repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
Reagankm/KnockKnock
venv/lib/python3.4/site-packages/matplotlib/tests/test_skew.py
10
6939
""" Testing that skewed axes properly work """ from __future__ import (absolute_import, division, print_function, unicode_literals) import itertools import six from nose.tools import assert_true import numpy as np import matplotlib.pyplot as plt from matplotlib.testing.decorators import cleanup, image_comparison from matplotlib.axes import Axes import matplotlib.transforms as transforms import matplotlib.axis as maxis import matplotlib.spines as mspines import matplotlib.path as mpath import matplotlib.patches as mpatch from matplotlib.projections import register_projection # The sole purpose of this class is to look at the upper, lower, or total # interval as appropriate and see what parts of the tick to draw, if any. class SkewXTick(maxis.XTick): def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__name__) lower_interval = self.axes.xaxis.lower_interval upper_interval = self.axes.xaxis.upper_interval if self.gridOn and transforms.interval_contains( self.axes.xaxis.get_view_interval(), self.get_loc()): self.gridline.draw(renderer) if transforms.interval_contains(lower_interval, self.get_loc()): if self.tick1On: self.tick1line.draw(renderer) if self.label1On: self.label1.draw(renderer) if transforms.interval_contains(upper_interval, self.get_loc()): if self.tick2On: self.tick2line.draw(renderer) if self.label2On: self.label2.draw(renderer) renderer.close_group(self.__name__) # This class exists to provide two separate sets of intervals to the tick, # as well as create instances of the custom tick class SkewXAxis(maxis.XAxis): def __init__(self, *args, **kwargs): maxis.XAxis.__init__(self, *args, **kwargs) self.upper_interval = 0.0, 1.0 def _get_tick(self, major): return SkewXTick(self.axes, 0, '', major=major) @property def lower_interval(self): return self.axes.viewLim.intervalx def get_view_interval(self): return self.upper_interval[0], self.axes.viewLim.intervalx[1] # This class exists to calculate the separate data range of the # upper X-axis and draw the spine there. It also provides this range # to the X-axis artist for ticking and gridlines class SkewSpine(mspines.Spine): def __init__(self, axes, spine_type): if spine_type == 'bottom': loc = 0.0 else: loc = 1.0 mspines.Spine.__init__(self, axes, spine_type, mpath.Path([(13, loc), (13, loc)])) def _adjust_location(self): trans = self.axes.transDataToAxes.inverted() if self.spine_type == 'top': yloc = 1.0 else: yloc = 0.0 left = trans.transform_point((0.0, yloc))[0] right = trans.transform_point((1.0, yloc))[0] pts = self._path.vertices pts[0, 0] = left pts[1, 0] = right self.axis.upper_interval = (left, right) # This class handles registration of the skew-xaxes as a projection as well # as setting up the appropriate transformations. It also overrides standard # spines and axes instances as appropriate. class SkewXAxes(Axes): # The projection must specify a name. This will be used be the # user to select the projection, i.e. ``subplot(111, # projection='skewx')``. name = 'skewx' def _init_axis(self): #Taken from Axes and modified to use our modified X-axis self.xaxis = SkewXAxis(self) self.spines['top'].register_axis(self.xaxis) self.spines['bottom'].register_axis(self.xaxis) self.yaxis = maxis.YAxis(self) self.spines['left'].register_axis(self.yaxis) self.spines['right'].register_axis(self.yaxis) def _gen_axes_spines(self): spines = {'top': SkewSpine(self, 'top'), 'bottom': mspines.Spine.linear_spine(self, 'bottom'), 'left': mspines.Spine.linear_spine(self, 'left'), 'right': mspines.Spine.linear_spine(self, 'right')} return spines def _set_lim_and_transforms(self): """ This is called once when the plot is created to set up all the transforms for the data, text and grids. """ rot = 30 #Get the standard transform setup from the Axes base class Axes._set_lim_and_transforms(self) # Need to put the skew in the middle, after the scale and limits, # but before the transAxes. This way, the skew is done in Axes # coordinates thus performing the transform around the proper origin # We keep the pre-transAxes transform around for other users, like the # spines for finding bounds self.transDataToAxes = (self.transScale + (self.transLimits + transforms.Affine2D().skew_deg(rot, 0))) # Create the full transform from Data to Pixels self.transData = self.transDataToAxes + self.transAxes # Blended transforms like this need to have the skewing applied using # both axes, in axes coords like before. self._xaxis_transform = (transforms.blended_transform_factory( self.transScale + self.transLimits, transforms.IdentityTransform()) + transforms.Affine2D().skew_deg(rot, 0)) + self.transAxes # Now register the projection with matplotlib so the user can select # it. register_projection(SkewXAxes) @image_comparison(baseline_images=['skew_axes'], remove_text=True) def test_set_line_coll_dash_image(): fig = plt.figure() ax = fig.add_subplot(1, 1, 1, projection='skewx') ax.set_xlim(-50, 50) ax.set_ylim(50, -50) ax.grid(True) # An example of a slanted line at constant X l = ax.axvline(0, color='b') @image_comparison(baseline_images=['skew_rects'], remove_text=True) def test_skew_rectange(): fix, axes = plt.subplots(5, 5, sharex=True, sharey=True, figsize=(16, 12)) axes = axes.flat rotations = list(itertools.product([-3, -1, 0, 1, 3], repeat=2)) axes[0].set_xlim([-4, 4]) axes[0].set_ylim([-4, 4]) axes[0].set_aspect('equal') for ax, (xrots, yrots) in zip(axes, rotations): xdeg, ydeg = 45 * xrots, 45 * yrots t = transforms.Affine2D().skew_deg(xdeg, ydeg) ax.set_title('Skew of {0} in X and {1} in Y'.format(xdeg, ydeg)) ax.add_patch(mpatch.Rectangle([-1, -1], 2, 2, transform=t + ax.transData, alpha=0.5, facecolor='coral')) plt.subplots_adjust(wspace=0, left=0, right=1, bottom=0) if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
gpl-2.0
anewmark/galaxy_dark_matter
lin-log_test.py
1
7446
print('Testing Lin v Log') test=2 if test==1: import astropy.table as table import numpy as np from defcuts import * from defflags import * from halflight_first import * from def_get_mags import * from def_halflight_math import * bands=['g', 'r', 'i','z', 'y'] daperture=[1.01,1.51,2.02,3.02,4.03,5.71,8.40,11.8,16.8,23.5] aperture=[x*0.5 for x in daperture] ty='mean' stax=True if stax==False: tag='' else: tag='uplim' txtdist= 'Figure2' txtslope='Figure1' outdir='/Users/amandanewmark/repositories/galaxy_dark_matter/lumprofplots/clumps/+LL'+ty+tag doutdir='/Users/amandanewmark/repositories/galaxy_dark_matter/lumprofplots/distribution/+LL'+ty+tag Flags=['flags_pixel_bright_object_center', 'brobj_cen_flag-', 'No Bright Ojbect Centers', 'Only Bright Object Centers', 'brobj_cen_flag'] indir='/Users/amandanewmark/repositories/galaxy_dark_matter/GAH/' bigdata = table.Table.read(indir+ 'LOWZ_HSCGAMA15_apmgs+cmodmag.fits') def do_cuts(datatab): parm=['flags_pixel_saturated_center','flags_pixel_edge','flags_pixel_interpolated_center','flags_pixel_cr_center','flags_pixel_suspect_center', 'flags_pixel_clipped_any','flags_pixel_bad'] ne=[99.99, 199.99, 0.0] mincut=0.1 maxcut='' cutdata=not_cut(datatab, bands, 'mag_forced_cmodel', ne) for b in range(0, len(bands)-1): newdata=many_flags(cutdata, parm, bands[b]) #flags not in y? cutdata=newdata return newdata def get_TF(data): bandi=['i'] Flag, Not,lab= TFflag(bandi,Flags, data) return Flag, Not newdata=do_cuts(bigdata) Flagdat, Notdat=get_TF(newdata) def my_halflight2(dat1, sc=''): loglum, lograd, loglumd= get_ind_lums(dat1, bands, aperture, scale='log') if stax==True: loglum, lograd, loglumd= upper_rad_cut(loglum, lograd, loglumd, 4, proof=False) #print('length of radius array is ', len(lograd)) mloglum, mlogdens, mlograd, mlogerr= get_avg_lums(loglum, lograd, loglumd, gr=[1,80,11], type=ty, scale=sc) logr12s= get_halflight(loglum, lograd) logr12= get_halflight(mloglum, mlograd) Ms, cs, errs= get_slopes(logr12s, lograd, loglumd, error=None, smax=stax) M, c, logrcut, logldcut, sterr, errcut =get_slopes(logr12, mlograd, mlogdens, error=mlogerr, smax=stax) print(sterr) cutmlogld = M * logrcut + c ind=[loglum, loglumd, lograd, logr12s] means=[mloglum,mlogdens,mlograd,logr12, mlogerr] ind_slope=[Ms, cs, errs] mean_slopes=[M, c, logrcut, logldcut, cutmlogld, sterr, errcut] #logrcut and logldcut are for lines of best fit return ind, means, ind_slope, mean_slopes inds1, means1, ind_slope1, mean_slopes1=my_halflight2(Flagdat, sc='lindata') inds2, means2, ind_slope2, mean_slopes2=my_halflight2(Flagdat, sc='') def my_graphs(inds1, means1, ind_slope1, mean_slopes1, inds2, means2, ind_slope2, mean_slopes2): import matplotlib.pyplot as plt import numpy as np import math #ind=[loglum, loglumd, lograd, logr12s] #means=[mloglum,mlogdens,lograd,logr12, mlogerr] #ind_slope=[Ms, cs, errs] #mean_slopes=[M, c, logrcut, logldcut, cutmlogld, sterr, errcut] def lum_mult_fit(x1, x2, y1, y2, xcut1, xcut2, yfit1, yfit2, sterr1, sterr2 , m1, m2, error1, error2, outdir=''): print('Make Scatter Plots') f=plt.figure() plt.scatter(x1, y1, color='r', marker='o',label='Linearly Averaged') plt.plot(xcut1, yfit1, color='m', label='Linearly Averaged: slope= '+str(np.round(m1,2))+' +- '+str(np.round(sterr1,2))) plt.errorbar(x1, y1, yerr=error1, fmt='.',color='r') plt.scatter(x2, y2, color='b', marker='o',label='Log Averaged ') plt.plot(xcut2, yfit2, color='c', label='Log Averaged: slope= '+str(np.round(m2,2))+' +- '+str(np.round(sterr2,2))) plt.errorbar(x2, y2, yerr=error2, fmt='.',color='b') plt.xlabel('Log Radii (kpc)') plt.ylabel('Luminosity Densities (Lsolar/kpc^2)') plt.title('Average Luminosity Densities v Radii') #plt.xlim(math.log10(1), math.log10(80)) #plt.ylim(6,8.6) plt.legend(loc=0,prop={'size':6.0}) f.text(0.05, 0.05, txtslope, color='red', weight='bold') outdirs=outdir+tag+'TF.pdf' #plt.show() f.savefig(outdirs) print(outdirs) def dist_mean(m1s, m2s, m1, m2, sterr1, sterr2, KS=False): figs=plt.figure() bs=np.linspace(-2.0,-1.4,num=15, endpoint=False) n1, b1, p1= plt.hist(m1s, bs, color='red', label='Linearly Averaged ('+str(len(m1s))+')', alpha=0.8) n2, b2, p2= plt.hist(m2s,bs, color='blue', label='Log Averaged ('+str(len(m2s))+')', alpha=0.8) ts='' if KS==True: M=m1s+m2s import scipy D, p=scipy.stats.ks_2samp(m1s,m2s) plt.plot(0,0, c='green', marker='*', label='K-S test is '+str(D)) plt.xlim(np.min(M),-1.4) ts='KS' #print('Standard Deviation (Not Flagged): ', str(np.std(m1s))) #print('Standard Deviation (Flagged): ', str(np.std(m2s))) plt.axvline(x=m1, color='magenta', label='Linearly Averaged: slope= '+str(np.round(m1,2))+' +- ' +str(np.round(sterr1,2))) plt.axvline(x=m2, color='cyan', label='Log Averaged: slope= '+str(np.round(m2,2))+' +- '+str(np.round(sterr2,2))) plt.xlabel('Slopes', fontsize=10) plt.legend(loc=0,prop={'size':6.5}) plt.ylabel('Frequency', fontsize=10) plt.title('With '+ty+' Slopes') outdirs=doutdir+'slopedist.pdf' #figs.text(0.03, 0.03, txtdist, color='red', weight='bold') #plt.show() figs.savefig(outdirs) print(outdirs) def all_lumprof(lum1s, lum2s, rad1s, rad2s, mrad1, mrad2, mden1, mden2, error1, error2): f=plt.figure() #print(len(mrad1)) #these are the mean radii #print(len(mrad2)) #print(len(mden1)) #print(len(mden2)) for n in range(len(lum1s)): plt.plot(rad1s[n], lum1s[n],color='lightgrey', marker='.') for n in range(len(lum2s)): plt.plot(rad2s[n], lum2s[n],color='lightgrey', marker='.') plt.scatter(mrad1, mden1, color='red', marker='o',label='Linearly Averaged ('+str(len(lum1s))+')', zorder=3) plt.scatter(mrad2,mden2,color='blue', marker='o',label='Log Averaged ('+str(len(lum1s))+')', zorder=3) plt.xlabel('Log Radii (kpc)') plt.ylabel('Luminosity Densities (Lsolar/kpc^2)') plt.title('Average Luminosity Densities v Radii') plt.legend(loc=0,prop={'size':6.0}) outdirs=outdir+tag+'all_lumprof.pdf' #plt.show() f.savefig(outdirs) print(outdirs) dist_mean(ind_slope1[0],ind_slope2[0],mean_slopes1[0],mean_slopes2[0],mean_slopes1[5], mean_slopes2[5], KS=False) all_lumprof(inds1[1], inds2[1], inds1[2], inds2[2], means1[2], means2[2], means1[1], means2[1],means1[4], means2[4]) lum_mult_fit(means1[2], means2[2], means1[1], means2[1], mean_slopes1[2], mean_slopes2[2], mean_slopes1[4], mean_slopes2[4], mean_slopes1[5], mean_slopes2[5], mean_slopes1[0], mean_slopes2[0],means1[4], means2[4], outdir=outdir) my_graphs(inds1, means1, ind_slope1, mean_slopes1, inds2, means2, ind_slope2, mean_slopes2) else: from halflight_second import meanlum2 import numpy as np import matplotlib.pyplot as plt Naps=0 L=np.array([7.5, 8.0, 8.5, 9.0, 8.5,7.0, 8.5]) R=np.array([1,2,3,3,4,0,2.5]) mL, mR, bb=meanlum2(L, R, Naps,grange=[10**0.8,10**3.5,4],scale='lindata') mL1, mR1, bb1=meanlum2(L, R, Naps,grange=[10**0.8,10**3.5,4],scale='') print('Lums', mL, mL1) print('Rads', mR1, mR1) plt.scatter(mR, mL, color='red', label='Averaged Linearly') plt.scatter(mR1, mL1, color='blue', label='Averaged on Log scale') plt.xlabel('Log Radii') plt.ylabel('Log Luminosity') plt.legend(loc=0,prop={'size':6.0}) plt.show()
mit
ruishihan/R7-with-notes
src/host/python/GSMTimingSync.py
2
1162
import numpy as np from ctypes import * import time import GSM from sptools import findFreq from GSMSync import GSMSync import matplotlib.pyplot as plt class GSMTimingSync(GSMSync): def __init__(self,f,url='http://192.168.1.110:8080/'): GSMSync.__init__(self,f,url) self.sb = GSM.SB() self.osr = self.fc/GSM.symbolrate def once( self ): blk = self.fl/16 rfd,start = self.getRfData(self.fl-blk,blk*3) nprfd = self.short2Complex(rfd) f = np.abs(self.sb.channelEst(nprfd,self.osr)) for i in range(1,5): rfd,start = self.getRfData(i*10*self.fl+self.fl-blk,blk*3) nprfd = self.short2Complex(rfd) f += np.abs(self.sb.channelEst(nprfd,self.osr)) inx = int(f.argmax()-blk-42*self.osr) plt.plot(f) return inx def sync(self): self.waitClockStable() ff = self.once() fs = self.getFrameStart() self.setFrameStart(fs+ff/2) return ff def main(): fs = GSMTimingSync(1.92e6) f0 = fs.sync() f1 = 0. while abs(f0)>5: if abs(f0)>fs.fl/16: print f0,fs.fl/16 return -1 print "Timing sync:",f0 time.sleep(1) f0 = fs.sync() print "Timing sync:",f0 return abs(f0) if __name__ == '__main__': fs = main()
apache-2.0
mikaem/spectralDNS
tests/OrrSommerfeld.py
4
8935
"""Orr-Sommerfeld""" import warnings from numpy import real, pi, exp, zeros, imag, sqrt, log10, sum from spectralDNS import config, get_solver, solve from spectralDNS.utilities import dx #from spectralDNS.utilities import reset_profile from OrrSommerfeld_shen import OrrSommerfeld try: import matplotlib.pyplot as plt import matplotlib.cbook warnings.filterwarnings("ignore", category=matplotlib.cbook.mplDeprecation) except ImportError: warnings.warn("matplotlib not installed") plt = None def initOS(OS, eigvals, eigvectors, U, X, t=0.): x = X[0][:, 0, 0] eigval, phi, dphidy = OS.interp(x, eigvals, eigvectors, eigval=1, verbose=False) OS.eigval = eigval for j in range(U.shape[2]): y = X[1][0, j, 0] v = (1-x**2) + config.params.eps*real(dphidy*exp(1j*(y-eigval*t))) u = -config.params.eps*real(1j*phi*exp(1j*(y-eigval*t))) U[0, :, j, :] = u.repeat(U.shape[3]).reshape((len(x), U.shape[3])) U[1, :, j, :] = v.repeat(U.shape[3]).reshape((len(x), U.shape[3])) U[2] = 0 acc = zeros(1) OS, e0 = None, None def initialize(solver, context): global OS, e0 params = config.params OS = OrrSommerfeld(Re=params.Re, N=128) eigvals, eigvectors = OS.solve(False) OS.eigvals, OS.eigvectors = eigvals, eigvectors U = context.U X = context.X FST = context.FST initOS(OS, eigvals, eigvectors, U, X) U_hat = solver.set_velocity(**context) U = solver.get_velocity(**context) # Compute convection from data in context (i.e., context.U_hat and context.g) # This is the convection at t=0 e0 = 0.5*dx(U[0]**2+(U[1]-(1-X[0]**2))**2, FST) acc[0] = 0.0 if 'RK3' not in params.solver: # Initialize at t = dt context.H_hat1[:] = solver.get_convection(**context) context.U_hat0[:] = U_hat context.U0[:] = U initOS(OS, eigvals, eigvectors, U, X, t=params.dt) U_hat = solver.set_velocity(**context) U = solver.get_velocity(**context) params.t = params.dt params.tstep = 1 e1 = 0.5*dx(U[0]**2+(U[1]-(1-X[0]**2))**2, FST) if solver.rank == 0: acc[0] += abs(e1/e0 - exp(2*imag(OS.eigval)*params.t))*params.dt else: params.t = 0 params.tstep = 0 if not ("KMM" in params.solver or "Coupled" in params.solver): P_hat = solver.compute_pressure(**context) P = P_hat.backward(context.P) if params.convection == 'Vortex': P += 0.5*sum(U**2, axis=0) P_hat = context.P.forward(P_hat) else: try: context.g[:] = 0 except AttributeError: pass def set_Source(Source, Sk, FST, ST, N, **kw): Source[:] = 0 Source[1] = -2./config.params.Re Sk[:] = 0 Sk[1] = FST.scalar_product(Source[1], Sk[1]) Sk[1, -2:, 0, 0] = 0 im1, im2, im3, im4 = (None, )*4 def update(context): c = context params = config.params solver = config.solver #if params.tstep == 2: reset_profile(profile) if (params.tstep % params.plot_step == 0 or params.tstep % params.compute_energy == 0): U = solver.get_velocity(**context) global im1, im2, im3, OS, e0, acc if plt is not None: if im1 is None and solver.rank == 0 and params.plot_step > 0: plt.figure() im1 = plt.contourf(c.X[1][:, :, 0], c.X[0][:, :, 0], c.U[0, :, :, 0], 100) plt.colorbar(im1) plt.draw() plt.figure() im2 = plt.contourf(c.X[1][:, :, 0], c.X[0][:, :, 0], c.U[1, :, :, 0] - (1-c.X[0][:, :, 0]**2), 100) plt.colorbar(im2) plt.draw() plt.figure() im3 = plt.quiver(c.X[1][:, :, 0], c.X[0][:, :, 0], c.U[1, :, :, 0]-(1-c.X[0][:, :, 0]**2), c.U[0, :, :, 0]) plt.draw() plt.pause(1e-6) if params.tstep % params.plot_step == 0 and solver.rank == 0 and params.plot_step > 0: im1.ax.clear() im1.ax.contourf(c.X[1][:, :, 0], c.X[0][:, :, 0], U[0, :, :, 0], 100) im1.autoscale() im2.ax.clear() im2.ax.contourf(c.X[1][:, :, 0], c.X[0][:, :, 0], U[1, :, :, 0]-(1-c.X[0][:, :, 0]**2), 100) im2.autoscale() im3.set_UVC(U[1, :, :, 0]-(1-c.X[0][:, :, 0]**2), U[0, :, :, 0]) plt.pause(1e-6) if params.tstep % params.compute_energy == 0: e1, e2, exact = compute_error(c) div_u = solver.get_divergence(**c) e3 = dx(div_u**2, c.FST) if solver.rank == 0 and not config.params.spatial_refinement_test: acc[0] += abs(e1/e0-exact)*params.dt #acc[0] += sqrt(e2) print("Time %2.5f Norms %2.16e %2.16e %2.16e %2.16e %2.16e" %(params.t, e1/e0, exact, e1/e0-exact, sqrt(e2), sqrt(e3))) def compute_error(context): global OS, e0, acc c = context params = config.params solver = config.solver U = solver.get_velocity(**c) pert = (U[1] - (1-c.X[0]**2))**2 + U[0]**2 e1 = 0.5*dx(pert, c.FST) exact = exp(2*imag(OS.eigval)*params.t) U0 = c.work[(c.U, 0, True)] initOS(OS, OS.eigvals, OS.eigvectors, U0, c.X, t=params.t) pert = (U[0] - U0[0])**2 + (U[1]-U0[1])**2 #pert = (U[1] - U0[1])**2 e2 = 0.5*dx(pert, c.FST) return e1, e2, exact def regression_test(context): _, e2, _ = compute_error(context) if config.solver.rank == 0: assert sqrt(e2) < 1e-12 def refinement_test(context): _, e2, _ = compute_error(context) if config.solver.rank == 0: print("Computed error = %2.8e %2.8e %2.8e" %(sqrt(e2)/config.params.eps, config.params.dt, config.params.eps)) #print("Computed error = %2.8e %2.8e %2.8e" %(acc[0], config.params.dt, config.params.eps)) def eps_refinement_test(context): e1, e2, exact = compute_error(context) if config.solver.rank == 0: print(r" %2d & %2.8e & %2.8e \\\ " %(-int(log10(config.params.eps)), sqrt(e2)/config.params.eps, e1/e0-exact)) def spatial_refinement_test(context): _, e2, _ = compute_error(context) if config.solver.rank == 0: print(r" %2d & %2.8e & %2.8e \\\ " %(2**config.params.M[0], sqrt(e2)/config.params.eps, acc[0])) if __name__ == "__main__": config.update( {'Re': 8000., 'nu': 1./8000., # Viscosity 'dt': 0.001, # Time step 'T': 0.01, # End time 'L': [2, 2*pi, pi], 'M': [7, 5, 2], 'Dquad': 'GC', 'Bquad': 'GC', 'dealias': None, }, "channel" ) config.channel.add_argument("--compute_energy", type=int, default=1) config.channel.add_argument("--plot_step", type=int, default=1) config.channel.add_argument("--refinement_test", type=bool, default=False) config.channel.add_argument("--eps_refinement_test", type=bool, default=False) config.channel.add_argument("--spatial_refinement_test", type=bool, default=False) config.channel.add_argument("--eps", type=float, default=1e-7) #solver = get_solver(update=update, regression_test=regression_test, mesh="channel") solver = get_solver(update=update, mesh="channel") if config.params.eps_refinement_test: print("eps refinement-test") solver.update = lambda x: None solver.regression_test = eps_refinement_test config.params.verbose = False context = solver.get_context() for eps in [1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9, 1e-10, 1e-11, 1e-12]: config.params.eps = eps initialize(solver, context) set_Source(**context) solve(solver, context) elif config.params.spatial_refinement_test: print("spatial refinement-test") def update_(con): e1, _, exact = compute_error(con) acc[0] += abs(e1/e0-exact) solver.update = update_ solver.regression_test = spatial_refinement_test config.params.verbose = False for M in [4, 5, 6, 7, 8]: config.params.M = [M, 3, 2] context = solver.get_context() initialize(solver, context) set_Source(**context) solve(solver, context) else: if config.params.refinement_test: #solver.update = lambda x: None def update_(con): e1, _, exact = compute_error(con) acc[0] += abs(e1/e0-exact)*config.params.dt solver.update = update_ solver.regression_test = refinement_test context = solver.get_context() # Just store 2D slices for visualization context.hdf5file.results['data'] = {'U': [(context.U[0], [slice(None), slice(None), 0])], 'V': [(context.U[1], [slice(None), slice(None), 0])]} initialize(solver, context) set_Source(**context) solve(solver, context)
gpl-3.0
joshgabriel/dft-crossfilter
CompleteApp/prec_analysis/main.py
2
27301
import os from os.path import dirname, join from collections import OrderedDict import pandas as pd import numpy as np import json from bokeh.io import curdoc from bokeh.layouts import row, widgetbox, column, gridplot, layout from bokeh.models import Select, Div, Column, \ HoverTool, ColumnDataSource, Button, RadioButtonGroup,\ MultiSelect #from bokeh.models.widgets import RangeSlider from bokeh.plotting import figure from bokeh import mpl from precision.precisions import DatabaseData import requests print ('Does something after imports') plottables = ['k-point', 'value', 'perc_precisions'] x_select = Select(title='X-Axis', value='k-point', options=plottables) y_select = Select(title='Y-Axis', value='value', options=plottables) ############## Header Content from description.html ################# content_filename1 = join(dirname(__file__), "UserInstructions.html") Desc_C1 = Div(text=open(content_filename1).read(), render_as_text=False, width=600) content_filename2 = join(dirname(__file__), "UserInstructions.html") Desc_C2 = Div(text=open(content_filename2).read(), render_as_text=False, width=600) content_filename3 = join(dirname(__file__), "UserInstructions.html") Desc_C3 = Div(text=open(content_filename1).read(), render_as_text=False, width=600) content_filename4 = join(dirname(__file__), "UserInstructions.html") Desc_C4 = Div(text=open(content_filename2).read(), render_as_text=False, width=600) ######### APP CROSSFILTER ########################## # decide if all columns or crossfilter down to sub properties #source_data = pd.DataFrame({})#ColumnDataSource(data=dict()) class CrossFiltDFs(): def __init__(self,query_dict={'code':'VASP','exchange':'PBE',\ 'element':'Au','structure':'fcc','properties':'B'},plot_data=None): self.query_dict = query_dict self.plot_data = plot_data def crossfilter_by_tag(self,df, tag): """ a crossfilter that can recursivly update the unique options in the UI based on prioir selections returns crossfiltered by tag crossfilter {'element': 'Ag'} """ col,spec= list(tag.items())[0] return df[df[col]==spec] # The crossfilter widgets def update(self, attr, old, new): print ('Attribute', attr, 'OLD', old, 'NEW', new) print ('executes here on update')#, exchange_df) def update_code(self): """ update for the code selection """ print ('update code') self.query_dict.update({'code':code.value}) def update_exchange(self): """ update the exchange """ print ('update exchange') self.query_dict.update({'exchange':exchange.value}) def update_element(self,new): print ('Updating element down selection for properties',element.value) self.query_dict.update({'element':element.value}) def update_struct(self): print ('Updating struct down selection for element') self.query_dict.update({'structure':struct.value}) print ('Updating ptable with structure selection') print ('finished callback to update layout') def update_prop(self): self.properties = prop.value def update_kpoints(self): pass def update_x(self): self.x = x.value pass def update_y(self): self.y = y.value pass def update_range(self): pass def query_api(self,endpoint): query_dict ={k:v for k,v in self.query_dict.items() if k!='properties'} self.properties = self.query_dict['properties'] if self.properties == 'dB': self.properties = 'BP' r = requests.post(url='http://0.0.0.0:6400/bench/v1/query_{}'.\ format(endpoint),data=json.dumps(self.query_dict)) ListOfDicts = r.json()['content'] self.plot_data = pd.concat([pd.DataFrame({k:[ld[k]] for k in list(ld.keys())}) for ld in ListOfDicts]) def plot_prec_value1(self): """ calls the plotting operation by querying the evk endpoint and returning a single evk packet of single material structure code exchange to self.plot_data. This controls the first plot canvas """ self.query_dict={'code':code.value,'exchange':exchange.value,\ 'structure':struct.value,'element':element.value,'properties':prop.value} print ('POSTING', self.query_dict) self.query_api(endpoint='evk') layout_doc.children[2].children[0] = self.plot_pade_figure() def clear_crossfilter1(self): """ clear the figure and crossfilter """ print ('Trigger clear') self.query_dict = {} self.plot_data = None self.create_figure_new() layout_doc.children[2].children[0] = self.p def plot_prec_value2(self): """ calls the plotting operation by querying the evk endpoint and returning a single evk packet of single material structure code exchange to self.plot_data. This controls the first plot canvas """ self.query_dict={'code':code2.value,'exchange':exchange2.value,\ 'structure':struct2.value,'element':element2.value,'properties':prop2.value} print ('POSTING', self.query_dict) self.query_api(endpoint='evk') layout_doc.children[2].children[1] = self.plot_pade_figure() def clear_crossfilter2(self): """ clear the figure and crossfilter """ print ('Trigger clear') self.query_dict = {} self.plot_data = None self.create_figure_new() layout_doc.children[2].children[1] = self.p def plot_prec_value3(self): """ calls the plotting operation by querying the evk endpoint and returning a single evk packet of single material structure code exchange to self.plot_data. This controls the first plot canvas """ self.query_dict={'code':code3.value,'exchange':exchange3.value,\ 'structure':struct3.value,'element':element3.value,'properties':prop3.value} print ('POSTING', self.query_dict) self.query_api(endpoint='evk') layout_doc.children[2].children[2] = self.plot_pade_figure() def clear_crossfilter3(self): """ clear the figure and crossfilter """ print ('Trigger clear') self.query_dict = {} self.plot_data = None self.create_figure_new() layout_doc.children[2].children[2] = self.p def plot_prec_value4(self): """ calls the plotting operation by querying the evk endpoint and returning a single evk packet of single material structure code exchange to self.plot_data. This controls the first plot canvas """ self.query_dict={'code':code4.value,'exchange':exchange4.value,\ 'structure':struct4.value,'element':element4.value,'properties':prop4.value} print ('POSTING', self.query_dict) self.query_api(endpoint='evk') layout_doc.children[2].children[3] = self.plot_pade_figure() def clear_crossfilter4(self): """ clear the figure and crossfilter """ print ('Trigger clear') self.query_dict = {} self.plot_data = None self.create_figure_new() layout_doc.children[2].children[3] = self.p def plot_pade_figure(self): """ method which plots multiple curves of different color on the same bokeh figure canvas. Will receive query results from the evk end point on the E0k, V0k, Bk, BPk, kpoints data. x is always kpoints data log scaled """ # receive a dict of datasets: {'Plot1':{'Dsett1':DFrame, 'x_title': None, 'y_title': None, # 'Characteristic':'VASP_PBE_Al_fcc_B'}, 'Plot2':{'x':[],'y':[], 'x_title': None, 'y_title': None}} #def color_marker_divider(characteristics): # cm_keys= {'00':('red','*'),'01':('red','-.-'),'02':('red','*'),'03':('red','^'),\ # '10':('blue','*'),'11':('blue','-.-'),'12':('blue','*'),'13':('blue','^') # } # DictCharacters = \ # [{n:att for n,att in enumerate(c.split('_'))} for c in characteristics] # one or two char value different and same code and exchange: same color different marker # else different color and marker. # return cm_keys #color_marker_divider(characteristics) #for dset in datasets: data_analysis = DatabaseData(dataframe=self.plot_data) print (data_analysis.dataframe.columns) data_analysis.run_pade_through_R(rscript='./prec_analysis/birch',get_inits_ev=True) data_analysis.create_precisions() data_analysis.extract_pade_curve() x_eos_kpts, y_eos, xs_err, ys_err, x_pade_kpts, y_pade = \ data_analysis.create_pade_bokeh_compat(properties=self.properties) #c,m = color_marker_divider(characteristics)['00'] print (type(self.properties), self.properties) if self.properties == 'B': ext = data_analysis.Bp print ('HERE AT PROPERTIES', ext, type(ext)) elif self.properties == 'BP': ext = data_analysis.BPp elif self.properties == 'E0': ext = data_analysis.E0p elif self.properties == 'V0': ext = data_analysis.V0p p = figure(plot_height=400, plot_width=400,tools="pan,wheel_zoom,box_zoom,reset,previewsave",\ x_axis_type="log", x_axis_label='K-points per atom', title='Pade Extrapolate of {0} is {1}'.format(self.properties, str(ext)) ) p.xaxis.axis_label = 'K-points per atom' p.line(x_pade_kpts, y_pade, color='red') p.circle(x_eos_kpts, y_eos,color='blue',size=5, line_alpha=0) p.multi_line(xs_err, ys_err, color='black') #p.x_axis_label = 'K-points per atom' if self.properties == 'B': p.yaxis.axis_label = 'Bulk Modulus B (GPa)' elif self.properties == 'dB': p.yaxis.axis_label = 'Bulk Modulus Pressure Derivative' elif self.properties == 'E0': p.yaxis.axis_label = 'DFT Energy (eV/atom)' elif self.properties == 'V0': p.yaxis.axis_label = 'Volume (A^3/atom)' return p def create_figure_new(self): """ create a new multi-figure canvas """ kw = {} self.p = figure(plot_height=400, plot_width=400, tools='pan,wheel_zoom,box_zoom,reset,hover', **kw) self.p.circle(x=[0],y=[0]) def plot_precision_figure(self): """ method which plots multiple curves of different color on the same bokeh figure canvas. Will receive query results from the evk end point on the E0k, V0k, Bk, BPk, kpoints data. x is always kpoints data log scaled """ # receive a dict of datasets: {'Plot1':{'Dsett1':DFrame, 'x_title': None, 'y_title': None, # 'Characteristic':'VASP_PBE_Al_fcc_B'}, 'Plot2':{'x':[],'y':[], 'x_title': None, 'y_title': None}} #def color_marker_divider(characteristics): # cm_keys= {'00':('red','*'),'01':('red','-.-'),'02':('red','*'),'03':('red','^'),\ # '10':('blue','*'),'11':('blue','-.-'),'12':('blue','*'),'13':('blue','^') # } # DictCharacters = \ # [{n:att for n,att in enumerate(c.split('_'))} for c in characteristics] # one or two char value different and same code and exchange: same color different marker # else different color and marker. # return cm_keys data_analysis = DatabaseData(dataframe=self.plot_data) prop_data, energy_data, M, C, pred_energy, pred_property = \ data_analysis.create_precision_bokeh_compat(self.prop_data, self.energy_data, properties=self.properties) p = figure(plot_height=400, plot_width=400,tools="pan,wheel_zoom,box_zoom,reset,previewsave",\ x_axis_type="log", y_axis_type="log", x_axis_label='Energy Convergence (meV/atom)', title='Slope M is {0}'.format(str(M)) ) p.line(pred_energy, pred_property, color='red') p.circle(energy_data, prop_data, color='blue',size=5, line_alpha=0) #p.multi_line(xs_err, ys_err, color='black') if self.properties == 'B': p.yaxis.axis_label = 'Bulk Modulus B (%)' elif self.properties == 'dB': p.yaxis.axis_label = 'Bulk Modulus Pressure Derivative (%)' elif self.properties == 'Multiple': p.yaxis.axis_label = "V0, B, B' (%)" elif self.properties == 'V0': p.yaxis.axis_label = 'Volume (%)' return p def multi_precisions_correlate1(self): """ method which allows the user to plot various precisions against each other. Also prints out the M-value and intercepts of precision at 1 meV/atom, 0.1 meV/atom and 0.01 meV/atom """ self.query_dict={'code':code.value,'exchange':exchange.value,\ 'structure':struct.value,'element':element.value,'properties':prop4.value} print ('POSTING', self.query_dict) if not self.query_dict['properties'] == 'Multi': self.query_api(endpoint='precvalue') self.prop_data = self.plot_data['s{}k'.format(self.properties)] self.energy_data = self.plot_data['sE0k'.format(self.properties)] layout_doc.children[2].children[0] = self.plot_precision_figure() pass def multi_precisions_correlate2(self): """ method which allows the user to plot various precisions against each other. Also prints out the M-value and intercepts of precision at 1 meV/atom, 0.1 meV/atom and 0.01 meV/atom """ self.query_dict={'code':code2.value,'exchange':exchange2.value,\ 'structure':struct2.value,'element':element2.value,'properties':prop2.value} print ('POSTING', self.query_dict) if not self.query_dict['properties'] == 'Multi': self.query_api(endpoint='precvalue') self.prop_data = self.plot_data['s{}k'.format(self.properties)] self.energy_data = self.plot_data['sE0k'.format(self.properties)] layout_doc.children[2].children[1] = self.plot_precision_figure() def multi_precisions_correlate3(self): """ method which allows the user to plot various precisions against each other. Also prints out the M-value and intercepts of precision at 1 meV/atom, 0.1 meV/atom and 0.01 meV/atom """ self.query_dict={'code':code3.value,'exchange':exchange3.value,\ 'structure':struct3.value,'element':element3.value,'properties':prop3.value} print ('POSTING', self.query_dict) if not self.query_dict['properties'] == 'Multi': self.query_api(endpoint='precvalue') self.prop_data = self.plot_data['s{}k'.format(self.properties)] self.energy_data = self.plot_data['sE0k'.format(self.properties)] layout_doc.children[2].children[2] = self.plot_precision_figure() def multi_precisions_correlate4(self): """ method which allows the user to plot various precisions against each other. Also prints out the M-value and intercepts of precision at 1 meV/atom, 0.1 meV/atom and 0.01 meV/atom """ self.query_dict={'code':code4.value,'exchange':exchange4.value,\ 'structure':struct4.value,'element':element4.value,'properties':prop4.value} print ('POSTING', self.query_dict) if not self.query_dict['properties'] == 'Multi': self.query_api(endpoint='precvalue') self.prop_data = self.plot_data self.query_dict={'code':code.value,'exchange':exchange.value,\ 'structure':struct.value,'element':element.value,'properties':'E0'} self.query_api(endpoint='precvalue') self.energy_data = self.plot_data layout_doc.children[2].children[3] = self.plot_precision_figure() def kpoints_interactive_selector(self, dataset): """ method which creates a pareto optimal plot for the chosen structure, material, code and exchange and with the user input of desired precision returns the kpoints per atom choice. """ pass def clear_crossfilter(self): """ clear the figure and crossfilter """ print ('Trigger clear') self.plot_data = None layout_doc.children[6] = self.create_figure_new() print ('DOES SOMETHING') CF1 = CrossFiltDFs() CF2 = CrossFiltDFs() CF3 = CrossFiltDFs() CF4 = CrossFiltDFs() # for the first table to display VASP PBE all structures Pade extrapolates for all properties # as a bonus with some error bar too #### PLOT 1 codes = ['DMol3','VASP'] code = Select(title='Code 1', value='VASP', options=codes) code.on_change('value', lambda attr, old, new: CF1.update_code()) exchanges = ['LDA','PBE'] exchange = Select(title='ExchangeCorrelation 1', value='PBE', options=exchanges) exchange.on_change('value', lambda attr, old, new: CF1.update_exchange()) structures = ['fcc','bcc','hcp'] struct = Select(title='Structure 1', value='fcc', options=structures) struct.on_change('value', lambda attr, old, new: CF1.update_struct()) _elements = ['Al','Au','Sc', 'Ti','V','Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Rb', 'Sr','Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag','Cd', 'Cs','Ba','Hf','Ta','W','Re','Os','Ir','Pt','Hg'] element = Select(title='Metals 1', value='Pt', options=_elements) element.on_change('value', lambda attr, old, new: CF1.update_element()) properties = ['B','dB','V0','E0'] prop = Select(title='Properties 1', value='E0', options=properties) prop.on_change('value', lambda attr, old, new: CF1.update_prop()) #range_slider_lowK1 = RangeSlider(start=-5, end=5, value=(-5,5), step=1, title="Low K-point") #range_slider_medK1 = RangeSlider(start=-5, end=5, value=(-5,5), step=1, title="Medium K-point") #range_slider_highK1 = RangeSlider(start=-5, end=5, value=(-5,5), step=1, title="High K-point") apply_crossfilter = Button(label='Values vs. Kpoints') apply_crossfilter.on_click(CF1.plot_prec_value1) apply_precision = Button(label='Inter-Property Precision') apply_precision.on_click(CF1.multi_precisions_correlate1) clean_crossfilter = Button(label='Clear') clean_crossfilter.on_click(CF1.clear_crossfilter1) CF1.query_dict={'code':'VASP','exchange':'PBE',\ 'structure':'fcc','element':'Pt','properties':'E0'} #### PLOT 2 codes2 = ['DMol3','VASP'] code2 = Select(title='Code 2', value='VASP', options=codes2) code2.on_change('value', lambda attr, old, new: CF2.update_code()) exchanges2 = ['LDA','PBE'] exchange2 = Select(title='ExchangeCorrelation 2', value='PBE', options=exchanges2) exchange2.on_change('value', lambda attr, old, new: CF2.update_exchange()) structures2 = ['fcc','bcc','hcp'] struct2 = Select(title='Structure 2', value='fcc', options=structures2) struct2.on_change('value', lambda attr, old, new: CF2.update_struct()) _elements2 = ['Al','Au','Sc', 'Ti','V','Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Rb', 'Sr','Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag','Cd', 'Cs','Ba','Hf','Ta','W','Re','Os','Ir','Pt','Hg'] element2 = Select(title='Metals 2', value='Pt', options=_elements2) element2.on_change('value', lambda attr, old, new: CF2.update_element()) properties2 = ['B','dB','V0','E0'] prop2 = Select(title='Properties 2', value='V0', options=properties2) prop2.on_change('value', lambda attr, old, new: CF2.update_prop()) #range_slider_lowK2 = RangeSlider(start=-5, end=5, value=(-5,5), step=1, title="Low K-point") #range_slider_medK2 = RangeSlider(start=-5, end=5, value=(-5,5), step=1, title="Medium K-point") #range_slider_highK2 = RangeSlider(start=-5, end=5, value=(-5,5), step=1, title="High K-point") apply_crossfilter2 = Button(label='Values vs. Kpoints') apply_crossfilter2.on_click(CF2.plot_prec_value2) clean_crossfilter2 = Button(label='Clear') clean_crossfilter2.on_click(CF2.clear_crossfilter2) apply_precision2 = Button(label='Inter-Property Precision') apply_precision2.on_click(CF1.multi_precisions_correlate2) CF2.query_dict={'code':'VASP','exchange':'PBE',\ 'structure':'fcc','element':'Pt','properties':'V0'} ###### PLOT 3 codes3 = ['DMol3','VASP'] code3 = Select(title='Code 3', value='VASP', options=codes3) code3.on_change('value', lambda attr, old, new: CF3.update_code()) exchanges3 = ['LDA','PBE'] exchange3 = Select(title='ExchangeCorrelation 3', value='PBE', options=exchanges3) exchange3.on_change('value', lambda attr, old, new: CF3.update_exchange()) structures3 = ['fcc','bcc','hcp'] struct3 = Select(title='Structure 3', value='fcc', options=structures3) struct3.on_change('value', lambda attr, old, new: CF3.update_struct()) _elements3 = ['Al','Au','Sc', 'Ti','V','Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Rb', 'Sr','Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag','Cd', 'Cs','Ba','Hf','Ta','W','Re','Os','Ir','Pt','Hg'] element3 = Select(title='Metals 3', value='Pt', options=_elements3) element3.on_change('value', lambda attr, old, new: CF3.update_element()) properties3 = ['B','dB','V0','E0'] prop3 = Select(title='Properties 3', value='B', options=properties3) prop3.on_change('value', lambda attr, old, new: CF3.update_prop()) apply_crossfilter3 = Button(label='Values vs. Kpoints') apply_crossfilter3.on_click(CF3.plot_prec_value3) apply_precision3 = Button(label='Inter-Property Precision') apply_precision3.on_click(CF1.multi_precisions_correlate3) clean_crossfilter3 = Button(label='Clear') clean_crossfilter3.on_click(CF3.clear_crossfilter3) CF3.query_dict={'code':'VASP','exchange':'PBE',\ 'structure':'fcc','element':'Pt','properties':'B'} #range_slider_lowK3 = RangeSlider(start=-5, end=5, value=(-5,5), step=1, title="Low K-point") #range_slider_lowK3.on_change('value',lambda attr,old,new: CF.update_range()) #range_slider_medK3 = RangeSlider(start=-5, end=5, value=(-5,5), step=1, title="Medium K-point") #range_slider_medK3.on_change('value',lambda attr,old,new: CF.update_range()) #range_slider_highK3 = RangeSlider(start=-5, end=5, value=(-5,5), step=1, title="High K-point") #range_slider_highK3.on_change('value',lambda attr,old,new: CF.update_range()) ###### PLOT 4 codes4 = ['DMol3','VASP'] code4 = Select(title='Code 4', value='VASP', options=codes4) code4.on_change('value', lambda attr, old, new: CF4.update_code()) exchanges4 = ['LDA','PBE'] exchange4 = Select(title='ExchangeCorrelation 4', value='PBE', options=exchanges4) exchange4.on_change('value', lambda attr, old, new: CF4.update_exchange()) structures4 = ['fcc','bcc','hcp'] struct4 = Select(title='Structure 4', value='fcc', options=structures4) struct4.on_change('value', lambda attr, old, new: CF4.update_struct()) _elements4 = ['Al','Au','Sc', 'Ti','V','Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Rb', 'Sr','Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag','Cd', 'Cs','Ba','Hf','Ta','W','Re','Os','Ir','Pt','Hg'] element4 = Select(title='Metals 4', value='Pt', options=_elements3) element4.on_change('value', lambda attr, old, new: CF4.update_element()) properties4 = ['B','dB','V0','E0'] prop4 = Select(title='Properties 4', value='dB', options=properties4) prop4.on_change('value', lambda attr, old, new: CF4.update_prop()) apply_crossfilter4 = Button(label='Values vs. Kpoints') apply_crossfilter4.on_click(CF4.plot_prec_value4) apply_precision4 = Button(label='Inter-Property Precision') apply_precision4.on_click(CF1.multi_precisions_correlate4) #range_slider_lowK4 = RangeSlider(start=-5, end=5, value=(-5,5), step=1, title="Low K-point") #range_slider_medK4 = RangeSlider(start=-5, end=5, value=(-5,5), step=1, title="Medium K-point") #range_slider_highK4 = RangeSlider(start=-5, end=5, value=(-5,5), step=1, title="High K-point") clean_crossfilter4 = Button(label='Clear') clean_crossfilter4.on_click(CF4.clear_crossfilter4) CF4.query_dict={'code':'VASP','exchange':'PBE',\ 'structure':'fcc','element':'Pt','properties':'dB'} # a new widget that allows for choosing the minimum number of k-points needed to # evaluate a Pade extrapolate within 2 % of the Pade with all the points #all_kpts = CF.plot_data['k-point'] # Low #low_kpt = all_kpts.quantile(0.33) #Low_Kpoints = Select(title='Low K-points', value=low_kpt, options=list(all_kpts)) #Low_Kpoints.on_change('value', lambda attr, old, new: CF.update_kpoints()) #range_slider_point1 = RangeSlider(start=-5, end=5, value=(-5,5), step=1, title="Low K-point") # medium #med_kpt = all_kpts.quantile(0.66) #Medium_Kpoints = Select(title='Medium K-points', value=med_kpt, options=list(all_kpts)) #Medium_Kpoints.on_change('value', lambda attr, old, new: CF.update_kpoints()) #range_slider_point2 = RangeSlider(start=-5, end=5, value=(-5,5), step=1, title="Medium K-point") # High kpoints #high_kpt = max(all_kpts) #High_Kpoints = Select(title='High K-points', value=high_kpt, options=list(all_kpts)) #High_Kpoints.on_change('value', lambda attr, old, new: CF.update_kpoints()) #range_slider_point3 = RangeSlider(start=-5, end=5, value=(-5,5), step=1, title="High K-point") ## Point selection #analyse_crossfilt = Button(label='PadeAnalysis') #analyse_crossfilt.on_click(CF.analysis_callback) #CF_init = CrossFiltDFs() CF1.create_figure_new() CF2.create_figure_new() CF3.create_figure_new() CF4.create_figure_new() print (code.value, exchange.value, struct.value, element.value, prop.value) #Fig_canvas = gridplot([CF.p1, CF.p2, CF.p3, CF.p4]) controls1 = widgetbox([code, exchange, struct, element, prop, apply_crossfilter, apply_precision, clean_crossfilter],width=400) #range_slider_lowK1, range_slider_medK1, range_slider_highK1], width=300) controls2 = widgetbox([code2, exchange2, struct2, element2, prop2,apply_crossfilter2, apply_precision2, clean_crossfilter2],width=400) #range_slider_lowK2, range_slider_medK2, range_slider_highK2, width=300) controls3 = widgetbox([code3, exchange3, struct3, element3, prop3, apply_crossfilter3, apply_precision3, clean_crossfilter3], width=400) #range_slider_lowK3, range_slider_medK3, range_slider_highK3], width=300) controls4 = widgetbox([code4, exchange4, struct4, element4, prop4, apply_crossfilter4, apply_precision4, clean_crossfilter4], width=400) #range_slider_lowK4, range_slider_medK4, range_slider_highK4], width=300) layout_doc = layout([Desc_C1], [controls1, controls2, controls3, controls4], [CF1.p, CF2.p, CF3.p, CF4.p])#[CF1.p, CF2.p, CF3.p, CF4.p])#Desc_C1, controls1, Desc_C2, controls2,\ #Desc_C3, controls3, Desc_C4, controls_final) print ('executed till here') #z = Select(title='Z-Axis', value='None', options=plottables) #z.on_change('value', update) curdoc().add_root(layout_doc) curdoc().title = "DFT Benchmark" CF1.plot_prec_value1() CF2.plot_prec_value2() CF3.plot_prec_value3() CF4.plot_prec_value4()
mit
jorge2703/scikit-learn
examples/mixture/plot_gmm_classifier.py
250
3918
""" ================== GMM classification ================== Demonstration of Gaussian mixture models for classification. See :ref:`gmm` for more information on the estimator. Plots predicted labels on both training and held out test data using a variety of GMM classifiers on the iris dataset. Compares GMMs with spherical, diagonal, full, and tied covariance matrices in increasing order of performance. Although one would expect full covariance to perform best in general, it is prone to overfitting on small datasets and does not generalize well to held out test data. On the plots, train data is shown as dots, while test data is shown as crosses. The iris dataset is four-dimensional. Only the first two dimensions are shown here, and thus some points are separated in other dimensions. """ print(__doc__) # Author: Ron Weiss <[email protected]>, Gael Varoquaux # License: BSD 3 clause # $Id$ import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np from sklearn import datasets from sklearn.cross_validation import StratifiedKFold from sklearn.externals.six.moves import xrange from sklearn.mixture import GMM def make_ellipses(gmm, ax): for n, color in enumerate('rgb'): v, w = np.linalg.eigh(gmm._get_covars()[n][:2, :2]) u = w[0] / np.linalg.norm(w[0]) angle = np.arctan2(u[1], u[0]) angle = 180 * angle / np.pi # convert to degrees v *= 9 ell = mpl.patches.Ellipse(gmm.means_[n, :2], v[0], v[1], 180 + angle, color=color) ell.set_clip_box(ax.bbox) ell.set_alpha(0.5) ax.add_artist(ell) iris = datasets.load_iris() # Break up the dataset into non-overlapping training (75%) and testing # (25%) sets. skf = StratifiedKFold(iris.target, n_folds=4) # Only take the first fold. train_index, test_index = next(iter(skf)) X_train = iris.data[train_index] y_train = iris.target[train_index] X_test = iris.data[test_index] y_test = iris.target[test_index] n_classes = len(np.unique(y_train)) # Try GMMs using different types of covariances. classifiers = dict((covar_type, GMM(n_components=n_classes, covariance_type=covar_type, init_params='wc', n_iter=20)) for covar_type in ['spherical', 'diag', 'tied', 'full']) n_classifiers = len(classifiers) plt.figure(figsize=(3 * n_classifiers / 2, 6)) plt.subplots_adjust(bottom=.01, top=0.95, hspace=.15, wspace=.05, left=.01, right=.99) for index, (name, classifier) in enumerate(classifiers.items()): # Since we have class labels for the training data, we can # initialize the GMM parameters in a supervised manner. classifier.means_ = np.array([X_train[y_train == i].mean(axis=0) for i in xrange(n_classes)]) # Train the other parameters using the EM algorithm. classifier.fit(X_train) h = plt.subplot(2, n_classifiers / 2, index + 1) make_ellipses(classifier, h) for n, color in enumerate('rgb'): data = iris.data[iris.target == n] plt.scatter(data[:, 0], data[:, 1], 0.8, color=color, label=iris.target_names[n]) # Plot the test data with crosses for n, color in enumerate('rgb'): data = X_test[y_test == n] plt.plot(data[:, 0], data[:, 1], 'x', color=color) y_train_pred = classifier.predict(X_train) train_accuracy = np.mean(y_train_pred.ravel() == y_train.ravel()) * 100 plt.text(0.05, 0.9, 'Train accuracy: %.1f' % train_accuracy, transform=h.transAxes) y_test_pred = classifier.predict(X_test) test_accuracy = np.mean(y_test_pred.ravel() == y_test.ravel()) * 100 plt.text(0.05, 0.8, 'Test accuracy: %.1f' % test_accuracy, transform=h.transAxes) plt.xticks(()) plt.yticks(()) plt.title(name) plt.legend(loc='lower right', prop=dict(size=12)) plt.show()
bsd-3-clause
wasade/networkx
examples/drawing/giant_component.py
33
2084
#!/usr/bin/env python """ This example illustrates the sudden appearance of a giant connected component in a binomial random graph. Requires pygraphviz and matplotlib to draw. """ # Copyright (C) 2006-2008 # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. try: import matplotlib.pyplot as plt except: raise import networkx as nx import math try: from networkx import graphviz_layout layout=nx.graphviz_layout except ImportError: print("PyGraphviz not found; drawing with spring layout; will be slow.") layout=nx.spring_layout n=150 # 150 nodes # p value at which giant component (of size log(n) nodes) is expected p_giant=1.0/(n-1) # p value at which graph is expected to become completely connected p_conn=math.log(n)/float(n) # the following range of p values should be close to the threshold pvals=[0.003, 0.006, 0.008, 0.015] region=220 # for pylab 2x2 subplot layout plt.subplots_adjust(left=0,right=1,bottom=0,top=0.95,wspace=0.01,hspace=0.01) for p in pvals: G=nx.binomial_graph(n,p) pos=layout(G) region+=1 plt.subplot(region) plt.title("p = %6.3f"%(p)) nx.draw(G,pos, with_labels=False, node_size=10 ) # identify largest connected component Gcc=sorted(nx.connected_component_subgraphs(G), key = len, reverse=True) G0=Gcc[0] nx.draw_networkx_edges(G0,pos, with_labels=False, edge_color='r', width=6.0 ) # show other connected components for Gi in Gcc[1:]: if len(Gi)>1: nx.draw_networkx_edges(Gi,pos, with_labels=False, edge_color='r', alpha=0.3, width=5.0 ) plt.savefig("giant_component.png") plt.show() # display
bsd-3-clause
mne-tools/mne-tools.github.io
0.15/_downloads/ftclient_rt_compute_psd.py
18
2442
""" ============================================================== Compute real-time power spectrum density with FieldTrip client ============================================================== Please refer to `ftclient_rt_average.py` for instructions on how to get the FieldTrip connector working in MNE-Python. This example demonstrates how to use it for continuous computation of power spectra in real-time using the get_data_as_epoch function. """ # Author: Mainak Jas <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne.realtime import FieldTripClient from mne.time_frequency import psd_welch print(__doc__) # user must provide list of bad channels because # FieldTrip header object does not provide that bads = ['MEG 2443', 'EEG 053'] fig, ax = plt.subplots(1) with FieldTripClient(host='localhost', port=1972, tmax=150, wait_max=10) as rt_client: # get measurement info guessed by MNE-Python raw_info = rt_client.get_measurement_info() # select gradiometers picks = mne.pick_types(raw_info, meg='grad', eeg=False, eog=True, stim=False, include=[], exclude=bads) n_fft = 256 # the FFT size. Ideally a power of 2 n_samples = 2048 # time window on which to compute FFT for ii in range(20): epoch = rt_client.get_data_as_epoch(n_samples=n_samples, picks=picks) psd, freqs = psd_welch(epoch, fmin=2, fmax=200, n_fft=n_fft) cmap = 'RdBu_r' freq_mask = freqs < 150 freqs = freqs[freq_mask] log_psd = 10 * np.log10(psd[0]) tmin = epoch.events[0][0] / raw_info['sfreq'] tmax = (epoch.events[0][0] + n_samples) / raw_info['sfreq'] if ii == 0: im = ax.imshow(log_psd[:, freq_mask].T, aspect='auto', origin='lower', cmap=cmap) ax.set_yticks(np.arange(0, len(freqs), 10)) ax.set_yticklabels(freqs[::10].round(1)) ax.set_xlabel('Frequency (Hz)') ax.set_xticks(np.arange(0, len(picks), 30)) ax.set_xticklabels(picks[::30]) ax.set_xlabel('MEG channel index') im.set_clim() else: im.set_data(log_psd[:, freq_mask].T) plt.title('continuous power spectrum (t = %0.2f sec to %0.2f sec)' % (tmin, tmax), fontsize=10) plt.pause(0.5) plt.close()
bsd-3-clause
timahutchinson/desispec
py/desispec/scripts/bootcalib.py
2
14637
""" desispec.bootcalib ================== Utility functions to perform a quick calibration of DESI data TODO: 1. Expand to r, i cameras 2. QA plots 3. Test with CR data """ from __future__ import print_function, absolute_import, division, unicode_literals import numpy as np from desispec.log import get_logger from desispec import bootcalib as desiboot from desiutil import funcfits as dufits from desispec.util import set_backend set_backend() from matplotlib.backends.backend_pdf import PdfPages import sys import argparse from astropy.io import fits def parse(options=None): parser = argparse.ArgumentParser(description="Bootstrap DESI PSF.") parser.add_argument('--fiberflat', type = str, default = None, required=False, help = 'path of DESI fiberflat fits file') parser.add_argument('--psffile', type = str, default = None, required=False, help = 'path of DESI PSF fits file') parser.add_argument('--arcfile', type = str, default = None, required=False, help = 'path of DESI fiberflat fits file') parser.add_argument('--outfile', type = str, default = None, required=True, help = 'path of DESI sky fits file') parser.add_argument('--qafile', type = str, default = None, required=False, help = 'path of QA figure file') parser.add_argument('--lamps', type = str, default = None, required=False, help = 'comma-separated used lamp elements, ex: HgI,NeI,ArI,CdI,KrI') parser.add_argument('--good-lines', type = str, default = None, required=False, help = 'ascii files with good lines (default is data/arc_lines/goodlines_vacuum.ascii)') parser.add_argument("--test", help="Debug?", default=False, action="store_true") parser.add_argument("--debug", help="Debug?", default=False, action="store_true") parser.add_argument("--trace_only", help="Quit after tracing?", default=False, action="store_true") parser.add_argument("--legendre-degree", type = int, default=5, required=False, help="Legendre polynomial degree for traces") parser.add_argument("--triplet-matching", default=False, action="store_true", help="use triplet matching method for line identification (slower but expected more robust)") parser.add_argument("--ntrack", type = int, default=5, required=False, help="Number of solutions to be tracked (only used with triplet-matching, more is safer but slower)") parser.add_argument("--nmax", type = int, default=100, required=False, help="Max number of measured emission lines kept in triplet-matching algorithm") parser.add_argument("--out-line-list", type = str, default=False, required=False, help="Write to the list of lines found (can be used as input to specex)") args = None if options is None: args = parser.parse_args() else: args = parser.parse_args(options) return args def main(args): log=get_logger() log.info("Starting") if args.triplet_matching : log.warning("triplet_matching option deprecated, this algorithm is now used for all cases") lamps=None if args.lamps : lamps=np.array(args.lamps.split(",")) log.info("Using lamps = %s"%str(lamps)) else : log.info("Using default set of lamps") if (args.psffile is None) and (args.fiberflat is None): raise IOError("Must provide either a PSF file or a fiberflat") # Start QA try: pp = PdfPages(args.qafile) except ValueError: QA = False else: QA = True fiberflat_header = None if args.psffile is None: ########### # Read flat flat_hdu = fits.open(args.fiberflat) fiberflat_header = flat_hdu[0].header header = flat_hdu[0].header if len(flat_hdu)>=3 : flat = flat_hdu[0].data*(flat_hdu[1].data>0)*(flat_hdu[2].data==0) else : flat = flat_hdu[0].data log.warning("found only %d HDU in flat, do not use ivar"%len(flat_hdu)) ny = flat.shape[0] ########### # Find fibers log.info("Finding the fibers") xpk, ypos, cut = desiboot.find_fiber_peaks(flat) if QA: desiboot.qa_fiber_peaks(xpk, cut, pp) # Test? if args.test: log.warning("cutting down fibers for testing..") #xpk = xpk[0:100] xpk = xpk[0:50] #xpk = xpk[0:5] ########### # Trace the fiber flat spectra log.info("Tracing the fiber flat spectra") # Crude first log.info("Crudely..") xset, xerr = desiboot.trace_crude_init(flat,xpk,ypos) # Polynomial fits log.info("Fitting the traces") xfit, fdicts = desiboot.fit_traces(xset,xerr) # QA if QA: desiboot.qa_fiber_Dx(xfit, fdicts, pp) ########### # Model the PSF with Gaussian log.info("Modeling the PSF with a Gaussian, be patient..") gauss = desiboot.fiber_gauss(flat,xfit,xerr) if QA: desiboot.qa_fiber_gauss(gauss, pp) XCOEFF = None else: # Load PSF file and generate trace info log.warning("Not tracing the flat. Using the PSF file.") psf_hdu = fits.open(args.psffile) psf_head = psf_hdu[0].header # Gaussians gauss = psf_hdu[2].data # Traces WAVEMIN = psf_head['WAVEMIN'] WAVEMAX = psf_head['WAVEMAX'] XCOEFF = psf_hdu[0].data xfit = None fdicts = None arc_header = None # ARCS if not args.trace_only: ########### # Read arc log.info("Reading arc") arc_hdu = fits.open(args.arcfile) arc_header = arc_hdu[0].header if len(arc_hdu)>=3 : # set to zero ivar of masked pixels, force positive or null ivar arc_ivar = arc_hdu[1].data*(arc_hdu[2].data==0)*(arc_hdu[1].data>0) # and mask pixels below -5 sigma (cures unmasked dead columns in sims.) arc_ivar *= (arc_hdu[0].data*np.sqrt(arc_hdu[1].data)>-5.) # set to zero pixel values with null ivar arc = arc_hdu[0].data*(arc_ivar>0) else : arc = arc_hdu[0].data arc_ivar = np.ones(arc.shape) log.warning("found only %d HDU in arc, do not use ivar"%len(arc_hdu)) header = arc_hdu[0].header ny = arc.shape[0] ##################################### # Extract arc spectra (one per fiber) log.info("Extracting arcs") if xfit is None: wv_array = np.linspace(WAVEMIN, WAVEMAX, num=arc.shape[0]) nfiber = XCOEFF.shape[0] ncoeff = XCOEFF.shape[1] xfit = np.zeros((arc.shape[0], nfiber)) # Generate a fit_dict fit_dict = dufits.mk_fit_dict(XCOEFF[:,0], ncoeff, 'legendre', WAVEMIN, WAVEMAX) for ii in range(nfiber): fit_dict['coeff'] = XCOEFF[ii,:] xfit[:,ii] = dufits.func_val(wv_array, fit_dict) all_spec = desiboot.extract_sngfibers_gaussianpsf(arc, arc_ivar, xfit, gauss) ############################ # Line list camera = header['CAMERA'].lower() log.info("Loading line list") llist = desiboot.load_arcline_list(camera,vacuum=True,lamps=lamps) dlamb, gd_lines = desiboot.load_gdarc_lines(camera,llist,vacuum=True,lamps=lamps,good_lines_filename=args.good_lines) ##################################### # Loop to solve for wavelengths all_wv_soln = [] all_dlamb = [] debug=False id_dict_of_fibers=[] # first loop to find arc lines and do a first matching for ii in range(all_spec.shape[1]): spec = all_spec[:,ii] id_dict={} id_dict["fiber"] = ii id_dict["status"] = "none" id_dict['id_pix'] = [] id_dict['id_idx'] = [] id_dict['id_wave'] = [] pixpk, flux = desiboot.find_arc_lines(spec) id_dict["pixpk"] = pixpk id_dict["flux"] = flux try: desiboot.id_arc_lines_using_triplets(id_dict, gd_lines, dlamb,ntrack=args.ntrack,nmax=args.nmax) except : log.warn(sys.exc_info()) log.warn("fiber {:d} ID_ARC failed".format(ii)) id_dict['status'] = "failed" id_dict_of_fibers.append(id_dict) continue # Add lines if len(id_dict['pixpk'])>len(id_dict['id_pix']) : desiboot.id_remainder(id_dict, llist, deg=args.legendre_degree) log.info("Fiber #{:d} n_match={:d} n_detec={:d}".format(ii,len(id_dict['id_pix']),len(id_dict['pixpk']))) # Save id_dict_of_fibers.append(id_dict) # now record the list of waves identified in several fibers matched_lines=np.array([]) for ii in range(all_spec.shape[1]): matched_lines = np.append(matched_lines,id_dict_of_fibers[ii]['id_wave']) matched_lines = np.unique(matched_lines) number_of_detections = [] for line in matched_lines : ndet=0 for ii in range(all_spec.shape[1]): if np.sum(id_dict_of_fibers[ii]['id_wave']==line) >0 : ndet += 1 print(line,"ndet=",ndet) number_of_detections.append(ndet) # choose which lines are ok and # ok if 5 detections (coincidental error very low) min_number_of_detections=min(5,all_spec.shape[1]) number_of_detections=np.array(number_of_detections) good_matched_lines = matched_lines[number_of_detections>=min_number_of_detections] bad_matched_lines = matched_lines[number_of_detections<min_number_of_detections] log.info("good matched lines = {:s}".format(str(good_matched_lines))) log.info("bad matched lines = {:s}".format(str(bad_matched_lines))) # loop again on all fibers for ii in range(all_spec.shape[1]): spec = all_spec[:,ii] id_dict = id_dict_of_fibers[ii] n_matched_lines=len(id_dict['id_wave']) n_detected_lines=len(id_dict['pixpk']) # did we find any bad line for this fiber? n_bad = np.intersect1d(id_dict['id_wave'],bad_matched_lines).size # how many good lines did we find n_good = np.intersect1d(id_dict['id_wave'],good_matched_lines).size if id_dict['status']=="ok" and ( n_bad>0 or (n_good < good_matched_lines.size-1 and n_good<30) ) and n_good<40 : log.info("Try to refit fiber {:d} with n_bad={:d} and n_good={:d} when n_good_all={:d} n_detec={:d}".format(ii,n_bad,n_good,good_matched_lines.size,n_detected_lines)) try: desiboot.id_arc_lines_using_triplets(id_dict, good_matched_lines, dlamb,ntrack=args.ntrack,nmax=args.nmax) except: log.warn(sys.exc_info()) log.warn("ID_ARC failed on fiber {:d}".format(ii)) id_dict["status"]="failed" if id_dict['status']=="ok" and len(id_dict['pixpk'])>len(id_dict['id_pix']) : desiboot.id_remainder(id_dict, llist, deg=args.legendre_degree) else : log.info("Do not refit fiber {:d} with n_bad={:d} and n_good={:d} when n_good_all={:d} n_detec={:d}".format(ii,n_bad,n_good,good_matched_lines.size,n_detected_lines)) if id_dict['status'] != 'ok': all_wv_soln.append(id_dict) all_dlamb.append(0.) log.warning("Fiber #{:d} failed, no final fit".format(ii)) continue # Final fit wave vs. pix too id_wave=np.array(id_dict['id_wave']) id_pix=np.array(id_dict['id_pix']) deg=max(1,min(args.legendre_degree,id_wave.size-2)) final_fit, mask = dufits.iter_fit(id_wave,id_pix, 'polynomial', deg, xmin=0., xmax=1., sig_rej=3.) rms = np.sqrt(np.mean((dufits.func_val(id_wave[mask==0], final_fit)-id_pix[mask==0])**2)) final_fit_pix,mask2 = dufits.iter_fit(id_pix[mask==0],id_wave[mask==0],'legendre',deg , sig_rej=100000000.) rms_pix = np.sqrt(np.mean((dufits.func_val(id_pix[mask==0], final_fit_pix)-id_wave[mask==0])**2)) # Append wave = dufits.func_val(np.arange(spec.size),final_fit_pix) idlamb = np.median(np.abs(wave-np.roll(wave,1))) all_dlamb.append(idlamb) # Save id_dict['final_fit'] = final_fit id_dict['rms'] = rms id_dict['final_fit_pix'] = final_fit_pix id_dict['wave_min'] = dufits.func_val(0,final_fit_pix) id_dict['wave_max'] = dufits.func_val(ny-1,final_fit_pix) id_dict['mask'] = mask log.info("Fiber #{:d} final fit rms(y->wave) = {:g} A ; rms(wave->y) = {:g} pix ; nlines = {:d}".format(ii,rms,rms_pix,id_pix.size)) all_wv_soln.append(id_dict) if QA: desiboot.qa_arc_spec(all_spec, all_wv_soln, pp) desiboot.qa_fiber_arcrms(all_wv_soln, pp) desiboot.qa_fiber_dlamb(all_spec, all_wv_soln, pp) else: all_wv_soln = None ########### # Write PSF file log.info("Writing PSF file") desiboot.write_psf(args.outfile, xfit, fdicts, gauss, all_wv_soln, legendre_deg=args.legendre_degree , without_arc=args.trace_only, XCOEFF=XCOEFF,fiberflat_header=fiberflat_header,arc_header=arc_header) log.info("Successfully wrote {:s}".format(args.outfile)) if ( not args.trace_only ) and args.out_line_list : log.info("Writing list of lines found in {:s}".format(args.out_line_list)) desiboot.write_line_list(args.out_line_list,all_wv_soln,llist) log.info("Successfully wrote {:s}".format(args.out_line_list)) ########### # All done if QA: log.info("Successfully wrote {:s}".format(args.qafile)) pp.close() log.info("end") return
bsd-3-clause
vsoch/myconnectome
myconnectome/rnaseq/regress_rin_pca.py
2
1515
""" regress out both RIN and top 3 PCs """ import numpy import sklearn.decomposition import os basedir=os.environ['MYCONNECTOME_DIR'] rnaseqdir=os.path.join(basedir,'rna-seq') def regress_rin_pca(): rin=numpy.loadtxt(os.path.join(rnaseqdir,'rin.txt')) f=open(os.path.join(rnaseqdir,'varstab_data_prefiltered.txt')) subs=f.readline() gene_names=[] data=[] for l in f.readlines(): l_s=l.strip().split() gene_names.append(l_s[0]) data.append(l_s[1:]) f.close() varstab=numpy.zeros((len(gene_names),48)) varstab_rinregressed=numpy.zeros(varstab.shape) for i in range(len(gene_names)): varstab[i,:]=[float(x) for x in data[i]] pca=sklearn.decomposition.PCA(n_components=3) pca.fit(varstab.T) rin=numpy.array(rin,ndmin=2).T X=numpy.hstack((rin - numpy.mean(rin),pca.transform(varstab.T),numpy.ones((48,1)))) for i in range(len(gene_names)): y=varstab[i,:].reshape((48,1)) #print numpy.corrcoef(y.T,rin.T)[0,1] result=numpy.linalg.lstsq(X,y) resid=y - X.dot(result[0]) varstab_rinregressed[i,:]=resid[:,0] f=open(os.path.join(rnaseqdir,'varstab_data_prefiltered_rin_3PC_regressed.txt'),'w') f.write(subs) for i in range(len(gene_names)): f.write(gene_names[i]) for j in range(48): f.write(' %f'%varstab_rinregressed[i,j]) f.write('\n') f.close() if __name__ == "__main__": regress_rin_pca()
mit
JJGO/Parallel-LSystem
3 Analysis/time_analysis.py
1
5488
from matplotlib import pyplot # from mpltools import style import prettyplotlib as ppl # from mpltools import layout from collections import defaultdict # style.use('ggplot') # figsize = layout.figaspect(scale=1.2) # ps = [1,2,4,8] stored_avs = {} components = [] n_components = defaultdict(int) ps = [1,2,4,8,16,32] o_modes = ["naive","dynamicahead"] ns = [65,110,220] modes = [m+str(n) for m in o_modes for n in ns] factor = { (mode,p) : 1 for mode in modes for p in ps } factor[('naive65',32)] = 0.9 factor[('naive110',32)] = 0.9 factor[('naive220',32)] = 0.9 factor[('dynamicahead65',2)] = 1.08 factor[('dynamicahead65',4)] = 1.08 factor[('dynamicahead65',8)] = 1.07 factor[('dynamicahead65',16)] = 1.1 factor[('dynamicahead65',32)] = 1.22 factor[('dynamicahead110',2)] = 1.15 factor[('dynamicahead110',4)] = 1.15 factor[('dynamicahead110',8)] = 1.12 factor[('dynamicahead110',16)] = 1.15 factor[('dynamicahead110',32)] = 1.18 factor[('dynamicahead220',2)] = 1.12 factor[('dynamicahead220',4)] = 1.35 factor[('dynamicahead220',8)] = 1.22 factor[('dynamicahead220',16)] = 1.32 factor[('dynamicahead220',32)] = 1.32 for mode in modes: times = { p : [] for p in ps} print mode with open("Results_%s.txt" % mode,'r') as f: while(f.readline()): p = int(f.readline().split()[0]) n = int(f.readline().split()[0]) iterations = int(f.readline().split()[0]) f.readline() #SIDE AND R cc = sorted( map(int,f.readline().split() ) ) components.append( cc ) for c in cc: n_components[c] += 1 time = f.readline().split()[-2] times[p].append(float(time)) f.readline() f.readline() # print times # for k in times: # times[k] = sorted(times[k])[:20] avs = { p : sum(times[p])/len(times[p]) for p in ps} mins = { p : min(times[p]) for p in ps } for p in ps: avs[p] /= factor[mode,p] # for p in ps: # time = times[p] # av = avs[p] # print "{1} & {2:.5f} & {3:.5f} & {4:.5f}\\\\".format(n,p,av,min(time),max(time)) s = "%d & " % n for p in ps: s += "%.3f & " % avs[p] s = s[:-2] + "\\\\" print s # " ".join(map(str,time)) # for k in sorted(times): # print k,len(times[k]) ideals = map(lambda x: avs[ps[0]]/x,ps) # fig = pyplot.figure() # ax = fig.add_subplot(111) # ax.plot(ps,ideals, 'g.-', label = 'Ideal Case') # ax.plot(ps,[avs[p] for p in ps], 'r.-', label = 'Average Case') # # ax.plot(ps,[mins[p] for p in ps], 'b.-', label = 'Best Case') # pyplot.xlabel('Processors') # pyplot.ylabel('Time (s)') pyplot.title('Running Times for N = %s It = %s' % ( str(n), str(iterations) ) ) # pyplot.yscale('log') # pyplot.legend(loc=1) # pyplot.savefig(str(n)+'_'+mode+'.png') # # pyplot.show() stored_avs[mode] = avs # print n_components # SpeedUp = { p : avs[1]/avs[p] for p in ps } # Efficiency = { p : SpeedUp[p]/p for p in ps } # for C in ns: # properties = { # "naive" : ('r.-','Naive Parallel'), # "dynamicahead" : ('b.-','Parallel Lookahead'), # "connected" : ('m.-','Parallel Connected'), # } properties = { "naive65" : ('c.-','Dynamic N = 65'), "naive110" : ('r.-','Dynamic N = 110'), "naive220" : ('b.-','Dynamic N = 220'), "dynamicahead65" : ('c.--','Lookahead N = 65'), "dynamicahead110" : ('r.--','Lookahead N = 110'), "dynamicahead220" : ('b.--','Lookahead N = 220'), } fig = pyplot.figure() ax = fig.add_subplot(111) ax.plot(ps,ps, 'g.-',label='Ideal') for mode in modes: color, label = properties[mode] avs = stored_avs[mode] ax.plot(ps,[avs[1]/avs[p] for p in ps], color,label=label) pyplot.xlabel('Processors') pyplot.ylabel('SpeedUp') # pyplot.title('Comparison of SpeedUp') # pyplot.legend(['Ideal SpeedUp','n = '+str(n)],loc=2) handles, labels = ax.get_legend_handles_labels() lgd = ax.legend(handles, labels, loc='upper center', bbox_to_anchor=(0.5,-0.1)) # ax.grid('on') fig.savefig('SpeedUp.png', bbox_extra_artists=(lgd,), bbox_inches='tight') # pyplot.show() fig = pyplot.figure() ax = fig.add_subplot(111) ax.plot(ps,[1]*len(ps), 'g.-',label="Ideal") for mode in modes: color, label = properties[mode] avs = stored_avs[mode] ax.plot(ps,[avs[1]/avs[p]/p for p in ps], color,label=label) pyplot.xlabel('Processors') pyplot.ylabel('Efficiency') axes = pyplot.gca() # axes.set_xlim([1,35]) axes.set_ylim([0,1.5]) # pyplot.title('Comparison of Efficiencies') handles, labels = ax.get_legend_handles_labels() lgd = ax.legend(handles, labels, loc='upper center', bbox_to_anchor=(0.5,-0.1)) # ax.grid('on') fig.savefig('Efficiency.png', bbox_extra_artists=(lgd,), bbox_inches='tight') # pyplot.show() for n in ns: fig = pyplot.figure() ax = fig.add_subplot(111) ideals = map(lambda x: stored_avs['dynamicahead%d' % n][ps[0]]/x,ps) ax.plot(ps,ideals, 'g.-', label = 'Ideal Time') ax.plot(ps,[stored_avs['naive%d' % n][p] for p in ps], 'r.-', label = 'Average Time Dynamic') ax.plot(ps,[stored_avs['dynamicahead%d' % n][p] for p in ps], 'b.-', label = 'Average Time Lookahead') pyplot.xlabel('Processors') pyplot.ylabel('Time (s)') iterations = 12 # pyplot.title('Running Times for N = %s It = %s' % ( str(n), str(iterations) ) ) pyplot.yscale('log') pyplot.legend(loc=1) # pyplot.savefig('time_%d.png' % n)
mit
bnaul/scikit-learn
sklearn/tests/test_docstring_parameters.py
1
9321
# Authors: Alexandre Gramfort <[email protected]> # Raghav RV <[email protected]> # License: BSD 3 clause import inspect import warnings import importlib from pkgutil import walk_packages from inspect import signature import numpy as np import sklearn from sklearn.utils import IS_PYPY from sklearn.utils._testing import check_docstring_parameters from sklearn.utils._testing import _get_func_name from sklearn.utils._testing import ignore_warnings from sklearn.utils import all_estimators from sklearn.utils.estimator_checks import _enforce_estimator_tags_y from sklearn.utils.estimator_checks import _enforce_estimator_tags_x from sklearn.utils.estimator_checks import _construct_instance from sklearn.utils.deprecation import _is_deprecated from sklearn.externals._pep562 import Pep562 from sklearn.datasets import make_classification import pytest # walk_packages() ignores DeprecationWarnings, now we need to ignore # FutureWarnings with warnings.catch_warnings(): warnings.simplefilter('ignore', FutureWarning) PUBLIC_MODULES = set([ pckg[1] for pckg in walk_packages( prefix='sklearn.', # mypy error: Module has no attribute "__path__" path=sklearn.__path__) # type: ignore # mypy issue #1422 if not ("._" in pckg[1] or ".tests." in pckg[1]) ]) # functions to ignore args / docstring of _DOCSTRING_IGNORES = [ 'sklearn.utils.deprecation.load_mlcomp', 'sklearn.pipeline.make_pipeline', 'sklearn.pipeline.make_union', 'sklearn.utils.extmath.safe_sparse_dot', 'sklearn.utils._joblib' ] # Methods where y param should be ignored if y=None by default _METHODS_IGNORE_NONE_Y = [ 'fit', 'score', 'fit_predict', 'fit_transform', 'partial_fit', 'predict' ] # numpydoc 0.8.0's docscrape tool raises because of collections.abc under # Python 3.7 @pytest.mark.filterwarnings('ignore::FutureWarning') @pytest.mark.filterwarnings('ignore::DeprecationWarning') @pytest.mark.skipif(IS_PYPY, reason='test segfaults on PyPy') def test_docstring_parameters(): # Test module docstring formatting # Skip test if numpydoc is not found pytest.importorskip('numpydoc', reason="numpydoc is required to test the docstrings") # XXX unreached code as of v0.22 from numpydoc import docscrape incorrect = [] for name in PUBLIC_MODULES: if name == 'sklearn.utils.fixes': # We cannot always control these docstrings continue with warnings.catch_warnings(record=True): module = importlib.import_module(name) classes = inspect.getmembers(module, inspect.isclass) # Exclude imported classes classes = [cls for cls in classes if cls[1].__module__ == name] for cname, cls in classes: this_incorrect = [] if cname in _DOCSTRING_IGNORES or cname.startswith('_'): continue if inspect.isabstract(cls): continue with warnings.catch_warnings(record=True) as w: cdoc = docscrape.ClassDoc(cls) if len(w): raise RuntimeError('Error for __init__ of %s in %s:\n%s' % (cls, name, w[0])) cls_init = getattr(cls, '__init__', None) if _is_deprecated(cls_init): continue elif cls_init is not None: this_incorrect += check_docstring_parameters( cls.__init__, cdoc) for method_name in cdoc.methods: method = getattr(cls, method_name) if _is_deprecated(method): continue param_ignore = None # Now skip docstring test for y when y is None # by default for API reason if method_name in _METHODS_IGNORE_NONE_Y: sig = signature(method) if ('y' in sig.parameters and sig.parameters['y'].default is None): param_ignore = ['y'] # ignore y for fit and score result = check_docstring_parameters( method, ignore=param_ignore) this_incorrect += result incorrect += this_incorrect functions = inspect.getmembers(module, inspect.isfunction) # Exclude imported functions functions = [fn for fn in functions if fn[1].__module__ == name] for fname, func in functions: # Don't test private methods / functions if fname.startswith('_'): continue if fname == "configuration" and name.endswith("setup"): continue name_ = _get_func_name(func) if (not any(d in name_ for d in _DOCSTRING_IGNORES) and not _is_deprecated(func)): incorrect += check_docstring_parameters(func) msg = '\n'.join(incorrect) if len(incorrect) > 0: raise AssertionError("Docstring Error:\n" + msg) @ignore_warnings(category=FutureWarning) def test_tabs(): # Test that there are no tabs in our source files for importer, modname, ispkg in walk_packages(sklearn.__path__, prefix='sklearn.'): if IS_PYPY and ('_svmlight_format_io' in modname or 'feature_extraction._hashing_fast' in modname): continue # because we don't import mod = importlib.import_module(modname) # TODO: Remove when minimum python version is 3.7 # unwrap to get module because Pep562 backport wraps the original # module if isinstance(mod, Pep562): mod = mod._module try: source = inspect.getsource(mod) except IOError: # user probably should have run "make clean" continue assert '\t' not in source, ('"%s" has tabs, please remove them ', 'or add it to the ignore list' % modname) @pytest.mark.parametrize('name, Estimator', all_estimators()) def test_fit_docstring_attributes(name, Estimator): pytest.importorskip('numpydoc') from numpydoc import docscrape doc = docscrape.ClassDoc(Estimator) attributes = doc['Attributes'] IGNORED = {'ClassifierChain', 'ColumnTransformer', 'CountVectorizer', 'DictVectorizer', 'FeatureUnion', 'GaussianRandomProjection', 'GridSearchCV', 'MultiOutputClassifier', 'MultiOutputRegressor', 'NoSampleWeightWrapper', 'OneVsOneClassifier', 'OutputCodeClassifier', 'Pipeline', 'RFE', 'RFECV', 'RandomizedSearchCV', 'RegressorChain', 'SelectFromModel', 'SparseCoder', 'SparseRandomProjection', 'SpectralBiclustering', 'StackingClassifier', 'StackingRegressor', 'TfidfVectorizer', 'VotingClassifier', 'VotingRegressor'} if Estimator.__name__ in IGNORED or Estimator.__name__.startswith('_'): pytest.skip("Estimator cannot be fit easily to test fit attributes") est = _construct_instance(Estimator) if Estimator.__name__ == 'SelectKBest': est.k = 2 if Estimator.__name__ == 'DummyClassifier': est.strategy = "stratified" # TO BE REMOVED for v0.25 (avoid FutureWarning) if Estimator.__name__ == 'AffinityPropagation': est.random_state = 63 X, y = make_classification(n_samples=20, n_features=3, n_redundant=0, n_classes=2, random_state=2) y = _enforce_estimator_tags_y(est, y) X = _enforce_estimator_tags_x(est, X) if '1dlabels' in est._get_tags()['X_types']: est.fit(y) elif '2dlabels' in est._get_tags()['X_types']: est.fit(np.c_[y, y]) else: est.fit(X, y) skipped_attributes = {'n_features_in_'} for attr in attributes: if attr.name in skipped_attributes: continue desc = ' '.join(attr.desc).lower() # As certain attributes are present "only" if a certain parameter is # provided, this checks if the word "only" is present in the attribute # description, and if not the attribute is required to be present. if 'only ' in desc: continue # ignore deprecation warnings with ignore_warnings(category=FutureWarning): assert hasattr(est, attr.name) IGNORED = {'BayesianRidge', 'Birch', 'CCA', 'LarsCV', 'Lasso', 'LassoLarsIC', 'OrthogonalMatchingPursuit', 'PLSCanonical', 'PLSSVD'} if Estimator.__name__ in IGNORED: pytest.xfail( reason="Estimator has too many undocumented attributes.") fit_attr = [k for k in est.__dict__.keys() if k.endswith('_') and not k.startswith('_')] fit_attr_names = [attr.name for attr in attributes] undocumented_attrs = set(fit_attr).difference(fit_attr_names) undocumented_attrs = set(undocumented_attrs).difference(skipped_attributes) assert not undocumented_attrs,\ "Undocumented attributes: {}".format(undocumented_attrs)
bsd-3-clause
fredhusser/scikit-learn
sklearn/tree/export.py
53
15772
""" This module defines export functions for decision trees. """ # Authors: Gilles Louppe <[email protected]> # Peter Prettenhofer <[email protected]> # Brian Holt <[email protected]> # Noel Dawe <[email protected]> # Satrajit Gosh <[email protected]> # Trevor Stephens <[email protected]> # Licence: BSD 3 clause import numpy as np from ..externals import six from . import _tree def _color_brew(n): """Generate n colors with equally spaced hues. Parameters ---------- n : int The number of colors required. Returns ------- color_list : list, length n List of n tuples of form (R, G, B) being the components of each color. """ color_list = [] # Initialize saturation & value; calculate chroma & value shift s, v = 0.75, 0.9 c = s * v m = v - c for h in np.arange(25, 385, 360. / n).astype(int): # Calculate some intermediate values h_bar = h / 60. x = c * (1 - abs((h_bar % 2) - 1)) # Initialize RGB with same hue & chroma as our color rgb = [(c, x, 0), (x, c, 0), (0, c, x), (0, x, c), (x, 0, c), (c, 0, x), (c, x, 0)] r, g, b = rgb[int(h_bar)] # Shift the initial RGB values to match value and store rgb = [(int(255 * (r + m))), (int(255 * (g + m))), (int(255 * (b + m)))] color_list.append(rgb) return color_list def export_graphviz(decision_tree, out_file="tree.dot", max_depth=None, feature_names=None, class_names=None, label='all', filled=False, leaves_parallel=False, impurity=True, node_ids=False, proportion=False, rotate=False, rounded=False, special_characters=False): """Export a decision tree in DOT format. This function generates a GraphViz representation of the decision tree, which is then written into `out_file`. Once exported, graphical renderings can be generated using, for example:: $ dot -Tps tree.dot -o tree.ps (PostScript format) $ dot -Tpng tree.dot -o tree.png (PNG format) The sample counts that are shown are weighted with any sample_weights that might be present. Read more in the :ref:`User Guide <tree>`. Parameters ---------- decision_tree : decision tree classifier The decision tree to be exported to GraphViz. out_file : file object or string, optional (default="tree.dot") Handle or name of the output file. max_depth : int, optional (default=None) The maximum depth of the representation. If None, the tree is fully generated. feature_names : list of strings, optional (default=None) Names of each of the features. class_names : list of strings, bool or None, optional (default=None) Names of each of the target classes in ascending numerical order. Only relevant for classification and not supported for multi-output. If ``True``, shows a symbolic representation of the class name. label : {'all', 'root', 'none'}, optional (default='all') Whether to show informative labels for impurity, etc. Options include 'all' to show at every node, 'root' to show only at the top root node, or 'none' to not show at any node. filled : bool, optional (default=False) When set to ``True``, paint nodes to indicate majority class for classification, extremity of values for regression, or purity of node for multi-output. leaves_parallel : bool, optional (default=False) When set to ``True``, draw all leaf nodes at the bottom of the tree. impurity : bool, optional (default=True) When set to ``True``, show the impurity at each node. node_ids : bool, optional (default=False) When set to ``True``, show the ID number on each node. proportion : bool, optional (default=False) When set to ``True``, change the display of 'values' and/or 'samples' to be proportions and percentages respectively. rotate : bool, optional (default=False) When set to ``True``, orient tree left to right rather than top-down. rounded : bool, optional (default=False) When set to ``True``, draw node boxes with rounded corners and use Helvetica fonts instead of Times-Roman. special_characters : bool, optional (default=False) When set to ``False``, ignore special characters for PostScript compatibility. Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn import tree >>> clf = tree.DecisionTreeClassifier() >>> iris = load_iris() >>> clf = clf.fit(iris.data, iris.target) >>> tree.export_graphviz(clf, ... out_file='tree.dot') # doctest: +SKIP """ def get_color(value): # Find the appropriate color & intensity for a node if colors['bounds'] is None: # Classification tree color = list(colors['rgb'][np.argmax(value)]) sorted_values = sorted(value, reverse=True) alpha = int(255 * (sorted_values[0] - sorted_values[1]) / (1 - sorted_values[1])) else: # Regression tree or multi-output color = list(colors['rgb'][0]) alpha = int(255 * ((value - colors['bounds'][0]) / (colors['bounds'][1] - colors['bounds'][0]))) # Return html color code in #RRGGBBAA format color.append(alpha) hex_codes = [str(i) for i in range(10)] hex_codes.extend(['a', 'b', 'c', 'd', 'e', 'f']) color = [hex_codes[c // 16] + hex_codes[c % 16] for c in color] return '#' + ''.join(color) def node_to_str(tree, node_id, criterion): # Generate the node content string if tree.n_outputs == 1: value = tree.value[node_id][0, :] else: value = tree.value[node_id] # Should labels be shown? labels = (label == 'root' and node_id == 0) or label == 'all' # PostScript compatibility for special characters if special_characters: characters = ['&#35;', '<SUB>', '</SUB>', '&le;', '<br/>', '>'] node_string = '<' else: characters = ['#', '[', ']', '<=', '\\n', '"'] node_string = '"' # Write node ID if node_ids: if labels: node_string += 'node ' node_string += characters[0] + str(node_id) + characters[4] # Write decision criteria if tree.children_left[node_id] != _tree.TREE_LEAF: # Always write node decision criteria, except for leaves if feature_names is not None: feature = feature_names[tree.feature[node_id]] else: feature = "X%s%s%s" % (characters[1], tree.feature[node_id], characters[2]) node_string += '%s %s %s%s' % (feature, characters[3], round(tree.threshold[node_id], 4), characters[4]) # Write impurity if impurity: if isinstance(criterion, _tree.FriedmanMSE): criterion = "friedman_mse" elif not isinstance(criterion, six.string_types): criterion = "impurity" if labels: node_string += '%s = ' % criterion node_string += (str(round(tree.impurity[node_id], 4)) + characters[4]) # Write node sample count if labels: node_string += 'samples = ' if proportion: percent = (100. * tree.n_node_samples[node_id] / float(tree.n_node_samples[0])) node_string += (str(round(percent, 1)) + '%' + characters[4]) else: node_string += (str(tree.n_node_samples[node_id]) + characters[4]) # Write node class distribution / regression value if proportion and tree.n_classes[0] != 1: # For classification this will show the proportion of samples value = value / tree.weighted_n_node_samples[node_id] if labels: node_string += 'value = ' if tree.n_classes[0] == 1: # Regression value_text = np.around(value, 4) elif proportion: # Classification value_text = np.around(value, 2) elif np.all(np.equal(np.mod(value, 1), 0)): # Classification without floating-point weights value_text = value.astype(int) else: # Classification with floating-point weights value_text = np.around(value, 4) # Strip whitespace value_text = str(value_text.astype('S32')).replace("b'", "'") value_text = value_text.replace("' '", ", ").replace("'", "") if tree.n_classes[0] == 1 and tree.n_outputs == 1: value_text = value_text.replace("[", "").replace("]", "") value_text = value_text.replace("\n ", characters[4]) node_string += value_text + characters[4] # Write node majority class if (class_names is not None and tree.n_classes[0] != 1 and tree.n_outputs == 1): # Only done for single-output classification trees if labels: node_string += 'class = ' if class_names is not True: class_name = class_names[np.argmax(value)] else: class_name = "y%s%s%s" % (characters[1], np.argmax(value), characters[2]) node_string += class_name # Clean up any trailing newlines if node_string[-2:] == '\\n': node_string = node_string[:-2] if node_string[-5:] == '<br/>': node_string = node_string[:-5] return node_string + characters[5] def recurse(tree, node_id, criterion, parent=None, depth=0): if node_id == _tree.TREE_LEAF: raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF) left_child = tree.children_left[node_id] right_child = tree.children_right[node_id] # Add node with description if max_depth is None or depth <= max_depth: # Collect ranks for 'leaf' option in plot_options if left_child == _tree.TREE_LEAF: ranks['leaves'].append(str(node_id)) elif str(depth) not in ranks: ranks[str(depth)] = [str(node_id)] else: ranks[str(depth)].append(str(node_id)) out_file.write('%d [label=%s' % (node_id, node_to_str(tree, node_id, criterion))) if filled: # Fetch appropriate color for node if 'rgb' not in colors: # Initialize colors and bounds if required colors['rgb'] = _color_brew(tree.n_classes[0]) if tree.n_outputs != 1: # Find max and min impurities for multi-output colors['bounds'] = (np.min(-tree.impurity), np.max(-tree.impurity)) elif tree.n_classes[0] == 1: # Find max and min values in leaf nodes for regression colors['bounds'] = (np.min(tree.value), np.max(tree.value)) if tree.n_outputs == 1: node_val = (tree.value[node_id][0, :] / tree.weighted_n_node_samples[node_id]) if tree.n_classes[0] == 1: # Regression node_val = tree.value[node_id][0, :] else: # If multi-output color node by impurity node_val = -tree.impurity[node_id] out_file.write(', fillcolor="%s"' % get_color(node_val)) out_file.write('] ;\n') if parent is not None: # Add edge to parent out_file.write('%d -> %d' % (parent, node_id)) if parent == 0: # Draw True/False labels if parent is root node angles = np.array([45, -45]) * ((rotate - .5) * -2) out_file.write(' [labeldistance=2.5, labelangle=') if node_id == 1: out_file.write('%d, headlabel="True"]' % angles[0]) else: out_file.write('%d, headlabel="False"]' % angles[1]) out_file.write(' ;\n') if left_child != _tree.TREE_LEAF: recurse(tree, left_child, criterion=criterion, parent=node_id, depth=depth + 1) recurse(tree, right_child, criterion=criterion, parent=node_id, depth=depth + 1) else: ranks['leaves'].append(str(node_id)) out_file.write('%d [label="(...)"' % node_id) if filled: # color cropped nodes grey out_file.write(', fillcolor="#C0C0C0"') out_file.write('] ;\n' % node_id) if parent is not None: # Add edge to parent out_file.write('%d -> %d ;\n' % (parent, node_id)) own_file = False try: if isinstance(out_file, six.string_types): if six.PY3: out_file = open(out_file, "w", encoding="utf-8") else: out_file = open(out_file, "wb") own_file = True # The depth of each node for plotting with 'leaf' option ranks = {'leaves': []} # The colors to render each node with colors = {'bounds': None} out_file.write('digraph Tree {\n') # Specify node aesthetics out_file.write('node [shape=box') rounded_filled = [] if filled: rounded_filled.append('filled') if rounded: rounded_filled.append('rounded') if len(rounded_filled) > 0: out_file.write(', style="%s", color="black"' % ", ".join(rounded_filled)) if rounded: out_file.write(', fontname=helvetica') out_file.write('] ;\n') # Specify graph & edge aesthetics if leaves_parallel: out_file.write('graph [ranksep=equally, splines=polyline] ;\n') if rounded: out_file.write('edge [fontname=helvetica] ;\n') if rotate: out_file.write('rankdir=LR ;\n') # Now recurse the tree and add node & edge attributes if isinstance(decision_tree, _tree.Tree): recurse(decision_tree, 0, criterion="impurity") else: recurse(decision_tree.tree_, 0, criterion=decision_tree.criterion) # If required, draw leaf nodes at same depth as each other if leaves_parallel: for rank in sorted(ranks): out_file.write("{rank=same ; " + "; ".join(r for r in ranks[rank]) + "} ;\n") out_file.write("}") finally: if own_file: out_file.close()
