, gauss, cloverleaf, cosine_peak] class LinearTester(object): name = 'Linear' def __init__(self, xrange=(0.0, 1.0), yrange=(0.0, 1.0), nrange=101, npoints=250): self.xrange = xrange self.yrange = yrange self.nrange = nrange self.npoints = npoints rng = np.random.RandomState(1234567890) self.x = rng.uniform(xrange[0], xrange[1], size=npoints) self.y = rng.uniform(yrange[0], yrange[1], size=npoints) self.tri = Triangulation(self.x, self.y) def replace_data(self, dataset): self.x = dataset.x self.y = dataset.y self.tri = Triangulation(self.x, self.y) def interpolator(self, func): z = func(self.x, self.y) return self.tri.linear_extrapolator(z, bbox=self.xrange+self.yrange) def plot(self, func, interp=True, plotter='imshow'): if interp: lpi = self.interpolator(func) z = lpi[self.yrange[0]:self.yrange[1]:complex(0,self.nrange), self.xrange[0]:self.xrange[1]:complex(0,self.nrange)] else: y, x = np.mgrid[self.yrange[0]:self.yrange[1]:complex(0,self.nrange), self.xrange[0]:self.xrange[1]:complex(0,self.nrange)] z = func(x, y) z = np.where(np.isinf(z), 0.0, z) extent = (self.xrange[0], self.xrange[1], self.yrange[0], self.yrange[1]) fig = plt.figure() plt.hot() # Some like it hot if plotter == 'imshow': plt.imshow(np.nan_to_num(z), interpolation='nearest', extent=extent, origin='lower') elif plotter == 'contour': Y, X = np.ogrid[self.yrange[0]:self.yrange[1]:complex(0,self.nrange), self.xrange[0]:self.xrange[1]:complex(0,self.nrange)] plt.contour(np.ravel(X), np.ravel(Y), z, 20) x = self.x y = self.y lc = mpl.collections.LineCollection(np.array([((x[i], y[i]), (x[j], y[j])) for i, j in self.tri.edge_db]), colors=[(0,0,0,0.2)]) ax = plt.gca() ax.add_collection(lc) if interp: title = '%s Interpolant' % self.name else: title = 'Reference' if hasattr(func, 'title'): plt.title('%s: %s' % (func.title, title)) else: plt.title(title) class NNTester(LinearTester): name = 'Natural Neighbors' def interpolator(self, func): z = func(self.x, self.y) return self.tri.nn_extrapolator(z, bbox=self.xrange+self.yrange) def make_all_2d_testfuncs(allfuncs=allfuncs): def make_test(func): filenames = [ '%s-%s' % (func.__name__, x) for x in ['ref-img', 'nn-img', 'lin-img', 'ref-con', 'nn-con', 'lin-con']] # We only generate PNGs to save disk space -- we just assume # that any backend differences are caught by other tests. @image_comparison(filenames, extensions=['png'], freetype_version=('2.4.5', '2.4.9'), remove_text=True) def reference_test(): nnt.plot(func, interp=False, plotter='imshow') nnt.plot(func, interp=True, plotter='imshow') lpt.plot(func, interp=True, plotter='imshow') nnt.plot(func, interp=False, plotter='contour') nnt.plot(func, interp=True, plotter='contour') lpt.plot(func, interp=True, plotter='contour') tester = reference_test tester.__name__ = str('test_%s' % func.__name__) return tester nnt = NNTester(npoints=1000) lpt = LinearTester(npoints=1000) for func in allfuncs: globals()['test_%s' % func.__name__] = make_test(func) make_all_2d_testfuncs() # 1d and 0d grid tests ref_interpolator = Triangulation([0,10,10,0], [0,0,10,10]).linear_interpolator([1,10,5,2.0]) def test_1d_grid(): res = ref_interpolator[3:6:2j,1:1:1j] assert np.allclose(res, [[1.6],[1.9]], rtol=0) def test_0d_grid(): res = ref_interpolator[3:3:1j,1:1:1j] assert np.allclose(res, [[1.6]], rtol=0) @image_comparison(baseline_images=['delaunay-1d-interp'], extensions=['png']) def test_1d_plots(): x_range = slice(0.25,9.75,20j) x = np.mgrid[x_range] ax = plt.gca() for y in xrange(2,10,2): plt.plot(x, ref_interpolator[x_range,y:y:1j]) ax.set_xticks([]) ax.set_yticks([])
mit
TomAugspurger/pandas
pandas/tests/series/methods/test_to_timestamp.py
1
2642
from datetime import timedelta import pytest from pandas import PeriodIndex, Series, Timedelta, date_range, period_range, to_datetime import pandas._testing as tm class TestToTimestamp: def test_to_timestamp(self): index = period_range(freq="A", start="1/1/2001", end="12/1/2009") series = Series(1, index=index, name="foo") exp_index = date_range("1/1/2001", end="12/31/2009", freq="A-DEC") result = series.to_timestamp(how="end") exp_index = exp_index + Timedelta(1, "D") - Timedelta(1, "ns") tm.assert_index_equal(result.index, exp_index) assert result.name == "foo" exp_index = date_range("1/1/2001", end="1/1/2009", freq="AS-JAN") result = series.to_timestamp(how="start") tm.assert_index_equal(result.index, exp_index) def _get_with_delta(delta, freq="A-DEC"): return date_range( to_datetime("1/1/2001") + delta, to_datetime("12/31/2009") + delta, freq=freq, ) delta = timedelta(hours=23) result = series.to_timestamp("H", "end") exp_index = _get_with_delta(delta) exp_index = exp_index + Timedelta(1, "h") - Timedelta(1, "ns") tm.assert_index_equal(result.index, exp_index) delta = timedelta(hours=23, minutes=59) result = series.to_timestamp("T", "end") exp_index = _get_with_delta(delta) exp_index = exp_index + Timedelta(1, "m") - Timedelta(1, "ns") tm.assert_index_equal(result.index, exp_index) result = series.to_timestamp("S", "end") delta = timedelta(hours=23, minutes=59, seconds=59) exp_index = _get_with_delta(delta) exp_index = exp_index + Timedelta(1, "s") - Timedelta(1, "ns") tm.assert_index_equal(result.index, exp_index) index = period_range(freq="H", start="1/1/2001", end="1/2/2001") series = Series(1, index=index, name="foo") exp_index = date_range("1/1/2001 00:59:59", end="1/2/2001 00:59:59", freq="H") result = series.to_timestamp(how="end") exp_index = exp_index + Timedelta(1, "s") - Timedelta(1, "ns") tm.assert_index_equal(result.index, exp_index) assert result.name == "foo" def test_to_timestamp_raises(self, indices): # https://github.com/pandas-dev/pandas/issues/33327 index = indices ser = Series(index=index, dtype=object) if not isinstance(index, PeriodIndex): msg = f"unsupported Type {type(index).__name__}" with pytest.raises(TypeError, match=msg): ser.to_timestamp()
bsd-3-clause
pytroll/pyspectral
setup.py
2
3947
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2013-2020 Pytroll # Author(s): # Adam Dybbroe <[email protected]> # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import sys from setuptools import setup, find_packages import os.path try: # HACK: https://github.com/pypa/setuptools_scm/issues/190#issuecomment-351181286 # Stop setuptools_scm from including all repository files import setuptools_scm.integration setuptools_scm.integration.find_files = lambda _: [] except ImportError: pass description = ('Reading and manipulaing satellite sensor spectral responses and the ' 'solar spectrum, to perfom various corrections to VIS and NIR band data') try: with open('./README', 'r') as fd: long_description = fd.read() except IOError: long_description = '' requires = ['docutils>=0.3', 'numpy>=1.5.1', 'scipy>=0.14', 'python-geotiepoints>=1.1.1', 'h5py>=2.5', 'requests', 'six', 'pyyaml', 'appdirs'] dask_extra = ['dask[array]'] test_requires = ['pyyaml', 'dask[array]', 'xlrd', 'pytest', 'xarray'] if sys.version < '3.0': test_requires.append('mock') try: # This is needed in order to let the unittests pass # without complaining at the end on certain systems import multiprocessing except ImportError: pass NAME = 'pyspectral' setup(name=NAME, description=description, author='Adam Dybbroe', author_email='[email protected]', classifiers=['Development Status :: 4 - Beta', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: GNU General Public License v3 ' + 'or later (GPLv3+)', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Scientific/Engineering'], url='https://github.com/pytroll/pyspectral', long_description=long_description, license='GPLv3', packages=find_packages(), include_package_data=True, package_data={ # If any package contains *.txt files, include them: '': ['*.txt', '*.det'], 'pyspectral': [os.path.join('etc', 'pyspectral.yaml'), os.path.join('data', '*.dat'), os.path.join('data', '*.XLS'), 'data/modis/terra/Reference_RSR_Dataset/*.det'], }, # Project should use reStructuredText, so ensure that the docutils get # installed or upgraded on the target machine install_requires=requires, extras_require={'xlrd': ['xlrd'], 'trollsift': ['trollsift'], 'matplotlib': ['matplotlib'], 'pandas': ['pandas'], 'tqdm': ['tqdm'], 'dask': dask_extra}, scripts=['bin/plot_rsr.py', 'bin/composite_rsr_plot.py', 'bin/download_atm_correction_luts.py', 'bin/download_rsr.py'], data_files=[('share', ['pyspectral/data/e490_00a.dat', 'pyspectral/data/MSG_SEVIRI_Spectral_Response_Characterisation.XLS'])], test_suite='pyspectral.tests.suite', tests_require=test_requires, python_requires='>=3.7', zip_safe=False, use_scm_version=True )
gpl-3.0
juhi24/baecc
scripts/2016paper/scr_d0-rho_combined.py
1
4672
# -*- coding: utf-8 -*- """ @author: Jussi Tiira """ import snowfall as sf import read import numpy as np import matplotlib.pyplot as plt from os import path import fit from scipy.special import gamma from scr_snowfall import param_table debug = False savepath = '../results/pip2015' d0_col = 'D_0_gamma' #plt.close('all') plt.ioff() fit_scale = [read.RHO_SCALE,1] # dry and wet snows, from original magono65 = fit.PolFit(params=[20, -2]) # "Fit of data from Magano and Nakamura (1965) for dry snowflakes", fit by Holroyd magono65dry = fit.PolFit(params=[22, -1.5]) holroyd71 = fit.PolFit(params=[170, -1]) # from Brandes # "Used by Schaller et al. (1982) for brightband modeling" from Fabry schaller82 = fit.PolFit(params=[64, -0.65]) # from original muramoto95 = fit.PolFit(params=[48, -0.406]) # "Measurements from Switzerland by Barthazy (1997, personal communication)" from Fabry barthazy97 = fit.PolFit(params=[18, -0.8]) # from Brandes fabry99 = fit.PolFit(params=[150, -1]) # from Brandes heymsfield04 = fit.PolFit(params=[104, -0.95]) brandes07 = fit.PolFit(params=[178, -0.922]) color1 = 'gray' color2 = 'red' fits_to_plot = {#magono65: {'color':color1, 'linestyle':'--', 'label':'Magono and Nakamura (1965)'}, #magono65dry: {'label':'Magono and Nakamura (1965), dry snow'} #holroyd71: {'color':color1, 'linestyle':':', 'label':'Holroyd (1971)'}, #schaller82: {'color':color1, 'linestyle':'-.', 'label':'Schaller et al. (1982)'}, #muramoto95: {'color':color1, 'linestyle':'-', 'label':'Muramoto et al. (1995)'}, #barthazy97: {'color':color, linestyle:'--', 'label':'Barthazy (1997)'}, #fabry99: {'color':color2, 'linestyle':'-', 'label':'Fabry and Szyrmer (1999)'}, #heymsfield04: {'color':color2, 'linestyle':'--', 'label':'Heymsfield et al. (2004)'}, brandes07: {'color':'black', 'linestyle':'--', 'label':'Brandes et al. (2007)'}} def plot_density_histogram(data, bins=60, **kws): ax = data.density.hist(bins=bins, **kws) read.rho_scale(ax.xaxis) ax.set_xlabel('bulk density') ax.set_ylabel('frequency') def prep_d0_rho(data): rho_d0 = fit.PolFit(x=data[d0_col], y=data.density, sigma=1/data['count'], xname='D_0', disp_scale=fit_scale) rho_d0.find_fit(loglog=True) return rho_d0 def prepare_d0_rho(data): rho_d0_cols = ['density',d0_col, 'count'] rho_d0_data = data.loc[:, rho_d0_cols].dropna() rho_d0 = prep_d0_rho(rho_d0_data) rho_d0_baecc = prep_d0_rho(rho_d0_data.loc['first']) rho_d0_1415 = prep_d0_rho(rho_d0_data.loc['second']) return rho_d0, rho_d0_baecc, rho_d0_1415 def plot_d0_rho(data): plotkws = {'x': d0_col, 'y': 'density', 'sizecol': 'count', #'groupby': 'case', #'c': 'case', 'scale': 0.1, 'colorbar': False, 'xlim': [0.5,6], 'ylim': [0,450], 'alpha': 0.5} ax = sf.plot_pairs(data.loc['first'], c=(.6, .6 , .92, .8), label='BAECC', **plotkws) sf.plot_pairs(data.loc['second'], c=(.2, .92, .2, .8), ax=ax, label='winter 2014-2015', **plotkws) plt.tight_layout() rho_d0, rho_d0_baecc, rho_d0_1415 = prepare_d0_rho(data) rho_d0_baecc.plot(ax=ax) rho_d0_1415.plot(ax=ax) rho_d0.plot(ax=ax, color='black', label='all cases: $%s$' % str(rho_d0)) for key, kws in fits_to_plot.items(): key.plot(ax=ax, **kws) read.rho_scale(ax.yaxis) ax.set_ylabel('$\\rho$, ' + read.RHO_UNITS) ax.set_xlabel('$D_0$, mm') ax.set_xticks((0.5, 1, 2, 3, 4, 5, 6)) plt.legend() return ax, rho_d0, rho_d0_baecc, rho_d0_1415 def mass_dim(rho_d0, b_v=0.2): a_d0, b_d0 = rho_d0.params a_d0 = a_d0/1000*10**b_d0 beta = b_d0 + 3 alpha = np.pi/6*3.67**b_d0*a_d0*gamma(b_v+4)/gamma(b_v+b_d0+4) return fit.PolFit(params=(alpha, beta), xname='D') data_fltr = param_table(debug=debug) figkws = {'dpi': 150, 'figsize': (5,5)} #fig = plt.figure(**figkws) #ax = plot_d0_rho(data) fig_fltr = plt.figure(**figkws) ax_fltr, rho_d0, rho_d0_baecc, rho_d0_1415 = plot_d0_rho(data_fltr) m_d = mass_dim(rho_d0) m_d_baecc = mass_dim(rho_d0_baecc) m_d_1415 = mass_dim(rho_d0_1415) if debug: savepath += '/test' paperpath = path.join(savepath, 'paper') read.ensure_dir(paperpath) #fig.savefig(path.join(savepath, 'rho_d0_combined.eps')) fig_fltr.savefig(path.join(savepath, 'rho_d0_combined_d0fltr.eps')) fig_fltr.savefig(path.join(paperpath, 'd0_rho.eps')) fig_fltr.savefig(path.join(paperpath, 'd0_rho.png'))
gpl-3.0
glouppe/scikit-learn
examples/ensemble/plot_gradient_boosting_regression.py
13
2520
""" ============================ Gradient Boosting regression ============================ Demonstrate Gradient Boosting on the Boston housing dataset. This example fits a Gradient Boosting model with least squares loss and 500 regression trees of depth 4. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error ############################################################################### # Load data boston = datasets.load_boston() X, y = shuffle(boston.data, boston.target, random_state=13) X = X.astype(np.float32) offset = int(X.shape[0] * 0.9) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] ############################################################################### # Fit regression model params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 2, 'learning_rate': 0.01, 'loss': 'ls'} clf = ensemble.GradientBoostingRegressor(**params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) print("MSE: %.4f" % mse) ############################################################################### # Plot training deviance # compute test set deviance test_score = np.zeros((params['n_estimators'],), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): test_score[i] = clf.loss_(y_test, y_pred) plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.title('Deviance') plt.plot(np.arange(params['n_estimators']) + 1, clf.train_score_, 'b-', label='Training Set Deviance') plt.plot(np.arange(params['n_estimators']) + 1, test_score, 'r-', label='Test Set Deviance') plt.legend(loc='upper right') plt.xlabel('Boosting Iterations') plt.ylabel('Deviance') ############################################################################### # Plot feature importance feature_importance = clf.feature_importances_ # make importances relative to max importance feature_importance = 100.0 * (feature_importance / feature_importance.max()) sorted_idx = np.argsort(feature_importance) pos = np.arange(sorted_idx.shape[0]) + .5 plt.subplot(1, 2, 2) plt.barh(pos, feature_importance[sorted_idx], align='center') plt.yticks(pos, boston.feature_names[sorted_idx]) plt.xlabel('Relative Importance') plt.title('Variable Importance') plt.show()
bsd-3-clause
Vishluck/sympy
sympy/interactive/session.py
43
15119
"""Tools for setting up interactive sessions. """ from __future__ import print_function, division from distutils.version import LooseVersion as V from sympy.core.compatibility import range from sympy.external import import_module from sympy.interactive.printing import init_printing preexec_source = """\ from __future__ import division from sympy import * x, y, z, t = symbols('x y z t') k, m, n = symbols('k m n', integer=True) f, g, h = symbols('f g h', cls=Function) init_printing() """ verbose_message = """\ These commands were executed: %(source)s Documentation can be found at http://docs.sympy.org/%(version)s """ no_ipython = """\ Couldn't locate IPython. Having IPython installed is greatly recommended. See http://ipython.scipy.org for more details. If you use Debian/Ubuntu, just install the 'ipython' package and start isympy again. """ def _make_message(ipython=True, quiet=False, source=None): """Create a banner for an interactive session. """ from sympy import __version__ as sympy_version from sympy.polys.domains import GROUND_TYPES from sympy.utilities.misc import ARCH from sympy import SYMPY_DEBUG import sys import os python_version = "%d.%d.%d" % sys.version_info[:3] if ipython: shell_name = "IPython" else: shell_name = "Python" info = ['ground types: %s' % GROUND_TYPES] cache = os.getenv('SYMPY_USE_CACHE') if cache is not None and cache.lower() == 'no': info.append('cache: off') if SYMPY_DEBUG: info.append('debugging: on') args = shell_name, sympy_version, python_version, ARCH, ', '.join(info) message = "%s console for SymPy %s (Python %s-%s) (%s)\n" % args if not quiet: if source is None: source = preexec_source _source = "" for line in source.split('\n')[:-1]: if not line: _source += '\n' else: _source += '>>> ' + line + '\n' doc_version = sympy_version if 'dev' in doc_version: doc_version = "dev" else: doc_version = "%s.%s.%s/" % tuple(doc_version.split('.')[:3]) message += '\n' + verbose_message % {'source': _source, 'version': doc_version} return message def int_to_Integer(s): """ Wrap integer literals with Integer. This is based on the decistmt example from http://docs.python.org/library/tokenize.html. Only integer literals are converted. Float literals are left alone. Examples ======== >>> from __future__ import division >>> from sympy.interactive.session import int_to_Integer >>> from sympy import Integer >>> s = '1.2 + 1/2 - 0x12 + a1' >>> int_to_Integer(s) '1.2 +Integer (1 )/Integer (2 )-Integer (0x12 )+a1 ' >>> s = 'print (1/2)' >>> int_to_Integer(s) 'print (Integer (1 )/Integer (2 ))' >>> exec(s) 0.5 >>> exec(int_to_Integer(s)) 1/2 """ from tokenize import generate_tokens, untokenize, NUMBER, NAME, OP from sympy.core.compatibility import StringIO def _is_int(num): """ Returns true if string value num (with token NUMBER) represents an integer. """ # XXX: Is there something in the standard library that will do this? if '.' in num or 'j' in num.lower() or 'e' in num.lower(): return False return True result = [] g = generate_tokens(StringIO(s).readline) # tokenize the string for toknum, tokval, _, _, _ in g: if toknum == NUMBER and _is_int(tokval): # replace NUMBER tokens result.extend([ (NAME, 'Integer'), (OP, '('), (NUMBER, tokval), (OP, ')') ]) else: result.append((toknum, tokval)) return untokenize(result) def enable_automatic_int_sympification(app): """ Allow IPython to automatically convert integer literals to Integer. """ hasshell = hasattr(app, 'shell') import ast if hasshell: old_run_cell = app.shell.run_cell else: old_run_cell = app.run_cell def my_run_cell(cell, *args, **kwargs): try: # Check the cell for syntax errors. This way, the syntax error # will show the original input, not the transformed input. The # downside here is that IPython magic like %timeit will not work # with transformed input (but on the other hand, IPython magic # that doesn't expect transformed input will continue to work). ast.parse(cell) except SyntaxError: pass else: cell = int_to_Integer(cell) old_run_cell(cell, *args, **kwargs) if hasshell: app.shell.run_cell = my_run_cell else: app.run_cell = my_run_cell def enable_automatic_symbols(app): """Allow IPython to automatially create symbols (``isympy -a``). """ # XXX: This should perhaps use tokenize, like int_to_Integer() above. # This would avoid re-executing the code, which can lead to subtle # issues. For example: # # In [1]: a = 1 # # In [2]: for i in range(10): # ...: a += 1 # ...: # # In [3]: a # Out[3]: 11 # # In [4]: a = 1 # # In [5]: for i in range(10): # ...: a += 1 # ...: print b # ...: # b # b # b # b # b # b # b # b # b # b # # In [6]: a # Out[6]: 12 # # Note how the for loop is executed again because `b` was not defined, but `a` # was already incremented once, so the result is that it is incremented # multiple times. import re re_nameerror = re.compile( "name '(?P<symbol>[A-Za-z_][A-Za-z0-9_]*)' is not defined") def _handler(self, etype, value, tb, tb_offset=None): """Handle :exc:`NameError` exception and allow injection of missing symbols. """ if etype is NameError and tb.tb_next and not tb.tb_next.tb_next: match = re_nameerror.match(str(value)) if match is not None: # XXX: Make sure Symbol is in scope. Otherwise you'll get infinite recursion. self.run_cell("%(symbol)s = Symbol('%(symbol)s')" % {'symbol': match.group("symbol")}, store_history=False) try: code = self.user_ns['In'][-1] except (KeyError, IndexError): pass else: self.run_cell(code, store_history=False) return None finally: self.run_cell("del %s" % match.group("symbol"), store_history=False) stb = self.InteractiveTB.structured_traceback( etype, value, tb, tb_offset=tb_offset) self._showtraceback(etype, value, stb) if hasattr(app, 'shell'): app.shell.set_custom_exc((NameError,), _handler) else: # This was restructured in IPython 0.13 app.set_custom_exc((NameError,), _handler) def init_ipython_session(argv=[], auto_symbols=False, auto_int_to_Integer=False): """Construct new IPython session. """ import IPython if V(IPython.__version__) >= '0.11': # use an app to parse the command line, and init config # IPython 1.0 deprecates the frontend module, so we import directly # from the terminal module to prevent a deprecation message from being # shown. if V(IPython.__version__) >= '1.0': from IPython.terminal import ipapp else: from IPython.frontend.terminal import ipapp app = ipapp.TerminalIPythonApp() # don't draw IPython banner during initialization: app.display_banner = False app.initialize(argv) if auto_symbols: readline = import_module("readline") if readline: enable_automatic_symbols(app) if auto_int_to_Integer: enable_automatic_int_sympification(app) return app.shell else: from IPython.Shell import make_IPython return make_IPython(argv) def init_python_session(): """Construct new Python session. """ from code import InteractiveConsole class SymPyConsole(InteractiveConsole): """An interactive console with readline support. """ def __init__(self): InteractiveConsole.__init__(self) try: import readline except ImportError: pass else: import os import atexit readline.parse_and_bind('tab: complete') if hasattr(readline, 'read_history_file'): history = os.path.expanduser('~/.sympy-history') try: readline.read_history_file(history) except IOError: pass atexit.register(readline.write_history_file, history) return SymPyConsole() def init_session(ipython=None, pretty_print=True, order=None, use_unicode=None, use_latex=None, quiet=False, auto_symbols=False, auto_int_to_Integer=False, argv=[]): """ Initialize an embedded IPython or Python session. The IPython session is initiated with the --pylab option, without the numpy imports, so that matplotlib plotting can be interactive. Parameters ========== pretty_print: boolean If True, use pretty_print to stringify; if False, use sstrrepr to stringify. order: string or None There are a few different settings for this parameter: lex (default), which is lexographic order; grlex, which is graded lexographic order; grevlex, which is reversed graded lexographic order; old, which is used for compatibility reasons and for long expressions; None, which sets it to lex. use_unicode: boolean or None If True, use unicode characters; if False, do not use unicode characters. use_latex: boolean or None If True, use latex rendering if IPython GUI's; if False, do not use latex rendering. quiet: boolean If True, init_session will not print messages regarding its status; if False, init_session will print messages regarding its status. auto_symbols: boolean If True, IPython will automatically create symbols for you. If False, it will not. The default is False. auto_int_to_Integer: boolean If True, IPython will automatically wrap int literals with Integer, so that things like 1/2 give Rational(1, 2). If False, it will not. The default is False. ipython: boolean or None If True, printing will initialize for an IPython console; if False, printing will initialize for a normal console; The default is None, which automatically determines whether we are in an ipython instance or not. argv: list of arguments for IPython See sympy.bin.isympy for options that can be used to initialize IPython. See Also ======== sympy.interactive.printing.init_printing: for examples and the rest of the parameters. Examples ======== >>> from sympy import init_session, Symbol, sin, sqrt >>> sin(x) #doctest: +SKIP NameError: name 'x' is not defined >>> init_session() #doctest: +SKIP >>> sin(x) #doctest: +SKIP sin(x) >>> sqrt(5) #doctest: +SKIP ___ \/ 5 >>> init_session(pretty_print=False) #doctest: +SKIP >>> sqrt(5) #doctest: +SKIP sqrt(5) >>> y + x + y**2 + x**2 #doctest: +SKIP x**2 + x + y**2 + y >>> init_session(order='grlex') #doctest: +SKIP >>> y + x + y**2 + x**2 #doctest: +SKIP x**2 + y**2 + x + y >>> init_session(order='grevlex') #doctest: +SKIP >>> y * x**2 + x * y**2 #doctest: +SKIP x**2*y + x*y**2 >>> init_session(order='old') #doctest: +SKIP >>> x**2 + y**2 + x + y #doctest: +SKIP x + y + x**2 + y**2 >>> theta = Symbol('theta') #doctest: +SKIP >>> theta #doctest: +SKIP theta >>> init_session(use_unicode=True) #doctest: +SKIP >>> theta # doctest: +SKIP \u03b8 """ import sys in_ipython = False if ipython is not False: try: import IPython except ImportError: if ipython is True: raise RuntimeError("IPython is not available on this system") ip = None else: if V(IPython.__version__) >= '0.11': try: ip = get_ipython() except NameError: ip = None else: ip = IPython.ipapi.get() if ip: ip = ip.IP in_ipython = bool(ip) if ipython is None: ipython = in_ipython if ipython is False: ip = init_python_session() mainloop = ip.interact else: if ip is None: ip = init_ipython_session(argv=argv, auto_symbols=auto_symbols, auto_int_to_Integer=auto_int_to_Integer) if V(IPython.__version__) >= '0.11': # runsource is gone, use run_cell instead, which doesn't # take a symbol arg. The second arg is `store_history`, # and False means don't add the line to IPython's history. ip.runsource = lambda src, symbol='exec': ip.run_cell(src, False) #Enable interactive plotting using pylab. try: ip.enable_pylab(import_all=False) except Exception: # Causes an import error if matplotlib is not installed. # Causes other errors (depending on the backend) if there # is no display, or if there is some problem in the # backend, so we have a bare "except Exception" here pass if not in_ipython: mainloop = ip.mainloop readline = import_module("readline") if auto_symbols and (not ipython or V(IPython.__version__) < '0.11' or not readline): raise RuntimeError("automatic construction of symbols is possible only in IPython 0.11 or above with readline support") if auto_int_to_Integer and (not ipython or V(IPython.__version__) < '0.11'): raise RuntimeError("automatic int to Integer transformation is possible only in IPython 0.11 or above") _preexec_source = preexec_source ip.runsource(_preexec_source, symbol='exec') init_printing(pretty_print=pretty_print, order=order, use_unicode=use_unicode, use_latex=use_latex, ip=ip) message = _make_message(ipython, quiet, _preexec_source) if not in_ipython: mainloop(message) sys.exit('Exiting ...') else: ip.write(message) import atexit atexit.register(lambda ip: ip.write("Exiting ...\n"), ip)
bsd-3-clause
LunarLanding/Pythics
pythics/mpl.py
1
70449
# -*- coding: utf-8 -*- # # Copyright 2008 - 2014 Brian R. D'Urso # # This file is part of Python Instrument Control System, also known as Pythics. # # Pythics is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Pythics is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Pythics. If not, see <http://www.gnu.org/licenses/>. # # # load libraries # import multiprocessing import numpy as np #from PyQt4 import QtCore, QtGui from pythics.settings import _TRY_PYSIDE try: if not _TRY_PYSIDE: raise ImportError() import PySide.QtCore as _QtCore import PySide.QtGui as _QtGui QtCore = _QtCore QtGui = _QtGui USES_PYSIDE = True except ImportError: import sip sip.setapi('QString', 2) sip.setapi('QVariant', 2) import PyQt4.QtCore as _QtCore import PyQt4.QtGui as _QtGui QtCore = _QtCore QtGui = _QtGui USES_PYSIDE = False import matplotlib if USES_PYSIDE: matplotlib.rcParams['backend.qt4']='PySide' from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4agg import NavigationToolbar2QTAgg as Toolbar # the following import is necessary for 3-D plots in matplotlib although it is # not directly used from mpl_toolkits.mplot3d import Axes3D import pythics.lib import pythics.libcontrol class Canvas(pythics.libcontrol.MPLControl): """Gives essentially complete acess to the matplotlib object oriented (OO) API. Use this control when Plot2D and Chart2D don't give all the features you need. All interaction with this control, except configuring the callbacks, is done through the following three attributes: - mpl.Canvas.figure: the matplotlib Figure - mpl.Canvas.canvas: The matplotlib FigureCanvas. - mpl.Canvas.toolbar: The matplotlib Toolbar (NavigationToolbar2QTAgg). If you need access to the matplotlib library, use the Import control. See the examples and matplotlib documentation for details. Configuration of the callback functions (if needed) can be done through html parameters or python attributes. HTML parameters: *toolbar*: [ *True* (default) | *False* ] Whether to add a matplotlib toolbar below the plot. *actions*: dict a dictionarly of key:value pairs where the key is the name of a signal and value is the function to run when the signal is emitted actions in this control: ======================= ============================================ signal when emitted ======================= ============================================ 'button_press_event' a mouse button is pressed 'button_release_event' a mouse button is released 'draw_event' canvas is redrawn 'key_press_event' a key is pressed 'key_release_event' a key is released 'motion_notify_event' the mouse is moved 'pick_event' an object in the canvas is selected 'resize_event' the figure canvas is resized 'scroll_event' the mouse scroll wheel is rolled 'figure_enter_event' the mouse enters a new figure 'figure_leave_event' the mouse leaves a figure 'axes_enter_event' the mouse enters a new axes 'axes_leave_event' the mouse leaves an axe ======================= ============================================ """ def __init__(self, parent, toolbar=True, **kwargs): pythics.libcontrol.MPLControl.__init__(self, parent, **kwargs) self._widget = QtGui.QFrame() vbox = QtGui.QVBoxLayout() # plot self.figure = matplotlib.figure.Figure() self.canvas = FigureCanvas(self.figure) vbox.addWidget(self.canvas) # toolbar if toolbar: self.toolbar = Toolbar(self.canvas, self._widget) vbox.addWidget(self.toolbar) self._mpl_widget = self.canvas self._widget.setLayout(vbox) # # Plot2D: plot panel with multiple plot types # class Plot2D(pythics.libcontrol.MPLControl): """An easy to use plotting control for 2-dimensional plotting. Right click on the plot to save an image of the plot to a file. HTML parameters: *projection*: [ 'cartesian' (default) | 'polar' ] Set to polar for polar plots (not all plot items supported). *actions*: dict a dictionarly of key:value pairs where the key is the name of a signal and value is the function to run when the signal is emitted actions in this control: ======================= ============================================ signal when emitted ======================= ============================================ 'button_press_event' a mouse button is pressed 'button_release_event' a mouse button is released 'draw_event' canvas is redrawn 'key_press_event' a key is pressed 'key_release_event' a key is released 'motion_notify_event' the mouse is moved 'pick_event' an object in the canvas is selected 'resize_event' the figure canvas is resized 'scroll_event' the mouse scroll wheel is rolled 'figure_enter_event' the mouse enters a new figure 'figure_leave_event' the mouse leaves a figure 'axes_enter_event' the mouse enters a new axes 'axes_leave_event' the mouse leaves an axe ======================= ============================================ """ def __init__(self, parent, projection='cartesian', **kwargs): pythics.libcontrol.MPLControl.__init__(self, parent, **kwargs) self._animated = False self._animated_artists = list() self._x_autoscale = True self._y_autoscale = True self._tight_autoscale = False # dictionary of plot objects such as lines, points, etc. self._items = dict() # use modified matplotlib canvas to redraw correctly on resize self._figure = matplotlib.figure.Figure() self._canvas = PythicsMPLCanvas(self, self._figure) self._widget = self._canvas self._mpl_widget = self._canvas if projection == 'polar': self._axes = self._figure.add_subplot(111, polar=True) self._polar = True else: self._axes = self._figure.add_subplot(111) self._polar = False # set_tight_layout doesn't seem to exist, so set tight_layout directly #self._figure.set_tight_layout(True) self._figure.tight_layout() # set plot parameters from parameters passed in html self._plot_properties = dict() self.set_plot_properties(x_limits='auto', y_limits='auto', tight_autoscale=False, x_scale='linear', y_scale='linear', aspect_ratio='auto', dpi=150) # should have resize event handler to redraw correctly, # but it doesn't seem to work - instead we use custom plot canvas #self._canvas.mpl_connect('resize_event', self._resize) def _resize(self, event): if self._animated: self._full_animated_redraw() else: self._figure.tight_layout() def _redraw(self): # blit entire figure after tab change to eliminate drawing artifacts if self._animated: self._canvas.blit(self._figure.bbox) def _update(self, rescale='auto'): if self._animated: if rescale == 'auto': if self._x_autoscale or self._y_autoscale: self._full_animated_redraw() else: self._fast_animated_redraw() elif rescale == True: self._full_animated_redraw() else: self._fast_animated_redraw() else: if rescale == 'auto': if self._x_autoscale or self._y_autoscale: self._axes.relim() self._axes.autoscale_view(self._tight_autoscale, self._x_autoscale, self._y_autoscale) self._figure.tight_layout() self._canvas.draw() else: self._canvas.draw() elif rescale == True: self._axes.relim() self._axes.autoscale_view(self._tight_autoscale, self._x_autoscale, self._y_autoscale) self._figure.tight_layout() self._canvas.draw() else: self._canvas.draw() def _fast_animated_redraw(self): self._canvas.restore_region(self._animated_background) for k in self._animated_artists: self._axes.draw_artist(self._items[k]['mpl_item']) # just redraw the region within the axes self._canvas.blit(self._axes.bbox) def _full_animated_redraw(self): self._axes.relim() self._axes.autoscale_view(self._tight_autoscale, self._x_autoscale, self._y_autoscale) self._figure.tight_layout() self._canvas.draw() # update animation background artists self._animated_background = self._canvas.copy_from_bbox(self._axes.bbox) for k in self._animated_artists: self._axes.draw_artist(self._items[k]['mpl_item']) # blit entire canvas to ensure complete update self._canvas.blit(self._figure.bbox) #--------------------------------------------------- # methods below used only for access by action proxy def clear(self, redraw=True, rescale='auto'): """Delete all plot items to clear the plot. Optional keyword arguments: *redraw*: [ *True* (default) | *False* ] Whether to redraw the plot after applying changes. *rescale*: [ 'auto' (default) | *True* | *False* ] Whether to rescale the plot. If 'auto', then only rescale if needed. """ self._axes.clear() self._items = dict() self._animated_artists = list() self._animated = False if redraw: self._update(rescale) def new_curve(self, key, memory='array', length=1000, **kwargs): """Create a new curve or set of points on the plot. Arguments: *key*: str The name you give to this plot item for future access. Optional keyword arguments: *memory*: [ 'array' (default) | 'circular' | 'growable' ] Format for plot item data storage which determines how future updates to the data can be made. *length*: int if *memory* == 'circular': The number of elements in the circular array. if *memory* == 'growable': The initial number of elements in the array. *animated*: [ *True* | *False* (default) ] If *True*, try to redraw this item without redrawing the whole plot whenever it is updated. This is generally faster if the axes do not need to be rescaled, and thus is recommended for plot items that are changed frequently. *alpha*: ``0 <= scalar <= 1`` The alpha value for the curve. 0.0 is transparent and 1.0 is opaque. *line_color*: any valid color, see more information below The color used for drawing lines between points. *line_style*: [ '-' | '--' | '-.' | ':' | '' ] The following format string characters are accepted to control the line style: ================ =============================== character description ================ =============================== ``'-'`` solid line style (default) ``'--'`` dashed line style ``'-.'`` dash-dot line style ``':'`` dotted line style ``''`` no line ================ =============================== *line_width*: float value in points The width of lines between points. *marker_color*: any valid color, see more information below The fill color of markers drawn at the specified points. *marker_edge_color*: any valid color, see more information below The color of the edges of markers or of the whole marker if the marker consists of lines only. *marker_edge_width*: float value in points The width of the edges of markers or of the lines if the marker consists of lines only. *marker_style*: any valid marker style, see table below The shape of the markers drawn. The following format string characters are accepted to control the marker style: ============================== =============================== Value Description ============================== =============================== ``''`` no marker (default) ``'.'`` point marker ``','`` pixel marker ``'o'`` circle marker ``'v'`` triangle_down marker ``'^'`` triangle_up marker ``'<'`` triangle_left marker ``'>'`` triangle_right marker ``'1'`` tri_down marker ``'2'`` tri_up marker ``'3'`` tri_left marker ``'4'`` tri_right marker ``'s'`` square marker ``'p'`` pentagon marker ``'*'`` star marker ``'h'`` hexagon1 marker ``'H'`` hexagon2 marker ``'+'`` plus marker ``'x'`` x marker ``'D'`` diamond marker ``'d'`` thin_diamond marker ``'|'`` vline marker ``'_'`` hline marker (*numsides*, *style*, *angle*) see below ============================== =============================== The marker can also be a tuple (*numsides*, *style*, *angle*), which will create a custom, regular symbol. *numsides*: the number of sides *style*: the style of the regular symbol: ===== ============================================= Value Description ===== ============================================= 0 a regular polygon 1 a star-like symbol 2 an asterisk 3 a circle (*numsides* and *angle* is ignored) ===== ============================================= *angle*: the angle of rotation of the symbol *marker_width*: float value in points The overall size of the markers draw at the data points. Colors: The following color abbreviations are supported: ===== ======= Value Color ===== ======= 'b' blue 'g' green 'r' red 'c' cyan 'm' magenta 'y' yellow 'k' black 'w' white ===== ======= In addition, you can specify colors in many other ways, including full names (``'green'``), hex strings (``'#008000'``), RGB or RGBA tuples (``(0,1,0,1)``) or grayscale intensities as a string (``'0.8'``). """ plot_kwargs = dict() if 'alpha' in kwargs: value = kwargs.pop('alpha') plot_kwargs['alpha'] = value if 'line_color' in kwargs: value = kwargs.pop('line_color') plot_kwargs['color'] = value if 'line_style' in kwargs: value = kwargs.pop('line_style') plot_kwargs['linestyle'] = value if 'line_width' in kwargs: value = kwargs.pop('line_width') plot_kwargs['linewidth'] = value if 'marker_color' in kwargs: value = kwargs.pop('marker_color') plot_kwargs['markerfacecolor'] = value if 'marker_edge_color' in kwargs: value = kwargs.pop('marker_edge_color') plot_kwargs['markeredgecolor'] = value if 'marker_edge_width' in kwargs: value = kwargs.pop('marker_edge_width') plot_kwargs['markeredgewidth'] = value if 'marker_style' in kwargs: value = kwargs.pop('marker_style') plot_kwargs['marker'] = value if 'marker_width' in kwargs: value = kwargs.pop('marker_width') plot_kwargs['markersize'] = value # check for an old plot item of the same name if key in self._items: item = self._items.pop(key) item['mpl_item'].remove() # create the plot item if memory == 'circular': data = pythics.lib.CircularArray(cols=2, length=length) elif memory == 'growable': data = pythics.lib.GrowableArray(cols=2, length=length) else: data = np.array([]) if ('animated' in kwargs) and kwargs.pop('animated'): self._animated = True item, = self._axes.plot(np.array([]), np.array([]), animated=True, label=key, **plot_kwargs) if len(self._animated_artists) == 0: # this is the first animated artist, so we need to set up self._animated_background = self._canvas.copy_from_bbox(self._axes.bbox) self._animated_artists.append(key) else: item, = self._axes.plot(np.array([]), np.array([]), label=key, **plot_kwargs) self._items[key] = dict(item_type='curve', mpl_item=item, data=data, memory=memory) if len(kwargs) != 0: logger = multiprocessing.get_logger() logger.warning("Unused arguments in 'new_curve': %s." % str(kwargs)) def new_image(self, key, **kwargs): """Create a new image item on the plot. Arguments: *key*: str The name you give to this plot item for future access. Optional keyword arguments: *animated*: [ *True* | *False* (default) ] If *True*, try to redraw this item without redrawing the whole plot whenever it is updated. This is generally faster if the axes do not need to be rescaled, and thus is recommended for plot items that are changed frequently. *alpha*: ``0 <= scalar <= 1`` The alpha value for the image. 0.0 is transparent and 1.0 is opaque. *extent*: [ *None* (default) | scalars (left, right, bottom, top) ] Data limits for the axes. The default assigns zero-based row, column indices to the x, y centers of the pixels. *interpolation*: str Acceptable values are 'none', 'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos' *origin*: [ None | 'upper' | 'lower' ] Place the [0,0] index of the array in the upper left or lower left corner of the axes. *colormap*: str The name of a matplotlib colormap for mapping the data value to the displayed color at each point. *colormap* is ignored when *data* has RGB(A) information *c_limits*: [ 'auto' (default) | scalars (vmin, vmax) ] Data limits for the colormap. """ # create a new dictionary of options for plotting plot_kwargs = dict() if 'alpha' in kwargs: value = kwargs.pop('alpha') plot_kwargs['alpha'] = value if 'extent' in kwargs: value = kwargs.pop('extent') plot_kwargs['extent'] = value if 'interpolation' in kwargs: value = kwargs.pop('interpolation') plot_kwargs['interpolation'] = value if 'origin' in kwargs: value = kwargs.pop('origin') plot_kwargs['origin'] = value if 'colormap' in kwargs: value = kwargs.pop('colormap') plot_kwargs['cmap'] = value if 'c_limits' in kwargs: value = kwargs.pop('c_limits') if value != 'auto': plot_kwargs['vmin'] = value[0] plot_kwargs['vmax'] = value[1] # check for an old plot item of the same name if key in self._items: item = self._items.pop(key) item['mpl_item'].remove() # create the plot item data = np.array([[0]]) #if self._polar: # # THIS DOESN'T WORK?? if ('animated' in kwargs) and kwargs.pop('animated'): self._animated = True item = self._axes.imshow(data, animated=True, label=key, aspect=self._plot_properties['aspect_ratio'], **plot_kwargs) if len(self._animated_artists) == 0: # this is the first animated artist, so we need to set up self._animated_background = self._canvas.copy_from_bbox(self._axes.bbox) self._animated_artists.append(key) else: item = self._axes.imshow(data, label=key, aspect=self._plot_properties['aspect_ratio'], **plot_kwargs) self._items[key] = dict(item_type='image', mpl_item=item, shape=(1, 1)) if len(kwargs) != 0: logger = multiprocessing.get_logger() logger.warning("Unused arguments in 'new_image': %s." % str(kwargs)) def new_colormesh(self, key, X, Y, **kwargs): """Create a new pseudocolor mesh item on the plot. Arguments: *key*: str The name you give to this plot item for future access. *X*: str The x coordinates of the colored quadrilaterals. *numpy.meshgrid()* may be helpful for making this. *Y*: str The x coordinates of the colored quadrilaterals. *numpy.meshgrid()* may be helpful for making this. Optional keyword arguments: *animated*: [ *True* | *False* (default) ] If *True*, try to redraw this item without redrawing the whole plot whenever it is updated. This is generally faster if the axes do not need to be rescaled, and thus is recommended for plot items that are changed frequently. *alpha*: ``0 <= scalar <= 1`` The alpha value for the image. 0.0 is transparent and 1.0 is opaque. *extent*: [ *None* (default) | scalars (left, right, bottom, top) ] Data limits for the axes. The default assigns zero-based row, column indices to the x, y centers of the pixels. *interpolation*: str Acceptable values are 'none', 'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos' *colormap*: str The name of a matplotlib colormap for mapping the data value to the displayed color at each point. *colormap* is ignored when *data* has RGB(A) information *c_limits*: [ 'auto' (default) | scalars (vmin, vmax) ] Data limits for the colormap. """ # create a new dictionary of options for plotting plot_kwargs = dict() if 'alpha' in kwargs: value = kwargs.pop('alpha') plot_kwargs['alpha'] = value if 'extent' in kwargs: value = kwargs.pop('extent') plot_kwargs['extent'] = value if 'interpolation' in kwargs: value = kwargs.pop('interpolation') plot_kwargs['interpolation'] = value if 'colormap' in kwargs: value = kwargs.pop('colormap') plot_kwargs['cmap'] = value if 'c_limits' in kwargs: value = kwargs.pop('c_limits') if value != 'auto': plot_kwargs['clim'] = value # check for an old plot item of the same name if key in self._items: item = self._items.pop(key) item['mpl_item'].remove() # create the plot item x_len, y_len = X.shape zs = np.zeros((x_len-1, y_len-1)) if ('animated' in kwargs) and kwargs.pop('animated'): self._animated = True item = self._axes.pcolor(X, Y, zs, animated=True, label=key, **plot_kwargs) if len(self._animated_artists) == 0: # this is the first animated artist, so we need to set up self._animated_background = self._canvas.copy_from_bbox(self._axes.bbox) self._animated_artists.append(key) else: item = self._axes.pcolor(X, Y, zs, label=key, **plot_kwargs) #self._axes.pcolormesh(X, Y, zs) #self._axes.pcolor(X, Y, zs) #self._axes.pcolorfast(X, Y, zs) self._items[key] = dict(item_type='colormesh', mpl_item=item) if len(kwargs) != 0: logger = multiprocessing.get_logger() logger.warning("Unused arguments in 'new_colormesh': %s." % str(kwargs)) def delete(self, key, redraw=True, rescale='auto'): """Delete a plot item. Arguments: *key*: str The name you gave to the plot item when it was created. Optional keyword arguments: *redraw*: [ *True* (default) | *False* ] Whether to redraw the plot after applying changes. *rescale*: [ 'auto' (default) | *True* | *False* ] Whether to rescale the plot. If 'auto', then only rescale if needed. """ item = self._items.pop(key) item['mpl_item'].remove() if redraw: self._update(rescale) def clear_data(self, key, redraw=True, rescale='auto'): """Delete all the data of a plot item. Arguments: *key*: str The name you gave to the plot item when it was created. Optional keyword arguments: *redraw*: [ *True* (default) | *False* ] Whether to redraw the plot after applying changes. *rescale*: [ 'auto' (default) | *True* | *False* ] Whether to rescale the plot. If 'auto', then only rescale if needed. """ item_value = self._items[key] if item_value['item_type'] == 'curve': item = item_value['mpl_item'] memory = item_value['memory'] old_data = item_value['data'] if memory == 'circular' or memory == 'growable': old_data.clear() item.set_data(np.array([]), np.array([])) else: item.set_data(np.array([]), np.array([])) if redraw: self._update(rescale) def set_data(self, key, data, redraw=True, rescale='auto'): """Change the data of a plot item. Arguments: *key*: str The name you gave to the plot item when it was created. *data*: two-dimensional numpy array, list, or tuple or a PIL image The new data to be assigned to the plot item. For curves, *data* should be a series of points of the form ((x1, y1), (x2, y2), ...). For images, *data* should be a two dimensional float array, a uint8 array or a PIL image. If *data* is an array, *data* can have the following shapes: * MxN -- luminance (grayscale, float array only) * MxNx3 -- RGB (float or uint8 array) * MxNx4 -- RGBA (float or uint8 array) The value for each component of MxNx3 and MxNx4 float arrays should be in the range 0.0 to 1.0; MxN float arrays may be normalized. For colormeshes, *data* is a 2-D array, and the dimensions of *X* and *Y* should be one greater than those of *data*. Optional keyword arguments: *redraw*: [ *True* (default) | *False* ] Whether to redraw the plot after applying changes. *rescale*: [ 'auto' (default) | *True* | *False* ] Whether to rescale the plot. If 'auto', then only rescale if needed. """ item_value = self._items[key] if item_value['item_type'] == 'curve': # convert the appended object to an array # if it starts as something else if type(data) is not np.ndarray: data = np.array(data) if data.ndim != 2: raise ValueError("'data' must be a two-dimensional array.") item = item_value['mpl_item'] memory = item_value['memory'] old_data = item_value['data'] if memory == 'circular' or memory == 'growable': old_data.clear() old_data.append(data) item.set_data(old_data[:,0], old_data[:,1]) else: item.set_data(data[:,0], data[:,1]) if redraw: if self._animated: if rescale or (key not in self._animated_artists): force_rescale = True else: force_rescale = False if self._x_autoscale: axis_min, axis_max = self._axes.get_xlim() data_min = data[:,0].min() data_max = data[:,0].max() if (data_min < axis_min) or (data_max > axis_max) or (data_max-data_min < 0.5*(axis_max-axis_min)): force_rescale = True if self._y_autoscale: axis_min, axis_max = self._axes.get_ylim() data_min = data[:,1].min() data_max = data[:,1].max() if (data_min < axis_min) or (data_max > axis_max) or (data_max-data_min < 0.5*(axis_max-axis_min)): force_rescale = True if force_rescale: # full update self._full_animated_redraw() else: # only need to update and blit the axes region self._fast_animated_redraw() else: if rescale or ((self._x_autoscale or self._y_autoscale) and (rescale == 'auto')): self._axes.relim() self._axes.autoscale_view(self._tight_autoscale, self._x_autoscale, self._y_autoscale) self._figure.tight_layout() self._canvas.draw() else: self._canvas.draw() elif item_value['item_type'] == 'image': if data.ndim != 2: raise ValueError("'data' must be a two-dimensional array.") item = item_value['mpl_item'] shape = item_value['shape'] item.set_data(data) if self._animated: #if rescale or (data.shape[0] != shape) or (data.shape[1] != shape): # self._axes.relim() # item.autoscale() #self._full_animated_redraw() # PROBLEMS WITH VIEW RANGE IN ABOVE CODE # BELOW WORKS BUT IS STILL NOT EFFICIENT # SHOULD REWRITE FOR SPEED if rescale or (data.shape[0] != shape) or (data.shape[1] != shape): self._axes.relim() item.autoscale() self._figure.tight_layout() self._canvas.draw() # update animation background artists self._animated_background = self._canvas.copy_from_bbox(self._axes.bbox) for k in self._animated_artists: self._axes.draw_artist(self._items[k]['mpl_item']) # blit entire canvas to ensure complete update self._canvas.blit(self._figure.bbox) else: self._axes.relim() item.autoscale() self._figure.tight_layout() self._canvas.draw() elif item_value['item_type'] == 'colormesh': item = item_value['mpl_item'] item.set_array(data.ravel()) item.autoscale() if self._animated: if rescale: self._axes.relim() item.autoscale() self._full_animated_redraw() else: self._axes.relim() item.autoscale() self._figure.tight_layout() self._canvas.draw() def append_data(self, key, data, redraw=True, rescale='auto'): """Append data to a plot item. Only works with curves which were created with *memory* = 'circular' or *memory* = 'growable'. Arguments: *key*: str The name you gave to the plot item when it was created. *data*: one or two-dimensional numpy array, list, or tuple The new data to be appended to the previous data of the plot item. *data* should be a single point of the form (x, y) or a series of points of the form ((x1, y1), (x2, y2), ...). Keyword arguments: *redraw*: [ *True* (default) | *False* ] Whether to redraw the plot after applying changes. *rescale*: [ 'auto' (default) | *True* | *False* ] Whether to rescale the plot. If 'auto', then only rescale if needed. """ item_value = self._items[key] if item_value['item_type'] == 'curve': # convert the appended object to an array if it starts as something else if type(data) is not np.ndarray: data = np.array(data) if data.ndim == 1: data = np.array([data]) item = item_value['mpl_item'] memory = item_value['memory'] old_data = item_value['data'] old_data_length = len(old_data) if memory == 'circular' or memory == 'growable': old_data.append(data) item.set_data(old_data[:,0], old_data[:,1]) else: raise ValueError("Cannot append to curve item with memory == '%s'." % memory) if redraw: if self._animated: if rescale == True or (key not in self._animated_artists): force_rescale = True elif rescale == False: force_rescale = False else: force_rescale = False if self._x_autoscale: if old_data_length < 2: # there may not have been enough to set the scale before force_rescale = True else: axis_min, axis_max = self._axes.get_xlim() data_min = data[:,0].min() data_max = data[:,0].max() if (data_min < axis_min) or (data_max > axis_max): force_rescale = True if self._y_autoscale: if old_data_length < 2: # there may not have been enough to set the scale before force_rescale = True else: axis_min, axis_max = self._axes.get_ylim() data_min = data[:,1].min() data_max = data[:,1].max() if (data_min < axis_min) or (data_max > axis_max): force_rescale = True if force_rescale: # full update self._full_animated_redraw() else: # only need to update and blit the axes region self._fast_animated_redraw() else: if self._x_autoscale or self._y_autoscale: self._axes.relim() self._axes.autoscale_view(self._tight_autoscale, self._x_autoscale, self._y_autoscale) self._figure.tight_layout() self._canvas.draw() else: self._canvas.draw() else: raise ValueError("Cannot append to plot item type '%s'." % item_value['item_type']) def set_properties(self, key, redraw=True, rescale='auto', **kwargs): """Set the graphical properties of a plot item. Arguments: *key*: str The name you gave to the plot item when it was created. Optional keyword arguments: Any of the the keyword arguments describing the graphical representation of the plot item that can be given when the item is created. *redraw*: [ *True* (default) | *False* ] Whether to redraw the plot after applying changes. *rescale*: [ 'auto' (default) | *True* | *False* ] Whether to rescale the plot. If 'auto', then only rescale if needed. """ item_value = self._items[key] if item_value['item_type'] == 'curve': item = item_value['mpl_item'] if 'alpha' in kwargs: value = kwargs.pop('alpha') item.set_alpha(value) if 'line_color' in kwargs: value = kwargs.pop('line_color') item.set_color(value) if 'line_style' in kwargs: value = kwargs.pop('line_style') item.set_linestyle(value) if 'line_width' in kwargs: value = kwargs.pop('line_width') item.set_linewidth(value) if 'marker_color' in kwargs: value = kwargs.pop('marker_color') item.set_markerfacecolor(value) if 'marker_edge_color' in kwargs: value = kwargs.pop('marker_edge_color') item.set_markeredgecolor(value) if 'marker_edge_width' in kwargs: value = kwargs.pop('marker_edge_width') item.set_markeredgewidth(value) if 'marker_style' in kwargs: value = kwargs.pop('marker_style') item.set_marker(value) if 'marker_width' in kwargs: value = kwargs.pop('marker_width') item.set_markersize(value) elif item_value['item_type'] == 'image': item = item_value['mpl_item'] if 'c_limits' in kwargs: value = kwargs.pop('c_limits') item.set_clim(value[0], value[1]) elif item_value['item_type'] == 'colormesh': item = item_value['mpl_item'] if 'c_limits' in kwargs: value = kwargs.pop('c_limits') item.set_clim(value[0], value[1]) if len(kwargs) != 0: logger = multiprocessing.get_logger() logger.warning("Unused arguments in 'set_properties': %s." % str(kwargs)) if redraw: self._update(rescale) def set_plot_properties(self, redraw=True, rescale='auto', **kwargs): """Set the graphical properties of a plot. Optional keyword arguments: *aspect_ratio*: ['auto' (default) | 'equal' | a number ] *x_limits*: ['auto' (default) | scalars (x_min, x_max)] *y_limits*: ['auto' (default) | scalars (y_min, y_max)] *tight_autoscale*: [*True* | *False* (default)] *x_scale*: ['linear' (default) | 'log'] Scaling of the x-axis. *y_scale*: ['linear' (default) | 'log'] Scaling of the y-axis. *title*: str Title to be drawn above the plot. *x_label*: str Label to be drawn on the x-axis of the plot. *y_label*: str Label to be drawn on the y-axis of the plot. *dpi*: int Resolution (dots per inch) of plots saved to files. *redraw*: [ *True* (default) | *False* ] Whether to redraw the plot after applying changes. *rescale*: [ 'auto' (default) | *True* | *False* ] Whether to rescale the plot. If 'auto', then only rescale if needed. """ self._plot_properties.update(kwargs) if 'background' in kwargs: value = kwargs.pop('background') if 'aspect_ratio' in kwargs: # 'auto', 'equal', or a number value = kwargs.pop('aspect_ratio') self._axes.set_aspect(value) if 'x_limits' in kwargs: value = kwargs.pop('x_limits') if value == 'auto': self._axes.set_xlim(auto=True) self._x_autoscale = True else: self._axes.set_xlim(value, auto=False) self._x_autoscale = False if 'y_limits' in kwargs: value = kwargs.pop('y_limits') if value == 'auto': self._axes.set_ylim(auto=True) self._y_autoscale = True else: self._axes.set_ylim(value, auto=False) self._y_autoscale = False if 'tight_autoscale' in kwargs: value = kwargs.pop('tight_autoscale') self._tight_autoscale = value if 'x_scale' in kwargs: value = kwargs.pop('x_scale') self._axes.set_xscale(value) if 'y_scale' in kwargs: value = kwargs.pop('y_scale') self._axes.set_yscale(value) if 'title' in kwargs: value = kwargs.pop('title') self._axes.set_title(value) if 'x_label' in kwargs: value = kwargs.pop('x_label') self._axes.set_xlabel(value) if 'y_label' in kwargs: value = kwargs.pop('y_label') self._axes.set_ylabel(value) if 'x_grid' in kwargs: value = kwargs.pop('x_grid') if 'y_grid' in kwargs: value = kwargs.pop('y_grid') if 'dpi' in kwargs: self._plot_properties['dpi'] = kwargs.pop('dpi') if len(kwargs) != 0: logger = multiprocessing.get_logger() logger.warning("Unused arguments in 'set_plot_properties': %s." % str(kwargs)) if redraw: self._update(rescale) def save_figure(self, filename=None, rescale='auto'): """Save an image of the plot to a file. Optional keyword arguments: *filename*: str The name of the file to save to. If no filename is given, a dialog box in which to choose a filname will be presented. *rescale*: [ 'auto' (default) | *True* | *False* ] Whether to rescale the plot. If 'auto', then only rescale if needed. """ if filename is None: filetypes = self._canvas.get_supported_filetypes_grouped() sorted_filetypes = filetypes.items() sorted_filetypes.sort() default_filetype = self._canvas.get_default_filetype() start = "image." + default_filetype filters = [] selected_filter = None for name, exts in sorted_filetypes: exts_list = " ".join(['*.