repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
rsignell-usgs/python-training
web-services/xray_test.py
1
1378
# coding: utf-8 # #Testing Xray on weather forecast model data # In[18]: import xray import datetime import matplotlib.pyplot as plt import numpy as np import pandas as pd get_ipython().magic(u'matplotlib inline') # In[19]: URL = 'http://thredds.ucar.edu/thredds/dodsC/grib/NCEP/GFS/Global_0p5deg/Best' # In[20]: ds = xray.open_dataset(URL) # In[21]: ds # In[22]: # select lat,lon region of interest # note: slice(20.5,55.0) fails dsloc = ds.sel(lon=slice(230.5,300.0),lat=slice(55.0,20.5)) # In[23]: # select closest data to time of interest #date = datetime.datetime(2015,7,15,3,0,0) date = datetime.datetime.now() ds_snapshot = dsloc.sel(time=date,time1=date,time2=date,method='nearest') # In[24]: ds.data_vars # In[25]: ds.coords # In[26]: ds.attrs # In[27]: t = ds_snapshot['Temperature_surface'] # In[28]: t.shape # In[29]: plt.pcolormesh(t.lon.data,t.lat.data,t.data) plt.title(t.name+pd.Timestamp(t.time.values).strftime(': %Y-%m-%d %H:%M:%S %Z %z')); # In[30]: # time series closest to specified lon,lat location ds_series = ds.sel(lon=250.,lat=33.,method='nearest') # In[31]: # Select temperature and convert to Pandas Series v_series = ds_series['Temperature_surface'].to_series() # In[32]: v_series.plot(title=v_series.name); # In[33]: ds_snapshot # In[34]: #ds_snapshot.to_netcdf('ds_snapshot.nc') # In[ ]:
cc0-1.0
GuessWhoSamFoo/pandas
pandas/tests/indexes/interval/test_construction.py
2
15259
from __future__ import division from functools import partial import numpy as np import pytest from pandas.compat import lzip from pandas.core.dtypes.common import is_categorical_dtype from pandas.core.dtypes.dtypes import IntervalDtype from pandas import ( Categorical, CategoricalIndex, Float64Index, Index, Int64Index, Interval, IntervalIndex, date_range, notna, period_range, timedelta_range) from pandas.core.arrays import IntervalArray import pandas.core.common as com import pandas.util.testing as tm @pytest.fixture(params=[None, 'foo']) def name(request): return request.param class Base(object): """ Common tests for all variations of IntervalIndex construction. Input data to be supplied in breaks format, then converted by the subclass method get_kwargs_from_breaks to the expected format. """ @pytest.mark.parametrize('breaks', [ [3, 14, 15, 92, 653], np.arange(10, dtype='int64'), Int64Index(range(-10, 11)), Float64Index(np.arange(20, 30, 0.5)), date_range('20180101', periods=10), date_range('20180101', periods=10, tz='US/Eastern'), timedelta_range('1 day', periods=10)]) def test_constructor(self, constructor, breaks, closed, name): result_kwargs = self.get_kwargs_from_breaks(breaks, closed) result = constructor(closed=closed, name=name, **result_kwargs) assert result.closed == closed assert result.name == name assert result.dtype.subtype == getattr(breaks, 'dtype', 'int64') tm.assert_index_equal(result.left, Index(breaks[:-1])) tm.assert_index_equal(result.right, Index(breaks[1:])) @pytest.mark.parametrize('breaks, subtype', [ (Int64Index([0, 1, 2, 3, 4]), 'float64'), (Int64Index([0, 1, 2, 3, 4]), 'datetime64[ns]'), (Int64Index([0, 1, 2, 3, 4]), 'timedelta64[ns]'), (Float64Index([0, 1, 2, 3, 4]), 'int64'), (date_range('2017-01-01', periods=5), 'int64'), (timedelta_range('1 day', periods=5), 'int64')]) def test_constructor_dtype(self, constructor, breaks, subtype): # GH 19262: conversion via dtype parameter expected_kwargs = self.get_kwargs_from_breaks(breaks.astype(subtype)) expected = constructor(**expected_kwargs) result_kwargs = self.get_kwargs_from_breaks(breaks) iv_dtype = IntervalDtype(subtype) for dtype in (iv_dtype, str(iv_dtype)): result = constructor(dtype=dtype, **result_kwargs) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('breaks', [ [np.nan] * 2, [np.nan] * 4, [np.nan] * 50]) def test_constructor_nan(self, constructor, breaks, closed): # GH 18421 result_kwargs = self.get_kwargs_from_breaks(breaks) result = constructor(closed=closed, **result_kwargs) expected_subtype = np.float64 expected_values = np.array(breaks[:-1], dtype=object) assert result.closed == closed assert result.dtype.subtype == expected_subtype tm.assert_numpy_array_equal(result._ndarray_values, expected_values) @pytest.mark.parametrize('breaks', [ [], np.array([], dtype='int64'), np.array([], dtype='float64'), np.array([], dtype='datetime64[ns]'), np.array([], dtype='timedelta64[ns]')]) def test_constructor_empty(self, constructor, breaks, closed): # GH 18421 result_kwargs = self.get_kwargs_from_breaks(breaks) result = constructor(closed=closed, **result_kwargs) expected_values = np.array([], dtype=object) expected_subtype = getattr(breaks, 'dtype', np.int64) assert result.empty assert result.closed == closed assert result.dtype.subtype == expected_subtype tm.assert_numpy_array_equal(result._ndarray_values, expected_values) @pytest.mark.parametrize('breaks', [ tuple('0123456789'), list('abcdefghij'), np.array(list('abcdefghij'), dtype=object), np.array(list('abcdefghij'), dtype='<U1')]) def test_constructor_string(self, constructor, breaks): # GH 19016 msg = ('category, object, and string subtypes are not supported ' 'for IntervalIndex') with pytest.raises(TypeError, match=msg): constructor(**self.get_kwargs_from_breaks(breaks)) @pytest.mark.parametrize('cat_constructor', [ Categorical, CategoricalIndex]) def test_constructor_categorical_valid(self, constructor, cat_constructor): # GH 21243/21253 if isinstance(constructor, partial) and constructor.func is Index: # Index is defined to create CategoricalIndex from categorical data pytest.skip() breaks = np.arange(10, dtype='int64') expected = IntervalIndex.from_breaks(breaks) cat_breaks = cat_constructor(breaks) result_kwargs = self.get_kwargs_from_breaks(cat_breaks) result = constructor(**result_kwargs) tm.assert_index_equal(result, expected) def test_generic_errors(self, constructor): # filler input data to be used when supplying invalid kwargs filler = self.get_kwargs_from_breaks(range(10)) # invalid closed msg = "invalid option for 'closed': invalid" with pytest.raises(ValueError, match=msg): constructor(closed='invalid', **filler) # unsupported dtype msg = 'dtype must be an IntervalDtype, got int64' with pytest.raises(TypeError, match=msg): constructor(dtype='int64', **filler) # invalid dtype msg = "data type 'invalid' not understood" with pytest.raises(TypeError, match=msg): constructor(dtype='invalid', **filler) # no point in nesting periods in an IntervalIndex periods = period_range('2000-01-01', periods=10) periods_kwargs = self.get_kwargs_from_breaks(periods) msg = 'Period dtypes are not supported, use a PeriodIndex instead' with pytest.raises(ValueError, match=msg): constructor(**periods_kwargs) # decreasing values decreasing_kwargs = self.get_kwargs_from_breaks(range(10, -1, -1)) msg = 'left side of interval must be <= right side' with pytest.raises(ValueError, match=msg): constructor(**decreasing_kwargs) class TestFromArrays(Base): """Tests specific to IntervalIndex.from_arrays""" @pytest.fixture def constructor(self): return IntervalIndex.from_arrays def get_kwargs_from_breaks(self, breaks, closed='right'): """ converts intervals in breaks format to a dictionary of kwargs to specific to the format expected by IntervalIndex.from_arrays """ return {'left': breaks[:-1], 'right': breaks[1:]} def test_constructor_errors(self): # GH 19016: categorical data data = Categorical(list('01234abcde'), ordered=True) msg = ('category, object, and string subtypes are not supported ' 'for IntervalIndex') with pytest.raises(TypeError, match=msg): IntervalIndex.from_arrays(data[:-1], data[1:]) # unequal length left = [0, 1, 2] right = [2, 3] msg = 'left and right must have the same length' with pytest.raises(ValueError, match=msg): IntervalIndex.from_arrays(left, right) @pytest.mark.parametrize('left_subtype, right_subtype', [ (np.int64, np.float64), (np.float64, np.int64)]) def test_mixed_float_int(self, left_subtype, right_subtype): """mixed int/float left/right results in float for both sides""" left = np.arange(9, dtype=left_subtype) right = np.arange(1, 10, dtype=right_subtype) result = IntervalIndex.from_arrays(left, right) expected_left = Float64Index(left) expected_right = Float64Index(right) expected_subtype = np.float64 tm.assert_index_equal(result.left, expected_left) tm.assert_index_equal(result.right, expected_right) assert result.dtype.subtype == expected_subtype class TestFromBreaks(Base): """Tests specific to IntervalIndex.from_breaks""" @pytest.fixture def constructor(self): return IntervalIndex.from_breaks def get_kwargs_from_breaks(self, breaks, closed='right'): """ converts intervals in breaks format to a dictionary of kwargs to specific to the format expected by IntervalIndex.from_breaks """ return {'breaks': breaks} def test_constructor_errors(self): # GH 19016: categorical data data = Categorical(list('01234abcde'), ordered=True) msg = ('category, object, and string subtypes are not supported ' 'for IntervalIndex') with pytest.raises(TypeError, match=msg): IntervalIndex.from_breaks(data) def test_length_one(self): """breaks of length one produce an empty IntervalIndex""" breaks = [0] result = IntervalIndex.from_breaks(breaks) expected = IntervalIndex.from_breaks([]) tm.assert_index_equal(result, expected) class TestFromTuples(Base): """Tests specific to IntervalIndex.from_tuples""" @pytest.fixture def constructor(self): return IntervalIndex.from_tuples def get_kwargs_from_breaks(self, breaks, closed='right'): """ converts intervals in breaks format to a dictionary of kwargs to specific to the format expected by IntervalIndex.from_tuples """ if len(breaks) == 0: return {'data': breaks} tuples = lzip(breaks[:-1], breaks[1:]) if isinstance(breaks, (list, tuple)): return {'data': tuples} elif is_categorical_dtype(breaks): return {'data': breaks._constructor(tuples)} return {'data': com.asarray_tuplesafe(tuples)} def test_constructor_errors(self): # non-tuple tuples = [(0, 1), 2, (3, 4)] msg = 'IntervalIndex.from_tuples received an invalid item, 2' with pytest.raises(TypeError, match=msg.format(t=tuples)): IntervalIndex.from_tuples(tuples) # too few/many items tuples = [(0, 1), (2,), (3, 4)] msg = 'IntervalIndex.from_tuples requires tuples of length 2, got {t}' with pytest.raises(ValueError, match=msg.format(t=tuples)): IntervalIndex.from_tuples(tuples) tuples = [(0, 1), (2, 3, 4), (5, 6)] with pytest.raises(ValueError, match=msg.format(t=tuples)): IntervalIndex.from_tuples(tuples) def test_na_tuples(self): # tuple (NA, NA) evaluates the same as NA as an elemenent na_tuple = [(0, 1), (np.nan, np.nan), (2, 3)] idx_na_tuple = IntervalIndex.from_tuples(na_tuple) idx_na_element = IntervalIndex.from_tuples([(0, 1), np.nan, (2, 3)]) tm.assert_index_equal(idx_na_tuple, idx_na_element) class TestClassConstructors(Base): """Tests specific to the IntervalIndex/Index constructors""" @pytest.fixture(params=[IntervalIndex, partial(Index, dtype='interval')], ids=['IntervalIndex', 'Index']) def constructor(self, request): return request.param def get_kwargs_from_breaks(self, breaks, closed='right'): """ converts intervals in breaks format to a dictionary of kwargs to specific to the format expected by the IntervalIndex/Index constructors """ if len(breaks) == 0: return {'data': breaks} ivs = [Interval(l, r, closed) if notna(l) else l for l, r in zip(breaks[:-1], breaks[1:])] if isinstance(breaks, list): return {'data': ivs} elif is_categorical_dtype(breaks): return {'data': breaks._constructor(ivs)} return {'data': np.array(ivs, dtype=object)} def test_generic_errors(self, constructor): """ override the base class implementation since errors are handled differently; checks unnecessary since caught at the Interval level """ pass def test_constructor_errors(self, constructor): # mismatched closed within intervals with no constructor override ivs = [Interval(0, 1, closed='right'), Interval(2, 3, closed='left')] msg = 'intervals must all be closed on the same side' with pytest.raises(ValueError, match=msg): constructor(ivs) # scalar msg = (r'IntervalIndex\(...\) must be called with a collection of ' 'some kind, 5 was passed') with pytest.raises(TypeError, match=msg): constructor(5) # not an interval msg = ("type <(class|type) 'numpy.int64'> with value 0 " "is not an interval") with pytest.raises(TypeError, match=msg): constructor([0, 1]) @pytest.mark.parametrize('data, closed', [ ([], 'both'), ([np.nan, np.nan], 'neither'), ([Interval(0, 3, closed='neither'), Interval(2, 5, closed='neither')], 'left'), ([Interval(0, 3, closed='left'), Interval(2, 5, closed='right')], 'neither'), (IntervalIndex.from_breaks(range(5), closed='both'), 'right')]) def test_override_inferred_closed(self, constructor, data, closed): # GH 19370 if isinstance(data, IntervalIndex): tuples = data.to_tuples() else: tuples = [(iv.left, iv.right) if notna(iv) else iv for iv in data] expected = IntervalIndex.from_tuples(tuples, closed=closed) result = constructor(data, closed=closed) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('values_constructor', [ list, np.array, IntervalIndex, IntervalArray]) def test_index_object_dtype(self, values_constructor): # Index(intervals, dtype=object) is an Index (not an IntervalIndex) intervals = [Interval(0, 1), Interval(1, 2), Interval(2, 3)] values = values_constructor(intervals) result = Index(values, dtype=object) assert type(result) is Index tm.assert_numpy_array_equal(result.values, np.array(values)) class TestFromIntervals(TestClassConstructors): """ Tests for IntervalIndex.from_intervals, which is deprecated in favor of the IntervalIndex constructor. Same tests as the IntervalIndex constructor, plus deprecation test. Should only need to delete this class when removed. """ @pytest.fixture def constructor(self): def from_intervals_ignore_warnings(*args, **kwargs): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): return IntervalIndex.from_intervals(*args, **kwargs) return from_intervals_ignore_warnings def test_deprecated(self): ivs = [Interval(0, 1), Interval(1, 2)] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): IntervalIndex.from_intervals(ivs) @pytest.mark.skip(reason='parent class test that is not applicable') def test_index_object_dtype(self): pass
bsd-3-clause
HeraclesHX/scikit-learn
sklearn/__init__.py
154
3014
""" Machine learning module for Python ================================== sklearn is a Python module integrating classical machine learning algorithms in the tightly-knit world of scientific Python packages (numpy, scipy, matplotlib). It aims to provide simple and efficient solutions to learning problems that are accessible to everybody and reusable in various contexts: machine-learning as a versatile tool for science and engineering. See http://scikit-learn.org for complete documentation. """ import sys import re import warnings # Make sure that DeprecationWarning within this package always gets printed warnings.filterwarnings('always', category=DeprecationWarning, module='^{0}\.'.format(re.escape(__name__))) # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # Generic release markers: # X.Y # X.Y.Z # For bugfix releases # # Admissible pre-release markers: # X.YaN # Alpha release # X.YbN # Beta release # X.YrcN # Release Candidate # X.Y # Final release # # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # __version__ = '0.17.dev0' try: # This variable is injected in the __builtins__ by the build # process. It used to enable importing subpackages of sklearn when # the binaries are not built __SKLEARN_SETUP__ except NameError: __SKLEARN_SETUP__ = False if __SKLEARN_SETUP__: sys.stderr.write('Partial import of sklearn during the build process.\n') # We are not importing the rest of the scikit during the build # process, as it may not be compiled yet else: from . import __check_build from .base import clone __check_build # avoid flakes unused variable error __all__ = ['calibration', 'cluster', 'covariance', 'cross_decomposition', 'cross_validation', 'datasets', 'decomposition', 'dummy', 'ensemble', 'externals', 'feature_extraction', 'feature_selection', 'gaussian_process', 'grid_search', 'isotonic', 'kernel_approximation', 'kernel_ridge', 'lda', 'learning_curve', 'linear_model', 'manifold', 'metrics', 'mixture', 'multiclass', 'naive_bayes', 'neighbors', 'neural_network', 'pipeline', 'preprocessing', 'qda', 'random_projection', 'semi_supervised', 'svm', 'tree', # Non-modules: 'clone'] def setup_module(module): """Fixture for the tests to assure globally controllable seeding of RNGs""" import os import numpy as np import random # It could have been provided in the environment _random_seed = os.environ.get('SKLEARN_SEED', None) if _random_seed is None: _random_seed = np.random.uniform() * (2 ** 31 - 1) _random_seed = int(_random_seed) print("I: Seeding RNGs with %r" % _random_seed) np.random.seed(_random_seed) random.seed(_random_seed)
bsd-3-clause
BMJHayward/infusionsoft_xpmt
examples/IS_dataplotting.py
1
1550
# coding: utf-8 # In[3]: import numpy as np import scipy as sp import pandas as pd import matplotlib from matplotlib import pyplot as plt import seaborn as sbrn # In[4]: monthly_sales = pd.read_csv(r'S:\Program Files (x86)\Users\SERVER-MEDIA\Downloads\monthsales.csv') # In[5]: monthly_sales.head() # In[6]: monthly_sales['Amt sold'] # In[7]: monthly_sales.loc[:, 'Amt sold'] = monthly_sales['Amt sold'].str.strip('AUD') monthly_sales.loc[:, 'Amt sold'] = monthly_sales['Amt sold'].str.strip('-AUD') monthly_sales.loc[:, 'Amt sold'] = monthly_sales['Amt sold'].str.replace(',', '') monthly_sales.loc[:, 'Amt sold'] = monthly_sales['Amt sold'].astype(float) monthly_sales.head() # In[8]: type(monthly_sales['Amt sold'][3]) # In[9]: def numToMonth(num): return{ 1 : 'Jan', 2 : 'Feb', 3 : 'Mar', 4 : 'Apr', 5 : 'May', 6 : 'Jun', 7 : 'Jul', 8 : 'Aug', 9 : 'Sep', 10 : 'Oct', 11 : 'Nov', 12 : 'Dec' }[num] # In[10]: monthly_sales = monthly_sales.drop(monthly_sales.index[22]) # In[11]: monthly_sales.loc[:, 'month'] = monthly_sales['month'].map(numToMonth) # In[12]: monthly_sales['Amt sold'][:-1].plot.bar() plt.ylabel('Monthly revenue') plt.show() # In[14]: monthly_sales.plot.bar(x='month', y='Amt sold') plt.show() # In[ ]: def salesplot(dframe, x_axis, y_axis): if x_axis == 'month': dframe.loc[:, x_axis] = dframe[x_axis].map(numToMonth) dframe.plot.bar(x=x_axis, y=y_axis) plt.show()
mit
mugizico/scikit-learn
sklearn/cross_validation.py
96
58309
""" The :mod:`sklearn.cross_validation` module includes utilities for cross- validation and performance evaluation. """ # Author: Alexandre Gramfort <[email protected]>, # Gael Varoquaux <[email protected]>, # Olivier Grisel <[email protected]> # License: BSD 3 clause from __future__ import print_function from __future__ import division import warnings from itertools import chain, combinations from math import ceil, floor, factorial import numbers import time from abc import ABCMeta, abstractmethod import numpy as np import scipy.sparse as sp from .base import is_classifier, clone from .utils import indexable, check_random_state, safe_indexing from .utils.validation import (_is_arraylike, _num_samples, check_array, column_or_1d) from .utils.multiclass import type_of_target from .externals.joblib import Parallel, delayed, logger from .externals.six import with_metaclass from .externals.six.moves import zip from .metrics.scorer import check_scoring from .utils.fixes import bincount __all__ = ['KFold', 'LeaveOneLabelOut', 'LeaveOneOut', 'LeavePLabelOut', 'LeavePOut', 'ShuffleSplit', 'StratifiedKFold', 'StratifiedShuffleSplit', 'PredefinedSplit', 'check_cv', 'cross_val_score', 'cross_val_predict', 'permutation_test_score', 'train_test_split'] class _PartitionIterator(with_metaclass(ABCMeta)): """Base class for CV iterators where train_mask = ~test_mask Implementations must define `_iter_test_masks` or `_iter_test_indices`. Parameters ---------- n : int Total number of elements in dataset. """ def __init__(self, n): if abs(n - int(n)) >= np.finfo('f').eps: raise ValueError("n must be an integer") self.n = int(n) def __iter__(self): ind = np.arange(self.n) for test_index in self._iter_test_masks(): train_index = np.logical_not(test_index) train_index = ind[train_index] test_index = ind[test_index] yield train_index, test_index # Since subclasses must implement either _iter_test_masks or # _iter_test_indices, neither can be abstract. def _iter_test_masks(self): """Generates boolean masks corresponding to test sets. By default, delegates to _iter_test_indices() """ for test_index in self._iter_test_indices(): test_mask = self._empty_mask() test_mask[test_index] = True yield test_mask def _iter_test_indices(self): """Generates integer indices corresponding to test sets.""" raise NotImplementedError def _empty_mask(self): return np.zeros(self.n, dtype=np.bool) class LeaveOneOut(_PartitionIterator): """Leave-One-Out cross validation iterator. Provides train/test indices to split data in train test sets. Each sample is used once as a test set (singleton) while the remaining samples form the training set. Note: ``LeaveOneOut(n)`` is equivalent to ``KFold(n, n_folds=n)`` and ``LeavePOut(n, p=1)``. Due to the high number of test sets (which is the same as the number of samples) this cross validation method can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements in dataset. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4]]) >>> y = np.array([1, 2]) >>> loo = cross_validation.LeaveOneOut(2) >>> len(loo) 2 >>> print(loo) sklearn.cross_validation.LeaveOneOut(n=2) >>> for train_index, test_index in loo: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [1] TEST: [0] [[3 4]] [[1 2]] [2] [1] TRAIN: [0] TEST: [1] [[1 2]] [[3 4]] [1] [2] See also -------- LeaveOneLabelOut for splitting the data according to explicit, domain-specific stratification of the dataset. """ def _iter_test_indices(self): return range(self.n) def __repr__(self): return '%s.%s(n=%i)' % ( self.__class__.__module__, self.__class__.__name__, self.n, ) def __len__(self): return self.n class LeavePOut(_PartitionIterator): """Leave-P-Out cross validation iterator Provides train/test indices to split data in train test sets. This results in testing on all distinct samples of size p, while the remaining n - p samples form the training set in each iteration. Note: ``LeavePOut(n, p)`` is NOT equivalent to ``KFold(n, n_folds=n // p)`` which creates non-overlapping test sets. Due to the high number of iterations which grows combinatorically with the number of samples this cross validation method can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements in dataset. p : int Size of the test sets. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> lpo = cross_validation.LeavePOut(4, 2) >>> len(lpo) 6 >>> print(lpo) sklearn.cross_validation.LeavePOut(n=4, p=2) >>> for train_index, test_index in lpo: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [1 3] TEST: [0 2] TRAIN: [1 2] TEST: [0 3] TRAIN: [0 3] TEST: [1 2] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 1] TEST: [2 3] """ def __init__(self, n, p): super(LeavePOut, self).__init__(n) self.p = p def _iter_test_indices(self): for comb in combinations(range(self.n), self.p): yield np.array(comb) def __repr__(self): return '%s.%s(n=%i, p=%i)' % ( self.__class__.__module__, self.__class__.__name__, self.n, self.p, ) def __len__(self): return int(factorial(self.n) / factorial(self.n - self.p) / factorial(self.p)) class _BaseKFold(with_metaclass(ABCMeta, _PartitionIterator)): """Base class to validate KFold approaches""" @abstractmethod def __init__(self, n, n_folds, shuffle, random_state): super(_BaseKFold, self).__init__(n) if abs(n_folds - int(n_folds)) >= np.finfo('f').eps: raise ValueError("n_folds must be an integer") self.n_folds = n_folds = int(n_folds) if n_folds <= 1: raise ValueError( "k-fold cross validation requires at least one" " train / test split by setting n_folds=2 or more," " got n_folds={0}.".format(n_folds)) if n_folds > self.n: raise ValueError( ("Cannot have number of folds n_folds={0} greater" " than the number of samples: {1}.").format(n_folds, n)) if not isinstance(shuffle, bool): raise TypeError("shuffle must be True or False;" " got {0}".format(shuffle)) self.shuffle = shuffle self.random_state = random_state class KFold(_BaseKFold): """K-Folds cross validation iterator. Provides train/test indices to split data in train test sets. Split dataset into k consecutive folds (without shuffling). Each fold is then used a validation set once while the k - 1 remaining fold form the training set. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements. n_folds : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle the data before splitting into batches. random_state : None, int or RandomState Pseudo-random number generator state used for random sampling. If None, use default numpy RNG for shuffling Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([1, 2, 3, 4]) >>> kf = cross_validation.KFold(4, n_folds=2) >>> len(kf) 2 >>> print(kf) # doctest: +NORMALIZE_WHITESPACE sklearn.cross_validation.KFold(n=4, n_folds=2, shuffle=False, random_state=None) >>> for train_index, test_index in kf: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [0 1] TEST: [2 3] Notes ----- The first n % n_folds folds have size n // n_folds + 1, other folds have size n // n_folds. See also -------- StratifiedKFold: take label information into account to avoid building folds with imbalanced class distributions (for binary or multiclass classification tasks). """ def __init__(self, n, n_folds=3, shuffle=False, random_state=None): super(KFold, self).__init__(n, n_folds, shuffle, random_state) self.idxs = np.arange(n) if shuffle: rng = check_random_state(self.random_state) rng.shuffle(self.idxs) def _iter_test_indices(self): n = self.n n_folds = self.n_folds fold_sizes = (n // n_folds) * np.ones(n_folds, dtype=np.int) fold_sizes[:n % n_folds] += 1 current = 0 for fold_size in fold_sizes: start, stop = current, current + fold_size yield self.idxs[start:stop] current = stop def __repr__(self): return '%s.%s(n=%i, n_folds=%i, shuffle=%s, random_state=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.n, self.n_folds, self.shuffle, self.random_state, ) def __len__(self): return self.n_folds class StratifiedKFold(_BaseKFold): """Stratified K-Folds cross validation iterator Provides train/test indices to split data in train test sets. This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- y : array-like, [n_samples] Samples to split in K folds. n_folds : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle each stratification of the data before splitting into batches. random_state : None, int or RandomState Pseudo-random number generator state used for random sampling. If None, use default numpy RNG for shuffling Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> skf = cross_validation.StratifiedKFold(y, n_folds=2) >>> len(skf) 2 >>> print(skf) # doctest: +NORMALIZE_WHITESPACE sklearn.cross_validation.StratifiedKFold(labels=[0 0 1 1], n_folds=2, shuffle=False, random_state=None) >>> for train_index, test_index in skf: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 3] TEST: [0 2] TRAIN: [0 2] TEST: [1 3] Notes ----- All the folds have size trunc(n_samples / n_folds), the last one has the complementary. """ def __init__(self, y, n_folds=3, shuffle=False, random_state=None): super(StratifiedKFold, self).__init__( len(y), n_folds, shuffle, random_state) y = np.asarray(y) n_samples = y.shape[0] unique_labels, y_inversed = np.unique(y, return_inverse=True) label_counts = bincount(y_inversed) min_labels = np.min(label_counts) if self.n_folds > min_labels: warnings.warn(("The least populated class in y has only %d" " members, which is too few. The minimum" " number of labels for any class cannot" " be less than n_folds=%d." % (min_labels, self.n_folds)), Warning) # don't want to use the same seed in each label's shuffle if self.shuffle: rng = check_random_state(self.random_state) else: rng = self.random_state # pre-assign each sample to a test fold index using individual KFold # splitting strategies for each label so as to respect the # balance of labels per_label_cvs = [ KFold(max(c, self.n_folds), self.n_folds, shuffle=self.shuffle, random_state=rng) for c in label_counts] test_folds = np.zeros(n_samples, dtype=np.int) for test_fold_idx, per_label_splits in enumerate(zip(*per_label_cvs)): for label, (_, test_split) in zip(unique_labels, per_label_splits): label_test_folds = test_folds[y == label] # the test split can be too big because we used # KFold(max(c, self.n_folds), self.n_folds) instead of # KFold(c, self.n_folds) to make it possible to not crash even # if the data is not 100% stratifiable for all the labels # (we use a warning instead of raising an exception) # If this is the case, let's trim it: test_split = test_split[test_split < len(label_test_folds)] label_test_folds[test_split] = test_fold_idx test_folds[y == label] = label_test_folds self.test_folds = test_folds self.y = y def _iter_test_masks(self): for i in range(self.n_folds): yield self.test_folds == i def __repr__(self): return '%s.%s(labels=%s, n_folds=%i, shuffle=%s, random_state=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.y, self.n_folds, self.shuffle, self.random_state, ) def __len__(self): return self.n_folds class LeaveOneLabelOut(_PartitionIterator): """Leave-One-Label_Out cross-validation iterator Provides train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- labels : array-like of int with shape (n_samples,) Arbitrary domain-specific stratification of the data to be used to draw the splits. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 1, 2]) >>> labels = np.array([1, 1, 2, 2]) >>> lol = cross_validation.LeaveOneLabelOut(labels) >>> len(lol) 2 >>> print(lol) sklearn.cross_validation.LeaveOneLabelOut(labels=[1 1 2 2]) >>> for train_index, test_index in lol: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [1 2] [1 2] TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [1 2] """ def __init__(self, labels): super(LeaveOneLabelOut, self).__init__(len(labels)) # We make a copy of labels to avoid side-effects during iteration self.labels = np.array(labels, copy=True) self.unique_labels = np.unique(labels) self.n_unique_labels = len(self.unique_labels) def _iter_test_masks(self): for i in self.unique_labels: yield self.labels == i def __repr__(self): return '%s.%s(labels=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.labels, ) def __len__(self): return self.n_unique_labels class LeavePLabelOut(_PartitionIterator): """Leave-P-Label_Out cross-validation iterator Provides train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePLabelOut and LeaveOneLabelOut is that the former builds the test sets with all the samples assigned to ``p`` different values of the labels while the latter uses samples all assigned the same labels. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- labels : array-like of int with shape (n_samples,) Arbitrary domain-specific stratification of the data to be used to draw the splits. p : int Number of samples to leave out in the test split. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y = np.array([1, 2, 1]) >>> labels = np.array([1, 2, 3]) >>> lpl = cross_validation.LeavePLabelOut(labels, p=2) >>> len(lpl) 3 >>> print(lpl) sklearn.cross_validation.LeavePLabelOut(labels=[1 2 3], p=2) >>> for train_index, test_index in lpl: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2] TEST: [0 1] [[5 6]] [[1 2] [3 4]] [1] [1 2] TRAIN: [1] TEST: [0 2] [[3 4]] [[1 2] [5 6]] [2] [1 1] TRAIN: [0] TEST: [1 2] [[1 2]] [[3 4] [5 6]] [1] [2 1] """ def __init__(self, labels, p): # We make a copy of labels to avoid side-effects during iteration super(LeavePLabelOut, self).__init__(len(labels)) self.labels = np.array(labels, copy=True) self.unique_labels = np.unique(labels) self.n_unique_labels = len(self.unique_labels) self.p = p def _iter_test_masks(self): comb = combinations(range(self.n_unique_labels), self.p) for idx in comb: test_index = self._empty_mask() idx = np.array(idx) for l in self.unique_labels[idx]: test_index[self.labels == l] = True yield test_index def __repr__(self): return '%s.%s(labels=%s, p=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.labels, self.p, ) def __len__(self): return int(factorial(self.n_unique_labels) / factorial(self.n_unique_labels - self.p) / factorial(self.p)) class BaseShuffleSplit(with_metaclass(ABCMeta)): """Base class for ShuffleSplit and StratifiedShuffleSplit""" def __init__(self, n, n_iter=10, test_size=0.1, train_size=None, random_state=None): self.n = n self.n_iter = n_iter self.test_size = test_size self.train_size = train_size self.random_state = random_state self.n_train, self.n_test = _validate_shuffle_split(n, test_size, train_size) def __iter__(self): for train, test in self._iter_indices(): yield train, test return @abstractmethod def _iter_indices(self): """Generate (train, test) indices""" class ShuffleSplit(BaseShuffleSplit): """Random permutation cross-validation iterator. Yields indices to split data into training and test sets. Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements in the dataset. n_iter : int (default 10) Number of re-shuffling & splitting iterations. test_size : float (default 0.1), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn import cross_validation >>> rs = cross_validation.ShuffleSplit(4, n_iter=3, ... test_size=.25, random_state=0) >>> len(rs) 3 >>> print(rs) ... # doctest: +ELLIPSIS ShuffleSplit(4, n_iter=3, test_size=0.25, ...) >>> for train_index, test_index in rs: ... print("TRAIN:", train_index, "TEST:", test_index) ... TRAIN: [3 1 0] TEST: [2] TRAIN: [2 1 3] TEST: [0] TRAIN: [0 2 1] TEST: [3] >>> rs = cross_validation.ShuffleSplit(4, n_iter=3, ... train_size=0.5, test_size=.25, random_state=0) >>> for train_index, test_index in rs: ... print("TRAIN:", train_index, "TEST:", test_index) ... TRAIN: [3 1] TEST: [2] TRAIN: [2 1] TEST: [0] TRAIN: [0 2] TEST: [3] """ def _iter_indices(self): rng = check_random_state(self.random_state) for i in range(self.n_iter): # random partition permutation = rng.permutation(self.n) ind_test = permutation[:self.n_test] ind_train = permutation[self.n_test:self.n_test + self.n_train] yield ind_train, ind_test def __repr__(self): return ('%s(%d, n_iter=%d, test_size=%s, ' 'random_state=%s)' % ( self.__class__.__name__, self.n, self.n_iter, str(self.test_size), self.random_state, )) def __len__(self): return self.n_iter def _validate_shuffle_split(n, test_size, train_size): if test_size is None and train_size is None: raise ValueError( 'test_size and train_size can not both be None') if test_size is not None: if np.asarray(test_size).dtype.kind == 'f': if test_size >= 1.: raise ValueError( 'test_size=%f should be smaller ' 'than 1.0 or be an integer' % test_size) elif np.asarray(test_size).dtype.kind == 'i': if test_size >= n: raise ValueError( 'test_size=%d should be smaller ' 'than the number of samples %d' % (test_size, n)) else: raise ValueError("Invalid value for test_size: %r" % test_size) if train_size is not None: if np.asarray(train_size).dtype.kind == 'f': if train_size >= 1.: raise ValueError("train_size=%f should be smaller " "than 1.0 or be an integer" % train_size) elif np.asarray(test_size).dtype.kind == 'f' and \ train_size + test_size > 1.: raise ValueError('The sum of test_size and train_size = %f, ' 'should be smaller than 1.0. Reduce ' 'test_size and/or train_size.' % (train_size + test_size)) elif np.asarray(train_size).dtype.kind == 'i': if train_size >= n: raise ValueError("train_size=%d should be smaller " "than the number of samples %d" % (train_size, n)) else: raise ValueError("Invalid value for train_size: %r" % train_size) if np.asarray(test_size).dtype.kind == 'f': n_test = ceil(test_size * n) elif np.asarray(test_size).dtype.kind == 'i': n_test = float(test_size) if train_size is None: n_train = n - n_test else: if np.asarray(train_size).dtype.kind == 'f': n_train = floor(train_size * n) else: n_train = float(train_size) if test_size is None: n_test = n - n_train if n_train + n_test > n: raise ValueError('The sum of train_size and test_size = %d, ' 'should be smaller than the number of ' 'samples %d. Reduce test_size and/or ' 'train_size.' % (n_train + n_test, n)) return int(n_train), int(n_test) class StratifiedShuffleSplit(BaseShuffleSplit): """Stratified ShuffleSplit cross validation iterator Provides train/test indices to split data in train test sets. This cross-validation object is a merge of StratifiedKFold and ShuffleSplit, which returns stratified randomized folds. The folds are made by preserving the percentage of samples for each class. Note: like the ShuffleSplit strategy, stratified random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- y : array, [n_samples] Labels of samples. n_iter : int (default 10) Number of re-shuffling & splitting iterations. test_size : float (default 0.1), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn.cross_validation import StratifiedShuffleSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> sss = StratifiedShuffleSplit(y, 3, test_size=0.5, random_state=0) >>> len(sss) 3 >>> print(sss) # doctest: +ELLIPSIS StratifiedShuffleSplit(labels=[0 0 1 1], n_iter=3, ...) >>> for train_index, test_index in sss: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2] TEST: [3 0] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 2] TEST: [3 1] """ def __init__(self, y, n_iter=10, test_size=0.1, train_size=None, random_state=None): super(StratifiedShuffleSplit, self).__init__( len(y), n_iter, test_size, train_size, random_state) self.y = np.array(y) self.classes, self.y_indices = np.unique(y, return_inverse=True) n_cls = self.classes.shape[0] if np.min(bincount(self.y_indices)) < 2: raise ValueError("The least populated class in y has only 1" " member, which is too few. The minimum" " number of labels for any class cannot" " be less than 2.") if self.n_train < n_cls: raise ValueError('The train_size = %d should be greater or ' 'equal to the number of classes = %d' % (self.n_train, n_cls)) if self.n_test < n_cls: raise ValueError('The test_size = %d should be greater or ' 'equal to the number of classes = %d' % (self.n_test, n_cls)) def _iter_indices(self): rng = check_random_state(self.random_state) cls_count = bincount(self.y_indices) p_i = cls_count / float(self.n) n_i = np.round(self.n_train * p_i).astype(int) t_i = np.minimum(cls_count - n_i, np.round(self.n_test * p_i).astype(int)) for n in range(self.n_iter): train = [] test = [] for i, cls in enumerate(self.classes): permutation = rng.permutation(cls_count[i]) cls_i = np.where((self.y == cls))[0][permutation] train.extend(cls_i[:n_i[i]]) test.extend(cls_i[n_i[i]:n_i[i] + t_i[i]]) # Because of rounding issues (as n_train and n_test are not # dividers of the number of elements per class), we may end # up here with less samples in train and test than asked for. if len(train) < self.n_train or len(test) < self.n_test: # We complete by affecting randomly the missing indexes missing_idx = np.where(bincount(train + test, minlength=len(self.y)) == 0, )[0] missing_idx = rng.permutation(missing_idx) train.extend(missing_idx[:(self.n_train - len(train))]) test.extend(missing_idx[-(self.n_test - len(test)):]) train = rng.permutation(train) test = rng.permutation(test) yield train, test def __repr__(self): return ('%s(labels=%s, n_iter=%d, test_size=%s, ' 'random_state=%s)' % ( self.__class__.__name__, self.y, self.n_iter, str(self.test_size), self.random_state, )) def __len__(self): return self.n_iter class PredefinedSplit(_PartitionIterator): """Predefined split cross validation iterator Splits the data into training/test set folds according to a predefined scheme. Each sample can be assigned to at most one test set fold, as specified by the user through the ``test_fold`` parameter. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- test_fold : "array-like, shape (n_samples,) test_fold[i] gives the test set fold of sample i. A value of -1 indicates that the corresponding sample is not part of any test set folds, but will instead always be put into the training fold. Examples -------- >>> from sklearn.cross_validation import PredefinedSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> ps = PredefinedSplit(test_fold=[0, 1, -1, 1]) >>> len(ps) 2 >>> print(ps) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS sklearn.cross_validation.PredefinedSplit(test_fold=[ 0 1 -1 1]) >>> for train_index, test_index in ps: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2 3] TEST: [0] TRAIN: [0 2] TEST: [1 3] """ def __init__(self, test_fold): super(PredefinedSplit, self).__init__(len(test_fold)) self.test_fold = np.array(test_fold, dtype=np.int) self.test_fold = column_or_1d(self.test_fold) self.unique_folds = np.unique(self.test_fold) self.unique_folds = self.unique_folds[self.unique_folds != -1] def _iter_test_indices(self): for f in self.unique_folds: yield np.where(self.test_fold == f)[0] def __repr__(self): return '%s.%s(test_fold=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.test_fold) def __len__(self): return len(self.unique_folds) ############################################################################## def _index_param_value(X, v, indices): """Private helper function for parameter value indexing.""" if not _is_arraylike(v) or _num_samples(v) != _num_samples(X): # pass through: skip indexing return v if sp.issparse(v): v = v.tocsr() return safe_indexing(v, indices) def cross_val_predict(estimator, X, y=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs'): """Generate cross-validated estimates for each input data point Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' and 'predict' The object to use to fit the data. X : array-like The data to fit. Can be, for example a list, or an array at least 2d. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. cv : cross-validation generator or int, optional, default: None A cross-validation generator to use. If int, determines the number of folds in StratifiedKFold if y is binary or multiclass and estimator is a classifier, or the number of folds in KFold otherwise. If None, it is equivalent to cv=3. This generator must include all elements in the test set exactly once. Otherwise, a ValueError is raised. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : integer, optional The verbosity level. fit_params : dict, optional Parameters to pass to the fit method of the estimator. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' Returns ------- preds : ndarray This is the result of calling 'predict' """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch) preds_blocks = parallel(delayed(_fit_and_predict)(clone(estimator), X, y, train, test, verbose, fit_params) for train, test in cv) p = np.concatenate([p for p, _ in preds_blocks]) locs = np.concatenate([loc for _, loc in preds_blocks]) if not _check_is_partition(locs, _num_samples(X)): raise ValueError('cross_val_predict only works for partitions') preds = p.copy() preds[locs] = p return preds def _fit_and_predict(estimator, X, y, train, test, verbose, fit_params): """Fit estimator and predict values for a given dataset split. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' and 'predict' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. train : array-like, shape (n_train_samples,) Indices of training samples. test : array-like, shape (n_test_samples,) Indices of test samples. verbose : integer The verbosity level. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. Returns ------- preds : sequence Result of calling 'estimator.predict' test : array-like This is the value of the test parameter """ # Adjust length of sample weights fit_params = fit_params if fit_params is not None else {} fit_params = dict([(k, _index_param_value(X, v, train)) for k, v in fit_params.items()]) X_train, y_train = _safe_split(estimator, X, y, train) X_test, _ = _safe_split(estimator, X, y, test, train) if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) preds = estimator.predict(X_test) return preds, test def _check_is_partition(locs, n): """Check whether locs is a reordering of the array np.arange(n) Parameters ---------- locs : ndarray integer array to test n : int number of expected elements Returns ------- is_partition : bool True iff sorted(locs) is range(n) """ if len(locs) != n: return False hit = np.zeros(n, bool) hit[locs] = True if not np.all(hit): return False return True def cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs'): """Evaluate a score by cross-validation Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like The data to fit. Can be, for example a list, or an array at least 2d. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : cross-validation generator or int, optional, default: None A cross-validation generator to use. If int, determines the number of folds in StratifiedKFold if y is binary or multiclass and estimator is a classifier, or the number of folds in KFold otherwise. If None, it is equivalent to cv=3. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : integer, optional The verbosity level. fit_params : dict, optional Parameters to pass to the fit method of the estimator. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' Returns ------- scores : array of float, shape=(len(list(cv)),) Array of scores of the estimator for each run of the cross validation. """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch) scores = parallel(delayed(_fit_and_score)(clone(estimator), X, y, scorer, train, test, verbose, None, fit_params) for train, test in cv) return np.array(scores)[:, 0] class FitFailedWarning(RuntimeWarning): pass def _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score=False, return_parameters=False, error_score='raise'): """Fit estimator and compute scores for a given dataset split. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. scorer : callable A scorer callable object / function with signature ``scorer(estimator, X, y)``. train : array-like, shape (n_train_samples,) Indices of training samples. test : array-like, shape (n_test_samples,) Indices of test samples. verbose : integer The verbosity level. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. parameters : dict or None Parameters to be set on the estimator. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. return_train_score : boolean, optional, default: False Compute and return score on training set. return_parameters : boolean, optional, default: False Return parameters that has been used for the estimator. Returns ------- train_score : float, optional Score on training set, returned only if `return_train_score` is `True`. test_score : float Score on test set. n_test_samples : int Number of test samples. scoring_time : float Time spent for fitting and scoring in seconds. parameters : dict or None, optional The parameters that have been evaluated. """ if verbose > 1: if parameters is None: msg = "no parameters to be set" else: msg = '%s' % (', '.join('%s=%s' % (k, v) for k, v in parameters.items())) print("[CV] %s %s" % (msg, (64 - len(msg)) * '.')) # Adjust length of sample weights fit_params = fit_params if fit_params is not None else {} fit_params = dict([(k, _index_param_value(X, v, train)) for k, v in fit_params.items()]) if parameters is not None: estimator.set_params(**parameters) start_time = time.time() X_train, y_train = _safe_split(estimator, X, y, train) X_test, y_test = _safe_split(estimator, X, y, test, train) try: if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) except Exception as e: if error_score == 'raise': raise elif isinstance(error_score, numbers.Number): test_score = error_score if return_train_score: train_score = error_score warnings.warn("Classifier fit failed. The score on this train-test" " partition for these parameters will be set to %f. " "Details: \n%r" % (error_score, e), FitFailedWarning) else: raise ValueError("error_score must be the string 'raise' or a" " numeric value. (Hint: if using 'raise', please" " make sure that it has been spelled correctly.)" ) else: test_score = _score(estimator, X_test, y_test, scorer) if return_train_score: train_score = _score(estimator, X_train, y_train, scorer) scoring_time = time.time() - start_time if verbose > 2: msg += ", score=%f" % test_score if verbose > 1: end_msg = "%s -%s" % (msg, logger.short_format_time(scoring_time)) print("[CV] %s %s" % ((64 - len(end_msg)) * '.', end_msg)) ret = [train_score] if return_train_score else [] ret.extend([test_score, _num_samples(X_test), scoring_time]) if return_parameters: ret.append(parameters) return ret def _safe_split(estimator, X, y, indices, train_indices=None): """Create subset of dataset and properly handle kernels.""" if hasattr(estimator, 'kernel') and callable(estimator.kernel): # cannot compute the kernel values with custom function raise ValueError("Cannot use a custom kernel function. " "Precompute the kernel matrix instead.") if not hasattr(X, "shape"): if getattr(estimator, "_pairwise", False): raise ValueError("Precomputed kernels or affinity matrices have " "to be passed as arrays or sparse matrices.") X_subset = [X[idx] for idx in indices] else: if getattr(estimator, "_pairwise", False): # X is a precomputed square kernel matrix if X.shape[0] != X.shape[1]: raise ValueError("X should be a square kernel matrix") if train_indices is None: X_subset = X[np.ix_(indices, indices)] else: X_subset = X[np.ix_(indices, train_indices)] else: X_subset = safe_indexing(X, indices) if y is not None: y_subset = safe_indexing(y, indices) else: y_subset = None return X_subset, y_subset def _score(estimator, X_test, y_test, scorer): """Compute the score of an estimator on a given test set.""" if y_test is None: score = scorer(estimator, X_test) else: score = scorer(estimator, X_test, y_test) if not isinstance(score, numbers.Number): raise ValueError("scoring must return a number, got %s (%s) instead." % (str(score), type(score))) return score def _permutation_test_score(estimator, X, y, cv, scorer): """Auxiliary function for permutation_test_score""" avg_score = [] for train, test in cv: estimator.fit(X[train], y[train]) avg_score.append(scorer(estimator, X[test], y[test])) return np.mean(avg_score) def _shuffle(y, labels, random_state): """Return a shuffled copy of y eventually shuffle among same labels.""" if labels is None: ind = random_state.permutation(len(y)) else: ind = np.arange(len(labels)) for label in np.unique(labels): this_mask = (labels == label) ind[this_mask] = random_state.permutation(ind[this_mask]) return y[ind] def check_cv(cv, X=None, y=None, classifier=False): """Input checker utility for building a CV in a user friendly way. Parameters ---------- cv : int, a cv generator instance, or None The input specifying which cv generator to use. It can be an integer, in which case it is the number of folds in a KFold, None, in which case 3 fold is used, or another object, that will then be used as a cv generator. X : array-like The data the cross-val object will be applied on. y : array-like The target variable for a supervised learning problem. classifier : boolean optional Whether the task is a classification task, in which case stratified KFold will be used. Returns ------- checked_cv: a cross-validation generator instance. The return value is guaranteed to be a cv generator instance, whatever the input type. """ is_sparse = sp.issparse(X) if cv is None: cv = 3 if isinstance(cv, numbers.Integral): if classifier: if type_of_target(y) in ['binary', 'multiclass']: cv = StratifiedKFold(y, cv) else: cv = KFold(_num_samples(y), cv) else: if not is_sparse: n_samples = len(X) else: n_samples = X.shape[0] cv = KFold(n_samples, cv) return cv def permutation_test_score(estimator, X, y, cv=None, n_permutations=100, n_jobs=1, labels=None, random_state=0, verbose=0, scoring=None): """Evaluate the significance of a cross-validated score with permutations Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like The target variable to try to predict in the case of supervised learning. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects. n_permutations : integer, optional Number of times to permute ``y``. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. labels : array-like of shape [n_samples] (optional) Labels constrain the permutation among groups of samples with a same label. random_state : RandomState or an int seed (0 by default) A random number generator instance to define the state of the random permutations generator. verbose : integer, optional The verbosity level. Returns ------- score : float The true score without permuting targets. permutation_scores : array, shape (n_permutations,) The scores obtained for each permutations. pvalue : float The returned value equals p-value if `scoring` returns bigger numbers for better scores (e.g., accuracy_score). If `scoring` is rather a loss function (i.e. when lower is better such as with `mean_squared_error`) then this is actually the complement of the p-value: 1 - p-value. Notes ----- This function implements Test 1 in: Ojala and Garriga. Permutation Tests for Studying Classifier Performance. The Journal of Machine Learning Research (2010) vol. 11 """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) random_state = check_random_state(random_state) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. score = _permutation_test_score(clone(estimator), X, y, cv, scorer) permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(_permutation_test_score)( clone(estimator), X, _shuffle(y, labels, random_state), cv, scorer) for _ in range(n_permutations)) permutation_scores = np.array(permutation_scores) pvalue = (np.sum(permutation_scores >= score) + 1.0) / (n_permutations + 1) return score, permutation_scores, pvalue permutation_test_score.__test__ = False # to avoid a pb with nosetests def train_test_split(*arrays, **options): """Split arrays or matrices into random train and test subsets Quick utility that wraps input validation and ``next(iter(ShuffleSplit(n_samples)))`` and application to input data into a single call for splitting (and optionally subsampling) data in a oneliner. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- *arrays : sequence of arrays or scipy.sparse matrices with same shape[0] Python lists or tuples occurring in arrays are converted to 1D numpy arrays. test_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. If train size is also None, test size is set to 0.25. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. stratify : array-like or None (default is None) If not None, data is split in a stratified fashion, using this as the labels array. Returns ------- splitting : list of arrays, length=2 * len(arrays) List containing train-test split of input array. Examples -------- >>> import numpy as np >>> from sklearn.cross_validation import train_test_split >>> X, y = np.arange(10).reshape((5, 2)), range(5) >>> X array([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) >>> list(y) [0, 1, 2, 3, 4] >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, test_size=0.33, random_state=42) ... >>> X_train array([[4, 5], [0, 1], [6, 7]]) >>> y_train [2, 0, 3] >>> X_test array([[2, 3], [8, 9]]) >>> y_test [1, 4] """ n_arrays = len(arrays) if n_arrays == 0: raise ValueError("At least one array required as input") test_size = options.pop('test_size', None) train_size = options.pop('train_size', None) random_state = options.pop('random_state', None) dtype = options.pop('dtype', None) if dtype is not None: warnings.warn("dtype option is ignored and will be removed in 0.18.", DeprecationWarning) allow_nd = options.pop('allow_nd', None) allow_lists = options.pop('allow_lists', None) stratify = options.pop('stratify', None) if allow_lists is not None: warnings.warn("The allow_lists option is deprecated and will be " "assumed True in 0.18 and removed.", DeprecationWarning) if options: raise TypeError("Invalid parameters passed: %s" % str(options)) if allow_nd is not None: warnings.warn("The allow_nd option is deprecated and will be " "assumed True in 0.18 and removed.", DeprecationWarning) if allow_lists is False or allow_nd is False: arrays = [check_array(x, 'csr', allow_nd=allow_nd, force_all_finite=False, ensure_2d=False) if x is not None else x for x in arrays] if test_size is None and train_size is None: test_size = 0.25 arrays = indexable(*arrays) if stratify is not None: cv = StratifiedShuffleSplit(stratify, test_size=test_size, train_size=train_size, random_state=random_state) else: n_samples = _num_samples(arrays[0]) cv = ShuffleSplit(n_samples, test_size=test_size, train_size=train_size, random_state=random_state) train, test = next(iter(cv)) return list(chain.from_iterable((safe_indexing(a, train), safe_indexing(a, test)) for a in arrays)) train_test_split.__test__ = False # to avoid a pb with nosetests
bsd-3-clause
Ernestyj/PyStudy
DataScience/python/td_query/test/test_data_manipulate.py
1
19953
# -*- coding: utf-8 -*- import unittest import os import pickle import pandas as pd import numpy as np from td_query import ROOT_PATH from td_query.data_manipulate import data_manipulate_instance as instance from teradata import UdaExec class TestDataManipulate(unittest.TestCase): @classmethod def setUpClass(cls): print("**************************************** setUpClass ****************************************") instance.init() print(instance.teradata) @classmethod def tearDownClass(cls): print("************************************** tearDownClass ***************************************") def setUp(self): print("****** setUp *******") def tearDown(self): print("***** tearDown *****") def _example(self): df = instance.query_sample() # with open(ROOT_PATH + '/external/df_dispatch_bna.pickle', 'wb') as f: # save # pickle.dump(df, f) print(df) def _calculate(self): def percent(x, y): return round(x/y*100, 2) total = 115554 print( percent(2877, total), percent(3909, total), percent(23030, total), percent(18840, total), percent(66898, total), ) def _query(self): query = '''select top 10 * from pp_scratch_risk.ms_auto_trend_us_bad;''' df = instance.query(query) print(df) def _query_table_schema(self): dest_db = "pp_scratch_risk" dest_table = "ms_auto_trend_us2_1_3_100_100_1_1_1" result_cursor = instance.teradata.execute("show select * from {}.{};".format(dest_db, dest_table)) last_row = result_cursor.fetchall() print(last_row) def _query_table_top_rows(self): table = "pp_scratch_risk.ms_auto_trend_us_bad" df = instance.query_table_top_rows(table) print(df) def _insert_to_table(self): cols = ['id', 'name', 'phone'] data = [ (1, "jy", "1888"), (2, "jy", "1999"), ] df = pd.DataFrame.from_records(data, columns=cols) df_name_is_jy = df[df['name']=='jy'] df = df.append([df_name_is_jy]*2, ignore_index=True) print(pd.concat([df_name_is_jy]*2, ignore_index=True)) # print(df) print("-------------") database = "pp_scratch_risk" table = "jy_test" instance.insert_to_table(df, database, table) query = '''select * from {}.{};'''.format(database, table) result_df = instance.query(query) print(result_df) def _create_table_from_src_table(self): src_db = "pp_scratch_risk" src_table = 'ms_auto_trend_us2_1_3' dest_db = "pp_scratch_risk" dest_table = "ms_auto_trend_us2_1_3_100_100_1_1_1" instance.create_table_from_src_table_schema(src_db, src_table, dest_db, dest_table) def _drop_table(self): dest_db = "pp_scratch_risk" dest_table = "ms_auto_trend_us2_1_3_100_100_1_1_1" instance.drop_table(dest_db, dest_table) def _transalte_100_63_22_14_1(self): rules = [ "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>') & (amt2 == 'a-1k') & (SELLER_CONSUMER_SEG == 'C')", "(SELLER_CONSUMER_SEG == 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string == '10008') & (amt2 != 'c-1h') & (amt2 != 'e-<50')", ] result = instance.translate_hyperloop_rules_to_sql(rules) print(result) def _transalte_30_20_3_4_1(self): rules = [ "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>') & (amt2 == 'a-1k') & (SELLER_CONSUMER_SEG == 'C')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string == '10008') & (amt2 == 'a-1k') & (SUB_FLOW != 'MS Money Request - Invoicing') & (SUB_FLOW == 'MS Mobile Cons App Send Money - Commercial') & (IS_ULP_TRANS_T_F >= 0.5)", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string == '10008') & (amt2 == 'a-1k') & (SUB_FLOW != 'MS Money Request - Invoicing') & (SUB_FLOW == 'MS Mobile Cons App Send Money - Commercial') & (IS_ULP_TRANS_T_F < 0.5)", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string == '10008') & (amt2 == 'a-1k') & (SUB_FLOW != 'MS Money Request - Invoicing') & (SUB_FLOW != 'MS Mobile Cons App Send Money - Commercial')", ] result = instance.translate_hyperloop_rules_to_sql(rules) print(result) def _transalte_30_20_3_4_1_nloss(self): rules = [ "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string == '10008') & (SUB_FLOW == 'MS Mobile Cons App Send Money - Commercial') & (amt2 == 'a-1k') & (SELLER_CONSUMER_SEG == 'C') & (SELLER_SEG == '04 YS')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string != '10008') & (amt2 != 'e-<50') & (dc_string != '10002') & (amt2 != 'd-50') & (SUB_FLOW != 'MS Mobile Money Request - Invoicing') & (SUB_FLOW != 'MS Money Request') & (SUB_FLOW != 'MS Mobile Money Request') & (IS_ULP_TRANS_T_F >= 0.5) & (amt2 != 'c-1h') & (dc_string == '10010')", "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string == '10008') & (SUB_FLOW != 'MS Mobile Cons App Send Money - Commercial') & (SELLER_CONSUMER_SEG == 'C') & (amt2 != 'c-1h') & (amt2 != 'd-50') & (amt2 != 'e-<50')", "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '10008') & (dc_string != '<missing>') & (amt2 == 'a-1k') & (SUB_FLOW != 'MS Mobile Cons App Send Money - Commercial') & (SUB_FLOW == 'MS Send Money Internal') & (dc_string == '10002')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string == '10008') & (amt2 == 'a-1k') & (SUB_FLOW != 'MS Money Request - Invoicing') & (SUB_FLOW == 'MS Mobile Cons App Send Money - Commercial') & (IS_ULP_TRANS_T_F >= 0.5)", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string != '10008') & (amt2 != 'e-<50') & (dc_string != '10002') & (amt2 != 'd-50') & (SUB_FLOW != 'MS Mobile Money Request - Invoicing') & (SUB_FLOW != 'MS Money Request') & (SUB_FLOW != 'MS Mobile Money Request') & (IS_ULP_TRANS_T_F >= 0.5) & (amt2 != 'c-1h') & (dc_string != '10010') & (SUB_FLOW == 'MS Send Money Internal') & (amt2 != 'a-1k') & (RCVR_CNTRY_CODE != 'CA ') & (SELLER_SEG != '04 YS')", "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '10008') & (dc_string != '<missing>') & (amt2 == 'a-1k') & (SUB_FLOW == 'MS Mobile Cons App Send Money - Commercial')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string == '10008') & (amt2 != 'a-1k') & (IS_ULP_TRANS_T_F >= 0.5) & (amt2 == 'b-5h')", "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string == '10008') & (SUB_FLOW != 'MS Mobile Cons App Send Money - Commercial') & (SELLER_CONSUMER_SEG != 'C') & (SUB_FLOW == 'MS Send Money Internal') & (amt2 == 'a-1k')", "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '10008') & (dc_string != '<missing>') & (amt2 == 'a-1k') & (SUB_FLOW != 'MS Mobile Cons App Send Money - Commercial') & (SUB_FLOW == 'MS Send Money Internal') & (dc_string != '10002') & (SELLER_SEG == '04 YS') & (dc_string == '10010')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string == '10008') & (amt2 == 'a-1k') & (SUB_FLOW != 'MS Money Request - Invoicing') & (SUB_FLOW != 'MS Mobile Cons App Send Money - Commercial')", "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '10008') & (dc_string != '<missing>') & (amt2 == 'a-1k') & (SUB_FLOW != 'MS Mobile Cons App Send Money - Commercial') & (SUB_FLOW == 'MS Send Money Internal') & (dc_string != '10002') & (SELLER_SEG == '04 YS') & (dc_string != '10010')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string != '10008') & (amt2 != 'e-<50') & (dc_string != '10002') & (amt2 != 'd-50') & (SUB_FLOW != 'MS Mobile Money Request - Invoicing') & (SUB_FLOW != 'MS Money Request') & (SUB_FLOW != 'MS Mobile Money Request') & (IS_ULP_TRANS_T_F < 0.5) & (amt2 != 'c-1h') & (dc_string == '10003')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string == '10008') & (amt2 == 'a-1k') & (SUB_FLOW != 'MS Money Request - Invoicing') & (SUB_FLOW == 'MS Mobile Cons App Send Money - Commercial') & (IS_ULP_TRANS_T_F < 0.5)", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string != '10008') & (amt2 != 'e-<50') & (dc_string == '10002') & (amt2 == 'a-1k')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string == '10008') & (amt2 == 'a-1k') & (SUB_FLOW == 'MS Money Request - Invoicing')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string != '10008') & (amt2 != 'e-<50') & (dc_string != '10002') & (amt2 != 'd-50') & (SUB_FLOW == 'MS Mobile Money Request - Invoicing') & (amt2 != 'c-1h') & (RCVR_CNTRY_CODE != 'CA ') & (dc_string != '<missing>') & (amt2 == 'a-1k')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string != '10008') & (amt2 != 'e-<50') & (dc_string != '10002') & (amt2 != 'd-50') & (SUB_FLOW != 'MS Mobile Money Request - Invoicing') & (SUB_FLOW != 'MS Money Request') & (SUB_FLOW != 'MS Mobile Money Request') & (IS_ULP_TRANS_T_F >= 0.5) & (amt2 != 'c-1h') & (dc_string != '10010') & (SUB_FLOW == 'MS Send Money Internal') & (amt2 == 'a-1k') & (RCVR_CNTRY_CODE != 'CA ') & (dc_string != '<missing>')", ] result = instance.translate_hyperloop_rules_to_sql(rules) print(result) def _transalte_164_89_5_8_1(self): rules = [ "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>') & (dc_string != '10005') & (amt2 == 'a-1k') & (SELLER_CONSUMER_SEG == 'C') & (SELLER_SEG == '04 YS')", "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>') & (dc_string != '10005') & (amt2 == 'a-1k') & (SELLER_CONSUMER_SEG == 'C') & (SELLER_SEG != '04 YS')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string == '10008') & (IS_ULP_TRANS_T_F >= 0.5) & (amt2 != 'c-1h') & (amt2 != 'e-<50')", ] result = instance.translate_hyperloop_rules_to_sql(rules) print(result) def _transalte_1000_500_100_50_1(self): rules = [ "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>') & (amt2 != 'c-1h') & (dc_string != '10005') & (amt2 != 'd-50') & (dc_string != '12123') & (SELLER_CONSUMER_SEG == 'C') & (amt2 == 'a-1k') & (SELLER_SEG == '04 YS') & (dc_string == '10008') & (SUB_FLOW == 'MS Send Money Internal')", "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>') & (amt2 != 'c-1h') & (dc_string != '10005') & (amt2 != 'd-50') & (dc_string != '12123') & (SELLER_CONSUMER_SEG == 'C') & (amt2 == 'a-1k') & (SELLER_SEG == '04 YS') & (dc_string == '10008') & (SUB_FLOW != 'MS Send Money Internal')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string == '10008') & (amt2 == 'a-1k') & (SUB_FLOW != 'MS Money Request - Invoicing') & (SUB_FLOW == 'MS Mobile Cons App Send Money - Commercial') & (IS_ULP_TRANS_T_F >= 0.5)", "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>') & (amt2 != 'c-1h') & (dc_string != '10005') & (amt2 != 'd-50') & (dc_string != '12123') & (SELLER_CONSUMER_SEG == 'C') & (amt2 == 'a-1k') & (SELLER_SEG != '04 YS')", "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>') & (amt2 != 'c-1h') & (dc_string != '10005') & (amt2 != 'd-50') & (dc_string != '12123') & (SELLER_CONSUMER_SEG == 'C') & (amt2 == 'a-1k') & (SELLER_SEG == '04 YS') & (dc_string != '10008')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string == '10008') & (amt2 == 'a-1k') & (SUB_FLOW != 'MS Money Request - Invoicing') & (SUB_FLOW != 'MS Mobile Cons App Send Money - Commercial')", ] result = instance.translate_hyperloop_rules_to_sql(rules) print(result) def _transalte_1_1_1_1_1(self): rules = [ "(SELLER_CONSUMER_SEG != 'Y') & (SELLER_SEG == '04 YS') & (amt2 != 'e-<50') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>') & (amt2 != 'd-50')", "(SELLER_CONSUMER_SEG == 'Y') & (SELLER_SEG == '04 YS') & (amt2 != 'e-<50') & (SUB_FLOW == 'MS Send Money Internal') & (IS_ULP_TRANS_T_F >= 0.5) & (RCVR_CNTRY_CODE != 'CA ') & (dc_string == '10008')", "(SELLER_CONSUMER_SEG != 'Y') & (SELLER_SEG != '04 YS') & (amt2 != 'e-<50') & (SUB_FLOW != 'MS Mobile Cons App Send Money - Commercial') & (amt2 == 'a-1k') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>')", "(SELLER_CONSUMER_SEG == 'Y') & (SELLER_SEG != '04 YS') & (SUB_FLOW != 'MS Send Money Internal') & (SUB_FLOW == 'MS Mobile Money Request - Invoicing API')", ] result = instance.translate_hyperloop_rules_to_sql(rules) print(result) def _transalte_mix(self): rules = [ "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>') & (dc_string != '10005') & (amt2 == 'a-1k') & (SELLER_CONSUMER_SEG == 'C') & (SELLER_SEG == '04 YS') & (dc_string == '10008') & (SUB_FLOW == 'MS Send Money Internal')", "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>') & (dc_string != '10005') & (amt2 == 'a-1k') & (SELLER_CONSUMER_SEG == 'C') & (SELLER_SEG == '04 YS') & (dc_string == '10008') & (SUB_FLOW != 'MS Send Money Internal')", "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>') & (dc_string != '10005') & (amt2 == 'a-1k') & (SELLER_CONSUMER_SEG == 'C') & (SELLER_SEG != '04 YS')", "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>') & (dc_string != '10005') & (amt2 == 'a-1k') & (SELLER_CONSUMER_SEG == 'C') & (SELLER_SEG == '04 YS') & (dc_string != '10008')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string == '10008') & (IS_ULP_TRANS_T_F >= 0.5) & (amt2 != 'c-1h') & (amt2 != 'e-<50')", ] result = instance.translate_hyperloop_rules_to_sql(rules) print(result) def _transalte_tpv(self): rules = [ "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>') & (amt2 == 'a-1k') & (SELLER_CONSUMER_SEG == 'C') & (SELLER_SEG == '04 YS') & (SUB_FLOW == 'MS Send Money Internal') & (dc_string == '10008')", "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>') & (amt2 == 'a-1k') & (SELLER_CONSUMER_SEG == 'C') & (SELLER_SEG == '04 YS') & (SUB_FLOW != 'MS Send Money Internal')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string != '10008') & (SUB_FLOW != 'MS Mobile Money Request') & (SUB_FLOW != 'MS Money Request') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string == '10002') & (amt2 != 'c-1h')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string != '10008') & (SUB_FLOW != 'MS Mobile Money Request') & (SUB_FLOW != 'MS Money Request') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '10002') & (amt2 != 'c-1h') & (SUB_FLOW == 'MS Send Money Internal') & (RCVR_CNTRY_CODE != 'CA ') & (dc_string != '12122') & (dc_string != '10010') & (SELLER_SEG != '04 YS') & (amt2 != 'e-<50')", "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>') & (amt2 == 'a-1k') & (SELLER_CONSUMER_SEG == 'C') & (SELLER_SEG != '04 YS')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string == '10008') & (amt2 == 'a-1k') & (IS_ULP_TRANS_T_F >= 0.5)" ] result = instance.translate_hyperloop_rules_to_sql(rules) print(result) def _transalte_tpv2(self): rules = [ "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>') & (amt2 != 'c-1h') & (dc_string != '10005') & (amt2 != 'd-50') & (amt2 != 'e-<50') & (SELLER_CONSUMER_SEG == 'C') & (dc_string != '12123') & (amt2 == 'a-1k') & (SELLER_SEG == '04 YS') & (SUB_FLOW == 'MS Send Money Internal') & (dc_string == '10008')", "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>') & (amt2 != 'c-1h') & (dc_string != '10005') & (amt2 != 'd-50') & (amt2 != 'e-<50') & (SELLER_CONSUMER_SEG == 'C') & (dc_string != '12123') & (amt2 == 'a-1k') & (SELLER_SEG == '04 YS') & (SUB_FLOW != 'MS Send Money Internal')", "(SELLER_CONSUMER_SEG != 'Y') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '<missing>') & (amt2 != 'c-1h') & (dc_string != '10005') & (amt2 != 'd-50') & (amt2 != 'e-<50') & (SELLER_CONSUMER_SEG == 'C') & (dc_string != '12123') & (amt2 == 'a-1k') & (SELLER_SEG != '04 YS')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string != '10008') & (SUB_FLOW != 'MS Mobile Money Request') & (SUB_FLOW != 'MS Money Request') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string == '10002') & (amt2 != 'c-1h')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string != '10008') & (SUB_FLOW != 'MS Mobile Money Request') & (SUB_FLOW != 'MS Money Request') & (IS_ULP_TRANS_T_F >= 0.5) & (dc_string != '10002') & (amt2 != 'c-1h') & (SUB_FLOW == 'MS Send Money Internal') & (RCVR_CNTRY_CODE != 'CA ') & (dc_string != '12122') & (dc_string != '10010') & (SELLER_SEG != '04 YS') & (amt2 != 'e-<50')", "(SELLER_CONSUMER_SEG == 'Y') & (dc_string == '10008') & (amt2 == 'a-1k') & (IS_ULP_TRANS_T_F >= 0.5)" ] result = instance.translate_hyperloop_rules_to_sql(rules) print(result) def _duplicate_rows_to_new_table(self): src_db = "pp_scratch_risk" src_table = 'ms_auto_trend_us2_1_3' dest_db = "pp_scratch_risk" weight_a = 900 weight_b = 400 weight_c = 9 weight_d = 16 weight_e = 1 dest_table = "ms_auto_trend_us2_1_3_{}_{}_{}_{}_{}".format(weight_a, weight_b, weight_c, weight_d, weight_e) instance.duplicate_rows_to_new_table(src_db, src_table, dest_db, dest_table, weight_a, weight_b, weight_c, weight_d, weight_e) def _duplicate_rows_from_bad_and_sample_from_good_into_new_table(self): src_db = "pp_scratch_risk" src_table = 'ms_auto_trend_us' dest_db = "pp_scratch_risk" bad_scale = 1 good_scale = 3 weight_a = 52 weight_b = 16 weight_c = 23 weight_d = 5 weight_e = 4 dest_table = "ms_auto_trend_us_{}_{}__{}_{}_{}_{}_{}_v2".format(bad_scale, good_scale, weight_a, weight_b, weight_c, weight_d, weight_e) instance.duplicate_rows_from_bad_and_sample_from_good_into_new_table(src_db, src_table, dest_db, dest_table, bad_scale, good_scale, weight_a, weight_b, weight_c, weight_d, weight_e) def _generate_hl_job_json(self): training_table = "ms_auto_trend_us2_1_3" testing_table = "ms_auto_trend_us_t" instance.generate_hl_job_json(training_table, testing_table, template_name='hl_job_template_na.json') def _add_weight_col_to_table(self): src_db = "pp_scratch_risk" src_table = 'ms_auto_trend_us2_1_3' # weight_a = 0.312 # weight_b = 0.140 # weight_c = 0.011 # weight_d = 0.011 # weight_e = 0.001 weight_a = 10 * 30 weight_b = 8 * 20 weight_c = 4.6 * 3 weight_d = 3.7 * 4 weight_e = 1 * 1 instance.add_weight_col_to_table(src_db, src_table, weight_a, weight_b, weight_c, weight_d, weight_e) def _update_weight_col_in_table(self): src_db = "pp_scratch_risk" src_table = 'ms_auto_trend_us2_1_3' src_col = 'PMT_USD_AMT' instance.update_weight_col_in_table(src_db, src_table, src_col) def _update_custom_weight_col_in_table(self): src_db = "pp_scratch_risk" src_table = 'ms_auto_trend_us2_1_3' src_col = 'PMT_USD_AMT' instance.update_custom_weight_col_in_table(src_db, src_table, src_col)
apache-2.0
Cignite/primdb
primdb_app/plot/chargecount.py
2
1570
''' Counting the charge statistics from the database data. ''' import psycopg2 import numpy.numarray as na import matplotlib.pyplot as plt #establish connection with the postgres server with the given configuration conn = psycopg2.connect(host="localhost",user="primuser",password="web",database="primdb") charges = [0,1,2,3,4] chargecount = [] cur = conn.cursor() for c in charges: #fetch all the number of charge record from the table where where charge is 2 and 3 and 4 #and append to it the charges list for plotting cur.execute("SELECT chargestate FROM primdb_app_selectedion where chargestate ='%d'" %(c)) chargecount.append(cur.rowcount) #fetch the number of charge record from the table where where charge is greater than 4 #and append to it the charges list for plotting cur.execute("SELECT chargestate FROM primdb_app_selectedion where chargestate >'4'") chargecount.append(cur.rowcount) labels = ["0", "1","2", "3","4",">5"] maxitem = max(chargecount) +1000 colors = ['r','g', 'm','c','k','w'] xlocations = na.array(range(len(chargecount)))+0.5 width = 0.7 plt.bar(xlocations, chargecount, width=width, color=colors) plt.xticks(xlocations+ width/2, labels) plt.xlim(0, xlocations[-1]+width*2) plt.xlabel("Charge") plt.ylabel("Count per charge") for x,y in zip(xlocations,chargecount): plt.text(x+0.4, y, '%.2d' % y, ha='center', va= 'bottom') #change the directory according to your application path. plt.savefig(r'D:/Dropbox/Dropbox/primdb/assets/img/statistics2.png', dpi=100, transparent=True)
agpl-3.0
domagalski/pocketcorr
scripts/pocketcorr_adc.py
1
9505
#!/usr/bin/env python2 ################################################################################ ## This script is for simple ADC caputer to test the a pocket correlator. ## Copyright (C) 2014 Rachel Simone Domagalski: [email protected] ## ## This program is free software: you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation, either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see <http://www.gnu.org/licenses/>. ################################################################################ import sys import argparse import numpy as np import pocketcorr as pc from numpy import fft #BRAM_SIZE = 4 << 11 BRAM_SIZE = 4 << 10 BRAM_WIDTH = 32 NBITS = 8 class ADC(pc.POCO): def adc_read(self, start_pol, demux=1, capture='adc'): """ Read the time domain signals out of a BRAM. """ #XXX need to do demux2 eq blocks # Read the register containing the ADC captures. if demux == 2 and capture == 'pfb': names = ['pfb_real', 'pfb_imag'] # XXX data type should be <i4 after recompile real = np.fromstring(self.read(names[0], BRAM_SIZE), '>i4') imag = np.fromstring(self.read(names[1], BRAM_SIZE), '>i4') pfb_read = np.zeros(BRAM_SIZE / 4, dtype=np.complex64) pfb_read.real = real# map(twos_comp, real) pfb_read.imag = imag#map(twos_comp, imag) return pfb_read else: read_size = BRAM_SIZE nbits = demux*NBITS npols = BRAM_WIDTH/nbits first = str(start_pol) last = str(start_pol + npols - 1) adc = capture + '_'*int(demux>1) # I feel one day I'm going to look back on this and shake my head. if self.poco == 'spoco12': if adc == 'pfb': print 'ERROR: This is messed up on the FPGA.' sys.exit(1) elif adc == 'fft': last = str(start_pol + 6) read_size *= 2 npols /= 2 elif adc == 'eq': last = str(start_pol + 1) read_size *= 2 adc += '_cap_' # There is a sync pulse somewhere in the data if adc[:2] == 'eq' or adc[:3] == 'fft': sync = self.read(adc + 'sync', read_size).find(chr(1)) / 4 concat = self.read(adc + '_'.join([first, last]), read_size) # Get the formatting for the data. if adc[:3] != 'fft': shape = (read_size/(npols*demux), npols*demux) fmt = '>i1' else: shape = (read_size/(npols*demux*2), npols*demux) fmt = '>i2' # Parse the data into usable values. adc_read = np.fromstring(concat, fmt).reshape(*shape) if adc[:2] == 'eq' or adc[:3] == 'fft': adc_read = adc_read[sync:sync+adc_read.shape[0]/2] adc_read = list(adc_read.transpose()[::-1]) if adc[:3] == 'fft': adc_read = adc_read[0] + 1j*adc_read[1] split = len(adc_read)/2 adc_read = [adc_read[:split], adc_read[split:]] if demux == 2: adc_read = [np.r_[adc_read[2*i],adc_read[2*i+1]] for i in range(len(adc_read)/2)] for i in range(len(adc_read)): reordered = np.copy(adc_read[i]).reshape(2, shape[0]) reordered = reordered.transpose().flatten() adc_read[i] = np.copy(reordered) # Return the data as a dictionary. if capture == 'adc_cap': capture = 'adc' names = [capture + str(i) for i in range(start_pol, start_pol+npols)] if adc[:3] == 'fft': names = [capture + str(i) for i in [start_pol, start_pol+6]] return zip(names, adc_read) def twos_comp(num32, nbits=18): """ Perform the two-s compiment of some n-bit number. """ bit_sel = 2**nbits - 1 neg_bit = 1 << nbits - 1 num32 = num32 & bit_sel if num32 & neg_bit: return -(((1 << 32) - num32) & bit_sel) else: return num32 if __name__ == '__main__': # Grab options from the command line parser = argparse.ArgumentParser() parser.add_argument('-i', '--ip-roach', dest='roach', required=True, help='Hostname/ip address of the ROACH.') parser.add_argument('-N', '--npol', default=8, type=int, help='Number of antennas in the rpoco design.') parser.add_argument('-c', '--capture', help='Block to capture from (SNAP only)') parser.add_argument('-d', '--demux', default=1, type=int, help='Demux mode of the ADC.') parser.add_argument('-o', '--output-file', dest='outfile', help='NPZ file to save data to.') parser.add_argument('-a', '--antennas', nargs='+', help='Antennas to plot.') parser.add_argument('-f', '--fft', action='store_true', help='Run an FFT on the data.') parser.add_argument('-S', '--samp-rate', default=200e6, type=float, help='Samping rate of the ADC (for plots).') args = parser.parse_args() # Make sure that the user specified something to do. if args.outfile is None and args.antennas is None: print 'ERROR: Nothing to do.' sys.exit(1) if args.outfile is not None and args.antennas is None and args.fft: print 'ERROR: This script only stores raw data.' sys.exit(1) # Connect to the ROACH. poco = ADC(args.roach) poco.wait_connected() spoco12 = False modelist = pc.mode_int2list(poco.read_int('ping')) if modelist[0] == 'snap' and modelist[3] == 12: spoco12 = True poco.poco = 'spoco12' if args.demux == 1 and args.capture is None: if spoco12: cap = 'adc' else: cap = 'new_raw' else: cap = args.capture if spoco12: # See the else for description of the sequence poco.write_int(cap + '_cap_raw_trig', 1) poco.write_int(cap + '_cap_raw', 1) poco.write_int(cap + '_cap_raw', 0) poco.write_int(cap + '_cap_raw_trig', 1) else: # Enable the ADC capture poco.write_int(cap + '_capture_trig', 1) # capture the ADC. poco.write_int(cap + '_capture', 1) poco.write_int(cap + '_capture', 0) # Turn off ADC capture. poco.write_int(cap + '_capture_trig', 0) # Collect data and store it as a dictionary adc_capture = [] nbits = args.demux * NBITS if cap == 'pfb' and not spoco12: pfb_capture = poco.adc_read(0, args.demux, cap) else: npol = args.npol step_size = BRAM_SIZE/nbits if cap == 'eq' or cap == 'fft': npol /= 2 step_size = 1 for i in range(0, npol, step_size): adc_capture += poco.adc_read(i, args.demux, cap) adc_capture = dict(adc_capture) # Now we either save or plot the data. if args.outfile is not None: np.savez(args.outfile, **adc_capture) # Set this for plotting #if args.demux == 1 and args.capture is None: # cap = 'adc' if args.antennas is not None: import matplotlib.pyplot as plt if cap == 'pfb' and not spoco12: plt.plot(np.abs(pfb_capture)**2) else: time_axis = np.arange(BRAM_SIZE*nbits/BRAM_WIDTH) * 1e6 / args.samp_rate freq_axis = fft.fftfreq(len(time_axis), 1e6 / args.samp_rate) freq_axis = freq_axis[:len(freq_axis)/2] # ADC data is real for ant in args.antennas: plt.figure() name = cap + ant sample = adc_capture[name] if args.fft or cap == 'fft': if args.fft: pspec = np.abs(fft.fft(sample)[:len(sample)/2])**2 pspec = 10*np.log10(pspec / np.max(pspec)) plt.plot(freq_axis, pspec) plt.xlabel('Frequency (MHz)') plt.ylabel('Power (dB)') else: pspec = np.abs(sample)**2 plt.plot(pspec) plt.xlabel('Frequency (chan)') plt.ylabel('Power') plt.title(name) #plt.axis([0, freq_axis[-1], np.min(pspec), 0]) else: plt.plot(time_axis, sample) plt.xlabel('Time ($\mu s$)') plt.ylabel('Amplitude (ADU)') plt.title(name) plt.axis([0, time_axis[-1], np.min(sample)-2, np.max(sample)+2]) plt.show()
gpl-3.0
tawsifkhan/scikit-learn
examples/cluster/plot_adjusted_for_chance_measures.py
286
4353
""" ========================================================== Adjustment for chance in clustering performance evaluation ========================================================== The following plots demonstrate the impact of the number of clusters and number of samples on various clustering performance evaluation metrics. Non-adjusted measures such as the V-Measure show a dependency between the number of clusters and the number of samples: the mean V-Measure of random labeling increases significantly as the number of clusters is closer to the total number of samples used to compute the measure. Adjusted for chance measure such as ARI display some random variations centered around a mean score of 0.0 for any number of samples and clusters. Only adjusted measures can hence safely be used as a consensus index to evaluate the average stability of clustering algorithms for a given value of k on various overlapping sub-samples of the dataset. """ print(__doc__) # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from time import time from sklearn import metrics def uniform_labelings_scores(score_func, n_samples, n_clusters_range, fixed_n_classes=None, n_runs=5, seed=42): """Compute score for 2 random uniform cluster labelings. Both random labelings have the same number of clusters for each value possible value in ``n_clusters_range``. When fixed_n_classes is not None the first labeling is considered a ground truth class assignment with fixed number of classes. """ random_labels = np.random.RandomState(seed).random_integers scores = np.zeros((len(n_clusters_range), n_runs)) if fixed_n_classes is not None: labels_a = random_labels(low=0, high=fixed_n_classes - 1, size=n_samples) for i, k in enumerate(n_clusters_range): for j in range(n_runs): if fixed_n_classes is None: labels_a = random_labels(low=0, high=k - 1, size=n_samples) labels_b = random_labels(low=0, high=k - 1, size=n_samples) scores[i, j] = score_func(labels_a, labels_b) return scores score_funcs = [ metrics.adjusted_rand_score, metrics.v_measure_score, metrics.adjusted_mutual_info_score, metrics.mutual_info_score, ] # 2 independent random clusterings with equal cluster number n_samples = 100 n_clusters_range = np.linspace(2, n_samples, 10).astype(np.int) plt.figure(1) plots = [] names = [] for score_func in score_funcs: print("Computing %s for %d values of n_clusters and n_samples=%d" % (score_func.__name__, len(n_clusters_range), n_samples)) t0 = time() scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range) print("done in %0.3fs" % (time() - t0)) plots.append(plt.errorbar( n_clusters_range, np.median(scores, axis=1), scores.std(axis=1))[0]) names.append(score_func.__name__) plt.title("Clustering measures for 2 random uniform labelings\n" "with equal number of clusters") plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples) plt.ylabel('Score value') plt.legend(plots, names) plt.ylim(ymin=-0.05, ymax=1.05) # Random labeling with varying n_clusters against ground class labels # with fixed number of clusters n_samples = 1000 n_clusters_range = np.linspace(2, 100, 10).astype(np.int) n_classes = 10 plt.figure(2) plots = [] names = [] for score_func in score_funcs: print("Computing %s for %d values of n_clusters and n_samples=%d" % (score_func.__name__, len(n_clusters_range), n_samples)) t0 = time() scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range, fixed_n_classes=n_classes) print("done in %0.3fs" % (time() - t0)) plots.append(plt.errorbar( n_clusters_range, scores.mean(axis=1), scores.std(axis=1))[0]) names.append(score_func.__name__) plt.title("Clustering measures for random uniform labeling\n" "against reference assignment with %d classes" % n_classes) plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples) plt.ylabel('Score value') plt.ylim(ymin=-0.05, ymax=1.05) plt.legend(plots, names) plt.show()
bsd-3-clause
ktbartolotta/periodically
pwords.py
1
116625