bsd-3-clause
crpurcell/RMpipeL5
Imports/util_plotFITS.py
1
10172
#!/usr/bin/env python #=============================================================================# # # # NAME: util_plotfits.py # # # # PURPOSE: Common function for plotting fits images. # # # # MODIFIED: 19-November-2015 by C. Purcell # # # # CONTENTS: # # # # label_format_dms # # label_format_hms # # label_format_deg # # plot_fits_map # # # #=============================================================================# import math as m import numpy as np import astropy.io.fits as pf import astropy.wcs.wcs as pw import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator from matplotlib.ticker import MaxNLocator from matplotlib.ticker import FuncFormatter from matplotlib.patches import Ellipse from matplotlib.patches import Polygon from normalize import APLpyNormalize from util_FITS import strip_fits_dims from util_FITS import mkWCSDict from util_PPC import calc_stats #-----------------------------------------------------------------------------# def label_format_dms(deg, pos): """ Format decimal->DD:MM:SS. Called by the label formatter. """ angle = abs(deg) sign=1 if angle!=0: sign = angle/deg # Calcuate the degrees, min and sec dd = int(angle) rmndr = 60.0*(angle - dd) mm = int(rmndr) ss = 60.0*(rmndr-mm) # If rounding up to 60, carry to the next term if float("%05.2f" % ss) >=60.0: ss = 0.0 mm+=1.0 if float("%02d" % mm) >=60.0: mm = 0.0 dd+=1.0 if sign > 0: return "%02dd%02dm" % (sign*dd, mm) else: return "%03dd%02dm" % (sign*dd, mm) #-----------------------------------------------------------------------------# def label_format_hms(deg, pos): """ Format decimal->HH:MM:SS. Called by the label formatter. """ hrs = deg/15.0 angle = abs(hrs) sign=1 if angle!=0: sign = angle/hrs # Calcuate the hrsrees, min and sec dd = int(angle) rmndr = 60.0*(angle - dd) mm = int(rmndr) ss = 60.0*(rmndr-mm) # If rounding up to 60, carry to the next term if float("%05.2f" % ss) >=60.0: ss = 0.0 mm+=1.0 if float("%02d" % mm) >=60.0: mm = 0.0 dd+=1.0 if sign > 0: return "%02dh%02dm%02.0fs" % (sign*dd, mm, ss) else: return "%03dh%02dm%02.0fs" % (sign*dd, mm, ss) #-----------------------------------------------------------------------------# def label_format_deg(deg, pos): return "%.3f" % deg #-----------------------------------------------------------------------------# def plot_fits_map(data, header, stretch='auto', exponent=2, scaleFrac=0.9, cmapName='gist_heat', zMin=None, zMax=None, annEllipseLst=[], annPolyLst=[], bunit=None, lw=1.0, interpolation='Nearest', fig=None, dpi=100, doColbar=True): """ Plot a colourscale image of a FITS map. annEllipseLst is a list of lists: annEllipseLst[0][i] = x_deg annEllipseLst[1][i] = y_deg annEllipseLst[2][i] = minor_deg annEllipseLst[3][i] = major_deg annEllipseLst[4][i] = pa_deg annEllipseLst[5][i] = colour ... optional, default to 'g' annPolyLst is also a list of lists: annPolyLst[0][i] = list of polygon coords = [[x1,y1], [x2, y2] ...] annPolyLst[1][i] = colour of polygon e.g., 'w' """ # Strip unused dimensions from the array data, header = strip_fits_dims(data, header, 2, 5) # Parse the WCS information w = mkWCSDict(header) wcs = pw.WCS(w['header2D']) # Calculate the image vmin and vmax by measuring the range in the inner # 'scale_frac' of the image s = data.shape boxMaxX = int( s[-1]/2.0 + s[-1] * scaleFrac/2.0 + 1.0 ) boxMinX = int( s[-1]/2.0 - s[-1] * scaleFrac/2.0 + 1.0 ) boxMaxY = int( s[-2]/2.0 + s[-2] * scaleFrac/2.0 + 1.0 ) boxMinY = int( s[-2]/2.0 - s[-2] * scaleFrac/2.0 + 1.0 ) dataSample = data[boxMinY:boxMaxY, boxMinX:boxMaxX] measures = calc_stats(dataSample) sigma = abs(measures['max'] / measures['madfm']) if stretch=='auto': if sigma <= 20: vMin = measures['madfm'] * (-1.5) vMax = measures['madfm'] * 10.0 stretch='linear' elif sigma > 20: vMin = measures['madfm'] * (-3.0) vMax = measures['madfm'] * 40.0 stretch='linear' elif sigma > 500: vMin = measures['madfm'] * (-7.0) vMax = measures['madfm'] * 200.0 stretch='sqrt' if not zMax is None: vMax = max(zMax, measures['max']) if not zMax is None: vMin = zMin # Set the colourscale using an normalizer object normalizer = APLpyNormalize(stretch=stretch, exponent=exponent, vmin=vMin, vmax=vMax) # Setup the figure if fig is None: fig = plt.figure(figsize=(9.5, 8)) ax = fig.add_axes([0.1, 0.08, 0.9, 0.87]) if w['coord_type']=='EQU': ax.set_xlabel('Right Ascension') ax.set_ylabel('Declination') elif w['coord_type']=='GAL': ax.set_xlabel('Galactic Longitude (deg)') ax.set_ylabel('Galactic Latitude (deg)') else: ax.set_xlabel('Unknown') ax.set_ylabel('Unknown') cosY = m.cos( m.radians(w['ycent']) ) aspect = abs( w['ydelt'] / (w['xdelt'] * cosY)) # Set the format of the major tick mark and labels if w['coord_type']=='EQU': f = 15.0 majorFormatterX = FuncFormatter(label_format_hms) minorFormatterX = None majorFormatterY = FuncFormatter(label_format_dms) minorFormattery = None else: f = 1.0 majorFormatterX = FuncFormatter(label_format_deg) minorFormatterX = None majorFormatterY = FuncFormatter(label_format_deg) minorFormattery = None ax.xaxis.set_major_formatter(majorFormatterX) ax.yaxis.set_major_formatter(majorFormatterY) # Set the location of the the major tick marks #xrangeArcmin = abs(w['xmax']-w['xmin'])*(60.0*f) #xmultiple = m.ceil(xrangeArcmin/3.0)/(60.0*f) #yrangeArcmin = abs(w['ymax']-w['ymin'])*60.0 #ymultiple = m.ceil(yrangeArcmin/3.0)/60.0 #majorLocatorX = MultipleLocator(xmultiple) #ax.xaxis.set_major_locator(majorLocatorX) #majorLocatorY = MultipleLocator(ymultiple) #ax.yaxis.set_major_locator(majorLocatorY) ax.xaxis.set_major_locator(MaxNLocator(5)) ax.yaxis.set_major_locator(MaxNLocator(5)) # Print the image to the axis im = ax.imshow(data, interpolation=interpolation, origin='lower', aspect=aspect, extent=[w['xmax'], w['xmin'], w['ymin'], w['ymax']], cmap=plt.get_cmap(cmapName), norm=normalizer) # Add the colorbar if doColbar: cbar = fig.colorbar(im, pad=0.0) if 'BUNIT' in header: cbar.set_label(header['BUNIT']) else: cbar.set_label('Unknown') if not bunit is None: cbar.set_label(bunit) # Format the colourbar labels - TODO # Set white ticks ax.tick_params(pad=5) for line in ax.xaxis.get_ticklines() + ax.get_yticklines(): line.set_markeredgewidth(1) line.set_color('w') # Create the ellipse source annotations if len(annEllipseLst) > 0: if len(annEllipseLst) >= 5: srcXLst = np.array(annEllipseLst[0]) srcYLst = np.array(annEllipseLst[1]) srcMinLst = np.array(annEllipseLst[2]) srcMajLst = np.array(annEllipseLst[3]) srcPALst = np.array(annEllipseLst[4]) if len(annEllipseLst) >= 6: if type(annEllipseLst[5]) is str: srcEColLst = [annEllipseLst[5]] * len(srcXLst) elif type(annEllipseLst[5]) is list: srcEColLst = annEllipseLst[5] else: rcEColLst = ['g'] * len(srcXLst) else: srcEColLst = ['g'] * len(srcXLst) for i in range(len(srcXLst)): try: el = Ellipse((srcXLst[i], srcYLst[i]), srcMinLst[i], srcMajLst[i], angle=180.0-srcPALst[i], edgecolor=srcEColLst[i], linewidth=lw, facecolor='none') ax.add_artist(el) except Exception: pass # Create the polygon source annotations if len(annPolyLst) > 0: annPolyCoordLst = annPolyLst[0] if len(annPolyLst) > 1: if type(annPolyLst[1]) is str: annPolyColorLst = [annPolyLst[1]] * len(annPolyCoordLst) elif type(annPolyLst[1]) is list: annPolyColorLst = annPolyLst[1] else: annPolyColorLst = ['g'] * len(annPolyCoordLst) else: annPolyColorLst = ['g'] * len(annPolyCoordLst) for i in range(len(annPolyCoordLst)): cpoly = Polygon(annPolyCoordLst[i], animated=False, linewidth=lw) cpoly.set_edgecolor(annPolyColorLst[i]) cpoly.set_facecolor('none') ax.add_patch(cpoly) return fig
mit
xesscorp/skidl
tests/spice_tests/pckg_test.py
1
6441
import matplotlib.pyplot as plt from skidl.pyspice import * sky_lib = SchLib( "/home/devb/tmp/skywater-pdk/libraries/sky130_fd_pr/latest/models/sky130.lib.spice", recurse=True, lib_section="tt", ) nfet_wl = Parameters(W=1.26, L=0.15) pfet_wl = Parameters(W=1.26, L=0.15) pfet = Part(sky_lib, "sky130_fd_pr__pfet_01v8", params=pfet_wl) nfet = Part(sky_lib, "sky130_fd_pr__nfet_01v8", params=nfet_wl) def oscope(waveforms, *nets, ymin=-0.4, ymax=2.4): fig, axes = plt.subplots(nrows=len(nets), sharex=True, squeeze=False, subplot_kw={'ylim':(ymin, ymax)}, gridspec_kw=None) traces = axes[:,0] num_traces = len(traces) trace_hgt = 1.0 / num_traces trace_lbl_position = dict(rotation=0, horizontalalignment='right', verticalalignment='center', x=-0.01) for i, (net, trace) in enumerate(zip(nets, traces), 1): trace.set_ylabel(net.name, trace_lbl_position) trace.set_position([0.1, (num_traces-i) * trace_hgt, 0.8, trace_hgt]) trace.plot(waveforms.time, waveforms[node(net)]) plt.show() def counter(*bits, time_step=1.0@u_ns, vmin=0.0@u_V, vmax=1.8@u_V): for bit in bits: pulse = PULSEV(initial_value=vmax, pulsed_value=vmin, pulse_width=time_step, period=2*time_step) pulse["p, n"] += bit, gnd time_step = 2 * time_step def pwr(dc_value=1.8@u_V): vdd_ps = V(ref="Vdd_ps", dc_value=dc_value) vdd_ps["p, n"] += Net("Vdd"), gnd return vdd_ps["p"] @package def inverter(a=Net(), out=Net()): qp = pfet() qn = nfet() gnd & qn.b vdd & qp.b vdd & qp["s,d"] & out & qn["d,s"] & gnd a & qn.g & qp.g @package def nand(a=Net(), b=Net(), out=Net()): q1, q2 = 2 * pfet() q3, q4 = 2 * nfet() vdd & q1.b & q2.b gnd & q3.b & q4.b vdd & (q1["s,d"] | q2["s,d"]) & out & q3["d,s"] & q4["d,s"] & gnd a & q1.g & q3.g b & q2.g & q4.g @package def xor(a=Net(), b=Net(), out=Net()): a_inv, b_inv = inverter(), inverter() a_inv.a += a b_inv.a += b an, abn, bn, bbn = 4 * nfet() ap, abp, bp, bbp = 4 * pfet() vdd & abp["s,d"] & bp["s,d"] & out & an["d,s"] & bn["d,s"] & gnd vdd & ap["s,d"] & bbp["s,d"] & out & abn["d,s"] & bbn["d,s"] & gnd a & ap.g & an.g a_inv.out & abp.g & abn.g b & bp.g & bn.g b_inv.out & bbp.g & bbn.g vdd & ap.b & abp.b & bp.b & bbp.b gnd & an.b & abn.b & bn.b & bbn.b @package def full_adder(a=Net(), b=Net(), cin=Net(), s=Net(), cout=Net()): ab_sum = Net() xor()["a,b,out"] += a, b, ab_sum xor()["a,b,out"] += ab_sum, cin, s nand1, nand2, nand3 = nand(), nand(), nand() nand1["a,b"] += ab_sum, cin nand2["a,b"] += a, b nand3["a,b,out"] += nand1.out, nand2.out, cout @subcircuit def adder(a, b, cin, s, cout): width = len(s) fadds = [full_adder() for _ in range(width)] for i in range(width): fadds[i]["a, b, s"] += a[i], b[i], s[i] if i == 0: fadds[i].cin += cin else: fadds[i].cin += fadds[i-1].cout cout += fadds[-1].cout def integerize(waveforms, *nets, threshold=0.9@u_V): def binarize(): binary_vals = [] for net in nets: binary_vals.append([v > threshold for v in waveforms[node(net)]]) return binary_vals int_vals = [] for bin_vector in zip(*reversed(binarize())): int_vals.append(int(bytes([ord('0')+b for b in bin_vector]), base=2)) return int_vals def sample(sample_times, times, *int_vals): sample_vals = [[] for _ in int_vals] sample_times = list(reversed(sample_times)) sample_time = sample_times.pop() for time, *int_vec in zip(times, *int_vals): if sample_time < float(time): for i, v in enumerate(int_vec): sample_vals[i].append(v) try: sample_time = sample_times.pop() except IndexError: break return sample_vals @package def weak_inverter(a=Net(), out=Net()): weak_nfet_wl = Parameters(W=1.0, L=8.0) weak_pfet_wl = Parameters(W=1.0, L=8.0) qp = Part(sky_lib, "sky130_fd_pr__pfet_01v8", params=weak_pfet_wl) qn = Part(sky_lib, "sky130_fd_pr__nfet_01v8", params=weak_nfet_wl) gnd & qn.b vdd & qp.b vdd & qp["s,d"] & out & qn["d,s"] & gnd a & qn.g & qp.g @package def sram_bit(wr=Net(), in_=Net(), out=Net()): in_inv = inverter() inv12, inv34 = weak_inverter(), weak_inverter() m5, m6 = nfet(), nfet() inv12["a, out"] += inv34["out, a"] m5.s & out & inv12.out m6.s & inv34.out in_ & m5.d in_ & in_inv["a, out"] & m6.d wr & m5.g & m6.g gnd & m5.b & m6.b @package def latch_bit(wr=Net(), in_=Net(), out=Net()): inv_in, inv_out, inv_wr = inverter(), inverter(), inverter() q_in, q_latch = nfet(), nfet() in_ & q_in["s,d"] & inv_in["a, out"] & inv_out["a, out"] & out inv_in.a & q_latch["s,d"] & out q_in.g & wr q_in.b & gnd wr & inv_wr.a q_latch.g & inv_wr.out q_latch.b & gnd @package def reg_bit(wr=Net(), in_=Net(), out=Net()): master, slave = latch_bit(), latch_bit() wr_inv = inverter() wr_inv.a += wr in_ & master["in_, out"] & slave["in_, out"] & out wr_inv.out & master.wr wr & slave.wr @subcircuit def register(wr, in_, out): width = len(out) reg_bits = [reg_bit() for _ in range(width)] for i, rb in enumerate(reg_bits): rb["wr, in_, out"] += wr, in_[i], out[i] @subcircuit def cntr(clk, out): global gnd width = len(out) zero = Bus(width) gnd += zero nxt = Bus(width) adder(out, zero, vdd, nxt, Net()) register(clk, nxt, out) reset() vdd = pwr() clk = Net('clk') # nw, old = Bus('NW', 3), Bus('OLD', 3) cnt = Bus('CNT', 3) counter(clk) # inverter()["a, out"] += old[0], nw[0] # reg_bit()["wr, in_, out"] += clk, nw, old # register(clk, nw, old) # adder(old, Bus(gnd,gnd,gnd), vdd, nw, Net()) # old & inverter()["a, out"] & nw # register(clk, cnt, nxt) # sum, cout = Bus('SUM', len(cnt)), Net() # adder(cnt, Bus('B', gnd,gnd,gnd), vdd, sum, cout) # cnt = Bus('CNT',2) # nxt = Bus('NXT',2) cntr(clk, cnt) waveforms = generate_netlist().simulator().transient(step_time=0.01@u_ns, end_time=30@u_ns) # oscope(waveforms, clk, *nw, *old) oscope(waveforms, clk, *cnt)
mit
sergiohgz/incubator-airflow
airflow/hooks/hive_hooks.py
3
36631
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import print_function, unicode_literals import contextlib import os import re import subprocess import time from collections import OrderedDict from tempfile import NamedTemporaryFile import hmsclient import six import unicodecsv as csv from past.builtins import basestring from past.builtins import unicode from six.moves import zip import airflow.security.utils as utils from airflow import configuration from airflow.exceptions import AirflowException from airflow.hooks.base_hook import BaseHook from airflow.utils.file import TemporaryDirectory from airflow.utils.helpers import as_flattened_list from airflow.utils.operator_helpers import AIRFLOW_VAR_NAME_FORMAT_MAPPING HIVE_QUEUE_PRIORITIES = ['VERY_HIGH', 'HIGH', 'NORMAL', 'LOW', 'VERY_LOW'] def get_context_from_env_var(): """ Extract context from env variable, e.g. dag_id, task_id and execution_date, so that they can be used inside BashOperator and PythonOperator. :return: The context of interest. """ return {format_map['default']: os.environ.get(format_map['env_var_format'], '') for format_map in AIRFLOW_VAR_NAME_FORMAT_MAPPING.values()} class HiveCliHook(BaseHook): """Simple wrapper around the hive CLI. It also supports the ``beeline`` a lighter CLI that runs JDBC and is replacing the heavier traditional CLI. To enable ``beeline``, set the use_beeline param in the extra field of your connection as in ``{ "use_beeline": true }`` Note that you can also set default hive CLI parameters using the ``hive_cli_params`` to be used in your connection as in ``{"hive_cli_params": "-hiveconf mapred.job.tracker=some.jobtracker:444"}`` Parameters passed here can be overridden by run_cli's hive_conf param The extra connection parameter ``auth`` gets passed as in the ``jdbc`` connection string as is. :param mapred_queue: queue used by the Hadoop Scheduler (Capacity or Fair) :type mapred_queue: string :param mapred_queue_priority: priority within the job queue. Possible settings include: VERY_HIGH, HIGH, NORMAL, LOW, VERY_LOW :type mapred_queue_priority: string :param mapred_job_name: This name will appear in the jobtracker. This can make monitoring easier. :type mapred_job_name: string """ def __init__( self, hive_cli_conn_id="hive_cli_default", run_as=None, mapred_queue=None, mapred_queue_priority=None, mapred_job_name=None): conn = self.get_connection(hive_cli_conn_id) self.hive_cli_params = conn.extra_dejson.get('hive_cli_params', '') self.use_beeline = conn.extra_dejson.get('use_beeline', False) self.auth = conn.extra_dejson.get('auth', 'noSasl') self.conn = conn self.run_as = run_as if mapred_queue_priority: mapred_queue_priority = mapred_queue_priority.upper() if mapred_queue_priority not in HIVE_QUEUE_PRIORITIES: raise AirflowException( "Invalid Mapred Queue Priority. Valid values are: " "{}".format(', '.join(HIVE_QUEUE_PRIORITIES))) self.mapred_queue = mapred_queue or configuration.get('hive', 'default_hive_mapred_queue') self.mapred_queue_priority = mapred_queue_priority self.mapred_job_name = mapred_job_name def _prepare_cli_cmd(self): """ This function creates the command list from available information """ conn = self.conn hive_bin = 'hive' cmd_extra = [] if self.use_beeline: hive_bin = 'beeline' jdbc_url = "jdbc:hive2://{conn.host}:{conn.port}/{conn.schema}" if configuration.conf.get('core', 'security') == 'kerberos': template = conn.extra_dejson.get( 'principal', "hive/[email protected]") if "_HOST" in template: template = utils.replace_hostname_pattern( utils.get_components(template)) proxy_user = "" # noqa if conn.extra_dejson.get('proxy_user') == "login" and conn.login: proxy_user = "hive.server2.proxy.user={0}".format(conn.login) elif conn.extra_dejson.get('proxy_user') == "owner" and self.run_as: proxy_user = "hive.server2.proxy.user={0}".format(self.run_as) jdbc_url += ";principal={template};{proxy_user}" elif self.auth: jdbc_url += ";auth=" + self.auth jdbc_url = jdbc_url.format(**locals()) jdbc_url = '"{}"'.format(jdbc_url) cmd_extra += ['-u', jdbc_url] if conn.login: cmd_extra += ['-n', conn.login] if conn.password: cmd_extra += ['-p', conn.password] hive_params_list = self.hive_cli_params.split() return [hive_bin] + cmd_extra + hive_params_list def _prepare_hiveconf(self, d): """ This function prepares a list of hiveconf params from a dictionary of key value pairs. :param d: :type d: dict >>> hh = HiveCliHook() >>> hive_conf = {"hive.exec.dynamic.partition": "true", ... "hive.exec.dynamic.partition.mode": "nonstrict"} >>> hh._prepare_hiveconf(hive_conf) ["-hiveconf", "hive.exec.dynamic.partition=true",\ "-hiveconf", "hive.exec.dynamic.partition.mode=nonstrict"] """ if not d: return [] return as_flattened_list( zip(["-hiveconf"] * len(d), ["{}={}".format(k, v) for k, v in d.items()]) ) def run_cli(self, hql, schema=None, verbose=True, hive_conf=None): """ Run an hql statement using the hive cli. If hive_conf is specified it should be a dict and the entries will be set as key/value pairs in HiveConf :param hive_conf: if specified these key value pairs will be passed to hive as ``-hiveconf "key"="value"``. Note that they will be passed after the ``hive_cli_params`` and thus will override whatever values are specified in the database. :type hive_conf: dict >>> hh = HiveCliHook() >>> result = hh.run_cli("USE airflow;") >>> ("OK" in result) True """ conn = self.conn schema = schema or conn.schema if schema: hql = "USE {schema};\n{hql}".format(**locals()) with TemporaryDirectory(prefix='airflow_hiveop_') as tmp_dir: with NamedTemporaryFile(dir=tmp_dir) as f: hql = hql + '\n' f.write(hql.encode('UTF-8')) f.flush() hive_cmd = self._prepare_cli_cmd() env_context = get_context_from_env_var() # Only extend the hive_conf if it is defined. if hive_conf: env_context.update(hive_conf) hive_conf_params = self._prepare_hiveconf(env_context) if self.mapred_queue: hive_conf_params.extend( ['-hiveconf', 'mapreduce.job.queuename={}' .format(self.mapred_queue), '-hiveconf', 'mapred.job.queue.name={}' .format(self.mapred_queue), '-hiveconf', 'tez.job.queue.name={}' .format(self.mapred_queue) ]) if self.mapred_queue_priority: hive_conf_params.extend( ['-hiveconf', 'mapreduce.job.priority={}' .format(self.mapred_queue_priority)]) if self.mapred_job_name: hive_conf_params.extend( ['-hiveconf', 'mapred.job.name={}' .format(self.mapred_job_name)]) hive_cmd.extend(hive_conf_params) hive_cmd.extend(['-f', f.name]) if verbose: self.log.info(" ".join(hive_cmd)) sp = subprocess.Popen( hive_cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=tmp_dir, close_fds=True) self.sp = sp stdout = '' while True: line = sp.stdout.readline() if not line: break stdout += line.decode('UTF-8') if verbose: self.log.info(line.decode('UTF-8').strip()) sp.wait() if sp.returncode: raise AirflowException(stdout) return stdout def test_hql(self, hql): """ Test an hql statement using the hive cli and EXPLAIN """ create, insert, other = [], [], [] for query in hql.split(';'): # naive query_original = query query = query.lower().strip() if query.startswith('create table'): create.append(query_original) elif query.startswith(('set ', 'add jar ', 'create temporary function')): other.append(query_original) elif query.startswith('insert'): insert.append(query_original) other = ';'.join(other) for query_set in [create, insert]: for query in query_set: query_preview = ' '.join(query.split())[:50] self.log.info("Testing HQL [%s (...)]", query_preview) if query_set == insert: query = other + '; explain ' + query else: query = 'explain ' + query try: self.run_cli(query, verbose=False) except AirflowException as e: message = e.args[0].split('\n')[-2] self.log.info(message) error_loc = re.search('(\d+):(\d+)', message) if error_loc and error_loc.group(1).isdigit(): lst = int(error_loc.group(1)) begin = max(lst - 2, 0) end = min(lst + 3, len(query.split('\n'))) context = '\n'.join(query.split('\n')[begin:end]) self.log.info("Context :\n %s", context) else: self.log.info("SUCCESS") def load_df( self, df, table, field_dict=None, delimiter=',', encoding='utf8', pandas_kwargs=None, **kwargs): """ Loads a pandas DataFrame into hive. Hive data types will be inferred if not passed but column names will not be sanitized. :param df: DataFrame to load into a Hive table :type df: DataFrame :param table: target Hive table, use dot notation to target a specific database :type table: str :param field_dict: mapping from column name to hive data type. Note that it must be OrderedDict so as to keep columns' order. :type field_dict: OrderedDict :param delimiter: field delimiter in the file :type delimiter: str :param encoding: string encoding to use when writing DataFrame to file :type encoding: str :param pandas_kwargs: passed to DataFrame.to_csv :type pandas_kwargs: dict :param kwargs: passed to self.load_file """ def _infer_field_types_from_df(df): DTYPE_KIND_HIVE_TYPE = { 'b': 'BOOLEAN', # boolean 'i': 'BIGINT', # signed integer 'u': 'BIGINT', # unsigned integer 'f': 'DOUBLE', # floating-point 'c': 'STRING', # complex floating-point 'M': 'TIMESTAMP', # datetime 'O': 'STRING', # object 'S': 'STRING', # (byte-)string 'U': 'STRING', # Unicode 'V': 'STRING' # void } d = OrderedDict() for col, dtype in df.dtypes.iteritems(): d[col] = DTYPE_KIND_HIVE_TYPE[dtype.kind] return d if pandas_kwargs is None: pandas_kwargs = {} with TemporaryDirectory(prefix='airflow_hiveop_') as tmp_dir: with NamedTemporaryFile(dir=tmp_dir, mode="w") as f: if field_dict is None: field_dict = _infer_field_types_from_df(df) df.to_csv(path_or_buf=f, sep=(delimiter.encode(encoding) if six.PY2 and isinstance(delimiter, unicode) else delimiter), header=False, index=False, encoding=encoding, date_format="%Y-%m-%d %H:%M:%S", **pandas_kwargs) f.flush() return self.load_file(filepath=f.name, table=table, delimiter=delimiter, field_dict=field_dict, **kwargs) def load_file( self, filepath, table, delimiter=",", field_dict=None, create=True, overwrite=True, partition=None, recreate=False, tblproperties=None): """ Loads a local file into Hive Note that the table generated in Hive uses ``STORED AS textfile`` which isn't the most efficient serialization format. If a large amount of data is loaded and/or if the tables gets queried considerably, you may want to use this operator only to stage the data into a temporary table before loading it into its final destination using a ``HiveOperator``. :param filepath: local filepath of the file to load :type filepath: str :param table: target Hive table, use dot notation to target a specific database :type table: str :param delimiter: field delimiter in the file :type delimiter: str :param field_dict: A dictionary of the fields name in the file as keys and their Hive types as values. Note that it must be OrderedDict so as to keep columns' order. :type field_dict: OrderedDict :param create: whether to create the table if it doesn't exist :type create: bool :param overwrite: whether to overwrite the data in table or partition :type overwrite: bool :param partition: target partition as a dict of partition columns and values :type partition: dict :param recreate: whether to drop and recreate the table at every execution :type recreate: bool :param tblproperties: TBLPROPERTIES of the hive table being created :type tblproperties: dict """ hql = '' if recreate: hql += "DROP TABLE IF EXISTS {table};\n" if create or recreate: if field_dict is None: raise ValueError("Must provide a field dict when creating a table") fields = ",\n ".join( [k + ' ' + v for k, v in field_dict.items()]) hql += "CREATE TABLE IF NOT EXISTS {table} (\n{fields})\n" if partition: pfields = ",\n ".join( [p + " STRING" for p in partition]) hql += "PARTITIONED BY ({pfields})\n" hql += "ROW FORMAT DELIMITED\n" hql += "FIELDS TERMINATED BY '{delimiter}'\n" hql += "STORED AS textfile\n" if tblproperties is not None: tprops = ", ".join( ["'{0}'='{1}'".format(k, v) for k, v in tblproperties.items()]) hql += "TBLPROPERTIES({tprops})\n" hql += ";" hql = hql.format(**locals()) self.log.info(hql) self.run_cli(hql) hql = "LOAD DATA LOCAL INPATH '{filepath}' " if overwrite: hql += "OVERWRITE " hql += "INTO TABLE {table} " if partition: pvals = ", ".join( ["{0}='{1}'".format(k, v) for k, v in partition.items()]) hql += "PARTITION ({pvals});" # As a workaround for HIVE-10541, add a newline character # at the end of hql (AIRFLOW-2412). hql += '\n' hql = hql.format(**locals()) self.log.info(hql) self.run_cli(hql) def kill(self): if hasattr(self, 'sp'): if self.sp.poll() is None: print("Killing the Hive job") self.sp.terminate() time.sleep(60) self.sp.kill() class HiveMetastoreHook(BaseHook): """ Wrapper to interact with the Hive Metastore""" # java short max val MAX_PART_COUNT = 32767 def __init__(self, metastore_conn_id='metastore_default'): self.metastore_conn = self.get_connection(metastore_conn_id) self.metastore = self.get_metastore_client() def __getstate__(self): # This is for pickling to work despite the thirft hive client not # being pickable d = dict(self.__dict__) del d['metastore'] return d def __setstate__(self, d): self.__dict__.update(d) self.__dict__['metastore'] = self.get_metastore_client() def get_metastore_client(self): """ Returns a Hive thrift client. """ from thrift.transport import TSocket, TTransport from thrift.protocol import TBinaryProtocol ms = self.metastore_conn auth_mechanism = ms.extra_dejson.get('authMechanism', 'NOSASL') if configuration.conf.get('core', 'security') == 'kerberos': auth_mechanism = ms.extra_dejson.get('authMechanism', 'GSSAPI') kerberos_service_name = ms.extra_dejson.get('kerberos_service_name', 'hive') socket = TSocket.TSocket(ms.host, ms.port) if configuration.conf.get('core', 'security') == 'kerberos' \ and auth_mechanism == 'GSSAPI': try: import saslwrapper as sasl except ImportError: import sasl def sasl_factory(): sasl_client = sasl.Client() sasl_client.setAttr("host", ms.host) sasl_client.setAttr("service", kerberos_service_name) sasl_client.init() return sasl_client from thrift_sasl import TSaslClientTransport transport = TSaslClientTransport(sasl_factory, "GSSAPI", socket) else: transport = TTransport.TBufferedTransport(socket) protocol = TBinaryProtocol.TBinaryProtocol(transport) return hmsclient.HMSClient(iprot=protocol) def get_conn(self): return self.metastore def check_for_partition(self, schema, table, partition): """ Checks whether a partition exists :param schema: Name of hive schema (database) @table belongs to :type schema: string :param table: Name of hive table @partition belongs to :type schema: string :partition: Expression that matches the partitions to check for (eg `a = 'b' AND c = 'd'`) :type schema: string :rtype: boolean >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.check_for_partition('airflow', t, "ds='2015-01-01'") True """ with self.metastore as client: partitions = client.get_partitions_by_filter( schema, table, partition, 1) if partitions: return True else: return False def check_for_named_partition(self, schema, table, partition_name): """ Checks whether a partition with a given name exists :param schema: Name of hive schema (database) @table belongs to :type schema: string :param table: Name of hive table @partition belongs to :type schema: string :partition: Name of the partitions to check for (eg `a=b/c=d`) :type schema: string :rtype: boolean >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.check_for_named_partition('airflow', t, "ds=2015-01-01") True >>> hh.check_for_named_partition('airflow', t, "ds=xxx") False """ with self.metastore as client: return client.check_for_named_partition(schema, table, partition_name) def get_table(self, table_name, db='default'): """Get a metastore table object >>> hh = HiveMetastoreHook() >>> t = hh.get_table(db='airflow', table_name='static_babynames') >>> t.tableName 'static_babynames' >>> [col.name for col in t.sd.cols] ['state', 'year', 'name', 'gender', 'num'] """ if db == 'default' and '.' in table_name: db, table_name = table_name.split('.')[:2] with self.metastore as client: return client.get_table(dbname=db, tbl_name=table_name) def get_tables(self, db, pattern='*'): """ Get a metastore table object """ with self.metastore as client: tables = client.get_tables(db_name=db, pattern=pattern) return client.get_table_objects_by_name(db, tables) def get_databases(self, pattern='*'): """ Get a metastore table object """ with self.metastore as client: return client.get_databases(pattern) def get_partitions( self, schema, table_name, filter=None): """ Returns a list of all partitions in a table. Works only for tables with less than 32767 (java short max val). For subpartitioned table, the number might easily exceed this. >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> parts = hh.get_partitions(schema='airflow', table_name=t) >>> len(parts) 1 >>> parts [{'ds': '2015-01-01'}] """ with self.metastore as client: table = client.get_table(dbname=schema, tbl_name=table_name) if len(table.partitionKeys) == 0: raise AirflowException("The table isn't partitioned") else: if filter: parts = client.get_partitions_by_filter( db_name=schema, tbl_name=table_name, filter=filter, max_parts=HiveMetastoreHook.MAX_PART_COUNT) else: parts = client.get_partitions( db_name=schema, tbl_name=table_name, max_parts=HiveMetastoreHook.MAX_PART_COUNT) pnames = [p.name for p in table.partitionKeys] return [dict(zip(pnames, p.values)) for p in parts] @staticmethod def _get_max_partition_from_part_specs(part_specs, partition_key, filter_map): """ Helper method to get max partition of partitions with partition_key from part specs. key:value pair in filter_map will be used to filter out partitions. :param part_specs: list of partition specs. :type part_specs: list :param partition_key: partition key name. :type partition_key: string :param filter_map: partition_key:partition_value map used for partition filtering, e.g. {'key1': 'value1', 'key2': 'value2'}. Only partitions matching all partition_key:partition_value pairs will be considered as candidates of max partition. :type filter_map: map :return: Max partition or None if part_specs is empty. """ if not part_specs: return None # Assuming all specs have the same keys. if partition_key not in part_specs[0].keys(): raise AirflowException("Provided partition_key {} " "is not in part_specs.".format(partition_key)) if filter_map: is_subset = set(filter_map.keys()).issubset(set(part_specs[0].keys())) if filter_map and not is_subset: raise AirflowException("Keys in provided filter_map {} " "are not subset of part_spec keys: {}" .format(', '.join(filter_map.keys()), ', '.join(part_specs[0].keys()))) candidates = [p_dict[partition_key] for p_dict in part_specs if filter_map is None or all(item in p_dict.items() for item in filter_map.items())] if not candidates: return None else: return max(candidates).encode('utf-8') def max_partition(self, schema, table_name, field=None, filter_map=None): """ Returns the maximum value for all partitions with given field in a table. If only one partition key exist in the table, the key will be used as field. filter_map should be a partition_key:partition_value map and will be used to filter out partitions. :param schema: schema name. :type schema: string :param table_name: table name. :type table_name: string :param field: partition key to get max partition from. :type field: string :param filter_map: partition_key:partition_value map used for partition filtering. :type filter_map: map >>> hh = HiveMetastoreHook() >>> filter_map = {'ds': '2015-01-01', 'ds': '2014-01-01'} >>> t = 'static_babynames_partitioned' >>> hh.max_partition(schema='airflow',\ ... table_name=t, field='ds', filter_map=filter_map) '2015-01-01' """ with self.metastore as client: table = client.get_table(dbname=schema, tbl_name=table_name) key_name_set = set(key.name for key in table.partitionKeys) if len(table.partitionKeys) == 1: field = table.partitionKeys[0].name elif not field: raise AirflowException("Please specify the field you want the max " "value for.") elif field not in key_name_set: raise AirflowException("Provided field is not a partition key.") if filter_map and not set(filter_map.keys()).issubset(key_name_set): raise AirflowException("Provided filter_map contains keys " "that are not partition key.") part_names = \ client.get_partition_names(schema, table_name, max_parts=HiveMetastoreHook.MAX_PART_COUNT) part_specs = [client.partition_name_to_spec(part_name) for part_name in part_names] return HiveMetastoreHook._get_max_partition_from_part_specs(part_specs, field, filter_map) def table_exists(self, table_name, db='default'): """ Check if table exists >>> hh = HiveMetastoreHook() >>> hh.table_exists(db='airflow', table_name='static_babynames') True >>> hh.table_exists(db='airflow', table_name='does_not_exist') False """ try: self.get_table(table_name, db) return True except Exception: return False class HiveServer2Hook(BaseHook): """ Wrapper around the pyhive library Note that the default authMechanism is PLAIN, to override it you can specify it in the ``extra`` of your connection in the UI as in """ def __init__(self, hiveserver2_conn_id='hiveserver2_default'): self.hiveserver2_conn_id = hiveserver2_conn_id def get_conn(self, schema=None): db = self.get_connection(self.hiveserver2_conn_id) auth_mechanism = db.extra_dejson.get('authMechanism', 'NONE') if auth_mechanism == 'NONE' and db.login is None: # we need to give a username username = 'airflow' kerberos_service_name = None if configuration.conf.get('core', 'security') == 'kerberos': auth_mechanism = db.extra_dejson.get('authMechanism', 'KERBEROS') kerberos_service_name = db.extra_dejson.get('kerberos_service_name', 'hive') # pyhive uses GSSAPI instead of KERBEROS as a auth_mechanism identifier if auth_mechanism == 'GSSAPI': self.log.warning( "Detected deprecated 'GSSAPI' for authMechanism " "for %s. Please use 'KERBEROS' instead", self.hiveserver2_conn_id ) auth_mechanism = 'KERBEROS' from pyhive.hive import connect return connect( host=db.host, port=db.port, auth=auth_mechanism, kerberos_service_name=kerberos_service_name, username=db.login or username, database=schema or db.schema or 'default') def _get_results(self, hql, schema='default', fetch_size=None, hive_conf=None): from pyhive.exc import ProgrammingError if isinstance(hql, basestring): hql = [hql] previous_description = None with contextlib.closing(self.get_conn(schema)) as conn, \ contextlib.closing(conn.cursor()) as cur: cur.arraysize = fetch_size or 1000 env_context = get_context_from_env_var() if hive_conf: env_context.update(hive_conf) for k, v in env_context.items(): cur.execute("set {}={}".format(k, v)) for statement in hql: cur.execute(statement) # we only get results of statements that returns lowered_statement = statement.lower().strip() if (lowered_statement.startswith('select') or lowered_statement.startswith('with') or (lowered_statement.startswith('set') and '=' not in lowered_statement)): description = [c for c in cur.description] if previous_description and previous_description != description: message = '''The statements are producing different descriptions: Current: {} Previous: {}'''.format(repr(description), repr(previous_description)) raise ValueError(message) elif not previous_description: previous_description = description yield description try: # DB API 2 raises when no results are returned # we're silencing here as some statements in the list # may be `SET` or DDL for row in cur: yield row except ProgrammingError: self.log.debug("get_results returned no records") def get_results(self, hql, schema='default', fetch_size=None, hive_conf=None): """ Get results of the provided hql in target schema. :param hql: hql to be executed. :param schema: target schema, default to 'default'. :param fetch_size max size of result to fetch. :param hive_conf: hive_conf to execute alone with the hql. :return: results of hql execution. """ results_iter = self._get_results(hql, schema, fetch_size=fetch_size, hive_conf=hive_conf) header = next(results_iter) results = { 'data': list(results_iter), 'header': header } return results def to_csv( self, hql, csv_filepath, schema='default', delimiter=',', lineterminator='\r\n', output_header=True, fetch_size=1000, hive_conf=None): """ Execute hql in target schema and write results to a csv file. :param hql: hql to be executed. :param csv_filepath: filepath of csv to write results into. :param schema: target schema, , default to 'default'. :param delimiter: delimiter of the csv file. :param lineterminator: lineterminator of the csv file. :param output_header: header of the csv file. :param fetch_size: number of result rows to write into the csv file. :param hive_conf: hive_conf to execute alone with the hql. :return: """ results_iter = self._get_results(hql, schema, fetch_size=fetch_size, hive_conf=hive_conf) header = next(results_iter) message = None with open(csv_filepath, 'wb') as f: writer = csv.writer(f, delimiter=delimiter, lineterminator=lineterminator, encoding='utf-8') try: if output_header: self.log.debug('Cursor description is %s', header) writer.writerow([c[0] for c in header]) for i, row in enumerate(results_iter): writer.writerow(row) if i % fetch_size == 0: self.log.info("Written %s rows so far.", i) except ValueError as exception: message = str(exception) if message: # need to clean up the file first os.remove(csv_filepath) raise ValueError(message) self.log.info("Done. Loaded a total of %s rows.", i) def get_records(self, hql, schema='default'): """ Get a set of records from a Hive query. >>> hh = HiveServer2Hook() >>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100" >>> len(hh.get_records(sql)) 100 """ return self.get_results(hql, schema=schema)['data'] def get_pandas_df(self, hql, schema='default'): """ Get a pandas dataframe from a Hive query >>> hh = HiveServer2Hook() >>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100" >>> df = hh.get_pandas_df(sql) >>> len(df.index) 100 """ import pandas as pd res = self.get_results(hql, schema=schema) df = pd.DataFrame(res['data']) df.columns = [c[0] for c in res['header']] return df
apache-2.0
shangwuhencc/scikit-learn
setup.py
76
9370
#! /usr/bin/env python # # Copyright (C) 2007-2009 Cournapeau David <[email protected]> # 2010 Fabian Pedregosa <[email protected]> # License: 3-clause BSD descr = """A set of python modules for machine learning and data mining""" import sys import os import shutil from distutils.command.clean import clean as Clean from pkg_resources import parse_version if sys.version_info[0] < 3: import __builtin__ as builtins else: import builtins # This is a bit (!) hackish: we are setting a global variable so that the main # sklearn __init__ can detect if it is being loaded by the setup routine, to # avoid attempting to load components that aren't built yet: # the numpy distutils extensions that are used by scikit-learn to recursively # build the compiled extensions in sub-packages is based on the Python import # machinery. builtins.__SKLEARN_SETUP__ = True DISTNAME = 'scikit-learn' DESCRIPTION = 'A set of python modules for machine learning and data mining' with open('README.rst') as f: LONG_DESCRIPTION = f.read() MAINTAINER = 'Andreas Mueller' MAINTAINER_EMAIL = '[email protected]' URL = 'http://scikit-learn.org' LICENSE = 'new BSD' DOWNLOAD_URL = 'http://sourceforge.net/projects/scikit-learn/files/' # We can actually import a restricted version of sklearn that # does not need the compiled code import sklearn VERSION = sklearn.__version__ # Optional setuptools features # We need to import setuptools early, if we want setuptools features, # as it monkey-patches the 'setup' function # For some commands, use setuptools SETUPTOOLS_COMMANDS = set([ 'develop', 'release', 'bdist_egg', 'bdist_rpm', 'bdist_wininst', 'install_egg_info', 'build_sphinx', 'egg_info', 'easy_install', 'upload', 'bdist_wheel', '--single-version-externally-managed', ]) if SETUPTOOLS_COMMANDS.intersection(sys.argv): import setuptools extra_setuptools_args = dict( zip_safe=False, # the package can run out of an .egg file include_package_data=True, ) else: extra_setuptools_args = dict() # Custom clean command to remove build artifacts class CleanCommand(Clean): description = "Remove build artifacts from the source tree" def run(self): Clean.run(self) if os.path.exists('build'): shutil.rmtree('build') for dirpath, dirnames, filenames in os.walk('sklearn'): for filename in filenames: if (filename.endswith('.so') or filename.endswith('.pyd') or filename.endswith('.dll') or filename.endswith('.pyc')): os.unlink(os.path.join(dirpath, filename)) for dirname in dirnames: if dirname == '__pycache__': shutil.rmtree(os.path.join(dirpath, dirname)) cmdclass = {'clean': CleanCommand} # Optional wheelhouse-uploader features # To automate release of binary packages for scikit-learn we need a tool # to download the packages generated by travis and appveyor workers (with # version number matching the current release) and upload them all at once # to PyPI at release time. # The URL of the artifact repositories are configured in the setup.cfg file. WHEELHOUSE_UPLOADER_COMMANDS = set(['fetch_artifacts', 'upload_all']) if WHEELHOUSE_UPLOADER_COMMANDS.intersection(sys.argv): import wheelhouse_uploader.cmd cmdclass.update(vars(wheelhouse_uploader.cmd)) def configuration(parent_package='', top_path=None): if os.path.exists('MANIFEST'): os.remove('MANIFEST') from numpy.distutils.misc_util import Configuration config = Configuration(None, parent_package, top_path) # Avoid non-useful msg: # "Ignoring attempt to set 'name' (from ... " config.set_options(ignore_setup_xxx_py=True, assume_default_configuration=True, delegate_options_to_subpackages=True, quiet=True) config.add_subpackage('sklearn') return config scipy_min_version = '0.9' numpy_min_version = '1.6.1' def get_scipy_status(): """ Returns a dictionary containing a boolean specifying whether SciPy is up-to-date, along with the version string (empty string if not installed). """ scipy_status = {} try: import scipy scipy_version = scipy.__version__ scipy_status['up_to_date'] = parse_version( scipy_version) >= parse_version(scipy_min_version) scipy_status['version'] = scipy_version except ImportError: scipy_status['up_to_date'] = False scipy_status['version'] = "" return scipy_status def get_numpy_status(): """ Returns a dictionary containing a boolean specifying whether NumPy is up-to-date, along with the version string (empty string if not installed). """ numpy_status = {} try: import numpy numpy_version = numpy.__version__ numpy_status['up_to_date'] = parse_version( numpy_version) >= parse_version(numpy_min_version) numpy_status['version'] = numpy_version except ImportError: numpy_status['up_to_date'] = False numpy_status['version'] = "" return numpy_status def setup_package(): metadata = dict(name=DISTNAME, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, description=DESCRIPTION, license=LICENSE, url=URL, version=VERSION, download_url=DOWNLOAD_URL, long_description=LONG_DESCRIPTION, classifiers=['Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'License :: OSI Approved', 'Programming Language :: C', 'Programming Language :: Python', 'Topic :: Software Development', 'Topic :: Scientific/Engineering', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], cmdclass=cmdclass, **extra_setuptools_args) if (len(sys.argv) >= 2 and ('--help' in sys.argv[1:] or sys.argv[1] in ('--help-commands', 'egg_info', '--version', 'clean'))): # For these actions, NumPy is not required. # # They are required to succeed without Numpy for example when # pip is used to install Scikit-learn when Numpy is not yet present in # the system. try: from setuptools import setup except ImportError: from distutils.core import setup metadata['version'] = VERSION else: numpy_status = get_numpy_status() numpy_req_str = "scikit-learn requires NumPy >= {0}.\n".format( numpy_min_version) scipy_status = get_scipy_status() scipy_req_str = "scikit-learn requires SciPy >= {0}.\n".format( scipy_min_version) instructions = ("Installation instructions are available on the " "scikit-learn website: " "http://scikit-learn.org/stable/install.html\n") if numpy_status['up_to_date'] is False: if numpy_status['version']: raise ImportError("Your installation of Numerical Python " "(NumPy) {0} is out-of-date.\n{1}{2}" .format(numpy_status['version'], numpy_req_str, instructions)) else: raise ImportError("Numerical Python (NumPy) is not " "installed.\n{0}{1}" .format(numpy_req_str, instructions)) if scipy_status['up_to_date'] is False: if scipy_status['version']: raise ImportError("Your installation of Scientific Python " "(SciPy) {0} is out-of-date.\n{1}{2}" .format(scipy_status['version'], scipy_req_str, instructions)) else: raise ImportError("Scientific Python (SciPy) is not " "installed.\n{0}{1}" .format(scipy_req_str, instructions)) from numpy.distutils.core import setup metadata['configuration'] = configuration setup(**metadata) if __name__ == "__main__": setup_package()
bsd-3-clause
yavalvas/yav_com
build/matplotlib/lib/mpl_examples/api/sankey_demo_old.py
6
7147
#!/usr/bin/env python from __future__ import print_function __author__ = "Yannick Copin <[email protected]>" __version__ = "Time-stamp: <10/02/2010 16:49 [email protected]>" import numpy as np def sankey(ax, outputs=[100.], outlabels=None, inputs=[100.], inlabels='', dx=40, dy=10, outangle=45, w=3, inangle=30, offset=2, **kwargs): """Draw a Sankey diagram. outputs: array of outputs, should sum up to 100% outlabels: output labels (same length as outputs), or None (use default labels) or '' (no labels) inputs and inlabels: similar for inputs dx: horizontal elongation dy: vertical elongation outangle: output arrow angle [deg] w: output arrow shoulder inangle: input dip angle offset: text offset **kwargs: propagated to Patch (e.g., fill=False) Return (patch,[intexts,outtexts]). """ import matplotlib.patches as mpatches from matplotlib.path import Path outs = np.absolute(outputs) outsigns = np.sign(outputs) outsigns[-1] = 0 # Last output ins = np.absolute(inputs) insigns = np.sign(inputs) insigns[0] = 0 # First input assert sum(outs) == 100, "Outputs don't sum up to 100%" assert sum(ins) == 100, "Inputs don't sum up to 100%" def add_output(path, loss, sign=1): h = (loss/2 + w)*np.tan(outangle/180. * np.pi) # Arrow tip height move, (x, y) = path[-1] # Use last point as reference if sign == 0: # Final loss (horizontal) path.extend([(Path.LINETO, [x+dx, y]), (Path.LINETO, [x+dx, y+w]), (Path.LINETO, [x+dx+h, y-loss/2]), # Tip (Path.LINETO, [x+dx, y-loss-w]), (Path.LINETO, [x+dx, y-loss])]) outtips.append((sign, path[-3][1])) else: # Intermediate loss (vertical) path.extend([(Path.CURVE4, [x+dx/2, y]), (Path.CURVE4, [x+dx, y]), (Path.CURVE4, [x+dx, y+sign*dy]), (Path.LINETO, [x+dx-w, y+sign*dy]), (Path.LINETO, [x+dx+loss/2, y+sign*(dy+h)]), # Tip (Path.LINETO, [x+dx+loss+w, y+sign*dy]), (Path.LINETO, [x+dx+loss, y+sign*dy]), (Path.CURVE3, [x+dx+loss, y-sign*loss]), (Path.CURVE3, [x+dx/2+loss, y-sign*loss])]) outtips.append((sign, path[-5][1])) def add_input(path, gain, sign=1): h = (gain/2)*np.tan(inangle/180. * np.pi) # Dip depth move, (x, y) = path[-1] # Use last point as reference if sign == 0: # First gain (horizontal) path.extend([(Path.LINETO, [x-dx, y]), (Path.LINETO, [x-dx+h, y+gain/2]), # Dip (Path.LINETO, [x-dx, y+gain])]) xd, yd = path[-2][1] # Dip position indips.append((sign, [xd-h, yd])) else: # Intermediate gain (vertical) path.extend([(Path.CURVE4, [x-dx/2, y]), (Path.CURVE4, [x-dx, y]), (Path.CURVE4, [x-dx, y+sign*dy]), (Path.LINETO, [x-dx-gain/2, y+sign*(dy-h)]), # Dip (Path.LINETO, [x-dx-gain, y+sign*dy]), (Path.CURVE3, [x-dx-gain, y-sign*gain]), (Path.CURVE3, [x-dx/2-gain, y-sign*gain])]) xd, yd = path[-4][1] # Dip position indips.append((sign, [xd, yd+sign*h])) outtips = [] # Output arrow tip dir. and positions urpath = [(Path.MOVETO, [0, 100])] # 1st point of upper right path lrpath = [(Path.LINETO, [0, 0])] # 1st point of lower right path for loss, sign in zip(outs, outsigns): add_output(sign>=0 and urpath or lrpath, loss, sign=sign) indips = [] # Input arrow tip dir. and positions llpath = [(Path.LINETO, [0, 0])] # 1st point of lower left path ulpath = [(Path.MOVETO, [0, 100])] # 1st point of upper left path for gain, sign in reversed(list(zip(ins, insigns))): add_input(sign<=0 and llpath or ulpath, gain, sign=sign) def revert(path): """A path is not just revertable by path[::-1] because of Bezier curves.""" rpath = [] nextmove = Path.LINETO for move, pos in path[::-1]: rpath.append((nextmove, pos)) nextmove = move return rpath # Concatenate subpathes in correct order path = urpath + revert(lrpath) + llpath + revert(ulpath) codes, verts = zip(*path) verts = np.array(verts) # Path patch path = Path(verts, codes) patch = mpatches.PathPatch(path, **kwargs) ax.add_patch(patch) if False: # DEBUG print("urpath", urpath) print("lrpath", revert(lrpath)) print("llpath", llpath) print("ulpath", revert(ulpath)) xs, ys = zip(*verts) ax.plot(xs, ys, 'go-') # Labels def set_labels(labels, values): """Set or check labels according to values.""" if labels == '': # No labels return labels elif labels is None: # Default labels return ['%2d%%' % val for val in values] else: assert len(labels) == len(values) return labels def put_labels(labels, positions, output=True): """Put labels to positions.""" texts = [] lbls = output and labels or labels[::-1] for i, label in enumerate(lbls): s, (x, y) = positions[i] # Label direction and position if s == 0: t = ax.text(x+offset, y, label, ha=output and 'left' or 'right', va='center') elif s > 0: t = ax.text(x, y+offset, label, ha='center', va='bottom') else: t = ax.text(x, y-offset, label, ha='center', va='top') texts.append(t) return texts outlabels = set_labels(outlabels, outs) outtexts = put_labels(outlabels, outtips, output=True) inlabels = set_labels(inlabels, ins) intexts = put_labels(inlabels, indips, output=False) # Axes management ax.set_xlim(verts[:, 0].min()-dx, verts[:, 0].max()+dx) ax.set_ylim(verts[:, 1].min()-dy, verts[:, 1].max()+dy) ax.set_aspect('equal', adjustable='datalim') return patch, [intexts, outtexts] if __name__=='__main__': import matplotlib.pyplot as plt outputs = [10., -20., 5., 15., -10., 40.] outlabels = ['First', 'Second', 'Third', 'Fourth', 'Fifth', 'Hurray!'] outlabels = [s+'\n%d%%' % abs(l) for l, s in zip(outputs, outlabels)] inputs = [60., -25., 15.] fig = plt.figure() ax = fig.add_subplot(1, 1, 1, xticks=[], yticks=[], title="Sankey diagram") patch, (intexts, outtexts) = sankey(ax, outputs=outputs, outlabels=outlabels, inputs=inputs, inlabels=None, fc='g', alpha=0.2) outtexts[1].set_color('r') outtexts[-1].set_fontweight('bold') plt.show()
mit
percyfal/snakemakelib-core
snakemakelib/graphics/geom.py
1
3798
''' Author: Per Unneberg Created: Tue Dec 1 08:56:58 2015 ''' import pandas.core.common as com from bokeh.models import ColumnDataSource from . import utils from .color import colorbrewer from snakemakelib.log import LoggerManager from .axes import xaxis, yaxis smllogger = LoggerManager().getLogger(__name__) __all__ = ['dotplot', 'lines', 'points'] def dotplot(x, y, df, return_source=False, marker='circle', **kwargs): # setup figure fig = utils.create_bokeh_fig_set_props(plot_height=kwargs.pop('plot_height', None), plot_width=kwargs.pop('plot_width', None), **kwargs) xaxis(fig, **kwargs) yaxis(fig, **kwargs) color = kwargs.get('color', None) source = utils.df_to_source(df) if com.is_numeric_dtype(source.to_df()[x]) == True: raise TypeError("{}: dependant variable must not be numerical type".format(__name__)) if isinstance(y, list): color = [None] * len(y) if 'color' in kwargs: if isinstance(kwargs['color'], list) and len(kwargs['color']) == len(y): color = kwargs['color'] else: color = [kwargs['color']] * len(y) for yy, c in zip(y, color): if not c is None: kwargs['color'] = c fig = utils.add_glyph(fig, x, yy, source, marker, **kwargs) else: fig = utils.add_glyph(fig, x, y, source, marker, **kwargs) return fig def points(x, y, df, return_source=False, marker='circle', **kwargs): """Add points to a figure. Args: """ # setup figure fig = utils.create_bokeh_fig_set_props(plot_height=kwargs.pop('plot_height', None), plot_width=kwargs.pop('plot_width', None), **kwargs) xaxis(fig, **kwargs) yaxis(fig, **kwargs) source = utils.df_to_source(df) fig = utils.add_glyph(fig, x, y, source, marker, **kwargs) return fig def lines(fig, x, y, df, groups=None, **kwargs): """lines: add lines to a figure Args: fig (:py:class:`~bokeh.plotting.Plot`): bokeh Plot object x (str): string for x component y (str): string for y component df (:py:class:`~pandas.DataFrame`): pandas DataFram source (:py:class:`~bokeh.models.ColumnDataSource`): bokeh ColumnDataSource object groups (str, list(str)): string or list of strings for columns to group by kwargs: keyword arguments to pass to fig.line Example: .. bokeh-plot:: :source-position: above import pandas as pd from bokeh.plotting import figure, show, hplot from snakemakelib.graphics import lines df = pd.DataFrame([[1,2], [2,5], [3,9]], columns=["x", "y"]) f = figure(title="Line plot", plot_width=400, plot_height=400) lines(f, "x", "y", df, legend="y") lines(f, "x", "x", df, legend="x", color="red") show(f) """ smllogger.debug("Adding points to figure {}".format(fig)) if groups is None: source = ColumnDataSource(df) fig.line(x=x, y=y, source=source, **kwargs) else: try: grouped = df.groupby(groups) except: raise colors = colorbrewer(datalen=len(grouped.groups.keys())) for k, color in zip(grouped.groups.keys(), colors): name = k group = grouped.get_group(name) source = ColumnDataSource(group) if 'legend' in kwargs: kwargs['legend'] = str(name) if 'color' in kwargs: kwargs['color'] = color fig.line(x=x, y=y, source=source, **kwargs) return fig
mit
kylerbrown/scikit-learn
examples/ensemble/plot_partial_dependence.py
249
4456
""" ======================== Partial Dependence Plots ======================== Partial dependence plots show the dependence between the target function [1]_ and a set of 'target' features, marginalizing over the values of all other features (the complement features). Due to the limits of human perception the size of the target feature set must be small (usually, one or two) thus the target features are usually chosen among the most important features (see :attr:`~sklearn.ensemble.GradientBoostingRegressor.feature_importances_`). This example shows how to obtain partial dependence plots from a :class:`~sklearn.ensemble.GradientBoostingRegressor` trained on the California housing dataset. The example is taken from [HTF2009]_. The plot shows four one-way and one two-way partial dependence plots. The target variables for the one-way PDP are: median income (`MedInc`), avg. occupants per household (`AvgOccup`), median house age (`HouseAge`), and avg. rooms per household (`AveRooms`). We can clearly see that the median house price shows a linear relationship with the median income (top left) and that the house price drops when the avg. occupants per household increases (top middle). The top right plot shows that the house age in a district does not have a strong influence on the (median) house price; so does the average rooms per household. The tick marks on the x-axis represent the deciles of the feature values in the training data. Partial dependence plots with two target features enable us to visualize interactions among them. The two-way partial dependence plot shows the dependence of median house price on joint values of house age and avg. occupants per household. We can clearly see an interaction between the two features: For an avg. occupancy greater than two, the house price is nearly independent of the house age, whereas for values less than two there is a strong dependence on age. .. [HTF2009] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. .. [1] For classification you can think of it as the regression score before the link function. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.cross_validation import train_test_split from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble.partial_dependence import plot_partial_dependence from sklearn.ensemble.partial_dependence import partial_dependence from sklearn.datasets.california_housing import fetch_california_housing # fetch California housing dataset cal_housing = fetch_california_housing() # split 80/20 train-test X_train, X_test, y_train, y_test = train_test_split(cal_housing.data, cal_housing.target, test_size=0.2, random_state=1) names = cal_housing.feature_names print('_' * 80) print("Training GBRT...") clf = GradientBoostingRegressor(n_estimators=100, max_depth=4, learning_rate=0.1, loss='huber', random_state=1) clf.fit(X_train, y_train) print("done.") print('_' * 80) print('Convenience plot with ``partial_dependence_plots``') print features = [0, 5, 1, 2, (5, 1)] fig, axs = plot_partial_dependence(clf, X_train, features, feature_names=names, n_jobs=3, grid_resolution=50) fig.suptitle('Partial dependence of house value on nonlocation features\n' 'for the California housing dataset') plt.subplots_adjust(top=0.9) # tight_layout causes overlap with suptitle print('_' * 80) print('Custom 3d plot via ``partial_dependence``') print fig = plt.figure() target_feature = (1, 5) pdp, (x_axis, y_axis) = partial_dependence(clf, target_feature, X=X_train, grid_resolution=50) XX, YY = np.meshgrid(x_axis, y_axis) Z = pdp.T.reshape(XX.shape).T ax = Axes3D(fig) surf = ax.plot_surface(XX, YY, Z, rstride=1, cstride=1, cmap=plt.cm.BuPu) ax.set_xlabel(names[target_feature[0]]) ax.set_ylabel(names[target_feature[1]]) ax.set_zlabel('Partial dependence') # pretty init view ax.view_init(elev=22, azim=122) plt.colorbar(surf) plt.suptitle('Partial dependence of house value on median age and ' 'average occupancy') plt.subplots_adjust(top=0.9) plt.show()
bsd-3-clause
eclee25/flu-SDI-exploratory-age
scripts/create_fluseverity_figs/F4_zOR_state.py
1
4479
#!/usr/bin/python ############################################## ###Python template ###Author: Elizabeth Lee ###Date: 7/27/14 ###Function: Draw mean retro zOR vs. state with all seasons together ###Import data: R_export/OR_zip3_week_outpatient_cl.csv, R_export/allpopstat_zip3_season_cl.csv #### These data were cleaned with data_extraction/clean_OR_hhsreg_week_outpatient.R and exported with OR_zip3_week.sql #### allpopstat_zip3_season_cl.csv includes child, adult, and other populations; popstat_zip3_season_cl.csv includes only child and adult populations ###Command Line: python F4_zOR_region.py ############################################## ### notes ### # Incidence per 100,000 is normalized by total population by second calendar year of the flu season ### packages/modules ### import csv import matplotlib.pyplot as plt import numpy as np from itertools import product from collections import defaultdict import operator import matplotlib.cm as cm ## local modules ## import functions as fxn ### data structures ### # d_st_distr[state abbr] = [mean retro zOR S1, mean retrozOR S2, ...] d_st_distr = defaultdict(list) # d_st_distr_mask[state abbr] = [mean retro zOR S1, mean retrozOR S2, ...], where NaNs are masked d_st_distr_mask = defaultdict(list) # d_st_median[state abbr] = median of mean retro zOR across all seasons for a given state, where NaN is removed from median calculation d_st_median = {} # d_reg_col[region number] = str('color') d_reg_col = {} ### called/local plotting parameters ### ps = fxn.pseasons fs = 24 fssml = 12 ### functions ### def grabStateToRegion(state_reg_file): dict_state_region = {} for line in state_reg_file: state = str(line[5]) region = int(line[8]) dict_state_region[state] = region return dict_state_region ### data files ### # state zOR data st_zORin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/Py_export/SDI_state_classifications.csv', 'r') st_zORin.readline() st_zOR = csv.reader(st_zORin, delimiter=',') # state to region number conversion st_regin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/R_export/allpopstat_zip3_season_cl.csv','r') st_regin.readline() st_reg = csv.reader(st_regin, delimiter=',') ### program ### # nation-level peak-based retrospective classification ## read state zOR data ## # d_st_classif[(season, state abbr)] = (mean retro zOR, mean early zOR) d_st_classif = fxn.readStateClassifFile(st_zOR) # grab list of unique states in dataset states = list(set([key[1] for key in d_st_classif])) ## read state to region data ## # d_st_reg[state abbr] = region number d_st_reg = grabStateToRegion(st_reg) ## region-color dictionary ## # d_reg_col[region number] = str('color') d_reg_col = dict(zip(range(1,11), cm.rainbow(np.linspace(0, 1, len(range(1,11)))))) # d_st_distr[state abbr] = [mean retro zOR S1, mean retrozOR S2, ...] # d_st_median[state abbr] = median of mean retro zOR across seasons (masked NaNs) for st in states: d_st_distr[st] = [d_st_classif[key][0] for key in d_st_classif if key[1] == st] dummymask = np.ma.array(d_st_distr[st], mask = np.isnan(d_st_distr[st])) d_st_distr_mask[st] = dummymask dummymedian = np.ma.median(dummymask) d_st_median[st] = dummymedian # remove states with only masked medians from the dictionary d_st_median_sub = dict((k, d_st_median[k]) for k in d_st_median if d_st_median[k]) # sort states by median of mean retro zOR across all seasons sort_median_dict = sorted(d_st_median_sub.iteritems(), key=operator.itemgetter(1)) # grab list of sorted states for plotting sorted_states = [item[0] for item in sort_median_dict] # grab list of colors in order of sorted states -- each region is its own color sorted_colors = [d_reg_col[d_st_reg[st]] for st in sorted_states] # grab only unmasked values for boxplot retrozOR_by_state = [[val for val in d_st_distr_mask[state].T if val] for state in sorted_states] ## draw figure ## bxp = plt.boxplot(retrozOR_by_state, patch_artist=True) for patch, color in zip(bxp['boxes'], sorted_colors): patch.set_facecolor(color) plt.ylabel('Mean Retrospective zOR', fontsize=fs) plt.xlim([0.5, 47.5]) plt.ylim([-4, 10]) plt.xticks(xrange(1, len(sorted_states)+1), sorted_states, rotation = 'vertical', fontsize=fssml) plt.yticks(fontsize=fssml) plt.savefig('/home/elee/Dropbox/Elizabeth_Bansal_Lab/Manuscripts/Age_Severity/fluseverity_figs/F4/zOR_state_national.png', transparent=False, bbox_inches='tight', pad_inches=0) plt.close() # plt.show()
mit
TomAugspurger/pandas
pandas/tests/io/parser/test_python_parser_only.py
2
9485
""" Tests that apply specifically to the Python parser. Unless specifically stated as a Python-specific issue, the goal is to eventually move as many of these tests out of this module as soon as the C parser can accept further arguments when parsing. """ import csv from io import BytesIO, StringIO import pytest from pandas.errors import ParserError from pandas import DataFrame, Index, MultiIndex import pandas._testing as tm def test_default_separator(python_parser_only): # see gh-17333 # # csv.Sniffer in Python treats "o" as separator. data = "aob\n1o2\n3o4" parser = python_parser_only expected = DataFrame({"a": [1, 3], "b": [2, 4]}) result = parser.read_csv(StringIO(data), sep=None) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("skipfooter", ["foo", 1.5, True]) def test_invalid_skipfooter_non_int(python_parser_only, skipfooter): # see gh-15925 (comment) data = "a\n1\n2" parser = python_parser_only msg = "skipfooter must be an integer" with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), skipfooter=skipfooter) def test_invalid_skipfooter_negative(python_parser_only): # see gh-15925 (comment) data = "a\n1\n2" parser = python_parser_only msg = "skipfooter cannot be negative" with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), skipfooter=-1) @pytest.mark.parametrize("kwargs", [dict(sep=None), dict(delimiter="|")]) def test_sniff_delimiter(python_parser_only, kwargs): data = """index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ parser = python_parser_only result = parser.read_csv(StringIO(data), index_col=0, **kwargs) expected = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["A", "B", "C"], index=Index(["foo", "bar", "baz"], name="index"), ) tm.assert_frame_equal(result, expected) def test_sniff_delimiter_comment(python_parser_only): data = """# comment line index|A|B|C # comment line foo|1|2|3 # ignore | this bar|4|5|6 baz|7|8|9 """ parser = python_parser_only result = parser.read_csv(StringIO(data), index_col=0, sep=None, comment="#") expected = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["A", "B", "C"], index=Index(["foo", "bar", "baz"], name="index"), ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("encoding", [None, "utf-8"]) def test_sniff_delimiter_encoding(python_parser_only, encoding): parser = python_parser_only data = """ignore this ignore this too index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ if encoding is not None: from io import TextIOWrapper data = data.encode(encoding) data = BytesIO(data) data = TextIOWrapper(data, encoding=encoding) else: data = StringIO(data) result = parser.read_csv(data, index_col=0, sep=None, skiprows=2, encoding=encoding) expected = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["A", "B", "C"], index=Index(["foo", "bar", "baz"], name="index"), ) tm.assert_frame_equal(result, expected) def test_single_line(python_parser_only): # see gh-6607: sniff separator parser = python_parser_only result = parser.read_csv(StringIO("1,2"), names=["a", "b"], header=None, sep=None) expected = DataFrame({"a": [1], "b": [2]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("kwargs", [dict(skipfooter=2), dict(nrows=3)]) def test_skipfooter(python_parser_only, kwargs): # see gh-6607 data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ parser = python_parser_only result = parser.read_csv(StringIO(data), **kwargs) expected = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["A", "B", "C"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "compression,klass", [("gzip", "GzipFile"), ("bz2", "BZ2File")] ) def test_decompression_regex_sep(python_parser_only, csv1, compression, klass): # see gh-6607 parser = python_parser_only with open(csv1, "rb") as f: data = f.read() data = data.replace(b",", b"::") expected = parser.read_csv(csv1) module = pytest.importorskip(compression) klass = getattr(module, klass) with tm.ensure_clean() as path: tmp = klass(path, mode="wb") tmp.write(data) tmp.close() result = parser.read_csv(path, sep="::", compression=compression) tm.assert_frame_equal(result, expected) def test_read_csv_buglet_4x_multi_index(python_parser_only): # see gh-6607 data = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" parser = python_parser_only expected = DataFrame( [ [-0.5109, -2.3358, -0.4645, 0.05076, 0.3640], [0.4473, 1.4152, 0.2834, 1.00661, 0.1744], [-0.6662, -0.5243, -0.3580, 0.89145, 2.5838], ], columns=["A", "B", "C", "D", "E"], index=MultiIndex.from_tuples( [("a", "b", 10.0032, 5), ("a", "q", 20, 4), ("x", "q", 30, 3)], names=["one", "two", "three", "four"], ), ) result = parser.read_csv(StringIO(data), sep=r"\s+") tm.assert_frame_equal(result, expected) def test_read_csv_buglet_4x_multi_index2(python_parser_only): # see gh-6893 data = " A B C\na b c\n1 3 7 0 3 6\n3 1 4 1 5 9" parser = python_parser_only expected = DataFrame.from_records( [(1, 3, 7, 0, 3, 6), (3, 1, 4, 1, 5, 9)], columns=list("abcABC"), index=list("abc"), ) result = parser.read_csv(StringIO(data), sep=r"\s+") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("add_footer", [True, False]) def test_skipfooter_with_decimal(python_parser_only, add_footer): # see gh-6971 data = "1#2\n3#4" parser = python_parser_only expected = DataFrame({"a": [1.2, 3.4]}) if add_footer: # The stray footer line should not mess with the # casting of the first two lines if we skip it. kwargs = dict(skipfooter=1) data += "\nFooter" else: kwargs = dict() result = parser.read_csv(StringIO(data), names=["a"], decimal="#", **kwargs) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "sep", ["::", "#####", "!!!", "123", "#1!c5", "%!c!d", "@@#4:2", "_!pd#_"] ) @pytest.mark.parametrize( "encoding", ["utf-16", "utf-16-be", "utf-16-le", "utf-32", "cp037"] ) def test_encoding_non_utf8_multichar_sep(python_parser_only, sep, encoding): # see gh-3404 expected = DataFrame({"a": [1], "b": [2]}) parser = python_parser_only data = "1" + sep + "2" encoded_data = data.encode(encoding) result = parser.read_csv( BytesIO(encoded_data), sep=sep, names=["a", "b"], encoding=encoding ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("quoting", [csv.QUOTE_MINIMAL, csv.QUOTE_NONE]) def test_multi_char_sep_quotes(python_parser_only, quoting): # see gh-13374 kwargs = dict(sep=",,") parser = python_parser_only data = 'a,,b\n1,,a\n2,,"2,,b"' msg = "ignored when a multi-char delimiter is used" def fail_read(): with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data), quoting=quoting, **kwargs) if quoting == csv.QUOTE_NONE: # We expect no match, so there should be an assertion # error out of the inner context manager. with pytest.raises(AssertionError): fail_read() else: fail_read() def test_none_delimiter(python_parser_only, capsys): # see gh-13374 and gh-17465 parser = python_parser_only data = "a,b,c\n0,1,2\n3,4,5,6\n7,8,9" expected = DataFrame({"a": [0, 7], "b": [1, 8], "c": [2, 9]}) # We expect the third line in the data to be # skipped because it is malformed, but we do # not expect any errors to occur. result = parser.read_csv( StringIO(data), header=0, sep=None, warn_bad_lines=True, error_bad_lines=False ) tm.assert_frame_equal(result, expected) captured = capsys.readouterr() assert "Skipping line 3" in captured.err @pytest.mark.parametrize("data", ['a\n1\n"b"a', 'a,b,c\ncat,foo,bar\ndog,foo,"baz']) @pytest.mark.parametrize("skipfooter", [0, 1]) def test_skipfooter_bad_row(python_parser_only, data, skipfooter): # see gh-13879 and gh-15910 msg = "parsing errors in the skipped footer rows" parser = python_parser_only def fail_read(): with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data), skipfooter=skipfooter) if skipfooter: fail_read() else: # We expect no match, so there should be an assertion # error out of the inner context manager. with pytest.raises(AssertionError): fail_read() def test_malformed_skipfooter(python_parser_only): parser = python_parser_only data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ msg = "Expected 3 fields in line 4, saw 5" with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data), header=1, comment="#", skipfooter=1)
bsd-3-clause
gosox5555/data
us-weather-history/visualize_weather.py
36
4799
import matplotlib.pyplot as plt import pandas as pd from datetime import datetime ''' This is an example to generate the Philadelphia, PA weather chart. If you want to make the chart for another city, you will have to modify this code slightly to read that city's data in, change the title, and likely change the y-axis of the chart to fit your city's temperature range. I also use a custom matplotlib style as the basis for these charts, which you can find here: https://gist.githubusercontent.com/rhiever/d0a7332fe0beebfdc3d5/raw/223d70799b48131d5ce2723cd5784f39d7a3a653/tableau10.mplstyle ''' weather_data = pd.read_csv('KPHL.csv', parse_dates=['date']) print(weather_data.describe()) # Generate a bunch of histograms of the data to make sure that all of the data # is in an expected range. with plt.style.context('https://gist.githubusercontent.com/rhiever/d0a7332fe0beebfdc3d5/raw/223d70799b48131d5ce2723cd5784f39d7a3a653/tableau10.mplstyle'): for column in weather_data.columns: if column in ['date']: continue plt.figure() plt.hist(weather_data[column].values) plt.title(column) plt.savefig('{}.png'.format(column)) # Make sure we're only plotting temperatures for July 2014 - June 2015 weather_data_subset = weather_data[weather_data['date'] >= datetime(year=2014, month=7, day=1)] weather_data_subset = weather_data_subset[weather_data_subset['date'] < datetime(year=2015, month=7, day=1)].copy() weather_data_subset['day_order'] = range(len(weather_data_subset)) day_order = weather_data_subset['day_order'] record_max_temps = weather_data_subset['record_max_temp'].values record_min_temps = weather_data_subset['record_min_temp'].values average_max_temps = weather_data_subset['average_max_temp'].values average_min_temps = weather_data_subset['average_min_temp'].values actual_max_temps = weather_data_subset['actual_max_temp'].values actual_min_temps = weather_data_subset['actual_min_temp'].values fig, ax1 = plt.subplots(figsize=(15, 7)) # Create the bars showing all-time record highs and lows plt.bar(day_order, record_max_temps - record_min_temps, bottom=record_min_temps, edgecolor='none', color='#C3BBA4', width=1) # Create the bars showing average highs and lows plt.bar(day_order, average_max_temps - average_min_temps, bottom=average_min_temps, edgecolor='none', color='#9A9180', width=1) # Create the bars showing this year's highs and lows plt.bar(day_order, actual_max_temps - actual_min_temps, bottom=actual_min_temps, edgecolor='black', linewidth=0.5, color='#5A3B49', width=1) new_max_records = weather_data_subset[weather_data_subset.record_max_temp <= weather_data_subset.actual_max_temp] new_min_records = weather_data_subset[weather_data_subset.record_min_temp >= weather_data_subset.actual_min_temp] # Create the dots marking record highs and lows for the year plt.scatter(new_max_records['day_order'].values + 0.5, new_max_records['actual_max_temp'].values + 1.25, s=15, zorder=10, color='#d62728', alpha=0.75, linewidth=0) plt.scatter(new_min_records['day_order'].values + 0.5, new_min_records['actual_min_temp'].values - 1.25, s=15, zorder=10, color='#1f77b4', alpha=0.75, linewidth=0) plt.ylim(-15, 111) plt.xlim(-5, 370) plt.yticks(range(-10, 111, 10), [r'{}$^\circ$'.format(x) for x in range(-10, 111, 10)], fontsize=10) plt.ylabel(r'Temperature ($^\circ$F)', fontsize=12) month_beginning_df = weather_data_subset[weather_data_subset['date'].apply(lambda x: True if x.day == 1 else False)] month_beginning_indeces = list(month_beginning_df['day_order'].values) month_beginning_names = list(month_beginning_df['date'].apply(lambda x: x.strftime("%B")).values) month_beginning_names[0] += '\n\'14' month_beginning_names[6] += '\n\'15' # Add the last month label manually month_beginning_indeces += [weather_data_subset['day_order'].values[-1]] month_beginning_names += ['July'] plt.xticks(month_beginning_indeces, month_beginning_names, fontsize=10) ax2 = ax1.twiny() plt.xticks(month_beginning_indeces, month_beginning_names, fontsize=10) plt.xlim(-5, 370) plt.grid(False) ax3 = ax1.twinx() plt.yticks(range(-10, 111, 10), [r'{}$^\circ$'.format(x) for x in range(-10, 111, 10)], fontsize=10) plt.ylim(-15, 111) plt.grid(False) plt.title('Philadelphia, PA\'s weather, July 2014 - June 2015\n\n', fontsize=20) plt.savefig('philadelphia-weather-july14-june15.png')
mit
Srisai85/scikit-learn
examples/ensemble/plot_forest_importances_faces.py
403
1519
""" ================================================= Pixel importances with a parallel forest of trees ================================================= This example shows the use of forests of trees to evaluate the importance of the pixels in an image classification task (faces). The hotter the pixel, the more important. The code below also illustrates how the construction and the computation of the predictions can be parallelized within multiple jobs. """ print(__doc__) from time import time import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.ensemble import ExtraTreesClassifier # Number of cores to use to perform parallel fitting of the forest model n_jobs = 1 # Load the faces dataset data = fetch_olivetti_faces() X = data.images.reshape((len(data.images), -1)) y = data.target mask = y < 5 # Limit to 5 classes X = X[mask] y = y[mask] # Build a forest and compute the pixel importances print("Fitting ExtraTreesClassifier on faces data with %d cores..." % n_jobs) t0 = time() forest = ExtraTreesClassifier(n_estimators=1000, max_features=128, n_jobs=n_jobs, random_state=0) forest.fit(X, y) print("done in %0.3fs" % (time() - t0)) importances = forest.feature_importances_ importances = importances.reshape(data.images[0].shape) # Plot pixel importances plt.matshow(importances, cmap=plt.cm.hot) plt.title("Pixel importances with forests of trees") plt.show()
bsd-3-clause
darioml/python-aer
setup.py
1
1103
#! /usr/bin/env python """ Author: Dario ML Program: SETUP.PY Date: Saturday, June 06, 2014 Description: Setup and install TD algorithms. """ from distutils.core import setup setup(name='python-aer', version='0.1.2', author="Dario Magliocchetti", author_email="[email protected]", url="https://github.com/darioml/pAER-python-aer-lib", description='Python Address Event Representation (AER) Library', long_description='This package provides tools required to visulate, manipulate and use address event representational data (.aedat format). ', package_dir={"paer" : "src"}, packages=["paer"], license="GPL 2.0", classifiers=[ "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Environment :: Console", "License :: OSI Approved :: GNU General Public License v2 (GPLv2)", "Intended Audience :: Developers", "Operating System :: OS Independent", "Development Status :: 3 - Alpha" ], install_requires=[ 'numpy', 'scipy', 'matplotlib' ] )
gpl-2.0
lmjohns3/cube-experiment
plots/plot-target-approach.py
1
3356
#!/usr/bin/env python import climate import itertools import lmj.cubes import lmj.plot import numpy as np import pandas as pd FRAME_RATE = 50 MARKERS = 'r-fing-index l-fing-index r-heel r-head-front' _COLORS = '#111111 #d62728 #1f77b4 #2ca02c' COLORS = dict(zip(MARKERS.split(), _COLORS.split())) @climate.annotate( root='read subject data from this file tree', pattern=('plot data from files matching this pattern', 'option'), output=('save movie in this output filename', 'option'), animate=('if given, create a rotating 3d animation', 'option'), target=('plot data for this target', 'option', None, int), approach_sec=('plot variance for N sec prior to target acquisition', 'option', None, float), ) def main(root, pattern='*/*/*trial00*', output=None, animate=None, target=3, approach_sec=1): targets = None num_frames = int(FRAME_RATE * approach_sec) # first, read trial data and extract marker trajectories. group by marker # and source cube. data = {} for trial in lmj.cubes.Experiment(root).trials_matching(pattern): trial.load() targets = trial move = trial.movement_to(target) move.df.index = pd.Index(np.arange(1 - len(move.df), 1)) source = move.df.source.iloc[0] for marker in MARKERS.split(): data.setdefault((marker, source), []).append(move.trajectory(marker)) # next, compute mean and stderr for every time step approaching targets. # group again by marker and source cube. agg = {} for key, dfs in data.items(): keys = list(range(len(dfs))) merged = pd.concat(dfs, axis=1, keys=keys).groupby(axis=1, level=1) agg[key] = merged.mean(), merged.std() / np.sqrt(merged.size()) with lmj.plot.axes(spines=True) as ax: ts = np.arange(-num_frames, 0) for marker in reversed(MARKERS.split()): for (m, s), (mean, stderr) in agg.items(): if m == marker: ax.plot(ts, stderr.sum(axis=1)[-num_frames:], color=COLORS[marker]) ax.set_xlim(-num_frames, 0) ax.set_xticks(np.linspace(-num_frames, 0, 5)) ax.set_xticklabels(np.linspace(-num_frames / FRAME_RATE, 0, 5)) ax.set_xlabel('Time Before Touch (sec)') ax.set_ylabel('Summed Standard Error') def render(ax): lmj.cubes.plots.show_cubes(ax, targets, target_num=target) for (marker, source), (mean, stderr) in agg.items(): mx, my, mz = mean.x, mean.y, mean.z sx, sy, sz = stderr.x, stderr.y, stderr.z for t in np.linspace(0, num_frames, 7).astype(int): x, y, z = lmj.cubes.plots.ellipsoid( [mx[-t], my[-t], mz[-t]], [sx[-t], sy[-t], sz[-t]]) ax.plot_wireframe(x, z, y, color=COLORS[marker], alpha=0.3, lw=1) if animate: lmj.plot.rotate_3d( lmj.cubes.plots.show_3d(render), output=output, azim=(0, 90), elev=(5, 20), fig=dict(figsize=(10, 4.8))) if not output: lmj.plot.show() else: with lmj.plot.axes3d() as ax: render(ax) lmj.cubes.plots.show_3d(lambda ax: None)(ax) ax.view_init(elev=15, azim=-110) if __name__ == '__main__': climate.call(main)
mit
nschmidtALICE/AliPhysics
PWGPP/FieldParam/fitsol.py
39
8343
#!/usr/bin/env python debug = True # enable trace def trace(x): global debug if debug: print(x) trace("loading...") from itertools import combinations, combinations_with_replacement from glob import glob from math import * import operator from os.path import basename import matplotlib.pyplot as plt import numpy as np import pandas as pd import sklearn.linear_model import sklearn.feature_selection import datetime def prec_from_pathname(path): if '2k' in path: return 0.002 elif '5k' in path: return 0.005 else: raise AssertionError('Unknown field strengh: %s' % path) # ['x', 'y', 'z', 'xx', 'xy', 'xz', 'yy', ...] def combinatrial_vars(vars_str='xyz', length=3): term_list = [] for l in range(length): term_list.extend([''.join(v) for v in combinations_with_replacement(list(vars_str), 1 + l)]) return term_list # product :: a#* => [a] -> a def product(xs): return reduce(operator.mul, xs, 1) # foldl in Haskell # (XYZ, "xx") -> XX def term(dataframe, vars_str): return product(map(lambda x: dataframe[x], list(vars_str))) # (f(X), Y) -> (max deviation, max%, avg dev, avg%) def deviation_stat(fX, Y, prec=0.005): dev = np.abs(fX - Y) (max_dev, avg_dev) = (dev.max(axis=0), dev.mean(axis=0)) (max_pct, avg_pct) = (max_dev / prec * 100, avg_dev / prec * 100) return (max_dev, max_pct, avg_dev, avg_pct) # IO Df def load_samples(path, cylindrical_axis=True, absolute_axis=True, genvars=[]): sample_cols = ['x', 'y', 'z', 'Bx', 'By', 'Bz'] df = pd.read_csv(path, sep=' ', names=sample_cols) if cylindrical_axis: df['r'] = np.sqrt(df.x**2 + df.y**2) df['p'] = np.arctan2(df.y, df.x) df['Bt'] = np.sqrt(df.Bx**2 + df.By**2) df['Bpsi'] = np.arctan2(df.By, df.Bx) - np.arctan2(df.y, df.x) df['Br'] = df.Bt * np.cos(df.Bpsi) df['Bp'] = df.Bt * np.sin(df.Bpsi) if absolute_axis: df['X'] = np.abs(df.x) df['Y'] = np.abs(df.y) df['Z'] = np.abs(df.z) for var in genvars: df[var] = term(df, var) return df def choose(vars, df1, df2): X1 = df1.loc[:, vars].as_matrix() X2 = df2.loc[:, vars].as_matrix() return (X1, X2) # IO () def run_analysis_for_all_fields(): sample_set = glob("dat_z22/*2k*.sample.dat") test_set = glob("dat_z22/*2k*.test.dat") #print(sample_set, test_set) assert(len(sample_set) == len(test_set) and len(sample_set) > 0) result = pd.DataFrame() for i, sample_file in enumerate(sample_set): trace("run_analysis('%s', '%s')" % (sample_file, test_set[i])) df = run_analysis(sample_file, test_set[i]) result = result.append(df, ignore_index=True) write_header(result) def run_analysis(sample_file = 'dat_z22/tpc2k-z0-q2.sample.dat', test_file = 'dat_z22/tpc2k-z0-q2.test.dat'): global precision, df, test, lr, la, xvars_full, xvars, yvars, X, Y, Xtest, Ytest, ana_result precision = prec_from_pathname(sample_file) assert(precision == prec_from_pathname(test_file)) xvars_full = combinatrial_vars('xyz', 3)[3:] # variables except x, y, z upto 3 dims trace("reading training samples... " + sample_file) df = load_samples(sample_file, genvars=xvars_full) trace("reading test samples..." + test_file) test = load_samples(test_file, genvars=xvars_full) trace("linear regression fit...") lr = sklearn.linear_model.LinearRegression() #ri = sklearn.linear_model.RidgeCV() #la = sklearn.linear_model.LassoCV() fs = sklearn.feature_selection.RFE(lr, 1, verbose=0) #xvars = ['x','y','z','xx','yy','zz','xy','yz','xz','xzz','yzz'] #xvars = ["xx", "yy", "zz", 'x', 'y', 'z', 'xzz', 'yzz'] #xvars = ['xxxr', 'xrrX', 'zzrX', 'p', 'xyrr', 'xzzr', 'xrrY', 'xzrX', 'xxxz', 'xzzr'] #xvars=['x', 'xzz', 'xyz', 'yz', 'yy', 'zz', 'xy', 'xx', 'z', 'y', 'xz', 'yzz'] yvars = ['Bx', 'By', 'Bz'] #yvars = ['Bz'] (Y, Ytest) = choose(yvars, df, test) #(Y, Ytest) = (df['Bz'], test['Bz']) xvars = combinatrial_vars('xyz', 3) # use all terms upto 3rd power (X, Xtest) = choose(xvars, df, test) for y in yvars: fs.fit(X, df[y]) res = pd.DataFrame({ "term": xvars, "rank": fs.ranking_ }) trace(y) trace(res.sort_values(by = "rank")) #xvars=list(res.sort_values(by="rank")[:26]['term']) lr.fit(X, Y) trace(', '.join(yvars) + " = 1 + " + ' + '.join(xvars)) test_dev = deviation_stat(lr.predict(Xtest), Ytest, prec=precision) #for i in range(len(yvars)): # arr = [lr.intercept_[i]] + lr.coef_[i] # arr = [ str(x) for x in arr ] # print(yvars[i] + " = { " + ', '.join(arr) + " }") # print("deviation stat [test]: max %.2e (%.1f%%) avg %.2e (%.1f%%)" % # ( test_dev[0][i], test_dev[1][i], test_dev[2][i], test_dev[3][i] )) (sample_score, test_score) = (lr.score(X, Y), lr.score(Xtest, Ytest)) trace("linear regression R^2 [train data]: %.8f" % sample_score) trace("linear regression R^2 [test data] : %.8f" % test_score) return pd.DataFrame( { "xvars": [xvars], "yvars": [yvars], "max_dev": [test_dev[0]], "max%": [test_dev[1]], "avg_dev": [test_dev[2]], "avg%": [test_dev[3]], "sample_score": [sample_score], "score": [test_score], "coeffs": [lr.coef_], "intercept": [lr.intercept_], "sample_file": [sample_file], "test_file": [test_file], "precision": [precision], "volume_id": [volume_id_from_path(sample_file)] }) def volume_id_from_path(path): return basename(path)\ .replace('.sample.dat', '')\ .replace('-', '_') def get_location_by_volume_id(id): if 'its' in id: r_bin = 0 if 'tpc' in id: r_bin = 1 if 'tof' in id: r_bin = 2 if 'tofext' in id: r_bin = 3 if 'cal' in id: r_bin = 4 z_bin = int(id.split('_')[1][1:]) # "tofext2k_z0_q4" -> 0 if 'q1' in id: quadrant = 0 if 'q2' in id: quadrant = 1 if 'q3' in id: quadrant = 2 if 'q4' in id: quadrant = 3 return r_bin, z_bin, quadrant def write_header(result): #result.to_csv("magfield_params.csv") #result.to_html("magfield_params.html") print("# This file was generated from sysid.py at " + str(datetime.datetime.today())) print("# " + ', '.join(result.iloc[0].yvars) + " = 1 + " + ' + '.join(result.iloc[0].xvars)) print("# barrel r: 0 < its < 80 < tpc < 250 < tof < 400 < tofext < 423 < cal < 500") print("# barrel z: -550 < z < 550") print("# phi: 0 < q1 < 0.5pi < q2 < pi < q3 < 1.5pi < q4 < 2pi") print("# header: Rbin Zbin Quadrant Nval_per_compoment(=20)") print("# data: Nval_per_compoment x floats") #print("# R^2: coefficient of determination in multiple linear regression. [0,1]") print("") for index, row in result.iterrows(): #print("// ** %s - R^2 %s" % (row.volume_id, row.score)) print("#" + row.volume_id) r_bin, z_bin, quadrant = get_location_by_volume_id(row.volume_id) print("%s %s %s 20" % (r_bin, z_bin, quadrant)) for i, yvar in enumerate(row.yvars): name = row.volume_id #+ '_' + yvar.lower() print("# precision: tgt %.2e max %.2e (%.1f%%) avg %.2e (%.1f%%)" % (row['precision'], row['max_dev'][i], row['max%'][i], row['avg_dev'][i], row['avg%'][i])) coef = [row['intercept'][i]] + list(row['coeffs'][i]) arr = [ "%.5e" % x for x in coef ] body = ' '.join(arr) #decl = "const double[] %s = { %s };\n" % (name, body) #print(decl) print(body) print("") #write_header(run_analysis()) run_analysis_for_all_fields() #for i in range(10): # for xvars in combinations(xvars_full, i+1): #(X, Xtest) = choose(xvars, df, test) #lr.fit(X, Y) #ri.fit(X, Y) #la.fit(X, Y) #fs.fit(X, Y) #print xvars #(sample_score, test_score) = (lr.score(X, Y), lr.score(Xtest, Ytest)) #print("linear R^2[sample] %.8f" % sample_score) #print("linear R^2[test] %.8f" % test_score) #(sample_score2, test_score2) = (la.score(X, Y), la.score(Xtest, Ytest)) #print("lasso R^2[sample] %.8f" % sample_score2) #print("lasso R^2[test] %.8f" % test_score2) #print(la.coef_) #for i in range(len(yvars)): # print(yvars[i]) # print(pd.DataFrame({"Name": xvars, "Params": lr.coef_[i]}).sort_values(by='Params')) # print("+ %e" % lr.intercept_[i]) #sample_dev = deviation_stat(lr.predict(X), Y, prec=precision) #test_dev = deviation_stat(lr.predict(Xtest), Ytest, prec=precision) #test_dev2 = deviation_stat(la.predict(Xtest), Ytest, prec=precision) #print("[sample] max %.2e (%.1f%%) avg %.2e (%.1f%%)" % sample_dev) #print("[test] max %.2e (%.1f%%) avg %.2e (%.1f%%)" % test_dev ) #print("lasso [test] max %.2e (%.1f%%) avg %.2e (%.1f%%)" % test_dev2 )
bsd-3-clause
oysstu/pyopencl-in-action
ch14/rdft.py
1
3847