%s' % ext for ext in exts]) filter = '%s (%s)' % (name, exts_list) if default_filetype in exts: selected_filter = filter filters.append(filter) filters = ';;'.join(filters) filename = QtGui.QFileDialog.getSaveFileName(None, 'Save Plot Image', start, filters, selected_filter) if filename: try: if self._animated: for k in self._animated_artists: item = self._items[k]['mpl_item'] item.set_animated(False) self._animated = False self._update(rescale) self._canvas.print_figure(unicode(filename), bbox_inches='tight', dpi=self._plot_properties['dpi']) for k in self._animated_artists: item = self._items[k]['mpl_item'] item.set_animated(True) self._animated = True else: self._canvas.print_figure(unicode(filename), bbox_inches='tight', dpi=self._plot_properties['dpi']) except Exception, e: QtGui.QMessageBox.critical( None, "Error saving file", str(e), QtGui.QMessageBox.Ok, QtGui.QMessageBox.NoButton) # # Chart2D: scrolled plot panel with multiple line plots # class Chart2D(pythics.libcontrol.MPLControl): """Make a strip chart like plot of data with multiple y values for a given x value. Additional data can be added efficiently and the user can scroll through the chart history with a built-in scrollbar. Right click on the plot to save an image of the plot to a file. HTML parameters: *plots*: int (default 1) The number of plots to draw, stacked vertically with a common x axis. Note that each plot may have multiple curves, as set with the *curves_per_plot* property. *memory*: int [ 'circular' (default) | 'growable' ] Speicifies how data will be stored, and what happens when the orginally allocated memory is full. See the *length* parameter for more information. *length*: int (default 1000) The maximum number of points for the plot to store. Additional points will force earlier points to scroll out of range (if *memory* = 'circular') or grow the memory (if *memory* = 'growable'). *fast_scroll*: [ *True* | *False* (default) ] Whether to accelerate scrolling by not drawing axes while scrolling. *actions*: dict a dictionarly of key:value pairs where the key is the name of a signal and value is the function to run when the signal is emitted actions in this control: ======================= ============================================ signal when emitted ======================= ============================================ 'button_press_event' a mouse button is pressed 'button_release_event' a mouse button is released 'draw_event' canvas is redrawn 'key_press_event' a key is pressed 'key_release_event' a key is released 'motion_notify_event' the mouse is moved 'pick_event' an object in the canvas is selected 'resize_event' the figure canvas is resized 'scroll_event' the mouse scroll wheel is rolled 'figure_enter_event' the mouse enters a new figure 'figure_leave_event' the mouse leaves a figure 'axes_enter_event' the mouse enters a new axes 'axes_leave_event' the mouse leaves an axe ======================= ============================================ """ def __init__(self, parent, plots=1, memory='circular', length=1000, fast_scroll=False, **kwargs): pythics.libcontrol.MPLControl.__init__(self, parent, **kwargs) # initialize parameters that only depend on the number of plots self._n_plots = plots self._n_plot_range = range(self._n_plots) self._memory = memory self._history_length = length self._fast_scroll = fast_scroll self._requested_span = self._history_length self._span = self._requested_span self._span_choice = 'autoscale span' # setup the layout and plot widget self._widget = QtGui.QFrame() self._sizer = QtGui.QVBoxLayout() self._figure = matplotlib.figure.Figure() self._canvas = PythicsMPLCanvas(self, self._figure) self._sizer.addWidget(self._canvas) self._mpl_widget = self._canvas # row of controls below the plot self._row_sizer = QtGui.QHBoxLayout() self._sizer.addLayout(self._row_sizer) # set up scoll bar self._scroll_to_end = True self._pressed = False self._scrollbar = QtGui.QScrollBar(QtCore.Qt.Horizontal) self._scrollbar.setTracking(True) self._row_sizer.addWidget(self._scrollbar) self._scrollbar.valueChanged.connect(self._scroll) self._scrollbar.sliderPressed.connect(self._pressed_start) self._scrollbar.sliderReleased.connect(self._pressed_end) # choice of autoscale or fixed span self._choice_widget = QtGui.QComboBox() self._choice_widget.insertItem(2, 'autoscale span') self._choice_widget.insertItem(2, 'fixed span') self._choice_widget.setFixedWidth(150) self._choice_widget.activated.connect(self._change_span_choice) self._row_sizer.addWidget(self._choice_widget) # box to hold fixed span self._span_widget = QtGui.QSpinBox() self._span_widget.setSingleStep(1) self._span_widget.setMinimum(2) self._span_widget.setMaximum(self._history_length) self._span_widget.setFixedWidth(150) self._span_widget.setValue(self._history_length) self._span_widget.valueChanged.connect(self._change_span) self._row_sizer.addWidget(self._span_widget) self._widget.setLayout(self._sizer) # initialize parameters that depend on the number of lines self._n_curves_per_plot = list([1])*self._n_plots # set up plots self._plot_axes = list() self._y_autoscales = list() self._plot_properties = list() default_plot_properties = dict(x_limits='auto', y_limits='auto', x_scale='linear', y_scale='linear', aspect_ratio='auto', dpi=150) for i in self._n_plot_range: if i == 0: self._plot_axes.append(self._figure.add_subplot(self._n_plots, 1, i+1)) else: self._plot_axes.append(self._figure.add_subplot(self._n_plots, 1, i+1, sharex=self._plot_axes[0])) self._plot_properties.append(default_plot_properties.copy()) self._y_autoscales.append(True) self._set_plot_properties(i, **default_plot_properties) self._fast_requested = False self._fast = False self.clear() # should have resize event handler to redraw correctly, # but it doesn't seem to work - instead we use custom plot canvas #self._canvas.mpl_connect('resize_event', self.on_resize) def _change_span(self, *args): self._requested_span = long(self._span_widget.value()) if self._span_choice == 'fixed span': self._set_span(self._requested_span) def _change_span_choice(self, *args): self._span_choice = self._choice_widget.currentText() if self._span_choice == 'fixed span': self._set_span(self._requested_span) else: self._set_span(self._history_length) def _set_span(self, span): self._span = span length = len(self._data) self._scroll_page_size = min(span, length) self._scroll_position = min(self._scroll_position, length - self._scroll_page_size) self._update_scrollbar() self._update_plot() def _resize(self, event): if self._fast: self._canvas.draw() self._animated_background = self._canvas.copy_from_bbox(self._figure.bbox) k = 0 for i in range(self._n_plots): for j in range(self._n_curves_per_plot[i]): self._plot_axes[i].draw_artist(self.curves[k]) k += 1 # blit entire canvas to ensure complete update self._canvas.blit(self._figure.bbox) else: self._full_redraw() def _redraw(self): # blit entire figure after tab change to eliminate drawing artifacts self._canvas.blit(self._figure.bbox) def _scroll(self): self._scroll_position = self._scrollbar.value() self._update_plot() def _pressed_start(self): self._pressed = True if self._fast_scroll: self._start_fast() self._full_redraw(False) def _pressed_end(self): self._pressed = False if self._fast_scroll: self._stop_fast() def _go_to_end(self): return self._scroll_to_end and (not self._pressed) def _update_scrollbar(self): self._scrollbar.setMaximum(len(self._data)-self._scroll_page_size) self._scrollbar.setPageStep(self._scroll_page_size) self._scrollbar.setValue(self._scroll_position) def _update_plot(self, layout=True): start = self._scroll_position stop = self._scroll_position + self._scroll_page_size # update data data_x_ys = self._data[start:stop] # all share the same x values data_x = data_x_ys[:,0] for i in range(self.n_curves_total): data_y = data_x_ys[:,i+1] self.curves[i].set_data(data_x, data_y) # replot for i in range(self._n_plots): axes = self._plot_axes[i] axes.relim() axes.autoscale_view(True, True, self._y_autoscales[i]) if self._fast: self._fast_redraw() else: self._full_redraw(layout) def _start_fast(self): if not self._fast: for i in range(self._n_plots): self._plot_axes[i].get_xaxis().set_visible(False) self._plot_axes[i].get_yaxis().set_visible(False) self._canvas.draw() self._animated_background = self._canvas.copy_from_bbox(self._figure.bbox) self._fast = True def _fast_redraw(self): self._canvas.restore_region(self._animated_background) k = 0 for i in range(self._n_plots): for j in range(self._n_curves_per_plot[i]): self._plot_axes[i].draw_artist(self.curves[k]) k += 1 # redraw the region in each axes self._canvas.blit(self._plot_axes[i].bbox) def _stop_fast(self): if (not self._fast_scroll or not self._pressed) and (not self._fast_requested): self._fast = False for i in range(self._n_plots): self._plot_axes[i].get_xaxis().set_visible(True) self._plot_axes[i].get_yaxis().set_visible(True) self._full_redraw() def _full_redraw(self, layout=True): if layout: self._figure.tight_layout() self._canvas.draw() k = 0 for i in range(self._n_plots): for j in range(self._n_curves_per_plot[i]): self._plot_axes[i].draw_artist(self.curves[k]) k += 1 # blit entire canvas to ensure complete update self._canvas.blit(self._figure.bbox) def _set_plot_properties(self, n, **kwargs): axes = self._plot_axes[n] if 'background' in kwargs: value = kwargs.pop('background') if 'aspect_ratio' in kwargs: # 'auto', 'equal', or a number value = kwargs.pop('aspect_ratio') axes.set_aspect(value) if 'x_limits' in kwargs: value = kwargs.pop('x_limits') if value == 'auto': axes.set_xlim(auto=True) self._x_autoscale = True else: axes.set_xlim(value, auto=False) self._x_autoscale = False if 'y_limits' in kwargs: value = kwargs.pop('y_limits') if value == 'auto': axes.set_ylim(auto=True) self._y_autoscales[n] = True else: axes.set_ylim(value, auto=False) self._y_autoscales[n] = False if 'x_scale' in kwargs: value = kwargs.pop('x_scale') axes.set_xscale(value) if 'y_scale' in kwargs: value = kwargs.pop('y_scale') axes.set_yscale(value) if 'title' in kwargs: value = kwargs.pop('title') axes.set_title(value) if 'x_label' in kwargs: value = kwargs.pop('x_label') axes.set_xlabel(value) if 'y_label' in kwargs: value = kwargs.pop('y_label') axes.set_ylabel(value) if 'x_grid' in kwargs: value = kwargs.pop('x_grid') if 'y_grid' in kwargs: value = kwargs.pop('y_grid') if 'dpi' in kwargs: self.dpi = kwargs.pop('dpi') if len(kwargs) != 0: logger = multiprocessing.get_logger() logger.warning("Unused arguments in 'set_plot_properties': %s." % str(kwargs)) #--------------------------------------------------- # methods below used only for access by action proxy def append_data(self, data): """Append data to the plot. Arguments: *data*: one or two-dimensional numpy array, list, or tuple The new data to be appended to the previous data of the plot item. *data* should be a single point of the form [x, y_1, y_2, ...] or a series of points of the form: [[x_0, y_01, y_02, ...], [x_1, y_11, y_12, ...], ...]. """ self._data.append(data) length = len(self._data) self._scroll_page_size = min(self._span, length) if self._go_to_end(): self._scroll_position = length - self._scroll_page_size self._update_scrollbar() self._update_plot(layout=False) def clear(self): """Clear all data and labels from the plot. """ # initialize all curve properties when the number of curves is changed # first clear out old curves for i in self._n_plot_range: self._plot_axes[i].clear() self.n_curves_total = sum(self._n_curves_per_plot) # list of curves (points or lines) self.curves = list() for i in range(self._n_plots): for j in range(self._n_curves_per_plot[i]): item, = self._plot_axes[i].plot(np.array([]), np.array([]), animated=True) self.curves.append(item) for i in self._n_plot_range[0:-1]: for label in self._plot_axes[i].get_xticklabels(): label.set_visible(False) # clear out the data if self._memory == 'growable': self._data = pythics.lib.GrowableArray(cols=self.n_curves_total+1, length=self._history_length) else: self._data = pythics.lib.CircularArray(cols=self.n_curves_total+1, length=self._history_length) self._scroll_page_size = 0 self._scroll_position = 0 self._update_scrollbar() self._update_plot() def clear_data(self): """Clear all data from the plot. """ self._data.clear() self._scroll_page_size = 0 self._scroll_position = 0 self._update_scrollbar() self._update_plot() def update(self): """Force the plot to update. This should not normally be necessary. """ self._update_plot() def set_data(self, data): """Set the data displayed on the plot, replacing the old data. Arguments: *data*: one or two-dimensional numpy array, list, or tuple The new data to be appended to the previous data of the plot item. *data* should be a single point of the form [x, y_1, y_2, ...] or a series of points of the form: [[x_0, y_01, y_02, ...], [x_1, y_11, y_12, ...], ...]. """ self._data.clear() self._data.append(data) length = len(self._data) self._scroll_page_size = min(self._span, length) if self._go_to_end(): self._scroll_position = length - self._scroll_page_size self._update_scrollbar() self._update_plot(layout=False) def _get_scroll_to_end(self): """Whether to scroll to the right as new data is added to the plot. [ *True* (default) | *False* ] """ return self._scroll_to_end def _set_scroll_to_end(self, value): self._scroll_to_end = value if value == True: self._scroll_position = len(self._data) - self._scroll_page_size self._update_scrollbar() self._update_plot() scroll_to_end = property(_get_scroll_to_end, _set_scroll_to_end) def _get_fast(self): """Whether to skip drawing the axes to accelerate drawing. Set to *False* when done with updates to force a full redraw. [ *True* (default) | *False* ] """ return self._fast_requested def _set_fast(self, value): if value is not self._fast_requested: self._fast_requested = value # change requested if value: self._start_fast() else: self._stop_fast() fast = property(_get_fast, _set_fast) def _get_curves_per_plot(self): """A list integers specifying how many curves are to be drawn in each plot. [ 1, 1, 2 ] would specify 1 curve in the first plot, 1 in the second, and two in the third. These curves would be numbered 0 through 3 for access in other methods. """ return self._n_curves_per_plot def _set_curves_per_plot(self, value): self._n_curves_per_plot = value self.clear() curves_per_plot = property(_get_curves_per_plot, _set_curves_per_plot) def set_plot_properties(self, n, **kwargs): """Set the graphical properties of a plot. Arguments: *n*: int The index of the plot of which to set the properties. Optional keyword arguments: *y_limits*: [ 'auto' (default) | scalars (y_min, y_max) ] *x_scale*: [ 'linear' (default) | 'log' ] Scaling of the x-axis. *y_scale*: [ 'linear' (default) | 'log' ] Scaling of the y-axis. *title*: str Title to be drawn above the plot. *x_label*: str Label to be drawn on the x-axis of the plot. *y_label*: str Label to be drawn on the y-axis of the plot. *dpi*: int Resolution (dots per inch) of plots saved to files. """ self._set_plot_properties(n, **kwargs) self._update_plot() def set_curve_properties(self, n, **kwargs): """Set the graphical properties of a curve item. Arguments: *n*: int The index of the plot of which to set the properties. Optional keyword arguments: Any of the the keyword arguments that can be given to specify the properties of a curve in Plot2D (listed under *new_curve*). """ item = self.curves[n] if 'alpha' in kwargs: value = kwargs.pop('alpha') item.set_alpha(value) if 'line_color' in kwargs: value = kwargs.pop('line_color') item.set_color(value) if 'line_style' in kwargs: value = kwargs.pop('line_style') item.set_linestyle(value) if 'line_width' in kwargs: value = kwargs.pop('line_width') item.set_linewidth(value) if 'marker_color' in kwargs: value = kwargs.pop('marker_color') item.set_markerfacecolor(value) if 'marker_edge_color' in kwargs: value = kwargs.pop('marker_edge_color') item.set_markeredgecolor(value) if 'marker_edge_width' in kwargs: value = kwargs.pop('marker_edge_width') item.set_markeredgewidth(value) if 'marker_style' in kwargs: value = kwargs.pop('marker_style') item.set_marker(value) if 'marker_width' in kwargs: value = kwargs.pop('marker_width') item.set_markersize(value) if len(kwargs) != 0: logger = multiprocessing.get_logger() logger.warning("Unused arguments in 'set_properties': %s." % str(kwargs)) self._update_plot() def save_figure(self, filename=None): """Save an image of the plot to a file. Optional keyword arguments: *filename*: str The name of the file to save to. If no filename is given, a dialog box in which to choose a filname will be presented. *rescale*: [ 'auto' (default) | *True* | *False* ] Whether to rescale the plot. If 'auto', then only rescale if needed. """ if filename is None: filetypes = self._canvas.get_supported_filetypes_grouped() sorted_filetypes = filetypes.items() sorted_filetypes.sort() default_filetype = self._canvas.get_default_filetype() start = "image." + default_filetype filters = [] selected_filter = None for name, exts in sorted_filetypes: exts_list = " ".join(['*.%s' % ext for ext in exts]) filter = '%s (%s)' % (name, exts_list) if default_filetype in exts: selected_filter = filter filters.append(filter) filters = ';;'.join(filters) filename = QtGui.QFileDialog.getSaveFileName(None, 'Save Plot Image', start, filters, selected_filter) if filename: try: for item in self.curves: item.set_animated(False) self._animated = False self._canvas.draw() self._canvas.print_figure(unicode(filename), bbox_inches='tight', dpi=self.dpi) for item in self.curves: item.set_animated(True) self._animated = True except Exception, e: QtGui.QMessageBox.critical( None, "Error saving file", str(e), QtGui.QMessageBox.Ok, QtGui.QMessageBox.NoButton) class PythicsMPLCanvas(FigureCanvas): def __init__(self, pythics_control, *args, **kwargs): self._pythics_control = pythics_control FigureCanvas.__init__(self, *args, **kwargs) # setup context menu on right-click self.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) self.customContextMenuRequested.connect(self._popup) def _popup(self, pos): menu = QtGui.QMenu() save_action = menu.addAction('Save...') action = menu.exec_(self.mapToGlobal(pos)) if action == save_action: self._pythics_control.save_figure() def resizeEvent(self, event): FigureCanvas.resizeEvent(self, event) self._pythics_control._resize(event)
gpl-3.0
ElDeveloper/scikit-learn
examples/model_selection/plot_validation_curve.py
141
1931
""" ========================== Plotting Validation Curves ========================== In this plot you can see the training scores and validation scores of an SVM for different values of the kernel parameter gamma. For very low values of gamma, you can see that both the training score and the validation score are low. This is called underfitting. Medium values of gamma will result in high values for both scores, i.e. the classifier is performing fairly well. If gamma is too high, the classifier will overfit, which means that the training score is good but the validation score is poor. """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_digits from sklearn.svm import SVC from sklearn.model_selection import validation_curve digits = load_digits() X, y = digits.data, digits.target param_range = np.logspace(-6, -1, 5) train_scores, test_scores = validation_curve( SVC(), X, y, param_name="gamma", param_range=param_range, cv=10, scoring="accuracy", n_jobs=1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.title("Validation Curve with SVM") plt.xlabel("$\gamma$") plt.ylabel("Score") plt.ylim(0.0, 1.1) lw = 2 plt.semilogx(param_range, train_scores_mean, label="Training score", color="darkorange", lw=lw) plt.fill_between(param_range, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="darkorange", lw=lw) plt.semilogx(param_range, test_scores_mean, label="Cross-validation score", color="navy", lw=lw) plt.fill_between(param_range, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2, color="navy", lw=lw) plt.legend(loc="best") plt.show()
bsd-3-clause
gsnyder206/mock-surveys
original_illustris/create_filter_package.py
1
15011
import numpy as np import astropy import astropy.cosmology import astropy.io.fits as pyfits import astropy.units as u import astropy.io.ascii as ascii import os import pandas def hdu_from_existing_filter(input_file): return hdu def wfirst_filters(): xls='WFIRST_WIMWSM_throughput_data_190531.xlsm' throughputs=pandas.read_excel(xls,'EffectiveArea') wl_microns=throughputs['Unnamed: 0'][19:].values r062_A=throughputs['Unnamed: 1'][19:].values z087_A=throughputs['Unnamed: 2'][19:].values y106_A=throughputs['Unnamed: 3'][19:].values j129_A=throughputs['Unnamed: 4'][19:].values w146_A=throughputs['Unnamed: 5'][19:].values h158_A=throughputs['Unnamed: 6'][19:].values f184_A=throughputs['Unnamed: 7'][19:].values maxA = np.max(throughputs[['Unnamed: 2','Unnamed: 3','Unnamed: 4', 'Unnamed: 5','Unnamed: 6','Unnamed: 7','Unnamed: 1']][19:].values) r_tr = r062_A/maxA z_tr = z087_A/maxA y_tr = y106_A/maxA j_tr = j129_A/maxA w_tr = w146_A/maxA h_tr = h158_A/maxA f_tr = f184_A/maxA rhdu = wf_hdu(r_tr[r_tr > 1.0e-4],wl_microns[r_tr > 1.0e-4]) rhdu.header['EXTNAME']='wfirst/wfi_r062' zhdu = wf_hdu(z_tr[z_tr > 1.0e-4],wl_microns[z_tr > 1.0e-4]) zhdu.header['EXTNAME']='wfirst/wfi_z087' yhdu = wf_hdu(y_tr[y_tr > 1.0e-4],wl_microns[y_tr > 1.0e-4]) yhdu.header['EXTNAME']='wfirst/wfi_y106' jhdu = wf_hdu(j_tr[j_tr > 1.0e-4],wl_microns[j_tr > 1.0e-4]) jhdu.header['EXTNAME']='wfirst/wfi_j129' whdu = wf_hdu(w_tr[w_tr > 1.0e-4],wl_microns[w_tr > 1.0e-4]) whdu.header['EXTNAME']='wfirst/wfi_w146' hhdu = wf_hdu(h_tr[h_tr > 1.0e-4],wl_microns[h_tr > 1.0e-4]) hhdu.header['EXTNAME']='wfirst/wfi_h158' fhdu = wf_hdu(f_tr[f_tr > 1.0e-4],wl_microns[f_tr > 1.0e-4]) fhdu.header['EXTNAME']='wfirst/wfi_f184' ''' Z_tr = Z_Aeff_m2/np.max(Z_Aeff_m2) Y_tr = Y_Aeff_m2/np.max(Y_Aeff_m2) J_tr = J_Aeff_m2/np.max(J_Aeff_m2) W_tr = W_Aeff_m2/np.max(W_Aeff_m2) H_tr = H_Aeff_m2/np.max(H_Aeff_m2) F_tr = F_Aeff_m2/np.max(F_Aeff_m2) zhdu = wf_hdu(Z_tr,Z_wl_um) zhdu.header['EXTNAME']='WFI_DRM15_Z087' yhdu = wf_hdu(Y_tr,Y_wl_um) yhdu.header['EXTNAME']='WFI_DRM15_Y106' jhdu = wf_hdu(J_tr,J_wl_um) jhdu.header['EXTNAME']='WFI_DRM15_J129' whdu = wf_hdu(W_tr,W_wl_um) whdu.header['EXTNAME']='WFI_DRM15_W149' hhdu = wf_hdu(H_tr,H_wl_um) hhdu.header['EXTNAME']='WFI_DRM15_H158' fhdu = wf_hdu(F_tr,F_wl_um) fhdu.header['EXTNAME']='WFI_DRM15_F184' ''' return (rhdu,zhdu,yhdu,jhdu,whdu,hhdu,fhdu) def wfirst_filters_drm15(): Z_wl_um = np.asarray([0.75,0.7559,0.7617,0.7676,0.7734,0.7793,0.7851,0.7910,0.7968,0.8027,0.8085,0.8144,0.8202,0.8261,0.8320,0.8378,0.8437,0.8495,0.8554,0.8612,0.8671,0.8729,0.8788,0.8846,0.8905,0.8963,0.9022,0.9080,0.9139,0.9198,0.9256,0.9315,0.9373,0.9432,0.9490,0.9549,0.9607,0.9666,0.9724,0.9783,0.9841]) Z_Aeff_m2 = np.asarray([0.069,1.955,2.317,2.292,2.292,2.294,2.279,2.275,2.266,2.271,2.268,2.272,2.266,2.270,2.262,2.258,2.263,2.247,2.251,2.252,2.273,2.270,2.267,2.265,2.264,2.253,2.258,2.255,2.255,2.253,2.253,2.249,2.246,2.235,2.231,2.219,2.214,2.117,0.050,0.000,0.000]) Y_wl_um = np.asarray([0.92,0.9280,0.9361,0.9441,0.9522,0.9602,0.9683,0.9763,0.9844,0.9924,1.0005,1.0085,1.0166,1.0246,1.0327,1.0407,1.0488,1.0568,1.0649,1.0729,1.0810,1.0890,1.0971,1.1051,1.1132,1.1212,1.1293,1.1373,1.1454,1.1534,1.1615,1.1695,1.1776,1.1856,1.1937,1.2017,1.2098,1.2178,1.2259,1.2339,1.2420,1.2500]) Y_Aeff_m2 = np.asarray([0.204,0.743,1.282,1.819,2.139,2.138,2.137,2.136,2.135,2.134,2.133,2.138,2.147,2.153,2.162,2.168,2.177,2.184,2.194,2.205,2.215,2.225,2.233,2.244,2.254,2.264,2.273,2.286,2.294,2.306,2.319,2.328,2.242,1.791,1.338,0.879,0.883,0.418,0.000,0.000,0.000,0.000]) J_wl_um = np.asarray([1.1,1.1098,1.1195,1.1293,1.1390,1.1488,1.1585,1.1683,1.1780,1.1878,1.1976,1.2073,1.2171,1.2266,1.2366,1.2463,1.2561,1.2659,1.2756,1.2854,1.2951,1.3049,1.3146,1.3244,1.3341,1.3439,1.3537,1.3634,1.3732,1.3829,1.3927,1.4024,1.4122,1.4220,1.4317,1.4415,1.4512,1.4610,1.4707,1.4805,1.4902,1.5000]) J_Aeff_m2 = np.asarray([0.000,0.000,0.208,0.678,1.154,1.637,2.124,2.328,2.341,2.354,2.368,2.380,2.393,2.406,2.420,2.433,2.446,2.462,2.475,2.487,2.500,2.512,2.524,2.536,2.548,2.559,2.570,2.581,2.592,2.607,2.618,2.626,2.633,2.643,2.430,2.012,1.590,1.164,0.736,0.304,0.000,0.000]) W_wl_um = np.asarray([0.8,0.8293,0.8585,0.8878,0.9171,0.9463,0.9756,1.0049,1.0341,1.0634,1.0927,1.1220,1.1512,1.1805,1.2098,1.2390,1.2683,1.2976,1.3268,1.3561,1.3854,1.4146,1.4439,1.4732,1.5024,1.5317,1.5610,1.5902,1.6195,1.6488,1.6780,1.7073,1.7366,1.7659,1.7951,1.8247,1.8537,1.8829,1.9122,1.9412,1.9707,2.0000]) W_Aeff_m2 = np.asarray([0.000,0.000,0.000,0.000,0.153,1.864,1.871,1.948,1.987,2.052,2.087,1.982,2.147,2.226,2.263,2.221,2.299,2.345,2.346,2.429,2.270,2.358,2.444,2.460,2.510,2.530,2.555,2.579,2.576,2.650,2.603,2.653,2.639,2.683,2.640,2.648,2.641,2.586,2.651,2.635,2.618,0.002]) H_wl_um = np.asarray([1.35,1.3622,1.3744,1.3866,1.3988,1.4110,1.4232,1.4354,1.4476,1.4598,1.4720,1.4841,1.4963,1.5085,1.5207,1.5329,1.5451,1.5573,1.5695,1.5817,1.5939,1.6061,1.6183,1.6305,1.6427,1.6549,1.6671,1.6793,1.6915,1.7037,1.7159,1.7280,1.7402,1.7524,1.7646,1.7768,1.7890,1.8012,1.8134,1.8256,1.8378,1.8500]) H_Aeff_m2 = np.asarray([0.000,0.495,0.937,1.383,1.834,2.630,2.644,2.661,2.674,2.687,2.698,2.707,2.717,2.725,2.735,2.745,2.754,2.762,2.768,2.776,2.784,2.792,2.799,2.806,2.811,2.816,2.823,2.829,2.834,2.840,2.845,2.850,2.779,2.408,2.035,1.660,1.285,0.530,0.152,0.000,0.000,0.000]) F_wl_um = np.asarray([1.65,1.6610,1.6720,1.6829,1.6939,1.7049,1.7159,1.7268,1.7378,1.7488,1.7598,1.7707,1.7817,1.7927,1.8037,1.8146,1.8256,1.8366,1.8476,1.8585,1.8695,1.8805,1.8915,1.9024,1.9134,1.9244,1.9354,1.9463,1.9573,1.9683,1.9793,1.9902,2.0012,2.0122,2.0232,2.0341,2.0451,2.0561,2.0671,2.0780,2.0890,2.1000]) F_Aeff_m2 = np.asarray([0.000,0.521,0.877,1.234,1.592,1.952,2.312,2.580,2.585,2.588,2.592,2.595,2.598,2.601,2.601,2.601,2.603,2.605,2.606,2.609,2.611,2.614,2.615,2.616,2.618,2.621,2.623,2.630,2.635,2.618,2.313,1.697,1.390,1.083,0.775,0.466,0.158,0.000,0.000,0.000,0.000,0.000]) Z_tr = Z_Aeff_m2/np.max(Z_Aeff_m2) Y_tr = Y_Aeff_m2/np.max(Y_Aeff_m2) J_tr = J_Aeff_m2/np.max(J_Aeff_m2) W_tr = W_Aeff_m2/np.max(W_Aeff_m2) H_tr = H_Aeff_m2/np.max(H_Aeff_m2) F_tr = F_Aeff_m2/np.max(F_Aeff_m2) zhdu = wf_hdu(Z_tr,Z_wl_um) zhdu.header['EXTNAME']='WFI_DRM15_Z087' yhdu = wf_hdu(Y_tr,Y_wl_um) yhdu.header['EXTNAME']='WFI_DRM15_Y106' jhdu = wf_hdu(J_tr,J_wl_um) jhdu.header['EXTNAME']='WFI_DRM15_J129' whdu = wf_hdu(W_tr,W_wl_um) whdu.header['EXTNAME']='WFI_DRM15_W149' hhdu = wf_hdu(H_tr,H_wl_um) hhdu.header['EXTNAME']='WFI_DRM15_H158' fhdu = wf_hdu(F_tr,F_wl_um) fhdu.header['EXTNAME']='WFI_DRM15_F184' return (zhdu,yhdu,jhdu,whdu,hhdu,fhdu) def wf_hdu(tr,um): print(np.asarray(tr)) print(um) col2 = pyfits.Column(name='totalrelativeefficiency',format='D',unit='relative fraction',array=np.asarray(tr,dtype=np.float64)) col1 = pyfits.Column(name='wavelength',format='D',unit='angstrom',array=np.asarray(um,dtype=np.float64)*1.0e4) cols = pyfits.ColDefs([col1,col2]) zhdu = pyfits.BinTableHDU.from_columns(cols) return zhdu def output_sunrise_filter_directory(fitsfile,dirname): f = pyfits.open(fitsfile) if not os.path.lexists(dirname): os.mkdir(dirname) all_list = [] grism_list = [] for hdu in f[1:]: #print hdu.header['EXTNAME'] filter_name = os.path.join(dirname,hdu.header['EXTNAME']) filter_wl = hdu.data['wavelength'] filter_tr = hdu.data['totalrelativeefficiency'] data = astropy.table.Table([np.round(filter_wl,4),np.round(filter_tr,4)],names=['wl','tr']) dn = os.path.dirname(filter_name) if not os.path.lexists(dn): os.mkdir(dn) all_list.append(hdu.header['EXTNAME']) if hdu.header['EXTNAME'][0:5]=='grism': grism_list.append(hdu.header['EXTNAME']) ascii.write(data,filter_name,Writer=ascii.NoHeader) #output_lists #print all_list #print grism_list st_list = ['hst/wfc3_f336w', 'hst/acs_f435w', 'hst/acs_f606w', 'hst/acs_f814w', 'hst/wfc3_f125w', 'hst/wfc3_f160w', 'wfirst/wfi_r062', 'wfirst/wfi_z087', 'wfirst/wfi_y106', 'wfirst/wfi_j129', 'wfirst/wfi_w146', 'wfirst/wfi_h158', 'wfirst/wfi_f184', 'jwst/nircam_f115w', 'jwst/nircam_f150w', 'jwst/nircam_f200w', 'jwst/nircam_f277w', 'jwst/nircam_f356w', 'jwst/nircam_f444w', 'jwst/miri_F770W', 'jwst/miri_F1500W'] rest_list = ['standard/wfcam_j', 'standard/wfcam_h', 'standard/wfcam_k', 'standard/bessel_b', 'standard/bessel_i', 'standard/bessel_r', 'standard/bessel_u', 'standard/bessel_v'] other_list = ['galex/fuv_1500', 'galex/nuv_2500', 'sdss/u', 'sdss/g', 'sdss/r', 'sdss/i', 'sdss/z', 'newfirm/newfirm_h1ccd', 'newfirm/newfirm_h2ccd', 'newfirm/newfirm_j1ccd', 'newfirm/newfirm_j2ccd', 'newfirm/newfirm_j3ccd', 'newfirm/newfirm_Kccd', 'lsst/lsst_u', 'lsst/lsst_g', 'lsst/lsst_r', 'lsst/lsst_i', 'lsst/lsst_z', 'lsst/lsst_y3'] all_table = astropy.table.Table([np.asarray(all_list)],names=['filtername']) grism_table = astropy.table.Table([np.asarray(grism_list)],names=['filtername']) st_table = astropy.table.Table([np.asarray(st_list)],names=['filtername']) rest_table = astropy.table.Table([np.asarray(rest_list)],names=['filtername']) other_table = astropy.table.Table([np.asarray(other_list)],names=['filtername']) ascii.write(all_table,os.path.join(dirname,'filters_all'),Writer=ascii.NoHeader) ascii.write(grism_table,os.path.join(dirname,'filters_grism'),Writer=ascii.NoHeader) ascii.write(st_table,os.path.join(dirname,'filters_st'),Writer=ascii.NoHeader) ascii.write(rest_table,os.path.join(dirname,'filters_rest'),Writer=ascii.NoHeader) ascii.write(other_table,os.path.join(dirname,'filters_other'),Writer=ascii.NoHeader) return def input_old_filters(flist,folder): names = np.asarray( ascii.read(flist,Reader=ascii.NoHeader)) hdus = [] #print flist #print folder #print names for n in names: #print n[0] path = os.path.join(folder,n[0]) data = ascii.read(path) wl_ang = np.round(np.asarray(data['col1']),4) tr = np.round(np.asarray(data['col2']),8) hdu = wf_hdu(tr,wl_ang/1.0e4) hdu.header['EXTNAME']=n[0][0:-4] #print hdu.header['EXTNAME'] hdus.append(hdu) return hdus def miri_filters(): flist = ['F560W_throughput.fits','F770W_throughput.fits','F1000W_throughput.fits','F1130W_throughput.fits','F1280W_throughput.fits','F1500W_throughput.fits','F1800W_throughput.fits','F2100W_throughput.fits','F2550W_throughput.fits'] hdus = [] for file in flist: f = pyfits.open(os.path.join('MIRI/filters',file)) tr = f[1].data['THROUGHPUT'] wl = f[1].data['WAVELENGTH'] hdu = wf_hdu(tr,wl/1.0e4) hdu.header['EXTNAME']='jwst/miri_'+file[:-16] hdus.append(hdu) return hdus def nircam_filters(): flist = ['F070W_throughput.fits', 'F090W_throughput.fits', 'F115W_throughput.fits', 'F150W_throughput.fits', 'F200W_throughput.fits', 'F277W_throughput.fits', 'F356W_throughput.fits', 'F444W_throughput.fits', 'F410M_throughput.fits'] hdus = [] for file in flist: f = pyfits.open(os.path.join('NIRCam_Filters',file)) tr = f[1].data['THROUGHPUT'] wl = f[1].data['WAVELENGTH'] hdu = wf_hdu(tr,wl/1.0e4) hdu.header['EXTNAME']='jwst/nircam_'+file[:-16] hdus.append(hdu) return hdus def make_grism_filters(start,stop,number): micron_bins = np.logspace(np.log10(start),np.log10(stop),number) hdus = [] for i,b in enumerate(micron_bins[1:]): bin_start=micron_bins[i] bin_stop=b bin_width = bin_stop-bin_start bin_center = (bin_start + bin_stop)/2.0 thisname='grism/gen1_'+'{:5.3f}'.format(bin_center) #print bin_start, bin_stop, bin_width, bin_center, thisname wl_start = bin_start-bin_width wl_stop = bin_stop+bin_width wl_grid = np.linspace(wl_start,wl_stop,30.0) wl_tr = np.where(np.logical_and(wl_grid >= bin_start,wl_grid < bin_stop ),np.ones_like(wl_grid),np.zeros_like(wl_grid) ) this_hdu = wf_hdu(wl_tr,wl_grid) this_hdu.header['EXTNAME']=thisname hdus.append(this_hdu) return hdus if __name__=="__main__": #get existing filters and add new ones #note these filters are for simple BROADBAND test images, not full simulations, so accuracy=== MEH wfirst_hdus = wfirst_filters() #print wfirst_hdus[4].data['totalrelativeefficiency'], wfirst_hdus[4].data['wavelength'], wfirst_hdus[4].header.cards primhdu = pyfits.PrimaryHDU() newlist = pyfits.HDUList([primhdu]) for hdu in wfirst_hdus: newlist.append(hdu) all_filters = input_old_filters(os.path.expandvars('$HOME/Dropbox/Projects/FILTERS/sunrise_data/filters_redshifted'),os.path.expandvars('$HOME/Dropbox/Projects/FILTERS/sunrise_data/filters')) rest_filters = input_old_filters(os.path.expandvars('$HOME/Dropbox/Projects/FILTERS/sunrise_data/filters_restframe_new'),os.path.expandvars('$HOME/Dropbox/Projects/FILTERS/sunrise_data/filters')) for hdu in all_filters: newlist.append(hdu) for hdu in rest_filters: newlist.append(hdu) miri_hdus = miri_filters() for hdu in miri_hdus: newlist.append(hdu) nircam_hdus = nircam_filters() for hdu in nircam_hdus: newlist.append(hdu) gen1_grisms = make_grism_filters(0.69,5.0,250) #grs_grisms = make_grism_filters(1.35,1.89,250) for hdu in gen1_grisms: newlist.append(hdu) packagef = 'filterpackage.fits' newlist.writeto(packagef,clobber=True) output_sunrise_filter_directory(packagef,'sunrise_filters')
mit
kernc/scikit-learn
examples/cluster/plot_birch_vs_minibatchkmeans.py
333
3694
""" ================================= Compare BIRCH and MiniBatchKMeans ================================= This example compares the timing of Birch (with and without the global clustering step) and MiniBatchKMeans on a synthetic dataset having 100,000 samples and 2 features generated using make_blobs. If ``n_clusters`` is set to None, the data is reduced from 100,000 samples to a set of 158 clusters. This can be viewed as a preprocessing step before the final (global) clustering step that further reduces these 158 clusters to 100 clusters. """ # Authors: Manoj Kumar <[email protected] # Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) from itertools import cycle from time import time import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from sklearn.preprocessing import StandardScaler from sklearn.cluster import Birch, MiniBatchKMeans from sklearn.datasets.samples_generator import make_blobs # Generate centers for the blobs so that it forms a 10 X 10 grid. xx = np.linspace(-22, 22, 10) yy = np.linspace(-22, 22, 10) xx, yy = np.meshgrid(xx, yy) n_centres = np.hstack((np.ravel(xx)[:, np.newaxis], np.ravel(yy)[:, np.newaxis])) # Generate blobs to do a comparison between MiniBatchKMeans and Birch. X, y = make_blobs(n_samples=100000, centers=n_centres, random_state=0) # Use all colors that matplotlib provides by default. colors_ = cycle(colors.cnames.keys()) fig = plt.figure(figsize=(12, 4)) fig.subplots_adjust(left=0.04, right=0.98, bottom=0.1, top=0.9) # Compute clustering with Birch with and without the final clustering step # and plot. birch_models = [Birch(threshold=1.7, n_clusters=None), Birch(threshold=1.7, n_clusters=100)] final_step = ['without global clustering', 'with global clustering'] for ind, (birch_model, info) in enumerate(zip(birch_models, final_step)): t = time() birch_model.fit(X) time_ = time() - t print("Birch %s as the final step took %0.2f seconds" % ( info, (time() - t))) # Plot result labels = birch_model.labels_ centroids = birch_model.subcluster_centers_ n_clusters = np.unique(labels).size print("n_clusters : %d" % n_clusters) ax = fig.add_subplot(1, 3, ind + 1) for this_centroid, k, col in zip(centroids, range(n_clusters), colors_): mask = labels == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') if birch_model.n_clusters is None: ax.plot(this_centroid[0], this_centroid[1], '+', markerfacecolor=col, markeredgecolor='k', markersize=5) ax.set_ylim([-25, 25]) ax.set_xlim([-25, 25]) ax.set_autoscaley_on(False) ax.set_title('Birch %s' % info) # Compute clustering with MiniBatchKMeans. mbk = MiniBatchKMeans(init='k-means++', n_clusters=100, batch_size=100, n_init=10, max_no_improvement=10, verbose=0, random_state=0) t0 = time() mbk.fit(X) t_mini_batch = time() - t0 print("Time taken to run MiniBatchKMeans %0.2f seconds" % t_mini_batch) mbk_means_labels_unique = np.unique(mbk.labels_) ax = fig.add_subplot(1, 3, 3) for this_centroid, k, col in zip(mbk.cluster_centers_, range(n_clusters), colors_): mask = mbk.labels_ == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') ax.plot(this_centroid[0], this_centroid[1], '+', markeredgecolor='k', markersize=5) ax.set_xlim([-25, 25]) ax.set_ylim([-25, 25]) ax.set_title("MiniBatchKMeans") ax.set_autoscaley_on(False) plt.show()
bsd-3-clause
soylentdeen/cuddly-weasel
gfVerification/compareGfs.py
1
3065
import matplotlib.pyplot as pyplot import numpy import scipy import sys import MoogTools import AstroUtils fig = pyplot.figure(0) fig.clear() ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) baseName = sys.argv[1] arcturusConfig = AstroUtils.parse_config(baseName+"_Solar.cfg") solarConfig = AstroUtils.parse_config(baseName+"_Arcturus.cfg") originalConfig = arcturusConfig.copy() arcturusConfig["applyCorrections"] = True solarConfig["applyCorrections"] = True arcturus = MoogTools.LineList(None, arcturusConfig) solar = MoogTools.LineList(None, solarConfig) original = MoogTools.LineList(None, originalConfig) orig = [] sol = [] arc = [] diff = [] dsol = [] darc = [] species = [] expot = [] wl = [] for i in range(original.nStrong): orig.append(original.strongLines[i].loggf) sol.append(solar.strongLines[i].loggf) arc.append(arcturus.strongLines[i].loggf) wl.append(arcturus.strongLines[i].wl) diff.append(sol[-1] - arc[-1]) dsol.append(sol[-1] - orig[-1]) darc.append(arc[-1] - orig[-1]) species.append(arcturus.strongLines[i].species) expot.append(arcturus.strongLines[i].expot_lo) for i in range(original.numLines - original.nStrong): orig.append(original.weakLines[i].loggf) sol.append(solar.weakLines[i].loggf) arc.append(arcturus.weakLines[i].loggf) wl.append(arcturus.weakLines[i].wl) diff.append(sol[-1] - arc[-1]) dsol.append(sol[-1] - orig[-1]) darc.append(arc[-1] - orig[-1]) species.append(arcturus.weakLines[i].species) expot.append(arcturus.weakLines[i].expot_lo) diff = numpy.array(diff) orig = numpy.array(orig) sol = numpy.array(sol) arc = numpy.array(arc) dsol = numpy.array(dsol) darc = numpy.array(darc) species = numpy.array(species) expot = numpy.array(expot) wl = numpy.array(wl) changed = diff != 0.0 #ax.plot([-6, 0], [-6, 0]) #for w, s, a, sp, e in zip(wl[changed], dsol[changed], darc[changed], species[changed], # expot[changed]): # e *= 10. # ax.plot([w, w], [s, a], color = 'k') # ax.scatter([w], [s], color = 'b', s=[e,e]) # ax.scatter([w], [a], color = 'r', s=[e,e]) #ax.plot([numpy.min(wl), numpy.max(wl)], [0.0, 0.0]) ax.scatter(expot[changed], dsol[changed], label='Solar', color = 'b') ax.scatter(expot[changed], darc[changed], label='Arcturus', color = 'r') #ax.scatter(wl[changed], dsol[changed]/10, color = 'b', label='Solar', s=species[changed]) #ax.scatter(wl[changed], darc[changed]/10, color = 'r', label='Arcturus', s=species[changed]) #for #ax.plot([-4, 1.0], [-4, 1.0]) ax.legend(loc=3) #ax.set_xbound(-4.0, 1.0) #ax.set_ybound(-4.0, 1.0) ax.set_xlabel("Excitation Potential (eV)") ax.set_ylabel("Delta log gf") #ax.scatter(expot[changed], diff[changed]) #ax.scatter(orig[changed], dsol[changed], color = 'r') #ax.scatter(orig[changed], darc[changed], color = 'b') #ax.plot([0.0, 8.0], [0.0, 0.0]) #ax.scatter(species[changed]+1, orig[changed], color = 'k') #ax.scatter(species[changed], arc[changed], color = 'b') #ax.scatter(species[changed], sol[changed], color = 'r') fig.show() fig.savefig("loggf_changes.png")
mit
adamLange/moose
examples/ex14_pps/plot.py
14
1194
#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np import csv # Python 2.7 does not have str.isnumeric()? def isInt(string): try: int(string) return True except ValueError: return False # Format of the CSV file is: # time,dofs,integral # 1,221,2.3592493758695, # 2,841,0.30939803328432, # 3,3281,0.088619511656913, # 4,12961,0.022979021365857, # 5,51521,0.0057978748995635, # 6,205441,0.0014528130907967, reader = csv.reader(file('out.csv')) dofs = [] errs = [] for row in reader: if row and isInt(row[0]): # Skip rows that don't start with numbers. dofs.append(int(row[1])) errs.append(float(row[2])) # Construct data to be plotted xdata = np.log10(np.sqrt(dofs)) ydata = np.log10(errs) fig = plt.figure() ax1 = fig.add_subplot(111) ax1.plot(xdata, ydata, 'bo-') ax1.set_xlabel('log (1/h)') ax1.set_ylabel('log (L2-error)') # Create linear curve fits of the data, but just the last couple data # point when we are in the asymptotic regime. fit = np.polyfit(xdata[2:-1], ydata[2:-1], 1) fit_msg = 'Slope ~ ' + '%.2f' % fit[0] ax1.text(2.0, -1.0, fit_msg) plt.savefig('plot.pdf', format='pdf') # Local Variables: # python-indent: 2 # End:
lgpl-2.1
etamponi/emetrics
emetrics/evaluation/manual_experiment.py
1
1778
from scipy.stats.stats import pearsonr from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from emetrics.coefficients.association_measure import AssociationMeasure from emetrics.correlation_score import CorrelationScore from emetrics.evaluation.random_subsets_experiment import RandomSubsetsExperiment from emetrics.label_encoders.ordinal_label_encoder import OrdinalLabelEncoder from emetrics.preparers.bootstrap_sampler import BootstrapSampler from emetrics.preparers.noise_injector import NoiseInjector __author__ = 'Emanuele Tamponi' def main(): subset_sizes = range(1, 6) for subset_size in subset_sizes: experiment = RandomSubsetsExperiment( dataset="iris", subset_size=subset_size, scorers=[ ("wilks", CorrelationScore( coefficient=AssociationMeasure( measure="wilks" ), preparer_pipeline=[ BootstrapSampler(sampling_percent=100), NoiseInjector(stddev=1e-6), ], label_encoder=OrdinalLabelEncoder() )) ], classifiers=[ ("dt", DecisionTreeClassifier()), ("rf", RandomForestClassifier()) ], n_folds=10, n_runs=10 ) results = experiment.run() if results is None: continue for classifier in results["errors"]: corr, _ = pearsonr(results["scores"]["wilks"], results["errors"][classifier]) print "{} - correlation with {}: {:.3f}".format(subset_size, classifier, corr) if __name__ == "__main__": main()
gpl-2.0
ilo10/scikit-learn
examples/svm/plot_rbf_parameters.py
57
8096
''' ================== RBF SVM parameters ================== This example illustrates the effect of the parameters ``gamma`` and ``C`` of the Radius Basis Function (RBF) kernel SVM. Intuitively, the ``gamma`` parameter defines how far the influence of a single training example reaches, with low values meaning 'far' and high values meaning 'close'. The ``gamma`` parameters can be seen as the inverse of the radius of influence of samples selected by the model as support vectors. The ``C`` parameter trades off misclassification of training examples against simplicity of the decision surface. A low ``C`` makes the decision surface smooth, while a high ``C`` aims at classifying all training examples correctly by giving the model freedom to select more samples as support vectors. The first plot is a visualization of the decision function for a variety of parameter values on a simplified classification problem involving only 2 input features and 2 possible target classes (binary classification). Note that this kind of plot is not possible to do for problems with more features or target classes. The second plot is a heatmap of the classifier's cross-validation accuracy as a function of ``C`` and ``gamma``. For this example we explore a relatively large grid for illustration purposes. In practice, a logarithmic grid from :math:`10^{-3}` to :math:`10^3` is usually sufficient. If the best parameters lie on the boundaries of the grid, it can be extended in that direction in a subsequent search. Note that the heat map plot has a special colorbar with a midpoint value close to the score values of the best performing models so as to make it easy to tell them appart in the blink of an eye. The behavior of the model is very sensitive to the ``gamma`` parameter. If ``gamma`` is too large, the radius of the area of influence of the support vectors only includes the support vector itself and no amount of regularization with ``C`` will be able to prevent overfitting. When ``gamma`` is very small, the model is too constrained and cannot capture the complexity or "shape" of the data. The region of influence of any selected support vector would include the whole training set. The resulting model will behave similarly to a linear model with a set of hyperplanes that separate the centers of high density of any pair of two classes. For intermediate values, we can see on the second plot that good models can be found on a diagonal of ``C`` and ``gamma``. Smooth models (lower ``gamma`` values) can be made more complex by selecting a larger number of support vectors (larger ``C`` values) hence the diagonal of good performing models. Finally one can also observe that for some intermediate values of ``gamma`` we get equally performing models when ``C`` becomes very large: it is not necessary to regularize by limiting the number of support vectors. The radius of the RBF kernel alone acts as a good structural regularizer. In practice though it might still be interesting to limit the number of support vectors with a lower value of ``C`` so as to favor models that use less memory and that are faster to predict. We should also note that small differences in scores results from the random splits of the cross-validation procedure. Those spurious variations can be smoothed out by increasing the number of CV iterations ``n_iter`` at the expense of compute time. Increasing the value number of ``C_range`` and ``gamma_range`` steps will increase the resolution of the hyper-parameter heat map. ''' print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import Normalize from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris from sklearn.cross_validation import StratifiedShuffleSplit from sklearn.grid_search import GridSearchCV # Utility function to move the midpoint of a colormap to be around # the values of interest. class MidpointNormalize(Normalize): def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): self.midpoint = midpoint Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y)) ############################################################################## # Load and prepare data set # # dataset for grid search iris = load_iris() X = iris.data y = iris.target # Dataset for decision function visualization: we only keep the first two # features in X and sub-sample the dataset to keep only 2 classes and # make it a binary classification problem. X_2d = X[:, :2] X_2d = X_2d[y > 0] y_2d = y[y > 0] y_2d -= 1 # It is usually a good idea to scale the data for SVM training. # We are cheating a bit in this example in scaling all of the data, # instead of fitting the transformation on the training set and # just applying it on the test set. scaler = StandardScaler() X = scaler.fit_transform(X) X_2d = scaler.fit_transform(X_2d) ############################################################################## # Train classifiers # # For an initial search, a logarithmic grid with basis # 10 is often helpful. Using a basis of 2, a finer # tuning can be achieved but at a much higher cost. C_range = np.logspace(-2, 10, 13) gamma_range = np.logspace(-9, 3, 13) param_grid = dict(gamma=gamma_range, C=C_range) cv = StratifiedShuffleSplit(y, n_iter=5, test_size=0.2, random_state=42) grid = GridSearchCV(SVC(), param_grid=param_grid, cv=cv) grid.fit(X, y) print("The best parameters are %s with a score of %0.2f" % (grid.best_params_, grid.best_score_)) # Now we need to fit a classifier for all parameters in the 2d version # (we use a smaller set of parameters here because it takes a while to train) C_2d_range = [1e-2, 1, 1e2] gamma_2d_range = [1e-1, 1, 1e1] classifiers = [] for C in C_2d_range: for gamma in gamma_2d_range: clf = SVC(C=C, gamma=gamma) clf.fit(X_2d, y_2d) classifiers.append((C, gamma, clf)) ############################################################################## # visualization # # draw visualization of parameter effects plt.figure(figsize=(8, 6)) xx, yy = np.meshgrid(np.linspace(-3, 3, 200), np.linspace(-3, 3, 200)) for (k, (C, gamma, clf)) in enumerate(classifiers): # evaluate decision function in a grid Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # visualize decision function for these parameters plt.subplot(len(C_2d_range), len(gamma_2d_range), k + 1) plt.title("gamma=10^%d, C=10^%d" % (np.log10(gamma), np.log10(C)), size='medium') # visualize parameter's effect on decision function plt.pcolormesh(xx, yy, -Z, cmap=plt.cm.RdBu) plt.scatter(X_2d[:, 0], X_2d[:, 1], c=y_2d, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.axis('tight') # plot the scores of the grid # grid_scores_ contains parameter settings and scores # We extract just the scores scores = [x[1] for x in grid.grid_scores_] scores = np.array(scores).reshape(len(C_range), len(gamma_range)) # Draw heatmap of the validation accuracy as a function of gamma and C # # The score are encoded as colors with the hot colormap which varies from dark # red to bright yellow. As the most interesting scores are all located in the # 0.92 to 0.97 range we use a custom normalizer to set the mid-point to 0.92 so # as to make it easier to visualize the small variations of score values in the # interesting range while not brutally collapsing all the low score values to # the same color. plt.figure(figsize=(8, 6)) plt.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95) plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot, norm=MidpointNormalize(vmin=0.2, midpoint=0.92)) plt.xlabel('gamma') plt.ylabel('C') plt.colorbar() plt.xticks(np.arange(len(gamma_range)), gamma_range, rotation=45) plt.yticks(np.arange(len(C_range)), C_range) plt.title('Validation accuracy') plt.show()