def get_pwords(): return ['ac','acacias','accept','acceptance','acceptances','accepts','access','accesses','accession','accessions','acclamation','accountancy','accra','accretion','accretions','accrual','accruals','accrues','accuracy','accurate','accurateness','accusation','accusations','accusatives','accuse','accuser','accusers','accuses','acerbic','aces','ache','achebe','achernar','aches','acheson','achier','achoo','achy','acne','aconite','aconites','acorn','acorns','acosta','acoustic','acoustical','acoustics','acre','acreages','acres','action','actions','activates','activation','actives','activism','activities','acuff','acute','acuteness','acutes','ag','agar','agassi','agates','ages','agism','agitate','agitates','agitation','agitations','agnes','agnew','agni','agnostic','agnosticism','agnostics','ago','agonies','agony','agra','agrees','aguirre','agustin','al','alamo','alar','alaric','alas','alb','alba','albacore','albacores','albany','alberio','alberta','albino','albinos','albion','albireo','albs','alcestis','alcoholic','alcoholics','alcoholism','alcoves','alcuin','alcyone','alertly','ales','alfonso','alfresco','alga','algebra','algebraic','algebras','algenib','alhambra','alhena','ali','alias','aliases','alibi','alibis','alice','alimony','aline','alines','alioth','alison','alistair','alkali','alkalies','alkaline','alkalis','allah','allan','allay','allays','allies','allison','alliteration','alliterations','allure','allures','allusion','allusions','alluvial','almond','almonds','alnitak','aloes','alohas','alone','aloof','aloofness','alpaca','alpacas','alphas','alphecca','alphonse','alphonso','alpine','alpo','alps','also','alsop','alta','altai','altaic','altair','alteration','alterations','alternates','alternation','alternations','alternatives','altho','altiplano','alumni','alumnus','alvaro','alvin','alyce','alyson','am','amaru','amass','amasses','amaterasu','amati','amber','ambition','ambitions','ambitious','ambitiousness','ambulance','ambulances','ambush','ambushes','america','american','americana','americanism','americanisms','americans','americas','amerind','amerinds','ameslan','amharic','amiga','amir','amirs','amish','amiss','ammo','amnesiac','amnesiacs','amnesties','amniocenteses','amniocentesis','amoco','amok','amos','amp','amparo','amperes','amphibious','amplification','amplifications','amplifier','amplifiers','amplifies','amplify','amps','amputate','amputates','amputation','amputations','amputees','amuck','amundsen','amuse','amuses','amy','ar','aral','aramco','ararat','arboreal','arboreta','arc','arcane','arch','archbishop','archbishopric','archbishoprics','archbishops','archer','archers','archery','arches','archives','archness','arcs','arctic','arctics','ares','argentina','argentine','arias','aries','arieses','arise','arisen','arises','arius','ark','arks','arline','armonk','arneb','arno','aron','arose','around','arousal','arouse','arouses','arrange','arranges','array','arrays','arrears','arsenal','arsenals','arsenic','arson','artichokes','articles','articulate','articulateness','articulates','articulation','articulations','artier','artifice','artificer','artificers','artifices','artificial','artiste','artistes','artistic','artless','artlessness','aruba','as','ascend','ascends','ascension','ascensions','ascertain','ascertains','ascetic','asceticism','ascetics','ascribe','ascribes','ascription','ash','ashcan','ashcans','ashe','ashen','ashes','ashier','ashore','ashy','asiatic','asiatics','asimov','asinine','ask','asks','asocial','asp','asparagus','asperities','aspersion','aspersions','aspic','aspics','aspirate','aspirates','aspiration','aspirations','aspire','aspires','aspirin','aspirins','asps','ass','assam','assassin','assassinate','assassinates','assassination','assassinations','assassins','assertion','assertions','asses','assess','assesses','asseverates','assisi','assistance','associates','association','associations','assonance','assuages','assurance','assurances','assure','assures','astaire','astana','astern','asunder','at','atari','atheism','atheistic','athena','athens','atherosclerosis','atkins','atkinson','atlanta','atlantes','atlantic','atlantis','atlas','atlases','atmosphere','atmospheres','atmospheric','atonal','atone','atones','atop','atreus','ats','attach','attack','attacker','attackers','attacks','attain','attains','attend','attender','attends','attention','attentions','attenuates','attenuation','attestation','attestations','attic','attica','attics','attila','attire','attires','atypical','au','aubrey','auburn','auckland','auction','auctioneer','auctioneers','auctions','auk','auks','aura','auras','aurelio','aurelius','aureola','aureolas','auspice','auspices','auspicious','auspiciousness','aussies','austen','austere','austin','austins','autism','autistic','b','ba','baal','baas','baath','babar','babbage','babe','babes','babier','babies','baboon','baboons','babushkas','baby','babyish','babysat','baccalaureates','bacchus','bach','back','backache','backaches','backbite','backbites','backbone','backbones','backer','backers','backfire','backfires','backhoes','backlash','backlashes','backpack','backpacker','backpackers','backpacks','backs','backslapper','backslappers','backslash','backspace','backspaces','backspin','backstage','backstairs','backup','backups','backus','backwash','backwater','backwaters','bacon','baffin','bag','baggage','bagpipes','bags','baguio','bah','bahamas','bahrain','baikal','bailiff','bailiffs','bailiwick','bailiwicks','baker','bakeries','bakers','bakery','bakes','baku','bakunin','balalaikas','balance','balances','balanchine','balaton','balconies','balcony','bales','bali','balinese','balk','balkhash','balkier','balks','balky','ballistic','ballistics','baloney','balsam','balsams','balsas','baltic','baltimore','baluchistan','bambi','bamboo','bamboos','ban','banach','banal','banalities','banana','bananas','band','bandages','bandier','bandies','bandolier','bandoliers','bands','bandstand','bandstands','bandwagon','bandwagons','bandy','bane','banes','bani','banish','banishes','bank','bankbook','bankbooks','banker','bankers','banknote','banknotes','bankrupt','bankruptcies','bankruptcy','bankrupts','banks','banneker','banner','banners','banns','bans','banshees','baobab','baobabs','baptism','baptismal','baptisms','baptiste','bar','barabbas','barack','barb','barbara','barbaric','barbarism','barbarisms','barbarities','barbarous','barbary','barbecues','barber','barbers','barbershop','barbershops','barbra','barbs','barclay','bare','bareback','bareness','barer','bares','barf','barfs','bargain','bargainer','bargains','barge','barges','bark','barker','barkers','barks','barn','barnabas','barnaby','barnacles','barnes','barney','barns','baron','baroness','baronesses','baronial','barons','barrack','barracks','barrage','barrages','barren','barrener','barrenness','barrens','barrera','bars','bartender','bartenders','barth','baruch','baryshnikov','basal','base','baseline','baselines','baseness','baser','bases','bash','bashes','basho','basic','basics','basilica','basilicas','basin','basins','basis','bask','basks','basra','bass','basses','bassi','basso','bassoon','bassoons','bassos','baste','bastes','bastion','bastions','bat','batch','batches','bate','bates','bath','bathe','bather','bathers','bathes','bathhouse','bathhouses','bathos','baths','bathsheba','batik','batiks','batista','baton','batons','bats','battalion','battalions','batten','battens','battier','battles','battleship','battleships','batu','bauer','bauhaus','bawdy','bay','bayer','bayes','bayonne','bayou','bayous','bayreuth','bays','baywatch','be','beach','beaches','beacon','beacons','beam','beams','bear','bearer','bearers','bearish','bearnaise','bears','bearskin','bearskins','beastlier','beastliness','beastly','beat','beater','beaters','beatific','beatification','beatifications','beatifies','beatify','beatnik','beatniks','beats','beau','beaus','beauteous','beauties','beautification','beautifier','beautifiers','beautifies','beautify','beauvoir','bebop','bebops','because','beck','becker','beckon','beckons','becks','becky','beer','beers','bees','before','began','behalf','behalves','behemoth','behemoths','behind','behinds','behooves','beige','bekesy','bela','belarus','belau','belay','belays','belies','belushi','ben','benacerraf','benares','bench','benches','bend','bender','bends','beneath','benefaction','benefactions','benefice','beneficence','beneficently','benefices','beneficial','beneficiaries','beneficiary','bengali','benin','benita','benny','benson','bentham','berate','berates','berber','berbers','berenice','bergen','bergerac','beriberi','berkshire','berkshires','berlin','berliner','berlins','bern','bernays','bernbach','berne','bernice','bernini','bernstein','berra','berserk','berta','berth','berths','besmirch','besmirches','bess','bestial','bestiaries','bestiary','beta','betakes','betas','beth','bethink','bethinks','bethune','beulah','beverages','bevies','bevy','bewares','bewitch','bewitches','beyer','beyond','bhopal','bhutan','bi','bias','biases','bib','biblical','bibs','bic','bicameral','bicentennial','bicentennials','bicep','biceps','bicepses','bicker','bickers','bicycles','bier','bierce','biers','bifocal','bifocals','bigamous','biker','bikers','bikes','bikini','bikinis','biko','bilious','bimonthlies','bin','binaries','binary','bind','binder','binderies','binders','bindery','binds','binge','binges','binnacles','bins','bioko','bionic','biophysics','biopsies','biopsy','biosphere','biospheres','bipartite','biplane','biplanes','biracial','birch','birches','birdbath','birdbaths','biro','birth','birthplace','birthplaces','birthrate','birthrates','births','biscay','biscayne','bisection','bisections','bishop','bishopric','bishoprics','bishops','bismarck','bismark','bismuth','bison','bisons','bissau','bitch','bitches','bitchier','bitchy','bite','bites','bivalves','bivouac','bivouacs','bk','blab','blabbermouth','blabbermouths','blabs','black','blackburn','blacker','blackish','blackness','blacks','blacksmith','blacksmiths','blackthorn','blackthorns','blah','blaine','blair','blanca','blanch','blanche','blanches','bland','blander','blandness','blank','blanker','blankness','blanks','blare','blares','blasphemous','blatantly','blavatsky','blind','blinder','blinders','blindness','blinds','blink','blinker','blinkers','blinks','blip','blips','bliss','blither','blu','blubber','blubbers','blucher','bluer','blues','bluff','bluffer','bluffers','bluffs','bluish','blunder','blunderbuss','blunderbusses','blunderer','blunderers','blunders','bluntly','blurb','blurbs','blush','blusher','blushers','blushes','boar','boars','boas','boat','boater','boaters','boats','bob','bobbi','bobbies','bobbin','bobbins','bobby','bobcat','bobcats','bobolink','bobolinks','bobs','bobwhite','bobwhites','boccaccio','body','boer','boers','bogey','bogeys','boise','bola','bolas','bolivar','bonaparte','bonbon','bonbons','bond','bonds','bone','boner','boners','bones','boney','boneyer','bonfire','bonfires','bonier','bonita','bonkers','bonn','bonner','bonnier','bonny','bono','bonus','bonuses','bony','boo','boob','boobies','boobs','booby','book','bookcase','bookcases','booker','bookies','bookish','books','bookshop','bookshops','boon','boondocks','boone','boons','boos','bootblack','bootblacks','bootees','booth','booths','booties','bootless','bop','bops','bore','boreas','bores','born','boru','bosch','bose','bosh','bosporus','boss','bosses','bossier','bossiness','bossy','bosun','bosuns','botanical','botany','botch','botches','both','bother','bothers','bounce','bouncer','bouncers','bounces','bouncier','bouncy','bound','boundaries','boundary','bounder','bounders','bounds','bounteous','bounties','bourbon','bovary','bovine','bovines','bow','bower','bowers','bowery','bows','boxes','boy','boyer','boyish','boyishness','boys','br','bra','brace','braces','brackish','brady','brag','brags','brahe','brain','brainier','brains','brainteaser','brainteasers','brainwash','brainwashes','brainy','braise','braises','brakes','brampton','bran','branch','branches','brand','brandi','brandies','brandish','brandishes','brando','brandon','brands','brandy','bras','brash','brasher','brashness','brass','brasses','brassier','brassieres','brassy','brat','brats','brattain','brattier','braver','bravery','braves','bravo','bravos','bravura','bravuras','brawn','brawnier','brawniness','brawny','bray','brays','breach','breaches','breastbone','breastbones','breath','breathe','breather','breathers','breathes','breathier','breaths','breathy','brennan','brenner','brethren','breviaries','breviary','brew','brewer','breweries','brewers','brewery','brews','briar','briars','bribe','bribery','bribes','brice','brick','brickbat','brickbats','bricklayer','bricklayers','bricks','brier','briers','brigand','brigands','brigantine','brigantines','brine','brinier','brink','brinks','briny','brisbane','brisk','brisker','briskness','brisks','bristles','bristlier','bristly','britain','britannic','britannica','britches','british','britisher','brno','broach','broaches','broccoli','brochure','brochures','brock','brogan','brogans','broker','brokerages','brokers','bronchi','bronchial','bronchitis','broncho','bronchos','bronchus','bronco','broncos','bronson','bronte','brooch','brooches','brook','brooks','broth','brother','brotherliness','brothers','broths','brow','browbeat','browbeats','brown','browne','browner','brownies','brownish','browns','brows','browse','browser','browsers','browses','brubeck','bruce','bruckner','bruin','bruins','bruise','bruiser','bruisers','bruises','brunch','brunches','brunei','bruno','brunswick','brush','brushes','brusk','brusker','bruskness','brutalities','brute','brutes','brutish','bryce','brynner','bryon','bubblier','buber','buccaneer','buccaneers','buck','buckner','buckram','bucks','buckskin','buckskins','buckwheat','bucolic','bucolics','buff','buffalo','buffaloes','buffalos','buffer','buffers','buffoon','buffoonery','buffoons','buffs','buffy','bugaboo','bugaboos','buick','bukharin','bulrush','bulrushes','bun','bunch','bunche','bunches','bundesbank','bunin','bunion','bunions','bunk','bunker','bunkers','bunkhouse','bunkhouses','bunks','bunnies','bunny','buns','bunsen','buoy','buoys','bureau','bureaucracies','bureaucracy','bureaucrat','bureaucratic','bureaucrats','bureaus','burn','burner','burners','burnish','burnishes','burnoose','burnooses','burnous','burnouses','burns','burundi','bus','busbies','busboy','busboys','busby','busch','buses','bush','bushes','bushier','bushiness','bushwhack','bushwhacker','bushwhackers','bushwhacks','bushy','busier','busies','business','businesses','buss','busses','bustles','busy','busybody','busyness','butane','butch','butcher','butcheries','butchers','butchery','butches','butler','butlers','buy','buyer','buyers','buys','by','byers','byes','bylaw','bylaws','byline','bylines','bypass','bypasses','byplay','bystander','bystanders','byte','bytes','c','ca','cab','cabal','cabals','cabana','cabanas','cabbage','cabbages','cabbies','cabby','cabin','cabins','caboose','cabooses','cabral','cabrera','cabrini','cabs','cacao','cacaos','cache','caches','cacophonies','cacophonous','cacophony','cacti','caesar','caesars','caesura','caesuras','caffeine','caftan','caftans','cage','cages','cagey','cageyness','cagier','caginess','cagney','cagy','cain','cains','cairn','cairns','cairo','caisson','caissons','caitlin','cakes','cal','calabash','calabashes','calais','calamine','calamities','calcifies','calcify','calcine','calcines','calcite','calculate','calculates','calculation','calculations','calculi','calculus','calculuses','calf','calfs','calfskin','calhoun','cali','caliban','caliber','calibers','calibrate','calibrates','calibration','calibrations','calico','calicoes','calicos','calif','califs','caliper','calipers','caliph','caliphates','caliphs','calk','calks','callao','callas','calliopes','calliper','callipers','callus','calluses','calmness','caloocan','calumniates','calumnies','calumny','calvary','calves','calvin','calvinism','calvinisms','calvinistic','calyces','calypso','calypsos','calyxes','cam','camacho','camber','cambers','cambric','cameras','cameron','cameroon','cameroons','camouflage','camouflages','camp','campanili','camper','campers','campfire','campfires','campier','campinas','campos','camps','campsite','campsites','campus','campuses','campy','cams','camus','can','canal','canals','canaries','canary','canasta','canaveral','canberra','cancan','cancans','cancelation','cancer','cancerous','cancers','cancun','candice','candies','candy','cane','canes','canine','canines','canker','cankerous','cankers','cannabis','cannabises','canneries','cannery','cannes','cannibal','cannibalism','cannibalistic','cannibals','cannier','canniness','cannon','cannons','canny','canoes','canon','canonical','canons','canopies','canopus','canopy','cans','cantankerous','cantankerousness','cantata','cantatas','canticles','canute','canvas','canvasback','canvasbacks','canvases','canvass','canvasser','canvassers','canvasses','canyon','canyons','cap','capabilities','capablanca','capacious','capaciousness','capacitance','capacities','caparison','caparisons','caper','capers','capes','caph','capitalism','capitalistic','capon','capone','capons','capote','cappuccino','cappuccinos','capra','capri','caprice','caprices','capricious','capriciousness','capricorn','capricorns','caps','capstan','capstans','capt','captain','captaincies','captaincy','captains','caption','captions','captious','captivates','captivation','captives','captivities','capture','captures','capuchin','car','cara','caracalla','caracas','carafe','carafes','carapace','carapaces','carat','carats','carbine','carbines','carbon','carbonate','carbonates','carbonation','carboniferous','carbons','carboy','carboys','carbuncles','carcass','carcasses','carcinogen','carcinogenic','carcinogenics','carcinogens','care','career','careers','cares','caress','caresses','caretaker','caretakers','careworn','carey','carib','caribou','caribous','caricature','caricatures','caries','carina','carla','carlin','carnage','carnal','carnap','carnation','carnations','carney','carnival','carnivals','carnivore','carnivores','carolina','caroline','carousal','carousals','carouse','carouser','carousers','carouses','carp','carpal','carpals','carpi','carps','carpus','cars','carsick','carsickness','carson','cartier','cartilage','cartilages','caruso','carver','carvers','carves','cary','casals','case','casein','cases','casey','cash','cashes','cashew','cashews','cashier','cashiers','casino','casinos','casio','cask','casks','caspar','cassias','cassino','cassinos','cassius','cassock','cassocks','caste','castes','castigate','castigates','castigation','castles','casual','casualness','casuals','casualties','cat','cataclysm','cataclysmic','cataclysms','catalan','catalina','catalpa','catalpas','catalysis','catalytic','catarrh','catatonic','catatonics','catawba','catboat','catboats','catch','catcher','catchers','catches','catchier','catchphrase','catchup','catchy','catechise','catechises','catechism','catechisms','cater','caterer','caterers','caters','catfish','catfishes','catharses','catharsis','cathartic','cathartics','cather','catherine','catholic','catholicism','catholicisms','catholics','cathy','catiline','cation','cations','catkin','catkins','catnap','catnaps','catnip','cato','cats','catsup','cattier','cattiness','catwalk','catwalks','caucasus','cauchy','caucus','caucuses','causal','causalities','causation','cause','causes','caustic','caustics','caution','cautionary','cautions','cautious','cautiousness','cavalier','cavaliers','cavern','cavernous','caverns','caves','caviar','cavities','caw','caws','cayuga','cd','ceases','ceausescu','cebu','celibacy','celibate','celibates','celina','cenotaph','cenotaphs','censer','censers','censure','censures','census','censuses','centaurus','centenaries','centenary','centennial','centennials','cephalic','cepheus','ceramic','ceramics','cerberus','cereal','cereals','cerebra','cerebral','ceremonial','ceremonials','ceremonies','ceremonious','ceremony','cerenkov','ceres','cerf','cerise','certain','certainties','certificate','certificates','certification','certifications','certifies','certify','cervical','cervices','cervixes','cesar','cessation','cessations','cession','cessions','cessna','cf','chalice','chalices','chalk','chalkier','chalks','chalky','chamber','chamberlain','chamberlains','chambers','chambray','chamois','champ','champagne','champagnes','champion','champions','championship','championships','champlain','champs','char','charbray','charcoal','charcoals','charge','charges','charier','charioteer','charioteers','charismatic','charismatics','charities','charlatan','charlatans','charolais','charon','chars','chartism','chary','chaser','chasers','chases','chassis','chaste','chasten','chastens','chastise','chastises','chat','chats','chattanooga','chatterboxes','chattier','chattiness','chaucer','chauncey','chauvinism','chauvinistic','che','cheat','cheater','cheaters','cheats','chechen','check','checkbook','checkbooks','checker','checkers','checks','checkup','checkups','cheer','cheerier','cheeriness','cheerios','cheers','cheery','cheeses','cheesier','cheesy','chef','chefs','chekhov','chen','cheney','chengdu','chennai','cheops','cheri','cherish','cherishes','chernenko','cherub','cherubic','cherubs','cheshire','chess','chevalier','chevy','chew','chewer','chewers','chewier','chews','chewy','chi','chiba','chic','chicago','chicana','chicaneries','chicanery','chicano','chicer','chichi','chichis','chick','chicks','chiffon','chili','chilies','chilis','chin','china','chinatown','chinese','chink','chinks','chino','chinook','chinooks','chinos','chins','chip','chipmunk','chipmunks','chipper','chippers','chips','chirico','chiropody','chiropractic','chiropractics','chirp','chirps','chirrup','chirrups','chisinau','chitchat','chitchats','chitin','chitlins','chivas','chives','chock','chocks','chocolate','chocolates','choctaw','choice','choicer','choices','choir','choirs','choker','chokers','chokes','choose','chooses','choosey','choosier','choosy','chop','chopin','chopper','choppers','choppier','choppiness','choppy','chopra','chops','chopstick','chopsticks','chore','chores','chorus','choruses','chose','chosen','chou','chow','chows','chubbier','chubbiness','chubby','chuck','chucks','chukchi','chunk','chunkier','chunkiness','chunks','chunky','churn','churns','chute','chutes','chuvash','ci','cicero','cinch','cinches','cinchona','cinchonas','cincinnati','cinder','cinders','cindy','cinnabar','cinnamon','cipher','ciphers','cipro','circa','circe','circles','circulate','circulates','circulation','circulations','circus','circuses','cirrhosis','cirrus','cisco','cistern','cisterns','citation','citations','cite','cites','citibank','cities','civic','civics','civies','civilities','civvies','cl','clack','clacks','clair','claire','clam','clambakes','clamber','clambers','clamp','clampdown','clampdowns','clamps','clams','clan','clancy','clandestine','clank','clanks','clannish','clans','clap','clapper','clappers','claps','clapton','claptrap','clara','clare','clarence','clarendon','clarice','clarification','clarifications','clarifies','clarify','clarion','clarions','clark','clash','clashes','clasp','clasps','class','classes','classic','classical','classicism','classics','classier','classification','classifications','classifies','classify','classiness','classmates','classy','claus','clause','clauses','clausius','clavicles','claw','claws','clay','clayier','cleric','clerical','clerics','clerk','clerks','cliburn','click','clicks','cliff','cliffs','clinch','clincher','clinchers','clinches','cline','clinic','clinical','clinics','clink','clinker','clinkers','clinks','clio','clip','clipper','clippers','clips','clipt','clobber','clobbers','cloche','cloches','clock','clocks','clockwise','clone','clones','clop','clops','close','closeness','closer','closes','closure','closures','cloth','clothes','clothesline','clotheslines','clothespin','clothespins','clothier','clothiers','clotho','cloths','cloudy','clouseau','clover','clovers','cloves','clovis','clown','clownish','clownishness','clowns','cloy','cloys','club','clubhouse','clubhouses','clubs','cluck','clucks','clues','clunk','clunker','clunkers','clunkier','clunks','clunky','clutch','clutches','cm','co','coach','coaches','coagulate','coagulates','coagulation','coal','coalesce','coalescence','coalesces','coalition','coalitions','coals','coarse','coarsen','coarseness','coarsens','coarser','coastline','coastlines','coat','coats','cob','cobain','cobb','cobra','cobras','cobs','cocaine','cocci','coccis','coccus','coccyges','coccyxes','cochin','cochise','cochran','cock','cockatoo','cockatoos','cockier','cockiness','cockney','cockneys','cockroach','cockroaches','cocks','cocksucker','cocksuckers','cocksure','cocky','cocoas','cocoon','cocoons','cocteau','cody','coerce','coerces','coercion','coffees','coffer','coffers','coffey','coffin','coffins','cogency','cogently','cohen','cohere','coherence','coherently','coheres','cohesion','coif','coiffure','coiffures','coifs','coin','coinage','coinages','coins','cokes','cola','colander','colanders','colas','colic','colicky','colin','colitis','column','columns','como','con','conakry','conan','concatenate','concatenates','concatenation','concatenations','concavities','conceal','conceals','conceives','concept','conception','conceptions','concepts','conceptual','concern','concerns','concerti','concertina','concertinas','concession','concessionaire','concessionaires','concessions','conch','conches','conchs','concierge','concierges','conciliates','conciliation','concise','conciseness','conciser','conclaves','conclusion','conclusions','concoction','concoctions','concrete','concretes','concubine','concubines','concussion','concussions','condescend','condescends','condescension','condition','conditional','conditionals','conditioner','conditioners','conditions','condo','condoes','condone','condones','condos','conduce','conduces','conduction','cone','cones','confection','confectioner','confectioneries','confectioners','confectionery','confections','confer','conference','conferences','confers','confess','confesses','confession','confessional','confessionals','confessions','confine','confines','confiscate','confiscates','confiscation','confiscations','confound','confounds','confrontation','confrontational','confrontations','confucius','confuse','confuses','confusion','confusions','confute','confutes','conga','congas','congeal','congeals','congenial','congestion','conic','conical','conics','conifer','coniferous','conifers','conk','conks','conn','connection','connections','connectives','conner','connery','conniver','connivers','connives','connotation','connotations','connote','connotes','connubial','cons','conscious','consciousness','consciousnesses','conscript','conscription','conscripts','consecrate','consecrates','consecration','consecrations','consensual','consensus','consensuses','conservation','conservatism','conservatives','conserves','consistencies','consistency','consistently','consolation','consolations','consonance','consonances','conspicuous','conspiracies','conspiracy','conspire','conspires','constance','constancy','constantine','constantly','consternation','constipate','constipates','constipation','consulate','consulates','contain','container','containers','contains','contend','contender','contenders','contends','contention','contentions','contentious','continence','contingencies','contingency','continual','continuation','continuations','continues','continuous','conurbation','conurbations','convalesce','convalescence','convalescences','convalesces','converge','convergence','convergences','converges','conversation','conversational','conversations','converse','converses','conversion','conversions','conviction','convictions','convince','convinces','convivial','convocation','convocations','convokes','convolution','convolutions','convoy','convoys','coo','cook','cookbook','cookbooks','cooker','cookeries','cookers','cookery','cookies','cooks','cooky','coolies','coon','coons','coop','cooper','cooperates','cooperation','cooperatives','coopers','coops','coos','cooties','cop','copacabana','copernican','copernicus','copes','copier','copiers','copies','copious','copland','copper','coppers','coppery','coppice','coppices','coppola','copra','cops','copse','copses','copter','copters','coptic','copula','copulas','copulate','copulates','copulation','copy','copycat','copycats','cora','core','cores','corey','corfu','corn','corncob','corncobs','corner','corners','cornflakes','cornice','cornices','cornier','cornish','corns','cornucopias','cornwallis','corny','coruscate','coruscates','cosby','cosier','cosies','cosine','cosmic','cosmopolitan','cosmopolitans','cosmos','cosmoses','cossack','costco','costlier','costliness','costly','cosy','cote','cotes','couch','couches','countenance','countenances','counteraction','counteractions','counterespionage','countess','countesses','counties','countless','coup','couperin','coupes','coupon','coupons','coups','courage','courageous','cousin','cousins','cousteau','cover','covers','covertly','coves','cow','cowboy','cowboys','cower','cowers','cowlick','cowlicks','cowper','cowpokes','cowpuncher','cowpunchers','cows','cowslip','cowslips','coy','coyer','coyness','coyote','coyotes','cr','crab','crabbe','crabbier','crabbiness','crabby','crabs','crack','cracker','crackers','cracklier','cracks','crackup','crackups','craftier','craftiness','crag','crags','cram','cramp','cramps','crams','cranach','crane','cranes','cranial','crank','crankcase','crankcases','crankier','crankiness','cranks','cranky','crannies','cranny','crap','crapes','crappier','crappy','craps','crash','crashes','crass','crasser','crassness','crate','crater','craters','crates','cravat','cravats','craves','craw','crawfish','crawfishes','craws','cray','crayfish','crayfishes','crayola','crayon','crayons','cream','creamer','creameries','creamers','creamery','creamier','creaminess','creams','creamy','creases','creates','creation','creationism','creations','creatives','creature','creatures','crecy','creon','creosote','creosotes','crepes','crept','crescendi','crescendo','crescendos','cress','cretaceous','cretan','crete','cretin','cretinous','cretins','crevasse','crevasses','crevice','crevices','crew','crews','crib','cribbage','cribs','crick','cricks','crier','criers','cries','cringe','cringes','crinklier','crinoline','crinolines','crisco','crises','crisis','crisp','crisper','crispier','crispness','crisps','crispy','crisscross','crisscrosses','cristina','critic','critical','criticism','criticisms','critics','croat','croats','croce','croci','crock','crockery','crocks','crocus','crocuses','croesus','crone','crones','cronies','cronin','cronkite','cronus','crony','crook','crookes','crooks','croon','crooner','crooners','croons','crop','cropper','croppers','crops','crosby','crosier','crosiers','cross','crossbar','crossbars','crossbeam','crossbeams','crossbones','crossbow','crossbows','crosscheck','crosschecks','crosser','crosses','crossfire','crossfires','crossness','crossover','crossovers','crosswalk','crosswalks','crosswise','crotch','crotches','crouch','crouches','croup','croupier','croupiers','croupy','crow','crowbar','crowbars','crown','crowns','crows','crucial','crucifies','crucifixes','crucify','cruise','cruiser','cruisers','cruises','crunch','cruncher','crunches','crunchier','crunchy','crush','crushes','crustier','crutch','crutches','cruxes','cry','crybabies','crybaby','cryogenics','crypt','cryptic','crypts','cs','ctesiphon','cu','cub','cuba','cuban','cubans','cube','cubes','cubic','cubical','cubicles','cubism','cubs','cuchulain','cuckoo','cuckoos','cues','cuff','cuffs','cuisine','cuisines','culinary','cup','cupcakes','cupola','cupolas','cups','curacao','curacies','curacy','curate','curates','curatives','curb','curbs','cure','cures','cushier','cushion','cushions','cushy','cusp','cusps','cuss','cusses','cutback','cutbacks','cute','cuteness','cutesier','cutesy','cuticles','cutlass','cutlasses','cutlery','cuvier','cybernetic','cybernetics','cyberpunk','cyberpunks','cyberspace','cycles','cyclic','cyclical','cyclone','cyclones','cyclonic','cyclops','cylinder','cylinders','cynic','cynical','cynicism','cynics','cynosure','cynosures','cypher','cypress','cypresses','cyprus','cyrano','cyrus','cystic','db','dyer','dyers','dyes','dykes','dylan','dynamic','dynamical','dynamics','dynamism','dynamite','dynamites','dynamo','dynamos','dynastic','dynasties','dysfunction','dysfunctional','dysfunctions','dyson','er','eras','eraser','erasers','erases','erasure','erasures','erato','eric','erica','erich','erick','erickson','ericson','ericsson','erik','erin','eris','erna','ernestine','erogenous','eros','eroses','erosion','erotic','erotica','eroticism','errand','errands','errata','erratas','erratic','erse','erupt','eruption','eruptions','erupts','ervin','erwin','es','esau','escalate','escalates','escalation','escalations','escapes','escapism','escher','eschew','eschews','escrow','escrows','escutcheon','escutcheons','eskimo','eskimos','esophagi','esophagus','esophaguses','espies','espionage','espousal','espouse','espouses','espresso','espressos','espy','essen','essence','essences','essene','essential','essentials','establish','establishes','estate','estates','esteban','estela','estes','esther','eu','eucalypti','eucalyptus','eucalyptuses','eucharistic','eugene','eugenics','eugenio','eula','eunice','eunuch','eunuchs','euphony','euphrates','eutectic','f','faces','facial','facials','facilitate','facilitates','facilitation','facilities','faction','factional','factionalism','factions','factitious','fag','fagin','fags','falcon','falconer','falconers','falcons','falkland','falklands','fallacies','fallacious','fallacy','false','falseness','falser','falsification','falsifications','falsifies','falsify','falsities','falstaff','familial','familiar','familiars','families','famine','famines','famish','famishes','famous','far','farce','farces','farcical','fares','farina','farinaceous','farsi','farther','fascinate','fascinates','fascination','fascinations','fascism','fashion','fashions','fassbinder','fasten','fastener','fasteners','fastens','fat','fatal','fatalism','fatalistic','fatalities','fates','father','fatherland','fatherlands','fathers','fatness','fats','fatten','fattens','fattier','fatties','fatuous','fatuousness','faun','fauna','faunas','fauns','fauntleroy','faustino','fe','fear','fears','feat','feather','featherier','feathers','feathery','feats','feature','features','feb','februaries','february','fecal','feces','fecund','fees','feistier','felice','felicities','feline','felines','femora','fen','fence','fencer','fencers','fences','fend','fender','fenders','fends','fens','fer','feral','ferber','fern','fernando','ferns','ferocious','ferociousness','festival','festivals','festivities','feta','fetch','fetches','fetich','fetiches','fetish','fetishes','fetishism','fetishistic','fetlock','fetlocks','fever','feverish','fevers','few','fewer','fey','fiasco','fiascoes','fiascos','fiat','fiats','fib','fibber','fibbers','fiber','fibers','fibonacci','fibrous','fibs','fibula','fibulas','fiche','fiches','fichte','fiction','fictional','fictions','fictitious','fierce','fierceness','fiercer','fierier','fieriness','fiery','fiesta','fiestas','fife','fifes','fifth','fifths','fifties','filial','filipino','filipinos','fin','final','finales','finals','finance','finances','financial','financier','financiers','finch','finches','find','finder','finders','finds','fine','fineness','finer','finery','fines','finesse','finesses','finickier','finicky','finis','finises','finish','finisher','finishers','finishes','finite','fink','finks','finland','finn','finnegan','finnier','finnish','finns','finny','fins','fiona','fir','fire','firebrand','firebrands','firecracker','firecrackers','fireflies','firehouse','firehouses','fireplace','fireplaces','firepower','fireproof','fireproofs','fires','firewater','firmness','firs','firstborn','firstborns','firstly','firth','firths','fiscal','fiscals','fischer','fish','fisher','fisheries','fishers','fishery','fishes','fishhook','fishhooks','fishier','fishwife','fishwives','fishy','fisk','fission','fissure','fissures','fisticuffs','fitch','fitly','fiver','fives','fixes','fla','flab','flabbier','flabbiness','flabby','flack','flacks','flair','flairs','flak','flakes','flakier','flakiness','flaky','flan','flanagan','flanders','flange','flanges','flank','flanks','flap','flapper','flappers','flaps','flare','flares','flash','flashback','flashbacks','flasher','flashers','flashes','flashgun','flashguns','flashier','flashiness','flashy','flask','flasks','flatboat','flatboats','flatcar','flatcars','flatly','flaw','flaws','flaxen','flay','flays','flick','flicker','flickers','flicks','flier','fliers','flies','flinch','flinches','flintier','flintlock','flintlocks','flip','flippancy','flippantly','flipper','flippers','flips','flu','flub','flubs','flues','fluff','fluffier','fluffiness','fluffs','fluffy','flukes','flukier','fluky','flunk','flunkies','flunks','flunky','fluoresce','fluorescence','fluoresces','flush','flusher','flushes','flute','flutes','fluxes','fm','foal','foals','foam','foamier','foams','foamy','fob','fobs','focal','foch','foci','focus','focuses','focusses','foes','fogey','fogeys','fokker','folio','folios','fond','fonder','fondness','fondu','fondues','fondus','foolish','foolishness','footage','footlocker','footlockers','footloose','fop','foppish','fops','fora','forage','forages','foray','forays','forbes','forbore','fore','forebear','forebears','forecastles','foreclose','forecloses','foreclosure','foreclosures','forefather','forefathers','foregather','foregathers','forenames','forenoon','forenoons','forensic','forensics','foreplay','forerunner','forerunners','fores','foresees','foreskin','foreskins','forestation','foreswore','foresworn','foretaste','foretastes','forever','forevermore','forewarn','forewarns','fornicate','fornicates','fornication','fosse','found','foundation','foundations','founder','founders','founds','fountain','fountains','foxes','foyer','foyers','fr','fracas','fracases','fraction','fractional','fractions','fractious','fragrance','fragrances','fragrantly','framer','framers','frames','fran','franc','france','frances','francesca','franchise','franchisees','franchiser','franchisers','franchises','francine','francis','francisca','franciscan','francisco','franck','franco','francois','francoise','francs','frank','franker','frankincense','franklin','frankness','franks','franny','frantic','frappes','fraser','frat','fraternal','fraternities','frats','fray','frays','freer','frees','french','frenches','frenetic','freon','fresco','frescoes','frescos','fresh','freshen','freshens','fresher','freshness','freshwater','fresno','frey','fri','friar','friars','fricassees','friction','frier','friers','fries','frigate','frigates','fringe','fringes','fripperies','frippery','frisco','frisk','friskier','friskiness','frisks','frisky','frivolities','fro','frobisher','frock','frocks','frolic','frolics','frond','fronds','frontage','frontages','frontenac','frontier','frontiers','frostbite','frostbites','frostier','frostiness','froth','frothier','froths','frothy','frown','frowns','frowsier','frowsy','fructifies','fructify','fruitier','fruition','fruitless','fruitlessness','fry','fryer','fryers','fuchs','fuchsias','fuck','fucker','fuckers','fucks','fulani','fun','funafuti','function','functional','functionaries','functionary','functions','fund','funds','fundy','funeral','funerals','funereal','funk','funkier','funks','funky','funner','funnier','funnies','funniness','funny','furbish','furbishes','furnaces','furnish','furnishes','fuse','fuselage','fuselages','fuses','fushun','fusion','fusions','fuss','fusses','fussier','fussiness','fussy','fustier','ga','gab','gabbier','gabby','gabon','gabs','gaff','gaffe','gaffes','gaffs','gage','gages','gain','gaines','gains','gala','galactic','galapagos','galas','galibi','gamow','gander','ganders','gandhi','ganges','gap','gapes','gaps','garage','garages','garb','garbo','garbs','gareth','garner','garners','garnish','garnishees','garnishes','gas','gascony','gaseous','gases','gash','gashes','gasoline','gasp','gasps','gasser','gasses','gassier','gassy','gate','gatecrasher','gatecrashers','gates','gather','gatherer','gatherers','gathers','gauche','gaucher','gaucho','gauchos','gaudy','gauge','gauges','gauss','gautier','gavin','gawk','gawkier','gawkiness','gawks','gawky','gay','gayer','gayness','gays','gd','ge','gear','gearboxes','gears','gecko','geckoes','geckos','gees','geffen','gehenna','geishas','gelatin','gelatine','gelatinous','gen','gena','genaro','gender','genders','gene','genera','general','generalissimo','generalissimos','generalities','generals','generate','generates','generation','generations','generic','generics','generosities','generous','genes','geneses','genesis','genetic','genetics','genial','genies','genii','genitives','genius','geniuses','genoas','genre','genres','gentler','gentles','gently','genuine','genuineness','genus','genuses','geo','geoffrey','geophysical','geophysics','geopolitical','geopolitics','geostationary','gerber','gere','gerund','gerunds','gestapo','gestapos','gestate','gestates','gestation','gesticulate','gesticulates','gesticulation','gesticulations','gewgaw','gewgaws','geyser','geysers','h','hack','hacker','hackers','hackney','hackneys','hacks','hag','hagar','haggai','hags','hal','halcyon','haler','hales','half','halfback','halfbacks','hallucinate','hallucinates','hallucination','hallucinations','hallucinogen','hallucinogenic','hallucinogenics','hallucinogens','halo','haloes','halogen','halogens','halon','halos','hals','halsey','halves','ham','hamitic','hamlin','hammock','hammocks','hammond','hamper','hampers','hampshire','hampton','hams','hamsun','harass','harasses','harbin','hardback','hardbacks','hardy','hares','hark','harks','harlan','harmon','harmonic','harmonica','harmonicas','harmonics','harmonies','harmonious','harmoniousness','harmony','harness','harnesses','harp','harper','harpies','harpoon','harpoons','harps','harpy','harsh','harsher','harshness','harte','hartline','has','hasbro','hash','hasheesh','hashes','hashish','hasp','hasps','hassock','hassocks','haste','hasten','hastens','hastes','hastier','hastiness','hat','hatch','hatchback','hatchbacks','hatcheries','hatchery','hatches','hater','haters','hates','hath','hats','hatteras','haunch','haunches','he','heal','healer','healers','heals','health','healthier','healthiness','healthy','hear','hearer','hearers','hears','hearse','hearses','heartache','heartaches','heartburn','hearten','heartens','hearth','hearths','heartier','hearties','heartiness','heartless','heartlessness','heat','heater','heaters','heath','heathen','heathenish','heathens','heather','heaths','heats','hebe','hebraic','hebrew','hebrews','hecate','heck','hectare','hectares','hectic','hecuba','hefner','heftier','hegemony','heifer','heifers','heine','heinous','heinousness','heir','heiress','heiresses','heirs','helical','helices','helicon','helicopter','helicopters','heliopolis','helios','helixes','hemophiliac','hemophiliacs','hen','hence','hench','henderson','henna','hennas','hennessy','hens','henson','hep','hepatic','hepatitis','hepburn','hepper','heptagon','heptagons','her','hera','herb','herbaceous','herbage','herbal','herbivore','herbivores','herbs','here','hereby','herein','hereof','herero','heresies','heresy','heretic','heretical','heretics','hereupon','herewith','heritage','heritages','hernias','hero','heroes','heroic','heroics','heroin','heroine','heroins','heroism','heron','herons','heros','herpes','herrera','hers','hersey','hershey','hes','hesitancy','hesitantly','hesitate','hesitates','hesitation','hesitations','hesperus','hess','hesse','hew','hewer','hewers','hewn','hews','hexes','hey','hf','hg','hi','hiatus','hiatuses','hibachi','hibachis','hibernate','hibernates','hibernation','hibiscus','hibiscuses','hiccup','hiccups','hick','hickok','hicks','hierarchical','hierarchies','hierarchy','hies','hifalutin','hiker','hikers','hikes','hind','hinder','hinders','hindi','hindrance','hindrances','hinds','hindu','hinduism','hinduisms','hindus','hindustan','hindustani','hines','hinge','hinges','hip','hipparchus','hipper','hippies','hippo','hippocrates','hippocratic','hippos','hippy','hips','hiram','hire','hires','hirsute','his','hispanic','hispanics','hispaniola','hiss','hisses','hitachi','hitch','hitchcock','hitches','hitchhiker','hitchhikers','hitchhikes','hither','hitler','hitlers','hives','ho','hoagies','hoagy','hoarier','hoariness','hoarse','hoarseness','hoarser','hoary','hob','hobbes','hobbies','hobbs','hobby','hobnob','hobnobs','hobo','hoboes','hobos','hobs','hock','hockney','hocks','hockshop','hockshops','hoes','hoff','hogan','hogans','hohenstaufen','hohokam','hokier','holier','holiness','holistic','homogeneous','homophobic','homophone','homophones','hon','honcho','honchos','honduran','hondurans','honduras','hone','honecker','hones','honestly','honey','honeybees','honeymoon','honeymooner','honeymooners','honeymoons','honeys','honk','honks','honolulu','honshu','hooch','hoof','hoofs','hook','hooker','hookers','hooks','hookup','hookups','hooky','hooligan','hooliganism','hooligans','hoop','hooper','hoopla','hoops','hoorah','hoorahs','hooray','hoorays','hoosier','hootch','hoover','hoovers','hooves','hop','hopes','hopi','hopkins','hopper','hoppers','hops','hopscotch','hopscotches','horace','horacio','horatio','horn','hornier','hornpipes','horns','horny','horus','hos','hose','hoses','hosiery','hospice','hospices','hostage','hostages','hostelries','hostelry','hostess','hostesses','hostilities','hostler','hostlers','hotelier','hoteliers','hothouse','hothouses','hotly','hound','hounds','house','