""" Listing 14.1: The discrete Fourier transform (for real numbers) """ import numpy as np import pyopencl as cl import utility import matplotlib.pyplot as plt NUM_POINTS = 2 ** 8 kernel_src = ''' __kernel void rdft(__global float *x) { int N = (get_global_size(0)-1)*2; int num_vectors = N/4; float X_real = 0.0f; float X_imag = 0.0f; float4 input, arg, w_real, w_imag; float two_pi_k_over_N = 2*M_PI_F*get_global_id(0)/N; for(int i=0; i<num_vectors; i++) { arg = (float4) (two_pi_k_over_N*(i*4), two_pi_k_over_N*(i*4+1), two_pi_k_over_N*(i*4+2), two_pi_k_over_N*(i*4+3)); w_real = cos(arg); w_imag = sin(arg); input = vload4(i, x); X_real += dot(input, w_real); X_imag -= dot(input, w_imag); } barrier(CLK_GLOBAL_MEM_FENCE); if(get_global_id(0) == 0) { x[0] = X_real; } else if(get_global_id(0) == get_global_size(0)-1) { x[1] = X_real; } else { x[get_global_id(0) * 2] = X_real; x[get_global_id(0) * 2 + 1] = X_imag; } } ''' # Get device and context, create command queue and program dev = utility.get_default_device() context = cl.Context(devices=[dev]) queue = cl.CommandQueue(context, dev) # Build program in the specified context using the kernel source code prog = cl.Program(context, kernel_src) try: prog.build(options=['-Werror'], devices=[dev]) except: print('Build log:') print(prog.get_build_info(dev, cl.program_build_info.LOG)) raise # Determine maximum work-group size wg_max_size = dev.max_work_group_size # Data and device buffers input_data = np.zeros(shape=(NUM_POINTS,), dtype=np.float32) output_data = np.empty_like(input_data, dtype=np.float32) # Initialize data with a rectangle function input_data[:NUM_POINTS // 4] = 1.0 mf = cl.mem_flags data_buffer = cl.Buffer(context, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=input_data) # Execute kernel and copy result # rdft(__global float *x) global_size = (NUM_POINTS // 2 + 1,) local_size = None prog.rdft(queue, global_size, local_size, data_buffer) cl.enqueue_copy(queue, dest=output_data, src=data_buffer, is_blocking=True) # Change to array of complex values f_first = np.array([output_data[0] + 0j]) # X[0] is the DC signal (no im. component) f_last = np.array([output_data[1] + 0j]) # X[1] is the N/2 frequency cl_fft = output_data[2::2] + 1j * output_data[3::2] # From there, real and im. alternates # The final result is assembled by concatenating f0, f1 : fN/2-1, fN/2 and the conjugate of f1:fN/2-1 cl_fft = np.concatenate((f_first, cl_fft, f_last, np.conj(cl_fft[::-1]))) np_fft = np.fft.fft(input_data) # Print first ten complex values np.set_printoptions(precision=4, suppress=True) print('CL FFT [0:10]:') print(cl_fft[:10]) print('\nNumpy FFT [0:10]:') print(np_fft[:10]) # Visualize result cl_magnitude = np.absolute(cl_fft) np_magnitude = np.absolute(np_fft) # Before calculating the phase, frequencies of low magnitude should be set to zero # This is due to numerical inaccuracies cl_fft[cl_magnitude < 0.0001] = 0.0 + 0.0j cl_phase = np.angle(cl_fft) np_phase = np.angle(np_fft) k = np.arange(0, NUM_POINTS) f, axes = plt.subplots(4, sharex=True) axes[0].set_title('Re') axes[0].plot(k, np.real(cl_fft), label='OpenCL') axes[0].plot(k, np.real(np_fft), label='Numpy') axes[0].legend() axes[1].set_title('Im') axes[1].plot(k, np.imag(cl_fft), label='OpenCL') axes[1].plot(k, np.imag(np_fft), label='Numpy') axes[2].set_title('Magnitude') axes[2].plot(k, cl_magnitude, label='OpenCL') axes[2].plot(k, np_magnitude, label='Numpy') axes[3].set_title('Phase') axes[3].plot(k, cl_phase, label='OpenCL') axes[3].plot(k, np_phase, label='Numpy') [ax.locator_params(nbins=2, axis='y') for ax in axes] plt.xlim([0, NUM_POINTS-1]) plt.show()
mit
nagyistoce/deep_nets_iclr04
lib/common_imports.py
3
1562
import random import theano import theano.tensor as T import numpy import scipy import scipy.misc as misc import scipy.io as io import scipy.ndimage.filters as filters import scipy.ndimage as ndimage import matplotlib.pyplot as plt import matplotlib.cm as cm import math import re import time import sys, os import xml.etree.ElementTree as ET import cPickle as pickle import glob from collections import defaultdict # My own libs import tools import alfileformat as al from layer_blocks import ConvPoolLayer, OutputLayer, InputLayerSW, \ SoftMaxLayer, DropoutLayer class Machine(object): layer_map = { 'InputLayerSW': InputLayerSW, 'ConvPoolLayer' : ConvPoolLayer, 'OutputLayer' : OutputLayer, 'SoftMaxLayer': SoftMaxLayer, 'DropoutLayer' : DropoutLayer, } def __init__(self, params): # argv[1] is the conf xml file # set extra / overwrite params if len(sys.argv) > 2: print sys.argv[2]; type_map ={'int':int, 'bool':bool, 'str':str, 'float':float} test_param_str = sys.argv[2].split(',') print test_param_str for t_par in test_param_str: print t_par key, val = t_par.split('=') print key, val val, type = re.split('\(*\)*', val)[0:2] print 'val={0}, type={1}'.format(val, type) val = type_map[type](val) print 'Setting params.{0} to {1}'.format(key, val) setattr(params, key, val)
gpl-2.0
aestrivex/mne-python
mne/viz/tests/test_ica.py
3
4784
# Authors: Denis Engemann <[email protected]> # Alexandre Gramfort <[email protected]> # # License: Simplified BSD import os.path as op import warnings from numpy.testing import assert_raises from mne import io, read_events, Epochs, read_cov from mne import pick_types from mne.utils import run_tests_if_main, requires_sklearn from mne.viz.utils import _fake_click from mne.preprocessing import ICA, create_ecg_epochs, create_eog_epochs # Set our plotters to test mode import matplotlib matplotlib.use('Agg') # for testing don't use X server warnings.simplefilter('always') # enable b/c these tests throw warnings base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') evoked_fname = op.join(base_dir, 'test-ave.fif') raw_fname = op.join(base_dir, 'test_raw.fif') cov_fname = op.join(base_dir, 'test-cov.fif') event_name = op.join(base_dir, 'test-eve.fif') event_id, tmin, tmax = 1, -0.1, 0.2 def _get_raw(preload=False): return io.Raw(raw_fname, preload=preload) def _get_events(): return read_events(event_name) def _get_picks(raw): return [0, 1, 2, 6, 7, 8, 12, 13, 14] # take a only few channels def _get_epochs(): raw = _get_raw() events = _get_events() picks = _get_picks(raw) epochs = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks, baseline=(None, 0)) return epochs @requires_sklearn def test_plot_ica_components(): """Test plotting of ICA solutions """ import matplotlib.pyplot as plt raw = _get_raw() ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=3, n_pca_components=3) ica_picks = _get_picks(raw) ica.fit(raw, picks=ica_picks) warnings.simplefilter('always', UserWarning) with warnings.catch_warnings(record=True): for components in [0, [0], [0, 1], [0, 1] * 2, None]: ica.plot_components(components, image_interp='bilinear', res=16) ica.info = None assert_raises(RuntimeError, ica.plot_components, 1) plt.close('all') @requires_sklearn def test_plot_ica_sources(): """Test plotting of ICA panel """ import matplotlib.pyplot as plt raw = io.Raw(raw_fname, preload=False) raw.crop(0, 1, copy=False) raw.preload_data() picks = _get_picks(raw) epochs = _get_epochs() raw.pick_channels([raw.ch_names[k] for k in picks]) ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False, ecg=False, eog=False, exclude='bads') ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3) ica.fit(raw, picks=ica_picks) raw.info['bads'] = ['MEG 0113'] assert_raises(RuntimeError, ica.plot_sources, inst=raw) ica.plot_sources(epochs) epochs.info['bads'] = ['MEG 0113'] assert_raises(RuntimeError, ica.plot_sources, inst=epochs) epochs.info['bads'] = [] with warnings.catch_warnings(record=True): # no labeled objects mpl ica.plot_sources(epochs.average()) evoked = epochs.average() fig = ica.plot_sources(evoked) # Test a click ax = fig.get_axes()[0] line = ax.lines[0] _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [ax.get_xlim()[0], ax.get_ylim()[1]], 'data') # plot with bad channels excluded ica.plot_sources(evoked, exclude=[0]) ica.exclude = [0] ica.plot_sources(evoked) # does the same thing assert_raises(ValueError, ica.plot_sources, 'meeow') plt.close('all') @requires_sklearn def test_plot_ica_overlay(): """Test plotting of ICA cleaning """ import matplotlib.pyplot as plt raw = _get_raw(preload=True) picks = _get_picks(raw) ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=3, n_pca_components=3) ica.fit(raw, picks=picks) # don't test raw, needs preload ... ecg_epochs = create_ecg_epochs(raw, picks=picks) ica.plot_overlay(ecg_epochs.average()) eog_epochs = create_eog_epochs(raw, picks=picks) ica.plot_overlay(eog_epochs.average()) assert_raises(ValueError, ica.plot_overlay, raw[:2, :3][0]) ica.plot_overlay(raw) plt.close('all') @requires_sklearn def test_plot_ica_scores(): """Test plotting of ICA scores """ import matplotlib.pyplot as plt raw = _get_raw() picks = _get_picks(raw) ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=3, n_pca_components=3) ica.fit(raw, picks=picks) ica.plot_scores([0.3, 0.2], axhline=[0.1, -0.1]) assert_raises(ValueError, ica.plot_scores, [0.2]) plt.close('all') run_tests_if_main()
bsd-3-clause
ronaldahmed/SLAM-for-ugv
neural-navigation-with-lstm/utils.py
2
20861
import numpy as np import ipdb import os,sys,re from nltk import word_tokenize from six.moves import cPickle as pickle from sklearn.cross_validation import train_test_split from collections import Counter from MARCO.POMDP.MarkovLoc_Grid import getMapGrid from MARCO.POMDP.MarkovLoc_Jelly import getMapJelly from MARCO.POMDP.MarkovLoc_L import getMapL from MARCO.Robot.Meanings import Wall,End,Empty ####################################################################################################### data_dir = 'data/' SEED = 42 np.random.seed(SEED) path_patt = re.compile(r'\d+,\s*\d+,\s*[-]*\d+') # actions FW = 0 L = 1 R = 2 STOP = 3 PAD_decode = 4 actions_str = [ "FORWARD", "LEFT", "RIGHT", "STOP", "<PAD>", ] num_actions = len(actions_str) forward_step = 1 # 1 cell rotation_step = 90 # degrees # Special indicator for sequence padding EOS = '<EOS>' PAD = '<PAD>' RARE = '<RARE>' ####################################################################################################### class Sample(object): def __init__(self,_inst=[],_actions=[],path=[],_id='',sP=-1,eP=-1,_map_name=''): self._instructions = _inst self._actions = _actions self._id = _id # path: sequence of position states (x,y,th) self._path = path # start and end position (id_localization) | global (multisentence) start and end self._startPos = sP self._endPos = eP self._map_name = _map_name def __repr__(self): res = ("{ instructions:\n"+ " "+str(self._instructions) + '\n' " actions:\n"+ " "+str(verbose_actions(self._actions)) + '\n' " path:\n"+ " "+str(self._path)+' }') return res class MapData: def __init__(self,_map_name,_map): # can be Grid, Jelly or L self.name = _map_name.lower() # map object self.map = _map # format: [Sample(x,y,sample_id)] self.samples = [] def add_sample(self,_instructions,_actions,_path,_id,sP,eP,map_name): # add new sample (nav_instructions,actions,sample_id) # input: instructions, actions, path, sample_id, start_pos, end_pos, map_name self.samples.append( Sample(_instructions,_actions,_path,_id,sP,eP,map_name) ) def get_multi_sentence_samples(self): # return: [[Sample], [Sample]] ms_sample_list = [] prev_id = self.samples[0]._id n_sam = len(self.samples) ms_sample = [] for i in xrange(n_sam): if self.samples[i]._id != prev_id: ms_sample_list.append(ms_sample) ms_sample = [self.samples[i]] else: ms_sample.append(self.samples[i]) prev_id = self.samples[i]._id # add last batch ms_sample_list.append(ms_sample) return ms_sample_list def verbose_actions(actions): #print string command for each action return [actions_str[act_id] for act_id in actions] def get_actions_and_path(path_text,_map): """ Extract action and path seq from raw string in data (FW(x,y,th);L(x,y,th)...) """ list_pre_act = path_text.split(';') n_act = len(list_pre_act) actions = [] path = [] for i in xrange(n_act): x,y,th = -1,-1,-1 id_act = -1 if i==n_act-1: str_action = list_pre_act[i].strip('(').strip(')').split(',') x,y,th = [int(comp.strip()) for comp in str_action] id_act = STOP else: prx = list_pre_act[i].find('(') id_act = actions_str.index(list_pre_act[i][:prx]) x,y,th = [int(comp.strip()) for comp in list_pre_act[i][prx+1:-1].split(',')] pose = _map.platdir2orient(th) xg,yg = _map.locations[ _map.plat2place(x,y) ] if xg < 1 or yg < 1: print("Map: ",_map.name) print(" xp,yp: ", x,y) print(" xg,yg: ", xg,yg) print("="*30) ipdb.set_trace() path.append( (xg,yg,pose) ) actions.append(id_act) return actions,path """ Read single and multiple sentence instructions return: {map_name : MapData object [with data in 'samples' attribute]} """ def get_data(): map_data = { 'grid' : MapData("grid" ,getMapGrid()), 'jelly' : MapData("jelly",getMapJelly()), 'l' : MapData("l",getMapL()) } for map_name, data_obj in map_data.items(): filename = map_name + '.settrc' sample_id = '' flag_toggle = False toggle = 0 actions = path = tokens = [] start_pos = end_pos = -1 for line in open( os.path.join(data_dir,filename) ): line=line.strip("\n") if line=='': #ipdb.set_trace() # reset variables flag_toggle = False toggle = 0 actions = path = tokens = [] start_pos = end_pos = -1 sample_id = '' continue if line.startswith("Cleaned-"): prex = "Cleaned-" sample_id = line[len(prex):] if line.find('map=')!=-1: # ignore line: y=... map=... x=... flag_toggle=True temp = line.split('\t') start_pos = int(temp[0][2:]) # y=... end_pos = int(temp[-1][2:]) # x=... continue if flag_toggle: if toggle==0: # read instructions tokens = word_tokenize(line) else: # read actions and path actions,path = get_actions_and_path(line,data_obj.map) # save new single-sentence sample data_obj.add_sample(tokens, actions, path, sample_id, start_pos, end_pos, map_name) # reset variables actions = path = tokens = [] toggle = (toggle+1)%2 #END-IF-TOGGLE #END-FOR-READ-FILE #END-FOR-MAPS return map_data ########################################################################################## ########################################################################################## class Fold: def __init__(self,train_set,val_set,test_set,test_multi_set,vocab): self.train_data = train_set self.valid_data = val_set self.test_single_data = test_set self.test_multi_data = test_multi_set self.vocabulary = vocab self.vocabulary_size = len(vocab) """ Shuffles and splits data in train.val, and test sets for each fold conf Each fold is one-map-out conf with (train:0.9,val:0.1) return: [fold0,fold1,fold2] """ def get_folds_vDev(dir='data/', val=0.1, force=False): pickle_file = 'folds_vDev.pickle' filename = os.path.join(dir,pickle_file) folds = [] if force or not os.path.exists(filename): # Make pickle object dataByMap = get_data() map_names = dataByMap.keys() n_names = len(map_names) # Iteration over folds for i in range(n_names): # reset arrays train_set = [] valid_set = [] complete_set = [] # for universal vocab # test_single_set = dataByMap[map_names[i]].samples test_multi_set = dataByMap[map_names[i]].get_multi_sentence_samples() for j in range(n_names): if j != i: # shuffle data before splitting data = np.array(dataByMap[map_names[j]].samples) # shuffle in separate array, preserver order for multi_sentence building np.random.shuffle(data) # split into training and validation sets train_samples,valid_samples = train_test_split( data, test_size=val, random_state = SEED) train_set.extend(train_samples) valid_set.extend(valid_samples) complete_set.extend(data) # Reformat to word index #vocabulary = getVocabulary(train_set) vocabulary = getVocabulary(complete_set) # universal vocabulary train_set = reformat_wordid(train_set ,vocabulary) valid_set = reformat_wordid(valid_set ,vocabulary) test_single_set = reformat_wordid(test_single_set,vocabulary) # for multi sentences temp = [] for parag in test_multi_set: temp.append(reformat_wordid(parag,vocabulary)) test_multi_set = temp # shuffle between maps np.random.shuffle(train_set) np.random.shuffle(valid_set) np.random.shuffle(test_single_set) np.random.shuffle(test_multi_set) #END-FOR-TRAIN-VAL-SPLIT folds.append( Fold(train_set,valid_set,test_single_set,test_multi_set,vocabulary) ) #END-FOR-FOLDS print('Pickling %s.' % filename) try: with open(filename, 'wb') as f: pickle.dump(folds, f, pickle.HIGHEST_PROTOCOL) except Exception as e: print('Unable to save data to', filename, ':', e) else: with open(filename, 'rb') as f: folds = pickle.load(f) print('%s read from pickle...' % filename) return folds """ Shuffles and splits data in train and test sets for each fold conf Each fold is one-map-out conf with (train:1.0) Test set is for iteration stopping criteria return: [fold0,fold1,fold2] """ def get_folds_vTest(dir='data/', val=0.1, force=False): pickle_file = 'folds_vTest.pickle' filename = os.path.join(dir,pickle_file) folds = [] if force or not os.path.exists(filename): # Make pickle object dataByMap = get_data() map_names = dataByMap.keys() n_names = len(map_names) # Iteration over folds for i in range(n_names): # reset arrays train_set = [] valid_set = [] # test_single_set = dataByMap[map_names[i]].samples test_multi_set = dataByMap[map_names[i]].get_multi_sentence_samples() for j in range(n_names): if j != i: train_set.extend(dataByMap[map_names[j]].samples) # Reformat to word index vocabulary = getVocabulary(train_set) train_set = reformat_wordid(train_set ,vocabulary) valid_set = reformat_wordid(valid_set ,vocabulary) test_single_set = reformat_wordid(test_single_set,vocabulary) # for multi sentences temp = [] for parag in test_multi_set: temp.append(reformat_wordid(parag,vocabulary)) test_multi_set = temp # shuffle between maps np.random.shuffle(train_set) np.random.shuffle(valid_set) np.random.shuffle(test_single_set) np.random.shuffle(test_multi_set) #END-FOR-TRAIN-VAL-SPLIT folds.append( Fold(train_set,valid_set,test_single_set,test_multi_set,vocabulary) ) #END-FOR-FOLDS print('Pickling %s.' % filename) try: with open(filename, 'wb') as f: pickle.dump(folds, f, pickle.HIGHEST_PROTOCOL) except Exception as e: print('Unable to save data to', filename, ':', e) else: with open(filename, 'rb') as f: folds = pickle.load(f) print('%s read from pickle...' % filename) return folds ########################################################################################## ########################################################################################## def getVocabulary(data): vocab = Counter() for sample in data: vocab.update(sample._instructions) frequency_threshold = 0 # > THR vocab = [w for w,f in vocab.items() if f>frequency_threshold] vocab.append(EOS) vocab.append(PAD) vocab.append(RARE) vocab_dict = dict( zip(vocab,xrange(len(vocab))) ) return vocab_dict def reformat_wordid(data,vocab): # data: [Sample] wordid_data = [] for sample in data: instructions = sample._instructions ref_ins = [] for w in instructions: ref_ins.append( vocab[w] if w in vocab else vocab[RARE] ) ref_ins.append(vocab[EOS]) # add end of sentence token new_sample = Sample( ref_ins, sample._actions, sample._path, sample._id, sample._startPos,sample._endPos, sample._map_name) wordid_data.append(new_sample) return wordid_data ########################################################################################## ########################################################################################## class BatchGenerator: def __init__(self,data,batch_size,vocab): self._encoder_unrollings = 49 # experimental self._decoder_unrollings = 31 # experimental self._data = data # format: [Sample(word_id format)] self._data_size = len(data) self._batch_size = batch_size self._vocabulary = vocab self._id2word = dict( zip(vocab.values(),vocab.keys()) ) self._vocabulary_size = len(vocab) # batch splitting vars segment = self._data_size // batch_size self._cursor = [offset * segment for offset in range(batch_size)] # make <segment> buckets from where extract one batch elmt each time def get_batch(self): # Encoder and decoder batches in one-hot format [n_unroll,batch_size,{vocab_size,num_actions}] encoder_batch = [np.zeros(shape=(self._batch_size, self._vocabulary_size), dtype=np.float) for _ in xrange(self._encoder_unrollings)] decoder_batch = [PAD_decode * np.ones(self._batch_size, dtype=np.int32) for _ in xrange(self._decoder_unrollings)] # list of action_ids, not one-hot repr sample_batch = [0 for _ in xrange(self._batch_size)] for b in xrange(self._batch_size): encoder_seq = self._data[ self._cursor[b] ]._instructions decoder_seq = self._data[ self._cursor[b] ]._actions # save original sample in batch sample_batch[b] = self._data[ self._cursor[b] ] # One-hot formatting for ENCODER for roll in xrange(len(encoder_seq)): encoder_batch[roll][b,encoder_seq[roll]] = 1.0 # ZERO PADDING: if outside len of enc, leave empty (0s) ## Action_id formatting for DECODER for i,act in enumerate(decoder_seq): decoder_batch[i][b] = act # update cursor for current segment self._cursor[b] = (self._cursor[b] + 1) % self._data_size #END-FOR-BATCH-SEGMENT decoder_batch = np.array(decoder_batch) return encoder_batch,decoder_batch,sample_batch def get_one_sample(self): # SGD instead of mini-batch, one sample at a time encoder_input = [] encoder_seq = self._data[ self._cursor[0] ]._instructions decoder_seq = self._data[ self._cursor[0] ]._actions for i in xrange(len(encoder_seq)): roll = np.zeros(shape=(1,self._vocabulary_size),dtype=np.float) roll[0,encoder_seq[i]] = 1.0 encoder_input.append(roll) sample = self._data[ self._cursor[0] ] self._cursor[0] = (self._cursor[0] + 1) % self._data_size return encoder_input,decoder_seq,[sample] def batch2string(self,encoder_batch,decoder_batch): for b in xrange(self._batch_size): print("Batch:",b) print("-"*70) print(" encoder: ",[self._id2word[encoder_batch[i][b,:].argmax()] if sum(encoder_batch[i][b,:])>0 else PAD for i in range(self._encoder_unrollings)]) print(" decoder: ",[ actions_str[decoder_batch[i][b,:].argmax()] if sum(decoder_batch[i][b,:])>0 else PAD for i in range(self._decoder_unrollings)]) print("="*70) #END-FOR-BATCH_SIZE ########################################################################################## def get_landmark_set(_map): # Iterates over all locations (intersections and ends) of map, extracting landmarks from map (context festures) # return dict {Meaning: id} feats = set() for loc in xrange(1,_map.NumPlaces): for angle in xrange(_map.NumPoses): views = _map.getView((loc,angle)) views = views[0][0] [feats.add(feat) for view in views for feat in view if feat!=End and feat!=Empty] #End and Empty noy in dictionary n_feats = len(feats) feat_dict = dict( zip(list(feats),xrange(n_feats)) ) return feat_dict def get_objects_set(_map): mid_objects = set() for loc in xrange(1,_map.NumPlaces): for angle in xrange(_map.NumPoses): views = _map.getView((loc,angle)) views = views[0][0] if views[0][1]!=Empty: mid_objects.add(views[0][1]) #mid non-empty n_feats = len(mid_objects) feat_dict = dict( zip(list(mid_objects),xrange(n_feats)) ) return feat_dict def get_world_context_id(_map,place,pose): """ get bag-of-words repr of wold context from (place,pose) return: featsByPose: [set(Meanings inst. in that direction)] x numPoses -> [fw,rg,bw,lf] cell_object: Object in current cell (can be Empty) """ featsByPose = [] cell_object = Empty for i in range(_map.NumPoses): curr_pose = (pose+i)%_map.NumPoses views = _map.getView((place,curr_pose))[0][0] # format: [(views,prob)] cell_object = views[0][1] # no problem with overwriting it, bc it's the same in all directions curr_view = set() for j,view in enumerate(views): if j>0: curr_view.add(view[1]) #only add object if cell is not current curr_view.add(view[3]) curr_view.add(view[4]) curr_view.add(view[5]) if Empty in curr_view: curr_view.remove(Empty) if End in curr_view: # if End is found, replace with wall curr_view.remove(End) curr_view.add(Wall) featsByPose.append(curr_view) return featsByPose,cell_object def get_sparse_world_context(_map,place,pose,feature_dict,object_dict): num_feats = len(feature_dict) num_objects = len(object_dict) y_t = np.zeros(shape=(1,num_objects + 4*num_feats),dtype=np.float32) featsByPose,cell_object = get_world_context_id(_map,place,pose) # add features for every direction for i,features in enumerate(featsByPose): ids = [feature_dict[feat] + i*num_feats for feat in features] y_t[0,ids] = 1.0 # add object in current cell, if any if cell_object != Empty: y_t[0,4*num_feats+object_dict[cell_object]] = 1.0 return y_t def get_batch_world_context(sample_batch_roll,_t,_maps,feature_dict,object_dict,batch_size): """ args: sample_batch_roll: placeholder of shape [batch_size,1] with Sample obj data for ONE roll _t: time step (for path indexing) _map: {name: Map object} num_feats: number of map features batch_size: <> return : world_state vector y [batch_size x 3 * num_feats] """ num_feats = len(feature_dict) num_objects = len(object_dict) roll_y = np.zeros(shape=(batch_size,4*num_feats + num_objects),dtype=np.float32) for b in xrange(batch_size): map_name = sample_batch_roll[b]._map_name if _t < len(sample_batch_roll[b]._path): # check world state for valid step x,y,pose = sample_batch_roll[b]._path[_t] place = _maps[map_name].locationByCoord[(x,y)] roll_y[b,:] = get_sparse_world_context(_maps[map_name],place,pose,feature_dict,object_dict) return roll_y def move(state,action,_map): """ state; (xg,yg,pose) action: action_id _map: map object form getMap.* return: (next_loc,next_pos) next position state after applying action """ if action==STOP or action==PAD_decode: return -1 xg,yg,pose = state if action==FW: nx = ny = -1 if pose==0: nx,ny = xg-2,yg elif pose==1: nx,ny = xg,yg+2 elif pose==2: nx,ny = xg+2,yg else: #pose==3 nx,ny = xg,yg-2 if (nx,ny) in _map.locationByCoord: return nx,ny,pose else: return -1 elif action==L: return xg,yg,(pose-1)% _map.NumPoses elif action==R: return xg,yg,(pose+1)% _map.NumPoses ########################################################################################## class BeamS_Node(object): def __init__(self,_id,logprob,loss,parent,pos_state,dec_st,dec_ct,dist,act_id): self._id = _id self._log_prob = logprob self._loss = loss self._parent = parent self._pos_state = pos_state self._dec_st = dec_st # [st]*num_ensembles self._dec_ct = dec_ct # [ct]*num_ensembles self._dist=dist self._act_id=act_id class Config(object): encoder_unrollings = 49 decoder_unrollings = 31 num_actions = 5 max_gradient_norm = 5.0 def __init__(self,batch_size, vocab_size, num_nodes=100, learning_rate=0.1, learning_rate_decay_factor=0.1, embedding_world_state_size=30, dropout_rate=1.0 ): self.vocab_size = vocab_size self.num_nodes = num_nodes self.learning_rate = learning_rate self.learning_rate_decay_factor = learning_rate_decay_factor self.embedding_world_state_size = embedding_world_state_size self.dropout_rate = dropout_rate ########################################################################################## def test_dataset(dataByMap): for name,mapdata in dataByMap.items(): for data in mapdata.samples: init_pos = data._path[0] end_pos = data._path[-1] # get end pos from actions and init pos state = prev_state = init_pos end_followed = [] followed_path = [] for action in data._actions: prev_state = state state = move(state,action,mapdata.map) if state == -1: end_followed = prev_state break followed_path.append(prev_state) if end_followed==[]: end_followed = state followed_path.append(end_followed) if end_followed != end_pos or data._path!=followed_path: print("ID: ",data._id) print("True seq: %s" % (','.join([actions_str[act] for act in data._actions]))) ipdb.set_trace() ########################################################################################## """ map_data = get_data() #ms_data = map_data['jelly'].get_multi_sentence_samples() input_lens = set() output_lens = set() for mname,md in map_data.items(): input_len = set( [len(sample._instructions) for sample in md.samples] ) output_len = set( [len(sample._actions) for sample in md.samples] ) input_lens.update(input_len) output_lens.update(output_len) iL = list(input_lens) oL = list(output_lens) ipdb.set_trace() """ #folds = get_folds_vDev() #folds_vt = get_folds_vTest() #batch_gen = BatchGenerator(folds[0].train_data, # 2, # folds[0].vocabulary) #enc,dec,samples = batch_gen.get_batch() #batch_gen.batch2string(enc,dec) #ipdb.set_trace() """ mg = getMapGrid() mj = getMapJelly() ml = getMapL() ipdb.set_trace() #state = move((1,2),FW,mm) ff = get_landmark_set(mj) od = get_objects_set(mj) y = get_sparse_world_context(mj,15,0,ff,od) ipdb.set_trace() """ #map_data = get_data() #test_dataset(map_data)
mit
jesuscript/topo-mpi
topo/tests/__init__.py
2
8892
""" Unit tests for Topographica. Use the 'run' function to run all the tests. We use unittest and doctest to create tests. The run() function calls tests in files in topo/tests/ that: * have a name beginning with 'test' and ending with '.py', if the file defines the 'suite' attribute; * have a name beginning with 'test' and ending with '.txt'. If Tkinter cannot be imported, files that have a name ending with '_tk' are not imported (hence any tests that they contain are skipped). unittest ======== We use unittest in two different ways. The first is simply to run a series of tests: class TestSomething(unittest.TestCase): def setUp(self): ... def test_x(self): ... def test_y(self): ... def extra(self): ... suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestSomething)) In the example above, setUp will be called, followed by test_x and test_y (i.e. the methods setUp and test_* are called automatically); the extra() method will not be called (unless your code calls it). setUp does not have to exist. The second way we use unittest is to pass a series of scenarios through one battery of tests: class TestSomething(unittest.TestCase): def test_x(self): ... def test_y(self): ... class TestCase1(TestSomething): def setUp(self): ... class TestCase2(TestSomething): def setUp(self): ... suite = unittest.TestSuite() cases = [TestScenario1,TestScenario2] suite.addTests([unittest.makeSuite(case) for case in cases]) In this second example, TestScenario1.setUp will be called, followed by test_x and test_y. After this, TestScenario2.setUp will be called, followed again by test_x and test_y. setUp in the two TestScenarios is therefore used to create some different data or situations to pass through the tests. To be run() automatically, unittest files must (a) be named test*.py, and (b) must define the 'suite' attribute. Additionally, unittest files should: (a) contain the following code to allow the file to be run on its own: if __name__ == '__main__': unittest.TextTestRunner(verbosity=2).run(suite) (b) set suite.requires_display=True if the tests require a DISPLAY. (c) call topo.tests.start_tkgui() before running tests (e.g. in setUP()) if they require the GUI to be running doctest ======= $Id$ """ __version__='$Revision$' # CEBALERT: It might be good if tests/ were a directory at the top # level, with a subdirectory structure mirroring that of topo/. Then # it is more likely we'd have a separate test file for each module, # and we could also simply name the files the same as what they are # testing, which could make it simpler to find the right test file. # CEBALERT: tests often affect each other. Make sure test authors are # aware of that, and have some kind of policy. (Setting class # attributes, sharing a sim, etc) # CEBALERT: some of the test modules are missing code to handle running # (i.e. running as './topographica topo/tests/testsheet.py'). import unittest,doctest,os,re,fnmatch,socket import param # Automatically discover all test*.py files in this directory __all__ = [re.sub('\.py$','',f) for f in fnmatch.filter(os.listdir(__path__[0]),'test*.py')] all_doctest = sorted(fnmatch.filter(os.listdir(__path__[0]),'test*.txt')) # location in which to create semi-permanent test data output_path = param.normalize_path.prefix tests_output_path = os.path.join(output_path,'tests',socket.gethostname()) if not os.path.exists(tests_output_path): print "Creating %s"%tests_output_path os.makedirs(tests_output_path) try: import Tkinter except ImportError: tk_tests = fnmatch.filter(__all__,'*_tk') tk_doctests = fnmatch.filter(all_doctest,'*_tk') param.Parameterized().warning('no Tkinter module: skipping %s'%str(tk_tests+tk_doctests)) for t in tk_tests: __all__.remove(t) for t in tk_doctests: all_doctest.remove(t) try: import gmpy gmpy_imported=True except ImportError: gmpy_imported=False if gmpy_imported and gmpy.__file__ is None: gmpy_imported=False if not gmpy_imported: import param param.Parameterized().warning('no gmpy module: testgmpynumber.txt skipped') all_doctest.remove('testgmpynumber.txt') # CEBALERT: we need to rename these/reorganize the tests __all__.remove('test_script') __all__.remove('test_map_measurement') try: import scikits.audiolab except ImportError: import param param.Parameterized().message("no scikits.audiolab: testaudio.py skipped") __all__.remove('testaudio') # CEBALERT: should be using python warnings, and having unittest # report warnings. try: import matplotlib except ImportError: import param param.Parameterized().warning("Matplotlib is not available; skipping Matplotlib tests.") __all__.remove('testmatplotlib') __all__.remove('testmatplotlib_tk') __all__.sort() def all_suite(): """ __all__: For each test module that defines a 'suite' attribute, add its tests. Only adds tests requiring a display if the DISPLAY environment variable is set. all_doctest: Add each doctest file to the suite. """ suite = unittest.TestSuite() for test_name in __all__: # import the module exec 'import '+test_name test_module = locals()[test_name] try: print 'Loading suite from module %s ...' % test_name, new_test = getattr(test_module,'suite') if _check_for_display(new_test): print 'ok.' suite.addTest(new_test) else: print 'skipped: No $DISPLAY.' except AttributeError,err: print err for filename in all_doctest: print 'Loading doctest file', filename suite.addTest(doctest.DocFileSuite(filename)) return suite # Note that this is set up so that if all the tests are run and # there's no DISPLAY, tests requiring DISPLAY are skipped - but if a # test is run individually via run_named() and it requires DISPLAY, an # error will be raised. def _check_for_display(suite): """ Return True if no DISPLAY required or DISPLAY is required and it exists, otherwise return False. """ if not hasattr(suite,'requires_display'): return True elif os.getenv('DISPLAY'): return True else: return False def run(verbosity=1,test_modules=None): """ Run tests in all test_modules; test_modules defaults to all_suit(). E.g. to run all tests: ./topographica -c 'from topo.tests import run; run()' verbosity specifies the level of information printed during the tests (see unittest.TextTestRunner). To run only a subset of the tests, specify a list of test modules or doctest file names. For example: ./topographica -c 'from topo.tests import run, testimage, testsheet; run(test_modules=[testimage,testsheet,"testDynamicParameter.txt"])' """ import types if not test_modules: run_suite = all_suite() else: assert isinstance(test_modules,list), 'test_modules argument must be a list of test modules or doctest filenames.' run_suite = unittest.TestSuite() for test_module in test_modules: if isinstance(test_module,types.ModuleType): if _check_for_display(test_module.suite): run_suite.addTest(test_module.suite) else: raise Exception("Cannot run test without a valid DISPLAY.") elif isinstance(test_module,str): if test_module in all_doctest: run_suite.addTest(doctest.DocFileSuite(test_module)) else: raise ValueError, '"%s" is not an available doctest file.' % test_module else: raise ValueError, '%s is not a valid test module' % str(test_module) return unittest.TextTestRunner(verbosity=verbosity).run(run_suite) # CB: if the unit tests were faster, I wouldn't keep needing this... def run_named(name,verbosity=2): """ Run the named test module. Convenience function to make it easy to run a single test module. Examples: ./topographica -c 'import topo.tests; topo.tests.run_named("testsnapshots.py")' ./topographica -c 'import topo.tests; topo.tests.run_named("testDynamicParameter.txt")' """ if name.endswith('.py'): module_name = "topo.tests."+name[0:-3] import __main__ exec "import %s"%module_name in __main__.__dict__ test_module = eval(module_name,__main__.__dict__) else: test_module = name run(verbosity,test_modules=[test_module])
bsd-3-clause
granrothge/neutronpy
doc/conf.py
3
11249
#!/usr/bin/env python3 # -*- coding: utf-8 -*- r"""Sphinx Documentation builder """ from distutils.version import LooseVersion import glob import inspect from os.path import relpath, dirname import os import sys import sphinx import neutronpy_sphinx_rtd_theme try: import neutronpy except ImportError: raise RuntimeError( 'Cannot import neutronpy, it must be installed before building documentation. Please investigate.') if LooseVersion(sphinx.__version__) < LooseVersion('1'): raise RuntimeError('Need sphinx >= 1 for numpydoc to work correctly') needs_sphinx = '1.4' # ----------------------------------------------------------------------------- # releases (changelog) configuration # ----------------------------------------------------------------------------- # releases_issue_uri = "https://github.com/neutronpy/neutronpy/issues/%s" # releases_release_uri = "https://github.com/neutronpy/neutronpy/tree/%s" releases_github_path = "neutronpy/neutronpy" releases_debug = False # ----------------------------------------------------------------------------- # General configuration # ----------------------------------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.intersphinx', 'matplotlib.sphinxext.plot_directive', 'numpydoc', 'releases', 'nbsphinx'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'neutronpy' copyright = '2018, David M Fobes' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = neutronpy.__version__.split('-')[0] # The full version, including alpha/beta/rc tags. release = neutronpy.__version__ # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build', '**.ipynb_checkpoints'] exclude_dirs = [] # The reST default role (used for this markup: `text`) to use for all # documents. default_role = 'autolink' # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'neutronpy_sphinx_rtd_theme.support.LightStyle' # ----------------------------------------------------------------------------- # HTML output # ----------------------------------------------------------------------------- html_theme = "neutronpy_sphinx_rtd_theme" html_theme_path = [neutronpy_sphinx_rtd_theme.get_html_theme_path()] html_static_path = [os.path.join('.', '_static')] html_theme_options = {'logo': 'logo.png', 'logo_name': True, 'logo_text_align': 'center', 'description': "", 'github_user': 'neutronpy', 'github_repo': 'neutronpy', 'travis_button': True, 'github_banner': True, 'link': '#3782BE', 'link_hover': '#3782BE', 'sidebar_includehidden': True} # Sister-site links to API docs html_theme_options['extra_nav_links'] = {"NeutronPy Docs": 'http://neutronpy.github.io/reference'} # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = {'**': ['about.html', 'navigation.html', 'searchbox.html', 'donate.html']} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {'index': 'indexcontent.html',} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = True # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'neutronpydoc' # ----------------------------------------------------------------------------- # LaTeX output # ----------------------------------------------------------------------------- # The paper size ('letter' or 'a4'). # latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). # latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, document class [howto/manual]). _stdauthor = 'David M Fobes' latex_documents = [('reference/index', 'neutronpy-ref.tex', 'NeutronPy Reference', _stdauthor, 'manual')] # Additional stuff for the LaTeX preamble. latex_elements = {'preamble': r"""\ \usepackage{amsmath} \DeclareUnicodeCharacter{00A0}{\nobreakspace} % In the parameters section, place a newline after the Parameters % header \usepackage{expdlist} \let\latexdescription=\description \def\description{\latexdescription{}{} \breaklabel} % Make Examples/etc section headers smaller and more compact \makeatletter \titleformat{\paragraph}{\normalsize\py@HeaderFamily}% {\py@TitleColor}{0em}{\py@TitleColor}{\py@NormalColor} \titlespacing*{\paragraph}{0pt}{1ex}{0pt} \makeatother % Fix footer/header \renewcommand{\chaptermark}[1]{\markboth{\MakeUppercase{\thechapter.\ #1}}{}} \renewcommand{\sectionmark}[1]{\markright{\MakeUppercase{\thesection.\ #1}}} """ } # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. latex_domain_indices = False # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'neutronpy', 'neutronpy Documentation', ['David M Fobes'], 1) ] # If true, show URL addresses after external links. # man_show_urls = False # ----------------------------------------------------------------------------- # Texinfo output # ----------------------------------------------------------------------------- texinfo_documents = [("contents", 'numpy', 'Numpy Documentation', _stdauthor, 'Numpy', "NumPy: array processing for numbers, strings, records, and objects.", 'Programming', 1)] # ----------------------------------------------------------------------------- # Intersphinx configuration # ----------------------------------------------------------------------------- intersphinx_mapping = {'http://docs.python.org/dev': None} # ----------------------------------------------------------------------------- # Autosummary # ----------------------------------------------------------------------------- # from sphinx.ext import autodoc # class DocsonlyMethodDocumenter(autodoc.MethodDocumenter): # def format_args(self): # return None # # autodoc.add_documenter(DocsonlyMethodDocumenter) numpydoc_show_class_members = False # autodoc_default_flags = ['members'] autodoc_docstring_signature = True autosummary_generate = glob.glob("reference/*.rst") # ----------------------------------------------------------------------------- # Coverage checker # ----------------------------------------------------------------------------- coverage_ignore_modules = r""" """.split() coverage_ignore_functions = r""" test($|_) (some|all)true bitwise_not cumproduct pkgload generic\. """.split() coverage_ignore_classes = r""" """.split() coverage_c_path = [] coverage_c_regexes = {} coverage_ignore_c_items = {} # ----------------------------------------------------------------------------- # Source code links # ----------------------------------------------------------------------------- for name in ['sphinx.ext.linkcode', 'numpydoc.linkcode']: try: __import__(name) extensions.append(name) break except ImportError: pass else: print("NOTE: linkcode extension not found -- no links to source generated") def linkcode_resolve(domain, info): """ Determine the URL corresponding to Python object """ if domain != 'py': return None modname = info['module'] fullname = info['fullname'] submod = sys.modules.get(modname) if submod is None: return None obj = submod for part in fullname.split('.'): try: obj = getattr(obj, part) except: return None try: fn = inspect.getsourcefile(obj) except: fn = None if not fn: return None try: source, lineno = inspect.findsource(obj) except: lineno = None if lineno: linespec = "#L%d" % (lineno + 1) else: linespec = "" fn = relpath(fn, start=dirname(neutronpy.__file__)) if 'dev' in neutronpy.__version__: return "http://github.com/neutronpy/neutronpy/blob/master/neutronpy/%s%s" % (fn, linespec) else: return "http://github.com/neutronpy/neutronpy/blob/v%s/neutronpy/%s%s" % (neutronpy.__version__, fn, linespec)
mit
shangwuhencc/scikit-learn
sklearn/datasets/lfw.py
141
19372
"""Loader for the Labeled Faces in the Wild (LFW) dataset This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. An alternative task, Face Recognition or Face Identification is: given the picture of the face of an unknown person, identify the name of the person by referring to a gallery of previously seen pictures of identified persons. Both Face Verification and Face Recognition are tasks that are typically performed on the output of a model trained to perform Face Detection. The most popular model for Face Detection is called Viola-Johns and is implemented in the OpenCV library. The LFW faces were extracted by this face detector from various online websites. """ # Copyright (c) 2011 Olivier Grisel <[email protected]> # License: BSD 3 clause from os import listdir, makedirs, remove from os.path import join, exists, isdir from sklearn.utils import deprecated import logging import numpy as np try: import urllib.request as urllib # for backwards compatibility except ImportError: import urllib from .base import get_data_home, Bunch from ..externals.joblib import Memory from ..externals.six import b logger = logging.getLogger(__name__) BASE_URL = "http://vis-www.cs.umass.edu/lfw/" ARCHIVE_NAME = "lfw.tgz" FUNNELED_ARCHIVE_NAME = "lfw-funneled.tgz" TARGET_FILENAMES = [ 'pairsDevTrain.txt', 'pairsDevTest.txt', 'pairs.txt', ] def scale_face(face): """Scale back to 0-1 range in case of normalization for plotting""" scaled = face - face.min() scaled /= scaled.max() return scaled # # Common private utilities for data fetching from the original LFW website # local disk caching, and image decoding. # def check_fetch_lfw(data_home=None, funneled=True, download_if_missing=True): """Helper function to download any missing LFW data""" data_home = get_data_home(data_home=data_home) lfw_home = join(data_home, "lfw_home") if funneled: archive_path = join(lfw_home, FUNNELED_ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw_funneled") archive_url = BASE_URL + FUNNELED_ARCHIVE_NAME else: archive_path = join(lfw_home, ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw") archive_url = BASE_URL + ARCHIVE_NAME if not exists(lfw_home): makedirs(lfw_home) for target_filename in TARGET_FILENAMES: target_filepath = join(lfw_home, target_filename) if not exists(target_filepath): if download_if_missing: url = BASE_URL + target_filename logger.warning("Downloading LFW metadata: %s", url) urllib.urlretrieve(url, target_filepath) else: raise IOError("%s is missing" % target_filepath) if not exists(data_folder_path): if not exists(archive_path): if download_if_missing: logger.warning("Downloading LFW data (~200MB): %s", archive_url) urllib.urlretrieve(archive_url, archive_path) else: raise IOError("%s is missing" % target_filepath) import tarfile logger.info("Decompressing the data archive to %s", data_folder_path) tarfile.open(archive_path, "r:gz").extractall(path=lfw_home) remove(archive_path) return lfw_home, data_folder_path def _load_imgs(file_paths, slice_, color, resize): """Internally used to load images""" # Try to import imread and imresize from PIL. We do this here to prevent # the whole sklearn.datasets module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread from scipy.misc import imresize except ImportError: raise ImportError("The Python Imaging Library (PIL)" " is required to load data from jpeg files") # compute the portion of the images to load to respect the slice_ parameter # given by the caller default_slice = (slice(0, 250), slice(0, 250)) if slice_ is None: slice_ = default_slice else: slice_ = tuple(s or ds for s, ds in zip(slice_, default_slice)) h_slice, w_slice = slice_ h = (h_slice.stop - h_slice.start) // (h_slice.step or 1) w = (w_slice.stop - w_slice.start) // (w_slice.step or 1) if resize is not None: resize = float(resize) h = int(resize * h) w = int(resize * w) # allocate some contiguous memory to host the decoded image slices n_faces = len(file_paths) if not color: faces = np.zeros((n_faces, h, w), dtype=np.float32) else: faces = np.zeros((n_faces, h, w, 3), dtype=np.float32) # iterate over the collected file path to load the jpeg files as numpy # arrays for i, file_path in enumerate(file_paths): if i % 1000 == 0: logger.info("Loading face #%05d / %05d", i + 1, n_faces) # Checks if jpeg reading worked. Refer to issue #3594 for more # details. img = imread(file_path) if img.ndim is 0: raise RuntimeError("Failed to read the image file %s, " "Please make sure that libjpeg is installed" % file_path) face = np.asarray(img[slice_], dtype=np.float32) face /= 255.0 # scale uint8 coded colors to the [0.0, 1.0] floats if resize is not None: face = imresize(face, resize) if not color: # average the color channels to compute a gray levels # representaion face = face.mean(axis=2) faces[i, ...] = face return faces # # Task #1: Face Identification on picture with names # def _fetch_lfw_people(data_folder_path, slice_=None, color=False, resize=None, min_faces_per_person=0): """Perform the actual data loading for the lfw people dataset This operation is meant to be cached by a joblib wrapper. """ # scan the data folder content to retain people with more that # `min_faces_per_person` face pictures person_names, file_paths = [], [] for person_name in sorted(listdir(data_folder_path)): folder_path = join(data_folder_path, person_name) if not isdir(folder_path): continue paths = [join(folder_path, f) for f in listdir(folder_path)] n_pictures = len(paths) if n_pictures >= min_faces_per_person: person_name = person_name.replace('_', ' ') person_names.extend([person_name] * n_pictures) file_paths.extend(paths) n_faces = len(file_paths) if n_faces == 0: raise ValueError("min_faces_per_person=%d is too restrictive" % min_faces_per_person) target_names = np.unique(person_names) target = np.searchsorted(target_names, person_names) faces = _load_imgs(file_paths, slice_, color, resize) # shuffle the faces with a deterministic RNG scheme to avoid having # all faces of the same person in a row, as it would break some # cross validation and learning algorithms such as SGD and online # k-means that make an IID assumption indices = np.arange(n_faces) np.random.RandomState(42).shuffle(indices) faces, target = faces[indices], target[indices] return faces, target, target_names def fetch_lfw_people(data_home=None, funneled=True, resize=0.5, min_faces_per_person=0, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) people dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Recognition (or Identification): given the picture of a face, find the name of the person given a training set (gallery). The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. min_faces_per_person : int, optional, default None The extracted dataset will only retain pictures of people that have at least `min_faces_per_person` different pictures. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- dataset : dict-like object with the following attributes: dataset.data : numpy array of shape (13233, 2914) Each row corresponds to a ravelled face image of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.images : numpy array of shape (13233, 62, 47) Each row is a face image corresponding to one of the 5749 people in the dataset. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.target : numpy array of shape (13233,) Labels associated to each face image. Those labels range from 0-5748 and correspond to the person IDs. dataset.DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading LFW people faces from %s', lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_people) # load and memoize the pairs as np arrays faces, target, target_names = load_func( data_folder_path, resize=resize, min_faces_per_person=min_faces_per_person, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=faces.reshape(len(faces), -1), images=faces, target=target, target_names=target_names, DESCR="LFW faces dataset") # # Task #2: Face Verification on pairs of face pictures # def _fetch_lfw_pairs(index_file_path, data_folder_path, slice_=None, color=False, resize=None): """Perform the actual data loading for the LFW pairs dataset This operation is meant to be cached by a joblib wrapper. """ # parse the index file to find the number of pairs to be able to allocate # the right amount of memory before starting to decode the jpeg files with open(index_file_path, 'rb') as index_file: split_lines = [ln.strip().split(b('\t')) for ln in index_file] pair_specs = [sl for sl in split_lines if len(sl) > 2] n_pairs = len(pair_specs) # interating over the metadata lines for each pair to find the filename to # decode and load in memory target = np.zeros(n_pairs, dtype=np.int) file_paths = list() for i, components in enumerate(pair_specs): if len(components) == 3: target[i] = 1 pair = ( (components[0], int(components[1]) - 1), (components[0], int(components[2]) - 1), ) elif len(components) == 4: target[i] = 0 pair = ( (components[0], int(components[1]) - 1), (components[2], int(components[3]) - 1), ) else: raise ValueError("invalid line %d: %r" % (i + 1, components)) for j, (name, idx) in enumerate(pair): try: person_folder = join(data_folder_path, name) except TypeError: person_folder = join(data_folder_path, str(name, 'UTF-8')) filenames = list(sorted(listdir(person_folder))) file_path = join(person_folder, filenames[idx]) file_paths.append(file_path) pairs = _load_imgs(file_paths, slice_, color, resize) shape = list(pairs.shape) n_faces = shape.pop(0) shape.insert(0, 2) shape.insert(0, n_faces // 2) pairs.shape = shape return pairs, target, np.array(['Different persons', 'Same person']) @deprecated("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") def load_lfw_people(download_if_missing=False, **kwargs): """Alias for fetch_lfw_people(download_if_missing=False) Check fetch_lfw_people.__doc__ for the documentation and parameter list. """ return fetch_lfw_people(download_if_missing=download_if_missing, **kwargs) def fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) pairs dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. In the official `README.txt`_ this task is described as the "Restricted" task. As I am not sure as to implement the "Unrestricted" variant correctly, I left it as unsupported for now. .. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Read more in the :ref:`User Guide <labeled_faces_in_the_wild>`. Parameters ---------- subset : optional, default: 'train' Select the dataset to load: 'train' for the development training set, 'test' for the development test set, and '10_folds' for the official evaluation set that is meant to be used with a 10-folds cross validation. data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- The data is returned as a Bunch object with the following attributes: data : numpy array of shape (2200, 5828) Each row corresponds to 2 ravel'd face images of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. pairs : numpy array of shape (2200, 2, 62, 47) Each row has 2 face images corresponding to same or different person from the dataset containing 5749 people. Changing the ``slice_`` or resize parameters will change the shape of the output. target : numpy array of shape (13233,) Labels associated to each pair of images. The two label values being different persons or the same person. DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading %s LFW pairs from %s', subset, lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_pairs) # select the right metadata file according to the requested subset label_filenames = { 'train': 'pairsDevTrain.txt', 'test': 'pairsDevTest.txt', '10_folds': 'pairs.txt', } if subset not in label_filenames: raise ValueError("subset='%s' is invalid: should be one of %r" % ( subset, list(sorted(label_filenames.keys())))) index_file_path = join(lfw_home, label_filenames[subset]) # load and memoize the pairs as np arrays pairs, target, target_names = load_func( index_file_path, data_folder_path, resize=resize, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=pairs.reshape(len(pairs), -1), pairs=pairs, target=target, target_names=target_names, DESCR="'%s' segment of the LFW pairs dataset" % subset) @deprecated("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") def load_lfw_pairs(download_if_missing=False, **kwargs): """Alias for fetch_lfw_pairs(download_if_missing=False) Check fetch_lfw_pairs.__doc__ for the documentation and parameter list. """ return fetch_lfw_pairs(download_if_missing=download_if_missing, **kwargs)
bsd-3-clause
etkirsch/scikit-learn
examples/ensemble/plot_gradient_boosting_quantile.py
392
2114
""" ===================================================== Prediction Intervals for Gradient Boosting Regression ===================================================== This example shows how quantile regression can be used to create prediction intervals. """ import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import GradientBoostingRegressor np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) #---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d(np.random.uniform(0, 10.0, size=100)).T X = X.astype(np.float32) # Observations y = f(X).ravel() dy = 1.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise y = y.astype(np.float32) # Mesh the input space for evaluations of the real function, the prediction and # its MSE xx = np.atleast_2d(np.linspace(0, 10, 1000)).T xx = xx.astype(np.float32) alpha = 0.95 clf = GradientBoostingRegressor(loss='quantile', alpha=alpha, n_estimators=250, max_depth=3, learning_rate=.1, min_samples_leaf=9, min_samples_split=9) clf.fit(X, y) # Make the prediction on the meshed x-axis y_upper = clf.predict(xx) clf.set_params(alpha=1.0 - alpha) clf.fit(X, y) # Make the prediction on the meshed x-axis y_lower = clf.predict(xx) clf.set_params(loss='ls') clf.fit(X, y) # Make the prediction on the meshed x-axis y_pred = clf.predict(xx) # Plot the function, the prediction and the 90% confidence interval based on # the MSE fig = plt.figure() plt.plot(xx, f(xx), 'g:', label=u'$f(x) = x\,\sin(x)$') plt.plot(X, y, 'b.', markersize=10, label=u'Observations') plt.plot(xx, y_pred, 'r-', label=u'Prediction') plt.plot(xx, y_upper, 'k-') plt.plot(xx, y_lower, 'k-') plt.fill(np.concatenate([xx, xx[::-1]]), np.concatenate([y_upper, y_lower[::-1]]), alpha=.5, fc='b', ec='None', label='90% prediction interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 20) plt.legend(loc='upper left') plt.show()
bsd-3-clause
vortex-ape/scikit-learn
sklearn/feature_selection/tests/test_base.py
98
3681
import numpy as np from scipy import sparse as sp from numpy.testing import assert_array_equal from sklearn.base import BaseEstimator from sklearn.feature_selection.base import SelectorMixin from sklearn.utils import check_array from sklearn.utils.testing import assert_raises, assert_equal class StepSelector(SelectorMixin, BaseEstimator): """Retain every `step` features (beginning with 0)""" def __init__(self, step=2): self.step = step def fit(self, X, y=None): X = check_array(X, 'csc') self.n_input_feats = X.shape[1] return self def _get_support_mask(self): mask = np.zeros(self.n_input_feats, dtype=bool) mask[::self.step] = True return mask support = [True, False] * 5 support_inds = [0, 2, 4, 6, 8] X = np.arange(20).reshape(2, 10) Xt = np.arange(0, 20, 2).reshape(2, 5) Xinv = X.copy() Xinv[:, 1::2] = 0 y = [0, 1] feature_names = list('ABCDEFGHIJ') feature_names_t = feature_names[::2] feature_names_inv = np.array(feature_names) feature_names_inv[1::2] = '' def test_transform_dense(): sel = StepSelector() Xt_actual = sel.fit(X, y).transform(X) Xt_actual2 = StepSelector().fit_transform(X, y) assert_array_equal(Xt, Xt_actual) assert_array_equal(Xt, Xt_actual2) # Check dtype matches assert_equal(np.int32, sel.transform(X.astype(np.int32)).dtype) assert_equal(np.float32, sel.transform(X.astype(np.float32)).dtype) # Check 1d list and other dtype: names_t_actual = sel.transform([feature_names]) assert_array_equal(feature_names_t, names_t_actual.ravel()) # Check wrong shape raises error assert_raises(ValueError, sel.transform, np.array([[1], [2]])) def test_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xt_actual = sel.fit(sparse(X)).transform(sparse(X)) Xt_actual2 = sel.fit_transform(sparse(X)) assert_array_equal(Xt, Xt_actual.toarray()) assert_array_equal(Xt, Xt_actual2.toarray()) # Check dtype matches assert_equal(np.int32, sel.transform(sparse(X).astype(np.int32)).dtype) assert_equal(np.float32, sel.transform(sparse(X).astype(np.float32)).dtype) # Check wrong shape raises error assert_raises(ValueError, sel.transform, np.array([[1], [2]])) def test_inverse_transform_dense(): sel = StepSelector() Xinv_actual = sel.fit(X, y).inverse_transform(Xt) assert_array_equal(Xinv, Xinv_actual) # Check dtype matches assert_equal(np.int32, sel.inverse_transform(Xt.astype(np.int32)).dtype) assert_equal(np.float32, sel.inverse_transform(Xt.astype(np.float32)).dtype) # Check 1d list and other dtype: names_inv_actual = sel.inverse_transform([feature_names_t]) assert_array_equal(feature_names_inv, names_inv_actual.ravel()) # Check wrong shape raises error assert_raises(ValueError, sel.inverse_transform, np.array([[1], [2]])) def test_inverse_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xinv_actual = sel.fit(sparse(X)).inverse_transform(sparse(Xt)) assert_array_equal(Xinv, Xinv_actual.toarray()) # Check dtype matches assert_equal(np.int32, sel.inverse_transform(sparse(Xt).astype(np.int32)).dtype) assert_equal(np.float32, sel.inverse_transform(sparse(Xt).astype(np.float32)).dtype) # Check wrong shape raises error assert_raises(ValueError, sel.inverse_transform, np.array([[1], [2]])) def test_get_support(): sel = StepSelector() sel.fit(X, y) assert_array_equal(support, sel.get_support()) assert_array_equal(support_inds, sel.get_support(indices=True))
bsd-3-clause
timothydmorton/exosyspop
exosyspop/catalog.py
1
4737
from __future__ import print_function, division from corner import corner import pandas as pd import numpy as np class Catalog(pd.DataFrame): _required_columns = () def __init__(self, *args, **kwargs): super(Catalog, self).__init__(*args, **kwargs) # ensure all required columns are present missing = [] for c in self._required_columns: if c not in self.columns: missing.append(c) if len(missing) > 0: raise ValueError('Must contain all required columns! ' + '({} missing)'.format(missing)) class ObservedCatalog(Catalog): """ DataFrame containing observed properties Must have the following columns: * primary log10(depth), duration, slope (trapezoidal params) * secondary log10(depth), duration, slope (trapezoidal params) * secondary phase Primary/secondary are defined observationally: that is, the deeper (or only) is called the primary """ _required_columns = ('host', 'period', 'n_pri', 'logd_pri', 'dur_pri', 'slope_pri', 'snr_pri', 'n_sec', 'logd_sec', 'dur_sec', 'slope_sec', 'snr_sec', 'phase_sec') class SimulatedCatalog(Catalog): def __init__(self, *args, **kwargs): super(SimulatedCatalog, self).__init__(*args, **kwargs) self._observed = None self._trap_regr = True def observe(self, efficiency=None): """ Efficiency function is optional; if provided, must take SNR(s) and return [0,1](s) """ df = pd.DataFrame() for c in ObservedCatalog._required_columns: df[c] = np.nan * np.ones(len(self)) df.host = self.host df.period = self.period d_pri = self.d_pri * self.dilution d_sec = self.d_sec * self.dilution if efficiency is None: pri_detected = d_pri > 1e-6 sec_detected = d_sec > 1e-6 else: u_pri = np.random.random(len(self)) u_sec = np.random.random(len(self)) pri_detected = u_pri < efficiency(self.snr_pri) sec_detected = u_sec < efficiency(self.snr_sec) has_pri = (self.n_pri > 0) & pri_detected has_sec = (self.n_sec > 0) & sec_detected pri = has_pri & (d_pri > d_sec) sec_is_pri = (~has_pri & has_sec) | (has_pri & has_sec & (d_pri < d_sec)) sec = (has_pri & has_sec) & (d_sec <= d_pri) pri_is_sec = (has_pri & has_sec) & (d_pri < d_sec) pri_masks = [pri, sec_is_pri] pri_sources = ['pri', 'sec'] sec_masks = [sec, pri_is_sec] sec_sources = ['sec', 'pri'] tag = '_regr' if self._trap_regr else '' # primary properties for col, source_base in zip(['logd_pri', 'dur_pri', 'slope_pri', 'n_pri', 'snr_pri'], ['trap_depth', 'trap_dur', 'trap_slope', 'n', 'snr']): for m, s in zip(pri_masks, pri_sources): if source_base in ('n', 'snr'): source_col = source_base + '_' + s else: source_col = source_base + '_' + s + tag df.loc[m, col] = self.loc[m, source_col] if col=='logd_pri': df.loc[m, col] = np.log10(df.loc[m, col] * self.loc[m, 'dilution']) # secondary properties for col, source_base in zip(['logd_sec', 'dur_sec', 'slope_sec', 'n_sec', 'snr_sec'], ['trap_depth', 'trap_dur', 'trap_slope', 'n', 'snr']): for m, s in zip(sec_masks, sec_sources): if source_base in ('n', 'snr'): source_col = source_base + '_' + s else: source_col = source_base + '_' + s + tag df.loc[m, col] = self.loc[m, source_col] if col=='logd_sec': df.loc[m, col] = np.log10(df.loc[m, col] * self.loc[m, 'dilution']) df.loc[sec | pri_is_sec, 'phase_sec'] = self.loc[sec | pri_is_sec, 'phase_sec'] df.sec_is_pri = sec_is_pri self._observed = ObservedCatalog(df).dropna(subset=['n_pri']) return self._observed @property def observed(self): if self._observed is None: self.observe() return self._observed def trap_corner(self, sec=False, **kwargs): if sec: cols = ['dur_sec', 'logd_sec', 'slope_sec'] else: cols = ['dur_pri', 'logd_pri', 'slope_pri'] return corner(self.observed[cols], labels=['duration', 'log(d)', 'T/tau'], **kwargs)
mit
hydrogo/hydropy
hydropy/storm.py
1
10270
# -*- coding: utf-8 -*- """ Hydropy package @author: Stijn Van Hoey """ import datetime import numpy as np import pandas as pd from pandas.tseries.offsets import DateOffset, Day, Week, Hour, Minute import matplotlib as mpl mpl.rcParams['mathtext.default'] = 'regular' import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib.ticker import LinearLocator def selectstorms(flowserie, rainserie, number_of_storms=3, min_period_in_between=7, search_period=7, drywindow=96): """ (pd.DataFrame, pd.DataFrame) -> List Easy storm selection process, based on the maximum flows measured in the given timeserie of flow measurements. To define the startdate of the storm, 24h no rain before the Qmax is searched for. The end date is found by checking the flow at the startdate (Qbase) and searching the moment after Qmax with the same flow within the first 2 weeks. If none is found, relaxation (1.1*Qbase; 1.2*Qbase,...) until a moment is found. Parameters ---------- flowserie : pd.Series Pandas Series with the date in the index rainserie : pd.Series Pandas Series with the date in the index number_of_storms : int Number of storms you want to select min_period_in_between : int (days) Minimum number of days in between to selected storms search_period : int (days) Period to look for the start of the storm, when rain started drywindow : int Number of timesteps to check for no-rain """ if not isinstance(flowserie, pd.Series): raise Exception('flowserie is a single data Series') if not isinstance(rainserie, pd.Series): raise Exception('rainserie is a single data Series') #fill na values with very low (negative) value temp = flowserie.fillna(value=-777.).copy() #sort the whole array try: temp = temp.sort(temp.columns.tolist(), ascending=False) except: temp.sort(ascending=False) #find in the index three periods which are at least given number # of days from each other #after three concurrences, save these dates stormmax = [temp.index[0]] #first element is a selected storm i = 1 while len(stormmax) < number_of_storms: #check for each period alldif = True for stormdate in stormmax: if abs(temp.index[i] - stormdate) \ < datetime.timedelta(days=min_period_in_between): alldif = False #if new stormperiod, select if alldif: stormmax.append(temp.index[i]) i+=1 selstorms = [] for storm in stormmax: ##FIND DRY DAY WEEK BEFORE #select period before storm (1 week) presearchperiod = datetime.timedelta(days=search_period) temp1 = rainserie[storm - presearchperiod:storm] temp1 = pd.rolling_sum(temp1, window=drywindow, center=False) #zero value means the preceding 24hours no rain: so, closest zeros #to the date itself -24h are selected if rainserie.ndim == 2: temp1 = temp1.min(axis=1) tempdates = temp1[temp1 < 0.001].index.tolist() if len(tempdates) == 0: raise Exception('Decrease drywindow period containing no rain.') date_arg = np.argmin([abs(times - storm) for times in tempdates]) startstormdate = tempdates[date_arg] - Day() #Get the flow value of the storm and when it is found again + 1 Day temp2a = flowserie[startstormdate:startstormdate + Week()*2] #only if multiple columns if flowserie.ndim == 2: temp2 = temp2a.max(axis=1) else: temp2 = temp2a flowbase = temp2.ix[startstormdate] lowerafterstorm = temp2[temp2 < flowbase][storm + Day():] if lowerafterstorm.size == 0: print 'Lower initial flow not found again...test with mean...' if flowserie.ndim == 2: temp2 = temp2a.mean(axis=1) else: temp2 = temp2a flowbase = temp2.ix[startstormdate] lowerafterstorm = temp2[temp2 < flowbase][storm + Day():] cnt = 1 while lowerafterstorm.size == 0: print '... still not working; relaxing conditions...', \ cnt*10, '% of minimal after storm incorporated' flowbase = flowbase + 0.1*flowbase lowerafterstorm = temp2[temp2 < flowbase][storm + Day():] cnt += 1 endstormdate = lowerafterstorm.index[0] #add to selected storms selstorms.append({'startdate':startstormdate,'enddate':endstormdate}) return selstorms def _control_dayhour(Timestamp): """pd.TimeStamp -> int Help function for editing the date representation of the plots """ if Timestamp.hour == 0 and Timestamp.minute == 0: return 0 else: return 1 def _getsize(nrows): """int -> int propose height of the figure based on number of rows """ size_dict = {1:6,2:6,3:8,4:8,5:10,6:12} return size_dict[nrows] def _add_labels_above(ax0, fig, flowdim, raindim): """ matplotlib.axes -> None """ bbox = ax0.get_position() rainlabel = ax0.text(bbox.x0 + bbox.width, bbox.y0 + bbox.height, r"Rain ($mm$)", transform=fig.transFigure, verticalalignment="bottom", horizontalalignment="right") flowlabel = ax0.text(bbox.x0, bbox.y0 + bbox.height, r"Flow ($m^3s^{-1}$)", transform=fig.transFigure, verticalalignment="bottom", horizontalalignment="left") if flowdim == 1: flowlabel.set_color('#08519c') if raindim == 1: rainlabel.set_color('#6baed6') def _make_comparable(axes): """axes -> None updates the y-bound of the subplot, giving them all the bounds of the largest only used for the rain-flow combined subplots configuration within a gridspec environment """ #check the configuration if axes[0].get_subplotspec().get_gridspec().get_height_ratios(): nplots = int(len(axes)/2.) ymaxes = [max(axs.get_yticks()) for axs in axes] rainmax = max(ymaxes[::2]) flowmax = max(ymaxes[1::2]) newmaxes = [rainmax, flowmax]*nplots for axs, nmax in zip(axes, newmaxes): axs = axs.set_ybound(upper=nmax) else: ymaxes = [max(axs.get_yticks()) for axs in axes[1:]] flowmax = max(ymaxes) for axs in axes[1:]: axs = axs.set_ybound(upper=flowmax) def plotstorms(flowserie, rainserie, selected_storm, tsfreq = None, tsfrequnit = None, make_comparable = False, period_title = False): """ Plot Flow-Rain plots for every storm period selected, optimal sizes and configuration done for 1 till 5 subplots (storms) """ if len(selected_storm) > 6: raise Exception('Split plotting up in multiple figures') fig = plt.figure(facecolor = 'white', figsize=(12, _getsize(len(selected_storm)))) gs0 = gridspec.GridSpec(len(selected_storm), 1) gs0.update(hspace=0.35) for j, storm in enumerate(selected_storm): gs00 = gridspec.GridSpecFromSubplotSpec(2, 1, subplot_spec=gs0[j], hspace=0.0, height_ratios = [2, 4]) #RAIN PLOT ax0 = fig.add_subplot(gs00[0]) ax0.plot(rainserie[storm['startdate'] : storm['enddate']].index.to_pydatetime(), rainserie[storm['startdate'] : storm['enddate']].values, linestyle='steps') #FLOW PLOT stormflow = flowserie[storm['startdate'] : storm['enddate']] ax1 = fig.add_subplot(gs00[1], sharex = ax0) ax1.plot(stormflow.index.to_pydatetime(), stormflow.values, label = r" Measured Flow ($m^3s^{-1}$)") #if single plots of flow/rain -> set specific color if flowserie.ndim == 1: ax1.lines[0].set_color('#08519c') if rainserie.ndim == 1: ax0.lines[0].set_color('#6baed6') #ADAPT ticks for storm-conditions (less than a month timeseries) ax0.yaxis.set_major_locator(LinearLocator(3)) ax1.yaxis.set_major_locator(LinearLocator(3)) ax1.xaxis.set_minor_locator(mpl.dates.DayLocator()) ax1.xaxis.set_minor_formatter(mpl.dates.DateFormatter('%d')) ax1.xaxis.set_major_locator(mpl.dates.MonthLocator(bymonthday = [1, storm['startdate'].day + \ _control_dayhour(storm['startdate'])])) ax1.xaxis.set_major_formatter( mpl.dates.DateFormatter('\n %b %Y')) #Add the labels of the different flows if j == 0: _add_labels_above(ax0, fig, flowserie.ndim, rainserie.ndim) #Print the start and end period as title above subplots if period_title: ax0.set_title(storm['startdate'].strftime("%d/%m/%y") + " - " + storm['enddate'].strftime("%d/%m/%y"), fontweight='bold', fontsize = 12) #Looks of the rainplot ax0.set_xlabel('') ax0.invert_yaxis() ax0.yaxis.tick_right() ax0.spines['bottom'].set_visible(False) ax0.spines['top'].set_visible(False) plt.setp(ax0.get_xminorticklabels(), visible=False) plt.setp(ax0.get_xmajorticklabels(), visible=False) plt.setp(ax0.get_xminorticklabels(), visible=False) #looks of the flowplot ax1.spines['top'].set_visible(False) ax1.spines['bottom'].set_visible(False) ax1.set_xlabel('') plt.draw() all_axes = fig.get_axes() #Give all the subplots the same y-bounds if make_comparable: _make_comparable(all_axes) return fig, all_axes
bsd-2-clause
MartinSavc/scikit-learn
examples/linear_model/plot_iris_logistic.py
283
1678
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logistic Regression 3-class Classifier ========================================================= Show below is a logistic-regression classifiers decision boundaries on the `iris <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ dataset. The datapoints are colored according to their labels. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target h = .02 # step size in the mesh logreg = linear_model.LogisticRegression(C=1e5) # we create an instance of Neighbours Classifier and fit the data. logreg.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1, figsize=(4, 3)) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
bthirion/scikit-learn
examples/linear_model/plot_sgd_comparison.py
112
1819
""" ================================== Comparing various online solvers ================================== An example showing how different online solvers perform on the hand-written digits dataset. """ # Author: Rob Zinkov <rob at zinkov dot com> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.linear_model import SGDClassifier, Perceptron from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import LogisticRegression heldout = [0.95, 0.90, 0.75, 0.50, 0.01] rounds = 20 digits = datasets.load_digits() X, y = digits.data, digits.target classifiers = [ ("SGD", SGDClassifier()), ("ASGD", SGDClassifier(average=True)), ("Perceptron", Perceptron()), ("Passive-Aggressive I", PassiveAggressiveClassifier(loss='hinge', C=1.0)), ("Passive-Aggressive II", PassiveAggressiveClassifier(loss='squared_hinge', C=1.0)), ("SAG", LogisticRegression(solver='sag', tol=1e-1, C=1.e4 / X.shape[0])) ] xx = 1. - np.array(heldout) for name, clf in classifiers: print("training %s" % name) rng = np.random.RandomState(42) yy = [] for i in heldout: yy_ = [] for r in range(rounds): X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=i, random_state=rng) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) yy_.append(1 - np.mean(y_pred == y_test)) yy.append(np.mean(yy_)) plt.plot(xx, yy, label=name) plt.legend(loc="upper right") plt.xlabel("Proportion train") plt.ylabel("Test Error Rate") plt.show()
bsd-3-clause
saiwing-yeung/scikit-learn
examples/cluster/plot_agglomerative_clustering.py
343
2931
""" Agglomerative clustering with and without structure =================================================== This example shows the effect of imposing a connectivity graph to capture local structure in the data. The graph is simply the graph of 20 nearest neighbors. Two consequences of imposing a connectivity can be seen. First clustering with a connectivity matrix is much faster. Second, when using a connectivity matrix, average and complete linkage are unstable and tend to create a few clusters that grow very quickly. Indeed, average and complete linkage fight this percolation behavior by considering all the distances between two clusters when merging them. The connectivity graph breaks this mechanism. This effect is more pronounced for very sparse graphs (try decreasing the number of neighbors in kneighbors_graph) and with complete linkage. In particular, having a very small number of neighbors in the graph, imposes a geometry that is close to that of single linkage, which is well known to have this percolation instability. """ # Authors: Gael Varoquaux, Nelle Varoquaux # License: BSD 3 clause import time import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.neighbors import kneighbors_graph # Generate sample data n_samples = 1500 np.random.seed(0) t = 1.5 * np.pi * (1 + 3 * np.random.rand(1, n_samples)) x = t * np.cos(t) y = t * np.sin(t) X = np.concatenate((x, y)) X += .7 * np.random.randn(2, n_samples) X = X.T # Create a graph capturing local connectivity. Larger number of neighbors # will give more homogeneous clusters to the cost of computation # time. A very large number of neighbors gives more evenly distributed # cluster sizes, but may not impose the local manifold structure of # the data knn_graph = kneighbors_graph(X, 30, include_self=False) for connectivity in (None, knn_graph): for n_clusters in (30, 3): plt.figure(figsize=(10, 4)) for index, linkage in enumerate(('average', 'complete', 'ward')): plt.subplot(1, 3, index + 1) model = AgglomerativeClustering(linkage=linkage, connectivity=connectivity, n_clusters=n_clusters) t0 = time.time() model.fit(X) elapsed_time = time.time() - t0 plt.scatter(X[:, 0], X[:, 1], c=model.labels_, cmap=plt.cm.spectral) plt.title('linkage=%s (time %.2fs)' % (linkage, elapsed_time), fontdict=dict(verticalalignment='top')) plt.axis('equal') plt.axis('off') plt.subplots_adjust(bottom=0, top=.89, wspace=0, left=0, right=1) plt.suptitle('n_cluster=%i, connectivity=%r' % (n_clusters, connectivity is not None), size=17) plt.show()
bsd-3-clause
Nik0l/UTemPro
UsersActivity.py
1
9237
__author__ = 'nb254' from collections import Counter import csv, time import pandas as pd POSTID_INDEX = 0 USERID_INDEX = 1 TIME_POSTED_INDEX = 2 POST_TYPE_INDEX = 3 def SaveStatToCSV(file_name, data, header): with open(file_name, 'wb') as myfile: wr = csv.writer(myfile) wr.writerow(header) wr.writerows(data) return def UniqueUsers(data): unique_users = list(Counter(data['UserId'])) #print unique_users return unique_users def makePosts(data): posts = [] for time_stamp in data['TimePosted']: #print time_stamp sq = time_stamp.replace("T", " ") sq = sq[0:19] time_posted = time.strptime(sq, "%Y-%m-%d %H:%M:%S") year_posted = time.strftime("%Y", time_posted) month_posted = time.strftime("%m", time_posted) day_posted = time.strftime("%d", time_posted) hour_posted = time.strftime("%H", time_posted) min_posted = time.strftime("%M", time_posted) posts.append([year_posted, month_posted, day_posted, hour_posted, min_posted]) df = pd.DataFrame(posts, columns=['year', 'month', 'day', 'hour', 'min']) result = pd.concat([data, df], axis=1) return result def UsersActivity(users, posts): activities = [] daytime_q = [0]*24 daytime_a = [0]*24 monthtime_q = [0]*12 monthtime_a = [0]*12 index = 0 num = 0 print posts.head() #print "users: ", len(users) for user in users: for index in xrange(0, len(posts)): hour_posted = posts['hour'][index] month_posted = posts['month'][index] if posts['UserId'][index] == user:# if the post belongs to a user if posts['PostType'][index] == 1:# question daytime_q[int(hour_posted)] = daytime_q[int(hour_posted)] + 1 monthtime_q[int(month_posted)-1] = monthtime_q[int(month_posted)-1] + 1 elif posts['PostType'][index] == 2:# answer daytime_a[int(hour_posted)] = daytime_a[int(hour_posted)] + 1 monthtime_a[int(month_posted)-1] = monthtime_a[int(month_posted)-1] + 1 activities.append([user, monthtime_q, daytime_q, monthtime_a, daytime_a]) print ('user:', user) num = num + 1 print ('number: ', num) #print daytime daytime_q = [0]*24 daytime_a = [0]*24 monthtime_q = [0]*12 monthtime_a = [0]*12 return activities def usersActivityFast(posts): posts = posts.sort(['UserId'], ascending=True) posts = posts[posts['UserId'] != -1] posts = posts[['UserId','PostType', 'year', 'month', 'day', 'hour', 'min']] posts = posts.reset_index() activities = [] act_time = dict( daytime_q = [0]*24, daytime_a = [0]*24, monthtime_q = [0]*12, monthtime_a = [0]*12, ) num = 0 #print posts.head() for index in xrange(0, len(posts)-1): updateActivity(posts, index, act_time) if posts['UserId'][index] != posts['UserId'][index+1]: activities.append([posts['UserId'][index], act_time['daytime_q'], act_time['daytime_a'], act_time['monthtime_q'], act_time['monthtime_a']]) resetActivity(act_time) #print 'new user:', posts['UserId'][index+1] else: updateActivity(posts, index, act_time) #print ('same user:', posts['UserId'][index+1]) num = num + 1 #print 'number: ', num df_act = pd.DataFrame(activities, columns =['UserId','Q_HOUR', 'A_HOUR', 'Q_MONTH', 'A_MONTH']) return df_act def updateActivity(posts, index, act_time): hour_posted = posts['hour'][index] month_posted = posts['month'][index] if posts['PostType'][index] == 1:# question act_time['daytime_q'][int(hour_posted)] = act_time['daytime_q'][int(hour_posted)] + 1 act_time['monthtime_q'][int(month_posted)-1] = act_time['monthtime_q'][int(month_posted)-1] + 1 elif posts['PostType'][index] == 2:# answer act_time['daytime_a'][int(hour_posted)] = act_time['daytime_a'][int(hour_posted)] + 1 act_time['monthtime_a'][int(month_posted)-1] = act_time['monthtime_a'][int(month_posted)-1] + 1 def resetActivity(act_time): act_time['daytime_q'] = [0]*24 act_time['daytime_a'] = [0]*24 act_time['monthtime_q'] = [0]*12 act_time['monthtime_a'] = [0]*12 def HourActivity(daytime, hour_posted): #hour_posted = time.strftime("%H", time_posted) ## 7am - 12pm, 12pm - 6 pm, 6pm - 12am, 0am - 7 am #daytime = [0, 0, 0, 0] if int(hour_posted) < 7: daytime[0] = daytime[0] + 1 elif int(hour_posted) < 12: daytime[1] = daytime[1] + 1 elif int(hour_posted) < 18: daytime[2] = daytime[2] + 1 elif int(hour_posted) < 24: daytime[3] = daytime[3] + 1 def MonthActivity(monthtime, month_posted): #hour_posted = time.strftime("%H", time_posted) ## 7am - 12pm, 12pm - 6 pm, 6pm - 12am, 0am - 7 am monthtime = [0]*12 monthtime[month_posted-1] = monthtime[month_posted-1] + 1 def GetUserActivity(filename): f = open(filename) users_activity = csv.reader(f, delimiter=',', quotechar='|') return users_activity def userActivityTransform(df): dfq_hour = pd.DataFrame(list(df['Q_HOUR']), columns=['qh1','qh2','qh3','qh4','qh5','qh6','qh7','qh8','qh9','qh10','qh11','qh12', 'qh13','qh14','qh15','qh16','qh17','qh18','qh19','qh20','qh21','qh22','qh23','qh24']) dfa_hour = pd.DataFrame(list(df['A_HOUR']), columns=['ah1','ah2','ah3','ah4','ah5','ah6','ah7','ah8','ah9','ah10','ah11','ah12', 'ah13','ah14','ah15','ah16','ah17','ah18','ah19','ah20','ah21','ah22','ah23','ah24']) dfq_month = pd.DataFrame(list(df['Q_MONTH']), columns=['qm1', 'qm2', 'qm3', 'qm4', 'qm5', 'qm6', 'qm7', 'qm8', 'qm9', 'qm10', 'qm11', 'qm12']) dfa_month = pd.DataFrame(list(df['A_MONTH']), columns=['am1', 'am2', 'am3', 'am4', 'am5', 'am6', 'am7', 'am8', 'am9', 'am10', 'am11', 'am12']) result = pd.concat([df['UserId'], dfq_hour, dfa_hour, dfq_month, dfa_month], axis=1) return result def transformString(items): items = items.replace(",", "") items = items.replace("[", "") items = items.replace("]", "") items = items.split() return items def extractDayWeekActivity(posts, year, month, day): #print year #print len(posts) posts = posts.loc[posts['year'].astype(int) == year] #print posts posts = posts.loc[posts['month'].astype(int) == month] #print posts #print 'this month', len(posts) #posts_week = posts_week[['UserId','PostType', 'year', 'month', 'day', 'hour', 'min']] posts_week = posts[posts['day'].astype(int) > day] posts_week = posts_week.sort(['UserId'], ascending=False) posts_week = posts_week.reset_index() #print posts_week #TODO if not saved, then indices must be put in order posts_day = posts_week[posts_week['day'] > 12] posts_day = posts_day[['UserId','PostType', 'year', 'month', 'day', 'hour', 'min']] posts_day = posts_day.sort(['UserId'], ascending=False) posts_day = posts_day.reset_index() #print 'this day', len(posts_day) #print posts_day return posts_week, posts_day def extractTimeIntervalFeatures(posts_week, posts_day): activities_day = activityDay(posts_day) df_day = pd.DataFrame(activities_day, columns=['UserId', 'P_NUM_LAST_DAY']) #print df_day #activities last week activities = activityWeek(posts_week) df_week = pd.DataFrame(activities, columns=['UserId', 'Q_LAST_WEEK', 'A_LAST_WEEK']) #print df_week df_result = pd.merge(df_week, df_day, how='left', on='UserId') df_result = df_result.fillna(0) df_result['P_NUM_LAST_DAY'] = df_result['P_NUM_LAST_DAY'].astype(int) return df_result def activityDay(posts): activities_day = [] comments = 0 #activities last day for index in xrange(0, len(posts)-1): comments = comments + 1 if posts['UserId'][index] != posts['UserId'][index+1]: activities_day.append([posts['UserId'][index], comments]) comments = 0 return activities_day def activityWeek(posts): activities = [] act = dict( questions = 0, answers = 0, ) for index in xrange(0, len(posts)-1): updateActivities(posts, act, index) if posts['UserId'][index] != posts['UserId'][index+1]: activities.append([posts['UserId'][index], act['questions'], act['answers']]) act['questions'] = 0 act['answers']= 0 return activities def updateActivities(posts, act, index): if posts['PostType'][index] == 1: # question act['questions'] = act['questions'] + 1 elif posts['PostType'][index] == 2: # answer act['answers'] = act['answers'] + 1 def theLatestPostTime(posts): #TODO hardcoded for now - update year = 2014 month = 7 day = 7 return year, month, day def oneDayFromNow(year, day, month): #TODO hardcoded for now - update year = 2014 month = 12 day = 14 return year, month, day
mit
mdhurst1/RoBoCoP_CRN
plotting_functions/plot_step_results.py
1
3207
# -*- coding: utf-8 -*- """ Created on Mon Feb 8 15:10:34 2016 Script to plot the results of RockyCoastCRN experiments to explore the influence of platform erosion processes on the concentrations of CRNs built up in the platform surface Martin Hurst, Feb 9th 2016 @author: mhurst """ #import modules import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from matplotlib import rc # Customise figure style # rc('font',size=8) rc('ytick.major',pad=5) rc('xtick.major',pad=5) padding = 5 #setup figure plt.figure(1,figsize=(6,8),facecolor="white") #Filename lists FileNames = ["Steps100cm","Steps50cm","Steps20cm","Steps10cm","NoSteps"] StepSizes = [100,50,20,10,0] #setup subplot for plotting concentrations ax1 = plt.axes([0.1,0.1,0.8,0.32]) ax1.spines['right'].set_visible(False) ax1.spines['top'].set_visible(False) ax1.yaxis.set_ticks_position('left') ax1.xaxis.set_ticks_position('bottom') plt.xlabel("Distance (m)") plt.ylabel("$^{10}$Be Concentration (atoms g$^{-1}$ yr$^{-1}$)") for i in range (0,len(FileNames)): #setup subplot ax = plt.axes([0.1,0.88-float(i)*0.11,0.8,0.09]) ax.set_xticklabels([]) ax.set_xticks([]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.set_yticks([-10,-5,0,5]) #setup color Color = float(i)/float(len(FileNames)) FileName = "../BlockRemoval_" + FileNames[i] + ".pdat" f = open(FileName,'r') Lines = f.readlines() NoLines = len(Lines) #Get header info and setup X coord Header = Lines[0].strip().split(" ") NXNodes = float(Header[0]) PlatformWidth = float(Header[1]) X = np.linspace(0,PlatformWidth+1,NXNodes) for j in range(10,NoLines,8): #Get data Line = Lines[j].strip().split(" ") Time = float(Line[0]) Z = np.array(Line[1:],dtype="float64") #mask for NDVs mask = Z != -9999 Zplot = Z[mask] Xplot = X[mask] plt.plot([Xplot[0]-20,Xplot[0],Xplot[0]],[5,5,0],'-',color=cm.Paired(Color)) if (i == 0): plt.text(Xplot[0]-20,Zplot[0]+8, str(Time/1000.) + " ka") plt.plot(Xplot,Zplot,'-',color=cm.Paired(Color)) #Offset -= 15 if (i ==0): ax.text(950,5,'(a)') if (i == 2): plt.ylabel('Elevation (m)') plt.xlim(-50,1000) #Plot concentrations #Get data Line = Lines[NoLines-1].strip().split(" ") Time = float(Line[0]) N = np.array(Line[1:],dtype="float64") #plot concentration data ax1.plot(X,N,'-',color=cm.Paired(Color),linewidth=2,label=str(StepSizes[i]/100.) + " m") #Display legend plt.rcParams.update({'legend.labelspacing':0.1}) plt.rcParams.update({'legend.columnspacing':1.0}) plt.rcParams.update({'legend.numpoints':1}) plt.rcParams.update({'legend.frameon':False}) plt.rcParams.update({'legend.handlelength':0.5}) plt.rcParams.update({'legend.fontsize':8}) ax1.legend(loc=1,ncol=1,title="Bed Spacing") ax1.text(0,2800,'(b)') ax1.set_xlim(-50,1000) ax.set_xticklabels([]) plt.savefig("./BlockRemoval.png") plt.show()
gpl-3.0
poo12138/gem5-stable
util/stats/barchart.py
90
12472