bsd-3-clause
mrnameless123/advance-image-processing-class
utils.py
1
13917
import numpy as np import warnings from sklearn.preprocessing import normalize from enum import Enum warnings.filterwarnings('error') print('Imported',__name__) class BroadCastType(Enum): BC_VERTICAL = 0 BC_HORIZONTAL = 1 def func_compute_rms(param_input): print(np.linalg.norm(param_input)) # sumvalue = 0 # for x in param_input: # for y in x: # sumvalue += y**2 # print(np.sqrt(sumvalue)) def compute_distance(array_a, array_b): distance = [] for x in array_a: tmp = [] for y in array_b: try: item = x-y except Exception as argument: print('Exception Occured:',argument) return else: value = np.power(np.linalg.norm(item),2) tmp.append(value) distance.append(tmp) return np.array(distance) def index_of_value_in_array(param_array, param_value): array = np.array(param_array) if array.ndim == 1: result1d = np.where(param_array == param_value) try: result1d[0] except Exception as argument: print('index_of_value_in_array Exception occurred: {0}'.format(argument)) return None else: return np.array(result1d) elif array.ndim == 2: result2d = np.where(param_array == param_value) try: result2d[0][0] except Exception as argument: print('index_of_value_in_array Exception occurred: {0}'.format(argument)) return None else: tmp1 = result2d[0] tmp2 = result2d[1] return np.vstack([tmp1,tmp2]).T elif array.ndim == 3: result3d = np.where(param_array == param_value) try: result3d[0][0][0] except Exception as argument: print('index_of_value_in_array Exception occurred: {0}'.format(argument)) return None else: tmp1 = result3d[0] tmp2 = result3d[1] tmp3 = result3d[2] return np.vstack([tmp1,tmp2,tmp3]).T def func_broadcast_array(param_broadcaster, param_new_shape, param_broadcast_axis = BroadCastType.BC_VERTICAL): clone = np.array(param_broadcaster) output = np.array(param_broadcaster) iteration = int(param_new_shape) if param_broadcast_axis == BroadCastType.BC_VERTICAL: for x in range(iteration - 1): output = np.vstack([output, clone]) if output.shape[0] != iteration: print('func_broadcast_array experienced exception: {0} != {1} shape is {2}'.format(int(output.shape[1]), iteration, np.shape(output))) input() return output elif param_broadcast_axis == BroadCastType.BC_HORIZONTAL: for x in range(iteration - 1): output = np.hstack([output, clone]) if output.shape[1] != iteration: print('func_broadcast_array experienced exception: {0} != {1} shape is {2}'.format(int(output.shape[0]), iteration, np.shape(output))) input() return output def func_my_normalize(param_input): row, col = param_input.shape tmp = np.reshape(param_input, (1, row * col)).astype(np.float64) normed_matrix = normalize(tmp.astype(np.float64), axis=1, norm='max') normed_image = np.reshape(normed_matrix, param_input.shape) max_value = np.amax(param_input) return normed_image, max_value def func_verify_image(param_input, threshold_1 = None, hough_thres = False): try: clone = param_input.copy() x, y = clone.shape for i in range(x): for j in range(y): if threshold_1 is None: if clone[i][j] > 255: clone[i][j] = 255 elif clone[i][j] < 0: clone[i][j] = 0 else: if clone[i][j] > threshold_1: clone[i][j] = hough_thres and 1 or 255 elif clone[i][j] < threshold_1: clone[i][j] = 0 except Exception as Argument: print('func_verify_image exception occurred: {0}'.format(param_input)) input() else: return np.array(clone, dtype= np.uint8) def func_add_noisy(image, noise_typ = 'gaussian', **kwargs): mode = noise_typ.lower() allowed_types = { 'gaussian': 'gaussian_values', 'laplacian': 'laplacian_values', 'local_var': 'local_var_values', 'poisson': 'poisson_values', 'salt': 'sp_values', 'pepper': 'sp_values', 's&p': 's&p_values', 'speckle': 'gaussian_values'} kw_defaults = { 'mean': 0., 'var': 10, 'exponential_decay' : 1.0, 'amount': 0.005, 'salt_vs_pepper': 0.5, 'local_vars': np.zeros_like(image) + 0.01} allowed_kwargs = { 'gaussian_values': ['mean', 'var'], 'laplacian_values': ['mean', 'exponential_decay'], 'local_var_values': ['local_vars'], 'sp_values': ['amount', 'salt_vs_pepper'], 's&p_values': ['amount', 'salt_vs_pepper'], 'poisson_values': []} #Check if the parameter is correct or not for key in kwargs: if key not in allowed_kwargs[allowed_types[mode]]: raise ValueError('%s keyword not in allowed keywords %s' % (key, allowed_kwargs[allowed_types[mode]])) for kw in allowed_kwargs[allowed_types[mode]]: kwargs.setdefault(kw, kw_defaults[kw]) #Normalize input image row, col = image.shape tmp = np.reshape(image, (1, row*col)).astype(np.float64) normed_matrix = normalize(tmp.astype(np.float64), axis=1, norm='max') normed_image = np.reshape(normed_matrix, image.shape) max_value = np.amax(image) max_value = 1 normed_image = image #Process add noise to image according to type of noise if noise_typ == 'gaussian': noise = np.random.normal(kwargs['mean'], kwargs['var'] ** 0.5, normed_image.shape) func_compute_rms(noise) noised_img = normed_image + noise return func_verify_image(noised_img*max_value) elif noise_typ == 'laplacian': '''y = ln(2x) if x\in(0, 0.5) otherwise -ln(2-2x) if x\in(0.5, 1) f(x; \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|x - \mu|}{\lambda}\right). ''' noise = np.random.laplace(kwargs['mean'], kwargs['exponential_decay'], normed_image.shape) noised_img = normed_image + noise; return func_verify_image(noised_img*max_value) elif noise_typ == 'salt': out = normed_image # Salt mode num_salt = np.ceil(kwargs['amount'] * normed_image.size * kwargs['salt_vs_pepper']) co_ordinates = [np.random.randint(0, i - 1, int(num_salt)) for i in normed_image.shape] out[co_ordinates] = 1 return func_verify_image(out*max_value) elif noise_typ == 'pepper': # Pepper mode out = normed_image num_pepper = np.ceil(kwargs['amount'] * normed_image.size * (1. - kwargs['salt_vs_pepper'])) co_ordinates = [np.random.randint(0, i - 1, int(num_pepper)) for i in normed_image.shape] out[co_ordinates] = 0 return func_verify_image(out*max_value) elif noise_typ == "s&p": out = normed_image # Salt mode num_salt = np.ceil(kwargs['amount'] * normed_image.size * kwargs['salt_vs_pepper']) co_ordinates = [np.random.randint(0, i - 1, int(num_salt)) for i in normed_image.shape] out[co_ordinates] = 255 # Pepper mode num_pepper = np.ceil(kwargs['amount'] * normed_image.size * (1. - kwargs['salt_vs_pepper'])) co_ordinates = [np.random.randint(0, i - 1, int(num_pepper)) for i in normed_image.shape] out[co_ordinates] = 0 return out * max_value elif noise_typ == 'poisson': values = len(np.unique(normed_image)) values = 2 ** np.ceil(np.log2(values)) noisy = np.random.poisson(normed_image * values) / float(values) return func_verify_image(noisy*max_value) elif noise_typ == 'speckle': gauss = np.random.randn(row, col) gauss = gauss.reshape(row, col) noisy = normed_image + normed_image * gauss return func_verify_image(noisy*max_value) def func_manual_rotate_image_interpolation(param_input, param_angle, param_interpolation=0): rows, cols = np.array(param_input).shape ratio = (param_angle / 180) * np.pi origin_center = np.array([np.round(rows / 2), np.round(cols / 2)]) new_row = np.int(np.abs(rows * np.cos(ratio)) + np.abs(cols * np.sin(ratio))) new_col = np.int(np.abs(rows * np.sin(ratio)) + np.abs(cols * np.cos(ratio))) output = np.zeros((new_row, new_col)) kernel = np.array([[np.cos(ratio), - np.sin(ratio)], [np.sin(ratio), np.cos(ratio)]]) output_center = np.array([np.round(new_row / 2), np.round(new_col / 2)]) if param_interpolation == 0: # Nearest interpolation try: for x in range(new_row): for y in range(new_col): vector_rotate = np.array([x - output_center[0], y - output_center[1]]) tmp = np.dot(kernel.T, vector_rotate) rotate_momentum = np.array(tmp + origin_center, dtype=np.int) if 0 < rotate_momentum[0] < rows and 0 < rotate_momentum[1] < cols: output[x][y] = param_input[rotate_momentum[0]][rotate_momentum[1]] except Exception as Argument: print('func_manual_rotate_image_interpolation exception occurred: {0}'.format(Argument)) input() else: return output elif param_interpolation == 1: # Bilinear interpolation try: for x in range(new_row): for y in range(new_col): vector_rotate = np.array([x - output_center[0], y - output_center[1]]) tmp = np.dot(kernel.T, vector_rotate) rotate_momentum = tmp + origin_center x1, y1 = np.floor(rotate_momentum).astype(dtype=np.int) x2, y2 = np.ceil(rotate_momentum - np.floor(rotate_momentum)).astype(dtype=np.int) if 0 < x1 < rows-1 and 0 < y1 < cols-1 : output[x][y] = (1-x2)*(1-y2)*param_input[x1][y1] + (1-x2)*y2*param_input[x1][y1+1] + x2*(1-y2)*param_input[x1+1][y1] + x2*y2*param_input[x1+1][y1+1] except Exception as Argument: print('func_manual_rotate_image_interpolation exception occurred: {0}'.format(Argument)) input() else: return output # This function visualizes filters in matrix A. Each column of A is a # filter. We will reshape each column into a square image and visualizes # on each cell of the visualization panel. # All other parameters are optional, usually you do not need to worry # about it. # opt_normalize: whether we need to normalize the filter so that all of # them can have similar contrast. Default value is true. # opt_graycolor: whether we use gray as the heat map. Default is true. # opt_colmajor: you can switch convention to row major for A. In that # case, each row of A is a filter. Default value is false. # source: https://github.com/tsaith/ufldl_tutorial def display_network(A, m=-1, n=-1): opt_normalize = True opt_graycolor = True # Rescale A = A - np.average(A) # Compute rows & cols (row, col) = A.shape sz = int(np.ceil(np.sqrt(row))) buf = 1 if m < 0 or n < 0: n = np.ceil(np.sqrt(col)) m = np.ceil(col / n) image = np.ones(shape=(buf + m * (sz + buf), buf + n * (sz + buf))) if not opt_graycolor: image *= 0.1 k = 0 for i in range(int(m)): for j in range(int(n)): if k >= col: continue clim = np.max(np.abs(A[:, k])) if opt_normalize: image[buf + i * (sz + buf):buf + i * (sz + buf) + sz, buf + j * (sz + buf):buf + j * (sz + buf) + sz] = \ A[:, k].reshape(sz, sz) / clim else: image[buf + i * (sz + buf):buf + i * (sz + buf) + sz, buf + j * (sz + buf):buf + j * (sz + buf) + sz] = \ A[:, k].reshape(sz, sz) / np.max(np.abs(A)) k += 1 return image def display_color_network(A): """ # display receptive field(s) or basis vector(s) for image patches # # A the basis, with patches as column vectors # In case the midpoint is not set at 0, we shift it dynamically :param A: :param file: :return: """ if np.min(A) >= 0: A = A - np.mean(A) cols = np.round(np.sqrt(A.shape[1])) channel_size = A.shape[0] / 3 dim = np.sqrt(channel_size) dimp = dim + 1 rows = np.ceil(A.shape[1] / cols) B = A[0:channel_size, :] C = A[channel_size:2 * channel_size, :] D = A[2 * channel_size:3 * channel_size, :] B = B / np.max(np.abs(B)) C = C / np.max(np.abs(C)) D = D / np.max(np.abs(D)) # Initialization of the image image = np.ones(shape=(dim * rows + rows - 1, dim * cols + cols - 1, 3)) for i in range(int(rows)): for j in range(int(cols)): # This sets the patch image[i * dimp:i * dimp + dim, j * dimp:j * dimp + dim, 0] = B[:, i * cols + j].reshape(dim, dim) image[i * dimp:i * dimp + dim, j * dimp:j * dimp + dim, 1] = C[:, i * cols + j].reshape(dim, dim) image[i * dimp:i * dimp + dim, j * dimp:j * dimp + dim, 2] = D[:, i * cols + j].reshape(dim, dim) image = (image + 1) / 2 # PIL.Image.fromarray(np.uint8(image * 255), 'RGB').save(filename) return image
gpl-3.0
drphilmarshall/Pangloss
doc/pgm/pgm_color.py
2
3330
# ============================================================================ # PGM for the SDSI proposal # # Phil Marshall, September 2014 # ============================================================================ from matplotlib import rc rc("font", family="serif", size=10) rc("text", usetex=True) import daft figshape = (8.6, 5.0) figorigin = (-0.6, -0.4) # Colors. red = {"ec": "red"} orange = {"ec": "orange"} green = {"ec": "green"} blue = {"ec": "blue"} violet = {"ec": "violet"} # Start the chart: pgm = daft.PGM(figshape, origin=figorigin) # Foreground galaxies branch: pgm.add_node(daft.Node("cosmo1", r"${\bf \Omega}_g$", 1.9, 3.8,plot_params=violet)) pgm.add_node(daft.Node("Mhd", r"$M_{{\rm h},i}$", 1.3, 2.2,plot_params=green)) pgm.add_node(daft.Node("zd", r"$z_i$", 2.2, 2.8,plot_params=green)) pgm.add_node(daft.Node("xd", r"${\bf x}_i$", 2.2, 0.7, fixed=True)) pgm.add_node(daft.Node("Mstard", r"$M^{*}_i$", 2.2, 1.6,plot_params=orange)) pgm.add_node(daft.Node("phid", r"${\bf \phi}_i$", 1.3, 1.1, observed=True)) pgm.add_node(daft.Node("alphad", r"$\alpha$", 0.2, 1.6,plot_params=red)) # Background galaxies: pgm.add_node(daft.Node("cosmo2", r"${\bf \Omega}_e$", 3.0, 4.0,plot_params=violet)) pgm.add_node(daft.Node("sigcrit", r"$\Sigma^{\rm crit}_{ij}$", 3.0, 2.4,plot_params=blue)) pgm.add_node(daft.Node("gamma", r"$\gamma_j$", 4.0, 1.8,plot_params=blue)) pgm.add_node(daft.Node("elens", r"$\epsilon^{\rm lens}_j$", 4.5, 1.2,plot_params=blue)) pgm.add_node(daft.Node("eobs", r"$\epsilon^{\rm obs}_j$", 4.5, 0.4, observed=True)) pgm.add_node(daft.Node("Mh", r"$M_{{\rm h},j}$", 6.0, 3.0,plot_params=green)) pgm.add_node(daft.Node("z", r"$z_j$", 5.0, 3.0,plot_params=green)) pgm.add_node(daft.Node("x", r"${\bf x}_j$", 4.6, 2.4, fixed=True)) pgm.add_node(daft.Node("cosmo3", r"${\bf \Omega}_g$", 5.6, 4.0,plot_params=violet)) pgm.add_node(daft.Node("Mstar", r"$M^{*}_j$", 5.6, 2.4,plot_params=orange)) pgm.add_node(daft.Node("alpha", r"${\bf \alpha}$", 7.2, 2.4,plot_params=red)) pgm.add_node(daft.Node("epsilon", r"$\epsilon_j$", 6.0, 1.4)) pgm.add_node(daft.Node("phi", r"${\bf \phi}_j$", 5.0, 1.8, observed=True)) # Now connect the dots: pgm.add_edge("cosmo1", "Mhd") pgm.add_edge("cosmo1", "zd") pgm.add_edge("Mhd", "Mstard") pgm.add_edge("zd", "Mstard") pgm.add_edge("alphad", "Mstard") pgm.add_edge("zd", "phid") pgm.add_edge("Mstard", "phid") pgm.add_edge("zd", "sigcrit") pgm.add_edge("cosmo2", "sigcrit") pgm.add_edge("z", "sigcrit") pgm.add_edge("xd", "gamma") pgm.add_edge("Mhd", "gamma") pgm.add_edge("sigcrit", "gamma") pgm.add_edge("x", "gamma") pgm.add_edge("gamma", "elens") pgm.add_edge("elens", "eobs") pgm.add_edge("cosmo3", "Mh") pgm.add_edge("cosmo3", "z") pgm.add_edge("Mh", "Mstar") pgm.add_edge("z", "Mstar") pgm.add_edge("alpha", "Mstar") pgm.add_edge("Mstar", "epsilon") pgm.add_edge("Mstar", "phi") pgm.add_edge("z", "phi") pgm.add_edge("epsilon", "elens") #Add plate over deflectors pgm.add_plate(daft.Plate([0.7, 0.2, 2.7, 3.2], label=r"foreground galaxies $i$", label_offset=[5, 5])) # Add plate over sources pgm.add_plate(daft.Plate([2.6, 0.0, 4.0, 3.6], label=r"background galaxies $j$", label_offset=[120, 5])) pgm.render() pgm.figure.savefig("pgm_color.png", dpi=220) # ============================================================================
gpl-2.0
drscotthawley/audio-classifier-keras-cnn
eval_network.py
1
10089
from __future__ import print_function ''' Classify sounds using database - evaluation code Author: Scott H. Hawley This is kind of a mixture of Keun Woo Choi's code https://github.com/keunwoochoi/music-auto_tagging-keras and the MNIST classifier at https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py Trained using Fraunhofer IDMT's database of monophonic guitar effects, clips were 2 seconds long, sampled at 44100 Hz ''' import numpy as np import matplotlib.pyplot as plt import librosa import librosa.display from keras.models import Sequential, Model from keras.layers import Input, Dense, TimeDistributed, LSTM, Dropout, Activation from keras.layers import Convolution2D, MaxPooling2D, Flatten from keras.layers.normalization import BatchNormalization from keras.layers.advanced_activations import ELU from keras.callbacks import ModelCheckpoint from keras import backend from keras.utils import np_utils import os from os.path import isfile from sklearn.metrics import roc_auc_score from timeit import default_timer as timer from sklearn.metrics import roc_auc_score, roc_curve, auc mono=True def get_class_names(path="Preproc/"): # class names are subdirectory names in Preproc/ directory class_names = os.listdir(path) return class_names def get_total_files(path="Preproc/",train_percentage=0.8): sum_total = 0 sum_train = 0 sum_test = 0 subdirs = os.listdir(path) for subdir in subdirs: files = os.listdir(path+subdir) n_files = len(files) sum_total += n_files n_train = int(train_percentage*n_files) n_test = n_files - n_train sum_train += n_train sum_test += n_test return sum_total, sum_train, sum_test def get_sample_dimensions(path='Preproc/'): classname = os.listdir(path)[0] files = os.listdir(path+classname) infilename = files[0] audio_path = path + classname + '/' + infilename melgram = np.load(audio_path) print(" get_sample_dimensions: melgram.shape = ",melgram.shape) return melgram.shape def encode_class(class_name, class_names): # makes a "one-hot" vector for each class name called try: idx = class_names.index(class_name) vec = np.zeros(len(class_names)) vec[idx] = 1 return vec except ValueError: return None def decode_class(vec, class_names): # generates a number from the one-hot vector return int(np.argmax(vec)) def shuffle_XY_paths(X,Y,paths): # generates a randomized order, keeping X&Y(&paths) together assert (X.shape[0] == Y.shape[0] ) idx = np.array(range(Y.shape[0])) np.random.shuffle(idx) newX = np.copy(X) newY = np.copy(Y) newpaths = paths for i in range(len(idx)): newX[i] = X[idx[i],:,:] newY[i] = Y[idx[i],:] newpaths[i] = paths[idx[i]] return newX, newY, newpaths def build_datasets(train_percentage=0.8, preproc=False): ''' So we make the training & testing datasets here, and we do it separately. Why not just make one big dataset, shuffle, and then split into train & test? because we want to make sure statistics in training & testing are as similar as possible ''' if (preproc): path = "Preproc/" else: path = "Samples/" class_names = get_class_names(path=path) print("class_names = ",class_names) total_files, total_train, total_test = get_total_files(path=path, train_percentage=train_percentage) print("total files = ",total_files) nb_classes = len(class_names) mel_dims = get_sample_dimensions(path=path) # pre-allocate memory for speed (old method used np.concatenate, slow) X_train = np.zeros((total_train, mel_dims[1], mel_dims[2], mel_dims[3])) Y_train = np.zeros((total_train, nb_classes)) X_test = np.zeros((total_test, mel_dims[1], mel_dims[2], mel_dims[3])) Y_test = np.zeros((total_test, nb_classes)) paths_train = [] paths_test = [] train_count = 0 test_count = 0 for idx, classname in enumerate(class_names): this_Y = np.array(encode_class(classname,class_names) ) this_Y = this_Y[np.newaxis,:] class_files = os.listdir(path+classname) n_files = len(class_files) n_load = n_files n_train = int(train_percentage * n_load) printevery = 100 print("") for idx2, infilename in enumerate(class_files[0:n_load]): audio_path = path + classname + '/' + infilename if (0 == idx2 % printevery): print('\r Loading class: {:14s} ({:2d} of {:2d} classes)'.format(classname,idx+1,nb_classes), ", file ",idx2+1," of ",n_load,": ",audio_path,sep="") #start = timer() if (preproc): melgram = np.load(audio_path) sr = 44100 else: aud, sr = librosa.load(audio_path, mono=mono,sr=None) melgram = librosa.logamplitude(librosa.feature.melspectrogram(aud, sr=sr, n_mels=96),ref_power=1.0)[np.newaxis,np.newaxis,:,:] #end = timer() #print("time = ",end - start) melgram = melgram[:,:,:,0:mel_dims[3]] # just in case files are differnt sizes: clip to first file size if (idx2 < n_train): # concatenate is SLOW for big datasets; use pre-allocated instead #X_train = np.concatenate((X_train, melgram), axis=0) #Y_train = np.concatenate((Y_train, this_Y), axis=0) X_train[train_count,:,:] = melgram Y_train[train_count,:] = this_Y paths_train.append(audio_path) # list-appending is still fast. (??) train_count += 1 else: X_test[test_count,:,:] = melgram Y_test[test_count,:] = this_Y #X_test = np.concatenate((X_test, melgram), axis=0) #Y_test = np.concatenate((Y_test, this_Y), axis=0) paths_test.append(audio_path) test_count += 1 print("") print("Shuffling order of data...") X_train, Y_train, paths_train = shuffle_XY_paths(X_train, Y_train, paths_train) X_test, Y_test, paths_test = shuffle_XY_paths(X_test, Y_test, paths_test) return X_train, Y_train, paths_train, X_test, Y_test, paths_test, class_names, sr def build_model(X,Y,nb_classes): nb_filters = 32 # number of convolutional filters to use pool_size = (2, 2) # size of pooling area for max pooling kernel_size = (3, 3) # convolution kernel size nb_layers = 4 input_shape = (1, X.shape[2], X.shape[3]) model = Sequential() model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1], border_mode='valid', input_shape=input_shape)) model.add(BatchNormalization(axis=1, mode=2)) model.add(Activation('relu')) for layer in range(nb_layers-1): model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1])) model.add(BatchNormalization(axis=1, mode=2)) model.add(ELU(alpha=1.0)) model.add(MaxPooling2D(pool_size=pool_size)) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(nb_classes)) model.add(Activation("softmax")) return model if __name__ == '__main__': np.random.seed(1) # get the data X_train, Y_train, paths_train, X_test, Y_test, paths_test, class_names, sr = build_datasets(preproc=True) # make the model model = build_model(X_train,Y_train, nb_classes=len(class_names)) model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) model.summary() # Initialize weights using checkpoint if it exists. (Checkpointing requires h5py) checkpoint_filepath = 'weights.hdf5' if (True): print("Looking for previous weights...") if ( isfile(checkpoint_filepath) ): print ('Checkpoint file detected. Loading weights.') model.load_weights(checkpoint_filepath) else: print ('No checkpoint file detected. You gotta train_network first.') exit(1) else: print('Starting from scratch (no checkpoint)') print("class names = ",class_names) batch_size = 128 num_pred = X_test.shape[0] # evaluate the model print("Running model.evaluate...") scores = model.evaluate(X_test, Y_test, verbose=1, batch_size=batch_size) print('Test score:', scores[0]) print('Test accuracy:', scores[1]) print("Running predict_proba...") y_scores = model.predict_proba(X_test[0:num_pred,:,:,:],batch_size=batch_size) auc_score = roc_auc_score(Y_test, y_scores) print("AUC = ",auc_score) n_classes = len(class_names) print(" Counting mistakes ") mistakes = np.zeros(n_classes) for i in range(Y_test.shape[0]): pred = decode_class(y_scores[i],class_names) true = decode_class(Y_test[i],class_names) if (pred != true): mistakes[true] += 1 mistakes_sum = int(np.sum(mistakes)) print(" Found",mistakes_sum,"mistakes out of",Y_test.shape[0],"attempts") print(" Mistakes by class: ",mistakes) print("Generating ROC curves...") fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(Y_test[:, i], y_scores[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) plt.figure() lw = 2 for i in range(n_classes): plt.plot(fpr[i], tpr[i], lw=lw, label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i])) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') plt.legend(loc="lower right") plt.show()
mit
mne-tools/mne-tools.github.io
0.16/_downloads/plot_simulate_raw_data.py
6
2822
""" =========================== Generate simulated raw data =========================== This example generates raw data by repeating a desired source activation multiple times. """ # Authors: Yousra Bekhti <[email protected]> # Mark Wronkiewicz <[email protected]> # Eric Larson <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import read_source_spaces, find_events, Epochs, compute_covariance from mne.datasets import sample from mne.simulation import simulate_sparse_stc, simulate_raw print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' trans_fname = data_path + '/MEG/sample/sample_audvis_raw-trans.fif' src_fname = data_path + '/subjects/sample/bem/sample-oct-6-src.fif' bem_fname = (data_path + '/subjects/sample/bem/sample-5120-5120-5120-bem-sol.fif') # Load real data as the template raw = mne.io.read_raw_fif(raw_fname) raw.set_eeg_reference(projection=True) raw = raw.crop(0., 30.) # 30 sec is enough ############################################################################## # Generate dipole time series n_dipoles = 4 # number of dipoles to create epoch_duration = 2. # duration of each epoch/event n = 0 # harmonic number def data_fun(times): """Generate time-staggered sinusoids at harmonics of 10Hz""" global n n_samp = len(times) window = np.zeros(n_samp) start, stop = [int(ii * float(n_samp) / (2 * n_dipoles)) for ii in (2 * n, 2 * n + 1)] window[start:stop] = 1. n += 1 data = 25e-9 * np.sin(2. * np.pi * 10. * n * times) data *= window return data times = raw.times[:int(raw.info['sfreq'] * epoch_duration)] src = read_source_spaces(src_fname) stc = simulate_sparse_stc(src, n_dipoles=n_dipoles, times=times, data_fun=data_fun, random_state=0) # look at our source data fig, ax = plt.subplots(1) ax.plot(times, 1e9 * stc.data.T) ax.set(ylabel='Amplitude (nAm)', xlabel='Time (sec)') mne.viz.utils.plt_show() ############################################################################## # Simulate raw data raw_sim = simulate_raw(raw, stc, trans_fname, src, bem_fname, cov='simple', iir_filter=[0.2, -0.2, 0.04], ecg=True, blink=True, n_jobs=1, verbose=True) raw_sim.plot() ############################################################################## # Plot evoked data events = find_events(raw_sim) # only 1 pos, so event number == 1 epochs = Epochs(raw_sim, events, 1, -0.2, epoch_duration) cov = compute_covariance(epochs, tmax=0., method='empirical', verbose='error') # quick calc evoked = epochs.average() evoked.plot_white(cov, time_unit='s')
bsd-3-clause
VandroiyLabs/FaroresWind
faroreswind/client/client.py
1
1088
## System libraries import json ## numerical libraries import numpy as np ## plot import matplotlib #matplotlib.use('Agg') import pylab as pl ## gpg library import gnupg ## URL library import urllib2 class client: def __init__(self, config='client_config'): self.parseConfig( config ) return def parseConfig(self, config): # Opening the configuration file self.config = json.loads( open(config, 'r').read() ) return def retrieveData(self, datei, timei, datef, timef, enose): url = self.config['host'] + "/serveTimeSeries?" url += "datei=" + datei + "&timei=" + timei url += "&datef=" + datef + "&timef=" + timef url += "&enose=" + str(enose) + "&k=" + self.config['gpg_keyid'] msg = urllib2.urlopen(url).read() gpg = gnupg.GPG(verbose = True, homedir=self.config['gpg_homedir']) jsonDump = json.loads( str( gpg.decrypt(msg, passphrase=self.config['gpg_passphrase']) ) ) return np.array(jsonDump) def retrieveMetadata(): return
gpl-3.0
RPGOne/Skynet
scikit-learn-0.18.1/sklearn/metrics/cluster/tests/test_unsupervised.py
66
5806
import numpy as np import scipy.sparse as sp from scipy.sparse import csr_matrix from sklearn import datasets from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_greater from sklearn.metrics.cluster import silhouette_score from sklearn.metrics.cluster import silhouette_samples from sklearn.metrics import pairwise_distances from sklearn.metrics.cluster import calinski_harabaz_score def test_silhouette(): # Tests the Silhouette Coefficient. dataset = datasets.load_iris() X_dense = dataset.data X_csr = csr_matrix(X_dense) X_dok = sp.dok_matrix(X_dense) X_lil = sp.lil_matrix(X_dense) y = dataset.target for X in [X_dense, X_csr, X_dok, X_lil]: D = pairwise_distances(X, metric='euclidean') # Given that the actual labels are used, we can assume that S would be # positive. score_precomputed = silhouette_score(D, y, metric='precomputed') assert_greater(score_precomputed, 0) # Test without calculating D score_euclidean = silhouette_score(X, y, metric='euclidean') assert_almost_equal(score_precomputed, score_euclidean) if X is X_dense: score_dense_without_sampling = score_precomputed else: assert_almost_equal(score_euclidean, score_dense_without_sampling) # Test with sampling score_precomputed = silhouette_score(D, y, metric='precomputed', sample_size=int(X.shape[0] / 2), random_state=0) score_euclidean = silhouette_score(X, y, metric='euclidean', sample_size=int(X.shape[0] / 2), random_state=0) assert_greater(score_precomputed, 0) assert_greater(score_euclidean, 0) assert_almost_equal(score_euclidean, score_precomputed) if X is X_dense: score_dense_with_sampling = score_precomputed else: assert_almost_equal(score_euclidean, score_dense_with_sampling) def test_cluster_size_1(): # Assert Silhouette Coefficient == 0 when there is 1 sample in a cluster # (cluster 0). We also test the case where there are identical samples # as the only members of a cluster (cluster 2). To our knowledge, this case # is not discussed in reference material, and we choose for it a sample # score of 1. X = [[0.], [1.], [1.], [2.], [3.], [3.]] labels = np.array([0, 1, 1, 1, 2, 2]) # Cluster 0: 1 sample -> score of 0 by Rousseeuw's convention # Cluster 1: intra-cluster = [.5, .5, 1] # inter-cluster = [1, 1, 1] # silhouette = [.5, .5, 0] # Cluster 2: intra-cluster = [0, 0] # inter-cluster = [arbitrary, arbitrary] # silhouette = [1., 1.] silhouette = silhouette_score(X, labels) assert_false(np.isnan(silhouette)) ss = silhouette_samples(X, labels) assert_array_equal(ss, [0, .5, .5, 0, 1, 1]) def test_correct_labelsize(): # Assert 1 < n_labels < n_samples dataset = datasets.load_iris() X = dataset.data # n_labels = n_samples y = np.arange(X.shape[0]) assert_raises_regexp(ValueError, 'Number of labels is %d\. Valid values are 2 ' 'to n_samples - 1 \(inclusive\)' % len(np.unique(y)), silhouette_score, X, y) # n_labels = 1 y = np.zeros(X.shape[0]) assert_raises_regexp(ValueError, 'Number of labels is %d\. Valid values are 2 ' 'to n_samples - 1 \(inclusive\)' % len(np.unique(y)), silhouette_score, X, y) def test_non_encoded_labels(): dataset = datasets.load_iris() X = dataset.data labels = dataset.target assert_equal( silhouette_score(X, labels * 2 + 10), silhouette_score(X, labels)) assert_array_equal( silhouette_samples(X, labels * 2 + 10), silhouette_samples(X, labels)) def test_non_numpy_labels(): dataset = datasets.load_iris() X = dataset.data y = dataset.target assert_equal( silhouette_score(list(X), list(y)), silhouette_score(X, y)) def test_calinski_harabaz_score(): rng = np.random.RandomState(seed=0) # Assert message when there is only one label assert_raise_message(ValueError, "Number of labels is", calinski_harabaz_score, rng.rand(10, 2), np.zeros(10)) # Assert message when all point are in different clusters assert_raise_message(ValueError, "Number of labels is", calinski_harabaz_score, rng.rand(10, 2), np.arange(10)) # Assert the value is 1. when all samples are equals assert_equal(1., calinski_harabaz_score(np.ones((10, 2)), [0] * 5 + [1] * 5)) # Assert the value is 0. when all the mean cluster are equal assert_equal(0., calinski_harabaz_score([[-1, -1], [1, 1]] * 10, [0] * 10 + [1] * 10)) # General case (with non numpy arrays) X = ([[0, 0], [1, 1]] * 5 + [[3, 3], [4, 4]] * 5 + [[0, 4], [1, 3]] * 5 + [[3, 1], [4, 0]] * 5) labels = [0] * 10 + [1] * 10 + [2] * 10 + [3] * 10 assert_almost_equal(calinski_harabaz_score(X, labels), 45 * (40 - 4) / (5 * (4 - 1)))
bsd-3-clause
tomlof/scikit-learn
examples/model_selection/plot_train_error_vs_test_error.py
349
2577
""" ========================= Train error vs Test error ========================= Illustration of how the performance of an estimator on unseen data (test data) is not the same as the performance on training data. As the regularization increases the performance on train decreases while the performance on test is optimal within a range of values of the regularization parameter. The example with an Elastic-Net regression model and the performance is measured using the explained variance a.k.a. R^2. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np from sklearn import linear_model ############################################################################### # Generate sample data n_samples_train, n_samples_test, n_features = 75, 150, 500 np.random.seed(0) coef = np.random.randn(n_features) coef[50:] = 0.0 # only the top 10 features are impacting the model X = np.random.randn(n_samples_train + n_samples_test, n_features) y = np.dot(X, coef) # Split train and test data X_train, X_test = X[:n_samples_train], X[n_samples_train:] y_train, y_test = y[:n_samples_train], y[n_samples_train:] ############################################################################### # Compute train and test errors alphas = np.logspace(-5, 1, 60) enet = linear_model.ElasticNet(l1_ratio=0.7) train_errors = list() test_errors = list() for alpha in alphas: enet.set_params(alpha=alpha) enet.fit(X_train, y_train) train_errors.append(enet.score(X_train, y_train)) test_errors.append(enet.score(X_test, y_test)) i_alpha_optim = np.argmax(test_errors) alpha_optim = alphas[i_alpha_optim] print("Optimal regularization parameter : %s" % alpha_optim) # Estimate the coef_ on full data with optimal regularization parameter enet.set_params(alpha=alpha_optim) coef_ = enet.fit(X, y).coef_ ############################################################################### # Plot results functions import matplotlib.pyplot as plt plt.subplot(2, 1, 1) plt.semilogx(alphas, train_errors, label='Train') plt.semilogx(alphas, test_errors, label='Test') plt.vlines(alpha_optim, plt.ylim()[0], np.max(test_errors), color='k', linewidth=3, label='Optimum on test') plt.legend(loc='lower left') plt.ylim([0, 1.2]) plt.xlabel('Regularization parameter') plt.ylabel('Performance') # Show estimated coef_ vs true coef plt.subplot(2, 1, 2) plt.plot(coef, label='True coef') plt.plot(coef_, label='Estimated coef') plt.legend() plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.26) plt.show()
bsd-3-clause
John-Keating/ThinkStats2
code/scatter.py
69
4281
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import sys import numpy as np import math import brfss import thinkplot import thinkstats2 def GetHeightWeight(df, hjitter=0.0, wjitter=0.0): """Get sequences of height and weight. df: DataFrame with htm3 and wtkg2 hjitter: float magnitude of random noise added to heights wjitter: float magnitude of random noise added to weights returns: tuple of sequences (heights, weights) """ heights = df.htm3 if hjitter: heights = thinkstats2.Jitter(heights, hjitter) weights = df.wtkg2 if wjitter: weights = thinkstats2.Jitter(weights, wjitter) return heights, weights def ScatterPlot(heights, weights, alpha=1.0): """Make a scatter plot and save it. heights: sequence of float weights: sequence of float alpha: float """ thinkplot.Scatter(heights, weights, alpha=alpha) thinkplot.Config(xlabel='height (cm)', ylabel='weight (kg)', axis=[140, 210, 20, 200], legend=False) def HexBin(heights, weights, bins=None): """Make a hexbin plot and save it. heights: sequence of float weights: sequence of float bins: 'log' or None for linear """ thinkplot.HexBin(heights, weights, bins=bins) thinkplot.Config(xlabel='height (cm)', ylabel='weight (kg)', axis=[140, 210, 20, 200], legend=False) def MakeFigures(df): """Make scatterplots. """ sample = thinkstats2.SampleRows(df, 5000) # simple scatter plot thinkplot.PrePlot(cols=2) heights, weights = GetHeightWeight(sample) ScatterPlot(heights, weights) # scatter plot with jitter thinkplot.SubPlot(2) heights, weights = GetHeightWeight(sample, hjitter=1.3, wjitter=0.5) ScatterPlot(heights, weights) thinkplot.Save(root='scatter1') # with jitter and transparency thinkplot.PrePlot(cols=2) ScatterPlot(heights, weights, alpha=0.1) # hexbin plot thinkplot.SubPlot(2) heights, weights = GetHeightWeight(df, hjitter=1.3, wjitter=0.5) HexBin(heights, weights) thinkplot.Save(root='scatter2') def BinnedPercentiles(df): """Bin the data by height and plot percentiles of weight for eachbin. df: DataFrame """ cdf = thinkstats2.Cdf(df.htm3) print('Fraction between 140 and 200 cm', cdf[200] - cdf[140]) bins = np.arange(135, 210, 5) indices = np.digitize(df.htm3, bins) groups = df.groupby(indices) heights = [group.htm3.mean() for i, group in groups][1:-1] cdfs = [thinkstats2.Cdf(group.wtkg2) for i, group in groups][1:-1] thinkplot.PrePlot(3) for percent in [75, 50, 25]: weights = [cdf.Percentile(percent) for cdf in cdfs] label = '%dth' % percent thinkplot.Plot(heights, weights, label=label) thinkplot.Save(root='scatter3', xlabel='height (cm)', ylabel='weight (kg)') def Correlations(df): print('pandas cov', df.htm3.cov(df.wtkg2)) #print('NumPy cov', np.cov(df.htm3, df.wtkg2, ddof=0)) print('thinkstats2 Cov', thinkstats2.Cov(df.htm3, df.wtkg2)) print() print('pandas corr', df.htm3.corr(df.wtkg2)) #print('NumPy corrcoef', np.corrcoef(df.htm3, df.wtkg2, ddof=0)) print('thinkstats2 Corr', thinkstats2.Corr(df.htm3, df.wtkg2)) print() print('pandas corr spearman', df.htm3.corr(df.wtkg2, method='spearman')) print('thinkstats2 SpearmanCorr', thinkstats2.SpearmanCorr(df.htm3, df.wtkg2)) print('thinkstats2 SpearmanCorr log wtkg3', thinkstats2.SpearmanCorr(df.htm3, np.log(df.wtkg2))) print() print('thinkstats2 Corr log wtkg3', thinkstats2.Corr(df.htm3, np.log(df.wtkg2))) print() def main(script): thinkstats2.RandomSeed(17) df = brfss.ReadBrfss(nrows=None) df = df.dropna(subset=['htm3', 'wtkg2']) Correlations(df) return MakeFigures(df) BinnedPercentiles(df) if __name__ == '__main__': main(*sys.argv)
gpl-3.0
fallisd/validate
validate/plot_iterator.py
1
5384
""" plot_iterator =============== This module contains functions needed to efficiently loop through all of the specified plots that will be produced. .. moduleauthor:: David Fallis """ import os import glob import defaults as dft import plot_cases as pc import matplotlib.pyplot as plt from yamllog import log from copy import deepcopy DEBUGGING = False def single(plot): """ Calls the appropriate functions to output the plot """ def pregion_standard(pl): return {'global_map': pc.colormap, 'section': pc.section, 'polar_map': pc.colormap, 'polar_map_south': pc.colormap, 'mercator': pc.colormap, }[pl] func_case = pregion_standard(plot['plot_projection']) return func_case(plot) def compare(plot): """ Calls the appropriate functions to output the plot """ def pregion_comp(pl): return {'global_map': pc.colormap_comparison, 'section': pc.section_comparison, 'polar_map': pc.colormap_comparison, 'polar_map_south': pc.colormap_comparison, 'mercator': pc.colormap_comparison, 'time_series': pc.timeseries, 'histogram': pc.histogram, 'zonal_mean': pc.zonalmean, 'taylor': pc.taylor, 'multivariable_taylor': pc.multivariable_taylor, 'scatter': pc.scatter, }[pl] func_case = pregion_comp(plot['plot_projection']) return func_case(plot) def _remove_plots(): """ Removes old plots """ plots_out = [] old_plots = glob.glob('plots/*.pdf') for f in old_plots: os.remove(f) old_plots = glob.glob('plots/*.png') for f in old_plots: os.remove(f) def makeplot(p, plotnames, func): p['plot_type'] = func.__name__ try: plot_name = func(p) except: with open('logs/log.txt', 'a') as outfile: outfile.write('Failed to plot ' + p['variable'] + ', ' + p['plot_projection'] + ', ' + p['data_type'] + ', ' + p['comp_model'] + '\n\n') else: p['plot_name'] = plot_name + '.pdf' p['png_name'] = plot_name + '.png' if p['pdf']: plotnames.append(dict(p)) log(p) if p['png']: p['plot_name'] = p['png_name'] log(p) with open('logs/log.txt', 'a') as outfile: outfile.write('Successfully plotted ' + p['variable'] + ', ' + p['plot_projection'] + ', ' + p['plot_type'] + ', ' + p['comp_model'] + '\n\n') def makeplot_without_catching(p, plotnames, func): p['plot_type'] = func.__name__ plot_name = func(p) p['plot_name'] = plot_name + '.pdf' p['png_name'] = plot_name + '.png' if p['pdf']: plotnames.append(dict(p)) log(p) if p['png']: p['plot_name'] = p['png_name'] log(p) def calltheplot(plot, plotnames, ptype): funcs = {'single': single, 'compare': compare, } if DEBUGGING: makeplot_without_catching(plot, plotnames, funcs[ptype]) else: makeplot(plot, plotnames, funcs[ptype]) def comp_loop(plot, plotnames, ptype): plot['comp_flag'] = 'obs' for o in plot['comp_obs']: plot['comp_model'] = o plot['comp_file'] = plot['obs_file'][o] calltheplot(plot, plotnames, ptype) plot['comp_flag'] = 'cmip5' if plot['comp_cmips']: plot['comp_model'] = 'cmip5' plot['comp_file'] = plot['cmip5_file'] calltheplot(plot, plotnames, ptype) plot['comp_flag'] = 'model' for model in plot['comp_models']: plot['comp_model'] = model plot['comp_file'] = plot['model_file'][model] calltheplot(plot, plotnames, ptype) plot['comp_flag'] = 'runid' for i in plot['id_file']: plot['comp_model'] = i plot['comp_file'] = plot['id_file'][i] calltheplot(plot, plotnames, ptype) def loop_plot_types(plot, plotnames): if plot['plot_projection'] == 'time_series' or plot['plot_projection'] == 'zonal_mean' or plot['plot_projection'] == 'taylor' or plot['plot_projection'] == 'histogram' or plot['plot_projection'] == 'scatter' or plot['plot_projection'] == 'multivariable_taylor': plot['comp_model'] = 'Model' calltheplot(plot, plotnames, 'compare') else: plot['comp_model'] = 'Model' calltheplot(plot, plotnames, 'single') comp_loop(plot, plotnames, 'compare') def loop(plots, debug): """ Loops though the list of plots and the depths within the plots and outputs each to a pdf Parameters ---------- plots : list of dictionaries Returns ------- list of tuples with (plotname, plot dictionary, plot type) """ global DEBUGGING DEBUGGING = debug # Remove old plots _remove_plots() plotnames = [] for p in plots: if p['depths'] == [""]: p['is_depth'] = False else: p['is_depth'] = True if p['plot_projection'] == 'taylor': loop_plot_types(p, plotnames) continue for d in p['depths']: try: p['depth'] = int(d) except: pass loop_plot_types(p, plotnames) plt.close('all') return plotnames if __name__ == "__main__": pass
gpl-2.0
dhuppenkothen/UTools
mle.py
1
55419
#### THIS WILL DO THE MAXIMUM LIKELIHOOD FITTING # # and assorted other things related to that # # It's kind of awful code. # # Separate classes for # - periodograms (distributed as chi^2_2 or chi^2_2m, for averaged periodograms) # - light curves (not really accurate, use scipy.optimize.curve_fit if you can) # - Gaussian Processes (for MAP estimates of GPs) # # Note: This script has grown over three years. It's not very optimised and doesn't # necessarily make sense to someone who is not me. Continue to read on your own peril. # # # #!/usr/bin/env python #import matplotlib #matplotlib.use("Agg") import matplotlib.pyplot as plt from pylab import * #### GENERAL IMPORTS ### import os import numpy as np import scipy import scipy.optimize import scipy.stats import scipy.signal import math import copy #from scikits.statsmodels.sandbox.regression.numdiff import approx_hess3 as approx_hess from statsmodels.tools.numdiff import approx_hess ### own imports import generaltools as gt import posterior import powerspectrum ### global variables #### logmin = -100.0 #### AUXILIARY FUNCTIONS ############################################ #### MAKE A SIMPLE LINEAR FUNCTION # # f(x) = a*x + b # a = slope # b = intercept # # def straight(freq, a, b): return (a*np.array(freq) + b) def sigmoid(z, a,b,c,d): return a*z + b/(c + np.exp(-d*z)) def const(freq, a): return np.array([np.exp(a) for x in freq]) #### FAST-RISE EXPONENTIAL DECAY (FRED) PROFILE # # useful for light curves, not strictly for MLE fitting # # f(x) = a*exp(2*t1/t2)**(1/2) * exp(-t1/(time-ts) - (time-ts)/t2) # a = normalization # ts = pulse start time # t1 = characteristic of burst rise # t2 = characteristic of burst decay def fred(time, a, tau1, tau2, c = 0.0, t0 = 0.5): #print("a: " + str(a)) #print("tau1: " + str(tau1)) #print("tau2: " + str(tau2)) #print("len time: " + str(len(time))) tdiff = time - (time[0]) - t0 #print("len tdiff: " + str(len(tdiff))) dt = tdiff[1]-tdiff[0] ts = stepfun(time, time[0]+t0+dt, max(time)+dt) #tdiff = time - t0 #print("tdiff: " + str(tdiff[0])) e1 = (-tau1/(tdiff)) - ((tdiff)/tau2) e2 = (np.exp(2.0*(tau1/tau2)**0.5)) counts = a*np.exp(e1)*e*ts + c cmod = [] for co in counts: if isnan(co) or co == np.inf: cmod.append(c) else: cmod.append(co) #print('funcval in FRED: ' + str(counts)) return cmod def envelope(x, tstart, tend, trise, tfall, amplitude): rexp = -trise/(x - tstart) fexp = tfall/(x - tend) res = amplitude*np.exp(rexp + fexp) #xsind = np.array(x).searchsorted(tstart)-1 #xeind = np.array(x).searchsorted(tend)+1 #xnew = x[xsind:xeind] #xnew = xnew[1:] - xnew[0] #rexp = -trise/(xnew) #fexp = tfall/(xnew) #resb = amplitude*np.exp(rexp + fexp) #res = np.zeros(len(x)) #res[xsind+1:xeind] = resb return res def combfred(x, norm1, norm2, norm3, norm4, tau11, tau12, tau13, tau14, tau21, tau22, tau23, tau24, t01, t02, t03, t04, c): fred1 = fred(x, norm1, tau11, tau21, 1.0, t01) fred2 = fred(x, norm2, tau12, tau22, 1.0, t02) fred3 = fred(x, norm3, tau13, tau23, 1.0, t03) fred4 = fred(x, norm4, tau14, tau24, 1.0, t04) fredsum = np.array(np.array(fred1) + np.array(fred2) + np.array(fred3) + np.array(fred4))# + c return fredsum def stepfun(x, a, b): y = np.zeros(len(x)) x = np.array(x) minind = x.searchsorted(a) maxind = x.searchsorted(b) y[minind:maxind] = 1.0 return y ### LORENTZIAN PROFILE ###################### # # Lorentzian Profile # # gamma: width parameter # norm: normalization # x0: location of centroid def lorentzian(x, gamma, norm, x0): l = norm*(1.0/np.pi)*0.5*gamma/((x-x0)**2.0 + (0.5*gamma)**2.0) return l def gaussian(x, mean, scale, norm, c=0.0): norm = np.exp(norm) c = np.exp(c) g = norm*np.exp(-(x-mean)**2.0/(2.0*scale**2.0)) + c return g #### POWER LAW ######## # # f(x) = b*x**a + c # a = power law index # b = normalization (LOG) # c = white noise level (LOG), optional # def pl(freq, a, b, c=None): res = -a*np.log(freq) + b if c: return (np.exp(res) + np.exp(c)) else: return np.exp(res) ### POWER LAW DERIVATIVE # Derivative of the likelihood function for a power law profile # Probably not correct. # # DON'T USE! # def ml_pl_prime(freq, a, b, c): aprime = -(b*np.log(freq)*((c-1.0)*(freq**a) + b))/(c*freq**-a + b)**2.0 bprime = ((c-1.0)*freq**a + b)/(c*freq**a + b)**2.0 cprime = ((freq**2)*((c-1)*(freq**2.0)*b))/(c*freq**2.0 + b)**2.0 return aprime, bprime, cprime #### Lorentzian Profile for QPOs # # f(x) = (a*b/(2*pi))/((x-c)**2 + a**2) # # a = full width half maximum # b = log(normalization) # c = centroid frequency # d = log(noise level) (optional) # def qpo(freq, a, b, c, d=None): gamma = np.exp(a) norm = np.exp(b) nu0 = c alpha = norm*gamma/(math.pi*2.0) y = alpha/((freq - nu0)**2.0 + gamma**2.0) if d: y = y + np.exp(d) return y ### auxiliary function that makes a Lorentzian with a fixed centroid frequency ### needed for QPO search algorithm def make_lorentzians(x): ### loop creates many function definitions lorentz, each differs only by the value ### of the centroid frequency f used in computing the spectrum for f in x: def create_my_func(f): def lorentz(x, a, b, e): result = qpo(x, a, b, f, e) return result return lorentz yield(create_my_func(f)) def plqpo(freq, plind, beta, noise,a, b, c, d=None): #def plqpo(freq, plind, beta, noise,a, b, d=None): #c = 93.0943061934 powerlaw = pl(freq, plind, beta, noise) quasiper = qpo(freq, a, b, c, d) return powerlaw+quasiper def bplqpo(freq, lplind, beta, hplind, fbreak, noise, a, b, c, d=None): #def bplqpo(freq, lplind, beta, hplind, fbreak, noise, a, b,d=None): #c = 93.0943061934 powerlaw = bpl(freq, lplind, beta, hplind, fbreak, noise) quasiper = qpo(freq, a, b, c, d) return powerlaw+quasiper ### BENT POWER LAW # f(x) = (a[1]*x**a[0])/(1.0 + (x/a[3])**(a[2]-a[0]))+a[4]) # a = low-frequency index, usually between 0 and 1 # b = log(normalization) # c = high-frequency index, usually between 1 and 4 # d = log(frequency where model bends) # e = log(white noise level) (optional) # f = smoothness parameter #def bpl(freq, a, b, c, d, f=-1.0, e=None): def bpl(freq, a, b, c, d, e=None): ### compute bending factor logz = (c - a)*(np.log(freq) - d) ### be careful with very large or very small values logqsum = sum(np.where(logz<-100, 1.0, 0.0)) if logqsum > 0.0: logq = np.where(logz<-100, 1.0, logz) else: logq = logz logqsum = np.sum(np.where((-100<=logz) & (logz<=100.0), np.log(1.0 + np.exp(logz)), 0.0)) if logqsum > 0.0: logqnew = np.where((-100<=logz) & (logz<=100.0), np.log(1.0 + np.exp(logz)), logq) else: logqnew = logq logy = -a*np.log(freq) - logqnew + b # logy = -a*np.log(freq) + f*logqnew + b if e: y = np.exp(logy) + np.exp(e) else: y = np.exp(logy) return y # f(x) = (a[1]*x**a[0])/(1.0 + (x/a[3])**(a[2]-a[0]))+a[4]) # a = low-frequency index, usually between 0 and 1 # b = log(normalization) # c = high-frequency index, usually between 1 and 4 # d = log(frequency where model bends) # e = log(white noise level) (optional) # f = smoothness parameter #def bpl(freq, a, b, c, d, f=-1.0, e=None): def bpl2(freq, a, b, c, d, e=None): ### compute bending factor logz = (c - a)*(np.log(freq) - d) ### be careful with very large or very small values logqsum = sum(np.where(logz<-100, 1.0, 0.0)) if logqsum > 0.0: logq = np.where(logz<-100, 1.0, logz) else: logq = logz logqsum = np.sum(np.where((-100<=logz) & (logz<=100.0), np.log(1.0 + np.exp(logz)), 0.0)) if logqsum > 0.0: logqnew = np.where((-100<=logz) & (logz<=100.0), np.log(1.0 + np.exp(logz)), logq) else: logqnew = logq logy = -a*np.log(freq) + logqnew + b # logy = -a*np.log(freq) + f*logqnew + b if e: y = np.exp(logy) + np.exp(e) else: y = np.exp(logy) return y ### FIT CONSTRAINED BENT POWER LAW # f(x) = (a[1]*x**a[0])/(1.0 + (x/a[3])**(a[2]-a[0]))+a[4]) # a = low-frequency index, MANUALLY SET TO -1 # b = log(normalization) # c = high-frequency index, usually between 1 and 4 # d = log(frequency where model bends) # e = log(white noise level) def cbpl(freq, c, b, d, e): ### compute bending factor logz = (1.0 - c)*(np.log(freq) - np.log(d)) logqsum = sum(np.where(logz<-16, 1.0, 0.0)) if logqsum > 0.0: logq = np.where(logz<-16, 1.0, logz) else: logq = logz logqsum = np.sum(np.where((-16<=logz) & (logz<=16.0), np.log(1.0 + np.exp(logz)), 0.0)) if logqsum > 0.0: logqnew = np.where((-16<=logz) & (logz<=16.0), np.log(1.0 + np.exp(logz)), logq) else: logqnew = logq y = np.exp(-1.0*np.log(freq) - logqnew + b) + np.exp(e) return y #### COMBINE FUNCTIONS INTO A NEW FUNCTION # # This function will return a newly created function, # combining all functions giving in *funcs # # *funcs should be tuples of (function name, no. of parameters) # where the number of parameters is that of the function minus the # x-coordinate ('freq'). # # # **kwargs should only really have one keyword: # mode = 'add' # which defines whether the model components will be added ('add') # or multiplied ('multiply'). # By default, if nothing is given, components will be added # # # NOTE: When calling combmod, make sure you put in the RIGHT NUMBER OF # PARAMETERS and IN THE RIGHT ORDER! # # # Example: # - make a combined power law and QPO model, multiplying components together. # The power law includes white noise (3 parameters, otherwise two), the # QPO model doesn't (3 parameters, otherwise 4): # >>> combmod = combine_models((pl, 3), qpo(3), mode='multiply') # # def combine_models(*funcs, **kwargs): ### assert that keyword 'mode' is given in function call try: assert kwargs.has_key('mode') ### if that's not true, catch Assertion error and manually set mode = 'add' except AssertionError: kwargs["mode"] = 'add' ### tell the user what mode the code is using, exit if mode not recognized if kwargs["mode"] == 'add': print("Model components will be added.") elif kwargs['mode'] == 'multiply': print('Model components will be multiplied.') else: raise Exception("Operation on model components not recognized.") ### this is the combined function returned by combined_models ### 'freq': x-coordinate of the model ### '*args': model parameters def combmod(freq, *args): ### create empty list for result of the model res = np.zeros(len(freq)) ### initialize the parameter count to make sure the right parameters ### go into the right function parcount = 0 ### for each function, compute f(x) and add or multiply the result with the previous iteration for i,x in enumerate(funcs): funcargs = args[parcount:parcount+int(x[1])] if kwargs['mode'] == 'add': res = res + x[0](freq, *funcargs) elif kwargs['mode'] == 'multiply': res = res * x[0](freq, *funcargs) parcount = parcount + x[1] return res return combmod ## MAXIMUM LIKELIHOOD FUNCTION # Not sure I need this! def maxlike(freq, power, func, pars): funcval = func(freq, *pars) res = np.sum(np.log(funcval))+ np.sum(power/funcval) if res == inf or np.isnan(res): res = 0.0 return res #### ANALYTIC EXPRESSION FOR THE HESSIAN FOR THE POWER LAW FITTING # # This function computes the Hessian (second derivative tensor) of the # maximum likelihood function of the power law model. # I can use this to cross-check results from numerical # estimation of the covariance matrix (=inverse of the hessian). # # This function returns the Hessian matrix. # # def pl_covariance(freq, power, pars): ### power law index b = pars[0] ### normalization a = np.exp(pars[1]) ### noise level c = np.exp(pars[2]) exppos = freq**b expneg = freq**(-b) exptwo = freq**(2*b) ### denominator appearing often: denoma = a*exppos + c denomc = a + c*exppos funcval = a*expneg + c logfreq = np.log(freq) ### d^2L/da^2 datwo = np.sum((2.0*power*exptwo/denoma**2.0) - 1.0/(denomc**2.0)) ### d^2L/db^2 dbout = a*logfreq**2.0 dbfirst = power*(a*exptwo - c*exppos)/denoma**3.0 dbsecond = c*exppos/denomc**2.0 dbtwo = np.sum(dbout*(dbfirst + dbsecond)) ### d^2L/dc^2 dctwo = np.sum((2.0*power/denoma**3.0) - 1.0/funcval**2.0) ### d^2L/dadb dadbfirst = power*exppos/denoma dadbcurly = (2.0*power*exptwo/denoma**3.0) + 1.0/denomc**2.0 dadblast = 1.0/denomc dadb = np.sum(logfreq*(-dadbfirst + a*dadbcurly - dadblast)) ### d^2L/dadc dadc = np.sum(exppos*((2.0*power/denoma**3.0) - 1.0/denomc**2.0)) ### d^2L/dbdc dbdcfactor = a*expneg*logfreq dbdcrest = (2.0*power*exptwo/denoma**3.0) + 1.0/funcval**2.0 dbdc = np.sum(dbdcfactor*dbdcrest) ### assemble Hessian hess = [[datwo, dadb, dadc],[dadb, dbtwo, dbdc],[dadb, dbdc, dctwo]] return hess #### CLASS THAT FITS POWER SPECTRA USING MLE ################## # # This class provides functionality for maximum likelihood fitting # of periodogram data to a set of models defined above. # # It draws heavily on the various optimization routines provided in # scipy.optimize, and additionally has the option to use R functionality # via rPy and a given set of functions defined in an R-script. # # Note that many different optimization routines are available, and not all # may be appropriate for a given problem. # Constrained optimization is available via the constrained BFGS and TNC routines. # # class MaxLikelihood(object): ### x = x-coordinate of data ### y = y-coordinate of data ### obs= if True, compute covariances and print summary to screen ### ### fitmethod = choose optimization method ### options are: ### 'simplex': use simplex downhill algorithm ### 'powell': use modified Powell's algorithm ### 'gradient': use nonlinear conjugate gradient ### 'bfgs': use BFGS algorithm ### 'newton': use Newton CG ### 'leastsq' : use least-squares method ### 'constbfgs': constrained BFGS algorithm ### 'tnc': constrained optimization via a truncated Newton algorithm ### 'nlm': optimization via R's non-linear minimization routine ### 'anneal': simulated annealing for convex problems def __init__(self, x, y, obs=True, fitmethod='powell'): ### save power spectrum in attributes self.x= x self.y= y ### Is this a real observation or a fake periodogram to be fitted? self.obs = obs self.nlmflag = False MaxLikelihood._set_fitmethod(self, fitmethod) def _set_fitmethod(self, fitmethod): ### select fitting method if fitmethod.lower() in ['simplex']: self.fitmethod = scipy.optimize.fmin elif fitmethod.lower() in ['powell']: self.fitmethod = scipy.optimize.fmin_powell elif fitmethod.lower() in ['gradient']: self.fitmethod = scipy.optimize.fmin_cg elif fitmethod.lower() in ['bfgs']: self.fitmethod = scipy.optimize.fmin_bfgs ### this one breaks because I can't figure out the syntax for fprime elif fitmethod.lower() in ['newton']: self.fitmethod = scipy.optimize.fmin_ncg elif fitmethod.lower() in ['leastsq']: self.fitmethod = scipy.optimize.leastsq elif fitmethod.lower() in ['constbfgs']: self.fitmethod = scipy.optimize.fmin_l_bfgs_b elif fitmethod.lower() in ['tnc']: self.fitmethod = scipy.optimize.fmin_tnc else: print("Minimization method not recognized. Using standard (Powell's) method.") self.fitmethod = scipy.optimize.fmin_powell if ndim(self.y) ==1: ### smooth data by three different factors self.smooth3 = scipy.signal.wiener(self.y, 3) self.smooth5 = scipy.signal.wiener(self.y, 5) self.smooth11 = scipy.signal.wiener(self.y, 11) ### Do a maximum likelihood fitting with function func and ### initial parameters ain ### if residuals are to be fit, put a list of residuals into keyword 'residuals' ### func = function to be fitted ### ain = list with set of initial parameters ### bounds = bounds on parameter ranges (for constrained optimization ### obs = if True, compute covariance and print summary to screen ### noise = if True, the last parameter in ain is noise and will be renormalized ### residuals = put list of residuals here if they should be fit rather than self.y def mlest(self, func, ain, bounds = None, obs=True, neg=True, functype='posterior'): ### extract frequency and powers from periodogram #freq = np.array(self.x) #if not residuals is None: # power = residuals #else: # power = np.array(self.y) #lenpower = float(len(self.y)) ## renormalize normalization so it's in the right range #varobs = np.sum(power) #varmod = np.sum(func(freq, *ain)) #renorm = varobs/varmod #if len(ain) > 1: # ain[1] = ain[1] + np.log(renorm) ### If last parameter is noise level, renormalize noise level ### to something useful: #if not noise is None: # ### take the last 50 elements of the power spectrum # noisepower = power[-50:] # meannoise = np.log(np.mean(noisepower)) # if func == pl_qpo: # ain[2] = meannoise # if func == bpl_qpo: # ain[4] = meannoise # else: # ain[noise] = meannoise ### definition of the likelihood function #def maxlike(pars): # funcval = func(freq, *pars) # res = np.sum(np.log(funcval))+ np.sum(power/funcval) # return res #res = maxlike(ain) fitparams = _fitting(func, ain, bounds, obs=True) #fitparams["model"] = str(func).split()[1] #fitparams["mfit"] = func(self.x, *fitparams['popt']) ### calculate model power spectrum from optimal parameters #fitparams['mfit'] = func(self.x, *fitparams['popt']) ### figure-of-merit (SSE) #fitparams['merit'] = np.sum(((self.y-fitparams['mfit'])/fitparams['mfit'])**2.0) ### find highest outlier #plrat = 2.0*(self.y/fitparams['mfit']) #fitparams['sobs'] = np.sum(plrat) #if nmax ==1: ### plmaxpow is the maximum of 2*data/model # plmaxpow = max(plrat[1:]) #print('plmaxpow: ' + str(plmaxpow)) # plmaxind = np.where(plrat == plmaxpow)[0][0] #print('plmaxind: ' + str(plmaxind)) # plmaxfreq = self.x[plmaxind] #else: # plratsort = plrat.sort() # plmaxpow = plrat[-nmax:] # plmaxind, plmaxfreq = [], [] # for p in plmaxpow: # plmaxind_temp = np.where(plrat == p)[0][0] # plmaxind.append(plmaxind_temp) # plmaxfreq.append(self.x[plmaxind_temp]) #fitparams['maxpow'] = plmaxpow #fitparams['maxind'] = plmaxind #fitparams['maxfreq'] = plmaxfreq ## do a KS test comparing residuals to the exponential distribution #plks = scipy.stats.kstest(plrat/2.0, 'expon', N=len(plrat)) #fitparams['ksp'] = plks[1] #print("The figure-of-merit function for this model is: " + str(fitparams['merit']) + " and the fit for " + str(fitparams['dof']) + " dof is " + str(fitparams['merit']/fitparams['dof']) + ".") if functype in ['p', 'post', 'posterior']: fitparams['deviance'] = 2.0*func.loglikelihood(fitparams['popt'], neg=True) elif functype in ['l', 'like', 'likelihood']: fitparams['deviance'] = -2.0*func(fitparams['popt']) print("Fitting statistics: ") print(" -- number of frequencies: " + str(len(self.x))) print(" -- Deviance [-2 log L] D = " + str(fitparams['deviance'])) #print(" -- Highest data/model outlier(s) 2I/S = " + str(fitparams['maxpow'])) #print(" at frequency(ies) f_max = " + str(fitparams['maxfreq'])) #print(" -- Summed Residuals S = " + str(fitparams['sobs'])) #print(" -- Expected S ~ " + str(fitparams['sexp']) + " +- " + str(fitparams['ssd'])) #print(" -- KS test p-value (use with caution!) p = " + str(fitparams['ksp'])) #print(" -- merit function (SSE) M = " + str(fitparams['merit'])) return fitparams ### Fitting Routine ### optfunc: function to be minimized ### ain: initial parameter set ### bounds: bounds for constrained optimization ### optfuncprime: analytic derivative of optfunc (if required) ### neg: bool keyword for MAP estimation (if done): ### if True: compute the negative of the posterior def _fitting(self, optfunc, ain, bounds, optfuncprime=None, neg = True, obs=True): #print("optfunc in _fitting:" + str(optfunc)) lenpower = float(len(self.y)) if neg == True: if scipy.__version__ < "0.10.0": args = [neg] else: args = (neg,) else: args = () #print("args: " + str(args)) #print("args: " + str(args)) ### different commands for different fitting methods, ### at least until scipy 0.11 is out funcval = 100.0 while funcval == 100 or funcval == 200 or funcval == 0.0 or funcval == np.inf or funcval == -np.inf: ## constrained minimization with truncated newton or constrained bfgs if self.fitmethod == scipy.optimize.fmin_tnc or self.fitmethod == scipy.optimize.fmin_l_bfgs_b: if bounds is None: bounds = [[None, None] for x in range(len(ain))] #print("No bounds given. Using no bounds.") aopt = self.fitmethod(optfunc, ain, disp=0, args=args, bounds = bounds, approx_grad=True, maxfun=1000) ## Newton conjugate gradient, which doesn't work elif self.fitmethod == scipy.optimize.fmin_ncg: aopt = self.fitmethod(optfunc, ain, optfuncprime, disp=0,args=args) ## use R's non-linear minimization elif self.nlmflag == True: if func == pl: mod = [0,1] elif func == bpl: mod = [1,1] elif func == pl_qpo: mod = [5,1] elif func == bpl_qpo: mod = [6,1] elif func.__name__ == 'lorentz': mod = [7,1] aopt = self.fitmethod(robjects.r['lpost'], p=robjects.FloatVector(ain), x=robjects.FloatVector(self.x), y=robjects.FloatVector(power), hessian=True, mod=robjects.IntVector(mod)) ### BFGS algorithm elif self.fitmethod == scipy.optimize.fmin_bfgs: aopt = self.fitmethod(optfunc, ain, disp=0,full_output=True, args=args) warnflag = aopt[6] if warnflag == 1 : print("*** ACHTUNG! Maximum number of iterations exceeded! ***") elif warnflag == 2: print("Gradient and/or function calls not changing!") ## all other methods: Simplex, Powell, Gradient else: aopt = self.fitmethod(optfunc, ain, disp=0,full_output = True, args=args) funcval = aopt[1] ain = np.array(ain)*((np.random.rand(len(ain))-0.5)*4.0) ### make a dictionary with best-fit parameters: ## popt: best fit parameters (list) ## result: value of ML function at minimum ## model: the model used if self.nlmflag: fitparams = {'popt':np.array(aopt[1]), 'result':aopt[0]} else: fitparams = {'popt':aopt[0], 'result':aopt[1]} ### calculate model power spectrum from optimal parameters #fitparams['mfit'] = func(self.x, *fitparams['popt']) ### degrees of freedom fitparams['dof'] = lenpower - float(len(fitparams['popt'])) ### Akaike Information Criterion fitparams['aic'] = fitparams['result']+2.0*len(ain) ### Bayesian Information Criterion fitparams['bic'] = fitparams['result'] + len(ain)*len(self.x) ### compute deviance try: fitparams['deviance'] = 2.0*optfunc.loglikelihood(fitparams['popt']) except AttributeError: fitparams['deviance'] = 2.0*optfunc(fitparams['popt']) fitparams['sexp'] = 2.0*len(self.x)*len(fitparams['popt']) fitparams['ssd'] = np.sqrt(2.0*fitparams['sexp']) ### smooth data by three different factors if ndim(self.y) == 1: fitparams['smooth3'] = scipy.signal.wiener(self.y, 3) fitparams['smooth5'] = scipy.signal.wiener(self.y, 5) fitparams['smooth11'] = scipy.signal.wiener(self.y, 11) ### if this is an observation (not fake data), compute the covariance matrix if obs == True: ### for BFGS, get covariance from algorithm output if self.fitmethod == scipy.optimize.fmin_bfgs: print("Approximating covariance from BFGS: ") covar = aopt[3] ### for NLM, get covariance from R output elif self.nlmflag: print("Getting Hessian from R routine: ") phess = aopt[3] covar = robjects.r.solve(phess) covar = np.array(covar) else: #print("neg: " + str(args)) ### calculate Hessian approximating with finite differences print("Approximating Hessian with finite differences ...") phess = approx_hess(aopt[0], optfunc, neg=args) covar = np.linalg.pinv(phess) #phess2 = pl_covariance(self.x, self.y, fitparams['popt']) ### covariance is the inverse of the Hessian print "Hessian (empirical): " + str(phess) covar = np.linalg.inv(phess) print "Covariance (empirical): " + str(covar) fitparams['cov'] = covar ### errors of parameters are on the diagonal of the covariance ### matrix; take square root to get standard deviation stderr = np.sqrt(np.diag(covar)) fitparams['err'] = stderr ### Print results to screen print("The best-fit model parameters plus errors are:") for i,(x,y) in enumerate(zip(fitparams['popt'], stderr)): print("Parameter " + str(i) + ": " + str(x) + " +/- " + str(y)) print("The Akaike Information Criterion of the power law model is: "+ str(fitparams['aic']) + ".") return fitparams #### This function computes the Likelihood Ratio Test between two nested models ### ### mod1: model 1 (simpler model) ### ain1: list of input parameters for model 1 ### mod2: model 2 (more complex model) ### ain2: list of input parameters for model 2 ### bounds1: bounds for model 1 (constrained optimization) ### bounds2: bounds for model 2 (constrained optimization) def compute_lrt(self, mod1, ain1, mod2, ain2, bounds1=None, bounds2=None, noise1 = -1, noise2 = -1): ### fit data with both models par1 = self.mlest(mod1, ain1, bounds=bounds1, obs=self.obs, noise=noise1, nmax=nmax) par2 = self.mlest(mod2, ain2, bounds=bounds2, obs=self.obs, noise=noise2, nmax=nmax) ### extract dictionaries with parameters for each varname1 = str(mod1).split()[1] + 'fit' varname2 = str(mod2).split()[1] + 'fit' self.__setattr__(varname1, par1) self.__setattr__(varname2, par2) ### compute log likelihood ratio as difference between the deviances self.lrt = par1['deviance'] - par2['deviance'] if self.obs == True: print("The Likelihood Ratio for models " + str(mod1).split()[1] + " and " + str(mod2).split()[1] + " is: LRT = " + str(self.lrt)) return self.lrt ### auxiliary function that makes a Lorentzian with a fixed centroid frequency ### needed for QPO search algorithm def __make_lorentzians(self,x): ### loop creates many function definitions lorentz, each differs only by the value ### of the centroid frequency f used in computing the spectrum for f in x: def create_my_func(f): def lorentz(x, a, b, e): result = qpo(x, a, b, f, e) return result return lorentz yield(create_my_func(f)) #### Fit Lorentzians at each frequency in the spectrum #### and return a list of log-likelihoods at each value ### fitpars = parameters of broadband noise fit ### residuals: if true: divide data by best-fit model in fitpars def fitqpo(self, fitpars=None, residuals=False): if residuals: ### extract model fit mfit = fitpars['mfit'] ### compute residuals: data/model residuals = np.array(fitpars["smooth5"])/mfit else: residuals = np.array(fitpars["smooth5"]) ### constraint on width of QPO: must be bigger than 2*frequency resolution gamma_min = 2.0*(self.x[2]-self.x[1]) ### empty list for log-likelihoods like_rat = [] ### fit a Lorentzian at every frequency for f, func, res in zip(self.x[3:-3], self.__make_lorentzians(self.x[3:-3]), residuals[3:-3]): ### constraint on width of QPO: must be narrower than the centroid frequency/2 gamma_max = f/2.0 norm = np.mean(residuals)+np.var(residuals) ain = [gamma_min, norm, 0.0] ### fit QPO to data #pars = self.mlest(func, ain, bounds=[[gamma_min, gamma_max], [None, None], [None, None]], noise = True, obs=False, residuals=None) pars = self.mlest(func, ain, noise = -1, obs=False, residuals=residuals) ### save fitted frequency and data residuals in parameter dictionary pars['fitfreq'] = f pars['residuals'] = residuals like_rat.append(pars) ### returns a list of parameter dictionaries return like_rat #### Find QPOs in Periodogram data ### func = broadband noise model ### ain = input parameters for broadband noise model ### fitmethod = which method to use for fitting the QPOs ### plot = if True, save a plot with log-likelihoods ### plotname = string used in filename if plot == True ### obs = if True, compute covariances and print out stuff def find_qpo(self, func, ain, bounds=None, fitmethod='nlm', plot=False, plotname=None, obs = False): ### fit broadband noise model to the data optpars = self.mlest(func, ain, obs=obs, noise=-1) ### fit a variable Lorentzian to every frequency and return parameter values lrts = self.fitqpo(fitpars=optpars, residuals=True) ### list of likelihood ratios like_rat = np.array([x['deviance'] for x in lrts]) ### find minimum likelihood ratio minind = np.where(like_rat == min(like_rat)) minind = minind[0][0]+3 #print(minind) minfreq = self.x[minind] ### ... maybe not! Needs to be +1 because first frequency left out in psfit print("The frequency of the tentative QPO is: " + str(minfreq)) residuals = self.smooth5/optpars['mfit'] best_lorentz = self.__make_lorentzians([minfreq]) noiseind = len(optpars['popt']) - 1 # for z in self.__make_lorentzians([minfreq]): # qpofit_res = self.mlest(z, lrts[minind+1]['popt'], obs=False, noise=-1, residuals=residuals) # print("qpofit_res: " + str(qpofit_res['popt'])) ### minimum width of QPO gamma_min = np.log((self.x[1]-self.x[0])*3.0) ### maximum width of QPO gamma_max = minfreq/1.5 print('combmod first component: ' + str(func)) ### create a combined model of broadband noise model + QPO combmod = combine_models((func, len(optpars['popt'])), (qpo, 3), mode='add') ### make a list of input parameters inpars = list(optpars['popt'].copy()) inpars.extend(lrts[minind-3]['popt'][:2]) inpars.extend([minfreq]) qpobounds = [[None, None] for x in range(len(inpars)-3)] qpobounds.extend([[gamma_min, gamma_max], [None, None], [None,None]]) ### fit broadband QPO + noise model, using best-fit parameters as input qpopars = self.mlest(combmod, inpars, bounds=qpobounds, obs=obs, noise=noiseind, smooth=0) ### likelihood ratio of func+QPO to func lrt = optpars['deviance'] - qpopars['deviance'] like_rat_norm = like_rat/np.mean(like_rat)*np.mean(self.y)*100.0 if plot: plt.figure() axL = plt.subplot(1,1,1) plt.plot(self.x, self.y, lw=3, c='navy') plt.plot(self.x, qpopars['mfit'], lw=3, c='MediumOrchid') plt.xscale("log") plt.yscale("log") plt.xlabel('Frequency') plt.ylabel('variance normalized power') #yticks_left, ylabels_left = plt.yticks() #nr_yticks_left = len(yticks_left) axR = plt.twinx() #axR = plt.subplot(1,1,1, sharex=axL, frameon=False) axR.yaxis.tick_right() axR.yaxis.set_label_position("right") plt.plot(self.x[3:-3], like_rat, 'r--', lw=2, c="DeepSkyBlue") plt.ylabel("-2*log-likelihood") #yticks_right, ylabels_right = plt.yticks() #tickmin, tickmax = yticks_right[0], yticks_right[-1] #tickloc_yleft = np.linspace(tickmin, tickmax, num=nr_yticks_left) #axR.yaxis.set_ticks(tickloc_yleft) #axR.yaxis.set_ticklabels(["%.2f" % val for val in tickloc_yleft]) #plt.axis([min(self.x), max(self.x), min(self.y), max(self.y)]) plt.axis([min(self.x), max(self.x), min(like_rat)-np.var(like_rat), max(like_rat)+np.var(like_rat)]) plt.savefig(plotname+'.png', format='png') plt.close() return lrt, optpars, qpopars ### plot two fits of broadband models against each other def plotfits(self, par1, par2 = None, namestr='test', log=False): ### make a figure f = plt.figure(figsize=(12,10)) ### adjust subplots such that the space between the top and bottom of each are zero plt.subplots_adjust(hspace=0.0, wspace=0.4) ### first subplot of the grid, twice as high as the other two ### This is the periodogram with the two fitted models overplotted s1 = plt.subplot2grid((4,1),(0,0),rowspan=2) if log: logx = np.log10(self.x) logy = np.log10(self.y) logpar1 = np.log10(par1['mfit']) logpar1s5 = np.log10(par1['smooth5']) p1, = plt.plot(logx, logy, color='black', linestyle='steps-mid') p1smooth = plt.plot(logx, logpar1s5, lw=3, color='orange') p2, = plt.plot(logx, logpar1, color='blue', lw=2) else: p1, = plt.plot(self.x, self.y, color='black', linestyle='steps-mid') p1smooth = plt.plot(self.x, par1['smooth5'], lw=3, color='orange') p2, = plt.plot(self.x, par1['mfit'], color='blue', lw=2) if par2: if log: logpar2 = np.log10(par2['mfit']) p3, = plt.plot(logx, logpar2, color='red', lw=2) else: p3, = plt.plot(self.x, par2['mfit'], color='red', lw=2) plt.legend([p1, p2, p3], ["observed periodogram", par1['model'] + " fit", par2['model'] + " fit"]) else: plt.legend([p1, p2], ["observed periodogram", par1['model'] + " fit"]) if log: plt.axis([min(logx), max(logx), min(logy)-1.0, max(logy)+1]) plt.ylabel('log(Leahy-Normalized Power)', fontsize=18) else: plt.xscale("log") plt.yscale("log") plt.axis([min(self.x), max(self.x), min(self.y)/10.0, max(self.y)*10.0]) plt.ylabel('Leahy-Normalized Power', fontsize=18) plt.title("Periodogram and fits for burst " + namestr, fontsize=18) ### second subplot: power/model for Power law and straight line s2 = plt.subplot2grid((4,1),(2,0),rowspan=1) pldif = self.y/par1['mfit'] if par2: bpldif = self.y/par2['mfit'] if log: plt.plot(logx, pldif, color='black', linestyle='steps-mid') plt.plot(logx, np.ones(len(self.x)), color='blue', lw=2) else: plt.plot(self.x, pldif, color='black', linestyle='steps-mid') plt.plot(self.x, np.ones(len(self.x)), color='blue', lw=2) plt.ylabel("Residuals, \n" + par1['model'] + " model", fontsize=18) if log: plt.axis([min(logx), max(logx), min(pldif), max(pldif)]) else: plt.xscale("log") plt.yscale("log") plt.axis([min(self.x), max(self.x), min(pldif), max(pldif)]) if par2: bpldif = self.y/par2['mfit'] ### third subplot: power/model for bent power law and straight line s3 = plt.subplot2grid((4,1),(3,0),rowspan=1) if log: plt.plot(logx, bpldif, color='black', linestyle='steps-mid') plt.plot(logx, np.ones(len(self.x)), color='red', lw=2) plt.axis([min(logx), max(logx), min(bpldif), max(bpldif)]) else: plt.plot(self.x, bpldif, color='black', linestyle='steps-mid') plt.plot(self.x, np.ones(len(self.x)), color='red', lw=2) plt.xscale("log") plt.yscale("log") plt.axis([min(self.x), max(self.x), min(bpldif), max(bpldif)]) plt.ylabel("Residuals, \n" + par2['model'] + " model", fontsize=18) ax = plt.gca() for label in ax.get_xticklabels() + ax.get_yticklabels(): label.set_fontsize(14) if log: plt.xlabel("log(Frequency) [Hz]", fontsize=18) else: plt.xlabel("Frequency [Hz]", fontsize=18) ### make sure xticks are taken from first plots, but don't appear there plt.setp(s1.get_xticklabels(), visible=False) ### save figure in png file and close plot device plt.savefig(namestr + '_ps_fit.png', format='png') plt.close() return ########################################################## ########################################################## ########################################################## #### PERIODOGRAM FITTING SUBCLASS ################ # # Compute Maximum A Posteriori (MAP) parameters # for periodograms via Maximum Likelihood # using the # posterior class above # # # # # # # # class PerMaxLike(MaxLikelihood): ### ps = PowerSpectrum object with periodogram ### obs= if True, compute covariances and print summary to screen ### ### fitmethod = choose optimization method ### options are: ### 'simplex': use simplex downhill algorithm ### 'powell': use modified Powell's algorithm ### 'gradient': use nonlinear conjugate gradient ### 'bfgs': use BFGS algorithm ### 'newton': use Newton CG ### 'leastsq' : use least-squares method ### 'constbfgs': constrained BFGS algorithm ### 'tnc': constrained optimization via a truncated Newton algorithm ### 'nlm': optimization via R's non-linear minimization routine ### 'anneal': simulated annealing for convex problems def __init__(self, ps, obs=True, fitmethod='powell'): ### ignore first elements in ps.freq and ps.ps (= no. of photons) #ps.freq = np.array(ps.freq[1:]) self.x = ps.freq[1:] #ps.ps = np.array(ps.ps[1:]) self.y = ps.ps[1:] self.ps = ps ### Is this a real observation or a fake periodogram to be fitted? self.obs = obs self.nlmflag = False ### set fitmethod self._set_fitmethod(fitmethod) def mlest(self, func, ain, bounds = None, obs=True, noise=None, nmax=1, residuals = None, smooth=0, m=1, map=True): if smooth == 0 : power = self.y elif smooth == 3: power = self.smooth3 elif smooth == 5: power = self.smooth5 elif smooth == 11: power = self.smooth11 else: raise Exception('No valid option for kwarg "smooth". Options are 0,3,5 and 11!') if not residuals is None: power = residuals lenpower = float(len(power)) ### renormalize normalization so it's in the right range varobs = np.sum(power) varmod = np.sum(func(self.x, *ain)) renorm = varobs/varmod if len(ain) > 1: ain[1] = ain[1] + np.log(renorm) #print('noise index: ' + str(noise)) ### If last parameter is noise level, renormalize noise level ### to something useful: if not noise is None: #print("Renormalizing noise level ...") ### take the last 50 elements of the power spectrum noisepower = power[-51:-1] meannoise = np.log(np.mean(noisepower)) ain[noise] = meannoise ### set function to be minimized: posterior density for periodograms: pstemp = powerspectrum.PowerSpectrum() pstemp.freq = self.x pstemp.ps = power pstemp.df = self.ps.df if m == 1: #print("I am here") lposterior = posterior.PerPosterior(pstemp, func) elif m > 1: lposterior = posterior.StackPerPosterior(pstemp, func, m) else: raise Exception("Number of power spectra is not a valid number!") #print("ain: " + str(ain)) #print("lposterior(initial value): " + str(lposterior(ain))) if not map: lpost = lposterior.loglikelihood else: lpost = lposterior # lpost = posterior.PerPosterior(pstemp, func) lpostain = lpost(ain) #print(lpostain) # fitparams = self._fitting(lpost.loglikelihood, ain, bounds, neg = False, obs=obs) fitparams = self._fitting(lpost, ain, bounds, neg = True, obs=obs) #print("fitparams: " + str(fitparams["popt"])) fitparams["model"] = str(func).split()[1] fitparams["mfit"] = func(self.x, *fitparams['popt']) #print("mfit: " + str(fitparams["mfit"])) ### calculate model power spectrum from optimal parameters #fitparams['mfit'] = func(self.x, *fitparams['popt']) ### figure-of-merit (SSE) fitparams['merit'] = np.sum(((power-fitparams['mfit'])/fitparams['mfit'])**2.0) ### find highest outlier plrat = 2.0*(self.y/fitparams['mfit']) #print(plrat) fitparams['sobs'] = np.sum(plrat) #### plmaxpow is the maximum of 2*data/model #plmaxpow = max(plrat) ##print("plmaxpow: " + str(plmaxpow)) #try: # plmaxind = np.where(plrat == plmaxpow)[0] ##print("plmaxind: " + str(plmaxind)) # plmaxfreq = self.x[plmaxind] #except TypeError: # plmaxfreq = None if nmax ==1: ### plmaxpow is the maximum of 2*data/model plmaxpow = max(plrat[1:]) #print('plmaxpow: ' + str(plmaxpow)) plmaxind = np.where(plrat == plmaxpow)[0] #print('plmaxind: ' + str(plmaxind)) if len(plmaxind) > 1: plmaxind = plmaxind[0] elif len(plmaxind) == 0: plmaxind = -2 plmaxfreq = self.x[plmaxind] else: plratsort = copy.copy(plrat) plratsort.sort() plmaxpow = plratsort[-nmax:] plmaxind, plmaxfreq = [], [] for p in plmaxpow: try: plmaxind_temp = np.where(plrat == p)[0] if len(plmaxind_temp) > 1: plmaxind_temp = plmaxind_temp[0] elif len(plmaxind_temp) == 0: plmaxind_temp = -2 plmaxind.append(plmaxind_temp) plmaxfreq.append(self.x[plmaxind_temp]) except TypeError: plmaxind.append(None) plmaxfreq.append(None) fitparams['maxpow'] = plmaxpow fitparams['maxind'] = plmaxind fitparams['maxfreq'] = plmaxfreq s3rat = 2.0*(fitparams['smooth3']/fitparams['mfit']) fitparams['s3max'] = max(s3rat[1:]) try: s3maxind = np.where(s3rat == fitparams['s3max'])[0] if len(s3maxind) > 1: s3maxind = s3maxind[0] fitparams['s3maxfreq'] = self.x[s3maxind] except TypeError: fitparams["s3maxfreq"] = None s5rat = 2.0*(fitparams['smooth5']/fitparams['mfit']) fitparams['s5max'] = max(s5rat[1:]) try: s5maxind = np.where(s5rat == fitparams['s5max'])[0] if len(s5maxind) > 1: s5maxind = s5maxind[0] fitparams['s5maxfreq'] = self.x[s5maxind] except TypeError: fitparams['s5maxfreq'] = None s11rat = 2.0*(fitparams['smooth11']/fitparams['mfit']) fitparams['s11max'] = max(s11rat[1:]) try: s11maxind = np.where(s11rat == fitparams['s11max'])[0] if len(s11maxind) > 1: s11maxind = s11maxind[0] fitparams['s11maxfreq'] = self.x[s11maxind] except TypeError: fitparams['s11maxfreq'] = None ### compute binned periodograms and find highest outlier in those: df = (self.x[1]-self.x[0]) ### first, compute the maximum binning that would even make sense bmax = int(self.x[-1]/(2.0*(self.x[1]-self.x[0]))) #print('bmax: ' + str(bmax)) bins = [1,3,5,7,10,15,20,30,50,70,100,200,300,500] bindict = {} for b in bins: #print('bmax: ' + str(bmax)) #print('b: ' + str(b)) if b < bmax: if b == 1: binps = self.ps else: binps = self.ps.rebinps(b*df) binpsname = "bin" + str(b) # setattr(self, "bin" + str(b), binps) bindict[binpsname] = binps binpl = func(binps.freq, *fitparams["popt"]) binratio = 2.0*np.array(binps.ps)/binpl #print("len(binratio): " + str(len(binratio))) #print("mean(binratio): " + str(mean(binratio))) maxind = np.where(binratio[1:] == max(binratio[1:]))[0] if len(maxind) > 1: maxind = maxind[0] elif len(maxind) == 0 : maxind = -2 #print('maxind: ' + str(maxind)) binmaxpow = "bmax" + str(b) bindict[binmaxpow] = max(binratio[1:]) binmaxfreq = "bmaxfreq" + str(b) #print("maxind[0]: " + str(maxind[0]+1)) bindict[binmaxfreq] = binps.freq[maxind+1] #setattr(self, "bmax" + str(b), max(binratio[1:])) #setattr(self, "b" + str(b) + "maxfreq", binps.freq[maxind+1]) bindict['binpl' + str(b)] = binpl fitparams["bindict"] = bindict ## do a KS test comparing residuals to the exponential distribution plks = scipy.stats.kstest(plrat/2.0, 'expon', N=len(plrat)) fitparams['ksp'] = plks[1] if obs == True: print("The figure-of-merit function for this model is: " + str(fitparams['merit']) + " and the fit for " + str(fitparams['dof']) + " dof is " + str(fitparams['merit']/fitparams['dof']) + ".") print("Fitting statistics: ") print(" -- number of frequencies: " + str(len(self.x))) print(" -- Deviance [-2 log L] D = " + str(fitparams['deviance'])) print(" -- Highest data/model outlier 2I/S = " + str(fitparams['maxpow'])) print(" at frequency f_max = " + str(fitparams['maxfreq'])) print(" -- Highest smoothed data/model outlier for smoothing factor [3] 2I/S = " + str(fitparams['s3max'])) print(" at frequency f_max = " + str(fitparams['s3maxfreq'])) print(" -- Highest smoothed data/model outlier for smoothing factor [5] 2I/S = " + str(fitparams['s5max'])) print(" at frequency f_max = " + str(fitparams['s5maxfreq'])) print(" -- Highest smoothed data/model outlier for smoothing factor [11] 2I/S = " + str(fitparams['s11max'])) print(" at frequency f_max = " + str(fitparams['s11maxfreq'])) print(" -- Summed Residuals S = " + str(fitparams['sobs'])) print(" -- Expected S ~ " + str(fitparams['sexp']) + " +- " + str(fitparams['ssd'])) print(" -- KS test p-value (use with caution!) p = " + str(fitparams['ksp'])) print(" -- merit function (SSE) M = " + str(fitparams['merit'])) return fitparams def compute_lrt(self, mod1, ain1, mod2, ain2, bounds1=None, bounds2=None, noise1=-1, noise2=-1, m=1, map=True, nmax=1): ### fit data with both models par1 = self.mlest(mod1, ain1, bounds=bounds1, obs=self.obs, noise=noise1, m = m, map = map, nmax=nmax) par2 = self.mlest(mod2, ain2, bounds=bounds2, obs=self.obs, noise=noise2, m = m, map = map, nmax=nmax) ### extract dictionaries with parameters for each varname1 = str(mod1).split()[1] + 'fit' varname2 = str(mod2).split()[1] + 'fit' self.__setattr__(varname1, par1) self.__setattr__(varname2, par2) ### compute log likelihood ratio as difference between the deviances self.lrt = par1['deviance'] - par2['deviance'] if self.obs == True: print("The Likelihood Ratio for models " + str(mod1).split()[1] + " and " + str(mod2).split()[1] + " is: LRT = " + str(self.lrt)) return self.lrt #### MAXIMUM LIKELIHOOD FITTING FOR POISSON DATA # # This subclass implements maximum likelihood fitting # using the modified Cash statistic as implemented in # XSPEC # # # class LightcurveMaxLike(MaxLikelihood): def __init__(self, lc, obs=True, fitmethod='bfgs'): ### ignore first elements in ps.freq and ps.ps (= no. of photons) lc.time = np.array(lc.time) self.x = lc.time lc.counts = np.array(lc.counts) self.y = lc.counts self.lc = lc ### Is this a real observation or a fake periodogram to be fitted? self.obs = obs self.nlmflag = False ### set fitmethod self._set_fitmethod(fitmethod) def mlest(self, func, ain, bounds = None, obs=True, noise=None, residuals = None, nmax=1): if not residuals is None: counts = residuals self.y= residuals self.lc.counts = residuals else: counts = self.y lencounts = float(len(counts)) ### set function to be minimized: posterior density for periodograms: lpost = posterior.LightcurvePosterior(self.lc, func) lpostain = lpost(ain) #print(lpostain) # fitparams = self._fitting(lpost.loglikelihood, ain, bounds, neg = False, obs=obs) fitparams = self._fitting(lpost, ain, bounds, neg = True, obs=obs) #print("fitparams: " + str(fitparams["popt"])) fitparams["model"] = str(func).split()[1] fitparams["mfit"] = func(self.x, *fitparams['popt']) #print("mfit: " + str(fitparams["mfit"])) ### calculate model power spectrum from optimal parameters #fitparams['mfit'] = func(self.x, *fitparams['popt']) ### figure-of-merit (SSE) fitparams['merit'] = np.sum(((self.y-fitparams['mfit'])/fitparams['mfit'])**2.0) ### find highest outlier plrat = 2.0*(self.y/fitparams['mfit']) fitparams['sobs'] = np.sum(plrat[1:]) ## do a KS test comparing residuals to the exponential distribution plks = scipy.stats.kstest(plrat/2.0, 'expon', N=len(plrat)) fitparams['ksp'] = plks[1] if obs == True: print("The figure-of-merit function for this model is: " + str(fitparams['merit']) + " and the fit for " + str(fitparams['dof']) + " dof is " + str(fitparams['merit']/fitparams['dof']) + ".") print("Fitting statistics: ") print(" -- Deviance [-2 log L] D = " + str(fitparams['deviance'])) print(" -- Summed Residuals S = " + str(fitparams['sobs'])) print(" -- Expected S ~ " + str(fitparams['sexp']) + " +- " + str(fitparams['ssd'])) print(" -- KS test p-value (use with caution!) p = " + str(fitparams['ksp'])) print(" -- merit function (SSE) M = " + str(fitparams['merit'])) return fitparams ######################################## ######################################## class GaussMaxLike(MaxLikelihood): def __init__(self, x, y, obs=True, fitmethod='bfgs'): MaxLikelihood.__init__(self, x, y, obs, fitmethod) def mlest(self, lpost, ain, func=None, bounds = None, obs=True): lpostain = lpost(ain) fitparams = self._fitting(lpost, ain, bounds, neg = True, obs=obs) #model1 = str(covar).split()[1] #fitparams['covariance function'] = model1 if func: # model2 = str(func).split()[1] # fitparams["function model"] = model2 fitparams["function fit"] = func(self.x, *fitparams['popt'][lpost.ncovar:]) #fitparams['merit'] = np.sum(((self.y-fitparams['mfit'])/fitparams['mfit'])**2.0) if obs == True: #print("The figure-of-merit function for this model is: " + str(fitparams['merit']) + " and the fit for " + str(fitparams['dof']) + " dof is " + str(fitparams['merit']/fitparams['dof']) + ".") print("Fitting statistics: ") print(" -- number of data points: " + str(len(self.x))) print(" -- Deviance [-2 log L] D = " + str(fitparams['deviance'])) return fitparams
bsd-2-clause
Carralex/landlab
landlab/components/potentiality_flowrouting/examples/test_script_fr3.py
6
8818
# -*- coding: utf-8 -*- """test_script_fr3 A script of our potentiality "ghost field" flow routing method. Created on Fri Feb 20 13:45:52 2015 @author: danhobley """ from __future__ import print_function from six.moves import range #from landlab import RasterModelGrid #from landlab.plot.imshow import imshow_node_grid import numpy as np from pylab import imshow, show, contour, figure, clabel, quiver from landlab.plot import imshow_grid_at_node from landlab import RasterModelGrid from matplotlib.ticker import MaxNLocator sqrt = np.sqrt nrows = 50 ncols = 50 #mg = RasterModelGrid(n, n, 1.) #nt = 13000 nt = 15500 width = 1. slope=0.1 core = (slice(1,-1),slice(1,-1)) dtwidth = 0.2 hR = np.zeros((nrows+2,ncols+2), dtype=float) qwater_inR=np.zeros_like(hR) #WATER qsed_inR=np.zeros_like(hR) #SED #qwater_inR[core][0,-1]=np.pi/2. qwater_inR[core][0,0]=1. qwater_inR[core][0,-1]=0.5 qwater_inR[core][-1,24]=1. #qsourceR[core][0,0]=.9*sqrt(2.) #qsourceR[core][-1,n//2-1]=1 #qspR[core][0,-1]=np.pi/2.*(1.-slope) #qsed_inR[core][0,0]=np.pi/2.*(1.-slope) qsed_inR[core][0,0]=1. qsed_inR[core][0,-1]=0.5 qsed_inR[core][-1,24]=1. #qspR[core][0,0]=sqrt(2) #qspR[core][-1,n//2-1]=1 flat_threshold = 0.00001 hgradEx = np.zeros_like(hR) hgradWx = np.zeros_like(hR) hgradNx = np.zeros_like(hR) hgradSx = np.zeros_like(hR) pgradEx = np.zeros_like(hR) pgradWx = np.zeros_like(hR) pgradNx = np.zeros_like(hR) pgradSx = np.zeros_like(hR) hgradEy = np.zeros_like(hR) hgradWy = np.zeros_like(hR) hgradNy = np.zeros_like(hR) hgradSy = np.zeros_like(hR) pgradEy = np.zeros_like(hR) pgradWy = np.zeros_like(hR) pgradNy = np.zeros_like(hR) pgradSy = np.zeros_like(hR) CslopeE = np.zeros_like(hR) CslopeW = np.zeros_like(hR) CslopeN = np.zeros_like(hR) CslopeS = np.zeros_like(hR) thetaE = np.zeros_like(hR) thetaW = np.zeros_like(hR) thetaN = np.zeros_like(hR) thetaS = np.zeros_like(hR) theta_vE = np.zeros_like(hR) theta_vW = np.zeros_like(hR) theta_vN = np.zeros_like(hR) theta_vS = np.zeros_like(hR) vmagE = np.zeros_like(hR) vmagW = np.zeros_like(hR) vmagN = np.zeros_like(hR) vmagS = np.zeros_like(hR) uE = np.zeros_like(hR) uW = np.zeros_like(hR) uN = np.zeros_like(hR) uS = np.zeros_like(hR) #coeffs for K solver: aPP = np.zeros_like(hR) aWW = np.zeros_like(hR) aWP = np.zeros_like(hR) aEE = np.zeros_like(hR) aEP = np.zeros_like(hR) aNN = np.zeros_like(hR) aNP = np.zeros_like(hR) aSS = np.zeros_like(hR) aSP = np.zeros_like(hR) qsedE = np.zeros_like(hR) qsedW = np.zeros_like(hR) qsedN = np.zeros_like(hR) qsedS = np.zeros_like(hR) K = np.zeros_like(hR) not_flat = np.zeros((nrows,ncols), dtype=bool) #Wchanged = np.zeros_like(hR, dtype=bool) #Echanged = np.zeros_like(Wchanged) #Nchanged = np.zeros_like(Wchanged) #Schanged = np.zeros_like(Wchanged) #uxval = np.zeros_like(hR) #uyval = np.zeros_like(hR) #set up slice offsets: Es = (slice(1,-1),slice(2,ncols+2)) NEs = (slice(2,nrows+2),slice(2,ncols+2)) Ns = (slice(2,nrows+2),slice(1,-1)) NWs = (slice(2,nrows+2),slice(0,-2)) Ws = (slice(1,-1),slice(0,-2)) SWs = (slice(0,-2),slice(0,-2)) Ss = (slice(0,-2),slice(1,-1)) SEs = (slice(0,-2),slice(2,ncols+2)) for i in range(nt): if i%100==0: print(i) qsedE.fill(0.) qsedW.fill(0.) qsedN.fill(0.) qsedS.fill(0.) hgradEx[core] = (hR[core]-hR[Es])#/width hgradEy[core] = hR[SEs]-hR[NEs]+hR[Ss]-hR[Ns] hgradEy[core] *= 0.25 CslopeE[core] = sqrt(np.square(hgradEx[core])+np.square(hgradEy[core])) thetaE[core] = np.arctan(np.fabs(hgradEy[core])/(np.fabs(hgradEx[core])+1.e-10)) pgradEx[core] = uE[core] #pgrad is VV's vv, a velocity pgradEy[core] = uN[core]+uS[core]+uN[Es]+uS[Es] pgradEy[core] *= 0.25 vmagE[core] = sqrt(np.square(pgradEx[core])+np.square(pgradEy[core])) #now resolve the effective flow magnitudes to downhill theta_vE[core] = np.arctan(np.fabs(pgradEy[core])/(np.fabs(pgradEx[core])+1.e-10)) vmagE[core] *= np.cos(np.fabs(thetaE[core]-theta_vE[core])) qsedE[core] = np.sign(hgradEx[core])*vmagE[core]*(CslopeE[core]-slope).clip(0.)*np.cos(thetaE[core]) #the clip should deal with the eastern edge, but return here to check if probs hgradWx[core] = (hR[Ws]-hR[core])#/width hgradWy[core] = hR[SWs]-hR[NWs]+hR[Ss]-hR[Ns] hgradWy[core] *= 0.25 CslopeW[core] = sqrt(np.square(hgradWx[core])+np.square(hgradWy[core])) thetaW[core] = np.arctan(np.fabs(hgradWy[core])/(np.fabs(hgradWx[core])+1.e-10)) pgradWx[core] = uW[core]#/width pgradWy[core] = uN[core]+uS[core]+uN[Ws]+uS[Ws] pgradWy[core] *= 0.25 vmagW[core] = sqrt(np.square(pgradWx[core])+np.square(pgradWy[core])) theta_vW[core] = np.arctan(np.fabs(pgradWy[core])/(np.fabs(pgradWx[core])+1.e-10)) vmagW[core] *= np.cos(np.fabs(thetaW[core]-theta_vW[core])) qsedW[core] = np.sign(hgradWx[core])*vmagW[core]*(CslopeW[core]-slope).clip(0.)*np.cos(thetaW[core]) hgradNx[core] = hR[NWs]-hR[NEs]+hR[Ws]-hR[Es] hgradNx[core] *= 0.25 hgradNy[core] = (hR[core]-hR[Ns])#/width CslopeN[core] = sqrt(np.square(hgradNx[core])+np.square(hgradNy[core])) thetaN[core] = np.arctan(np.fabs(hgradNy[core])/(np.fabs(hgradNx[core])+1.e-10)) pgradNx[core] = uE[core]+uW[core]+uE[Ns]+uW[Ns] pgradNx[core] *= 0.25 pgradNy[core] = uN[core]#/width vmagN[core] = sqrt(np.square(pgradNx[core])+np.square(pgradNy[core])) theta_vN[core] = np.arctan(np.fabs(pgradNy[core])/(np.fabs(pgradNx[core])+1.e-10)) vmagN[core] *= np.cos(np.fabs(thetaN[core]-theta_vN[core])) qsedN[core] = np.sign(hgradNy[core])*vmagN[core]*(CslopeN[core]-slope).clip(0.)*np.sin(thetaN[core]) hgradSx[core] = hR[SWs]-hR[SEs]+hR[Ws]-hR[Es] hgradSx[core] *= 0.25 hgradSy[core] = (hR[Ss]-hR[core])#/width CslopeS[core] = sqrt(np.square(hgradSx[core])+np.square(hgradSy[core])) thetaS[core] = np.arctan(np.fabs(hgradSy[core])/(np.fabs(hgradSx[core])+1.e-10)) pgradSx[core] = uE[core]+uW[core]+uE[Ss]+uW[Ss] pgradSx[core] *= 0.25 pgradSy[core] = uS[core]#/width vmagS[core] = sqrt(np.square(pgradSx[core])+np.square(pgradSy[core])) theta_vS[core] = np.arctan(np.fabs(pgradSy[core])/(np.fabs(pgradSx[core])+1.e-10)) vmagS[core] *= np.cos(np.fabs(thetaS[core]-theta_vS[core])) qsedS[core] = np.sign(hgradSy[core])*vmagS[core]*(CslopeS[core]-slope).clip(0.)*np.sin(thetaS[core]) hR[core] += dtwidth*(qsedS[core]+qsedW[core]-qsedN[core]-qsedE[core]+qsed_inR[core]) #update the dummy edges of our variables: hR[0,1:-1] = hR[1,1:-1] hR[-1,1:-1] = hR[-2,1:-1] hR[1:-1,0] = hR[1:-1,1] hR[1:-1,-1] = hR[1:-1,-2] hR[(0,-1,0,-1),(0,-1,-1,0)] = hR[(1,-2,1,-2),(1,-2,-2,1)] ###P SOLVER #not_flat = np.greater(hR[core],flat_threshold) #not_mask = np.logical_not(mask) aNN[core] = (-hR[core]+hR[Ns]).clip(0.) aNP[core] = (hR[core]-hR[Ns]).clip(0.) aSS[core] = (-hR[core]+hR[Ss]).clip(0.) aSP[core] = (hR[core]-hR[Ss]).clip(0.) aEE[core] = (-hR[core]+hR[Es]).clip(0.) aEP[core] = (hR[core]-hR[Es]).clip(0.) aWW[core] = (-hR[core]+hR[Ws]).clip(0.) aWP[core] = (hR[core]-hR[Ws]).clip(0.) aPP[core] = aWP[core]+aEP[core]+aSP[core]+aNP[core]+1.e-6 for j in range(15): #assert np.all(np.greater(aPP[core][not_flat],0.)) #this is here to eliminate a divby0 #K[core][not_flat] = ((aWW[core]*K[Ws]+aEE[core]*K[Es]+aSS[core]*K[Ss]+aNN[core]*K[Ns] # +qwater_inR[core])[not_flat])/aPP[core][not_flat] K[core] = (aWW[core]*K[Ws]+aEE[core]*K[Es]+aSS[core]*K[Ss]+aNN[core]*K[Ns] +qwater_inR[core])/aPP[core] for BC in (K,): BC[0,1:-1] = BC[1,1:-1] BC[-1,1:-1] = BC[-2,1:-1] BC[1:-1,0] = BC[1:-1,1] BC[1:-1,-1] = BC[1:-1,-2] BC[(0,-1,0,-1),(0,-1,-1,0)] = BC[(1,-2,1,-2),(1,-2,-2,1)] uW[core] = aWW[core]*K[Ws]-aWP[core]*K[core] uE[core] = -aEE[core]*K[Es]+aEP[core]*K[core] uN[core] = -aNN[core]*K[Ns]+aNP[core]*K[core] uS[core] = aSS[core]*K[Ss]-aSP[core]*K[core] #update the u BCs for BC in (uW,uE,uN,uS): BC[0,1:-1] = BC[1,1:-1] BC[-1,1:-1] = BC[-2,1:-1] BC[1:-1,0] = BC[1:-1,1] BC[1:-1,-1] = BC[1:-1,-2] BC[(0,-1,0,-1),(0,-1,-1,0)] = BC[(1,-2,1,-2),(1,-2,-2,1)] X,Y = np.meshgrid(np.arange(ncols),np.arange(nrows)) uval = uW[core]+uE[core] vval = uN[core]+uS[core] #velmag = sqrt(uval**2 + vval**2) #uval /= velmag #vval /= velmag #imshow_node_grid(mg, h) figure(1) mg = RasterModelGrid((nrows, ncols)) f1 = imshow_grid_at_node(mg, hR[core].flatten(), grid_units=('m', 'm')) figure(2) f2 = contour(X,Y,hR[core], locator=MaxNLocator(nbins=100)) # f2 = contour(X, Y, np.sqrt(uval**2+vval**2), locator=MaxNLocator(nbins=10)) clabel(f2) quiver(X,Y,uval,vval)
mit
jandom/GromacsWrapper
gromacs/formats.py
1
1486
# GromacsWrapper: formats.py # Copyright (c) 2009-2010 Oliver Beckstein <[email protected]> # Released under the GNU Public License 3 (or higher, your choice) # See the file COPYING for details. """:mod:`gromacs.formats` -- Accessing various files ================================================= This module contains classes that represent data files on disk. Typically one creates an instance and - reads from a file using a :meth:`read` method, or - populates the instance (in the simplest case with a :meth:`set` method) and the uses the :meth:`write` method to write the data to disk in the appropriate format. For function data there typically also exists a :meth:`plot` method which produces a graph (using matplotlib). The module defines some classes that are used in other modules; they do *not* make use of :mod:`gromacs.tools` or :mod:`gromacs.cbook` and can be safely imported at any time. .. SeeAlso:: This module gives access to a selection of classes from :mod:`gromacs.fileformats`. Classes ------- .. autoclass:: XVG :members: .. autoclass:: NDX :members: .. autoclass:: uniqueNDX :members: .. autoclass:: MDP :members: .. autoclass:: ITP :members: .. autoclass:: XPM :members: .. autoclass:: TOP :members: """ from __future__ import absolute_import __docformat__ = "restructuredtext en" __all__ = ["XVG", "MDP", "NDX", "uniqueNDX", "ITP", "XPM", "TOP"] from .fileformats import XVG, MDP, NDX, uniqueNDX, ITP, XPM, TOP
gpl-3.0
rseubert/scikit-learn
sklearn/decomposition/base.py
313
5647
"""Principal Component Analysis Base Classes""" # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Kyle Kastner <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import linalg from ..base import BaseEstimator, TransformerMixin from ..utils import check_array from ..utils.extmath import fast_dot from ..utils.validation import check_is_fitted from ..externals import six from abc import ABCMeta, abstractmethod class _BasePCA(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class for PCA methods. Warning: This class should not be used directly. Use derived classes instead. """ def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances, and sigma2 contains the noise variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision @abstractmethod def fit(X, y=None): """Placeholder for fit. Subclasses should implement this method! Fit the model with X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ def transform(self, X, y=None): """Apply dimensionality reduction to X. X is projected on the first principal components previously extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) Examples -------- >>> import numpy as np >>> from sklearn.decomposition import IncrementalPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> ipca = IncrementalPCA(n_components=2, batch_size=3) >>> ipca.fit(X) IncrementalPCA(batch_size=3, copy=True, n_components=2, whiten=False) >>> ipca.transform(X) # doctest: +SKIP """ check_is_fitted(self, ['mean_', 'components_'], all_or_any=all) X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = fast_dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X, y=None): """Transform data back to its original space. In other words, return an input X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes reversing whitening. """ if self.whiten: return fast_dot(X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return fast_dot(X, self.components_) + self.mean_
bsd-3-clause
deepesch/scikit-learn
sklearn/metrics/regression.py
175
16953
"""Metrics to assess performance on regression task Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck <[email protected]> # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # Manoj Kumar <[email protected]> # Michael Eickenberg <[email protected]> # Konstantin Shmelkov <[email protected]> # License: BSD 3 clause from __future__ import division import numpy as np from ..utils.validation import check_array, check_consistent_length from ..utils.validation import column_or_1d import warnings __ALL__ = [ "mean_absolute_error", "mean_squared_error", "median_absolute_error", "r2_score", "explained_variance_score" ] def _check_reg_targets(y_true, y_pred, multioutput): """Check that y_true and y_pred belong to the same regression task Parameters ---------- y_true : array-like, y_pred : array-like, multioutput : array-like or string in ['raw_values', uniform_average', 'variance_weighted'] or None None is accepted due to backward compatibility of r2_score(). Returns ------- type_true : one of {'continuous', continuous-multioutput'} The type of the true target data, as output by 'utils.multiclass.type_of_target' y_true : array-like of shape = (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples, n_outputs) Estimated target values. multioutput : array-like of shape = (n_outputs) or string in ['raw_values', uniform_average', 'variance_weighted'] or None Custom output weights if ``multioutput`` is array-like or just the corresponding argument if ``multioutput`` is a correct keyword. """ check_consistent_length(y_true, y_pred) y_true = check_array(y_true, ensure_2d=False) y_pred = check_array(y_pred, ensure_2d=False) if y_true.ndim == 1: y_true = y_true.reshape((-1, 1)) if y_pred.ndim == 1: y_pred = y_pred.reshape((-1, 1)) if y_true.shape[1] != y_pred.shape[1]: raise ValueError("y_true and y_pred have different number of output " "({0}!={1})".format(y_true.shape[1], y_pred.shape[1])) n_outputs = y_true.shape[1] multioutput_options = (None, 'raw_values', 'uniform_average', 'variance_weighted') if multioutput not in multioutput_options: multioutput = check_array(multioutput, ensure_2d=False) if n_outputs == 1: raise ValueError("Custom weights are useful only in " "multi-output cases.") elif n_outputs != len(multioutput): raise ValueError(("There must be equally many custom weights " "(%d) as outputs (%d).") % (len(multioutput), n_outputs)) y_type = 'continuous' if n_outputs == 1 else 'continuous-multioutput' return y_type, y_true, y_pred, multioutput def mean_absolute_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean absolute error regression loss Read more in the :ref:`User Guide <mean_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats If multioutput is 'raw_values', then mean absolute error is returned for each output separately. If multioutput is 'uniform_average' or an ndarray of weights, then the weighted average of all output errors is returned. MAE output is non-negative floating point. The best value is 0.0. Examples -------- >>> from sklearn.metrics import mean_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_absolute_error(y_true, y_pred) 0.5 >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> mean_absolute_error(y_true, y_pred) 0.75 >>> mean_absolute_error(y_true, y_pred, multioutput='raw_values') array([ 0.5, 1. ]) >>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.849... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average(np.abs(y_pred - y_true), weights=sample_weight, axis=0) if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def mean_squared_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean squared error regression loss Read more in the :ref:`User Guide <mean_squared_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats A non-negative floating point value (the best value is 0.0), or an array of floating point values, one for each individual target. Examples -------- >>> from sklearn.metrics import mean_squared_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_squared_error(y_true, y_pred) 0.375 >>> y_true = [[0.5, 1],[-1, 1],[7, -6]] >>> y_pred = [[0, 2],[-1, 2],[8, -5]] >>> mean_squared_error(y_true, y_pred) # doctest: +ELLIPSIS 0.708... >>> mean_squared_error(y_true, y_pred, multioutput='raw_values') ... # doctest: +ELLIPSIS array([ 0.416..., 1. ]) >>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.824... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average((y_true - y_pred) ** 2, axis=0, weights=sample_weight) if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def median_absolute_error(y_true, y_pred): """Median absolute error regression loss Read more in the :ref:`User Guide <median_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) Estimated target values. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import median_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> median_absolute_error(y_true, y_pred) 0.5 """ y_type, y_true, y_pred, _ = _check_reg_targets(y_true, y_pred, 'uniform_average') if y_type == 'continuous-multioutput': raise ValueError("Multioutput not supported in median_absolute_error") return np.median(np.abs(y_pred - y_true)) def explained_variance_score(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Explained variance regression score function Best possible score is 1.0, lower values are worse. Read more in the :ref:`User Guide <explained_variance_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', \ 'variance_weighted'] or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- score : float or ndarray of floats The explained variance or ndarray if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Examples -------- >>> from sklearn.metrics import explained_variance_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> explained_variance_score(y_true, y_pred) # doctest: +ELLIPSIS 0.957... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> explained_variance_score(y_true, y_pred, multioutput='uniform_average') ... # doctest: +ELLIPSIS 0.983... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) y_diff_avg = np.average(y_true - y_pred, weights=sample_weight, axis=0) numerator = np.average((y_true - y_pred - y_diff_avg) ** 2, weights=sample_weight, axis=0) y_true_avg = np.average(y_true, weights=sample_weight, axis=0) denominator = np.average((y_true - y_true_avg) ** 2, weights=sample_weight, axis=0) nonzero_numerator = numerator != 0 nonzero_denominator = denominator != 0 valid_score = nonzero_numerator & nonzero_denominator output_scores = np.ones(y_true.shape[1]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing to np.average() None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights) def r2_score(y_true, y_pred, sample_weight=None, multioutput=None): """R^2 (coefficient of determination) regression score function. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. Read more in the :ref:`User Guide <r2_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', 'variance_weighted'] or None or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. Default value correponds to 'variance_weighted', but will be changed to 'uniform_average' in next versions. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- z : float or ndarray of floats The R^2 score or ndarray of scores if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R). References ---------- .. [1] `Wikipedia entry on the Coefficient of determination <http://en.wikipedia.org/wiki/Coefficient_of_determination>`_ Examples -------- >>> from sklearn.metrics import r2_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> r2_score(y_true, y_pred) # doctest: +ELLIPSIS 0.948... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> r2_score(y_true, y_pred, multioutput='variance_weighted') # doctest: +ELLIPSIS 0.938... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) weight = sample_weight[:, np.newaxis] else: weight = 1. numerator = (weight * (y_true - y_pred) ** 2).sum(axis=0, dtype=np.float64) denominator = (weight * (y_true - np.average( y_true, axis=0, weights=sample_weight)) ** 2).sum(axis=0, dtype=np.float64) nonzero_denominator = denominator != 0 nonzero_numerator = numerator != 0 valid_score = nonzero_denominator & nonzero_numerator output_scores = np.ones([y_true.shape[1]]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) # arbitrary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if multioutput is None and y_true.shape[1] != 1: # @FIXME change in 0.18 warnings.warn("Default 'multioutput' behavior now corresponds to " "'variance_weighted' value, it will be changed " "to 'uniform_average' in 0.18.", DeprecationWarning) multioutput = 'variance_weighted' if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator # avoid fail on constant y or one-element arrays if not np.any(nonzero_denominator): if not np.any(nonzero_numerator): return 1.0 else: return 0.0 else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights)