houseboat','houseboats','housebound','housecoat','housecoats','houseflies','househusband','househusbands','housemother','housemothers','houses','housewares','housewife','housewives','hover','hovers','how','howdy','hows','hsbc','hub','hubbies','hubbub','hubbubs','hubby','hubcap','hubcaps','huber','hubris','hubs','huck','huerta','hues','huff','huffier','huffs','huffy','huge','hugeness','huh','hui','hula','hulas','hun','hunch','hunchback','hunchbacks','hunches','hunk','hunker','hunkers','hunks','huns','hus','husband','husbands','hush','hushes','husk','husker','huskers','huskier','huskies','huskiness','husks','husky','hussar','hussars','hussein','hussies','hussite','hussy','hustler','hustlers','hustles','hutch','hutches','hutchinson','huygens','hyacinth','hyacinths','hymn','hymnal','hymnals','hymns','hyper','hyperbola','hyperbolas','hyperbolic','hypercritical','hyperion','hypersensitivities','hyperspace','hypertension','hypes','hyphen','hyphenate','hyphenates','hyphenation','hyphenations','hyphens','hypnoses','hypnosis','hypnotic','hypnotics','hypnotism','hypo','hypocrisies','hypocrisy','hypocrite','hypocrites','hypocritical','hypos','hypotenuse','hypotenuses','hypothalami','hypothalamus','hypotheses','hypothesis','hysteresis','i','iaccoca','iago','iamb','iambic','iambics','iambs','ibexes','ibices','ibis','ibises','iblis','ibo','ibsen','ibuprofen','icahn','icarus','ice','icebound','iceboxes','icecap','icecaps','iceland','icelander','icelanders','icelandic','ices','icicles','icier','iciness','ickier','icky','icon','iconoclastic','icons','icy','if','iffier','iffy','ifs','ikhnaton','ikon','ikons','ila','imogene','in','ina','inabilities','inaccuracies','inaccuracy','inaccurate','inaction','inamorata','inamoratas','inane','inaner','inanities','inapt','inarticulate','inasmuch','inattention','inauspicious','inborn','inbound','inc','inca','incandescence','incantation','incantations','incapacitate','incapacitates','incarcerate','incarcerates','incarceration','incarcerations','incarnate','incarnates','incarnation','incarnations','incas','incautious','incendiaries','incendiary','incense','incenses','incentives','inception','inceptions','inch','inches','inchon','incinerate','incinerates','incineration','incise','incises','incision','incisions','incite','incites','incivilities','inclination','inclinations','incline','inclines','inclose','incloses','inclosure','inclosures','inclusion','inclusions','incoherence','incoherently','inconsistencies','inconsistency','inconsistently','inconspicuous','inconspicuousness','inconstancy','incontinence','increases','incrustation','incrustations','incubate','incubates','incubation','incubi','incubus','incubuses','ind','indicate','indicates','indication','indications','indicatives','indices','indies','indifference','indifferently','indigence','indigenous','indigestion','indira','indirection','indirectly','indiscretion','indiscretions','indisposition','indispositions','indistinctly','indochina','indochinese','indore','indra','induce','induces','inductance','inductees','induction','inductions','indues','indus','indy','inebriates','inebriation','inelastic','inept','ineptly','ineptness','inertial','inertly','ines','inessential','inessentials','infamies','infamous','infamy','infarction','infatuates','infatuation','infatuations','infection','infections','infectious','infectiousness','infelicities','infer','inference','inferences','inferential','infernal','inferno','infernos','infers','infestation','infestations','infinite','infinities','infinitives','inflate','inflates','inflation','inflationary','infliction','influxes','info','infraction','infractions','infringe','infringes','infuse','infuses','infusion','infusions','inge','ingenious','ingenuous','ingenuousness','ingestion','inhalation','inhalations','inhaler','inhalers','inhales','inhere','inherently','inheres','inheritance','inheritances','inhibition','inhibitions','initial','initials','initiates','initiation','initiations','initiatives','ink','inkier','inkiness','inks','inky','inland','inlay','inlays','inline','inn','innate','inner','innocence','innocently','innocuous','innovates','innovation','innovations','inns','inoculate','inoculates','inoculation','inoculations','inonu','ins','inscribe','inscribes','inscription','inscriptions','inseam','inseams','insectivore','insectivores','insecure','insertion','insertions','inshore','insincere','insinuates','insinuation','insinuations','insistence','insistently','insofar','insomniac','insomniacs','inspiration','inspirational','inspirations','inspire','inspires','instance','instances','instantaneous','instantly','instep','insteps','instigate','instigates','instigation','insubstantial','insulate','insulates','insulation','insulin','insurance','insurances','insure','insures','intakes','intend','intends','intense','intenser','intensification','intensifier','intensifiers','intensifies','intensify','intensities','intensives','intention','intentional','intentions','intently','interaction','interactions','interfaces','interferes','interferon','intern','internal','internals','international','internationalism','internationals','internes','interneship','interneships','interns','internship','internships','intestate','intestinal','intestine','intestines','inundates','inundation','inundations','inure','inures','invar','invasion','invasions','inverse','inverses','inversion','inversions','invertebrate','invertebrates','investigate','investigates','investigation','investigations','inviolate','invitation','invitational','invitationals','invitations','invite','invites','invocation','invocations','invoice','invoices','invokes','io','ion','ionesco','ionic','ionics','ionosphere','ionospheres','ions','iota','iotas','iowas','iphone','ir','ira','iran','irate','irateness','ire','ireland','irene','iris','irises','irish','irisher','irk','irks','iron','ironic','ironical','ironies','irons','irony','irrational','irrationals','irresolute','irresolution','irruption','irruptions','irtish','irvin','irwin','is','isis','island','islander','islanders','islands','ism','isms','isobar','isobars','isolate','isolates','isolation','isolationism','issac','issachar','issues','itaipu','italic','italics','itasca','itch','itches','itchier','itchiness','itchy','iterate','iterates','iteration','iterations','itineraries','itinerary','ives','ivies','ivy','iyar','k','kalashnikov','kalb','kali','kampala','karachi','karat','karats','kari','karin','karina','karla','karo','karyn','kasparov','katharine','katherine','katheryn','kathy','katina','katowice','katy','kaunas','kc','keratin','keri','kern','kerosene','kerosine','kerouac','kfc','kharkov','khoikhoi','khorana','khrushchev','khufu','khyber','kibosh','kick','kickback','kickbacks','kicker','kickers','kickier','kickoff','kickoffs','kicks','kickstand','kickstands','kicky','kigali','kikuyu','kilroy','kimono','kimonos','kin','kind','kinder','kindlier','kindliness','kindness','kindnesses','kinds','kinetic','kink','kinkier','kinks','kinky','kinney','kinsey','kinship','kiosk','kiosks','kip','kipper','kippers','kirby','kirchhoff','kirchner','kiribati','kirk','kirkland','kirov','kirsten','kishinev','kiss','kisser','kissers','kisses','kitakyushu','kitchen','kitchener','kitchens','kite','kites','kith','kiwi','kiwis','klan','klaus','klimt','kline','knack','knacker','knacks','knapp','knapsack','knapsacks','knavery','knaves','knavish','knees','knew','knickerbocker','knickers','knickknack','knickknacks','knife','knifes','knives','knob','knobbier','knobby','knobs','knock','knocker','knockers','knocks','knopf','knossos','know','known','knows','knuth','koalas','kobe','koch','koestler','kook','kookier','kookiness','kooks','kooky','koran','korans','kosciusko','kosher','koshers','kossuth','kr','krakow','kramer','krasnoyarsk','krebs','kresge','kris','krishna','krista','kristen','kristi','kristin','kristina','kristine','kroc','krone','kronecker','kroner','krupp','krypton','ks','kublai','kubrick','kuhn','kuibyshev','kusch','kw','kyushu','la','lab','laban','labial','labials','labs','lace','lacerate','lacerates','laceration','lacerations','laces','lacey','lachesis','lacier','lack','lacks','laconic','lacrosse','lactate','lactates','lactation','lactic','lacuna','lacunas','lacy','lady','ladyship','lahore','lain','lair','lairs','laius','lakes','lakota','lana','lanai','lancashire','lance','lancer','lancers','lances','land','lander','landlady','landlubber','landlubbers','landon','landowner','landowners','lands','landsat','landscaper','landscapers','landscapes','landsteiner','lane','lanes','lank','lanker','lankier','lankiness','lanky','lanny','lanolin','lantern','lanterns','lao','laocoon','laos','lap','laplace','lapland','lapp','lapps','laps','lapse','lapses','laptop','laptops','lara','lasagna','lasagnas','lasagne','lasagnes','lascivious','lasciviousness','laser','lasers','lash','lashes','lass','lassen','lasses','lassies','lasso','lassoes','lassos','lastly','latch','latches','late','latency','lateness','lateran','lath','lather','lathers','lathes','laths','latin','latina','latiner','latino','latinos','latins','launch','launcher','launchers','launches','launder','launderer','launderers','launders','laundress','laundresses','laura','laureates','lauren','laurence','laval','lavern','laverne','lavish','lavisher','lavishes','lavishness','lavoisier','lavonne','law','lawn','lawns','lawrence','laws','lawson','lawyer','lawyers','lay','layamon','layer','layers','layla','layoff','layoffs','layover','layovers','layperson','laypersons','lays','li','liar','liars','lib','libation','libations','libby','liberace','liberal','liberalism','liberals','liberate','liberates','liberation','liberties','libertine','libertines','libra','libraries','library','libras','lice','licence','licences','license','licensees','licenses','licentiates','licentious','licentiousness','lichees','lichen','lichens','lichtenstein','lick','licks','lies','lieu','lieutenancy','life','lifeboat','lifeboats','lifeline','lifelines','lifer','lifers','lifespan','lifespans','liker','likes','lila','lilac','lilacs','lilies','lilith','limn','limns','limo','limoges','limos','limousin','limousine','limousines','lin','lina','linage','linchpin','linchpins','lind','lindsey','lindy','line','lineages','lineal','linear','linebacker','linebackers','linen','linens','liner','liners','lines','lineup','lineups','link','linkages','linker','links','linkup','linkups','linnaeus','linus','lion','lioness','lionesses','lions','lip','liposuction','lippi','lips','lipstick','lipsticks','lipton','lira','liras','lire','lisbon','lisp','lisps','listen','listener','listeners','listens','listless','listlessness','litanies','litany','litchi','litchis','lite','literacy','literate','literates','literati','lither','lithosphere','lithospheres','litigate','litigates','litigation','litmus','liver','liveries','livers','livery','lives','livy','lr','lu','luau','luaus','lubavitcher','lubber','lubbers','lubbock','lube','lubes','lubricate','lubricates','lubrication','lucas','luce','lucifer','lucio','lucite','lucius','luck','luckier','luckiness','lucknow','lucks','lucky','lucre','lucretius','lucy','luis','lula','lulu','luna','lunacies','lunacy','lunar','lunatic','lunatics','lunch','luncheon','luncheons','lunches','lunge','lunges','lupin','lupine','lupines','lupins','lupus','lure','lures','luscious','lusciousness','lush','lusher','lushes','lushness','lustier','lustiness','lute','lutes','luther','luvs','md','mg','mn','mo','moat','moats','mob','mobs','moccasin','moccasins','mock','mocker','mockeries','mockers','mockery','mocks','mohacs','mohican','mohicans','moho','moira','moire','moires','moises','moisten','moistens','moistly','molasses','molina','moluccas','mon','mona','monaco','monarch','monarchic','monarchical','monarchies','monarchism','monarchs','monarchy','monastic','monasticism','monastics','monera','money','moneybag','moneybags','monica','monicker','monickers','monies','moniker','monikers','monk','monks','monmouth','mono','monocles','monogamous','monolith','monolithic','monoliths','monongahela','monophonic','monopolies','monopolistic','mons','monsoon','monsoons','montage','montages','montana','montanan','montanans','monte','month','monthlies','months','moo','mooch','moocher','moochers','mooches','moody','moon','moonbeam','moonbeams','mooney','moons','moonscapes','moonshine','moonshines','moore','moos','moose','mop','mopes','mops','moraine','moraines','moralistic','moralities','moran','morass','morasses','moray','morays','more','moreno','moreover','mores','morn','morns','moscow','moses','mosey','moseys','moss','mosses','mossier','mossy','mostly','mote','motes','moth','mother','motherfucker','motherfuckers','motherland','motherlands','motherliness','mothers','moths','motif','motifs','motion','motions','motivates','motivation','motivational','motivations','motives','motlier','mound','mounds','mountain','mountaineer','mountaineers','mountainous','mountains','mountbatten','mountebank','mountebanks','mounties','mourn','mourner','mourners','mourns','mouse','mouser','mousers','mouses','mousey','mousier','mousiness','mousse','mousses','moustache','moustaches','mousy','mouth','mouths','mouthwash','mouthwashes','mover','movers','moves','movies','mow','mower','mowers','mown','mows','mt','n','na','nab','nabisco','nabob','nabobs','nabokov','nabs','nacho','nachos','nacre','nag','nags','nagy','nair','nairobi','naismith','naiver','nam','namath','names','nan','nanak','nancy','nannies','nanny','nanook','nanosecond','nanoseconds','nansen','nantes','nap','napes','naphtali','napier','napkin','napkins','nappier','nappies','nappy','naps','narc','narcissi','narcissism','narcissistic','narcissus','narcissuses','narcosis','narcotic','narcotics','narcs','nark','narks','narrate','narrates','narration','narrations','narratives','narwhal','narwhals','nary','nasal','nasals','nascar','nash','nassau','nasser','nastier','nastiness','nat','natal','nate','nation','national','nationalism','nationalistic','nationalities','nationals','nations','natives','nativities','nattier','naturalism','naturalistic','nature','natures','nauru','nauseates','nauseous','nautical','nautili','nautilus','nautiluses','naval','navarre','naves','navies','navigate','navigates','navigation','navigational','navy','nay','nays','nb','nd','ne','neal','near','nearby','nearer','nearness','nears','neat','neater','neath','neatness','nebula','nebulas','necessaries','necessary','necessitate','necessitates','necessities','neck','necklace','necklaces','neckline','necklines','necks','neckties','necrosis','nefarious','nefariousness','nefertiti','negate','negates','negation','negations','negatives','negev','nehru','neither','neoclassic','neoclassical','neoclassicism','neogene','neolithic','neon','neonatal','neonate','neonates','neophyte','neophytes','neoprene','nepal','nepali','nephew','nephews','nepotism','neptune','nerdy','nerf','nero','nerves','nervier','nervous','nervousness','nervy','nescafe','nestles','nether','netherlander','netherlanders','netherlands','nev','never','nevermore','nevis','nevsky','new','newark','newbies','newborn','newborns','newer','newfoundland','newfoundlands','newness','news','newsboy','newsboys','newsflash','newsier','newspaper','newspapers','newsstand','newsstands','newsy','ni','niacin','nib','nibs','nice','nicene','niceness','nicer','niceties','niche','niches','nichiren','nicholas','nick','nicklaus','nicknack','nicknacks','nicknames','nickolas','nicks','nicobar','nicola','nicolas','nicotine','niftier','nihilism','nihilistic','nikita','nikki','nikolai','nikon','nina','nine','ninepin','ninepins','nines','nineties','ninnies','ninny','nintendo','ninth','ninths','niobe','nip','nipper','nippers','nippier','nippon','nippy','nips','nisei','nita','nite','nites','nixes','no','nobody','noes','noh','noise','noises','noisier','noisiness','noisy','nola','nolan','non','nona','nonalcoholic','nonce','noncooperation','nondescript','none','nonentities','nonessential','nonesuch','nonesuches','nonfat','nonfatal','nonfiction','nonphysical','nonplus','nonpluses','nonplusses','nonpoisonous','nonpolitical','nonprescription','nonprofessional','nonprofessionals','nonproliferation','nonrepresentational','nonseasonal','nonsense','nonsensical','nonsmoker','nonsmokers','nonstick','nontechnical','nonunion','nonuser','nonusers','nonverbal','nonwhite','nonwhites','nook','nooks','noon','noose','nooses','nora','nose','nosegay','nosegays','noses','nosey','nosferatu','nosh','noshes','nosier','nosiness','nosy','notation','notations','notch','notches','note','notebook','notebooks','notepaper','notes','notice','notices','notification','notifications','notifies','notify','notion','notional','notions','noun','nouns','nous','nov','novartis','novas','novice','novices','novitiates','novocain','novocaine','novosibirsk','now','nowhere','nowise','noyce','noyes','np','nth','nu','nub','nubs','nucleus','nucleuses','nukes','nun','nuncio','nuncios','nunki','nunneries','nunnery','nuns','nuptial','nuptials','nutcracker','nutcrackers','nuthatch','nuthatches','o','oar','oars','oases','oasis','oat','oates','oath','oaths','oats','ob','obelisk','obelisks','oberlin','oberon','obese','obey','obeys','obfuscate','obfuscates','obfuscation','oblate','oblation','oblations','obligate','obligates','obligation','obligations','oblige','obliges','obliterate','obliterates','obliteration','oblivion','oblivious','obliviousness','oboes','obscene','obscener','obscenities','obscure','obscures','observation','observational','observations','observer','observers','observes','obsess','obsesses','obsession','obsessions','obsessives','obstacles','obstinacy','obstinate','obtain','obtains','obverse','obverses','obviates','obvious','obviousness','ocarina','ocarinas','occam','occasion','occasional','occasions','occlusion','occlusions','occupancy','occupation','occupational','occupations','occupies','occupy','ocher','ochre','octane','octaves','octavio','odysseus','odyssey','odysseys','of','off','offal','offbeat','offbeats','offenbach','offend','offender','offenders','offends','offense','offenses','offensives','offer','offers','office','officer','officers','offices','official','officials','officiates','officious','officiousness','offs','offshore','offstage','offstages','often','oftener','oh','ohio','oho','ohs','oilier','oiliness','oink','oinks','oise','ok','okla','okra','okras','oks','ola','olaf','olav','olin','oliver','olives','olivier','omnibus','omnibuses','omnibusses','omnipotence','omnipresence','omnivore','omnivores','on','onassis','once','one','oneal','onega','oneness','onerous','ones','onion','onions','onionskin','online','ono','onrush','onrushes','onsager','onshore','onus','onuses','onyxes','oops','opal','opalescence','opals','operas','operates','operatic','operation','operational','operations','operatives','ophiuchus','opiates','opine','opines','opinion','opinions','oppose','opposes','opposite','opposites','opposition','oppress','oppresses','oppression','opprobrious','oprah','opt','optic','optical','optics','option','optional','options','opts','opus','opuses','ora','oracles','oran','orange','oranges','orate','orates','oration','orations','orb','orbison','orbs','ore','oregano','oreo','ores','orestes','ornerier','ornery','os','osborn','oscar','oscars','osceola','oshkosh','osier','osiers','osiris','osmosis','osmotic','osprey','ospreys','ossification','ossifies','ossify','ostentation','ostentatious','osteopath','osteopaths','osteopathy','other','others','otherwise','otiose','otis','ouch','ounce','ounces','outage','outages','outback','outbacks','outbound','outclass','outclasses','outhouse','outhouses','outline','outlines','outlives','outlook','outlooks','oval','ovals','ovaries','ovary','ovation','ovations','over','overages','overambitious','overbalance','overbalances','overbear','overbears','overbite','overbites','overbook','overbooks','overbore','overcautious','overcharge','overcharges','overcoat','overcoats','overcook','overcooks','overgenerous','overhear','overhears','overheat','overheats','overlain','overland','overlap','overlaps','overlay','overlays','overlies','overpass','overpasses','overpay','overpays','overplay','overplays','overpopulate','overpopulates','overpopulation','overpower','overpowers','overprice','overprices','overran','overrate','overrates','overreach','overreaches','overreaction','overreactions','overrun','overruns','overs','overseas','overseer','overseers','oversees','overshoes','overstate','overstates','overstay','overstays','overstep','oversteps','oversupplies','overtakes','overtaxes','overthrew','overtly','overuse','overuses','oviparous','ovulate','ovulates','ovulation','ow','owes','owlish','own','owner','owners','ownership','owns','oxen','p','pa','paar','pace','paces','pacheco','pacific','pacification','pacifier','pacifiers','pacifies','pacifism','pacify','pacino','pack','packages','packer','packers','packs','pagan','paganini','paganism','pagans','page','pager','pagers','pages','paginate','paginates','pagination','pahlavi','paige','pain','paine','pains','paintbrush','paintbrushes','pair','pairs','pairwise','pakistan','pakistani','pakistanis','pal','palace','palaces','palatal','palatals','palate','palates','palatial','palau','palaver','palavers','paler','palermo','pales','palestine','palikir','palimony','palliates','palliation','palliatives','palpate','palpates','palpation','palpitate','palpitates','palpitation','palpitations','pals','palsies','palsy','pam','pamirs','pampas','pamper','pampers','pan','panaceas','panache','panamas','panasonic','pancakes','pancreas','pancreases','pancreatic','pandas','pander','panderer','panderers','panders','pandora','pane','panes','panic','panickier','panicky','panics','panier','paniers','pannier','panniers','panoplies','pans','pansies','pansy','panther','panthers','panties','pap','papa','papacies','papacy','papal','papas','papaw','papaws','papayas','paper','paperback','paperbacks','paperboy','paperboys','papers','papery','papoose','papooses','paps','papyrus','papyruses','par','parabola','parabolas','parabolic','parachute','parachutes','paraffin','paragon','paragons','paragraph','paragraphs','parallaxes','paralyses','paralysis','paralytic','paralytics','paramaribo','paraphrase','paraphrases','paraprofessional','paraprofessionals','parasite','parasites','parasitic','parch','parcheesi','parches','pare','parentage','parentheses','parenthesis','pares','paris','parish','parishes','parishioner','parishioners','park','parkas','parker','parkinson','parks','parlance','parlay','parlays','parnassus','parochial','parochialism','parody','pars','parse','parsec','parsecs','parser','parses','parsi','parsifal','parsimonious','parsimony','parsnip','parsnips','parson','parsonage','parsonages','parsons','partaker','partakers','partakes','partial','partials','participate','participates','participation','participial','particles','particulate','particulates','parties','partition','partitions','partly','pas','pascal','paschal','pashas','pass','passages','passbook','passbooks','passer','passerby','passersby','passes','passion','passionate','passions','passives','passover','passovers','pasta','pastas','paste','pastern','pasterns','pastes','pastiche','pastiches','pastier','pasties','pat','patch','patches','patchier','patchiness','patchy','pate','patently','paternal','paternalism','paternalistic','paterson','pates','path','pathetic','pathogen','pathogenic','pathogens','pathos','paths','patina','patinas','patine','patio','patios','patna','patois','pats','patsies','patsy','pattern','patterns','patti','patties','paula','pauli','pauline','paunch','paunches','paunchier','paunchy','pauper','pauperism','paupers','pause','pauses','paves','pavilion','pavilions','paw','pawn','pawnbroker','pawnbrokers','pawns','pawnshop','pawnshops','pawpaw','pawpaws','paws','pay','paycheck','paychecks','payer','payers','payne','payoff','payoffs','paypal','pays','pb','pd','per','perambulate','perambulates','percales','perceives','percentage','percentages','perception','perceptions','perceptual','perch','percheron','perches','percival','percolate','percolates','percolation','percussion','percy','perfection','perfectionism','perfections','perfectly','perfidy','perforate','perforates','perforation','perforations','pericles','perigees','perihelion','perihelions','peripatetic','peripatetics','peripheral','peripherals','peripheries','periphery','periphrases','periphrasis','periscopes','perish','perishes','perk','perkier','perkiness','perkins','perks','perky','pernicious','peron','peroration','perorations','persecute','persecutes','persecution','persecutions','persephone','persepolis','perseus','perseveres','persiflage','persistence','persistently','person','persona','personage','personages','personal','personalities','personals','personification','personifications','personifies','personify','persons','perspicacious','perspicuous','perspiration','perspire','perspires','persuasion','persuasions','pertain','pertains','perth','pertinacious','pertinence','pertly','peru','perusal','perusals','peruse','peruses','perverse','perverseness','perversion','perversions','peskier','pesky','peso','pesos','pestles','ph','phalli','phallic','phallus','phalluses','pharisees','pharyngeal','pharynges','pharynxes','phases','pheromone','pheromones','phial','phials','philander','philanderer','philanderers','philanders','philatelic','philip','philippic','philippics','philippine','philippines','philips','philistine','philistines','phipps','phish','phisher','phishers','phobias','phobic','phobics','phobos','phone','phones','phonetic','phonetics','phoney','phoneys','phonic','phonics','phonier','phonies','phoniness','phony','phosphates','phosphorescence','phosphorus','phrasal','phrase','phrases','phyla','physic','physical','physicals','physics','pi','pica','picasso','picayune','pick','picker','pickers','pickier','picks','pickup','pickups','pickwick','picky','picnic','picnicker','picnickers','picnics','pier','pierce','pierces','pierre','piers','pies','pigeon','pigeons','piker','pikers','pikes','pilaf','pilaff','pilaffs','pilafs','pilate','pilates','pilau','pilaus','pilaw','pilaws','pin','pinafore','pinafores','pinatubo','pincer','pincers','pinch','pinches','pincus','pincushion','pincushions','pindar','pine','pines','pinfeather','pinfeathers','pinion','pinions','pink','pinker','pinkies','pinkish','pinks','pinky','pinnacles','pinnate','pinocchio','pinprick','pinpricks','pins','pinup','pinups','pioneer','pioneers','pious','pip','piper','pipers','pipes','pippin','pippins','pips','piracy','piraeus','piranhas','pirate','pirates','piratical','pis','pisces','piss','pissaro','pisses','pistachio','pistachios','pita','pitch','pitcher','pitchers','pitches','piteous','pith','pithier','pithy','pities','pius','pkwy','placate','placates','placation','place','placebo','placebos','placenta','placentas','placer','placers','places','plaice','plain','plainclothes','plainer','plainness','plains','plaintiff','plaintiffs','plan','planar','planck','plane','planes','plank','planks','planner','planners','plans','plantain','plantains','plantation','plantations','plastic','plasticine','plastics','plate','plateau','plateaus','platen','platens','plates','plath','play','playback','playbacks','playboy','playboys','player','players','playhouse','playhouses','playoff','playoffs','plays','playstation','pliers','plies','plinth','plinths','pliny','pliocene','pluck','pluckier','pluckiness','plucks','plucky','plunder','plunderer','plunderers','plunders','plunge','plunges','plunk','plunks','pluralism','pluralistic','pluralities','plus','pluses','plush','plusher','plushier','plushy','plusses','pm','po','poach','poacher','poachers','poaches','pocahontas','pock','pocks','pocono','poconos','poesy','poi','pointier','pointless','pointlessness','poise','poises','poison','poisoner','poisoners','poisonous','poisons','poisson','poitier','poker','pokers','pokes','pokier','poky','poland','polanski','police','polices','policies','policy','polio','polios','polish','polisher','polishers','polishes','polite','politeness','politesse','politic','political','politico','politicoes','politicos','politics','polities','pomona','ponce','poncho','ponchos','pond','ponder','ponderous','ponders','ponds','pone','pones','ponies','pontiac','pontiff','pontiffs','pontifical','pontificate','pontificates','pony','pooch','pooches','pooh','poohs','poona','poop','poops','poorhouse','poorhouses','pop','popcorn','popes','poplin','popover','popovers','poppa','poppas','popper','poppies','poppins','poppy','poppycock','pops','populace','populaces','populate','populates','population','populations','populism','pore','pores','porfirio','porn','porno','pose','poser','posers','poses','posh','posher','posies','position','positional','positions','positives','positivism','posse','posses','possess','possesses','possession','possessions','possessives','possibilities','postage','posthaste','posthumous','postmark','postmarks','posy','potash','potency','potentate','potentates','potential','potentialities','potentials','pothook','pothooks','potion','potions','potluck','potlucks','pouch','pouches','pounce','pounces','pound','pounds','poussin','power','powerboat','powerboats','powerhouse','powerhouses','powers','powwow','powwows','poxes','practical','practicalities','practicals','practice','practices','practise','practises','practitioner','practitioners','prairies','praise','praises','praline','pralines','pram','prance','prancer','prancers','prances','prank','pranks','prate','prates','prattles','prawn','prawns','pray','prayer','prayers','prays','preach','preacher','preachers','preaches','preachier','preachy','prearrange','prearranges','precarious','precaution','precautionary','precautions','precept','precepts','precious','preciousness','precipice','precipices','precipitate','precipitates','precipitation','precipitations','precise','preciseness','preciser','precises','precision','preclusion','precocious','precociousness','preconceives','preconception','preconceptions','precondition','preconditions','prefaces','prefer','preference','preferences','preferential','prefers','prefixes','preheat','preheats','prelate','prelates','premonition','premonitions','prenatal','prentice','preoccupation','preoccupations','preoccupies','preoccupy','prep','prepackages','preparation','preparations','prepare','prepares','prepay','prepays','preponderates','preposition','prepositional','prepositions','prepossess','prepossesses','preppier','preppies','preppy','preps','prerogatives','pres','presages','prescribe','prescribes','prescription','prescriptions','presence','presences','presentation','presentations','presently','preservation','preservatives','preserver','preservers','preserves','preshrank','preshrunk','press','presses','pressure','pressures','prestige','presuppose','presupposes','presupposition','presuppositions','pretence','pretences','pretend','pretender','pretenders','pretends','pretense','pretenses','pretension','pretensions','pretentious','pretentiousness','prevaricate','prevaricates','prevarication','prevarications','previous','prevues','prewar','prey','preys','priam','price','prices','pricey','pricier','prick','pricklier','pricks','pricy','pries','priestess','priestesses','priestlier','priestly','primness','prince','princelier','princes','princess','princesses','principal','principalities','principals','prioress','prioresses','prism','prismatic','prisms','prison','prisoner','prisoners','prisons','prissier','prissiness','prissy','pristine','prius','privacy','privater','privates','privation','privations','privier','privies','privy','pro','probabilistic','probabilities','probate','probates','probation','probationary','probationer','probationers','probe','probes','proboscis','proboscises','process','processes','procession','processional','processionals','processions','proclamation','proclamations','proclivities','procrastinate','procrastinates','procrastination','procreates','procreation','procrustes','procure','procures','procyon','prof','profess','professes','profession','professional','professionalism','professionals','professions','proffer','proffers','profiteer','profiteers','profligacy','profligate','profligates','profound','profounder','profs','profundities','profuse','profusion','profusions','progeny','prohibition','prohibitions','proliferate','proliferates','proliferation','prolific','promo','promos','promote','promotes','promotion','promotional','promotions','prone','proneness','pronoun','pronounce','pronounces','pronouns','pronunciation','pronunciations','proof','proofs','prop','propagate','propagates','propagation','propane','proper','properer','properties','prophecies','prophecy','prophesies','prophesy','prophetess','prophetesses','prophetic','prophylactic','prophylactics','propitiates','propitiation','propitious','proposal','proposals','propose','proposer','proposes','proposition','propositional','propositions','propound','propounds','props','prorate','prorates','pros','proscribe','proscribes','proscription','proscriptions','prose','prosecute','prosecutes','prosecution','prosecutions','proserpine','prosier','prosody','prosper','prosperous','prospers','prostate','prostates','prostheses','prosthesis','prosy','protection','protections','protein','proteins','protestantism','protestantisms','protestation','protestations','proteus','proverb','proverbial','proverbs','proves','province','provinces','provincial','provincialism','provincials','provision','provisional','provisions','proviso','provisoes','provisos','provo','provocation','provocations','provokes','prow','prowess','prows','prune','prunes','pry','psych','psyche','psyches','psychic','psychical','psychics','psycho','psychogenic','psychokinesis','psychopath','psychopathic','psychopaths','psychos','psychoses','psychosis','psychotic','psychotics','psychs','pt','ptah','pu','pub','pubescence','pubic','public','publican','publicans','publication','publications','publicly','publish','publisher','publishers','publishes','pubs','puccini','puck','pucker','puckers','puckish','pucks','puff','puffer','puffier','puffin','puffiness','puffins','puffs','puffy','pukes','pulaski','pun','punch','punches','punchier','punchline','punchy','punctilious','pungency','pungently','punic','punier','punish','punishes','punk','punker','punks','puns','puny','pup','pupa','pupal','pupas','puppies','puppy','pups','purana','purblind','pure','purees','pureness','purus','pus','pusey','push','pusher','pushers','pushes','pushier','pushiness','pushkin','pushover','pushovers','pushup','pushups','pushy','puss','pusses','pussier','pussies','pussy','pussycat','pussycats','putin','pynchon','pyre','pyrenees','pyres','pyrexes','pythagoras','pythias','python','pythons','pyxes','ra','rabat','rabbi','rabbinate','rabbinical','rabbis','rabelais','rabies','rabin','raccoon','raccoons','race','racer','racers','races','racial','racier','racine','raciness','racism','rack','racks','racoon','racoons','racy','raffish','raga','ragas','rage','rages','rain','rainbow','rainbows','raincoat','raincoats','rainier','rains','rainwater','rainy','raise','raises','raisin','raisins','rakes','rakish','rakishness','ramon','ramona','ramos','ran','ranch','rancher','ranchers','ranches','rand','randal','randi','randier','randomness','randy','range','ranges','rank','ranker','rankin','rankine','rankness','ranks','ransack','ransacks','rap','rapacious','rapaciousness','rapes','rapier','rapiers','rapine','rapper','rappers','raps','rapscallion','rapscallions','rapt','rapture','raptures','rare','rarefies','rarefy','rareness','rares','rasalgethi','rascal','rascals','rash','rasher','rashers','rashes','rashness','rasmussen','rasp','raspier','rasps','rasputin','raspy','rastaban','rate','rates','rather','ratification','ratifies','ratify','ratio','ration','rational','rationales','rationalism','rationalistic','rationals','rations','ratios','ratliff','raucous','raucousness','raunchier','raunchiness','raunchy','ravages','raves','ravine','ravines','ravioli','raviolis','ravish','ravishes','raw','rawalpindi','rawer','rawness','ray','rayban','rayburn','raymond','rayon','rays','rb','re','reach','reaches','reaction','reactionaries','reactionary','reactions','reactivates','reactivation','real','realer','reales','realism','realistic','realities','reals','ream','reamer','reamers','reams','rear','rearrange','rearranges','rears','reason','reasoner','reasons','reassess','reassesses','reassurance','reassurances','reassure','reassures','reba','rebate','rebates','rebecca','rebind','rebinds','rebirth','rebirths','reborn','rebound','rebounds','rebuff','rebuffs','rebukes','rebus','rebuses','recantation','recantations','recap','recaps','recapture','recaptures','receipt','receipts','receiver','receivers','receivership','receives','recently','receptacles','reception','receptions','recess','recesses','recession','recessional','recessionals','recessions','recessives','recharge','recharges','recheck','rechecks','recife','recipes','reciprocal','reciprocals','reciprocate','reciprocates','reciprocation','recitation','recitations','recitatives','recite','recites','reckon','reckons','reclamation','reclassifies','reclassify','recline','recliner','recliners','reclines','recluse','recluses','reconciliation','reconciliations','recondite','recondition','reconditions','recopies','recopy','recoup','recoups','recover','recoveries','recovers','recovery','recreates','recreation','recreational','recreations','recta','rectification','rectifications','rectifier','rectifiers','rectifies','rectify','rectilinear','recuperates','recuperation','recycles','reestablish','reestablishes','ref','refashion','refashions','refer','referees','reference','references','referential','refers','refinance','refinances','refine','refiner','refineries','refiners','refinery','refines','refinish','refinishes','refocus','refocuses','refocusses','reforestation','refraction','refrain','refrains','refresh','refresher','refreshers','refreshes','refrigerate','refrigerates','refrigeration','refs','refuge','refugees','refuges','refund','refunds','refurbish','refurbishes','refurnish','refurnishes','refusal','refusals','refuse','refuses','refutation','refutations','refute','refutes','regain','regains','regencies','regency','regenerate','regenerates','regeneration','rehash','rehashes','rehearsal','rehearsals','rehearse','rehearses','reheat','reheats','rehire','rehires','reich','rein','reincarnate','reincarnates','reincarnation','reincarnations','reins','reinstate','reinstates','reis','reissues','reiterate','reiterates','reiteration','reiterations','relapse','relapses','relate','relates','relation','relational','relations','relationship','relationships','relatives','relativistic','relaxes','relay','relays','relic','relics','relies','relish','relishes','relives','reluctance','reluctantly','remote','remoteness','remotes','removal','removals','remover','removers','removes','rena','renal','renames','renascence','renascences','rend','render','renders','rendition','renditions','rends','rene','renege','reneges','renew','renewal','renewals','renews','reno','renoir','renounce','renounces','renovates','renovation','renovations','renown','renunciation','renunciations','reoccupies','reoccupy','rep','repackages','repair','repairs','reparation','reparations','repay','repays','repercussion','repercussions','rephrase','rephrases','replace','replaces','replay','replays','replica','replicas','replicate','replicates','replication','replications','replies','repose','reposes','repossess','repossesses','repossession','repossessions','reprehend','reprehends','representation','representational','representations','representatives','repress','represses','repression','repressions','reprisal','reprisals','reprise','reprises','reproach','reproaches','reprobate','reprobates','reprocess','reprocesses','reproof','reproofs','reproves','reps','republic','republican','republicanism','republicans','republics','republish','republishes','reputation','reputations','repute','reputes','reran','rerun','reruns','resales','rescind','rescinds','rescission','rescuer','rescuers','rescues','research','researcher','researchers','researches','resend','reservation','reservations','reserves','reservoir','reservoirs','resin','resinous','resins','resistance','resistances','resolute','resoluteness','resolution','resolutions','resonance','resonances','resonantly','resonate','resonates','resound','resounds','respiration','respire','respires','respite','respites','respond','responds','response','responses','responsibilities','restate','restates','restless','restlessness','resupplies','resurfaces','resuscitate','resuscitates','resuscitation','retain','retainer','retainers','retains','retakes','retaliates','retaliation','retaliations','retch','retches','retention','rethink','rethinks','reticence','retina','retinal','retinas','retinues','retire','retirees','retires','reuben','reunification','reunifies','reunify','reunion','reunions','reunite','reunites','reuse','reuses','reuther','rev','revaluation','revaluations','revalues','revamp','revamps','reverberate','reverberates','reverberation','reverberations','reveres','reveries','reversal','reversals','reverse','reverses','reversion','revery','revise','revises','revision','revisions','revival','revivals','revives','revivification','revivifies','revivify','revocation','revocations','revokes','revolution','revolutionaries','revolutionary','revolutions','revs','revues','rewind','rewinds','rewire','rewires','rewound','reyes','reyna','rh','rhine','rhineland','rhino','rhinoceri','rhinoceros','rhinoceroses','rhinos','rho','rhone','rhubarb','rhubarbs','rn','ru','rub','rubaiyat','rubber','rubberier','rubberneck','rubbernecks','rubbers','rubbery','rubbish','rubbishes','rubbishy','rube','ruben','rubens','rubes','rubicon','rubicund','rubier','rubies','rubik','rubin','rubinstein','rubric','rubrics','rubs','ruby','ruchbah','rucksack','rucksacks','ruckus','ruckuses','rudy','rues','ruff','ruffs','rufus','ruin','ruination','ruinous','ruins','run','runaround','runarounds','rundown','rundowns','rune','runes','runner','runners','runnier','runny','runoff','runoffs','runs','runyon','rupture','ruptures','ruse','ruses','rush','rushes','rushmore','rusk','ruskin','rusks','russ','russo','rustic','rustics','rustier','rustiness','rustler','rustlers','rustles','rutabaga','rutabagas','rutan','ruth','s','sac','saccharin','saccharine','sacco','sachs','sack','sackcloth','sacks','sacs','sag','sagacious','sagas','sager','sages','saginaw','sago','sags','saguaro','saguaros','sal','salacious','salaciousness','salami','salamis','salaries','salary','salas','salerno','sales','salesclerk','salesclerks','salesperson','salespersons','salinas','saline','salines','salish','salivary','salivates','salivation','salk','sallies','salmon','salmons','salon','salons','saloon','saloons','salsas','saltier','saltine','saltines','saltiness','salubrious','salutation','salutations','salute','salutes','salvages','salvation','salvatore','salver','salvers','salves','salvo','salvoes','salvos','sam','samar','samaritan','samaritans','samba','sambas','sames','samovar','samovars','sampan','sampans','sampson','samson','samsonite','samurai','sarasota','saratov','sarcasm','sarcasms','sarcastic','sarcophagi','sarcophagus','sarcophaguses','sargasso','sari','saris','sarnoff','sars','sash','sashes','saskatoon','sass','sasses','sassier','sassoon','sassy','sat','sates','satiates','satin','satiny','satire','satires','satirical','satisfaction','satisfactions','satisfies','satisfy','satrap','satraps','saturate','saturates','saturation','saturn','saturnine','sauce','saucepan','saucepans','saucer','saucers','sauces','saucier','sauciness','saucy','sauna','saunas','saunders','saundra','sausages','saussure','sb','sc','scab','scabbier','scabby','scabies','scabrous','scabs','scalar','scalars','scalawag','scalawags','scales','scalier','scallion','scallions','scalp','scalper','scalpers','scalps','scaly','scam','scamp','scamper','scampers','scampi','scampies','scamps','scams','scan','scandal','scandalous','scandals','scanner','scanners','scans','scansion','scantier','scanties','scantiness','scapula','scapulas','scar','scarab','scarabs','scaramouch','scarce','scarceness','scarcer','scare','scarecrow','scarecrows','scares','scarf','scarfs','scarier','scarifies','scarify','scars','scarves','scary','scat','scats','scatterbrain','scatterbrains','scenario','scenarios','scene','scenery','scenes','scenic','scepter','scepters','scheat','schenectady','schick','schism','schismatic','schismatics','schisms','schnapps','scholastic','schooner','schooners','schtick','schticks','schuss','schusses','schwas','schwinn','sciatic','sciatica','scion','scions','scipio','sclerosis','sclerotic','scoff','scofflaw','scofflaws','scoffs','scoliosis','sconce','sconces','scone','scones','scoop','scoops','scopes','score','scores','scorn','scorns','scotch','scotches','scotchs','scow','scows','scram','scrams','scrap','scrapbook','scrapbooks','scraper','scrapers','scrapes','scrappier','scrappy','scraps','scratch','scratches','scratchier','scratchiness','scratchy','scrawnier','scrawny','scream','screams','screw','screwier','screws','screwy','scribe','scribes','scribner','scrip','scrips','script','scripts','scripture','scriptures','scrofula','scrooge','scrooges','scrota','scrounge','scrounges','scrub','scrubber','scrubbers','scrubbier','scrubby','scrubs','scruff','scruffier','scruffs','scruffy','scrunch','scrunches','scrutiny','scuba','scubas','scuff','scuffs','scupper','scuppers','scurf','scurfier','scurfy','scythes','se','seal','sealer','sealers','seals','sealskin','seam','seamier','seams','seamy','sear','search','searcher','searchers','searches','sears','seas','seascapes','seashore','seashores','seasick','seasickness','season','seasonal','seasons','seat','seats','sebaceous','sec','secession','seclusion','seconal','second','secondaries','secondary','seconds','secrecy','secrete','secretes','secretion','secretions','secretly','secs','section','sectional','sectionalism','sectionals','sections','secure','secures','seer','seers','seersucker','sees','sega','seiko','seine','seismic','sen','senate','senates','send','sender','senders','sends','seneca','senecas','senna','sennacherib','sensation','sensational','sensationalism','sensations','sense','senses','sensibilities','sensitives','sensitivities','sensual','sensuous','sensuousness','sentence','sentences','sententious','sepal','sepals','separate','separates','separation','separations','separatism','sepoy','sepsis','sept','septa','septic','sera','seraglio','seraglios','serapes','seraph','seraphic','seraphs','serb','serbs','sere','serena','serene','sereneness','serener','serengeti','serer','serf','serfs','serge','sergei','serial','serials','series','serious','seriousness','sermon','sermons','serous','serra','serrano','server','servers','serves','service','services','servo','servos','sesames','session','sessions','setback','setbacks','seth','seuss','sever','several','severer','severn','severs','severus','sew','sewer','sewers','sewn','sews','sexes','sh','shack','shacks','shag','shags','sham','shames','shampoo','shampoos','shams','shares','shari','sharif','shark','sharks','sharkskin','sharon','sharp','sharper','sharpers','sharpness','sharps','shasta','shat','shaula','shaun','shauna','she','shear','shearer','shearers','shears','sheath','sheathe','sheathes','sheaths','sheba','shebeli','sheer','sheerer','sheers','sheik','sheikh','sheikhs','sheiks','sheila','shenanigan','shenanigans','sheratan','sheraton','sheri','sheriff','sheriffs','sherpa','shes','shevat','shies','shiftier','shiftiness','shiftless','shiftlessness','shikoku','shin','shinbone','shinbones','shine','shiner','shiners','shines','shinier','shininess','shinnies','shinny','shins','shiny','ship','shipmates','shipper','shippers','ships','shipwreck','shipwrecks','shire','shires','shirk','shirker','shirkers','shirks','shiver','shivers','shivery','shoal','shoals','shock','shocker','shockers','shockproof','shocks','shoes','shoeshine','shoeshines','shone','shoo','shook','shoon','shoos','shop','shopper','shoppers','shops','shoptalk','shopworn','shore','shoreline','shorelines','shores','shorn','shoshone','shostakovitch','shoves','show','showboat','showboats','showcase','showcases','shower','showers','showery','showier','showiness','shown','showoff','showoffs','showplace','showplaces','shows','showy','shrank','shrek','shrew','shrewish','shrews','shrub','shrubberies','shrubbery','shrubbier','shrubby','shrubs','shrunk','shtick','shticks','shtik','shtiks','shuck','shucks','shuckses','shula','shun','shuns','shush','shushes','shy','shyer','shyness','si','siam','sibelius','sic','sick','sicker','sicklier','sickness','sicknesses','sicks','sics','sierpinski','sierra','sierras','siesta','siestas','sikh','sikhism','sikhs','silage','silas','silica','silicate','silicates','siliceous','silicious','silicon','silicone','silicosis','simon','simone','sin','sinai','sinatra','since','sincere','sincerer','sinclair','sindhi','sine','sinecure','sinecures','sinew','sinews','sinewy','singapore','singe','singes','sink','sinker','sinkers','sinks','sinner','sinners','sins','sinuous','sinus','sinuses','sinusitis','sip','siphon','siphons','sips','sir','sire','siren','sirens','sires','sirius','sirocco','siroccos','sirs','sirup','sirups','sis','sisal','sises','sissier','sissies','sissy','sistine','sisyphus','site','sites','sixes','skater','skaters','skates','ski','skier','skiers','skies','skiff','skiffs','skin','skinner','skinnier','skinniness','skinny','skins','skip','skipper','skippers','skippy','skips','skis','skivvies','skivvy','skunk','skunks','sky','skycap','skycaps','skylab','skyline','skylines','skyscraper','skyscrapers','slab','slabs','slack','slacker','slackers','slackness','slacks','slain','slakes','slander','slanderer','slanderers','slanderous','slanders','slap','slapdash','slaps','slapstick','slash','slashes','slate','slates','slather','slathers','slav','slaver','slavers','slavery','slaves','slavic','slavish','slavonic','slavs','slaw','slay','slayer','slayers','slays','slice','slicer','slicers','slices','slick','slicker','slickers','slickness','slicks','slier','slimness','slink','slinkier','slinks','slinky','slip','slipcover','slipcovers','slippage','slippages','slipper','slipperier','slipperiness','slippers','slippery','slips','slither','slithers','slithery','sliver','slivers','slues','sluice','sluices','slunk','slush','slushier','slushy','sm','smack','smacker','smackers','smacks','smallish','smarten','smartens','smartly','smash','smashes','smirch','smirches','smirk','smirks','smirnoff','smite','smites','smith','smithies','smiths','smithson','smithy','smock','smocks','smoker','smokers','smokes','smokestack','smokestacks','smokier','smokiness','smoky','smooch','smooches','smooth','smoother','smoothes','smoothness','smooths','smote','smother','smothers','sn','snack','snacks','snafu','snafus','snag','snags','snakes','snakier','snaky','snap','snapper','snappers','snappier','snappish','snappy','snaps','snare','snares','snatch','snatches','sneer','sneers','snicker','snickers','sniff','sniffs','snip','sniper','snipers','snipes','snippier','snippy','snips','snitch','snitches','snob','snobbery','snobbier','snobbish','snobbishness','snobby','snobs','snooker','snoop','snooper','snoopers','snoopier','snoops','snoopy','snootier','snootiness','snore','snores','snow','snowbound','snowflakes','snowier','snows','snowshoes','snowy','snub','snubs','snuck','snuff','snuffboxes','snuffer','snuffers','snuffs','so','soar','soars','sob','sober','soberer','soberness','sobers','sobs','soccer','social','socialism','socialistic','socialite','socialites','socials','sociopath','sociopaths','sock','socks','socrates','socratic','sofas','soften','softener','softeners','softens','softies','softly','soho','solace','solaces','soli','solicitation','solicitations','solis','solitaire','solitaires','solution','solutions','somnambulism','son','sonar','sonars','sonata','sonatas','sondra','sonic','sonnies','sonny','sons','sony','soon','sooner','sooth','soothes','sootier','sop','sophism','sophisticate','sophisticates','sophistication','sophocles','sophomore','sophomores','soppier','soppy','soprano','sopranos','sops','sopwith','sorbonne','sore','soreness','sores','sos','sound','sounder','soundness','soundproof','soundproofs','sounds','soup','soupier','soups','soupy','sourness','souse','souses','south','southampton','southbound','southerlies','southern','southerner','southerners','southerns','southpaw','southpaws','souths','southwestern','sow','sower','sowers','sown','sows','soy','spa','space','spaces','spaceship','spaceships','spacewalk','spacewalks','spacey','spacial','spacier','spacious','spaciousness','spacy','spahn','spain','spam','span','spanish','spank','spanks','spanner','spanners','spans','spar','spare','spareness','sparer','spareribs','spares','spark','sparks','spars','sparse','sparseness','sparser','sparta','spartacus','spartan','spartans','spas','spasm','spasms','spastic','spastics','spat','spate','spates','spatial','spats','spatula','spatulas','spawn','spawns','spay','spays','sphere','spheres','spherical','sphinges','sphinxes','spica','spice','spices','spicier','spiciness','spicy','spies','spiffier','spiffy','spikes','spikier','spiky','spin','spinach','spinal','spinals','spindlier','spine','spines','spinier','spinnaker','spinnakers','spinner','spinners','spinoff','spinoffs','spins','spiny','spiral','spirals','spire','spireas','spires','spiritless','spiro','spite','spites','splash','splashes','splashier','splashy','splay','splays','splice','splicer','splicers','splices','spline','splines','spock','spoilage','spokes','spokesperson','spokespersons','spoliation','sponge','sponges','spontaneous','spoof','spoofs','spook','spookier','spooks','spooky','spoon','spoonerism','spoonerisms','spoons','spore','spores','spotless','spotlessness','spouse','spouses','sprain','sprains','sprat','sprats','spray','sprayer','sprayers','sprays','sprees','sprier','sprite','sprites','spruce','sprucer','spruces','spry','spryer','spryness','spumone','spumoni','spun','spunk','spunkier','spunky','spurn','spurns','spy','sr','srinagar','stab','stabs','staccati','staccato','staccatos','stacey','staci','stack','stacks','stacy','staff','staffer','staffers','staffs','stage','stagecoach','stagecoaches','stages','stain','stains','stair','staircase','staircases','stairs','stakes','stalactite','stalactites','stalin','stan','stance','stances','stanch','stancher','stanches','stanchion','stanchions','stand','standby','standbys','standish','standoff','standoffish','standoffs','stands','stanislavsky','stank','staph','starbucks','stare','stares','starfish','starfishes','stash','stashes','state','statehouse','statehouses','statelier','stateliness','staten','states','static','station','stationary','stationer','stationers','stationery','stations','statistic','statistical','statistics','staubach','staunch','stauncher','staunches','staves','stay','stays','steal','steals','stealth','stealthier','stealthy','steam','steamboat','steamboats','steamer','steamers','steamier','steams','steamship','steamships','steamy','steer','steers','stein','steinbeck','steiner','steins','stench','stenches','stendhal','step','stepbrother','stepbrothers','stepfather','stepfathers','stephen','stephens','stephenson','stepmother','stepmothers','steppes','steps','stepson','stepsons','stereo','stereophonic','stereos','stereoscopes','stern','sterner','sternness','sterno','sterns','stethoscopes','steuben','stew','stews','stick','sticker','stickers','stickier','stickies','stickiness','stickpin','stickpins','sticks','stickup','stickups','sticky','sties','stiff','stiffen','stiffener','stiffeners','stiffens','stiffer','stiffness','stiffs','stine','stink','stinker','stinkers','stinks','stipulate','stipulates','stipulation','stipulations','stitch','stitches','sub','subaru','subclass','subconscious','subcutaneous','suborn','subornation','suborns','subroutine','subroutines','subs','subscribe','subscriber','subscribers','subscribes','subscript','subscription','subscriptions','subscripts','subsection','subsections','subsidy','subsistence','subsonic','subspace','substance','substances','substantial','substantiates','substantiation','substantiations','substantives','substation','substations','subterfuge','subterfuges','subtitles','subtler','subtly','suburb','suburbs','subversion','subversives','success','successes','succession','successions','succinctly','succotash','such','suck','sucker','suckers','sucks','sucre','sucrose','suction','suctions','sues','suffer','sufferance','sufferer','sufferers','suffers','suffice','suffices','suffixes','suffocate','suffocates','suffocation','suffragan','suffragans','suffrage','suffuse','suffuses','suffusion','sufi','sufism','sui','suitcases','suite','suites','sukarno','sukkoth','sukkoths','sulawesi','sumner','sumo','sumter','sun','sunbathe','sunbather','sunbathers','sunbathes','sunbeam','sunbeams','sunburn','sunburns','sundas','sunder','sunders','sundial','sundials','sundown','sundowns','sunfish','sunfishes','sunk','sunni','sunnier','sunny','suns','sunshine','suntan','suntans','sunup','sup','super','superb','superber','supercharge','supercharges','supercilious','superficial','superfluous','superfund','superintend','superintends','superlatives','supernovas','superpower','superpowers','supers','superscript','superscripts','supersonic','superstition','superstitions','superstitious','supertanker','supertankers','supervise','supervises','supervision','supervisions','supine','supper','suppers','supplicate','supplicates','supplication','supplications','supplier','suppliers','supplies','suppose','supposes','supposition','suppositions','suppress','suppresses','suppression','suppurate','suppurates','suppuration','supranational','sups','sure','surefire','sureness','sureties','surf','surfaces','surfer','surfers','surfs','surnames','sushi','suspicion','suspicions','suspicious','sustain','sustains','sustenance','sutherland','swag','swags','swam','swami','swamis','swamp','swampier','swamps','swampy','swarthier','swarthy','swash','swashes','swastikas','swat','swatch','swatches','swath','swathe','swathes','swaths','swats','swerves','swiftly','swine','swines','swinish','swipes','swirlier','swish','swisher','swishes','swiss','swisses','switch','switchback','switchbacks','switcher','switches','swoon','swoons','swoop','swoops','swop','swops','swore','sworn','sybarite','sybarites','sybaritic','sycamore','sycamores','sykes','synapse','synapses','sync','synch','synches','synchs','syncopate','syncopates','syncopation','syncs','syndicate','syndicates','syndication','synge','synonymous','synopses','synopsis','syntactic','syntactical','syntheses','synthesis','syphilis','syphilitic','syphilitics','syphon','syphons','syracuse','syrup','syrups','syrupy','ta','tab','tabasco','tabbies','tabby','tabernacles','taboo','taboos','tabs','tabu','tabulate','tabulates','tabulation','tabus','tacitly','tack','tackier','tackiness','tacks','tacky','taco','tacos','tactic','tactical','tactics','tactless','tactlessness','taffeta','taffies','taffy','tahiti','taine','taker','takers','takes','taliban','taliesin','tan','tanager','tanagers','taney','tangential','tank','tanker','tankers','tanks','tanner','tanneries','tanners','tannery','tannin','tans','tansy','tantalus','tao','taoism','taoisms','tap','taper','tapers','tapes','tapioca','tapir','tapirs','taps','tara','tarantino','tare','tares','tarnish','tarnishes','task','tasks','tass','taste','tastes','tastier','tastiness','tate','taurus','tauruses','tautly','tavern','taverns','tawney','tawnier','tawny','taxes','tb','tbilisi','tc','teach','teacher','teachers','teaches','teacup','teacups','teal','teals','team','teams','tear','teargas','teargases','teargasses','tearier','tears','teary','teas','teaser','teasers','teases','teaspoon','teaspoons','teat','teats','technical','technicalities','technocracy','technocrat','technocrats','techs','tees','teheran','tehran','ten','tenacious','tenancies','tenancy','tend','tender','tenderer','tenderness','tenders','tendinitis','tendon','tendonitis','tendons','tends','tennis','tennyson','tenon','tenons','tenpin','tenpins','tens','tense','tenseness','tenser','tenses','tension','tensions','tentacles','tenth','tenths','tenuous','tenuousness','tenure','tenures','terabyte','terabytes','terence','tern','terns','tesla','tess','testate','testates','testes','testicles','testier','testifies','testify','testimonial','testimonials','testimonies','testimony','testiness','testis','tetanus','tether','tethers','tethys','th','thalami','thalamus','thales','thames','thar','tharp','that','thatch','thatcher','thatches','thereupon','thermodynamic','thermodynamics','thermoplastic','thermoplastics','thermos','thermoses','thermostatic','theron','thesaurus','thesauruses','theses','theseus','thesis','thespis','thessaly','thiamin','thiamine','thick','thicker','thickness','thicknesses','thieu','thin','thine','think','thinker','thinkers','thinks','thinner','thinners','thinness','thins','thirstier','thirties','this','thistles','thither','tho','thoraces','thoracic','thoraxes','thoreau','thorn','thornier','thorns','thorny','those','thoth','thou','thous','thrace','thrash','thrasher','thrashers','thrashes','threat','threats','threes','threescore','threescores','threnody','thresh','thresher','threshers','threshes','threw','thru','thrush','thrushes','thunder','thunderclap','thunderclaps','thunderous','thunders','thundershower','thundershowers','thurber','thus','thutmose','thwack','thwacks','thy','ti','tiaras','tiber','tiberius','tibetan','tibetans','tibias','tic','tick','ticker','tickers','ticklish','ticks','ticonderoga','tics','tidy','tier','tiers','ties','tiff','tiffs','tikes','timon','timothy','tin','tina','tinder','tinderboxes','tine','tines','tinge','tinges','tinier','tinker','tinkers','tinnier','tinny','tins','tinsmith','tinsmiths','tintinnabulation','tintinnabulations','tiny','tip','tipi','tipis','tipper','tipperary','tippers','tips','tipsier','tipsy','tiptoes','tiptop','tiptops','tirana','tire','tires','tiresias','tissues','titan','titanic','titans','tithes','titicaca','titles','titmice','titmouse','tl','tlaloc','tm','u','ubs','ucayali','ucla','uh','ukraine','ululate','ululates','unanimous','unawares','unbar','unbars','unbeknown','unbend','unbends','unbind','unbinds','unborn','unbound','uncannier','uncanny','unceremonious','uncertain','uncertainties','unclasp','unclasps','uncles','unclothes','unconcern','unconditional','unconscious','unconsciousness','uncouth','uncover','uncovers','uncritical','unction','unctions','under','underbrush','undercharge','undercharges','underclass','underclothes','undercoat','undercoats','undercover','underlain','underlay','underlays','underlies','underline','underlines','underneath','underneaths','underpass','underpasses','underpay','underpays','underpin','underpins','underplay','underplays','underrate','underrates','underscore','underscores','understand','understands','understate','understates','undertaker','undertakers','undertakes','undervalues','underwater','undies','undo','undoes','undone','undress','undresses','undulate','undulates','undulation','undulations','unearth','unearths','uneasier','uneasiness','uneasy','unemotional','unenthusiastic','unethical','unfamiliar','unfasten','unfastens','unfrock','unfrocks','unfunny','ungainlier','ungainliness','unhealthier','unhealthy','unhinge','unhinges','unhitch','unhitches','unholier','unhook','unhooks','unicameral','unicorn','unicorns','unicycles','unification','unifies','unify','unintentional','union','unions','uniroyal','unison','unitas','unite','unites','unities','universal','universals','universe','universes','universities','unkind','unkinder','unkindlier','unkindness','unknown','unknowns','unlace','unlaces','unlatch','unlatches','unluckier','unlucky','unnecessary','unnerves','unofficial','unpack','unpacks','unpick','unpin','unpins','unpretentious','unprofessional','unreal','unrealistic','unregenerate','unrulier','unruliness','unscrew','unscrews','unseal','unseals','unseat','unseats','unsheathe','unsheathes','unsnap','unsnaps','unsound','unsounder','unsubscribe','unsubscribes','unsubstantial','unsure','untidy','unties','unusual','unwarier','unwariness','unwary','unwind','unwinds','unwise','unwiser','unwound','unwrap','unwraps','up','upbeat','upbeats','upchuck','upchucks','updater','updates','upland','uplands','upon','upper','uppercase','uppers','upraise','upraises','uproar','uproarious','uproars','ups','upstage','upstages','upstairs','upstate','uptakes','upton','uptown','upturn','upturns','uranus','urethra','urethras','urey','urn','urns','us','usages','use','user','users','uses','usher','ushers','ustinov','usual','utah','ute','uterus','uteruses','utilities','uvula','uvulas','v','vacates','vacation','vacationer','vacationers','vacations','vaccinate','vaccinates','vaccination','vaccinations','vaccine','vaccines','vacuous','vagaries','vagary','vagina','vaginal','vaginas','vagrancy','vaguer','val','vales','valhalla','valise','valises','valois','valparaiso','valuation','valuations','values','valves','valvoline','vamoose','vamooses','vamp','vampire','vampires','vamps','vargas','variation','variations','varicose','varies','various','varnish','varnishes','varsities','vary','vases','vassal','vassals','vassar','vastly','vat','vatican','vats','vauban','veracious','verb','verbal','verbals','verbena','verbenas','verbose','verbs','verge','verges','verier','verification','verifies','verify','verities','verlaine','vermouth','vern','verna','vernal','verne','vernon','verona','veronese','veronica','verse','verses','versification','versifies','versify','version','versions','versus','vertebra','vertebral','vertebras','vertebrate','vertebrates','vertexes','vertical','verticals','vertices','very','vesalius','vesicles','vesper','vespers','vespucci','vesta','vestige','vestiges','vesuvius','viagra','vial','vials','vibe','vibes','vibrancy','vibrantly','vibraphone','vibraphones','vibrate','vibrates','vibration','vibrations','vibrato','vibratos','vic','vicar','vicarage','vicarages','vicarious','vicars','vice','vicente','viceroy','viceroys','vices','vichy','vichyssoise','vicious','viciousness','vicki','vicky','vies','vila','vilification','vilifies','vilify','vince','vindicate','vindicates','vindication','vindications','vine','vines','vinson','vintage','vintages','viola','violas','violate','violates','violation','violations','violin','violins','viper','vipers','virago','viragoes','viragos','viral','vireo','vireos','virus','viruses','visages','visas','viscera','visceral','viscountess','viscountesses','viscous','viscus','vise','vises','vishnu','vision','visionaries','visionary','visions','visitation','visitations','vista','vistas','visual','visuals','vitiates','vitiation','vivacious','vivaciousness','vivas','vivifies','vivify','viviparous','vivisection','vixen','vixenish','vixens','vlasic','vocal','vocalic','vocals','vocation','vocational','vocations','vocatives','vociferate','vociferates','vociferation','vociferous','voice','voices','volition','volunteer','volunteers','voluptuaries','voluptuary','voluptuous','voluptuousness','voracious','vote','votes','vouch','voucher','vouchers','vouches','vow','vows','voyager','voyagers','voyages','vs','w','wac','wackier','wackiness','wacko','wackos','wacky','waco','wag','wager','wagers','wages','wagner','wagon','wagoner','wagoners','wagons','wags','wales','walk','walker','walkers','walks','wallabies','wallaby','wallace','wallis','walrus','walruses','walsh','war','wares','warier','wariness','warmth','warn','warner','warns','warp','warpath','warpaths','warps','warranties','warren','warrens','wars','warship','warships','wartier','warwick','wary','was','wasatch','wash','washbasin','washbasins','washcloth','washcloths','washer','washers','washes','washstand','washstands','wasp','waspish','wasps','wastage','waste','wasteland','wastelands','wastepaper','wastes','watch','watchband','watchbands','watcher','watchers','watches','water','watercress','watergate','waterier','waterline','waterlines','waterpower','waterproof','waterproofs','waters','watery','watkins','watson','wattage','watteau','wattles','watusi','wesson','westbound','western','westerner','westerners','westerns','whack','whackier','whacks','whacky','whaler','whalers','whales','wham','whams','wharf','wharfs','wharves','what','whats','wheal','wheals','wheat','wheaties','when','whence','whenever','whens','where','whereas','whereat','whereby','wherefore','wherefores','wherein','whereof','whereon','wheres','whereupon','wherever','wherewithal','whether','whew','whey','which','whichever','whiff','whiffs','whine','whiner','whiners','whines','whinier','whinnies','whinny','whiny','whip','whiplash','whiplashes','whippersnapper','whippersnappers','whips','whir','whirs','whisk','whisker','whiskers','whiskies','whisks','whisky','whiskys','whisper','whispers','whistler','whistlers','whistles','whitaker','white','whitecap','whitecaps','whitefish','whitefishes','whiten','whitener','whiteners','whiteness','whitens','whites','whitewash','whitewashes','whither','whitish','who','whoop','whoops','whoosh','whooshes','whopper','whoppers','whore','whorehouse','whorehouses','whores','whose','why','whys','wicca','wichita','wick','wicker','wickers','wicks','wife','wifelier','wigeon','wigeons','wii','wiki','wikis','wilier','wiliness','win','wince','winces','winch','winches','wind','windbag','windbags','windburn','windier','windiness','windlass','windlasses','window','windowpane','windowpanes','windows','windpipes','winds','windsock','windsocks','windsurf','windsurfs','windup','windups','windy','wine','wineries','winery','wines','winfrey','wink','winks','winnebago','winner','winners','winnow','winnows','wino','winos','wins','wiper','wipers','wipes','wire','wires','wiretap','wiretaps','wirier','wiriness','wiry','wis','wisconsin','wisconsinite','wisconsinites','wise','wiseacre','wiseacres','wisecrack','wisecracks','wiser','wises','wish','wishbone','wishbones','wisher','wishers','wishes','wisp','wispier','wisps','wispy','witch','witchery','witches','with','withal','wither','withers','within','withstand','withstands','witless','wives','wobblier','woes','wok','woks','won','wonder','wonderbra','wonderland','wonderlands','wonders','woo','woodbine','woody','wooer','wooers','woof','woofer','woofers','woofs','woolier','woolies','woolite','woos','wooten','wore','worn','wotan','wound','wounder','wounds','wow','wows','wrack','wraith','wraiths','wrap','wraparound','wraparounds','wrapper','wrappers','wraps','wrapt','wrath','wreath','wreathe','wreathes','wreaths','wreck','wrecker','wreckers','wrecks','wren','wrench','wrenches','wrens','wrestler','wrestlers','wrestles','wretch','wretches','wu','wuss','wusses','wycliffe','wynn','wyo','xe','xenakis','xenon','xenophobic','xenophon','y','yacc','yack','yacks','yalow','yalta','yalu','yam','yamoussoukro','yams','yarn','yarns','yataro','yates','yb','yerkes','yes','yeses','yeshivas','yeshivoth','yip','yips','yo','yock','yocks','yoga','yokes','yoko','yon','yonder','yonkers','yore','yoruba','you','yous','youth','youths','ypres','ypsilanti','yucatan','yucca','yuccas','yuck','yuckier','yucks','yucky','yuk','yukon','yuks','yunnan','yup','yuppies','yuppy','yups','yves','yvonne','zn','zr']
mit
mr3bn/DAT210x
Module6/assignment3.py
1
3383
import matplotlib.pyplot as plt import pandas as pd def load(path_test, path_train): # Load up the data. # You probably could have written this.. with open(path_test, 'r') as f: testing = pd.read_csv(f) with open(path_train, 'r') as f: training = pd.read_csv(f) # The number of samples between training and testing can vary # But the number of features better remain the same! n_features = testing.shape[1] X_test = testing.ix[:,:n_features-1] X_train = training.ix[:,:n_features-1] y_test = testing.ix[:,n_features-1:].values.ravel() y_train = training.ix[:,n_features-1:].values.ravel() # # Special: return X_train, X_test, y_train, y_test def peekData(x): # The 'targets' or labels are stored in y. The 'samples' or data is stored in X print "Peeking your data..." fig = plt.figure() cnt = 0 for col in range(5): for row in range(10): plt.subplot(5, 10, cnt + 1) plt.imshow(x.ix[cnt,:].reshape(8,8), cmap=plt.cm.gray_r, interpolation='nearest') plt.axis('off') cnt += 1 fig.set_tight_layout(True) plt.show() def drawPredictions(model, X_train, X_test, y_train, y_test): fig = plt.figure() # Make some guesses y_guess = model.predict(X_test) # # INFO: This is the second lab we're demonstrating how to # do multi-plots using matplot lab. In the next assignment(s), # it'll be your responsibility to use this and assignment #1 # as tutorials to add in the plotting code yourself! num_rows = 10 num_cols = 5 index = 0 for col in range(num_cols): for row in range(num_rows): plt.subplot(num_cols, num_rows, index + 1) # 8x8 is the size of the image, 64 pixels plt.imshow(X_test.ix[index,:].reshape(8,8), cmap=plt.cm.gray_r, interpolation='nearest') # Green = Guessed right # Red = Fail! fontcolor = 'g' if y_test[index] == y_guess[index] else 'r' plt.title('Label: %i' % y_guess[index], fontsize=6, color=fontcolor) plt.axis('off') index += 1 fig.set_tight_layout(True) plt.show() X = pd.read_table('Datasets/parkinsons.data', delimiter=',', index_col='name') y = X['status'] del X['status'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 7) import sklearn.preprocessing as pre transformer = pre.StandardScaler() transformer.fit(X_train) X_train = transformer.transform(X_train) X_test = transformer.transform(X_test) #from sklearn.decomposition import PCA #pca = PCA(n_components=14) #pca.fit(X_train) #X_train = pca.transform(X_train) #X_test = pca.transform(X_test) from sklearn import manifold iso = manifold.Isomap(n_neighbors=5, n_components=6) iso.fit(X_train) X_train = iso.transform(X_train) X_test = iso.transform(X_test) from sklearn.svm import SVC svc = SVC() svc.fit(X_train, y_train) print svc.score(X_test, y_test) import numpy as np c_range = np.arange(0.05, 2, 0.05) gamma_range = np.arange(0.001, 0.1, 0.001) best_c = 0 best_gamma = 0 best_score = 0 for c in c_range: for g in gamma_range: svc = SVC(C=c, gamma=g) svc.fit(X_train, y_train) if svc.score(X_test, y_test) > best_score: best_c = c best_gamma = g best_score = svc.score(X_test, y_test) print best_score print 'C: ', best_c print 'gamma: ', best_gamma
mit
amandalund/openmc
docs/source/conf.py
3
7739
# -*- coding: utf-8 -*- # # metasci documentation build configuration file, created by # sphinx-quickstart on Sun Feb 7 22:29:49 2010. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # Determine if we're on Read the Docs server on_rtd = os.environ.get('READTHEDOCS', None) == 'True' # On Read the Docs, we need to mock a few third-party modules so we don't get # ImportErrors when building documentation from unittest.mock import MagicMock MOCK_MODULES = [ 'openmoc', 'openmc.data.reconstruct', ] sys.modules.update((mod_name, MagicMock()) for mod_name in MOCK_MODULES) # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../..')) # -- General configuration ----------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.autosummary', 'sphinx.ext.intersphinx', 'sphinx.ext.viewcode', 'sphinxcontrib.katex', 'sphinx_numfig', 'nbsphinx' ] if not on_rtd: extensions.append('sphinxcontrib.rsvgconverter') # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General information about the project. project = 'OpenMC' copyright = '2011-2020, Massachusetts Institute of Technology and OpenMC contributors' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = "0.12" # The full version, including alpha/beta/rc tags. release = "0.12.1-dev" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = [] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. #pygments_style = 'sphinx' #pygments_style = 'friendly' #pygments_style = 'bw' #pygments_style = 'fruity' #pygments_style = 'manni' pygments_style = 'tango' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages if not on_rtd: import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] html_logo = '_images/openmc_logo.png' # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = "OpenMC Documentation" # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] def setup(app): app.add_css_file('theme_overrides.css') # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_use_modindex = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'openmcdoc' # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'openmc.tex', 'OpenMC Documentation', 'OpenMC contributors', 'manual'), ] latex_elements = { 'preamble': r""" \usepackage{enumitem} \usepackage{amsfonts} \usepackage{amsmath} \setlistdepth{99} \usepackage{tikz} \usetikzlibrary{shapes,snakes,shadows,arrows,calc,decorations.markings,patterns,fit,matrix,spy} \usepackage{fixltx2e} \hypersetup{bookmarksdepth=3} \setcounter{tocdepth}{2} \numberwithin{equation}{section} """, 'printindex': r"" } # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_use_modindex = True #Autodocumentation Flags #autodoc_member_order = "groupwise" #autoclass_content = "both" autosummary_generate = True napoleon_use_ivar = True intersphinx_mapping = { 'python': ('https://docs.python.org/3', None), 'numpy': ('https://numpy.org/doc/stable/', None), 'scipy': ('https://docs.scipy.org/doc/scipy/reference', None), 'pandas': ('https://pandas.pydata.org/pandas-docs/stable/', None), 'matplotlib': ('https://matplotlib.org/', None) }
mit
Edu-Glez/Bank_sentiment_analysis
env/lib/python3.6/site-packages/pandas/io/sas/sas7bdat.py
7
26963
""" Read SAS7BDAT files Based on code written by Jared Hobbs: https://bitbucket.org/jaredhobbs/sas7bdat See also: https://github.com/BioStatMatt/sas7bdat Partial documentation of the file format: https://cran.r-project.org/web/packages/sas7bdat/vignettes/sas7bdat.pdf Reference for binary data compression: http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/CUJ/1992/9210/ross/ross.htm """ import pandas as pd from pandas import compat from pandas.io.common import get_filepath_or_buffer, BaseIterator import numpy as np import struct import pandas.io.sas.sas_constants as const from pandas.io.sas.saslib import Parser class _subheader_pointer(object): pass class _column(object): pass # SAS7BDAT represents a SAS data file in SAS7BDAT format. class SAS7BDATReader(BaseIterator): """ Read SAS files in SAS7BDAT format. Parameters ---------- path_or_buf : path name or buffer Name of SAS file or file-like object pointing to SAS file contents. index : column identifier, defaults to None Column to use as index. convert_dates : boolean, defaults to True Attempt to convert dates to Pandas datetime values. Note all SAS date formats are supported. blank_missing : boolean, defaults to True Convert empty strings to missing values (SAS uses blanks to indicate missing character variables). chunksize : int, defaults to None Return SAS7BDATReader object for iterations, returns chunks with given number of lines. encoding : string, defaults to None String encoding. convert_text : bool, defaults to True If False, text variables are left as raw bytes. convert_header_text : bool, defaults to True If False, header text, including column names, are left as raw bytes. """ def __init__(self, path_or_buf, index=None, convert_dates=True, blank_missing=True, chunksize=None, encoding=None, convert_text=True, convert_header_text=True): self.index = index self.convert_dates = convert_dates self.blank_missing = blank_missing self.chunksize = chunksize self.encoding = encoding self.convert_text = convert_text self.convert_header_text = convert_header_text self.default_encoding = "latin-1" self.compression = "" self.column_names_strings = [] self.column_names = [] self.column_types = [] self.column_formats = [] self.columns = [] self._current_page_data_subheader_pointers = [] self._cached_page = None self._column_data_lengths = [] self._column_data_offsets = [] self._current_row_in_file_index = 0 self._current_row_on_page_index = 0 self._current_row_in_file_index = 0 self._path_or_buf, _, _ = get_filepath_or_buffer(path_or_buf) if isinstance(self._path_or_buf, compat.string_types): self._path_or_buf = open(self._path_or_buf, 'rb') self.handle = self._path_or_buf self._get_properties() self._parse_metadata() def close(self): try: self.handle.close() except AttributeError: pass def _get_properties(self): # Check magic number self._path_or_buf.seek(0) self._cached_page = self._path_or_buf.read(288) if self._cached_page[0:len(const.magic)] != const.magic: self.close() raise ValueError("magic number mismatch (not a SAS file?)") # Get alignment information align1, align2 = 0, 0 buf = self._read_bytes(const.align_1_offset, const.align_1_length) if buf == const.u64_byte_checker_value: align2 = const.align_2_value self.U64 = True self._int_length = 8 self._page_bit_offset = const.page_bit_offset_x64 self._subheader_pointer_length = const.subheader_pointer_length_x64 else: self.U64 = False self._page_bit_offset = const.page_bit_offset_x86 self._subheader_pointer_length = const.subheader_pointer_length_x86 self._int_length = 4 buf = self._read_bytes(const.align_2_offset, const.align_2_length) if buf == const.align_1_checker_value: align1 = const.align_2_value total_align = align1 + align2 # Get endianness information buf = self._read_bytes(const.endianness_offset, const.endianness_length) if buf == b'\x01': self.byte_order = "<" else: self.byte_order = ">" # Get encoding information buf = self._read_bytes(const.encoding_offset, const.encoding_length)[0] if buf in const.encoding_names: self.file_encoding = const.encoding_names[buf] else: self.file_encoding = "unknown (code=%s)" % str(buf) # Get platform information buf = self._read_bytes(const.platform_offset, const.platform_length) if buf == b'1': self.platform = "unix" elif buf == b'2': self.platform = "windows" else: self.platform = "unknown" buf = self._read_bytes(const.dataset_offset, const.dataset_length) self.name = buf.rstrip(b'\x00 ') if self.convert_header_text: self.name = self.name.decode( self.encoding or self.default_encoding) buf = self._read_bytes(const.file_type_offset, const.file_type_length) self.file_type = buf.rstrip(b'\x00 ') if self.convert_header_text: self.file_type = self.file_type.decode( self.encoding or self.default_encoding) # Timestamp is epoch 01/01/1960 epoch = pd.datetime(1960, 1, 1) x = self._read_float(const.date_created_offset + align1, const.date_created_length) self.date_created = epoch + pd.to_timedelta(x, unit='s') x = self._read_float(const.date_modified_offset + align1, const.date_modified_length) self.date_modified = epoch + pd.to_timedelta(x, unit='s') self.header_length = self._read_int(const.header_size_offset + align1, const.header_size_length) # Read the rest of the header into cached_page. buf = self._path_or_buf.read(self.header_length - 288) self._cached_page += buf if len(self._cached_page) != self.header_length: self.close() raise ValueError("The SAS7BDAT file appears to be truncated.") self._page_length = self._read_int(const.page_size_offset + align1, const.page_size_length) self._page_count = self._read_int(const.page_count_offset + align1, const.page_count_length) buf = self._read_bytes(const.sas_release_offset + total_align, const.sas_release_length) self.sas_release = buf.rstrip(b'\x00 ') if self.convert_header_text: self.sas_release = self.sas_release.decode( self.encoding or self.default_encoding) buf = self._read_bytes(const.sas_server_type_offset + total_align, const.sas_server_type_length) self.server_type = buf.rstrip(b'\x00 ') if self.convert_header_text: self.server_type = self.server_type.decode( self.encoding or self.default_encoding) buf = self._read_bytes(const.os_version_number_offset + total_align, const.os_version_number_length) self.os_version = buf.rstrip(b'\x00 ') if self.convert_header_text: self.os_version = self.os_version.decode( self.encoding or self.default_encoding) buf = self._read_bytes(const.os_name_offset + total_align, const.os_name_length) buf = buf.rstrip(b'\x00 ') if len(buf) > 0: self.os_name = buf.decode(self.encoding or self.default_encoding) else: buf = self._read_bytes(const.os_maker_offset + total_align, const.os_maker_length) self.os_name = buf.rstrip(b'\x00 ') if self.convert_header_text: self.os_name = self.os_name.decode( self.encoding or self.default_encoding) def __next__(self): da = self.read(nrows=self.chunksize or 1) if da is None: raise StopIteration return da # Read a single float of the given width (4 or 8). def _read_float(self, offset, width): if width not in (4, 8): self.close() raise ValueError("invalid float width") buf = self._read_bytes(offset, width) fd = "f" if width == 4 else "d" return struct.unpack(self.byte_order + fd, buf)[0] # Read a single signed integer of the given width (1, 2, 4 or 8). def _read_int(self, offset, width): if width not in (1, 2, 4, 8): self.close() raise ValueError("invalid int width") buf = self._read_bytes(offset, width) it = {1: "b", 2: "h", 4: "l", 8: "q"}[width] iv = struct.unpack(self.byte_order + it, buf)[0] return iv def _read_bytes(self, offset, length): if self._cached_page is None: self._path_or_buf.seek(offset) buf = self._path_or_buf.read(length) if len(buf) < length: self.close() msg = "Unable to read {:d} bytes from file position {:d}." raise ValueError(msg.format(length, offset)) return buf else: if offset + length > len(self._cached_page): self.close() raise ValueError("The cached page is too small.") return self._cached_page[offset:offset + length] def _parse_metadata(self): done = False while not done: self._cached_page = self._path_or_buf.read(self._page_length) if len(self._cached_page) <= 0: break if len(self._cached_page) != self._page_length: self.close() raise ValueError( "Failed to read a meta data page from the SAS file.") done = self._process_page_meta() def _process_page_meta(self): self._read_page_header() pt = [const.page_meta_type, const.page_amd_type] + const.page_mix_types if self._current_page_type in pt: self._process_page_metadata() return ((self._current_page_type in [256] + const.page_mix_types) or (self._current_page_data_subheader_pointers is not None)) def _read_page_header(self): bit_offset = self._page_bit_offset tx = const.page_type_offset + bit_offset self._current_page_type = self._read_int(tx, const.page_type_length) tx = const.block_count_offset + bit_offset self._current_page_block_count = self._read_int( tx, const.block_count_length) tx = const.subheader_count_offset + bit_offset self._current_page_subheaders_count = ( self._read_int(tx, const.subheader_count_length)) def _process_page_metadata(self): bit_offset = self._page_bit_offset for i in range(self._current_page_subheaders_count): pointer = self._process_subheader_pointers( const.subheader_pointers_offset + bit_offset, i) if pointer.length == 0: continue if pointer.compression == const.truncated_subheader_id: continue subheader_signature = self._read_subheader_signature( pointer.offset) subheader_index = ( self._get_subheader_index(subheader_signature, pointer.compression, pointer.ptype)) self._process_subheader(subheader_index, pointer) def _get_subheader_index(self, signature, compression, ptype): index = const.subheader_signature_to_index.get(signature) if index is None: f1 = ((compression == const.compressed_subheader_id) or (compression == 0)) f2 = (ptype == const.compressed_subheader_type) if (self.compression != "") and f1 and f2: index = const.index.dataSubheaderIndex else: self.close() raise ValueError("Unknown subheader signature") return index def _process_subheader_pointers(self, offset, subheader_pointer_index): subheader_pointer_length = self._subheader_pointer_length total_offset = (offset + subheader_pointer_length * subheader_pointer_index) subheader_offset = self._read_int(total_offset, self._int_length) total_offset += self._int_length subheader_length = self._read_int(total_offset, self._int_length) total_offset += self._int_length subheader_compression = self._read_int(total_offset, 1) total_offset += 1 subheader_type = self._read_int(total_offset, 1) x = _subheader_pointer() x.offset = subheader_offset x.length = subheader_length x.compression = subheader_compression x.ptype = subheader_type return x def _read_subheader_signature(self, offset): subheader_signature = self._read_bytes(offset, self._int_length) return subheader_signature def _process_subheader(self, subheader_index, pointer): offset = pointer.offset length = pointer.length if subheader_index == const.index.rowSizeIndex: processor = self._process_rowsize_subheader elif subheader_index == const.index.columnSizeIndex: processor = self._process_columnsize_subheader elif subheader_index == const.index.columnTextIndex: processor = self._process_columntext_subheader