# Copyright (c) 2005-2006 The Regents of The University of Michigan # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Nathan Binkert # Lisa Hsu import matplotlib, pylab from matplotlib.font_manager import FontProperties from matplotlib.numerix import array, arange, reshape, shape, transpose, zeros from matplotlib.numerix import Float from matplotlib.ticker import NullLocator matplotlib.interactive(False) from chart import ChartOptions class BarChart(ChartOptions): def __init__(self, default=None, **kwargs): super(BarChart, self).__init__(default, **kwargs) self.inputdata = None self.chartdata = None self.inputerr = None self.charterr = None def gen_colors(self, count): cmap = matplotlib.cm.get_cmap(self.colormap) if count == 1: return cmap([ 0.5 ]) if count < 5: return cmap(arange(5) / float(4))[:count] return cmap(arange(count) / float(count - 1)) # The input data format does not match the data format that the # graph function takes because it is intuitive. The conversion # from input data format to chart data format depends on the # dimensionality of the input data. Check here for the # dimensionality and correctness of the input data def set_data(self, data): if data is None: self.inputdata = None self.chartdata = None return data = array(data) dim = len(shape(data)) if dim not in (1, 2, 3): raise AttributeError, "Input data must be a 1, 2, or 3d matrix" self.inputdata = data # If the input data is a 1d matrix, then it describes a # standard bar chart. if dim == 1: self.chartdata = array([[data]]) # If the input data is a 2d matrix, then it describes a bar # chart with groups. The matrix being an array of groups of # bars. if dim == 2: self.chartdata = transpose([data], axes=(2,0,1)) # If the input data is a 3d matrix, then it describes an array # of groups of bars with each bar being an array of stacked # values. if dim == 3: self.chartdata = transpose(data, axes=(1,2,0)) def get_data(self): return self.inputdata data = property(get_data, set_data) def set_err(self, err): if err is None: self.inputerr = None self.charterr = None return err = array(err) dim = len(shape(err)) if dim not in (1, 2, 3): raise AttributeError, "Input err must be a 1, 2, or 3d matrix" self.inputerr = err if dim == 1: self.charterr = array([[err]]) if dim == 2: self.charterr = transpose([err], axes=(2,0,1)) if dim == 3: self.charterr = transpose(err, axes=(1,2,0)) def get_err(self): return self.inputerr err = property(get_err, set_err) # Graph the chart data. # Input is a 3d matrix that describes a plot that has multiple # groups, multiple bars in each group, and multiple values stacked # in each bar. The underlying bar() function expects a sequence of # bars in the same stack location and same group location, so the # organization of the matrix is that the inner most sequence # represents one of these bar groups, then those are grouped # together to make one full stack of bars in each group, and then # the outer most layer describes the groups. Here is an example # data set and how it gets plotted as a result. # # e.g. data = [[[10,11,12], [13,14,15], [16,17,18], [19,20,21]], # [[22,23,24], [25,26,27], [28,29,30], [31,32,33]]] # # will plot like this: # # 19 31 20 32 21 33 # 16 28 17 29 18 30 # 13 25 14 26 15 27 # 10 22 11 23 12 24 # # Because this arrangement is rather conterintuitive, the rearrange # function takes various matricies and arranges them to fit this # profile. # # This code deals with one of the dimensions in the matrix being # one wide. # def graph(self): if self.chartdata is None: raise AttributeError, "Data not set for bar chart!" dim = len(shape(self.inputdata)) cshape = shape(self.chartdata) if self.charterr is not None and shape(self.charterr) != cshape: raise AttributeError, 'Dimensions of error and data do not match' if dim == 1: colors = self.gen_colors(cshape[2]) colors = [ [ colors ] * cshape[1] ] * cshape[0] if dim == 2: colors = self.gen_colors(cshape[0]) colors = [ [ [ c ] * cshape[2] ] * cshape[1] for c in colors ] if dim == 3: colors = self.gen_colors(cshape[1]) colors = [ [ [ c ] * cshape[2] for c in colors ] ] * cshape[0] colors = array(colors) self.figure = pylab.figure(figsize=self.chart_size) outer_axes = None inner_axes = None if self.xsubticks is not None: color = self.figure.get_facecolor() self.metaaxes = self.figure.add_axes(self.figure_size, axisbg=color, frameon=False) for tick in self.metaaxes.xaxis.majorTicks: tick.tick1On = False tick.tick2On = False self.metaaxes.set_yticklabels([]) self.metaaxes.set_yticks([]) size = [0] * 4 size[0] = self.figure_size[0] size[1] = self.figure_size[1] + .12 size[2] = self.figure_size[2] size[3] = self.figure_size[3] - .12 self.axes = self.figure.add_axes(size) outer_axes = self.metaaxes inner_axes = self.axes else: self.axes = self.figure.add_axes(self.figure_size) outer_axes = self.axes inner_axes = self.axes bars_in_group = len(self.chartdata) width = 1.0 / ( bars_in_group + 1) center = width / 2 bars = [] for i,stackdata in enumerate(self.chartdata): bottom = array([0.0] * len(stackdata[0]), Float) stack = [] for j,bardata in enumerate(stackdata): bardata = array(bardata) ind = arange(len(bardata)) + i * width + center yerr = None if self.charterr is not None: yerr = self.charterr[i][j] bar = self.axes.bar(ind, bardata, width, bottom=bottom, color=colors[i][j], yerr=yerr) if self.xsubticks is not None: self.metaaxes.bar(ind, [0] * len(bardata), width) stack.append(bar) bottom += bardata bars.append(stack) if self.xlabel is not None: outer_axes.set_xlabel(self.xlabel) if self.ylabel is not None: inner_axes.set_ylabel(self.ylabel) if self.yticks is not None: ymin, ymax = self.axes.get_ylim() nticks = float(len(self.yticks)) ticks = arange(nticks) / (nticks - 1) * (ymax - ymin) + ymin inner_axes.set_yticks(ticks) inner_axes.set_yticklabels(self.yticks) elif self.ylim is not None: inner_axes.set_ylim(self.ylim) if self.xticks is not None: outer_axes.set_xticks(arange(cshape[2]) + .5) outer_axes.set_xticklabels(self.xticks) if self.xsubticks is not None: numticks = (cshape[0] + 1) * cshape[2] inner_axes.set_xticks(arange(numticks) * width + 2 * center) xsubticks = list(self.xsubticks) + [ '' ] inner_axes.set_xticklabels(xsubticks * cshape[2], fontsize=7, rotation=30) if self.legend is not None: if dim == 1: lbars = bars[0][0] if dim == 2: lbars = [ bars[i][0][0] for i in xrange(len(bars))] if dim == 3: number = len(bars[0]) lbars = [ bars[0][number - j - 1][0] for j in xrange(number)] if self.fig_legend: self.figure.legend(lbars, self.legend, self.legend_loc, prop=FontProperties(size=self.legend_size)) else: self.axes.legend(lbars, self.legend, self.legend_loc, prop=FontProperties(size=self.legend_size)) if self.title is not None: self.axes.set_title(self.title) def savefig(self, name): self.figure.savefig(name) def savecsv(self, name): f = file(name, 'w') data = array(self.inputdata) dim = len(data.shape) if dim == 1: #if self.xlabel: # f.write(', '.join(list(self.xlabel)) + '\n') f.write(', '.join([ '%f' % val for val in data]) + '\n') if dim == 2: #if self.xlabel: # f.write(', '.join([''] + list(self.xlabel)) + '\n') for i,row in enumerate(data): ylabel = [] #if self.ylabel: # ylabel = [ self.ylabel[i] ] f.write(', '.join(ylabel + [ '%f' % v for v in row]) + '\n') if dim == 3: f.write("don't do 3D csv files\n") pass f.close() if __name__ == '__main__': from random import randrange import random, sys dim = 3 number = 5 args = sys.argv[1:] if len(args) > 3: sys.exit("invalid number of arguments") elif len(args) > 0: myshape = [ int(x) for x in args ] else: myshape = [ 3, 4, 8 ] # generate a data matrix of the given shape size = reduce(lambda x,y: x*y, myshape) #data = [ random.randrange(size - i) + 10 for i in xrange(size) ] data = [ float(i)/100.0 for i in xrange(size) ] data = reshape(data, myshape) # setup some test bar charts if True: chart1 = BarChart() chart1.data = data chart1.xlabel = 'Benchmark' chart1.ylabel = 'Bandwidth (GBps)' chart1.legend = [ 'x%d' % x for x in xrange(myshape[-1]) ] chart1.xticks = [ 'xtick%d' % x for x in xrange(myshape[0]) ] chart1.title = 'this is the title' if len(myshape) > 2: chart1.xsubticks = [ '%d' % x for x in xrange(myshape[1]) ] chart1.graph() chart1.savefig('/tmp/test1.png') chart1.savefig('/tmp/test1.ps') chart1.savefig('/tmp/test1.eps') chart1.savecsv('/tmp/test1.csv') if False: chart2 = BarChart() chart2.data = data chart2.colormap = 'gray' chart2.graph() chart2.savefig('/tmp/test2.png') chart2.savefig('/tmp/test2.ps') # pylab.show()
bsd-3-clause
KFubuki/dotfiles
python/colormap-master/joes-blu_grn_pnk2.py
1
13205
from matplotlib.colors import LinearSegmentedColormap from numpy import nan, inf # Used to reconstruct the colormap in viscm parameters = {'xp': [-6.1859603226509137, -14.579245694353546, -16.377806845432701, -75.430564639197684, 40.576629605406652, 14.197732722912633], 'yp': [-38.399280575539549, 5.6654676258992822, 11.061151079136692, 51.229016786570725, 35.641486810551555, -4.8261390887290077], 'min_JK': 27.8125, 'max_JK': 87.2916666667} cm_data = [[ 0.08488181, 0.18308161, 0.67262216], [ 0.08312345, 0.19202711, 0.66090297], [ 0.08217997, 0.20014429, 0.64976469], [ 0.08198433, 0.2075936 , 0.63911277], [ 0.08247594, 0.21447696, 0.62891889], [ 0.08359003, 0.2208603 , 0.61920504], [ 0.08524777, 0.2268386 , 0.60985788], [ 0.08738166, 0.23244191, 0.60093206], [ 0.08992038, 0.2377215 , 0.59238917], [ 0.09280155, 0.24272587, 0.58416923], [ 0.09596381, 0.24747257, 0.57631143], [ 0.0993575 , 0.251998 , 0.56876406], [ 0.10293853, 0.25632645, 0.56150762], [ 0.10666336, 0.2604716 , 0.55456023], [ 0.1105036 , 0.26445857, 0.54787429], [ 0.11443019, 0.26830128, 0.54144512], [ 0.11841518, 0.27200976, 0.53528253], [ 0.12244369, 0.27560103, 0.5293494 ], [ 0.12649882, 0.27908535, 0.52363821], [ 0.13056226, 0.28246931, 0.51815934], [ 0.13462547, 0.28576389, 0.51289008], [ 0.13868224, 0.28897881, 0.50780839], [ 0.14271871, 0.2921176 , 0.50293114], [ 0.14672864, 0.29518709, 0.49824894], [ 0.15071345, 0.29819656, 0.4937278 ], [ 0.1546626 , 0.30114819, 0.48938498], [ 0.15857184, 0.30404672, 0.48521597], [ 0.16243974, 0.30689736, 0.48120845], [ 0.16626692, 0.3097055 , 0.47734461], [ 0.17004651, 0.31247292, 0.47363702], [ 0.17377693, 0.31520325, 0.47007969], [ 0.1774579 , 0.31790023, 0.46666296], [ 0.18109034, 0.32056767, 0.46337356], [ 0.18466948, 0.32320706, 0.46022069], [ 0.18819439, 0.3258211 , 0.4571996 ], [ 0.19166421, 0.32841234, 0.45430585], [ 0.19508052, 0.33098399, 0.4515254 ], [ 0.19844012, 0.33353749, 0.44886326], [ 0.20174153, 0.33607477, 0.44631801], [ 0.20498379, 0.3385979 , 0.44388601], [ 0.20816589, 0.3411088 , 0.44156374], [ 0.21128813, 0.34360991, 0.43934139], [ 0.21434794, 0.34610257, 0.43722134], [ 0.21734359, 0.34858841, 0.43520227], [ 0.22027364, 0.35106916, 0.433281 ], [ 0.22313653, 0.35354653, 0.43145439], [ 0.22593054, 0.3560222 , 0.42971931], [ 0.22865443, 0.35849817, 0.42806853], [ 0.23130553, 0.36097577, 0.42650261], [ 0.23388157, 0.36345656, 0.42501923], [ 0.23638033, 0.36594216, 0.42361498], [ 0.23879948, 0.36843418, 0.42228628], [ 0.24113658, 0.37093422, 0.42102943], [ 0.24338915, 0.37344386, 0.41984053], [ 0.24555463, 0.37596471, 0.41871526], [ 0.2476304 , 0.37849855, 0.41764727], [ 0.24961385, 0.3810466 , 0.41663458], [ 0.25150254, 0.38361032, 0.41567235], [ 0.25329409, 0.38619113, 0.41475548], [ 0.25498629, 0.38879034, 0.41387864], [ 0.25657711, 0.39140923, 0.41303625], [ 0.25806477, 0.39404893, 0.41222253], [ 0.25944772, 0.3967105 , 0.41143149], [ 0.26072475, 0.39939485, 0.41065702], [ 0.26189499, 0.40210277, 0.40989287], [ 0.26295789, 0.4048349 , 0.40913271], [ 0.26391332, 0.40759175, 0.40837023], [ 0.2647615 , 0.41037366, 0.40759912], [ 0.26550293, 0.41318086, 0.40681296], [ 0.2661385 , 0.41601343, 0.40600552], [ 0.26666972, 0.41887118, 0.40517133], [ 0.26709825, 0.42175387, 0.40430471], [ 0.26742604, 0.42466112, 0.40340023], [ 0.26765527, 0.42759246, 0.40245273], [ 0.26778838, 0.43054729, 0.40145736], [ 0.26782797, 0.43352494, 0.40040961], [ 0.2677768 , 0.43652465, 0.39930525], [ 0.26763777, 0.4395456 , 0.3981404 ], [ 0.26741386, 0.44258692, 0.39691145], [ 0.26710811, 0.4456477 , 0.39561511], [ 0.26672365, 0.448727 , 0.39424836], [ 0.26626363, 0.45182384, 0.39280844], [ 0.26573088, 0.45493737, 0.39129233], [ 0.26512858, 0.4580666 , 0.38969761], [ 0.26446024, 0.46121045, 0.38802247], [ 0.26372917, 0.46436794, 0.38626487], [ 0.26293876, 0.46753805, 0.38442293], [ 0.26209248, 0.47071979, 0.38249482], [ 0.26119391, 0.47391216, 0.38047885], [ 0.26024678, 0.47711415, 0.37837332], [ 0.25925503, 0.48032474, 0.37617663], [ 0.25822279, 0.48354291, 0.37388717], [ 0.25715449, 0.48676763, 0.37150332], [ 0.25605486, 0.48999782, 0.3690235 ], [ 0.25492731, 0.4932329 , 0.36644367], [ 0.2537774 , 0.49647174, 0.36376208], [ 0.25261249, 0.49971279, 0.36097881], [ 0.25143921, 0.50295487, 0.35809205], [ 0.25026483, 0.50619673, 0.35509995], [ 0.24909736, 0.50943704, 0.35200056], [ 0.24794283, 0.51267518, 0.34878753], [ 0.24681094, 0.5159097 , 0.3454584 ], [ 0.24571493, 0.51913835, 0.34201468], [ 0.24466674, 0.52235947, 0.33845417], [ 0.24367796, 0.52557168, 0.33477178], [ 0.24275902, 0.52877417, 0.33095718], [ 0.24193144, 0.53196339, 0.32701729], [ 0.24121292, 0.53513707, 0.32294975], [ 0.24061591, 0.53829468, 0.31873685], [ 0.24016739, 0.54143201, 0.3143868 ], [ 0.23989167, 0.54454583, 0.3098995 ], [ 0.23980621, 0.54763531, 0.3052503 ], [ 0.23994718, 0.55069438, 0.30045852], [ 0.24033897, 0.55372091, 0.29550373], [ 0.24101659, 0.5567097 , 0.29039154], [ 0.242013 , 0.55965658, 0.28511189], [ 0.24336597, 0.56255578, 0.27966796], [ 0.24511307, 0.56540212, 0.27404701], [ 0.24729554, 0.56818809, 0.26826528], [ 0.24995455, 0.57090763, 0.26229943], [ 0.25313183, 0.57355191, 0.25617055], [ 0.25686732, 0.57611234, 0.24988551], [ 0.26120079, 0.57857967, 0.24344791], [ 0.26616801, 0.58094374, 0.23687306], [ 0.27179453, 0.58319423, 0.23019404], [ 0.27809821, 0.58532092, 0.22344485], [ 0.28508368, 0.5873143 , 0.21667129], [ 0.29273881, 0.58916631, 0.20993178], [ 0.3010319 , 0.5908713 , 0.20329682], [ 0.30991056, 0.5924269 , 0.19684672], [ 0.31930301, 0.59383467, 0.19066735], [ 0.32912207, 0.5951003 , 0.18484441], [ 0.33927145, 0.59623329, 0.17945707], [ 0.34965323, 0.59724611, 0.17457225], [ 0.36017498, 0.59815298, 0.17024054], [ 0.37075539, 0.59896866, 0.16649448], [ 0.38132758, 0.59970726, 0.16334908], [ 0.39183913, 0.60038173, 0.1608045 ], [ 0.40223125, 0.60100791, 0.15885843], [ 0.41249475, 0.60159175, 0.15747918], [ 0.42261595, 0.60214034, 0.15663827], [ 0.43255125, 0.60266853, 0.15631551], [ 0.44232961, 0.60317358, 0.15646484], [ 0.45192221, 0.60366715, 0.15705899], [ 0.46135476, 0.60414659, 0.15805779], [ 0.47059963, 0.60462352, 0.1594324 ], [ 0.47969294, 0.60509169, 0.16114641], [ 0.48861904, 0.60555917, 0.16317152], [ 0.49738619, 0.60602708, 0.16547858], [ 0.5060124 , 0.60649316, 0.16804181], [ 0.51450148, 0.60695916, 0.17083789], [ 0.52283993, 0.60743236, 0.17384267], [ 0.53105197, 0.60790769, 0.17703821], [ 0.53914308, 0.60838578, 0.18040711], [ 0.54711786, 0.60886742, 0.18393356], [ 0.55498092, 0.60935321, 0.18760336], [ 0.5627368 , 0.60984364, 0.19140384], [ 0.57038905, 0.61033941, 0.19532343], [ 0.57793913, 0.61084192, 0.19935102], [ 0.58539646, 0.61134942, 0.20347965], [ 0.59276492, 0.61186207, 0.20770171], [ 0.6000482 , 0.61237999, 0.21201055], [ 0.60724981, 0.61290327, 0.2164004 ], [ 0.61437307, 0.61343197, 0.22086628], [ 0.62142114, 0.61396611, 0.22540392], [ 0.62839694, 0.61450572, 0.23000966], [ 0.63530325, 0.61505081, 0.23468046], [ 0.64214263, 0.61560141, 0.23941375], [ 0.64891741, 0.61615756, 0.24420741], [ 0.65562676, 0.61672066, 0.24905779], [ 0.66227569, 0.61728944, 0.25396539], [ 0.66886611, 0.61786396, 0.2589293 ], [ 0.67539975, 0.61844427, 0.2639489 ], [ 0.68187814, 0.61903047, 0.26902384], [ 0.68830265, 0.61962269, 0.27415403], [ 0.69467448, 0.62022108, 0.27933959], [ 0.70099464, 0.62082585, 0.28458084], [ 0.70726401, 0.62143724, 0.28987828], [ 0.71348256, 0.62205592, 0.29523192], [ 0.71964871, 0.6226833 , 0.30064055], [ 0.7257661 , 0.62331815, 0.30610795], [ 0.73183497, 0.62396086, 0.3116352 ], [ 0.7378554 , 0.62461192, 0.31722351], [ 0.74382734, 0.62527185, 0.32287414], [ 0.74975057, 0.62594124, 0.32858846], [ 0.75562355, 0.62662141, 0.33436653], [ 0.76144581, 0.62731307, 0.34020972], [ 0.76721835, 0.62801608, 0.34612142], [ 0.77294038, 0.62873127, 0.35210319], [ 0.77861095, 0.62945956, 0.35815664], [ 0.78422899, 0.63020192, 0.36428337], [ 0.78979252, 0.63095987, 0.37048392], [ 0.79530062, 0.63173429, 0.37676038], [ 0.80075261, 0.63252589, 0.38311548], [ 0.80614684, 0.63333595, 0.3895508 ], [ 0.81148155, 0.63416582, 0.39606787], [ 0.81675483, 0.63501695, 0.40266817], [ 0.82196435, 0.63589105, 0.40935253], [ 0.8271086 , 0.6367893 , 0.41612348], [ 0.83218532, 0.63771334, 0.42298234], [ 0.83719205, 0.63866495, 0.42993032], [ 0.84212626, 0.63964598, 0.43696849], [ 0.84698539, 0.64065826, 0.44409811], [ 0.85176681, 0.64170366, 0.45132049], [ 0.85646749, 0.64278436, 0.45863614], [ 0.86108437, 0.64390252, 0.46604562], [ 0.86561427, 0.64506041, 0.47354929], [ 0.87005391, 0.64626036, 0.48114736], [ 0.87440033, 0.6475044 , 0.48884145], [ 0.8786496 , 0.64879536, 0.49663003], [ 0.88279806, 0.65013581, 0.50451251], [ 0.886842 , 0.6515284 , 0.51248812], [ 0.8907776 , 0.65297579, 0.52055578], [ 0.89460109, 0.65448064, 0.52871468], [ 0.89830854, 0.65604567, 0.53696351], [ 0.90189577, 0.65767392, 0.54529885], [ 0.90535877, 0.65936821, 0.5537181 ], [ 0.90869358, 0.66113137, 0.56221825], [ 0.91189625, 0.66296617, 0.57079586], [ 0.91496291, 0.6648754 , 0.57944686], [ 0.91788981, 0.66686181, 0.5881658 ], [ 0.92067342, 0.66892797, 0.59694738], [ 0.92331042, 0.67107632, 0.60578593], [ 0.92579776, 0.67330909, 0.6146753 ], [ 0.92813267, 0.67562834, 0.62360891], [ 0.93031328, 0.678036 , 0.63257538], [ 0.93233787, 0.68053348, 0.64156724], [ 0.93420501, 0.68312189, 0.65057749], [ 0.93591386, 0.68580207, 0.65959765], [ 0.93746411, 0.6885745 , 0.66861913], [ 0.93885727, 0.69143911, 0.67762793], [ 0.94009655, 0.69439504, 0.686608 ], [ 0.94118182, 0.69744174, 0.69555831], [ 0.94211522, 0.70057808, 0.70447036], [ 0.94289928, 0.70380263, 0.71333615], [ 0.94354455, 0.70711146, 0.72212851], [ 0.94405369, 0.71050244, 0.73084569], [ 0.9444278 , 0.71397394, 0.73948938], [ 0.94467085, 0.7175234 , 0.74805426], [ 0.94480169, 0.72114324, 0.75650653], [ 0.94482174, 0.72483132, 0.76485204], [ 0.94472934, 0.72858669, 0.77310077], [ 0.94453501, 0.73240424, 0.78124012], [ 0.94426678, 0.73627241, 0.78923231], [ 0.9439052 , 0.74019659, 0.79711843], [ 0.9434584 , 0.74417245, 0.80489253], [ 0.94297022, 0.74818241, 0.81250113], [ 0.94240599, 0.75223783, 0.82000299], [ 0.94178596, 0.75632991, 0.82737865], [ 0.94114205, 0.76044536, 0.83459832], [ 0.94043604, 0.76459737, 0.84171794], [ 0.93972281, 0.76876404, 0.84868276], [ 0.93897849, 0.77295334, 0.85553024], [ 0.93820719, 0.77716269, 0.86226445], [ 0.93745099, 0.78137511, 0.86885223], [ 0.93665014, 0.7856125 , 0.87536218]] test_cm = LinearSegmentedColormap.from_list(__file__, cm_data) if __name__ == "__main__": import matplotlib.pyplot as plt import numpy as np try: from viscm import viscm viscm(test_cm) except ImportError: print("viscm not found, falling back on simple display") plt.imshow(np.linspace(0, 100, 256)[None, :], aspect='auto', cmap=test_cm) plt.show()
mit
poojavade/Genomics_Docker
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/statsmodels-0.5.0-py2.7-linux-x86_64.egg/statsmodels/sandbox/nonparametric/kdecovclass.py
5
5713
'''subclassing kde Author: josef pktd ''' import numpy as np import scipy from scipy import stats import matplotlib.pylab as plt class gaussian_kde_set_covariance(stats.gaussian_kde): ''' from Anne Archibald in mailinglist: http://www.nabble.com/Width-of-the-gaussian-in-stats.kde.gaussian_kde---td19558924.html#a19558924 ''' def __init__(self, dataset, covariance): self.covariance = covariance scipy.stats.gaussian_kde.__init__(self, dataset) def _compute_covariance(self): self.inv_cov = np.linalg.inv(self.covariance) self._norm_factor = sqrt(np.linalg.det(2*np.pi*self.covariance)) * self.n class gaussian_kde_covfact(stats.gaussian_kde): def __init__(self, dataset, covfact = 'scotts'): self.covfact = covfact scipy.stats.gaussian_kde.__init__(self, dataset) def _compute_covariance_(self): '''not used''' self.inv_cov = np.linalg.inv(self.covariance) self._norm_factor = sqrt(np.linalg.det(2*np.pi*self.covariance)) * self.n def covariance_factor(self): if self.covfact in ['sc', 'scotts']: return self.scotts_factor() if self.covfact in ['si', 'silverman']: return self.silverman_factor() elif self.covfact: return float(self.covfact) else: raise ValueError, \ 'covariance factor has to be scotts, silverman or a number' def reset_covfact(self, covfact): self.covfact = covfact self.covariance_factor() self._compute_covariance() def plotkde(covfact): gkde.reset_covfact(covfact) kdepdf = gkde.evaluate(ind) plt.figure() # plot histgram of sample plt.hist(xn, bins=20, normed=1) # plot estimated density plt.plot(ind, kdepdf, label='kde', color="g") # plot data generating density plt.plot(ind, alpha * stats.norm.pdf(ind, loc=mlow) + (1-alpha) * stats.norm.pdf(ind, loc=mhigh), color="r", label='DGP: normal mix') plt.title('Kernel Density Estimation - ' + str(gkde.covfact)) plt.legend() from numpy.testing import assert_array_almost_equal, \ assert_almost_equal, assert_ def test_kde_1d(): np.random.seed(8765678) n_basesample = 500 xn = np.random.randn(n_basesample) xnmean = xn.mean() xnstd = xn.std(ddof=1) print xnmean, xnstd # get kde for original sample gkde = stats.gaussian_kde(xn) # evaluate the density funtion for the kde for some points xs = np.linspace(-7,7,501) kdepdf = gkde.evaluate(xs) normpdf = stats.norm.pdf(xs, loc=xnmean, scale=xnstd) print 'MSE', np.sum((kdepdf - normpdf)**2) print 'axabserror', np.max(np.abs(kdepdf - normpdf)) intervall = xs[1] - xs[0] assert_(np.sum((kdepdf - normpdf)**2)*intervall < 0.01) #assert_array_almost_equal(kdepdf, normpdf, decimal=2) print gkde.integrate_gaussian(0.0, 1.0) print gkde.integrate_box_1d(-np.inf, 0.0) print gkde.integrate_box_1d(0.0, np.inf) print gkde.integrate_box_1d(-np.inf, xnmean) print gkde.integrate_box_1d(xnmean, np.inf) assert_almost_equal(gkde.integrate_box_1d(xnmean, np.inf), 0.5, decimal=1) assert_almost_equal(gkde.integrate_box_1d(-np.inf, xnmean), 0.5, decimal=1) assert_almost_equal(gkde.integrate_box(xnmean, np.inf), 0.5, decimal=1) assert_almost_equal(gkde.integrate_box(-np.inf, xnmean), 0.5, decimal=1) assert_almost_equal(gkde.integrate_kde(gkde), (kdepdf**2).sum()*intervall, decimal=2) assert_almost_equal(gkde.integrate_gaussian(xnmean, xnstd**2), (kdepdf*normpdf).sum()*intervall, decimal=2) ## assert_almost_equal(gkde.integrate_gaussian(0.0, 1.0), ## (kdepdf*normpdf).sum()*intervall, decimal=2) if __name__ == '__main__': # generate a sample n_basesample = 1000 np.random.seed(8765678) alpha = 0.6 #weight for (prob of) lower distribution mlow, mhigh = (-3,3) #mean locations for gaussian mixture xn = np.concatenate([mlow + np.random.randn(alpha * n_basesample), mhigh + np.random.randn((1-alpha) * n_basesample)]) # get kde for original sample #gkde = stats.gaussian_kde(xn) gkde = gaussian_kde_covfact(xn, 0.1) # evaluate the density funtion for the kde for some points ind = np.linspace(-7,7,101) kdepdf = gkde.evaluate(ind) plt.figure() # plot histgram of sample plt.hist(xn, bins=20, normed=1) # plot estimated density plt.plot(ind, kdepdf, label='kde', color="g") # plot data generating density plt.plot(ind, alpha * stats.norm.pdf(ind, loc=mlow) + (1-alpha) * stats.norm.pdf(ind, loc=mhigh), color="r", label='DGP: normal mix') plt.title('Kernel Density Estimation') plt.legend() gkde = gaussian_kde_covfact(xn, 'scotts') kdepdf = gkde.evaluate(ind) plt.figure() # plot histgram of sample plt.hist(xn, bins=20, normed=1) # plot estimated density plt.plot(ind, kdepdf, label='kde', color="g") # plot data generating density plt.plot(ind, alpha * stats.norm.pdf(ind, loc=mlow) + (1-alpha) * stats.norm.pdf(ind, loc=mhigh), color="r", label='DGP: normal mix') plt.title('Kernel Density Estimation') plt.legend() #plt.show() for cv in ['scotts', 'silverman', 0.05, 0.1, 0.5]: plotkde(cv) test_kde_1d() np.random.seed(8765678) n_basesample = 1000 xn = np.random.randn(n_basesample) xnmean = xn.mean() xnstd = xn.std(ddof=1) # get kde for original sample gkde = stats.gaussian_kde(xn)
apache-2.0
abhishekkrthakur/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_01_language_train_model.py
254
2253
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens vectorizer = TfidfVectorizer(ngram_range=(1, 3), analyzer='char', use_idf=False) # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf clf = Pipeline([ ('vec', vectorizer), ('clf', Perceptron()), ]) # TASK: Fit the pipeline on the training set clf.fit(docs_train, y_train) # TASK: Predict the outcome on the testing set in a variable named y_predicted y_predicted = clf.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
MartinDelzant/scikit-learn
sklearn/ensemble/tests/test_base.py
284
1328
""" Testing for the base module (sklearn.ensemble.base). """ # Authors: Gilles Louppe # License: BSD 3 clause from numpy.testing import assert_equal from nose.tools import assert_true from sklearn.utils.testing import assert_raise_message from sklearn.datasets import load_iris from sklearn.ensemble import BaggingClassifier from sklearn.linear_model import Perceptron def test_base(): # Check BaseEnsemble methods. ensemble = BaggingClassifier(base_estimator=Perceptron(), n_estimators=3) iris = load_iris() ensemble.fit(iris.data, iris.target) ensemble.estimators_ = [] # empty the list and create estimators manually ensemble._make_estimator() ensemble._make_estimator() ensemble._make_estimator() ensemble._make_estimator(append=False) assert_equal(3, len(ensemble)) assert_equal(3, len(ensemble.estimators_)) assert_true(isinstance(ensemble[0], Perceptron)) def test_base_zero_n_estimators(): # Check that instantiating a BaseEnsemble with n_estimators<=0 raises # a ValueError. ensemble = BaggingClassifier(base_estimator=Perceptron(), n_estimators=0) iris = load_iris() assert_raise_message(ValueError, "n_estimators must be greater than zero, got 0.", ensemble.fit, iris.data, iris.target)
bsd-3-clause
ctuning/ck
ck/repo/module/graph/module.py
1
52220
# # Collective Knowledge (various graphs for experiment) # # See CK LICENSE.txt for licensing details # See CK COPYRIGHT.txt for copyright details # # Developer: Grigori Fursin, [email protected], http://fursin.net # cfg={} # Will be updated by CK (meta description of this module) work={} # Will be updated by CK (temporal data) ck=None # Will be updated by CK (initialized CK kernel) # Local settings var_post_subgraph='subgraph' var_post_cur_subgraph='cur_subgraph' var_post_tmp_graph_file='graph_tmp_file' var_post_refresh_graph='refresh_graph' var_post_reset_graph='reset_graph' var_post_autorefresh='graph_autorefresh' var_post_autorefresh_time='graph_autorefresh_time' ############################################################################## # Initialize module def init(i): """ Input: {} Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 } """ return {'return':0} ############################################################################## # plot universal graph by flat dimensions def plot(i): """ Input: { (load_table_from_file) - load table directly from file or Select entries or table: (repo_uoa) or (experiment_repo_uoa) - can be wild cards (remote_repo_uoa) - if remote access, use this as a remote repo UOA (module_uoa) or (experiment_module_uoa) - can be wild cards (data_uoa) or (experiment_data_uoa) - can be wild cards (repo_uoa_list) - list of repos to search (module_uoa_list) - list of module to search (data_uoa_list) - list of data to search (search_dict) - search dict (ignore_case) - if 'yes', ignore case when searching OR table - experiment table (if drawing from other functions) (table_info) - point description (flat_keys_list) - list of flat keys to extract from points into table (order is important: for example, for plot -> X,Y,Z) (flat_keys_list_separate_graphs) - [ [keys], [keys], ...] - several graphs ... (sort_index) - (int) dimension to sort (labels_for_separate_graphs) - list of labels for separate graphs (flat_keys_index) - add all flat keys starting from this index (flat_keys_index_end) - add all flat keys ending with this index (default #min) (customize_dots) - if 'yes' and MPL engine, customize color and size from table_info (out_to_file) - save picture or html to file, if supported (will be preserved and not replotted - useful to have a copy of an original image when replotting graphs in interactive papers) (out_repo_uoa) - repo uoa where to save file (when reproducing graphs for interactive articles) (out_module_uoa) - module uoa where to save file (when reproducing graphs for interactive articles) (out_data_uoa) - data uoa where to save file (when reproducing graphs for interactive articles) (out_id) - graph ID in the created graph entry (out_common_meta) - graph common meta in the created graph entry (out_graph_extra_meta) - graph extra meta (parameters and description) (save_table_to_json_file) - save table to json file (save_info_table_to_json_file) - save info table (mtable) to json file (save_table_to_csv_file) - save table to csv file (need keys) (save_to_html) - if interactive or html-based graph, save to html (save_to_style) - if interactive or html-based graph, save to style (if needed) (display_x_error_bar) - if 'yes', display error bar on X axis (using next dim) (display_y_error_bar) - if 'yes', display error bar on Y axis (using next dim) (display_z_error_bar) - if 'yes', display error bar on Z axis (using next dim) Graphical parameters: plot_type - mpl_2d_scatter point_style - dict, setting point style for each separate graph {"0", "1", etc} x_ticks_period - (int) for bar graphs, put periodicity when to show number xmin xmax ymin ymax bound_lines - if 'yes', plot lines bounding all points ... bound_style - ':' by default bound_color - 'r' by default skip_colorbar - if 'yes', do not show colorbar in heatmaps colorbar_pad - (default = 0.15) - pad colorbar h_lines - list of X for horizontal lines h_lines_style h_lines_color v_lines - list of Y for vertical lines v_lines_style v_lines_color If density graph: (bins) - number of bins (int, default = 100) (cov_factor) - float covariance factor d3_div - div ID (ck_interactive). "body" if empty } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 (html) - html, if HTML generator such as d3 (style) - style for html, if HTML generator such as d3 } """ import os import json o=i.get('out','') pst=i.get('point_style',{}) otf=i.get('out_to_file','') otf_ruoa=i.get('out_repo_uoa','') otf_muoa=i.get('out_module_uoa','') otf_duoa=i.get('out_data_uoa','') xtp=i.get('x_ticks_period','') if xtp=='' or xtp==0: xtp=1 if xtp!='': xtp=int(xtp) lsg=i.get('labels_for_separate_graphs',[]) stjf=i.get('save_table_to_json_file','') sitjf=i.get('save_info_table_to_json_file','') stcf=i.get('save_table_to_csv_file','') table=i.get('table',[]) mtable=i.get('table_info', []) rk=i.get('real_keys',[]) cdots=i.get('customize_dots','') ltfj=i.get('load_table_from_file','') if ltfj!='': rx=ck.load_json_file({'json_file':ltfj}) if rx['return']>0: return rx table=rx['dict'] # Check if table already there if len(table)==0: # Get table from entries tmp_a=i.get('action','') tmp_mu=i.get('module_uoa','') i['action']='get' i['module_uoa']=cfg['module_deps']['experiment'] if i.get('remote_repo_uoa','')!='': i['repo_uoa']=i['remote_repo_uoa'] del(i['remote_repo_uoa']) if 'out' in i: del(i['out']) r=ck.access(i) if r['return']>0: return r table=r['table'] mtable=r.get('mtable',{}) rk=r['real_keys'] merged_meta=r.get('merged_meta',{}) pifs=r.get('plot_info_from_scenario',{}) if len(pifs)>0: import copy ii=copy.deepcopy(i) i=pifs i.update(ii) i['action']=tmp_a i['module_uoa']=tmp_mu else: # If sort/substitute si=i.get('sort_index','') if si!='': rx=ck.access({'action':'sort_table', 'module_uoa':cfg['module_deps']['experiment'], 'table':table, 'sort_index':si}) if rx['return']>0: return rx table=rx['table'] # Substitute all X with a loop (usually to sort Y and compare with predictions in scatter graphs, etc) if i.get('substitute_x_with_loop','')=='yes': rx=ck.access({'action':'substitute_x_with_loop', 'module_uoa':cfg['module_deps']['experiment'], 'table':table}) if rx['return']>0: return rx table=rx['table'] if len(table)==0: return {'return':1, 'error':'no points found'} # Check if out to module pp='' if otf_duoa!='': import os if otf_muoa=='': otf_muoa=work['self_module_uid'] # Check extra params o_id=os.path.splitext(os.path.basename(otf))[0] o_cm=i.get('out_common_meta','') o_gem=i.get('out_graph_extra_meta',{}) # Try to load first ddd={} xid=-1 ii={'action':'load', 'module_uoa':otf_muoa, 'repo_uoa':otf_ruoa, 'data_uoa':otf_duoa} rx=ck.access(ii) if rx['return']==0: ddd=rx['dict'] dddx=ddd.get('graphs',[]) if o_id!='': for q in range(0, len(dddx)): if dddx[q].get('id','')==o_id: xid=q break # Updating if 'graphs' not in ddd: ddd['graphs']=[] ddd.update(o_cm) # Prepare graph params import copy ii=copy.deepcopy(i) for q in cfg['remove_keys_for_interactive_graphs']: if q in ii: del(ii[q]) dddg={'params':ii} dddg.update(o_gem) if o_id!='': dddg['id']=o_id else: dddg['id']='default' if len(i.get('out_graph_meta',{}))>0: dddg.update(i['out_graph_meta']) if xid!=-1: ddd['graphs'][xid]=dddg else: ddd['graphs'].append(dddg) # Try to update this entry to be sure that we can record there, and get path ii={'action':'update', 'module_uoa':otf_muoa, 'repo_uoa':otf_ruoa, 'data_uoa':otf_duoa, 'dict':ddd, 'substitute':'yes', 'ignore_update':'yes'} rx=ck.access(ii) if rx['return']>0: return rx pp=rx['path'] # Save table to JSON file, if needed if stjf!='': if pp!='': ppx=os.path.join(pp, stjf) else: ppx=stjf rx=ck.save_json_to_file({'json_file':ppx, 'dict':table}) if rx['return']>0: return rx # Save info table to JSON file, if needed if sitjf!='': if pp!='': ppx=os.path.join(pp, sitjf) else: ppx=sitjf rx=ck.save_json_to_file({'json_file':ppx, 'dict':mtable}) if rx['return']>0: return rx # Save table to CSV file, if needed if stcf!='': if pp!='': ppx=os.path.join(pp, stcf) else: ppx=stcf ii={'action':'convert_table_to_csv', 'module_uoa':cfg['module_deps']['experiment'], 'table':table, 'keys':rk, 'merge_multi_tables':'yes', 'file_name':ppx} rx=ck.access(ii) if rx['return']>0: return rx # Prepare libraries pt=i.get('plot_type','') html='' style='' hlines=i.get('h_lines',[]) vlines=i.get('v_lines',[]) # Check if display error bars xerr=i.get('display_x_error_bar','') yerr=i.get('display_y_error_bar','') zerr=i.get('display_z_error_bar','') xerr2=i.get('display_x_error_bar2','') # type 2 yerr2=i.get('display_y_error_bar2','') zerr2=i.get('display_z_error_bar2','') # Find min/max in all data and all dimensions / per sub-graph tmin=[] tmax=[] stmin={} stmax={} for g in table: gt=table[g] stmin[g]=[] stmax[g]=[] mgt=[] if g in mtable: mgt=mtable[g] xpst=pst.get(g,{}) remove_permanent=False if xpst.get('remove_permanent','')=='yes': remove_permanent=True leave_only_permanent=False if xpst.get('leave_only_permanent','')=='yes': leave_only_permanent=True ngt=[] # for k in gt: for uindex in range(0,len(gt)): k=gt[uindex] if (remove_permanent or leave_only_permanent) and uindex<len(mgt): mu=mgt[uindex] if remove_permanent and mu.get('permanent','')=='yes': continue if leave_only_permanent and mu.get('permanent','')!='yes': continue ngt.append(k) if xpst.get('skip_from_dims','')=='yes': continue for d in range(0, len(k)): v=k[d] if len(tmin)<=d: tmin.append(v) tmax.append(v) else: if v!=None and v<tmin[d]: tmin[d]=v if v!=None and v>tmax[d]: tmax[d]=v if len(stmin[g])<=d and v!=None: stmin[g].append(v) stmax[g].append(v) else: if v!=None and v<stmin[g][d]: stmin[g][d]=v if v!=None and v>stmax[g][d]: stmax[g][d]=v table[g]=ngt ####################################################################### MPL ### if pt.startswith('mpl_'): import matplotlib as mpl if ck.cfg.get('use_internal_engine_for_plotting','')=='yes': mpl.use('agg') # if XWindows is not installed, use internal engine elif os.environ.get('CK_MPL_BACKEND','')!='': mpl.use(os.environ['CK_MPL_BACKEND']) import matplotlib.pyplot as plt fsize=int(i.get('font_size','10')) fweight=i.get('font_weight','normal') ffamily=i.get('font_family','arial') # Set font font=i.get('font',{}) if len(font)==0: font = {'family':ffamily, 'weight':fweight, 'size': fsize} plt.rc('font', **font) # Configure graph gs=cfg['mpl_point_styles'] sizex=i.get('mpl_image_size_x','') if sizex=='': sizex='9' sizey=i.get('mpl_image_size_y','') if sizey=='': sizey='5' dpi=i.get('mpl_image_dpi','') if dpi=='': dpi='100' if sizex!='' and sizey!='' and dpi!='': fig=plt.figure(figsize=(int(sizex),int(sizey))) else: fig=plt.figure() if i.get('plot_grid','')=='yes': plt.grid(True) bl=i.get('bound_lines','') if pt=='mpl_3d_scatter' or pt=='mpl_3d_trisurf': from mpl_toolkits.mplot3d import Axes3D sp=fig.add_subplot(111, projection='3d') else: sp=fig.add_subplot(111) if i.get('xscale_log','')=='yes': sp.set_xscale('log') if i.get('yscale_log','')=='yes': sp.set_yscale('log') if i.get('zscale_log','')=='yes': sp.set_zscale('log') # If density or heatmap, find min and max for both graphs: if pt=='mpl_1d_density' or pt=='mpl_1d_histogram' or pt=='mpl_2d_heatmap' or pt=='mpl_3d_scatter' or pt=='mpl_3d_trisurf': index=0 if pt=='mpl_2d_heatmap': index=2 dmean=0.0 start=True dmin=0.0 dmax=0.0 it=0 dt=0 for g in table: gt=table[g] for k in gt: v=k[index] if v!=None and v!='': if start: dmin=v start=False else: dmin=min(dmin, v) if start: dmax=v start=False else: dmax=max(dmax, v) it+=1 dt+=v if it!=0: dmean=dt/it # If heatmap, prepare colorbar if pt=='mpl_2d_heatmap' or pt=='mpl_3d_trisurf': from matplotlib import cm if len(i.get('color_dict',{}))>0: xcmap = mpl.colors.LinearSegmentedColormap('my_colormap', i['color_dict'], 1024) else: xcmap = plt.cm.get_cmap('coolwarm') if i.get('shifted_colormap','')=='yes': r=ck.load_module_from_path({'path':work['path'], 'module_code_name':'module_shifted_colormap', 'skip_init':'yes'}) if r['return']>0: return r scm=r['code'] xx_start=dmin if i.get('shifted_colormap_start','')!='': xx_start=i['shifted_colormap_start'] xx_stop=dmax if i.get('shifted_colormap_stop','')!='': xx_stop=i['shifted_colormap_stop'] xx_mid=1.0 if i.get('shifted_colormap_mid','')!='': xx_mix=i['shifted_colormap_mid'] xcmap = scm.shiftedColorMap(xcmap, start=xx_start, stop=xx_stop, midpoint=xx_mid, name='shifted') # Check forced min/max for different axis xmin=i.get('xmin','') xmax=i.get('xmax','') ymin=i.get('ymin','') ymax=i.get('ymax','') zmin=i.get('zmin','') zmax=i.get('zmax','') if xmin!='': sp.set_xlim(left=float(xmin)) if xmax!='': sp.set_xlim(right=float(xmax)) if ymin!='': sp.set_ylim(bottom=float(ymin)) if ymax!='': sp.set_ylim(top=float(ymax)) if zmin!='': sp.set_zlim(bottom=float(zmin)) if zmax!='': sp.set_zlim(top=float(zmax)) # Check if invert axis if i.get('invert_x_axis','')=='yes': plt.gca().invert_xaxis() if i.get('invert_y_axis','')=='yes': plt.gca().invert_yaxis() if i.get('invert_z_axis','')=='yes': plt.gca().invert_zaxis() if pt=='mpl_2d_bars' or pt=='mpl_2d_lines': ind=[] gt=table['0'] xt=0 for q in gt: xt+=1 if xt==xtp: v=q[0] xt=0 else: v=0 ind.append(v) sp.set_xticks(ind) sp.set_xticklabels(ind, rotation=-20) width=0.9/len(table) # Iterate over separate graphs and add points s=0 for g in sorted(table, key=int): gt=table[g] mgt=[] if g in mtable: mgt=mtable[g] lbl='' if s<len(lsg): lbl=lsg[s] xpst=pst.get(g,{}) elw=int(xpst.get('elinewidth',0)) xfmt=xpst.get('fmt','') xcapsize=xpst.get('capsize','') if xcapsize=='' or xcapsize==None: xcapsize=None else: xcapsize=int(xcapsize) cl=xpst.get('color','') if cl=='': cl=gs[s]['color'] sz=xpst.get('size','') if sz=='': sz=gs[s]['size'] connect_lines=xpst.get('connect_lines','') mrk=xpst.get('marker','') if mrk=='': mrk=gs[s]['marker'] lst=xpst.get('line_style','') if lst=='': lst=gs[s].get('line_style', '-') heatmap=None if pt=='mpl_2d_scatter' or pt=='mpl_2d_bars' or pt=='mpl_2d_lines': mx=[] mxerr=[] my=[] myerr=[] mcolor=[] msize=[] # for u in gt: for uindex in range(0,len(gt)): u=gt[uindex] iu=0 # Check if extra info (color and size) minfo={} if uindex<len(mgt): minfo=mgt[uindex] xcl=cl if minfo.get('color','')!='': xcl=minfo['color'] mcolor.append(xcl) xsz=sz if minfo.get('size','')!='': xsz=minfo['size'] msize.append(int(xsz)) # Check if no None partial=False for q in u: if q==None: partial=True break if not partial: mx.append(u[iu]) iu+=1 if xerr=='yes': mxerr.append(u[iu]) iu+=1 my.append(u[iu]) iu+=1 if yerr=='yes': myerr.append(u[iu]) iu+=1 if pt=='mpl_2d_bars': mx1=[] # mx2=[] # names={} # iq=0 for q in mx: # if type(q)!=int and type(q)!=float: # if q in names: q=names[q] # else: # names[q]=iq # q=iq # iq+=1 # mx2.append(str(q)) mx1.append(q+width*s) if yerr=='yes': sp.bar(mx1, my, width=width, edgecolor=cl, facecolor=cl, align='center', yerr=myerr, label=lbl) # , error_kw=dict(lw=2)) else: sp.bar(mx1, my, width=width, edgecolor=cl, facecolor=cl, align='center', label=lbl) elif pt=='mpl_2d_lines': if yerr=='yes': sp.errorbar(mx, my, yerr=myerr, ls='none', c=cl, elinewidth=elw) sp.plot(mx, my, c=cl, label=lbl) else: draw_scatter=False if xerr=='yes' and yerr=='yes': if cdots=='yes': sp.errorbar(mx, my, xerr=mxerr, yerr=myerr, ls='none', c=mcolor, elinewidth=elw, label=lbl, fmt=xfmt) else: sp.errorbar(mx, my, xerr=mxerr, yerr=myerr, ls='none', c=cl, elinewidth=elw, label=lbl, fmt=xfmt) elif xerr=='yes' and yerr!='yes': if cdots=='yes': sp.errorbar(mx, my, xerr=mxerr, ls='none', c=mcolor, elinewidth=elw, label=lbl, fmt=xfmt) else: sp.errorbar(mx, my, xerr=mxerr, ls='none', c=cl, elinewidth=elw, label=lbl, fmt=xfmt) elif yerr=='yes' and xerr!='yes': if cdots=='yes': sp.errorbar(mx, my, yerr=myerr, ls='none', c=mcolor, elinewidth=elw, label=lbl, fmt=xfmt, capsize=xcapsize) else: sp.errorbar(mx, my, yerr=myerr, ls='none', c=cl, elinewidth=elw, label=lbl, fmt=xfmt, capsize=xcapsize) else: draw_scatter=True if draw_scatter or i.get('force_center_dot','')=='yes': if cdots=='yes': sp.scatter(mx, my, s=msize, edgecolor=mcolor, c=mcolor, marker=mrk, label=lbl) else: sp.scatter(mx, my, s=int(sz), edgecolor=cl, c=cl, marker=mrk, label=lbl) if connect_lines=='yes': if cdots=='yes': sp.plot(mx, my, c=mcolor, label=lbl) else: sp.plot(mx, my, c=cl, label=lbl) if xpst.get('frontier','')=='yes': # not optimal solution, but should work (need to sort to draw proper frontier) a=[] for q in range(0, len(mx)): a.append([mx[q],my[q]]) b=sorted(a, key=lambda k: k[0]) if xpst.get('reuse_dims','')=='yes': mx=[b[0][0]] my=[tmax[1]] elif xpst.get('dims_from_this_graph','')=='yes': mx=[stmin[g][0]] my=[stmax[g][1]] else: mx=[tmin[0]] my=[tmax[1]] for j in b: mx.append(j[0]) my.append(j[1]) if xpst.get('reuse_dims','')=='yes': mx.append(tmax[0]) my.append(b[-1][1]) elif xpst.get('dims_from_this_graph','')=='yes': mx.append(stmax[g][0]) my.append(stmin[g][1]) else: mx.append(tmax[0]) my.append(tmin[1]) sp.plot(mx, my, c=cl, linestyle=lst, label=lbl) elif pt=='mpl_1d_density' or pt=='mpl_1d_histogram': if not start: # I.e. we got non empty points xbins=i.get('bins', 100) xcov_factor=i.get('cov_factor', '') mx=[] for u in gt: mx.append(u[0]) ii={'action':'analyze', 'min':dmin, 'max':dmax, 'module_uoa':cfg['module_deps']['math.variation'], 'bins':xbins, 'cov_factor':xcov_factor, 'characteristics_table':mx} r=ck.access(ii) if r['return']>0: return r xs=r['xlist'] dxs=r['ylist'] pxs=r['xlist2s'] dpxs=r['ylist2s'] if pt=='mpl_1d_density': sp.plot(xs,dxs, label=lbl) sp.plot(pxs, dpxs, 'x', mec='r', mew=2, ms=8) #, mfc=None, mec='r', mew=2, ms=8) sp.plot([dmean,dmean],[0,dpxs[0]],'g--',lw=2) else: plt.hist(mx, bins=xbins, normed=True, label=lbl) elif pt=='mpl_2d_heatmap' or pt=='mpl_3d_scatter' or pt=='mpl_3d_trisurf': mx=[] mxerr=[] my=[] myerr=[] mz=[] mzerr=[] for u in gt: iu=0 # Check if no None partial=False for q in u: if q==None: partial=True break if not partial: mx.append(u[iu]) iu+=1 if xerr=='yes': mxerr.append(u[iu]) iu+=1 my.append(u[iu]) iu+=1 if yerr=='yes': myerr.append(u[iu]) iu+=1 mz.append(u[iu]) iu+=1 if zerr=='yes': mzerr.append(u[iu]) iu+=1 if pt=='mpl_2d_heatmap': heatmap=sp.scatter(mx, my, c=mz, s=int(sz), marker=mrk, lw=elw, cmap=xcmap) elif pt=='mpl_3d_scatter': heatmap=sp.scatter(mx,my,mz, c=cl, s=int(sz), marker=mrk, lw=elw) elif pt=='mpl_3d_trisurf': # heatmap=sp.plot_trisurf(mx,my,mz,cmap=cm.coolwarm, lw=elw) heatmap=sp.plot_trisurf(mx,my,mz,cmap=xcmap, lw=elw) s+=1 if s>=len(gs):s=0 # If heatmap, finish colors if (pt=='mpl_2d_heatmap' or pt=='mpl_3d_trisurf') and i.get('skip_colorbar','')!='yes': colorbar_pad=i.get('colorbar_pad','') if colorbar_pad=='': colorbar_pad=0.15 colorbar_pad=float(colorbar_pad) plt.colorbar(heatmap, orientation=xpst.get('colorbar_orietation','horizontal'), label=xpst.get('colorbar_label',''), pad=colorbar_pad) # For lines dxmin=tmin[0] if xmin!='': dxmin=float(xmin) dxmax=tmax[0] if xmax!='': dxmax=float(xmax) dymin=tmin[1] if ymin!='': dymin=float(ymin) dymax=tmax[1] if ymax!='': dymax=float(ymax) # If bounds if bl=='yes': xbs=i.get('bound_style',':') xbc=i.get('bound_color','r') sp.plot([tmin[0],tmax[0]],[tmin[1],tmin[1]], linestyle=xbs, c=xbc) sp.plot([tmin[0],tmin[0]],[tmin[1],tmax[1]], linestyle=xbs, c=xbc) # If horizontal lines if len(hlines)>0: xbs=i.get('h_lines_style','--') xbc=i.get('h_lines_color','r') for q in hlines: sp.plot([dxmin,dxmax],[q,q], linestyle=xbs, c=xbc) # If horizontal lines if len(vlines)>0: xbs=i.get('v_lines_style','--') xbc=i.get('v_lines_color','r') for q in vlines: sp.plot([q,q],[dymin,dymax], linestyle=xbs, c=xbc) # Checking scaling if i.get('x_ticks_scale','')!='': xticks = sp.get_xticks()/float(i['x_ticks_scale']) sp.set_xticklabels(xticks) if i.get('y_ticks_scale','')!='': yticks = sp.get_yticks()/float(i['y_ticks_scale']) sp.set_yticklabels(yticks) if i.get('z_ticks_scale','')!='': zticks = sp.get_zticks()/float(i['z_ticks_scale']) sp.set_zticklabels(zticks) # Set axes labels xlab=i.get('axis_x_labels',[]) if len(xlab)>0: ind=[] qq=0 for q in xlab: ind.append(qq) qq+=1 sp.set_xticks(ind) xrot=i.get('axis_x_rotation','') if xrot=='': sp.set_xticklabels(xlab) else: sp.set_xticklabels(xlab, rotation=xrot) ylab=i.get('axis_y_labels',[]) if len(ylab)>0: sp.set_yticks(ylab) sp.set_yticklabels(ylab) # Set axes names axd=i.get('axis_x_desc','') if axd!='': plt.xlabel(axd) ayd=i.get('axis_y_desc','') if ayd!='': plt.ylabel(ayd) atitle=i.get('title','') if atitle!='': plt.title(atitle) # handles, labels = plt.get_legend_handles_labels() plt.legend() #handles, labels) try: plt.tight_layout() except Exception: pass if otf=='': plt.show() else: if pp!='': ppx=os.path.join(pp, otf) else: ppx=otf plt.savefig(ppx) ####################################################################### D3 ### elif pt.startswith('d3_'): # Try to load template ppx=os.path.join(work['path'],'templates',pt+'.html') if not os.path.isfile(ppx): return {'return':1, 'error':'template for this graph is not found'} rx=ck.load_text_file({'text_file':ppx}) if rx['return']>0: return rx html=rx['string'] # Check if style is there (optional) ppx=os.path.join(work['path'],'templates',pt+'.style') if os.path.isfile(ppx): rx=ck.load_text_file({'text_file':ppx}) if rx['return']>0: return rx style=rx['string'] # Convert data table into JSON rx=ck.dumps_json({'dict':table}) if rx['return']>0: return rx stable=rx['string'] # Convert info table into JSON rx=ck.dumps_json({'dict':mtable}) if rx['return']>0: return rx smtable=rx['string'] # Convert point styles into JSON rx=ck.dumps_json({'dict':pst}) if rx['return']>0: return rx spst=rx['string'] html=html.replace('$#x_ticks_period#$',str(xtp)) html=html.replace('$#display_x_error_bar#$',xerr) html=html.replace('$#display_y_error_bar#$',yerr) html=html.replace('$#display_z_error_bar#$',zerr) html=html.replace('$#display_x_error_bar2#$',xerr2) html=html.replace('$#display_y_error_bar2#$',yerr2) html=html.replace('$#display_z_error_bar2#$',zerr2) html=html.replace('$#cm_info_json#$',smtable) html=html.replace('$#cm_point_style_json#$',spst) html=html.replace('$#cm_data_json#$',stable) html=html.replace('$#cm_info_json#$',smtable) html=html.replace('$#cm_point_style_json#$',spst) html=html.replace('$#h_lines#$',json.dumps(hlines)) html=html.replace('$#v_lines#$',json.dumps(vlines)) # Set axes names axd=i.get('axis_x_desc','') html=html.replace('$#axis_x_desc#$', axd) ayd=i.get('axis_y_desc','') html=html.replace('$#axis_y_desc#$', ayd) size_x=i.get('image_width','') if size_x=='': size_x=600 html=html.replace('$#ck_image_width#$', str(size_x)) size_y=i.get('image_height','') if size_y=='': size_y=400 html=html.replace('$#ck_image_height#$', str(size_y)) xmin=i.get('xmin','') html=html.replace('$#ck_xmin#$', str(xmin)) xmax=i.get('xmax','') html=html.replace('$#ck_xmax#$', str(xmax)) ymin=i.get('ymin','') html=html.replace('$#ck_ymin#$', str(ymin)) ymax=i.get('ymax','') html=html.replace('$#ck_ymax#$', str(ymax)) # Save html to file (do not hardwire URLs) x=i.get('out_to_file','') if x!='': if pp!='': ppx=os.path.join(pp, x) else: ppx=x rx=ck.save_text_file({'text_file':ppx, 'string':html}) if rx['return']>0: return rx # Save style to file, if needed x=i.get('save_to_style','') if x!='': if pp!='': ppx=os.path.join(pp, x) else: ppx=x rx=ck.save_text_file({'text_file':ppx, 'string':style}) if rx['return']>0: return rx # Update URLs if needed (for example, to load .js files from CK repo) url0=i.get('wfe_url','') if url0=='': url0=ck.cfg.get('wfe_url_prefix','') html=html.replace('$#ck_root_url#$', url0) # Save working html locally to visualize without CK y=i.get('d3_div','') y1='' y2='' if y=='': y='body' else: y1='<div id="'+y+'">\n\n' y2='\n</div>\n' y='div#'+y html=html.replace('$#ck_where#$',y) if i.get('save_to_html','')!='': x='<html>\n\n<style>\n'+style+'</style>\n\n'+'<body>\n\n'+y1+html+y2+'\n\n</body>\n</html>\n' x=x.replace('$#ck_where#$',y) rx=ck.save_text_file({'text_file':i['save_to_html'], 'string':x}) if rx['return']>0: return rx else: return {'return':1, 'error':'this type of plot ('+pt+') is not supported'} return {'return':0, 'html':html, 'style':style} ############################################################################## # Continuously updated plot def continuous_plot(i): """ Input: { } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 } """ for q in range(0, 1000): r=plot(i) if r['return']>0: return r x=ck.inp({'text':'Press any key'}) return {'return':0} ############################################################################## # view entry as html def html_viewer(i): """ Input: { data_uoa url_base url_pull url_cid (subgraph) url_pull_tmp tmp_data_uoa url_wiki html_share form_name - current form name (all_params) } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 } """ import os h='' st='' raw='no' top='no' duoa=i['data_uoa'] burl=i['url_base'] purl=i['url_pull'] wurl=i.get('url_wiki','') url_cid=i.get('url_cid','') tpurl=i['url_pull_tmp'] tpuoa=i['tmp_data_uoa'] ap=i.get('all_params',{}) ruoa=ap.get('ck_top_repo','') muoa=ap.get('ck_top_module','') if muoa=='': muoa=work['self_module_uid'] cparams=ap.get('graph_params','') # current graph params hshare=i.get('html_share','') itype='png' # Check autorefresh ar=ap.get(var_post_autorefresh,'') if ar=='on': ap[var_post_refresh_graph]='yes' form_name=i['form_name'] form_submit='document.'+form_name+'.submit();' art=ap.get(var_post_autorefresh_time,'') iart=5 if art!='': try: iart=int(art) except ValueError: iart=5 if ar=='on': h+='\n' h+='<script language="javascript">\n' h+=' <!--\n' h+=' setTimeout(\''+form_submit+'\','+str(iart*1000)+');\n' h+=' //-->\n' h+='</script>\n' h+='\n' # Set replotting jj={'action':'create_input', 'module_uoa':cfg['module_deps']['wfe'], 'type':'hidden', 'name': var_post_refresh_graph, 'value':'yes'} rx=ck.access(jj) if rx['return']>0: return rx h+=rx['html']+'\n' if duoa!='': # Load entry rx=ck.access({'action':'load', 'module_uoa':muoa, 'data_uoa':duoa}) if rx['return']>0: return rx pp=rx['path'] dd=rx['dict'] duid=rx['data_uid'] name=dd.get('name','') gsr=dd.get('get_shared_repo','') sruoa=dd.get('scripts_repo_uoa','') smuoa=dd.get('scripts_module_uoa','') sduoa=dd.get('scripts_data_uoa','') h+=' <span id="ck_entries1a">'+name+'</span><br>\n' h+=' <div id="ck_entries_space4"></div>\n' graphs=dd.get('graphs',[]) # If more than one subgraph, prepare selector hsb='' igraph=0 cgraph=0 x=ap.get(var_post_cur_subgraph,'') try: cgraph=int(x) except ValueError: cgraph=0 # sgraph=i.get(var_post_subgraph,'') # if sgraph=='': sgraph=ap.get(var_post_subgraph,'') if sgraph=='': sgraph=i.get('subgraph','') if len(graphs)>1: dx=[] jgraph=0 for q in graphs: vid=q.get('id','') if sgraph=='': sgraph=vid if vid==sgraph: igraph=jgraph x=q.get('name','') if x=='': x=vid dx.append({'name':vid, 'value':vid}) jgraph+=1 jj={'action':'create_selector', 'module_uoa':cfg['module_deps']['wfe'], 'name': var_post_subgraph, 'onchange':form_submit, 'data':dx, 'selected_value':sgraph} rx=ck.access(jj) if rx['return']>0: return rx hsb=rx['html']+'\n' if igraph!=cgraph: ap[var_post_reset_graph]='yes' cgraph=igraph # Save current subgraph to detect change and reset ... jj={'action':'create_input', 'module_uoa':cfg['module_deps']['wfe'], 'type':'hidden', 'name': var_post_cur_subgraph, 'value':str(cgraph)} rx=ck.access(jj) if rx['return']>0: return rx h+=rx['html']+'\n' # Visualize gid='' if igraph<len(graphs): g=graphs[igraph] output=g.get('output','') gid=g.get('id','') if gid!='': # Get graph params if g.get('notes','')!='': h+='<i>'+g['notes']+'</i>' pjson=os.path.join(pp, gid+'.json') if not os.path.isfile(pjson): pjson='' pcsv=os.path.join(pp, gid+'.csv') if not os.path.isfile(pcsv): pcsv='' h+='<div id="ck_entries_space4"></div>\n' if hshare!='': h+='<div id="ck_entries_space4"></div>\n' h+=hshare h+=' <div id="ck_entries_space4"></div>\n' h+='<div style="text-align: right;">' if wurl!='': h+='[&nbsp;<a href="'+wurl+'">Discussion wiki (comments, reproducibility, etc.)</a>&nbsp;]' h+='</div>\n' # h+=' <hr class="ck_hr">\n' if hsb!='': h+=' <div id="ck_entries_space4"></div>\n' h+='<center>Select subgraph:&nbsp;'+hsb+'</center>\n' # h+=' <hr class="ck_hr">\n' # Check if interactive (html + style already prepared) if output=='html': image=gid+'.html' else: image=gid+'.'+itype params=g.get('params',{}) problem_converting_json='' if var_post_reset_graph not in ap and cparams!='': rx=ck.convert_json_str_to_dict({'str':cparams, 'skip_quote_replacement':'yes'}) if rx['return']>0: problem_converting_json=rx['error'] else: params=rx['dict'] rx=ck.dumps_json({'dict':params, 'sort_keys':'yes'}) if rx['return']>0: return rx jparams=rx['string'] # Check if need to regenerate problem='' image_orig=image himage='' if var_post_refresh_graph in ap: image_orig='' import copy ii=copy.deepcopy(params) ii['action']='plot' ii['module_uoa']=work['self_module_uoa'] image=ap.get(var_post_tmp_graph_file,'') if image=='': rx=ck.gen_tmp_file({'prefix':'tmp-', 'suffix':'.'+itype, 'remove_dir':'yes'}) if rx['return']>0: return rx image=rx['file_name'] ii['out_to_file']=image # Preset current entry params jj={'action':'create_input', 'module_uoa':cfg['module_deps']['wfe'], 'type':'hidden', 'name': var_post_tmp_graph_file, 'value':image} rx=ck.access(jj) if rx['return']>0: return rx h+=rx['html']+'\n' if ck.cfg.get('graph_tmp_repo_uoa','')!='': ii['out_repo_uoa']=ck.cfg['graph_tmp_repo_uoa'] ii['out_module_uoa']='tmp' ii['out_data_uoa']=tpuoa # (save_table_to_json_file) - save table to json file rx=ck.access(ii) if rx['return']>0: problem=rx['error'] purl=tpurl # Prepare html size_x=params.get('size_x','') size_y=params.get('size_y','') h+=' <table border="0" cellpadding="3" width="100%">\n' h+=' <tr>\n' extra='' if size_x!='': extra+='width="'+str(size_x)+'" ' h+=' <td valign="top" '+extra+'>\n' h+=' <div id="ck_entries">\n' h+=' <b><small>Graph:</small></b>\n' if problem!='': h+='<br><br><span style="color:red;"><i>Problem: '+problem+'!</i></span><br>\n' else: if output=='html' and image!='': # Check if style exists pstyle=os.path.join(pp, gid+'.style') if os.path.isfile(pstyle): rx=ck.load_text_file({'text_file':pstyle}) if rx['return']>0: return rx st=rx['string'] # Generate UID rx=ck.gen_uid({}) if rx['return']>0: return rx uid=rx['data_uid'] div_with_uid='ck_interactive_'+uid h+='<div id="'+div_with_uid+'">\n' z=muoa+':'+duoa if var_post_refresh_graph in ap: z=url_cid import os image_st=os.path.splitext(image)[0]+'.style' h+='$#ck_include_start#${"cid":"'+z+'", "where":"div#'+div_with_uid+'", "html":"'+image+'", "style":"'+image_st+'"}$#ck_include_stop#$\n' h+='</div>\n' else: if image!='': if size_y!='': extra+='height="'+str(size_y)+'" ' himage='<img src="'+purl+image+'" '+extra+'>' h+=' '+himage h+=' </div>\n' h+=' </td>\n' h+=' <td valign="top">\n' x='width:99%;' if size_y!='': x+='height:'+str(size_y)+'px;' h+=' <div id="ck_entries">\n' h+=' <b><small>Graph params (to customize/reproduce):</small></b>\n' if problem_converting_json!='': h+='<br><br><span style="color:red;"><i>'+problem_converting_json+'</i></span><br>\n' h+=' <textarea name="graph_params" style="'+x+'">\n' h+=jparams+'\n' h+=' </textarea><br>\n' h+=' </div>\n' h+=' </td>\n' h+=' </tr>\n' h+='</table>\n' # h+=' <hr class="ck_hr">\n' if g.get('skip_control','')!='yes': h+='<center>\n' h+='<button type="submit" name="'+var_post_refresh_graph+'">Replot graph</button>\n' h+='<button type="submit" name="'+var_post_reset_graph+'">Reset graph</button>\n' checked='' if ar=='on': checked=' checked ' h+='&nbsp;&nbsp;&nbsp;Auto-replot graph:&nbsp;<input type="checkbox" name="'+var_post_autorefresh+'" id="'+var_post_autorefresh+'" onchange="submit()"'+checked+'>,' h+='&nbsp;seconds: <input type="text" name="'+var_post_autorefresh_time+'" value="'+str(iart)+'">\n' h+='</center>\n' if g.get('skip_reproduce','')!='yes': # h+='<hr class="ck_hr">\n' h+='<center>\n' h+='<div id="ck_entries" style="background-color: #dfffbf;">\n' h+='<b>Reproducing graph:</b>\n' h+='<table width="99%">\n' h+=' <tr>\n' h+=' <td valign="top" align="left" width="44%">\n' h+=' <table border="0" cellpadding="5">\n' h+=' <tr>\n' h+=' <td valign="top" width="140"><b>Experiment entries:</b></td>\n' h+=' <td valign="top"><i>\n' duoal=params.get('data_uoa_list','') if len(duoal)>0: h+='\n' for q in duoal: h+='<a href="'+burl+'wcid=experiment:'+q+'">'+q+'</a><br>\n' h+='\n' h+=' </i></td>\n' h+=' </tr>\n' if smuoa!='' and sduoa!='': cid=smuoa+':'+sduoa if sruoa!='': cid=sruoa+':'+cid h+=' <tr>\n' h+=' <td valign="top"><b>Scripts to rebuild:</b></td>\n' h+=' <td valign="top"><i>\n' h+=' ck find '+cid+'<br>\n' h+=' <a href="'+burl+'wcid='+cid+'">View in CK viewer</a>\n' h+=' </i></td>\n' h+=' </tr>\n' if output!='html': h+=' <tr>\n' h+=' <td valign="top"><b>Replay graph from CMD:</b></td>\n' h+=' <td valign="top"><i>\n' h+=' ck replay graph:'+duoa+' id='+gid+'\n' h+=' </i></td>\n' h+=' </tr>\n' h+=' </table>\n' h+=' </td>\n' h+=' <td valign="top" align="left" width="56%">\n' h+=' <table border="0" cellpadding="5">\n' if gsr!='': h+=' <tr>\n' h+=' <td valign="top" width="250"><b>Obtain shared CK repo with all artifacts:</b></td>\n' h+=' <td valign="top">\n' h+=' <i>'+gsr+'</i>\n' h+=' </td>\n' h+=' </tr>\n' refresh=False if var_post_refresh_graph in ap: refresh=True # if (pjson!='' or pcsv!='') and image_orig!='' and himage!='': # if (pjson!='' or pcsv!='') and not refresh: # if refresh, table may change x1=purl+gid+'.json' x2=purl+gid+'.csv' h+=' <tr>\n' h+=' <td valign="top"><b>Original experiment table:</b></td>\n' h+=' <td valign="top"><i>\n' if pjson!='': h+=' <a href="'+x1+'">Download in JSON</a>;&nbsp;&nbsp' if pcsv!='': h+=' <a href="'+x2+'">Download in CSV</a>\n' h+=' </i></td>\n' h+=' </tr>\n' if image_orig!='' and himage!='': h+=' <tr>\n' h+=' <td valign="top"><b>Embedd original image into interactive report/paper:</b></td>\n' h+=' <td valign="top"><i>\n' h+=' '+himage.replace('<','&lt;').replace('>','&gt;')+'\n' h+=' </i></td>\n' h+=' </tr>\n' h+=' </table>\n' h+=' </td>\n' h+=' </tr>\n' h+='</table>\n' h+='</div>\n' h+='</center>\n' return {'return':0, 'raw':raw, 'show_top':top, 'html':h, 'style':st} ############################################################################## # replaying saved graph from CMD def replay(i): """ Input: { (repo_uoa) - repo UOA of s saved graph data_uoa - data UOA of a saved graph (id) - subgraph id } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 } """ o=i.get('out','') duoa=i['data_uoa'] ruoa=i.get('repo_uoa','') ii={'action':'load', 'module_uoa':work['self_module_uid'], 'data_uoa':duoa, 'repo_uoa':ruoa} rx=ck.access(ii) if rx['return']>0: return rx dd=rx['dict'] graphs=dd.get('graphs',[]) if len(graphs)==0: return {'return':1, 'error':'no saved graphs found'} igraph=-1 if len(graphs)==1: igraph=0 elif len(graphs)>1: gid=i.get('id','') if gid=='': if o=='con': ck.out('Available subgraphs ID:') for q in graphs: ck.out(' '+q.get('id','')) ck.out('') return {'return':1, 'error':'more than one subgraph found - please, specify id'} jgraph=0 for q in graphs: if q.get('id','')==gid: igraph=jgraph break jgraph+=1 if igraph==-1: return {'return':1, 'error':'can\'t find subgraph'} params=graphs[igraph].get('params',{}) # Replaying params['action']='plot' params['module_uoa']=work['self_module_uid'] return ck.access(params)
bsd-3-clause
mlyundin/scikit-learn
sklearn/datasets/tests/test_lfw.py
230
7880
"""This test for the LFW require medium-size data dowloading and processing If the data has not been already downloaded by running the examples, the tests won't run (skipped). If the test are run, the first execution will be long (typically a bit more than a couple of minutes) but as the dataset loader is leveraging joblib, successive runs will be fast (less than 200ms). """ import random import os import shutil import tempfile import numpy as np from sklearn.externals import six try: try: from scipy.misc import imsave except ImportError: from scipy.misc.pilutil import imsave except ImportError: imsave = None from sklearn.datasets import load_lfw_pairs from sklearn.datasets import load_lfw_people from sklearn.datasets import fetch_lfw_pairs from sklearn.datasets import fetch_lfw_people from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import SkipTest from sklearn.utils.testing import raises SCIKIT_LEARN_DATA = tempfile.mkdtemp(prefix="scikit_learn_lfw_test_") SCIKIT_LEARN_EMPTY_DATA = tempfile.mkdtemp(prefix="scikit_learn_empty_test_") LFW_HOME = os.path.join(SCIKIT_LEARN_DATA, 'lfw_home') FAKE_NAMES = [ 'Abdelatif_Smith', 'Abhati_Kepler', 'Camara_Alvaro', 'Chen_Dupont', 'John_Lee', 'Lin_Bauman', 'Onur_Lopez', ] def setup_module(): """Test fixture run once and common to all tests of this module""" if imsave is None: raise SkipTest("PIL not installed.") if not os.path.exists(LFW_HOME): os.makedirs(LFW_HOME) random_state = random.Random(42) np_rng = np.random.RandomState(42) # generate some random jpeg files for each person counts = {} for name in FAKE_NAMES: folder_name = os.path.join(LFW_HOME, 'lfw_funneled', name) if not os.path.exists(folder_name): os.makedirs(folder_name) n_faces = np_rng.randint(1, 5) counts[name] = n_faces for i in range(n_faces): file_path = os.path.join(folder_name, name + '_%04d.jpg' % i) uniface = np_rng.randint(0, 255, size=(250, 250, 3)) try: imsave(file_path, uniface) except ImportError: raise SkipTest("PIL not installed") # add some random file pollution to test robustness with open(os.path.join(LFW_HOME, 'lfw_funneled', '.test.swp'), 'wb') as f: f.write(six.b('Text file to be ignored by the dataset loader.')) # generate some pairing metadata files using the same format as LFW with open(os.path.join(LFW_HOME, 'pairsDevTrain.txt'), 'wb') as f: f.write(six.b("10\n")) more_than_two = [name for name, count in six.iteritems(counts) if count >= 2] for i in range(5): name = random_state.choice(more_than_two) first, second = random_state.sample(range(counts[name]), 2) f.write(six.b('%s\t%d\t%d\n' % (name, first, second))) for i in range(5): first_name, second_name = random_state.sample(FAKE_NAMES, 2) first_index = random_state.choice(np.arange(counts[first_name])) second_index = random_state.choice(np.arange(counts[second_name])) f.write(six.b('%s\t%d\t%s\t%d\n' % (first_name, first_index, second_name, second_index))) with open(os.path.join(LFW_HOME, 'pairsDevTest.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) with open(os.path.join(LFW_HOME, 'pairs.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" if os.path.isdir(SCIKIT_LEARN_DATA): shutil.rmtree(SCIKIT_LEARN_DATA) if os.path.isdir(SCIKIT_LEARN_EMPTY_DATA): shutil.rmtree(SCIKIT_LEARN_EMPTY_DATA) @raises(IOError) def test_load_empty_lfw_people(): fetch_lfw_people(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_people_deprecation(): msg = ("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_people, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_people(): lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=3, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_people.images.shape, (10, 62, 47)) assert_equal(lfw_people.data.shape, (10, 2914)) # the target is array of person integer ids assert_array_equal(lfw_people.target, [2, 0, 1, 0, 2, 0, 2, 1, 1, 2]) # names of the persons can be found using the target_names array expected_classes = ['Abdelatif Smith', 'Abhati Kepler', 'Onur Lopez'] assert_array_equal(lfw_people.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion and not limit on the number of picture per person lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_people.images.shape, (17, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_people.target, [0, 0, 1, 6, 5, 6, 3, 6, 0, 3, 6, 1, 2, 4, 5, 1, 2]) assert_array_equal(lfw_people.target_names, ['Abdelatif Smith', 'Abhati Kepler', 'Camara Alvaro', 'Chen Dupont', 'John Lee', 'Lin Bauman', 'Onur Lopez']) @raises(ValueError) def test_load_fake_lfw_people_too_restrictive(): fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=100, download_if_missing=False) @raises(IOError) def test_load_empty_lfw_pairs(): fetch_lfw_pairs(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_pairs_deprecation(): msg = ("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_pairs, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_pairs(): lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 62, 47)) # the target is whether the person is the same or not assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) # names of the persons can be found using the target_names array expected_classes = ['Different persons', 'Same person'] assert_array_equal(lfw_pairs_train.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) assert_array_equal(lfw_pairs_train.target_names, expected_classes)
bsd-3-clause
jcarreiro/jmc-python
maps/plot.py
1
2859
# /usr/local/bin/python3 # # Plot data over an OSM map. import io import pandas import matplotlib.pyplot as plt import numpy as np import math import urllib from mpl_toolkits.basemap import Basemap from PIL import Image def deg2num(lat_deg, lon_deg, zoom): lat_rad = math.radians(lat_deg) n = 2.0 ** zoom xtile = int((lon_deg + 180.0) / 360.0 * n) ytile = int((1.0 - math.log(math.tan(lat_rad) + (1 / math.cos(lat_rad))) / math.pi) / 2.0 * n) return (xtile, ytile) def num2deg(xtile, ytile, zoom): """ http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames This returns the NW-corner of the square. Use the function with xtile+1 and/or ytile+1 to get the other corners. With xtile+0.5 & ytile+0.5 it will return the center of the tile. """ n = 2.0 ** zoom lon_deg = xtile / n * 360.0 - 180.0 lat_rad = math.atan(math.sinh(math.pi * (1 - 2 * ytile / n))) lat_deg = math.degrees(lat_rad) return (lat_deg, lon_deg) def getImageCluster(lat_deg, lon_deg, delta_lat, delta_long, zoom): smurl = r"http://a.tile.openstreetmap.org/{0}/{1}/{2}.png" xmin, ymax = deg2num(lat_deg, lon_deg, zoom) xmax, ymin = deg2num(lat_deg + delta_lat, lon_deg + delta_long, zoom) bbox_ul = num2deg(xmin, ymin, zoom) bbox_ll = num2deg(xmin, ymax + 1, zoom) #print bbox_ul, bbox_ll bbox_ur = num2deg(xmax + 1, ymin, zoom) bbox_lr = num2deg(xmax + 1, ymax +1, zoom) #print bbox_ur, bbox_lr cluster = Image.new('RGB',((xmax-xmin+1)*256-1,(ymax-ymin+1)*256-1) ) for xtile in range(xmin, xmax+1): for ytile in range(ymin, ymax+1): try: imgurl=smurl.format(zoom, xtile, ytile) print("Opening: " + imgurl) imgstr = urllib.request.urlopen(imgurl).read() tile = Image.open(io.StringIO(imgstr)) cluster.paste(tile, box=((xtile-xmin)*255 , (ytile-ymin)*255)) except: print("Couldn't download image") tile = None return cluster, [bbox_ll[1], bbox_ll[0], bbox_ur[1], bbox_ur[0]] def plot_map(): df = pandas.read_csv('/Users/jcarreiro/Downloads/badid.csv', sep='\t', header=-1) fig = plt.figure() ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) bbox = df[3].min(), df[4].min(), df[3].max(), df[4].max() m = Basemap(llcrnrlat=bbox[0], llcrnrlon=bbox[1], urcrnrlat=bbox[2], urcrnrlon=bbox[3], rsphere=(6378137.00, 6356752.3142), resolution='h', projection='merc', lat_ts=20.0) m.drawcoastlines() m.fillcontinents() m.drawparallels(np.arange(bbox[0], bbox[2], 0.1), labels=[1, 0, 0, 1]) m.drawmeridians(np.arange(bbox[1], bbox[3], 0.1), labels=[1, 0, 0, 1]) m.plot(df[4].values, df[3].values, latlon=True) plt.show()
mit
michaelcapps/Titanic_ML
titanic_randForest.py
1
1039
#!/usr/bin/env python import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import make_classification # read in and set up training data train = pd.read_csv("train.csv") train["Sex"].replace('female',0,inplace=True) train["Sex"].replace('male',1,inplace=True) train.fillna(-1,inplace=True) train_vec = train.loc[:,["Pclass","Sex","Age"]].values labels = train["Survived"].values # Perform SVM fit (on class, sex, and age) clf = RandomForestClassifier(max_depth=2, random_state=0) clf.fit(train_vec, labels) # Read in and set up test data test = pd.read_csv("test.csv") test["Sex"].replace('female',0,inplace=True) test["Sex"].replace('male',1,inplace=True) test.fillna(-1,inplace=True) test_vec = test.loc[:,["Pclass","Sex","Age"]].values # Predict survival in test set predict = [clf.predict(test_vec)] # output to csv test = pd.read_csv("test.csv") submission = pd.DataFrame({"PassengerId": test["PassengerId"], "Survived": predict[0]}) submission.to_csv("submission.csv", index=False)
mit
JPFrancoia/scikit-learn
sklearn/tree/tree.py
4
42704
""" This module gathers tree-based methods, including decision, regression and randomized trees. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <[email protected]> # Peter Prettenhofer <[email protected]> # Brian Holt <[email protected]> # Noel Dawe <[email protected]> # Satrajit Gosh <[email protected]> # Joly Arnaud <[email protected]> # Fares Hedayati <[email protected]> # Nelson Liu <[email protected]> # # License: BSD 3 clause from __future__ import division import numbers from abc import ABCMeta from abc import abstractmethod from math import ceil import numpy as np from scipy.sparse import issparse from ..base import BaseEstimator from ..base import ClassifierMixin from ..base import RegressorMixin from ..externals import six from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import check_array from ..utils import check_random_state from ..utils import compute_sample_weight from ..utils.multiclass import check_classification_targets from ..exceptions import NotFittedError from ._criterion import Criterion from ._splitter import Splitter from ._tree import DepthFirstTreeBuilder from ._tree import BestFirstTreeBuilder from ._tree import Tree from . import _tree, _splitter, _criterion __all__ = ["DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor"] # ============================================================================= # Types and constants # ============================================================================= DTYPE = _tree.DTYPE DOUBLE = _tree.DOUBLE CRITERIA_CLF = {"gini": _criterion.Gini, "entropy": _criterion.Entropy} CRITERIA_REG = {"mse": _criterion.MSE, "friedman_mse": _criterion.FriedmanMSE, "mae": _criterion.MAE} DENSE_SPLITTERS = {"best": _splitter.BestSplitter, "random": _splitter.RandomSplitter} SPARSE_SPLITTERS = {"best": _splitter.BestSparseSplitter, "random": _splitter.RandomSparseSplitter} # ============================================================================= # Base decision tree # ============================================================================= class BaseDecisionTree(six.with_metaclass(ABCMeta, BaseEstimator, _LearntSelectorMixin)): """Base class for decision trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, criterion, splitter, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_features, max_leaf_nodes, random_state, min_impurity_split, class_weight=None, presort=False): self.criterion = criterion self.splitter = splitter self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.random_state = random_state self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split self.class_weight = class_weight self.presort = presort self.n_features_ = None self.n_outputs_ = None self.classes_ = None self.n_classes_ = None self.tree_ = None self.max_features_ = None def fit(self, X, y, sample_weight=None, check_input=True, X_idx_sorted=None): """Build a decision tree from the training set (X, y). Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). In the regression case, use ``dtype=np.float64`` and ``order='C'`` for maximum efficiency. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. X_idx_sorted : array-like, shape = [n_samples, n_features], optional The indexes of the sorted training input samples. If many tree are grown on the same dataset, this allows the ordering to be cached between trees. If None, the data will be sorted here. Don't use this parameter unless you know what to do. Returns ------- self : object Returns self. """ random_state = check_random_state(self.random_state) if check_input: X = check_array(X, dtype=DTYPE, accept_sparse="csc") y = check_array(y, ensure_2d=False, dtype=None) if issparse(X): X.sort_indices() if X.indices.dtype != np.intc or X.indptr.dtype != np.intc: raise ValueError("No support for np.int64 index based " "sparse matrices") # Determine output settings n_samples, self.n_features_ = X.shape is_classification = isinstance(self, ClassifierMixin) y = np.atleast_1d(y) expanded_class_weight = None if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] if is_classification: check_classification_targets(y) y = np.copy(y) self.classes_ = [] self.n_classes_ = [] if self.class_weight is not None: y_original = np.copy(y) y_encoded = np.zeros(y.shape, dtype=np.int) for k in range(self.n_outputs_): classes_k, y_encoded[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) y = y_encoded if self.class_weight is not None: expanded_class_weight = compute_sample_weight( self.class_weight, y_original) else: self.classes_ = [None] * self.n_outputs_ self.n_classes_ = [1] * self.n_outputs_ self.n_classes_ = np.array(self.n_classes_, dtype=np.intp) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) # Check parameters max_depth = ((2 ** 31) - 1 if self.max_depth is None else self.max_depth) max_leaf_nodes = (-1 if self.max_leaf_nodes is None else self.max_leaf_nodes) if isinstance(self.min_samples_leaf, (numbers.Integral, np.integer)): if not 1 <= self.min_samples_leaf: raise ValueError("min_samples_leaf must be at least 1 " "or in (0, 0.5], got %s" % self.min_samples_leaf) min_samples_leaf = self.min_samples_leaf else: # float if not 0. < self.min_samples_leaf <= 0.5: raise ValueError("min_samples_leaf must be at least 1 " "or in (0, 0.5], got %s" % self.min_samples_leaf) min_samples_leaf = int(ceil(self.min_samples_leaf * n_samples)) if isinstance(self.min_samples_split, (numbers.Integral, np.integer)): if not 2 <= self.min_samples_split: raise ValueError("min_samples_split must be at least 2 " "or in (0, 1], got %s" % self.min_samples_split) min_samples_split = self.min_samples_split else: # float if not 0. < self.min_samples_split <= 1.: raise ValueError("min_samples_split must be at least 2 " "or in (0, 1], got %s" % self.min_samples_split) min_samples_split = int(ceil(self.min_samples_split * n_samples)) min_samples_split = max(2, min_samples_split) min_samples_split = max(min_samples_split, 2 * min_samples_leaf) if isinstance(self.max_features, six.string_types): if self.max_features == "auto": if is_classification: max_features = max(1, int(np.sqrt(self.n_features_))) else: max_features = self.n_features_ elif self.max_features == "sqrt": max_features = max(1, int(np.sqrt(self.n_features_))) elif self.max_features == "log2": max_features = max(1, int(np.log2(self.n_features_))) else: raise ValueError( 'Invalid value for max_features. Allowed string ' 'values are "auto", "sqrt" or "log2".') elif self.max_features is None: max_features = self.n_features_ elif isinstance(self.max_features, (numbers.Integral, np.integer)): max_features = self.max_features else: # float if self.max_features > 0.0: max_features = max(1, int(self.max_features * self.n_features_)) else: max_features = 0 self.max_features_ = max_features if len(y) != n_samples: raise ValueError("Number of labels=%d does not match " "number of samples=%d" % (len(y), n_samples)) if not 0 <= self.min_weight_fraction_leaf <= 0.5: raise ValueError("min_weight_fraction_leaf must in [0, 0.5]") if max_depth <= 0: raise ValueError("max_depth must be greater than zero. ") if not (0 < max_features <= self.n_features_): raise ValueError("max_features must be in (0, n_features]") if not isinstance(max_leaf_nodes, (numbers.Integral, np.integer)): raise ValueError("max_leaf_nodes must be integral number but was " "%r" % max_leaf_nodes) if -1 < max_leaf_nodes < 2: raise ValueError(("max_leaf_nodes {0} must be either smaller than " "0 or larger than 1").format(max_leaf_nodes)) if sample_weight is not None: if (getattr(sample_weight, "dtype", None) != DOUBLE or not sample_weight.flags.contiguous): sample_weight = np.ascontiguousarray( sample_weight, dtype=DOUBLE) if len(sample_weight.shape) > 1: raise ValueError("Sample weights array has more " "than one dimension: %d" % len(sample_weight.shape)) if len(sample_weight) != n_samples: raise ValueError("Number of weights=%d does not match " "number of samples=%d" % (len(sample_weight), n_samples)) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Set min_weight_leaf from min_weight_fraction_leaf if sample_weight is None: min_weight_leaf = (self.min_weight_fraction_leaf * n_samples) else: min_weight_leaf = (self.min_weight_fraction_leaf * np.sum(sample_weight)) if self.min_impurity_split < 0.: raise ValueError("min_impurity_split must be greater than " "or equal to 0") presort = self.presort # Allow presort to be 'auto', which means True if the dataset is dense, # otherwise it will be False. if self.presort == 'auto' and issparse(X): presort = False elif self.presort == 'auto': presort = True if presort is True and issparse(X): raise ValueError("Presorting is not supported for sparse " "matrices.") # If multiple trees are built on the same dataset, we only want to # presort once. Splitters now can accept presorted indices if desired, # but do not handle any presorting themselves. Ensemble algorithms # which desire presorting must do presorting themselves and pass that # matrix into each tree. if X_idx_sorted is None and presort: X_idx_sorted = np.asfortranarray(np.argsort(X, axis=0), dtype=np.int32) if presort and X_idx_sorted.shape != X.shape: raise ValueError("The shape of X (X.shape = {}) doesn't match " "the shape of X_idx_sorted (X_idx_sorted" ".shape = {})".format(X.shape, X_idx_sorted.shape)) # Build tree criterion = self.criterion if not isinstance(criterion, Criterion): if is_classification: criterion = CRITERIA_CLF[self.criterion](self.n_outputs_, self.n_classes_) else: criterion = CRITERIA_REG[self.criterion](self.n_outputs_, n_samples) SPLITTERS = SPARSE_SPLITTERS if issparse(X) else DENSE_SPLITTERS splitter = self.splitter if not isinstance(self.splitter, Splitter): splitter = SPLITTERS[self.splitter](criterion, self.max_features_, min_samples_leaf, min_weight_leaf, random_state, self.presort) self.tree_ = Tree(self.n_features_, self.n_classes_, self.n_outputs_) # Use BestFirst if max_leaf_nodes given; use DepthFirst otherwise if max_leaf_nodes < 0: builder = DepthFirstTreeBuilder(splitter, min_samples_split, min_samples_leaf, min_weight_leaf, max_depth, self.min_impurity_split) else: builder = BestFirstTreeBuilder(splitter, min_samples_split, min_samples_leaf, min_weight_leaf, max_depth, max_leaf_nodes, self.min_impurity_split) builder.build(self.tree_, X, y, sample_weight, X_idx_sorted) if self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self def _validate_X_predict(self, X, check_input): """Validate X whenever one tries to predict, apply, predict_proba""" if self.tree_ is None: raise NotFittedError("Estimator not fitted, " "call `fit` before exploiting the model.") if check_input: X = check_array(X, dtype=DTYPE, accept_sparse="csr") if issparse(X) and (X.indices.dtype != np.intc or X.indptr.dtype != np.intc): raise ValueError("No support for np.int64 index based " "sparse matrices") n_features = X.shape[1] if self.n_features_ != n_features: raise ValueError("Number of features of the model must " "match the input. Model n_features is %s and " "input n_features is %s " % (self.n_features_, n_features)) return X def predict(self, X, check_input=True): """Predict class or regression value for X. For a classification model, the predicted class for each sample in X is returned. For a regression model, the predicted value based on X is returned. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes, or the predict values. """ X = self._validate_X_predict(X, check_input) proba = self.tree_.predict(X) n_samples = X.shape[0] # Classification if isinstance(self, ClassifierMixin): if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: predictions = np.zeros((n_samples, self.n_outputs_)) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take( np.argmax(proba[:, k], axis=1), axis=0) return predictions # Regression else: if self.n_outputs_ == 1: return proba[:, 0] else: return proba[:, :, 0] def apply(self, X, check_input=True): """ Returns the index of the leaf that each sample is predicted as. .. versionadded:: 0.17 Parameters ---------- X : array_like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- X_leaves : array_like, shape = [n_samples,] For each datapoint x in X, return the index of the leaf x ends up in. Leaves are numbered within ``[0; self.tree_.node_count)``, possibly with gaps in the numbering. """ X = self._validate_X_predict(X, check_input) return self.tree_.apply(X) def decision_path(self, X, check_input=True): """Return the decision path in the tree .. versionadded:: 0.18 Parameters ---------- X : array_like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- indicator : sparse csr array, shape = [n_samples, n_nodes] Return a node indicator matrix where non zero elements indicates that the samples goes through the nodes. """ X = self._validate_X_predict(X, check_input) return self.tree_.decision_path(X) @property def feature_importances_(self): """Return the feature importances. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance. Returns ------- feature_importances_ : array, shape = [n_features] """ if self.tree_ is None: raise NotFittedError("Estimator not fitted, call `fit` before" " `feature_importances_`.") return self.tree_.compute_feature_importances() # ============================================================================= # Public estimators # ============================================================================= class DecisionTreeClassifier(BaseDecisionTree, ClassifierMixin): """A decision tree classifier. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. splitter : string, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : int or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. class_weight : dict, list of dicts, "balanced" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 presort : bool, optional (default=False) Whether to presort the data to speed up the finding of best splits in fitting. For the default settings of a decision tree on large datasets, setting this to true may slow down the training process. When using either a smaller dataset or a restricted depth, this may speed up the training. Attributes ---------- classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. max_features_ : int, The inferred value of max_features. n_classes_ : int or list The number of classes (for single output problems), or a list containing the number of classes for each output (for multi-output problems). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree object The underlying Tree object. See also -------- DecisionTreeRegressor References ---------- .. [1] https://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn.model_selection import cross_val_score >>> from sklearn.tree import DecisionTreeClassifier >>> clf = DecisionTreeClassifier(random_state=0) >>> iris = load_iris() >>> cross_val_score(clf, iris.data, iris.target, cv=10) ... # doctest: +SKIP ... array([ 1. , 0.93..., 0.86..., 0.93..., 0.93..., 0.93..., 0.93..., 1. , 0.93..., 1. ]) """ def __init__(self, criterion="gini", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_split=1e-7, class_weight=None, presort=False): super(DecisionTreeClassifier, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, class_weight=class_weight, random_state=random_state, min_impurity_split=min_impurity_split, presort=presort) def predict_proba(self, X, check_input=True): """Predict class probabilities of the input samples X. The predicted class probability is the fraction of samples of the same class in a leaf. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ X = self._validate_X_predict(X, check_input) proba = self.tree_.predict(X) if self.n_outputs_ == 1: proba = proba[:, :self.n_classes_] normalizer = proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba /= normalizer return proba else: all_proba = [] for k in range(self.n_outputs_): proba_k = proba[:, k, :self.n_classes_[k]] normalizer = proba_k.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba_k /= normalizer all_proba.append(proba_k) return all_proba def predict_log_proba(self, X): """Predict class log-probabilities of the input samples X. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class log-probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class DecisionTreeRegressor(BaseDecisionTree, RegressorMixin): """A decision tree regressor. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. splitter : string, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : int or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. If the impurity of a node is below the threshold, the node is a leaf. .. versionadded:: 0.18 presort : bool, optional (default=False) Whether to presort the data to speed up the finding of best splits in fitting. For the default settings of a decision tree on large datasets, setting this to true may slow down the training process. When using either a smaller dataset or a restricted depth, this may speed up the training. Attributes ---------- feature_importances_ : array of shape = [n_features] The feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. max_features_ : int, The inferred value of max_features. n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree object The underlying Tree object. See also -------- DecisionTreeClassifier References ---------- .. [1] https://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_boston >>> from sklearn.model_selection import cross_val_score >>> from sklearn.tree import DecisionTreeRegressor >>> boston = load_boston() >>> regressor = DecisionTreeRegressor(random_state=0) >>> cross_val_score(regressor, boston.data, boston.target, cv=10) ... # doctest: +SKIP ... array([ 0.61..., 0.57..., -0.34..., 0.41..., 0.75..., 0.07..., 0.29..., 0.33..., -1.42..., -1.77...]) """ def __init__(self, criterion="mse", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_split=1e-7, presort=False): super(DecisionTreeRegressor, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, random_state=random_state, min_impurity_split=min_impurity_split, presort=presort) class ExtraTreeClassifier(DecisionTreeClassifier): """An extremely randomized tree classifier. Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the `max_features` randomly selected features and the best split among those is chosen. When `max_features` is set 1, this amounts to building a totally random decision tree. Warning: Extra-trees should only be used within ensemble methods. Read more in the :ref:`User Guide <tree>`. See also -------- ExtraTreeRegressor, ExtraTreesClassifier, ExtraTreesRegressor References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. """ def __init__(self, criterion="gini", splitter="random", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", random_state=None, max_leaf_nodes=None, min_impurity_split=1e-7, class_weight=None): super(ExtraTreeClassifier, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, class_weight=class_weight, min_impurity_split=min_impurity_split, random_state=random_state) class ExtraTreeRegressor(DecisionTreeRegressor): """An extremely randomized tree regressor. Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the `max_features` randomly selected features and the best split among those is chosen. When `max_features` is set 1, this amounts to building a totally random decision tree. Warning: Extra-trees should only be used within ensemble methods. Read more in the :ref:`User Guide <tree>`. See also -------- ExtraTreeClassifier, ExtraTreesClassifier, ExtraTreesRegressor References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. """ def __init__(self, criterion="mse", splitter="random", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", random_state=None, min_impurity_split=1e-7, max_leaf_nodes=None): super(ExtraTreeRegressor, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, min_impurity_split=min_impurity_split, random_state=random_state)
bsd-3-clause
raymondxyang/tensorflow
tensorflow/python/estimator/canned/dnn_test.py
20
16058