bsd-3-clause
poryfly/scikit-learn
sklearn/tests/test_kernel_approximation.py
244
7588
import numpy as np from scipy.sparse import csr_matrix from sklearn.utils.testing import assert_array_equal, assert_equal, assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal, assert_raises from sklearn.utils.testing import assert_less_equal from sklearn.metrics.pairwise import kernel_metrics from sklearn.kernel_approximation import RBFSampler from sklearn.kernel_approximation import AdditiveChi2Sampler from sklearn.kernel_approximation import SkewedChi2Sampler from sklearn.kernel_approximation import Nystroem from sklearn.metrics.pairwise import polynomial_kernel, rbf_kernel # generate data rng = np.random.RandomState(0) X = rng.random_sample(size=(300, 50)) Y = rng.random_sample(size=(300, 50)) X /= X.sum(axis=1)[:, np.newaxis] Y /= Y.sum(axis=1)[:, np.newaxis] def test_additive_chi2_sampler(): # test that AdditiveChi2Sampler approximates kernel on random data # compute exact kernel # appreviations for easier formular X_ = X[:, np.newaxis, :] Y_ = Y[np.newaxis, :, :] large_kernel = 2 * X_ * Y_ / (X_ + Y_) # reduce to n_samples_x x n_samples_y by summing over features kernel = (large_kernel.sum(axis=2)) # approximate kernel mapping transform = AdditiveChi2Sampler(sample_steps=3) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) X_sp_trans = transform.fit_transform(csr_matrix(X)) Y_sp_trans = transform.transform(csr_matrix(Y)) assert_array_equal(X_trans, X_sp_trans.A) assert_array_equal(Y_trans, Y_sp_trans.A) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) # test error on invalid sample_steps transform = AdditiveChi2Sampler(sample_steps=4) assert_raises(ValueError, transform.fit, X) # test that the sample interval is set correctly sample_steps_available = [1, 2, 3] for sample_steps in sample_steps_available: # test that the sample_interval is initialized correctly transform = AdditiveChi2Sampler(sample_steps=sample_steps) assert_equal(transform.sample_interval, None) # test that the sample_interval is changed in the fit method transform.fit(X) assert_not_equal(transform.sample_interval_, None) # test that the sample_interval is set correctly sample_interval = 0.3 transform = AdditiveChi2Sampler(sample_steps=4, sample_interval=sample_interval) assert_equal(transform.sample_interval, sample_interval) transform.fit(X) assert_equal(transform.sample_interval_, sample_interval) def test_skewed_chi2_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel c = 0.03 # appreviations for easier formular X_c = (X + c)[:, np.newaxis, :] Y_c = (Y + c)[np.newaxis, :, :] # we do it in log-space in the hope that it's more stable # this array is n_samples_x x n_samples_y big x n_features log_kernel = ((np.log(X_c) / 2.) + (np.log(Y_c) / 2.) + np.log(2.) - np.log(X_c + Y_c)) # reduce to n_samples_x x n_samples_y by summing over features in log-space kernel = np.exp(log_kernel.sum(axis=2)) # approximate kernel mapping transform = SkewedChi2Sampler(skewedness=c, n_components=1000, random_state=42) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) def test_rbf_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel gamma = 10. kernel = rbf_kernel(X, Y, gamma=gamma) # approximate kernel mapping rbf_transform = RBFSampler(gamma=gamma, n_components=1000, random_state=42) X_trans = rbf_transform.fit_transform(X) Y_trans = rbf_transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) error = kernel - kernel_approx assert_less_equal(np.abs(np.mean(error)), 0.01) # close to unbiased np.abs(error, out=error) assert_less_equal(np.max(error), 0.1) # nothing too far off assert_less_equal(np.mean(error), 0.05) # mean is fairly close def test_input_validation(): # Regression test: kernel approx. transformers should work on lists # No assertions; the old versions would simply crash X = [[1, 2], [3, 4], [5, 6]] AdditiveChi2Sampler().fit(X).transform(X) SkewedChi2Sampler().fit(X).transform(X) RBFSampler().fit(X).transform(X) X = csr_matrix(X) RBFSampler().fit(X).transform(X) def test_nystroem_approximation(): # some basic tests rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 4)) # With n_components = n_samples this is exact X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X) K = rbf_kernel(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) trans = Nystroem(n_components=2, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test callable kernel linear_kernel = lambda X, Y: np.dot(X, Y.T) trans = Nystroem(n_components=2, kernel=linear_kernel, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test that available kernels fit and transform kernels_available = kernel_metrics() for kern in kernels_available: trans = Nystroem(n_components=2, kernel=kern, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) def test_nystroem_singular_kernel(): # test that nystroem works with singular kernel matrix rng = np.random.RandomState(0) X = rng.rand(10, 20) X = np.vstack([X] * 2) # duplicate samples gamma = 100 N = Nystroem(gamma=gamma, n_components=X.shape[0]).fit(X) X_transformed = N.transform(X) K = rbf_kernel(X, gamma=gamma) assert_array_almost_equal(K, np.dot(X_transformed, X_transformed.T)) assert_true(np.all(np.isfinite(Y))) def test_nystroem_poly_kernel_params(): # Non-regression: Nystroem should pass other parameters beside gamma. rnd = np.random.RandomState(37) X = rnd.uniform(size=(10, 4)) K = polynomial_kernel(X, degree=3.1, coef0=.1) nystroem = Nystroem(kernel="polynomial", n_components=X.shape[0], degree=3.1, coef0=.1) X_transformed = nystroem.fit_transform(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) def test_nystroem_callable(): # Test Nystroem on a callable. rnd = np.random.RandomState(42) n_samples = 10 X = rnd.uniform(size=(n_samples, 4)) def logging_histogram_kernel(x, y, log): """Histogram kernel that writes to a log.""" log.append(1) return np.minimum(x, y).sum() kernel_log = [] X = list(X) # test input validation Nystroem(kernel=logging_histogram_kernel, n_components=(n_samples - 1), kernel_params={'log': kernel_log}).fit(X) assert_equal(len(kernel_log), n_samples * (n_samples - 1) / 2)
bsd-3-clause
Debaq/Triada
FullAxis_GUI/DB/BASE DE DATOS EXPERIMENTO/experimento 3/eduardo pailahual/medidor3.py
27
3052
import argparse import sys import matplotlib import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec import numpy as np import json parser = argparse.ArgumentParser(description="Does some awesome things.") parser.add_argument('message', type=str, help="pass a message into the script") args = parser.parse_args(sys.argv[1:]) data = [] New_data=[] dt=[] with open(args.message) as json_file: data = json.load(json_file) def graph(grid,d_tiempo): plt.switch_backend('TkAgg') #default on my system f = plt.figure(num=args.message, figsize=(20,15)) mng = plt._pylab_helpers.Gcf.figs.get(f.number, None) print(New_data) mng = plt.get_current_fig_manager() mng.resize(*mng.window.maxsize()) plt.title(args.message) if grid == 1: tempo = d_tiempo tempo_init = tempo[0] tempo_end = tempo[-1] gs1 = GridSpec(4, 1) gs1.update(left=0.05, right=0.95, wspace=0.5, hspace=0.3, bottom=0.08) ax1 = plt.subplot(gs1[0, :]) ax1.grid() ax1.set_ylabel('Pitch',fontsize=8) if grid ==1: L1 = ax1.plot(d_tiempo,New_data['pitch']) else: L1 = ax1.plot(d_tiempo,data['pitch']) ax2 = plt.subplot(gs1[1, :]) ax2.grid() ax2.set_ylabel('Roll',fontsize=8) if grid ==1: L1 = ax2.plot(d_tiempo,New_data['roll']) else: L1 = ax2.plot(d_tiempo,data['roll']) ax3 = plt.subplot(gs1[2, :]) ax3.grid() ax3.set_ylabel('Yaw',fontsize=8) if grid ==1: L1 = ax3.plot(d_tiempo,New_data['yaw']) else: L1 = ax3.plot(d_tiempo,data['yaw']) ax4 = plt.subplot(gs1[3, :]) ax4.grid() ax4.set_ylabel('Tiempo',fontsize=8) if grid ==1: L1 = ax4.plot(d_tiempo,New_data['ledblue']) L2 = ax4.plot(d_tiempo,New_data['ledred']) else: L1 = ax4.plot(d_tiempo,data['ledblue']) L2 = ax4.plot(d_tiempo,data['ledred']) plt.show() def find_nearest(array,values): idx = np.abs(np.subtract.outer(array, values)).argmin(0) return idx def corte(init_cut,end_cut,a,b,c,d,e,f,g,h,i): a=a[init_cut:end_cut] b=b[init_cut:end_cut] c=c[init_cut:end_cut] d=d[init_cut:end_cut] e=e[init_cut:end_cut] f=f[init_cut:end_cut] g=g[init_cut:end_cut] h=h[init_cut:end_cut] i=i[init_cut:end_cut] datos={'roll':a,'pitch':b,'yaw':c, 'X':d, 'Y':e, 'Z':f,'time':g, 'ledblue':h, 'ledred':i} return datos def reset_tempo(var_in,var_out): uni = var_in[0] for t in range(0,len(var_in)): var_out.append(round((var_in[t]-uni),3)) return var_out graph(0,data['time']) init_cut = float(input("tiempo inicial: ")) init_cuty = find_nearest(data['time'],init_cut) end_cut = float(input("tiempo final: ")) end_cuty = find_nearest(data['time'],end_cut) New_data=corte(init_cuty,end_cuty,data['pitch'],data['roll'],data['yaw'],data['X'],data['Y'],data['Z'],data['time'],data['ledblue'],data['ledred']) data = [] print(data) data = New_data print(data) dt = reset_tempo(New_data['time'],dt) graph(0,dt)
gpl-3.0
tebeka/arrow
python/pyarrow/tests/pandas_examples.py
5
5149
# -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from collections import OrderedDict from datetime import date, time import numpy as np import pandas as pd import pyarrow as pa def dataframe_with_arrays(include_index=False): """ Dataframe with numpy arrays columns of every possible primtive type. Returns ------- df: pandas.DataFrame schema: pyarrow.Schema Arrow schema definition that is in line with the constructed df. """ dtypes = [('i1', pa.int8()), ('i2', pa.int16()), ('i4', pa.int32()), ('i8', pa.int64()), ('u1', pa.uint8()), ('u2', pa.uint16()), ('u4', pa.uint32()), ('u8', pa.uint64()), ('f4', pa.float32()), ('f8', pa.float64())] arrays = OrderedDict() fields = [] for dtype, arrow_dtype in dtypes: fields.append(pa.field(dtype, pa.list_(arrow_dtype))) arrays[dtype] = [ np.arange(10, dtype=dtype), np.arange(5, dtype=dtype), None, np.arange(1, dtype=dtype) ] fields.append(pa.field('str', pa.list_(pa.string()))) arrays['str'] = [ np.array([u"1", u"ä"], dtype="object"), None, np.array([u"1"], dtype="object"), np.array([u"1", u"2", u"3"], dtype="object") ] fields.append(pa.field('datetime64', pa.list_(pa.timestamp('ms')))) arrays['datetime64'] = [ np.array(['2007-07-13T01:23:34.123456789', None, '2010-08-13T05:46:57.437699912'], dtype='datetime64[ms]'), None, None, np.array(['2007-07-13T02', None, '2010-08-13T05:46:57.437699912'], dtype='datetime64[ms]'), ] if include_index: fields.append(pa.field('__index_level_0__', pa.int64())) df = pd.DataFrame(arrays) schema = pa.schema(fields) return df, schema def dataframe_with_lists(include_index=False, parquet_compatible=False): """ Dataframe with list columns of every possible primtive type. Returns ------- df: pandas.DataFrame schema: pyarrow.Schema Arrow schema definition that is in line with the constructed df. parquet_compatible: bool Exclude types not supported by parquet """ arrays = OrderedDict() fields = [] fields.append(pa.field('int64', pa.list_(pa.int64()))) arrays['int64'] = [ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4], None, [], np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9] * 2, dtype=np.int64)[::2] ] fields.append(pa.field('double', pa.list_(pa.float64()))) arrays['double'] = [ [0., 1., 2., 3., 4., 5., 6., 7., 8., 9.], [0., 1., 2., 3., 4.], None, [], np.array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.] * 2)[::2], ] fields.append(pa.field('bytes_list', pa.list_(pa.binary()))) arrays['bytes_list'] = [ [b"1", b"f"], None, [b"1"], [b"1", b"2", b"3"], [], ] fields.append(pa.field('str_list', pa.list_(pa.string()))) arrays['str_list'] = [ [u"1", u"ä"], None, [u"1"], [u"1", u"2", u"3"], [], ] date_data = [ [], [date(2018, 1, 1), date(2032, 12, 30)], [date(2000, 6, 7)], None, [date(1969, 6, 9), date(1972, 7, 3)] ] time_data = [ [time(23, 11, 11), time(1, 2, 3), time(23, 59, 59)], [], [time(22, 5, 59)], None, [time(0, 0, 0), time(18, 0, 2), time(12, 7, 3)] ] temporal_pairs = [ (pa.date32(), date_data), (pa.date64(), date_data), (pa.time32('s'), time_data), (pa.time32('ms'), time_data), (pa.time64('us'), time_data) ] if not parquet_compatible: temporal_pairs += [ (pa.time64('ns'), time_data), ] for value_type, data in temporal_pairs: field_name = '{}_list'.format(value_type) field_type = pa.list_(value_type) field = pa.field(field_name, field_type) fields.append(field) arrays[field_name] = data if include_index: fields.append(pa.field('__index_level_0__', pa.int64())) df = pd.DataFrame(arrays) schema = pa.schema(fields) return df, schema
apache-2.0
jorgehog/Deux-kMC
scripts/felix_cav/sequential_analyze.py
1
3360
import sys import os import numpy as np from os.path import join from matplotlib.pylab import * sys.path.append(join(os.getcwd(), "..")) from parse_h5_output import ParseKMCHDF5 from intercombinatorzor import ICZ def find_front_pos(heights): return heights.mean() #9 14 17 39 43 56 59 61 62 64 def main(): input_file = sys.argv[1] skiplist = [] if len(sys.argv) > 2: skiplist = [int(x) for x in sys.argv[2:]] parser = ParseKMCHDF5(input_file) def skip(data): return data.attrs["flux"] != 2.40 every = 1000 thermRatio = 0.25 l = None n_entries = 0 for data, L, W, run_id in parser: if skip(data): continue if not l: l = len(data["time"]) n_entries += 1 therm = l*thermRatio nbins = 20 cmat = np.zeros(shape=(n_entries, nbins)) dy = W/float(nbins) combinator = ICZ("Time", "ys") Cmean = 0 cmeancount = 0 entry_count = 0 for data, L, W, run_id in parser: if skip(data): continue conf_height = data.attrs["height"] stored_heights = data["stored_heights"] stored_particles = data["stored_particles"] stored_heights_indices = sorted(stored_heights, key=lambda x: int(x)) time = data["time"][()] ys_vec = np.zeros(len(time)/every) #Shift with 1 to translate from starting time till ending times t_prev = 0 tot_weight = 0 for hi, heights_id in enumerate(stored_heights_indices): if hi % every != 0: continue heights = stored_heights[heights_id][()].transpose() ys = find_front_pos(heights) ys_vec[hi/every] = ys if hi < len(time) - 1: t_new = time[hi+1] if hi >= therm: if heights_id in stored_particles: particles = stored_particles[heights_id][()] else: particles = [] dt = t_new - t_prev for x, y, _ in particles: xl = round(x) yl = round(y) dh = conf_height - heights[xl, yl] - 1 cmat[entry_count, int((y+0.5)/dy)] += dt/dh tot_weight += dt t_prev = t_new if hi % 100 == 0: sys.stdout.flush() print "\r%d/%d" % (hi, len(stored_heights)), cmat[entry_count, :] /= tot_weight sys.stdout.flush() print print "\rfin %d / %d" % (entry_count+1, n_entries) if skiplist: if entry_count + 1 in skiplist: ans = "asd" else: ans = "" else: plot(time[::every], ys_vec) show() ans = raw_input("discard? (n)") if ans == "": combinator.feed(time[::every], ys_vec) Cmean += cmat[entry_count, :] cmeancount += 1 entry_count += 1 print Cmean /= cmeancount ti, ys_veci = combinator.intercombine("Time", "ys") np.save("/tmp/FelixSeqC_t.npy", ti) np.save("/tmp/FelixSeqC_ys.npy", ys_veci) np.save("/tmp/FelixSeqC_C.npy", Cmean) if __name__ == "__main__": main()
gpl-3.0
lucabaldini/ximpol
ximpol/examples/grb_swift_lc.py
1
2862
#!/usr/bin/env python # # Copyright (C) 2015--2016, the ximpol team. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU GengReral Public Licensese as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. import sys import numpy import random from ximpol.utils.logging_ import logger from ximpol.utils.matplotlib_ import pyplot as plt from ximpol.config.grb_swift_download import download_swift_grb_lc_file from ximpol.config.grb_swift_download import get_all_swift_grb_names from ximpol.config.grb_utils import parse_light_curve from ximpol.utils.matplotlib_ import overlay_tag, save_current_figure def plot_swift_lc(grb_list,show=True): """Plots Swift GRB light curves. """ plt.figure(figsize=(10, 8), dpi=80) plt.title('Swift XRT light curves') num_grb = 0 for grb_name in grb_list: flux_outfile = download_swift_grb_lc_file(grb_name, min_obs_time=21600) if flux_outfile is not None: integral_flux_spline = parse_light_curve(flux_outfile) if integral_flux_spline is not None: if grb_name == 'GRB 130427A': integral_flux_spline.plot(num_points=1000,logx=True,\ logy=True,show=False,\ color="red",linewidth=1.0) num_grb += 1 else: c = random.uniform(0.4,0.8) integral_flux_spline.plot(num_points=1000,logx=True,\ logy=True,show=False,\ color='%f'%c,linewidth=1.0) num_grb += 1 else: continue logger.info('%i GRBs included in the plot.'%num_grb) if show: plt.show() def main(interactive=False): """Test the script plotting the light curve og GRB 130427A """ #If you want all the GRBs use the following line: grb_list = get_all_swift_grb_names() #grb_list = ['GRB 130427A','GRB 050124'] plot_swift_lc(grb_list,show=False) overlay_tag() save_current_figure('Swift_XRT_light_curves', clear=False) if interactive: plt.show() if __name__=='__main__': main(interactive=sys.flags.interactive)
gpl-3.0
255BITS/HyperGAN
examples/common.py
1
14294
import matplotlib.pyplot as plt import matplotlib.style import matplotlib as mpl import argparse import tensorflow as tf import hypergan as hg import hyperchamber as hc import numpy as np import random from hypergan.cli import CLI from hypergan.gan_component import GANComponent from hypergan.search.random_search import RandomSearch from hypergan.generators.base_generator import BaseGenerator from hypergan.samplers.base_sampler import BaseSampler class ArgumentParser: def __init__(self, description, require_directory=True): self.require_directory = require_directory self.parser = argparse.ArgumentParser(description=description, add_help=True) self.add_global_arguments() self.add_search_arguments() self.add_train_arguments() def add_global_arguments(self): parser = self.parser parser.add_argument('action', action='store', type=str, help='One of ["train", "search"]') if self.require_directory: parser.add_argument('directory', action='store', type=str, help='The location of your data. Subdirectories are treated as different classes. You must have at least 1 subdirectory.') parser.add_argument('--config', '-c', type=str, default='default', help='config name') parser.add_argument('--device', '-d', type=str, default='/gpu:0', help='In the form "/gpu:0", "/cpu:0", etc. Always use a GPU (or TPU) to train') parser.add_argument('--batch_size', '-b', type=int, default=32, help='Number of samples to include in each batch. If using batch norm, this needs to be preserved when in server mode') parser.add_argument('--steps', type=int, default=1000000, help='Number of steps to train for.') parser.add_argument('--noviewer', dest='viewer', action='store_false', help='Disables the display of samples in a window.') parser.add_argument('--save_samples', dest='save_samples', action='store_true', help='Saves samples to disk.') def add_search_arguments(self): parser = self.parser parser.add_argument('--config_list', '-m', type=str, default=None, help='config list name') parser.add_argument('--search_output', '-o', type=str, default="search.csv", help='output file for search results') def add_train_arguments(self): parser = self.parser parser.add_argument('--sample_every', type=int, default=50, help='Samples the model every n epochs.') parser.add_argument('--save_every', type=int, default=1000, help='Samples the model every n epochs.') def add_image_arguments(self): parser = self.parser parser.add_argument('--crop', type=bool, default=False, help='If your images are perfectly sized you can skip cropping.') parser.add_argument('--format', '-f', type=str, default='png', help='jpg or png') parser.add_argument('--size', '-s', type=str, default='64x64x3', help='Size of your data. For images it is widthxheightxchannels.') parser.add_argument('--zoom', '-z', type=int, default=1, help='Zoom level') parser.add_argument('--sampler', type=str, default=None, help='Select a sampler. Some choices: static_batch, batch, grid, progressive') return parser def parse_args(self): return self.parser.parse_args() class CustomGenerator(BaseGenerator): def create(self): gan = self.gan config = self.config ops = self.ops end_features = config.end_features or 1 ops.describe('custom_generator') net = gan.inputs.x net = ops.linear(net, end_features) net = ops.lookup('tanh')(net) self.sample = net return net class Custom2DGenerator(BaseGenerator): def create(self): gan = self.gan config = self.config ops = self.ops end_features = config.end_features or 1 ops.describe('custom_generator') net = gan.latent.sample for i in range(2): net = ops.linear(net, 16) net = ops.lookup('bipolar')(net) net = ops.linear(net, end_features) print("-- net is ", net) self.sample = net return net class CustomDiscriminator(BaseGenerator): def build(self, net): gan = self.gan config = self.config ops = self.ops end_features = 1 x = gan.inputs.x y = gan.inputs.y g = gan.generator.sample gnet = tf.concat(axis=1, values=[x,g]) ynet = tf.concat(axis=1, values=[x,y]) net = tf.concat(axis=0, values=[ynet, gnet]) net = ops.linear(net, 128) net = tf.nn.tanh(net) self.sample = net return net class Custom2DDiscriminator(BaseGenerator): def __init__(self, gan, config, g=None, x=None, name=None, input=None, reuse=None, features=[], skip_connections=[]): self.x = x self.g = g GANComponent.__init__(self, gan, config, name=name, reuse=reuse) def create(self): gan = self.gan if self.x is None: self.x = gan.inputs.x if self.g is None: self.g = gan.generator.sample net = tf.concat(axis=0, values=[self.x,self.g]) net = self.build(net) self.sample = net return net def build(self, net): gan = self.gan config = self.config ops = self.ops layers=2 end_features = 1 for i in range(layers): net = ops.linear(net, 16) net = ops.lookup('bipolar')(net) net = ops.linear(net, 1) self.sample = net return net def reuse(self, net): self.ops.reuse() net = self.build(net) self.ops.stop_reuse() return net class Custom2DSampler(BaseSampler): def sample(self, filename, save_samples): gan = self.gan generator = gan.generator.sample sess = gan.session config = gan.config x_v, z_v = sess.run([gan.inputs.x, gan.latent.sample]) sample = sess.run(generator, {gan.inputs.x: x_v, gan.latent.sample: z_v}) X, Y = np.meshgrid(np.arange(-1.2, 1.2, .1), np.arange(-1.2, 1.2, .1)) U = np.cos(X) V = np.sin(Y) mpl.style.use('classic') plt.clf() #fig = plt.figure(figsize=(3,3)) fig = plt.figure() plt.scatter(*zip(*x_v), c='b') plt.scatter(*zip(*sample), c='r') q = plt.quiver(X,Y,U,V, color='k', units='width') qk = plt.quiverkey(q, 0.9, 0.9, 2, r'$2 \frac{m}{s}$', labelpos='E', coordinates='figure') #plt.xlim([-2, 2]) #plt.ylim([-2, 2]) #plt.ylabel("z") fig.canvas.draw() data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) #plt.savefig(filename) self.plot(data, filename, save_samples) return [{'image': filename, 'label': '2d'}] class Custom2DInputDistribution: def __init__(self, args): with tf.device(args.device): def circle(x): spherenet = tf.square(x) spherenet = tf.reduce_sum(spherenet, 1) lam = tf.sqrt(spherenet) return x/tf.reshape(lam,[int(lam.get_shape()[0]), 1]) def modes(x): shape = x.get_shape() return tf.round(x*2)/2.0#+tf.random_normal(shape, 0, 0.04) if args.distribution == 'circle': x = tf.random_normal([args.batch_size, 2]) x = circle(x) elif args.distribution == 'modes': x = tf.random_uniform([args.batch_size, 2], -1, 1) x = modes(x) elif args.distribution == 'sin': x = tf.random_uniform((1, args.batch_size), -10.5, 10.5 ) x = tf.transpose(x) r_data = tf.random_normal((args.batch_size,1), mean=0, stddev=0.1) xy = tf.sin(0.75*x)*7.0+x*0.5+r_data*1.0 x = tf.concat([xy,x], 1)/16.0 elif args.distribution == 'arch': offset1 = tf.random_uniform((1, args.batch_size), -10, 10 ) xa = tf.random_uniform((1, 1), 1, 4 ) xb = tf.random_uniform((1, 1), 1, 4 ) x1 = tf.random_uniform((1, args.batch_size), -1, 1 ) xcos = tf.cos(x1*np.pi + offset1)*xa xsin = tf.sin(x1*np.pi + offset1)*xb x = tf.transpose(tf.concat([xcos,xsin], 0))/16.0 elif args.distribution == 'static-point': x = tf.ones([args.batch_size, 2]) self.x = x self.xy = tf.zeros_like(self.x) def batch_diversity(net): bs = int(net.get_shape()[0]) avg = tf.reduce_mean(net, axis=0) s = [int(x) for x in avg.get_shape()] avg = tf.reshape(avg, [1, s[0], s[1], s[2]]) tile = [1 for x in net.get_shape()] tile[0] = bs avg = tf.tile(avg, tile) net -= avg return tf.reduce_sum(tf.abs(net)) def distribution_accuracy(a, b): """ Each point of a is measured against the closest point on b. Distance differences are added together. This works best on a large batch of small inputs.""" tiled_a = a tiled_a = tf.reshape(tiled_a, [int(tiled_a.get_shape()[0]), 1, int(tiled_a.get_shape()[1])]) tiled_a = tf.tile(tiled_a, [1, int(tiled_a.get_shape()[0]), 1]) tiled_b = b tiled_b = tf.reshape(tiled_b, [1, int(tiled_b.get_shape()[0]), int(tiled_b.get_shape()[1])]) tiled_b = tf.tile(tiled_b, [int(tiled_b.get_shape()[0]), 1, 1]) difference = tf.abs(tiled_a-tiled_b) difference = tf.reduce_min(difference, axis=1) difference = tf.reduce_sum(difference, axis=1) return tf.reduce_sum(difference, axis=0) def batch_accuracy(a, b): "Difference from a to b. Meant for reconstruction measurements." difference = tf.abs(a-b) difference = tf.reduce_min(difference, axis=1) difference = tf.reduce_sum(difference, axis=1) return tf.reduce_sum( tf.reduce_sum(difference, axis=0) , axis=0) class TextInput: def __init__(self, config, batch_size, one_hot=False): self.lookup = None reader = tf.TextLineReader() filename_queue = tf.train.string_input_producer(["chargan.txt"]) key, x = reader.read(filename_queue) vocabulary = self.get_vocabulary() table = tf.contrib.lookup.string_to_index_table_from_tensor( mapping = vocabulary, default_value = 0) x = tf.string_join([x, tf.constant(" " * 64)]) x = tf.substr(x, [0], [64]) x = tf.string_split(x,delimiter='') x = tf.sparse_tensor_to_dense(x, default_value=' ') x = tf.reshape(x, [64]) x = table.lookup(x) self.one_hot = one_hot if one_hot: x = tf.one_hot(x, len(vocabulary)) x = tf.cast(x, dtype=tf.float32) x = tf.reshape(x, [1, int(x.get_shape()[0]), int(x.get_shape()[1]), 1]) else: x = tf.cast(x, dtype=tf.float32) x -= len(vocabulary)/2.0 x /= len(vocabulary)/2.0 x = tf.reshape(x, [1,1, 64, 1]) num_preprocess_threads = 8 x = tf.train.shuffle_batch( [x], batch_size=batch_size, num_threads=num_preprocess_threads, capacity= 5000, min_after_dequeue=500, enqueue_many=True) self.x = x self.table = table def inputs(self): return [self.x] def get_vocabulary(self): vocab = list("~()\"'&+#@/789zyxwvutsrqponmlkjihgfedcba ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456:-,;!?.") return vocab def np_one_hot(index, length): return np.eye(length)[index] def get_character(self, data): return self.get_lookup_table()[data] def get_lookup_table(self): if self.lookup is None: vocabulary = self.get_vocabulary() values = np.arange(len(vocabulary)) lookup = {} if self.one_hot: for i, key in enumerate(vocabulary): lookup[key]=self.np_one_hot(values[i], len(values)) else: for i, key in enumerate(vocabulary): lookup[key]=values[i] #reverse the hash lookup = {i[1]:i[0] for i in lookup.items()} self.lookup = lookup return self.lookup def text_plot(self, size, filename, data, x): bs = x.shape[0] data = np.reshape(data, [bs, -1]) x = np.reshape(x, [bs, -1]) plt.clf() plt.figure(figsize=(2,2)) data = np.squeeze(data) plt.plot(x) plt.plot(data) plt.xlim([0, size]) plt.ylim([-2, 2.]) plt.ylabel("Amplitude") plt.xlabel("Time") plt.savefig(filename) def sample_output(self, val): vocabulary = self.get_vocabulary() if self.one_hot: vals = [ np.argmax(r) for r in val ] ox_val = [vocabulary[obj] for obj in list(vals)] string = "".join(ox_val) return string else: val = np.reshape(val, [-1]) val *= len(vocabulary)/2.0 val += len(vocabulary)/2.0 val = np.round(val) val = np.maximum(0, val) val = np.minimum(len(vocabulary)-1, val) ox_val = [self.get_character(obj) for obj in list(val)] string = "".join(ox_val) return string def lookup_sampler(name): return CLI.sampler_for(name, name) def parse_size(size): width = int(size.split("x")[0]) height = int(size.split("x")[1]) channels = int(size.split("x")[2]) return [width, height, channels] def lookup_config(args): if args.action != 'search': return hg.configuration.Configuration.load(args.config+".json") def random_config_from_list(config_list_file): """ Chooses a random configuration from a list of configs (separated by newline) """ lines = tuple(open(config_list_file, 'r')) config_file = random.choice(lines).strip() print("[hypergan] config file chosen from list ", config_list_file, ' file:', config_file) return hg.configuration.Configuration.load(config_file+".json")
mit
r-mart/scikit-learn
benchmarks/bench_sgd_regression.py
283
5569
""" Benchmark for SGD regression Compares SGD regression against coordinate descent and Ridge on synthetic data. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # License: BSD 3 clause import numpy as np import pylab as pl import gc from time import time from sklearn.linear_model import Ridge, SGDRegressor, ElasticNet from sklearn.metrics import mean_squared_error from sklearn.datasets.samples_generator import make_regression if __name__ == "__main__": list_n_samples = np.linspace(100, 10000, 5).astype(np.int) list_n_features = [10, 100, 1000] n_test = 1000 noise = 0.1 alpha = 0.01 sgd_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) elnet_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) ridge_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) asgd_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) for i, n_train in enumerate(list_n_samples): for j, n_features in enumerate(list_n_features): X, y, coef = make_regression( n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True) X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] print("=======================") print("Round %d %d" % (i, j)) print("n_features:", n_features) print("n_samples:", n_train) # Shuffle data idx = np.arange(n_train) np.random.seed(13) np.random.shuffle(idx) X_train = X_train[idx] y_train = y_train[idx] std = X_train.std(axis=0) mean = X_train.mean(axis=0) X_train = (X_train - mean) / std X_test = (X_test - mean) / std std = y_train.std(axis=0) mean = y_train.mean(axis=0) y_train = (y_train - mean) / std y_test = (y_test - mean) / std gc.collect() print("- benchmarking ElasticNet") clf = ElasticNet(alpha=alpha, l1_ratio=0.5, fit_intercept=False) tstart = time() clf.fit(X_train, y_train) elnet_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) elnet_results[i, j, 1] = time() - tstart gc.collect() print("- benchmarking SGD") n_iter = np.ceil(10 ** 4.0 / n_train) clf = SGDRegressor(alpha=alpha / n_train, fit_intercept=False, n_iter=n_iter, learning_rate="invscaling", eta0=.01, power_t=0.25) tstart = time() clf.fit(X_train, y_train) sgd_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) sgd_results[i, j, 1] = time() - tstart gc.collect() print("n_iter", n_iter) print("- benchmarking A-SGD") n_iter = np.ceil(10 ** 4.0 / n_train) clf = SGDRegressor(alpha=alpha / n_train, fit_intercept=False, n_iter=n_iter, learning_rate="invscaling", eta0=.002, power_t=0.05, average=(n_iter * n_train // 2)) tstart = time() clf.fit(X_train, y_train) asgd_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) asgd_results[i, j, 1] = time() - tstart gc.collect() print("- benchmarking RidgeRegression") clf = Ridge(alpha=alpha, fit_intercept=False) tstart = time() clf.fit(X_train, y_train) ridge_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) ridge_results[i, j, 1] = time() - tstart # Plot results i = 0 m = len(list_n_features) pl.figure('scikit-learn SGD regression benchmark results', figsize=(5 * 2, 4 * m)) for j in range(m): pl.subplot(m, 2, i + 1) pl.plot(list_n_samples, np.sqrt(elnet_results[:, j, 0]), label="ElasticNet") pl.plot(list_n_samples, np.sqrt(sgd_results[:, j, 0]), label="SGDRegressor") pl.plot(list_n_samples, np.sqrt(asgd_results[:, j, 0]), label="A-SGDRegressor") pl.plot(list_n_samples, np.sqrt(ridge_results[:, j, 0]), label="Ridge") pl.legend(prop={"size": 10}) pl.xlabel("n_train") pl.ylabel("RMSE") pl.title("Test error - %d features" % list_n_features[j]) i += 1 pl.subplot(m, 2, i + 1) pl.plot(list_n_samples, np.sqrt(elnet_results[:, j, 1]), label="ElasticNet") pl.plot(list_n_samples, np.sqrt(sgd_results[:, j, 1]), label="SGDRegressor") pl.plot(list_n_samples, np.sqrt(asgd_results[:, j, 1]), label="A-SGDRegressor") pl.plot(list_n_samples, np.sqrt(ridge_results[:, j, 1]), label="Ridge") pl.legend(prop={"size": 10}) pl.xlabel("n_train") pl.ylabel("Time [sec]") pl.title("Training time - %d features" % list_n_features[j]) i += 1 pl.subplots_adjust(hspace=.30) pl.show()
bsd-3-clause
zasdfgbnm/tensorflow
tensorflow/contrib/timeseries/examples/predict.py
69
5579
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """An example of training and predicting with a TFTS estimator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import tensorflow as tf try: import matplotlib # pylint: disable=g-import-not-at-top matplotlib.use("TkAgg") # Need Tk for interactive plots. from matplotlib import pyplot # pylint: disable=g-import-not-at-top HAS_MATPLOTLIB = True except ImportError: # Plotting requires matplotlib, but the unit test running this code may # execute in an environment without it (i.e. matplotlib is not a build # dependency). We'd still like to test the TensorFlow-dependent parts of this # example, namely train_and_predict. HAS_MATPLOTLIB = False FLAGS = None def structural_ensemble_train_and_predict(csv_file_name): # Cycle between 5 latent values over a period of 100. This leads to a very # smooth periodic component (and a small model), which is a good fit for our # example data. Modeling high-frequency periodic variations will require a # higher cycle_num_latent_values. structural = tf.contrib.timeseries.StructuralEnsembleRegressor( periodicities=100, num_features=1, cycle_num_latent_values=5) return train_and_predict(structural, csv_file_name, training_steps=150) def ar_train_and_predict(csv_file_name): # An autoregressive model, with periodicity handled as a time-based # regression. Note that this requires windows of size 16 (input_window_size + # output_window_size) for training. ar = tf.contrib.timeseries.ARRegressor( periodicities=100, input_window_size=10, output_window_size=6, num_features=1, # Use the (default) normal likelihood loss to adaptively fit the # variance. SQUARED_LOSS overestimates variance when there are trends in # the series. loss=tf.contrib.timeseries.ARModel.NORMAL_LIKELIHOOD_LOSS) return train_and_predict(ar, csv_file_name, training_steps=600) def train_and_predict(estimator, csv_file_name, training_steps): """A simple example of training and predicting.""" # Read data in the default "time,value" CSV format with no header reader = tf.contrib.timeseries.CSVReader(csv_file_name) # Set up windowing and batching for training train_input_fn = tf.contrib.timeseries.RandomWindowInputFn( reader, batch_size=16, window_size=16) # Fit model parameters to data estimator.train(input_fn=train_input_fn, steps=training_steps) # Evaluate on the full dataset sequentially, collecting in-sample predictions # for a qualitative evaluation. Note that this loads the whole dataset into # memory. For quantitative evaluation, use RandomWindowChunker. evaluation_input_fn = tf.contrib.timeseries.WholeDatasetInputFn(reader) evaluation = estimator.evaluate(input_fn=evaluation_input_fn, steps=1) # Predict starting after the evaluation (predictions,) = tuple(estimator.predict( input_fn=tf.contrib.timeseries.predict_continuation_input_fn( evaluation, steps=200))) times = evaluation["times"][0] observed = evaluation["observed"][0, :, 0] mean = np.squeeze(np.concatenate( [evaluation["mean"][0], predictions["mean"]], axis=0)) variance = np.squeeze(np.concatenate( [evaluation["covariance"][0], predictions["covariance"]], axis=0)) all_times = np.concatenate([times, predictions["times"]], axis=0) upper_limit = mean + np.sqrt(variance) lower_limit = mean - np.sqrt(variance) return times, observed, all_times, mean, upper_limit, lower_limit def make_plot(name, training_times, observed, all_times, mean, upper_limit, lower_limit): """Plot a time series in a new figure.""" pyplot.figure() pyplot.plot(training_times, observed, "b", label="training series") pyplot.plot(all_times, mean, "r", label="forecast") pyplot.plot(all_times, upper_limit, "g", label="forecast upper bound") pyplot.plot(all_times, lower_limit, "g", label="forecast lower bound") pyplot.fill_between(all_times, lower_limit, upper_limit, color="grey", alpha="0.2") pyplot.axvline(training_times[-1], color="k", linestyle="--") pyplot.xlabel("time") pyplot.ylabel("observations") pyplot.legend(loc=0) pyplot.title(name) def main(unused_argv): if not HAS_MATPLOTLIB: raise ImportError( "Please install matplotlib to generate a plot from this example.") make_plot("Structural ensemble", *structural_ensemble_train_and_predict(FLAGS.input_filename)) make_plot("AR", *ar_train_and_predict(FLAGS.input_filename)) pyplot.show() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--input_filename", type=str, required=True, help="Input csv file.") FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
ligovirgo/seismon
RfPrediction/old/cause_lockstate_2.py
2
26468
#!/usr/bin/python from __future__ import division import os, sys, glob, optparse, warnings, time, json import numpy as np import subprocess from subprocess import Popen from lxml import etree from scipy.interpolate import interp1d from gwpy.timeseries import TimeSeries import lal.gpstime #from seismon import (eqmon, utils) import matplotlib matplotlib.use("AGG") matplotlib.rcParams.update({'font.size': 18}) from matplotlib import pyplot as plt from matplotlib import cm def parse_commandline(): """@parse the options given on the command-line. """ parser = optparse.OptionParser(usage=__doc__) parser.add_option("-t", "--time_after_p_wave", help="time to check for lockloss status after p wave arrival.", default = 3600) parser.add_option("-v", "--verbose", action="store_true", default=False, help="Run verbosely. (Default: False)") opts, args = parser.parse_args() # show parameters if opts.verbose: print >> sys.stderr, "" print >> sys.stderr, "running network_eqmon..." print >> sys.stderr, "version: %s"%__version__ print >> sys.stderr, "" print >> sys.stderr, "***************** PARAMETERS ********************" for o in opts.__dict__.items(): print >> sys.stderr, o[0]+":" print >> sys.stderr, o[1] print >> sys.stderr, "" return opts ## LHO rms_toggle = '' os.system('mkdir -p /home/eric.coughlin/H1O1/') os.system('mkdir -p /home/eric.coughlin/public_html/lockloss_threshold_plots/LHO/') for direction in ['Z','X','Y']: if rms_toggle == "": channel = 'H1:ISI-GND_STS_HAM2_{0}_DQ'.format(direction) elif rms_toggle == "RMS_": channel = 'H1:ISI-GND_STS_HAM5_{0}_BLRMS_30M_100M'.format(direction) H1_lock_time_list = [] H1_lockloss_time_list = [] H1_peak_ground_velocity_list = [] hdir = os.environ["HOME"] options = parse_commandline() predicted_peak_ground_velocity_list = [] datafileH1 = open('{0}/gitrepo/seismon/RfPrediction/data/LHO_O1_{1}{2}_4.txt'.format(hdir, rms_toggle, direction), 'r') resultfileH1 = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/LHO_lockstatus_{0}{1}_4.txt'.format(rms_toggle, direction), 'w') H1_channel_lockstatus_data = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/segs_Locked_H_1126569617_1136649617.txt', 'r') # This next section of code is where the data is seperated into two lists to make this data easier to search through and process. for item in (line.strip().split() for line in H1_channel_lockstatus_data): H1_lock_time = item[0] H1_lockloss_time = item[1] H1_lock_time_list.append(float(H1_lock_time)) H1_lockloss_time_list.append(float(H1_lockloss_time)) #resultfileH1.write('{0:^20} {1:^20} {2:^20} {3:^20} \n'.format('eq arrival time','pw arrival time','peak ground velocity','lockloss')) for column in ( line.strip().split() for line in datafileH1): eq_time = column[0] # This is the time that the earthquake was detected eq_mag = column[1] pw_arrival_time = column[2] #this is the arrival time of the pwave sw_arrival_time = column[3] eq_distance = column[12] eq_depth = column[13] rw_arrival_time = column[5] #this is the arrival time of rayleigh wave peak_ground_velocity = column[14] # this is the peak ground velocity during the time of the earthquake. predicted_peak_ground_velocity = column[7] predicted_peak_ground_velocity_list.append(float(predicted_peak_ground_velocity)) # The next function is designed to to take a list and find the first item in that list that matches the conditions. If an item is not in the list that matches the condition it is possible to set a default value which will prevent the program from raising an error otherwise. #H1_lock_time = next((item for item in H1_lock_time_list if min(H1_lock_time_list, key=lambda x:abs(x-float(pw_arrival_time)))),[None]) #H1_lockloss_time = next((item for item in H1_lockloss_time_list if min(H1_lockloss_time_list, key=lambda x:abs(x-float(float(pw_arrival_time)+float(options.time_after_p_wave))))),[None]) H1_lock_time = min(H1_lock_time_list, key=lambda x:abs(x-float(pw_arrival_time))) H1_lockloss_time = min(H1_lockloss_time_list, key=lambda x:abs(x-float(float(pw_arrival_time) + float(options.time_after_p_wave)))) lockloss = "" if (H1_lock_time <= float(pw_arrival_time) and H1_lockloss_time <= float(float(pw_arrival_time) + float(options.time_after_p_wave))): # The if statements are designed to check if the interferometer is in lock or not and if it is. Did it lose lock around the time of the earthquake? lockloss = "Y" resultfileH1.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20} \n'.format(eq_time,pw_arrival_time,peak_ground_velocity,eq_mag,eq_distance,eq_depth,lockloss)) elif (H1_lock_time <= float(pw_arrival_time) and H1_lockloss_time > float(float(pw_arrival_time) + float(options.time_after_p_wave))): lockloss = "N" resultfileH1.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20} \n'.format(eq_time,pw_arrival_time,peak_ground_velocity,eq_mag,eq_distance,eq_depth,lockloss)) elif (H1_lock_time > float(pw_arrival_time)): lockloss = "Z" resultfileH1.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20} \n'.format(eq_time,pw_arrival_time,peak_ground_velocity,eq_mag,eq_distance,eq_depth,lockloss)) datafileH1.close() resultfileH1.close() H1_channel_lockstatus_data.close() eq_time_list = [] locklosslist = [] pw_arrival_list = [] peak_acceleration_list = [] peak_displacement_list = [] eq_mag_list = [] eq_distance_list = [] eq_depth_list = [] resultfileplotH1 = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/LHO_lockstatus_{0}{1}_4.txt'.format(rms_toggle, direction), 'r') for item in (line.strip().split() for line in resultfileplotH1): eq_time = item[0] pw_arrival = item[1] peakgroundvelocity = item[2] eq_mag = item[3] eq_distance = item[4] eq_depth = item[5] lockloss = item[6] H1_peak_ground_velocity_list.append(float(peakgroundvelocity)) locklosslist.append(lockloss) eq_time_list.append(eq_time) pw_arrival_list.append(pw_arrival) eq_mag_list.append(eq_mag) eq_distance_list.append(eq_distance) eq_depth_list.append(eq_depth) H1_binary_file = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/LHO_O1_binary_{1}{0}_4.txt'.format(direction, rms_toggle), 'w') for eq_time, pw_arrival,peak_ground_velocity,eq_mag,eq_distance,eq_depth, lockloss in zip(eq_time_list, pw_arrival_list,H1_peak_ground_velocity_list,eq_mag_list,eq_distance_list,eq_depth_list, locklosslist): if lockloss == "Y": lockloss_binary = '1' H1_binary_file.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20} \n'.format(eq_time,pw_arrival,peak_ground_velocity,eq_mag,eq_distance,eq_depth,lockloss_binary)) elif lockloss == "N": lockloss_binary = '0' H1_binary_file.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20}\n'.format(eq_time,pw_arrival,peak_ground_velocity,eq_mag,eq_distance,eq_depth,lockloss_binary)) else: pass H1_binary_file.close() locklosslistZ = [] locklosslistY = [] locklosslistN = [] eq_time_list_Z = [] eq_time_list_N = [] eq_time_list_Y = [] H1_peak_ground_velocity_list_Z = [] H1_peak_ground_velocity_list_N = [] H1_peak_ground_velocity_list_Y = [] peak_ground_acceleration_list_Z = [] peak_ground_acceleration_list_N = [] peak_ground_acceleration_list_Y = [] H1_peak_ground_velocity_sorted_list, locklosssortedlist, predicted_peak_ground_velocity_sorted_list = (list(t) for t in zip(*sorted(zip(H1_peak_ground_velocity_list, locklosslist, predicted_peak_ground_velocity_list)))) num_lock_list = [] YN_peak_list = [] for sortedpeak, sortedlockloss in zip(H1_peak_ground_velocity_sorted_list, locklosssortedlist): if sortedlockloss == "Y": YN_peak_list.append(sortedpeak) num_lock_list.append(1) elif sortedlockloss == "N": YN_peak_list.append(sortedpeak) num_lock_list.append(0) num_lock_prob_cumsum = np.divide(np.cumsum(num_lock_list), np.cumsum(np.ones(len(num_lock_list)))) f, axarr = plt.subplots(1) for t,time,peak, lockloss in zip(range(len(eq_time_list)),eq_time_list,H1_peak_ground_velocity_list,locklosslist): if lockloss == "Z": eq_time_list_Z.append(t) H1_peak_ground_velocity_list_Z.append(peak) locklosslistZ.append(lockloss) elif lockloss == "N": eq_time_list_N.append(t) H1_peak_ground_velocity_list_N.append(peak) locklosslistN.append(lockloss) elif lockloss == "Y": eq_time_list_Y.append(t) H1_peak_ground_velocity_list_Y.append(peak) locklosslistY.append(lockloss) axarr.plot(eq_time_list_N, H1_peak_ground_velocity_list_N, 'go', label='locked at earthquake(eq)') axarr.plot(eq_time_list_Y, H1_peak_ground_velocity_list_Y, 'ro', label='lockloss at earthquake(eq)') axarr.set_title('H1 magnitude 4 Lockstatus Plot') axarr.set_yscale('log') axarr.set_xlabel('earthquake count(eq)') axarr.set_ylabel('peak ground velocity(m/s)') axarr.legend(loc='best') #f.savefig('/home/eric.coughlin/public_html/lockloss_threshold_plots/LHO/lockstatus_LHO_{0}{1}.png'.format(rms_toggle, direction)) f.savefig('/home/eric.coughlin/gitrepo/seismon/RfPrediction/plots/lockstatus_LHO_{0}{1}_4.pdf'.format(rms_toggle, direction)) #plt.figure(2) #plt.plot(eq_time_list_N, peak_ground_acceleration_list_N, 'go', label='locked at earthquake(eq)') #plt.plot(eq_time_list_Y, peak_ground_acceleration_list_Y, 'ro', label='lockloss at earthquake(eq)') #plt.title('H1 Lockstatus Plot(acceleration)') #plt.yscale('log') #plt.xlabel('earthquake count(eq)') #plt.ylabel('peak ground acceleration(m/s)') #plt.legend(loc='best') #plt.savefig('/home/eric.coughlin/public_html/lockstatus_acceleration_LHO_{0}{1}.png'.format(rms_toggle, direction)) #plt.savefig('/home/eric.coughlin/gitrepo/seismon/RfPrediction/plots/lockstatus_acceleration_LHO_{0}{1}.png'.format(rms_toggle, direction)) plt.clf() #plt.figure(3) #plt.plot(H1_peak_ground_velocity_sorted_list, predicted_peak_ground_velocity_sorted_list, 'o', label='actual vs predicted') #plt.title('H1 actual vs predicted ground velocity') #plt.xscale('log') #plt.yscale('log') #plt.xlabel('peak ground velocity(m/s)') #plt.ylabel('predicted peak ground velocity(m/s)') #plt.legend(loc='best') #plt.savefig('/home/eric.coughlin/public_html/lockloss_threshold_plots/LHO/check_prediction_LHO_{0}{1}.png'.format(rms_toggle, direction)) #plt.savefig('/home/eric.coughlin/gitrepo/seismon/RfPrediction/plots/check_prediction_LHO_{0}{1}.png'.format(rms_toggle, direction)) #plt.clf() threshold_file_H1 = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/threshhold_data_{0}{1}_4.txt'.format(rms_toggle, direction), 'w') num_of_lockloss = len(locklosslistY) total_lockstatus = num_of_lockloss + len(locklosslistN) print(total_lockstatus) total_lockstatus_all = num_of_lockloss + len(locklosslistN) + len(locklosslistZ) total_percent_lockloss = num_of_lockloss / total_lockstatus threshold_file_H1.write('The percentage of total locklosses is {0}% \n'.format(total_percent_lockloss * 100)) threshold_file_H1.write('The total number of earthquakes is {0}. \n'.format(total_lockstatus_all)) eqcount_50 = 0 eqcount_75 = 0 eqcount_90 = 0 eqcount_95 = 0 for item, thing in zip(num_lock_prob_cumsum, YN_peak_list): if item >= .5: eqcount_50 = eqcount_50 + 1 if item >= .75: eqcount_75 = eqcount_75 + 1 if item >= .9: eqcount_90 = eqcount_90 + 1 if item >= .95: eqcount_95 = eqcount_95 + 1 threshold_file_H1.write('The number of earthquakes above 50 percent is {0}. \n'.format(eqcount_50)) threshold_file_H1.write('The number of earthquakes above 75 percent is {0}. \n'.format(eqcount_75)) threshold_file_H1.write('The number of earthquakes above 90 percent is {0}. \n'.format(eqcount_90)) threshold_file_H1.write('The number of earthquakes above 95 percent is {0}. \n'.format(eqcount_95)) probs = [0.5, 0.75, 0.9, 0.95] num_lock_prob_cumsum_sort = np.unique(num_lock_prob_cumsum) YN_peak_list_sort = np.unique(YN_peak_list) num_lock_prob_cumsum_sort, YN_peak_list_sort = zip(*sorted(zip(num_lock_prob_cumsum_sort, YN_peak_list_sort))) thresholdsf = interp1d(num_lock_prob_cumsum_sort,YN_peak_list_sort, bounds_error=False) for item in probs: threshold = thresholdsf(item) threshold_file_H1.write('The threshhold at {0}% is {1}(m/s) \n'.format(item * 100, threshold)) threshold_file_H1.write('The number of times of locklosses is {0}. \n'.format(len(locklosslistY))) threshold_file_H1.write('The number of times of no locklosses is {0}. \n'.format(len(locklosslistN))) threshold_file_H1.write('The number of times of not locked is {0}. \n'.format(len(locklosslistZ))) threshold_file_H1.close() plt.figure(4) plt.plot(YN_peak_list_sort, num_lock_prob_cumsum_sort, 'kx', label='probability of lockloss') plt.title('H1 Lockloss Probability') plt.xscale('log') plt.grid(True) plt.xlabel('peak ground velocity (m/s)') plt.ylabel('Lockloss Probablity') plt.legend(loc='best') #plt.savefig('/home/eric.coughlin/public_html/lockloss_threshold_plots/LHO/lockloss_probablity_LHO_{0}{1}.png'.format(rms_toggle, direction)) plt.savefig('/home/eric.coughlin/gitrepo/seismon/RfPrediction/plots/lockloss_probablity_LHO_{0}{1}_4.pdf'.format(rms_toggle, direction)) plt.clf() ## LLO os.system('mkdir -p /home/eric.coughlin/L1O1/') os.system('mkdir -p /home/eric.coughlin/public_html/lockloss_threshold_plots/LLO/') for direction in ['Z','X','Y']: if rms_toggle == "": channel = 'L1:ISI-GND_STS_HAM2_{0}_DQ'.format(direction) elif rms_toggle == "RMS_": channel = 'L1:ISI-GND_STS_HAM5_{0}_BLRMS_30M_100M'.format(direction) L1_lock_time_list = [] L1_lockloss_time_list = [] options = parse_commandline() predicted_peak_ground_velocity_list = [] H1_peak_ground_velocity_list =[] datafileL1 = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/LLO_O1_{0}{1}_4.txt'.format(rms_toggle, direction), 'r') resultfileL1 = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/LLO_lockstatus_{0}{1}_4.txt'.format(rms_toggle, direction), 'w') L1_channel_lockstatus_data = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/segs_Locked_L_1126569617_1136649617.txt', 'r') for item in (line.strip().split() for line in L1_channel_lockstatus_data): L1_lock_time = item[0] L1_lockloss_time = item[1] L1_lock_time_list.append(float(L1_lock_time)) L1_lockloss_time_list.append(float(L1_lockloss_time)) #resultfileL1.write('{0:^20} {1:^20} {2:^20} {3:^20} \n'.format('eq arrival time','pw arrival time','peak ground velocity','lockloss')) for column in ( line.strip().split() for line in datafileL1): eq_time = column[0] eq_mag = column[1] pw_arrival_time = column[2] sw_arrival_time = column[3] eq_distance = column[12] eq_depth = column[13] rw_arrival_time = column[5] peak_ground_velocity = column[14] predicted_peak_ground_velocity = column[7] predicted_peak_ground_velocity_list.append(float(predicted_peak_ground_velocity)) #L1_lock_time = next((item for item in L1_lock_time_list if item <= float(pw_arrival_time)),[None]) #L1_lockloss_time = next((item for item in L1_lockloss_time_list if item <= float(float(pw_arrival_time) + float(options.time_after_p_wave))),[None]) L1_lock_time = min(L1_lock_time_list, key=lambda x:abs(x-float(pw_arrival_time))) L1_lockloss_time = min(L1_lockloss_time_list, key=lambda x:abs(x-float(float(pw_arrival_time) + float(options.time_after_p_wave)))) lockloss = "" if (L1_lock_time <= float(pw_arrival_time) and L1_lockloss_time <= float(float(pw_arrival_time) + float(options.time_after_p_wave))): lockloss = "Y" resultfileL1.