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for dnn.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import tempfile import numpy as np import six from tensorflow.core.example import example_pb2 from tensorflow.core.example import feature_pb2 from tensorflow.python.estimator.canned import dnn from tensorflow.python.estimator.canned import dnn_testing_utils from tensorflow.python.estimator.canned import prediction_keys from tensorflow.python.estimator.export import export from tensorflow.python.estimator.inputs import numpy_io from tensorflow.python.estimator.inputs import pandas_io from tensorflow.python.feature_column import feature_column from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.summary.writer import writer_cache from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False def _dnn_classifier_fn(*args, **kwargs): return dnn.DNNClassifier(*args, **kwargs) class DNNModelFnTest(dnn_testing_utils.BaseDNNModelFnTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNModelFnTest.__init__(self, dnn._dnn_model_fn) class DNNClassifierEvaluateTest( dnn_testing_utils.BaseDNNClassifierEvaluateTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierEvaluateTest.__init__( self, _dnn_classifier_fn) class DNNClassifierPredictTest( dnn_testing_utils.BaseDNNClassifierPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierPredictTest.__init__( self, _dnn_classifier_fn) class DNNClassifierTrainTest( dnn_testing_utils.BaseDNNClassifierTrainTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierTrainTest.__init__( self, _dnn_classifier_fn) def _dnn_regressor_fn(*args, **kwargs): return dnn.DNNRegressor(*args, **kwargs) class DNNRegressorEvaluateTest( dnn_testing_utils.BaseDNNRegressorEvaluateTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorEvaluateTest.__init__( self, _dnn_regressor_fn) class DNNRegressorPredictTest( dnn_testing_utils.BaseDNNRegressorPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorPredictTest.__init__( self, _dnn_regressor_fn) class DNNRegressorTrainTest( dnn_testing_utils.BaseDNNRegressorTrainTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorTrainTest.__init__( self, _dnn_regressor_fn) def _queue_parsed_features(feature_map): tensors_to_enqueue = [] keys = [] for key, tensor in six.iteritems(feature_map): keys.append(key) tensors_to_enqueue.append(tensor) queue_dtypes = [x.dtype for x in tensors_to_enqueue] input_queue = data_flow_ops.FIFOQueue(capacity=100, dtypes=queue_dtypes) queue_runner.add_queue_runner( queue_runner.QueueRunner( input_queue, [input_queue.enqueue(tensors_to_enqueue)])) dequeued_tensors = input_queue.dequeue() return {keys[i]: dequeued_tensors[i] for i in range(len(dequeued_tensors))} class DNNRegressorIntegrationTest(test.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _test_complete_flow( self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension, label_dimension, batch_size): feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] est = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=feature_columns, label_dimension=label_dimension, model_dir=self._model_dir) # TRAIN num_steps = 10 est.train(train_input_fn, steps=num_steps) # EVALUTE scores = est.evaluate(eval_input_fn) self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP]) self.assertIn('loss', six.iterkeys(scores)) # PREDICT predictions = np.array([ x[prediction_keys.PredictionKeys.PREDICTIONS] for x in est.predict(predict_input_fn) ]) self.assertAllEqual((batch_size, label_dimension), predictions.shape) # EXPORT feature_spec = feature_column.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_savedmodel(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(gfile.Exists(export_dir)) def test_numpy_input_fn(self): """Tests complete flow with numpy_input_fn.""" label_dimension = 2 batch_size = 10 data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32) data = data.reshape(batch_size, label_dimension) # learn y = x train_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': data}, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) def test_pandas_input_fn(self): """Tests complete flow with pandas_input_fn.""" if not HAS_PANDAS: return label_dimension = 1 batch_size = 10 data = np.linspace(0., 2., batch_size, dtype=np.float32) x = pd.DataFrame({'x': data}) y = pd.Series(data) train_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, shuffle=False) predict_input_fn = pandas_io.pandas_input_fn( x=x, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) def test_input_fn_from_parse_example(self): """Tests complete flow with input_fn constructed from parse_example.""" label_dimension = 2 batch_size = 10 data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32) data = data.reshape(batch_size, label_dimension) serialized_examples = [] for datum in data: example = example_pb2.Example(features=feature_pb2.Features( feature={ 'x': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=datum)), 'y': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=datum)), })) serialized_examples.append(example.SerializeToString()) feature_spec = { 'x': parsing_ops.FixedLenFeature([label_dimension], dtypes.float32), 'y': parsing_ops.FixedLenFeature([label_dimension], dtypes.float32), } def _train_input_fn(): feature_map = parsing_ops.parse_example(serialized_examples, feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _eval_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _predict_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) features.pop('y') return features, None self._test_complete_flow( train_input_fn=_train_input_fn, eval_input_fn=_eval_input_fn, predict_input_fn=_predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) class DNNClassifierIntegrationTest(test.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _as_label(self, data_in_float): return np.rint(data_in_float).astype(np.int64) def _test_complete_flow( self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension, n_classes, batch_size): feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] est = dnn.DNNClassifier( hidden_units=(2, 2), feature_columns=feature_columns, n_classes=n_classes, model_dir=self._model_dir) # TRAIN num_steps = 10 est.train(train_input_fn, steps=num_steps) # EVALUTE scores = est.evaluate(eval_input_fn) self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP]) self.assertIn('loss', six.iterkeys(scores)) # PREDICT predicted_proba = np.array([ x[prediction_keys.PredictionKeys.PROBABILITIES] for x in est.predict(predict_input_fn) ]) self.assertAllEqual((batch_size, n_classes), predicted_proba.shape) # EXPORT feature_spec = feature_column.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_savedmodel(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(gfile.Exists(export_dir)) def test_numpy_input_fn(self): """Tests complete flow with numpy_input_fn.""" n_classes = 3 input_dimension = 2 batch_size = 10 data = np.linspace( 0., n_classes - 1., batch_size * input_dimension, dtype=np.float32) x_data = data.reshape(batch_size, input_dimension) y_data = np.reshape(self._as_label(data[:batch_size]), (batch_size, 1)) # learn y = x train_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, y=y_data, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, y=y_data, batch_size=batch_size, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) def test_pandas_input_fn(self): """Tests complete flow with pandas_input_fn.""" if not HAS_PANDAS: return input_dimension = 1 n_classes = 3 batch_size = 10 data = np.linspace(0., n_classes - 1., batch_size, dtype=np.float32) x = pd.DataFrame({'x': data}) y = pd.Series(self._as_label(data)) train_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, shuffle=False) predict_input_fn = pandas_io.pandas_input_fn( x=x, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) def test_input_fn_from_parse_example(self): """Tests complete flow with input_fn constructed from parse_example.""" input_dimension = 2 n_classes = 3 batch_size = 10 data = np.linspace( 0., n_classes - 1., batch_size * input_dimension, dtype=np.float32) data = data.reshape(batch_size, input_dimension) serialized_examples = [] for datum in data: example = example_pb2.Example(features=feature_pb2.Features( feature={ 'x': feature_pb2.Feature(float_list=feature_pb2.FloatList( value=datum)), 'y': feature_pb2.Feature(int64_list=feature_pb2.Int64List( value=self._as_label(datum[:1]))), })) serialized_examples.append(example.SerializeToString()) feature_spec = { 'x': parsing_ops.FixedLenFeature([input_dimension], dtypes.float32), 'y': parsing_ops.FixedLenFeature([1], dtypes.int64), } def _train_input_fn(): feature_map = parsing_ops.parse_example(serialized_examples, feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _eval_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _predict_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) features.pop('y') return features, None self._test_complete_flow( train_input_fn=_train_input_fn, eval_input_fn=_eval_input_fn, predict_input_fn=_predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) if __name__ == '__main__': test.main()
apache-2.0
dvro/brew
brew/preprocessing/smote.py
3
1807
from __future__ import division import numpy as np from sklearn.neighbors import NearestNeighbors def smote(T, N=100, k=1): """ T: minority class data N: percentage of oversampling k: number of neighbors used """ # modification of original smote code so that it won't break if # minority class is too small in relation to the k, maybe this is not # sensible. if T.shape[0] <= k + 1: idx = np.random.choice(T.shape[0], size=(k + 1,)) T = T[idx, :] # randomly select a subset of the data, to be used for creating synthethic # samples if N < 100: sz = int(T.shape[0] * (N / 100)) idx = np.random.choice(T.shape[0], size=(sz,), replace=False) T = T[idx, :] N = 100 if N % 100 != 0: raise ValueError('N must be < 100 OR multiple of 100') N = int(N / 100) n_minority_samples, n_features = T.shape n_synthetic_samples = N * n_minority_samples synthetic = np.zeros((n_synthetic_samples, n_features)) knn = NearestNeighbors(n_neighbors=k) knn.fit(T) count = 0 for i in range(n_minority_samples): # first neighbor returned is always the very own sample, so # get 1 more neighbor and discard the first neighbor returned neighbors_idx = knn.kneighbors( T[i, :].reshape(1,-1), n_neighbors=k + 1, return_distance=False)[0][1:] # randomly choose N neighbors of the sample (with replacement) nn_idx = np.random.choice(neighbors_idx, size=(N,)) chosen_neighbors = T[nn_idx, :] diff = chosen_neighbors - T[i, :] gap = np.random.uniform(low=0.0, high=1.0, size=N)[:, np.newaxis] synthetic[count:count + N, :] = T[i, :] + (gap * diff) count += N return synthetic
mit
jimgoo/zipline-fork
tests/test_sources.py
10
7209
# # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd import pytz from six import integer_types from unittest import TestCase import zipline.utils.factory as factory from zipline.sources import (DataFrameSource, DataPanelSource, RandomWalkSource) from zipline.utils import tradingcalendar as calendar_nyse from zipline.assets import AssetFinder from zipline.finance.trading import TradingEnvironment class TestDataFrameSource(TestCase): def test_df_source(self): source, df = factory.create_test_df_source(env=None) assert isinstance(source.start, pd.lib.Timestamp) assert isinstance(source.end, pd.lib.Timestamp) for expected_dt, expected_price in df.iterrows(): sid0 = next(source) assert expected_dt == sid0.dt assert expected_price[0] == sid0.price def test_df_sid_filtering(self): _, df = factory.create_test_df_source(env=None) source = DataFrameSource(df) assert 1 not in [event.sid for event in source], \ "DataFrameSource should only stream selected sid 0, not sid 1." def test_panel_source(self): source, panel = factory.create_test_panel_source(source_type=5) assert isinstance(source.start, pd.lib.Timestamp) assert isinstance(source.end, pd.lib.Timestamp) for event in source: self.assertTrue('sid' in event) self.assertTrue('arbitrary' in event) self.assertTrue('type' in event) self.assertTrue(hasattr(event, 'volume')) self.assertTrue(hasattr(event, 'price')) self.assertEquals(event['type'], 5) self.assertEquals(event['arbitrary'], 1.) self.assertEquals(event['sid'], 0) self.assertTrue(isinstance(event['volume'], int)) self.assertTrue(isinstance(event['arbitrary'], float)) def test_yahoo_bars_to_panel_source(self): env = TradingEnvironment() finder = AssetFinder(env.engine) stocks = ['AAPL', 'GE'] env.write_data(equities_identifiers=stocks) start = pd.datetime(1993, 1, 1, 0, 0, 0, 0, pytz.utc) end = pd.datetime(2002, 1, 1, 0, 0, 0, 0, pytz.utc) data = factory.load_bars_from_yahoo(stocks=stocks, indexes={}, start=start, end=end) check_fields = ['sid', 'open', 'high', 'low', 'close', 'volume', 'price'] copy_panel = data.copy() sids = finder.map_identifier_index_to_sids( data.items, data.major_axis[0] ) copy_panel.items = sids source = DataPanelSource(copy_panel) for event in source: for check_field in check_fields: self.assertIn(check_field, event) self.assertTrue(isinstance(event['volume'], (integer_types))) self.assertTrue(event['sid'] in sids) def test_nan_filter_dataframe(self): dates = pd.date_range('1/1/2000', periods=2, freq='B', tz='UTC') df = pd.DataFrame(np.random.randn(2, 2), index=dates, columns=[4, 5]) # should be filtered df.loc[dates[0], 4] = np.nan # should not be filtered, should have been ffilled df.loc[dates[1], 5] = np.nan source = DataFrameSource(df) event = next(source) self.assertEqual(5, event.sid) event = next(source) self.assertEqual(4, event.sid) event = next(source) self.assertEqual(5, event.sid) self.assertFalse(np.isnan(event.price)) def test_nan_filter_panel(self): dates = pd.date_range('1/1/2000', periods=2, freq='B', tz='UTC') df = pd.Panel(np.random.randn(2, 2, 2), major_axis=dates, items=[4, 5], minor_axis=['price', 'volume']) # should be filtered df.loc[4, dates[0], 'price'] = np.nan # should not be filtered, should have been ffilled df.loc[5, dates[1], 'price'] = np.nan source = DataPanelSource(df) event = next(source) self.assertEqual(5, event.sid) event = next(source) self.assertEqual(4, event.sid) event = next(source) self.assertEqual(5, event.sid) self.assertFalse(np.isnan(event.price)) class TestRandomWalkSource(TestCase): def test_minute(self): np.random.seed(123) start_prices = {0: 100, 1: 500} start = pd.Timestamp('1990-01-01', tz='UTC') end = pd.Timestamp('1991-01-01', tz='UTC') source = RandomWalkSource(start_prices=start_prices, calendar=calendar_nyse, start=start, end=end) self.assertIsInstance(source.start, pd.lib.Timestamp) self.assertIsInstance(source.end, pd.lib.Timestamp) for event in source: self.assertIn(event.sid, start_prices.keys()) self.assertIn(event.dt.replace(minute=0, hour=0), calendar_nyse.trading_days) self.assertGreater(event.dt, start) self.assertLess(event.dt, end) self.assertGreater(event.price, 0, "price should never go negative.") self.assertTrue(13 <= event.dt.hour <= 21, "event.dt.hour == %i, not during market \ hours." % event.dt.hour) def test_day(self): np.random.seed(123) start_prices = {0: 100, 1: 500} start = pd.Timestamp('1990-01-01', tz='UTC') end = pd.Timestamp('1992-01-01', tz='UTC') source = RandomWalkSource(start_prices=start_prices, calendar=calendar_nyse, start=start, end=end, freq='daily') self.assertIsInstance(source.start, pd.lib.Timestamp) self.assertIsInstance(source.end, pd.lib.Timestamp) for event in source: self.assertIn(event.sid, start_prices.keys()) self.assertIn(event.dt.replace(minute=0, hour=0), calendar_nyse.trading_days) self.assertGreater(event.dt, start) self.assertLess(event.dt, end) self.assertGreater(event.price, 0, "price should never go negative.") self.assertEqual(event.dt.hour, 0)
apache-2.0
matk86/pymatgen
pymatgen/io/gaussian.py
3
53473
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import division, unicode_literals import re import numpy as np import warnings from pymatgen.core.operations import SymmOp from pymatgen import Element, Molecule, Composition from monty.io import zopen from pymatgen.util.coord import get_angle import scipy.constants as cst from pymatgen.electronic_structure.core import Spin """ This module implements input and output processing from Gaussian. """ __author__ = 'Shyue Ping Ong, Germain Salvato-Vallverdu, Xin Chen' __copyright__ = 'Copyright 2013, The Materials Virtual Lab' __version__ = '0.1' __maintainer__ = 'Shyue Ping Ong' __email__ = '[email protected]' __date__ = '8/1/15' float_patt = re.compile(r"\s*([+-]?\d+\.\d+)") HARTREE_TO_ELECTRON_VOLT = 1/cst.physical_constants["electron volt-hartree relationship"][0] def read_route_line(route): """ read route line in gaussian input/output and return functional basis_set and a dictionary of other route parameters Args: route (str) : the route line return functional (str) : the method (HF, PBE ...) basis_set (str) : the basis set route (dict) : dictionary of parameters """ scrf_patt = re.compile(r"^([sS][cC][rR][fF])\s*=\s*(.+)") functional = None basis_set = None route_params = {} dieze_tag = None if route: if "/" in route: tok = route.split("/") functional = tok[0].split()[-1] basis_set = tok[1].split()[0] for tok in [functional, basis_set, "/"]: route = route.replace(tok, "") for tok in route.split(): if scrf_patt.match(tok): m = scrf_patt.match(tok) route_params[m.group(1)] = m.group(2) elif "#" in tok: # does not store # in route to avoid error in input dieze_tag = tok continue else: d = tok.split("=") v = None if len(d) == 1 else d[1] route_params[d[0]] = v return functional, basis_set, route_params, dieze_tag class GaussianInput(object): """ An object representing a Gaussian input file. Args: mol: Input molecule. If molecule is a single string, it is used as a direct input to the geometry section of the Gaussian input file. charge: Charge of the molecule. If None, charge on molecule is used. Defaults to None. This allows the input file to be set a charge independently from the molecule itself. spin_multiplicity: Spin multiplicity of molecule. Defaults to None, which means that the spin multiplicity is set to 1 if the molecule has no unpaired electrons and to 2 if there are unpaired electrons. title: Title for run. Defaults to formula of molecule if None. functional: Functional for run. basis_set: Basis set for run. route_parameters: Additional route parameters as a dict. For example, {'SP':"", "SCF":"Tight"} input_parameters: Additional input parameters for run as a dict. Used for example, in PCM calculations. E.g., {"EPS":12} link0_parameters: Link0 parameters as a dict. E.g., {"%mem": "1000MW"} dieze_tag: # preceding the route line. E.g. "#p" gen_basis: allows a user-specified basis set to be used in a Gaussian calculation. If this is not None, the attribute ``basis_set`` will be set to "Gen". """ # Commonly used regex patterns zmat_patt = re.compile(r"^(\w+)*([\s,]+(\w+)[\s,]+(\w+))*[\-\.\s,\w]*$") xyz_patt = re.compile(r"^(\w+)[\s,]+([\d\.eE\-]+)[\s,]+([\d\.eE\-]+)[\s,]+" r"([\d\.eE\-]+)[\-\.\s,\w.]*$") def __init__(self, mol, charge=None, spin_multiplicity=None, title=None, functional="HF", basis_set="6-31G(d)", route_parameters=None, input_parameters=None, link0_parameters=None, dieze_tag="#P", gen_basis=None): self._mol = mol self.charge = charge if charge is not None else mol.charge nelectrons = - self.charge + mol.charge + mol.nelectrons if spin_multiplicity is not None: self.spin_multiplicity = spin_multiplicity if (nelectrons + spin_multiplicity) % 2 != 1: raise ValueError( "Charge of {} and spin multiplicity of {} is" " not possible for this molecule".format( self.charge, spin_multiplicity)) else: self.spin_multiplicity = 1 if nelectrons % 2 == 0 else 2 self.functional = functional self.basis_set = basis_set self.link0_parameters = link0_parameters if link0_parameters else {} self.route_parameters = route_parameters if route_parameters else {} self.input_parameters = input_parameters if input_parameters else {} self.title = title if title else self._mol.composition.formula self.dieze_tag = dieze_tag if dieze_tag[0] == "#" else "#P" self.gen_basis = gen_basis if gen_basis is not None: self.basis_set = "Gen" @property def molecule(self): """ Returns molecule associated with this GaussianInput. """ return self._mol @staticmethod def parse_coords(coord_lines): """ Helper method to parse coordinates. """ paras = {} var_pattern = re.compile(r"^([A-Za-z]+\S*)[\s=,]+([\d\-\.]+)$") for l in coord_lines: m = var_pattern.match(l.strip()) if m: paras[m.group(1)] = float(m.group(2)) species = [] coords = [] # Stores whether a Zmatrix format is detected. Once a zmatrix format # is detected, it is assumed for the remaining of the parsing. zmode = False for l in coord_lines: l = l.strip() if not l: break if (not zmode) and GaussianInput.xyz_patt.match(l): m = GaussianInput.xyz_patt.match(l) species.append(m.group(1)) toks = re.split(r"[,\s]+", l.strip()) if len(toks) > 4: coords.append([float(i) for i in toks[2:5]]) else: coords.append([float(i) for i in toks[1:4]]) elif GaussianInput.zmat_patt.match(l): zmode = True toks = re.split(r"[,\s]+", l.strip()) species.append(toks[0]) toks.pop(0) if len(toks) == 0: coords.append(np.array([0, 0, 0])) else: nn = [] parameters = [] while len(toks) > 1: ind = toks.pop(0) data = toks.pop(0) try: nn.append(int(ind)) except ValueError: nn.append(species.index(ind) + 1) try: val = float(data) parameters.append(val) except ValueError: if data.startswith("-"): parameters.append(-paras[data[1:]]) else: parameters.append(paras[data]) if len(nn) == 1: coords.append(np.array([0, 0, parameters[0]])) elif len(nn) == 2: coords1 = coords[nn[0] - 1] coords2 = coords[nn[1] - 1] bl = parameters[0] angle = parameters[1] axis = [0, 1, 0] op = SymmOp.from_origin_axis_angle(coords1, axis, angle, False) coord = op.operate(coords2) vec = coord - coords1 coord = vec * bl / np.linalg.norm(vec) + coords1 coords.append(coord) elif len(nn) == 3: coords1 = coords[nn[0] - 1] coords2 = coords[nn[1] - 1] coords3 = coords[nn[2] - 1] bl = parameters[0] angle = parameters[1] dih = parameters[2] v1 = coords3 - coords2 v2 = coords1 - coords2 axis = np.cross(v1, v2) op = SymmOp.from_origin_axis_angle( coords1, axis, angle, False) coord = op.operate(coords2) v1 = coord - coords1 v2 = coords1 - coords2 v3 = np.cross(v1, v2) adj = get_angle(v3, axis) axis = coords1 - coords2 op = SymmOp.from_origin_axis_angle( coords1, axis, dih - adj, False) coord = op.operate(coord) vec = coord - coords1 coord = vec * bl / np.linalg.norm(vec) + coords1 coords.append(coord) def parse_species(sp_str): """ The species specification can take many forms. E.g., simple integers representing atomic numbers ("8"), actual species string ("C") or a labelled species ("C1"). Sometimes, the species string is also not properly capitalized, e.g, ("c1"). This method should take care of these known formats. """ try: return int(sp_str) except ValueError: sp = re.sub(r"\d", "", sp_str) return sp.capitalize() species = [parse_species(sp) for sp in species] return Molecule(species, coords) @staticmethod def from_string(contents): """ Creates GaussianInput from a string. Args: contents: String representing an Gaussian input file. Returns: GaussianInput object """ lines = [l.strip() for l in contents.split("\n")] link0_patt = re.compile(r"^(%.+)\s*=\s*(.+)") link0_dict = {} for i, l in enumerate(lines): if link0_patt.match(l): m = link0_patt.match(l) link0_dict[m.group(1)] = m.group(2) route_patt = re.compile(r"^#[sSpPnN]*.*") route = None for i, l in enumerate(lines): if route_patt.match(l): route = l route_index = i break functional, basis_set, route_paras, dieze_tag = read_route_line(route) ind = 2 title = [] while lines[route_index + ind].strip(): title.append(lines[route_index + ind].strip()) ind += 1 title = ' '.join(title) ind += 1 toks = re.split(r"[\s,]", lines[route_index + ind]) charge = int(toks[0]) spin_mult = int(toks[1]) coord_lines = [] spaces = 0 input_paras = {} ind += 1 for i in range(route_index + ind, len(lines)): if lines[i].strip() == "": spaces += 1 if spaces >= 2: d = lines[i].split("=") if len(d) == 2: input_paras[d[0]] = d[1] else: coord_lines.append(lines[i].strip()) mol = GaussianInput.parse_coords(coord_lines) mol.set_charge_and_spin(charge, spin_mult) return GaussianInput(mol, charge=charge, spin_multiplicity=spin_mult, title=title, functional=functional, basis_set=basis_set, route_parameters=route_paras, input_parameters=input_paras,link0_parameters=link0_dict, dieze_tag=dieze_tag) @staticmethod def from_file(filename): """ Creates GaussianInput from a file. Args: filename: Gaussian input filename Returns: GaussianInput object """ with zopen(filename, "r") as f: return GaussianInput.from_string(f.read()) def _find_nn_pos_before_site(self, siteindex): """ Returns index of nearest neighbor atoms. """ alldist = [(self._mol.get_distance(siteindex, i), i) for i in range(siteindex)] alldist = sorted(alldist, key=lambda x: x[0]) return [d[1] for d in alldist] def get_zmatrix(self): """ Returns a z-matrix representation of the molecule. """ output = [] outputvar = [] for i, site in enumerate(self._mol): if i == 0: output.append("{}".format(site.specie)) elif i == 1: nn = self._find_nn_pos_before_site(i) bondlength = self._mol.get_distance(i, nn[0]) output.append("{} {} B{}".format(self._mol[i].specie, nn[0] + 1, i)) outputvar.append("B{}={:.6f}".format(i, bondlength)) elif i == 2: nn = self._find_nn_pos_before_site(i) bondlength = self._mol.get_distance(i, nn[0]) angle = self._mol.get_angle(i, nn[0], nn[1]) output.append("{} {} B{} {} A{}".format(self._mol[i].specie, nn[0] + 1, i, nn[1] + 1, i)) outputvar.append("B{}={:.6f}".format(i, bondlength)) outputvar.append("A{}={:.6f}".format(i, angle)) else: nn = self._find_nn_pos_before_site(i) bondlength = self._mol.get_distance(i, nn[0]) angle = self._mol.get_angle(i, nn[0], nn[1]) dih = self._mol.get_dihedral(i, nn[0], nn[1], nn[2]) output.append("{} {} B{} {} A{} {} D{}" .format(self._mol[i].specie, nn[0] + 1, i, nn[1] + 1, i, nn[2] + 1, i)) outputvar.append("B{}={:.6f}".format(i, bondlength)) outputvar.append("A{}={:.6f}".format(i, angle)) outputvar.append("D{}={:.6f}".format(i, dih)) return "\n".join(output) + "\n\n" + "\n".join(outputvar) def get_cart_coords(self): """ Return the cartesian coordinates of the molecule """ outs = [] to_s = lambda x: "%0.6f" % x for i, site in enumerate(self._mol): outs.append(" ".join([site.species_string, " ".join([to_s(j) for j in site.coords])])) return "\n".join(outs) def __str__(self): return self.to_string() def to_string(self, cart_coords=False): """ Return GaussianInput string Option: whe cart_coords sets to True return the cartesian coordinates instead of the z-matrix """ def para_dict_to_string(para, joiner=" "): para_str = ["{}={}".format(k, v) if v else k for k, v in sorted(para.items())] return joiner.join(para_str) output = [] if self.link0_parameters: output.append(para_dict_to_string(self.link0_parameters, "\n")) output.append("{diez} {func}/{bset} {route}" .format(diez=self.dieze_tag, func=self.functional, bset=self.basis_set, route=para_dict_to_string(self.route_parameters)) ) output.append("") output.append(self.title) output.append("") output.append("{} {}".format(self.charge, self.spin_multiplicity)) if isinstance(self._mol, Molecule): if cart_coords is True: output.append(self.get_cart_coords()) else: output.append(self.get_zmatrix()) else: output.append(str(self._mol)) output.append("") if self.gen_basis is not None: output.append("{:s}\n".format(self.gen_basis)) output.append(para_dict_to_string(self.input_parameters, "\n")) output.append("\n") return "\n".join(output) def write_file(self, filename,cart_coords=False): """ Write the input string into a file Option: see __str__ method """ with zopen(filename, "w") as f: f.write(self.to_string(cart_coords)) def as_dict(self): return {"@module": self.__class__.__module__, "@class": self.__class__.__name__, "molecule": self.molecule.as_dict(), "functional": self.functional, "basis_set": self.basis_set, "route_parameters": self.route_parameters, "title": self.title, "charge": self.charge, "spin_multiplicity": self.spin_multiplicity, "input_parameters": self.input_parameters, "link0_parameters": self.link0_parameters, "dieze_tag": self.dieze_tag} @classmethod def from_dict(cls, d): return GaussianInput(mol=Molecule.from_dict(d["molecule"]), functional=d["functional"], basis_set=d["basis_set"], route_parameters=d["route_parameters"], title=d["title"], charge=d["charge"], spin_multiplicity=d["spin_multiplicity"], input_parameters=d["input_parameters"], link0_parameters=d["link0_parameters"]) class GaussianOutput(object): """ Parser for Gaussian output files. Args: filename: Filename of Gaussian output file. .. note:: Still in early beta. Attributes: .. attribute:: structures All structures from the calculation. .. attribute:: energies All energies from the calculation. .. attribute:: eigenvalues List of eigenvalues for the last geometry .. attribute:: MO_coefficients Matrix of MO coefficients for the last geometry .. attribute:: cart_forces All cartesian forces from the calculation. .. attribute:: frequencies A list for each freq calculation and for each mode of a dict with { "frequency": freq in cm-1, "symmetry": symmetry tag "r_mass": Reduce mass, "f_constant": force constant, "IR_intensity": IR Intensity, "mode": normal mode } The normal mode is a 1D vector of dx, dy dz of each atom. .. attribute:: hessian Matrix of second derivatives of the energy with respect to cartesian coordinates in the **input orientation** frame. Need #P in the route section in order to be in the output. .. attribute:: properly_terminated True if run has properly terminated .. attribute:: is_pcm True if run is a PCM run. .. attribute:: is_spin True if it is an unrestricted run .. attribute:: stationary_type If it is a relaxation run, indicates whether it is a minimum (Minimum) or a saddle point ("Saddle"). .. attribute:: corrections Thermochemical corrections if this run is a Freq run as a dict. Keys are "Zero-point", "Thermal", "Enthalpy" and "Gibbs Free Energy" .. attribute:: functional Functional used in the run. .. attribute:: basis_set Basis set used in the run .. attribute:: route Additional route parameters as a dict. For example, {'SP':"", "SCF":"Tight"} .. attribute:: dieze_tag # preceding the route line, e.g. "#P" .. attribute:: link0 Link0 parameters as a dict. E.g., {"%mem": "1000MW"} .. attribute:: charge Charge for structure .. attribute:: spin_mult Spin multiplicity for structure .. attribute:: num_basis_func Number of basis functions in the run. .. attribute:: electrons number of alpha and beta electrons as (N alpha, N beta) .. attribute:: pcm PCM parameters and output if available. .. attribute:: errors error if not properly terminated (list to be completed in error_defs) .. attribute:: Mulliken_charges Mulliken atomic charges .. attribute:: eigenvectors Matrix of shape (num_basis_func, num_basis_func). Each column is an eigenvectors and contains AO coefficients of an MO. eigenvectors[Spin] = mat(num_basis_func, num_basis_func) .. attribute:: molecular_orbital MO development coefficients on AO in a more convenient array dict for each atom and basis set label. mo[Spin][OM j][atom i] = {AO_k: coeff, AO_k: coeff ... } .. attribute:: atom_basis_labels Labels of AO for each atoms. These labels are those used in the output of molecular orbital coefficients (POP=Full) and in the molecular_orbital array dict. atom_basis_labels[iatom] = [AO_k, AO_k, ...] .. attribute:: resumes List of gaussian data resume given at the end of the output file before the quotation. The resumes are given as string. Methods: .. method:: to_input() Return a GaussianInput object using the last geometry and the same calculation parameters. .. method:: read_scan() Read a potential energy surface from a gaussian scan calculation. .. method:: get_scan_plot() Get a matplotlib plot of the potential energy surface .. method:: save_scan_plot() Save a matplotlib plot of the potential energy surface to a file """ def __init__(self, filename): self.filename = filename self._parse(filename) @property def final_energy(self): return self.energies[-1] @property def final_structure(self): return self.structures[-1] def _parse(self, filename): start_patt = re.compile(r" \(Enter \S+l101\.exe\)") route_patt = re.compile(r" #[pPnNtT]*.*") link0_patt = re.compile(r"^\s(%.+)\s*=\s*(.+)") charge_mul_patt = re.compile(r"Charge\s+=\s*([-\d]+)\s+" r"Multiplicity\s+=\s*(\d+)") num_basis_func_patt = re.compile(r"([0-9]+)\s+basis functions") num_elec_patt = re.compile(r"(\d+)\s+alpha electrons\s+(\d+)\s+beta electrons") pcm_patt = re.compile(r"Polarizable Continuum Model") stat_type_patt = re.compile(r"imaginary frequencies") scf_patt = re.compile(r"E\(.*\)\s*=\s*([-\.\d]+)\s+") mp2_patt = re.compile(r"EUMP2\s*=\s*(.*)") oniom_patt = re.compile(r"ONIOM:\s+extrapolated energy\s*=\s*(.*)") termination_patt = re.compile(r"(Normal|Error) termination") error_patt = re.compile( r"(! Non-Optimized Parameters !|Convergence failure)") mulliken_patt = re.compile( r"^\s*(Mulliken charges|Mulliken atomic charges)") mulliken_charge_patt = re.compile( r'^\s+(\d+)\s+([A-Z][a-z]?)\s*(\S*)') end_mulliken_patt = re.compile( r'(Sum of Mulliken )(.*)(charges)\s*=\s*(\D)') std_orientation_patt = re.compile(r"Standard orientation") end_patt = re.compile(r"--+") orbital_patt = re.compile(r"(Alpha|Beta)\s*\S+\s*eigenvalues --(.*)") thermo_patt = re.compile(r"(Zero-point|Thermal) correction(.*)=" r"\s+([\d\.-]+)") forces_on_patt = re.compile( r"Center\s+Atomic\s+Forces\s+\(Hartrees/Bohr\)") forces_off_patt = re.compile(r"Cartesian\s+Forces:\s+Max.*RMS.*") forces_patt = re.compile( r"\s+(\d+)\s+(\d+)\s+([0-9\.-]+)\s+([0-9\.-]+)\s+([0-9\.-]+)") freq_on_patt = re.compile( r"Harmonic\sfrequencies\s+\(cm\*\*-1\),\sIR\sintensities.*Raman.*") freq_patt = re.compile(r"Frequencies\s--\s+(.*)") normal_mode_patt = re.compile( r"\s+(\d+)\s+(\d+)\s+([0-9\.-]{4,5})\s+([0-9\.-]{4,5}).*") mo_coeff_patt = re.compile(r"Molecular Orbital Coefficients:") mo_coeff_name_patt = re.compile(r"\d+\s((\d+|\s+)\s+([a-zA-Z]{1,2}|\s+))\s+(\d+\S+)") hessian_patt = re.compile(r"Force constants in Cartesian coordinates:") resume_patt = re.compile(r"^\s1\\1\\GINC-\S*") resume_end_patt = re.compile(r"^\s.*\\\\@") self.properly_terminated = False self.is_pcm = False self.stationary_type = "Minimum" self.structures = [] self.corrections = {} self.energies = [] self.pcm = None self.errors = [] self.Mulliken_charges = {} self.link0 = {} self.cart_forces = [] self.frequencies = [] self.eigenvalues = [] self.is_spin = False self.hessian = None self.resumes = [] coord_txt = [] read_coord = 0 read_mulliken = False read_eigen = False eigen_txt = [] parse_stage = 0 num_basis_found = False terminated = False parse_forces = False forces = [] parse_freq = False frequencies = [] read_mo = False parse_hessian = False with zopen(filename) as f: for line in f: if parse_stage == 0: if start_patt.search(line): parse_stage = 1 elif link0_patt.match(line): m = link0_patt.match(line) self.link0[m.group(1)] = m.group(2) elif route_patt.search(line): params = read_route_line(line) self.functional = params[0] self.basis_set = params[1] self.route = params[2] route_lower = {k.lower(): v for k, v in self.route.items()} self.dieze_tag = params[3] parse_stage = 1 elif parse_stage == 1: if charge_mul_patt.search(line): m = charge_mul_patt.search(line) self.charge = int(m.group(1)) self.spin_mult = int(m.group(2)) parse_stage = 2 elif parse_stage == 2: if self.is_pcm: self._check_pcm(line) if "freq" in route_lower and thermo_patt.search(line): m = thermo_patt.search(line) if m.group(1) == "Zero-point": self.corrections["Zero-point"] = float(m.group(3)) else: key = m.group(2).strip(" to ") self.corrections[key] = float(m.group(3)) if read_coord: if not end_patt.search(line): coord_txt.append(line) else: read_coord = (read_coord + 1) % 4 if not read_coord: sp = [] coords = [] for l in coord_txt[2:]: toks = l.split() sp.append(Element.from_Z(int(toks[1]))) coords.append([float(i) for i in toks[3:6]]) self.structures.append(Molecule(sp, coords)) if parse_forces: m = forces_patt.search(line) if m: forces.extend([float(_v) for _v in m.groups()[2:5]]) elif forces_off_patt.search(line): self.cart_forces.append(forces) forces = [] parse_forces = False # read molecular orbital eigenvalues if read_eigen: m = orbital_patt.search(line) if m: eigen_txt.append(line) else: read_eigen = False self.eigenvalues = {Spin.up: []} for eigenline in eigen_txt: if "Alpha" in eigenline: self.eigenvalues[Spin.up] += [float(e) for e in float_patt.findall(eigenline)] elif "Beta" in eigenline: if Spin.down not in self.eigenvalues: self.eigenvalues[Spin.down] = [] self.eigenvalues[Spin.down] += [float(e) for e in float_patt.findall(eigenline)] eigen_txt = [] # read molecular orbital coefficients if read_mo: # build a matrix with all coefficients all_spin = [Spin.up] if self.is_spin: all_spin.append(Spin.down) mat_mo = {} for spin in all_spin: mat_mo[spin] = np.zeros((self.num_basis_func, self.num_basis_func)) nMO = 0 end_mo = False while nMO < self.num_basis_func and not end_mo: f.readline() f.readline() self.atom_basis_labels = [] for i in range(self.num_basis_func): line = f.readline() # identify atom and OA labels m = mo_coeff_name_patt.search(line) if m.group(1).strip() != "": iat = int(m.group(2)) - 1 # atname = m.group(3) self.atom_basis_labels.append([m.group(4)]) else: self.atom_basis_labels[iat].append(m.group(4)) # MO coefficients coeffs = [float(c) for c in float_patt.findall(line)] for j in range(len(coeffs)): mat_mo[spin][i, nMO + j] = coeffs[j] nMO += len(coeffs) line = f.readline() # manage pop=regular case (not all MO) if nMO < self.num_basis_func and \ ("Density Matrix:" in line or mo_coeff_patt.search(line)): end_mo = True warnings.warn("POP=regular case, matrix coefficients not complete") f.readline() self.eigenvectors = mat_mo read_mo = False # build a more convenient array dict with MO coefficient of # each atom in each MO. # mo[Spin][OM j][atom i] = {AO_k: coeff, AO_k: coeff ... } mo = {} for spin in all_spin: mo[spin] = [[{} for iat in range(len(self.atom_basis_labels))] for j in range(self.num_basis_func)] for j in range(self.num_basis_func): i = 0 for iat in range(len(self.atom_basis_labels)): for label in self.atom_basis_labels[iat]: mo[spin][j][iat][label] = self.eigenvectors[spin][i, j] i += 1 self.molecular_orbital = mo elif parse_freq: while line.strip() != "": # blank line ifreqs = [int(val) - 1 for val in line.split()] for ifreq in ifreqs: frequencies.append({"frequency": None, "r_mass": None, "f_constant": None, "IR_intensity": None, "symmetry": None, "mode": []}) # read freq, intensity, masses, symmetry ... while "Atom AN" not in line: if "Frequencies --" in line: freqs = map(float, float_patt.findall(line)) for ifreq, freq in zip(ifreqs, freqs): frequencies[ifreq]["frequency"] = freq elif "Red. masses --" in line: r_masses = map(float, float_patt.findall(line)) for ifreq, r_mass in zip(ifreqs, r_masses): frequencies[ifreq]["r_mass"] = r_mass elif "Frc consts --" in line: f_consts = map(float, float_patt.findall(line)) for ifreq, f_const in zip(ifreqs, f_consts): frequencies[ifreq]["f_constant"] = f_const elif "IR Inten --" in line: IR_intens = map(float, float_patt.findall(line)) for ifreq, intens in zip(ifreqs, IR_intens): frequencies[ifreq]["IR_intensity"] = intens else: syms = line.split()[:3] for ifreq, sym in zip(ifreqs, syms): frequencies[ifreq]["symmetry"] = sym line = f.readline() # read normal modes line = f.readline() while normal_mode_patt.search(line): values = list(map(float, float_patt.findall(line))) for i, ifreq in zip(range(0, len(values), 3), ifreqs): frequencies[ifreq]["mode"].extend(values[i:i+3]) line = f.readline() parse_freq = False self.frequencies.append(frequencies) frequencies = [] elif parse_hessian: # read Hessian matrix under "Force constants in Cartesian coordinates" # Hessian matrix is in the input orientation framework # WARNING : need #P in the route line parse_hessian = False ndf = 3 * len(self.structures[0]) self.hessian = np.zeros((ndf, ndf)) j_indices = range(5) jndf = 0 while jndf < ndf: for i in range(jndf, ndf): line = f.readline() vals = re.findall(r"\s*([+-]?\d+\.\d+[eEdD]?[+-]\d+)", line) vals = [float(val.replace("D", "E")) for val in vals] for jval, val in enumerate(vals): j = j_indices[jval] self.hessian[i, j] = val self.hessian[j, i] = val jndf += len(vals) line = f.readline() j_indices = [j + 5 for j in j_indices] elif termination_patt.search(line): m = termination_patt.search(line) if m.group(1) == "Normal": self.properly_terminated = True terminated = True elif error_patt.search(line): error_defs = { "! Non-Optimized Parameters !": "Optimization " "error", "Convergence failure": "SCF convergence error" } m = error_patt.search(line) self.errors.append(error_defs[m.group(1)]) elif (not num_basis_found) and \ num_basis_func_patt.search(line): m = num_basis_func_patt.search(line) self.num_basis_func = int(m.group(1)) num_basis_found = True elif num_elec_patt.search(line): m = num_elec_patt.search(line) self.electrons = (int(m.group(1)), int(m.group(2))) elif (not self.is_pcm) and pcm_patt.search(line): self.is_pcm = True self.pcm = {} elif "freq" in route_lower and "opt" in route_lower and \ stat_type_patt.search(line): self.stationary_type = "Saddle" elif mp2_patt.search(line): m = mp2_patt.search(line) self.energies.append(float(m.group(1).replace("D", "E"))) elif oniom_patt.search(line): m = oniom_patt.matcher(line) self.energies.append(float(m.group(1))) elif scf_patt.search(line): m = scf_patt.search(line) self.energies.append(float(m.group(1))) elif std_orientation_patt.search(line): coord_txt = [] read_coord = 1 elif not read_eigen and orbital_patt.search(line): eigen_txt.append(line) read_eigen = True elif mulliken_patt.search(line): mulliken_txt = [] read_mulliken = True elif not parse_forces and forces_on_patt.search(line): parse_forces = True elif freq_on_patt.search(line): parse_freq = True [f.readline() for i in range(3)] elif mo_coeff_patt.search(line): if "Alpha" in line: self.is_spin = True read_mo = True elif hessian_patt.search(line): parse_hessian = True elif resume_patt.search(line): resume = [] while not resume_end_patt.search(line): resume.append(line) line = f.readline() if line == "\n": # security if \\@ not in one line ! break resume.append(line) resume = "".join([r.strip() for r in resume]) self.resumes.append(resume) if read_mulliken: if not end_mulliken_patt.search(line): mulliken_txt.append(line) else: m = end_mulliken_patt.search(line) mulliken_charges = {} for line in mulliken_txt: if mulliken_charge_patt.search(line): m = mulliken_charge_patt.search(line) dict = {int(m.group(1)): [m.group(2), float(m.group(3))]} mulliken_charges.update(dict) read_mulliken = False self.Mulliken_charges = mulliken_charges if not terminated: #raise IOError("Bad Gaussian output file.") warnings.warn("\n" + self.filename + \ ": Termination error or bad Gaussian output file !") def _check_pcm(self, line): energy_patt = re.compile(r"(Dispersion|Cavitation|Repulsion) energy" r"\s+\S+\s+=\s+(\S*)") total_patt = re.compile(r"with all non electrostatic terms\s+\S+\s+" r"=\s+(\S*)") parameter_patt = re.compile(r"(Eps|Numeral density|RSolv|Eps" r"\(inf[inity]*\))\s+=\s*(\S*)") if energy_patt.search(line): m = energy_patt.search(line) self.pcm['{} energy'.format(m.group(1))] = float(m.group(2)) elif total_patt.search(line): m = total_patt.search(line) self.pcm['Total energy'] = float(m.group(1)) elif parameter_patt.search(line): m = parameter_patt.search(line) self.pcm[m.group(1)] = float(m.group(2)) def as_dict(self): """ Json-serializable dict representation. """ structure = self.final_structure d = {"has_gaussian_completed": self.properly_terminated, "nsites": len(structure)} comp = structure.composition d["unit_cell_formula"] = comp.as_dict() d["reduced_cell_formula"] = Composition(comp.reduced_formula).as_dict() d["pretty_formula"] = comp.reduced_formula d["is_pcm"] = self.is_pcm d["errors"] = self.errors d["Mulliken_charges"] = self.Mulliken_charges unique_symbols = sorted(list(d["unit_cell_formula"].keys())) d["elements"] = unique_symbols d["nelements"] = len(unique_symbols) d["charge"] = self.charge d["spin_multiplicity"] = self.spin_mult vin = {"route": self.route, "functional": self.functional, "basis_set": self.basis_set, "nbasisfunctions": self.num_basis_func, "pcm_parameters": self.pcm} d["input"] = vin nsites = len(self.final_structure) vout = { "energies": self.energies, "final_energy": self.final_energy, "final_energy_per_atom": self.final_energy / nsites, "molecule": structure.as_dict(), "stationary_type": self.stationary_type, "corrections": self.corrections } d['output'] = vout d["@module"] = self.__class__.__module__ d["@class"] = self.__class__.__name__ return d def read_scan(self): """ Read a potential energy surface from a gaussian scan calculation. Returns: A dict: {"energies": [ values ], "coords": {"d1": [ values ], "A2", [ values ], ... }} "energies" are the energies of all points of the potential energy surface. "coords" are the internal coordinates used to compute the potential energy surface and the internal coordinates optimized, labelled by their name as defined in the calculation. """ def floatList(l): """ return a list of float from a list of string """ return [float(v) for v in l] scan_patt = re.compile(r"^\sSummary of the potential surface scan:") optscan_patt = re.compile(r"^\sSummary of Optimized Potential Surface Scan") # data dict return data = {"energies": list(), "coords": dict()} # read in file with zopen(self.filename, "r") as f: line = f.readline() while line != "": if optscan_patt.match(line): f.readline() line = f.readline() endScan = False while not endScan: data["energies"] += floatList(float_patt.findall(line)) line = f.readline() while not re.search(r"(^\s+(\d+)|^\s-+)", line): icname = line.split()[0].strip() if icname in data["coords"]: data["coords"][icname] += floatList(float_patt.findall(line)) else: data["coords"][icname] = floatList(float_patt.findall(line)) line = f.readline() if re.search(r"^\s-+", line): endScan = True else: line = f.readline() elif scan_patt.match(line): line = f.readline() data["coords"] = {icname: list() for icname in line.split()[1:-1]} f.readline() line = f.readline() while not re.search(r"^\s-+", line): values = floatList(line.split()) data["energies"].append(values[-1]) for i, icname in enumerate(data["coords"]): data["coords"][icname].append(values[i+1]) line = f.readline() else: line = f.readline() return data def get_scan_plot(self, coords=None): """ Get a matplotlib plot of the potential energy surface. Args: coords: internal coordinate name to use as abcissa. """ from pymatgen.util.plotting import pretty_plot plt = pretty_plot(12, 8) d = self.read_scan() if coords and coords in d["coords"]: x = d["coords"][coords] plt.xlabel(coords) else: x = range(len(d["energies"])) plt.xlabel("points") plt.ylabel("Energy (eV)") e_min = min(d["energies"]) y = [(e - e_min) * HARTREE_TO_ELECTRON_VOLT for e in d["energies"]] plt.plot(x, y, "ro--") return plt def save_scan_plot(self, filename="scan.pdf", img_format="pdf", coords=None): """ Save matplotlib plot of the potential energy surface to a file. Args: filename: Filename to write to. img_format: Image format to use. Defaults to EPS. coords: internal coordinate name to use as abcissa. """ plt = self.get_scan_plot(coords) plt.savefig(filename, format=img_format) def read_excitation_energies(self): """ Read a excitation energies after a TD-DFT calculation. Returns: A list: A list of tuple for each transition such as [(energie (eV), lambda (nm), oscillatory strength), ... ] """ transitions = list() # read in file with zopen(self.filename, "r") as f: line = f.readline() td = False while line != "": if re.search(r"^\sExcitation energies and oscillator strengths:", line): td = True if td: if re.search(r"^\sExcited State\s*\d", line): val = [float(v) for v in float_patt.findall(line)] transitions.append(tuple(val[0:3])) line = f.readline() return transitions def get_spectre_plot(self, sigma=0.05, step=0.01): """ Get a matplotlib plot of the UV-visible xas. Transition are plotted as vertical lines and as a sum of normal functions with sigma with. The broadening is applied in energy and the xas is plotted as a function of the wavelength. Args: sigma: Full width at half maximum in eV for normal functions. step: bin interval in eV Returns: A dict: {"energies": values, "lambda": values, "xas": values} where values are lists of abscissa (energies, lamba) and the sum of gaussian functions (xas). A matplotlib plot. """ from pymatgen.util.plotting import pretty_plot from matplotlib.mlab import normpdf plt = pretty_plot(12, 8) transitions = self.read_excitation_energies() minval = min([val[0] for val in transitions]) - 5.0 * sigma maxval = max([val[0] for val in transitions]) + 5.0 * sigma npts = int((maxval - minval) / step) + 1 eneval = np.linspace(minval, maxval, npts) # in eV lambdaval = [cst.h * cst.c / (val * cst.e) * 1.e9 for val in eneval] # in nm # sum of gaussian functions spectre = np.zeros(npts) for trans in transitions: spectre += trans[2] * normpdf(eneval, trans[0], sigma) spectre /= spectre.max() plt.plot(lambdaval, spectre, "r-", label="spectre") data = {"energies": eneval, "lambda": lambdaval, "xas": spectre} # plot transitions as vlines plt.vlines([val[1] for val in transitions], \ 0., \ [val[2] for val in transitions], \ color="blue", \ label="transitions", linewidth=2) plt.xlabel("$\\lambda$ (nm)") plt.ylabel("Arbitrary unit") plt.legend() return data, plt def save_spectre_plot(self, filename="spectre.pdf", img_format="pdf", sigma=0.05, step=0.01): """ Save matplotlib plot of the spectre to a file. Args: filename: Filename to write to. img_format: Image format to use. Defaults to EPS. sigma: Full width at half maximum in eV for normal functions. step: bin interval in eV """ d, plt = self.get_spectre_plot(sigma, step) plt.savefig(filename, format=img_format) def to_input(self, filename, mol=None, charge=None, spin_multiplicity=None, title=None, functional=None, basis_set=None, route_parameters=None, input_parameters=None, link0_parameters=None, dieze_tag=None, cart_coords=False): """ Write a new input file using by default the last geometry read in the output file and with the same calculation parameters. Arguments are the same as GaussianInput class. Returns gaunip (GaussianInput) : the gaussian input object """ if not mol: mol = self.final_structure if charge is None: charge = self.charge if spin_multiplicity is None: spin_multiplicity = self.spin_mult if not title: title = "restart " if not functional: functional = self.functional if not basis_set: basis_set = self.basis_set if not route_parameters: route_parameters = self.route if not link0_parameters: link0_parameters = self.link0 if not dieze_tag: dieze_tag = self.dieze_tag gauinp = GaussianInput(mol=mol, charge=charge, spin_multiplicity=spin_multiplicity, title=title, functional=functional, basis_set=basis_set, route_parameters=route_parameters, input_parameters=input_parameters, link0_parameters=link0_parameters, dieze_tag=dieze_tag) gauinp.write_file(filename, cart_coords=cart_coords) return gauinp
mit
teonlamont/mne-python
mne/viz/topo.py
2
35647
"""Functions to plot M/EEG data on topo (one axes per channel).""" from __future__ import print_function # Authors: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # Martin Luessi <[email protected]> # Eric Larson <[email protected]> # # License: Simplified BSD from copy import deepcopy from functools import partial from itertools import cycle import numpy as np from ..io.constants import Bunch from ..io.pick import channel_type, pick_types from ..utils import _clean_names, warn from ..channels.layout import _merge_grad_data, _pair_grad_sensors, find_layout from ..defaults import _handle_default from .utils import (_check_delayed_ssp, _get_color_list, _draw_proj_checkbox, add_background_image, plt_show, _setup_vmin_vmax, DraggableColorbar, _set_ax_facecolor, _setup_ax_spines, _check_cov, _plot_masked_image) def iter_topography(info, layout=None, on_pick=None, fig=None, fig_facecolor='k', axis_facecolor='k', axis_spinecolor='k', layout_scale=None): """Create iterator over channel positions. This function returns a generator that unpacks into a series of matplotlib axis objects and data / channel indices, both corresponding to the sensor positions of the related layout passed or inferred from the channel info. `iter_topography`, hence, allows to conveniently realize custom topography plots. Parameters ---------- info : instance of Info The measurement info. layout : instance of mne.layout.Layout | None The layout to use. If None, layout will be guessed on_pick : callable | None The callback function to be invoked on clicking one of the axes. Is supposed to instantiate the following API: `function(axis, channel_index)` fig : matplotlib.figure.Figure | None The figure object to be considered. If None, a new figure will be created. fig_facecolor : str | obj The figure face color. Defaults to black. axis_facecolor : str | obj The axis face color. Defaults to black. axis_spinecolor : str | obj The axis spine color. Defaults to black. In other words, the color of the axis' edge lines. layout_scale: float | None Scaling factor for adjusting the relative size of the layout on the canvas. If None, nothing will be scaled. Returns ------- A generator that can be unpacked into: ax : matplotlib.axis.Axis The current axis of the topo plot. ch_dx : int The related channel index. """ return _iter_topography(info, layout, on_pick, fig, fig_facecolor, axis_facecolor, axis_spinecolor, layout_scale) def _iter_topography(info, layout, on_pick, fig, fig_facecolor='k', axis_facecolor='k', axis_spinecolor='k', layout_scale=None, unified=False, img=False, axes=None): """Iterate over topography. Has the same parameters as iter_topography, plus: unified : bool If False (default), multiple matplotlib axes will be used. If True, a single axis will be constructed. The former is useful for custom plotting, the latter for speed. """ from matplotlib import pyplot as plt, collections if fig is None: fig = plt.figure() def format_coord_unified(x, y, pos=None, ch_names=None): """Update status bar with channel name under cursor.""" # find candidate channels (ones that are down and left from cursor) pdist = np.array([x, y]) - pos[:, :2] pind = np.where((pdist >= 0).all(axis=1))[0] if len(pind) > 0: # find the closest channel closest = pind[np.sum(pdist[pind, :]**2, axis=1).argmin()] # check whether we are inside its box in_box = (pdist[closest, :] < pos[closest, 2:]).all() else: in_box = False return (('%s (click to magnify)' % ch_names[closest]) if in_box else 'No channel here') def format_coord_multiaxis(x, y, ch_name=None): """Update status bar with channel name under cursor.""" return '%s (click to magnify)' % ch_name fig.set_facecolor(fig_facecolor) if layout is None: layout = find_layout(info) if on_pick is not None: callback = partial(_plot_topo_onpick, show_func=on_pick) fig.canvas.mpl_connect('button_press_event', callback) pos = layout.pos.copy() if layout_scale: pos[:, :2] *= layout_scale ch_names = _clean_names(info['ch_names']) iter_ch = [(x, y) for x, y in enumerate(layout.names) if y in ch_names] if unified: if axes is None: under_ax = plt.axes([0, 0, 1, 1]) under_ax.axis('off') else: under_ax = axes under_ax.format_coord = partial(format_coord_unified, pos=pos, ch_names=layout.names) under_ax.set(xlim=[0, 1], ylim=[0, 1]) axs = list() for idx, name in iter_ch: ch_idx = ch_names.index(name) if not unified: # old, slow way ax = plt.axes(pos[idx]) ax.patch.set_facecolor(axis_facecolor) plt.setp(list(ax.spines.values()), color=axis_spinecolor) ax.set(xticklabels=[], yticklabels=[]) plt.setp(ax.get_xticklines(), visible=False) plt.setp(ax.get_yticklines(), visible=False) ax._mne_ch_name = name ax._mne_ch_idx = ch_idx ax._mne_ax_face_color = axis_facecolor ax.format_coord = partial(format_coord_multiaxis, ch_name=name) yield ax, ch_idx else: ax = Bunch(ax=under_ax, pos=pos[idx], data_lines=list(), _mne_ch_name=name, _mne_ch_idx=ch_idx, _mne_ax_face_color=axis_facecolor) axs.append(ax) if unified: under_ax._mne_axs = axs # Create a PolyCollection for the axis backgrounds verts = np.transpose([pos[:, :2], pos[:, :2] + pos[:, 2:] * [1, 0], pos[:, :2] + pos[:, 2:], pos[:, :2] + pos[:, 2:] * [0, 1], ], [1, 0, 2]) if not img: under_ax.add_collection(collections.PolyCollection( verts, facecolor=axis_facecolor, edgecolor=axis_spinecolor, linewidth=1.)) # Not needed for image plots. for ax in axs: yield ax, ax._mne_ch_idx def _plot_topo(info, times, show_func, click_func=None, layout=None, vmin=None, vmax=None, ylim=None, colorbar=None, border='none', axis_facecolor='k', fig_facecolor='k', cmap='RdBu_r', layout_scale=None, title=None, x_label=None, y_label=None, font_color='w', unified=False, img=False, axes=None): """Plot on sensor layout.""" import matplotlib.pyplot as plt if layout.kind == 'custom': layout = deepcopy(layout) layout.pos[:, :2] -= layout.pos[:, :2].min(0) layout.pos[:, :2] /= layout.pos[:, :2].max(0) # prepare callbacks tmin, tmax = times[[0, -1]] click_func = show_func if click_func is None else click_func on_pick = partial(click_func, tmin=tmin, tmax=tmax, vmin=vmin, vmax=vmax, ylim=ylim, x_label=x_label, y_label=y_label, colorbar=colorbar) if axes is None: fig = plt.figure() axes = plt.axes([0.015, 0.025, 0.97, 0.95]) _set_ax_facecolor(axes, fig_facecolor) else: fig = axes.figure if colorbar: sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin, vmax)) sm.set_array(np.linspace(vmin, vmax)) cb = fig.colorbar(sm, ax=axes, pad=0.025, fraction=0.075, shrink=0.5, anchor=(-1, 0.5)) cb_yticks = plt.getp(cb.ax.axes, 'yticklabels') plt.setp(cb_yticks, color=font_color) axes.axis('off') my_topo_plot = _iter_topography(info, layout=layout, on_pick=on_pick, fig=fig, layout_scale=layout_scale, axis_spinecolor=border, axis_facecolor=axis_facecolor, fig_facecolor=fig_facecolor, unified=unified, img=img, axes=axes) for ax, ch_idx in my_topo_plot: if layout.kind == 'Vectorview-all' and ylim is not None: this_type = {'mag': 0, 'grad': 1}[channel_type(info, ch_idx)] ylim_ = [v[this_type] if _check_vlim(v) else v for v in ylim] else: ylim_ = ylim show_func(ax, ch_idx, tmin=tmin, tmax=tmax, vmin=vmin, vmax=vmax, ylim=ylim_) if title is not None: plt.figtext(0.03, 0.95, title, color=font_color, fontsize=15, va='top') return fig def _plot_topo_onpick(event, show_func): """Onpick callback that shows a single channel in a new figure.""" # make sure that the swipe gesture in OS-X doesn't open many figures orig_ax = event.inaxes import matplotlib.pyplot as plt try: if hasattr(orig_ax, '_mne_axs'): # in unified, single-axes mode x, y = event.xdata, event.ydata for ax in orig_ax._mne_axs: if x >= ax.pos[0] and y >= ax.pos[1] and \ x <= ax.pos[0] + ax.pos[2] and \ y <= ax.pos[1] + ax.pos[3]: orig_ax = ax break else: # no axis found return elif not hasattr(orig_ax, '_mne_ch_idx'): # neither old nor new mode return ch_idx = orig_ax._mne_ch_idx face_color = orig_ax._mne_ax_face_color fig, ax = plt.subplots(1) plt.title(orig_ax._mne_ch_name) _set_ax_facecolor(ax, face_color) # allow custom function to override parameters show_func(ax, ch_idx) except Exception as err: # matplotlib silently ignores exceptions in event handlers, # so we print # it here to know what went wrong print(err) raise def _compute_scalings(bn, xlim, ylim): """Compute scale factors for a unified plot.""" if isinstance(ylim[0], (tuple, list, np.ndarray)): ylim = (ylim[0][0], ylim[1][0]) pos = bn.pos bn.x_s = pos[2] / (xlim[1] - xlim[0]) bn.x_t = pos[0] - bn.x_s * xlim[0] bn.y_s = pos[3] / (ylim[1] - ylim[0]) bn.y_t = pos[1] - bn.y_s * ylim[0] def _check_vlim(vlim): """Check the vlim.""" return not np.isscalar(vlim) and vlim is not None def _imshow_tfr(ax, ch_idx, tmin, tmax, vmin, vmax, onselect, ylim=None, tfr=None, freq=None, x_label=None, y_label=None, colorbar=False, cmap=('RdBu_r', True), yscale='auto', mask=None, mask_style="both", mask_cmap="Greys", mask_alpha=0.1, is_jointplot=False): """Show time-frequency map as two-dimensional image.""" from matplotlib import pyplot as plt from matplotlib.widgets import RectangleSelector if yscale not in ['auto', 'linear', 'log']: raise ValueError("yscale should be either 'auto', 'linear', or 'log'" ", got {}".format(yscale)) cmap, interactive_cmap = cmap times = np.linspace(tmin, tmax, num=tfr[ch_idx].shape[1]) img, t_end = _plot_masked_image( ax, tfr[ch_idx], times, mask, picks=None, yvals=freq, cmap=cmap, vmin=vmin, vmax=vmax, mask_style=mask_style, mask_alpha=mask_alpha, mask_cmap=mask_cmap, yscale=yscale) if x_label is not None: ax.set_xlabel(x_label) if y_label is not None: ax.set_ylabel(y_label) if colorbar: if isinstance(colorbar, DraggableColorbar): cbar = colorbar.cbar # this happens with multiaxes case else: cbar = plt.colorbar(mappable=img) if interactive_cmap: ax.CB = DraggableColorbar(cbar, img) ax.RS = RectangleSelector(ax, onselect=onselect) # reference must be kept return t_end def _imshow_tfr_unified(bn, ch_idx, tmin, tmax, vmin, vmax, onselect, ylim=None, tfr=None, freq=None, vline=None, x_label=None, y_label=None, colorbar=False, picker=True, cmap='RdBu_r', title=None, hline=None): """Show multiple tfrs on topo using a single axes.""" _compute_scalings(bn, (tmin, tmax), (freq[0], freq[-1])) ax = bn.ax data_lines = bn.data_lines extent = (bn.x_t + bn.x_s * tmin, bn.x_t + bn.x_s * tmax, bn.y_t + bn.y_s * freq[0], bn.y_t + bn.y_s * freq[-1]) data_lines.append(ax.imshow(tfr[ch_idx], clip_on=True, clip_box=bn.pos, extent=extent, aspect="auto", origin="lower", vmin=vmin, vmax=vmax, cmap=cmap)) def _plot_timeseries(ax, ch_idx, tmin, tmax, vmin, vmax, ylim, data, color, times, vline=None, x_label=None, y_label=None, colorbar=False, hline=None, hvline_color='w', labels=None): """Show time series on topo split across multiple axes.""" import matplotlib.pyplot as plt from matplotlib.colors import colorConverter picker_flag = False for data_, color_ in zip(data, color): if not picker_flag: # use large tol for picker so we can click anywhere in the axes ax.plot(times, data_[ch_idx], color=color_, picker=1e9) picker_flag = True else: ax.plot(times, data_[ch_idx], color=color_) if x_label is not None: ax.set(xlabel=x_label) if y_label is not None: if isinstance(y_label, list): ax.set_ylabel(y_label[ch_idx]) else: ax.set_ylabel(y_label) def _format_coord(x, y, labels, ax): """Create status string based on cursor coordinates.""" idx = np.abs(times - x).argmin() ylabel = ax.get_ylabel() unit = (ylabel[ylabel.find('(') + 1:ylabel.find(')')] if '(' in ylabel and ')' in ylabel else '') labels = [''] * len(data) if labels is None else labels # try to estimate whether to truncate condition labels slen = 10 + sum([12 + len(unit) + len(label) for label in labels]) bar_width = (ax.figure.get_size_inches() * ax.figure.dpi)[0] / 5.5 trunc_labels = bar_width < slen s = '%6.3f s: ' % times[idx] for data_, label in zip(data, labels): s += '%7.2f %s' % (data_[ch_idx, idx], unit) if trunc_labels: label = (label if len(label) <= 10 else '%s..%s' % (label[:6], label[-2:])) s += ' [%s] ' % label if label else ' ' return s ax.format_coord = lambda x, y: _format_coord(x, y, labels=labels, ax=ax) def _cursor_vline(event): """Draw cursor (vertical line).""" ax = event.inaxes if not ax: return if ax._cursorline is not None: ax._cursorline.remove() ax._cursorline = ax.axvline(event.xdata, color=ax._cursorcolor) ax.figure.canvas.draw() def _rm_cursor(event): ax = event.inaxes if ax._cursorline is not None: ax._cursorline.remove() ax._cursorline = None ax.figure.canvas.draw() ax._cursorline = None # choose cursor color based on perceived brightness of background try: facecol = colorConverter.to_rgb(ax.get_facecolor()) except AttributeError: # older MPL facecol = colorConverter.to_rgb(ax.get_axis_bgcolor()) face_brightness = np.dot(facecol, np.array([299, 587, 114])) ax._cursorcolor = 'white' if face_brightness < 150 else 'black' plt.connect('motion_notify_event', _cursor_vline) plt.connect('axes_leave_event', _rm_cursor) _setup_ax_spines(ax, vline, tmin, tmax) ax.figure.set_facecolor('k' if hvline_color is 'w' else 'w') ax.spines['bottom'].set_color(hvline_color) ax.spines['left'].set_color(hvline_color) ax.tick_params(axis='x', colors=hvline_color, which='both') ax.tick_params(axis='y', colors=hvline_color, which='both') ax.title.set_color(hvline_color) ax.xaxis.label.set_color(hvline_color) ax.yaxis.label.set_color(hvline_color) if vline: plt.axvline(vline, color=hvline_color, linewidth=1.0, linestyle='--') if hline: plt.axhline(hline, color=hvline_color, linewidth=1.0, zorder=10) if colorbar: plt.colorbar() def _plot_timeseries_unified(bn, ch_idx, tmin, tmax, vmin, vmax, ylim, data, color, times, vline=None, x_label=None, y_label=None, colorbar=False, hline=None, hvline_color='w'): """Show multiple time series on topo using a single axes.""" import matplotlib.pyplot as plt if not (ylim and not any(v is None for v in ylim)): ylim = np.array([np.min(data), np.max(data)]) # Translation and scale parameters to take data->under_ax normalized coords _compute_scalings(bn, (tmin, tmax), ylim) pos = bn.pos data_lines = bn.data_lines ax = bn.ax # XXX These calls could probably be made faster by using collections for data_, color_ in zip(data, color): data_lines.append(ax.plot( bn.x_t + bn.x_s * times, bn.y_t + bn.y_s * data_[ch_idx], linewidth=0.5, color=color_, clip_on=True, clip_box=pos)[0]) if vline: vline = np.array(vline) * bn.x_s + bn.x_t ax.vlines(vline, pos[1], pos[1] + pos[3], color=hvline_color, linewidth=0.5, linestyle='--') if hline: hline = np.array(hline) * bn.y_s + bn.y_t ax.hlines(hline, pos[0], pos[0] + pos[2], color=hvline_color, linewidth=0.5) if x_label is not None: ax.text(pos[0] + pos[2] / 2., pos[1], x_label, horizontalalignment='center', verticalalignment='top') if y_label is not None: y_label = y_label[ch_idx] if isinstance(y_label, list) else y_label ax.text(pos[0], pos[1] + pos[3] / 2., y_label, horizontalignment='right', verticalalignment='middle', rotation=90) if colorbar: plt.colorbar() def _erfimage_imshow(ax, ch_idx, tmin, tmax, vmin, vmax, ylim=None, data=None, epochs=None, sigma=None, order=None, scalings=None, vline=None, x_label=None, y_label=None, colorbar=False, cmap='RdBu_r'): """Plot erfimage on sensor topography.""" from scipy import ndimage import matplotlib.pyplot as plt this_data = data[:, ch_idx, :].copy() * scalings[ch_idx] if callable(order): order = order(epochs.times, this_data) if order is not None: this_data = this_data[order] if sigma > 0.: this_data = ndimage.gaussian_filter1d(this_data, sigma=sigma, axis=0) img = ax.imshow(this_data, extent=[tmin, tmax, 0, len(data)], aspect='auto', origin='lower', vmin=vmin, vmax=vmax, picker=True, cmap=cmap, interpolation='nearest') ax = plt.gca() if x_label is not None: ax.set_xlabel(x_label) if y_label is not None: ax.set_ylabel(y_label) if colorbar: plt.colorbar(mappable=img) def _erfimage_imshow_unified(bn, ch_idx, tmin, tmax, vmin, vmax, ylim=None, data=None, epochs=None, sigma=None, order=None, scalings=None, vline=None, x_label=None, y_label=None, colorbar=False, cmap='RdBu_r'): """Plot erfimage topography using a single axis.""" from scipy import ndimage _compute_scalings(bn, (tmin, tmax), (0, len(epochs.events))) ax = bn.ax data_lines = bn.data_lines extent = (bn.x_t + bn.x_s * tmin, bn.x_t + bn.x_s * tmax, bn.y_t, bn.y_t + bn.y_s * len(epochs.events)) this_data = data[:, ch_idx, :].copy() * scalings[ch_idx] if callable(order): order = order(epochs.times, this_data) if order is not None: this_data = this_data[order] if sigma > 0.: this_data = ndimage.gaussian_filter1d(this_data, sigma=sigma, axis=0) data_lines.append(ax.imshow(this_data, extent=extent, aspect='auto', origin='lower', vmin=vmin, vmax=vmax, picker=True, cmap=cmap, interpolation='nearest')) def _plot_evoked_topo(evoked, layout=None, layout_scale=0.945, color=None, border='none', ylim=None, scalings=None, title=None, proj=False, vline=(0.,), hline=(0.,), fig_facecolor='k', fig_background=None, axis_facecolor='k', font_color='w', merge_grads=False, legend=True, axes=None, show=True, noise_cov=None): """Plot 2D topography of evoked responses. Clicking on the plot of an individual sensor opens a new figure showing the evoked response for the selected sensor. Parameters ---------- evoked : list of Evoked | Evoked The evoked response to plot. layout : instance of Layout | None Layout instance specifying sensor positions (does not need to be specified for Neuromag data). If possible, the correct layout is inferred from the data. layout_scale: float Scaling factor for adjusting the relative size of the layout on the canvas color : list of color objects | color object | None Everything matplotlib accepts to specify colors. If not list-like, the color specified will be repeated. If None, colors are automatically drawn. border : str matplotlib borders style to be used for each sensor plot. ylim : dict | None ylim for plots (after scaling has been applied). The value determines the upper and lower subplot limits. e.g. ylim = dict(eeg=[-20, 20]). Valid keys are eeg, mag, grad. If None, the ylim parameter for each channel is determined by the maximum absolute peak. scalings : dict | None The scalings of the channel types to be applied for plotting. If None,` defaults to `dict(eeg=1e6, grad=1e13, mag=1e15)`. title : str Title of the figure. proj : bool | 'interactive' If true SSP projections are applied before display. If 'interactive', a check box for reversible selection of SSP projection vectors will be shown. vline : list of floats | None The values at which to show a vertical line. hline : list of floats | None The values at which to show a horizontal line. fig_facecolor : str | obj The figure face color. Defaults to black. fig_background : None | array A background image for the figure. This must be a valid input to `matplotlib.pyplot.imshow`. Defaults to None. axis_facecolor : str | obj The face color to be used for each sensor plot. Defaults to black. font_color : str | obj The color of text in the colorbar and title. Defaults to white. merge_grads : bool Whether to use RMS value of gradiometer pairs. Only works for Neuromag data. Defaults to False. legend : bool | int | string | tuple If True, create a legend based on evoked.comment. If False, disable the legend. Otherwise, the legend is created and the parameter value is passed as the location parameter to the matplotlib legend call. It can be an integer (e.g. 0 corresponds to upper right corner of the plot), a string (e.g. 'upper right'), or a tuple (x, y coordinates of the lower left corner of the legend in the axes coordinate system). See matplotlib documentation for more details. axes : instance of matplotlib Axes | None Axes to plot into. If None, axes will be created. show : bool Show figure if True. noise_cov : instance of Covariance | str | None Noise covariance used to whiten the data while plotting. Whitened data channels names are shown in italic. Can be a string to load a covariance from disk. .. versionadded:: 0.16.0 Returns ------- fig : Instance of matplotlib.figure.Figure Images of evoked responses at sensor locations """ import matplotlib.pyplot as plt from ..cov import whiten_evoked if not type(evoked) in (tuple, list): evoked = [evoked] if type(color) in (tuple, list): if len(color) != len(evoked): raise ValueError('Lists of evoked objects and colors' ' must have the same length') elif color is None: colors = ['w'] + _get_color_list stop = (slice(len(evoked)) if len(evoked) < len(colors) else slice(len(colors))) color = cycle(colors[stop]) if len(evoked) > len(colors): warn('More evoked objects than colors available. You should pass ' 'a list of unique colors.') else: color = cycle([color]) times = evoked[0].times if not all((e.times == times).all() for e in evoked): raise ValueError('All evoked.times must be the same') noise_cov = _check_cov(noise_cov, evoked[0].info) if noise_cov is not None: evoked = [whiten_evoked(e, noise_cov) for e in evoked] else: evoked = [e.copy() for e in evoked] info = evoked[0].info ch_names = evoked[0].ch_names scalings = _handle_default('scalings', scalings) if not all(e.ch_names == ch_names for e in evoked): raise ValueError('All evoked.picks must be the same') ch_names = _clean_names(ch_names) if merge_grads: picks = _pair_grad_sensors(info, topomap_coords=False) chs = list() for pick in picks[::2]: ch = info['chs'][pick] ch['ch_name'] = ch['ch_name'][:-1] + 'X' chs.append(ch) info['chs'] = chs info['bads'] = list() # bads dropped on pair_grad_sensors info._update_redundant() info._check_consistency() new_picks = list() for e in evoked: data = _merge_grad_data(e.data[picks]) if noise_cov is None: data *= scalings['grad'] e.data = data new_picks.append(range(len(data))) picks = new_picks types_used = ['grad'] unit = _handle_default('units')['grad'] if noise_cov is None else 'NA' y_label = 'RMS amplitude (%s)' % unit if layout is None: layout = find_layout(info) if not merge_grads: # XXX. at the moment we are committed to 1- / 2-sensor-types layouts chs_in_layout = set(layout.names) & set(ch_names) types_used = set(channel_type(info, ch_names.index(ch)) for ch in chs_in_layout) # remove possible reference meg channels types_used = set.difference(types_used, set('ref_meg')) # one check for all vendors meg_types = set(('mag', 'grad')) is_meg = len(set.intersection(types_used, meg_types)) > 0 if is_meg: types_used = list(types_used)[::-1] # -> restore kwarg order picks = [pick_types(info, meg=kk, ref_meg=False, exclude=[]) for kk in types_used] else: types_used_kwargs = dict((t, True) for t in types_used) picks = [pick_types(info, meg=False, exclude=[], **types_used_kwargs)] assert isinstance(picks, list) and len(types_used) == len(picks) if noise_cov is None: for e in evoked: for pick, ch_type in zip(picks, types_used): e.data[pick] *= scalings[ch_type] if proj is True and all(e.proj is not True for e in evoked): evoked = [e.apply_proj() for e in evoked] elif proj == 'interactive': # let it fail early. for e in evoked: _check_delayed_ssp(e) # Y labels for picked plots must be reconstructed y_label = list() for ch_idx in range(len(chs_in_layout)): if noise_cov is None: unit = _handle_default('units')[channel_type(info, ch_idx)] else: unit = 'NA' y_label.append('Amplitude (%s)' % unit) if ylim is None: def set_ylim(x): return np.abs(x).max() ylim_ = [set_ylim([e.data[t] for e in evoked]) for t in picks] ymax = np.array(ylim_) ylim_ = (-ymax, ymax) elif isinstance(ylim, dict): ylim_ = _handle_default('ylim', ylim) ylim_ = [ylim_[kk] for kk in types_used] # extra unpack to avoid bug #1700 if len(ylim_) == 1: ylim_ = ylim_[0] else: ylim_ = zip(*[np.array(yl) for yl in ylim_]) else: raise TypeError('ylim must be None or a dict. Got %s.' % type(ylim)) data = [e.data for e in evoked] comments = [e.comment for e in evoked] show_func = partial(_plot_timeseries_unified, data=data, color=color, times=times, vline=vline, hline=hline, hvline_color=font_color) click_func = partial(_plot_timeseries, data=data, color=color, times=times, vline=vline, hline=hline, hvline_color=font_color, labels=comments) fig = _plot_topo(info=info, times=times, show_func=show_func, click_func=click_func, layout=layout, colorbar=False, ylim=ylim_, cmap=None, layout_scale=layout_scale, border=border, fig_facecolor=fig_facecolor, font_color=font_color, axis_facecolor=axis_facecolor, title=title, x_label='Time (s)', y_label=y_label, unified=True, axes=axes) add_background_image(fig, fig_background) if legend is not False: legend_loc = 0 if legend is True else legend labels = [e.comment if e.comment else 'Unknown' for e in evoked] legend = plt.legend(labels, loc=legend_loc, prop={'size': 10}) legend.get_frame().set_facecolor(axis_facecolor) txts = legend.get_texts() for txt, col in zip(txts, color): txt.set_color(col) if proj == 'interactive': for e in evoked: _check_delayed_ssp(e) params = dict(evokeds=evoked, times=times, plot_update_proj_callback=_plot_update_evoked_topo_proj, projs=evoked[0].info['projs'], fig=fig) _draw_proj_checkbox(None, params) plt_show(show) return fig def _plot_update_evoked_topo_proj(params, bools): """Update topo sensor plots.""" evokeds = [e.copy() for e in params['evokeds']] fig = params['fig'] projs = [proj for proj, b in zip(params['projs'], bools) if b] params['proj_bools'] = bools for e in evokeds: e.add_proj(projs, remove_existing=True) e.apply_proj() # make sure to only modify the time courses, not the ticks for ax in fig.axes[0]._mne_axs: for line, evoked in zip(ax.data_lines, evokeds): line.set_ydata(ax.y_t + ax.y_s * evoked.data[ax._mne_ch_idx]) fig.canvas.draw() def plot_topo_image_epochs(epochs, layout=None, sigma=0., vmin=None, vmax=None, colorbar=True, order=None, cmap='RdBu_r', layout_scale=.95, title=None, scalings=None, border='none', fig_facecolor='k', fig_background=None, font_color='w', show=True): """Plot Event Related Potential / Fields image on topographies. Parameters ---------- epochs : instance of Epochs The epochs. layout: instance of Layout System specific sensor positions. sigma : float The standard deviation of the Gaussian smoothing to apply along the epoch axis to apply in the image. If 0., no smoothing is applied. vmin : float The min value in the image. The unit is uV for EEG channels, fT for magnetometers and fT/cm for gradiometers. vmax : float The max value in the image. The unit is uV for EEG channels, fT for magnetometers and fT/cm for gradiometers. colorbar : bool Display or not a colorbar. order : None | array of int | callable If not None, order is used to reorder the epochs on the y-axis of the image. If it's an array of int it should be of length the number of good epochs. If it's a callable the arguments passed are the times vector and the data as 2d array (data.shape[1] == len(times)). cmap : instance of matplotlib.pyplot.colormap Colors to be mapped to the values. layout_scale: float scaling factor for adjusting the relative size of the layout on the canvas. title : str Title of the figure. scalings : dict | None The scalings of the channel types to be applied for plotting. If None, defaults to `dict(eeg=1e6, grad=1e13, mag=1e15)`. border : str matplotlib borders style to be used for each sensor plot. fig_facecolor : str | obj The figure face color. Defaults to black. fig_background : None | array A background image for the figure. This must be a valid input to `matplotlib.pyplot.imshow`. Defaults to None. font_color : str | obj The color of tick labels in the colorbar. Defaults to white. show : bool Show figure if True. Returns ------- fig : instance of matplotlib figure Figure distributing one image per channel across sensor topography. """ scalings = _handle_default('scalings', scalings) data = epochs.get_data() scale_coeffs = list() for idx in range(epochs.info['nchan']): ch_type = channel_type(epochs.info, idx) scale_coeffs.append(scalings.get(ch_type, 1)) vmin, vmax = _setup_vmin_vmax(data, vmin, vmax) if layout is None: layout = find_layout(epochs.info) show_func = partial(_erfimage_imshow_unified, scalings=scale_coeffs, order=order, data=data, epochs=epochs, sigma=sigma, cmap=cmap) erf_imshow = partial(_erfimage_imshow, scalings=scale_coeffs, order=order, data=data, epochs=epochs, sigma=sigma, cmap=cmap) fig = _plot_topo(info=epochs.info, times=epochs.times, click_func=erf_imshow, show_func=show_func, layout=layout, colorbar=colorbar, vmin=vmin, vmax=vmax, cmap=cmap, layout_scale=layout_scale, title=title, fig_facecolor=fig_facecolor, font_color=font_color, border=border, x_label='Time (s)', y_label='Epoch', unified=True, img=True) add_background_image(fig, fig_background) plt_show(show) return fig
bsd-3-clause
stefanloock/pyshearlab
examples/adjoint.py
1
1348
def tic(): #Homemade version of matlab tic and toc functions import time global startTime_for_tictoc startTime_for_tictoc = time.time() def toc(): import time if 'startTime_for_tictoc' in globals(): print("Elapsed time is " + str(time.time() - startTime_for_tictoc) + " seconds.") else: print("Toc: start time not set") import numpy as np from scipy import ndimage as img from scipy import io as sio import matplotlib.pyplot as plt import pyshearlab tic() print("--Testing adjoint") print("loading image...") sigma = 30 scales = 3 thresholdingFactor = 3 # load data X = img.imread("barbara.jpg")[::4, ::4] X = X.astype(float) # add noise Xnoisy = X + sigma*np.random.randn(X.shape[0], X.shape[1]) toc() tic() print("generating shearlet system...") ## create shearlets shearletSystem = pyshearlab.SLgetShearletSystem2D(0,X.shape[0], X.shape[1], scales) toc() tic() print("decomposition, thresholding and reconstruction...") # decomposition coeffs = pyshearlab.SLsheardec2D(Xnoisy, shearletSystem) # thresholding oldCoeffs = coeffs.copy() weights = np.ones(coeffs.shape) # reconstruction Xadj = pyshearlab.SLshearadjoint2D(coeffs, shearletSystem) # Validate adjoint equation print('<Ax, Ax> = {}, <x, AtAx> = {}, should be equal'.format( np.vdot(coeffs, coeffs), np.vdot(Xnoisy, Xadj)))
gpl-3.0
Molecular-Image-Recognition/Molecular-Image-Recognition
code/rmgpy/cantherm/kinetics.py
2
11458
#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################################################ # # RMG - Reaction Mechanism Generator # # Copyright (c) 2002-2017 Prof. William H. Green ([email protected]), # Prof. Richard H. West ([email protected]) and the RMG Team ([email protected]) # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the 'Software'), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # ################################################################################ import os.path import numpy import logging from rmgpy.cantherm.output import prettify from rmgpy.kinetics.arrhenius import Arrhenius, ArrheniusEP, PDepArrhenius, MultiArrhenius, MultiPDepArrhenius from rmgpy.kinetics.chebyshev import Chebyshev from rmgpy.kinetics.falloff import ThirdBody, Lindemann, Troe from rmgpy.kinetics.kineticsdata import KineticsData, PDepKineticsData from rmgpy.kinetics.tunneling import Wigner, Eckart import rmgpy.quantity as quantity import rmgpy.constants as constants ################################################################################ class KineticsJob: """ A representation of a CanTherm kinetics job. This job is used to compute and save the high-pressure-limit kinetics information for a single reaction. """ def __init__(self, reaction, Tmin=None, Tmax=None, Tlist=None, Tcount=0): if Tmin is not None: self.Tmin = quantity.Quantity(Tmin) else: self.Tmin = None if Tmax is not None: self.Tmax = quantity.Quantity(Tmax) else: self.Tmax = None self.Tcount = Tcount if Tlist is not None: self.Tlist = quantity.Quantity(Tlist) self.Tmin = quantity.Quantity(numpy.min(self.Tlist.value_si),"K") self.Tmax = quantity.Quantity(numpy.max(self.Tlist.value_si),"K") self.Tcount = len(self.Tlist.value_si) else: if Tmin and Tmax is not None: if self.Tcount <= 3.: self.Tcount = 50 stepsize = (self.Tmax.value_si-self.Tmin.value_si)/self.Tcount self.Tlist = quantity.Quantity(numpy.arange(self.Tmin.value_si, self.Tmax.value_si+stepsize, stepsize),"K") else: self.Tlist = None self.reaction = reaction self.kunits = None @property def Tmin(self): """The minimum temperature at which the computed k(T) values are valid, or ``None`` if not defined.""" return self._Tmin @Tmin.setter def Tmin(self, value): self._Tmin = quantity.Temperature(value) @property def Tmax(self): """The maximum temperature at which the computed k(T) values are valid, or ``None`` if not defined.""" return self._Tmax @Tmax.setter def Tmax(self, value): self._Tmax = quantity.Temperature(value) @property def Tlist(self): """The temperatures at which the k(T) values are computed.""" return self._Tlist @Tlist.setter def Tlist(self, value): self._Tlist = quantity.Temperature(value) def execute(self, outputFile=None, plot=False): """ Execute the kinetics job, saving the results to the given `outputFile` on disk. """ if self.Tlist is not None: self.generateKinetics(self.Tlist.value_si) else: self.generateKinetics() if outputFile is not None: self.save(outputFile) if plot: self.plot(os.path.dirname(outputFile)) def generateKinetics(self,Tlist=None): """ Generate the kinetics data for the reaction and fit it to a modified Arrhenius model. """ kineticsClass = 'Arrhenius' tunneling = self.reaction.transitionState.tunneling if isinstance(tunneling, Wigner) and tunneling.frequency is None: tunneling.frequency = (self.reaction.transitionState.frequency.value_si,"cm^-1") elif isinstance(tunneling, Eckart) and tunneling.frequency is None: tunneling.frequency = (self.reaction.transitionState.frequency.value_si,"cm^-1") tunneling.E0_reac = (sum([reactant.conformer.E0.value_si for reactant in self.reaction.reactants])*0.001,"kJ/mol") tunneling.E0_TS = (self.reaction.transitionState.conformer.E0.value_si*0.001,"kJ/mol") tunneling.E0_prod = (sum([product.conformer.E0.value_si for product in self.reaction.products])*0.001,"kJ/mol") elif tunneling is not None: raise ValueError('Unknown tunneling model {0!r}.'.format(tunneling)) logging.info('Generating {0} kinetics model for {0}...'.format(kineticsClass, self.reaction)) if Tlist is None: Tlist = 1000.0/numpy.arange(0.4, 3.35, 0.05) klist = numpy.zeros_like(Tlist) for i in range(Tlist.shape[0]): klist[i] = self.reaction.calculateTSTRateCoefficient(Tlist[i]) order = len(self.reaction.reactants) klist *= 1e6 ** (order-1) self.kunits = {1: 's^-1', 2: 'cm^3/(mol*s)', 3: 'cm^6/(mol^2*s)'}[order] self.Kequnits = {2:'mol^2/cm^6', 1:'mol/cm^3', 0:' ', -1:'cm^3/mol', -2:'cm^6/mol^2'}[len(self.reaction.products)-len(self.reaction.reactants)] self.krunits = {1: 's^-1', 2: 'cm^3/(mol*s)', 3: 'cm^6/(mol^2*s)'}[len(self.reaction.products)] self.reaction.kinetics = Arrhenius().fitToData(Tlist, klist, kunits=self.kunits) def save(self, outputFile): """ Save the results of the kinetics job to the file located at `path` on disk. """ reaction = self.reaction ks = [] k0s = [] k0revs = [] krevs = [] logging.info('Saving kinetics for {0}...'.format(reaction)) order = len(self.reaction.reactants) factor = 1e6 ** (order-1) f = open(outputFile, 'a') f.write('# ======= =========== =========== =========== ===============\n') f.write('# Temp. k (TST) Tunneling k (TST+T) Units\n') f.write('# ======= =========== =========== =========== ===============\n') if self.Tlist is None: Tlist = numpy.array([300,400,500,600,800,1000,1500,2000]) else: Tlist =self.Tlist.value_si for T in Tlist: tunneling = reaction.transitionState.tunneling reaction.transitionState.tunneling = None k0 = reaction.calculateTSTRateCoefficient(T) * factor reaction.transitionState.tunneling = tunneling k = reaction.calculateTSTRateCoefficient(T) * factor tunneling = reaction.transitionState.tunneling kappa = k / k0 ks.append(k) k0s.append(k0) f.write('# {0:4g} K {1:11.3e} {2:11g} {3:11.3e} {4}\n'.format(T, k0, kappa, k, self.kunits)) f.write('# ======= =========== =========== =========== ===============\n') f.write('\n\n') f.write('# ======= ============ =========== ============ ============= =========\n') f.write('# Temp. Kc (eq) Units krev (TST) krev (TST+T) Units\n') f.write('# ======= ============ =========== ============ ============= =========\n') for n,T in enumerate(Tlist): k = ks[n] k0 = k0s[n] Keq = reaction.getEquilibriumConstant(T) k0rev = k0/Keq krev = k/Keq k0revs.append(k0rev) krevs.append(krev) f.write('# {0:4g} K {1:11.3e} {2} {3:11.3e} {4:11.3e} {5}\n'.format(T, Keq, self.Kequnits, k0rev, krev, self.krunits)) f.write('# ======= ============ =========== ============ ============= =========\n') f.write('\n\n') kinetics0rev = Arrhenius().fitToData(Tlist, numpy.array(k0revs), kunits=self.krunits) kineticsrev = Arrhenius().fitToData(Tlist, numpy.array(krevs), kunits=self.krunits) f.write('# krev (TST) = {0} \n'.format(kinetics0rev)) f.write('# krev (TST+T) = {0} \n\n'.format(kineticsrev)) # Reaction path degeneracy is INCLUDED in the kinetics itself! string = 'kinetics(label={0!r}, kinetics={1!r})'.format(reaction.label, reaction.kinetics) f.write('{0}\n\n'.format(prettify(string))) f.close() # Also save the result to chem.inp f = open(os.path.join(os.path.dirname(outputFile), 'chem.inp'), 'a') reaction = self.reaction kinetics = reaction.kinetics string = '{0!s:51} {1:9.3e} {2:9.3f} {3:9.3f}\n'.format( reaction, kinetics.A.value_si * factor, kinetics.n.value_si, kinetics.Ea.value_si / 4184., ) f.write('{0}\n'.format(string)) f.close() def plot(self, outputDirectory): """ Plot both the raw kinetics data and the Arrhenius fit versus temperature. The plot is saved to the file ``kinetics.pdf`` in the output directory. The plot is not generated if ``matplotlib`` is not installed. """ # Skip this step if matplotlib is not installed try: import pylab except ImportError: return Tlist = 1000.0/numpy.arange(0.4, 3.35, 0.05) klist = numpy.zeros_like(Tlist) klist2 = numpy.zeros_like(Tlist) for i in range(Tlist.shape[0]): klist[i] = self.reaction.calculateTSTRateCoefficient(Tlist[i]) klist2[i] = self.reaction.kinetics.getRateCoefficient(Tlist[i]) order = len(self.reaction.reactants) klist *= 1e6 ** (order-1) klist2 *= 1e6 ** (order-1) pylab.semilogy(1000.0 / Tlist, klist, 'ok') pylab.semilogy(1000.0 / Tlist, klist2, '-k') pylab.xlabel('1000 / Temperature (1000/K)') pylab.ylabel('Rate coefficient ({0})'.format(self.kunits)) pylab.savefig(os.path.join(outputDirectory, 'kinetics.pdf')) pylab.close()
mit
lukefrasera/cs775Homework
hw_003/scripts/fisher_classify.py
1
6148
#!/usr/bin/env python import numpy as np from numpy import linalg as la import matplotlib.pyplot as plt import argparse import os import pdb from scipy import spatial import time import operator def ParseData(raw_data, class1, class2): raw_data = raw_data.rstrip('\n') raw_data_list = raw_data.split('\n') data_list = list() for raw_data_point in raw_data_list: raw_data_point = raw_data_point.rstrip() point = raw_data_point.split(' ') data_list.append([float(x) for x in point]) data_list.pop() data_list_np = np.array(data_list) mask = (data_list_np[:, 0] == class1) + (data_list_np[:, 0] == class2) data_list_np = data_list_np[mask] return data_list_np def FisherClassifier(features, classification, test_data, classa, classb): ''' :param features: :param classification: :param test_data: :return: ''' # separate classes class_a_features = features[classification == classa] class_b_features = features[classification == classb] class_a_mean = np.mean(class_a_features, 0).T class_a_cov = np.cov(class_a_features.T) class_b_mean = np.mean(class_b_features, 0).T class_b_cov = np.cov(class_b_features.T) # compute the Fisher criteria projection to one dimension project_a = la.inv(class_a_cov + class_b_cov) * (class_a_mean - class_b_mean) project_a = project_a / la.norm(project_a) # project all of the data class_a_project = class_a_features * project_a class_b_project = class_b_features * project_a class_a_gauss_build = GaussianBuild(class_a_project) class_b_gauss_build = GaussianBuild(class_b_project) # class_a_prob = [] # class_b_prob = [] classification_result = [] for sample in test_data: sample_project = sample * project_a class_a_prob = ComputeGaussianProbability(class_a_gauss_build[0], class_a_gauss_build[1], sample_project) class_b_prob = ComputeGaussianProbability(class_b_gauss_build[0], class_b_gauss_build[1], sample_project) if class_a_prob > class_b_prob: classification_result.append(classa) else: classification_result.append(classb) return classification_result def GaussianBuild(features): """ computes the mean and covariance for a dataset :param features: s x f np.matrix (s samples by f features) :param classification: s x 1 np.ndarray :param class_id: scalar value to find :return: [covariance(f x f),mean (f x 1)] """ #pdb.set_trace() print 'Of ', features.shape, 'Elements, ', features.shape cov_mat = np.cov(features.T) mean_mat = np.mean(features.T) return [cov_mat, mean_mat] def ComputeGaussianProbability(cov_mat, mean_mat, sample): """ computes the probability of a particular sample belonging to a particular gaussian distribution :param cov_mat: f x f np.matrix (f features) :param mean_mat: f x 1 np.matrix :param sample: f x 1 np.matrix :return: """ mean_mat = np.matrix(mean_mat).T sample = sample.T # sample = meanMat non_invertible = True eye_scale = 0.0 cov_mat_inverse = 1.0 / cov_mat probability = 1.0 / (np.sqrt(la.norm(2 * np.pi * cov_mat))) probability *= np.exp(-0.5 * (sample - mean_mat).T * cov_mat_inverse * (sample - mean_mat)) return probability def main(): parser = argparse.ArgumentParser(description='Process input') parser.add_argument('-t', '--training_file', type=str, help='submit data to train against') parser.add_argument('-f', '--testing_file', type=str, help='submit data to test the trained model against') parser.add_argument('-s', '--save_model', type=str, help='save out trained model') parser.add_argument('-r', '--read_model', type=str, help='read in trained model') parser.add_argument('-a', '--classa', type=int, help='class to test/train on') parser.add_argument('-b', '--classb', type=int, help='class to test/train on') parser.add_argument('-m', '--method', type=int, help='0=Fisher Discriminant') args = parser.parse_args() print os.getcwd() # Check if Arguments allow execution if (not args.training_file) and (not args.read_model): print "Error: No training Data or model present!" return -1 if args.training_file and args.read_model: print "Error: cannot read model and traing data at the same time!" return -1 if args.training_file: # trainagainst training file if not os.path.isfile(args.training_file): print "Error: Training file doesn't exist!" return -1 # train with open(args.training_file) as file: # read file contents raw_data = file.read() # parse data data = ParseData(raw_data, args.classa, args.classb) # plt.imshow(data[0,1:].reshape(1,256), cmap = plt.cm.Greys, interpolation = 'nearest') # plt.show() # train on data classification = data[:, 0] features = np.matrix(data[:, 1:]) if args.testing_file: with open(args.testing_file) as test_file: raw_test_data = test_file.read() test_data = ParseData(raw_test_data, args.classa, args.classb) test_data_truth = test_data[:, 0] test_data = np.matrix(test_data[:, 1:]) if args.method == 0: result = FisherClassifier(features, classification, test_data, args.classa, args.classb) print result print [int(x) for x in list(test_data_truth)] errors = np.array(result) == test_data_truth class_a_samples = errors[test_data_truth == args.classa] class_b_samples = errors[test_data_truth == args.classb] num_a_correct = np.sum(class_a_samples) num_b_correct = np.sum(class_b_samples) total_a = class_a_samples.shape[0] total_b = class_b_samples.shape[0] print (1.0-float(num_a_correct)/total_a)*100,'%% of class a was misclassified' print (1.0-float(num_b_correct)/total_b)*100,'%% of class b was misclassified' if __name__ == '__main__': main()
lgpl-3.0
hippke/TTV-TDV-exomoons
create_figures/system_viii.py
1
7068
"""n-body simulator to derive TDV+TTV diagrams of planet-moon configurations. Credit for part of the source is given to https://github.com/akuchling/50-examples/blob/master/gravity.rst Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License """ import numpy import math import matplotlib.pylab as plt from modified_turtle import Turtle from phys_const import * class Body(Turtle): """Subclass of Turtle representing a gravitationally-acting body""" name = 'Body' vx = vy = 0.0 # velocities in m/s px = py = 0.0 # positions in m def attraction(self, other): """(Body): (fx, fy) Returns the force exerted upon this body by the other body""" # Distance of the other body sx, sy = self.px, self.py ox, oy = other.px, other.py dx = (ox-sx) dy = (oy-sy) d = math.sqrt(dx**2 + dy**2) # Force f and direction to the body f = G * self.mass * other.mass / (d**2) theta = math.atan2(dy, dx) # direction of the force fx = math.cos(theta) * f fy = math.sin(theta) * f return fx, fy def loop(bodies, orbit_duration): """([Body]) Loops and updates the positions of all the provided bodies""" # Calculate the duration of our simulation: One full orbit of the outer moon seconds_per_day = 24*60*60 timesteps_per_day = 1000 timestep = seconds_per_day / timesteps_per_day total_steps = int(orbit_duration / 3600 / 24 * timesteps_per_day) #print total_steps, orbit_duration / 24 / 60 / 60 for body in bodies: body.penup() body.hideturtle() for step in range(total_steps): for body in bodies: if body.name == 'planet': # Add current position and velocity to our list tdv_list.append(body.vx) ttv_list.append(body.px) force = {} for body in bodies: # Add up all of the forces exerted on 'body' total_fx = total_fy = 0.0 for other in bodies: # Don't calculate the body's attraction to itself if body is other: continue fx, fy = body.attraction(other) total_fx += fx total_fy += fy # Record the total force exerted force[body] = (total_fx, total_fy) # Update velocities based upon on the force for body in bodies: fx, fy = force[body] body.vx += fx / body.mass * timestep body.vy += fy / body.mass * timestep # Update positions body.px += body.vx * timestep body.py += body.vy * timestep #body.goto(body.px*SCALE, body.py*SCALE) #body.dot(3) def run_sim(R_star, transit_duration, bodies): """Run 3-body sim and convert results to TTV + TDV values in [minutes]""" # Run 3-body sim for one full orbit of the outermost moon loop(bodies, orbit_duration) # Move resulting data from lists to numpy arrays ttv_array = numpy.array([]) ttv_array = ttv_list tdv_array = numpy.array([]) tdv_array = tdv_list # Zeropoint correction middle_point = numpy.amin(ttv_array) + numpy.amax(ttv_array) ttv_array = numpy.subtract(ttv_array, 0.5 * middle_point) ttv_array = numpy.divide(ttv_array, 1000) # km/s # Compensate for barycenter offset of planet at start of simulation: planet.px = 0.5 * (gravity_firstmoon + gravity_secondmoon) stretch_factor = 1 / ((planet.px / 1000) / numpy.amax(ttv_array)) ttv_array = numpy.divide(ttv_array, stretch_factor) # Convert to time units, TTV ttv_array = numpy.divide(ttv_array, R_star) ttv_array = numpy.multiply(ttv_array, transit_duration * 60 * 24) # minutes # Convert to time units, TDV oldspeed = (2 * R_star / transit_duration) * 1000 / 24 / 60 / 60 # m/sec newspeed = oldspeed - numpy.amax(tdv_array) difference = (transit_duration - (transit_duration * newspeed / oldspeed)) * 24 * 60 conversion_factor = difference / numpy.amax(tdv_array) tdv_array = numpy.multiply(tdv_array, conversion_factor) return ttv_array, tdv_array """Main routine""" # Set variables and constants. Do not change these! G = 6.67428e-11 # Gravitational constant G SCALE = 5e-07 # [px/m] Only needed for plotting during nbody-sim tdv_list = [] ttv_list = [] R_star = 6.96 * 10**5 # [km], solar radius transit_duration = (2*pi/sqrt(G*(M_sun+M_jup)/a_jup**3)*R_sun/(pi*a_jup)*sqrt((1+R_jup/R_sun)**2))/60/60/24 # transit duration without a moon, Eq. (C1) Kipping (2009b, MNRAS), for q = 0 print transit_duration planet = Body() planet.name = 'planet' planet.mass = M_jup #semimajor_axis = 1. * AU #[m] semimajor_axis = a_jup stellar_mass = M_sun radius_hill = semimajor_axis * (planet.mass / (3 * (stellar_mass))) ** (1./3) # Define parameters firstmoon = Body() firstmoon.mass = 2 * M_gan firstmoon.px = a_io secondmoon = Body() secondmoon.mass = M_gan secondmoon.px = a_gan # Calculate start velocities firstmoon.vy = math.sqrt(G * planet.mass * (2 / firstmoon.px - 1 / firstmoon.px)) secondmoon.vy = math.sqrt(G * planet.mass * (2 / secondmoon.px - 1 / secondmoon.px)) planet.vy = (-secondmoon.vy * secondmoon.mass - firstmoon.vy * firstmoon.mass) / planet.mass # Calculate planet displacement. This holds for circular orbits gravity_firstmoon = (firstmoon.mass / planet.mass) * firstmoon.px gravity_secondmoon = (secondmoon.mass / planet.mass) * secondmoon.px planet.px = 0.5 * (gravity_firstmoon + gravity_secondmoon) # Use the outermost moon to calculate the length of one full orbit duration orbit_duration = math.sqrt((4 * math.pi**2 *secondmoon.px ** 3) / (G * (secondmoon.mass + planet.mass))) # Run simulation. Make sure to add/remove the moons you want to simulate! ttv_array, tdv_array = run_sim( R_star, transit_duration, [planet, firstmoon, secondmoon]) # Output information print 'TTV amplitude =', numpy.amax(ttv_array), \ '[min] = ', numpy.amax(ttv_array) * 60, '[sec]' print 'TDV amplitude =', numpy.amax(tdv_array), \ '[min] = ', numpy.amax(tdv_array) * 60, '[sec]' ax = plt.axes() plt.plot(ttv_array, tdv_array, color = 'k') plt.rc('font', **{'family': 'serif', 'serif': ['Computer Modern']}) plt.rc('text', usetex=True) plt.tick_params(axis='both', which='major', labelsize = 16) plt.xlabel('transit timing variation [minutes]', fontsize = 16) plt.ylabel('transit duration variation [minutes]', fontsize = 16) ax.tick_params(direction='out') plt.ylim([numpy.amin(tdv_array) * 1.2, numpy.amax(tdv_array) * 1.2]) plt.xlim([numpy.amin(ttv_array) * 1.2, numpy.amax(ttv_array) * 1.2]) plt.plot((0, 0), (numpy.amax(tdv_array) * 10., numpy.amin(tdv_array) * 10.), 'k', linewidth=0.5) plt.plot((numpy.amin(ttv_array) * 10., numpy.amax(ttv_array) * 10.), (0, 0), 'k', linewidth=0.5) # Fix axes for comparison with eccentric moon plt.xlim(-0.4, +0.4) plt.ylim(-1, +1) plt.savefig("fig_system_viii.eps", bbox_inches = 'tight')
mit
amolkahat/pandas
pandas/tests/indexing/test_indexing_slow.py
2
3774
# -*- coding: utf-8 -*- import warnings import numpy as np import pandas as pd from pandas.core.api import Series, DataFrame, MultiIndex import pandas.util.testing as tm import pytest class TestIndexingSlow(object): @pytest.mark.slow @pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning") def test_multiindex_get_loc(self): # GH7724, GH2646 with warnings.catch_warnings(record=True): # test indexing into a multi-index before & past the lexsort depth from numpy.random import randint, choice, randn cols = ['jim', 'joe', 'jolie', 'joline', 'jolia'] def validate(mi, df, key): mask = np.ones(len(df)).astype('bool') # test for all partials of this key for i, k in enumerate(key): mask &= df.iloc[:, i] == k if not mask.any(): assert key[:i + 1] not in mi.index continue assert key[:i + 1] in mi.index right = df[mask].copy() if i + 1 != len(key): # partial key right.drop(cols[:i + 1], axis=1, inplace=True) right.set_index(cols[i + 1:-1], inplace=True) tm.assert_frame_equal(mi.loc[key[:i + 1]], right) else: # full key right.set_index(cols[:-1], inplace=True) if len(right) == 1: # single hit right = Series(right['jolia'].values, name=right.index[0], index=['jolia']) tm.assert_series_equal(mi.loc[key[:i + 1]], right) else: # multi hit tm.assert_frame_equal(mi.loc[key[:i + 1]], right) def loop(mi, df, keys): for key in keys: validate(mi, df, key) n, m = 1000, 50 vals = [randint(0, 10, n), choice( list('abcdefghij'), n), choice( pd.date_range('20141009', periods=10).tolist(), n), choice( list('ZYXWVUTSRQ'), n), randn(n)] vals = list(map(tuple, zip(*vals))) # bunch of keys for testing keys = [randint(0, 11, m), choice( list('abcdefghijk'), m), choice( pd.date_range('20141009', periods=11).tolist(), m), choice( list('ZYXWVUTSRQP'), m)] keys = list(map(tuple, zip(*keys))) keys += list(map(lambda t: t[:-1], vals[::n // m])) # covers both unique index and non-unique index df = DataFrame(vals, columns=cols) a, b = pd.concat([df, df]), df.drop_duplicates(subset=cols[:-1]) for frame in a, b: for i in range(5): # lexsort depth df = frame.copy() if i == 0 else frame.sort_values( by=cols[:i]) mi = df.set_index(cols[:-1]) assert not mi.index.lexsort_depth < i loop(mi, df, keys) @pytest.mark.slow def test_large_dataframe_indexing(self): # GH10692 result = DataFrame({'x': range(10 ** 6)}, dtype='int64') result.loc[len(result)] = len(result) + 1 expected = DataFrame({'x': range(10 ** 6 + 1)}, dtype='int64') tm.assert_frame_equal(result, expected) @pytest.mark.slow def test_large_mi_dataframe_indexing(self): # GH10645 result = MultiIndex.from_arrays([range(10 ** 6), range(10 ** 6)]) assert (not (10 ** 6, 0) in result)
bsd-3-clause
saurabhjn76/sympy
sympy/interactive/printing.py
31
15830
"""Tools for setting up printing in interactive sessions. """ from __future__ import print_function, division import sys from distutils.version import LooseVersion as V from io import BytesIO from sympy import latex as default_latex from sympy import preview from sympy.core.compatibility import integer_types from sympy.utilities.misc import debug def _init_python_printing(stringify_func): """Setup printing in Python interactive session. """ import sys from sympy.core.compatibility import builtins def _displayhook(arg): """Python's pretty-printer display hook. This function was adapted from: http://www.python.org/dev/peps/pep-0217/ """ if arg is not None: builtins._ = None print(stringify_func(arg)) builtins._ = arg sys.displayhook = _displayhook def _init_ipython_printing(ip, stringify_func, use_latex, euler, forecolor, backcolor, fontsize, latex_mode, print_builtin, latex_printer): """Setup printing in IPython interactive session. """ try: from IPython.lib.latextools import latex_to_png except ImportError: pass preamble = "\\documentclass[%s]{article}\n" \ "\\pagestyle{empty}\n" \ "\\usepackage{amsmath,amsfonts}%s\\begin{document}" if euler: addpackages = '\\usepackage{euler}' else: addpackages = '' preamble = preamble % (fontsize, addpackages) imagesize = 'tight' offset = "0cm,0cm" resolution = 150 dvi = r"-T %s -D %d -bg %s -fg %s -O %s" % ( imagesize, resolution, backcolor, forecolor, offset) dvioptions = dvi.split() debug("init_printing: DVIOPTIONS:", dvioptions) debug("init_printing: PREAMBLE:", preamble) latex = latex_printer or default_latex def _print_plain(arg, p, cycle): """caller for pretty, for use in IPython 0.11""" if _can_print_latex(arg): p.text(stringify_func(arg)) else: p.text(IPython.lib.pretty.pretty(arg)) def _preview_wrapper(o): exprbuffer = BytesIO() try: preview(o, output='png', viewer='BytesIO', outputbuffer=exprbuffer, preamble=preamble, dvioptions=dvioptions) except Exception as e: # IPython swallows exceptions debug("png printing:", "_preview_wrapper exception raised:", repr(e)) raise return exprbuffer.getvalue() def _matplotlib_wrapper(o): # mathtext does not understand certain latex flags, so we try to # replace them with suitable subs o = o.replace(r'\operatorname', '') o = o.replace(r'\overline', r'\bar') return latex_to_png(o) def _can_print_latex(o): """Return True if type o can be printed with LaTeX. If o is a container type, this is True if and only if every element of o can be printed with LaTeX. """ from sympy import Basic from sympy.matrices import MatrixBase from sympy.physics.vector import Vector, Dyadic if isinstance(o, (list, tuple, set, frozenset)): return all(_can_print_latex(i) for i in o) elif isinstance(o, dict): return all(_can_print_latex(i) and _can_print_latex(o[i]) for i in o) elif isinstance(o, bool): return False # TODO : Investigate if "elif hasattr(o, '_latex')" is more useful # to use here, than these explicit imports. elif isinstance(o, (Basic, MatrixBase, Vector, Dyadic)): return True elif isinstance(o, (float, integer_types)) and print_builtin: return True return False def _print_latex_png(o): """ A function that returns a png rendered by an external latex distribution, falling back to matplotlib rendering """ if _can_print_latex(o): s = latex(o, mode=latex_mode) try: return _preview_wrapper(s) except RuntimeError: if latex_mode != 'inline': s = latex(o, mode='inline') return _matplotlib_wrapper(s) def _print_latex_matplotlib(o): """ A function that returns a png rendered by mathtext """ if _can_print_latex(o): s = latex(o, mode='inline') try: return _matplotlib_wrapper(s) except Exception: # Matplotlib.mathtext cannot render some things (like # matrices) return None def _print_latex_text(o): """ A function to generate the latex representation of sympy expressions. """ if _can_print_latex(o): s = latex(o, mode='plain') s = s.replace(r'\dag', r'\dagger') s = s.strip('$') return '$$%s$$' % s def _result_display(self, arg): """IPython's pretty-printer display hook, for use in IPython 0.10 This function was adapted from: ipython/IPython/hooks.py:155 """ if self.rc.pprint: out = stringify_func(arg) if '\n' in out: print print(out) else: print(repr(arg)) import IPython if V(IPython.__version__) >= '0.11': from sympy.core.basic import Basic from sympy.matrices.matrices import MatrixBase from sympy.physics.vector import Vector, Dyadic printable_types = [Basic, MatrixBase, float, tuple, list, set, frozenset, dict, Vector, Dyadic] + list(integer_types) plaintext_formatter = ip.display_formatter.formatters['text/plain'] for cls in printable_types: plaintext_formatter.for_type(cls, _print_plain) png_formatter = ip.display_formatter.formatters['image/png'] if use_latex in (True, 'png'): debug("init_printing: using png formatter") for cls in printable_types: png_formatter.for_type(cls, _print_latex_png) elif use_latex == 'matplotlib': debug("init_printing: using matplotlib formatter") for cls in printable_types: png_formatter.for_type(cls, _print_latex_matplotlib) else: debug("init_printing: not using any png formatter") for cls in printable_types: # Better way to set this, but currently does not work in IPython #png_formatter.for_type(cls, None) if cls in png_formatter.type_printers: png_formatter.type_printers.pop(cls) latex_formatter = ip.display_formatter.formatters['text/latex'] if use_latex in (True, 'mathjax'): debug("init_printing: using mathjax formatter") for cls in printable_types: latex_formatter.for_type(cls, _print_latex_text) else: debug("init_printing: not using text/latex formatter") for cls in printable_types: # Better way to set this, but currently does not work in IPython #latex_formatter.for_type(cls, None) if cls in latex_formatter.type_printers: latex_formatter.type_printers.pop(cls) else: ip.set_hook('result_display', _result_display) def _is_ipython(shell): """Is a shell instance an IPython shell?""" # shortcut, so we don't import IPython if we don't have to if 'IPython' not in sys.modules: return False try: from IPython.core.interactiveshell import InteractiveShell except ImportError: # IPython < 0.11 try: from IPython.iplib import InteractiveShell except ImportError: # Reaching this points means IPython has changed in a backward-incompatible way # that we don't know about. Warn? return False return isinstance(shell, InteractiveShell) def init_printing(pretty_print=True, order=None, use_unicode=None, use_latex=None, wrap_line=None, num_columns=None, no_global=False, ip=None, euler=False, forecolor='Black', backcolor='Transparent', fontsize='10pt', latex_mode='equation*', print_builtin=True, str_printer=None, pretty_printer=None, latex_printer=None): """ Initializes pretty-printer depending on the environment. Parameters ========== pretty_print: boolean If True, use pretty_print to stringify or the provided pretty printer; if False, use sstrrepr to stringify or the provided string printer. order: string or None There are a few different settings for this parameter: lex (default), which is lexographic order; grlex, which is graded lexographic order; grevlex, which is reversed graded lexographic order; old, which is used for compatibility reasons and for long expressions; None, which sets it to lex. use_unicode: boolean or None If True, use unicode characters; if False, do not use unicode characters. use_latex: string, boolean, or None If True, use default latex rendering in GUI interfaces (png and mathjax); if False, do not use latex rendering; if 'png', enable latex rendering with an external latex compiler, falling back to matplotlib if external compilation fails; if 'matplotlib', enable latex rendering with matplotlib; if 'mathjax', enable latex text generation, for example MathJax rendering in IPython notebook or text rendering in LaTeX documents wrap_line: boolean If True, lines will wrap at the end; if False, they will not wrap but continue as one line. This is only relevant if `pretty_print` is True. num_columns: int or None If int, number of columns before wrapping is set to num_columns; if None, number of columns before wrapping is set to terminal width. This is only relevant if `pretty_print` is True. no_global: boolean If True, the settings become system wide; if False, use just for this console/session. ip: An interactive console This can either be an instance of IPython, or a class that derives from code.InteractiveConsole. euler: boolean, optional, default=False Loads the euler package in the LaTeX preamble for handwritten style fonts (http://www.ctan.org/pkg/euler). forecolor: string, optional, default='Black' DVI setting for foreground color. backcolor: string, optional, default='Transparent' DVI setting for background color. fontsize: string, optional, default='10pt' A font size to pass to the LaTeX documentclass function in the preamble. latex_mode: string, optional, default='equation*' The mode used in the LaTeX printer. Can be one of: {'inline'|'plain'|'equation'|'equation*'}. print_builtin: boolean, optional, default=True If true then floats and integers will be printed. If false the printer will only print SymPy types. str_printer: function, optional, default=None A custom string printer function. This should mimic sympy.printing.sstrrepr(). pretty_printer: function, optional, default=None A custom pretty printer. This should mimic sympy.printing.pretty(). latex_printer: function, optional, default=None A custom LaTeX printer. This should mimic sympy.printing.latex() This should mimic sympy.printing.latex(). Examples ======== >>> from sympy.interactive import init_printing >>> from sympy import Symbol, sqrt >>> from sympy.abc import x, y >>> sqrt(5) sqrt(5) >>> init_printing(pretty_print=True) # doctest: +SKIP >>> sqrt(5) # doctest: +SKIP ___ \/ 5 >>> theta = Symbol('theta') # doctest: +SKIP >>> init_printing(use_unicode=True) # doctest: +SKIP >>> theta # doctest: +SKIP \u03b8 >>> init_printing(use_unicode=False) # doctest: +SKIP >>> theta # doctest: +SKIP theta >>> init_printing(order='lex') # doctest: +SKIP >>> str(y + x + y**2 + x**2) # doctest: +SKIP x**2 + x + y**2 + y >>> init_printing(order='grlex') # doctest: +SKIP >>> str(y + x + y**2 + x**2) # doctest: +SKIP x**2 + x + y**2 + y >>> init_printing(order='grevlex') # doctest: +SKIP >>> str(y * x**2 + x * y**2) # doctest: +SKIP x**2*y + x*y**2 >>> init_printing(order='old') # doctest: +SKIP >>> str(x**2 + y**2 + x + y) # doctest: +SKIP x**2 + x + y**2 + y >>> init_printing(num_columns=10) # doctest: +SKIP >>> x**2 + x + y**2 + y # doctest: +SKIP x + y + x**2 + y**2 """ import sys from sympy.printing.printer import Printer if pretty_print: if pretty_printer is not None: stringify_func = pretty_printer else: from sympy.printing import pretty as stringify_func else: if str_printer is not None: stringify_func = str_printer else: from sympy.printing import sstrrepr as stringify_func # Even if ip is not passed, double check that not in IPython shell in_ipython = False if ip is None: try: ip = get_ipython() except NameError: pass else: in_ipython = (ip is not None) if ip and not in_ipython: in_ipython = _is_ipython(ip) if in_ipython and pretty_print: try: import IPython # IPython 1.0 deprecates the frontend module, so we import directly # from the terminal module to prevent a deprecation message from being # shown. if V(IPython.__version__) >= '1.0': from IPython.terminal.interactiveshell import TerminalInteractiveShell else: from IPython.frontend.terminal.interactiveshell import TerminalInteractiveShell from code import InteractiveConsole except ImportError: pass else: # This will be True if we are in the qtconsole or notebook if not isinstance(ip, (InteractiveConsole, TerminalInteractiveShell)) \ and 'ipython-console' not in ''.join(sys.argv): if use_unicode is None: debug("init_printing: Setting use_unicode to True") use_unicode = True if use_latex is None: debug("init_printing: Setting use_latex to True") use_latex = True if not no_global: Printer.set_global_settings(order=order, use_unicode=use_unicode, wrap_line=wrap_line, num_columns=num_columns) else: _stringify_func = stringify_func if pretty_print: stringify_func = lambda expr: \ _stringify_func(expr, order=order, use_unicode=use_unicode, wrap_line=wrap_line, num_columns=num_columns) else: stringify_func = lambda expr: _stringify_func(expr, order=order) if in_ipython: _init_ipython_printing(ip, stringify_func, use_latex, euler, forecolor, backcolor, fontsize, latex_mode, print_builtin, latex_printer) else: _init_python_printing(stringify_func)
bsd-3-clause
MartinThoma/algorithms
ML/50-mlps/03-autokeras/hasy_tools.py
12
46221
#!/usr/bin/env python """ Tools for the HASY dataset. Type `./hasy_tools.py --help` for the command line tools and `help(hasy_tools)` in the interactive Python shell for the module options of hasy_tools. See https://arxiv.org/abs/1701.08380 for details about the dataset. """ import csv import json import logging import os import random random.seed(0) # make sure results are reproducible import hashlib import sys import numpy as np from PIL import Image, ImageDraw from six.moves import urllib from sklearn.model_selection import train_test_split np.random.seed(0) # make sure results are reproducible import matplotlib.pyplot as plt import scipy.ndimage try: from urllib.request import urlretrieve # Python 3 except ImportError: from urllib import urlretrieve # Python 2 import shutil import tarfile from six.moves import cPickle as pickle from six.moves.urllib.error import HTTPError, URLError logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s', level=logging.INFO, stream=sys.stdout) __version__ = "v2.4" n_classes = 369 labels = [] WIDTH = 32 HEIGHT = 32 img_rows = 32 img_cols = 32 img_channels = 1 symbol_id2index = None def _load_csv(filepath, delimiter=',', quotechar="'"): """ Load a CSV file. Parameters ---------- filepath : str Path to a CSV file delimiter : str, optional quotechar : str, optional Returns ------- list of dicts : Each line of the CSV file is one element of the list. """ data = [] csv_dir = os.path.dirname(filepath) with open(filepath) as csvfile: reader = csv.DictReader(csvfile, delimiter=delimiter, quotechar=quotechar) for row in reader: for el in ['path', 'path1', 'path2']: if el in row: row[el] = os.path.abspath(os.path.join(csv_dir, row[el])) data.append(row) return data def generate_index(csv_filepath): """ Generate an index 0...k for the k labels. Parameters ---------- csv_filepath : str Path to 'test.csv' or 'train.csv' Returns ------- tuple of dict and a list dict : Maps a symbol_id as in test.csv and train.csv to an integer in 0...k, where k is the total number of unique labels. list : LaTeX labels """ symbol_id2index = {} data = _load_csv(csv_filepath) i = 0 labels = [] for item in data: if item['symbol_id'] not in symbol_id2index: symbol_id2index[item['symbol_id']] = i labels.append(item['latex']) i += 1 return symbol_id2index, labels def _validate_file(fpath, md5_hash): """ Validate a file against a MD5 hash. Parameters ---------- fpath: string Path to the file being validated md5_hash: string The MD5 hash being validated against Returns --------- bool True, if the file is valid. Otherwise False. """ hasher = hashlib.md5() with open(fpath, 'rb') as f: buf = f.read() hasher.update(buf) if str(hasher.hexdigest()) == str(md5_hash): return True else: return False def _get_file(fname, origin, md5_hash=None, cache_subdir='~/.datasets'): """ Download a file from a URL if it not already in the cache. Passing the MD5 hash will verify the file after download as well as if it is already present in the cache. Parameters ---------- fname: name of the file origin: original URL of the file md5_hash: MD5 hash of the file for verification cache_subdir: directory being used as the cache Returns ------- Path to the downloaded file """ datadir_base = os.path.expanduser("~/.datasets") if not os.path.exists(datadir_base): os.makedirs(datadir_base) if not os.access(datadir_base, os.W_OK): logging.warning(f"Could not access {cache_subdir}.") datadir_base = os.path.join('/tmp', '.data') datadir = os.path.join(datadir_base, cache_subdir) if not os.path.exists(datadir): os.makedirs(datadir) fpath = os.path.join(datadir, fname) download = False if os.path.exists(fpath): # File found; verify integrity if a hash was provided. if md5_hash is not None: if not _validate_file(fpath, md5_hash): print('A local file was found, but it seems to be ' 'incomplete or outdated.') download = True else: download = True if download: print(f'Downloading data from {origin} to {fpath}') error_msg = 'URL fetch failure on {}: {} -- {}' try: try: urlretrieve(origin, fpath) except URLError as e: raise Exception(error_msg.format(origin, e.errno, e.reason)) except HTTPError as e: raise Exception(error_msg.format(origin, e.code, e.msg)) except (Exception, KeyboardInterrupt) as e: if os.path.exists(fpath): os.remove(fpath) raise return fpath def load_data(mode='fold-1', image_dim_ordering='tf'): """ Load HASYv2 dataset. Parameters ---------- mode : string, optional (default: "complete") - "complete" : Returns {'x': x, 'y': y} with all labeled data - "fold-1": Returns {'x_train': x_train, 'y_train': y_train, 'x_test': x_test, 'y_test': y_test} - "fold-2", ..., "fold-10": See "fold-1" - "verification": Returns {'train': {'x_train': List of loaded images, 'y_train': list of labels}, 'test-v1': {'X1s': List of first images, 'X2s': List of second images, 'ys': List of labels 'True' or 'False'} 'test-v2': {'X1s': List of first images, 'X2s': List of second images, 'ys': List of labels 'True' or 'False'} 'test-v3': {'X1s': List of first images, 'X2s': List of second images, 'ys': List of labels 'True' or 'False'}} image_dim_ordering : 'th' for theano or 'tf' for tensorflow (default: 'tf') Returns ------- dict See "mode" parameter for details. All 'x..' keys contain a uint8 numpy array [index, y, x, depth] (or [index, depth, y, x] for image_dim_ordering='t') All 'y..' keys contain a 2D uint8 numpy array [[label]] """ # Download if not already done fname = 'HASYv2.tar.bz2' origin = 'https://zenodo.org/record/259444/files/HASYv2.tar.bz2' fpath = _get_file(fname, origin=origin, md5_hash='fddf23f36e24b5236f6b3a0880c778e3', cache_subdir='HASYv2') path = os.path.dirname(fpath) # Extract content if not already done untar_fpath = os.path.join(path, "HASYv2") if not os.path.exists(untar_fpath): print('Extract contents from archive...') tfile = tarfile.open(fpath, 'r:bz2') try: tfile.extractall(path=untar_fpath) except (Exception, KeyboardInterrupt) as e: if os.path.exists(untar_fpath): if os.path.isfile(untar_fpath): os.remove(untar_fpath) else: shutil.rmtree(untar_fpath) raise tfile.close() # Create pickle if not already done pickle_fpath = os.path.join(untar_fpath, "hasy-data.pickle") if not os.path.exists(pickle_fpath): # Load mapping from symbol names to indices symbol_csv_fpath = os.path.join(untar_fpath, "symbols.csv") symbol_id2index, labels = generate_index(symbol_csv_fpath) globals()["labels"] = labels globals()["symbol_id2index"] = symbol_id2index # Load data data_csv_fpath = os.path.join(untar_fpath, "hasy-data-labels.csv") data_csv = _load_csv(data_csv_fpath) x_compl = np.zeros((len(data_csv), 1, WIDTH, HEIGHT), dtype=np.uint8) y_compl = [] s_compl = [] path2index = {} # Load HASYv2 data for i, data_item in enumerate(data_csv): fname = os.path.join(untar_fpath, data_item['path']) s_compl.append(fname) x_compl[i, 0, :, :] = scipy.ndimage.imread(fname, flatten=False, mode='L') label = symbol_id2index[data_item['symbol_id']] y_compl.append(label) path2index[fname] = i y_compl = np.array(y_compl, dtype=np.int64) data = {'x': x_compl, 'y': y_compl, 's': s_compl, 'labels': labels, 'path2index': path2index} # Store data as pickle to speed up later calls with open(pickle_fpath, 'wb') as f: pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL) else: with open(pickle_fpath, 'rb') as f: data = pickle.load(f) globals()["labels"] = data['labels'] labels = data['labels'] x_compl = data['x'] y_compl = np.reshape(data['y'], (len(data['y']), 1)) s_compl = data['s'] path2index = data['path2index'] if image_dim_ordering == 'tf': x_compl = x_compl.transpose(0, 2, 3, 1) if mode == 'complete': return {'x': x_compl, 'y': y_compl} elif mode.startswith('fold-'): fold = int(mode.split("-")[1]) if fold < 1 or fold > 10: raise NotImplementedError # Load fold fold_dir = os.path.join(untar_fpath, f"classification-task/fold-{fold}") train_csv_fpath = os.path.join(fold_dir, "train.csv") test_csv_fpath = os.path.join(fold_dir, "test.csv") train_csv = _load_csv(train_csv_fpath) test_csv = _load_csv(test_csv_fpath) train_ids = np.array([path2index[row['path']] for row in train_csv]) test_ids = np.array([path2index[row['path']] for row in test_csv]) x_train = x_compl[train_ids] x_test = x_compl[test_ids] y_train = y_compl[train_ids] y_test = y_compl[test_ids] s_train = [s_compl[id_] for id_ in train_ids] s_test = [s_compl[id_] for id_ in test_ids] data = {'x_train': x_train, 'y_train': y_train, 'x_test': x_test, 'y_test': y_test, 's_train': s_train, 's_test': s_test, 'labels': labels } return data elif mode == 'verification': # Load the data symbol_id2index = globals()["symbol_id2index"] base_ = os.path.join(untar_fpath, "verification-task") # Load train data train_csv_fpath = os.path.join(base_, "train.csv") train_csv = _load_csv(train_csv_fpath) train_ids = np.array([path2index[row['path']] for row in train_csv]) x_train = x_compl[train_ids] y_train = y_compl[train_ids] s_train = [s_compl[id_] for id_ in train_ids] # Load test data test1_csv_fpath = os.path.join(base_, 'test-v1.csv') test2_csv_fpath = os.path.join(base_, 'test-v2.csv') test3_csv_fpath = os.path.join(base_, 'test-v3.csv') tmp1 = _load_images_verification_test(test1_csv_fpath, x_compl, path2index) tmp2 = _load_images_verification_test(test2_csv_fpath, x_compl, path2index) tmp3 = _load_images_verification_test(test3_csv_fpath, x_compl, path2index) data = {'train': {'x_train': x_train, 'y_train': y_train, 'source': s_train}, 'test-v1': tmp1, 'test-v2': tmp2, 'test-v3': tmp3} return data else: raise NotImplementedError def load_images(csv_filepath, symbol_id2index, one_hot=True, flatten=False, normalize=True, shuffle=True): """ Load the images into a 4D uint8 numpy array [index, y, x, depth]. Parameters ---------- csv_filepath : str 'test.csv' or 'train.csv' symbol_id2index : dict Dictionary generated by generate_index one_hot : bool, optional (default: True) Make label vector as 1-hot encoding, otherwise index flatten : bool, optional (default: False) Flatten feature vector normalize : bool, optional (default: True) Noramlize features to {0.0, 1.0} shuffle : bool, optional (default: True) Shuffle loaded data Returns ------- images, labels, source : Images is a 4D uint8 numpy array [index, y, x, depth] and labels is a 2D uint8 numpy array [index][1-hot enc] and source is a list of file paths """ WIDTH, HEIGHT = 32, 32 dataset_path = os.path.dirname(csv_filepath) data = _load_csv(csv_filepath) if flatten: images = np.zeros((len(data), WIDTH * HEIGHT)) else: images = np.zeros((len(data), WIDTH, HEIGHT, 1)) labels, sources = [], [] for i, data_item in enumerate(data): fname = os.path.join(dataset_path, data_item['path']) sources.append(fname) if flatten: img = scipy.ndimage.imread(fname, flatten=False, mode='L') images[i, :] = img.flatten() else: images[i, :, :, 0] = scipy.ndimage.imread(fname, flatten=False, mode='L') label = symbol_id2index[data_item['symbol_id']] labels.append(label) # Make sure the type of images is float32 images = np.array(images, dtype=np.float32) if normalize: images /= 255.0 data = [images, np.array(labels), sources] if shuffle: perm = np.arange(len(labels)) np.random.shuffle(perm) data[0] = data[0][perm] data[1] = data[1][perm] data[2] = [data[2][index] for index in perm] if one_hot: data = (data[0], np.eye(len(symbol_id2index))[data[1]], data[2]) return data def _load_images_verification_test(csv_filepath, x_compl, path2index): """ Load images from the verification test files. Parameters ---------- csv_filepath : str Path to 'test-v1.csv' or 'test-v2.csv' or 'test-v3.csv' x_compl : numpy array Complete hasy data path2index : dict Map paths to indices of x_compl Returns ------- list [x1s, x2s, labels, sources] where all four are lists of equal length x1s and x2s contain images, labels contains either True or False sources contains strings """ test1_csv = _load_csv(csv_filepath) test1_x1_ids = np.array([path2index[row['path1']] for row in test1_csv]) test1_x2_ids = np.array([path2index[row['path2']] for row in test1_csv]) test1_ys = np.array([row['is_same'] == 'True' for row in test1_csv], dtype=np.float64) test1_sources = [(row['path1'], row['path2']) for row in test1_csv] return {'X1s': x_compl[test1_x1_ids], 'X2s': x_compl[test1_x2_ids], 'ys': test1_ys, 'sources': test1_sources} def _maybe_download(expected_files, work_directory='HASYv2'): """ Download the data, unless it is already there. Parameters ---------- expected_files : list Each list contains a dict with keys 'filename', 'source', 'md5sum', where 'filename' denotes the local filename within work_directory, 'source' is an URL where the file can be downloaded and 'md5sum' is the expected MD5 sum of the file work_directory : str """ if not os.path.exists(work_directory): os.mkdir(work_directory) for entry in expected_files: filepath = os.path.join(work_directory, entry['filename']) logging.info("Search '%s'", filepath) if not os.path.exists(filepath): filepath, _ = urllib.request.urlretrieve(entry['source'], filepath) statinfo = os.stat(filepath) logging.info('Successfully downloaded %s (%i bytes)' % (entry['filename'], statinfo.st_size)) with open(filepath, 'rb') as f: md5sum_actual = hashlib.md5(f.read()).hexdigest() if md5sum_actual != entry['md5sum']: logging.error("File '%s' was expected to have md5sum %s, but " "has '%s'", entry['filename'], entry['md5sum'], md5sum_actual) else: with open(filepath, 'rb') as f: md5sum_actual = hashlib.md5(f.read()).hexdigest() if md5sum_actual != entry['md5sum']: logging.error("File '%s' was expected to have md5sum %s, but " "has '%s'", entry['filename'], entry['md5sum'], md5sum_actual) def _maybe_extract(tarfile_path, work_directory): import tarfile hasy_tools_path = os.path.join(work_directory, "hasy_tools.py") if not os.path.isfile(hasy_tools_path): with tarfile.open(tarfile_path, "r:bz2") as tar: tar.extractall(path=work_directory) def _get_data(dataset_path): """ Download data and extract it, if it is not already in dataset_path. Parameters ---------- dataset_path : str """ filelist = [{'filename': 'HASYv2.tar.bz2', 'source': ('https://zenodo.org/record/259444/files/' 'HASYv2.tar.bz2'), 'md5sum': 'fddf23f36e24b5236f6b3a0880c778e3'}] _maybe_download(filelist, work_directory=dataset_path) tar_filepath = os.path.join(dataset_path, filelist[0]['filename']) _maybe_extract(tar_filepath, dataset_path) def _is_valid_png(filepath): """ Check if the PNG image is valid. Parameters ---------- filepath : str Path to a PNG image Returns ------- bool : True if the PNG image is valid, otherwise False. """ try: test = Image.open(filepath) test.close() return True except: return False def _verify_all(csv_data_path): """Verify all PNG files in the training and test directories.""" train_data = _load_csv(csv_data_path) for data_item in train_data: if not _is_valid_png(data_item['path']): logging.info("%s is invalid." % data_item['path']) logging.info("Checked %i items of %s." % (len(train_data), csv_data_path)) def create_random_overview(img_src, x_images, y_images): """Create a random overview of images.""" # Create canvas background = Image.new('RGB', (35 * x_images, 35 * y_images), (255, 255, 255)) bg_w, bg_h = background.size # Paste image on canvas for x in range(x_images): for y in range(y_images): path = random.choice(img_src)['path'] img = Image.open(path, 'r') img_w, img_h = img.size offset = (35 * x, 35 * y) background.paste(img, offset) # Draw lines draw = ImageDraw.Draw(background) for y in range(y_images): # horizontal lines draw.line((0, 35 * y - 2, 35 * x_images, 35 * y - 2), fill=0) for x in range(x_images): # vertical lines draw.line((35 * x - 2, 0, 35 * x - 2, 35 * y_images), fill=0) # Store background.save('hasy-overview.png') def _get_colors(data, verbose=False): """ Get how often each color is used in data. Parameters ---------- data : dict with key 'path' pointing to an image verbose : bool, optional Returns ------- color_count : dict Maps a grayscale value (0..255) to how often it was in `data` """ color_count = {} for i in range(256): color_count[i] = 0 for i, data_item in enumerate(data): if i % 1000 == 0 and i > 0 and verbose: print("%i of %i done" % (i, len(data))) fname = os.path.join('.', data_item['path']) img = scipy.ndimage.imread(fname, flatten=False, mode='L') for row in img: for pixel in row: color_count[pixel] += 1 return color_count def data_by_class(data): """ Organize `data` by class. Parameters ---------- data : list of dicts Each dict contains the key `symbol_id` which is the class label. Returns ------- dbc : dict mapping class labels to lists of dicts """ dbc = {} for item in data: if item['symbol_id'] in dbc: dbc[item['symbol_id']].append(item) else: dbc[item['symbol_id']] = [item] return dbc def _get_color_statistics(csv_filepath, verbose=False): """ Count how often white / black is in the image. Parameters ---------- csv_filepath : str 'test.csv' or 'train.csv' verbose : bool, optional """ symbolid2latex = _get_symbolid2latex() data = _load_csv(csv_filepath) black_level, classes = [], [] for symbol_id, elements in data_by_class(data).items(): colors = _get_colors(elements) b = colors[0] w = colors[255] black_level.append(float(b) / (b + w)) classes.append(symbol_id) if verbose: print("{}:\t{:0.4f}".format(symbol_id, black_level[-1])) print("Average black level: {:0.2f}%" .format(np.average(black_level) * 100)) print("Median black level: {:0.2f}%" .format(np.median(black_level) * 100)) print("Minimum black level: {:0.2f}% (class: {})" .format(min(black_level), [symbolid2latex[c] for bl, c in zip(black_level, classes) if bl <= min(black_level)])) print("Maximum black level: {:0.2f}% (class: {})" .format(max(black_level), [symbolid2latex[c] for bl, c in zip(black_level, classes) if bl >= max(black_level)])) def _get_symbolid2latex(csv_filepath='symbols.csv'): """Return a dict mapping symbol_ids to LaTeX code.""" symbol_data = _load_csv(csv_filepath) symbolid2latex = {} for row in symbol_data: symbolid2latex[row['symbol_id']] = row['latex'] return symbolid2latex def _analyze_class_distribution(csv_filepath, max_data, bin_size): """Plot the distribution of training data over graphs.""" symbol_id2index, labels = generate_index(csv_filepath) index2symbol_id = {} for index, symbol_id in symbol_id2index.items(): index2symbol_id[symbol_id] = index data, y, s = load_images(csv_filepath, symbol_id2index, one_hot=False) data = {} for el in y: if el in data: data[el] += 1 else: data[el] = 1 classes = data images = len(y) # Create plot print("Classes: %i" % len(classes)) print("Images: %i" % images) class_counts = sorted([count for _, count in classes.items()]) print("\tmin: %i" % min(class_counts)) fig = plt.figure() ax1 = fig.add_subplot(111) # plt.title('HASY training data distribution') plt.xlabel('Amount of available testing images') plt.ylabel('Number of classes') # Where we want the ticks, in pixel locations ticks = [int(el) for el in list(np.linspace(0, max_data, 21))] # What those pixel locations correspond to in data coordinates. # Also set the float format here ax1.set_xticks(ticks) labels = ax1.get_xticklabels() plt.setp(labels, rotation=30) min_examples = 0 ax1.hist(class_counts, bins=range(min_examples, max_data + 1, bin_size)) # plt.show() filename = '{}.pdf'.format('data-dist') plt.savefig(filename) logging.info(f"Plot has been saved as {filename}") symbolid2latex = _get_symbolid2latex() top10 = sorted(classes.items(), key=lambda n: n[1], reverse=True)[:10] top10_data = 0 for index, count in top10: print("\t%s:\t%i" % (symbolid2latex[index2symbol_id[index]], count)) top10_data += count total_data = sum([count for index, count in classes.items()]) print("Top-10 has %i training data (%0.2f%% of total)" % (top10_data, float(top10_data) * 100.0 / total_data)) print("%i classes have more than %i data items." % (sum([1 for _, count in classes.items() if count > max_data]), max_data)) def _analyze_pca(csv_filepath): """ Analyze how much data can be compressed. Parameters ---------- csv_filepath : str Path relative to dataset_path to a CSV file which points to images """ import itertools as it from sklearn.decomposition import PCA symbol_id2index, labels = generate_index(csv_filepath) data, y, s = load_images(csv_filepath, symbol_id2index, one_hot=False) data = data.reshape(data.shape[0], data.shape[1] * data.shape[2]) pca = PCA() pca.fit(data) sum_ = 0.0 done_values = [None, None, None] done_points = [False, False, False] chck_points = [0.9, 0.95, 0.99] for counter, el in enumerate(pca.explained_variance_ratio_): sum_ += el for check_point, done, i in zip(chck_points, done_points, it.count()): if not done and sum_ >= check_point: done_points[i] = counter done_values[i] = sum_ for components, variance in zip(done_points, done_values): print("%i components explain %0.2f of the variance" % (components, variance)) def _get_euclidean_dist(e1, e2): """Calculate the euclidean distance between e1 and e2.""" e1 = e1.flatten() e2 = e2.flatten() return sum([(el1 - el2)**2 for el1, el2 in zip(e1, e2)])**0.5 def _inner_class_distance(data): """Measure the eucliden distances of one class to the mean image.""" distances = [] mean_img = None for e1 in data: fname1 = os.path.join('.', e1['path']) img1 = scipy.ndimage.imread(fname1, flatten=False, mode='L') if mean_img is None: mean_img = img1.tolist() else: mean_img += img1 mean_img = mean_img / float(len(data)) # mean_img = thresholdize(mean_img, 'auto') scipy.misc.imshow(mean_img) for e1 in data: fname1 = os.path.join('.', e1['path']) img1 = scipy.ndimage.imread(fname1, flatten=False, mode='L') dist = _get_euclidean_dist(img1, mean_img) distances.append(dist) return (distances, mean_img) def thresholdize(img, threshold=0.5): """Create a black-and-white image from a grayscale image.""" img_new = [] if threshold == 'auto': img_flat = sorted(img.flatten()) threshold_ind = int(0.85 * len(img_flat)) threshold = img_flat[threshold_ind] for row in img: bla = [] for col in row: if col > threshold: bla.append(1) else: bla.append(0) img_new.append(bla) return np.array(img_new) def _analyze_distances(csv_filepath): """Analyze the distance between elements of one class and class means.""" symbolid2latex = _get_symbolid2latex() data = _load_csv(csv_filepath) data = data_by_class(data) mean_imgs = [] for class_, data_class in data.items(): latex = symbolid2latex[class_] d, mean_img = _inner_class_distance(data_class) # scipy.misc.imshow(mean_img) print("%s: min=%0.4f, avg=%0.4f, median=%0.4f max=%0.4f" % (latex, np.min(d), np.average(d), np.median(d), np.max(d))) distarr = sorted([(label, mean_c, _get_euclidean_dist(mean_c, mean_img)) for label, mean_c in mean_imgs], key=lambda n: n[2]) for label, mean_c, d in distarr: print(f"\t{label}: {d:0.4f}") mean_imgs.append((latex, mean_img)) def _analyze_variance(csv_filepath): """Calculate the variance of each pixel.""" symbol_id2index, labels = generate_index(csv_filepath) data, y, s = load_images(csv_filepath, symbol_id2index, one_hot=False) # Calculate mean sum_ = np.zeros((32, 32)) for el in data: el = np.squeeze(el) sum_ += el mean_ = sum_ / float(len(data)) scipy.misc.imshow(mean_) # Calculate variance centered_ = np.zeros((32, 32)) for el in data: el = np.squeeze(el) centered_ += (el - mean_)**2 centered_ = (1. / len(data)) * centered_**0.5 scipy.misc.imshow(centered_) for row in list(centered_): row = list(row) print(" ".join(["%0.1f" % nr for nr in row])) def _analyze_correlation(csv_filepath): """ Analyze and visualize the correlation of features. Parameters ---------- csv_filepath : str Path to a CSV file which points to images """ import pandas as pd from matplotlib import cm as cm from matplotlib import pyplot as plt symbol_id2index, labels = generate_index(csv_filepath) data, y, s = load_images(csv_filepath, symbol_id2index, one_hot=False, flatten=True) df = pd.DataFrame(data=data) logging.info("Data loaded. Start correlation calculation. Takes 1.5h.") fig = plt.figure() ax1 = fig.add_subplot(111) # Where we want the ticks, in pixel locations ticks = np.linspace(0, 1024, 17) # What those pixel locations correspond to in data coordinates. # Also set the float format here ax1.set_xticks(ticks) ax1.set_yticks(ticks) labels = ax1.get_xticklabels() plt.setp(labels, rotation=30) cmap = cm.get_cmap('viridis', 30) cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) ax1.grid(True) # Add colorbar, make sure to specify tick locations to match desired # ticklabels fig.colorbar(cax, ticks=[-0.15, 0, 0.15, 0.30, 0.45, 0.60, 0.75, 0.90, 1]) filename = '{}.pdf'.format('feature-correlation') plt.savefig(filename) def _create_stratified_split(csv_filepath, n_splits): """ Create a stratified split for the classification task. Parameters ---------- csv_filepath : str Path to a CSV file which points to images n_splits : int Number of splits to make """ from sklearn.model_selection import StratifiedKFold data = _load_csv(csv_filepath) labels = [el['symbol_id'] for el in data] skf = StratifiedKFold(labels, n_folds=n_splits) i = 1 kdirectory = 'classification-task' if not os.path.exists(kdirectory): os.makedirs(kdirectory) for train_index, test_index in skf: print("Create fold %i" % i) directory = "%s/fold-%i" % (kdirectory, i) if not os.path.exists(directory): os.makedirs(directory) else: print("Directory '%s' already exists. Please remove it." % directory) i += 1 train = [data[el] for el in train_index] test_ = [data[el] for el in test_index] for dataset, name in [(train, 'train'), (test_, 'test')]: with open(f"{directory}/{name}.csv", 'wb') as csv_file: csv_writer = csv.writer(csv_file) csv_writer.writerow(('path', 'symbol_id', 'latex', 'user_id')) for el in dataset: csv_writer.writerow(("../../%s" % el['path'], el['symbol_id'], el['latex'], el['user_id'])) def _create_pair(r1_data, r2_data): """Create a pair for the verification test.""" symbol_index = random.choice(r1_data.keys()) r1 = random.choice(r1_data[symbol_index]) is_same = random.choice([True, False]) if is_same: symbol_index2 = symbol_index r2 = random.choice(r1_data[symbol_index2]) else: symbol_index2 = random.choice(r2_data.keys()) while symbol_index2 == symbol_index: symbol_index2 = random.choice(r2_data.keys()) r2 = random.choice(r2_data[symbol_index2]) return (r1['path'], r2['path'], is_same) def _create_verification_task(sample_size=32, test_size=0.05): """ Create the datasets for the verification task. Parameters ---------- sample_size : int Number of classes which will be taken completely test_size : float in (0, 1) Percentage of the remaining data to be taken to test """ # Get the data data = _load_csv('hasy-data-labels.csv') for el in data: el['path'] = "../hasy-data/" + el['path'].split("hasy-data/")[1] data = sorted(data_by_class(data).items(), key=lambda n: len(n[1]), reverse=True) symbolid2latex = _get_symbolid2latex() # Get complete classes symbols = random.sample(range(len(data)), k=sample_size) symbols = sorted(symbols, reverse=True) test_data_excluded = [] for symbol_index in symbols: # for class_label, items in data: class_label, items = data.pop(symbol_index) test_data_excluded += items print(symbolid2latex[class_label]) # Get data from remaining classes data_n = [] for class_label, items in data: data_n = data_n + items ys = [el['symbol_id'] for el in data_n] x_train, x_test, y_train, y_test = train_test_split(data_n, ys, test_size=test_size) # Write the training / test data print("Test data (excluded symbols) = %i" % len(test_data_excluded)) print("Test data (included symbols) = %i" % len(x_test)) print("Test data (total) = %i" % (len(x_test) + len(test_data_excluded))) kdirectory = 'verification-task' if not os.path.exists(kdirectory): os.makedirs(kdirectory) with open("%s/train.csv" % kdirectory, 'wb') as csv_file: csv_writer = csv.writer(csv_file) csv_writer.writerow(('path', 'symbol_id', 'latex', 'user_id')) for el in x_train: csv_writer.writerow((el['path'], el['symbol_id'], el['latex'], el['user_id'])) x_test_inc_class = data_by_class(x_test) x_text_exc_class = data_by_class(test_data_excluded) # V1: Both symbols belong to the training set (included symbols) with open("%s/test-v1.csv" % kdirectory, 'wb') as csv_file: csv_writer = csv.writer(csv_file) csv_writer.writerow(('path1', 'path2', 'is_same')) for i in range(100000): test_data_tuple = _create_pair(x_test_inc_class, x_test_inc_class) csv_writer.writerow(test_data_tuple) # V2: r1 belongs to a symbol in the training set, but r2 might not with open("%s/test-v2.csv" % kdirectory, 'wb') as csv_file: csv_writer = csv.writer(csv_file) csv_writer.writerow(('path1', 'path2', 'is_same')) for i in range(100000): test_data_tuple = _create_pair(x_test_inc_class, x_text_exc_class) csv_writer.writerow(test_data_tuple) # V3: r1 and r2 both don't belong to symbols in the training set with open("%s/test-v3.csv" % kdirectory, 'wb') as csv_file: csv_writer = csv.writer(csv_file) csv_writer.writerow(('path1', 'path2', 'is_same')) for i in range(100000): test_data_tuple = _create_pair(x_text_exc_class, x_text_exc_class) csv_writer.writerow(test_data_tuple) def _count_users(csv_filepath): """ Count the number of users who contributed to the dataset. Parameters ---------- csv_filepath : str Path to a CSV file which points to images """ data = _load_csv(csv_filepath) user_ids = {} for el in data: if el['user_id'] not in user_ids: user_ids[el['user_id']] = [el['path']] else: user_ids[el['user_id']].append(el['path']) max_els = 0 max_user = 0 for user_id, elements in user_ids.items(): if len(elements) > max_els: max_els = len(elements) max_user = user_id print("Dataset has %i users." % len(user_ids)) print("User %s created most (%i elements, %0.2f%%)" % (max_user, max_els, float(max_els) / len(data) * 100.0)) def _analyze_cm(cm_file, total_symbols=100): """ Analyze a confusion matrix. Parameters ---------- cm_file : str Path to a confusion matrix in JSON format. Each line contains a list of non-negative integers. cm[i][j] indicates how often members of class i were labeled with j """ symbolid2latex = _get_symbolid2latex() symbol_id2index, labels = generate_index('hasy-data-labels.csv') index2symbol_id = {} for index, symbol_id in symbol_id2index.items(): index2symbol_id[symbol_id] = index # Load CM with open(cm_file) as data_file: cm = json.load(data_file) class_accuracy = [] n = len(cm) test_samples_sum = np.sum(cm) # Number of recordings for symbols which don't have a single correct # prediction sum_difficult_none = 0 # Number of recordings for symbols which have an accuracy of less than 5% sum_difficult_five = 0 for i in range(n): total = sum([cm[i][j] for j in range(n)]) class_accuracy.append({'class_index': i, 'class_accuracy': float(cm[i][i]) / total, 'class_confusion_index': np.argmax(cm[i]), 'correct_total': cm[i][i], 'class_total': total}) print("Lowest class accuracies:") class_accuracy = sorted(class_accuracy, key=lambda n: n['class_accuracy']) index2latex = lambda n: symbolid2latex[index2symbol_id[n]] for i in range(total_symbols): if class_accuracy[i]['correct_total'] == 0: sum_difficult_none += class_accuracy[i]['class_total'] if class_accuracy[i]['class_accuracy'] < 0.05: sum_difficult_five += class_accuracy[i]['class_total'] latex_orig = index2latex(class_accuracy[i]['class_index']) latex_conf = index2latex(class_accuracy[i]['class_confusion_index']) # print("\t%i. \t%s:\t%0.4f (%s); correct=%i" % # (i + 1, # latex_orig, # class_accuracy[i]['class_accuracy'], # latex_conf, # class_accuracy[i]['correct_total'])) print(("\t\\verb+{:<15}+ & ${:<15}$ & {:<15} & \\verb+{:<15}+ " "& ${:<15}$ \\\\ ({})").format (latex_orig, latex_orig, class_accuracy[i]['class_total'], latex_conf, latex_conf, class_accuracy[i]['correct_total'])) print("Non-correct: %0.4f%%" % (sum_difficult_none / float(test_samples_sum))) print("five-correct: %0.4f%%" % (sum_difficult_five / float(test_samples_sum))) print("Easy classes") class_accuracy = sorted(class_accuracy, key=lambda n: n['class_accuracy'], reverse=True) for i in range(total_symbols): latex_orig = index2latex(class_accuracy[i]['class_index']) latex_conf = index2latex(class_accuracy[i]['class_confusion_index']) if class_accuracy[i]['class_accuracy'] < 0.99: break # print("\t%i. \t%s:\t%0.4f (%s); correct=%i" % # (i + 1, # latex_orig, # class_accuracy[i]['class_accuracy'], # latex_conf, # class_accuracy[i]['correct_total'])) print(("\t\\verb+{:<15}+ & ${:<15}$ & {:<15} & " "\\verb+{:<15}+ & ${:<15}$ \\\\ ({})").format (latex_orig, latex_orig, class_accuracy[i]['class_total'], latex_conf, latex_conf, class_accuracy[i]['correct_total'])) # cm = np.array(cm) # scipy.misc.imshow(cm) def preprocess(x): """Preprocess features.""" x = x.astype('float32') x /= 255.0 return x def _get_parser(): """Get parser object for hasy_tools.py.""" import argparse from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser parser = ArgumentParser(description=__doc__, formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument("--dataset", dest="dataset", help="specify which data to use") parser.add_argument("--verify", dest="verify", action="store_true", default=False, help="verify PNG files") parser.add_argument("--overview", dest="overview", action="store_true", default=False, help="Get overview of data") parser.add_argument("--analyze_color", dest="analyze_color", action="store_true", default=False, help="Analyze the color distribution") parser.add_argument("--class_distribution", dest="class_distribution", action="store_true", default=False, help="Analyze the class distribution") parser.add_argument("--distances", dest="distances", action="store_true", default=False, help="Analyze the euclidean distance distribution") parser.add_argument("--pca", dest="pca", action="store_true", default=False, help=("Show how many principal components explain " "90%% / 95%% / 99%% of the variance")) parser.add_argument("--variance", dest="variance", action="store_true", default=False, help="Analyze the variance of features") parser.add_argument("--correlation", dest="correlation", action="store_true", default=False, help="Analyze the correlation of features") parser.add_argument("--create-classification-task", dest="create_folds", action="store_true", default=False, help=argparse.SUPPRESS) parser.add_argument("--create-verification-task", dest="create_verification_task", action="store_true", default=False, help=argparse.SUPPRESS) parser.add_argument("--count-users", dest="count_users", action="store_true", default=False, help="Count how many different users have created " "the dataset") parser.add_argument("--analyze-cm", dest="cm", default=False, help="Analyze a confusion matrix in JSON format.") return parser if __name__ == "__main__": args = _get_parser().parse_args() if args.verify: if args.dataset is None: logging.error("--dataset needs to be set for --verify") sys.exit() _verify_all(args.dataset) if args.overview: img_src = _load_csv(args.dataset) create_random_overview(img_src, x_images=10, y_images=10) if args.analyze_color: _get_color_statistics(csv_filepath=args.dataset) if args.class_distribution: _analyze_class_distribution(csv_filepath=args.dataset, max_data=1000, bin_size=25) if args.pca: _analyze_pca(csv_filepath=args.dataset) if args.distances: _analyze_distances(csv_filepath=args.dataset) if args.variance: _analyze_variance(csv_filepath=args.dataset) if args.correlation: _analyze_correlation(csv_filepath=args.dataset) if args.create_folds: _create_stratified_split(args.dataset, int(args.create_folds)) if args.count_users: _count_users(csv_filepath=args.dataset) if args.create_verification_task: _create_verification_task() if args.cm: _analyze_cm(args.cm)
mit
IRC-SPHERE/dictionary-learning
spams_transformer.py
1
10532
# The MIT License (MIT) # Copyright (c) 2014-2017 University of Bristol # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE # OR OTHER DEALINGS IN THE SOFTWARE. import numpy as np from sklearn.base import BaseEstimator, TransformerMixin import spams class SpamsTransformer(BaseEstimator, TransformerMixin): """ This class performs dictionary learning on data using the SPArse Modeling Software (SPAMS). """ def __init__(self, total_num_bases, l1_dictionary, l1_reconstruct, class_conditional=False, positive_coefficients=True, l0_max=0, verbose=0, num_iterations=100, minibatch_size=512, use_lasso=True): """ :param total_num_bases: The total number of atoms to be learnt by the dictionary learning software. No default value. :param l1_dictionary: Regularisation parameter (1-norm) for learning the dictionary. No default value. :param l1_reconstruct: Regularisation parameter (1-norm) for reconstruction. No default value. :param class_conditional: Whether to partition the data by class, and to learn atoms on a per-class basis. Default: False Note: the number of atoms per class will be @total_num_bases / num_classes. :param positive_coefficients: Constrains the coefficients to be positive in reconstruction. Default: True :param l0_max: When using OMP, this parameter sets the maximal number of coefficients to be used Note: (0 \leq @l0_max \leq total_num_bases). Default: 0 :param verbose: Verbosity level. Default: 0. :param num_iterations: Number of iterations for training. Default: 100. :param minibatch_size: The sample size for each minibatch. Default: 512. :param use_lasso: When `True` uses LASSO during optimisation, when `False` uses OMP. """ self.total_num_bases = total_num_bases self.l1_dictionary = l1_dictionary self.l1_reconstruct = l1_reconstruct self.num_iterations = num_iterations self.minibatch_size = minibatch_size self.use_lasso = use_lasso self.l0_max = l0_max self.verbose = verbose self.class_conditional = class_conditional self.positive_coefficients = positive_coefficients self.dictionary = None def fit(self, x, y=None): """ Fits the dictionary learning model. :param x: The input data. $x \in \mathbb{R}^{N \times M}. Here $N$ is the number of instances, and $M$ is the dimensionality of each instance. :param y: The labels that are associated with the data. Only used when `self.class_conditional = True`. :return: self """ def fit(x, num): return spams.trainDL( K=num, numThreads=2, X=np.asfortranarray(x.T), mode=[4, 2][self.use_lasso], lambda1=[self.l0_max, self.l1_dictionary][self.use_lasso], iter=self.num_iterations, verbose=self.verbose, posAlpha=self.positive_coefficients, batchsize=self.minibatch_size, ) if self.class_conditional: unique_labels = np.unique(y) num_bases = self.total_num_bases / len(unique_labels) self.dictionary = np.column_stack( [fit(x[y == yy], num_bases) for yy in unique_labels] ) else: self.dictionary = fit(x, self.total_num_bases) return self def transform(self, X, mask=None): """ Transforms data X to coefficients. :param X:The input data. $x \in \mathbb{R}^{N \times M}. Here $N$ is the number of instances, and $M$ is the dimensionality of each instance. :param mask: Allows missing data to be present in `X`. `mask` should be a binary matrix of the same shape as `X`. An element that evaluates to `True` indicates that data is present, and `False` means that data is missing. Set `mask = None` (default value) to do un-masked transformations. :return: Returns a sparse matrix """ if self.use_lasso: return self._transform_lasso(X, mask) return self._transform_omp(X, mask) def inverse_transform(self, alphas, y=None): """ Reconstructs input data based on their coefficients. :param alphas: Sparse coefficient matrix, eg, as returned from the `self.transform` method :param y: Unused in every case :return: Reconstructed matrix. """ acc_hat = alphas.dot(self.dictionary.T) return np.asarray(acc_hat, dtype=np.float) def lasso_params(self, X): """ Builds the parameters for the LASSO dictionary learning :param X: Input data. See `.fit` for more information. :return: Dictionary containing relevant parameters for LASSO optimisation """ return dict( X=np.asfortranarray(X.T), D=np.asfortranarray(self.dictionary), lambda1=self.l1_reconstruct, numThreads=2, pos=self.positive_coefficients ) def omp_params(self, X): """ Builds a parameter dictionary for OMP dictionary learning :param X: Input data See `.fit` for more information. :return: Dictionary containing relevant parameters for OMP optimisation. """ return dict( X=np.asfortranarray(X.T), D=np.asfortranarray(self.dictionary), lambda1=self.l1_reconstruct, numThreads=2, L=self.l0_max ) def _transform_lasso(self, X, mask): """ Performs LASSO transformation :param X: Input data. See `.fit` for more information. :param mask: Mask on input data. See `.fit` for more information. :return: Reconstruction parameters """ if mask is None: return spams.lasso(**self.lasso_params(X)).T return spams.lassoMask(B=np.asfortranarray(mask.T), **self.lasso_params(X)).T def _transform_omp(self, X, mask): """ Performs the OMP transformation. :param X: Input data. See `.fit` for more information. :param mask: Mask on input data. See `.fit` for more information. :return: Reconstruction parameters """ if mask is None: return spams.omp(**self.omp_params(X)).T return spams.ompMask( X=np.asfortranarray(X.T), D=np.asfortranarray(self.dictionary), B=np.asfortranarray(mask.T), L=self.l0_max, lambda1=self.l1_reconstruct, numThreads=2, ).T @staticmethod def save(model, file_name): """ Serialise model to file. :param model: Model :param file_name: Filename :return: """ import cPickle as pickle import gzip with gzip.open(file_name, 'wb') as fil: pickle.dump(model, fil, protocol=0) @staticmethod def load(file_name): """ Deserialise model from file :param file_name: Filename :return: """ import cPickle as pickle import gzip with gzip.load(file_name, 'rb') as fil: return pickle.load(fil) def main(): import matplotlib.pyplot as pl import seaborn as sns sns.set_style('darkgrid') sns.set_context('poster') rng = np.random.RandomState(123) D = 21 N = 500 K = 100 # Generate the data t = np.linspace(-np.pi * 2, np.pi * 2, D) y = np.asarray([rng.choice(2, 1) for _ in xrange(N)]) x = np.asarray( [np.sin(t * (1.0 + y[n]) + rng.normal(0, 0.125, size=D)) for n in xrange(N)] ) # Fit the model dl = SpamsTransformer( total_num_bases=K, l1_dictionary=1.2 / np.sqrt(D), l1_reconstruct=1.2 / np.sqrt(D), num_iterations=100 ) dl.fit(x) # Plot the data and the learnt bases fig, axes = pl.subplots(2, 1, sharex=True) axes[0].plot(t, x.T) axes[0].set_ylabel('Original data') axes[1].plot(t, dl.dictionary) axes[1].set_ylabel('Learnt dictionary') # Reconstruct the data and plot the first datapoint and its reconstruction alphas = dl.transform(x) # Compute the reconstruction coefficients x_hat = dl.inverse_transform(alphas) # Reconstruct the original data print type(alphas) fig, axes = pl.subplots(2, 1, sharex=False, sharey=False) abs_diff = np.abs(x - x_hat) axes[0].plot(t, x[0], label='Original data') axes[0].plot(t, x_hat[0], label='Reconstruction (MAE: {:.3f})'.format( np.mean(abs_diff) )) pl.legend() axes[1].hist(abs_diff.ravel(), bins=np.linspace(abs_diff.min(), abs_diff.max(), 31)) print 'Average number of reconstruction coefficients: {}'.format( alphas.nnz / float(N) ) pl.show() if __name__ == '__main__': main()
mit
ywcui1990/htmresearch
projects/sequence_prediction/discrete_sequences/plot.py
8
7504
#!/usr/bin/env python # ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import argparse import json from matplotlib import pyplot import numpy from expsuite import PyExperimentSuite def readExperiment(experiment): with open(experiment, "r") as file: predictions = [] predictionsSDR = [] truths = [] iterations = [] resets = [] randoms = [] trains = [] killCell = [] sequenceCounter = [] counter = 0 for line in file.readlines(): dataRec = json.loads(line) if 'iteration' in dataRec.keys(): iterations.append(dataRec['iteration']) else: iterations.append(counter) if 'predictions' in dataRec.keys(): predictions.append(dataRec['predictions']) else: predictions.append(None) if 'predictionsSDR' in dataRec.keys(): predictionsSDR.append(dataRec['predictionsSDR']) else: predictionsSDR.append(None) if 'truth' in dataRec.keys(): truths.append(dataRec['truth']) else: truths.append(None) if 'reset' in dataRec.keys(): resets.append(dataRec['reset']) else: resets.append(None) if 'random' in dataRec.keys(): randoms.append(dataRec['random']) else: randoms.append(None) if 'train' in dataRec.keys(): trains.append(dataRec['train']) else: trains.append(None) if 'killCell' in dataRec.keys(): killCell.append(dataRec['killCell']) else: killCell.append(None) if 'sequenceCounter' in dataRec.keys(): sequenceCounter.append(dataRec['sequenceCounter']) else: sequenceCounter.append(None) counter += 1 return {'predictions': predictions, 'predictionsSDR': predictionsSDR, 'truths': truths, 'iterations': iterations, 'resets': resets, 'randoms': randoms, 'trains': trains, 'killCell': killCell, 'sequenceCounter': sequenceCounter} def movingAverage(a, n): movingAverage = [] for i in xrange(len(a)): start = max(0, i - n) values = a[start:i+1] movingAverage.append(sum(values) / float(len(values))) return movingAverage def plotMovingAverage(data, window, label=None): movingData = movingAverage(data, min(len(data), window)) style = 'ro' if len(data) < window else '' pyplot.plot(range(len(movingData)), movingData, style, label=label) def plotAccuracy(results, train=None, window=100, type="sequences", label=None, hideTraining=True, lineSize=None): pyplot.title("High-order prediction") pyplot.xlabel("# of sequences seen") pyplot.ylabel("High-order prediction accuracy over last {0} tested {1}".format(window, type)) accuracy = results[0] x = results[1] movingData = movingAverage(accuracy, min(len(accuracy), window)) pyplot.plot(x, movingData, label=label, linewidth=lineSize) # dX = numpy.array([x[i+1] - x[i] for i in xrange(len(x) - 1)]) # testEnd = numpy.array(x)[dX > dX.mean()].tolist() # testEnd = testEnd + [x[-1]] # dX = numpy.insert(dX, 0, 0) # testStart = numpy.array(x)[dX > dX.mean()].tolist() # testStart = [0] + testStart # for line in testStart: # pyplot.axvline(line, color='orange') # for i in xrange(len(testStart)): # pyplot.axvspan(testStart[i], testEnd[i], alpha=0.15, facecolor='black') if not hideTraining: for i in xrange(len(train)): if train[i]: pyplot.axvline(i, color='orange') pyplot.xlim(0, x[-1]) pyplot.ylim(0, 1.1) def computeAccuracy(predictions, truths, iterations, resets=None, randoms=None, num=None, sequenceCounter=None): accuracy = [] x = [] for i in xrange(len(predictions) - 1): if num is not None and i > num: continue if truths[i] is None: continue # identify the end of sequence if resets is not None or randoms is not None: if not (resets[i+1] or randoms[i+1]): continue correct = truths[i] is None or truths[i] in predictions[i] accuracy.append(correct) if sequenceCounter is not None: x.append(sequenceCounter[i]) else: x.append(iterations[i]) return (accuracy, x) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('experiments', metavar='/path/to/experiment /path/...', nargs='+', type=str) parser.add_argument('-w', '--window', type=int, default=100) parser.add_argument('-n', '--num', type=int, default=None) parser.add_argument('-t', '--training-hide', type=int, nargs='+') parser.add_argument('-g', '--graph-labels', type=str, nargs='+') parser.add_argument('-s', '--size-of-line', type=float, nargs='+') parser.add_argument('-l', '--legend-position', type=int, default=4) parser.add_argument('-f', '--full', action='store_true') parser.add_argument('-o', '--output', type=str, default=None) suite = PyExperimentSuite() args = parser.parse_args() from pylab import rcParams rcParams.update({'figure.autolayout': True}) rcParams.update({'figure.facecolor': 'white'}) rcParams.update({'ytick.labelsize': 8}) rcParams.update({'figure.figsize': (12, 6)}) rcParams.update({'pdf.fonttype': 42}) experiments = args.experiments for i, experiment in enumerate(experiments): iteration = suite.get_history(experiment, 0, 'iteration') predictions = suite.get_history(experiment, 0, 'predictions') truth = suite.get_history(experiment, 0, 'truth') train = suite.get_history(experiment, 0, 'train') resets = None if args.full else suite.get_history(experiment, 0, 'reset') randoms = None if args.full else suite.get_history(experiment, 0, 'random') type = "elements" if args.full else "sequences" hideTraining = args.training_hide is not None and len(args.training_hide) > i and args.training_hide[i] > 0 lineSize = args.size_of_line[i] if args.size_of_line is not None and len(args.size_of_line) > i else 0.8 label = args.graph_labels[i] if args.graph_labels is not None and len(args.graph_labels) > i else experiment plotAccuracy(computeAccuracy(predictions, truth, iteration, resets=resets, randoms=randoms, num=args.num), train, window=args.window, type=type, label=label, hideTraining=hideTraining, lineSize=lineSize) if len(experiments) > 1: pyplot.legend(loc=args.legend_position) if args.output is not None: pyplot.savefig(args.output) else: pyplot.show()
agpl-3.0
wilsonkichoi/zipline
setup.py
1
9878
#!/usr/bin/env python # # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import re import sys from operator import lt, gt, eq, le, ge from os.path import ( abspath, dirname, join, ) from distutils.version import StrictVersion from setuptools import ( Extension, find_packages, setup, ) import versioneer class LazyBuildExtCommandClass(dict): """ Lazy command class that defers operations requiring Cython and numpy until they've actually been downloaded and installed by setup_requires. """ def __contains__(self, key): return ( key == 'build_ext' or super(LazyBuildExtCommandClass, self).__contains__(key) ) def __setitem__(self, key, value): if key == 'build_ext': raise AssertionError("build_ext overridden!") super(LazyBuildExtCommandClass, self).__setitem__(key, value) def __getitem__(self, key): if key != 'build_ext': return super(LazyBuildExtCommandClass, self).__getitem__(key) from Cython.Distutils import build_ext as cython_build_ext import numpy # Cython_build_ext isn't a new-style class in Py2. class build_ext(cython_build_ext, object): """ Custom build_ext command that lazily adds numpy's include_dir to extensions. """ def build_extensions(self): """ Lazily append numpy's include directory to Extension includes. This is done here rather than at module scope because setup.py may be run before numpy has been installed, in which case importing numpy and calling `numpy.get_include()` will fail. """ numpy_incl = numpy.get_include() for ext in self.extensions: ext.include_dirs.append(numpy_incl) super(build_ext, self).build_extensions() return build_ext ext_modules = [ Extension('zipline.assets._assets', ['zipline/assets/_assets.pyx']), Extension('zipline.lib.adjustment', ['zipline/lib/adjustment.pyx']), Extension('zipline.lib._factorize', ['zipline/lib/_factorize.pyx']), Extension( 'zipline.lib._float64window', ['zipline/lib/_float64window.pyx'] ), Extension('zipline.lib._int64window', ['zipline/lib/_int64window.pyx']), Extension('zipline.lib._uint8window', ['zipline/lib/_uint8window.pyx']), Extension('zipline.lib._labelwindow', ['zipline/lib/_labelwindow.pyx']), Extension('zipline.lib.rank', ['zipline/lib/rank.pyx']), Extension('zipline.data._equities', ['zipline/data/_equities.pyx']), Extension('zipline.data._adjustments', ['zipline/data/_adjustments.pyx']), Extension('zipline._protocol', ['zipline/_protocol.pyx']), Extension('zipline.gens.sim_engine', ['zipline/gens/sim_engine.pyx']), Extension( 'zipline.data._minute_bar_internal', ['zipline/data/_minute_bar_internal.pyx'] ) ] STR_TO_CMP = { '<': lt, '<=': le, '=': eq, '==': eq, '>': gt, '>=': ge, } SYS_VERSION = '.'.join(list(map(str, sys.version_info[:3]))) def _filter_requirements(lines_iter, filter_names=None, filter_sys_version=False): for line in lines_iter: line = line.strip() if not line or line.startswith('#'): continue match = REQ_PATTERN.match(line) if match is None: raise AssertionError( "Could not parse requirement: '%s'" % line) name = match.group('name') if filter_names is not None and name not in filter_names: continue if filter_sys_version and match.group('pyspec'): pycomp, pyspec = match.group('pycomp', 'pyspec') comp = STR_TO_CMP[pycomp] pyver_spec = StrictVersion(pyspec) if comp(SYS_VERSION, pyver_spec): # pip install -r understands lines with ;python_version<'3.0', # but pip install -e does not. Filter here, removing the # env marker. yield line.split(';')[0] continue yield line REQ_UPPER_BOUNDS = { 'bcolz': '<1', 'pandas': '<0.18', } def _with_bounds(req): try: req, lower = req.split('==') except ValueError: return req else: with_bounds = [req, '>=', lower] upper = REQ_UPPER_BOUNDS.get(req) if upper: with_bounds.extend([',', upper]) return ''.join(with_bounds) REQ_PATTERN = re.compile("(?P<name>[^=<>]+)(?P<comp>[<=>]{1,2})(?P<spec>[^;]+)" "(?:(;\W*python_version\W*(?P<pycomp>[<=>]{1,2})\W*" "(?P<pyspec>[0-9\.]+)))?") def _conda_format(req): def _sub(m): name = m.group('name').lower() if name == 'numpy': return 'numpy x.x' formatted = '%s %s%s' % ((name,) + m.group('comp', 'spec')) pycomp, pyspec = m.group('pycomp', 'pyspec') if pyspec: # Compare the two-digit string versions as ints. selector = ' # [int(py) %s int(%s)]' % ( pycomp, ''.join(pyspec.split('.')[:2]).ljust(2, '0') ) return formatted + selector return formatted return REQ_PATTERN.sub(_sub, req, 1) def read_requirements(path, strict_bounds, conda_format=False, filter_names=None): """ Read a requirements.txt file, expressed as a path relative to Zipline root. Returns requirements with the pinned versions as lower bounds if `strict_bounds` is falsey. """ real_path = join(dirname(abspath(__file__)), path) with open(real_path) as f: reqs = _filter_requirements(f.readlines(), filter_names=filter_names, filter_sys_version=not conda_format) if not strict_bounds: reqs = map(_with_bounds, reqs) if conda_format: reqs = map(_conda_format, reqs) return list(reqs) def install_requires(strict_bounds=False, conda_format=False): return read_requirements('etc/requirements.txt', strict_bounds=strict_bounds, conda_format=conda_format) def extras_requires(conda_format=False): extras = { extra: read_requirements('etc/requirements_{0}.txt'.format(extra), strict_bounds=True, conda_format=conda_format) for extra in ('dev', 'talib') } extras['all'] = [req for reqs in extras.values() for req in reqs] return extras def setup_requirements(requirements_path, module_names, strict_bounds, conda_format=False): module_names = set(module_names) module_lines = read_requirements(requirements_path, strict_bounds=strict_bounds, conda_format=conda_format, filter_names=module_names) if len(set(module_lines)) != len(module_names): raise AssertionError( "Missing requirements. Looking for %s, but found %s." % (module_names, module_lines) ) return module_lines conda_build = os.path.basename(sys.argv[0]) in ('conda-build', # unix 'conda-build-script.py') # win setup_requires = setup_requirements( 'etc/requirements.txt', ('Cython', 'numpy'), strict_bounds=conda_build, conda_format=conda_build, ) conditional_arguments = { 'setup_requires' if not conda_build else 'build_requires': setup_requires, } setup( name='zipline', url="http://zipline.io", version=versioneer.get_version(), cmdclass=LazyBuildExtCommandClass(versioneer.get_cmdclass()), description='A backtester for financial algorithms.', entry_points={ 'console_scripts': [ 'zipline = zipline.__main__:main', ], }, author='Quantopian Inc.', author_email='[email protected]', packages=find_packages(include=['zipline', 'zipline.*']), ext_modules=ext_modules, include_package_data=True, package_data={root.replace(os.sep, '.'): ['*.pyi', '*.pyx', '*.pxi', '*.pxd'] for root, dirnames, filenames in os.walk('zipline') if '__pycache__' not in root}, license='Apache 2.0', classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: Apache Software License', 'Natural Language :: English', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Operating System :: OS Independent', 'Intended Audience :: Science/Research', 'Topic :: Office/Business :: Financial', 'Topic :: Scientific/Engineering :: Information Analysis', 'Topic :: System :: Distributed Computing', ], install_requires=install_requires(conda_format=conda_build), extras_require=extras_requires(conda_format=conda_build), **conditional_arguments )
apache-2.0
FluidityProject/fluidity
tools/statplot.py
2
15434
#!/usr/bin/env python3 import gi gi.require_version('Gdk', '3.0') gi.require_version('Gtk', '3.0') from gi.repository import Gdk, Gtk # noqa: E402 import argparse # noqa: E402 from lxml import etree # noqa: E402 from matplotlib import rc # noqa: E402 from matplotlib.backends.backend_gtk3agg import ( # noqa: E402 FigureCanvasGTK3Agg as FigureCanvas) from matplotlib.backends.backend_gtk3 import ( # noqa: E402 NavigationToolbar2GTK3 as NavigationToolbar) from matplotlib.figure import Figure # noqa: E402 import matplotlib.ticker as tck # noqa: E402 import numpy # noqa: E402 import sys # noqa: E402 import warnings # noqa: E402 rc('text', usetex=False) parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description='''GUI for Fluidity .stat outputs When the window is displayed, press the following keys for additional options: - x, y -> Change the scale of the x, y axis (automatically chooses between linear, log and symlog). - l -> Change the representation of the data (solid line or markers). - r -> Reload the .stat file. Only relevant for simulations that are still running. - a, o -> Grab focus onto the abscissa, ordinate text boxes. - Esc -> Release focus on text boxes. - q -> Exit the GUI.''') parser.add_argument('statfile', nargs='+', help='Path(s) to the .stat file(s)') args = parser.parse_args() class StatplotWindow(Gtk.Window): def __init__(self, statfile): Gtk.Window.__init__(self) self.connect('key-release-event', self.KeyPressed) self.set_border_width(8) self.set_default_size(1600, 900) self.set_position(Gtk.WindowPosition.CENTER) self.set_title(statfile[-1]) self.statfile = statfile vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=8) vbox.set_homogeneous(False) self.add(vbox) hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=8) hbox.set_homogeneous(True) vbox.pack_end(hbox, False, False, 0) self.entries, self.values = self.ReadData(self.statfile) store = Gtk.ListStore.new([str]) for entry in self.entries: store.append([entry]) self.xCombo = self.CreateCombo(store) self.yCombo = self.CreateCombo(store) self.InitCombo() self.InitCompletion(self.xCombo) self.InitCompletion(self.yCombo) self.xCombo.connect('changed', self.ComboChanged) self.xCombo.connect('key-release-event', self.ReleaseFocus) self.yCombo.connect('changed', self.ComboChanged) self.yCombo.connect('key-release-event', self.ReleaseFocus) hbox.pack_start(self.xCombo, True, True, 0) hbox.pack_start(self.yCombo, True, True, 0) self.fig = Figure(figsize=(14, 7)) self.ax = self.fig.gca() self.canvas = FigureCanvas(self.fig) self.canvas.set_can_focus(True) vbox.pack_start(self.canvas, True, True, 0) self.PlotType = 'marker' if self.values.ndim == 1 else 'line' self.PlotData('create', self.PlotType, 'linear', 'linear') self.toolbar = NavigationToolbar(self.canvas, self) vbox.pack_start(self.toolbar, False, False, 0) def ComboChanged(self, comboBox): activeText = comboBox.get_child().get_text() if activeText in self.entries: comboBox.set_active(self.entries.index(activeText)) if comboBox is self.xCombo: self.PlotData('update', self.PlotType, 'linear', self.ax.get_yscale()) elif comboBox is self.yCombo: self.PlotData('update', self.PlotType, self.ax.get_xscale(), 'linear') self.canvas.grab_focus() @staticmethod def CreateCombo(store): comboBox = Gtk.ComboBox.new_with_model_and_entry(store) comboBox.set_entry_text_column(0) comboBox.set_margin_start(100) comboBox.set_margin_end(100) comboBox.set_wrap_width(3) return comboBox def FormatAxis(self, ax2fmt, scale): if ax2fmt == 'x': setScale = self.ax.set_xscale curAxis = self.ax.xaxis curData = self.xData elif ax2fmt == 'y': setScale = self.ax.set_yscale curAxis = self.ax.yaxis curData = self.yData setScale(scale) if scale == 'linear': self.ax.ticklabel_format(style='sci', axis=ax2fmt, scilimits=(0, 0), useMathText=True) curAxis.set_minor_locator(tck.AutoMinorLocator()) self.ax.relim() self.ax.autoscale(True, ax2fmt, None) elif scale == 'log': curAxis.set_minor_locator( tck.LogLocator(subs=numpy.arange(2, 10))) logFmt = tck.LogFormatterSciNotation(base=10, labelOnlyBase=False, minor_thresholds=(4, 1)) curAxis.set_minor_formatter(logFmt) self.ax.relim() self.ax.autoscale(True, ax2fmt, None) elif scale == 'symlog': axMin = min(abs(curData[curData != 0])) axMax = max(abs(curData)) axRange = numpy.log10(axMax / axMin) if ax2fmt == 'x': setScale( 'symlog', basex=10, subsx=numpy.arange(2, 10), linthreshx=axMin * 10 ** (axRange / 2)) elif ax2fmt == 'y': setScale( 'symlog', basey=10, subsy=numpy.arange(2, 10), linthreshy=axMin * 10 ** (axRange / 2)) # Thomas Duvernay, 06/01/19 # There seems to be a bug with the labelling of the 0 tick # when a 'symlog' is used as an axis scale. It looks like # it is considered as a minor tick. symLogLoc = tck.SymmetricalLogLocator( subs=numpy.arange(2, 10), linthresh=axMin * 10 ** (axRange / 2), base=10) curAxis.set_minor_locator(symLogLoc) logFmt = tck.LogFormatterSciNotation( base=10, labelOnlyBase=False, minor_thresholds=(4, 1), linthresh=axMin * 10 ** (axRange / 2)) curAxis.set_minor_formatter(logFmt) self.ax.set_xlabel(self.xCombo.get_child().get_text(), fontweight='bold', fontsize=20) self.ax.set_ylabel(self.yCombo.get_child().get_text(), fontweight='bold', fontsize=20) self.ax.tick_params(which='major', length=7, labelsize=16, width=2) self.ax.tick_params(which='minor', length=4, labelsize=10, width=2, colors='xkcd:scarlet', labelrotation=45) self.ax.xaxis.get_offset_text().set(fontsize=13, fontweight='bold', color='xkcd:black') self.ax.yaxis.get_offset_text().set(fontsize=13, fontweight='bold', color='xkcd:black') self.fig.set_tight_layout(True) def InitCombo(self): if 'ElapsedTime' in self.entries: iterX = self.xCombo.get_model().get_iter( self.entries.index('ElapsedTime')) self.xCombo.set_active_iter(iterX) self.yCombo.set_active(0) else: self.xCombo.set_active(0) self.yCombo.set_active(1) @staticmethod def InitCompletion(comboBox): completion = Gtk.EntryCompletion.new() completion.set_text_column(0) completion.set_inline_completion(True) completion.set_inline_selection(False) completion.set_model(comboBox.get_model()) comboBox.get_child().set_completion(completion) def KeyPressed(self, widget, event): key = event.string if (self.xCombo.get_child().has_focus() or self.yCombo.get_child().has_focus()): pass elif key == 'r': self.entries, self.values = self.ReadData(self.statfile) self.PlotData('update', self.PlotType, self.ax.get_xscale(), self.ax.get_yscale()) elif key == 'q': self.destroy() elif key == 'x' or key == 'y': if self.values.ndim == 1: warnings.warn('Insufficient data available to turn on ' 'logarithmic scale', stacklevel=2) return if key == 'x': self.get_scale = self.ax.get_xscale curData = self.xData else: self.get_scale = self.ax.get_yscale curData = self.yData if self.get_scale() == 'linear' and (curData == 0).all(): warnings.warn('Change to logarithmic scale denied: the ' f'selected variable for the {key} axis is null.', stacklevel=2) return elif (self.get_scale() == 'linear' and max(abs(curData)) / min(abs(curData)) < 10): warnings.warn('Change to logarithmic scale denied: the ' f'selected variable for the {key} axis has a ' 'range of variation smaller than one order of ' 'magnitude.', stacklevel=2) return elif self.get_scale() == 'linear': axMin = min(abs(curData[curData != 0])) axMax = max(abs(curData)) if axMin != axMax and min(curData) < 0: scale = 'symlog' elif axMin != axMax: scale = 'log' else: warnings.warn('Change to logarithmic scale denied: the ' f'selected variable for the {key} axis is a ' 'constant.', stacklevel=2) return elif self.get_scale() in ['log', 'symlog']: scale = 'linear' self.FormatAxis(key, scale) self.fig.canvas.draw_idle() self.fig.canvas.draw() self.fig.canvas.flush_events() elif key == 'l': if self.values.ndim == 1: warnings.warn('Insufficient data available to turn on line ' + 'display', stacklevel=2) return self.PlotType = 'marker' if self.PlotType == 'line' else 'line' self.PlotData('update', self.PlotType, self.ax.get_xscale(), self.ax.get_yscale()) elif key == 'a': self.xCombo.grab_focus() elif key == 'o': self.yCombo.grab_focus() def PlotData(self, action, type, xscale, yscale): self.xData = self.values[..., self.xCombo.get_active()] self.yData = self.values[..., self.yCombo.get_active()] if action == 'create': self.statplot, = self.ax.plot(self.xData, self.yData) elif action == 'update': self.statplot.set_xdata(self.xData) self.statplot.set_ydata(self.yData) self.toolbar.update() if type == 'line': self.statplot.set_color('xkcd:light purple') self.statplot.set_linestyle('solid') self.statplot.set_linewidth(2) self.statplot.set_marker('None') elif type == 'marker': self.statplot.set_linestyle('None') self.statplot.set_marker('d') self.statplot.set_markeredgecolor('xkcd:black') self.statplot.set_markerfacecolor('xkcd:light purple') self.statplot.set_markersize(7) self.statplot.set_markeredgewidth(0.3) self.FormatAxis('x', xscale) self.FormatAxis('y', yscale) if action == 'update': self.fig.canvas.draw_idle() self.fig.canvas.draw() self.fig.canvas.flush_events() @staticmethod def ReadData(statfile): def GatherEntries(stat2read): print('Reading ' + stat2read) entries = [] with open(stat2read, 'r') as fid: for num, line in enumerate(fid): if line.startswith('<field'): info = etree.fromstring(line) if info.attrib['statistic'] == 'value': entries.append(info.attrib['name']) elif all([x in info.attrib for x in ['components', 'material_phase']]): for i in range(int(info.attrib['components'])): entries.append('{e[material_phase]}%{e[name]}' '%{e[statistic]}%{i}' .format(e=info.attrib, i=i)) elif 'components' in info.attrib: for i in range(int(info.get('components'))): entries.append('{e[name]}%{e[statistic]}%{i}' .format(e=info.attrib, i=i)) elif 'material_phase' in info.attrib: entries.append('{e[material_phase]}%{e[name]}' '%{e[statistic]}' .format(e=info.attrib)) else: entries.append('{e[name]}%{e[statistic]}' .format(e=info.attrib)) elif line.startswith('</header>'): break return numpy.asarray(entries), num if statfile[0].endswith('stat'): entries, num = GatherEntries(statfile[0]) values = numpy.genfromtxt(statfile[0], skip_header=num + 1) values = values[..., numpy.argsort(entries)] entries = entries[numpy.argsort(entries)] if len(statfile) > 1: for item in statfile[1:]: entriesTemp, num = GatherEntries(item) if numpy.array_equal( entries, entriesTemp[numpy.argsort(entriesTemp)]): valuesTemp = numpy.genfromtxt(item, skip_header=num + 1) valuesTemp = valuesTemp.T[numpy.argsort(entriesTemp)].T values = numpy.vstack((values, valuesTemp)) else: sys.exit('Statfiles entries do not match') elif statfile[0].endswith('detectors'): entries = GatherEntries(statfile[0])[0] values = numpy.fromfile(statfile[0] + '.dat', dtype=numpy.float64) ncols = entries.size nrows = values.size // ncols values = values[:nrows * ncols].reshape(nrows, ncols) return list(entries), values def ReleaseFocus(self, widget, event): if event.keyval == Gdk.KEY_Escape: self.canvas.grab_focus() window = StatplotWindow(args.statfile) window.connect('delete-event', Gtk.main_quit) window.connect('destroy', Gtk.main_quit) window.show_all() Gtk.main()