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20} \n'.format(eq_time,pw_arrival_time,peak_ground_velocity,eq_mag,eq_distance,eq_depth,lockloss)) elif (L1_lock_time <= float(pw_arrival_time) and L1_lockloss_time > float(float(pw_arrival_time) + float(options.time_after_p_wave))): lockloss = "N" resultfileL1.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20} \n'.format(eq_time,pw_arrival_time,peak_ground_velocity,eq_mag,eq_distance,eq_depth,lockloss)) elif (L1_lock_time > float(pw_arrival_time)): lockloss = "Z" resultfileL1.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20} \n'.format(eq_time,pw_arrival_time,peak_ground_velocity,eq_mag,eq_distance,eq_depth,lockloss)) datafileL1.close() resultfileL1.close() L1_channel_lockstatus_data.close() eq_time_list = [] locklosslist = [] pw_arrival_list = [] peak_acceleration_list =[] peak_displacement_list = [] eq_mag_list = [] eq_distance_list = [] eq_depth_list = [] resultfileplotL1 = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/LLO_lockstatus_{0}{1}_4.txt'.format(rms_toggle, direction), 'r') for item in (line.strip().split() for line in resultfileplotL1): eq_time = item[0] pw_arrival = item[1] peakgroundvelocity = item[2] eq_mag = item[3] eq_distance = item[4] eq_depth = item[5] lockloss = item[6] H1_peak_ground_velocity_list.append(float(peakgroundvelocity)) locklosslist.append(lockloss) eq_time_list.append(eq_time) pw_arrival_list.append(pw_arrival) eq_mag_list.append(eq_mag) eq_distance_list.append(eq_distance) eq_depth_list.append(eq_depth) L1_binary_file = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/LLO_O1_binary_{0}{1}_4.txt'.format(rms_toggle, direction), 'w') for eq_time, pw_arrival,peak_ground_velocity,eq_mag,eq_distance,eq_depth, lockloss in zip(eq_time_list, pw_arrival_list,H1_peak_ground_velocity_list,eq_mag_list,eq_distance_list,eq_depth_list, locklosslist): if lockloss == "Y": lockloss_binary = '1' L1_binary_file.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20} \n'.format(eq_time,pw_arrival,peak_ground_velocity,eq_mag,eq_distance,eq_depth,lockloss_binary)) elif lockloss == "N": lockloss_binary = '0' L1_binary_file.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20} \n'.format(eq_time,pw_arrival,peak_ground_velocity,eq_mag,eq_distance,eq_depth,lockloss_binary)) else: pass L1_binary_file.close() locklosslistZ = [] locklosslistY = [] locklosslistN = [] eq_time_list_Z = [] eq_time_list_N = [] eq_time_list_Y = [] H1_peak_ground_velocity_list_Z = [] H1_peak_ground_velocity_list_N = [] H1_peak_ground_velocity_list_Y = [] peak_ground_acceleration_list_Z = [] peak_ground_acceleration_list_N = [] peak_ground_acceleration_list_Y = [] H1_peak_ground_velocity_sorted_list, locklosssortedlist, predicted_peak_ground_velocity_sorted_list = (list(t) for t in zip(*sorted(zip(H1_peak_ground_velocity_list, locklosslist, predicted_peak_ground_velocity_list)))) num_lock_list = [] YN_peak_list = [] for sortedpeak, sortedlockloss in zip(H1_peak_ground_velocity_sorted_list, locklosssortedlist): if sortedlockloss == "Y": YN_peak_list.append(sortedpeak) num_lock_list.append(1) elif sortedlockloss == "N": YN_peak_list.append(sortedpeak) num_lock_list.append(0) num_lock_prob_cumsum = np.cumsum(num_lock_list) / np.cumsum(np.ones(len(num_lock_list))) plt.figure(8) for t,time,peak,lockloss in zip(range(len(eq_time_list)),eq_time_list,H1_peak_ground_velocity_list,locklosslist): if lockloss == "Z": eq_time_list_Z.append(t) H1_peak_ground_velocity_list_Z.append(peak) locklosslistZ.append(lockloss) elif lockloss == "N": eq_time_list_N.append(t) H1_peak_ground_velocity_list_N.append(peak) locklosslistN.append(lockloss) elif lockloss == "Y": eq_time_list_Y.append(t) H1_peak_ground_velocity_list_Y.append(peak) locklosslistY.append(lockloss) plt.plot(eq_time_list_N, H1_peak_ground_velocity_list_N, 'go', label='locked at earthquake(eq)') plt.plot(eq_time_list_Y, H1_peak_ground_velocity_list_Y, 'ro', label='lockloss at earthquake(eq)') plt.title('L1 Lockstatus Plot') plt.yscale('log') plt.xlabel('earthquake count(eq)') plt.ylabel('peak ground velocity(m/s)') plt.legend(loc='best') #plt.savefig('/home/eric.coughlin/public_html/lockloss_threshold_plots/LLO/lockstatus_LLO_{0}{1}.png'.format(rms_toggle, direction)) plt.savefig('/home/eric.coughlin/gitrepo/seismon/RfPrediction/plots/lockstatus_LLO_{0}{1}_4.pdf'.format(rms_toggle, direction)) plt.clf() #plt.figure(23) #plt.plot(eq_time_list_N, peak_ground_acceleration_list_N, 'go', label='locked at earthquake(eq)') #plt.plot(eq_time_list_Y, peak_ground_acceleration_list_Y, 'ro', label='lockloss at earthquake(eq)') #plt.title('H1 Lockstatus Plot(acceleration)') #plt.yscale('log') #plt.xlabel('earthquake count(eq)') #plt.ylabel('peak ground acceleration(m/s)') #plt.legend(loc='best') #plt.savefig('/home/eric.coughlin/public_html/lockstatus_acceleration_LHO_{0}{1}.png'.format(rms_toggle, direction)) #plt.savefig('/home/eric.coughlin/gitrepo/seismon/RfPrediction/plots/lockstatus_acceleration_LHO_{0}{1}.png'.format(rms_toggle, direction)) #plt.clf() #plt.figure(9) #plt.plot(H1_peak_ground_velocity_list, predicted_peak_ground_velocity_list, 'o', label='actual vs predicted') #plt.title('L1 actual vs predicted ground velocity') #plt.xscale('log') #plt.yscale('log') #plt.xlabel('peak ground velocity(m/s)') #plt.ylabel('predicted peak ground velocity(m/s)') #plt.legend(loc='best') #plt.savefig('/home/eric.coughlin/public_html/lockloss_threshold_plots/LLO/check_predictionLLO_{0}{1}.png'.format(rms_toggle, direction)) #plt.savefig('/home/eric.coughlin/gitrepo/seismon/RfPrediction/plots/check_predictionLLO_{0}{1}.png'.format(rms_toggle, direction)) #plt.clf() threshold_file_L1 = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/threshhold_data_{0}{1}_4.txt'.format(rms_toggle, direction), 'w') num_of_lockloss = len(locklosslistY) total_lockstatus = num_of_lockloss + len(locklosslistN) total_lockstatus_all = num_of_lockloss + len(locklosslistN) + len(locklosslistZ) total_percent_lockloss = num_of_lockloss / total_lockstatus threshold_file_L1.write('The percentage of total locklosses is {0}% \n'.format(total_percent_lockloss * 100)) threshold_file_L1.write('The total number of earthquakes is {0}. \n'.format(total_lockstatus_all)) eqcount_50 = 0 eqcount_75 = 0 eqcount_90 = 0 eqcount_95 = 0 for item, thing in zip(num_lock_prob_cumsum, YN_peak_list): if item >= .5: eqcount_50 = eqcount_50 + 1 if item >= .75: eqcount_75 = eqcount_75 + 1 if item >= .9: eqcount_90 = eqcount_90 + 1 if item >= .95: eqcount_95 = eqcount_95 + 1 threshold_file_L1.write('The number of earthquakes above 50 percent is {0}. \n'.format(eqcount_50)) threshold_file_L1.write('The number of earthquakes above 75 percent is {0}. \n'.format(eqcount_75)) threshold_file_L1.write('The number of earthquakes above 90 percent is {0}. \n'.format(eqcount_90)) threshold_file_L1.write('The number of earthquakes above 95 percent is {0}. \n'.format(eqcount_95)) probs = [0.5, 0.75, 0.9, 0.95] num_lock_prob_cumsum_sort = np.unique(num_lock_prob_cumsum) YN_peak_list_sort = np.unique(YN_peak_list) num_lock_prob_cumsum_sort, YN_peak_list_sort = zip(*sorted(zip(num_lock_prob_cumsum_sort, YN_peak_list_sort))) thresholds = [] thresholdsf = interp1d(num_lock_prob_cumsum_sort,YN_peak_list_sort,bounds_error=False) for item in probs: threshold = thresholdsf(item) threshold_file_L1.write('The threshhold at {0}% is {1}(m/s) \n'.format(item * 100, threshold)) threshold_file_L1.write('The number of times of locklosses is {0}. \n'.format(len(locklosslistY))) threshold_file_L1.write('The number of times of no locklosses is {0}. \n'.format(len(locklosslistN))) threshold_file_L1.write('The number of times of not locked is {0}. \n'.format(len(locklosslistZ))) threshold_file_L1.close() plt.figure(10) plt.plot(YN_peak_list_sort, num_lock_prob_cumsum_sort, 'kx', label='probability of lockloss') plt.title('L1 Lockloss Probability') plt.xscale('log') plt.grid(True) plt.xlabel('peak ground velocity (m/s)') plt.ylabel('Lockloss Probablity') plt.legend(loc='best') #plt.savefig('/home/eric.coughlin/public_html/lockloss_threshold_plots/LLO/lockloss_probablity_LLO_{0}{1}.png'.format(rms_toggle, direction)) plt.savefig('/home/eric.coughlin/gitrepo/seismon/RfPrediction/plots/lockloss_probablity_LLO_{0}{1}_4.pdf'.format(rms_toggle, direction)) plt.clf()
gpl-3.0
thomasyu888/Genie
tests/test_seg.py
1
3012
import mock import pytest import pandas as pd import synapseclient from genie.seg import seg from genie.cbs import cbs syn = mock.create_autospec(synapseclient.Synapse) segClass = seg(syn, "SAGE") cbsClass = cbs(syn, "SAGE") def test_processing(): expectedSegDf = pd.DataFrame({ "ID": ['GENIE-SAGE-ID1-1', 'GENIE-SAGE-ID2-1', 'GENIE-SAGE-ID3-1', 'GENIE-SAGE-ID4-1', 'GENIE-SAGE-ID5-1'], "CHROM": ['1', '2', '3', '4', '5'], "LOCSTART": [1, 2, 3, 4, 3], "LOCEND": [1, 2, 3, 4, 2], "NUMMARK": [1, 2, 3, 4, 3], "SEGMEAN": [1, 2, 3.9, 4, 3], "CENTER": ["SAGE", "SAGE", "SAGE", "SAGE", "SAGE"]}) segDf = pd.DataFrame({ "ID": ['ID1-1', 'ID2-1', 'ID3-1', 'ID4-1', 'ID5-1'], "CHROM": ['chr1', 2, 3, 4, 5], "LOC.START": [1, 2, 3, 4, 3], "LOC.END": [1, 2, 3, 4, 2], "NUM.MARK": [1, 2, 3, 4, 3], "SEG.MEAN": [1, 2, 3.9, 4, 3]}) newSegDf = segClass._process(segDf) assert expectedSegDf.equals(newSegDf[expectedSegDf.columns]) newSegDf = cbsClass._process(segDf) assert expectedSegDf.equals(newSegDf[expectedSegDf.columns]) def test_validation(): with pytest.raises(AssertionError): segClass.validateFilename(["foo"]) assert segClass.validateFilename(["genie_data_cna_hg19_SAGE.seg"]) == "seg" assert cbsClass.validateFilename(["genie_data_cna_hg19_SAGE.cbs"]) == "cbs" segDf = pd.DataFrame({ "ID": ['ID1', 'ID2', 'ID3', 'ID4', 'ID5'], "CHROM": [1, 2, 3, 4, 5], "LOC.START": [1, 2, 3, 4, 3], "LOC.END": [1, 2, 3, 4, 3], "NUM.MARK": [1, 2, 3, 4, 3], "SEG.MEAN": [1, 2, 3, 4, 3]}) error, warning = segClass._validate(segDf) assert error == "" assert warning == "" segDf = pd.DataFrame({ "ID": ['ID1', 'ID2', 'ID3', 'ID4', 'ID5'], "CHROM": [1, 2, float('nan'), 4, 5], "LOC.START": [1, 2, 3, 4, float('nan')], "LOC.END": [1, 2, 3, float('nan'), 3], "NUM.MARK": [1, 2, 3, 4, 3]}) expectedErrors = ( "Your seg file is missing these headers: SEG.MEAN.\n" "Seg: No null or empty values allowed in column(s): " "CHROM, LOC.END, LOC.START.\n") error, warning = segClass._validate(segDf) assert error == expectedErrors assert warning == "" error, warning = cbsClass._validate(segDf) assert error == expectedErrors assert warning == "" segDf = pd.DataFrame({ "ID": ['ID1', 'ID2', 'ID3', 'ID4', 'ID5'], "CHROM": [1, 2, 3, 4, 5], "LOC.START": [1, 2, 3, 4.3, 3], "LOC.END": [1, 2, 3.4, 4, 3], "NUM.MARK": [1, 2, 3, 33.3, 3], "SEG.MEAN": [1, 2, 'f.d', 4, 3]}) error, warning = segClass._validate(segDf) expectedErrors = ( "Seg: Only integars allowed in these column(s): " "LOC.END, LOC.START, NUM.MARK.\n" "Seg: Only numerical values allowed in SEG.MEAN.\n") assert error == expectedErrors assert warning == ""
mit
boomsbloom/dtm-fmri
DTM/for_gensim/lib/python2.7/site-packages/sklearn/linear_model/tests/test_huber.py
54
7619
# Authors: Manoj Kumar [email protected] # License: BSD 3 clause import numpy as np from scipy import optimize, sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_false from sklearn.datasets import make_regression from sklearn.linear_model import ( HuberRegressor, LinearRegression, SGDRegressor, Ridge) from sklearn.linear_model.huber import _huber_loss_and_gradient def make_regression_with_outliers(n_samples=50, n_features=20): rng = np.random.RandomState(0) # Generate data with outliers by replacing 10% of the samples with noise. X, y = make_regression( n_samples=n_samples, n_features=n_features, random_state=0, noise=0.05) # Replace 10% of the sample with noise. num_noise = int(0.1 * n_samples) random_samples = rng.randint(0, n_samples, num_noise) X[random_samples, :] = 2.0 * rng.normal(0, 1, (num_noise, X.shape[1])) return X, y def test_huber_equals_lr_for_high_epsilon(): # Test that Ridge matches LinearRegression for large epsilon X, y = make_regression_with_outliers() lr = LinearRegression(fit_intercept=True) lr.fit(X, y) huber = HuberRegressor(fit_intercept=True, epsilon=1e3, alpha=0.0) huber.fit(X, y) assert_almost_equal(huber.coef_, lr.coef_, 3) assert_almost_equal(huber.intercept_, lr.intercept_, 2) def test_huber_gradient(): # Test that the gradient calculated by _huber_loss_and_gradient is correct rng = np.random.RandomState(1) X, y = make_regression_with_outliers() sample_weight = rng.randint(1, 3, (y.shape[0])) loss_func = lambda x, *args: _huber_loss_and_gradient(x, *args)[0] grad_func = lambda x, *args: _huber_loss_and_gradient(x, *args)[1] # Check using optimize.check_grad that the gradients are equal. for _ in range(5): # Check for both fit_intercept and otherwise. for n_features in [X.shape[1] + 1, X.shape[1] + 2]: w = rng.randn(n_features) w[-1] = np.abs(w[-1]) grad_same = optimize.check_grad( loss_func, grad_func, w, X, y, 0.01, 0.1, sample_weight) assert_almost_equal(grad_same, 1e-6, 4) def test_huber_sample_weights(): # Test sample_weights implementation in HuberRegressor""" X, y = make_regression_with_outliers() huber = HuberRegressor(fit_intercept=True) huber.fit(X, y) huber_coef = huber.coef_ huber_intercept = huber.intercept_ # Rescale coefs before comparing with assert_array_almost_equal to make sure # that the number of decimal places used is somewhat insensitive to the # amplitude of the coefficients and therefore to the scale of the data # and the regularization parameter scale = max(np.mean(np.abs(huber.coef_)), np.mean(np.abs(huber.intercept_))) huber.fit(X, y, sample_weight=np.ones(y.shape[0])) assert_array_almost_equal(huber.coef_ / scale, huber_coef / scale) assert_array_almost_equal(huber.intercept_ / scale, huber_intercept / scale) X, y = make_regression_with_outliers(n_samples=5, n_features=20) X_new = np.vstack((X, np.vstack((X[1], X[1], X[3])))) y_new = np.concatenate((y, [y[1]], [y[1]], [y[3]])) huber.fit(X_new, y_new) huber_coef = huber.coef_ huber_intercept = huber.intercept_ sample_weight = np.ones(X.shape[0]) sample_weight[1] = 3 sample_weight[3] = 2 huber.fit(X, y, sample_weight=sample_weight) assert_array_almost_equal(huber.coef_ / scale, huber_coef / scale) assert_array_almost_equal(huber.intercept_ / scale, huber_intercept / scale) # Test sparse implementation with sample weights. X_csr = sparse.csr_matrix(X) huber_sparse = HuberRegressor(fit_intercept=True) huber_sparse.fit(X_csr, y, sample_weight=sample_weight) assert_array_almost_equal(huber_sparse.coef_ / scale, huber_coef / scale) def test_huber_sparse(): X, y = make_regression_with_outliers() huber = HuberRegressor(fit_intercept=True, alpha=0.1) huber.fit(X, y) X_csr = sparse.csr_matrix(X) huber_sparse = HuberRegressor(fit_intercept=True, alpha=0.1) huber_sparse.fit(X_csr, y) assert_array_almost_equal(huber_sparse.coef_, huber.coef_) assert_array_equal(huber.outliers_, huber_sparse.outliers_) def test_huber_scaling_invariant(): """Test that outliers filtering is scaling independent.""" rng = np.random.RandomState(0) X, y = make_regression_with_outliers() huber = HuberRegressor(fit_intercept=False, alpha=0.0, max_iter=100) huber.fit(X, y) n_outliers_mask_1 = huber.outliers_ assert_false(np.all(n_outliers_mask_1)) huber.fit(X, 2. * y) n_outliers_mask_2 = huber.outliers_ assert_array_equal(n_outliers_mask_2, n_outliers_mask_1) huber.fit(2. * X, 2. * y) n_outliers_mask_3 = huber.outliers_ assert_array_equal(n_outliers_mask_3, n_outliers_mask_1) def test_huber_and_sgd_same_results(): """Test they should converge to same coefficients for same parameters""" X, y = make_regression_with_outliers(n_samples=10, n_features=2) # Fit once to find out the scale parameter. Scale down X and y by scale # so that the scale parameter is optimized to 1.0 huber = HuberRegressor(fit_intercept=False, alpha=0.0, max_iter=100, epsilon=1.35) huber.fit(X, y) X_scale = X / huber.scale_ y_scale = y / huber.scale_ huber.fit(X_scale, y_scale) assert_almost_equal(huber.scale_, 1.0, 3) sgdreg = SGDRegressor( alpha=0.0, loss="huber", shuffle=True, random_state=0, n_iter=10000, fit_intercept=False, epsilon=1.35) sgdreg.fit(X_scale, y_scale) assert_array_almost_equal(huber.coef_, sgdreg.coef_, 1) def test_huber_warm_start(): X, y = make_regression_with_outliers() huber_warm = HuberRegressor( fit_intercept=True, alpha=1.0, max_iter=10000, warm_start=True, tol=1e-1) huber_warm.fit(X, y) huber_warm_coef = huber_warm.coef_.copy() huber_warm.fit(X, y) # SciPy performs the tol check after doing the coef updates, so # these would be almost same but not equal. assert_array_almost_equal(huber_warm.coef_, huber_warm_coef, 1) # No n_iter_ in old SciPy (<=0.9) if huber_warm.n_iter_ is not None: assert_equal(0, huber_warm.n_iter_) def test_huber_better_r2_score(): # Test that huber returns a better r2 score than non-outliers""" X, y = make_regression_with_outliers() huber = HuberRegressor(fit_intercept=True, alpha=0.01, max_iter=100) huber.fit(X, y) linear_loss = np.dot(X, huber.coef_) + huber.intercept_ - y mask = np.abs(linear_loss) < huber.epsilon * huber.scale_ huber_score = huber.score(X[mask], y[mask]) huber_outlier_score = huber.score(X[~mask], y[~mask]) # The Ridge regressor should be influenced by the outliers and hence # give a worse score on the non-outliers as compared to the huber regressor. ridge = Ridge(fit_intercept=True, alpha=0.01) ridge.fit(X, y) ridge_score = ridge.score(X[mask], y[mask]) ridge_outlier_score = ridge.score(X[~mask], y[~mask]) assert_greater(huber_score, ridge_score) # The huber model should also fit poorly on the outliers. assert_greater(ridge_outlier_score, huber_outlier_score)
mit
MicheleMaris/grasp_lib
grasp_lib.py
1
64897
__DESCRIPTION__=""" grasp_lib.py V 0.6 - 3 Feb 2012 - 23 Mar 2012 (0.4) - 2012 Nov 27 (0.5) - 2013 Dec 12 - M.Maris, M.Sandri, F.Villa From a set of routines created by M.Sandri e F.Villa This library allows to import a grasp file in GRASP format and to convert it in an healpix map, it also performs interpolation of the grasp map In GRASP convention theta and phi are colatitude and longitude, with phi meridian circle longitude, [0,180]deg theta on meridian circle polar distance, [-180,180] deg a point with theta < 0 denotes a point located at the same polar distance of abs(theta) but with longitude pi+180deg The usual polar convention is phi meridian halfcircle longitude, [-180,180]deg theta on meridian circle polar distance, [0,180] deg """ def thetaUVphiUV2UV(thetaUV,phiUV,deg=True) : """converts thetaUV and phiUV into U=x0=sin(thetaUV)*cos(phiUV), V=y0=sin(thetaUV)*sin(phiUV)""" from numpy import pi, sin, cos if deg : return sin(180./pi*thetaUV)*cos(180./pi*phiUV),sin(180./pi*thetaUV)*sin(180./pi*phiUV) return sin(thetaUV)*cos(phiUV),sin(thetaUV)*sin(phiUV) def UV2thetaUVphiUV(U,V,deg=True) : from numpy import pi, arctan2, arccos,arcsin,sin,cos,array,mod f=(180./pi) if deg else 1. phiUV=arctan2(V,U) A=cos(phiUV) B=sin(phiUV) thetaUV=arcsin((A*U+B*V)/(A*A+B*B)) if deg : return f*thetaUV,mod(f*phiUV,360.) return f*thetaUV,mod(phiUV,2.*pi) def phitheta2longcolat(phi_grasp,theta_grasp) : """ converts GRASP (phi,theta) coordinates into standard (long,colat) upon request returns a structure """ import numpy as np _long = phi_grasp*1. colat=theta_grasp*1. idx = np.where(colat < 0)[0] if len(idx) > 0 : _long[idx]=_long[idx]+180. colat[idx]=np.abs(colat[idx]) return _long,colat def longcolat2phitheta(_long,colat) : """converts ususal polar (long,colat) coordinates into GRASP (phi,theta) returns a structure""" import numpy as np phi=_long*1. theta=colat*1. idx = np.where(phi >= 180.)[0] if len(idx) > 0 : phi[idx]=phi[idx]-180. theta[idx]=-theta[idx] return phi,theta def longcolat2rowcol(_long,colat,phi0,dphi,theta0,dtheta) : """ converts (long,colat) into index of phi and of theta in the matrix """ import numpy as np phi,theta=longcolat2phitheta(_long,colat) return (pt.phi-phi0)/dphi,(pt.theta-theta0)/dtheta def ipix2rowcol(nside,ipix,phi0,dphi,theta0,dtheta,nest=False) : """ converts an healpix ipix (ring) into index of phi and of theta in the matrix""" from healpy import pix2ang_ring colat,_long=pix2ang(nside,ipix,nest=nest) return longcolat2rowcol(_long/np.pi*180.,colat/np.pi*180.,phi0,dphi,theta0,dtheta) def nside2ipix(nside,Reversed=False) : """ converts nside into a list of pixels (ring) reversed = True means the orderring is reversed """ import numpy as np if not Reversed : return np.arange(12*int(nside)*int(nside)) return np.arange(12*int(nside)*int(nside)-1,-1,-1) from grid2d import * #class GraspMapsCube : #"a list of grasp maps is used to integrate over a grasp map in band" #def _class_line_cube : #def __init__(self,listNames) : #self.Name=[] #for k in range(len(listNames)) : #try : #self.plane(open(listNames[k],'r').readlines()) #self.Name.append(listNames) #except : #print k," impossible to read, skipped" #self.N=len(self.Name) #def __len__(self) : #return self.N #def __getitem__(self,i) : #import numpy as np #l=[] #for k in range(len(self)) : #l.append(self.plane[k][i])) #return l #def __init__(self,listNames) : #import numpy as np #self._line=-1 #self._cube=_class_line_cube(listNames) #def __len__(self) : #return len(self._cube) #def _fetch_line(self) : #self._line=+1 #return self._cube[self._line] def components2cocross(r1,i1,r2,i2) : "given r1,i1,r2,i2 return Eco,Ecross" re=[r1,r2] im=[i1,i2] p=[] p.append(r1**2+i1**2) p.append(r2**2+i2**2) if p[0].max() > p[1].max() : ico=0 icross=1 else : ico=1 icross=0 Eco=re[ico]*complex(0,1.)*re[ico] Ecross=re[icross]*complex(0,1.)*re[icross] return Eco,Ecross def cocross2rhclhc(Eco,Ecross) : "given Eco,Ecross return Erhc,Elhc" isqrt2=2.**(-0.5) Erhc=(Eco-complex(0,1.)*Ecross)*isqrt2 Elhc=(Eco+complex(0,1.)*Ecross)*isqrt2 return Erhc,Elhc def components2rhclhc(r1,i1,r2,i2) : "given r1,i1,r2,i2 return Erhc,Elhc" Eco,Ecross=components2cocross(r1,i1,r2,i2) return cocross2rhclhc(Eco,Ecross) def polarization_ellipse_from_fields(Erhc,Elhc) : "given Erhc,Elhc returns rmajor, rminor, directivity, psi_pol_rad" import numpy as np isqrt2=2.**(-0.5) rmajor=abs(abs(Erhc)+abs(Elhc))*isqrt2 rminor=abs(abs(Erhc)-abs(Elhc))*isqrt2 directivity=abs(Erhc)**2+abs(Elhc)**2 aa=(Erhc/Elhc)**0.5 psi_pol=np.arctan2(aa.imag,aa.real) return rmajor,rminor,directivity,psi_pol def components2polarization_ellipse(r1,i1,r2,i2) : "given r1,i1,r2,i2 return rmajor, rminor, directivity, psi_pol_rad" Erhc,Elhc=components2rhclhc(r1,i1,r2,i2) return polarization_ellipse_from_fields(Erhc,Elhc) class GraspMap(MapGrid) : def __init__(self,inputfile,skiplines,CounterPhi=[1e6,1.],silent=False,useCounterPhi=False,closeColumn=False,Pickle=False,periodicColumn=False,badConversionValue=0.) : """badConversionValue = Value to replace samples with problems in converting strings to numbers""" MapGrid.__init__(self) self._init_failed = True if Pickle : self.load(inputfile) self._init_failed = False return self.info['graps_file']=inputfile.strip() self.info['projection']='GRASP-CUT' self.info['ReferenceDocument']="LFI BEAMS DELIVERY: FORMAT SPECIFICATIONS\nM. Sandri\nPL-LFI-PST-TN-044, 1.0,July 2003" self.info['numbad']=-1 if inputfile.strip() == '' : return self.get_cuts(inputfile,skiplines,badConversionValue=badConversionValue)#,CounterPhi=CounterPhi,silent=silent,useCounterPhi=useCounterPhi) if periodicColumn : self.set_col_periodic() if closeColumn : print 'Closing rows at right' for k in self.M.keys() : if k!='_row_values' and k!='_col_values' and k!='_row_index' and k!='_col_index' : for r in range(self.R['n']) : self.M[k][r][-1]=self.M[k][self.R['n']-1-r][0] #if closeColumn : self.right_close_col() def get_cuts(self,inputfile,skiplines,CounterPhi=[1e6,1.],silent=False,useCounterPhi=False,badConversionValue=0.) : """ get_cuts this program get the cuts file inputfile = name of the input file the output is a structure with an entry for each cut in phi COUNTER_PHI v.z. HEADER_PHI By default the field PHI in each cut is the one declared in the header of the block of the input grasp file. The value is also returned as HEADER_PHI in the structure There are some cases in which the header is bad formatted and the PHI is not reliable. To solve this problem GET_CUTS provides an internal PHI calculator assuming PHI increments on constant steps, the value from the calculator is in COUNTER_PHI The counter is tuned by using the keyword CounterPhi = [phi0,step] (default [1d6,1d0]) so the default is simply a counter of the number of cuts. The value 1e6. as first value is to assure the COUNTER_PHI is not confused with an angle. To make COUNTER_PHI as PHI it is sufficient to add the keyword /useCounterPhi so that the PHI will be forced to be COUNTER_PHI instead of HEADER_PHI. At last the tag PHI_TYPE in the structure specifies wether PHI comes from the HEADER or from the COUNTER In self.info['numbad'] is the number of lines which can not be properly decoded into float, they are marked bad (1) in the flag_bad map. badConversionValue = Value to replace samples with problems in converting strings to numbers """ import sys import numpy as np import copy CounterPhi0=CounterPhi[0]*1. CounterDeltaPhi=CounterPhi[1]*1. deltaphi=1. phi0=0. header='header' fileinput='fileinput' thetai=0. dtheta=0. ntheta=1 phi=0. k1=1 k2=1 k3=1 comp1r=0. comp1i=0. comp2r=0. comp2i=0. # #******************************** # self.clean() self.info['hdr']={'file':inputfile} self.info['wrong_lines']=[] print "Reading ",inputfile try : h=open(inputfile,'r').readlines() self.mapname=inputfile self.info['inputfile']=inputfile except : print "File %s not found"%inputfile return # removes the new line for i in range(len(h)) : h[i] = h[i].split('\n')[0].split('\r')[0] # skips a given number of lines self.info['hdr']['skipped']=[] self.info['hdr']['skiplines']=skiplines*1 if skiplines > 0 : for line in h[0:(skiplines-1)] : self.info['hdr']['skipped'].append(line.split('\n')[0]) h=h[skiplines:] # skips all the lines until it reaches an header notHeader = True icount=-1 while notHeader : icount+=1 ll=h[icount].split('\n')[0].strip().split() try : lla = np.array(ll) notHeader = False except : notHeader = True if not notHeader : if len(ll) != 7 : notHeader = True icount-=1 if icount > 0 : for k in h[0:icount] : self.info['hdr']['skipped'].append(k) self.info['hdr']['skiplines']+=1 h=h[icount:] # the second line of the first block gives the number of lines per block currentline=1 ll=h[currentline].split('\n')[0].strip().split() try : thetai = float(ll[0]) dtheta = float(ll[1]) ntheta = int(ll[2]) header_phi = float(ll[3]) k1 = int(ll[4]) k2 = int(ll[5]) k3 = int(ll[6]) except : return h[currentline-1],'level 1',currentline,h self.info['nlines']=len(h) self.info['blocksize']=ntheta+2 self.info['nblocks'] = len(h)/(ntheta+2) nblocks = self.info['nblocks'] self.info['thetai']=np.zeros(nblocks) self.info['dtheta']=np.zeros(nblocks) self.info['ntheta']=np.zeros(nblocks,dtype='int') self.info['phi']=np.zeros(nblocks) self.info['k1']=np.zeros(nblocks,dtype='int') self.info['k2']=np.zeros(nblocks,dtype='int') self.info['k3']=np.zeros(nblocks,dtype='int') self.info['line']=np.zeros(nblocks,dtype='string') self.info['fail']=np.zeros(nblocks,dtype='int')+1 self.info['iline']=np.zeros(nblocks,dtype='int') if (ntheta+2)*self.info['nblocks']-len(h) != 0 : print "Error: too much or too few lines to form the required number of blocks" print "Nblocks : ",self.info['nblocks'] print "lines : ",len(h) print "lines per block : ",ntheta+2 print "lines in blocks : ",(ntheta+2)*nblocks print "residual lines : ",(ntheta+2)*nblocks-len(h) return None print self.info['nblocks']," x ",ntheta," elements" # decomposes all the headers for i_block in range(nblocks) : ii = i_block*self.info['blocksize'] self.info['iline'][i_block]=ii*1 self.info['line'][i_block]=h[ii]+'' ll=h[ii+1].split('\n')[0].strip().split() try : self.info['thetai'][i_block] = float(ll[0]) self.info['dtheta'][i_block] = float(ll[1]) self.info['ntheta'][i_block] = int(ll[2]) self.info['phi'][i_block] = float(ll[3]) self.info['k1'][i_block] = int(ll[4]) self.info['k2'][i_block] = int(ll[5]) self.info['k3'][i_block] = int(ll[6]) self.info['fail'][i_block] = 0 except : print "Fail to decode block %d, line %d\n'%s'\n"%(i_block,ii,h[ii+1]) if self.info['fail'].sum() > 0 : print "fail to decode blocks" return # sets the phi along the x axis of the grid i.e. the columns self.set_col_scale('phi','deg',self.info['phi']) self.dphi=self.C['delta'] self.phi0=self.C['min'] # sets the theta along the y axis of the grid i.e. the rows self.set_row_scale('theta','deg',np.arange(self.info['ntheta'][0])*self.info['dtheta'][0]+self.info['thetai'][0]) self.dtheta=self.R['delta'] self.theta0=self.R['min'] #initialize private compoenents used for debug self.newmap('_line_index',dtype='int') # initializes the five component matrices self.newmap('r1') self.newmap('i1') self.newmap('r2') self.newmap('i2') self.newmap('power') self.newmap('flag_bad',dtype='int') # # fill the component matrices # each block is for a given phi, i.e. a given Column # each value is for a given theta, i,e, a given Row self.newmap('phi') self.newmap('theta') self.info['numbad']=0 for i_block in range(nblocks) : ii = i_block*self.info['blocksize']+2 for i_raw in range(self.R['n']) : iline = ii+i_raw self.M['phi'][i_raw,i_block]=self.C['v'][i_block]*1 self.M['theta'][i_raw,i_block]=self.R['v'][i_raw]*1 self.M['_row_values'][i_raw,i_block]=self.R['v'][i_raw]*1 self.M['_col_values'][i_raw,i_block]=self.C['v'][i_block]*1 self.M['_row_index'][i_raw,i_block]=i_raw*1 self.M['_col_index'][i_raw,i_block]=i_block*1 self.M['_line_index'][i_raw,i_block]=iline*1 ll=h[iline].split('\n')[0].strip().split() lla=np.zeros(4) nbad=0 for icol in range(4) : try : lla[icol]=np.array(ll[icol],dtype=float) except : lla[icol]=badConversionValue nbad+=1 if nbad == 0 : self.M['flag_bad'][i_raw,i_block]=0 else : self.info['wrong_lines'].append("skiplines %d, line %d, row %d, block %d\n%s"%(self.info['hdr']['skiplines'],iline,i_raw,i_block,h[iline])) print "Invalid litteral in file, skiplines %d, line %d, row %d, block %d\n"%(self.info['hdr']['skiplines'],iline,i_raw,i_block) print ">"+" ".join(ll)+"< out >",lla,'<' self.M['flag_bad'][i_raw,i_block]=1 self.info['numbad']+=1 self.M['r1'][i_raw,i_block]=lla[0]*1 self.M['i1'][i_raw,i_block]=lla[1]*1 self.M['r2'][i_raw,i_block]=lla[2]*1 self.M['i2'][i_raw,i_block]=lla[3]*1 self.M['power']=self.M['r1']**2+self.M['i1']**2+self.M['r2']**2+self.M['i2']**2 # stores longitudes and latitudes self.newmap('long') self.newmap('colat') self.M['long']=self.M['_row_values']*0 self.M['colat']=self.M['_row_values']*0 self.M['long'],self.M['colat']=phitheta2longcolat(self.M['phi'],self.M['theta']) self._init_failed = False def initFailed(self) : return self._init_failed def haveBadSamples(self) : if self.initFailed(): return False return self.info['numbad']>0 def formatGrasp(self) : return {'float':' %17.10e','int':' %4d'} def recompose_header(self) : import copy hdr=[] if self.info['hdr']['skiplines']>0 : hdr=copy.deepcopy(self.info['hdr']['skipped']) return hdr def recompose_block_header(self,i_block) : import numpy as np fmtF=self.formatGrasp()['float'] fmtI=self.formatGrasp()['int'] if i_block < 0 : return if i_block >= self.info['nblocks'] : return ll='' ll+=fmtF%self.info['thetai'][i_block] ll+=fmtF%self.info['dtheta'][i_block] ll+=fmtI%self.info['ntheta'][i_block] ll+=fmtF%self.info['phi'][i_block] ll+=fmtI%self.info['k1'][i_block] ll+=fmtI%self.info['k2'][i_block] ll+=fmtI%self.info['k3'][i_block] return ['Planck,',ll.upper()] def recompose_block_data(self,i_block,tab0=None) : import numpy as np import copy fmtF=self.formatGrasp()['float'] fmtI=self.formatGrasp()['int'] if i_block < 0 : return if i_block >= self.info['nblocks'] : return tab=[] if type(tab0)==type([]) : tab=copy.deepcopy(tab0) if type(tab0)==type('') : tab=[tab0] for i_raw in range(self.R['n']) : ll='' ll+=fmtF%self.M['r1'][i_raw,i_block] ll+=fmtF%self.M['i1'][i_raw,i_block] ll+=fmtF%self.M['r2'][i_raw,i_block] ll+=fmtF%self.M['i2'][i_raw,i_block] tab.append(ll.upper()) return tab def recompose_block(self,i_block,tab0=None,fmt='%18.10e') : if i_block < 0 : return if i_block >= self.info['nblocks'] : return tab=self.recompose_block_header(i_block) return self.recompose_block_data(i_block,tab0=tab) def recompose_map(self,tab0=None) : tab=[] for i_block in range(self.info['nblocks']) : for l in self.recompose_block(i_block) : tab.append(l) return tab def FourColumnsPower(self,power1Name='p1',power2Name='p2',powerName='power') : "a FourColumns map has r1=sqrt(p1), i1=0, r2=sqrt(p2), i2=0" new=self.copy() new.info['ktype']=1 if self.M.has_key(power1Name) and self.M.has_key(power1Name) : new.info['ncomp']=2 new.M['r1']=self[power1Name]**0.5 new.M['r2']=self[power2Name]**0.5 new.M['i1']=self[power1Name]*0 new.M['i2']=self[power1Name]*0 elif self.M.has_key(power) : new.info['ncomp']=1 new.M['r1']=self[power]**0.5 new.M['r2']=self[power]*0 new.M['i1']=self[power]*0 new.M['i2']=self[power]*0 else : print "the map shall contain ",power1Name,power2Name," or ",powerName return return new def grasp2longcolat(self,phi_grasp,theta_grasp) : """ converts GRASP (phi,theta) coordinates into standard (long,colat) upon request returns a structure """ import numpy as np _long = phi_grasp*1. colat=theta_grasp*1. idx = np.where(colat < 0)[0] if len(idx) > 0 : _long[idx]=_long[idx]+180. colat[idx]=np.abs(colat[idx]) return _long,colat def longcolat2grasp(self,_long,colat) : """converts ususal polar (long,colat) coordinates into GRASP (phi,theta) returns a structure""" import numpy as np phi=_long*1. theta=colat*1. idx = np.where(phi >= 180.)[0] if len(idx) > 0 : phi[idx]=phi[idx]-180. theta[idx]=-theta[idx] return phi,theta def longcolat2rowcol(self,_long,colat) : """ converts (long,colat) into index of phi and of theta in the matrix """ import numpy as np phi,theta=self.longcolat2grasp(_long,colat) return (theta-self.theta0)/self.dtheta,(phi-self.phi0)/self.dphi def ipix2longcolat(self,nside,ipix,nest=False,deg=True) : """ converts an healpix ipix (ring) into index of phi and of theta in the matrix""" from healpy import pix2ang import numpy as np colat,_long=pix2ang(nside,ipix,nest=nest) if deg : return _long*180./np.pi,colat*180./np.pi return _long,colat def ipix2rowcol(self,nside,ipix,nest=False,deg=False) : """ converts an healpix ipix (ring) into index of phi and of theta in the matrix""" from healpy import pix2ang import numpy as np colat,_long=pix2ang(nside,ipix,nest=nest) if deg : return self.longcolat2rowcol(_long,colat) return self.longcolat2rowcol(_long/np.pi*180.,colat/np.pi*180.) def nside2ipix(self,nside,Reversed=False) : """ converts nside into a list of pixels (ring) reversed = True means the orderring is reversed """ return nside2ipix(nside,Reversed=Reversed) def parseColatRange(self,colatrange) : prs=(colatrange.strip()).split(',') left = [prs[0][0],float(prs[0][1:])] right = [prs[1][-1],float(prs[1][0:-1])] return left,right def healpix(self,nside,mapname='power',nest=False,Reversed=False,rot=[0.,0.],colatrange=None) : """converts to healpix or a stack of healpix maps of given nside colatrange=None , takes all the map colatrange=']a,b[' colatrange='[a,b[' colatrange=']a,b]' for gridmap """ import numpy as np import healpy as H if colatrange==None : ipix=self.nside2ipix(nside,Reversed=Reversed) if rot[0]==0. and rot[1]==0 : _long,colat = self.ipix2longcolat(nside,ipix) phi,theta=self.longcolat2grasp(_long,colat) r1=self.bilinearXY(mapname,phi,theta) return r1 else : fact=180./np.pi prs=(colatrange.strip()).split(',') left = [prs[0][0],float(prs[0][1:])] right = [prs[1][-1],float(prs[1][0:-1])] NPEQ=12*nside/2 print left,right ipixmin=H.ang2pix(nside,left[1]/fact,0)-NPEQ ipixmax=H.ang2pix(nside,right[1]/fact,0)+NPEQ if ipixmin < 0 : ipixmin=0 if ipixmax > 12*nside**2-1 : ipixmax=12*nside**2 ipix = np.arange(ipixmin,ipixmax) colat,Long = H.pix2ang(nside,ipix) fl=np.ones(len(colat)) if left[1] == ']' : fl*=(left[1]/fact)<colat else : fl*=(left[1]/fact)<=colat if right[1] == '[' : fl*=colat<(right[1]/fact) else : fl*=colat<=(right[1]/fact) idx=np.where(fl)[0] ipix=ipix[idx] colat=colat[idx]*fact Long=Long[idx]*fact fl=None idx=None phi,theta=self.longcolat2grasp(Long,colat) r1=self.bilinearXY(mapname,phi,theta) return r1,ipix def polarplot(self,mapname,long_step=2,colat_step=10,log=None,cm=None,grayBad="#707070",adAxes=True,area=[12.,1.],cmap='hsv',vmin=-30,vmax=-0.1) : import numpy as np from matplotlib import colors as Colors import pylab from matplotlib import pyplot as plt from matplotlib import cm try : _cm=cm.__dict__[cmap] except : print "required cmap ",cmap," no found, replaced with 'hsv'" print "allowed values " print cm.__dict__.keys() if adAxes : ax = plt.subplot(111, polar=True) y = self.M[mapname]*1 if log == 'e' or log == 'ln' : y=np.log(y) elif log == '10' or log == 'log10' : y=np.log(y)/np.log(10) elif log == '2' : y=np.log(y)/np.log(2) else : try : b=np.float(log) except : b=None if b!= None : y=np.log(y)/np.log(b) shape2=y.shape shape1=shape2[0]*shape2[1] idxLong=np.arange(0,shape2[1],colat_step) idxColat=np.arange(0,shape2[0],long_step) for i in idxColat : tt=np.pi/180*self['long'][i][idxLong] cc=self['colat'][i][idxLong] aa=(area[0]-area[1])*(1-np.cos(np.pi/180.*cc))/2.+area[1] print i,cc.min(),cc.max(),aa.min(),aa.max() try : c=plt.scatter(tt,cc, c=y[i][idxLong], s=aa, cmap=_cm,edgecolor='none',vmin=vmin,vmax=vmax) except : pass plt.axis([0,360,0,180]) plt.title(self.mapname) def mercatore(self,reversed=False) : """converts a CUT map to a MERCATOR MAP""" import numpy as np import copy M=MercatoreMap() shape=self.shape halfrow=(self.R['n']-1)/2 newrow=(self.R['n']-1)/2+1 newcol=self.C['n']*2 for k in self.M.keys() : M.M[k]=[] if reversed : for drow in np.arange(newrow-1,-1,-1) : M.M[k].append(np.concatenate((self.M[k][halfrow+drow],self.M[k][halfrow-drow]))) else : for drow in np.arange(0,newrow) : M.M[k].append(np.concatenate((self.M[k][halfrow+drow],self.M[k][halfrow-drow]))) M.M[k]=np.array(M.M[k]) M.shape=[M.M['phi'].shape[0],M.M['phi'].shape[1]] M.M['long']=copy.deepcopy(M.M['phi']) M.M['colat']=copy.deepcopy(M.M['theta']) # long is phi where theta > 0 and phi+180 where theta < 0 M.M['long']+=180*(M.M['colat']<0) # but for theta=0 the algorithm fails, so this is a patch idx2=np.where(np.sign(M.M['theta']).ptp(axis=1)==2)[0][0] for k in np.where(np.sign(M.M['theta']).ptp(axis=1)==0)[0] : M.M['long'][k]=M.M['long'][idx2] # colat is abs(theta) M.M['colat']=abs(M.M['colat']) M.C=copy.deepcopy(self.C) M.R['name']='long' M.C['v']=M.M['long'][0]*1 M.C['n']=len(M.C['v']) M.C['min']=M.C['v'].min() M.C['max']=M.C['v'].max() M.R=copy.deepcopy(self.R) M.R['name']='colat' M.R['v']=M.M['colat'][:,0]*1 M.R['n']=len(M.R['v']) M.R['min']=M.R['v'].min() M.R['max']=M.R['v'].max() M.info['projection']='GRASP-CUT,Mercatore' return M class MercatoreMap(MapGrid) : """A Mercator map: a map with x=column=longitude, y=row=colatitude""" def __init__(self,*args) : MapGrid.__init__(self) self.info['projection']='GRASP-Mercatore' def right_close_col(self,period=False,right_col_value=None) : MapGrid.right_close_col(self,period=period,right_col_value=None) if right_col_value != None : try : self.C['v'][-1]=float(right_col_value) except : pass self.C['max'] = self.C['v'].max() try : self.M['long'][:,-1]=float(right_col_value) except : pass #def resample(self,Long,Colat) : #new=self.copy() def unitPixelArea(self) : import numpy as np return np.deg2rad(self.R['delta'])*np.deg2rad(self.C['delta']) def radialIntegral(self,arg,returnJustIntegral=False,thetaRange=None,asStruct=False) : import numpy as np sinColat=np.sin(np.deg2rad(self.M['colat'])) if type(arg) == type('') : try : field=self[arg]*sinColat*self.unitPixelArea() except : return None else : try : field=arg*sinColat*self.unitPixelArea() except : return None dIdtheta=np.zeros(self.R['n']) for itheta in range(len(dIdtheta)) : dIdtheta[itheta]=0.5*(field[itheta][1:]+field[itheta][0:-1]).sum() midH=0.5*(dIdtheta[1:]+dIdtheta[0:-1]) if returnJustIntegral and thetaRange==None: return np.sort(midH).sum() Itheta=np.zeros(self.R['n']) Itheta[0]=dIdtheta[0]*1 for itheta in range(1,len(Itheta)) : Itheta[itheta]=np.sort(midH[0:itheta+1]).sum() if asStruct : return {'colat':self.M['colat'].mean(axis=1),'dIdcolat':dIdtheta,'Icolat':Itheta,'method':'spherical,trapezoidal'} return self.M['colat'].mean(axis=1),dIdtheta,Itheta,'spherical,trapezoidal' class DirectionalMapMoments_Base_Old: def __init__(self,method,maxorder) : """computs the directional moments on a map using healpix integration""" import numpy as np self.method=method self.TreatNaNasZero=True self.TreatInfAsZero=True self.TreatOutBoundsAsZero=True if Bounds == None : self.Bounds =np.array([-np.inf,np.inf]) else : self.Bounds =Bounds if type(Map) == type('') : self.load(Map) return self.exclusionRadius = 180. self.mu=None self.nside=None self.npix=None self.pixelArea = None self.n=None self.maxorder=maxorder self.Sum=np.zeros([self.maxorder,self.maxorder,self.maxorder]) for xp in range(maxorder) : for yp in range(maxorder) : for zp in range(maxorder) : self.Sum[xp,yp,zp]=(m*x**xp*y**yp*z**zp).sum() def __getitem__(self,xp,yp,zp) : return self.Sum[xp,yp,zp] def calc_integral(self) : Pi4=4*np.pi Integral = self.Sum*self.pixelArea norm=Integral[0,0,0] Sx=Integral[1,0,0]/norm Sy=Integral[0,1,0]/norm Sz=Integral[0,0,1]/norm line=',%e,%e,%e,%e'%(Sx,Sy,Sz,norm) return Sx,Sy,Sz,norm,line def save(self,pickle_file) : import pickle if type(pickle_file)==type('') : self.filename=pickle_file try : pickle.dump(self.__dict__,open(pickle_file,'w')) except : return False else : try : pickle.dump(self.__dict__,pickle_file) except : return False return True def load(self,pickle_file) : import pickle if type(pickle_file)==type('') : self.filename=pickle_file try : self.__dict__=pickle.load(open(pickle_file,'r')) except : return False else : try : self.__dict__=pickle.load(pickle_file) except : return False return True class DirectionalMapMoments_GRD(DirectionalMapMoments_Base_Old) : def __init__(self,GrdMap,exclusionRadius=None,reverse=False,excludeOut=False,NormalizedByBeam=False,asDict =True,Nside=None,ipixVec=None,maxorder=3,TreatNaNasZero=True,TreatInfAsZero=True,TreatOutBoundsAsZero=True,Bounds=None) : """computes the directional moments on a GRD map """ import numpy as np DirectionalMapMoments_Base.__init__(self,'grd',maxorder) class DirectionalMapMoments_CUT_Mercatore(DirectionalMapMoments_Base_Old) : def __init__(self,GrdMap,exclusionRadius=None,reverse=False,excludeOut=False,NormalizedByBeam=False,asDict =True,Nside=None,ipixVec=None,maxorder=3,TreatNaNasZero=True,TreatInfAsZero=True,TreatOutBoundsAsZero=True,Bounds=None) : """computes the directional moments on a CUT map managed as a Mercatore map""" import numpy as np DirectionalMapMoments_Base.__init__(self,'cut-mercatore',maxorder) class DirectionalMapMoments_Healpix(DirectionalMapMoments_Base_Old) : def __init__(self,Map,exclusionRadius=None,reverse=False,excludeOut=False,NormalizedByBeam=False,asDict =True,Nside=None,ipixVec=None,maxorder=3,TreatNaNasZero=True,TreatInfAsZero=True,TreatOutBoundsAsZero=True,Bounds=None) : """computes the directional moments on a map using healpix integration""" import numpy as np import healpy as H DirectionalMapMoments_Base.__init__(self,'healpix',maxorder) self.TreatNaNasZero=TreatNaNasZero self.TreatInfAsZero=TreatNaNasZero self.TreatOutBoundsAsZero=TreatOutBoundsAsZero if Bounds == None : self.Bounds =np.array([-np.inf,np.inf]) else : self.Bounds =Bounds if type(Map) == type('') : self.load(Map) return if exclusionRadius==None : self.exclusionRadius = 180. if excludeOut else 0. else : self.exclusionRadius = exclusionRadius self.mu=np.cos(self.exclusionRadius/180.*np.pi) self.nside=int(np.sqrt(len(Map)/12.)) if Nside == None else int(Nside) self.npix=int(12.*self.nside**2) self.pixelArea = 4.*np.pi/float(12.*self.nside**2) if ipixVec == None : v=np.array(H.pix2vec(self.nside,nside2ipix(self.nside))) idxAllowed=np.where(v[2]<=self.mu) else : v=np.array(H.pix2vec(self.nside,ipixVec)) idxAllowed=ipixVec m=Map[idxAllowed] x=v[0][idxAllowed] y=v[1][idxAllowed] z=v[2][idxAllowed] if self.TreatOutBoundsAsZero : idx = np.where((m<self.Bounds[0])*(self.Bounds[1]<m))[0] if len(idx) > 0 : m[idx]=0. if self.TreatNaNasZero : idx = np.where(np.isnan(m))[0] if len(idx) > 0 : m[idx]=0. if self.TreatInfAsZero : idx = np.where(1-np.isfinite(m))[0] if len(idx) > 0 : m[idx]=0. self.n=len(m) self.maxorder=maxorder self.Sum=np.zeros([self.maxorder,self.maxorder,self.maxorder]) for xp in range(maxorder) : for yp in range(maxorder) : for zp in range(maxorder) : self.Sum[xp,yp,zp]=(m*x**xp*y**yp*z**zp).sum() def calc_integral(self) : Pi4=4*np.pi Integral = iBSM.Sum*iBSM.pixelArea norm=Integral[0,0,0] Sx=Integral[1,0,0]/norm Sy=Integral[0,1,0]/norm Sz=Integral[0,0,1]/norm line=',%e,%e,%e,%e'%(Sx,Sy,Sz,norm) return Sx,Sy,Sz,norm,line #from numpy import nan #def cuts2matrix(self,No180Pad=No180Pad) #; #; converts a structure from get_cuts in a set of matrices, the output is a structure #; theta = theta values converted from GRASP convention to usual polar convention #; phi = phi values from GRASP convention to usual polar convention #; c1r, c1i, c2r, c2i = components 1 and 2 real (r) and imaginary (i) parts #; GRASP = a structure containing the original grasp theta and phi #; #; NOTE = usually GRASP does not generates cuts for PHI=180deg since it is #; nothing else than PHI=0deg, by default CUTS2MATRIX add a PHI=180deg #; cut. To exclude this set the /No180Pad keyword #; #; #if not keyword_set(No180Pad) then Pad180 = 1 else Pad180 = 0 #nphi=n_tags(cuts) #m1=dblarr(nphi+Pad180,cuts.(0).ntheta) #theta=m1 #phi=m1 #long=m1 #colat=m1 #c1r=m1 #c1i=m1 #c2r=m1 #c2i=m1 #vtheta=cuts.(0).theta #vphi=dblarr(nphi+Pad180) #vlong=dblarr(nphi+Pad180) #for iphi=0,nphi-1 do begin #theta[iphi,*]=cuts.(iphi).theta #phi[iphi,*]=cuts.(iphi).phi #c1r[iphi,*]=cuts.(iphi).c1r #c1i[iphi,*]=cuts.(iphi).c1i #c2r[iphi,*]=cuts.(iphi).c2r #c2i[iphi,*]=cuts.(iphi).c2i #vphi[iphi]=cuts.(iphi).phi #endfor #if Pad180 ne 0 then begin #; performs padding of 180 deg #theta[nphi,*]=-reverse(cuts.(0).theta) #phi[nphi,*]=cuts.(0).phi+180. #c1r[nphi,*]=reverse(cuts.(0).c1r) #c1i[nphi,*]=reverse(cuts.(0).c1i) #c2r[nphi,*]=reverse(cuts.(0).c2r) #c2i[nphi,*]=reverse(cuts.(0).c2i) #vphi[nphi]=180. #endif #return,create_struct( $ #'theta',theta $ #,'phi',phi $ #,'c1r',c1r $ #,'c1i',c1i $ #,'c2r',c2r $ #,'c2i',c2i $ #,'GRASP',create_struct('theta',vtheta,'phi',vphi) $ #,'nphi',nphi $ #,'Pad180',Pad180 $ #,'phi0',vphi[0] $ #,'Delta_phi',vphi[1]-vphi[0] $ #,'theta0',vtheta[0] $ #,'Delta_theta',vtheta[1]-vtheta[0] $ #) #end #function cuts_grid,cuts #; derives gridding parameters for a structure produced by get_cuts #phi0=cuts.(0).phi #theta0=cuts.(0).theta[0] #dphi = cuts.(1).phi-cuts.(0).phi #dtheta = cuts.(0).theta[1]-cuts.(0).theta[0] #xmax = -1e6 #for kk = 0,n_tags(cuts)-1 do begin #_xmax=max(abs(cuts.(0).theta)) #if _xmax gt xmax then xmax = _xmax #endfor #return,create_struct('phi0',phi0,'theta0',theta0,'dphi',dphi,'dtheta',dtheta,'thetamax',xmax) #end #function componentsTOstoke,component1_real,component1_imaginary,component2_real,component2_imaginary,direct=direct #; #; converts component maps to stokes #; #E1 = component1_real^2+component1_imaginary^2 #E2 = component2_real^2+component2_imaginary^2 #SI = E1+E2 #SQ = E1-E2 #E1 = sqrt(E1) #E2 = sqrt(E2) #F1 = ATAN(component1_imaginary,component1_real) #F2 = ATAN(component2_imaginary,component2_real) #SU = 2*E1*E2*COS(F2 - F1) #SV = 2*E1*E2*SIN(F2 - F1) #return,create_struct('I',SI,'Q',SQ,'U',SU,'V',SV,'F1',F1,'F2',F2) #end #function cuts2cartesian,cuts,side=side,stokes=stokes #; converts a cut in a matrix using cartesian polar coordinates #if not keyword_set(side) then side = 600 #phi0=cuts.(0).phi #theta0=cuts.(0).theta[0] #dphi = cuts.(1).phi-cuts.(0).phi #dtheta = cuts.(0).theta[1]-cuts.(0).theta[0] #npix=side+1 #xmin=-max(abs(cuts.(0).theta)) #xmax = -1e6 #for kk = 0,n_tags(cuts)-1 do begin #_xmax=max(abs(cuts.(0).theta)) #if _xmax gt xmax then xmax = _xmax #endfor #ix0=(npix-1)/2 #iy0=(npix-1)/2 #xmap=dblarr(npix,npix) #ymap=dblarr(npix,npix) #for r = 0,npix-1 do xmap[r,*]=(double(indgen(npix))/double(npix-1)-0.5)*xmax*2 #for c = 0,npix-1 do ymap[*,c]=(double(indgen(npix))/double(npix-1)-0.5)*xmax*2 #colatmap=sqrt(xmap^2+ymap^2) #longmap=atan(ymap,xmap)/!dpi*180. #idx = where(longmap lt 0,count) #if count gt 0 then longmap[idx]=360+longmap[idx] #pt=longcolat2phitheta(longmap,colatmap) #rc=longcolat2rowcol(longmap,colatmap,dphi=dphi,dtheta=dtheta,phi0=phi0,theta0=theta0) #slm=cuts2matrix(cuts) #c1r=map_interpolate(rc.iphi,rc.itheta,slm.c1r) #c1i=map_interpolate(rc.iphi,rc.itheta,slm.c1i) #c2r=map_interpolate(rc.iphi,rc.itheta,slm.c2r) #c2i=map_interpolate(rc.iphi,rc.itheta,slm.c2i) #out=create_struct('x',xmap,'y',ymap,'ix0',ix0,'iy0',iy0,'colat',colatmap,'long',longmap,'phi',pt.phi,'theta',pt.theta,'iphi',rc.iphi,'itheta',rc.itheta) #if keyword_set(stokes) then begin #return,create_struct(out,'stokes',componentsTOstoke(c1r,c1i,c2r,c2i)) #endif #return,create_struct(out,'power',c1r^2+c1i^2+c2r^2+c2i^2) #end #function cuts2healpix,nside,cuts,reversed=reversed,ipix=ipix,onlyPower=onlyPower,dbi=dbi,stokes=stokes #; convert a cuts into an healpix max by bilinear interpolation #; if /onlyPower returns just the power otherwise returns #; c1r = component 1 real part #; c1i = component 1 imaginary part #; c2r = component 2 real part #; c2i = component 2 imaginary part #; power #; if /dbi power is converted in 10*alog10(power) (if /stokes this is not done) #; if /stokes return stokes parameters and F1 and F2 instead of components c1, c2 #; #if not keyword_set(reversed) then ipix=nside2ipix(nside) else ipix=nside2ipix(nside,/reversed) #slm = cuts2matrix(cuts) #rc=ipix2rowcol(nside,ipix,slm.phi0,slm.delta_phi,slm.theta0,slm.delta_theta) #r1=map_interpolate(rc.iphi,rc.itheta,slm.c1r) #i1=map_interpolate(rc.iphi,rc.itheta,slm.c1i) #r2=map_interpolate(rc.iphi,rc.itheta,slm.c2r) #I2=map_interpolate(rc.iphi,rc.itheta,slm.c2i) #if keyword_set(stokes) then return,componentsTOstoke(r1,i1,r2,i2) #power = r1^2+i1^2+r2^2+i2^2 #if keyword_set(dbi) then power=10d0*alog10(power) #if keyword_set(onlyPower) then return,power #return,create_struct('c1r',r1,'c2r',r2,'c1i',i1,'c2i',i2,'power',power) #end #function beamSumMap,map,exclusionRadius=exclusionRadius,reverse=reverse,v=v,excludeOut=excludeOut,notNormalizedByBeam=notNormalizedByBeam,asStruct=asStruct #; computs the directional moments on a map #if not keyword_set(excludeOut) then excludeOut = 0 #if not keyword_set(exclusionRadius) then $ #if excludeOut then exclusionRadius=[180d0] else exclusionRadius=[0d0] #npix=n_elements(map) #nside=long(sqrt(npix/12.)) #pix2vec_ring,nside,indgen(npix,/long),v #z = v[*,2] #for i = 0,2 do v[*,i]=v[*,i]*map #sss = dblarr(10,n_elements(exclusionRadius)) #sss[9,*]=4d0*!dpi/double(npix) #sss[5,*]=npix #sss[6,*]=nside #for ir=0,n_elements(exclusionRadius)-1 do begin #xr=exclusionRadius[ir] #sss[7,ir]=xr #mu=cos(xr/180d0*!dpi) #imin = 0 #imax = npix-1l #count=-1 #if excludeOut then $ #if xr eq 180. then imax=npix-1 else imax = min(where(mu ge z,count)) $ #else $ #if xr eq 0. then imin=0 else imin = min(where(mu ge z,count)) #print,ir,xr,excludeOut,ir,count,imin,imax #sss[8,ir]=count #sss[4,ir]=total(map[imin:imax]) #for ic = 0,2 do sss[ic,ir] = total(v[imin:imax,ic]) #if not keyword_set(notNormalizedByBeam) then for ic = 0,2 do sss[ic,ir] = sss[ic,ir]/sss[4,ir] #sss[3,ir]=sqrt(sss[0,ir]^2+sss[1,ir]^2+sss[2,ir]^2) #for ic = 0,2 do sss[ic,ir]=sss[ic,ir]/sss[3,ir] #endfor #if not keyword_set(asStruct) then return,sss #; computes the polar deflection #polar_deflection=dblarr(n_elements(exclusionRadius)) #longitude_deflection=dblarr(n_elements(exclusionRadius)) #for ir=0,n_elements(exclusionRadius)-1 do begin #polar_deflection=acos(sss[2,ir])*180d0/!dpi #normxy = sqrt(total(sss[0:1,ir]^2)) #longitude_deflection=atan(sss[1,ir]/normxy,sss[0,ir]/normxy)*180d0/!dpi #endfor #return,create_struct($ #'vSx',sss[0,*] $ #,'vSy',sss[1,*] $ #,'vSz',sss[2,*] $ #,'S',sss[3,*] $ #,'beam_sum',sss[4,*] $ #,'npix',long(sss[5,*]) $ #,'nside',long(sss[6,*]) $ #,'exclusionRadius',sss[7,*] $ #,'excludedPixels',long(sss[8,*]) $ #,'pixelArea',sss[9,*] $ #,'deflection_polar_deg',polar_deflection $ #,'deflection_longitude_deg',longitude_deflection $ #) #end #function beamSums,nside,cuts,exclude_angle=exclude_angle,map=map,asStruct=asStruct #; computes Sx, Sy. Sz (directional integrals) for a beam map #map=cuts2healpix(nside,cuts,ipix=ipix,/onlyPower) #pix2vec_ring,nside,ipix,v #if keyword_set(exclude_angle) then begin #print,exclude_angle #ang = 180./dpi*acos(v[*,2]) #idx = where(ang > exclude_angle,count) #if count gt 0 then begin #v1=dblarr(n_elements(idx),3) #for i=0,2 do v1[*,i]=v[idx,i] #v=v1 #endif else begin #print,"Error all pixels removed" #return,0 #endelse #endif #sss = dblarr(7) #sss[6]=nside #sss[5]=12d0*double(nside)^2 #sss[4]=total(map) #; returns the versors #for i=0,2 do sss[i] = (total(v[*,i]*map))/sss[4] #; normalize #sss[3]=sqrt(total(sss[0:2]^2)) #for i=0,2 do sss[i] = sss[i]/sss[3] #if not keyword_set(asStruct) then return,sss #; computes the polar deflection #polar_deflection_deg=acos(sss[2]/sss[3])*180d0/!dpi #normxy = sqrt(total(sss[0:1]^2)) #longitude_deflection_deg=atan(sss[1]/normxy,sss[0]/normxy)*180d0/!dpi #return,create_struct( $ #'vSx',sss[0] $ #,'vSy',sss[1] $ #,'vSz',sss[2] $ #,'S',sss[3] $ #,'beam_sum',sss[4] $ #,'npix',long(sss[5]) $ #,'nside',long(sss[6]) $ #,'deflection_polar_deg',polar_deflection_deg $ #,'deflection_longitude_deg',longitude_deflection_deg $ #) #end #function beamSumS2,lcuts,hcuts,nside=nside,map=map,returnFirst=returnFirst,returnSecond=returnSecond #; computes Sx, Sy. Sz for a beam using two maps, #; lcuts = a lowress map of cuts #; hcuts = an highres map of cuts #; /returnFirst returns just the high resolution map (no summation) #; /returnSecond returns just the second map (no summation) #; #; high resolution integral #hpa=cuts_grid(hcuts) #if not keyword_set(nside) then nside = 1024l #map=dblarr(12l*nside*nside) #radius = -1e6 #for kk = 0,n_tags(hcuts)-1 do begin #_xmax=max(abs(hcuts.