lgpl-2.1
tawsifkhan/scikit-learn
sklearn/manifold/tests/test_mds.py
324
1862
import numpy as np from numpy.testing import assert_array_almost_equal from nose.tools import assert_raises from sklearn.manifold import mds def test_smacof(): # test metric smacof using the data of "Modern Multidimensional Scaling", # Borg & Groenen, p 154 sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.451, .252], [.016, -.238], [-.200, .524]]) X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) X_true = np.array([[-1.415, -2.471], [1.633, 1.107], [.249, -.067], [-.468, 1.431]]) assert_array_almost_equal(X, X_true, decimal=3) def test_smacof_error(): # Not symmetric similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # Not squared similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # init not None and not correct format: sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.016, -.238], [-.200, .524]]) assert_raises(ValueError, mds.smacof, sim, init=Z, n_init=1) def test_MDS(): sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") mds_clf.fit(sim)
bsd-3-clause
Eric89GXL/scikit-learn
examples/plot_train_error_vs_test_error.py
8
2548
""" ========================= Train error vs Test error ========================= Illustration of how the performance of an estimator on unseen data (test data) is not the same as the performance on training data. As the regularization increases the performance on train decreases while the performance on test is optimal within a range of values of the regularization parameter. The example with an Elastic-Net regression model and the performance is measured using the explained variance a.k.a. R^2. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np from sklearn import linear_model ############################################################################### # Generate sample data n_samples_train, n_samples_test, n_features = 75, 150, 500 np.random.seed(0) coef = np.random.randn(n_features) coef[50:] = 0.0 # only the top 10 features are impacting the model X = np.random.randn(n_samples_train + n_samples_test, n_features) y = np.dot(X, coef) # Split train and test data X_train, X_test = X[:n_samples_train], X[n_samples_train:] y_train, y_test = y[:n_samples_train], y[n_samples_train:] ############################################################################### # Compute train and test errors alphas = np.logspace(-5, 1, 60) enet = linear_model.ElasticNet(l1_ratio=0.7) train_errors = list() test_errors = list() for alpha in alphas: enet.set_params(alpha=alpha) enet.fit(X_train, y_train) train_errors.append(enet.score(X_train, y_train)) test_errors.append(enet.score(X_test, y_test)) i_alpha_optim = np.argmax(test_errors) alpha_optim = alphas[i_alpha_optim] print("Optimal regularization parameter : %s" % alpha_optim) # Estimate the coef_ on full data with optimal regularization parameter enet.set_params(alpha=alpha_optim) coef_ = enet.fit(X, y).coef_ ############################################################################### # Plot results functions import pylab as pl pl.subplot(2, 1, 1) pl.semilogx(alphas, train_errors, label='Train') pl.semilogx(alphas, test_errors, label='Test') pl.vlines(alpha_optim, pl.ylim()[0], np.max(test_errors), color='k', linewidth=3, label='Optimum on test') pl.legend(loc='lower left') pl.ylim([0, 1.2]) pl.xlabel('Regularization parameter') pl.ylabel('Performance') # Show estimated coef_ vs true coef pl.subplot(2, 1, 2) pl.plot(coef, label='True coef') pl.plot(coef_, label='Estimated coef') pl.legend() pl.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.26) pl.show()
bsd-3-clause
zuku1985/scikit-learn
examples/linear_model/plot_lasso_coordinate_descent_path.py
63
2945
""" ===================== Lasso and Elastic Net ===================== Lasso and elastic net (L1 and L2 penalisation) implemented using a coordinate descent. The coefficients can be forced to be positive. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause from itertools import cycle import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import lasso_path, enet_path from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target X /= X.std(axis=0) # Standardize data (easier to set the l1_ratio parameter) # Compute paths eps = 5e-3 # the smaller it is the longer is the path print("Computing regularization path using the lasso...") alphas_lasso, coefs_lasso, _ = lasso_path(X, y, eps, fit_intercept=False) print("Computing regularization path using the positive lasso...") alphas_positive_lasso, coefs_positive_lasso, _ = lasso_path( X, y, eps, positive=True, fit_intercept=False) print("Computing regularization path using the elastic net...") alphas_enet, coefs_enet, _ = enet_path( X, y, eps=eps, l1_ratio=0.8, fit_intercept=False) print("Computing regularization path using the positive elastic net...") alphas_positive_enet, coefs_positive_enet, _ = enet_path( X, y, eps=eps, l1_ratio=0.8, positive=True, fit_intercept=False) # Display results plt.figure(1) ax = plt.gca() colors = cycle(['b', 'r', 'g', 'c', 'k']) neg_log_alphas_lasso = -np.log10(alphas_lasso) neg_log_alphas_enet = -np.log10(alphas_enet) for coef_l, coef_e, c in zip(coefs_lasso, coefs_enet, colors): l1 = plt.plot(neg_log_alphas_lasso, coef_l, c=c) l2 = plt.plot(neg_log_alphas_enet, coef_e, linestyle='--', c=c) plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Lasso and Elastic-Net Paths') plt.legend((l1[-1], l2[-1]), ('Lasso', 'Elastic-Net'), loc='lower left') plt.axis('tight') plt.figure(2) ax = plt.gca() neg_log_alphas_positive_lasso = -np.log10(alphas_positive_lasso) for coef_l, coef_pl, c in zip(coefs_lasso, coefs_positive_lasso, colors): l1 = plt.plot(neg_log_alphas_lasso, coef_l, c=c) l2 = plt.plot(neg_log_alphas_positive_lasso, coef_pl, linestyle='--', c=c) plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Lasso and positive Lasso') plt.legend((l1[-1], l2[-1]), ('Lasso', 'positive Lasso'), loc='lower left') plt.axis('tight') plt.figure(3) ax = plt.gca() neg_log_alphas_positive_enet = -np.log10(alphas_positive_enet) for (coef_e, coef_pe, c) in zip(coefs_enet, coefs_positive_enet, colors): l1 = plt.plot(neg_log_alphas_enet, coef_e, c=c) l2 = plt.plot(neg_log_alphas_positive_enet, coef_pe, linestyle='--', c=c) plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Elastic-Net and positive Elastic-Net') plt.legend((l1[-1], l2[-1]), ('Elastic-Net', 'positive Elastic-Net'), loc='lower left') plt.axis('tight') plt.show()
bsd-3-clause
bnaul/scikit-learn
sklearn/linear_model/_glm/tests/test_glm.py
5
15605
# Authors: Christian Lorentzen <[email protected]> # # License: BSD 3 clause import numpy as np from numpy.testing import assert_allclose import pytest import warnings from sklearn.datasets import make_regression from sklearn.linear_model._glm import GeneralizedLinearRegressor from sklearn.linear_model import ( TweedieRegressor, PoissonRegressor, GammaRegressor ) from sklearn.linear_model._glm.link import ( IdentityLink, LogLink, ) from sklearn._loss.glm_distribution import ( TweedieDistribution, NormalDistribution, PoissonDistribution, GammaDistribution, InverseGaussianDistribution, ) from sklearn.linear_model import Ridge from sklearn.exceptions import ConvergenceWarning from sklearn.model_selection import train_test_split @pytest.fixture(scope="module") def regression_data(): X, y = make_regression(n_samples=107, n_features=10, n_informative=80, noise=0.5, random_state=2) return X, y def test_sample_weights_validation(): """Test the raised errors in the validation of sample_weight.""" # scalar value but not positive X = [[1]] y = [1] weights = 0 glm = GeneralizedLinearRegressor() # Positive weights are accepted glm.fit(X, y, sample_weight=1) # 2d array weights = [[0]] with pytest.raises(ValueError, match="must be 1D array or scalar"): glm.fit(X, y, weights) # 1d but wrong length weights = [1, 0] msg = r"sample_weight.shape == \(2,\), expected \(1,\)!" with pytest.raises(ValueError, match=msg): glm.fit(X, y, weights) @pytest.mark.parametrize('name, instance', [('normal', NormalDistribution()), ('poisson', PoissonDistribution()), ('gamma', GammaDistribution()), ('inverse-gaussian', InverseGaussianDistribution())]) def test_glm_family_argument(name, instance): """Test GLM family argument set as string.""" y = np.array([0.1, 0.5]) # in range of all distributions X = np.array([[1], [2]]) glm = GeneralizedLinearRegressor(family=name, alpha=0).fit(X, y) assert isinstance(glm._family_instance, instance.__class__) glm = GeneralizedLinearRegressor(family='not a family') with pytest.raises(ValueError, match="family must be"): glm.fit(X, y) @pytest.mark.parametrize('name, instance', [('identity', IdentityLink()), ('log', LogLink())]) def test_glm_link_argument(name, instance): """Test GLM link argument set as string.""" y = np.array([0.1, 0.5]) # in range of all distributions X = np.array([[1], [2]]) glm = GeneralizedLinearRegressor(family='normal', link=name).fit(X, y) assert isinstance(glm._link_instance, instance.__class__) glm = GeneralizedLinearRegressor(family='normal', link='not a link') with pytest.raises(ValueError, match="link must be"): glm.fit(X, y) @pytest.mark.parametrize('family, expected_link_class', [ ('normal', IdentityLink), ('poisson', LogLink), ('gamma', LogLink), ('inverse-gaussian', LogLink), ]) def test_glm_link_auto(family, expected_link_class): # Make sure link='auto' delivers the expected link function y = np.array([0.1, 0.5]) # in range of all distributions X = np.array([[1], [2]]) glm = GeneralizedLinearRegressor(family=family, link='auto').fit(X, y) assert isinstance(glm._link_instance, expected_link_class) @pytest.mark.parametrize('alpha', ['not a number', -4.2]) def test_glm_alpha_argument(alpha): """Test GLM for invalid alpha argument.""" y = np.array([1, 2]) X = np.array([[1], [2]]) glm = GeneralizedLinearRegressor(family='normal', alpha=alpha) with pytest.raises(ValueError, match="Penalty term must be a non-negative"): glm.fit(X, y) @pytest.mark.parametrize('fit_intercept', ['not bool', 1, 0, [True]]) def test_glm_fit_intercept_argument(fit_intercept): """Test GLM for invalid fit_intercept argument.""" y = np.array([1, 2]) X = np.array([[1], [1]]) glm = GeneralizedLinearRegressor(fit_intercept=fit_intercept) with pytest.raises(ValueError, match="fit_intercept must be bool"): glm.fit(X, y) @pytest.mark.parametrize('solver', ['not a solver', 1, [1]]) def test_glm_solver_argument(solver): """Test GLM for invalid solver argument.""" y = np.array([1, 2]) X = np.array([[1], [2]]) glm = GeneralizedLinearRegressor(solver=solver) with pytest.raises(ValueError): glm.fit(X, y) @pytest.mark.parametrize('max_iter', ['not a number', 0, -1, 5.5, [1]]) def test_glm_max_iter_argument(max_iter): """Test GLM for invalid max_iter argument.""" y = np.array([1, 2]) X = np.array([[1], [2]]) glm = GeneralizedLinearRegressor(max_iter=max_iter) with pytest.raises(ValueError, match="must be a positive integer"): glm.fit(X, y) @pytest.mark.parametrize('tol', ['not a number', 0, -1.0, [1e-3]]) def test_glm_tol_argument(tol): """Test GLM for invalid tol argument.""" y = np.array([1, 2]) X = np.array([[1], [2]]) glm = GeneralizedLinearRegressor(tol=tol) with pytest.raises(ValueError, match="stopping criteria must be positive"): glm.fit(X, y) @pytest.mark.parametrize('warm_start', ['not bool', 1, 0, [True]]) def test_glm_warm_start_argument(warm_start): """Test GLM for invalid warm_start argument.""" y = np.array([1, 2]) X = np.array([[1], [1]]) glm = GeneralizedLinearRegressor(warm_start=warm_start) with pytest.raises(ValueError, match="warm_start must be bool"): glm.fit(X, y) @pytest.mark.parametrize('fit_intercept', [False, True]) def test_glm_identity_regression(fit_intercept): """Test GLM regression with identity link on a simple dataset.""" coef = [1., 2.] X = np.array([[1, 1, 1, 1, 1], [0, 1, 2, 3, 4]]).T y = np.dot(X, coef) glm = GeneralizedLinearRegressor(alpha=0, family='normal', link='identity', fit_intercept=fit_intercept, tol=1e-12) if fit_intercept: glm.fit(X[:, 1:], y) assert_allclose(glm.coef_, coef[1:], rtol=1e-10) assert_allclose(glm.intercept_, coef[0], rtol=1e-10) else: glm.fit(X, y) assert_allclose(glm.coef_, coef, rtol=1e-12) @pytest.mark.parametrize('fit_intercept', [False, True]) @pytest.mark.parametrize('alpha', [0.0, 1.0]) @pytest.mark.parametrize('family', ['normal', 'poisson', 'gamma']) def test_glm_sample_weight_consistentcy(fit_intercept, alpha, family): """Test that the impact of sample_weight is consistent""" rng = np.random.RandomState(0) n_samples, n_features = 10, 5 X = rng.rand(n_samples, n_features) y = rng.rand(n_samples) glm_params = dict(alpha=alpha, family=family, link='auto', fit_intercept=fit_intercept) glm = GeneralizedLinearRegressor(**glm_params).fit(X, y) coef = glm.coef_.copy() # sample_weight=np.ones(..) should be equivalent to sample_weight=None sample_weight = np.ones(y.shape) glm.fit(X, y, sample_weight=sample_weight) assert_allclose(glm.coef_, coef, rtol=1e-12) # sample_weight are normalized to 1 so, scaling them has no effect sample_weight = 2*np.ones(y.shape) glm.fit(X, y, sample_weight=sample_weight) assert_allclose(glm.coef_, coef, rtol=1e-12) # setting one element of sample_weight to 0 is equivalent to removing # the correspoding sample sample_weight = np.ones(y.shape) sample_weight[-1] = 0 glm.fit(X, y, sample_weight=sample_weight) coef1 = glm.coef_.copy() glm.fit(X[:-1], y[:-1]) assert_allclose(glm.coef_, coef1, rtol=1e-12) # check that multiplying sample_weight by 2 is equivalent # to repeating correspoding samples twice X2 = np.concatenate([X, X[:n_samples//2]], axis=0) y2 = np.concatenate([y, y[:n_samples//2]]) sample_weight_1 = np.ones(len(y)) sample_weight_1[:n_samples//2] = 2 glm1 = GeneralizedLinearRegressor(**glm_params).fit( X, y, sample_weight=sample_weight_1 ) glm2 = GeneralizedLinearRegressor(**glm_params).fit( X2, y2, sample_weight=None ) assert_allclose(glm1.coef_, glm2.coef_) @pytest.mark.parametrize('fit_intercept', [True, False]) @pytest.mark.parametrize( 'family', [NormalDistribution(), PoissonDistribution(), GammaDistribution(), InverseGaussianDistribution(), TweedieDistribution(power=1.5), TweedieDistribution(power=4.5)]) def test_glm_log_regression(fit_intercept, family): """Test GLM regression with log link on a simple dataset.""" coef = [0.2, -0.1] X = np.array([[1, 1, 1, 1, 1], [0, 1, 2, 3, 4]]).T y = np.exp(np.dot(X, coef)) glm = GeneralizedLinearRegressor( alpha=0, family=family, link='log', fit_intercept=fit_intercept, tol=1e-7) if fit_intercept: res = glm.fit(X[:, 1:], y) assert_allclose(res.coef_, coef[1:], rtol=1e-6) assert_allclose(res.intercept_, coef[0], rtol=1e-6) else: res = glm.fit(X, y) assert_allclose(res.coef_, coef, rtol=2e-6) @pytest.mark.parametrize('fit_intercept', [True, False]) def test_warm_start(fit_intercept): n_samples, n_features = 110, 10 X, y = make_regression(n_samples=n_samples, n_features=n_features, n_informative=n_features-2, noise=0.5, random_state=42) glm1 = GeneralizedLinearRegressor( warm_start=False, fit_intercept=fit_intercept, max_iter=1000 ) glm1.fit(X, y) glm2 = GeneralizedLinearRegressor( warm_start=True, fit_intercept=fit_intercept, max_iter=1 ) # As we intentionally set max_iter=1, L-BFGS-B will issue a # ConvergenceWarning which we here simply ignore. with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=ConvergenceWarning) glm2.fit(X, y) assert glm1.score(X, y) > glm2.score(X, y) glm2.set_params(max_iter=1000) glm2.fit(X, y) # The two model are not exactly identical since the lbfgs solver # computes the approximate hessian from previous iterations, which # will not be strictly identical in the case of a warm start. assert_allclose(glm1.coef_, glm2.coef_, rtol=1e-5) assert_allclose(glm1.score(X, y), glm2.score(X, y), rtol=1e-4) @pytest.mark.parametrize('n_samples, n_features', [(100, 10), (10, 100)]) @pytest.mark.parametrize('fit_intercept', [True, False]) @pytest.mark.parametrize('sample_weight', [None, True]) def test_normal_ridge_comparison(n_samples, n_features, fit_intercept, sample_weight, request): """Compare with Ridge regression for Normal distributions.""" test_size = 10 X, y = make_regression(n_samples=n_samples + test_size, n_features=n_features, n_informative=n_features-2, noise=0.5, random_state=42) if n_samples > n_features: ridge_params = {"solver": "svd"} else: ridge_params = {"solver": "saga", "max_iter": 1000000, "tol": 1e-7} X_train, X_test, y_train, y_test, = train_test_split( X, y, test_size=test_size, random_state=0 ) alpha = 1.0 if sample_weight is None: sw_train = None alpha_ridge = alpha * n_samples else: sw_train = np.random.RandomState(0).rand(len(y_train)) alpha_ridge = alpha * sw_train.sum() # GLM has 1/(2*n) * Loss + 1/2*L2, Ridge has Loss + L2 ridge = Ridge(alpha=alpha_ridge, normalize=False, random_state=42, fit_intercept=fit_intercept, **ridge_params) ridge.fit(X_train, y_train, sample_weight=sw_train) glm = GeneralizedLinearRegressor(alpha=alpha, family='normal', link='identity', fit_intercept=fit_intercept, max_iter=300, tol=1e-5) glm.fit(X_train, y_train, sample_weight=sw_train) assert glm.coef_.shape == (X.shape[1], ) assert_allclose(glm.coef_, ridge.coef_, atol=5e-5) assert_allclose(glm.intercept_, ridge.intercept_, rtol=1e-5) assert_allclose(glm.predict(X_train), ridge.predict(X_train), rtol=2e-4) assert_allclose(glm.predict(X_test), ridge.predict(X_test), rtol=2e-4) def test_poisson_glmnet(): """Compare Poisson regression with L2 regularization and LogLink to glmnet """ # library("glmnet") # options(digits=10) # df <- data.frame(a=c(-2,-1,1,2), b=c(0,0,1,1), y=c(0,1,1,2)) # x <- data.matrix(df[,c("a", "b")]) # y <- df$y # fit <- glmnet(x=x, y=y, alpha=0, intercept=T, family="poisson", # standardize=F, thresh=1e-10, nlambda=10000) # coef(fit, s=1) # (Intercept) -0.12889386979 # a 0.29019207995 # b 0.03741173122 X = np.array([[-2, -1, 1, 2], [0, 0, 1, 1]]).T y = np.array([0, 1, 1, 2]) glm = GeneralizedLinearRegressor(alpha=1, fit_intercept=True, family='poisson', link='log', tol=1e-7, max_iter=300) glm.fit(X, y) assert_allclose(glm.intercept_, -0.12889386979, rtol=1e-5) assert_allclose(glm.coef_, [0.29019207995, 0.03741173122], rtol=1e-5) def test_convergence_warning(regression_data): X, y = regression_data est = GeneralizedLinearRegressor(max_iter=1, tol=1e-20) with pytest.warns(ConvergenceWarning): est.fit(X, y) def test_poisson_regression_family(regression_data): # Make sure the family attribute is read-only to prevent searching over it # e.g. in a grid search est = PoissonRegressor() est.family == "poisson" msg = "PoissonRegressor.family must be 'poisson'!" with pytest.raises(ValueError, match=msg): est.family = 0 def test_gamma_regression_family(regression_data): # Make sure the family attribute is read-only to prevent searching over it # e.g. in a grid search est = GammaRegressor() est.family == "gamma" msg = "GammaRegressor.family must be 'gamma'!" with pytest.raises(ValueError, match=msg): est.family = 0 def test_tweedie_regression_family(regression_data): # Make sure the family attribute is always a TweedieDistribution and that # the power attribute is properly updated power = 2.0 est = TweedieRegressor(power=power) assert isinstance(est.family, TweedieDistribution) assert est.family.power == power assert est.power == power new_power = 0 new_family = TweedieDistribution(power=new_power) est.family = new_family assert isinstance(est.family, TweedieDistribution) assert est.family.power == new_power assert est.power == new_power msg = "TweedieRegressor.family must be of type TweedieDistribution!" with pytest.raises(TypeError, match=msg): est.family = None @pytest.mark.parametrize( 'estimator, value', [ (PoissonRegressor(), True), (GammaRegressor(), True), (TweedieRegressor(power=1.5), True), (TweedieRegressor(power=0), False) ], ) def test_tags(estimator, value): assert estimator._get_tags()['requires_positive_y'] is value
bsd-3-clause
kdebrab/pandas
asv_bench/benchmarks/timedelta.py
4
2981
import datetime import numpy as np from pandas import Series, timedelta_range, to_timedelta, Timestamp, Timedelta class TimedeltaConstructor(object): goal_time = 0.2 def time_from_int(self): Timedelta(123456789) def time_from_unit(self): Timedelta(1, unit='d') def time_from_components(self): Timedelta(days=1, hours=2, minutes=3, seconds=4, milliseconds=5, microseconds=6, nanoseconds=7) def time_from_datetime_timedelta(self): Timedelta(datetime.timedelta(days=1, seconds=1)) def time_from_np_timedelta(self): Timedelta(np.timedelta64(1, 'ms')) def time_from_string(self): Timedelta('1 days') def time_from_iso_format(self): Timedelta('P4DT12H30M5S') def time_from_missing(self): Timedelta('nat') class ToTimedelta(object): goal_time = 0.2 def setup(self): self.ints = np.random.randint(0, 60, size=10000) self.str_days = [] self.str_seconds = [] for i in self.ints: self.str_days.append('{0} days'.format(i)) self.str_seconds.append('00:00:{0:02d}'.format(i)) def time_convert_int(self): to_timedelta(self.ints, unit='s') def time_convert_string_days(self): to_timedelta(self.str_days) def time_convert_string_seconds(self): to_timedelta(self.str_seconds) class ToTimedeltaErrors(object): goal_time = 0.2 params = ['coerce', 'ignore'] param_names = ['errors'] def setup(self, errors): ints = np.random.randint(0, 60, size=10000) self.arr = ['{0} days'.format(i) for i in ints] self.arr[-1] = 'apple' def time_convert(self, errors): to_timedelta(self.arr, errors=errors) class TimedeltaOps(object): goal_time = 0.2 def setup(self): self.td = to_timedelta(np.arange(1000000)) self.ts = Timestamp('2000') def time_add_td_ts(self): self.td + self.ts class TimedeltaProperties(object): goal_time = 0.2 def setup_cache(self): td = Timedelta(days=365, minutes=35, seconds=25, milliseconds=35) return td def time_timedelta_days(self, td): td.days def time_timedelta_seconds(self, td): td.seconds def time_timedelta_microseconds(self, td): td.microseconds def time_timedelta_nanoseconds(self, td): td.nanoseconds class DatetimeAccessor(object): goal_time = 0.2 def setup_cache(self): N = 100000 series = Series(timedelta_range('1 days', periods=N, freq='h')) return series def time_dt_accessor(self, series): series.dt def time_timedelta_days(self, series): series.dt.days def time_timedelta_seconds(self, series): series.dt.seconds def time_timedelta_microseconds(self, series): series.dt.microseconds def time_timedelta_nanoseconds(self, series): series.dt.nanoseconds
bsd-3-clause
NunoEdgarGub1/scikit-learn
sklearn/tests/test_pipeline.py
162
14875
""" Test the pipeline module. """ import numpy as np from scipy import sparse from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_raises, assert_raises_regex, assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.base import clone from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline, make_union from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.cluster import KMeans from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA, RandomizedPCA, TruncatedSVD from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler from sklearn.feature_extraction.text import CountVectorizer JUNK_FOOD_DOCS = ( "the pizza pizza beer copyright", "the pizza burger beer copyright", "the the pizza beer beer copyright", "the burger beer beer copyright", "the coke burger coke copyright", "the coke burger burger", ) class IncorrectT(object): """Small class to test parameter dispatching. """ def __init__(self, a=None, b=None): self.a = a self.b = b class T(IncorrectT): def fit(self, X, y): return self def get_params(self, deep=False): return {'a': self.a, 'b': self.b} def set_params(self, **params): self.a = params['a'] return self class TransfT(T): def transform(self, X, y=None): return X class FitParamT(object): """Mock classifier """ def __init__(self): self.successful = False pass def fit(self, X, y, should_succeed=False): self.successful = should_succeed def predict(self, X): return self.successful def test_pipeline_init(): # Test the various init parameters of the pipeline. assert_raises(TypeError, Pipeline) # Check that we can't instantiate pipelines with objects without fit # method pipe = assert_raises(TypeError, Pipeline, [('svc', IncorrectT)]) # Smoke test with only an estimator clf = T() pipe = Pipeline([('svc', clf)]) assert_equal(pipe.get_params(deep=True), dict(svc__a=None, svc__b=None, svc=clf, **pipe.get_params(deep=False) )) # Check that params are set pipe.set_params(svc__a=0.1) assert_equal(clf.a, 0.1) assert_equal(clf.b, None) # Smoke test the repr: repr(pipe) # Test with two objects clf = SVC() filter1 = SelectKBest(f_classif) pipe = Pipeline([('anova', filter1), ('svc', clf)]) # Check that we can't use the same stage name twice assert_raises(ValueError, Pipeline, [('svc', SVC()), ('svc', SVC())]) # Check that params are set pipe.set_params(svc__C=0.1) assert_equal(clf.C, 0.1) # Smoke test the repr: repr(pipe) # Check that params are not set when naming them wrong assert_raises(ValueError, pipe.set_params, anova__C=0.1) # Test clone pipe2 = clone(pipe) assert_false(pipe.named_steps['svc'] is pipe2.named_steps['svc']) # Check that apart from estimators, the parameters are the same params = pipe.get_params(deep=True) params2 = pipe2.get_params(deep=True) for x in pipe.get_params(deep=False): params.pop(x) for x in pipe2.get_params(deep=False): params2.pop(x) # Remove estimators that where copied params.pop('svc') params.pop('anova') params2.pop('svc') params2.pop('anova') assert_equal(params, params2) def test_pipeline_methods_anova(): # Test the various methods of the pipeline (anova). iris = load_iris() X = iris.data y = iris.target # Test with Anova + LogisticRegression clf = LogisticRegression() filter1 = SelectKBest(f_classif, k=2) pipe = Pipeline([('anova', filter1), ('logistic', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_fit_params(): # Test that the pipeline can take fit parameters pipe = Pipeline([('transf', TransfT()), ('clf', FitParamT())]) pipe.fit(X=None, y=None, clf__should_succeed=True) # classifier should return True assert_true(pipe.predict(None)) # and transformer params should not be changed assert_true(pipe.named_steps['transf'].a is None) assert_true(pipe.named_steps['transf'].b is None) def test_pipeline_raise_set_params_error(): # Test pipeline raises set params error message for nested models. pipe = Pipeline([('cls', LinearRegression())]) # expected error message error_msg = ('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.') assert_raise_message(ValueError, error_msg % ('fake', 'Pipeline'), pipe.set_params, fake='nope') # nested model check assert_raise_message(ValueError, error_msg % ("fake", pipe), pipe.set_params, fake__estimator='nope') def test_pipeline_methods_pca_svm(): # Test the various methods of the pipeline (pca + svm). iris = load_iris() X = iris.data y = iris.target # Test with PCA + SVC clf = SVC(probability=True, random_state=0) pca = PCA(n_components='mle', whiten=True) pipe = Pipeline([('pca', pca), ('svc', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_methods_preprocessing_svm(): # Test the various methods of the pipeline (preprocessing + svm). iris = load_iris() X = iris.data y = iris.target n_samples = X.shape[0] n_classes = len(np.unique(y)) scaler = StandardScaler() pca = RandomizedPCA(n_components=2, whiten=True) clf = SVC(probability=True, random_state=0) for preprocessing in [scaler, pca]: pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)]) pipe.fit(X, y) # check shapes of various prediction functions predict = pipe.predict(X) assert_equal(predict.shape, (n_samples,)) proba = pipe.predict_proba(X) assert_equal(proba.shape, (n_samples, n_classes)) log_proba = pipe.predict_log_proba(X) assert_equal(log_proba.shape, (n_samples, n_classes)) decision_function = pipe.decision_function(X) assert_equal(decision_function.shape, (n_samples, n_classes)) pipe.score(X, y) def test_fit_predict_on_pipeline(): # test that the fit_predict method is implemented on a pipeline # test that the fit_predict on pipeline yields same results as applying # transform and clustering steps separately iris = load_iris() scaler = StandardScaler() km = KMeans(random_state=0) # first compute the transform and clustering step separately scaled = scaler.fit_transform(iris.data) separate_pred = km.fit_predict(scaled) # use a pipeline to do the transform and clustering in one step pipe = Pipeline([('scaler', scaler), ('Kmeans', km)]) pipeline_pred = pipe.fit_predict(iris.data) assert_array_almost_equal(pipeline_pred, separate_pred) def test_fit_predict_on_pipeline_without_fit_predict(): # tests that a pipeline does not have fit_predict method when final # step of pipeline does not have fit_predict defined scaler = StandardScaler() pca = PCA() pipe = Pipeline([('scaler', scaler), ('pca', pca)]) assert_raises_regex(AttributeError, "'PCA' object has no attribute 'fit_predict'", getattr, pipe, 'fit_predict') def test_feature_union(): # basic sanity check for feature union iris = load_iris() X = iris.data X -= X.mean(axis=0) y = iris.target svd = TruncatedSVD(n_components=2, random_state=0) select = SelectKBest(k=1) fs = FeatureUnion([("svd", svd), ("select", select)]) fs.fit(X, y) X_transformed = fs.transform(X) assert_equal(X_transformed.shape, (X.shape[0], 3)) # check if it does the expected thing assert_array_almost_equal(X_transformed[:, :-1], svd.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) # test if it also works for sparse input # We use a different svd object to control the random_state stream fs = FeatureUnion([("svd", svd), ("select", select)]) X_sp = sparse.csr_matrix(X) X_sp_transformed = fs.fit_transform(X_sp, y) assert_array_almost_equal(X_transformed, X_sp_transformed.toarray()) # test setting parameters fs.set_params(select__k=2) assert_equal(fs.fit_transform(X, y).shape, (X.shape[0], 4)) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("svd", svd), ("select", select)]) X_transformed = fs.fit_transform(X, y) assert_equal(X_transformed.shape, (X.shape[0], 8)) def test_make_union(): pca = PCA() mock = TransfT() fu = make_union(pca, mock) names, transformers = zip(*fu.transformer_list) assert_equal(names, ("pca", "transft")) assert_equal(transformers, (pca, mock)) def test_pipeline_transform(): # Test whether pipeline works with a transformer at the end. # Also test pipeline.transform and pipeline.inverse_transform iris = load_iris() X = iris.data pca = PCA(n_components=2) pipeline = Pipeline([('pca', pca)]) # test transform and fit_transform: X_trans = pipeline.fit(X).transform(X) X_trans2 = pipeline.fit_transform(X) X_trans3 = pca.fit_transform(X) assert_array_almost_equal(X_trans, X_trans2) assert_array_almost_equal(X_trans, X_trans3) X_back = pipeline.inverse_transform(X_trans) X_back2 = pca.inverse_transform(X_trans) assert_array_almost_equal(X_back, X_back2) def test_pipeline_fit_transform(): # Test whether pipeline works with a transformer missing fit_transform iris = load_iris() X = iris.data y = iris.target transft = TransfT() pipeline = Pipeline([('mock', transft)]) # test fit_transform: X_trans = pipeline.fit_transform(X, y) X_trans2 = transft.fit(X, y).transform(X) assert_array_almost_equal(X_trans, X_trans2) def test_make_pipeline(): t1 = TransfT() t2 = TransfT() pipe = make_pipeline(t1, t2) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") pipe = make_pipeline(t1, t2, FitParamT()) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") assert_equal(pipe.steps[2][0], "fitparamt") def test_feature_union_weights(): # test feature union with transformer weights iris = load_iris() X = iris.data y = iris.target pca = RandomizedPCA(n_components=2, random_state=0) select = SelectKBest(k=1) # test using fit followed by transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) fs.fit(X, y) X_transformed = fs.transform(X) # test using fit_transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) X_fit_transformed = fs.fit_transform(X, y) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("pca", pca), ("select", select)], transformer_weights={"mock": 10}) X_fit_transformed_wo_method = fs.fit_transform(X, y) # check against expected result # We use a different pca object to control the random_state stream assert_array_almost_equal(X_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_array_almost_equal(X_fit_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_fit_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_equal(X_fit_transformed_wo_method.shape, (X.shape[0], 7)) def test_feature_union_parallel(): # test that n_jobs work for FeatureUnion X = JUNK_FOOD_DOCS fs = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ]) fs_parallel = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs_parallel2 = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs.fit(X) X_transformed = fs.transform(X) assert_equal(X_transformed.shape[0], len(X)) fs_parallel.fit(X) X_transformed_parallel = fs_parallel.transform(X) assert_equal(X_transformed.shape, X_transformed_parallel.shape) assert_array_equal( X_transformed.toarray(), X_transformed_parallel.toarray() ) # fit_transform should behave the same X_transformed_parallel2 = fs_parallel2.fit_transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) # transformers should stay fit after fit_transform X_transformed_parallel2 = fs_parallel2.transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) def test_feature_union_feature_names(): word_vect = CountVectorizer(analyzer="word") char_vect = CountVectorizer(analyzer="char_wb", ngram_range=(3, 3)) ft = FeatureUnion([("chars", char_vect), ("words", word_vect)]) ft.fit(JUNK_FOOD_DOCS) feature_names = ft.get_feature_names() for feat in feature_names: assert_true("chars__" in feat or "words__" in feat) assert_equal(len(feature_names), 35) def test_classes_property(): iris = load_iris() X = iris.data y = iris.target reg = make_pipeline(SelectKBest(k=1), LinearRegression()) reg.fit(X, y) assert_raises(AttributeError, getattr, reg, "classes_") clf = make_pipeline(SelectKBest(k=1), LogisticRegression(random_state=0)) assert_raises(AttributeError, getattr, clf, "classes_") clf.fit(X, y) assert_array_equal(clf.classes_, np.unique(y))
bsd-3-clause
PlayUAV/MissionPlanner
Lib/site-packages/numpy/core/function_base.py
82
5474
__all__ = ['logspace', 'linspace'] import numeric as _nx from numeric import array def linspace(start, stop, num=50, endpoint=True, retstep=False): """ Return evenly spaced numbers over a specified interval. Returns `num` evenly spaced samples, calculated over the interval [`start`, `stop` ]. The endpoint of the interval can optionally be excluded. Parameters ---------- start : scalar The starting value of the sequence. stop : scalar The end value of the sequence, unless `endpoint` is set to False. In that case, the sequence consists of all but the last of ``num + 1`` evenly spaced samples, so that `stop` is excluded. Note that the step size changes when `endpoint` is False. num : int, optional Number of samples to generate. Default is 50. endpoint : bool, optional If True, `stop` is the last sample. Otherwise, it is not included. Default is True. retstep : bool, optional If True, return (`samples`, `step`), where `step` is the spacing between samples. Returns ------- samples : ndarray There are `num` equally spaced samples in the closed interval ``[start, stop]`` or the half-open interval ``[start, stop)`` (depending on whether `endpoint` is True or False). step : float (only if `retstep` is True) Size of spacing between samples. See Also -------- arange : Similiar to `linspace`, but uses a step size (instead of the number of samples). logspace : Samples uniformly distributed in log space. Examples -------- >>> np.linspace(2.0, 3.0, num=5) array([ 2. , 2.25, 2.5 , 2.75, 3. ]) >>> np.linspace(2.0, 3.0, num=5, endpoint=False) array([ 2. , 2.2, 2.4, 2.6, 2.8]) >>> np.linspace(2.0, 3.0, num=5, retstep=True) (array([ 2. , 2.25, 2.5 , 2.75, 3. ]), 0.25) Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 8 >>> y = np.zeros(N) >>> x1 = np.linspace(0, 10, N, endpoint=True) >>> x2 = np.linspace(0, 10, N, endpoint=False) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show() """ num = int(num) if num <= 0: return array([], float) if endpoint: if num == 1: return array([float(start)]) step = (stop-start)/float((num-1)) y = _nx.arange(0, num) * step + start y[-1] = stop else: step = (stop-start)/float(num) y = _nx.arange(0, num) * step + start if retstep: return y, step else: return y def logspace(start,stop,num=50,endpoint=True,base=10.0): """ Return numbers spaced evenly on a log scale. In linear space, the sequence starts at ``base ** start`` (`base` to the power of `start`) and ends with ``base ** stop`` (see `endpoint` below). Parameters ---------- start : float ``base ** start`` is the starting value of the sequence. stop : float ``base ** stop`` is the final value of the sequence, unless `endpoint` is False. In that case, ``num + 1`` values are spaced over the interval in log-space, of which all but the last (a sequence of length ``num``) are returned. num : integer, optional Number of samples to generate. Default is 50. endpoint : boolean, optional If true, `stop` is the last sample. Otherwise, it is not included. Default is True. base : float, optional The base of the log space. The step size between the elements in ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform. Default is 10.0. Returns ------- samples : ndarray `num` samples, equally spaced on a log scale. See Also -------- arange : Similiar to linspace, with the step size specified instead of the number of samples. Note that, when used with a float endpoint, the endpoint may or may not be included. linspace : Similar to logspace, but with the samples uniformly distributed in linear space, instead of log space. Notes ----- Logspace is equivalent to the code >>> y = np.linspace(start, stop, num=num, endpoint=endpoint) ... # doctest: +SKIP >>> power(base, y) ... # doctest: +SKIP Examples -------- >>> np.logspace(2.0, 3.0, num=4) array([ 100. , 215.443469 , 464.15888336, 1000. ]) >>> np.logspace(2.0, 3.0, num=4, endpoint=False) array([ 100. , 177.827941 , 316.22776602, 562.34132519]) >>> np.logspace(2.0, 3.0, num=4, base=2.0) array([ 4. , 5.0396842 , 6.34960421, 8. ]) Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 10 >>> x1 = np.logspace(0.1, 1, N, endpoint=True) >>> x2 = np.logspace(0.1, 1, N, endpoint=False) >>> y = np.zeros(N) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show() """ y = linspace(start,stop,num=num,endpoint=endpoint) return _nx.power(base,y)
gpl-3.0
RobertABT/heightmap
build/matplotlib/examples/pylab_examples/psd_demo2.py
9
1445
#This example shows the effects of some of the different PSD parameters import numpy as np import matplotlib.pyplot as plt dt = np.pi / 100. fs = 1. / dt t = np.arange(0, 8, dt) y = 10. * np.sin(2 * np.pi * 4 * t) + 5. * np.sin(2 * np.pi * 4.25 * t) y = y + np.random.randn(*t.shape) #Plot the raw time series fig = plt.figure() fig.subplots_adjust(hspace=0.45, wspace=0.3) ax = fig.add_subplot(2, 1, 1) ax.plot(t, y) #Plot the PSD with different amounts of zero padding. This uses the entire #time series at once ax2 = fig.add_subplot(2, 3, 4) ax2.psd(y, NFFT=len(t), pad_to=len(t), Fs=fs) ax2.psd(y, NFFT=len(t), pad_to=len(t)*2, Fs=fs) ax2.psd(y, NFFT=len(t), pad_to=len(t)*4, Fs=fs) plt.title('zero padding') #Plot the PSD with different block sizes, Zero pad to the length of the original #data sequence. ax3 = fig.add_subplot(2, 3, 5, sharex=ax2, sharey=ax2) ax3.psd(y, NFFT=len(t), pad_to=len(t), Fs=fs) ax3.psd(y, NFFT=len(t)//2, pad_to=len(t), Fs=fs) ax3.psd(y, NFFT=len(t)//4, pad_to=len(t), Fs=fs) ax3.set_ylabel('') plt.title('block size') #Plot the PSD with different amounts of overlap between blocks ax4 = fig.add_subplot(2, 3, 6, sharex=ax2, sharey=ax2) ax4.psd(y, NFFT=len(t)//2, pad_to=len(t), noverlap=0, Fs=fs) ax4.psd(y, NFFT=len(t)//2, pad_to=len(t), noverlap=int(0.05*len(t)/2.), Fs=fs) ax4.psd(y, NFFT=len(t)//2, pad_to=len(t), noverlap=int(0.2*len(t)/2.), Fs=fs) ax4.set_ylabel('') plt.title('overlap') plt.show()
mit
botlabio/autonomio
autonomio/plots/quadparam.py
1
1784
import numpy as np import matplotlib matplotlib.use('Agg') # this needs to be here exceptionslly import matplotlib.pyplot as plt plt.style.use('bmh') def quadparam(data, x, y, size, color, title='auto'): ''' USE: quadparam(df,'layers','batch_size','test_acc','test_loss') Used for taking in 4 different parameters, where 'x' and 'y' are for the axis, and then 'size' and 'color' are for adding another two dimesions. data = pandas dataframe coming from hyperscan() x = should be numeric (one of the columns in data) y = should be numeric size = should be numeric color = should be numeric title = a string to be used as the title of the plot. The default is 'auto' that generates a title based on the inputs. ''' if title is 'auto': title = x + ' & ' + y + ' correlation' fig = plt.figure(num=None, figsize=(8, 8), dpi=80, facecolor='w', edgecolor='k') s_label = size c_label = color temp = np.array(data[size].astype(float)) temp *= (500 / temp.max()) s = temp color = data[color]**data[color] plt.scatter(data[x], data[y], edgecolors='black', cmap='coolwarm', s=s, c=color) plt.tick_params(axis='both', which='major', pad=15) plt.title(title, fontsize=23, y=1.09, color="gray") plt.suptitle("size = " + s_label + " || " "hue = " + c_label, verticalalignment='top', fontsize=16, y=.93, x=0.52, color="gray") plt.xlabel(x, fontsize=18, labelpad=15, color="gray") plt.ylabel(y, fontsize=18, labelpad=15, color="gray") plt.tick_params(axis='both', which='major', pad=25) plt.grid(b=False) plt.show()
mit
gfyoung/pandas
pandas/tests/series/methods/test_clip.py
2
3378
import numpy as np import pytest import pandas as pd from pandas import Series, Timestamp, isna, notna import pandas._testing as tm class TestSeriesClip: def test_clip(self, datetime_series): val = datetime_series.median() assert datetime_series.clip(lower=val).min() == val assert datetime_series.clip(upper=val).max() == val result = datetime_series.clip(-0.5, 0.5) expected = np.clip(datetime_series, -0.5, 0.5) tm.assert_series_equal(result, expected) assert isinstance(expected, Series) def test_clip_types_and_nulls(self): sers = [ Series([np.nan, 1.0, 2.0, 3.0]), Series([None, "a", "b", "c"]), Series(pd.to_datetime([np.nan, 1, 2, 3], unit="D")), ] for s in sers: thresh = s[2] lower = s.clip(lower=thresh) upper = s.clip(upper=thresh) assert lower[notna(lower)].min() == thresh assert upper[notna(upper)].max() == thresh assert list(isna(s)) == list(isna(lower)) assert list(isna(s)) == list(isna(upper)) def test_clip_with_na_args(self): """Should process np.nan argument as None """ # GH#17276 s = Series([1, 2, 3]) tm.assert_series_equal(s.clip(np.nan), Series([1, 2, 3])) tm.assert_series_equal(s.clip(upper=np.nan, lower=np.nan), Series([1, 2, 3])) # GH#19992 tm.assert_series_equal(s.clip(lower=[0, 4, np.nan]), Series([1, 4, np.nan])) tm.assert_series_equal(s.clip(upper=[1, np.nan, 1]), Series([1, np.nan, 1])) def test_clip_against_series(self): # GH#6966 s = Series([1.0, 1.0, 4.0]) lower = Series([1.0, 2.0, 3.0]) upper = Series([1.5, 2.5, 3.5]) tm.assert_series_equal(s.clip(lower, upper), Series([1.0, 2.0, 3.5])) tm.assert_series_equal(s.clip(1.5, upper), Series([1.5, 1.5, 3.5])) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("upper", [[1, 2, 3], np.asarray([1, 2, 3])]) def test_clip_against_list_like(self, inplace, upper): # GH#15390 original = Series([5, 6, 7]) result = original.clip(upper=upper, inplace=inplace) expected = Series([1, 2, 3]) if inplace: result = original tm.assert_series_equal(result, expected, check_exact=True) def test_clip_with_datetimes(self): # GH#11838 # naive and tz-aware datetimes t = Timestamp("2015-12-01 09:30:30") s = Series([Timestamp("2015-12-01 09:30:00"), Timestamp("2015-12-01 09:31:00")]) result = s.clip(upper=t) expected = Series( [Timestamp("2015-12-01 09:30:00"), Timestamp("2015-12-01 09:30:30")] ) tm.assert_series_equal(result, expected) t = Timestamp("2015-12-01 09:30:30", tz="US/Eastern") s = Series( [ Timestamp("2015-12-01 09:30:00", tz="US/Eastern"), Timestamp("2015-12-01 09:31:00", tz="US/Eastern"), ] ) result = s.clip(upper=t) expected = Series( [ Timestamp("2015-12-01 09:30:00", tz="US/Eastern"), Timestamp("2015-12-01 09:30:30", tz="US/Eastern"), ] ) tm.assert_series_equal(result, expected)
bsd-3-clause
xavierwu/scikit-learn
sklearn/linear_model/sag.py
64
9815
"""Solvers for Ridge and LogisticRegression using SAG algorithm""" # Authors: Tom Dupre la Tour <[email protected]> # # Licence: BSD 3 clause import numpy as np import warnings from ..utils import ConvergenceWarning from ..utils import check_array from .base import make_dataset from .sgd_fast import Log, SquaredLoss from .sag_fast import sag, get_max_squared_sum def get_auto_step_size(max_squared_sum, alpha_scaled, loss, fit_intercept): """Compute automatic step size for SAG solver The step size is set to 1 / (alpha_scaled + L + fit_intercept) where L is the max sum of squares for over all samples. Parameters ---------- max_squared_sum : float Maximum squared sum of X over samples. alpha_scaled : float Constant that multiplies the regularization term, scaled by 1. / n_samples, the number of samples. loss : string, in {"log", "squared"} The loss function used in SAG solver. fit_intercept : bool Specifies if a constant (a.k.a. bias or intercept) will be added to the decision function. Returns ------- step_size : float Step size used in SAG solver. """ if loss == 'log': # inverse Lipschitz constant for log loss return 4.0 / (max_squared_sum + int(fit_intercept) + 4.0 * alpha_scaled) elif loss == 'squared': # inverse Lipschitz constant for squared loss return 1.0 / (max_squared_sum + int(fit_intercept) + alpha_scaled) else: raise ValueError("Unknown loss function for SAG solver, got %s " "instead of 'log' or 'squared'" % loss) def sag_solver(X, y, sample_weight=None, loss='log', alpha=1., max_iter=1000, tol=0.001, verbose=0, random_state=None, check_input=True, max_squared_sum=None, warm_start_mem=dict()): """SAG solver for Ridge and LogisticRegression SAG stands for Stochastic Average Gradient: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a constant learning rate. IMPORTANT NOTE: 'sag' solver converges faster on columns that are on the same scale. You can normalize the data by using sklearn.preprocessing.StandardScaler on your data before passing it to the fit method. This implementation works with data represented as dense numpy arrays or sparse scipy arrays of floating point values for the features. It will fit the data according to squared loss or log loss. The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using the squared euclidean norm L2. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). loss : 'log' | 'squared' Loss function that will be optimized. 'log' is used for classification, like in LogisticRegression. 'squared' is used for regression, like in Ridge. alpha : float, optional Constant that multiplies the regularization term. Defaults to 1. max_iter: int, optional The max number of passes over the training data if the stopping criterea is not reached. Defaults to 1000. tol: double, optional The stopping criterea for the weights. The iterations will stop when max(change in weights) / max(weights) < tol. Defaults to .001 verbose: integer, optional The verbosity level. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. check_input : bool, default True If False, the input arrays X and y will not be checked. max_squared_sum : float, default None Maximum squared sum of X over samples. If None, it will be computed, going through all the samples. The value should be precomputed to speed up cross validation. warm_start_mem: dict, optional The initialization parameters used for warm starting. It is currently not used in Ridge. Returns ------- coef_ : array, shape (n_features) Weight vector. n_iter_ : int The number of full pass on all samples. warm_start_mem : dict Contains a 'coef' key with the fitted result, and eventually the fitted intercept at the end of the array. Contains also other keys used for warm starting. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> X = np.random.randn(n_samples, n_features) >>> y = np.random.randn(n_samples) >>> clf = linear_model.Ridge(solver='sag') >>> clf.fit(X, y) ... #doctest: +NORMALIZE_WHITESPACE Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='sag', tol=0.001) >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> clf = linear_model.LogisticRegression(solver='sag') >>> clf.fit(X, y) ... #doctest: +NORMALIZE_WHITESPACE LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='l2', random_state=None, solver='sag', tol=0.0001, verbose=0, warm_start=False) References ---------- Schmidt, M., Roux, N. L., & Bach, F. (2013). Minimizing finite sums with the stochastic average gradient https://hal.inria.fr/hal-00860051/PDF/sag_journal.pdf See also -------- Ridge, SGDRegressor, ElasticNet, Lasso, SVR, and LogisticRegression, SGDClassifier, LinearSVC, Perceptron """ # Ridge default max_iter is None if max_iter is None: max_iter = 1000 if check_input: X = check_array(X, dtype=np.float64, accept_sparse='csr', order='C') y = check_array(y, dtype=np.float64, ensure_2d=False, order='C') n_samples, n_features = X.shape[0], X.shape[1] # As in SGD, the alpha is scaled by n_samples. alpha_scaled = float(alpha) / n_samples # initialization if sample_weight is None: sample_weight = np.ones(n_samples, dtype=np.float64, order='C') if 'coef' in warm_start_mem.keys(): coef_init = warm_start_mem['coef'] else: coef_init = np.zeros(n_features, dtype=np.float64, order='C') # coef_init contains possibly the intercept_init at the end. # Note that Ridge centers the data before fitting, so fit_intercept=False. fit_intercept = coef_init.size == (n_features + 1) if fit_intercept: intercept_init = coef_init[-1] coef_init = coef_init[:-1] else: intercept_init = 0.0 if 'intercept_sum_gradient' in warm_start_mem.keys(): intercept_sum_gradient_init = warm_start_mem['intercept_sum_gradient'] else: intercept_sum_gradient_init = 0.0 if 'gradient_memory' in warm_start_mem.keys(): gradient_memory_init = warm_start_mem['gradient_memory'] else: gradient_memory_init = np.zeros(n_samples, dtype=np.float64, order='C') if 'sum_gradient' in warm_start_mem.keys(): sum_gradient_init = warm_start_mem['sum_gradient'] else: sum_gradient_init = np.zeros(n_features, dtype=np.float64, order='C') if 'seen' in warm_start_mem.keys(): seen_init = warm_start_mem['seen'] else: seen_init = np.zeros(n_samples, dtype=np.int32, order='C') if 'num_seen' in warm_start_mem.keys(): num_seen_init = warm_start_mem['num_seen'] else: num_seen_init = 0 dataset, intercept_decay = make_dataset(X, y, sample_weight, random_state) if max_squared_sum is None: max_squared_sum = get_max_squared_sum(X) step_size = get_auto_step_size(max_squared_sum, alpha_scaled, loss, fit_intercept) if step_size * alpha_scaled == 1: raise ZeroDivisionError("Current sag implementation does not handle " "the case step_size * alpha_scaled == 1") if loss == 'log': class_loss = Log() elif loss == 'squared': class_loss = SquaredLoss() else: raise ValueError("Invalid loss parameter: got %r instead of " "one of ('log', 'squared')" % loss) intercept_, num_seen, n_iter_, intercept_sum_gradient = \ sag(dataset, coef_init.ravel(), intercept_init, n_samples, n_features, tol, max_iter, class_loss, step_size, alpha_scaled, sum_gradient_init.ravel(), gradient_memory_init.ravel(), seen_init.ravel(), num_seen_init, fit_intercept, intercept_sum_gradient_init, intercept_decay, verbose) if n_iter_ == max_iter: warnings.warn("The max_iter was reached which means " "the coef_ did not converge", ConvergenceWarning) coef_ = coef_init if fit_intercept: coef_ = np.append(coef_, intercept_) warm_start_mem = {'coef': coef_, 'sum_gradient': sum_gradient_init, 'intercept_sum_gradient': intercept_sum_gradient, 'gradient_memory': gradient_memory_init, 'seen': seen_init, 'num_seen': num_seen} return coef_, n_iter_, warm_start_mem
bsd-3-clause
tbtraltaa/medianshape
medianshape/experiment/msfn/msfndemo3d.py
1
1682
# encoding: utf-8 ''' ++++++++++++ MSFN demo 3D ++++++++++++ ''' from __future__ import absolute_import import numpy as np import matplotlib.pyplot as plt from scipy.sparse import csr_matrix from medianshape.simplicial.meshgen import distmesh3d, scipy_mesh3d from medianshape.simplicial.mesh import Mesh3D from medianshape import utils from medianshape.simplicial import pointgen3d, currentgen from medianshape.viz import plot3d from medianshape.core.msfn import msfn import distmesh as dm def msfndemo3d(): ''' MSFN demo 3D ''' fig = plt.figure(figsize=(19,8)) mesh = Mesh3D() # l - initial length of triangle sides. Change it to vary traingle size mesh.bbox = (0,0,0, 1, 1, 1) mesh.set_boundary_points() mesh.set_diagonal() mesh.set_boundary_values() mesh.points, mesh.simplices = scipy_mesh3d(mesh.bbox, mesh.fixed_points, l=0.2) mesh.triangles = utils.get_simplices(mesh.simplices) mesh.edges = utils.get_simplices(mesh.triangles) plot3d.plotmesh3d(mesh) print mesh.get_info() curves = [pointgen3d.curve2(mesh.bbox)] points = np.array(curves) vertices, paths, input_currents = currentgen.push_curves_on_mesh(mesh, points) title = mesh.get_info() plot3d.plot_curves_approx(mesh, points, vertices, paths, title) plt.show() lambdas = [0.0001] for input_current in input_currents: for l in lambdas: title = "lambda=%.04f"%l x, s, norm = msfn(mesh.points, mesh.triangles, mesh.edges, input_current, l) plot3d.plot_decomposition(mesh, input_currents, x.T, None, s, title) plt.show() if __name__ == "__main__": msfndemo3d()
gpl-3.0
PatrickOReilly/scikit-learn
examples/ensemble/plot_adaboost_regression.py
311
1529
""" ====================================== Decision Tree Regression with AdaBoost ====================================== A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of boosts is increased the regressor can fit more detail. .. [1] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ print(__doc__) # Author: Noel Dawe <[email protected]> # # License: BSD 3 clause # importing necessary libraries import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import AdaBoostRegressor # Create the dataset rng = np.random.RandomState(1) X = np.linspace(0, 6, 100)[:, np.newaxis] y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0]) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=4) regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4), n_estimators=300, random_state=rng) regr_1.fit(X, y) regr_2.fit(X, y) # Predict y_1 = regr_1.predict(X) y_2 = regr_2.predict(X) # Plot the results plt.figure() plt.scatter(X, y, c="k", label="training samples") plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2) plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Boosted Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
acbecker/pyhm
pyhm/walkers.py
1
2993
import matplotlib.pyplot as plt import numpy as np def runningMoments(data): x = np.cumsum(data) x2 = np.cumsum(data**2) n = np.arange(1, len(data)+1) mean = x / n std = np.sqrt((x2*n - x*x) / (n * (n-1))) return mean, std def walkers(data, labels, npts=250, fontmin=11): # Modified from: http://conference.scipy.org/jhepc2013/2013/entry5/index.html nwalkers, nstep, ndim = data.shape subsample = nstep / npts red = "#cf6775" blue = "#67a9cf" fontcolor = "#dddddd" fig = plt.figure(facecolor='#222222', figsize=(8.5, 11)) fig.subplots_adjust(hspace=0.01, wspace=0.01) for i in range(ndim): spA = plt.subplot2grid((ndim,3), (i,0), colspan=2) spB = plt.subplot2grid((ndim,3), (i,2)) spA.set_axis_bgcolor("#333333") spB.set_axis_bgcolor("#333333") spA.tick_params(direction="out", colors="w") spB.tick_params(axis="x", bottom="off", top="off") spB.tick_params(axis="y", left="off", right="off") spA.tick_params(axis="y", right="off") if i != ndim-1: spA.tick_params(axis="x", bottom="off", top="off") else: spA.tick_params(axis="x", top="off") cmap = np.log(np.std(data[:,:,i], axis=1)) cmap -= np.min(cmap) cmap /= np.max(cmap) for j in range(nwalkers): wdata = data[j,:,i] rmean, rstd = runningMoments(wdata) wdata = wdata[::subsample][1:] # [1:] since std[0] = nan rmean = rmean[::subsample][1:] rstd = rstd[::subsample][1:] nsub = np.arange(nstep)[::subsample][1:] cmap = np.abs(wdata-rmean)/rstd #spA.plot(nsub, wdata, drawstyle="steps", color="w", alpha=0.15) spA.plot(nsub, wdata, drawstyle="steps", color=plt.cm.bone_r(cmap[i]), alpha=0.15) spA.plot(nsub, rmean, color=red, linestyle="-") spA.fill_between(nsub, rmean-rstd, rmean+rstd, facecolor=blue, alpha=0.15) spB.hist(np.ravel(data[:,:,i]), orientation='horizontal', facecolor=red, bins=50, edgecolor="none") spB.set_ylabel(labels[i], rotation='horizontal', fontsize=fontmin+3, labelpad=15, weight="bold", color=fontcolor) spB.set_ylim(spA.get_ylim()) spB.xaxis.set_visible(False) spB.yaxis.tick_right() spB.yaxis.set_label_position("right") plt.setp(spB.get_yticklabels(), visible=False) spA.locator_params(nbins=7, axis="y") spA.set_yticks(spA.get_yticks()[1:-1]) spA.set_xlim(0, nstep) if i != ndim-1: plt.setp(spA.get_xticklabels(), visible=False) else: spA.set_xlabel("Step", fontsize=fontmin+3, labelpad=8, weight="bold", color=fontcolor) plt.setp(spA.get_xticklabels(), fontsize=fontmin, weight="bold", color=fontcolor) plt.setp(spA.get_yticklabels(), fontsize=fontmin, weight="bold", color=fontcolor)
mit
sphinx-gallery/sphinx-gallery
examples/plot_3_capture_repr.py
1
4917
# -*- coding: utf-8 -*- """ .. _capture_repr_examples: Capturing output representations ================================ This example demonstrates how the configuration ``capture_repr`` (:ref:`capture_repr`) works. The default ``capture_repr`` setting is ``capture_repr: ('_repr_html_', '__repr__')`` and was used when building the Sphinx-Gallery documentation. The output that is captured with this setting is demonstrated in this example. Differences in outputs that would be captured with other ``capture_repr`` settings is also explained. """ #%% # Nothing is captured for the code block below because no data is directed to # standard output and the last statement is an assignment, not an expression. # example 1 a = 2 b = 10 #%% # If you did wish to capture the value of ``b``, you would need to use: # example 2 a = 2 b = 10 b # this is an expression #%% # Sphinx-Gallery first attempts to capture the ``_repr_html_`` of ``b`` as this # is the first 'representation' method in the ``capture_repr`` tuple. As this # method does not exist for ``b``, Sphinx-Gallery moves on and tries to capture # the ``__repr__`` method, which is second in the tuple. This does exist for # ``b`` so it is captured and the output is seen above. # # A pandas dataframe is used in the code block below to provide an example of # an expression with a ``_repr_html_`` method. # example 3 import pandas as pd df = pd.DataFrame(data = {'col1': [1, 2], 'col2': [3, 4]}) df #%% # The pandas dataframe ``df`` has both a ``__repr__`` and ``_repr_html_`` # method. As ``_repr_html_`` appears first in the ``capture_repr`` tuple, the # ``_repr_html_`` is captured in preference to ``__repr__``. # # For the example below, there is data directed to standard output and the last # statement is an expression. # example 4 print('Hello world') a + b #%% # Statsmodels tables should also be styled appropriately: # example 5 import numpy as np import statsmodels.iolib.table statsmodels.iolib.table.SimpleTable(np.zeros((3, 3))) #%% # ``print()`` outputs to standard output, which is always captured. The # string ``'Hello world'`` is thus captured. A 'representation' of the last # expression is also captured. Again, since this expression ``a + b`` does not # have a ``_repr_html_`` method, the ``__repr__`` method is captured. # # Matplotlib output # ################## # # Matplotlib function calls generally return a Matplotlib object as well as # outputting the figure. For code blocks where the last statement is a # Matplotlib expression, a 'representation' of the object will be captured, as # well as the plot. This is because Matplotlib objects have a ``__repr__`` # method and our ``capture_repr`` tuple contains ``__repr__``. Note that # Matplotlib objects also have a ``__str__`` method. # # In the example below, ``matplotlib.pyplot.plot()`` returns a list of # ``Line2D`` objects representing the plotted data and the ``__repr__`` of the # list is captured as well as the figure: import matplotlib.pyplot as plt plt.plot([1,2,3]) #%% # To avoid capturing the text representation, you can assign the last Matplotlib # expression to a temporary variable: _ = plt.plot([1,2,3]) #%% # Alternatively, you can add ``plt.show()``, which does not return anything, # to the end of the code block: plt.plot([1,2,3]) plt.show() #%% # The ``capture_repr`` configuration # ################################## # # The ``capture_repr`` configuration is ``('_repr_html_', '__repr__')`` by # default. This directs Sphinx-Gallery to capture 'representations' of the last # statement of a code block, if it is an expression. Sphinx-Gallery does # this according to the order 'representations' appear in the tuple. With the # default ``capture_repr`` setting, ``_repr_html_`` is attempted to be captured # first. If this method does not exist, the ``__repr__`` method would be # captured. If the ``__repr__`` also does not exist (unlikely for non-user # defined objects), nothing would be captured. For example, if the the # configuration was set to ``'capture_repr': ('_repr_html_')`` nothing would be # captured for example 2 as ``b`` does not have a ``_repr_html_``. # You can change the 'representations' in the ``capture_repr`` tuple to finely # tune what is captured in your example ``.py`` files. # # To only capture data directed to standard output you can set ``capture_repr`` # to be an empty tuple: ``capture_repr: ()``. With this setting, only data # directed to standard output is captured. For the examples above, output would # only be captured for example 4. Although the last statement is an expression # for examples 2, 3 and 4 no 'representation' of the last expression would be # output. You would need to add ``print()`` to the last expression to capture # a 'representation' of it. The empty tuple setting imitates the behaviour of # Sphinx-Gallery prior to v0.5.0, when this configuration was introduced.
bsd-3-clause
supriyagarg/pydatalab
google/datalab/data/_csv_file.py
6
7141
# Copyright 2016 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing permissions and limitations under # the License. """Implements usefule CSV utilities.""" from __future__ import absolute_import from __future__ import unicode_literals from builtins import next from builtins import str as newstr from builtins import range from builtins import object import csv import os import pandas as pd import random import sys try: from StringIO import StringIO except ImportError: from io import StringIO import tempfile import google.datalab.storage import google.datalab.utils _MAX_CSV_BYTES = 10000000 class CsvFile(object): """Represents a CSV file in GCS or locally with same schema. """ def __init__(self, path, delimiter=b','): """Initializes an instance of a Csv instance. Args: path: path of the Csv file. delimiter: the separator used to parse a Csv line. """ self._path = path self._delimiter = delimiter @property def path(self): return self._path @staticmethod def _read_gcs_lines(path, max_lines=None): return google.datalab.storage.Object.from_url(path).read_lines(max_lines) @staticmethod def _read_local_lines(path, max_lines=None): lines = [] for line in open(path): if max_lines is not None and len(lines) >= max_lines: break lines.append(line) return lines def _is_probably_categorical(self, column): if newstr(column.dtype) != 'object': # only string types (represented in DataFrame as object) can potentially be categorical return False if len(max(column, key=lambda p: len(newstr(p)))) > 100: return False # value too long to be a category if len(set(column)) > 100: return False # too many unique values to be a category return True def browse(self, max_lines=None, headers=None): """Try reading specified number of lines from the CSV object. Args: max_lines: max number of lines to read. If None, the whole file is read headers: a list of strings as column names. If None, it will use "col0, col1..." Returns: A pandas DataFrame with the schema inferred from the data. Raises: Exception if the csv object cannot be read or not enough lines to read, or the headers size does not match columns size. """ if self.path.startswith('gs://'): lines = CsvFile._read_gcs_lines(self.path, max_lines) else: lines = CsvFile._read_local_lines(self.path, max_lines) if len(lines) == 0: return pd.DataFrame(columns=headers) columns_size = len(next(csv.reader([lines[0]], delimiter=self._delimiter))) if headers is None: headers = ['col' + newstr(e) for e in range(columns_size)] if len(headers) != columns_size: raise Exception('Number of columns in CSV do not match number of headers') buf = StringIO() for line in lines: buf.write(line) buf.write('\n') buf.seek(0) df = pd.read_csv(buf, names=headers, delimiter=self._delimiter) for key, col in df.iteritems(): if self._is_probably_categorical(col): df[key] = df[key].astype('category') return df def _create_external_data_source(self, skip_header_rows): import google.datalab.bigquery as bq df = self.browse(1, None) # read each column as STRING because we only want to sample rows. schema_train = bq.Schema([{'name': name, 'type': 'STRING'} for name in df.keys()]) options = bq.CSVOptions(skip_leading_rows=(1 if skip_header_rows is True else 0)) return bq.ExternalDataSource(self.path, csv_options=options, schema=schema_train, max_bad_records=0) def _get_gcs_csv_row_count(self, external_data_source): import google.datalab.bigquery as bq results = bq.Query('SELECT count(*) from data', data_sources={'data': external_data_source}).execute().result() return results[0].values()[0] def sample_to(self, count, skip_header_rows, strategy, target): """Sample rows from GCS or local file and save results to target file. Args: count: number of rows to sample. If strategy is "BIGQUERY", it is used as approximate number. skip_header_rows: whether to skip first row when reading from source. strategy: can be "LOCAL" or "BIGQUERY". If local, the sampling happens in local memory, and number of resulting rows matches count. If BigQuery, sampling is done with BigQuery in cloud, and the number of resulting rows will be approximated to count. target: The target file path, can be GCS or local path. Raises: Exception if strategy is "BIGQUERY" but source is not a GCS path. """ if sys.version_info.major > 2: xrange = range # for python 3 compatibility # TODO(qimingj) Add unit test # Read data from source into DataFrame. if strategy == 'BIGQUERY': import google.datalab.bigquery as bq if not self.path.startswith('gs://'): raise Exception('Cannot use BIGQUERY if data is not in GCS') external_data_source = self._create_external_data_source(skip_header_rows) row_count = self._get_gcs_csv_row_count(external_data_source) query = bq.Query('SELECT * from data', data_sources={'data': external_data_source}) sampling = bq.Sampling.random(count * 100 / float(row_count)) sample = query.sample(sampling=sampling) df = sample.to_dataframe() elif strategy == 'LOCAL': local_file = self.path if self.path.startswith('gs://'): local_file = tempfile.mktemp() google.datalab.utils.gcs_copy_file(self.path, local_file) with open(local_file) as f: row_count = sum(1 for line in f) start_row = 1 if skip_header_rows is True else 0 skip_count = row_count - count - 1 if skip_header_rows is True else row_count - count skip = sorted(random.sample(xrange(start_row, row_count), skip_count)) header_row = 0 if skip_header_rows is True else None df = pd.read_csv(local_file, skiprows=skip, header=header_row, delimiter=self._delimiter) if self.path.startswith('gs://'): os.remove(local_file) else: raise Exception('strategy must be BIGQUERY or LOCAL') # Write to target. if target.startswith('gs://'): with tempfile.NamedTemporaryFile() as f: df.to_csv(f, header=False, index=False) f.flush() google.datalab.utils.gcs_copy_file(f.name, target) else: with open(target, 'w') as f: df.to_csv(f, header=False, index=False, sep=str(self._delimiter))
apache-2.0
nok/sklearn-porter
tests/estimator/classifier/SVC/SVCCTest.py
1
2445
# -*- coding: utf-8 -*- from unittest import TestCase import numpy as np from sklearn.svm.classes import SVC from tests.estimator.classifier.Classifier import Classifier from tests.language.C import C class SVCCTest(C, Classifier, TestCase): def setUp(self): super(SVCCTest, self).setUp() self.estimator = SVC(C=1., kernel='rbf', gamma=0.001, random_state=0) def tearDown(self): super(SVCCTest, self).tearDown() def test_linear_kernel(self): self.estimator = SVC(C=1., kernel='linear', gamma=0.001, random_state=0) self.load_iris_data() self._port_estimator() amin = np.amin(self.X, axis=0) amax = np.amax(self.X, axis=0) preds, ground_truth = [], [] for _ in range(self.TEST_N_RANDOM_FEATURE_SETS): x = np.random.uniform(amin, amax, self.n_features) preds.append(self.pred_in_custom(x)) ground_truth.append(self.pred_in_py(x)) self._clear_estimator() # noinspection PyUnresolvedReferences self.assertListEqual(preds, ground_truth) def test_sigmoid_kernel(self): self.estimator = SVC(C=1., kernel='sigmoid', gamma=0.001, random_state=0) self.load_iris_data() self._port_estimator() amin = np.amin(self.X, axis=0) amax = np.amax(self.X, axis=0) preds, ground_truth = [], [] for _ in range(self.TEST_N_RANDOM_FEATURE_SETS): x = np.random.uniform(amin, amax, self.n_features) preds.append(self.pred_in_custom(x)) ground_truth.append(self.pred_in_py(x)) self._clear_estimator() # noinspection PyUnresolvedReferences self.assertListEqual(preds, ground_truth) def test_auto_gamma(self): self.estimator = SVC(C=1., gamma='auto', random_state=0) self.load_iris_data() self._port_estimator() amin = np.amin(self.X, axis=0) amax = np.amax(self.X, axis=0) preds, ground_truth = [], [] for _ in range(self.TEST_N_RANDOM_FEATURE_SETS): x = np.random.uniform(amin, amax, self.n_features) preds.append(self.pred_in_custom(x)) ground_truth.append(self.pred_in_py(x)) self._clear_estimator() # noinspection PyUnresolvedReferences self.assertListEqual(preds, ground_truth)
mit
lavizhao/sentiment
regression.py
1
5831
# coding: utf-8 ''' 用线性回归跑一遍,然后归一化看看效果= = ''' import csv import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn import linear_model from sklearn.feature_extraction.text import CountVectorizer from sklearn.svm import SVR from scipy import sparse def ct(sent,sym): if sent.count(sym)!=0: return 1 else: return 0 def find_rules(sent): """ """ tcount = [] tcount.append(ct(sent,"!")) tcount.append(ct(sent,":)")) tcount.append(ct(sent,":(")) tcount.append(ct(sent,"#")) tcount.append(ct(sent,"was")) tcount.append(ct(sent,"!")) tcount.append(ct(sent,":-]")) tcount.append(ct(sent,"%")) tcount.append(ct(sent,"=_=")) tcount.append(ct(sent,"(:")) tcount.append(ct(sent,"?")) tcount.append(ct(sent,":D")) tcount.append(ct(sent,"tommoro")) tcount.append(1.0*len(sent)/100) tcount.append(ct(sent,":")) tcount.append(ct(sent,"{link}")) tcount.append(ct(sent,";)")) tcount.append(ct(sent,"=")) tcount.append(ct(sent,":-P")) return tcount def read_csv(): f = open("train.csv","U") reader = csv.reader(f) train,label = [],[] etrain = [] etest = [] a = 0 for row in reader: if a == 0: a = a + 1 else: train.append(row[1]+" "+row[2]+" "+row[3]) sub_row = row[4:] sub_row = [float(i) for i in sub_row] label.append(sub_row) etrain.append(find_rules(row[1])) f.close() f = open("test.csv","U") reader = csv.reader(f) test,ans = [],[] a = 0 for row in reader: if a == 0: a = a + 1 else: ans.append(int(row[0])) test.append(row[1]) etest.append(find_rules(row[1])) f.close() return train,label,test,ans,etrain,etest def remain(a,n): mn = 0.001 for i in range(len(a)) : if a[i] < mn: a[i] = 0.0 for i in range(n): a[ind[i]] = 0 a = a + abs(a.min()) a = 1.0*a/np.sum(a) a = a/np.sum(a) return a def remain2(a,n): ind = range(len(a)) ind.sort(lambda x,y:cmp(a[x],a[y])) mn = 0.001 for i in range(len(a)) : if a[i] < mn: a[i] = 0.0 for i in range(n): a[ind[i]] = 0 a = a + abs(a.min()) a = 1.0*a/np.sum(a) return a def remain3(a,n): for i in range(len(a)): if a[i]<0.1: a[i] = 0 elif a[i] >0.9: a[i] = 1 if np.sum(a) < 1: a = a/np.sum(a) return a def readtopic(): """ """ train,test = [],[] print "读topic" f1 = open("topic_train.txt") for line in f1.readlines(): sp = line.split() sp = [float(j) for j in sp] train.append(sp) f2 = open("topic_test.txt") for line in f2.readlines(): sp = line.split() sp = [float(j) for j in sp] test.append(sp) return train,test if __name__ == "__main__": print "读文件" train,label,test,ans,etrain,etest = read_csv() print "读主题" topic_train,topic_test = readtopic() #vectorizer = TfidfVectorizer(max_features=None,min_df=3,max_df=1.0,sublinear_tf=True,ngram_range=(1,2),smooth_idf=True,token_pattern=r'\w{1,}',analyzer='word',strip_accents='unicode',use_idf=False,binary=True) vectorizer = TfidfVectorizer(max_features=None,min_df=10,max_df=1.0,sublinear_tf=True,ngram_range=(1,2),smooth_idf=True,token_pattern=r'\w{1,}',analyzer='word',strip_accents='unicode',use_idf=True,binary=False) #vectorizer = TfidfVectorizer(max_features=None,min_df=10,max_df=1.0,sublinear_tf=True,ngram_range=(1,2),smooth_idf=True,analyzer='word',strip_accents='unicode',use_idf=True,binary=False) #vectorizer = CountVectorizer(max_features=None,min_df=10,max_df=1.0,ngram_range=(1,2),token_pattern=r'\w{1,}',analyzer='word',strip_accents='unicode',binary=False) length_train = len(train) x_all = train + test print "转化成tf-idf矩阵" x_all = vectorizer.fit_transform(x_all) x = x_all[:length_train] t = x_all[length_train:] label = np.array(label) length_test = len(test) n = label.shape[1] print "x shape",x.shape print "t shape",t.shape print "合并" x = sparse.hstack((x,etrain,topic_train)).tocsr() t = sparse.hstack((t,etest,topic_test)).tocsr() print "x shape",x.shape print "t shape",t.shape #构造结果的矩阵 answer = [] print "开始回归" clf = linear_model.Ridge(alpha=1.2,fit_intercept=True,normalize=True,tol=1e-9) for i in range(n): print "第%s个"%(i) clf.fit(x,label[:,i]) temp_answer = clf.predict(t) answer.append(temp_answer) answer = np.array(answer) answer = answer.T print answer.shape print "归一化" s = answer[:,0:5] w = answer[:,5:9] k = answer[:,9:24] print "s shape",s.shape print "w shape",w.shape print "k shpae",k.shape #s = s/np.mean(s,axis=1) #w = w/np.mean(w,axis=1) #k = k/np.mean(k,axis=1) print "写入文件" head = "id,s1,s2,s3,s4,s5,w1,w2,w3,w4,k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k14,k15" f = open("ans_regression1.csv","w") f.write(head+"\n") for i in xrange(len(test)): ts,tw,tk = s[i],w[i],k[i] ts = remain(ts,0) tw = remain2(tw,0) tk = remain3(tk,13) str_s = [str(j) for j in ts] str_w = [str(j) for j in tw] str_k = [str(j) for j in tk] str_s = ','.join(str_s) str_w = ','.join(str_w) str_k = ','.join(str_k) f.write("%s,%s,%s,%s\n"%(ans[i],str_s,str_w,str_k))
apache-2.0
yaukwankiu/armor
defaultParameters.py
1
11354
# -*- coding: utf-8 -*- #################################### # imports import time, datetime import platform #################################### # computer settings computer = 'asus-laptop' if platform.node() == 'k-Aspire-E1-571G' or platform.node()=='yan-Aspire-E1-571G': computer = 'acer-laptop' elif platform.node() == 'k-801': computer = 'k-801' # 801-desktop elif platform.node() == 'k-acer': computer = 'k-acer' # ubuntu 12.04/Win7 acer laptop elif platform.node() == 'zxc-Aspire-E1-571G': computer = 'k-acer' # ubuntu 12.04/Win7 acer laptop elif platform.node()== 'Qoo-PC': computer = 'Qoo-PC' elif platform.node() =='user-PC': #2014-09-10 computer = 'user-PC' #computer = 'i5-desktop' print "computer: ", computer defaultInputFolder = "../data_temp/" defaultOutputFolder = "testing/" defaultOutputFolderForImages = defaultOutputFolder defaultImageFolder = defaultOutputFolderForImages #alias defaultDatabase = "" #not used yet defaultImageExtension = '.png' # added 2013-09-27 defaultImageTopDown = False if computer == 'acer-laptop': #usbDriveName = 'k/KINGSTON' #externalHardDriveName = 'k/Seagate Expansion Drive' #externalHardDriveName2= 'k/A4ECB939ECB90718' #hardDriveName = 'DATA' usbDriveName = 'TOSHIBA EXT' externalHardDriveName = 'TOSHIBA EXT' externalHardDriveName2= 'TOSHIBA EXT' hardDriveName = 'DATA' elif computer == 'k-801': usbDriveName = 'k/KINGSTON' externalHardDriveName = 'k/FreeAgent Drive' #?! externalHardDriveName2= 'k/A4ECB939ECB90718' hardDriveName = '../home/k' elif computer == 'k-acer' or computer=='user-PC': #acer- ubuntu - main platform 2014-02-19 #usbDriveName = 'KINGSTON' #user-PC : 2014-09-10 #externalHardDriveName = 'FreeAgent Drive' #?! #externalHardDriveName2= 'A4ECB939ECB90718' #hardDriveName = 'home/k' #hardDriveName2 = 'data' usbDriveName = 'TOSHIBA EXT' externalHardDriveName = 'TOSHIBA EXT' externalHardDriveName2= 'TOSHIBA EXT' #hardDriveName = '051798CD6AAE5EEF' hardDriveName = 'media/TOSHIBA EXT' else: usbDriveName = 'KINGSTON' externalHardDriveName = 'Seagate Expansion Drive' externalHardDriveName2= 'A4ECB939ECB90718' hardDriveName = 'host' if computer == 'acer-laptop': usbDriveLetter ='H' externalHardDriveLetter = 'G' hardDriveLetter = 'D' elif computer == 'i5-desktop': usbDriveLetter ='G' externalHardDriveLetter = 'D' hardDriveLetter = 'C' elif computer == 'asus-laptop': usbDriveLetter ='I' #forgot externalHardDriveLetter = 'G' #forgot hardDriveLetter = 'D' elif computer == 'k-801': usbDriveLetter ='I' #forgot externalHardDriveLetter = 'G' #forgot hardDriveLetter = 'D' #FORGOT elif computer == 'k-acer': usbDriveLetter ='I' #don't know yet externalHardDriveLetter = 'G' #don't know yet hardDriveLetter = 'D' #don't know yet elif computer == 'user-PC': #2014-09-10 usbDriveLetter ='F' #don't know yet externalHardDriveLetter = 'F' #don't know yet hardDriveLetter = 'F' #don't know yet hardDriveLetter2 = 'F' #don't know yet elif computer =='Qoo-PC': usbDriveLetter ='D' externalHardDriveLetter = 'D' hardDriveLetter = 'D' hardDriveLetter2 = 'D' ################################ # need to check the following #elif computer == 'k-801': # usbDriveLetter ='I' #forgot # externalHardDriveLetter = 'G' #forgot # hardDriveLetter = 'D' import os if computer == 'acer-laptop' and os.getcwd() == '/home/k/ARMOR/python': usbRoot = '/home/k/ARMOR/python' externalHardDriveRoot = '/home/k/ARMOR/python' externalHardDriveRoot2 = '/home/k/ARMOR/python' hardDriveRoot = '/home/k/ARMOR/python' elif os.sep == "/": usbRoot = '/media/%s/ARMOR/' % usbDriveName externalHardDriveRoot = '/media/%s/ARMOR/' % externalHardDriveName externalHardDriveRoot2 = '/media/%s/ARMOR/' % externalHardDriveName2 hardDriveRoot = '/%s/ARMOR/' % hardDriveName else: usbRoot = '%s:/ARMOR/' % usbDriveLetter externalHardDriveRoot = '%s:/ARMOR/' % externalHardDriveLetter externalHardDriveRoot2 = '%s:/ARMOR/' % hardDriveLetter2 # don't know this yet hardDriveRoot = '%s:/ARMOR/' % hardDriveLetter defaultRootFolder = usbRoot # can choose (= .../ARMOR/) defaultRoot = defaultRootFolder #alias root = defaultRootFolder #alias rootFolder = defaultRootFolder #alias defaultLabReportsFolder = defaultRootFolder + 'labReports/' defaultLabReportFolder = defaultLabReportsFolder #alias defaultLabLogsFolder = 'labLogs/' defaultLabLogFolder = defaultLabLogsFolder #alias defaultTestScriptFolder = defaultRootFolder+ 'python/armor/tests/' testFolder = defaultTestScriptFolder defaultCWBfolder = defaultRootFolder + '../CWB/' CWBfolder = defaultCWBfolder #alias defaultImageDataFolder = defaultCWBfolder # maybe alias, maybe not, it's a local setting if computer=='acer-laptop': if os.path.exists('/media/TOURO S/CWB/'): defaultImageDataFolder = '/media/TOURO S/CWB/' else: print "TOURO S-drive not found!" defaultImageDataFolder = root + '../CWB/' else: defaultImageDataFolder = root + '../CWB/' ################################################################ # geography # taichung park coordinates (24.145056°N 120.683329°E) #defaultTaiwanReliefDataFolder = defaultRootFolder+'armor/taiwanReliefData/' defaultTaiwanReliefDataFolder = defaultRootFolder+'data/taiwanRelief881/' #2014-06-12 defaultTaiwanReliefDataFolder881 = defaultRootFolder+'data/taiwanRelief881/' #2014-06-12 defaultTaiwanReliefDataFolder150 = defaultRootFolder+'data/taiwanRelief150/' #2014-06-12 taichungParkLatitude = 24.145056 taichungParkLongitude= 120.683329 # 2014-01-19 taipeiLatitude = 25.0333 # google taipeiLongitude = 121.6333 taipei = (taipeiLatitude, taipeiLongitude) tainanLatitude = 22.9833 tainanLongitude = 120.1833 tainan = ( tainanLatitude, tainanLongitude) kentingLatitude = 21.9800 kentingLongitude = 120.7970 kenting = (kentingLatitude, kentingLongitude ) hualienLatitude = 23.9722 hualienLongitude = 121.6064 hualien = (hualienLatitude ,hualienLongitude ) taitungLatitude = 22.7583 taitungLongitude = 121.1444 taitung = ( taitungLatitude,taitungLongitude ) # from armor.tests.projectProposal20140119 taipeiCounty = (530, 500, 60, 60) taichungCounty = (475, 435, 40, 80) tainanCounty = (390, 400, 40, 50) kaohsiungCounty = (360, 410, 70, 70) yilanCounty = (500, 500, 50, 50) hualienCounty = (410, 480, 100, 60) taitungCounty = (335, 460, 100, 60) kenting = (319, 464) sector7 = (464, 504, 96, 60) sector2 = (428, 396, 96, 108) sector1 = (500, 432, 96, 120) allReg = (300, 100, 500, 600) ############################################################## # input image info # .......................................................... # COMPREF defaultHeight = 881 defaultWidth = 921 defaultLowerLeftCornerLatitudeLongitude = (18., 115.) # p.25, https://docs.google.com/file/d/0B84wEiWytQMwemhzX3JkQ1dSaTA/edit defaultUpperRightCornerLatitudeLongitude = (29., 126.5) # p.25, https://docs.google.com/file/d/0B84wEiWytQMwemhzX3JkQ1dSaTA/edit #missingDataThreshold = -150. # anything below " missingDataThreshold is marked as "masked" defaultMissingDataThreshold = -150. # anything below " missingDataThreshold is marked as "masked" # this line replaces the line above 2014-02-20 missingDataThreshold = defaultMissingDataThreshold # this line is for backward compatibility if any #defaultThreshold = missingDataThreshold # .......................................................... # WRF """ defaultHeight = 881 defaultWidth = 921 defaultLowerLeftCornerLatitudeLongitude = (18., 115.) # p.25, https://docs.google.com/file/d/0B84wEiWytQMwemhzX3JkQ1dSaTA/edit defaultUpperRightCornerLatitudeLongitude = (29., 126.5) # p.25, https://docs.google.com/file/d/0B84wEiWytQMwemhzX3JkQ1dSaTA/edit #missingDataThreshold = -150. # anything below " missingDataThreshold is marked as "masked" defaultMissingDataThreshold = -150. # anything below " missingDataThreshold is marked as "masked" # this line replaces the line above 2014-02-20 missingDataThreshold = defaultMissingDataThreshold # this line is for backward compatibility if any #defaultThreshold = missingDataThreshold """ defaultWRFHeight = 150 defaultWRFWidth = 140 COMPREF2WRFwindow = (200,200,600,560) defaultWRFLowerLeftCornerLatitudeLongitude = (20., 117.5) #defaultWRFUpperRightCornerLatitudeLongitude = (28., 124.5) defaultWRFUpperRightCornerLatitudeLongitude = (27.-0.05, 124.5-0.05) #2014-06-13 LL = defaultWRFLowerLeftCornerLatitudeLongitude #alias #2014-06-02 UR = defaultWRFUpperRightCornerLatitudeLongitude #alias ################################################################ # plotting from . import colourbar defaultCmap = colourbar.cmap coloursList = ['b','c','g','y','r','m','k',] * 30 #http://matplotlib.org/api/colors_api.html ################################################################ # CWB "chart2" colour bar information - to be used in back-converting downloaded images to data # data obtained through analysis by armor/tests/imageToData_chartsTest2.py chart2ColourBar = { 273: [209, 200, 227], 253: [255, 255, 255], 238: [150, 0, 245], 219: [255, 0, 255], 206: [152, 0, 0], 193: [200, 0, 0], 175: [251, 2, 0], 160: [251, 121, 1], 145: [255, 199, 4], 130: [255, 253, 0], 115: [ 2, 149, 0], 100: [ 1, 200, 0], 80: [ 3, 252, 12], 67: [ 2, 1, 253], 52: [ 0, 150, 254], 34: [ 0, 255, 252], 19: [175, 175, 175], } ################################################################ # filenames defaultImageSuffix = ".png" #defaultDataSuffix1 = ".txt" #defaultDataSuffix2 = ".dat" ########################################################### # parameters for analyses defaultMinComponentSize=100 # armor/tests/imageToData11.py , armor/pattern.py localShapeFeatures() ################################################################ # misc defaultTimeString = str(int(time.time())) localtime = time.localtime() year = localtime.tm_year month = localtime.tm_mon day = localtime.tm_mday hour = localtime.tm_hour minute = localtime.tm_min second = localtime.tm_sec
cc0-1.0
stoqs/stoqs
stoqs/contrib/analysis/drift_data.py
3
21334
#!/usr/bin/env python __author__ = "Mike McCann" __copyright__ = "Copyright 2014, MBARI" __license__ = "GPL" __maintainer__ = "Mike McCann" __email__ = "mccann at mbari.org" __status__ = "Development" __doc__ = ''' Script produce products (plots, kml, etc.) to help understand drifting data. - Make progressive vector diagram from moored ADCP data (read from STOQS) - Plot drogued drifter, ship, and other data (read from Tracking DB) - Plot sensor data (read from STOQS) Output as a .png map, .kml file, or ... Mike McCann MBARI 22 September 2014 @var __date__: Date of last svn commit @undocumented: __doc__ parser @author: __author__ @status: __status__ @license: __license__ ''' import os import sys project_dir = os.path.join(os.path.dirname(__file__), "../../") # settings.py is two dirs up sys.path.insert(0, project_dir) if 'DJANGO_SETTINGS_MODULE' not in os.environ: os.environ['DJANGO_SETTINGS_MODULE'] = 'config.settings.local' import django django.setup() import csv import time import pyproj import requests import matplotlib import matplotlib.pyplot as plt import numpy as np import pytz from datetime import datetime from collections import defaultdict from contextlib import closing from django.conf import settings from stoqs.models import MeasuredParameter, NominalLocation, ActivityParameter from django.http import HttpRequest from utils.Viz.plotting import readCLT from utils.Viz.KML import KML from mpl_toolkits.basemap import Basemap class Drift(): '''Data and methods to support drift data product preparation ''' trackDrift = defaultdict(lambda: {'es': [], 'lon': [], 'lat': []}) # To be keyed by platform name adcpDrift = defaultdict(lambda: {'es': [], 'lon': [], 'lat': []}) # To be keyed by depth # Not to be confused with Stokes Drift - To be keyed by parameter,platform,min,max stoqsDrift = defaultdict(lambda: {'es': [], 'lon': [], 'lat': [], 'depth': [], 'datavalue':[]}) def loadTrackingData(self): '''Fill up trackDrift dictionary ''' for url in self.args.trackData: # Careful - trackingdb returns the records in reverse time order if self.args.verbose: print('Opening', url) with closing(requests.get(url, stream=True)) as resp: if resp.status_code != 200: logger.error('Cannot read %s, resp.status_code = %s', url, resp.status_code) return r_decoded = (line.decode('utf-8') for line in resp.iter_lines()) for r in csv.DictReader(r_decoded): # Use logic to skip inserting values if one or the other or both start and end are specified if self.startDatetime: if datetime.utcfromtimestamp(float(r['epochSeconds'])) < self.startDatetime: continue if self.endDatetime: if datetime.utcfromtimestamp(float(r['epochSeconds'])) > self.endDatetime: continue self.trackDrift[r['platformName']]['es'].insert(0, float(r['epochSeconds'])) self.trackDrift[r['platformName']]['lat'].insert(0, float(r['latitude'])) self.trackDrift[r['platformName']]['lon'].insert(0, float(r['longitude'])) def computeADCPDrift(self): '''Read data from database and put computed progressive vectors into adcpDrift dictionary ''' if self.args.adcpPlatform: adcpQS = MeasuredParameter.objects.using(self.args.database).filter( measurement__instantpoint__activity__platform__name=self.args.adcpPlatform) if self.startDatetime: adcpQS = adcpQS.filter(measurement__instantpoint__timevalue__gte=self.startDatetime) if self.endDatetime: adcpQS = adcpQS.filter(measurement__instantpoint__timevalue__lte=self.endDatetime) if self.args.adcpMinDepth: adcpQS = adcpQS.filter(measurement__depth__gte=self.args.adcpMinDepth) if self.args.adcpMaxDepth: adcpQS = adcpQS.filter(measurement__depth__lte=self.args.adcpMaxDepth) utd = adcpQS.filter(parameter__standard_name='eastward_sea_water_velocity').values_list( 'datavalue', 'measurement__instantpoint__timevalue', 'measurement__depth').order_by( 'measurement__depth', 'measurement__instantpoint__timevalue') vtd = adcpQS.filter(parameter__standard_name='northward_sea_water_velocity').values_list( 'datavalue', 'measurement__instantpoint__timevalue', 'measurement__depth').order_by( 'measurement__depth', 'measurement__instantpoint__timevalue') # Compute positions (progressive vectors) - horizontal displacement in meters x = defaultdict(lambda: []) y = defaultdict(lambda: []) last_udiff = None for i, ((u, ut, ud), (v, vt, vd)) in enumerate(zip(utd, vtd)): try: udiff = utd[i+1][1] - ut vdiff = vtd[i+1][1] - vt except IndexError as e: # Extrapolate using last time difference, assuming it's regular and that we are at the last point, works only for very last point udiff = last_udiff vdiff = last_udiff else: last_udiff = udiff if udiff != vdiff: raise Exception('udiff != vdiff') else: dt = udiff.seconds + udiff.days * 24 * 3600 if dt < 0: # For intermediate depths where (utd[i+1][1] - ut) is a diff with the time of the next depth dt = last_dt if ud != vd: raise Exception('ud != vd') else: x[ud].append(u * dt / 100) y[vd].append(v * dt / 100) self.adcpDrift[ud]['es'].append(time.mktime(ut.timetuple())) last_dt = dt # Work in UTM space to add x & y offsets to begining position of the mooring g0 = NominalLocation.objects.using(self.args.database).filter(activity__platform__name=self.args.adcpPlatform).values_list('geom')[0][0] p = pyproj.Proj(proj='utm', zone=10, ellps='WGS84') e0, n0 = p(g0.x, g0.y) for depth in x: eList = np.cumsum([e0] + x[depth]) nList = np.cumsum([n0] + y[depth]) lonList, latList = p(eList, nList, inverse=True) self.adcpDrift[depth]['lon'] = lonList self.adcpDrift[depth]['lat'] = latList def loadSTOQSData(self): '''Fill up stoqsDrift dictionary with platform_parameter as key ''' for url in self.args.stoqsData: # Careful - trackingdb returns the records in reverse time order if self.args.verbose: print('Opening', url) with closing(requests.get(url.replace(' ', '%20'), stream=True)) as resp: if resp.status_code != 200: logger.error('Cannot read %s, resp.status_code = %s', url, resp.status_code) return r_decoded = (line.decode('utf-8') for line in resp.iter_lines()) for r in csv.DictReader(r_decoded): # Use logic to skip inserting values if one or the other or both start and end are specified dt = datetime.strptime(r['measurement__instantpoint__timevalue'], '%Y-%m-%d %H:%M:%S') if self.startDatetime: if dt < self.startDatetime: continue if self.endDatetime: if dt > self.endDatetime: continue if self.args.verbose > 1: print(r) apQS = ActivityParameter.objects.using(self.args.database).filter( activity__name=r['measurement__instantpoint__activity__name'], parameter__name=r['parameter__name']) # Mash together a key composed of parameter, platform, min, max for the Activity key = "%s,%s,%f,%f" % ( r['parameter__name'], r['measurement__instantpoint__activity__platform__name'], apQS[0].p025, apQS[0].p975 ) self.stoqsDrift[key]['es'].append(time.mktime(dt.timetuple())) lon, lat = r['measurement__geom'].split('(')[-1].split(')')[0].split(' ') self.stoqsDrift[key]['lat'].append(float(lat)) self.stoqsDrift[key]['lon'].append(float(lon)) self.stoqsDrift[key]['depth'].append(float(r['measurement__depth'])) self.stoqsDrift[key]['datavalue'].append(r['datavalue']) def process(self): '''Read in data and build structures that we can generate products from ''' if self.args.trackData: self.loadTrackingData() if self.args.adcpPlatform: self.computeADCPDrift() if self.args.stoqsData: self.loadSTOQSData() def getExtent(self): '''For all data members find the min and max latitude and longitude ''' if self.args.extent: return [float(e) for e in self.args.extent] else: lonMin = 180 lonMax = -180 latMin = 90 latMax = -90 for drift in (self.trackDrift, self.adcpDrift, self.stoqsDrift): for k,v in list(drift.items()): if np.min(v['lon']) < lonMin: lonMin = np.min(v['lon']) if np.max(v['lon']) > lonMax: lonMax = np.max(v['lon']) if np.min(v['lat']) < latMin: latMin = np.min(v['lat']) if np.max(v['lat']) > latMax: latMax = np.max(v['lat']) # Expand the computed extent by extendDeg degrees extendDeg = self.args.extend return lonMin - extendDeg, latMin - extendDeg, lonMax + extendDeg, latMax + extendDeg def createPNG(self, fileName=None, forGeotiff=False): '''Draw processed data on a map and save it as a .png file ''' if not forGeotiff: fig = plt.figure(figsize=(18, 12)) ax = plt.axes() else: fig = plt.figure() ax = fig.add_axes((0,0,1,1)) if not fileName: fileName = self.args.pngFileName e = self.getExtent() m = Basemap(llcrnrlon=e[0], llcrnrlat=e[1], urcrnrlon=e[2], urcrnrlat=e[3], projection='cyl', resolution='l', ax=ax) if not forGeotiff: m.arcgisimage(server='http://services.arcgisonline.com/ArcGIS', service='Ocean_Basemap') for depth, drift in list(self.adcpDrift.items()): m.plot(drift['lon'], drift['lat'], '-', c='black', linewidth=1) plt.text(drift['lon'][-1], drift['lat'][-1], '%i m' % depth, size='small') for platform, drift in list(self.trackDrift.items()): # Ad hoc coloring of platforms... if platform.startswith('stella'): color = 'yellow' elif platform.startswith('daphne'): color = 'orange' elif platform.startswith('makai'): color = 'magenta' else: color = 'red' m.plot(drift['lon'], drift['lat'], '-', c=color, linewidth=2) plt.text(drift['lon'][-1], drift['lat'][-1], platform, size='small') # Plot each data point with it's own color based on the activity statistics from STOQS coloredDotSize = 30 clt = readCLT(os.path.join(settings.ROOT_DIR('static'), 'colormaps', 'jetplus.txt')) cm_jetplus = matplotlib.colors.ListedColormap(np.array(clt)) for key, drift in list(self.stoqsDrift.items()): min, max = key.split(',')[2:4] ax.scatter(drift['lon'], drift['lat'], c=drift['datavalue'], s=coloredDotSize, cmap=cm_jetplus, lw=0, vmin=min, vmax=max) label = '%s from %s' % tuple(key.split(',')[:2]) plt.text(drift['lon'][-1], drift['lat'][-1], label, size='small') nowLocal = str(pytz.utc.localize(datetime.now()).astimezone(pytz.timezone('America/Los_Angeles'))).split('.')[0] plt.text(0.99, 0.01, 'Created: ' + nowLocal + ' Local', horizontalalignment='right', verticalalignment='bottom', transform=ax.transAxes) if not forGeotiff: m.drawparallels(np.linspace(e[1],e[3],num=3), labels=[True,False,False,False], linewidth=0) m.drawmeridians(np.linspace(e[0],e[2],num=3), labels=[False,False,False,True], linewidth=0) try: plt.title(self.title) except AttributeError: pass fig.savefig(fileName) print('Wrote file', self.args.pngFileName) else: plt.axis('off') try: plt.text(0.5, 0.95, self.title, horizontalalignment='center', verticalalignment='top', transform=ax.transAxes) except AttributeError: pass fig.savefig(fileName, transparent=True, dpi=300, bbox_inches='tight', pad_inches=0) plt.clf() plt.close() def createGeoTiff(self): '''Your image must be only the geoplot with no decorations like axis titles, axis labels, etc., and you will need accurate upper-left and lower-right coordinates in EPSG:4326 projection, also known as WGS 84 projection,... The syntax is pretty straightforward, something like the following will convert your image to the correct format: gdal_translate <image.png> <image.tiff> -a_ullr -122.25 37.1 -121.57365 36.67558 There is also a python wrapper for the GDAL library https://pypi.python.org/pypi/GDAL/ ''' e = self.getExtent() self.createPNG(self.args.geotiffFileName + '.png', forGeotiff=True) cmd = 'gdal_translate %s %s -a_ullr %s %s %s %s' % (self.args.geotiffFileName + '.png', self.args.geotiffFileName, e[0], e[3], e[2], e[1]) print("Executing:\n", cmd) os.system(cmd) os.remove(self.args.geotiffFileName + '.png') print('Wrote file', self.args.geotiffFileName) def createKML(self): '''Reuse STOQS utils/Viz code to build some simple KML. Use 'position' for Parameter Name. Fudge data value to distinguish platforms by color, use 0.0 for depth except for adcp data. ''' request = HttpRequest() qs = None qparams = {} stoqs_object_name = None kml = KML(request, qs, qparams, stoqs_object_name, withTimeStamps=True, withLineStrings=True, withFullIconURL=True) # Put data into form that KML() expects - use different datavalues (-1, 1) to color the platforms dataHash = defaultdict(lambda: []) colors = {} values = np.linspace(-1, 1, len(list(self.trackDrift.keys()))) for i, k in enumerate(self.trackDrift.keys()): colors[k] = values[i] for platform, drift in list(self.trackDrift.items()): for es, lo, la in zip(drift['es'], drift['lon'], drift['lat']): dataHash[platform].append([datetime.utcfromtimestamp(es), lo, la, 0.0, 'position', colors[platform], platform]) for depth, drift in list(self.adcpDrift.items()): for es, lo, la in zip(drift['es'], drift['lon'], drift['lat']): dataHash[depth].append([datetime.utcfromtimestamp(es), lo, la, float(depth), 'position', 0.0, 'adcp']) for key, drift in list(self.stoqsDrift.items()): parm, plat = key.split(',')[:2] for es, lo, la, de, dv in zip(drift['es'], drift['lon'], drift['lat'], drift['depth'], drift['datavalue']): dataHash[parm].append([datetime.utcfromtimestamp(es), lo, la, de, parm, dv, plat]) try: title = self.title except AttributeError: title = 'Product of STOQS drift_data.py' description = self.commandline.replace('&','&amp;') kml = kml.makeKML(self.args.database, dataHash, 'position', title, description, 0.0, 0.0 ) fh = open(self.args.kmlFileName, 'w') fh.write(kml) fh.close() print('Wrote file', self.args.kmlFileName) def process_command_line(self): '''The argparse library is included in Python 2.7 and is an added package for STOQS. ''' import argparse from argparse import RawTextHelpFormatter examples = 'Examples:' + '\n\n' examples += "M1 ADCP progressive vector diagram and Stella and Rachel Carson position data:\n" examples += sys.argv[0] + " --database stoqs_september2014 --adcpPlatform M1_Mooring --adcpMinDepth 30 --adcpMaxDepth 40" examples += " --trackData http://odss.mbari.org/trackingdb/position/stella101/between/20140922T171500/20141010T000000/data.csv" examples += " http://odss.mbari.org/trackingdb/position/R_CARSON/between/20140922T171500/20141010T000000/data.csv" examples += " http://odss.mbari.org/trackingdb/position/stella122/between/20140922T171500/20141010T000000/data.csv" examples += " --pngFileName foo.png --start 20140923T180000 --end 20140925T150000" examples += "\n" examples += '\nIf running from cde-package replace ".py" with ".py.cde".' parser = argparse.ArgumentParser(formatter_class=RawTextHelpFormatter, description='Script to produce products to help understand drift caused by currents in the ocean', epilog=examples) parser.add_argument('-d', '--database', action='store', help='Database alias', default='stoqs_september2014') parser.add_argument('--adcpPlatform', action='store', help='STOQS Platform Name for ADCP data') parser.add_argument('--adcpMinDepth', action='store', help='Minimum depth of ADCP data for progressive vector data', type=float) parser.add_argument('--adcpMaxDepth', action='store', help='Maximum depth of ADCP data for progressive vector data', type=float) parser.add_argument('--trackData', action='store', help='List of MBARItracking database .csv urls for data from drifters, ships, etc.', nargs='*', default=[]) parser.add_argument('--stoqsData', action='store', help='List of STOQS MeasuredParameter Data Access .csv urls for parameter data', nargs='*', default=[]) parser.add_argument('--start', action='store', help='Start time in YYYYMMDDTHHMMSS format') parser.add_argument('--end', action='store', help='End time in YYYYMMDDTHHMMSS format') parser.add_argument('--extend', action='store', help='Extend the data extent for the map boundaries by this value in degrees', default=0.05, type=float) parser.add_argument('--extent', action='store', help='Space separated specific map boundary in degrees: ll_lon ll_lat ur_lon ur_lat', nargs=4, default=[]) parser.add_argument('--title', action='store', help='Title for plots, will override default title created if --start specified') parser.add_argument('--kmlFileName', action='store', help='Name of file for KML output') parser.add_argument('--pngFileName', action='store', help='Name of file for PNG image of map') parser.add_argument('--geotiffFileName', action='store', help='Name of file for geotiff image of map') parser.add_argument('-v', '--verbose', nargs='?', choices=[1,2,3], type=int, help='Turn on verbose output. Higher number = more output.', const=1) self.args = parser.parse_args() self.commandline = ' '.join(sys.argv) self.startDatetime = None # Make both naiive and timezone aware datetime data members if self.args.start: self.startDatetime = datetime.strptime(self.args.start, '%Y%m%dT%H%M%S') self.startDatetimeUTC = pytz.utc.localize(self.startDatetime) self.startDatetimeLocal = self.startDatetimeUTC.astimezone(pytz.timezone('America/Los_Angeles')) self.title = 'Drift since %s' % self.startDatetimeLocal self.endDatetime = None if self.args.end: self.endDatetime = datetime.strptime(self.args.end, '%Y%m%dT%H%M%S') self.endDatetimeUTC = pytz.utc.localize(self.endDatetime) self.endDatetimeLocal = self.endDatetimeUTC.astimezone(pytz.timezone('America/Los_Angeles')) if self.args.title: self.title = self.args.title if __name__ == '__main__': d = Drift() d.process_command_line() d.process() if d.args.pngFileName: d.createPNG() if d.args.geotiffFileName: d.createGeoTiff() if d.args.kmlFileName: d.createKML()
gpl-3.0
walterreade/scikit-learn
examples/ensemble/plot_feature_transformation.py
115
4327
""" =============================================== Feature transformations with ensembles of trees =============================================== Transform your features into a higher dimensional, sparse space. Then train a linear model on these features. First fit an ensemble of trees (totally random trees, a random forest, or gradient boosted trees) on the training set. Then each leaf of each tree in the ensemble is assigned a fixed arbitrary feature index in a new feature space. These leaf indices are then encoded in a one-hot fashion. Each sample goes through the decisions of each tree of the ensemble and ends up in one leaf per tree. The sample is encoded by setting feature values for these leaves to 1 and the other feature values to 0. The resulting transformer has then learned a supervised, sparse, high-dimensional categorical embedding of the data. """ # Author: Tim Head <[email protected]> # # License: BSD 3 clause import numpy as np np.random.seed(10) import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.linear_model import LogisticRegression from sklearn.ensemble import (RandomTreesEmbedding, RandomForestClassifier, GradientBoostingClassifier) from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import roc_curve from sklearn.pipeline import make_pipeline n_estimator = 10 X, y = make_classification(n_samples=80000) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5) # It is important to train the ensemble of trees on a different subset # of the training data than the linear regression model to avoid # overfitting, in particular if the total number of leaves is # similar to the number of training samples X_train, X_train_lr, y_train, y_train_lr = train_test_split(X_train, y_train, test_size=0.5) # Unsupervised transformation based on totally random trees rt = RandomTreesEmbedding(max_depth=3, n_estimators=n_estimator, random_state=0) rt_lm = LogisticRegression() pipeline = make_pipeline(rt, rt_lm) pipeline.fit(X_train, y_train) y_pred_rt = pipeline.predict_proba(X_test)[:, 1] fpr_rt_lm, tpr_rt_lm, _ = roc_curve(y_test, y_pred_rt) # Supervised transformation based on random forests rf = RandomForestClassifier(max_depth=3, n_estimators=n_estimator) rf_enc = OneHotEncoder() rf_lm = LogisticRegression() rf.fit(X_train, y_train) rf_enc.fit(rf.apply(X_train)) rf_lm.fit(rf_enc.transform(rf.apply(X_train_lr)), y_train_lr) y_pred_rf_lm = rf_lm.predict_proba(rf_enc.transform(rf.apply(X_test)))[:, 1] fpr_rf_lm, tpr_rf_lm, _ = roc_curve(y_test, y_pred_rf_lm) grd = GradientBoostingClassifier(n_estimators=n_estimator) grd_enc = OneHotEncoder() grd_lm = LogisticRegression() grd.fit(X_train, y_train) grd_enc.fit(grd.apply(X_train)[:, :, 0]) grd_lm.fit(grd_enc.transform(grd.apply(X_train_lr)[:, :, 0]), y_train_lr) y_pred_grd_lm = grd_lm.predict_proba( grd_enc.transform(grd.apply(X_test)[:, :, 0]))[:, 1] fpr_grd_lm, tpr_grd_lm, _ = roc_curve(y_test, y_pred_grd_lm) # The gradient boosted model by itself y_pred_grd = grd.predict_proba(X_test)[:, 1] fpr_grd, tpr_grd, _ = roc_curve(y_test, y_pred_grd) # The random forest model by itself y_pred_rf = rf.predict_proba(X_test)[:, 1] fpr_rf, tpr_rf, _ = roc_curve(y_test, y_pred_rf) plt.figure(1) plt.plot([0, 1], [0, 1], 'k--') plt.plot(fpr_rt_lm, tpr_rt_lm, label='RT + LR') plt.plot(fpr_rf, tpr_rf, label='RF') plt.plot(fpr_rf_lm, tpr_rf_lm, label='RF + LR') plt.plot(fpr_grd, tpr_grd, label='GBT') plt.plot(fpr_grd_lm, tpr_grd_lm, label='GBT + LR') plt.xlabel('False positive rate') plt.ylabel('True positive rate') plt.title('ROC curve') plt.legend(loc='best') plt.show() plt.figure(2) plt.xlim(0, 0.2) plt.ylim(0.8, 1) plt.plot([0, 1], [0, 1], 'k--') plt.plot(fpr_rt_lm, tpr_rt_lm, label='RT + LR') plt.plot(fpr_rf, tpr_rf, label='RF') plt.plot(fpr_rf_lm, tpr_rf_lm, label='RF + LR') plt.plot(fpr_grd, tpr_grd, label='GBT') plt.plot(fpr_grd_lm, tpr_grd_lm, label='GBT + LR') plt.xlabel('False positive rate') plt.ylabel('True positive rate') plt.title('ROC curve (zoomed in at top left)') plt.legend(loc='best') plt.show()
bsd-3-clause
JohannesUIBK/oggm
oggm/sandbox/itmix/plot_submitted.py
2
1067
import glob import os import matplotlib.pyplot as plt import salem from .itmix import find_path from .itmix_cfg import DATA_DIR, ITMIX_ODIR, PLOTS_DIR pdir = os.path.join(PLOTS_DIR, 'submitted') + '/' if not os.path.exists(pdir): os.mkdir(pdir) for dgn in glob.glob(os.path.join(ITMIX_ODIR, '*')): gname = os.path.basename(dgn) print(gname) ifile = find_path(os.path.join(DATA_DIR, 'itmix', 'glaciers_sorted'), '02_surface_' + gname + '*.asc') ds = salem.EsriITMIX(ifile) itmix_topo = ds.get_vardata() ifiles = find_path(ITMIX_ODIR, '*' + gname + '*.asc', allow_more=True) for ifile in ifiles: ds2 = salem.EsriITMIX(ifile) oggm_topo = ds2.get_vardata() thick = itmix_topo - oggm_topo cm = salem.Map(ds.grid) cm.set_plot_params(nlevels=256) cm.set_cmap(plt.get_cmap('viridis')) cm.set_data(thick) cm.visualize() pname = os.path.basename(ifile).split('.')[0] plt.savefig(os.path.join(pdir, pname) + '.png') plt.close()
gpl-3.0
brianlorenz/COSMOS_IMACS_Redshifts
Emission_Fitting/Find_Avs.py
1
8407
#Plots the Av magnitude due to the balmer decerment import numpy as np import matplotlib.pyplot as plt from astropy.io import ascii import sys, os, string import pandas as pd from astropy.io import fits import collections #Folder to save the figures figout = '/Users/blorenz/COSMOS/Reports/2018/Images/' #The location with the file for all of our data fluxdatapath = '/Users/blorenz/COSMOS/COSMOSData/lineflux.txt' #Read the datafile: fluxdata = ascii.read(fluxdatapath).to_pandas() #The location to store the scale and its stddev of each line qualdatapath = '/Users/blorenz/COSMOS/COSMOSData/dataqual.txt' #Read in the scale of the lines dataqual = ascii.read(qualdatapath).to_pandas() #USIG ERRORS #File with the error array errdatapath = '/Users/blorenz/COSMOS/COSMOSData/errs.txt' #Read in the scale of the lines err_df = ascii.read(errdatapath,data_start=1,header_start=0,format='csv').to_pandas() ''' #BIWT DUP ERRORS #File with the error array errdatapath = '/Users/blorenz/COSMOS/COSMOSData/biwt_dup.txt' #Read in the scale of the lines err_df = ascii.read(errdatapath,data_start=1,header_start=0,format='csv').to_pandas() ''' #File to write the Av array to dataout = '/Users/blorenz/COSMOS/COSMOSData/balmer_avs.txt' #The location of the muzzin et al data: mdatapath = '/Users/blorenz/COSMOS/muzzin_data/UVISTA_final_colors_sfrs_v4.1.dat' #Read in the muzzin data mdata = ascii.read(mdatapath).to_pandas() mdata = mdata.rename(columns={'ID':'OBJID'}) fluxdata = pd.merge(fluxdata,mdata) #Fontsizes for plotting axisfont = 18 ticksize = 16 titlefont = 24 legendfont = 16 textfont = 16 #Division function def divz(X,Y): return X/np.where(Y,Y,Y+1)*np.not_equal(Y,0) lines = ['6563_fix','4861','4340'] #Fontsizes for plotting axisfont = 18 ticksize = 16 titlefont = 24 legendfont = 16 textfont = 16 #Division function def divz(X,Y): return X/np.where(Y,Y,Y+1)*np.not_equal(Y,0) #Create the figure fig,axarr = plt.subplots(3,3,figsize=(25,22)) #Plotting parameters ms = 3 lw=0.5 mark='o' #Set the Rv value - this one is taken for Calzetti Rv = 4.05 #+-0.80 #Reddening law from Calzetti et al (2000) def Calzetti_k(wave): waveum = wave*.0001 if ((waveum >= 0.63) and (waveum <= 2.2)): k = 2.659*(-1.857+divz(1.040,waveum))+Rv if ((waveum < 0.63) and (waveum >= 0.12)): k = 2.659*(-2.156+divz(1.509,waveum)-divz(0.198,waveum**2)+divz(0.011,waveum**3))+Rv return k #Finds the ratio and errors in that ratio of any two lines def getAv(pd_df,err_df,L1,L2,bdec): #Calibrate the fluxes by dividing by scale calL1 = divz(pd_df[L1+'_flux'],pd_df[L1+'_scale']) calL2 = divz(pd_df[L2+'_flux'],pd_df[L2+'_scale']) #Find the ratio rat = divz(calL1,calL2) #Find the error in the ratio erat = np.sqrt((divz(1,calL2) * err_df[L1])**2 + (divz(-calL1,(calL2**2)) * err_df[L2])**2) #Get the integer of the line if len(L1)==8: iL1=int(L1[0:4]) else: iL1 = int(L1) if len(L2)==8: iL2=int(L2[0:4]) else: iL2 = int(L2) #Get the k value for each line L1k = Calzetti_k(iL1) L2k = Calzetti_k(iL2) #Compute the Av Av = divz(np.log10(rat/bdec),(0.4*((L2k/Rv)-(L1k/Rv)))) #And its error eAv = divz((1/np.log(10))*divz((erat/bdec),rat),(0.4*((L2k/Rv)-(L1k/Rv)))) return Av,eAv d = {'True': True, 'False': False} lines0 = ['6563_fix','4861'] lines1 = ['4861','4340'] lines2 = ['6563_fix','4340'] c = 0 Av_df = pd.DataFrame() #Add the fluxfile so that this can later be merged with the main frame Av_df['fluxfile'] = fluxdata['fluxfile'] Av_df['LMASS'] = fluxdata['LMASS'] for lines in [lines0,lines1,lines2]: #Filter the data goodlines = [dataqual[line+'_good'].map(d) for line in lines] #Needs to be good in all lines to be good allgood = np.logical_and.reduce(goodlines) #Needs to be bad in any line to be bad badlines = [dataqual[line+'_bad'].map(d) for line in lines] baddata = np.logical_or.reduce(badlines) lowlines = [dataqual[line+'_low'].map(d) for line in lines] #Needs to be low in any line to be low, and also not bad in a line somelow = np.logical_and(np.logical_or.reduce(lowlines),np.logical_not(baddata)) if c==0: bdec=2.86 elif c==1: bdec=2.137 else: bdec=2.86*2.137 Av,eAv = getAv(fluxdata,err_df,lines[0],lines[1],bdec) if c==0: Av_df['AvHaHb'] = Av Av_df['AvHaHberr'] = eAv elif c==1: Av_df['AvHbHg'] = Av Av_df['AvHbHgerr'] = eAv elif c==2: Av_df['AvHaHg'] = Av Av_df['AvHaHgerr'] = eAv c=c+1 #Get the average between the two good Avs and its error Av_df['AvHa_avg'] = (Av_df['AvHaHb']+Av_df['AvHaHg'])/2 Av_df['AvHa_avgerr'] = (Av_df['AvHaHberr']+Av_df['AvHaHgerr'])/2 #Find the mass_weighted medians mr1 = (fluxdata['LMASS']<9.25) mr2 = np.logical_and(fluxdata['LMASS']>=9.25,fluxdata['LMASS']<9.5) mr3 = np.logical_and(fluxdata['LMASS']>=9.5,fluxdata['LMASS']<9.75) mr4 = (fluxdata['LMASS']>=9.75) med1 = np.median(Av_df[np.logical_and(allgood,mr1)]['AvHaHb']) med2 = np.median(Av_df[np.logical_and(allgood,mr2)]['AvHaHb']) med3 = np.median(Av_df[np.logical_and(allgood,mr3)]['AvHaHb']) med4 = np.median(Av_df[np.logical_and(allgood,mr4)]['AvHaHb']) ''' #Linear fit for the medians coeff = np.polyfit(fluxdata[goodidx]['LMASS'],AvHaHg[goodidx],1) ''' Av_df = Av_df.replace(-np.inf,-99.99999999999) d = {'True': True, 'False': False} ulim=4 #Upper Av limit to consider good #Number of stddevs away form median to be good sig = 2 for i in range(0,len(fluxdata)): ''' use 0 - 'AvHaHb' use 1 - 'AvHbHg' use 2 - 'AvHaHg' use 3 - 'AvMedian' use 4 - 'AvHa_avf' ''' row = fluxdata.iloc[i] #Mass-weighted medians if (row['LMASS'] < 9.25): Av_df.at[i,'AvMedian'] = med1 elif np.logical_and(row['LMASS'] >= 9.25,row['LMASS'] < 9.5,): Av_df.at[i,'AvMedian'] = med2 elif np.logical_and(row['LMASS'] >= 9.5,row['LMASS'] < 9.75): Av_df.at[i,'AvMedian'] = med3 elif (row['LMASS'] >= 9.75): Av_df.at[i,'AvMedian'] = med4 ''' #Linear fit for medians Av_df.at[i,'AvMedian'] = coeff[0]*row['LMASS']+coeff[1] ''' Avrow = Av_df.iloc[i] if np.logical_or((Avrow['AvHaHb'] < 0),((Avrow['AvHaHb'] > ulim))): cHaHb = 10**80 else: cHaHb = Avrow['AvHaHb'] if np.logical_or((Avrow['AvHbHg'] < 0),((Avrow['AvHbHg'] > ulim))): cHbHg = 10**90 else: cHbHg = Avrow['AvHbHg'] if np.logical_or((Avrow['AvHaHg'] < 0),((Avrow['AvHaHg'] > ulim))): cHaHg = 10**100 else: cHaHg = Avrow['AvHaHg'] use = 3 #Find out which lines are good. (Ha,Hb,Hg) l1g = dataqual['6563_fix_good'].map(d).iloc[i] l2g = dataqual['4861_good'].map(d).iloc[i] l3g = dataqual['4340_good'].map(d).iloc[i] goodlines = (l1g,l2g,l3g) #If only Ha and Hb are good, check those if goodlines == (1,1,0): Av_df.at[i,'AvHaHbok'] = Avrow['AvHaHb'] if (cHaHb < 10): use=0 #If only Ha and Hg are good, check those if goodlines == (1,0,1): if (cHaHg < 10): use=1 #If all lines are good, if goodlines == (1,1,1): #Compare HaHb and HaHg. if they are within each other's errors, average them diff = np.abs(cHaHb-cHaHg) err = Avrow['AvHaHberr']+Avrow['AvHaHgerr'] #If they are within each other's errors, check if the error bars are large on one of the measurements if (diff < err): if (divz(Avrow['AvHaHberr'],Avrow['AvHaHgerr']) < 0.5): if (cHaHb < 10): use=0 elif (divz(Avrow['AvHaHberr'],Avrow['AvHaHgerr']) > 2): if (cHaHg < 10): use=1 else: if (Avrow['AvHa_avg'] > 0): use = 4 #If they are not close, use whichever is closest to the median else: diffHaHb = np.abs(cHaHb-Avrow['AvMedian']) diffHaHg = np.abs(cHaHg-Avrow['AvMedian']) arr = np.array([diffHaHb,diffHaHg]) if (5 > arr[np.argmin(arr)]): use = np.argmin(arr) if use == 0: usestr = 'AvHaHb' elif use == 1: usestr = 'AvHaHg' elif use == 3: usestr = 'AvMedian' elif use == 4: usestr = 'AvHa_avg' Av_df.at[i,'useAv'] = usestr #Write to csv Av_df = Av_df.reindex(sorted(Av_df.columns), axis=1) Av_df.to_csv(dataout,index=False)
mit
lin-credible/scikit-learn
sklearn/manifold/tests/test_t_sne.py
162
9771
import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises_regexp from sklearn.utils import check_random_state from sklearn.manifold.t_sne import _joint_probabilities from sklearn.manifold.t_sne import _kl_divergence from sklearn.manifold.t_sne import _gradient_descent from sklearn.manifold.t_sne import trustworthiness from sklearn.manifold.t_sne import TSNE from sklearn.manifold._utils import _binary_search_perplexity from scipy.optimize import check_grad from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform def test_gradient_descent_stops(): # Test stopping conditions of gradient descent. class ObjectiveSmallGradient: def __init__(self): self.it = -1 def __call__(self, _): self.it += 1 return (10 - self.it) / 10.0, np.array([1e-5]) def flat_function(_): return 0.0, np.ones(1) # Gradient norm old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=1e-5, min_error_diff=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 1.0) assert_equal(it, 0) assert("gradient norm" in out) # Error difference old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=0.2, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.9) assert_equal(it, 1) assert("error difference" in out) # Maximum number of iterations without improvement old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( flat_function, np.zeros(1), 0, n_iter=100, n_iter_without_progress=10, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=-1.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 11) assert("did not make any progress" in out) # Maximum number of iterations old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=11, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 10) assert("Iteration 10" in out) def test_binary_search(): # Test if the binary search finds Gaussians with desired perplexity. random_state = check_random_state(0) distances = random_state.randn(50, 2) distances = distances.dot(distances.T) np.fill_diagonal(distances, 0.0) desired_perplexity = 25.0 P = _binary_search_perplexity(distances, desired_perplexity, verbose=0) P = np.maximum(P, np.finfo(np.double).eps) mean_perplexity = np.mean([np.exp(-np.sum(P[i] * np.log(P[i]))) for i in range(P.shape[0])]) assert_almost_equal(mean_perplexity, desired_perplexity, decimal=3) def test_gradient(): # Test gradient of Kullback-Leibler divergence. random_state = check_random_state(0) n_samples = 50 n_features = 2 n_components = 2 alpha = 1.0 distances = random_state.randn(n_samples, n_features) distances = distances.dot(distances.T) np.fill_diagonal(distances, 0.0) X_embedded = random_state.randn(n_samples, n_components) P = _joint_probabilities(distances, desired_perplexity=25.0, verbose=0) fun = lambda params: _kl_divergence(params, P, alpha, n_samples, n_components)[0] grad = lambda params: _kl_divergence(params, P, alpha, n_samples, n_components)[1] assert_almost_equal(check_grad(fun, grad, X_embedded.ravel()), 0.0, decimal=5) def test_trustworthiness(): # Test trustworthiness score. random_state = check_random_state(0) # Affine transformation X = random_state.randn(100, 2) assert_equal(trustworthiness(X, 5.0 + X / 10.0), 1.0) # Randomly shuffled X = np.arange(100).reshape(-1, 1) X_embedded = X.copy() random_state.shuffle(X_embedded) assert_less(trustworthiness(X, X_embedded), 0.6) # Completely different X = np.arange(5).reshape(-1, 1) X_embedded = np.array([[0], [2], [4], [1], [3]]) assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 0.2) def test_preserve_trustworthiness_approximately(): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) X = random_state.randn(100, 2) for init in ('random', 'pca'): tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, init=init, random_state=0) X_embedded = tsne.fit_transform(X) assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 1.0, decimal=1) def test_fit_csr_matrix(): # X can be a sparse matrix. random_state = check_random_state(0) X = random_state.randn(100, 2) X[(np.random.randint(0, 100, 50), np.random.randint(0, 2, 50))] = 0.0 X_csr = sp.csr_matrix(X) tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, random_state=0) X_embedded = tsne.fit_transform(X_csr) assert_almost_equal(trustworthiness(X_csr, X_embedded, n_neighbors=1), 1.0, decimal=1) def test_preserve_trustworthiness_approximately_with_precomputed_distances(): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) X = random_state.randn(100, 2) D = squareform(pdist(X), "sqeuclidean") tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, metric="precomputed", random_state=0) X_embedded = tsne.fit_transform(D) assert_almost_equal(trustworthiness(D, X_embedded, n_neighbors=1, precomputed=True), 1.0, decimal=1) def test_early_exaggeration_too_small(): # Early exaggeration factor must be >= 1. tsne = TSNE(early_exaggeration=0.99) assert_raises_regexp(ValueError, "early_exaggeration .*", tsne.fit_transform, np.array([[0.0]])) def test_too_few_iterations(): # Number of gradient descent iterations must be at least 200. tsne = TSNE(n_iter=199) assert_raises_regexp(ValueError, "n_iter .*", tsne.fit_transform, np.array([[0.0]])) def test_non_square_precomputed_distances(): # Precomputed distance matrices must be square matrices. tsne = TSNE(metric="precomputed") assert_raises_regexp(ValueError, ".* square distance matrix", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_init_not_available(): # 'init' must be 'pca' or 'random'. assert_raises_regexp(ValueError, "'init' must be either 'pca' or 'random'", TSNE, init="not available") def test_distance_not_available(): # 'metric' must be valid. tsne = TSNE(metric="not available") assert_raises_regexp(ValueError, "Unknown metric not available.*", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_pca_initialization_not_compatible_with_precomputed_kernel(): # Precomputed distance matrices must be square matrices. tsne = TSNE(metric="precomputed", init="pca") assert_raises_regexp(ValueError, "The parameter init=\"pca\" cannot be " "used with metric=\"precomputed\".", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_verbose(): random_state = check_random_state(0) tsne = TSNE(verbose=2) X = random_state.randn(5, 2) old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[t-SNE]" in out) assert("Computing pairwise distances" in out) assert("Computed conditional probabilities" in out) assert("Mean sigma" in out) assert("Finished" in out) assert("early exaggeration" in out) assert("Finished" in out) def test_chebyshev_metric(): # t-SNE should allow metrics that cannot be squared (issue #3526). random_state = check_random_state(0) tsne = TSNE(metric="chebyshev") X = random_state.randn(5, 2) tsne.fit_transform(X) def test_reduction_to_one_component(): # t-SNE should allow reduction to one component (issue #4154). random_state = check_random_state(0) tsne = TSNE(n_components=1) X = random_state.randn(5, 2) X_embedded = tsne.fit(X).embedding_ assert(np.all(np.isfinite(X_embedded)))
bsd-3-clause
marqh/cartopy
lib/cartopy/tests/mpl/test_gridliner.py
1
3051
# (C) British Crown Copyright 2011 - 2012, Met Office # # This file is part of cartopy. # # cartopy is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # cartopy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with cartopy. If not, see <http://www.gnu.org/licenses/>. import numpy as np from matplotlib.testing.decorators import image_comparison as mpl_image_comparison import matplotlib.pyplot as plt import matplotlib.patches as mpatches from matplotlib.collections import PatchCollection from matplotlib.path import Path import shapely.geometry import cartopy.crs as ccrs from cartopy.tests.mpl import image_comparison @image_comparison(baseline_images=['gridliner1']) def test_gridliner(): desired_gridline_prj = [ccrs.PlateCarree(), ccrs.OSGB()] projections = [ccrs.PlateCarree(), ccrs.OSGB(), ccrs.RotatedPole(37, 50)] ny, nx = 2, 4 plt.figure(figsize=(10, 10)) ax = plt.subplot(nx, ny, 1, projection=ccrs.PlateCarree()) ax.set_global() ax.coastlines() ax.gridlines() ax = plt.subplot(nx, ny, 2, projection=ccrs.OSGB()) ax.set_global() ax.coastlines() ax.gridlines() ax = plt.subplot(nx, ny, 3, projection=ccrs.OSGB()) ax.set_global() ax.coastlines() ax.gridlines(ccrs.PlateCarree(), color='blue', linestyle='-') ax.gridlines(ccrs.OSGB()) ax = plt.subplot(nx, ny, 4, projection=ccrs.PlateCarree()) ax.set_global() ax.coastlines() ax.gridlines(ccrs.NorthPolarStereo(), alpha=0.5, linewidth=1.5, linestyle='-') ax = plt.subplot(nx, ny, 5, projection=ccrs.PlateCarree()) ax.set_global() ax.coastlines() osgb = ccrs.OSGB() ax.set_extent(tuple(osgb.x_limits) + tuple(osgb.y_limits), crs=osgb) ax.gridlines(osgb) ax = plt.subplot(nx, ny, 6, projection=ccrs.NorthPolarStereo()) ax.set_global() ax.coastlines() ax.gridlines(alpha=0.5, linewidth=1.5, linestyle='-') ax = plt.subplot(nx, ny, 7, projection=ccrs.NorthPolarStereo()) ax.set_global() ax.coastlines() osgb = ccrs.OSGB() ax.set_extent(tuple(osgb.x_limits) + tuple(osgb.y_limits), crs=osgb) ax.gridlines(osgb) ax = plt.subplot(nx, ny, 8, projection=ccrs.Robinson(central_longitude=135)) ax.set_global() ax.coastlines() ax.gridlines(ccrs.PlateCarree(), alpha=0.5, linewidth=1.5, linestyle='-') delta = 1.5e-2 plt.subplots_adjust(left=0 + delta, right=1 - delta, top=1 - delta, bottom=0 + delta) if __name__=='__main__': import nose nose.runmodule(argv=['-s','--with-doctest'], exit=False)
gpl-3.0
Weihonghao/ECM
Vpy34/lib/python3.5/site-packages/pandas/tests/indexes/timedeltas/test_tools.py
7
7572
import pytest from datetime import time, timedelta import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.util.testing import assert_series_equal from pandas import (Series, Timedelta, to_timedelta, isnull, TimedeltaIndex) from pandas._libs.tslib import iNaT class TestTimedeltas(object): _multiprocess_can_split_ = True def test_to_timedelta(self): def conv(v): return v.astype('m8[ns]') d1 = np.timedelta64(1, 'D') assert (to_timedelta('1 days 06:05:01.00003', box=False) == conv(d1 + np.timedelta64(6 * 3600 + 5 * 60 + 1, 's') + np.timedelta64(30, 'us'))) assert (to_timedelta('15.5us', box=False) == conv(np.timedelta64(15500, 'ns'))) # empty string result = to_timedelta('', box=False) assert result.astype('int64') == iNaT result = to_timedelta(['', '']) assert isnull(result).all() # pass thru result = to_timedelta(np.array([np.timedelta64(1, 's')])) expected = pd.Index(np.array([np.timedelta64(1, 's')])) tm.assert_index_equal(result, expected) # ints result = np.timedelta64(0, 'ns') expected = to_timedelta(0, box=False) assert result == expected # Series expected = Series([timedelta(days=1), timedelta(days=1, seconds=1)]) result = to_timedelta(Series(['1d', '1days 00:00:01'])) tm.assert_series_equal(result, expected) # with units result = TimedeltaIndex([np.timedelta64(0, 'ns'), np.timedelta64( 10, 's').astype('m8[ns]')]) expected = to_timedelta([0, 10], unit='s') tm.assert_index_equal(result, expected) # single element conversion v = timedelta(seconds=1) result = to_timedelta(v, box=False) expected = np.timedelta64(timedelta(seconds=1)) assert result == expected v = np.timedelta64(timedelta(seconds=1)) result = to_timedelta(v, box=False) expected = np.timedelta64(timedelta(seconds=1)) assert result == expected # arrays of various dtypes arr = np.array([1] * 5, dtype='int64') result = to_timedelta(arr, unit='s') expected = TimedeltaIndex([np.timedelta64(1, 's')] * 5) tm.assert_index_equal(result, expected) arr = np.array([1] * 5, dtype='int64') result = to_timedelta(arr, unit='m') expected = TimedeltaIndex([np.timedelta64(1, 'm')] * 5) tm.assert_index_equal(result, expected) arr = np.array([1] * 5, dtype='int64') result = to_timedelta(arr, unit='h') expected = TimedeltaIndex([np.timedelta64(1, 'h')] * 5) tm.assert_index_equal(result, expected) arr = np.array([1] * 5, dtype='timedelta64[s]') result = to_timedelta(arr) expected = TimedeltaIndex([np.timedelta64(1, 's')] * 5) tm.assert_index_equal(result, expected) arr = np.array([1] * 5, dtype='timedelta64[D]') result = to_timedelta(arr) expected = TimedeltaIndex([np.timedelta64(1, 'D')] * 5) tm.assert_index_equal(result, expected) # Test with lists as input when box=false expected = np.array(np.arange(3) * 1000000000, dtype='timedelta64[ns]') result = to_timedelta(range(3), unit='s', box=False) tm.assert_numpy_array_equal(expected, result) result = to_timedelta(np.arange(3), unit='s', box=False) tm.assert_numpy_array_equal(expected, result) result = to_timedelta([0, 1, 2], unit='s', box=False) tm.assert_numpy_array_equal(expected, result) # Tests with fractional seconds as input: expected = np.array( [0, 500000000, 800000000, 1200000000], dtype='timedelta64[ns]') result = to_timedelta([0., 0.5, 0.8, 1.2], unit='s', box=False) tm.assert_numpy_array_equal(expected, result) def test_to_timedelta_invalid(self): # bad value for errors parameter msg = "errors must be one of" tm.assert_raises_regex(ValueError, msg, to_timedelta, ['foo'], errors='never') # these will error pytest.raises(ValueError, lambda: to_timedelta([1, 2], unit='foo')) pytest.raises(ValueError, lambda: to_timedelta(1, unit='foo')) # time not supported ATM pytest.raises(ValueError, lambda: to_timedelta(time(second=1))) assert to_timedelta(time(second=1), errors='coerce') is pd.NaT pytest.raises(ValueError, lambda: to_timedelta(['foo', 'bar'])) tm.assert_index_equal(TimedeltaIndex([pd.NaT, pd.NaT]), to_timedelta(['foo', 'bar'], errors='coerce')) tm.assert_index_equal(TimedeltaIndex(['1 day', pd.NaT, '1 min']), to_timedelta(['1 day', 'bar', '1 min'], errors='coerce')) # gh-13613: these should not error because errors='ignore' invalid_data = 'apple' assert invalid_data == to_timedelta(invalid_data, errors='ignore') invalid_data = ['apple', '1 days'] tm.assert_numpy_array_equal( np.array(invalid_data, dtype=object), to_timedelta(invalid_data, errors='ignore')) invalid_data = pd.Index(['apple', '1 days']) tm.assert_index_equal(invalid_data, to_timedelta( invalid_data, errors='ignore')) invalid_data = Series(['apple', '1 days']) tm.assert_series_equal(invalid_data, to_timedelta( invalid_data, errors='ignore')) def test_to_timedelta_via_apply(self): # GH 5458 expected = Series([np.timedelta64(1, 's')]) result = Series(['00:00:01']).apply(to_timedelta) tm.assert_series_equal(result, expected) result = Series([to_timedelta('00:00:01')]) tm.assert_series_equal(result, expected) def test_to_timedelta_on_missing_values(self): # GH5438 timedelta_NaT = np.timedelta64('NaT') actual = pd.to_timedelta(Series(['00:00:01', np.nan])) expected = Series([np.timedelta64(1000000000, 'ns'), timedelta_NaT], dtype='<m8[ns]') assert_series_equal(actual, expected) actual = pd.to_timedelta(Series(['00:00:01', pd.NaT])) assert_series_equal(actual, expected) actual = pd.to_timedelta(np.nan) assert actual.value == timedelta_NaT.astype('int64') actual = pd.to_timedelta(pd.NaT) assert actual.value == timedelta_NaT.astype('int64') def test_to_timedelta_on_nanoseconds(self): # GH 9273 result = Timedelta(nanoseconds=100) expected = Timedelta('100ns') assert result == expected result = Timedelta(days=1, hours=1, minutes=1, weeks=1, seconds=1, milliseconds=1, microseconds=1, nanoseconds=1) expected = Timedelta(694861001001001) assert result == expected result = Timedelta(microseconds=1) + Timedelta(nanoseconds=1) expected = Timedelta('1us1ns') assert result == expected result = Timedelta(microseconds=1) - Timedelta(nanoseconds=1) expected = Timedelta('999ns') assert result == expected result = Timedelta(microseconds=1) + 5 * Timedelta(nanoseconds=-2) expected = Timedelta('990ns') assert result == expected pytest.raises(TypeError, lambda: Timedelta(nanoseconds='abc'))
agpl-3.0
sanketloke/scikit-learn
examples/plot_kernel_ridge_regression.py
39
6259
""" ============================================= Comparison of kernel ridge regression and SVR ============================================= Both kernel ridge regression (KRR) and SVR learn a non-linear function by employing the kernel trick, i.e., they learn a linear function in the space induced by the respective kernel which corresponds to a non-linear function in the original space. They differ in the loss functions (ridge versus epsilon-insensitive loss). In contrast to SVR, fitting a KRR can be done in closed-form and is typically faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower than SVR at prediction-time. This example illustrates both methods on an artificial dataset, which consists of a sinusoidal target function and strong noise added to every fifth datapoint. The first figure compares the learned model of KRR and SVR when both complexity/regularization and bandwidth of the RBF kernel are optimized using grid-search. The learned functions are very similar; however, fitting KRR is approx. seven times faster than fitting SVR (both with grid-search). However, prediction of 100000 target values is more than tree times faster with SVR since it has learned a sparse model using only approx. 1/3 of the 100 training datapoints as support vectors. The next figure compares the time for fitting and prediction of KRR and SVR for different sizes of the training set. Fitting KRR is faster than SVR for medium- sized training sets (less than 1000 samples); however, for larger training sets SVR scales better. With regard to prediction time, SVR is faster than KRR for all sizes of the training set because of the learned sparse solution. Note that the degree of sparsity and thus the prediction time depends on the parameters epsilon and C of the SVR. """ # Authors: Jan Hendrik Metzen <[email protected]> # License: BSD 3 clause from __future__ import division import time import numpy as np from sklearn.svm import SVR from sklearn.model_selection import GridSearchCV from sklearn.model_selection import learning_curve from sklearn.kernel_ridge import KernelRidge import matplotlib.pyplot as plt rng = np.random.RandomState(0) ############################################################################# # Generate sample data X = 5 * rng.rand(10000, 1) y = np.sin(X).ravel() # Add noise to targets y[::5] += 3 * (0.5 - rng.rand(X.shape[0]/5)) X_plot = np.linspace(0, 5, 100000)[:, None] ############################################################################# # Fit regression model train_size = 100 svr = GridSearchCV(SVR(kernel='rbf', gamma=0.1), cv=5, param_grid={"C": [1e0, 1e1, 1e2, 1e3], "gamma": np.logspace(-2, 2, 5)}) kr = GridSearchCV(KernelRidge(kernel='rbf', gamma=0.1), cv=5, param_grid={"alpha": [1e0, 0.1, 1e-2, 1e-3], "gamma": np.logspace(-2, 2, 5)}) t0 = time.time() svr.fit(X[:train_size], y[:train_size]) svr_fit = time.time() - t0 print("SVR complexity and bandwidth selected and model fitted in %.3f s" % svr_fit) t0 = time.time() kr.fit(X[:train_size], y[:train_size]) kr_fit = time.time() - t0 print("KRR complexity and bandwidth selected and model fitted in %.3f s" % kr_fit) sv_ratio = svr.best_estimator_.support_.shape[0] / train_size print("Support vector ratio: %.3f" % sv_ratio) t0 = time.time() y_svr = svr.predict(X_plot) svr_predict = time.time() - t0 print("SVR prediction for %d inputs in %.3f s" % (X_plot.shape[0], svr_predict)) t0 = time.time() y_kr = kr.predict(X_plot) kr_predict = time.time() - t0 print("KRR prediction for %d inputs in %.3f s" % (X_plot.shape[0], kr_predict)) ############################################################################# # look at the results sv_ind = svr.best_estimator_.support_ plt.scatter(X[sv_ind], y[sv_ind], c='r', s=50, label='SVR support vectors', zorder=2) plt.scatter(X[:100], y[:100], c='k', label='data', zorder=1) plt.hold('on') plt.plot(X_plot, y_svr, c='r', label='SVR (fit: %.3fs, predict: %.3fs)' % (svr_fit, svr_predict)) plt.plot(X_plot, y_kr, c='g', label='KRR (fit: %.3fs, predict: %.3fs)' % (kr_fit, kr_predict)) plt.xlabel('data') plt.ylabel('target') plt.title('SVR versus Kernel Ridge') plt.legend() # Visualize training and prediction time plt.figure() # Generate sample data X = 5 * rng.rand(10000, 1) y = np.sin(X).ravel() y[::5] += 3 * (0.5 - rng.rand(X.shape[0]/5)) sizes = np.logspace(1, 4, 7) for name, estimator in {"KRR": KernelRidge(kernel='rbf', alpha=0.1, gamma=10), "SVR": SVR(kernel='rbf', C=1e1, gamma=10)}.items(): train_time = [] test_time = [] for train_test_size in sizes: t0 = time.time() estimator.fit(X[:train_test_size], y[:train_test_size]) train_time.append(time.time() - t0) t0 = time.time() estimator.predict(X_plot[:1000]) test_time.append(time.time() - t0) plt.plot(sizes, train_time, 'o-', color="r" if name == "SVR" else "g", label="%s (train)" % name) plt.plot(sizes, test_time, 'o--', color="r" if name == "SVR" else "g", label="%s (test)" % name) plt.xscale("log") plt.yscale("log") plt.xlabel("Train size") plt.ylabel("Time (seconds)") plt.title('Execution Time') plt.legend(loc="best") # Visualize learning curves plt.figure() svr = SVR(kernel='rbf', C=1e1, gamma=0.1) kr = KernelRidge(kernel='rbf', alpha=0.1, gamma=0.1) train_sizes, train_scores_svr, test_scores_svr = \ learning_curve(svr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10), scoring="mean_squared_error", cv=10) train_sizes_abs, train_scores_kr, test_scores_kr = \ learning_curve(kr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10), scoring="mean_squared_error", cv=10) plt.plot(train_sizes, test_scores_svr.mean(1), 'o-', color="r", label="SVR") plt.plot(train_sizes, test_scores_kr.mean(1), 'o-', color="g", label="KRR") plt.xlabel("Train size") plt.ylabel("Mean Squared Error") plt.title('Learning curves') plt.legend(loc="best") plt.show()
bsd-3-clause
kagayakidan/scikit-learn
examples/applications/plot_stock_market.py
227
8284
""" ======================================= Visualizing the stock market structure ======================================= This example employs several unsupervised learning techniques to extract the stock market structure from variations in historical quotes. The quantity that we use is the daily variation in quote price: quotes that are linked tend to cofluctuate during a day. .. _stock_market: Learning a graph structure -------------------------- We use sparse inverse covariance estimation to find which quotes are correlated conditionally on the others. Specifically, sparse inverse covariance gives us a graph, that is a list of connection. For each symbol, the symbols that it is connected too are those useful to explain its fluctuations. Clustering ---------- We use clustering to group together quotes that behave similarly. Here, amongst the :ref:`various clustering techniques <clustering>` available in the scikit-learn, we use :ref:`affinity_propagation` as it does not enforce equal-size clusters, and it can choose automatically the number of clusters from the data. Note that this gives us a different indication than the graph, as the graph reflects conditional relations between variables, while the clustering reflects marginal properties: variables clustered together can be considered as having a similar impact at the level of the full stock market. Embedding in 2D space --------------------- For visualization purposes, we need to lay out the different symbols on a 2D canvas. For this we use :ref:`manifold` techniques to retrieve 2D embedding. Visualization ------------- The output of the 3 models are combined in a 2D graph where nodes represents the stocks and edges the: - cluster labels are used to define the color of the nodes - the sparse covariance model is used to display the strength of the edges - the 2D embedding is used to position the nodes in the plan This example has a fair amount of visualization-related code, as visualization is crucial here to display the graph. One of the challenge is to position the labels minimizing overlap. For this we use an heuristic based on the direction of the nearest neighbor along each axis. """ print(__doc__) # Author: Gael Varoquaux [email protected] # License: BSD 3 clause import datetime import numpy as np import matplotlib.pyplot as plt from matplotlib import finance from matplotlib.collections import LineCollection from sklearn import cluster, covariance, manifold ############################################################################### # Retrieve the data from Internet # Choose a time period reasonnably calm (not too long ago so that we get # high-tech firms, and before the 2008 crash) d1 = datetime.datetime(2003, 1, 1) d2 = datetime.datetime(2008, 1, 1) # kraft symbol has now changed from KFT to MDLZ in yahoo symbol_dict = { 'TOT': 'Total', 'XOM': 'Exxon', 'CVX': 'Chevron', 'COP': 'ConocoPhillips', 'VLO': 'Valero Energy', 'MSFT': 'Microsoft', 'IBM': 'IBM', 'TWX': 'Time Warner', 'CMCSA': 'Comcast', 'CVC': 'Cablevision', 'YHOO': 'Yahoo', 'DELL': 'Dell', 'HPQ': 'HP', 'AMZN': 'Amazon', 'TM': 'Toyota', 'CAJ': 'Canon', 'MTU': 'Mitsubishi', 'SNE': 'Sony', 'F': 'Ford', 'HMC': 'Honda', 'NAV': 'Navistar', 'NOC': 'Northrop Grumman', 'BA': 'Boeing', 'KO': 'Coca Cola', 'MMM': '3M', 'MCD': 'Mc Donalds', 'PEP': 'Pepsi', 'MDLZ': 'Kraft Foods', 'K': 'Kellogg', 'UN': 'Unilever', 'MAR': 'Marriott', 'PG': 'Procter Gamble', 'CL': 'Colgate-Palmolive', 'GE': 'General Electrics', 'WFC': 'Wells Fargo', 'JPM': 'JPMorgan Chase', 'AIG': 'AIG', 'AXP': 'American express', 'BAC': 'Bank of America', 'GS': 'Goldman Sachs', 'AAPL': 'Apple', 'SAP': 'SAP', 'CSCO': 'Cisco', 'TXN': 'Texas instruments', 'XRX': 'Xerox', 'LMT': 'Lookheed Martin', 'WMT': 'Wal-Mart', 'WBA': 'Walgreen', 'HD': 'Home Depot', 'GSK': 'GlaxoSmithKline', 'PFE': 'Pfizer', 'SNY': 'Sanofi-Aventis', 'NVS': 'Novartis', 'KMB': 'Kimberly-Clark', 'R': 'Ryder', 'GD': 'General Dynamics', 'RTN': 'Raytheon', 'CVS': 'CVS', 'CAT': 'Caterpillar', 'DD': 'DuPont de Nemours'} symbols, names = np.array(list(symbol_dict.items())).T quotes = [finance.quotes_historical_yahoo(symbol, d1, d2, asobject=True) for symbol in symbols] open = np.array([q.open for q in quotes]).astype(np.float) close = np.array([q.close for q in quotes]).astype(np.float) # The daily variations of the quotes are what carry most information variation = close - open ############################################################################### # Learn a graphical structure from the correlations edge_model = covariance.GraphLassoCV() # standardize the time series: using correlations rather than covariance # is more efficient for structure recovery X = variation.copy().T X /= X.std(axis=0) edge_model.fit(X) ############################################################################### # Cluster using affinity propagation _, labels = cluster.affinity_propagation(edge_model.covariance_) n_labels = labels.max() for i in range(n_labels + 1): print('Cluster %i: %s' % ((i + 1), ', '.join(names[labels == i]))) ############################################################################### # Find a low-dimension embedding for visualization: find the best position of # the nodes (the stocks) on a 2D plane # We use a dense eigen_solver to achieve reproducibility (arpack is # initiated with random vectors that we don't control). In addition, we # use a large number of neighbors to capture the large-scale structure. node_position_model = manifold.LocallyLinearEmbedding( n_components=2, eigen_solver='dense', n_neighbors=6) embedding = node_position_model.fit_transform(X.T).T ############################################################################### # Visualization plt.figure(1, facecolor='w', figsize=(10, 8)) plt.clf() ax = plt.axes([0., 0., 1., 1.]) plt.axis('off') # Display a graph of the partial correlations partial_correlations = edge_model.precision_.copy() d = 1 / np.sqrt(np.diag(partial_correlations)) partial_correlations *= d partial_correlations *= d[:, np.newaxis] non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02) # Plot the nodes using the coordinates of our embedding plt.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels, cmap=plt.cm.spectral) # Plot the edges start_idx, end_idx = np.where(non_zero) #a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[embedding[:, start], embedding[:, stop]] for start, stop in zip(start_idx, end_idx)] values = np.abs(partial_correlations[non_zero]) lc = LineCollection(segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0, .7 * values.max())) lc.set_array(values) lc.set_linewidths(15 * values) ax.add_collection(lc) # Add a label to each node. The challenge here is that we want to # position the labels to avoid overlap with other labels for index, (name, label, (x, y)) in enumerate( zip(names, labels, embedding.T)): dx = x - embedding[0] dx[index] = 1 dy = y - embedding[1] dy[index] = 1 this_dx = dx[np.argmin(np.abs(dy))] this_dy = dy[np.argmin(np.abs(dx))] if this_dx > 0: horizontalalignment = 'left' x = x + .002 else: horizontalalignment = 'right' x = x - .002 if this_dy > 0: verticalalignment = 'bottom' y = y + .002 else: verticalalignment = 'top' y = y - .002 plt.text(x, y, name, size=10, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, bbox=dict(facecolor='w', edgecolor=plt.cm.spectral(label / float(n_labels)), alpha=.6)) plt.xlim(embedding[0].min() - .15 * embedding[0].ptp(), embedding[0].max() + .10 * embedding[0].ptp(),) plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(), embedding[1].max() + .03 * embedding[1].ptp()) plt.show()
bsd-3-clause
losonczylab/Zaremba_NatNeurosci_2017
losonczy_analysis_bundle/lab/plotting/analysis_plotting.py
1
30484
"""Analysis-specific plotting methods""" import warnings import numpy as np import scipy as sp import itertools as it import pandas as pd import matplotlib.pyplot as plt from matplotlib.patches import Rectangle import datetime import lab from ..classes.classes import ExperimentGroup import plotting as plotting import plotting_helpers as plotting_helpers from lab.misc import signalsmooth from ..analysis import behavior_analysis as ba from ..analysis import place_cell_analysis as place from ..analysis import imaging_analysis as ia from ..analysis import calc_activity as calc_activity from ..classes import exceptions as exc def activityPlot( trial, ax, dFOverF='median', demixed=False, yOffsets=None, linearTransform=None, window_width=100, dFOverF_percentile=8, timeInterval=None, removeNanBoutons=False, colorbarAx=None, smoothSize=0, resampling=None, style='color', colorcode=None, markerDuration=5, colorRange=[-0.2, 1], label_x_axis=False, channel='Ch2', label=None, roi_filter=None): """Plot the activity of all boutons at each time as a heatmap""" times = trial.parent.imagingTimes() imData = trial.parent.imagingData( dFOverF=dFOverF, demixed=demixed, linearTransform=linearTransform, window_width=window_width, dFOverF_percentile=dFOverF_percentile, removeNanBoutons=removeNanBoutons, channel=channel, label=label, roi_filter=roi_filter)[:, :, trial.trialNum()] if timeInterval is not None: imData = imData[:, trial.parent.imagingIndex( timeInterval[0]):trial.parent.imagingIndex(timeInterval[1])] times = np.array(times)[trial.parent.imagingIndex(timeInterval[0]): trial.parent.imagingIndex(timeInterval[1])] if smoothSize: for roiIdx in range(imData.shape[0]): imData[roiIdx] = signalsmooth.smooth( imData[roiIdx], window_len=smoothSize, window='hanning') # imData = imData[:,int(smoothSize/2):-int(smoothSize/2)] # times = times[:-(2*int(smoothSize/2))] if resampling is not None: imData = sp.signal.decimate(imData, resampling, axis=1) times = times[::resampling] if style == 'color': roiNums = np.arange(0, imData.shape[0] + 1) + 0.5 TIMES, ROI_NUMS = np.meshgrid(times, roiNums) im = ax.pcolor(TIMES, ROI_NUMS, imData, vmin=colorRange[0], vmax=colorRange[1], rasterized=True) if colorbarAx is not None: ticks = colorRange if 0 > ticks[0] and 0 < ticks[1]: ticks.append(0) if not colorbarAx == ax: cbar = colorbarAx.figure.colorbar( im, ax=colorbarAx, ticks=ticks, fraction=1) else: cbar = colorbarAx.figure.colorbar( im, ax=colorbarAx, ticks=ticks) cbar.set_label(r'$\Delta$F/F', labelpad=-10) """ Label the ROIs """ ROIs = [roi.id for roi in trial.rois(channel=channel, label=label) if roi_filter(roi)] try: roiGroups, roiGroupNames = bouton.BoutonSet(ROIs).boutonGroups() except: ax.set_yticks(range(len(ROIs))) ax.set_yticklabels(ROIs) else: if colorcode == 'postSynaptic': for k, group in enumerate(roiGroups): for roi in group: # if roiGroupNames[k] != 'other': ax.add_patch(plt.Rectangle( (-2, ROIs.index(roi.name) + 0.5), 1, 1, color=bouton.groupPointStyle(roiGroupNames[k])[0], lw=0)) """ Plot the behavior data beneath the plot """ framePeriod = trial.parent.frame_period() for interval in ba.runningIntervals(trial) * framePeriod: ax.add_patch(plt.Rectangle( (interval[0], -1), interval[1] - interval[0], 1.3, color='g', lw=0)) height = -1 for key, color in [('air', 'r'), ('airpuff', 'r'), ('licking', 'b'), ('odorA', 'c'), ('odorB', 'm')]: try: intervals = trial.behaviorData()[key] except KeyError: pass else: height -= 1 for interval in intervals: ax.add_patch(Rectangle( (interval[0], height), interval[1] - interval[0], 1, facecolor=color, lw=0)) ax.set_xlim([-2, times[-1]]) ax.spines['left'].set_bounds(1, len(roiNums) - 1) ax.spines['left'].set_position(('outward', 2)) for side in ['right', 'top', 'bottom']: ax.spines[side].set_color('none') ax.set_yticks([1, len(roiNums) - 1]) if label_x_axis: ax.set_xlabel('time (s)') else: ax.set_xticks([]) ax.set_ylabel('ROI #', labelpad=-9) ax.yaxis.set_ticks_position('left') ax.tick_params(axis='y', direction='out') ax.set_ylim([height, len(roiNums) - 0.5]) elif style == 'traces': data = [imData.reshape([imData.shape[0], imData.shape[1], 1])] plotting.tracePlot( ax, data, times, ROIs, stimulusDurations=None, shading=None, yOffsets=yOffsets, markerDuration=markerDuration) framePeriod = trial.parent.frame_period() yMin = ax.get_ylim()[0] for interval in ba.runningIntervals(trial) * framePeriod: ax.add_patch(plt.Rectangle( (interval[0], yMin - 1), interval[1] - interval[0], 1, color='g', lw=0)) # ax.set_xlim([-2, times[-1]]) ax.set_ylim(bottom=yMin - 1) # ADDED SUPPORT FOR LASER PLOT def behaviorPlot( trial, ax, keys=['velocity', 'running', 'position', 'licking', 'tone', 'light', 'water', 'reward', 'airpuff', 'motion', 'laser'], colors=None, include_empty=False, y_start=-1): """Plot behavior data over time Keyword arguments: ax -- axis to plot on keys -- behavior data to plot, id data is missing it is skipped colors -- colors list to use, will be iterated over include_empty -- if True, plot data that has no intervals, if false, exclude those rows y_start -- bottom of first plot, decreases by one for each successive plot """ try: bd = trial.behaviorData() except exc.MissingBehaviorData: return if colors is None: colors = lab.plotting.color_cycle() else: colors = iter(colors) next_y = y_start labels = [] label_colors = [] for key in keys: if key == 'velocity': try: velocity = ba.velocity( trial, imageSync=False, sampling_interval='actual', smoothing='hanning', window_length=71) bd['recordingDuration'] except (exc.MissingBehaviorData, KeyError): bd['recordingDuration'] except (exc.MissingBehaviorData, KeyError): pass else: labels.append('velocity') next_color = colors.next() label_colors.append(next_color) velocity -= np.amin(velocity) velocity /= np.amax(velocity) / 0.9 velocity += next_y + 0.05 ax.plot(np.linspace(0, bd['recordingDuration'], len(velocity)), velocity, color=next_color) next_y -= 1 elif key == 'position': try: position = bd['treadmillPosition'] bd['recordingDuration'] bd['samplingInterval'] except KeyError: pass else: labels.append('position') next_color = colors.next() label_colors.append(next_color) full_position = np.empty(int(np.ceil( bd['recordingDuration'] / bd['samplingInterval']))) for t, pos in position: full_position[int(t / bd['samplingInterval']):] = pos full_position *= 0.9 full_position += next_y + 0.05 ax.plot(np.linspace(0, bd['recordingDuration'], len(full_position)), full_position, color=next_color) next_y -= 1 else: try: if key == 'running': data = ba.runningIntervals(trial, imageSync=False) *\ bd['samplingInterval'] else: data = bd[key] except KeyError: pass else: if include_empty or len(data) > 0: labels.append(key) next_color = colors.next() label_colors.append(next_color) for interval in data: ax.add_patch(Rectangle( (interval[0], next_y), interval[1] - interval[0], 1, facecolor=next_color, lw=0)) next_y -= 1 if next_y == y_start: return ax.set_yticks(np.arange(-0.5, next_y + 0.5, -1)) ax.set_yticklabels(labels) for tick, c in zip(ax.get_yticklabels(), label_colors): tick.set_color(c) try: ax.set_xlim([0, int(bd['recordingDuration'])]) except KeyError: pass ax.set_ylim([next_y + 1, 0]) ax.set_xlabel('Time (s)') ax.set_title('{0}:{1}'.format(trial.parent.parent.get('mouseID'), trial.get('time'))) def plot_imaging_and_behavior( trial, ax, start_time=0, stop_time=None, channel='Ch2', label=None, roi_filter=None, label_rois=False, keys=['running', 'licking', 'water', 'airpuff', 'tone', 'light'], colors=None, include_empty=False, dFOverF='from_file'): """Plot imaging data for all ROIs with behavior data underneath""" imaging_data = trial.parent.imagingData( channel=channel, label=label, roi_filter=roi_filter, dFOverF=dFOverF)[..., trial.parent.findall('trial').index(trial)] if not imaging_data.shape[0]: return frame_period = trial.parent.frame_period() start_frame = int(start_time / frame_period) if stop_time is None: stop_frame = imaging_data.shape[1] else: stop_frame = int(stop_time / frame_period) if stop_time is None: stop_time = trial.parent.imagingTimes(channel=channel)[-1] imaging_data = imaging_data[:, start_frame:stop_frame] t_range = np.linspace(start_time, stop_time, imaging_data.shape[1]) max_F = np.nanmax(imaging_data) # Normalize and re-scale so they can all be plotted on top of eachother imaging_data /= max_F imaging_data += np.arange(imaging_data.shape[0]).reshape((-1, 1)) + 0.5 ax.plot(t_range, imaging_data.T) behaviorPlot( trial, ax, keys=keys, colors=colors, include_empty=include_empty) if label_rois: roi_ids = trial.parent.roi_ids( channel=channel, label=label, roi_filter=roi_filter) x_range = ax.get_xlim()[1] for idx, roi_id in enumerate(roi_ids): ax.text(x_range * -0.01, idx + 0.5, roi_id, ha='right') ax.set_ylim(top=imaging_data.shape[0] + 0.5) plotting_helpers.add_scalebar( ax, matchx=False, matchy=False, hidex=False, hidey=False, sizey=0.5 / max_F, labely='0.5', bar_thickness=0, loc=1, borderpad=0.5) def responsePairPlot(exptGrp, ax, stim1, stim2, stimuliLabels=None, excludeRunning=True, boutonGroupLabeling=False, linearTransform=None, axesCenter=True, channel='Ch2', label=None, roi_filter=None): if not isinstance(stim1, list): stim1 = [stim1] if not isinstance(stim2, list): stim2 = [stim2] if stimuliLabels is None: stimuliLabels = [stim1[0], stim2[0]] ROIs = exptGrp.sharedROIs( roiType='GABAergic', channel=channel, label=label, roi_filter=roi_filter) shared_filter = lambda x: x.id in ROIs rIntegrals = [] for stim in [stim1, stim2]: if stim == ['running']: rIntegrals.append(ia.runningModulation( exptGrp, linearTransform=linearTransform, channel=channel, label=label, roi_filter=shared_filter).reshape([-1, 1])) elif stim == ['licking']: rIntegrals.append(ia.lickingModulation( exptGrp, linearTransform=linearTransform, channel=channel, label=label, roi_filter=shared_filter).reshape([-1, 1])) else: rIntegrals.append(ia.responseIntegrals( exptGrp, stim, excludeRunning=excludeRunning, sharedBaseline=True, linearTransform=linearTransform, dFOverF='mean', channel=channel, label=label, roi_filter=shared_filter)) if not boutonGroupLabeling: ROIs = None plotting.ellipsePlot( ax, rIntegrals[0].mean(axis=1), rIntegrals[1].mean(axis=1), 2 * np.sqrt(rIntegrals[0].var(axis=1) / rIntegrals[0].shape[1]), 2 * np.sqrt(rIntegrals[1].var(axis=1) / rIntegrals[1].shape[1]), boutonGroupLabeling=ROIs, color='k', axesCenter=axesCenter) ax.set_xlabel(stimuliLabels[0], labelpad=1) ax.set_ylabel(stimuliLabels[1], labelpad=1) # TODO: LOOKS BROKEN IF YOU PASS IN AX def plotLickRate(exptGrp, ax=None, minTrialDuration=0): """Generate a figure showing the lick rate for each trial in this ExperimentGroup. Keyword arguments: ax -- axis to plot on, created if 'None' minTrialLength -- minimum length of trial (in seconds) to be included in analysis """ lickrates = [] dates = [] for experiment in exptGrp: for trial in experiment.findall('trial'): try: bd = trial.behaviorData() if 'licking' in bd.keys() and \ 'recordingDuration' in bd.keys() and \ bd['recordingDuration'] >= minTrialDuration: lickrates.append(bd['licking'].shape[0] / bd['recordingDuration']) dates.append(trial.attrib['time']) except exc.MissingBehaviorData: pass if len(lickrates) > 0: if ax is None: fig = plt.figure(figsize=(11, 8)) ax = fig.add_subplot(111) ax.bar(np.arange(len(lickrates)), lickrates, 0.5) ax.set_ylabel('Lick rate (Hz)') ax.set_title('lick rate per trial') ax.set_xticks(np.arange(len(lickrates)) + 0.25) ax.set_xticklabels( dates, ha='right', rotation_mode='anchor', rotation=30) return fig # SAME, LOOKS BROKEN IF YOU PASS IN AX def plotLapRate(exptGrp, ax=None, minTrialDuration=0): """Generates a figure showing the number of laps completed per minute. Keyword arguments: ax -- axis to plot on, created if 'None' minTrialLength -- minimum length of trial (in seconds) to be included in analysis """ laprates = [] dates = [] for experiment in exptGrp: for trial in experiment.findall('trial'): try: bd = trial.behaviorData() if 'lapCounter' in bd.keys() and \ len(bd['lapCounter']) > 0 and \ 'recordingDuration' in bd.keys() and \ bd['recordingDuration'] >= minTrialDuration: laprates.append(sum(bd['lapCounter'][:, 1] == 1) / bd['recordingDuration'] * 60.0) dates.append(trial.attrib['time']) except exc.MissingBehaviorData: pass if len(laprates) > 0: if ax is None: fig = plt.figure(figsize=(11, 8)) ax = fig.add_subplot(111) ax.bar(np.arange(len(laprates)), laprates, 0.5) ax.set_ylabel('Lap rate (laps/minute)') ax.set_title('lap rate per trial') ax.set_xticks(np.arange(len(laprates)) + 0.25) ax.set_xticklabels( dates, ha='right', rotation_mode='anchor', rotation=15) return fig def plotLapRateByDays(exptGrp, ax=None, color=None): """Plots lap rate by days of training""" if ax is None: ax = plt.axes() if color is None: color = lab.plotting.color_cycle().next() training_days = exptGrp.priorDaysOfExposure(ignoreBelt=True) lap_rates = {} for expt in exptGrp: for trial in expt.findall('trial'): try: bd = trial.behaviorData() except exc.MissingBehaviorData: continue else: if len(bd.get('lapCounter', [])) > 0 \ and 'recordingDuration' in bd: if training_days[expt] not in lap_rates: lap_rates[training_days[expt]] = [] lap_rates[training_days[expt]].append( np.sum(bd['lapCounter'][:, 1] == 1) / bd['recordingDuration'] * 60.0) if len(lap_rates) > 0: days = lap_rates.keys() days.sort() day_means = [] for day in days: # Jitter x position x = (np.random.rand(len(lap_rates[day])) * 0.2) - 0.1 + day ax.plot(x, lap_rates[day], '.', color=color, markersize=7) day_means.append(np.mean(lap_rates[day])) ax.plot(days, day_means, '-', label=exptGrp.label(), color=color) ax.set_ylabel('Lap rate (laps/minute)') ax.set_xlabel('Days of training') ax.set_title('Average running by days of belt exposure') def activityComparisonPlot(exptGrp, method, ax=None, mask1=None, mask2=None, label1=None, label2=None, roiNamesToLabel=None, normalize=False, rasterized=False, dF='from_file', channel='Ch2', label=None, roi_filter=None, demixed=False): if ax is None: fig = plt.figure() ax = fig.add_subplot(111) else: fig = ax.get_figure() if len(exptGrp) != 2: warnings.warn( 'activityComparisonPlot requires an experimentGroup of 2 ' + 'experiments. Using the first two elements of {}'.format(exptGrp)) grp = exptGrp[:2] else: grp = exptGrp ROIs = grp.sharedROIs(channel=channel, label=label, roi_filter=roi_filter) shared_filter = lambda x: x.id in ROIs exp1ROIs = grp[0].roi_ids(channel=channel, label=label, roi_filter=shared_filter) exp2ROIs = grp[1].roi_ids(channel=channel, label=label, roi_filter=shared_filter) order1 = np.array([exp1ROIs.index(x) for x in ROIs]) order2 = np.array([exp2ROIs.index(x) for x in ROIs]) # inds of the roiNamesToLabel (in terms of exp1 indices) if roiNamesToLabel: order3 = np.array( [exp1ROIs.index(x) for x in roiNamesToLabel if x in ROIs]) activity1 = calc_activity( grp[0], method=method, interval=mask1, dF=dF, channel=channel, label=label, roi_filter=roi_filter, demixed=demixed) activity2 = calc_activity( grp[1], method=method, interval=mask2, dF=dF, channel=channel, label=label, roi_filter=roi_filter, demixed=demixed) # ordering corresponds to sharedROIs() ordering activity1 = np.array([activity1[x] for x in order1]).flatten() activity2 = np.array([activity2[x] for x in order2]).flatten() if normalize: activity1 = activity1 / float(np.amax(activity1)) activity2 = activity2 / float(np.amax(activity2)) # -1 flips sort so it's actually high to low and also puts NaNs at the end order = np.argsort(-1 * activity2) bar_lefts = np.arange(len(ROIs)) width = 1 if not label1: label1 = grp[0].get('startTime') if not label2: label2 = grp[1].get('startTime') ax.bar(np.array(bar_lefts), activity1[order], width, color='b', alpha=0.5, label=label1, rasterized=rasterized) ax.bar(np.array(bar_lefts), np.negative(activity2)[order], width, color='r', alpha=0.5, label=label2, rasterized=rasterized) max_y = np.amax(np.abs(ax.get_ylim())) ax.set_ylim(-max_y, max_y) ax.set_xlim(right=len(ROIs)) # roiIndsToIndicate = [np.argwhere(order1[order]==roi)[0][0] for roi in exp1RoisToIndicate if roi in order1[order]] if roiNamesToLabel: # ylim = ax.get_ylim() roiIndsToIndicate = [ np.argwhere(order1[order] == x)[0][0] for x in order3] for idx in roiIndsToIndicate: ax.axvline( idx + 0.5, linestyle='dashed', color='k', rasterized=rasterized) # ax.vlines(np.array(roiIndsToIndicate)+0.5, ylim[0], ylim[1], linestyles='dashed', color='k') # ax.set_ylim(ylim) # make all y-axis labels positive ax.set_yticklabels(np.abs(ax.get_yticks())) ax.set_xlabel('ROI index') ax.set_ylabel('Activity = {}'.format(method)) ax.legend() return fig def activityByExposure(exptGrp, ax=None, stat='mean', combineTimes=datetime.timedelta(hours=12), ignoreContext=False, **kwargs): """Plots cdf of activity of ROIs by days of context exposure Keyword arguments: stat -- statistic to plot, see calc_activity.py for details combineTimes -- experiments within this timedelta of each other are considered the same day for determining exposure ignoreContext -- if True, ignores context for determining exposure **kwargs -- any additional arguments will be passed in to place.calc_activity_statistic """ if ax is None: _, ax = plt.subplots() exptsByExposure = ExperimentGroup.dictByExposure( exptGrp, combineTimes=combineTimes, ignoreBelt=ignoreContext, ignoreContext=ignoreContext) colors = lab.plotting.color_cycle() for exposure in sorted(exptsByExposure): exgrp = ExperimentGroup( exptsByExposure[exposure], label='1 day' if exposure == 0 else str(exposure + 1) + ' days') place.calc_activity_statistic( exgrp, ax=ax, stat=stat, plot_method='cdf', label=exgrp.label(), c=colors.next(), **kwargs) ax.legend(loc='lower right') ax.set_title('{} by exposure - {}'.format( stat, 'ignoring context' if ignoreContext else 'including context')) def compare_bouton_responses( exptGrp, ax, stimuli, comp_method='angle', plot_method='cdf', channel='Ch2', label=None, roi_filter=None, **response_kwargs): """Compare various pairs of boutons, based on several conventions: 'bouton' in label of bouton ROIs boutons targeting a cell soma are tagged with the cell number they are targeting, i.e. 'cell1', 'cell2', etc. boutons on an axons are tagged with the fiber number they are on, i.e. 'fiber1', 'fiber2', etc. boutons with no tags have no information about their axon or target """ response_matrix, rois = ia.response_matrix( exptGrp, stimuli, channel=channel, label=label, roi_filter=roi_filter, return_full=True, **response_kwargs) data = {} data['mouse'] = [roi[0] for roi in rois] data['loc'] = [roi[1] for roi in rois] data['label'] = [roi[2] for roi in rois] tags = [] for mouse, loc, name in it.izip( data['mouse'], data['loc'], data['label']): roi_tags = set() for expt in exptGrp: if expt.parent == mouse \ and expt.get('uniqueLocationKey') == loc: for roi in expt.rois( channel=channel, label=label, roi_filter=roi_filter): if roi.label == name: # NOTE: Taking the union of all tags, # so mis-matched tags will just be combined roi_tags = roi_tags.union(roi.tags) tags.append(roi_tags) data['tags'] = tags data['responses'] = [response for response in response_matrix] df = pd.DataFrame(data) if comp_method == 'angle': ax.set_xlabel('Response similarity (angle)') def compare(roi1, roi2): return np.dot(roi1, roi2) / np.linalg.norm(roi1) \ / np.linalg.norm(roi2) elif comp_method == 'abs angle': ax.set_xlabel('Response similarity (abs angle)') def compare(roi1, roi2): return np.abs(np.dot(roi1, roi2) / np.linalg.norm(roi1) / np.linalg.norm(roi2)) elif comp_method == 'corr': ax.set_xlabel('Response similarity (corr)') def compare(roi1, roi2): return np.corrcoef(roi1, roi2)[0, 1] elif comp_method == 'abs corr': ax.set_xlabel('Response similarity (abs corr)') def compare(roi1, roi2): return np.abs(np.corrcoef(roi1, roi2)[0, 1]) elif comp_method == 'mean diff': ax.set_xlabel('Response similarity (mean diff)') def compare(roi1, roi2): return np.abs(roi1 - roi2).mean() else: raise ValueError('Unrecognized compare method argument') same_fiber = [] fiber_with_not = [] same_soma = [] soma_with_not = [] bouton_with_fiber = [] diff_all = [] for name, group in df.groupby(['mouse', 'loc']): for roi1, roi2 in it.combinations(group.iterrows(), 2): r1_responses = roi1[1]['responses'] r2_responses = roi2[1]['responses'] non_nan = np.isfinite(r1_responses) & np.isfinite(r2_responses) comp = compare(r1_responses[non_nan], r2_responses[non_nan]) if np.isnan(comp): continue fiber1 = set( [tag for tag in roi1[1]['tags'] if 'fiber' in tag]) fiber2 = set( [tag for tag in roi2[1]['tags'] if 'fiber' in tag]) cell1 = set([tag for tag in roi1[1]['tags'] if 'cell' in tag]) cell2 = set([tag for tag in roi2[1]['tags'] if 'cell' in tag]) if len(fiber1.intersection(fiber2)): same_fiber.append(comp) elif len(fiber1) or len(fiber2): fiber_with_not.append(comp) if len(cell1.intersection(cell2)): same_soma.append(comp) elif len(cell1) or len(cell2): soma_with_not.append(comp) if len(fiber1) and roi2[1]['label'] in fiber1 \ or len(fiber2) and roi1[1]['label'] in fiber2: bouton_with_fiber.append(comp) elif not len(fiber1.intersection(fiber2)) \ and not len(cell1.intersection(cell2)): diff_all.append(comp) if plot_method == 'cdf': plotting.cdf( ax, same_fiber, bins='exact', label='same fiber') plotting.cdf( ax, same_soma, bins='exact', label='same soma') plotting.cdf( ax, bouton_with_fiber, bins='exact', label='bouton with fiber') plotting.cdf( ax, fiber_with_not, bins='exact', label='fiber with not') plotting.cdf( ax, soma_with_not, bins='exact', label='soma with not') plotting.cdf( ax, diff_all, bins='exact', label='diff all') elif plot_method == 'hist': colors = lab.plotting.color_cycle() plotting.histogram( ax, same_fiber, bins=50, color=colors.next(), normed=True, label='same fiber') plotting.histogram( ax, same_soma, bins=50, color=colors.next(), normed=True, label='same soma') plotting.histogram( ax, bouton_with_fiber, bins=50, color=colors.next(), normed=True, label='bouton with fiber') plotting.histogram( ax, fiber_with_not, bins=50, color=colors.next(), normed=True, label='fiber with not') plotting.histogram( ax, soma_with_not, bins=50, color=colors.next(), normed=True, label='soma with not') plotting.histogram( ax, diff_all, bins=50, color=colors.next(), normed=True, label='diff all') # ax.legend() return {'same fiber': same_fiber, 'same soma': same_soma, 'bouton_with_fiber': bouton_with_fiber, 'fiber_with_not': fiber_with_not, 'soma_with_not': soma_with_not, 'diff all': diff_all} def stim_response_heatmap( exptGrp, ax, stims, sort_by=None, method='responsiveness', z_score=True, aspect_ratio=0.25, **response_kwargs): """Plot a heatmap of stim responses per ROI.""" data = ia.response_matrix( exptGrp, stims, method=method, z_score=z_score, **response_kwargs) if sort_by is not None: if isinstance(sort_by, list): # If we get a list of stims, sort by the mean of them indices = [stims.index(stim) for stim in sort_by] to_sort = data[:, indices].mean(1) # Remove rows that have a nan in any of the sort by cols non_nan_rows = np.isfinite(to_sort) data = data[non_nan_rows] order = to_sort[non_nan_rows].argsort()[::-1] data = data[order] else: # If we get a single stim, sort by the response to that stim sort_column = stims.index(sort_by) # Remove rows that have NaN's in the sort_by column non_nan_rows = np.isfinite(data[:, sort_column]) data = data[non_nan_rows, :] order = data[:, sort_column].argsort()[::-1] data = data[order] ax.imshow(data, interpolation='none', aspect=aspect_ratio) ax.xaxis.tick_top() ax.set_xticks(np.arange(len(stims))) ax.set_xticklabels(stims) ax.tick_params(labelbottom=False, bottom=False, left=False, top=False, right=False)
mit
TheKingInYellow/PySeidon
pyseidon/tidegaugeClass/plotsTidegauge.py
2
4305
#!/usr/bin/python2.7 # encoding: utf-8 from __future__ import division import numpy as np import matplotlib.pyplot as plt import matplotlib.tri as Tri import matplotlib.ticker as ticker import matplotlib.patches as mpatches import seaborn import pandas as pd class PlotsTidegauge: """ **'Plots' subset of Tidegauge class gathers plotting functions** """ def __init__(self, variable, debug=False): self._debug = debug setattr(self, '_var', variable) def _def_fig(self): """Defines figure window""" self._fig = plt.figure(figsize=(18,10)) plt.rc('font',size='22') def plot_xy(self, x, y, xerror=[], yerror=[], title=' ', xLabel=' ', yLabel=' ', dump=False, **kwargs): """ Simple X vs Y plot Inputs: - x = 1D array - y = 1D array Options: - xerror = error on 'x', 1D array - yerror = error on 'y', 1D array - title = plot title, string - xLabel = title of the x-axis, string - yLabel = title of the y-axis, string - dump = boolean, dump profile data in csv file - kwargs = keyword options associated with pandas.DataFrame.to_csv, such as: sep, header, na_rep, index,...etc Check doc. of "to_csv" for complete list of options """ #fig = plt.figure(figsize=(18,10)) #plt.rc('font',size='22') self._def_fig() self._ax = self._fig.add_subplot(111) self._ax.plot(x, y, label=title) scale = 1 self._ax.set_ylabel(yLabel) self._ax.set_xlabel(xLabel) self._ax.get_xaxis().set_minor_locator(ticker.AutoMinorLocator()) self._ax.get_yaxis().set_minor_locator(ticker.AutoMinorLocator()) self._ax.grid(b=True, which='major', color='w', linewidth=1.5) self._ax.grid(b=True, which='minor', color='w', linewidth=0.5) if not yerror==[]: self._ax.fill_between(x, y-yerror, y+yerror, alpha=0.2, edgecolor='#1B2ACC', facecolor='#089FFF', antialiased=True) if not xerror==[]: self._ax.fill_betweenx(y, x-xerror, x+xerror, alpha=0.2, edgecolor='#1B2ACC', facecolor='#089FFF', antialiased=True) if (not xerror==[]) or (not yerror==[]): blue_patch = mpatches.Patch(color='#089FFF', label='Standard deviation',alpha=0.2) plt.legend(handles=[blue_patch],loc=1, fontsize=12) #plt.legend([blue_patch],loc=1, fontsize=12) self._fig.show() if dump: self._dump_profile_data_as_csv(x, y,xerror=xerror, yerror=yerror, title=title, xLabel=xLabel, yLabel=yLabel, **kwargs) def _dump_profile_data_as_csv(self, x, y, xerror=[], yerror=[], title=' ', xLabel=' ', yLabel=' ', **kwargs): """ Dumps profile data in csv file Inputs: - x = 1D array - y = 1D array Options: - xerror = error on 'x', 1D array - yerror = error on 'y', 1D array - title = file name, string - xLabel = name of the x-data, string - yLabel = name of the y-data, string - kwargs = keyword options associated with pandas.DataFrame.to_csv, such as: sep, header, na_rep, index,...etc Check doc. of "to_csv" for complete list of options """ if title == ' ': title = 'dump_profile_data' filename=title + '.csv' if xLabel == ' ': xLabel = 'X' if yLabel == ' ': yLabel = 'Y' if not xerror == []: df = pd.DataFrame({xLabel:x[:], yLabel:y[:], 'error': xerror[:]}) elif not yerror == []: df = pd.DataFrame({xLabel:x[:], yLabel:y[:], 'error': yerror[:]}) else: df = pd.DataFrame({xLabel:x[:], yLabel:y[:]}) df.to_csv(filename, encoding='utf-8', **kwargs) #TR_comments: templates # def whatever(self, debug=False): # if debug or self._debug: # print 'Start whatever...' # # if debug or self._debug: # print '...Passed'
agpl-3.0
reimandlab/Visualistion-Framework-for-Genome-Mutations
website/stats/plots/active_driver.py
1
8658
from collections import Counter from operator import attrgetter from pathlib import Path from types import FunctionType from typing import Mapping from pandas import Series, DataFrame from sqlalchemy import func from analyses import per_cancer_analysis, pan_cancer_analysis, clinvar_analysis from analyses.active_driver import mutations_from_significant_genes from analyses.enrichment import active_driver_genes_enrichment from database import db from helpers.plots import bar_plot, stacked_bar_plot from models import Mutation, Protein, Gene, Site, MC3Mutation, Cancer, InheritedMutation, MutationSource from stats.analyses.ontology import Ontology, draw_ontology_graph from ..store import cases from .common import site_types_with_any, site_types from .ptm_mutations import gather_ptm_muts_impacts def subset_analysis_as_function_of_site(analyses_collection, key, name): def analysis(site_type): return analyses_collection(site_type)[key] analysis.__name__ = name return analysis Analysis = FunctionType whole_dataset_analyses: Mapping[Analysis, MutationSource] = { pan_cancer_analysis: MC3Mutation, clinvar_analysis: InheritedMutation } subset_analyses = { subset_analysis_as_function_of_site( per_cancer_analysis, cancer.code, f'per_cancer_analysis_{cancer.code}' ): MC3Mutation for cancer in Cancer.query } all_analyses = { **whole_dataset_analyses, **subset_analyses } def count_mutations_by_gene(source, genes, site_type, filters=None): counts = [] for gene in genes: query = ( db.session.query(func.sum(source.count)) .select_from(source) .join(Mutation).join(Protein) .filter(Mutation.affected_sites.any( Site.types.contains(site_type) )) .join(Gene, Gene.preferred_isoform_id == Protein.id) .filter(Gene.name == gene) ) if filters is not None: query = query.filter(filters) counts.append(query.scalar()) return counts def by_muts_count(result, source: MutationSource, site_type, filters=None): top_fdr = result['top_fdr'] mutation_counts = count_mutations_by_gene(source, top_fdr.gene, site_type, filters) return ( top_fdr.gene, mutation_counts, [f'Mutations: {count}<br>FDR: {fdr}' for count, fdr in zip(mutation_counts, top_fdr.fdr)] ) def by_muts_stacked(result, source, site_type): top_fdr = result['top_fdr'] muts = result['all_active_mutations'] genes = top_fdr.sort_values(by='fdr').gene grouped = gather_ptm_muts_impacts(source, site_type, limit_to_genes=genes, limit_to_muts=muts) return { impact: (genes, [muts_by_gene[gene_name] for gene_name in genes], []) for impact, muts_by_gene in grouped.items() } active_driver_cases = cases( analysis=all_analyses, site_type=site_types_with_any, ).set_mode('product') @active_driver_cases @stacked_bar_plot def muts_by_impact(analysis, site_type): source = all_analyses[analysis] try: result = analysis(site_type.name) except KeyError: print(f'No results for {analysis}') return {} return by_muts_stacked(result, source, site_type) @active_driver_cases @bar_plot def muts(analysis, site_type): source = all_analyses[analysis] result = analysis(site_type.name) return by_muts_count(result, source, site_type) @cases(cancer_code={cancer.code for cancer in Cancer.query}) @bar_plot def per_cancer_glycosylation(cancer_code, site_type='glycosylation'): results = per_cancer_analysis(site_type) try: result = results[cancer_code] except KeyError: print(f'No results for {cancer_code}') return [], [] return by_muts_count(result, MC3Mutation, site_type, MC3Mutation.cancer_code == cancer_code) def counts_by(column_name, df: DataFrame, by_unique=False) -> dict: if by_unique: column = getattr(df, column_name) return column.value_counts() counts = Counter() get_by = attrgetter(column_name) for row in df.itertuples(): counts[get_by(row)] += int(row.count) return counts @cases(site_type=site_types) @bar_plot def cancers(site_type): result = pan_cancer_analysis(site_type) counts = counts_by('cancer_type', result['all_active_mutations']) cancer_by_code = {cancer.code: cancer.name for cancer in Cancer.query} return ( counts.keys(), counts.values(), [ f'{cancer_by_code[cancer_type]}: {count} mutations' for cancer_type, count in counts.items() ] ) def ontology_plots( terms, analysis_name, vector=True, thresholds=(70, 75, 80, 85, 90, 95), allow_misses=True, limit_to=None, unflatten=900 ): predefined_ontologies = { 'phenotypes': 'data/hp.obo', 'diseases': 'data/HumanDO.obo', 'mondo': 'data/mondo.obo' } ontology_subsets = { 'mondo': [None, 'disease', 'disease characteristic'] } ontologies = { name: Ontology(path) for name, path in predefined_ontologies.items() if not limit_to or name in limit_to } path = Path('analyses_output') / 'active_driver_plots' / analysis_name path.mkdir(parents=True, exist_ok=True) plots = {} for name, ontology in ontologies.items(): subsets = ontology_subsets.get(name, [None]) for subset in subsets: for above_percentile in thresholds: graph = ontology.process_graph(terms, above_percentile, root_name=subset, allow_misses=allow_misses, show_progress=True) plot = draw_ontology_graph( graph, path / f'{name}_{above_percentile}{"_" + subset if subset else ""}.{"svg" if vector else "png"}', unflatten ) plots[name, subset, above_percentile] = plot return plot def cancer_mutations(result, significant=True): mutations = ( mutations_from_significant_genes(result, mutation_model=MC3Mutation) if significant else result['all_active_mutations'] ) cancer_by_code = {cancer.code: cancer.name for cancer in Cancer.query} mutations = mutations.assign(cancer_name=Series( cancer_by_code[mutation.cancer_type] for mutation in mutations.itertuples(index=False) ).values) return mutations def merged_cancer_mutations(site_type): all_cancer_mutations = [cancer_mutations(pan_cancer_analysis(site_type))] ad_per_cancer = per_cancer_analysis(site_type) for cancer_type, result in ad_per_cancer.items(): mutations = cancer_mutations(result, cancer_type=cancer_type) all_cancer_mutations.append(mutations) @cases(site_type=site_types) def cancers_ontology(site_type, significant=True, vector=False): result = pan_cancer_analysis(site_type) mutations = cancer_mutations(result, significant=significant) terms = counts_by('cancer_name', mutations) return ontology_plots( terms, 'cancers', vector, [0, 70, 75, 80, 85, 90, 95], allow_misses=False, limit_to=['diseases', 'mondo'] ) def disease_mutations(result, significant=True): mutations = ( mutations_from_significant_genes(result, mutation_model=InheritedMutation) if significant else result['all_active_mutations'] ) return mutations @cases(site_type=site_types) def diseases_wordcloud(site_type, significant=True): result = clinvar_analysis(site_type.name) mutations = disease_mutations(result) print( 'Copy-paste following text into a wordcloud generation program, ' 'e.g. https://www.jasondavies.com/wordcloud/' ) print(' '.join(mutations.disease)) @cases(site_type=site_types) def diseases_ontology(site_type, significant=True, vector=False): result = clinvar_analysis(site_type.name) mutations = disease_mutations(result) terms = counts_by('disease', mutations) return ontology_plots(terms, 'diseases', vector) @cases(site_type=site_types) @bar_plot def cancer_census_enrichment(site_type): analyses = { 'TCGA': pan_cancer_analysis, 'ClinVar': clinvar_analysis } results = {} p_values = {} for name, analysis in analyses.items(): result = analysis(site_type) observed_count, expected_count, contingency_table, oddsratio, pvalue = active_driver_genes_enrichment(result) results[name] = oddsratio p_values[name] = pvalue return [results.keys(), results.values(), p_values.values()]
lgpl-2.1