(kk).theta)) #if _xmax gt radius then radius = _xmax #endfor #query_disc,nside,[0.,0.,1.],radius,ipix,/deg,/inclusive #slm = cuts2matrix(hcuts) #rc=ipix2rowcol(nside,ipix,hpa.phi0,hpa.dphi,hpa.theta0,hpa.dtheta) #;dphi=hpa.dphi,dtheta=hpa.dtheta,phi0=hpa.phi0,theta0=hpa.theta0) #r1=map_interpolate(rc.iphi,rc.itheta,slm.c1r) #i1=map_interpolate(rc.iphi,rc.itheta,slm.c1i) #r2=map_interpolate(rc.iphi,rc.itheta,slm.c2r) #I2=map_interpolate(rc.iphi,rc.itheta,slm.c2i) #map[ipix] = r1^2+r2^2+i1^2+i2^2 #if keyword_set(returnFirst) then return,map #query_disc,nside,[0.,0.,-1.],180.-radius,ipix,/deg #;ipix=nside2ipix(nside) #slm = cuts2matrix(lcuts) #lpa=cuts_grid(lcuts) #rc=ipix2rowcol(nside,ipix,lpa.phi0,lpa.dphi,lpa.theta0,lpa.dtheta) #r1=map_interpolate(rc.iphi,rc.itheta,slm.c1r) #i1=map_interpolate(rc.iphi,rc.itheta,slm.c1i) #r2=map_interpolate(rc.iphi,rc.itheta,slm.c2r) #I2=map_interpolate(rc.iphi,rc.itheta,slm.c2i) #map[ipix] = r1^2+r2^2+i1^2+i2^2 #if keyword_set(returnSecond) then return,map #return,beamSumMap(map,/reverse,/asStruct) #end #function radialDependence,mapname,listRadiiDeg=listRadiiDeg #if not keyword_set(listRadiiDeg) then listRadiiDeg=[0.1,0.5,1.,1.5,2.,2.5,5.,7.5,10.,20.,30.,40.,50,60,70,80.,85.,90,100,110,120,130,140,150,160,170,180] #read_fits_map,mapname,mapX #xxx = beamSumMap(mapX,exclusionRadius=listRadiiDeg,/excludeOut) #sss=xxx #for ic=0,2 do sss[ic,*]=sss[ic,*]/sss[4,*] #sss[3,*]=sqrt(sss[0,*]^2+sss[1,*]^2+sss[2,*]^2) #for ic=0,2 do sss[ic,*]=sss[ic,*]/sss[3,*] #radius=sss[7,*] #dump=sss[3,*] #polar_deflection=acos(sss[2,*])/!dpi*180.*60. #longitudinal_deflection=atan(sss[1,*],sss[0,*])/!dpi*180. #return,create_struct('name',mapname,'long_def',longitudinal_deflection,'pol_def',polar_deflection,'dump',dump,'radius',radius) #end #function readgrd, fileinput #; reads a grd file #; (deprecated) #xs = 0.d #xs = 0.d #ye = 0.d #ye = 0.d #str='!5 ' #ktype = 1l ; --> data type format #nset = 1l ; --> number of beams in the file #icomp = 1l ; --> field component #ncomp = 1l ; --> number of components #igrid = 1l ; --> type of field grid #ix = 1l ; --> center of the beam #iy = 1l ; (ix,iy) #c1 = 0.d #c2 = 0.d #c3 = 0.d #c4 = 0.d #nx = 1l #ny = 1l #klimit = 1l #openr,1,fileinput #for line=0,100 do begin #if (strtrim(str,2) ne '++++') then begin #readf,1,str #print,str #endif else begin #goto, jump1 #endelse #endfor #jump1: readf,1,ktype #readf,1,nset,icomp,ncomp,igrid #readf,1,ix,iy #readf,1,xs,ys,xe,ye #readf,1,nx,ny,klimit #dx = (xe - xs)/(nx-1) #x = findgen(nx)*dx + xs #dy = (ye - ys)/(ny-1) #y = findgen(ny)*dy + ys #print,'Reading ', fileinput #print,'grid of ', nx,' x ', ny,' points' #c1r = dblarr(nx,ny) #c1i = dblarr(nx,ny) #c2r = dblarr(nx,ny) #c2i = dblarr(nx,ny) #for i=0,nx-1 do begin #for j=0,ny-1 do begin #readf,1,c1,c2,c3,c4 #c1r(j,i) = c1 #c1i(j,i) = c2 #c2r(j,i) = c3 #c2i(j,i) = c4 #endfor #endfor #close,1 #power = c1r^2 + c1i^2 + c2r^2 + c2i^2 #res = { x : x , $ #y : y , $ #power : power $ #} #return, res #end def readgrd(inputfile) : """ ; reads a grd file ; (deprecated) Reference document: LFI BEAMS DELIVERY: FORMAT SPECIFICATIONS M. Sandri PL-LFI-PST-TN-044, 1.0,July 2003 """ #xs = 0.d #xs = 0.d #ye = 0.d #ye = 0.d #str='!5 ' #ktype = 1l ; --> data type format #nset = 1l ; --> number of beams in the file #icomp = 1l ; --> field component #ncomp = 1l ; --> number of components #igrid = 1l ; --> type of field grid #ix = 1l ; --> center of the beam #iy = 1l ; (ix,iy) #c1 = 0.d #c2 = 0.d #c3 = 0.d #c4 = 0.d #nx = 1l #ny = 1l #klimit = 1l try : h=open(inputfile,'r').readlines() except : print "File %s not found"%inputfile return # removes the new line for i in range(len(h)) : h[i] = h[i].split('\n')[0].split('\r')[0] currentline=0 while(h[currentline] != '++++') : currentline+=1 if currentline == len(h): print "Error marker ++++ not found" return h infos=h[0:currentline] currentline +=1 print h[currentline] ktype = int(h[currentline]) currentline +=1 print h[currentline] ll = h[currentline].split() nset = int(ll[0]) icomp = int(ll[1]) ncomp = int(ll[2]) igrid = int(ll[3]) currentline +=1 print h[currentline] ll = h[currentline].split() ix = int(ll[0]) iy = int(ll[1]) currentline +=1 print h[currentline] ll = h[currentline].split() xs = float(ll[0]) ys = float(ll[1]) xe = float(ll[2]) ye = float(ll[3]) currentline +=1 print h[currentline] ll = h[currentline].split() nx = int(ll[0]) ny = int(ll[1]) klimit = int(ll[2]) dx = (xe - xs)/float(nx-1) xcen=ix*dx x = np.arange(nx)*dx + xs+xcen dy = (ye - ys)/float(ny-1) ycen=iy*dy y = np.arange(ny)*dy + ys+ycen print 'Reading ', inputfile print 'grid of ', nx,' x ', ny,' points' print 'ix ', ix,' iy ', iy c1r = np.zeros([ny,nx]) c1i = np.zeros([ny,nx]) c2r = np.zeros([ny,nx]) c2i = np.zeros([ny,nx]) for j in range(ny) : for i in range(nx) : currentline +=1 ll = h[currentline].split() c1r[j,i] = float(ll[0]) c1i[j,i] = float(ll[1]) c2r[j,i] = float(ll[2]) c2i[j,i] = float(ll[3]) return {'x':x,'y':y,'ri':c1r,'r2':c2r,'i1':c1i,'i2':c2i,'power':c1r**2 + c1i**2 + c2r**2 + c2i**2,'infos':infos} class GridMap(MapGrid) : def __init__(self,inputfile,skiplines=0,silent=False,closeColumn=False,Pickle=False,nodata=False,addPolar=True,addUV=True,addP1P2=True) : MapGrid.__init__(self) if Pickle : self.load(inputfile) return self.info['grd_file']=inputfile.strip() self.info['projection']='GRASP-GRD' self.info['ReferenceDocument']="LFI BEAMS DELIVERY: FORMAT SPECIFICATIONS\nM. Sandri\nPL-LFI-PST-TN-044, 1.0,July 2003" if inputfile.strip() == '' : return self.get_grd(inputfile,nodata=nodata)#,CounterPhi=CounterPhi,silent=silent,useCounterPhi=useCounterPhi) if closeColumn : self.right_close_col() for k in self.M.keys() : if k!='_row_values' and k!='_col_values' and k!='_row_index' and k!='_col_index' : for r in range(self.R['n']) : self.M[k][r][-1]=self.M[k][self.R['n']-1-r][0] if addPolar : self.M['colat']=np.rad2deg(np.arcsin((self.M['_col_values']**2+self.M['_row_values']**2)**0.5)) self.M['long']=np.mod(np.rad2deg(np.arctan2(self.M['_row_values'],self.M['_col_values'])),360.) if addUV : self.newmap(self.R['name'],unit='',value=self['_row_values']) self.newmap(self.C['name'],unit='',value=self['_col_values']) if addP1P2 : self.newmap('p1',unit='',value=self['r1']**2+self['i1']**2) self.newmap('p2',unit='',value=self['r2']**2+self['i2']**2) def end_of_header_marker(self) : """returns the string used as a marker of end of header""" return '++++' def formatGrasp(self) : return {'float':' %17.10e','int':' %11d'} def get_grd(self,inputfile,nodata=False) : """ reads a grd file Reference document: LFI BEAMS DELIVERY: FORMAT SPECIFICATIONS M. Sandri PL-LFI-PST-TN-044, 1.0,July 2003 Beware: the faster moving index is the column, in IDL readgrd inverts rows with columns to take in columns reading columns as they would be the slowest index. """ import sys import numpy as np import copy try : h=open(inputfile,'r').readlines() self.mapname=inputfile self.info['inputfile']=inputfile except : print "File %s not found"%inputfile return # removes the new line and other special characters for i in range(len(h)) : h[i] = h[i].split('\n')[0].split('\r')[0].strip() currentline=0 while(h[currentline].strip() != self.end_of_header_marker()) : currentline+=1 if currentline == len(h): print "Error marker %s not found" % self.end_of_header_marker() return h self.info['header']=copy.deepcopy(h[0:currentline]) currentline +=1 self.info['ktype']=int(h[currentline]) currentline +=1 print h[currentline].strip() ll = h[currentline].split() self.info['nset']=int(ll[0]) self.info['icomp']= int(ll[1]) self.info['ncomp']= int(ll[2]) self.info['igrid'] = int(ll[3]) currentline +=1 print h[currentline].strip() ll = h[currentline].split() self.info['ix'] = int(ll[0]) self.info['iy'] = int(ll[1]) currentline +=1 print h[currentline].strip() ll = h[currentline].split() self.info['xs'] = float(ll[0]) self.info['ys'] = float(ll[1]) self.info['xe'] = float(ll[2]) self.info['ye'] = float(ll[3]) currentline +=1 print h[currentline].strip() ll = h[currentline].split() self.info['nx'] = int(ll[0]) self.info['ny'] = int(ll[1]) self.info['klimit'] = int(ll[2]) #computed parameters # X are columns self.info['dx'] = (self.info['xe']-self.info['xs'])/float(self.info['nx']-1) self.info['xcen'] = self.info['dx']*self.info['ix'] self.set_col_scale('U','uv',np.arange(self.info['nx'])*self.info['dx']+ self.info['xs']+self.info['xcen']) # Y are rows self.info['dy'] = (self.info['ye']-self.info['ys'])/float(self.info['ny']-1) self.info['ycen'] = self.info['dy']*self.info['iy'] self.info['grd_file']=inputfile.strip() self.set_row_scale('V','uv',np.arange(self.info['ny'])*self.info['dy']+ self.info['ys']+self.info['ycen']) print 'Reading ', inputfile print 'grid of ', self.info['nx'],' x ', self.info['ny'],' points' if nodata : return # maps used for debug self.newmap('_line_index','') # compoenent maps self.newmap('r1','') self.newmap('i1','') self.newmap('r2','') self.newmap('i2','') self.newmap('power','') #self.newmap('rho1','') #self.newmap('rho2','') #self.newmap('phi1','') #self.newmap('phi2','') for r in range(self.R['n']) : for c in range(self.C['n']) : currentline +=1 self.M['_row_values'][r,c]=self.R['v'][r]*1. self.M['_row_index'][r,c]=r*1. self.M['_col_values'][r,c]=self.C['v'][c]*1. self.M['_col_index'][r,c]=c*1. self.M['_line_index'][r,c]=currentline*1. ll = h[currentline].split() self.M['r1'][r,c]=float(ll[0]) self.M['i1'][r,c]=float(ll[1]) self.M['r2'][r,c]=float(ll[2]) self.M['i2'][r,c]=float(ll[3]) self.M['power'][r,c]=float(ll[0])**2+float(ll[1])**2+float(ll[2])**2+float(ll[3])**2 #self.M['rho1'][r,c]=(float(ll[0])**2+float(ll[1])**2)**0.5 #self.M['rho2'][r,c]=(float(ll[2])**2+float(ll[3])**2)**0.5 #self.M['phi1'][r,c]=np.arctan2(float(ll[1]),float(ll[0])) #self.M['phi2'][r,c]=np.arctan2(float(ll[3]),float(ll[2])) def UV(self,Vectors=False) : """returns the U, V matrix if Vectors=True the values of R and C are returned """ if Vectors : return self.C['v'],self.R['v'] return self.M['_col_values'],self.M['_row_values'] def thetaUVphiUV(self,deg=True) : """returns the thetaUV, phiUV matrix """ return UV2thetaUVphiUV(self.M['_col_values'],self.M['_row_values'],deg=deg) def cart3d(self) : """returns the x,y,z matrices """ import numpy as np theta,phi=UV2thetaUVphiUV(self.M['_col_values'],self.M['_row_values'],deg=False) return np.cos(phi)*np.sin(theta),np.sin(phi)*np.sin(theta),np.cos(theta) def recompose_header(self,*arg,**karg) : "keywords: inhdr header in input" import copy fmtF=self.formatGrasp()['float'] fmtI=self.formatGrasp()['int'] hdr=None if karg.has_key('inhdr') : hdr=copy.deepcopy(karg['inhdr']) if hdr == None : hdr=copy.deepcopy(self.info['header']) if len(arg)>0 : if type(arg[0]) == type('') : hdr.append(arg[0]) else : for k in arg[0] : hdr.append(k) hdr.append('In the lines after the header marker defined by 4 "+" characters') hdr.append('line 1 : ktype') hdr.append('line 2 : nset icomp ncomp igrid') hdr.append('line 3 : ix iy') hdr.append('line 4 : xs ys xe ye') hdr.append('line 5 : nx ny klimit') hdr.append(self.end_of_header_marker()) ll='' ll+=fmtI%int(fmtI%int(self.info['ktype'])) hdr.append(ll.upper()) ll='' ll+=fmtI%int(self.info['nset']) ll+=fmtI%int(self.info['icomp']) ll+=fmtI%int(self.info['ncomp']) ll+=fmtI%int(self.info['igrid']) hdr.append(ll.upper()) ll='' ll+=fmtI%int(self.info['ix']) ll+=fmtI%int(self.info['iy']) hdr.append(ll.upper()) ll='' ll+=fmtF%float(self.info['xs']) ll+=fmtF%float(self.info['ys']) ll+=fmtF%float(self.info['xe']) ll+=fmtF%float(self.info['ye']) hdr.append(ll.upper()) ll='' ll+=fmtI%int(self.info['nx']) ll+=fmtI%int(self.info['ny']) ll+=fmtI%int(self.info['klimit']) hdr.append(ll.upper()) return hdr def recompose_map(self,*arg,**karg) : import copy fmtF=self.formatGrasp()['float'] fmtI=self.formatGrasp()['int'] if len(arg) > 0 : lst=copy.deepcopy(arg[0]) else : lst=[] for r in range(self.R['n']) : for c in range(self.C['n']) : ll = fmtF%(self.M['r1'][r,c]) ll += fmtF%(self.M['i1'][r,c]) ll += fmtF%(self.M['r2'][r,c]) ll += fmtF%(self.M['i2'][r,c]) lst.append(ll.upper()) return lst def FourColumnsPower(self,power1Name='p1',power2Name='p2',powerName='power') : "a FourColumns map has r1=sqrt(p1), i1=0, r2=sqrt(p2), i2=0" new=self.copy() new.info['ktype']=1 if self.M.has_key(power1Name) and self.M.has_key(power1Name) : new.info['ncomp']=2 new.M['r1']=self[power1Name]**0.5 new.M['r2']=self[power2Name]**0.5 new.M['i1']=self[power1Name]*0 new.M['i2']=self[power1Name]*0 elif self.M.has_key(power) : new.info['ncomp']=1 new.M['r1']=self[power]**0.5 new.M['r2']=self[power]*0 new.M['i1']=self[power]*0 new.M['i2']=self[power]*0 else : print "the map shall contain ",power1Name,power2Name," or ",powerName return return new def ipix2longcolat(self,nside,ipix,nest=False,deg=True) : """ converts an healpix ipix (ring) into index of phi and of theta in the matrix""" from healpy import pix2ang import numpy as np colat,_long=pix2ang(nside,ipix,nest=nest) if deg : return _long*180./np.pi,colat*180./np.pi return _long,colat def nside2ipix(self,nside,Reversed=False) : """ converts nside into a list of pixels (ring) reversed = True means the orderring is reversed """ return nside2ipix(nside,Reversed=Reversed) def healpix(self,nside,mapname='power',nest=False,Reversed=False,colatrange=None,returnAll=False,usePeriodicalInterpolator=True) : """converts to healpix or a stack of healpix maps of given nside colatrange=None , takes all the map colatrange=']a,b[' colatrange='[a,b[' colatrange=']a,b]' """ import numpy as np import healpy as H if colatrange==None : ipix=self.nside2ipix(nside,Reversed=Reversed) phiUV,thetaUV = self.ipix2longcolat(nside,ipix,deg=False) else : fact=180./np.pi prs=(colatrange.strip()).split(',') left = [prs[0][0],float(prs[0][1:])] right = [prs[1][-1],float(prs[1][0:-1])] NPEQ=12*nside/2 print left,right ipixmin=H.ang2pix(nside,left[1]/fact,0)-NPEQ ipixmax=H.ang2pix(nside,right[1]/fact,0)+NPEQ if ipixmin < 0 : ipixmin=0 if ipixmax > 12*nside**2-1 : ipixmax=12*nside**2 ipix = np.arange(ipixmin,ipixmax) colat,Long = H.pix2ang(nside,ipix) fl=np.ones(len(colat)) if left[1] == ']' : fl*=(left[1]/fact)<colat else : fl*=(left[1]/fact)<=colat if right[1] == '[' : fl*=colat<(right[1]/fact) else : fl*=colat<=(right[1]/fact) idx=np.where(fl)[0] ipix=ipix[idx] thetaUV=colat[idx] phiUV=Long[idx] fl=None idx=None colat=None Long=None U,V = thetaUVphiUV2UV(thetaUV,phiUV,deg=False) r1=self.bilinearXY(mapname,U,V) if returnAll : return r1,ipix,U,V,thetaUV,phiUV return r1,ipix def healpix_pixelArea(self,nside) : import numpy as np return 4*pi/(12.*65536.**2) def healpix_integral(self,nside,mapname,Reversed=False,colatrange=None) : import numpy as np h=self.healpix(nside,mapname=mapname,nest=False,Reversed=Reversed,colatrange=colatrange,returnAll=False) pixelaArea=4*np.pi/(12.*65536.**2) return sort(h[0]).sum()*pixelaArea def maximumRadius(self) : "returns the largest possible radius for an inscribed circle" a=self.C['v'].ptp()/2. b=self.R['v'].ptp()/2. return a if a < b else b def circularMask(self,*arg) : "returns a mask for the largest possible circle inscribed in the map" mask = np.array(self.radius()<=self.maximumRadius(),dtype='int') if len(arg) == 0 : return mask try : self.M[arg]*=mask except : print arg," not a valid name" def unitPixelArea(self) : import numpy as np return self.R['delta']*self.C['delta'] def radialIntegral(self,arg,method='planar,simpson',returnJustIntegral=False,asStruct=False,nRadii=51) : """ returns a radial integral from 0 up to the maximum possible radius divided in nRadii steps integration method given by "method" keyword, default 'raster,planar,trapezoidal' raster,planar,trapezoidal : raster over the rows of the grd map forcing to zero any sample outside the wanted ring planar,trapezoidal : uses direct trapezoidal integration planar,simpson : uses direct simpson integration some test shows the difference between planar,simpson and planar,trapezoidal is order of magnitudes larger than the difference between planar,trapezoidal and raster,planar,trapezoidal so default is planar,simpson """ import numpy as np if returnJustIntegral : mm=self.circularMask()*self[arg] if type(arg) == type('') else self.circularMask()*arg return self.simpson2d(mm) if 'planar,simpson' else self.trapz2d(mm) oradius=np.arange(nRadii)/float(nRadii-1)*self.maximumRadius() oradius[nRadii-1]=self.maximumRadius() _r=self.radius() mm=self[arg] if type(arg) == type('') else arg Itheta=np.zeros(len(oradius)) # if method=='raster,planar,trapezoidal' : for j in range(len(oradius)) : u=mm*1 u[np.where(_r>oradius[j])]=0. acc=np.zeros(u.shape[0]) for r in range(u.shape[0]) : x=u[r,1:] acc[r]=((x[1:]+x[0:-1])/2.).sum() Itheta[j]=(acc[1:]+acc[0:-1]).sum()/2. Itheta*=self.unitPixelArea() # elif method=='planar,trapezoidal' : for j in range(len(oradius)) : Itheta[j]=self.trapz2d(mm,outerCut=oradius[j]) # elif method=='planar,simpson' : for j in range(len(oradius)) : Itheta[j]=self.simpson2d(mm,outerCut=oradius[j]) # else : print "Unknown integration method %s"%method return None # if asStruct : return {'colat':oradius.mean(axis=1),'dIdcolat':Itheta[1:]-Itheta[0:-1],'Icolat':Itheta,'method':method} return oradius,Itheta[1:]-Itheta[0:-1],Itheta,method if __name__=='__main__' : import numpy as np print "load" h={} h['30']=GraspMap('mb/FB_LFI27_SWE_X_FM_1-0.cut',12) h['27']=GraspMap('outband/FB_LFI27_SWE_X_FM_1-0_27.cut',0) h['33']=GraspMap('outband/FB_LFI27_SWE_X_FM_1-0_33.cut',0) lambda0=1/30. lambda1=1/27. WL=np.array([1/27.,1/30.]) deltaWL=WL[1]-WL[0] print "parameters" PARS={} for k in ['r1','i1','r2','i2'] : A=h['27'].M[k]*1 B=h['30'].M[k]*1 A.shape=A.shape[0]*A.shape[1] B.shape=B.shape[0]*B.shape[1] # PARS[k]=np.polyfit(WL,np.array([A,B]),1) PARS[k]=np.array([(B-A)/deltaWL,A]) C=h['33'].M['power']*1 C.shape=C.shape[0]*C.shape[1] print "lambda interpolate" ipt = {} for nu in [27,28,29,30,31,32,33] : ipt[str(nu)] ={} for k in ['r1','i1','r2','i2'] : #ipt[str(nu)][k]=np.polyval(PARS[k],1/float(nu)) ipt[str(nu)][k]=PARS[k][0]*(1/float(nu)-WL[0])+PARS[k][1] ipt[str(nu)]['power']=ipt[str(nu)]['r1']**2+ipt[str(nu)]['i1']**2+ipt[str(nu)]['r2']**2+ipt[str(nu)]['i2']**2 print nu,1/float(nu),10*np.log10(ipt[str(nu)]['power'].max()) print 10*np.log10(C.max()) R=h['27'].M['power']*1 ; R.shape=R.shape[0]*R.shape[1] G=h['30'].M['power']*1 ; G.shape=G.shape[0]*G.shape[1] B=h['33'].M['power']*1 ; B.shape=B.shape[0]*B.shape[1] I=np.arange(len(R))*3 sys.exit() from matplotlib import pyplot as plt plt.close('all') plt.figure() plt.plot(I-3./(33.-27.),10*np.log10(R),'r.') plt.plot(I+0./(33.-27.),10*np.log10(G),'g.') plt.plot(I+3./(33.-27.),10*np.log10(B),'b.') plt.show()
gpl-2.0
huobaowangxi/scikit-learn
sklearn/cluster/tests/test_k_means.py
132
25860
"""Testing for K-means""" import sys import numpy as np from scipy import sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_warns from sklearn.utils.testing import if_not_mac_os from sklearn.utils.validation import DataConversionWarning from sklearn.utils.extmath import row_norms from sklearn.metrics.cluster import v_measure_score from sklearn.cluster import KMeans, k_means from sklearn.cluster import MiniBatchKMeans from sklearn.cluster.k_means_ import _labels_inertia from sklearn.cluster.k_means_ import _mini_batch_step from sklearn.datasets.samples_generator import make_blobs from sklearn.externals.six.moves import cStringIO as StringIO # non centered, sparse centers to check the centers = np.array([ [0.0, 5.0, 0.0, 0.0, 0.0], [1.0, 1.0, 4.0, 0.0, 0.0], [1.0, 0.0, 0.0, 5.0, 1.0], ]) n_samples = 100 n_clusters, n_features = centers.shape X, true_labels = make_blobs(n_samples=n_samples, centers=centers, cluster_std=1., random_state=42) X_csr = sp.csr_matrix(X) def test_kmeans_dtype(): rnd = np.random.RandomState(0) X = rnd.normal(size=(40, 2)) X = (X * 10).astype(np.uint8) km = KMeans(n_init=1).fit(X) pred_x = assert_warns(DataConversionWarning, km.predict, X) assert_array_equal(km.labels_, pred_x) def test_labels_assignment_and_inertia(): # pure numpy implementation as easily auditable reference gold # implementation rng = np.random.RandomState(42) noisy_centers = centers + rng.normal(size=centers.shape) labels_gold = - np.ones(n_samples, dtype=np.int) mindist = np.empty(n_samples) mindist.fill(np.infty) for center_id in range(n_clusters): dist = np.sum((X - noisy_centers[center_id]) ** 2, axis=1) labels_gold[dist < mindist] = center_id mindist = np.minimum(dist, mindist) inertia_gold = mindist.sum() assert_true((mindist >= 0.0).all()) assert_true((labels_gold != -1).all()) # perform label assignment using the dense array input x_squared_norms = (X ** 2).sum(axis=1) labels_array, inertia_array = _labels_inertia( X, x_squared_norms, noisy_centers) assert_array_almost_equal(inertia_array, inertia_gold) assert_array_equal(labels_array, labels_gold) # perform label assignment using the sparse CSR input x_squared_norms_from_csr = row_norms(X_csr, squared=True) labels_csr, inertia_csr = _labels_inertia( X_csr, x_squared_norms_from_csr, noisy_centers) assert_array_almost_equal(inertia_csr, inertia_gold) assert_array_equal(labels_csr, labels_gold) def test_minibatch_update_consistency(): # Check that dense and sparse minibatch update give the same results rng = np.random.RandomState(42) old_centers = centers + rng.normal(size=centers.shape) new_centers = old_centers.copy() new_centers_csr = old_centers.copy() counts = np.zeros(new_centers.shape[0], dtype=np.int32) counts_csr = np.zeros(new_centers.shape[0], dtype=np.int32) x_squared_norms = (X ** 2).sum(axis=1) x_squared_norms_csr = row_norms(X_csr, squared=True) buffer = np.zeros(centers.shape[1], dtype=np.double) buffer_csr = np.zeros(centers.shape[1], dtype=np.double) # extract a small minibatch X_mb = X[:10] X_mb_csr = X_csr[:10] x_mb_squared_norms = x_squared_norms[:10] x_mb_squared_norms_csr = x_squared_norms_csr[:10] # step 1: compute the dense minibatch update old_inertia, incremental_diff = _mini_batch_step( X_mb, x_mb_squared_norms, new_centers, counts, buffer, 1, None, random_reassign=False) assert_greater(old_inertia, 0.0) # compute the new inertia on the same batch to check that it decreased labels, new_inertia = _labels_inertia( X_mb, x_mb_squared_norms, new_centers) assert_greater(new_inertia, 0.0) assert_less(new_inertia, old_inertia) # check that the incremental difference computation is matching the # final observed value effective_diff = np.sum((new_centers - old_centers) ** 2) assert_almost_equal(incremental_diff, effective_diff) # step 2: compute the sparse minibatch update old_inertia_csr, incremental_diff_csr = _mini_batch_step( X_mb_csr, x_mb_squared_norms_csr, new_centers_csr, counts_csr, buffer_csr, 1, None, random_reassign=False) assert_greater(old_inertia_csr, 0.0) # compute the new inertia on the same batch to check that it decreased labels_csr, new_inertia_csr = _labels_inertia( X_mb_csr, x_mb_squared_norms_csr, new_centers_csr) assert_greater(new_inertia_csr, 0.0) assert_less(new_inertia_csr, old_inertia_csr) # check that the incremental difference computation is matching the # final observed value effective_diff = np.sum((new_centers_csr - old_centers) ** 2) assert_almost_equal(incremental_diff_csr, effective_diff) # step 3: check that sparse and dense updates lead to the same results assert_array_equal(labels, labels_csr) assert_array_almost_equal(new_centers, new_centers_csr) assert_almost_equal(incremental_diff, incremental_diff_csr) assert_almost_equal(old_inertia, old_inertia_csr) assert_almost_equal(new_inertia, new_inertia_csr) def _check_fitted_model(km): # check that the number of clusters centers and distinct labels match # the expectation centers = km.cluster_centers_ assert_equal(centers.shape, (n_clusters, n_features)) labels = km.labels_ assert_equal(np.unique(labels).shape[0], n_clusters) # check that the labels assignment are perfect (up to a permutation) assert_equal(v_measure_score(true_labels, labels), 1.0) assert_greater(km.inertia_, 0.0) # check error on dataset being too small assert_raises(ValueError, km.fit, [[0., 1.]]) def test_k_means_plus_plus_init(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42).fit(X) _check_fitted_model(km) def test_k_means_new_centers(): # Explore the part of the code where a new center is reassigned X = np.array([[0, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 1, 0, 0]]) labels = [0, 1, 2, 1, 1, 2] bad_centers = np.array([[+0, 1, 0, 0], [.2, 0, .2, .2], [+0, 0, 0, 0]]) km = KMeans(n_clusters=3, init=bad_centers, n_init=1, max_iter=10, random_state=1) for this_X in (X, sp.coo_matrix(X)): km.fit(this_X) this_labels = km.labels_ # Reorder the labels so that the first instance is in cluster 0, # the second in cluster 1, ... this_labels = np.unique(this_labels, return_index=True)[1][this_labels] np.testing.assert_array_equal(this_labels, labels) def _has_blas_lib(libname): from numpy.distutils.system_info import get_info return libname in get_info('blas_opt').get('libraries', []) @if_not_mac_os() def test_k_means_plus_plus_init_2_jobs(): if _has_blas_lib('openblas'): raise SkipTest('Multi-process bug with OpenBLAS (see issue #636)') km = KMeans(init="k-means++", n_clusters=n_clusters, n_jobs=2, random_state=42).fit(X) _check_fitted_model(km) def test_k_means_precompute_distances_flag(): # check that a warning is raised if the precompute_distances flag is not # supported km = KMeans(precompute_distances="wrong") assert_raises(ValueError, km.fit, X) def test_k_means_plus_plus_init_sparse(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42) km.fit(X_csr) _check_fitted_model(km) def test_k_means_random_init(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42) km.fit(X) _check_fitted_model(km) def test_k_means_random_init_sparse(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42) km.fit(X_csr) _check_fitted_model(km) def test_k_means_plus_plus_init_not_precomputed(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42, precompute_distances=False).fit(X) _check_fitted_model(km) def test_k_means_random_init_not_precomputed(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42, precompute_distances=False).fit(X) _check_fitted_model(km) def test_k_means_perfect_init(): km = KMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1) km.fit(X) _check_fitted_model(km) def test_k_means_n_init(): rnd = np.random.RandomState(0) X = rnd.normal(size=(40, 2)) # two regression tests on bad n_init argument # previous bug: n_init <= 0 threw non-informative TypeError (#3858) assert_raises_regexp(ValueError, "n_init", KMeans(n_init=0).fit, X) assert_raises_regexp(ValueError, "n_init", KMeans(n_init=-1).fit, X) def test_k_means_fortran_aligned_data(): # Check the KMeans will work well, even if X is a fortran-aligned data. X = np.asfortranarray([[0, 0], [0, 1], [0, 1]]) centers = np.array([[0, 0], [0, 1]]) labels = np.array([0, 1, 1]) km = KMeans(n_init=1, init=centers, precompute_distances=False, random_state=42) km.fit(X) assert_array_equal(km.cluster_centers_, centers) assert_array_equal(km.labels_, labels) def test_mb_k_means_plus_plus_init_dense_array(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42) mb_k_means.fit(X) _check_fitted_model(mb_k_means) def test_mb_kmeans_verbose(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: mb_k_means.fit(X) finally: sys.stdout = old_stdout def test_mb_k_means_plus_plus_init_sparse_matrix(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42) mb_k_means.fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_init_with_large_k(): mb_k_means = MiniBatchKMeans(init='k-means++', init_size=10, n_clusters=20) # Check that a warning is raised, as the number clusters is larger # than the init_size assert_warns(RuntimeWarning, mb_k_means.fit, X) def test_minibatch_k_means_random_init_dense_array(): # increase n_init to make random init stable enough mb_k_means = MiniBatchKMeans(init="random", n_clusters=n_clusters, random_state=42, n_init=10).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_k_means_random_init_sparse_csr(): # increase n_init to make random init stable enough mb_k_means = MiniBatchKMeans(init="random", n_clusters=n_clusters, random_state=42, n_init=10).fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_k_means_perfect_init_dense_array(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_k_means_init_multiple_runs_with_explicit_centers(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=10) assert_warns(RuntimeWarning, mb_k_means.fit, X) def test_minibatch_k_means_perfect_init_sparse_csr(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1).fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_sensible_reassign_fit(): # check if identical initial clusters are reassigned # also a regression test for when there are more desired reassignments than # samples. zeroed_X, true_labels = make_blobs(n_samples=100, centers=5, cluster_std=1., random_state=42) zeroed_X[::2, :] = 0 mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=10, random_state=42, init="random") mb_k_means.fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) # do the same with batch-size > X.shape[0] (regression test) mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=201, random_state=42, init="random") mb_k_means.fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) def test_minibatch_sensible_reassign_partial_fit(): zeroed_X, true_labels = make_blobs(n_samples=n_samples, centers=5, cluster_std=1., random_state=42) zeroed_X[::2, :] = 0 mb_k_means = MiniBatchKMeans(n_clusters=20, random_state=42, init="random") for i in range(100): mb_k_means.partial_fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) def test_minibatch_reassign(): # Give a perfect initialization, but a large reassignment_ratio, # as a result all the centers should be reassigned and the model # should not longer be good for this_X in (X, X_csr): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, random_state=42) mb_k_means.fit(this_X) score_before = mb_k_means.score(this_X) try: old_stdout = sys.stdout sys.stdout = StringIO() # Turn on verbosity to smoke test the display code _mini_batch_step(this_X, (X ** 2).sum(axis=1), mb_k_means.cluster_centers_, mb_k_means.counts_, np.zeros(X.shape[1], np.double), False, distances=np.zeros(X.shape[0]), random_reassign=True, random_state=42, reassignment_ratio=1, verbose=True) finally: sys.stdout = old_stdout assert_greater(score_before, mb_k_means.score(this_X)) # Give a perfect initialization, with a small reassignment_ratio, # no center should be reassigned for this_X in (X, X_csr): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, init=centers.copy(), random_state=42, n_init=1) mb_k_means.fit(this_X) clusters_before = mb_k_means.cluster_centers_ # Turn on verbosity to smoke test the display code _mini_batch_step(this_X, (X ** 2).sum(axis=1), mb_k_means.cluster_centers_, mb_k_means.counts_, np.zeros(X.shape[1], np.double), False, distances=np.zeros(X.shape[0]), random_reassign=True, random_state=42, reassignment_ratio=1e-15) assert_array_almost_equal(clusters_before, mb_k_means.cluster_centers_) def test_minibatch_with_many_reassignments(): # Test for the case that the number of clusters to reassign is bigger # than the batch_size n_samples = 550 rnd = np.random.RandomState(42) X = rnd.uniform(size=(n_samples, 10)) # Check that the fit works if n_clusters is bigger than the batch_size. # Run the test with 550 clusters and 550 samples, because it turned out # that this values ensure that the number of clusters to reassign # is always bigger than the batch_size n_clusters = 550 MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, init_size=n_samples, random_state=42).fit(X) def test_sparse_mb_k_means_callable_init(): def test_init(X, k, random_state): return centers # Small test to check that giving the wrong number of centers # raises a meaningful error assert_raises(ValueError, MiniBatchKMeans(init=test_init, random_state=42).fit, X_csr) # Now check that the fit actually works mb_k_means = MiniBatchKMeans(n_clusters=3, init=test_init, random_state=42).fit(X_csr) _check_fitted_model(mb_k_means) def test_mini_batch_k_means_random_init_partial_fit(): km = MiniBatchKMeans(n_clusters=n_clusters, init="random", random_state=42) # use the partial_fit API for online learning for X_minibatch in np.array_split(X, 10): km.partial_fit(X_minibatch) # compute the labeling on the complete dataset labels = km.predict(X) assert_equal(v_measure_score(true_labels, labels), 1.0) def test_minibatch_default_init_size(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, batch_size=10, random_state=42, n_init=1).fit(X) assert_equal(mb_k_means.init_size_, 3 * mb_k_means.batch_size) _check_fitted_model(mb_k_means) def test_minibatch_tol(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=10, random_state=42, tol=.01).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_set_init_size(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, init_size=666, random_state=42, n_init=1).fit(X) assert_equal(mb_k_means.init_size, 666) assert_equal(mb_k_means.init_size_, n_samples) _check_fitted_model(mb_k_means) def test_k_means_invalid_init(): km = KMeans(init="invalid", n_init=1, n_clusters=n_clusters) assert_raises(ValueError, km.fit, X) def test_mini_match_k_means_invalid_init(): km = MiniBatchKMeans(init="invalid", n_init=1, n_clusters=n_clusters) assert_raises(ValueError, km.fit, X) def test_k_means_copyx(): # Check if copy_x=False returns nearly equal X after de-centering. my_X = X.copy() km = KMeans(copy_x=False, n_clusters=n_clusters, random_state=42) km.fit(my_X) _check_fitted_model(km) # check if my_X is centered assert_array_almost_equal(my_X, X) def test_k_means_non_collapsed(): # Check k_means with a bad initialization does not yield a singleton # Starting with bad centers that are quickly ignored should not # result in a repositioning of the centers to the center of mass that # would lead to collapsed centers which in turns make the clustering # dependent of the numerical unstabilities. my_X = np.array([[1.1, 1.1], [0.9, 1.1], [1.1, 0.9], [0.9, 1.1]]) array_init = np.array([[1.0, 1.0], [5.0, 5.0], [-5.0, -5.0]]) km = KMeans(init=array_init, n_clusters=3, random_state=42, n_init=1) km.fit(my_X) # centers must not been collapsed assert_equal(len(np.unique(km.labels_)), 3) centers = km.cluster_centers_ assert_true(np.linalg.norm(centers[0] - centers[1]) >= 0.1) assert_true(np.linalg.norm(centers[0] - centers[2]) >= 0.1) assert_true(np.linalg.norm(centers[1] - centers[2]) >= 0.1) def test_predict(): km = KMeans(n_clusters=n_clusters, random_state=42) km.fit(X) # sanity check: predict centroid labels pred = km.predict(km.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # sanity check: re-predict labeling for training set samples pred = km.predict(X) assert_array_equal(pred, km.labels_) # re-predict labels for training set using fit_predict pred = km.fit_predict(X) assert_array_equal(pred, km.labels_) def test_score(): km1 = KMeans(n_clusters=n_clusters, max_iter=1, random_state=42) s1 = km1.fit(X).score(X) km2 = KMeans(n_clusters=n_clusters, max_iter=10, random_state=42) s2 = km2.fit(X).score(X) assert_greater(s2, s1) def test_predict_minibatch_dense_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, random_state=40).fit(X) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # sanity check: re-predict labeling for training set samples pred = mb_k_means.predict(X) assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_predict_minibatch_kmeanspp_init_sparse_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init='k-means++', n_init=10).fit(X_csr) # sanity check: re-predict labeling for training set samples assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # check that models trained on sparse input also works for dense input at # predict time assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_predict_minibatch_random_init_sparse_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=10).fit(X_csr) # sanity check: re-predict labeling for training set samples assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # check that models trained on sparse input also works for dense input at # predict time assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_input_dtypes(): X_list = [[0, 0], [10, 10], [12, 9], [-1, 1], [2, 0], [8, 10]] X_int = np.array(X_list, dtype=np.int32) X_int_csr = sp.csr_matrix(X_int) init_int = X_int[:2] fitted_models = [ KMeans(n_clusters=2).fit(X_list), KMeans(n_clusters=2).fit(X_int), KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_list), KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_int), # mini batch kmeans is very unstable on such a small dataset hence # we use many inits MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_list), MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int), MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int_csr), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_list), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_int), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_int_csr), ] expected_labels = [0, 1, 1, 0, 0, 1] scores = np.array([v_measure_score(expected_labels, km.labels_) for km in fitted_models]) assert_array_equal(scores, np.ones(scores.shape[0])) def test_transform(): km = KMeans(n_clusters=n_clusters) km.fit(X) X_new = km.transform(km.cluster_centers_) for c in range(n_clusters): assert_equal(X_new[c, c], 0) for c2 in range(n_clusters): if c != c2: assert_greater(X_new[c, c2], 0) def test_fit_transform(): X1 = KMeans(n_clusters=3, random_state=51).fit(X).transform(X) X2 = KMeans(n_clusters=3, random_state=51).fit_transform(X) assert_array_equal(X1, X2) def test_n_init(): # Check that increasing the number of init increases the quality n_runs = 5 n_init_range = [1, 5, 10] inertia = np.zeros((len(n_init_range), n_runs)) for i, n_init in enumerate(n_init_range): for j in range(n_runs): km = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, random_state=j).fit(X) inertia[i, j] = km.inertia_ inertia = inertia.mean(axis=1) failure_msg = ("Inertia %r should be decreasing" " when n_init is increasing.") % list(inertia) for i in range(len(n_init_range) - 1): assert_true(inertia[i] >= inertia[i + 1], failure_msg) def test_k_means_function(): # test calling the k_means function directly # catch output old_stdout = sys.stdout sys.stdout = StringIO() try: cluster_centers, labels, inertia = k_means(X, n_clusters=n_clusters, verbose=True) finally: sys.stdout = old_stdout centers = cluster_centers assert_equal(centers.shape, (n_clusters, n_features)) labels = labels assert_equal(np.unique(labels).shape[0], n_clusters) # check that the labels assignment are perfect (up to a permutation) assert_equal(v_measure_score(true_labels, labels), 1.0) assert_greater(inertia, 0.0) # check warning when centers are passed assert_warns(RuntimeWarning, k_means, X, n_clusters=n_clusters, init=centers) # to many clusters desired assert_raises(ValueError, k_means, X, n_clusters=X.shape[0] + 1)
bsd-3-clause
amacd31/bom_data_parser
setup.py
1
1476
import os from io import open import versioneer from setuptools import setup here = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = ''.join([ line for line in f.readlines() if 'travis-ci' not in line ]) setup( name='bom_data_parser', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), description='Basic library for parsing data formats supplied by the Australian Bureau of Meteorology.', long_description=long_description, author='Andrew MacDonald', author_email='[email protected]', license='BSD', url='https://github.com/amacd31/bom_data_parser', install_requires= [ 'numpy', 'pandas', 'beautifulsoup4', 'lxml', ], packages = ['bom_data_parser'], test_suite = 'nose.collector', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'Topic :: Software Development :: Build Tools', 'Topic :: Software Development :: Libraries :: Python Modules', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', ], )
bsd-3-clause
thanhquanky/dejavu
run_tests.py
16
6040
from dejavu.testing import * from dejavu import Dejavu from optparse import OptionParser import matplotlib.pyplot as plt import time import shutil usage = "usage: %prog [options] TESTING_AUDIOFOLDER" parser = OptionParser(usage=usage, version="%prog 1.1") parser.add_option("--secs", action="store", dest="secs", default=5, type=int, help='Number of seconds starting from zero to test') parser.add_option("--results", action="store", dest="results_folder", default="./dejavu_test_results", help='Sets the path where the results are saved') parser.add_option("--temp", action="store", dest="temp_folder", default="./dejavu_temp_testing_files", help='Sets the path where the temp files are saved') parser.add_option("--log", action="store_true", dest="log", default=True, help='Enables logging') parser.add_option("--silent", action="store_false", dest="silent", default=False, help='Disables printing') parser.add_option("--log-file", dest="log_file", default="results-compare.log", help='Set the path and filename of the log file') parser.add_option("--padding", action="store", dest="padding", default=10, type=int, help='Number of seconds to pad choice of place to test from') parser.add_option("--seed", action="store", dest="seed", default=None, type=int, help='Random seed') options, args = parser.parse_args() test_folder = args[0] # set random seed if set by user set_seed(options.seed) # ensure results folder exists try: os.stat(options.results_folder) except: os.mkdir(options.results_folder) # set logging if options.log: logging.basicConfig(filename=options.log_file, level=logging.DEBUG) # set test seconds test_seconds = ['%dsec' % i for i in range(1, options.secs + 1, 1)] # generate testing files for i in range(1, options.secs + 1, 1): generate_test_files(test_folder, options.temp_folder, i, padding=options.padding) # scan files log_msg("Running Dejavu fingerprinter on files in %s..." % test_folder, log=options.log, silent=options.silent) tm = time.time() djv = DejavuTest(options.temp_folder, test_seconds) log_msg("finished obtaining results from dejavu in %s" % (time.time() - tm), log=options.log, silent=options.silent) tests = 1 # djv n_secs = len(test_seconds) # set result variables -> 4d variables all_match_counter = [[[0 for x in xrange(tests)] for x in xrange(3)] for x in xrange(n_secs)] all_matching_times_counter = [[[0 for x in xrange(tests)] for x in xrange(2)] for x in xrange(n_secs)] all_query_duration = [[[0 for x in xrange(tests)] for x in xrange(djv.n_lines)] for x in xrange(n_secs)] all_match_confidence = [[[0 for x in xrange(tests)] for x in xrange(djv.n_lines)] for x in xrange(n_secs)] # group results by seconds for line in range(0, djv.n_lines): for col in range(0, djv.n_columns): # for dejavu all_query_duration[col][line][0] = djv.result_query_duration[line][col] all_match_confidence[col][line][0] = djv.result_match_confidence[line][col] djv_match_result = djv.result_match[line][col] if djv_match_result == 'yes': all_match_counter[col][0][0] += 1 elif djv_match_result == 'no': all_match_counter[col][1][0] += 1 else: all_match_counter[col][2][0] += 1 djv_match_acc = djv.result_matching_times[line][col] if djv_match_acc == 0 and djv_match_result == 'yes': all_matching_times_counter[col][0][0] += 1 elif djv_match_acc != 0: all_matching_times_counter[col][1][0] += 1 # create plots djv.create_plots('Confidence', all_match_confidence, options.results_folder) djv.create_plots('Query duration', all_query_duration, options.results_folder) for sec in range(0, n_secs): ind = np.arange(3) # width = 0.25 # the width of the bars fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlim([-1 * width, 2.75]) means_dvj = [round(x[0] * 100 / djv.n_lines, 1) for x in all_match_counter[sec]] rects1 = ax.bar(ind, means_dvj, width, color='r') # add some ax.set_ylabel('Matching Percentage') ax.set_title('%s Matching Percentage' % test_seconds[sec]) ax.set_xticks(ind + width) labels = ['yes','no','invalid'] ax.set_xticklabels( labels ) box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.75, box.height]) #ax.legend((rects1[0]), ('Dejavu'), loc='center left', bbox_to_anchor=(1, 0.5)) autolabeldoubles(rects1,ax) plt.grid() fig_name = os.path.join(options.results_folder, "matching_perc_%s.png" % test_seconds[sec]) fig.savefig(fig_name) for sec in range(0, n_secs): ind = np.arange(2) # width = 0.25 # the width of the bars fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlim([-1*width, 1.75]) div = all_match_counter[sec][0][0] if div == 0 : div = 1000000 means_dvj = [round(x[0] * 100 / div, 1) for x in all_matching_times_counter[sec]] rects1 = ax.bar(ind, means_dvj, width, color='r') # add some ax.set_ylabel('Matching Accuracy') ax.set_title('%s Matching Times Accuracy' % test_seconds[sec]) ax.set_xticks(ind + width) labels = ['yes','no'] ax.set_xticklabels( labels ) box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.75, box.height]) #ax.legend( (rects1[0]), ('Dejavu'), loc='center left', bbox_to_anchor=(1, 0.5)) autolabeldoubles(rects1,ax) plt.grid() fig_name = os.path.join(options.results_folder, "matching_acc_%s.png" % test_seconds[sec]) fig.savefig(fig_name) # remove temporary folder shutil.rmtree(options.temp_folder)
mit
mstritt/orbit-image-analysis
src/main/python/deeplearn/model.py
1
16297
from datetime import datetime import os import sys import time import math import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from network import * from utils import ImageReader, decode_labels, inv_preprocess, prepare_label, write_log """ This script trains or evaluates the model on augmented PASCAL VOC 2012 dataset. The training set contains 10581 training images. The validation set contains 1449 validation images. Training: 'poly' learning rate different learning rates for different layers """ IMG_MEAN = np.array((104.00698793,116.66876762,122.67891434), dtype=np.float32) class Model(object): def __init__(self, sess, conf): self.sess = sess self.conf = conf # train def train(self): self.train_setup() self.sess.run(tf.global_variables_initializer()) # Load the pre-trained model if provided if self.conf.pretrain_file is not None: self.load(self.loader, self.conf.pretrain_file) # Start queue threads. threads = tf.train.start_queue_runners(coord=self.coord, sess=self.sess) # log_var for tensorboard log_var = tf.Variable(0.0) summary_loss = [tf.summary.scalar("loss", log_var)] write_op = tf.summary.merge(summary_loss) #write_op = tf.summary.merge_all() #self.sess.run(tf.global_variables_initializer()) # Train! for step in range(self.conf.num_steps+1): start_time = time.time() feed_dict = { self.curr_step : step } if step % self.conf.save_interval == 0: loss_value, images, labels, preds, summary, _ = self.sess.run( [self.reduced_loss, self.image_batch, self.label_batch, self.pred, self.total_summary, self.train_op], feed_dict=feed_dict) self.summary_writer.add_summary(summary, step) self.save(self.saver, step) else: loss_value, _ = self.sess.run([self.reduced_loss, self.train_op], feed_dict=feed_dict) duration = time.time() - start_time print('step {:d} \t loss = {:.3f}, ({:.3f} sec/step)'.format(step, loss_value, duration)) write_log('{:d}, {:.3f}'.format(step, loss_value), self.conf.logfile) #write logs for tensorboard summary2 = self.sess.run(write_op, {log_var: loss_value}) self.summary_writer.add_summary(summary2, step) #self.summary_writer.flush() # finish self.coord.request_stop() self.coord.join(threads) # evaluate def test(self): self.test_setup() self.sess.run(tf.global_variables_initializer()) self.sess.run(tf.local_variables_initializer()) # load checkpoint checkpointfile = self.conf.modeldir+ '/model.ckpt-' + str(self.conf.valid_step) self.load(self.loader, checkpointfile) # Start queue threads. threads = tf.train.start_queue_runners(coord=self.coord, sess=self.sess) areasOverlap = np.zeros(self.conf.valid_num_steps, np.float32) areasPredicted = np.zeros(self.conf.valid_num_steps, np.float32) areasGtObj = np.zeros(self.conf.valid_num_steps, np.float32) # Test! for step in range(self.conf.valid_num_steps): preds, _, _, areaOverlap, areaGTObj, areaPredicted, conv_out, conv_weights = self.sess.run([self.pred, self.accu_update_op, self.mIou_update_op, self.areaOverlap, self.areaGTObj, self.areaPredicted, tf.get_collection('conv_output'), tf.get_collection('conv_weights')]) if(self.conf.create_plots): print('create plot '+ plot_name) self.plot_conv_output(conv_out[i], plot_name) ''' for i in range(len(conv_out)): plot_name='step_{}_conv_{}'.format(step, i) print('create plot '+ plot_name) self.plot_conv_output(conv_out[i], plot_name) for i in range(len(conv_weights)): plot_name='step_{}_weights_{}'.format(step, i) print('create plot '+ plot_name) self.plot_conv_weights(conv_weights[i], plot_name) ''' #Save conv imaages areasOverlap[step] = areaOverlap areasGtObj[step] = areaGTObj areasPredicted[step] = areaPredicted print('step {:d}'.format(step)) print('\tareaOverlap: {:.0f}'.format(areaOverlap)) print('\tareaGTObj: {:.0f}'.format(areaGTObj)) print('\tareaPredicted: {:.0f}'.format(areaPredicted)) print('Pixel Accuracy: {:.3f}'.format(self.accu.eval(session=self.sess))) print('Mean IoU: {:.3f}'.format(self.mIoU.eval(session=self.sess))) tp = ((areasOverlap[areasGtObj>0.0] / areasGtObj[areasGtObj>0]) >= 0.5).sum() fp = ((areasOverlap[areasGtObj>0.0] / areasGtObj[areasGtObj>0]) < 0.5).sum() tn = (areasGtObj[areasPredicted <= 0] <= 0).sum() fn = (areasGtObj[areasPredicted > 0] <= 0).sum() print('tp', tp, 'fp', fp, 'tn', tn, 'fn', fn) precision = tp/(tp + fp); recall = tp/(tp + fn); score = (2*precision*recall)/(precision+recall); print('precision', precision, 'recall', recall, 'score', score) self.coord.request_stop() self.coord.join(threads) def train_setup(self): tf.set_random_seed(self.conf.random_seed) # Create queue coordinator. self.coord = tf.train.Coordinator() # Input size input_size = (self.conf.input_height, self.conf.input_width) # Load reader with tf.name_scope("create_inputs"): reader = ImageReader( self.conf.data_dir, self.conf.data_list, input_size, self.conf.random_scale, self.conf.random_mirror, self.conf.ignore_label, self.coord) self.image_batch, self.label_batch = reader.dequeue(self.conf.batch_size) self.image_batch = tf.identity( self.image_batch, name='input_batch' ) self.image_batch -= IMG_MEAN # Create network if self.conf.encoder_name not in ['res101', 'res50', 'deeplab']: print('encoder_name ERROR!') print("Please input: res101, res50, or deeplab") sys.exit(-1) elif self.conf.encoder_name == 'deeplab': net = Deeplab_v2(self.image_batch, self.conf.num_classes, True) # Variables that load from pre-trained model. restore_var = [v for v in tf.global_variables() if 'fc' not in v.name] # Trainable Variables all_trainable = tf.trainable_variables() # Fine-tune part encoder_trainable = [v for v in all_trainable if 'fc' not in v.name] # lr * 1.0 # Decoder part decoder_trainable = [v for v in all_trainable if 'fc' in v.name] else: net = ResNet_segmentation(self.image_batch, self.conf.num_classes, True, self.conf.encoder_name) # Variables that load from pre-trained model. restore_var = [v for v in tf.global_variables() if 'resnet_v1' in v.name] # Trainable Variables all_trainable = tf.trainable_variables() # Fine-tune part encoder_trainable = [v for v in all_trainable if 'resnet_v1' in v.name] # lr * 1.0 # Decoder part decoder_trainable = [v for v in all_trainable if 'decoder' in v.name] decoder_w_trainable = [v for v in decoder_trainable if 'weights' in v.name or 'gamma' in v.name] # lr * 10.0 decoder_b_trainable = [v for v in decoder_trainable if 'biases' in v.name or 'beta' in v.name] # lr * 20.0 # Check assert(len(all_trainable) == len(decoder_trainable) + len(encoder_trainable)) assert(len(decoder_trainable) == len(decoder_w_trainable) + len(decoder_b_trainable)) # Network raw output raw_output = net.outputs # [batch_size, h, w, 21] # Output size output_shape = tf.shape(raw_output) output_size = (output_shape[1], output_shape[2]) # Groud Truth: ignoring all labels greater or equal than n_classes label_proc = prepare_label(self.label_batch, output_size, num_classes=self.conf.num_classes, one_hot=False) raw_gt = tf.reshape(label_proc, [-1,]) indices = tf.squeeze(tf.where(tf.less_equal(raw_gt, self.conf.num_classes - 1)), 1) gt = tf.cast(tf.gather(raw_gt, indices), tf.int32) raw_prediction = tf.reshape(raw_output, [-1, self.conf.num_classes]) prediction = tf.gather(raw_prediction, indices) # Pixel-wise softmax_cross_entropy loss loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=prediction, labels=gt) # L2 regularization l2_losses = [self.conf.weight_decay * tf.nn.l2_loss(v) for v in all_trainable if 'weights' in v.name] # Loss function self.reduced_loss = tf.reduce_mean(loss) + tf.add_n(l2_losses) # Define optimizers # 'poly' learning rate base_lr = tf.constant(self.conf.learning_rate) self.curr_step = tf.placeholder(dtype=tf.float32, shape=()) learning_rate = tf.scalar_mul(base_lr, tf.pow((1 - self.curr_step / self.conf.num_steps), self.conf.power)) # We have several optimizers here in order to handle the different lr_mult # which is a kind of parameters in Caffe. This controls the actual lr for each # layer. opt_encoder = tf.train.MomentumOptimizer(learning_rate, self.conf.momentum) opt_decoder_w = tf.train.MomentumOptimizer(learning_rate * 10.0, self.conf.momentum) opt_decoder_b = tf.train.MomentumOptimizer(learning_rate * 20.0, self.conf.momentum) # To make sure each layer gets updated by different lr's, we do not use 'minimize' here. # Instead, we separate the steps compute_grads+update_params. # Compute grads grads = tf.gradients(self.reduced_loss, encoder_trainable + decoder_w_trainable + decoder_b_trainable) grads_encoder = grads[:len(encoder_trainable)] grads_decoder_w = grads[len(encoder_trainable) : (len(encoder_trainable) + len(decoder_w_trainable))] grads_decoder_b = grads[(len(encoder_trainable) + len(decoder_w_trainable)):] # Update params train_op_conv = opt_encoder.apply_gradients(zip(grads_encoder, encoder_trainable)) train_op_fc_w = opt_decoder_w.apply_gradients(zip(grads_decoder_w, decoder_w_trainable)) train_op_fc_b = opt_decoder_b.apply_gradients(zip(grads_decoder_b, decoder_b_trainable)) # Finally, get the train_op! update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # for collecting moving_mean and moving_variance with tf.control_dependencies(update_ops): self.train_op = tf.group(train_op_conv, train_op_fc_w, train_op_fc_b) # Saver for storing checkpoints of the model self.saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=0) # Loader for loading the pre-trained model self.loader = tf.train.Saver(var_list=restore_var) # Training summary # Processed predictions: for visualisation. raw_output_up = tf.image.resize_bilinear(raw_output, input_size) raw_output_up = tf.argmax(raw_output_up, axis=3) self.pred = tf.expand_dims(raw_output_up, dim=3) # Image summary. images_summary = tf.py_func(inv_preprocess, [self.image_batch, 2, IMG_MEAN], tf.uint8) labels_summary = tf.py_func(decode_labels, [self.label_batch, 2, self.conf.num_classes], tf.uint8) preds_summary = tf.py_func(decode_labels, [self.pred, 2, self.conf.num_classes], tf.uint8) self.total_summary = tf.summary.image('images', tf.concat(axis=2, values=[images_summary, labels_summary, preds_summary]), max_outputs=2) # Concatenate row-wise. if not os.path.exists(self.conf.logdir): os.makedirs(self.conf.logdir) self.summary_writer = tf.summary.FileWriter(self.conf.logdir, graph=tf.get_default_graph()) def test_setup(self): # Create queue coordinator. self.coord = tf.train.Coordinator() # Load reader with tf.name_scope("create_inputs"): reader = ImageReader( self.conf.data_dir, self.conf.valid_data_list, None, # the images have different sizes False, # no data-aug False, # no data-aug self.conf.ignore_label, self.coord) image, label = reader.image, reader.label # [h, w, 3 or 1] # Add one batch dimension [1, h, w, 3 or 1] self.image_batch, self.label_batch = tf.expand_dims(image, dim=0), tf.expand_dims(label, dim=0) self.image_batch = tf.identity( self.image_batch, name='image_batch') self.image_batch -= IMG_MEAN # Create network if self.conf.encoder_name not in ['res101', 'res50', 'deeplab']: print('encoder_name ERROR!') print("Please input: res101, res50, or deeplab") sys.exit(-1) elif self.conf.encoder_name == 'deeplab': net = Deeplab_v2(self.image_batch, self.conf.num_classes, False) else: net = ResNet_segmentation(self.image_batch, self.conf.num_classes, False, self.conf.encoder_name) # predictions raw_output = net.outputs raw_output = tf.image.resize_bilinear(raw_output, tf.shape(self.image_batch)[1:3,]) raw_output = tf.argmax(raw_output, axis=3) pred = tf.expand_dims(raw_output, dim=3) self.pred = tf.reshape(pred, [-1,], name="predictions") # labels gt = tf.reshape(self.label_batch, [-1,]) # Ignoring all labels greater than or equal to n_classes. temp = tf.less_equal(gt, self.conf.num_classes - 1) weights = tf.cast(temp, tf.int32) # fix for tf 1.3.0 gt = tf.where(temp, gt, tf.cast(temp, tf.uint8)) # Pixel accuracy self.accu, self.accu_update_op = tf.contrib.metrics.streaming_accuracy( self.pred, gt, weights=weights) # mIoU self.mIoU, self.mIou_update_op = tf.contrib.metrics.streaming_mean_iou( self.pred, gt, num_classes=self.conf.num_classes, weights=weights) # f1 score pred = tf.cast(self.pred, tf.int32) gt = tf.cast(gt, tf.int32) self.areaOverlap = tf.count_nonzero(pred * gt) self.areaGTObj = tf.count_nonzero(gt) self.areaPredicted = tf.count_nonzero(pred) # Loader for loading the checkpoint self.loader = tf.train.Saver(var_list=tf.global_variables()) def save(self, saver, step): ''' Save weights. ''' model_name = 'model.ckpt' checkpoint_path = os.path.join(self.conf.modeldir, model_name) if not os.path.exists(self.conf.modeldir): os.makedirs(self.conf.modeldir) saver.save(self.sess, checkpoint_path, global_step=step) print('The checkpoint has been created.') def load(self, saver, filename): ''' Load trained weights. ''' saver.restore(self.sess, filename) print("Restored model parameters from {}".format(filename)) def plot_conv_weights(self, weights, name, channels_all=True): plot_dir = os.path.join('./plots', 'conv_weights') plot_dir = os.path.join(plot_dir, name) # create directory if does not exist, otherwise empty it if not os.path.exists(plot_dir): os.makedirs(plot_dir) w_min = np.min(weights) w_max = np.max(weights) channels = [0] if channels_all: channels = range(weights.shape[2]) num_filters = weights.shape[3] grid_r, grid_c = self.get_grid_dim(num_filters) fig, axes = plt.subplots(min([grid_r, grid_c]), max([grid_r, grid_c])) # iterate channels for channel in channels: # iterate filters inside every channel for l, ax in enumerate(axes.flat): # get a single filter img = weights[:, :, channel, l] # put it on the grid ax.imshow(img, vmin=w_min, vmax=w_max, interpolation='nearest', cmap='seismic') # remove any labels from the axes ax.set_xticks([]) ax.set_yticks([]) plt.savefig(os.path.join(plot_dir, '{}-{}.png'.format(name, channel)), bbox_inches='tight') plt.close(fig) def plot_conv_output(self, conv_img, name): # make path to output folder plot_dir = os.path.join('./plots', 'conv_output') plot_dir = os.path.join(plot_dir, name) # create directory if does not exist, otherwise empty it if not os.path.exists(plot_dir): os.makedirs(plot_dir) w_min = np.min(conv_img) w_max = np.max(conv_img) # get number of convolutional filters num_filters = conv_img.shape[3] # get number of grid rows and columns grid_r, grid_c = self.get_grid_dim(num_filters) # create figure and axes fig, axes = plt.subplots(min([grid_r, grid_c]), max([grid_r, grid_c]), figsize=(150, 150)) # iterate filters for l, ax in enumerate(axes.flat): # get a single image img = conv_img[0, :, :, l] # put it on the grid ax.imshow(img, vmin=w_min, vmax=w_max, interpolation='bicubic', cmap='Greys') # remove any labels from the axes ax.set_xticks([]) ax.set_yticks([]) # save figure plt.savefig(os.path.join(plot_dir, '{}.png'.format(name)), bbox_inches='tight') plt.close(fig) def get_grid_dim(self, x): factors = self.prime_powers(x) if len(factors) % 2 == 0: i = int(len(factors) / 2) return factors[i], factors[i - 1] i = len(factors) // 2 return factors[i], factors[i] def prime_powers(self, n): factors = set() for x in range(1, int(math.sqrt(n)) + 1): if n % x == 0: factors.add(int(x)) factors.add(int(n // x)) return sorted(factors)
gpl-3.0
efabless/openlane
scripts/compare_regression_reports.py
1
15876
# Copyright 2020 Efabless Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import subprocess import csv import pandas as pd from collections import OrderedDict import xlsxwriter parser = argparse.ArgumentParser( description="Compare benchmark csv to a regression results csv") parser.add_argument('--benchmark', '-b', action='store', required=True, help="The csv file from which to extract the benchmark results") parser.add_argument('--regression_results', '-r', action='store', required=True, help="The csv file to be tested") parser.add_argument('--use_regression_results_as_design_list_source', '-ur', action='store_true', default=False, help="uses the regression results instead of the benchmark as the source of the designs list") parser.add_argument('--output_report', '-o', action='store', required=True, help="The file to print the final report in") parser.add_argument('--output_xlsx', '-x', action='store', required=True, help="The csv file to print a merged csv file benchmark vs regression_script in") args = parser.parse_args() benchmark_file = args.benchmark regression_results_file = args.regression_results output_report_file = args.output_report output_xlsx_file = args.output_xlsx regression_results_as_design_list_source=args.use_regression_results_as_design_list_source benchmark =dict() regression_results =dict() output_report_list = [] testFail = False configuration_mismatches = [] critical_mismatches = [] missing_configs = [] base_configs = ['CLOCK_PERIOD', 'SYNTH_STRATEGY', 'SYNTH_MAX_FANOUT','FP_CORE_UTIL', 'FP_ASPECT_RATIO', 'FP_PDN_VPITCH', 'FP_PDN_HPITCH', 'PL_TARGET_DENSITY', 'GLB_RT_ADJUSTMENT', 'STD_CELL_LIBRARY', 'CELL_PAD', 'DIODE_INSERTION_STRATEGY'] tolerance = {'general_tolerance':1, 'tritonRoute_violations':2, 'Magic_violations':10, 'antenna_violations':10,'lvs_total_errors':0} critical_statistics = ['tritonRoute_violations','Magic_violations', 'antenna_violations','lvs_total_errors'] note_worthy_statistics = [] ignore_list = ['', 'design', 'design_name', 'config'] def compare_vals(benchmark_value, regression_value,param): if str(benchmark_value) == "-1": return True if str(regression_value) == "-1": return False tol = 0-tolerance['general_tolerance'] if param in tolerance.keys(): tol = 0-tolerance[param] if float(benchmark_value) - float(regression_value) >= tol: return True else: return False def findIdx(header, label): for idx in range(len(header)): if label == header[idx]: return idx else: return -1 def diff_list(l1, l2): return [x for x in l1 if x not in l2] def parseCSV(csv_file, isBenchmark): global note_worthy_statistics map_out = dict() csvOpener = open(csv_file, 'r') csvData = csvOpener.read().split("\n") headerInfo = csvData[0].split(",") designNameIdx = findIdx(headerInfo, "design") if isBenchmark: note_worthy_statistics=diff_list(diff_list(diff_list(headerInfo,ignore_list),critical_statistics),base_configs) remover = 0 size = len(base_configs) while remover < size: if base_configs[remover] not in headerInfo: missing_configs.append("\nThis configuration "+base_configs[remover]+" doesn't exist in the sheets.") base_configs.pop(remover) remover -= 1 size -= 1 remover += 1 if designNameIdx == -1: print("invalid report. No design names.") exit(-1) for i in range(1, len(csvData)): if len(csvData[i]): entry = csvData[i].split(",") designName=entry[designNameIdx] for idx in range(len(headerInfo)): if idx != designNameIdx: if designName not in map_out.keys(): map_out[designName] = dict() if isBenchmark: map_out[designName]["Status"] = "PASSED" else: map_out[designName]["Status"] = "----" map_out[designName][headerInfo[idx]] = str(entry[idx]) return map_out def configurationMismatch(benchmark, regression_results): global configuration_mismatches designList = list() if regression_results_as_design_list_source: designList = regression_results.keys() else: designList = benchmark.keys() for design in designList: output_report_list.append("\nComparing Configurations for: "+ design+"\n") configuration_mismatches.append("\nComparing Configurations for: "+ design+"\n") if design not in regression_results: output_report_list.append("\tDesign "+ design+" Not Found in the provided regression sheet\n") configuration_mismatches.append("\tDesign "+ design+" Not Found in the provided regression sheet\n") continue if design not in benchmark: output_report_list.append("\tDesign "+ design+" Not Found in the provided benchmark sheet\n") configuration_mismatches.append("\tDesign "+ design+" Not Found in the provided benchmark sheet\n") continue size_before = len(configuration_mismatches) for config in base_configs: if benchmark[design][config] == regression_results[design][config]: output_report_list.append("\tConfiguration "+ config+" MATCH\n") output_report_list.append("\t\tConfiguration "+ config+" value: "+ benchmark[design][config] +"\n") else: configuration_mismatches.append("\tConfiguration "+ config+" MISMATCH\n") output_report_list.append("\tConfiguration "+ config+" MISMATCH\n") configuration_mismatches.append("\t\tDesign "+ design + " Configuration "+ config+" BENCHMARK value: "+ benchmark[design][config] +"\n") output_report_list.append("\t\tDesign "+ design + " Configuration "+ config+" BENCHMARK value: "+ benchmark[design][config] +"\n") configuration_mismatches.append("\t\tDesign "+ design + " Configuration "+ config+" USER value: "+ regression_results[design][config] +"\n") output_report_list.append("\t\tDesign "+ design + " Configuration "+ config+" USER value: "+ regression_results[design][config] +"\n") if size_before == len(configuration_mismatches): configuration_mismatches=configuration_mismatches[:-1] def criticalMistmatch(benchmark, regression_results): global testFail global critical_mismatches designList = list() if regression_results_as_design_list_source: designList = regression_results.keys() else: designList = benchmark.keys() for design in designList: output_report_list.append("\nComparing Critical Statistics for: "+ design+"\n") critical_mismatches.append("\nComparing Critical Statistics for: "+ design+"\n") if design not in regression_results: testFail = True benchmark[design]["Status"] = "NOT FOUND" output_report_list.append("\tDesign "+ design+" Not Found in the provided regression sheet\n") critical_mismatches.append("\tDesign "+ design+" Not Found in the provided regression sheet\n") continue if design not in benchmark: testFail = False output_report_list.append("\tDesign "+ design+" Not Found in the provided benchmark sheet\n") critical_mismatches.append("\tDesign "+ design+" Not Found in the provided benchmark sheet\n") continue size_before = len(critical_mismatches) for stat in critical_statistics: if compare_vals(benchmark[design][stat],regression_results[design][stat],stat): output_report_list.append("\tStatistic "+ stat+" MATCH\n") output_report_list.append("\t\tStatistic "+ stat+" value: "+ benchmark[design][stat] +"\n") else: testFail = True benchmark[design]["Status"] = "FAIL" critical_mismatches.append("\tStatistic "+ stat+" MISMATCH\n") output_report_list.append("\tStatistic "+ stat+" MISMATCH\n") critical_mismatches.append("\t\tDesign "+ design + " Statistic "+ stat+" BENCHMARK value: "+ benchmark[design][stat] +"\n") output_report_list.append("\t\tDesign "+ design + " Statistic "+ stat+" BENCHMARK value: "+ benchmark[design][stat] +"\n") critical_mismatches.append("\t\tDesign "+ design + " Statistic "+ stat+" USER value: "+ regression_results[design][stat] +"\n") output_report_list.append("\t\tDesign "+ design + " Statistic "+ stat+" USER value: "+ regression_results[design][stat] +"\n") if len(critical_mismatches) == size_before: critical_mismatches= critical_mismatches[:-1] def noteWorthyMismatch(benchmark, regression_results): designList = list() if regression_results_as_design_list_source: designList = regression_results.keys() else: designList = benchmark.keys() for design in designList: output_report_list.append("\nComparing Note Worthy Statistics for: "+ design+"\n") if design not in regression_results: output_report_list.append("\tDesign "+ design+" Not Found in the provided regression sheet\n") continue if design not in benchmark: output_report_list.append("\tDesign "+ design+" Not Found in the provided benchmark sheet\n") continue for stat in note_worthy_statistics: if benchmark[design][stat] == regression_results[design][stat] or benchmark[design][stat] == "-1": output_report_list.append("\tStatistic "+ stat+" MATCH\n") output_report_list.append("\t\tStatistic "+ stat+" value: "+ benchmark[design][stat] +"\n") else: output_report_list.append("\tStatistic "+ stat+" MISMATCH\n") output_report_list.append("\t\tDesign "+ design + " Statistic "+ stat+" BENCHMARK value: "+ benchmark[design][stat] +"\n") output_report_list.append("\t\tDesign "+ design + " Statistic "+ stat+" USER value: "+ regression_results[design][stat] +"\n") benchmark = parseCSV(benchmark_file,1) regression_results = parseCSV(regression_results_file,0) configurationMismatch(benchmark,regression_results) criticalMistmatch(benchmark,regression_results) noteWorthyMismatch(benchmark, regression_results) report = "" if testFail: report = "TEST FAILED\n" else: report = "TEST PASSED\n" if len(missing_configs): report += "\nThese configuration are missing:\n" report += "".join(missing_configs) if testFail: report += "\n\nCritical Mismatches These are the reason why the test failed:\n\n" report += "".join(critical_mismatches) if testFail: report += "\n\nConfiguration Mismatches. These are expected to cause differences between the results:\n\n" report += "".join(configuration_mismatches) report += "\nThis is the full generated report:\n" report += "".join(output_report_list) outputReportOpener = open(output_report_file, 'w') outputReportOpener.write(report) outputReportOpener.close() def formNotFoundStatus(benchmark, regression_results): for design in benchmark.keys(): if design not in regression_results: benchmark[design]["Status"] = "NOT FOUND" formNotFoundStatus(benchmark, regression_results) # Open an Excel workbook workbook = xlsxwriter.Workbook(output_xlsx_file) # Set up a format fail_format = workbook.add_format(properties={'bold': True, 'font_color': 'red'}) pass_format = workbook.add_format(properties={'bold': True, 'font_color': 'green'}) diff_format = workbook.add_format(properties={'font_color': 'blue'}) header_format = workbook.add_format(properties={'font_color': 'gray'}) benchmark_format = workbook.add_format(properties={'bold': True, 'font_color': 'navy'}) # Create a sheet worksheet = workbook.add_worksheet('diff') headerInfo = ['Owner','design', 'Status'] headerInfo.extend(critical_statistics) headerInfo.extend(note_worthy_statistics) headerInfo.extend(base_configs) # Write the headers for col_num, header in enumerate(headerInfo): worksheet.write(0,col_num, header,header_format) # Save the data from the OrderedDict into the excel sheet idx = 0 while idx < len(benchmark): worksheet.write(idx*2+1, 0, "Benchmark", benchmark_format) worksheet.write(idx*2+2, 0, "User") design = str(list(benchmark.keys())[idx]) if design not in regression_results: for col_num, header in enumerate(headerInfo): if header == 'Owner': worksheet.write(idx*2+1, col_num, "Benchmark", benchmark_format) worksheet.write(idx*2+2, col_num, "User") continue if header == 'design': worksheet.write(idx*2+1, col_num, design) worksheet.write(idx*2+2, col_num, design) continue worksheet.write(idx*2+1, col_num, benchmark[design][header]) else: for col_num, header in enumerate(headerInfo): if header == 'Owner': worksheet.write(idx*2+1, col_num, "Benchmark", benchmark_format) worksheet.write(idx*2+2, col_num, "User") continue if header == 'design': worksheet.write(idx*2+1, col_num, design) worksheet.write(idx*2+2, col_num, design) continue if header == 'Status': if benchmark[design][header] == "PASSED": worksheet.write(idx*2+1, col_num, benchmark[design][header],pass_format) worksheet.write(idx*2+2, col_num, regression_results[design][header],pass_format) else: worksheet.write(idx*2+1, col_num, benchmark[design][header],fail_format) worksheet.write(idx*2+2, col_num, regression_results[design][header],fail_format) continue if benchmark[design][header] != regression_results[design][header]: if header in critical_statistics: if compare_vals(benchmark[design][header],regression_results[design][header],header) == False: worksheet.write(idx*2+1, col_num, benchmark[design][header],fail_format) worksheet.write(idx*2+2, col_num, regression_results[design][header],fail_format) else: worksheet.write(idx*2+1, col_num, benchmark[design][header],pass_format) worksheet.write(idx*2+2, col_num, regression_results[design][header],pass_format) else: worksheet.write(idx*2+1, col_num, benchmark[design][header],diff_format) worksheet.write(idx*2+2, col_num, regression_results[design][header],diff_format) else: worksheet.write(idx*2+1, col_num, benchmark[design][header]) worksheet.write(idx*2+2, col_num, regression_results[design][header]) idx+=1 # Close the workbook workbook.close()
apache-2.0
nicproulx/mne-python
mne/viz/topo.py
2
32096
"""Functions to plot M/EEG data on topo (one axes per channel).""" from __future__ import print_function # Authors: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # Martin Luessi <[email protected]> # Eric Larson <[email protected]> # # License: Simplified BSD from functools import partial from itertools import cycle from copy import deepcopy import numpy as np from ..io.constants import Bunch from ..io.pick import channel_type, pick_types from ..utils import _clean_names, warn from ..channels.layout import _merge_grad_data, _pair_grad_sensors, find_layout from ..defaults import _handle_default from .utils import (_check_delayed_ssp, COLORS, _draw_proj_checkbox, add_background_image, plt_show, _setup_vmin_vmax, DraggableColorbar) def iter_topography(info, layout=None, on_pick=None, fig=None, fig_facecolor='k', axis_facecolor='k', axis_spinecolor='k', layout_scale=None): """Create iterator over channel positions. This function returns a generator that unpacks into a series of matplotlib axis objects and data / channel indices, both corresponding to the sensor positions of the related layout passed or inferred from the channel info. `iter_topography`, hence, allows to conveniently realize custom topography plots. Parameters ---------- info : instance of Info The measurement info. layout : instance of mne.layout.Layout | None The layout to use. If None, layout will be guessed on_pick : callable | None The callback function to be invoked on clicking one of the axes. Is supposed to instantiate the following API: `function(axis, channel_index)` fig : matplotlib.figure.Figure | None The figure object to be considered. If None, a new figure will be created. fig_facecolor : str | obj The figure face color. Defaults to black. axis_facecolor : str | obj The axis face color. Defaults to black. axis_spinecolor : str | obj The axis spine color. Defaults to black. In other words, the color of the axis' edge lines. layout_scale: float | None Scaling factor for adjusting the relative size of the layout on the canvas. If None, nothing will be scaled. Returns ------- A generator that can be unpacked into: ax : matplotlib.axis.Axis The current axis of the topo plot. ch_dx : int The related channel index. """ return _iter_topography(info, layout, on_pick, fig, fig_facecolor, axis_facecolor, axis_spinecolor, layout_scale) def _iter_topography(info, layout, on_pick, fig, fig_facecolor='k', axis_facecolor='k', axis_spinecolor='k', layout_scale=None, unified=False, img=False): """Iterate over topography. Has the same parameters as iter_topography, plus: unified : bool If False (default), multiple matplotlib axes will be used. If True, a single axis will be constructed. The former is useful for custom plotting, the latter for speed. """ from matplotlib import pyplot as plt, collections if fig is None: fig = plt.figure() fig.set_facecolor(fig_facecolor) if layout is None: layout = find_layout(info) if on_pick is not None: callback = partial(_plot_topo_onpick, show_func=on_pick) fig.canvas.mpl_connect('button_press_event', callback) pos = layout.pos.copy() if layout_scale: pos[:, :2] *= layout_scale ch_names = _clean_names(info['ch_names']) iter_ch = [(x, y) for x, y in enumerate(layout.names) if y in ch_names] if unified: under_ax = plt.axes([0, 0, 1, 1]) under_ax.set(xlim=[0, 1], ylim=[0, 1]) under_ax.axis('off') axs = list() for idx, name in iter_ch: ch_idx = ch_names.index(name) if not unified: # old, slow way ax = plt.axes(pos[idx]) ax.patch.set_facecolor(axis_facecolor) plt.setp(list(ax.spines.values()), color=axis_spinecolor) ax.set_xticklabels([]) ax.set_yticklabels([]) plt.setp(ax.get_xticklines(), visible=False) plt.setp(ax.get_yticklines(), visible=False) ax._mne_ch_name = name ax._mne_ch_idx = ch_idx ax._mne_ax_face_color = axis_facecolor yield ax, ch_idx else: ax = Bunch(ax=under_ax, pos=pos[idx], data_lines=list(), _mne_ch_name=name, _mne_ch_idx=ch_idx, _mne_ax_face_color=axis_facecolor) axs.append(ax) if unified: under_ax._mne_axs = axs # Create a PolyCollection for the axis backgrounds verts = np.transpose([pos[:, :2], pos[:, :2] + pos[:, 2:] * [1, 0], pos[:, :2] + pos[:, 2:], pos[:, :2] + pos[:, 2:] * [0, 1], ], [1, 0, 2]) if not img: under_ax.add_collection(collections.PolyCollection( verts, facecolor=axis_facecolor, edgecolor=axis_spinecolor, linewidth=1.)) # Not needed for image plots. for ax in axs: yield ax, ax._mne_ch_idx def _plot_topo(info, times, show_func, click_func=None, layout=None, vmin=None, vmax=None, ylim=None, colorbar=None, border='none', axis_facecolor='k', fig_facecolor='k', cmap='RdBu_r', layout_scale=None, title=None, x_label=None, y_label=None, font_color='w', unified=False, img=False): """Plot on sensor layout.""" import matplotlib.pyplot as plt if layout.kind == 'custom': layout = deepcopy(layout) layout.pos[:, :2] -= layout.pos[:, :2].min(0) layout.pos[:, :2] /= layout.pos[:, :2].max(0) # prepare callbacks tmin, tmax = times[[0, -1]] click_func = show_func if click_func is None else click_func on_pick = partial(click_func, tmin=tmin, tmax=tmax, vmin=vmin, vmax=vmax, ylim=ylim, x_label=x_label, y_label=y_label, colorbar=colorbar) fig = plt.figure() if colorbar: sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin, vmax)) sm.set_array(np.linspace(vmin, vmax)) ax = plt.axes([0.015, 0.025, 1.05, .8], axisbg=fig_facecolor) cb = fig.colorbar(sm, ax=ax) cb_yticks = plt.getp(cb.ax.axes, 'yticklabels') plt.setp(cb_yticks, color=font_color) ax.axis('off') my_topo_plot = _iter_topography(info, layout=layout, on_pick=on_pick, fig=fig, layout_scale=layout_scale, axis_spinecolor=border, axis_facecolor=axis_facecolor, fig_facecolor=fig_facecolor, unified=unified, img=img) for ax, ch_idx in my_topo_plot: if layout.kind == 'Vectorview-all' and ylim is not None: this_type = {'mag': 0, 'grad': 1}[channel_type(info, ch_idx)] ylim_ = [v[this_type] if _check_vlim(v) else v for v in ylim] else: ylim_ = ylim show_func(ax, ch_idx, tmin=tmin, tmax=tmax, vmin=vmin, vmax=vmax, ylim=ylim_) if title is not None: plt.figtext(0.03, 0.9, title, color=font_color, fontsize=19) return fig def _plot_topo_onpick(event, show_func): """Onpick callback that shows a single channel in a new figure.""" # make sure that the swipe gesture in OS-X doesn't open many figures orig_ax = event.inaxes if event.inaxes is None or (not hasattr(orig_ax, '_mne_ch_idx') and not hasattr(orig_ax, '_mne_axs')): return import matplotlib.pyplot as plt try: if hasattr(orig_ax, '_mne_axs'): # in unified, single-axes mode x, y = event.xdata, event.ydata for ax in orig_ax._mne_axs: if x >= ax.pos[0] and y >= ax.pos[1] and \ x <= ax.pos[0] + ax.pos[2] and \ y <= ax.pos[1] + ax.pos[3]: orig_ax = ax break else: return ch_idx = orig_ax._mne_ch_idx face_color = orig_ax._mne_ax_face_color fig, ax = plt.subplots(1) plt.title(orig_ax._mne_ch_name) ax.set_axis_bgcolor(face_color) # allow custom function to override parameters show_func(ax, ch_idx) except Exception as err: # matplotlib silently ignores exceptions in event handlers, # so we print # it here to know what went wrong print(err) raise def _compute_scalings(bn, xlim, ylim): """Compute scale factors for a unified plot.""" if isinstance(ylim[0], (tuple, list, np.ndarray)): ylim = (ylim[0][0], ylim[1][0]) pos = bn.pos bn.x_s = pos[2] / (xlim[1] - xlim[0]) bn.x_t = pos[0] - bn.x_s * xlim[0] bn.y_s = pos[3] / (ylim[1] - ylim[0]) bn.y_t = pos[1] - bn.y_s * ylim[0] def _check_vlim(vlim): """Check the vlim.""" return not np.isscalar(vlim) and vlim is not None def _imshow_tfr(ax, ch_idx, tmin, tmax, vmin, vmax, onselect, ylim=None, tfr=None, freq=None, x_label=None, y_label=None, colorbar=False, cmap=('RdBu_r', True), yscale='auto'): """Show time-frequency map as two-dimensional image.""" from matplotlib import pyplot as plt, ticker from matplotlib.widgets import RectangleSelector if yscale not in ['auto', 'linear', 'log']: raise ValueError("yscale should be either 'auto', 'linear', or 'log'" ", got {}".format(yscale)) cmap, interactive_cmap = cmap times = np.linspace(tmin, tmax, num=tfr[ch_idx].shape[1]) # test yscale if yscale == 'log' and not freq[0] > 0: raise ValueError('Using log scale for frequency axis requires all your' ' frequencies to be positive (you cannot include' ' the DC component (0 Hz) in the TFR).') if len(freq) < 2 or freq[0] == 0: yscale = 'linear' elif yscale != 'linear': ratio = freq[1:] / freq[:-1] if yscale == 'auto': if freq[0] > 0 and np.allclose(ratio, ratio[0]): yscale = 'log' else: yscale = 'linear' # compute bounds between time samples time_diff = np.diff(times) / 2. if len(times) > 1 else [0.0005] time_lims = np.concatenate([[times[0] - time_diff[0]], times[:-1] + time_diff, [times[-1] + time_diff[-1]]]) # the same for frequency - depending on whether yscale is log if yscale == 'linear': freq_diff = np.diff(freq) / 2. if len(freq) > 1 else [0.5] freq_lims = np.concatenate([[freq[0] - freq_diff[0]], freq[:-1] + freq_diff, [freq[-1] + freq_diff[-1]]]) else: log_freqs = np.concatenate([[freq[0] / ratio[0]], freq, [freq[-1] * ratio[0]]]) freq_lims = np.sqrt(log_freqs[:-1] * log_freqs[1:]) # construct a time-frequency bounds grid time_mesh, freq_mesh = np.meshgrid(time_lims, freq_lims) img = ax.pcolormesh(time_mesh, freq_mesh, tfr[ch_idx], cmap=cmap, vmin=vmin, vmax=vmax) # limits, yscale and yticks ax.set_xlim(time_lims[0], time_lims[-1]) if ylim is None: ylim = (freq_lims[0], freq_lims[-1]) ax.set_ylim(ylim) if yscale == 'log': ax.set_yscale('log') ax.get_yaxis().set_major_formatter(ticker.ScalarFormatter()) ax.yaxis.set_minor_formatter(ticker.NullFormatter()) ax.yaxis.set_minor_locator(ticker.NullLocator()) # get rid of minor ticks tick_vals = freq[np.unique(np.linspace( 0, len(freq) - 1, 12).round().astype('int'))] ax.set_yticks(tick_vals) if x_label is not None: ax.set_xlabel(x_label) if y_label is not None: ax.set_ylabel(y_label) if colorbar: if isinstance(colorbar, DraggableColorbar): cbar = colorbar.cbar # this happens with multiaxes case else: cbar = plt.colorbar(mappable=img) if interactive_cmap: ax.CB = DraggableColorbar(cbar, img) ax.RS = RectangleSelector(ax, onselect=onselect) # reference must be kept def _imshow_tfr_unified(bn, ch_idx, tmin, tmax, vmin, vmax, onselect, ylim=None, tfr=None, freq=None, vline=None, x_label=None, y_label=None, colorbar=False, picker=True, cmap='RdBu_r', title=None, hline=None): """Show multiple tfrs on topo using a single axes.""" _compute_scalings(bn, (tmin, tmax), (freq[0], freq[-1])) ax = bn.ax data_lines = bn.data_lines extent = (bn.x_t + bn.x_s * tmin, bn.x_t + bn.x_s * tmax, bn.y_t + bn.y_s * freq[0], bn.y_t + bn.y_s * freq[-1]) data_lines.append(ax.imshow(tfr[ch_idx], clip_on=True, clip_box=bn.pos, extent=extent, aspect="auto", origin="lower", vmin=vmin, vmax=vmax, cmap=cmap)) def _plot_timeseries(ax, ch_idx, tmin, tmax, vmin, vmax, ylim, data, color, times, vline=None, x_label=None, y_label=None, colorbar=False, hline=None): """Show time series on topo split across multiple axes.""" import matplotlib.pyplot as plt picker_flag = False for data_, color_ in zip(data, color): if not picker_flag: # use large tol for picker so we can click anywhere in the axes ax.plot(times, data_[ch_idx], color=color_, picker=1e9) picker_flag = True else: ax.plot(times, data_[ch_idx], color=color_) if vline: for x in vline: plt.axvline(x, color='w', linewidth=0.5) if hline: for y in hline: plt.axhline(y, color='w', linewidth=0.5) if x_label is not None: plt.xlabel(x_label) if y_label is not None: if isinstance(y_label, list): plt.ylabel(y_label[ch_idx]) else: plt.ylabel(y_label) if colorbar: plt.colorbar() def _plot_timeseries_unified(bn, ch_idx, tmin, tmax, vmin, vmax, ylim, data, color, times, vline=None, x_label=None, y_label=None, colorbar=False, hline=None): """Show multiple time series on topo using a single axes.""" import matplotlib.pyplot as plt if not (ylim and not any(v is None for v in ylim)): ylim = np.array([np.min(data), np.max(data)]) # Translation and scale parameters to take data->under_ax normalized coords _compute_scalings(bn, (tmin, tmax), ylim) pos = bn.pos data_lines = bn.data_lines ax = bn.ax # XXX These calls could probably be made faster by using collections for data_, color_ in zip(data, color): data_lines.append(ax.plot( bn.x_t + bn.x_s * times, bn.y_t + bn.y_s * data_[ch_idx], color=color_, clip_on=True, clip_box=pos)[0]) if vline: vline = np.array(vline) * bn.x_s + bn.x_t ax.vlines(vline, pos[1], pos[1] + pos[3], color='w', linewidth=0.5) if hline: hline = np.array(hline) * bn.y_s + bn.y_t ax.hlines(hline, pos[0], pos[0] + pos[2], color='w', linewidth=0.5) if x_label is not None: ax.text(pos[0] + pos[2] / 2., pos[1], x_label, horizontalalignment='center', verticalalignment='top') if y_label is not None: y_label = y_label[ch_idx] if isinstance(y_label, list) else y_label ax.text(pos[0], pos[1] + pos[3] / 2., y_label, horizontalignment='right', verticalalignment='middle', rotation=90) if colorbar: plt.colorbar() def _erfimage_imshow(ax, ch_idx, tmin, tmax, vmin, vmax, ylim=None, data=None, epochs=None, sigma=None, order=None, scalings=None, vline=None, x_label=None, y_label=None, colorbar=False, cmap='RdBu_r'): """Plot erfimage on sensor topography.""" from scipy import ndimage import matplotlib.pyplot as plt this_data = data[:, ch_idx, :].copy() * scalings[ch_idx] if callable(order): order = order(epochs.times, this_data) if order is not None: this_data = this_data[order] if sigma > 0.: this_data = ndimage.gaussian_filter1d(this_data, sigma=sigma, axis=0) img = ax.imshow(this_data, extent=[tmin, tmax, 0, len(data)], aspect='auto', origin='lower', vmin=vmin, vmax=vmax, picker=True, cmap=cmap, interpolation='nearest') ax = plt.gca() if x_label is not None: ax.set_xlabel(x_label) if y_label is not None: ax.set_ylabel(y_label) if colorbar: plt.colorbar(mappable=img) def _erfimage_imshow_unified(bn, ch_idx, tmin, tmax, vmin, vmax, ylim=None, data=None, epochs=None, sigma=None, order=None, scalings=None, vline=None, x_label=None, y_label=None, colorbar=False, cmap='RdBu_r'): """Plot erfimage topography using a single axis.""" from scipy import ndimage _compute_scalings(bn, (tmin, tmax), (0, len(epochs.events))) ax = bn.ax data_lines = bn.data_lines extent = (bn.x_t + bn.x_s * tmin, bn.x_t + bn.x_s * tmax, bn.y_t, bn.y_t + bn.y_s * len(epochs.events)) this_data = data[:, ch_idx, :].copy() * scalings[ch_idx] if callable(order): order = order(epochs.times, this_data) if order is not None: this_data = this_data[order] if sigma > 0.: this_data = ndimage.gaussian_filter1d(this_data, sigma=sigma, axis=0) data_lines.append(ax.imshow(this_data, extent=extent, aspect='auto', origin='lower', vmin=vmin, vmax=vmax, picker=True, cmap=cmap, interpolation='nearest')) def _plot_evoked_topo(evoked, layout=None, layout_scale=0.945, color=None, border='none', ylim=None, scalings=None, title=None, proj=False, vline=(0.,), hline=(0.,), fig_facecolor='k', fig_background=None, axis_facecolor='k', font_color='w', merge_grads=False, legend=True, show=True): """Plot 2D topography of evoked responses. Clicking on the plot of an individual sensor opens a new figure showing the evoked response for the selected sensor. Parameters ---------- evoked : list of Evoked | Evoked The evoked response to plot. layout : instance of Layout | None Layout instance specifying sensor positions (does not need to be specified for Neuromag data). If possible, the correct layout is inferred from the data. layout_scale: float Scaling factor for adjusting the relative size of the layout on the canvas color : list of color objects | color object | None Everything matplotlib accepts to specify colors. If not list-like, the color specified will be repeated. If None, colors are automatically drawn. border : str matplotlib borders style to be used for each sensor plot. ylim : dict | None ylim for plots (after scaling has been applied). The value determines the upper and lower subplot limits. e.g. ylim = dict(eeg=[-20, 20]). Valid keys are eeg, mag, grad. If None, the ylim parameter for each channel is determined by the maximum absolute peak. scalings : dict | None The scalings of the channel types to be applied for plotting. If None,` defaults to `dict(eeg=1e6, grad=1e13, mag=1e15)`. title : str Title of the figure. proj : bool | 'interactive' If true SSP projections are applied before display. If 'interactive', a check box for reversible selection of SSP projection vectors will be shown. vline : list of floats | None The values at which to show a vertical line. hline : list of floats | None The values at which to show a horizontal line. fig_facecolor : str | obj The figure face color. Defaults to black. fig_background : None | array A background image for the figure. This must be a valid input to `matplotlib.pyplot.imshow`. Defaults to None. axis_facecolor : str | obj The face color to be used for each sensor plot. Defaults to black. font_color : str | obj The color of text in the colorbar and title. Defaults to white. merge_grads : bool Whether to use RMS value of gradiometer pairs. Only works for Neuromag data. Defaults to False. legend : bool | int | string | tuple If True, create a legend based on evoked.comment. If False, disable the legend. Otherwise, the legend is created and the parameter value is passed as the location parameter to the matplotlib legend call. It can be an integer (e.g. 0 corresponds to upper right corner of the plot), a string (e.g. 'upper right'), or a tuple (x, y coordinates of the lower left corner of the legend in the axes coordinate system). See matplotlib documentation for more details. show : bool Show figure if True. Returns ------- fig : Instance of matplotlib.figure.Figure Images of evoked responses at sensor locations """ import matplotlib.pyplot as plt if not type(evoked) in (tuple, list): evoked = [evoked] if type(color) in (tuple, list): if len(color) != len(evoked): raise ValueError('Lists of evoked objects and colors' ' must have the same length') elif color is None: colors = ['w'] + COLORS stop = (slice(len(evoked)) if len(evoked) < len(colors) else slice(len(colors))) color = cycle(colors[stop]) if len(evoked) > len(colors): warn('More evoked objects than colors available. You should pass ' 'a list of unique colors.') else: color = cycle([color]) times = evoked[0].times if not all((e.times == times).all() for e in evoked): raise ValueError('All evoked.times must be the same') evoked = [e.copy() for e in evoked] info = evoked[0].info ch_names = evoked[0].ch_names scalings = _handle_default('scalings', scalings) if not all(e.ch_names == ch_names for e in evoked): raise ValueError('All evoked.picks must be the same') ch_names = _clean_names(ch_names) if merge_grads: picks = _pair_grad_sensors(info, topomap_coords=False) chs = list() for pick in picks[::2]: ch = info['chs'][pick] ch['ch_name'] = ch['ch_name'][:-1] + 'X' chs.append(ch) info['chs'] = chs info['bads'] = list() # bads dropped on pair_grad_sensors info._update_redundant() info._check_consistency() new_picks = list() for e in evoked: data = _merge_grad_data(e.data[picks]) * scalings['grad'] e.data = data new_picks.append(range(len(data))) picks = new_picks types_used = ['grad'] y_label = 'RMS amplitude (%s)' % _handle_default('units')['grad'] if layout is None: layout = find_layout(info) if not merge_grads: # XXX. at the moment we are committed to 1- / 2-sensor-types layouts chs_in_layout = set(layout.names) & set(ch_names) types_used = set(channel_type(info, ch_names.index(ch)) for ch in chs_in_layout) # remove possible reference meg channels types_used = set.difference(types_used, set('ref_meg')) # one check for all vendors meg_types = set(('mag', 'grad')) is_meg = len(set.intersection(types_used, meg_types)) > 0 if is_meg: types_used = list(types_used)[::-1] # -> restore kwarg order picks = [pick_types(info, meg=kk, ref_meg=False, exclude=[]) for kk in types_used] else: types_used_kwargs = dict((t, True) for t in types_used) picks = [pick_types(info, meg=False, exclude=[], **types_used_kwargs)] assert isinstance(picks, list) and len(types_used) == len(picks) for e in evoked: for pick, ch_type in zip(picks, types_used): e.data[pick] = e.data[pick] * scalings[ch_type] if proj is True and all(e.proj is not True for e in evoked): evoked = [e.apply_proj() for e in evoked] elif proj == 'interactive': # let it fail early. for e in evoked: _check_delayed_ssp(e) # Y labels for picked plots must be reconstructed y_label = ['Amplitude (%s)' % _handle_default('units')[channel_type( info, ch_idx)] for ch_idx in range(len(chs_in_layout))] if ylim is None: def set_ylim(x): return np.abs(x).max() ylim_ = [set_ylim([e.data[t] for e in evoked]) for t in picks] ymax = np.array(ylim_) ylim_ = (-ymax, ymax) elif isinstance(ylim, dict): ylim_ = _handle_default('ylim', ylim) ylim_ = [ylim_[kk] for kk in types_used] # extra unpack to avoid bug #1700 if len(ylim_) == 1: ylim_ = ylim_[0] else: ylim_ = zip(*[np.array(yl) for yl in ylim_]) else: raise TypeError('ylim must be None or a dict. Got %s.' % type(ylim)) data = [e.data for e in evoked] show_func = partial(_plot_timeseries_unified, data=data, color=color, times=times, vline=vline, hline=hline) click_func = partial(_plot_timeseries, data=data, color=color, times=times, vline=vline, hline=hline) fig = _plot_topo(info=info, times=times, show_func=show_func, click_func=click_func, layout=layout, colorbar=False, ylim=ylim_, cmap=None, layout_scale=layout_scale, border=border, fig_facecolor=fig_facecolor, font_color=font_color, axis_facecolor=axis_facecolor, title=title, x_label='Time (s)', y_label=y_label, unified=True) add_background_image(fig, fig_background) if legend is not False: legend_loc = 0 if legend is True else legend labels = [e.comment if e.comment else 'Unknown' for e in evoked] legend = plt.legend(labels, loc=legend_loc, prop={'size': 10}) legend.get_frame().set_facecolor(axis_facecolor) txts = legend.get_texts() for txt, col in zip(txts, color): txt.set_color(col) if proj == 'interactive': for e in evoked: _check_delayed_ssp(e) params = dict(evokeds=evoked, times=times, plot_update_proj_callback=_plot_update_evoked_topo_proj, projs=evoked[0].info['projs'], fig=fig) _draw_proj_checkbox(None, params) plt_show(show) return fig def _plot_update_evoked_topo_proj(params, bools): """Update topo sensor plots.""" evokeds = [e.copy() for e in params['evokeds']] fig = params['fig'] projs = [proj for proj, b in zip(params['projs'], bools) if b] params['proj_bools'] = bools for e in evokeds: e.add_proj(projs, remove_existing=True) e.apply_proj() # make sure to only modify the time courses, not the ticks for ax in fig.axes[0]._mne_axs: for line, evoked in zip(ax.data_lines, evokeds): line.set_ydata(ax.y_t + ax.y_s * evoked.data[ax._mne_ch_idx]) fig.canvas.draw() def plot_topo_image_epochs(epochs, layout=None, sigma=0., vmin=None, vmax=None, colorbar=True, order=None, cmap='RdBu_r', layout_scale=.95, title=None, scalings=None, border='none', fig_facecolor='k', fig_background=None, font_color='w', show=True): """Plot Event Related Potential / Fields image on topographies. Parameters ---------- epochs : instance of Epochs The epochs. layout: instance of Layout System specific sensor positions. sigma : float The standard deviation of the Gaussian smoothing to apply along the epoch axis to apply in the image. If 0., no smoothing is applied. vmin : float The min value in the image. The unit is uV for EEG channels, fT for magnetometers and fT/cm for gradiometers. vmax : float The max value in the image. The unit is uV for EEG channels, fT for magnetometers and fT/cm for gradiometers. colorbar : bool Display or not a colorbar. order : None | array of int | callable If not None, order is used to reorder the epochs on the y-axis of the image. If it's an array of int it should be of length the number of good epochs. If it's a callable the arguments passed are the times vector and the data as 2d array (data.shape[1] == len(times)). cmap : instance of matplotlib.pyplot.colormap Colors to be mapped to the values. layout_scale: float scaling factor for adjusting the relative size of the layout on the canvas. title : str Title of the figure. scalings : dict | None The scalings of the channel types to be applied for plotting. If None, defaults to `dict(eeg=1e6, grad=1e13, mag=1e15)`. border : str matplotlib borders style to be used for each sensor plot. fig_facecolor : str | obj The figure face color. Defaults to black. fig_background : None | array A background image for the figure. This must be a valid input to `matplotlib.pyplot.imshow`. Defaults to None. font_color : str | obj The color of tick labels in the colorbar. Defaults to white. show : bool Show figure if True. Returns ------- fig : instance of matplotlib figure Figure distributing one image per channel across sensor topography. """ scalings = _handle_default('scalings', scalings) data = epochs.get_data() scale_coeffs = list() for idx in range(epochs.info['nchan']): ch_type = channel_type(epochs.info, idx) scale_coeffs.append(scalings.get(ch_type, 1)) vmin, vmax = _setup_vmin_vmax(data, vmin, vmax) if layout is None: layout = find_layout(epochs.info) show_func = partial(_erfimage_imshow_unified, scalings=scale_coeffs, order=order, data=data, epochs=epochs, sigma=sigma, cmap=cmap) erf_imshow = partial(_erfimage_imshow, scalings=scale_coeffs, order=order, data=data, epochs=epochs, sigma=sigma, cmap=cmap) fig = _plot_topo(info=epochs.info, times=epochs.times, click_func=erf_imshow, show_func=show_func, layout=layout, colorbar=colorbar, vmin=vmin, vmax=vmax, cmap=cmap, layout_scale=layout_scale, title=title, fig_facecolor=fig_facecolor, font_color=font_color, border=border, x_label='Time (s)', y_label='Epoch', unified=True, img=True) add_background_image(fig, fig_background) plt_show(show) return fig
bsd-3-clause
staircase27/Tower-Defence
TDlib/draw.py
1
6398
import numpy as np import matplotlib matplotlib.use("WXAgg") import wx import pylab as pl import matplotlib.patches as p import time def partial(fn, *cargs, **ckwargs): def call_fn(*fargs, **fkwargs): d = ckwargs.copy() d.update(fkwargs) return fn(*(cargs + fargs), **d) return call_fn def create(x_min,x_max,y_min,y_max): create.i+=1; fig=pl.figure(create.i) ax=fig.add_subplot(111) ax.set_xlim(x_min,x_max); ax.set_ylim(y_min,y_max); return fig,ax; create.i=-1; class Update: colours=["#000000","#0000FF","#000000","#0000FF","#FF0000","#FF66FF","#FF0000","#FF66FF"] weights=["ultralight","ultralight","heavy","heavy","ultralight","ultralight","heavy","heavy"] def __init__(self,fig,ax): self.lables=None; self.fig=fig; self.ax=ax; def __call__(self,a): fig=self.fig ax=self.ax; if self.lables==None: self.lables={}; for row in a: x,y,c,n,r=row[0:5] string="X" if n<100000: string=str(n) rstring="X" if r<100000: rstring=str(r) string=string+" "+rstring; self.lables[(x,y)]=ax.text(x,y,string,color=self.colours[c],weight=self.weights[c],va="center",ha="center") fig.canvas.draw_idle() else: for row in a: x,y,c,n,r=row[0:5] string="X" if n<100000: string=str(n) rstring="X" if r<100000: rstring=str(r) string=string+" "+rstring; if self.lables[(x,y)].get_text()!=string: self.lables[(x,y)].set_text(string); if self.lables[(x,y)].get_color()!=self.colours[c]: self.lables[(x,y)].set_color(self.colours[c]); if self.lables[(x,y)].get_weight()!=self.weights[c]: self.lables[(x,y)].set_weight(self.weights[c]); fig.canvas.draw_idle() class MasterUpdate: def __init__(self,basename,index,create): self.basename=basename; self.index=index; self.create=create; self.updates={} self.playing=False; self.speed=1; self.next=0; self.draw() def __call__(self,evt): if isinstance(evt,wx.IdleEvent): if not (self.playing and time.time()>self.next): evt.RequestMore() else: self.next+=self.speed; self.index+=1; self.draw(); elif isinstance(evt,wx.KeyEvent): if evt.GetUniChar()==32: self.playing=not self.playing; self.next=time.time(); elif evt.GetUniChar()==189: self.speed*=1.1 print "Speed ",self.speed elif evt.GetUniChar()==187: self.speed/=1.1 print "Speed ",self.speed elif evt.GetUniChar()==190: self.index+=1; self.draw(); elif evt.GetUniChar()==188: self.index-=1; self.draw(); else: print evt.GetUniChar() evt.Skip(); return; def draw(self): f=open(self.basename+"_"+str(self.index)+".tdd"); key=f.readline()[0]; a=np.loadtxt(f,dtype=np.int32) try: self.updates[key](a); except KeyError: self.updates[key]=Update(*self.create()); self.updates[key](a); print self.index def main(): ##args are path,start_index,x_max,x_min,y_max,y_min import sys; if len(sys.argv)>=2: path=sys.argv[1] if len(sys.argv)>=3: x_max=float(sys.argv[2]); else: index=0; if len(sys.argv)>=4: x_max=float(sys.argv[3]); else: x_max=9; if len(sys.argv)>=5: x_min=float(sys.argv[4]); else: x_min=-1; if len(sys.argv)>=6: y_max=float(sys.argv[5]); else: y_max=x_max; if len(sys.argv)>=7: y_min=float(sys.argv[6]); else: y_min=x_min; else: import os; import re; pattern=re.compile("^(.*)_(\d+).tdd$") paths=[match.group(1) for match in (pattern.match(path) for path in os.listdir(".")) if not match==None] paths=dict(zip(paths,paths)).keys() paths.sort(); paths=dict(zip(range(len(paths)),paths)) print "enter the base path to process or select one of the below" for i,p in paths.iteritems(): print i,p path=raw_input(": "); try: path=int(path) path=paths[path] except ValueError: pass except KeyError: pass index=raw_input("enter the starting index to plot from or leave blank for '0': ") try: index=int(index); except ValueError: index=0; x_max=raw_input("enter the maximum x for the graphs or leave blank for '9': ") try: x_max=float(x_max); except ValueError: x_max=9; x_min=raw_input("enter the minimum x for the graphs or leave blank for '-1': ") try: x_min=float(x_min); except ValueError: x_min=-1; y_max=raw_input("enter the maximum x for the graphs or leave blank for '"+str(x_max)+"': ") try: y_max=float(y_max); except ValueError: y_max=x_max; y_min=raw_input("enter the minimum x for the graphs or leave blank for '"+str(x_min)+"': ") try: y_min=float(y_min); except ValueError: y_min=x_min; pl.ion() master=MasterUpdate(path,index,partial(create,x_min,x_max,y_min,y_max)); wx.EVT_IDLE(wx.GetApp(), master) wx.EVT_KEY_DOWN(wx.GetApp(), master) pl.show() if __name__=="__main__": main();
gpl-3.0
chichilalescu/pyNT
pyNT/test.py
1
3676
####################################################################### # # # Copyright 2014 Cristian C Lalescu # # # # This file is part of pyNT. # # # # pyNT is free software: you can redistribute it and/or modify # # it under the terms of the GNU General Public License as published # # by the Free Software Foundation, either version 3 of the License, # # or (at your option) any later version. # # # # pyNT is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU General Public License for more details. # # # # You should have received a copy of the GNU General Public License # # along with pyNT. If not, see <http://www.gnu.org/licenses/> # # # ####################################################################### import numpy as np import sympy as sp import matplotlib.pyplot as plt from wiener import Wiener from sde import SDE from ode import ODE test_sde = True test_ode = False if test_sde: x = sp.Symbol('x') bla = SDE( x = [x], a = [x], b = [[x/2, sp.sin(x)/3]]) bla.get_evdt_vs_M( fig_name = 'figs/extra_tst', ntraj = 64, X0 = np.ones(1,).astype(np.float), h0 = .5, exp_range = range(8)) bla = SDE( x = [x], a = [x], b = [[.5, .25]]) bla.get_evdt_vs_M( fig_name = 'figs/add_evdt', ntraj = 64, X0 = np.ones(1,).astype(np.float), h0 = .5, exp_range = range(8), solver = ['Taylor_2p0_additive', 'explicit_1p5_additive']) c = 0.0 v = sp.Symbol('v') u = x**2 * (x**2 - 1 + c*x) bla = SDE( x = [x, v], a = [v, -u.diff(x) - v], b = [[.01, .1], [.95, .3]]) bla.get_evdt_vs_M( fig_name = 'figs/dwell_evdt', ntraj = 32, X0 = np.array([0., .0]).astype(np.float), h0 = .5, solver = ['Taylor_2p0_additive', 'explicit_1p5_additive'], exp_range = range(8)) if test_ode: x = sp.Symbol('x') y = sp.Symbol('y') z = sp.Symbol('z') rho = 28. sigma = 10. beta = 8./3 lorenz_rhs = [sigma*(y - x), x*(rho - z) - y, x*y - beta*z] bla = ODE( x = [x, y, z], f = lorenz_rhs) X0 = 10*np.random.random((3, 128)) fig = plt.figure(figsize = (6,6)) ax = fig.add_subplot(111) for solver in [['Euler', 'Taylor2'], ['Heun', 'Taylor2'], ['cRK', 'Taylor4']]: evdt = bla.get_evdt( X0 = X0, solver = solver) ax.errorbar( evdt[:, 0], evdt[:, 2], yerr = [evdt[:, 1], evdt[:, 3]], label = '{0} vs {1}'.format(solver[0], solver[1])) ax.set_xscale('log') ax.set_yscale('log') ax.legend(loc = 'best') fig.savefig('figs/ode_evdt.pdf', format = 'pdf')
gpl-3.0