elif subheader_index == const.index.columnNameIndex: processor = self._process_columnname_subheader elif subheader_index == const.index.columnAttributesIndex: processor = self._process_columnattributes_subheader elif subheader_index == const.index.formatAndLabelIndex: processor = self._process_format_subheader elif subheader_index == const.index.columnListIndex: processor = self._process_columnlist_subheader elif subheader_index == const.index.subheaderCountsIndex: processor = self._process_subheader_counts elif subheader_index == const.index.dataSubheaderIndex: self._current_page_data_subheader_pointers.append(pointer) return else: raise ValueError("unknown subheader index") processor(offset, length) def _process_rowsize_subheader(self, offset, length): int_len = self._int_length lcs_offset = offset lcp_offset = offset if self.U64: lcs_offset += 682 lcp_offset += 706 else: lcs_offset += 354 lcp_offset += 378 self.row_length = self._read_int( offset + const.row_length_offset_multiplier * int_len, int_len) self.row_count = self._read_int( offset + const.row_count_offset_multiplier * int_len, int_len) self.col_count_p1 = self._read_int( offset + const.col_count_p1_multiplier * int_len, int_len) self.col_count_p2 = self._read_int( offset + const.col_count_p2_multiplier * int_len, int_len) mx = const.row_count_on_mix_page_offset_multiplier * int_len self._mix_page_row_count = self._read_int(offset + mx, int_len) self._lcs = self._read_int(lcs_offset, 2) self._lcp = self._read_int(lcp_offset, 2) def _process_columnsize_subheader(self, offset, length): int_len = self._int_length offset += int_len self.column_count = self._read_int(offset, int_len) if (self.col_count_p1 + self.col_count_p2 != self.column_count): print("Warning: column count mismatch (%d + %d != %d)\n", self.col_count_p1, self.col_count_p2, self.column_count) # Unknown purpose def _process_subheader_counts(self, offset, length): pass def _process_columntext_subheader(self, offset, length): offset += self._int_length text_block_size = self._read_int(offset, const.text_block_size_length) buf = self._read_bytes(offset, text_block_size) cname_raw = buf[0:text_block_size].rstrip(b"\x00 ") cname = cname_raw if self.convert_header_text: cname = cname.decode(self.encoding or self.default_encoding) self.column_names_strings.append(cname) if len(self.column_names_strings) == 1: compression_literal = "" for cl in const.compression_literals: if cl in cname_raw: compression_literal = cl self.compression = compression_literal offset -= self._int_length offset1 = offset + 16 if self.U64: offset1 += 4 buf = self._read_bytes(offset1, self._lcp) compression_literal = buf.rstrip(b"\x00") if compression_literal == "": self._lcs = 0 offset1 = offset + 32 if self.U64: offset1 += 4 buf = self._read_bytes(offset1, self._lcp) self.creator_proc = buf[0:self._lcp] elif compression_literal == const.rle_compression: offset1 = offset + 40 if self.U64: offset1 += 4 buf = self._read_bytes(offset1, self._lcp) self.creator_proc = buf[0:self._lcp] elif self._lcs > 0: self._lcp = 0 offset1 = offset + 16 if self.U64: offset1 += 4 buf = self._read_bytes(offset1, self._lcs) self.creator_proc = buf[0:self._lcp] if self.convert_header_text: if hasattr(self, "creator_proc"): self.creator_proc = self.creator_proc.decode( self.encoding or self.default_encoding) def _process_columnname_subheader(self, offset, length): int_len = self._int_length offset += int_len column_name_pointers_count = (length - 2 * int_len - 12) // 8 for i in range(column_name_pointers_count): text_subheader = offset + const.column_name_pointer_length * \ (i + 1) + const.column_name_text_subheader_offset col_name_offset = offset + const.column_name_pointer_length * \ (i + 1) + const.column_name_offset_offset col_name_length = offset + const.column_name_pointer_length * \ (i + 1) + const.column_name_length_offset idx = self._read_int( text_subheader, const.column_name_text_subheader_length) col_offset = self._read_int( col_name_offset, const.column_name_offset_length) col_len = self._read_int( col_name_length, const.column_name_length_length) name_str = self.column_names_strings[idx] self.column_names.append(name_str[col_offset:col_offset + col_len]) def _process_columnattributes_subheader(self, offset, length): int_len = self._int_length column_attributes_vectors_count = ( length - 2 * int_len - 12) // (int_len + 8) self.column_types = np.empty( column_attributes_vectors_count, dtype=np.dtype('S1')) self._column_data_lengths = np.empty( column_attributes_vectors_count, dtype=np.int64) self._column_data_offsets = np.empty( column_attributes_vectors_count, dtype=np.int64) for i in range(column_attributes_vectors_count): col_data_offset = (offset + int_len + const.column_data_offset_offset + i * (int_len + 8)) col_data_len = (offset + 2 * int_len + const.column_data_length_offset + i * (int_len + 8)) col_types = (offset + 2 * int_len + const.column_type_offset + i * (int_len + 8)) x = self._read_int(col_data_offset, int_len) self._column_data_offsets[i] = x x = self._read_int(col_data_len, const.column_data_length_length) self._column_data_lengths[i] = x x = self._read_int(col_types, const.column_type_length) if x == 1: self.column_types[i] = b'd' else: self.column_types[i] = b's' def _process_columnlist_subheader(self, offset, length): # unknown purpose pass def _process_format_subheader(self, offset, length): int_len = self._int_length text_subheader_format = ( offset + const.column_format_text_subheader_index_offset + 3 * int_len) col_format_offset = (offset + const.column_format_offset_offset + 3 * int_len) col_format_len = (offset + const.column_format_length_offset + 3 * int_len) text_subheader_label = ( offset + const.column_label_text_subheader_index_offset + 3 * int_len) col_label_offset = (offset + const.column_label_offset_offset + 3 * int_len) col_label_len = offset + const.column_label_length_offset + 3 * int_len x = self._read_int(text_subheader_format, const.column_format_text_subheader_index_length) format_idx = min(x, len(self.column_names_strings) - 1) format_start = self._read_int( col_format_offset, const.column_format_offset_length) format_len = self._read_int( col_format_len, const.column_format_length_length) label_idx = self._read_int( text_subheader_label, const.column_label_text_subheader_index_length) label_idx = min(label_idx, len(self.column_names_strings) - 1) label_start = self._read_int( col_label_offset, const.column_label_offset_length) label_len = self._read_int(col_label_len, const.column_label_length_length) label_names = self.column_names_strings[label_idx] column_label = label_names[label_start: label_start + label_len] format_names = self.column_names_strings[format_idx] column_format = format_names[format_start: format_start + format_len] current_column_number = len(self.columns) col = _column() col.col_id = current_column_number col.name = self.column_names[current_column_number] col.label = column_label col.format = column_format col.ctype = self.column_types[current_column_number] col.length = self._column_data_lengths[current_column_number] self.column_formats.append(column_format) self.columns.append(col) def read(self, nrows=None): if (nrows is None) and (self.chunksize is not None): nrows = self.chunksize elif nrows is None: nrows = self.row_count if self._current_row_in_file_index >= self.row_count: return None m = self.row_count - self._current_row_in_file_index if nrows > m: nrows = m nd = (self.column_types == b'd').sum() ns = (self.column_types == b's').sum() self._string_chunk = np.empty((ns, nrows), dtype=np.object) self._byte_chunk = np.empty((nd, 8 * nrows), dtype=np.uint8) self._current_row_in_chunk_index = 0 p = Parser(self) p.read(nrows) rslt = self._chunk_to_dataframe() if self.index is not None: rslt = rslt.set_index(self.index) return rslt def _read_next_page(self): self._current_page_data_subheader_pointers = [] self._cached_page = self._path_or_buf.read(self._page_length) if len(self._cached_page) <= 0: return True elif len(self._cached_page) != self._page_length: self.close() msg = ("failed to read complete page from file " "(read {:d} of {:d} bytes)") raise ValueError(msg.format(len(self._cached_page), self._page_length)) self._read_page_header() if self._current_page_type == const.page_meta_type: self._process_page_metadata() pt = [const.page_meta_type, const.page_data_type] pt += [const.page_mix_types] if self._current_page_type not in pt: return self._read_next_page() return False def _chunk_to_dataframe(self): n = self._current_row_in_chunk_index m = self._current_row_in_file_index ix = range(m - n, m) rslt = pd.DataFrame(index=ix) js, jb = 0, 0 for j in range(self.column_count): name = self.column_names[j] if self.column_types[j] == b'd': rslt[name] = self._byte_chunk[jb, :].view( dtype=self.byte_order + 'd') rslt[name] = np.asarray(rslt[name], dtype=np.float64) if self.convert_dates and (self.column_formats[j] == "MMDDYY"): epoch = pd.datetime(1960, 1, 1) rslt[name] = epoch + pd.to_timedelta(rslt[name], unit='d') jb += 1 elif self.column_types[j] == b's': rslt[name] = self._string_chunk[js, :] if self.convert_text and (self.encoding is not None): rslt[name] = rslt[name].str.decode( self.encoding or self.default_encoding) if self.blank_missing: ii = rslt[name].str.len() == 0 rslt.loc[ii, name] = np.nan js += 1 else: self.close() raise ValueError("unknown column type %s" % self.column_types[j]) return rslt
apache-2.0
yavalvas/yav_com
build/matplotlib/examples/pylab_examples/demo_ribbon_box.py
6
4262
import matplotlib.pyplot as plt import numpy as np from matplotlib.image import BboxImage from matplotlib._png import read_png import matplotlib.colors from matplotlib.cbook import get_sample_data class RibbonBox(object): original_image = read_png(get_sample_data("Minduka_Present_Blue_Pack.png", asfileobj=False)) cut_location = 70 b_and_h = original_image[:,:,2] color = original_image[:,:,2] - original_image[:,:,0] alpha = original_image[:,:,3] nx = original_image.shape[1] def __init__(self, color): rgb = matplotlib.colors.colorConverter.to_rgb(color) im = np.empty(self.original_image.shape, self.original_image.dtype) im[:,:,:3] = self.b_and_h[:,:,np.newaxis] im[:,:,:3] -= self.color[:,:,np.newaxis]*(1.-np.array(rgb)) im[:,:,3] = self.alpha self.im = im def get_stretched_image(self, stretch_factor): stretch_factor = max(stretch_factor, 1) ny, nx, nch = self.im.shape ny2 = int(ny*stretch_factor) stretched_image = np.empty((ny2, nx, nch), self.im.dtype) cut = self.im[self.cut_location,:,:] stretched_image[:,:,:] = cut stretched_image[:self.cut_location,:,:] = \ self.im[:self.cut_location,:,:] stretched_image[-(ny-self.cut_location):,:,:] = \ self.im[-(ny-self.cut_location):,:,:] self._cached_im = stretched_image return stretched_image class RibbonBoxImage(BboxImage): zorder = 1 def __init__(self, bbox, color, cmap = None, norm = None, interpolation=None, origin=None, filternorm=1, filterrad=4.0, resample = False, **kwargs ): BboxImage.__init__(self, bbox, cmap = cmap, norm = norm, interpolation=interpolation, origin=origin, filternorm=filternorm, filterrad=filterrad, resample = resample, **kwargs ) self._ribbonbox = RibbonBox(color) self._cached_ny = None def draw(self, renderer, *args, **kwargs): bbox = self.get_window_extent(renderer) stretch_factor = bbox.height / bbox.width ny = int(stretch_factor*self._ribbonbox.nx) if self._cached_ny != ny: arr = self._ribbonbox.get_stretched_image(stretch_factor) self.set_array(arr) self._cached_ny = ny BboxImage.draw(self, renderer, *args, **kwargs) if 1: from matplotlib.transforms import Bbox, TransformedBbox from matplotlib.ticker import ScalarFormatter fig, ax = plt.subplots() years = np.arange(2004, 2009) box_colors = [(0.8, 0.2, 0.2), (0.2, 0.8, 0.2), (0.2, 0.2, 0.8), (0.7, 0.5, 0.8), (0.3, 0.8, 0.7), ] heights = np.random.random(years.shape) * 7000 + 3000 fmt = ScalarFormatter(useOffset=False) ax.xaxis.set_major_formatter(fmt) for year, h, bc in zip(years, heights, box_colors): bbox0 = Bbox.from_extents(year-0.4, 0., year+0.4, h) bbox = TransformedBbox(bbox0, ax.transData) rb_patch = RibbonBoxImage(bbox, bc, interpolation="bicubic") ax.add_artist(rb_patch) ax.annotate(r"%d" % (int(h/100.)*100), (year, h), va="bottom", ha="center") patch_gradient = BboxImage(ax.bbox, interpolation="bicubic", zorder=0.1, ) gradient = np.zeros((2, 2, 4), dtype=np.float) gradient[:,:,:3] = [1, 1, 0.] gradient[:,:,3] = [[0.1, 0.3],[0.3, 0.5]] # alpha channel patch_gradient.set_array(gradient) ax.add_artist(patch_gradient) ax.set_xlim(years[0]-0.5, years[-1]+0.5) ax.set_ylim(0, 10000) fig.savefig('ribbon_box.png') plt.show()
mit
aebrahim/cobrapy
setup.py
1
7763
from os.path import isfile, abspath, dirname, join from sys import argv, path # To temporarily modify sys.path SETUP_DIR = abspath(dirname(__file__)) try: from setuptools import setup, find_packages except ImportError: path.insert(0, SETUP_DIR) import ez_setup path.pop(0) ez_setup.use_setuptools() from setuptools import setup, find_packages # for running parallel tests due to a bug in python 2.7.3 # http://bugs.python.org/issue15881#msg170215 try: import multiprocessing except: None # import version to get the version string path.insert(0, join(SETUP_DIR, "cobra")) from version import get_version, update_release_version path.pop(0) version = get_version(pep440=True) # If building something for distribution, ensure the VERSION # file is up to date if "sdist" in argv or "bdist_wheel" in argv: update_release_version() # cython is optional for building. The c file can be used directly. However, # for certain functions, the c file must be generated, which requires cython. try: from Cython.Build import cythonize from distutils.version import StrictVersion import Cython try: cython_version = StrictVersion(Cython.__version__) except ValueError: raise ImportError("Cython version not parseable") else: if cython_version < StrictVersion("0.21"): raise ImportError("Cython version too old to use") except ImportError: cythonize = None for k in ["sdist", "develop"]: if k in argv: raise Exception("Cython >= 0.21 required for " + k) # Begin constructing arguments for building setup_kwargs = {} # for building the cglpk solver try: from distutils.extension import Extension from distutils.command.build_ext import build_ext from os import name from platform import system class FailBuild(build_ext): """allow building of the C extension to fail""" def run(self): try: build_ext.run(self) except Exception as e: warn(e) def build_extension(self, ext): try: build_ext.build_extension(self, ext) except: None build_args = {} setup_kwargs["cmdclass"] = {"build_ext": FailBuild} # MAC OS X needs some additional configuration tweaks # Build should be run with the python.org python # Cython will output C which could generate warnings in clang # due to the addition of additional unneeded functions. Because # this is a known phenomenon, these warnings are silenced to # make other potential warnings which do signal errors stand # out. if system() == "Darwin": build_args["extra_compile_args"] = ["-Wno-unused-function"] build_args["libraries"] = ["glpk"] # It is possible to statically link libglpk to the built extension. This # allows for simplified installation without the need to install libglpk to # the system, and is also usueful when installing a particular version of # glpk which conflicts with thesystem version. A static libglpk.a can be # built by running configure with the export CLFAGS="-fPIC" and copying the # file from src/.libs to either the default lib directory or to the build # directory. For an example script, see # https://gist.github.com/aebrahim/94a2b231d86821f7f225 include_dirs = [] library_dirs = [] if isfile("libglpk.a"): library_dirs.append(abspath(".")) if isfile("glpk.h"): include_dirs.append(abspath(".")) # if the glpk files are not in the current directory attempt to # auto-detect their location by finding the location of the glpsol # command if name == "posix" and len(include_dirs) == 0 and len(library_dirs) == 0: from subprocess import check_output try: glpksol_path = check_output(["which", "glpsol"], universal_newlines=True).strip() glpk_path = abspath(join(dirname(glpksol_path), "..")) include_dirs.append(join(glpk_path, "include")) library_dirs.append(join(glpk_path, "lib")) except Exception as e: print('Could not autodetect include and library dirs: ' + str(e)) if len(include_dirs) > 0: build_args["include_dirs"] = include_dirs if len(library_dirs) > 0: build_args["library_dirs"] = library_dirs # use cython if present, otherwise use c file if cythonize: ext_modules = cythonize([Extension("cobra.solvers.cglpk", ["cobra/solvers/cglpk.pyx"], **build_args)], force=True) else: ext_modules = [Extension("cobra.solvers.cglpk", ["cobra/solvers/cglpk.c"], **build_args)] except Exception as e: print('Could not build CGLPK: {}'.format(e)) ext_modules = None extras = { 'matlab': ["pymatbridge"], 'sbml': ["python-libsbml", "lxml"], 'array': ["numpy>=1.6", "scipy>=0.11.0"], 'display': ["matplotlib", "palettable", "pandas>=0.17.0"] } all_extras = {'Cython>=0.21'} for extra in extras.values(): all_extras.update(extra) extras["all"] = sorted(list(all_extras)) # If using bdist_wininst, the installer will not get dependencies like # a setuptools installation does. Therefore, for the one external dependency, # which is six.py, we can just download it here and include it in the # installer. # The file six.py will need to be manually downloaded and placed in the # same directory as setup.py. if "bdist_wininst" in argv: setup_kwargs["py_modules"] = ["six"] try: import pypandoc readme = pypandoc.convert("README.md", "rst") install = pypandoc.convert("INSTALL.md", "rst") setup_kwargs["long_description"] = readme + "\n\n" + install except: with open("README.md", "r") as infile: setup_kwargs["long_description"] = infile.read() setup( name="cobra", version=version, packages=find_packages(exclude=['cobra.oven', 'cobra.oven*']), setup_requires=[], install_requires=["six"], tests_require=["jsonschema > 2.5"], extras_require=extras, ext_modules=ext_modules, package_data={ '': ['test/data/*', 'VERSION', 'mlab/matlab_scripts/*m']}, author="Daniel Robert Hyduke <[email protected]>, " "Ali Ebrahim <[email protected]>", author_email="[email protected]", description="COBRApy is a package for constraints-based modeling of " "biological networks", license="LGPL/GPL v2+", keywords="metabolism biology linear programming optimization flux" " balance analysis fba", url="https://opencobra.github.io/cobrapy", test_suite="cobra.test.suite", download_url='https://pypi.python.org/pypi/cobra', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: GNU Lesser General Public License v2' ' or later (LGPLv2+)', 'License :: OSI Approved :: GNU General Public License v2' ' or later (GPLv2+)', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Cython', 'Programming Language :: Python :: Implementation :: CPython', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Bio-Informatics' ], platforms="GNU/Linux, Mac OS X >= 10.7, Microsoft Windows >= 7", **setup_kwargs)
lgpl-2.1
GuessWhoSamFoo/pandas
pandas/tests/io/test_date_converters.py
3
1289
from datetime import datetime import numpy as np import pandas.util.testing as tm import pandas.io.date_converters as conv def test_parse_date_time(): dates = np.array(['2007/1/3', '2008/2/4'], dtype=object) times = np.array(['05:07:09', '06:08:00'], dtype=object) expected = np.array([datetime(2007, 1, 3, 5, 7, 9), datetime(2008, 2, 4, 6, 8, 0)]) result = conv.parse_date_time(dates, times) tm.assert_numpy_array_equal(result, expected) def test_parse_date_fields(): days = np.array([3, 4]) months = np.array([1, 2]) years = np.array([2007, 2008]) result = conv.parse_date_fields(years, months, days) expected = np.array([datetime(2007, 1, 3), datetime(2008, 2, 4)]) tm.assert_numpy_array_equal(result, expected) def test_parse_all_fields(): hours = np.array([5, 6]) minutes = np.array([7, 8]) seconds = np.array([9, 0]) days = np.array([3, 4]) years = np.array([2007, 2008]) months = np.array([1, 2]) result = conv.parse_all_fields(years, months, days, hours, minutes, seconds) expected = np.array([datetime(2007, 1, 3, 5, 7, 9), datetime(2008, 2, 4, 6, 8, 0)]) tm.assert_numpy_array_equal(result, expected)
bsd-3-clause
kayak/fireant
fireant/tests/queries/test_dimension_choices.py
2
13142
from unittest import TestCase from unittest.mock import ( ANY, MagicMock, Mock, patch, ) import pandas as pd from fireant import DataSet, DataType, Field from fireant.tests.dataset.matchers import ( FieldMatcher, PypikaQueryMatcher, ) from fireant.tests.dataset.mocks import ( mock_dataset, mock_hint_dataset, politicians_table, test_database, ) # noinspection SqlDialectInspection,SqlNoDataSourceInspection class DimensionsChoicesQueryBuilderTests(TestCase): maxDiff = None def test_query_choices_for_field(self): query = mock_dataset.fields.political_party.choices.sql[0] self.assertEqual( "SELECT " '"political_party" "$political_party" ' 'FROM "politics"."politician" ' 'GROUP BY "$political_party"', str(query), ) def test_query_choices_for_field_with_join(self): query = mock_dataset.fields["district-name"].choices.sql[0] self.assertEqual( "SELECT " '"district"."district_name" "$district-name" ' 'FROM "politics"."politician" ' 'FULL OUTER JOIN "locations"."district" ' 'ON "politician"."district_id"="district"."id" ' 'GROUP BY "$district-name"', str(query), ) def test_filter_choices(self): query = ( mock_dataset.fields["candidate-name"] .choices.filter(mock_dataset.fields.political_party.isin(["d", "r"])) .sql[0] ) self.assertEqual( "SELECT " '"candidate_name" "$candidate-name" ' 'FROM "politics"."politician" ' "WHERE \"political_party\" IN ('d','r') " 'GROUP BY "$candidate-name"', str(query), ) # noinspection SqlDialectInspection,SqlNoDataSourceInspection class DimensionsChoicesQueryBuilderWithHintTableTests(TestCase): @patch("fireant.queries.builder.dimension_choices_query_builder.fetch_data", return_value=(100, MagicMock())) def test_query_choices_for_dataset_with_hint_table(self, mock_fetch_data: Mock): mock_hint_dataset.fields.political_party.choices.fetch() mock_fetch_data.assert_called_once_with( ANY, [ PypikaQueryMatcher( "SELECT " '"political_party" "$political_party" ' 'FROM "politics"."hints" ' 'WHERE NOT "political_party" IS NULL ' 'GROUP BY "$political_party" ' 'ORDER BY "$political_party"' ) ], FieldMatcher(mock_hint_dataset.fields.political_party), ) @patch("fireant.queries.builder.dimension_choices_query_builder.fetch_data", return_value=(100, MagicMock())) @patch.object( mock_hint_dataset.database, "get_column_definitions", return_value=[ ["candidate_name", "varchar(128)"], ["candidate_name_display", "varchar(128)"], ], ) def test_query_choices_for_field_with_display_hint_table( self, mock_get_column_definitions: Mock, mock_fetch_data: Mock ): mock_hint_dataset.fields.candidate_name.choices.fetch() mock_fetch_data.assert_called_once_with( ANY, [ PypikaQueryMatcher( "SELECT " '"candidate_name" "$candidate_name",' '"candidate_name_display" ' '"$candidate_name_display" ' 'FROM "politics"."hints" ' 'WHERE NOT "candidate_name" IS NULL ' 'GROUP BY "$candidate_name",' '"$candidate_name_display" ' 'ORDER BY "$candidate_name"' ) ], FieldMatcher(mock_hint_dataset.fields.candidate_name), ) @patch("fireant.queries.builder.dimension_choices_query_builder.fetch_data", return_value=(100, MagicMock())) @patch.object( mock_hint_dataset.database, "get_column_definitions", return_value=[ ["political_party", "varchar(128)"], ["state_id", "varchar(128)"], ], ) def test_query_choices_for_filters_from_joins(self, mock_get_column_definitions: Mock, mock_fetch_data: Mock): mock_hint_dataset.fields.political_party.choices.filter( mock_hint_dataset.fields["district-name"].isin(["Manhattan"]) ).filter(mock_hint_dataset.fields["state"].isin(["Texas"])).fetch() mock_fetch_data.assert_called_once_with( ANY, [ PypikaQueryMatcher( "SELECT " '"hints"."political_party" "$political_party" ' 'FROM "politics"."hints" ' 'JOIN "locations"."state" ON ' '"hints"."state_id"="state"."id" ' 'WHERE "state"."state_name" IN (\'Texas\') ' 'AND NOT "hints"."political_party" IS NULL ' 'GROUP BY "$political_party" ' 'ORDER BY "$political_party"' ) ], FieldMatcher(mock_hint_dataset.fields.political_party), ) @patch("fireant.queries.builder.dimension_choices_query_builder.fetch_data", return_value=(100, MagicMock())) @patch.object( mock_hint_dataset.database, "get_column_definitions", return_value=[ ["political_party", "varchar(128)"], ["candidate_name", "varchar(128)"], ], ) def test_query_choices_for_filters_from_base(self, mock_get_column_definitions: Mock, mock_fetch_data: Mock): mock_hint_dataset.fields.political_party.choices.filter( mock_hint_dataset.fields.candidate_name.isin(["Bill Clinton"]) ).filter(mock_hint_dataset.fields["election-year"].isin([1992])).fetch() mock_fetch_data.assert_called_once_with( ANY, [ PypikaQueryMatcher( "SELECT " '"political_party" "$political_party" ' 'FROM "politics"."hints" ' "WHERE \"candidate_name\" IN ('Bill Clinton') " 'AND NOT "political_party" IS NULL ' 'GROUP BY "$political_party" ' 'ORDER BY "$political_party"' ) ], FieldMatcher(mock_hint_dataset.fields.political_party), ) @patch("fireant.queries.builder.dimension_choices_query_builder.fetch_data", return_value=(100, MagicMock())) @patch.object( mock_hint_dataset.database, "get_column_definitions", return_value=[["political_party", "varchar(128)"]], ) def test_query_choices_for_case_filter(self, mock_get_column_definitions: Mock, mock_fetch_data: Mock): mock_hint_dataset.fields.political_party.choices.filter( mock_hint_dataset.fields.political_party_case.isin(["Democrat", "Bill Clinton"]) ).fetch() mock_fetch_data.assert_called_once_with( ANY, [ PypikaQueryMatcher( "SELECT " '"political_party" "$political_party" ' 'FROM "politics"."hints" ' 'WHERE NOT "political_party" IS NULL ' 'GROUP BY "$political_party" ' 'ORDER BY "$political_party"' ) ], FieldMatcher(mock_hint_dataset.fields.political_party), ) @patch("fireant.queries.builder.dimension_choices_query_builder.fetch_data", return_value=(100, MagicMock())) @patch.object( mock_hint_dataset.database, "get_column_definitions", return_value=[["district_name", "varchar(128)"]], ) def test_query_choices_for_join_dimension(self, mock_get_column_definitions: Mock, mock_fetch_data: Mock): mock_hint_dataset.fields["district-name"].choices.fetch() mock_fetch_data.assert_called_once_with( ANY, [ PypikaQueryMatcher( "SELECT " '"district_name" "$district-name" ' 'FROM "politics"."hints" ' 'WHERE NOT "district_name" IS NULL ' 'GROUP BY "$district-name" ' 'ORDER BY "$district-name"' ) ], FieldMatcher(mock_hint_dataset.fields["district-name"]), ) @patch("fireant.queries.builder.dimension_choices_query_builder.fetch_data", return_value=(100, MagicMock())) @patch.object( mock_hint_dataset.database, "get_column_definitions", return_value=[ ["district_name", "varchar(128)"], ["candidate_name", "varchar(128)"], ], ) def test_query_choices_for_join_dimension_with_filter_from_base( self, mock_get_column_definitions: Mock, mock_fetch_data: Mock ): mock_hint_dataset.fields["district-name"].choices.filter( mock_hint_dataset.fields.candidate_name.isin(["Bill Clinton"]) ).fetch() mock_fetch_data.assert_called_once_with( ANY, [ PypikaQueryMatcher( "SELECT " '"district_name" "$district-name" ' 'FROM "politics"."hints" ' "WHERE \"candidate_name\" IN ('Bill Clinton') " 'AND NOT "district_name" IS NULL ' 'GROUP BY "$district-name" ' 'ORDER BY "$district-name"' ) ], FieldMatcher(mock_hint_dataset.fields["district-name"]), ) @patch("fireant.queries.builder.dimension_choices_query_builder.fetch_data", return_value=(100, MagicMock())) @patch.object( mock_hint_dataset.database, "get_column_definitions", return_value=[ ["district_name", "varchar(128)"], ["district_id", "varchar(128)"], ], ) def test_query_choices_for_join_dimension_with_filter_from_join( self, mock_get_column_definitions: Mock, mock_fetch_data: Mock ): mock_hint_dataset.fields["district-name"].choices.filter( mock_hint_dataset.fields["district-name"].isin(["Manhattan"]) ).fetch() mock_fetch_data.assert_called_once_with( ANY, [ PypikaQueryMatcher( "SELECT " '"hints"."district_name" "$district-name" ' 'FROM "politics"."hints" ' 'FULL OUTER JOIN "locations"."district" ON ' '"hints"."district_id"="district"."id" ' 'WHERE "district"."district_name" IN (' "'Manhattan') " 'AND NOT "hints"."district_name" IS NULL ' 'GROUP BY "$district-name" ' 'ORDER BY "$district-name"' ) ], FieldMatcher(mock_hint_dataset.fields["district-name"]), ) # noinspection SqlDialectInspection,SqlNoDataSourceInspection @patch("fireant.queries.builder.dimension_choices_query_builder.fetch_data", return_value=(100, MagicMock())) class DimensionsChoicesFetchTests(TestCase): def test_query_choices_for_field(self, mock_fetch_data: Mock): mock_dataset.fields.political_party.choices.fetch() mock_fetch_data.assert_called_once_with( ANY, [ PypikaQueryMatcher( "SELECT " '"political_party" "$political_party" ' 'FROM "politics"."politician" ' 'WHERE NOT "political_party" IS NULL ' 'GROUP BY "$political_party" ' 'ORDER BY "$political_party"' ) ], FieldMatcher(mock_dataset.fields.political_party), ) def test_envelopes_responses_if_return_additional_metadata_True(self, mock_fetch_data): mock_dataset = DataSet( table=politicians_table, database=test_database, return_additional_metadata=True, fields=[ Field( "political_party", label="Party", definition=politicians_table.political_party, data_type=DataType.text, hyperlink_template="http://example.com/{political_party}", ) ], ) df = pd.DataFrame({'political_party': ['a', 'b', 'c']}).set_index('political_party') mock_fetch_data.return_value = 100, df result = mock_dataset.fields.political_party.choices.fetch() self.assertEqual(dict(max_rows_returned=100), result['metadata']) self.assertTrue( pd.Series(['a', 'b', 'c'], index=['a', 'b', 'c'], name='political_party').equals(result['data']) )
apache-2.0
sonnyhu/scikit-learn
examples/covariance/plot_covariance_estimation.py
99
5074
""" ======================================================================= Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood ======================================================================= When working with covariance estimation, the usual approach is to use a maximum likelihood estimator, such as the :class:`sklearn.covariance.EmpiricalCovariance`. It is unbiased, i.e. it converges to the true (population) covariance when given many observations. However, it can also be beneficial to regularize it, in order to reduce its variance; this, in turn, introduces some bias. This example illustrates the simple regularization used in :ref:`shrunk_covariance` estimators. In particular, it focuses on how to set the amount of regularization, i.e. how to choose the bias-variance trade-off. Here we compare 3 approaches: * Setting the parameter by cross-validating the likelihood on three folds according to a grid of potential shrinkage parameters. * A close formula proposed by Ledoit and Wolf to compute the asymptotically optimal regularization parameter (minimizing a MSE criterion), yielding the :class:`sklearn.covariance.LedoitWolf` covariance estimate. * An improvement of the Ledoit-Wolf shrinkage, the :class:`sklearn.covariance.OAS`, proposed by Chen et al. Its convergence is significantly better under the assumption that the data are Gaussian, in particular for small samples. To quantify estimation error, we plot the likelihood of unseen data for different values of the shrinkage parameter. We also show the choices by cross-validation, or with the LedoitWolf and OAS estimates. Note that the maximum likelihood estimate corresponds to no shrinkage, and thus performs poorly. The Ledoit-Wolf estimate performs really well, as it is close to the optimal and is computational not costly. In this example, the OAS estimate is a bit further away. Interestingly, both approaches outperform cross-validation, which is significantly most computationally costly. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import linalg from sklearn.covariance import LedoitWolf, OAS, ShrunkCovariance, \ log_likelihood, empirical_covariance from sklearn.model_selection import GridSearchCV ############################################################################### # Generate sample data n_features, n_samples = 40, 20 np.random.seed(42) base_X_train = np.random.normal(size=(n_samples, n_features)) base_X_test = np.random.normal(size=(n_samples, n_features)) # Color samples coloring_matrix = np.random.normal(size=(n_features, n_features)) X_train = np.dot(base_X_train, coloring_matrix) X_test = np.dot(base_X_test, coloring_matrix) ############################################################################### # Compute the likelihood on test data # spanning a range of possible shrinkage coefficient values shrinkages = np.logspace(-2, 0, 30) negative_logliks = [-ShrunkCovariance(shrinkage=s).fit(X_train).score(X_test) for s in shrinkages] # under the ground-truth model, which we would not have access to in real # settings real_cov = np.dot(coloring_matrix.T, coloring_matrix) emp_cov = empirical_covariance(X_train) loglik_real = -log_likelihood(emp_cov, linalg.inv(real_cov)) ############################################################################### # Compare different approaches to setting the parameter # GridSearch for an optimal shrinkage coefficient tuned_parameters = [{'shrinkage': shrinkages}] cv = GridSearchCV(ShrunkCovariance(), tuned_parameters) cv.fit(X_train) # Ledoit-Wolf optimal shrinkage coefficient estimate lw = LedoitWolf() loglik_lw = lw.fit(X_train).score(X_test) # OAS coefficient estimate oa = OAS() loglik_oa = oa.fit(X_train).score(X_test) ############################################################################### # Plot results fig = plt.figure() plt.title("Regularized covariance: likelihood and shrinkage coefficient") plt.xlabel('Regularizaton parameter: shrinkage coefficient') plt.ylabel('Error: negative log-likelihood on test data') # range shrinkage curve plt.loglog(shrinkages, negative_logliks, label="Negative log-likelihood") plt.plot(plt.xlim(), 2 * [loglik_real], '--r', label="Real covariance likelihood") # adjust view lik_max = np.amax(negative_logliks) lik_min = np.amin(negative_logliks) ymin = lik_min - 6. * np.log((plt.ylim()[1] - plt.ylim()[0])) ymax = lik_max + 10. * np.log(lik_max - lik_min) xmin = shrinkages[0] xmax = shrinkages[-1] # LW likelihood plt.vlines(lw.shrinkage_, ymin, -loglik_lw, color='magenta', linewidth=3, label='Ledoit-Wolf estimate') # OAS likelihood plt.vlines(oa.shrinkage_, ymin, -loglik_oa, color='purple', linewidth=3, label='OAS estimate') # best CV estimator likelihood plt.vlines(cv.best_estimator_.shrinkage, ymin, -cv.best_estimator_.score(X_test), color='cyan', linewidth=3, label='Cross-validation best estimate') plt.ylim(ymin, ymax) plt.xlim(xmin, xmax) plt.legend() plt.show()
bsd-3-clause
poryfly/scikit-learn
sklearn/feature_extraction/text.py
110
50157
# -*- coding: utf-8 -*- # Authors: Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Lars Buitinck <[email protected]> # Robert Layton <[email protected]> # Jochen Wersdörfer <[email protected]> # Roman Sinayev <[email protected]> # # License: BSD 3 clause """ The :mod:`sklearn.feature_extraction.text` submodule gathers utilities to build feature vectors from text documents. """ from __future__ import unicode_literals import array from collections import Mapping, defaultdict import numbers from operator import itemgetter import re import unicodedata import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.six.moves import xrange from ..preprocessing import normalize from .hashing import FeatureHasher from .stop_words import ENGLISH_STOP_WORDS from ..utils import deprecated from ..utils.fixes import frombuffer_empty, bincount from ..utils.validation import check_is_fitted __all__ = ['CountVectorizer', 'ENGLISH_STOP_WORDS', 'TfidfTransformer', 'TfidfVectorizer', 'strip_accents_ascii', 'strip_accents_unicode', 'strip_tags'] def strip_accents_unicode(s): """Transform accentuated unicode symbols into their simple counterpart Warning: the python-level loop and join operations make this implementation 20 times slower than the strip_accents_ascii basic normalization. See also -------- strip_accents_ascii Remove accentuated char for any unicode symbol that has a direct ASCII equivalent. """ return ''.join([c for c in unicodedata.normalize('NFKD', s) if not unicodedata.combining(c)]) def strip_accents_ascii(s): """Transform accentuated unicode symbols into ascii or nothing Warning: this solution is only suited for languages that have a direct transliteration to ASCII symbols. See also -------- strip_accents_unicode Remove accentuated char for any unicode symbol. """ nkfd_form = unicodedata.normalize('NFKD', s) return nkfd_form.encode('ASCII', 'ignore').decode('ASCII') def strip_tags(s): """Basic regexp based HTML / XML tag stripper function For serious HTML/XML preprocessing you should rather use an external library such as lxml or BeautifulSoup. """ return re.compile(r"<([^>]+)>", flags=re.UNICODE).sub(" ", s) def _check_stop_list(stop): if stop == "english": return ENGLISH_STOP_WORDS elif isinstance(stop, six.string_types): raise ValueError("not a built-in stop list: %s" % stop) elif stop is None: return None else: # assume it's a collection return frozenset(stop) class VectorizerMixin(object): """Provides common code for text vectorizers (tokenization logic).""" _white_spaces = re.compile(r"\s\s+") def decode(self, doc): """Decode the input into a string of unicode symbols The decoding strategy depends on the vectorizer parameters. """ if self.input == 'filename': with open(doc, 'rb') as fh: doc = fh.read() elif self.input == 'file': doc = doc.read() if isinstance(doc, bytes): doc = doc.decode(self.encoding, self.decode_error) if doc is np.nan: raise ValueError("np.nan is an invalid document, expected byte or " "unicode string.") return doc def _word_ngrams(self, tokens, stop_words=None): """Turn tokens into a sequence of n-grams after stop words filtering""" # handle stop words if stop_words is not None: tokens = [w for w in tokens if w not in stop_words] # handle token n-grams min_n, max_n = self.ngram_range if max_n != 1: original_tokens = tokens tokens = [] n_original_tokens = len(original_tokens) for n in xrange(min_n, min(max_n + 1, n_original_tokens + 1)): for i in xrange(n_original_tokens - n + 1): tokens.append(" ".join(original_tokens[i: i + n])) return tokens def _char_ngrams(self, text_document): """Tokenize text_document into a sequence of character n-grams""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) text_len = len(text_document) ngrams = [] min_n, max_n = self.ngram_range for n in xrange(min_n, min(max_n + 1, text_len + 1)): for i in xrange(text_len - n + 1): ngrams.append(text_document[i: i + n]) return ngrams def _char_wb_ngrams(self, text_document): """Whitespace sensitive char-n-gram tokenization. Tokenize text_document into a sequence of character n-grams excluding any whitespace (operating only inside word boundaries)""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) min_n, max_n = self.ngram_range ngrams = [] for w in text_document.split(): w = ' ' + w + ' ' w_len = len(w) for n in xrange(min_n, max_n + 1): offset = 0 ngrams.append(w[offset:offset + n]) while offset + n < w_len: offset += 1 ngrams.append(w[offset:offset + n]) if offset == 0: # count a short word (w_len < n) only once break return ngrams def build_preprocessor(self): """Return a function to preprocess the text before tokenization""" if self.preprocessor is not None: return self.preprocessor # unfortunately python functools package does not have an efficient # `compose` function that would have allowed us to chain a dynamic # number of functions. However the cost of a lambda call is a few # hundreds of nanoseconds which is negligible when compared to the # cost of tokenizing a string of 1000 chars for instance. noop = lambda x: x # accent stripping if not self.strip_accents: strip_accents = noop elif callable(self.strip_accents): strip_accents = self.strip_accents elif self.strip_accents == 'ascii': strip_accents = strip_accents_ascii elif self.strip_accents == 'unicode': strip_accents = strip_accents_unicode else: raise ValueError('Invalid value for "strip_accents": %s' % self.strip_accents) if self.lowercase: return lambda x: strip_accents(x.lower()) else: return strip_accents def build_tokenizer(self): """Return a function that splits a string into a sequence of tokens""" if self.tokenizer is not None: return self.tokenizer token_pattern = re.compile(self.token_pattern) return lambda doc: token_pattern.findall(doc) def get_stop_words(self): """Build or fetch the effective stop words list""" return _check_stop_list(self.stop_words) def build_analyzer(self): """Return a callable that handles preprocessing and tokenization""" if callable(self.analyzer): return self.analyzer preprocess = self.build_preprocessor() if self.analyzer == 'char': return lambda doc: self._char_ngrams(preprocess(self.decode(doc))) elif self.analyzer == 'char_wb': return lambda doc: self._char_wb_ngrams( preprocess(self.decode(doc))) elif self.analyzer == 'word': stop_words = self.get_stop_words() tokenize = self.build_tokenizer() return lambda doc: self._word_ngrams( tokenize(preprocess(self.decode(doc))), stop_words) else: raise ValueError('%s is not a valid tokenization scheme/analyzer' % self.analyzer) def _validate_vocabulary(self): vocabulary = self.vocabulary if vocabulary is not None: if not isinstance(vocabulary, Mapping): vocab = {} for i, t in enumerate(vocabulary): if vocab.setdefault(t, i) != i: msg = "Duplicate term in vocabulary: %r" % t raise ValueError(msg) vocabulary = vocab else: indices = set(six.itervalues(vocabulary)) if len(indices) != len(vocabulary): raise ValueError("Vocabulary contains repeated indices.") for i in xrange(len(vocabulary)): if i not in indices: msg = ("Vocabulary of size %d doesn't contain index " "%d." % (len(vocabulary), i)) raise ValueError(msg) if not vocabulary: raise ValueError("empty vocabulary passed to fit") self.fixed_vocabulary_ = True self.vocabulary_ = dict(vocabulary) else: self.fixed_vocabulary_ = False def _check_vocabulary(self): """Check if vocabulary is empty or missing (not fit-ed)""" msg = "%(name)s - Vocabulary wasn't fitted." check_is_fitted(self, 'vocabulary_', msg=msg), if len(self.vocabulary_) == 0: raise ValueError("Vocabulary is empty") @property @deprecated("The `fixed_vocabulary` attribute is deprecated and will be " "removed in 0.18. Please use `fixed_vocabulary_` instead.") def fixed_vocabulary(self): return self.fixed_vocabulary_ class HashingVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token occurrences It turns a collection of text documents into a scipy.sparse matrix holding token occurrence counts (or binary occurrence information), possibly normalized as token frequencies if norm='l1' or projected on the euclidean unit sphere if norm='l2'. This text vectorizer implementation uses the hashing trick to find the token string name to feature integer index mapping. This strategy has several advantages: - it is very low memory scalable to large datasets as there is no need to store a vocabulary dictionary in memory - it is fast to pickle and un-pickle as it holds no state besides the constructor parameters - it can be used in a streaming (partial fit) or parallel pipeline as there is no state computed during fit. There are also a couple of cons (vs using a CountVectorizer with an in-memory vocabulary): - there is no way to compute the inverse transform (from feature indices to string feature names) which can be a problem when trying to introspect which features are most important to a model. - there can be collisions: distinct tokens can be mapped to the same feature index. However in practice this is rarely an issue if n_features is large enough (e.g. 2 ** 18 for text classification problems). - no IDF weighting as this would render the transformer stateful. The hash function employed is the signed 32-bit version of Murmurhash3. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, default='utf-8' If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n), default=(1, 1) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. lowercase : boolean, default=True Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). n_features : integer, default=(2 ** 20) The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. binary: boolean, default=False. If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype: type, optional Type of the matrix returned by fit_transform() or transform(). non_negative : boolean, default=False Whether output matrices should contain non-negative values only; effectively calls abs on the matrix prior to returning it. When True, output values can be interpreted as frequencies. When False, output values will have expected value zero. See also -------- CountVectorizer, TfidfVectorizer """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', n_features=(2 ** 20), binary=False, norm='l2', non_negative=False, dtype=np.float64): self.input = input self.encoding = encoding self.decode_error = decode_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.n_features = n_features self.ngram_range = ngram_range self.binary = binary self.norm = norm self.non_negative = non_negative self.dtype = dtype def partial_fit(self, X, y=None): """Does nothing: this transformer is stateless. This method is just there to mark the fact that this transformer can work in a streaming setup. """ return self def fit(self, X, y=None): """Does nothing: this transformer is stateless.""" # triggers a parameter validation self._get_hasher().fit(X, y=y) return self def transform(self, X, y=None): """Transform a sequence of documents to a document-term matrix. Parameters ---------- X : iterable over raw text documents, length = n_samples Samples. Each sample must be a text document (either bytes or unicode strings, file name or file object depending on the constructor argument) which will be tokenized and hashed. y : (ignored) Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Document-term matrix. """ analyzer = self.build_analyzer() X = self._get_hasher().transform(analyzer(doc) for doc in X) if self.binary: X.data.fill(1) if self.norm is not None: X = normalize(X, norm=self.norm, copy=False) return X # Alias transform to fit_transform for convenience fit_transform = transform def _get_hasher(self): return FeatureHasher(n_features=self.n_features, input_type='string', dtype=self.dtype, non_negative=self.non_negative) def _document_frequency(X): """Count the number of non-zero values for each feature in sparse X.""" if sp.isspmatrix_csr(X): return bincount(X.indices, minlength=X.shape[1]) else: return np.diff(sp.csc_matrix(X, copy=False).indptr) class CountVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token counts This implementation produces a sparse representation of the counts using scipy.sparse.coo_matrix. If you do not provide an a-priori dictionary and you do not use an analyzer that does some kind of feature selection then the number of features will be equal to the vocabulary size found by analyzing the data. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. Only applies if ``analyzer == 'word'``. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, True by default Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp select tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : int or None, default=None If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. Indices in the mapping should not be repeated and should not have any gap between 0 and the largest index. binary : boolean, default=False If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype : type, optional Type of the matrix returned by fit_transform() or transform(). Attributes ---------- vocabulary_ : dict A mapping of terms to feature indices. stop_words_ : set Terms that were ignored because they either: - occurred in too many documents (`max_df`) - occurred in too few documents (`min_df`) - were cut off by feature selection (`max_features`). This is only available if no vocabulary was given. See also -------- HashingVectorizer, TfidfVectorizer Notes ----- The ``stop_words_`` attribute can get large and increase the model size when pickling. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64): self.input = input self.encoding = encoding self.decode_error = decode_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.max_df = max_df self.min_df = min_df if max_df < 0 or min_df < 0: raise ValueError("negative value for max_df of min_df") self.max_features = max_features if max_features is not None: if (not isinstance(max_features, numbers.Integral) or max_features <= 0): raise ValueError( "max_features=%r, neither a positive integer nor None" % max_features) self.ngram_range = ngram_range self.vocabulary = vocabulary self.binary = binary self.dtype = dtype def _sort_features(self, X, vocabulary): """Sort features by name Returns a reordered matrix and modifies the vocabulary in place """ sorted_features = sorted(six.iteritems(vocabulary)) map_index = np.empty(len(sorted_features), dtype=np.int32) for new_val, (term, old_val) in enumerate(sorted_features): map_index[new_val] = old_val vocabulary[term] = new_val return X[:, map_index] def _limit_features(self, X, vocabulary, high=None, low=None, limit=None): """Remove too rare or too common features. Prune features that are non zero in more samples than high or less documents than low, modifying the vocabulary, and restricting it to at most the limit most frequent. This does not prune samples with zero features. """ if high is None and low is None and limit is None: return X, set() # Calculate a mask based on document frequencies dfs = _document_frequency(X) tfs = np.asarray(X.sum(axis=0)).ravel() mask = np.ones(len(dfs), dtype=bool) if high is not None: mask &= dfs <= high if low is not None: mask &= dfs >= low if limit is not None and mask.sum() > limit: mask_inds = (-tfs[mask]).argsort()[:limit] new_mask = np.zeros(len(dfs), dtype=bool) new_mask[np.where(mask)[0][mask_inds]] = True mask = new_mask new_indices = np.cumsum(mask) - 1 # maps old indices to new removed_terms = set() for term, old_index in list(six.iteritems(vocabulary)): if mask[old_index]: vocabulary[term] = new_indices[old_index] else: del vocabulary[term] removed_terms.add(term) kept_indices = np.where(mask)[0] if len(kept_indices) == 0: raise ValueError("After pruning, no terms remain. Try a lower" " min_df or a higher max_df.") return X[:, kept_indices], removed_terms def _count_vocab(self, raw_documents, fixed_vocab): """Create sparse feature matrix, and vocabulary where fixed_vocab=False """ if fixed_vocab: vocabulary = self.vocabulary_ else: # Add a new value when a new vocabulary item is seen vocabulary = defaultdict() vocabulary.default_factory = vocabulary.__len__ analyze = self.build_analyzer() j_indices = _make_int_array() indptr = _make_int_array() indptr.append(0) for doc in raw_documents: for feature in analyze(doc): try: j_indices.append(vocabulary[feature]) except KeyError: # Ignore out-of-vocabulary items for fixed_vocab=True continue indptr.append(len(j_indices)) if not fixed_vocab: # disable defaultdict behaviour vocabulary = dict(vocabulary) if not vocabulary: raise ValueError("empty vocabulary; perhaps the documents only" " contain stop words") j_indices = frombuffer_empty(j_indices, dtype=np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) values = np.ones(len(j_indices)) X = sp.csr_matrix((values, j_indices, indptr), shape=(len(indptr) - 1, len(vocabulary)), dtype=self.dtype) X.sum_duplicates() return vocabulary, X def fit(self, raw_documents, y=None): """Learn a vocabulary dictionary of all tokens in the raw documents. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- self """ self.fit_transform(raw_documents) return self def fit_transform(self, raw_documents, y=None): """Learn the vocabulary dictionary and return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : array, [n_samples, n_features] Document-term matrix. """ # We intentionally don't call the transform method to make # fit_transform overridable without unwanted side effects in # TfidfVectorizer. self._validate_vocabulary() max_df = self.max_df min_df = self.min_df max_features = self.max_features vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary_) if self.binary: X.data.fill(1) if not self.fixed_vocabulary_: X = self._sort_features(X, vocabulary) n_doc = X.shape[0] max_doc_count = (max_df if isinstance(max_df, numbers.Integral) else max_df * n_doc) min_doc_count = (min_df if isinstance(min_df, numbers.Integral) else min_df * n_doc) if max_doc_count < min_doc_count: raise ValueError( "max_df corresponds to < documents than min_df") X, self.stop_words_ = self._limit_features(X, vocabulary, max_doc_count, min_doc_count, max_features) self.vocabulary_ = vocabulary return X def transform(self, raw_documents): """Transform documents to document-term matrix. Extract token counts out of raw text documents using the vocabulary fitted with fit or the one provided to the constructor. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : sparse matrix, [n_samples, n_features] Document-term matrix. """ if not hasattr(self, 'vocabulary_'): self._validate_vocabulary() self._check_vocabulary() # use the same matrix-building strategy as fit_transform _, X = self._count_vocab(raw_documents, fixed_vocab=True) if self.binary: X.data.fill(1) return X def inverse_transform(self, X): """Return terms per document with nonzero entries in X. Parameters ---------- X : {array, sparse matrix}, shape = [n_samples, n_features] Returns ------- X_inv : list of arrays, len = n_samples List of arrays of terms. """ self._check_vocabulary() if sp.issparse(X): # We need CSR format for fast row manipulations. X = X.tocsr() else: # We need to convert X to a matrix, so that the indexing # returns 2D objects X = np.asmatrix(X) n_samples = X.shape[0] terms = np.array(list(self.vocabulary_.keys())) indices = np.array(list(self.vocabulary_.values())) inverse_vocabulary = terms[np.argsort(indices)] return [inverse_vocabulary[X[i, :].nonzero()[1]].ravel() for i in range(n_samples)] def get_feature_names(self): """Array mapping from feature integer indices to feature name""" self._check_vocabulary() return [t for t, i in sorted(six.iteritems(self.vocabulary_), key=itemgetter(1))] def _make_int_array(): """Construct an array.array of a type suitable for scipy.sparse indices.""" return array.array(str("i")) class TfidfTransformer(BaseEstimator, TransformerMixin): """Transform a count matrix to a normalized tf or tf-idf representation Tf means term-frequency while tf-idf means term-frequency times inverse document-frequency. This is a common term weighting scheme in information retrieval, that has also found good use in document classification. The goal of using tf-idf instead of the raw frequencies of occurrence of a token in a given document is to scale down the impact of tokens that occur very frequently in a given corpus and that are hence empirically less informative than features that occur in a small fraction of the training corpus. The actual formula used for tf-idf is tf * (idf + 1) = tf + tf * idf, instead of tf * idf. The effect of this is that terms with zero idf, i.e. that occur in all documents of a training set, will not be entirely ignored. The formulas used to compute tf and idf depend on parameter settings that correspond to the SMART notation used in IR, as follows: Tf is "n" (natural) by default, "l" (logarithmic) when sublinear_tf=True. Idf is "t" when use_idf is given, "n" (none) otherwise. Normalization is "c" (cosine) when norm='l2', "n" (none) when norm=None. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, default=True Enable inverse-document-frequency reweighting. smooth_idf : boolean, default=True Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, default=False Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). References ---------- .. [Yates2011] `R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 68-74.` .. [MRS2008] `C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 118-120.` """ def __init__(self, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): self.norm = norm self.use_idf = use_idf self.smooth_idf = smooth_idf self.sublinear_tf = sublinear_tf def fit(self, X, y=None): """Learn the idf vector (global term weights) Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts """ if not sp.issparse(X): X = sp.csc_matrix(X) if self.use_idf: n_samples, n_features = X.shape df = _document_frequency(X) # perform idf smoothing if required df += int(self.smooth_idf) n_samples += int(self.smooth_idf) # log+1 instead of log makes sure terms with zero idf don't get # suppressed entirely. idf = np.log(float(n_samples) / df) + 1.0 self._idf_diag = sp.spdiags(idf, diags=0, m=n_features, n=n_features) return self def transform(self, X, copy=True): """Transform a count matrix to a tf or tf-idf representation Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts copy : boolean, default True Whether to copy X and operate on the copy or perform in-place operations. Returns ------- vectors : sparse matrix, [n_samples, n_features] """ if hasattr(X, 'dtype') and np.issubdtype(X.dtype, np.float): # preserve float family dtype X = sp.csr_matrix(X, copy=copy) else: # convert counts or binary occurrences to floats X = sp.csr_matrix(X, dtype=np.float64, copy=copy) n_samples, n_features = X.shape if self.sublinear_tf: np.log(X.data, X.data) X.data += 1 if self.use_idf: check_is_fitted(self, '_idf_diag', 'idf vector is not fitted') expected_n_features = self._idf_diag.shape[0] if n_features != expected_n_features: raise ValueError("Input has n_features=%d while the model" " has been trained with n_features=%d" % ( n_features, expected_n_features)) # *= doesn't work X = X * self._idf_diag if self.norm: X = normalize(X, norm=self.norm, copy=False) return X @property def idf_(self): if hasattr(self, "_idf_diag"): return np.ravel(self._idf_diag.sum(axis=0)) else: return None class TfidfVectorizer(CountVectorizer): """Convert a collection of raw documents to a matrix of TF-IDF features. Equivalent to CountVectorizer followed by TfidfTransformer. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char'} or callable Whether the feature should be made of word or character n-grams. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If a string, it is passed to _check_stop_list and the appropriate stop list is returned. 'english' is currently the only supported string value. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, default True Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : int or None, default=None If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. binary : boolean, default=False If True, all non-zero term counts are set to 1. This does not mean outputs will have only 0/1 values, only that the tf term in tf-idf is binary. (Set idf and normalization to False to get 0/1 outputs.) dtype : type, optional Type of the matrix returned by fit_transform() or transform(). norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, default=True Enable inverse-document-frequency reweighting. smooth_idf : boolean, default=True Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, default=False Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). Attributes ---------- idf_ : array, shape = [n_features], or None The learned idf vector (global term weights) when ``use_idf`` is set to True, None otherwise. stop_words_ : set Terms that were ignored because they either: - occurred in too many documents (`max_df`) - occurred in too few documents (`min_df`) - were cut off by feature selection (`max_features`). This is only available if no vocabulary was given. See also -------- CountVectorizer Tokenize the documents and count the occurrences of token and return them as a sparse matrix TfidfTransformer Apply Term Frequency Inverse Document Frequency normalization to a sparse matrix of occurrence counts. Notes ----- The ``stop_words_`` attribute can get large and increase the model size when pickling. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, analyzer='word', stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): super(TfidfVectorizer, self).__init__( input=input, encoding=encoding, decode_error=decode_error, strip_accents=strip_accents, lowercase=lowercase, preprocessor=preprocessor, tokenizer=tokenizer, analyzer=analyzer, stop_words=stop_words, token_pattern=token_pattern, ngram_range=ngram_range, max_df=max_df, min_df=min_df, max_features=max_features, vocabulary=vocabulary, binary=binary, dtype=dtype) self._tfidf = TfidfTransformer(norm=norm, use_idf=use_idf, smooth_idf=smooth_idf, sublinear_tf=sublinear_tf) # Broadcast the TF-IDF parameters to the underlying transformer instance # for easy grid search and repr @property def norm(self): return self._tfidf.norm @norm.setter def norm(self, value): self._tfidf.norm = value @property def use_idf(self): return self._tfidf.use_idf @use_idf.setter def use_idf(self, value): self._tfidf.use_idf = value @property def smooth_idf(self): return self._tfidf.smooth_idf @smooth_idf.setter def smooth_idf(self, value): self._tfidf.smooth_idf = value @property def sublinear_tf(self): return self._tfidf.sublinear_tf @sublinear_tf.setter def sublinear_tf(self, value): self._tfidf.sublinear_tf = value @property def idf_(self): return self._tfidf.idf_ def fit(self, raw_documents, y=None): """Learn vocabulary and idf from training set. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- self : TfidfVectorizer """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) return self def fit_transform(self, raw_documents, y=None): """Learn vocabulary and idf, return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) # X is already a transformed view of raw_documents so # we set copy to False return self._tfidf.transform(X, copy=False) def transform(self, raw_documents, copy=True): """Transform documents to document-term matrix. Uses the vocabulary and document frequencies (df) learned by fit (or fit_transform). Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects copy : boolean, default True Whether to copy X and operate on the copy or perform in-place operations. Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ check_is_fitted(self, '_tfidf', 'The tfidf vector is not fitted') X = super(TfidfVectorizer, self).transform(raw_documents) return self._tfidf.transform(X, copy=False)
bsd-3-clause
Edu-Glez/Bank_sentiment_analysis
env/lib/python3.6/site-packages/pandas/types/missing.py
7
11463
""" missing types & inference """ import numpy as np from pandas import lib from pandas.tslib import NaT, iNaT from .generic import (ABCMultiIndex, ABCSeries, ABCIndexClass, ABCGeneric) from .common import (is_string_dtype, is_datetimelike, is_datetimelike_v_numeric, is_float_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_timedelta64_dtype, is_complex_dtype, is_categorical_dtype, is_string_like_dtype, is_bool_dtype, is_integer_dtype, is_dtype_equal, needs_i8_conversion, _ensure_object, pandas_dtype, is_scalar, is_object_dtype, is_integer, _TD_DTYPE, _NS_DTYPE, _DATELIKE_DTYPES) from .inference import is_list_like def isnull(obj): """Detect missing values (NaN in numeric arrays, None/NaN in object arrays) Parameters ---------- arr : ndarray or object value Object to check for null-ness Returns ------- isnulled : array-like of bool or bool Array or bool indicating whether an object is null or if an array is given which of the element is null. See also -------- pandas.notnull: boolean inverse of pandas.isnull """ return _isnull(obj) def _isnull_new(obj): if is_scalar(obj): return lib.checknull(obj) # hack (for now) because MI registers as ndarray elif isinstance(obj, ABCMultiIndex): raise NotImplementedError("isnull is not defined for MultiIndex") elif isinstance(obj, (ABCSeries, np.ndarray, ABCIndexClass)): return _isnull_ndarraylike(obj) elif isinstance(obj, ABCGeneric): return obj._constructor(obj._data.isnull(func=isnull)) elif isinstance(obj, list) or hasattr(obj, '__array__'): return _isnull_ndarraylike(np.asarray(obj)) else: return obj is None def _isnull_old(obj): """Detect missing values. Treat None, NaN, INF, -INF as null. Parameters ---------- arr: ndarray or object value Returns ------- boolean ndarray or boolean """ if is_scalar(obj): return lib.checknull_old(obj) # hack (for now) because MI registers as ndarray elif isinstance(obj, ABCMultiIndex): raise NotImplementedError("isnull is not defined for MultiIndex") elif isinstance(obj, (ABCSeries, np.ndarray, ABCIndexClass)): return _isnull_ndarraylike_old(obj) elif isinstance(obj, ABCGeneric): return obj._constructor(obj._data.isnull(func=_isnull_old)) elif isinstance(obj, list) or hasattr(obj, '__array__'): return _isnull_ndarraylike_old(np.asarray(obj)) else: return obj is None _isnull = _isnull_new def _use_inf_as_null(key): """Option change callback for null/inf behaviour Choose which replacement for numpy.isnan / -numpy.isfinite is used. Parameters ---------- flag: bool True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). Notes ----- This approach to setting global module values is discussed and approved here: * http://stackoverflow.com/questions/4859217/ programmatically-creating-variables-in-python/4859312#4859312 """ from pandas.core.config import get_option flag = get_option(key) if flag: globals()['_isnull'] = _isnull_old else: globals()['_isnull'] = _isnull_new def _isnull_ndarraylike(obj): values = getattr(obj, 'values', obj) dtype = values.dtype if is_string_dtype(dtype): if is_categorical_dtype(values): from pandas import Categorical if not isinstance(values, Categorical): values = values.values result = values.isnull() else: # Working around NumPy ticket 1542 shape = values.shape if is_string_like_dtype(dtype): result = np.zeros(values.shape, dtype=bool) else: result = np.empty(shape, dtype=bool) vec = lib.isnullobj(values.ravel()) result[...] = vec.reshape(shape) elif needs_i8_conversion(obj): # this is the NaT pattern result = values.view('i8') == iNaT else: result = np.isnan(values) # box if isinstance(obj, ABCSeries): from pandas import Series result = Series(result, index=obj.index, name=obj.name, copy=False) return result def _isnull_ndarraylike_old(obj): values = getattr(obj, 'values', obj) dtype = values.dtype if is_string_dtype(dtype): # Working around NumPy ticket 1542 shape = values.shape if is_string_like_dtype(dtype): result = np.zeros(values.shape, dtype=bool) else: result = np.empty(shape, dtype=bool) vec = lib.isnullobj_old(values.ravel()) result[:] = vec.reshape(shape) elif dtype in _DATELIKE_DTYPES: # this is the NaT pattern result = values.view('i8') == iNaT else: result = ~np.isfinite(values) # box if isinstance(obj, ABCSeries): from pandas import Series result = Series(result, index=obj.index, name=obj.name, copy=False) return result def notnull(obj): """Replacement for numpy.isfinite / -numpy.isnan which is suitable for use on object arrays. Parameters ---------- arr : ndarray or object value Object to check for *not*-null-ness Returns ------- isnulled : array-like of bool or bool Array or bool indicating whether an object is *not* null or if an array is given which of the element is *not* null. See also -------- pandas.isnull : boolean inverse of pandas.notnull """ res = isnull(obj) if is_scalar(res): return not res return ~res def is_null_datelike_scalar(other): """ test whether the object is a null datelike, e.g. Nat but guard against passing a non-scalar """ if other is NaT or other is None: return True elif is_scalar(other): # a timedelta if hasattr(other, 'dtype'): return other.view('i8') == iNaT elif is_integer(other) and other == iNaT: return True return isnull(other) return False def _is_na_compat(arr, fill_value=np.nan): """ Parameters ---------- arr: a numpy array fill_value: fill value, default to np.nan Returns ------- True if we can fill using this fill_value """ dtype = arr.dtype if isnull(fill_value): return not (is_bool_dtype(dtype) or is_integer_dtype(dtype)) return True def array_equivalent(left, right, strict_nan=False): """ True if two arrays, left and right, have equal non-NaN elements, and NaNs in corresponding locations. False otherwise. It is assumed that left and right are NumPy arrays of the same dtype. The behavior of this function (particularly with respect to NaNs) is not defined if the dtypes are different. Parameters ---------- left, right : ndarrays strict_nan : bool, default False If True, consider NaN and None to be different. Returns ------- b : bool Returns True if the arrays are equivalent. Examples -------- >>> array_equivalent( ... np.array([1, 2, np.nan]), ... np.array([1, 2, np.nan])) True >>> array_equivalent( ... np.array([1, np.nan, 2]), ... np.array([1, 2, np.nan])) False """ left, right = np.asarray(left), np.asarray(right) # shape compat if left.shape != right.shape: return False # Object arrays can contain None, NaN and NaT. # string dtypes must be come to this path for NumPy 1.7.1 compat if is_string_dtype(left) or is_string_dtype(right): if not strict_nan: # isnull considers NaN and None to be equivalent. return lib.array_equivalent_object( _ensure_object(left.ravel()), _ensure_object(right.ravel())) for left_value, right_value in zip(left, right): if left_value is NaT and right_value is not NaT: return False elif isinstance(left_value, float) and np.isnan(left_value): if (not isinstance(right_value, float) or not np.isnan(right_value)): return False else: if left_value != right_value: return False return True # NaNs can occur in float and complex arrays. if is_float_dtype(left) or is_complex_dtype(left): return ((left == right) | (np.isnan(left) & np.isnan(right))).all() # numpy will will not allow this type of datetimelike vs integer comparison elif is_datetimelike_v_numeric(left, right): return False # M8/m8 elif needs_i8_conversion(left) and needs_i8_conversion(right): if not is_dtype_equal(left.dtype, right.dtype): return False left = left.view('i8') right = right.view('i8') # NaNs cannot occur otherwise. try: return np.array_equal(left, right) except AttributeError: # see gh-13388 # # NumPy v1.7.1 has a bug in its array_equal # function that prevents it from correctly # comparing two arrays with complex dtypes. # This bug is corrected in v1.8.0, so remove # this try-except block as soon as we stop # supporting NumPy versions < 1.8.0 if not is_dtype_equal(left.dtype, right.dtype): return False left = left.tolist() right = right.tolist() return left == right def _infer_fill_value(val): """ infer the fill value for the nan/NaT from the provided scalar/ndarray/list-like if we are a NaT, return the correct dtyped element to provide proper block construction """ if not is_list_like(val): val = [val] val = np.array(val, copy=False) if is_datetimelike(val): return np.array('NaT', dtype=val.dtype) elif is_object_dtype(val.dtype): dtype = lib.infer_dtype(_ensure_object(val)) if dtype in ['datetime', 'datetime64']: return np.array('NaT', dtype=_NS_DTYPE) elif dtype in ['timedelta', 'timedelta64']: return np.array('NaT', dtype=_TD_DTYPE) return np.nan def _maybe_fill(arr, fill_value=np.nan): """ if we have a compatiable fill_value and arr dtype, then fill """ if _is_na_compat(arr, fill_value): arr.fill(fill_value) return arr def na_value_for_dtype(dtype): """ Return a dtype compat na value Parameters ---------- dtype : string / dtype Returns ------- np.dtype or a pandas dtype """ dtype = pandas_dtype(dtype) if (is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype) or is_timedelta64_dtype(dtype)): return NaT elif is_float_dtype(dtype): return np.nan elif is_integer_dtype(dtype): return 0 elif is_bool_dtype(dtype): return False return np.nan
apache-2.0
sirvsuite-support/sirvsuite
tools/SIRV_Calculate_quality_metrics.py
1
42925
""" SIRV_Calculate_quality metrics.py This script first normalizes and filters the counts in SIRVs and endogenous RNA using trumpet plots. Afterwards accuracy and precision is calculated. see python path/to/SIRV_Calculate_quality_metrics.py -h updated: 25 Oct 2016 Patrick Schagerl Last revision: IH181010 (c)2016 Lexogen GmbH Examples: python package_SIRVs/V4_final_testing_C_I_O/SIRV_Calculate_quality_metrics.py -count_list input_files/alignments/NGS1.73_star_out/incomplete/E*/isoforms.fpkm_tracking -e "Fast_1:20" -s "sample 1" "sample 1" "sample 2" "sample 2" "sample 3" "sample 3" -c E0 E0 E1 E1 E2 E2 -per_SIRV 3 3 3 3 3 3 -lb 0.015625 -ub 4 -tm s -quant cufflinks -o results/SIRV_quality_s_I_ python package_SIRVs/V4_final_testing_C_I_O/SIRV_Calculate_quality_metrics.py -count_list input_files/alignments/NGS1.73_star_out/complete/E*/isoforms.fpkm_tracking -e "Fast_1:20" -s "sample 1" "sample 1" "sample 2" "sample 2" "sample 3" "sample 3" -c E0 E0 E1 E1 E2 E2 -per_SIRV 3 3 3 3 3 3 -lb 0.015625 -ub 4 -tm s -quant cufflinks -o results/SIRV_quality_s_C_ python package_SIRVs/V4_final_testing_C_I_O/SIRV_Calculate_quality_metrics.py -count_list input_files/alignments/NGS1.73_star_out/overannotated/E*/isoforms.fpkm_tracking -e "Fast_1:20" -s "sample 1" "sample 1" "sample 2" "sample 2" "sample 3" "sample 3" -c E0 E0 E1 E1 E2 E2 -per_SIRV 3 3 3 3 3 3 -lb 0.015625 -ub 4 -tm s -quant cufflinks -o results/SIRV_quality_s_O_ python package_SIRVs/V4_final_testing_C_I_O/SIRV_Calculate_quality_metrics.py -count_list input_files/alignments/NGS1.73_star_out/incomplete/E*/isoforms.fpkm_tracking -e "Fast_1:20" -s "sample 1" "sample 1" "sample 2" "sample 2" "sample 3" "sample 3" -c E0 E0 E1 E1 E2 E2 -per_SIRV 3 3 3 3 3 3 -lb 0.015625 -ub 4 -tm m -tmm 0.01 -quant cufflinks -o results/SIRV_quality_m_I_ python package_SIRVs/V4_final_testing_C_I_O/SIRV_Calculate_quality_metrics.py -count_list input_files/alignments/NGS1.73_star_out/complete/E*/isoforms.fpkm_tracking -e "Fast_1:20" -s "sample 1" "sample 1" "sample 2" "sample 2" "sample 3" "sample 3" -c E0 E0 E1 E1 E2 E2 -per_SIRV 3 3 3 3 3 3 -lb 0.015625 -ub 4 -tm m -tmm 0.01 -quant cufflinks -o results/SIRV_quality_m_C_ python package_SIRVs/V4_final_testing_C_I_O/SIRV_Calculate_quality_metrics.py -count_list input_files/alignments/NGS1.73_star_out/overannotated/E*/isoforms.fpkm_tracking -e "Fast_1:20" -s "sample 1" "sample 1" "sample 2" "sample 2" "sample 3" "sample 3" -c E0 E0 E1 E1 E2 E2 -per_SIRV 3 3 3 3 3 3 -lb 0.015625 -ub 4 -tm m -tmm 0.01 -quant cufflinks -o results/SIRV_quality_m_O_ """ import SIRV_links import sys ### necessary that matplotlib can be found sys.path.append(SIRV_links.matplotlib) ### necessary that scipy can be found sys.path.append(SIRV_links.scipy) ### imports import numpy import matplotlib import matplotlib.pyplot as plt import math import argparse from matplotlib.pyplot import * import matplotlib.patches as mpatches from scipy import stats import random import SIRV_preprocessing_inputs import csv #import json import textwrap ### function def quality_metrics(experiment, sample, replicates, controls, SIRV_mix_files, count_SIRVs, count_eRNA, per_SIRV, thres, lower_boundary, upper_boundary, disable_output, disable_plot, threshold_method, threshold_value, output_quality_file, summary_exp): if not disable_output: print "obtain quality metrics" print "obtain information of the SIRVs and experiment, samples, controls" # get the number of samples and the array repl incr (replicate increment) it shows e.g. [0, 3, 5, 8] meaning that there are replicates 0, 1, 2 (sample 1); 3, 4 (sample 2) and 5, 6, 7 (sample 3) samples = len(controls) repl_incr = numpy.zeros(len(replicates) + 1, dtype=int) repl_incr[0] = 0 for i in range(0, len(replicates)): repl_incr[i + 1] = sum(replicates[0 : i + 1]) # get the experiment assigned to every sample experiment_assigned = [] sample_assigned = [] for i in repl_incr[ : -1]: experiment_assigned.append(experiment) sample_assigned.append(sample[i]) # obtain the SIRVs version SIRV_type=None if "SIRV103" not in count_SIRVs: SIRV_type = "I" elif "SIRV104" in count_SIRVs: SIRV_type = "O" else: SIRV_type = "C" # obtain SIRV information (sum, abundance, gene, submix) SIRV, sum_mix, submixes = SIRV_preprocessing_inputs.get_SIRV_information(SIRV_mix_files,SIRV_type) # obtain the sum and calculate the mean sum of the replicates --> obtain scaling factors (normalization) for SIRVs number_fields = sum(replicates) sum_repl_count = numpy.sum(count_SIRVs.values(), axis=0) mean_sum_repl_count = numpy.zeros(sum(replicates)) norm_factor = numpy.zeros(sum(replicates)) for i in range(0, samples): mean_sum_repl_count[repl_incr[i] : repl_incr[i + 1]] = numpy.mean(sum_repl_count[repl_incr[i] : repl_incr[i + 1]]) norm_factor[repl_incr[i]:repl_incr[i + 1]] = float(1)/(numpy.mean(sum_repl_count[repl_incr[i] : repl_incr[i + 1]]))*sum_mix[controls[i]] # normalize the values and minimum value thres normalized_values = {} for key in count_SIRVs: normalized_values[key] = count_SIRVs[key]*norm_factor normalized_values[key][normalized_values[key] < thres] = thres mean_normalized_values = {} for key in count_SIRVs: mean_normalized_values[key] = [] for i in range(0, samples): mean_normalized_values[key].append(numpy.mean(normalized_values[key][repl_incr[i] : repl_incr[i + 1]])) #### Calculate the LFC (log2(measured/expected) and CV (std in values of samples (replicates)) #### if not disable_output: print "calculate LFC and CV in SIRVs" LFC = {} for key in mean_normalized_values: if SIRV[key]['E0'] != 0: LFC[key] = numpy.empty(samples) for i in range(0, len(controls)): LFC[key][i] = math.log(mean_normalized_values[key][i]/SIRV[key][controls[i]], 2) all_CV = [] all_CV_nan=False for i in range(0, samples): if repl_incr[i + 1] - repl_incr[i] > 1: mean = numpy.mean(numpy.array(normalized_values.values(), float)[ : , repl_incr[i] : repl_incr[i + 1]], axis=1) std = numpy.std(numpy.array(normalized_values.values(),float)[ : , repl_incr[i] : repl_incr[i + 1]], ddof=1, axis=1) all_CV.append(std/mean) else: all_CV.append(numpy.full(len(SIRV), float('nan'))) all_CV_nan=True all_CV = numpy.transpose(all_CV) #### Acc, Precision in SIRVs #### ### get the samples which belong to one experiment if not disable_output: print "calculate accuracy and precision in SIRVs" experiment_sample_columns = {} for i in range(0, len(experiment_assigned)): if experiment_assigned[i] not in experiment_sample_columns: experiment_sample_columns[experiment_assigned[i]] = [] experiment_sample_columns[experiment_assigned[i]].append(i) experiment_prec = [] xlabels = [] for key in sorted(experiment_sample_columns): ####TODO nanmean originally if all_CV_nan==False: experiment_prec.append(numpy.nanmean(all_CV[ : , experiment_sample_columns[key]])) else: experiment_prec.append(float('nan')) xlabels.append(key) ### obtain values of eRNA and precision of eRNA if not disable_output: print "obtain eRNA values" # for key in count_eRNA: # if len(count_eRNA[key])!=6: # print key, count_eRNA[key] sum_repl_eRNA = numpy.sum(count_eRNA.values(), axis=0) # get controls of every replicate controls_all_repl = [] for i in range(0, samples): for a in range(0, replicates[i]): controls_all_repl.append(controls[i]) # obtain the scaling factor for eRNA mean_sum_repl_eRNA = numpy.zeros(sum(replicates)) scaling_factor = numpy.zeros(sum(replicates)) for i in range(0, samples): mean_sum_repl_eRNA[repl_incr[i] : repl_incr[i + 1]] = numpy.mean(sum_repl_eRNA[repl_incr[i] : repl_incr[i + 1]]) array_SIRV_value = numpy.full(len(per_SIRV), 69.5, float) spike_in_time = array_SIRV_value*100/per_SIRV scaling_factor = spike_in_time/mean_sum_repl_eRNA if not disable_output: print "normalize with scaling factor" # normalize the values normalized_values_eRNA = count_eRNA.values()*scaling_factor sum_repl_eRNA = numpy.sum(normalized_values_eRNA, axis=0) sum_before = numpy.zeros(sum(replicates)) for i in range(0, samples): sum_before[repl_incr[i] : repl_incr[i + 1]] = numpy.mean(sum_repl_eRNA[repl_incr[i] : repl_incr[i + 1]]) # see if one value is below the detection threshold normalized_values_eRNA[normalized_values_eRNA < thres] = thres if not disable_output: print "create values for plot" # take the log and make a trumpet plot --> with quadratic regression obtain threshold for filtering of replicates with high abundance if another replicate is below the detection threshold log_norm_values_eRNA = numpy.log10(normalized_values_eRNA) if not disable_output: print "get max values" values_rand_x = [] values_rand_y = [] # for testing # raise NameError('test0') ### sample specific obtaining the threshold if threshold_method != "m" or threshold_method == "m" and threshold_value is None: mean_p0 = {} mean_p1 = {} mean_p2 = {} i_fig = 0 for key in experiment_sample_columns: mean_p0[key] = {} mean_p1[key] = {} mean_p2[key] = {} ### some where here for index_sample in range(0, len(experiment_sample_columns[key])): mean_p0[key][experiment_sample_columns[key][index_sample]] = [] mean_p1[key][experiment_sample_columns[key][index_sample]] = [] mean_p2[key][experiment_sample_columns[key][index_sample]] = [] for trumpet_replicate_1 in range(repl_incr[experiment_sample_columns[key][index_sample]], repl_incr[experiment_sample_columns[key][index_sample] + 1]): ##### here is the problem???? for trumpet_replicate_2 in range(trumpet_replicate_1 + 1, repl_incr[experiment_sample_columns[key][index_sample] + 1]): values = {} for i in range(0, len(normalized_values_eRNA)): if round(math.log(normalized_values_eRNA[i,trumpet_replicate_1], 10), 1) not in values: values[round(math.log(normalized_values_eRNA[i, trumpet_replicate_1], 10), 1)] = math.log(normalized_values_eRNA[i, trumpet_replicate_2], 10) else: if math.log(normalized_values_eRNA[i, trumpet_replicate_2], 10) > values[round(math.log(normalized_values_eRNA[i, trumpet_replicate_1], 10), 1)]: values[round(math.log(normalized_values_eRNA[i, trumpet_replicate_1], 10), 1)] = math.log(normalized_values_eRNA[i, trumpet_replicate_2], 10) # if not disable_output: # print "threshold estimation" ### estimate the threshold of the filtering using different approaches #raise NameError('in the loop') #print values temp_x = values.keys() temp_y = values.values() # approach 1: values log(10^-6)...0 # x = [] # y = [] # for i in range(0, len(temp_x)): # if temp_x[i] > round(math.log(thres, 10), 1) and temp_x[i] < 0: # x.append(temp_x[i]) # y.append(temp_y[i]) # # approach 2: values < 0 # x2 = [] # y2 = [] # for i in range(0, len(temp_x)): # if temp_x[i] < 0: # x2.append(temp_x[i]) # y2.append(temp_y[i]) # # approach 3: values above the 22,5 degree line (not y = x but y=x/2) # x3 = [] # y3 = [] # for i in range(0, len(temp_x)): # if 10**temp_y[i] > 10**temp_x[i]/2: # x3.append(temp_x[i]) # y3.append(temp_y[i]) # approach 4 (1 and 3 combined): values above log(10^6) and values above the 22,5 degree line (not y = x but y = x/2) x13 = [] y13 = [] for i in range(0, len(temp_x)): if temp_x[i] > round(math.log(thres, 10), 1) and 10**temp_y[i] > 10**temp_x[i]/2: x13.append(temp_x[i]) y13.append(temp_y[i]) # get the linear regression p # p = numpy.poly1d(numpy.polyfit(x, y, 2)) # ptemp = numpy.poly1d(numpy.polyfit(temp_x, temp_y, 2)) # p2 = numpy.poly1d(numpy.polyfit(x2, y2, 2)) # p3 = numpy.poly1d(numpy.polyfit(x3, y3, 2)) p13 = numpy.poly1d(numpy.polyfit(x13, y13, 2)) mean_p0[key][experiment_sample_columns[key][index_sample]].append(p13[0]) mean_p1[key][experiment_sample_columns[key][index_sample]].append(p13[1]) mean_p2[key][experiment_sample_columns[key][index_sample]].append(p13[2]) for i in range(0, len(log_norm_values_eRNA[ : ,trumpet_replicate_1])): if random.random() <= float(1)/repl_incr[-1]: values_rand_x.append(log_norm_values_eRNA[i, trumpet_replicate_1]) values_rand_y.append(log_norm_values_eRNA[i, trumpet_replicate_2]) x_lin = numpy.linspace(min(temp_x), max(temp_x), 1000) fig, ax = plt.subplots(1, figsize=(8, 8)) ax.scatter(log_norm_values_eRNA[ : , trumpet_replicate_1], log_norm_values_eRNA[ : , trumpet_replicate_2], alpha=0.25, color="#003c5a") #ax.scatter(values_rand_x, values_rand_y, alpha=0.25, color="#003c5a") # plot the regression # ax.plot(x_lin, p(x_lin), color="r") # ax.plot(x_lin, p2(x_lin), color="g") # ax.plot(x_lin, ptemp(x_lin), color="b") # ax.plot(x_lin, p3(x_lin), color="c") ax.plot(x_lin, p13(x_lin), color="k") ax.plot(p13(x_lin), x_lin, color="k") ax.set_xlabel(experiment + " " + sample[trumpet_replicate_1] + " " + controls_all_repl[trumpet_replicate_1] + "\n" + "log(value)") ax.set_ylabel(experiment + " " + sample[trumpet_replicate_2] + " " + controls_all_repl[trumpet_replicate_2] + "\n" + "log(value)") ax.set_title('trumpet plot before filtering') fig.subplots_adjust(left=0.1, bottom=0.08, right=0.97, top=0.96) plt.xlim(math.floor(math.log(thres, 10)) - 1, math.ceil(numpy.max(log_norm_values_eRNA))+1) plt.ylim(math.floor(math.log(thres, 10)) - 1, math.ceil(numpy.max(log_norm_values_eRNA))+1) # plt.savefig("test_trumpet.svg", format="svg") # plt.savefig("test_trumpet.ps", format="ps") #plt.savefig("individual_trumpet/" + args.output_file + "_trumpet_before_filtering_" + str(key) + "_" + str(i_fig) + ".png", format="png") i_fig += 1 plt.close() else: for key in experiment_sample_columns: for index_sample in range(0, len(experiment_sample_columns[key])): for trumpet_replicate_1 in range(repl_incr[experiment_sample_columns[key][index_sample]], repl_incr[experiment_sample_columns[key][index_sample] + 1]): for trumpet_replicate_2 in range(trumpet_replicate_1 + 1, repl_incr[experiment_sample_columns[key][index_sample] + 1]): for i in range(0, len(log_norm_values_eRNA[ : , trumpet_replicate_1])): if random.random() <= float(1)/repl_incr[-1]: values_rand_x.append(log_norm_values_eRNA[i, trumpet_replicate_1]) values_rand_y.append(log_norm_values_eRNA[i, trumpet_replicate_2]) #raise NameError('test0') if threshold_method == "s": ###sample specific p_temp = p13 estimated_filtering_thres_trumpet = numpy.zeros(repl_incr[-1]) for key1 in mean_p0: for key2 in mean_p0[key1]: p_temp[0] = mean_p0[key1][key2] = numpy.mean(mean_p0[key1][key2]) p_temp[1] = mean_p1[key1][key2] = numpy.mean(mean_p1[key1][key2]) p_temp[2] = mean_p2[key1][key2] = numpy.mean(mean_p2[key1][key2]) estimated_filtering_thres_trumpet[repl_incr[key2] : repl_incr[key2 + 1]] = 10**p_temp(-6) if threshold_method == "m": ### manually if threshold_value is not None: estimated_filtering_thres_trumpet = numpy.full(repl_incr[-1], threshold_value) else: if not disable_output: print "threshold was not set --> using experiment specific threshold -tm e" threshold_method = "e" if threshold_method == "e": ###experiment specific p_temp = p13 estimated_filtering_thres_trumpet = numpy.zeros(repl_incr[-1]) for key1 in mean_p0: overall_p0 = [] overall_p1 = [] overall_p2 = [] for key2 in mean_p0[key1]: overall_p0.append(mean_p0[key1][key2]) overall_p1.append(mean_p1[key1][key2]) overall_p2.append(mean_p2[key1][key2]) p_temp[0] = mean_p0[key1][key2] = numpy.mean(overall_p0) p_temp[1] = mean_p1[key1][key2] = numpy.mean(overall_p1) p_temp[2] = mean_p2[key1][key2] = numpy.mean(overall_p2) for key2 in mean_p0[key1]: estimated_filtering_thres_trumpet[repl_incr[key2] : repl_incr[key2 + 1]] = 10**p_temp(-6) #print numpy.log10(estimated_filtering_thres_trumpet) if values_rand_x != []: #x_lin = numpy.linspace(min(temp_x), max(temp_x), 1000) x_lin = numpy.linspace(min(values_rand_x), max(values_rand_x), 1000) # plt.scatter(x, y) # plt.plot(x_lin, p(x_lin)) # plt.show() # # plt.scatter(x2, y2) # plt.plot(x_lin, p2(x_lin)) # plt.show() # # plt.scatter(x3, y3) # plt.plot(x_lin, p3(x_lin)) # plt.show() # # plt.scatter(x13, y13) # plt.plot(x_lin, p13(x_lin)) # plt.xlim(-7, 4) # plt.ylim(-7, 4) # plt.show() # # plt.scatter(temp_x, temp_y) # plt.plot(x_lin, ptemp(x_lin)) # plt.show() # plt.plot(x, p(x)) if not disable_output and threshold_method == "e": print "estimated experiment threshold for samples with one replicate having thres (10^-6) as abundance estimate" print "estimated experiment log threshold", str(round(p13(-6), 2)) print "estimated experiment threshold", str(round(10**p13(-6), 6)) ### plot the trumpet plot fig, ax = plt.subplots(1, figsize=(8, 8)) #ax.scatter(log_norm_values_eRNA[ : , 0], log_norm_values_eRNA[ : , 1], alpha=0.25, color="#003c5a") ax.scatter(values_rand_x, values_rand_y, alpha=0.25, color="#003c5a") # plot the regression # ax.plot(x_lin, p(x_lin), color="r") # ax.plot(x_lin, p2(x_lin), color="g") # ax.plot(x_lin, ptemp(x_lin), color="b") # ax.plot(x_lin, p3(x_lin), color="c") if threshold_method != "m" or threshold_method == "m" and threshold_value is None: ax.plot(x_lin, p13(x_lin), color="k") ax.plot(p13(x_lin), x_lin, color="k") ax.set_xlabel("random values x" + "\n" + "log(value)") ax.set_ylabel("random values y" + "\n" + "log(value)") #ax.set_xlabel(experiment[0] + " " + sample[0] + " " + controls[0] + "\n" + "log(count)") #ax.set_ylabel(experiment[1] + " " + sample[1] + " " + controls[1] + "\n" + "log(count)") ax.set_title('trumpet plot before filtering') fig.subplots_adjust(left=0.1, bottom=0.08, right=0.97, top=0.96) #plt.xlim(math.floor(math.log(thres, 10)) - 1, math.ceil(numpy.max(log_norm_values_eRNA[ : , [trumpet_replicate_1, trumpet_replicate_2]])) + 1) #plt.ylim(math.floor(math.log(thres, 10)) - 1, math.ceil(numpy.max(log_norm_values_eRNA[ : , [trumpet_replicate_1, trumpet_replicate_2]])) + 1) plt.xlim(math.floor(math.log(thres, 10)) - 1, math.ceil(numpy.max(log_norm_values_eRNA)) + 1) plt.ylim(math.floor(math.log(thres, 10)) - 1, math.ceil(numpy.max(log_norm_values_eRNA)) + 1) # plt.savefig("test_trumpet.svg", format="svg") #plt.savefig(args.output_file + "_trumpet_before_filtering.eps", format="eps") # plt.savefig("test_trumpet.ps", format="ps") plt.savefig(output_quality_file + "output_quality_trumpet_before_filtering.png", format="png") if summary_exp is not None: summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS'] = {} summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']["OVERVIEW_TRUMPET"] = {} summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']["OVERVIEW_TRUMPET"]["BEFORE_FILTERING"] = output_quality_file + "output_quality_trumpet_before_filtering.png" summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']["OVERVIEW_TRUMPET"]["BEFORE_FILTERING_LEGEND"] = "Figure: Trumpet before filtering (random values from all replicates within one sample)" if not disable_plot: #plt.show() plt.close() else: plt.close() ### take a look at the values with thres (10^-6) and filter the values >= 10**(xxx) # normalized_values_eRNA = temp array_filtered_transcripts = [] for line in range(0, len(normalized_values_eRNA)): for i1 in range(0, samples): inspect = False for i2 in range(repl_incr[i1], repl_incr[i1 + 1]): if normalized_values_eRNA[line][i2] == thres: inspect = True if inspect: for i2 in range(repl_incr[i1], repl_incr[i1 + 1]): if normalized_values_eRNA[line][i2] >= estimated_filtering_thres_trumpet[i2]: ### write the filtered transcripts in a csv file s = [] s.append(count_eRNA.keys()[line]) s.append(sample[i1]) s.append(controls[i1]) s.append(normalized_values_eRNA[line][i2]) normalized_values_eRNA[line][i2] = thres ### write the filtered transcripts in a csv file s.append(estimated_filtering_thres_trumpet[i2]) s.append(thres) array_filtered_transcripts.append(s) # IH181010 PROBLEM HERE the method is repoducibly crashing in the following for cycle # IH181010 OLD # filtered_transcripts=numpy.array(array_filtered_transcripts) # filtered_transcripts_sorted=[] # for i in range(0,len(filtered_transcripts)): # filtered_transcripts_sorted.append(filtered_transcripts[numpy.argmax(filtered_transcripts[:,3])]) # filtered_transcripts=numpy.delete(filtered_transcripts,numpy.argmax(filtered_transcripts[:,3]),0) # IH181010 NEW filtered_transcripts_sorted = sorted(array_filtered_transcripts, key=lambda x: x[3]) # print filtered_transcripts_sorted with open(output_quality_file + "filtered_transcripts.csv", 'w') as csvfile: writer = csv.writer(csvfile) s = [] s.append("transcript name") s.append("sample name") s.append("control") s.append("value before filtering") s.append("filtering threshold") s.append("value after filtering") writer.writerow(s) for item in filtered_transcripts_sorted: writer.writerow(item) if summary_exp is not None: summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']["FILTERED_TRANSCRIPTS_CSV"] = output_quality_file + "filtered_transcripts.csv" ### normalize the values again to the sum because a lot of values were reduced to 10^-6 sum_repl_eRNA = numpy.sum(normalized_values_eRNA, axis=0) if not disable_output: print "normalize again" sum_after = numpy.zeros(sum(replicates)) scaling_factor = numpy.zeros(sum(replicates)) for i in range(0, samples): #print i sum_after[repl_incr[i] : repl_incr[i + 1]] = numpy.mean(sum_repl_eRNA[repl_incr[i] : repl_incr[i + 1]]) scaling_factor = sum_before/sum_after #print scaling_factor for i in range(0, len(scaling_factor)): normalized_values_eRNA[normalized_values_eRNA[ : , i] != thres, i] = normalized_values_eRNA[normalized_values_eRNA[ : , i] != thres, i]*scaling_factor[i] log_norm_values_eRNA = numpy.log10(normalized_values_eRNA) if values_rand_x != []: values_rand_x = [] values_rand_y = [] ### obtain random values again for key in experiment_sample_columns: for index_sample in range(0, len(experiment_sample_columns[key])): for trumpet_replicate_1 in range(repl_incr[experiment_sample_columns[key][index_sample]], repl_incr[experiment_sample_columns[key][index_sample] + 1]): for trumpet_replicate_2 in range(trumpet_replicate_1 + 1, repl_incr[experiment_sample_columns[key][index_sample] + 1]): for i in range(0, len(log_norm_values_eRNA[ : , trumpet_replicate_1])): if random.random() <= float(1)/repl_incr[-1]: values_rand_x.append(log_norm_values_eRNA[i, trumpet_replicate_1]) values_rand_y.append(log_norm_values_eRNA[i, trumpet_replicate_2]) ### plot the trumpet plot with adjusted values fig, ax = plt.subplots(1, figsize=(8, 8)) ax.scatter(values_rand_x, values_rand_y, alpha=0.25, color="#003c5a") #ax.scatter(log_norm_values_eRNA[ : , 0], log_norm_values_eRNA[ : , 1], alpha=0.25, color="#003c5a") #ax.set_xlabel(experiment[0] + " " + sample[0] + " " + controls[0] + "\n" + "log(count)") #ax.set_ylabel(experiment[1] + " " + sample[1] + " " + controls[1] + "\n" + "log(count)") ax.set_xlabel("random values x" + "\n" + "log(value)") ax.set_ylabel("random values y" + "\n" + "log(value)") ax.set_title('trumpet plot after filtering') fig.subplots_adjust(left=0.1, bottom=0.075, right=0.97, top=0.965) plt.xlim(math.floor(math.log(thres, 10)) - 1, math.ceil(numpy.max(log_norm_values_eRNA)) + 1) plt.ylim(math.floor(math.log(thres, 10)) - 1, math.ceil(numpy.max(log_norm_values_eRNA)) + 1) # plt.savefig("test_trumpet.svg", format="svg") #plt.savefig(args.output_file + "_trumpet_after_filtering.eps", format="eps") # plt.savefig("test_trumpet.ps", format="ps") plt.savefig(output_quality_file + "output_quality_trumpet_after_filtering.png", format="png") if summary_exp is not None: summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']["OVERVIEW_TRUMPET"]["AFTER_FILTERING"] = output_quality_file + "output_quality_trumpet_after_filtering.png" summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']["OVERVIEW_TRUMPET"]["AFTER_FILTERING_LEGEND"] = "Figure: Trumpet after filtering (random values from all replicates within one sample)" if not disable_plot: #plt.show() plt.close() else: plt.close() # obtain the CV values of eRNA (precision) all_mean_eRNA = [] all_std_eRNA = [] number_replicates_one=False for i in range(0, samples): if repl_incr[i + 1] - repl_incr[i] > 1: mean = numpy.mean(normalized_values_eRNA[ : , repl_incr[i] : repl_incr[i + 1]], axis=1) std = numpy.std(normalized_values_eRNA[ : , repl_incr[i] : repl_incr[i + 1]], ddof=1, axis=1) else: number_replicates_one=True mean = numpy.full(len(normalized_values_eRNA), float('nan')) std = numpy.full(len(normalized_values_eRNA), float('nan')) all_mean_eRNA.append(mean) all_std_eRNA.append(std) if number_replicates_one==False: all_mean_eRNA = numpy.transpose(all_mean_eRNA) all_std_eRNA = numpy.transpose(all_std_eRNA) # filter the values with the lower and upper boundary specified all_mean_eRNA[numpy.any([all_mean_eRNA <= lower_boundary, all_mean_eRNA >= upper_boundary], axis=0)]=float('nan') all_CV_eRNA=all_std_eRNA/all_mean_eRNA experiment_prec_eRNA = [] for key in sorted(experiment_sample_columns): ####TODO nanmean originally experiment_prec_eRNA.append(numpy.nanmean(all_CV_eRNA[ : , experiment_sample_columns[key]])) if summary_exp is not None: summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']["PRECISION"] = {} summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']["PRECISION"]["eRNA"] = experiment_prec_eRNA[0] ### plot the precision # ind = numpy.arange(len(experiment_prec)) # width = 0.35 # plt.bar( ind, experiment_prec, width, align='center', color='#96be0e') # if number_replicates_one==False: # plt.bar( ind + width, experiment_prec_eRNA, width, align='center', color='w') # legend_pre_SIRV = mpatches.Patch(facecolor="#96be0e",edgecolor="k", label="pre SIRV") # if number_replicates_one==False: # legend_pre_eRNA = mpatches.Patch(facecolor='w', edgecolor="k", label="pre eRNA") # plt.legend(handles = [legend_pre_SIRV, legend_pre_eRNA], loc='upper right' ) plt.ylim(0, 1.25*max(max([experiment_prec, experiment_prec_eRNA]))) # else: # plt.legend(handles = [legend_pre_SIRV], loc='upper right' ) # plt.ylim(0, 1.25*max(max([experiment_prec]))) # plt.xlabel('experiment') # plt.ylabel('pre mean(CV)') # plt.xticks(ind + width/2, xlabels) # # plt.title('precision') # #plt.savefig(args.output_file + "_precision.eps", format="eps") # #plt.savefig(args.output_file + "_precision.png", format="png") # if not disable_plot: # #plt.show() # plt.close() # else: # plt.close() ### get the acc of one experiment all_LFC = numpy.array(LFC.values(), float) std_LFC = numpy.std(all_LFC, axis=0, ddof=1) experiment_std_LFC = [] xlabels = [] for key in sorted(experiment_sample_columns): #### TODO std originally ddof=1 ohne abs experiment_std_LFC.append((numpy.median(abs(all_LFC[ : , experiment_sample_columns[key]])))) xlabels.append(key) ### get the diff acc of one experiment experiment_diff_acc = [] for key_exp in sorted(experiment_sample_columns): if len(sorted(experiment_sample_columns[key_exp])) > 1: ratio_values_acc = {} for key in sorted(mean_normalized_values): ratio_values_acc[key] = {} diff_acc_controls = {} i=0 for i1 in range(0, len(experiment_sample_columns[key_exp])): for i2 in range(i1 + 1, len(experiment_sample_columns[key_exp])): ratio_values_acc[key][i] = mean_normalized_values[key][experiment_sample_columns[key_exp][i1]]/mean_normalized_values[key][experiment_sample_columns[key_exp][i2]] diff_acc_controls[i] = [controls[experiment_sample_columns[key_exp][i1]], controls[experiment_sample_columns[key_exp][i2]]] i += 1 diff_LFC = {} for key in ratio_values_acc: if SIRV[key]['E0'] != 0: diff_LFC[key] = numpy.empty(len(ratio_values_acc[key])) for i in range(0, len(diff_LFC[key])): diff_LFC[key][i] = math.log(ratio_values_acc[key][i]/(SIRV[key][diff_acc_controls[i][0]]/SIRV[key][diff_acc_controls[i][1]]), 2) all_diff_LFC = numpy.array(diff_LFC.values(), float) #### TODO std originally , ddof=1 ohne abs experiment_diff_acc.append((numpy.median(abs(all_diff_LFC)))) else: experiment_diff_acc.append(float('nan')) # ind = numpy.arange(len(experiment_std_LFC)) # width = 0.35 # plt.bar( ind, experiment_std_LFC, width, align='center', color="#96be0e") # plt.bar( ind + width, experiment_diff_acc, width, align='center', color='#003c5a') # legend_acc_SIRV = mpatches.Patch(facecolor="#96be0e", edgecolor="k", label="acc SIRV") # legend_acc_eRNA = mpatches.Patch(facecolor="#003c5a", edgecolor="k", label="dif acc SIRV") # plt.legend(handles = [legend_acc_SIRV, legend_acc_eRNA], loc='upper right' ) # plt.xlabel('experiment') # plt.ylabel('acc mean(abs(LFC))') # plt.xticks(ind + width/2, xlabels) # plt.ylim(0, 1.25*max(max([experiment_std_LFC, experiment_diff_acc]))) # plt.title('accuracy') # #plt.savefig(args.output_file + "_accuracy.eps", format="eps") # #plt.savefig(args.output_file + "_accuracy.png", format="png") # if not disable_plot: # #plt.show() # plt.close() # else: # plt.close() if not disable_output: print "experiment " + str(experiment) for i in range(0, len(experiment_std_LFC)): print "accuracy =", str(experiment_std_LFC[i]) for i in range(0, len(experiment_diff_acc)): if not math.isnan(experiment_diff_acc[i]): print "differential accuracy =", str(experiment_diff_acc[i]) for i in range(0, len(experiment_prec)): print "precision SIRV experiment =", str(experiment_prec[i]) for i in range(0, len(experiment_prec_eRNA)): print "precision endogenous RNA =", str(experiment_prec_eRNA[i]) # with open(output_quality_file, 'w') as output_file: # output_file.write("experiment" + "\t" + str(experiment)+"\n") # output_file.write("upper boundary" + "\t" + str(upper_boundary)+"\n") # output_file.write("lower boundary" + "\t" + str(lower_boundary)+"\n") # # for i in range(0, len(experiment_std_LFC)): # output_file.write( "accuracy" + "\t" + str(experiment_std_LFC[i])+"\n") # for i in range(0, len(experiment_diff_acc)): # if not math.isnan(experiment_diff_acc[i]): # output_file.write( "diff acc" + "\t" + str(experiment_diff_acc[i])+"\n") # for i in range(0, len(experiment_prec)): # output_file.write("prec SIRV" + "\t" + str(experiment_prec[i])+"\n") # for i in range(0, len(experiment_prec_eRNA)): # output_file.write("prec eRNA" + "\t" + str(experiment_prec_eRNA[i])+"\n") if summary_exp is not None: summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['FILTERING'] = {} summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['FILTERING']["METHOD"]=threshold_method summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['FILTERING']["THRESHOLD"] = [] for item in estimated_filtering_thres_trumpet: summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['FILTERING']["THRESHOLD"].append(item) summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']["PRECISION"]["UPPER_BOUNDARY"] = upper_boundary summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']["PRECISION"]["LOWER_BOUNDARY"] = lower_boundary summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']["PRECISION"]["SIRV"] = experiment_prec[0] summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']["ACCURACY"] = {} summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']["ACCURACY"]["ACC_SIRV"] = experiment_std_LFC[0] summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']["ACCURACY"]["DIFF_ACC_SIRV"]=experiment_diff_acc[0] ### Generate the data necessary for the concordance evaluation in the comparator summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']['LFC_COMPARATOR'] = {} summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']['LFC_COMPARATOR']['SAMPLES']=[] if int(summary_exp['EXPERIMENT_PACKAGE']['EXPERIMENT']['NUMBER_SAMPLES']) == 1: sample_id = "" sample_test = sample_assigned[0] if sample_test == summary_exp['EXPERIMENT_PACKAGE']['SAMPLE_SET']['SAMPLE']['@alias']: sample_id = summary_exp['EXPERIMENT_PACKAGE']['SAMPLE_SET']['SAMPLE']['@id'] summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']['LFC_COMPARATOR']['SAMPLES'].append({}) summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']['LFC_COMPARATOR']['SAMPLES'][0]['@ref_sample'] = sample_id summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']['LFC_COMPARATOR']['SAMPLES'][0]['@ref_alias'] = sample_test summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']['LFC_COMPARATOR']['SAMPLES'][0]['control'] = summary_exp['EXPERIMENT_PACKAGE']['SAMPLE_SET']['SAMPLE']['SAMPLE_ATTRIBUTES']['SIRV_MIX'] summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']['LFC_COMPARATOR']['SAMPLES'][0]['values'] = {} for key in LFC: summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']['LFC_COMPARATOR']['SAMPLES'][0]['values'][key]=LFC[key][0] elif int(summary_exp['EXPERIMENT_PACKAGE']['EXPERIMENT']['NUMBER_SAMPLES']) > 1: index_sample = 0 for sample_test in sample_assigned: index_search = 0 while summary_exp['EXPERIMENT_PACKAGE']['SAMPLE_SET']['SAMPLE'][index_search]['@alias'] != sample_test: index_search += 1 summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']['LFC_COMPARATOR']['SAMPLES'].append({}) summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']['LFC_COMPARATOR']['SAMPLES'][index_sample]['@ref_sample'] = summary_exp['EXPERIMENT_PACKAGE']['SAMPLE_SET']['SAMPLE'][index_search]['@id'] summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']['LFC_COMPARATOR']['SAMPLES'][index_sample]['@ref_alias'] = sample_test summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']['LFC_COMPARATOR']['SAMPLES'][index_sample]['control'] = summary_exp['EXPERIMENT_PACKAGE']['SAMPLE_SET']['SAMPLE'][index_search]['SAMPLE_ATTRIBUTES']['SIRV_MIX'] summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']['LFC_COMPARATOR']['SAMPLES'][index_sample]['values'] = {} for key in LFC: summary_exp['EXPERIMENT_PACKAGE']['HISTORY']['TOOL_RUN'][1]['QUALITY_METRICS']['LFC_COMPARATOR']['SAMPLES'][index_sample]['values'][key]=LFC[key][index_sample] index_sample += 1 return summary_exp ### calling from the command line if __name__ == "__main__": # create the help and user friendly method for data input/selection parser = argparse.ArgumentParser(prog='PROG', usage='%(prog)s [options]') parser = argparse.ArgumentParser(prog='python SIRV_Calculate_quality_metrics.py', formatter_class=argparse.RawDescriptionHelpFormatter,description=textwrap.dedent('''This script first normalizes and filters the counts in SIRVs and endogenous RNA using trumpet plots. Using SIRV values and endogenous RNA values the accuracy, differential accuracy and precision of the experiment are calculated. Outputs is on the command line. Filtered transcripts are written to a csv file. Overview trumpet plots using random values of all trumpet plots are in a png output. NOTES: Normalization and filtering in SIRVs: 0. SIRV reads are normalized using the overall mean and expected sum of the SIRV mix 1. SIRV values below the relative quantity threshold are set to the relative quantity threshold Normalization and filtering in endogenous RNA (boundary evaluation): 1. endogenous RNA Values below the relative quantity threshold are set to the relative quantity threshold 2. The filtering threshold is determined or set manually 3. All values with one replicate having the relative quantity threshold as value are evaluated. If the value is above the filtering threshold the value is set to the relative quantity threshold. |@ |@* * |! * ** |* ** * |*** *** --> |*********** 1. rel. quant. |******** threshold |******* |&****** * ! @ @ @ |_____________________ ^ 1. rel. quant. | threshold *...log(abundance estimates e.g. FPKM values) 2. A filtering threshold ! is set/determined 3. Filtering: values @ are move to & Trumpet plots are generated for replicates within samples comparing always 2 replicates with the same sample. Random values of all trumpet plot are included in the trumpet plot. If filtering threshold is sample or experiment specific the fitted polynome is shown and the estimated thresholds given. Moreover trumpet plots show how dispersed the values are. Precision in endogenous RNA is filtered using an upper boundary and lower boundary. Estimated endogenous RNA mean abundances in a sample within the boundaries are taken for precision evaluation in endogenous RNA. Comparing how "good" an experiment is, can be evaluated using features of SIRV. Metrices were introduced including accuracy, differential accuracy and precision. Precision: First the mean and standard deviation (std) of replicates within a sample are taken. The coefficient of variation (CV) is the std / mean in one transcript / SIRV transcript. Using the overall mean of all CV values gives the precision. This gives an evaluation how dispersed the replicate values are within a sample) Accuracy and differential accuracy: First the log fold changes are calculated from the measured to the expected values in SIRVs. Accuracy is the median(abs(all SIRV LFC)). Consequently the accuracy gives an estimate how close the measured value is to the expected value. Differential accuracy evaluates the ratio of one SIRV mix to another and therefore gives an accuracy evaluation of the ratio of one sample to another, which is helpful for differential expression analysis between samples. '''), epilog=""" Example usage: python path/to/SIRV_Calculate_quality_metrics.py -e "Experiment name" -count_list input_files/alignments/NGS_star_out/*/isoforms.fpkm_tracking -s "sample 1" "sample 1" "sample 2" "sample 2" "sample 3" "sample 3" -c E0 E0 E1 E1 E2 E2 -per_SIRV 3 3 3 3 3 3 -tm s -quant cufflinks -o SIRV_quality_metrics End of help """) required = parser.add_argument_group('required arguments') required.add_argument('-e', dest='experiment', help='name/id of experiment', type=str, required=True, metavar='name') required.add_argument('-count_list', type=str, nargs='+', help='List of files with count values', required=True, metavar='count_file') required.add_argument('-s', dest='sample', help='name/id of sample (assign an sample to every count file)', type=str, nargs='+', required=True, metavar='name') required.add_argument('-c', dest='control', help='controls spiked in in replicate (assign a control to every count file)', type=str, nargs='+', choices=['E0', 'E1', 'E2'], required=True) required.add_argument('-per_SIRV', type=float, help='SIRV amount in percent (assign a percentage to every count file)', metavar='float', nargs='+', required=True) parser.add_argument('-thres', dest='thres', type=float, help='relative quantity threshold which is the minimum count value, like the minimum detection value (default=1e-6)', metavar='float',default=1e-6) parser.add_argument('-ub', type=float,default=float('inf'), help='upper boundary of count values for precision of endogenous RNA (default=inf)', metavar='float') parser.add_argument('-lb', type=float, default=0, help='lower boundary of count values for precision of endogenous RNA (default=0)', metavar='float') required.add_argument('-tm', dest='threshold_method', type=str, help='threshold method for filtering using trumpet plots of high abundance transcripts in endogenous RNA if one replicate value is thres (default: 1e-6), e...experiment specific, s...sample specific, m...manually (set -tmm float)', required=True, choices=['e', 's', 'm']) parser.add_argument('-tmm', dest='threshold_value', type=float, help='manually set threshold e.g. 1e-2 (required for threshold method manually (-tm m), and if not given -tm e is used; no effect if threshold method is e or s)', metavar='float') required.add_argument('-quant', dest='quant', help='quantification method used for abundance estimation', required=True, type=str, choices=['cufflinks','mix2','RSEM']) # parser.add_argument('-JSON', dest='JSON_file', help='JSON file for appending the quality metrics information',type=str, metavar='json_file') # parser.add_argument('-o_JSON', dest='output_JSON_file', help='JSON file output',type=str, metavar='json_file') parser.add_argument('-do', dest='disable_output', action='store_true', help='disable console output') parser.add_argument('-dp', dest='disable_plot', action='store_true', help='disable plot output') required.add_argument('-o', dest='output_name', type=str, help='output file name without extension', metavar='output_name') args = parser.parse_args() if len(args.count_list) != len(args.control) or len(args.count_list) != len(args.sample) or len(args.count_list) != len(args.per_SIRV): if not args.disable_output: print "please assign an experiment and sample to every dataset" else: if not args.disable_output: print "processing files" ### get experiment and samples and sort them, obtain an order for retrieval of the count files order,samples_ordered, replicates, controls=SIRV_preprocessing_inputs.obtain_information(args.sample,args.control,args.disable_output) ### obtain count values already sorted and a dict_transcripts count_SIRVs,_,count_eRNA,_ =SIRV_preprocessing_inputs.counts_converter(order, args.count_list,args.quant) quality_metrics(args.experiment, samples_ordered, replicates, controls, SIRV_links.SIRV_mix_files, count_SIRVs, count_eRNA, args.per_SIRV, args.thres, args.lb, args.ub, args.disable_output, args.disable_plot, args.threshold_method, args.threshold_value, args.output_name, None)
gpl-3.0
vincentdumont/nuri
nuri/check24hrs.py
1
5494
#!/usr/bin/env python import sys,nuri,os,numpy import matplotlib.pyplot as plt import matplotlib.dates as md from datetime import datetime,timedelta def check24hrs(date): """ This operation will display the active periods for which data are available from every sensors. Parameters ---------- date : str Year and month to display activity from. The format shoud be YYYY-MM. """ # Check if date is given if date==None: print 'date missing...' quit() # List all the months dates = numpy.empty((0,5)) y0 = int(date.split('-')[0]) m0 = int(date.split('-')[1]) d0 = datetime(y0,m0,1) y1 = y0 if m0<12 else y0+1 m1 = m0+1 if m0<12 else 1 d1 = datetime(y1,m1,1)-timedelta(hours=1) dt = timedelta(hours=1) dates = numpy.arange(d0,d1,dt) # Download metadata from Google Drive sys.stderr.write('Retrieve information from Google Drive...') os.system('skicka ls -r /MagneticFieldData/%s/%s/ > data'%(y0,m0)) data = numpy.loadtxt('data',dtype=str,delimiter='\n') print >>sys.stderr,' done!' # List file path for each date and each station sys.stderr.write('Select active hours for each station...') st0,st1,st2,st3,st4 = [],[],[],[],[] for d in dates: year = d.astype(object).year month = d.astype(object).month day = d.astype(object).day hour = d.astype(object).hour path = 'MagneticFieldData/%i/%i/%i/%i/'%(year,month,day,hour) fname = '%i-%i-%i_%i-xx.zip'%(year,month,day,hour) st0.append(path+'NURI-station/' +fname) st1.append(path+'NURI-station-01/'+fname) st2.append(path+'NURI-station-02/'+fname) st3.append(path+'NURI-station-03/'+fname) st4.append(path+'NURI-station-04/'+fname) st0 = numpy.array([1 if path in data else 0 for path in st0]) st1 = numpy.array([1 if path in data else 0 for path in st1]) st2 = numpy.array([1 if path in data else 0 for path in st2]) st3 = numpy.array([1 if path in data else 0 for path in st3]) st4 = numpy.array([1 if path in data else 0 for path in st4]) print >>sys.stderr,' done!' # Write down information in text file print 'Save information in ASCII file...' o = open('%i-%02i.dat'%(y0,m0),'w') for d in dates: year = d.astype(object).year month = d.astype(object).month day = d.astype(object).day hour = d.astype(object).hour path = 'MagneticFieldData/%i/%i/%i/%i/'%(year,month,day,hour) fname = '%i-%i-%i_%i-xx.zip'%(year,month,day,hour) o.write('%i-%02i-%02i_%02i'%(year,month,day,hour)) o.write(' NURI-station ') if path+'NURI-station/' +fname in data else o.write(' - ') o.write(' NURI-station-01') if path+'NURI-station-01/'+fname in data else o.write(' - ') o.write(' NURI-station-02') if path+'NURI-station-01/'+fname in data else o.write(' - ') o.write(' NURI-station-03') if path+'NURI-station-01/'+fname in data else o.write(' - ') o.write(' NURI-station-04') if path+'NURI-station-01/'+fname in data else o.write(' - ') o.write('\n') o.close() dates = [d.astype(object) for d in dates] plt.rc('font', size=2, family='serif') plt.rc('axes', labelsize=10, linewidth=0.2) plt.rc('legend', fontsize=2, handlelength=10) plt.rc('xtick', labelsize=7) plt.rc('ytick', labelsize=7) plt.rc('lines', lw=0.2, mew=0.2) plt.rc('grid', linewidth=0.2) fig = plt.figure(figsize=(10,6)) plt.subplots_adjust(left=0.07, right=0.95, bottom=0.1, top=0.96, hspace=0.2, wspace=0) print 'Plot active time for station 1...' ax1 = fig.add_subplot(511) ax1.bar(dates,st1,width=0.01,edgecolor='none',color='green') ax1.tick_params(direction='in') ax1.set_ylabel('Station 1') ax1.xaxis_date() plt.yticks([]) ax1.grid() print 'Plot active time for station 2...' ax = fig.add_subplot(512,sharex=ax1,sharey=ax1) ax.bar(dates,st2,width=0.01,edgecolor='none',color='green') ax.tick_params(direction='in') ax.set_ylabel('Station 2') ax.xaxis_date() plt.yticks([]) ax.grid() print 'Plot active time for station 3...' ax = fig.add_subplot(513,sharex=ax1,sharey=ax1) ax.bar(dates,st3,width=0.01,edgecolor='none',color='green') ax.tick_params(direction='in') ax.set_ylabel('Station 3') ax.xaxis_date() plt.yticks([]) ax.grid() print 'Plot active time for station 4...' ax = fig.add_subplot(514,sharex=ax1,sharey=ax1) ax.bar(dates,st4,width=0.01,edgecolor='none',color='green') ax.tick_params(direction='in') ax.set_ylabel('Station 4') ax.xaxis_date() plt.yticks([]) ax.grid() print 'Plot active time for station 0...' ax = fig.add_subplot(515,sharex=ax1,sharey=ax1) ax.bar(dates,st0,width=0.01,edgecolor='none',color='green') ax.tick_params(direction='in') ax.set_ylabel('Station 0') ax.xaxis_date() plt.yticks([]) ax.grid() ax.set_xlabel(r'Hourly activity in %s %i (UTC)'%(d0.strftime("%B"),y0)) ax1.xaxis.set_major_formatter(md.DateFormatter('%d')) ax1.xaxis.set_major_locator(md.DayLocator()) ax1.set_xlim(d0,d1) ax1.set_ylim(0,1) plt.savefig('%i-%02i.pdf'%(y0,m0),dpi=80) if __name__=='__main__': from nuri import get_args args = get_args() active(args.date)
mit
dnjohnstone/hyperspy
hyperspy/drawing/_markers/horizontal_line_segment.py
4
3559
# -*- coding: utf-8 -*- # Copyright 2007-2020 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. import matplotlib.pyplot as plt from hyperspy.drawing.marker import MarkerBase class HorizontalLineSegment(MarkerBase): """Horizontal line segment marker that can be added to the signal figure Parameters ---------- x1 : array or float The position of the start of the line segment in x. If float, the marker is fixed. If array, the marker will be updated when navigating. The array should have the same dimensions in the navigation axes. x2 : array or float The position of the end of the line segment in x. see x1 arguments y : array or float The position of line segment in y. see x1 arguments kwargs : Keywords argument of axvline valid properties (i.e. recognized by mpl.plot). Example ------- >>> im = hs.signals.Signal2D(np.zeros((100, 100))) >>> m = hs.plot.markers.horizontal_line_segment( >>> x1=20, x2=70, y=70, linewidth=4, color='red', linestyle='dotted') >>> im.add_marker(m) Adding a marker permanently to a signal >>> im = hs.signals.Signal2D(np.zeros((100, 100))) >>> m = hs.plot.markers.horizontal_line_segment( >>> x1=10, x2=30, y=42, linewidth=4, color='red', linestyle='dotted') >>> im.add_marker(m, permanent=True) """ def __init__(self, x1, x2, y, **kwargs): MarkerBase.__init__(self) lp = {'color': 'black', 'linewidth': 1} self.marker_properties = lp self.set_data(x1=x1, x2=x2, y1=y) self.set_marker_properties(**kwargs) self.name = 'horizontal_line_segment' def __repr__(self): string = "<marker.{}, {} (x1={},x2={},y={},color={})>".format( self.__class__.__name__, self.name, self.get_data_position('x1'), self.get_data_position('x2'), self.get_data_position('y1'), self.marker_properties['color'], ) return(string) def update(self): if self.auto_update is False: return self._update_segment() def _plot_marker(self): self.marker = self.ax.vlines(0, 0, 1, **self.marker_properties) self._update_segment() def _update_segment(self): segments = self.marker.get_segments() segments[0][0, 1] = self.get_data_position('y1') segments[0][1, 1] = segments[0][0, 1] if self.get_data_position('x1') is None: segments[0][0, 0] = plt.getp(self.marker.axes, 'xlim')[0] else: segments[0][0, 0] = self.get_data_position('x1') if self.get_data_position('x2') is None: segments[0][1, 0] = plt.getp(self.marker.axes, 'xlim')[1] else: segments[0][1, 0] = self.get_data_position('x2') self.marker.set_segments(segments)
gpl-3.0
erjerison/adaptability
github_submission/plot_figure5.py
1
19409
import numpy import sys import matplotlib.pylab as pt import matplotlib.cm import numpy.random import matplotlib.ticker as ticker from matplotlib.lines import Line2D import scipy.stats matplotlib.rcParams['font.sans-serif'] = 'Arial' matplotlib.rcParams['font.size'] = 10.0 matplotlib.rcParams['lines.markeredgewidth'] = 0 matplotlib.rcParams['lines.markersize'] = 3 matplotlib.rcParams['lines.linewidth'] = 1 matplotlib.rcParams['legend.fontsize'] = 8.0 matplotlib.rcParams['axes.linewidth']=.5 matplotlib.rcParams['patch.linewidth']=.5 def permute_within_categories(categories, cat_inds): #categories: 1d array where each item has an index indicating which category it belongs to. The category indices need not be consecutive. #cat_inds: list of category indices. n = len(categories) inds = numpy.arange(n) #Original order permuted_order = numpy.zeros((n,),dtype='int') for i in range(len(cat_inds)): items_in_cat_unpermuted = inds[categories == cat_inds[i]] permuted_order[items_in_cat_unpermuted] = numpy.random.permutation(items_in_cat_unpermuted) return permuted_order def calculate_cat_inds(categories): categories = numpy.array(categories) return numpy.unique(categories) def calculate_helper_matrix(categories, cat_inds): #The helper matrix is a utility for quickly summing over specified rows in a table. It is intended to be matrix multiplied by the original mutation table; hence it is n_cats x n_pops num_cats = len(cat_inds) num_pops = len(categories) helper_matrix = numpy.zeros((num_cats,num_pops)) for i in range(num_cats): specific_cat_inds = numpy.where(categories == cat_inds[i]) helper_matrix[i, specific_cat_inds] = 1 return helper_matrix def calculate_entropy_statistic(mutation_table, helper_matrix): muts_per_gene = numpy.sum(mutation_table, axis = 0) collapsed_table = numpy.dot(helper_matrix,mutation_table) pops_per_category = numpy.dot(helper_matrix,helper_matrix.T) #print pops_per_category probs = numpy.dot(numpy.linalg.inv(pops_per_category),collapsed_table) num_genes = mutation_table.shape[1] entropies = numpy.zeros((num_genes,)) total_pops = numpy.float(numpy.sum(pops_per_category)) for i in range(num_genes): nonzero_inds = numpy.all([probs[:,i] > 0 , probs[:,i]< 1], axis = 0) nonzero_p_hit = probs[:,i][nonzero_inds] nonzero_p_no_hit = 1. - nonzero_p_hit pops_per_cat_temp = numpy.diag(pops_per_category)[nonzero_inds] entropies[i] = numpy.sum(-1*pops_per_cat_temp/total_pops*(nonzero_p_hit*numpy.log2(nonzero_p_hit) + nonzero_p_no_hit*numpy.log2(nonzero_p_no_hit))) return numpy.sum(entropies) def calculate_entropy_statistic2(mutation_table, helper_matrix): #This function can be used to weight double-hit mutations less than other mutations, since they carry less information. #However, for this dataset including the 2-hit mutations with equal weight was equivalently sensitive. muts_per_gene = numpy.sum(mutation_table, axis = 0) collapsed_table = numpy.dot(helper_matrix,mutation_table) pops_per_category = numpy.dot(helper_matrix,helper_matrix.T) probs = numpy.dot(numpy.linalg.inv(pops_per_category),collapsed_table) #probability that a population in this category got a mutation #print probs num_genes = mutation_table.shape[1] entropies = numpy.zeros((num_genes,)) weight = 1. total_pops = numpy.float(numpy.sum(pops_per_category)) for i in range(num_genes): if muts_per_gene[i] > 2.1: nonzero_inds = numpy.all([probs[:,i] > 0 , probs[:,i]< 1], axis = 0) nonzero_p_hit = probs[:,i][nonzero_inds] nonzero_p_no_hit = 1. - nonzero_p_hit pops_per_cat_temp = numpy.diag(pops_per_category)[nonzero_inds] entropies[i] = numpy.sum(-1*pops_per_cat_temp/total_pops*(nonzero_p_hit*numpy.log2(nonzero_p_hit) + nonzero_p_no_hit*numpy.log2(nonzero_p_no_hit))) else: nonzero_inds = numpy.all([probs[:,i] > 0 , probs[:,i]< 1], axis = 0) nonzero_p_hit = probs[:,i][nonzero_inds] nonzero_p_no_hit = 1. - nonzero_p_hit pops_per_cat_temp = numpy.diag(pops_per_category)[nonzero_inds] entropies[i] = weight*numpy.sum(-1*pops_per_cat_temp/total_pops*(nonzero_p_hit*numpy.log2(nonzero_p_hit) + nonzero_p_no_hit*numpy.log2(nonzero_p_no_hit))) return numpy.sum(entropies) #Read in the list of mutations that fixed in each population. Filter out snps that occur in multiple descendants of the same founder--these were SGV from the passaging of this segregant well. input_file = 'data/mutation_lists_with_aa_positions_reannotated.txt' #First loop to find any mutations that are shared among descendants of the same segregant file = open(input_file,'r') file_lines = file.readlines() file.close() segregant_mut_dict = {} common_mut_dict = {} for line in file_lines: linelist = line.strip().split('\t') if len(linelist) < 1.5: #Go to the next clone clone_name = linelist[0] segregant = clone_name.split('_')[0] if segregant not in segregant_mut_dict: segregant_mut_dict[segregant] = [] else: mutation = ('_').join(str(i) for i in linelist) if len(linelist) > 5.5: if linelist[6] == 'Non': if mutation in segregant_mut_dict[segregant]: print segregant, mutation if segregant in common_mut_dict: common_mut_dict[segregant].append(mutation) else: common_mut_dict[segregant] = [mutation] if mutation not in segregant_mut_dict[segregant]: segregant_mut_dict[segregant].append(mutation) ##Second loop to identify all de novo nonsynonymous mutations (and indels) gene_dict_by_sample = {} mutation_dict_by_sample = {} for line in file_lines: linelist = line.strip().split('\t') if len(linelist) < 1.5: #Go to the next clone clone_name = linelist[0] gene_dict_by_sample[clone_name] = [] mutation_dict_by_sample[clone_name] = [] local_gene_names = [] segregant = clone_name.split('_')[0] else: gene_name = linelist[4] mutation = ('_').join(str(i) for i in linelist) if len(linelist) > 5.5: if linelist[6] == 'Non': if segregant in common_mut_dict: #There might be shared ancestral snps if ((gene_name not in local_gene_names) and (len(gene_name) < 6.5) and (mutation not in common_mut_dict[segregant])): #We have not already counted this mutation, it is not an ancestral mutation, and it is not in a dubious ORF local_gene_names.append(gene_name) gene_dict_by_sample[clone_name].append(gene_name) mutation_dict_by_sample[clone_name].append(mutation) elif ((gene_name not in local_gene_names) and (len(gene_name) < 6.5)): #We have not already counted this mutation, it is not an ancestral mutation, and it is not in a dubious ORF local_gene_names.append(gene_name) gene_dict_by_sample[clone_name].append(gene_name) mutation_dict_by_sample[clone_name].append(mutation) ##Import fitness and founder genotype data filename1 = 'data/fitness_measurements_with_population_names_12_29_2016.csv' filename2 = 'data/control_replicate_measurements.csv' filename3 = 'data/segregant_genotypes_deduplicated_with_header.csv' segregant_vector = [] init_fits_ypd = [] init_std_errs_ypd = [] init_fits_sc = [] init_std_errs_sc = [] final_fits_ypd_pops_in_ypd = [] segregant_vector_ypd_pops = [] clone_vector_ypd_pops = [] final_fits_sc_pops_in_sc = [] segregant_vector_sc_pops = [] clone_vector_sc_pops = [] final_fits_sc_pops_in_ypd = [] final_fits_ypd_pops_in_sc = [] file1 = open(filename1,'r') firstline = 0 for line in file1: if firstline < .5: firstline += 1 continue linestrs = line.strip().split(';') segregant_vector.append(linestrs[0]) init_fits_ypd.append(float(linestrs[1])) init_std_errs_ypd.append(float(linestrs[2])) init_fits_sc.append(float(linestrs[3])) init_std_errs_sc.append(float(linestrs[4])) ypd_evolved_pops = linestrs[5].split(',') for entry in ypd_evolved_pops: templist = entry.split() segregant_vector_ypd_pops.append(linestrs[0]) clone_vector_ypd_pops.append(templist[0]) final_fits_ypd_pops_in_ypd.append(float(templist[1])) final_fits_ypd_pops_in_sc.append(float(templist[2])) sc_evolved_pops = linestrs[6].split(',') for entry in sc_evolved_pops: templist = entry.split() segregant_vector_sc_pops.append(linestrs[0]) clone_vector_sc_pops.append(templist[0]) final_fits_sc_pops_in_ypd.append(float(templist[1])) final_fits_sc_pops_in_sc.append(float(templist[2])) file1.close() init_fits_ypd = numpy.array(init_fits_ypd) init_std_errs_ypd = numpy.array(init_std_errs_ypd) init_fits_sc = numpy.array(init_fits_sc) init_std_errs_sc = numpy.array(init_std_errs_sc) final_fits_ypd_pops_in_ypd = numpy.array(final_fits_ypd_pops_in_ypd) final_fits_ypd_pops_in_sc = numpy.array(final_fits_ypd_pops_in_sc) segregant_vector_ypd_pops = numpy.array(segregant_vector_ypd_pops) segregant_vector_sc_pops = numpy.array(segregant_vector_sc_pops) final_fits_sc_pops_in_ypd = numpy.array(final_fits_sc_pops_in_ypd) final_fits_ypd_pops_in_sc = numpy.array(final_fits_ypd_pops_in_sc) ypd_controls = {} sc_controls = {} file2 = open(filename2,'r') firstline = 0 for line in file2: if firstline < .5: firstline += 1 continue linestrs = line.strip().split(';') ypd_controls[linestrs[0]] = [float(i) for i in linestrs[1].split(',')] sc_controls[linestrs[0]] = [float(i) for i in linestrs[2].split(',')] file2.close() genotype_mat = [] file3 = open(filename3,'r') firstline = 0 for line in file3: if firstline < .5: firstline += 1 continue linelist = line.strip().split(';') genotype = [int(i) for i in linelist[1].split(',')] genotype_mat.append(genotype) genotype_mat = numpy.array(genotype_mat) rm_allele = numpy.array(genotype_mat[:,3777],dtype='Bool') by_allele = numpy.array(1 - genotype_mat[:,3777],dtype='Bool') #Use controls (~8 technical replicates each of 24 final populations) to estimate the error variance on the final fitness measurements in each environment n_control_pops = 24. var_sum = 0 n_total_reps = 0 for pop in ypd_controls: fit = numpy.mean(ypd_controls[pop]) var_sum += numpy.sum((ypd_controls[pop] - fit)**2) n_total_reps += len(ypd_controls[pop]) measurement_error_var_sc = var_sum/float(n_total_reps - n_control_pops) var_sum = 0 n_total_reps = 0 for pop in sc_controls: fit = numpy.mean(sc_controls[pop]) var_sum += numpy.sum((sc_controls[pop] - fit)**2) n_total_reps += len(sc_controls[pop]) measurement_error_var_ypd = var_sum/float(n_total_reps - n_control_pops) ### #Set up 'helper matrix' utilities to conveniently calculate averages and variances over segregant groups num_segs = len(segregant_vector) num_pops_ypd = len(segregant_vector_ypd_pops) num_pops_sc = len(segregant_vector_sc_pops) helper_matrix_ypd_pops = numpy.zeros((num_pops_ypd,num_segs)) helper_matrix_sc_pops = numpy.zeros((num_pops_sc,num_segs)) for i in range(num_segs): current_seg = segregant_vector[i] helper_matrix_ypd_pops[numpy.where(segregant_vector_ypd_pops == current_seg)[0],i] = 1. helper_matrix_sc_pops[numpy.where(segregant_vector_sc_pops == current_seg)[0],i] = 1. pops_per_seg_ypd = numpy.diag(numpy.dot(helper_matrix_ypd_pops.T,helper_matrix_ypd_pops)) pops_per_seg_sc = numpy.diag(numpy.dot(helper_matrix_sc_pops.T,helper_matrix_sc_pops)) rm_allele_pops_sc = numpy.array(numpy.dot(helper_matrix_sc_pops, rm_allele),dtype='Bool') by_allele_pops_sc = numpy.array(numpy.dot(helper_matrix_sc_pops, by_allele),dtype='Bool') rm_allele_pops_ypd = numpy.array(numpy.dot(helper_matrix_ypd_pops, rm_allele),dtype='Bool') by_allele_pops_ypd = numpy.array(numpy.dot(helper_matrix_ypd_pops, by_allele),dtype='Bool') # #Use the helper matrix to average among populations descended from a particular segregant: delta_fits_ypd = final_fits_ypd_pops_in_ypd - numpy.dot(helper_matrix_ypd_pops,init_fits_ypd) delta_fits_sc = final_fits_sc_pops_in_sc - numpy.dot(helper_matrix_sc_pops,init_fits_sc) delta_fits_ypd_in_sc = final_fits_ypd_pops_in_sc - numpy.dot(helper_matrix_ypd_pops,init_fits_sc) delta_fits_sc_in_ypd = final_fits_sc_pops_in_ypd - numpy.dot(helper_matrix_sc_pops,init_fits_ypd) delta_fits_ypd_means = numpy.dot(delta_fits_ypd,helper_matrix_ypd_pops)/pops_per_seg_ypd delta_fits_sc_means = numpy.dot(delta_fits_sc,helper_matrix_sc_pops)/pops_per_seg_sc delta_fits_sc_in_ypd_means = numpy.dot(delta_fits_sc_in_ypd,helper_matrix_sc_pops)/pops_per_seg_sc delta_fits_ypd_in_sc_means = numpy.dot(delta_fits_ypd_in_sc,helper_matrix_ypd_pops)/pops_per_seg_ypd #Delta fits inherit variance from the initial fitness and final fitness measurements delta_fits_sc_vars = numpy.dot((delta_fits_sc - numpy.dot(helper_matrix_sc_pops,delta_fits_sc_means))**2, helper_matrix_sc_pops)/(pops_per_seg_sc - 1.) + init_std_errs_sc**2 delta_fits_sc_std_errs = numpy.sqrt(delta_fits_sc_vars/pops_per_seg_sc) delta_fits_ypd_vars = numpy.dot((delta_fits_ypd - numpy.dot(helper_matrix_ypd_pops,delta_fits_ypd_means))**2, helper_matrix_ypd_pops)/(pops_per_seg_ypd - 1.) + init_std_errs_ypd**2 delta_fits_ypd_std_errs = numpy.sqrt(delta_fits_ypd_vars/pops_per_seg_ypd) delta_fits_ypd_in_sc_vars = numpy.dot((delta_fits_ypd_in_sc - numpy.dot(helper_matrix_ypd_pops,delta_fits_ypd_in_sc_means))**2, helper_matrix_ypd_pops)/(pops_per_seg_ypd - 1.) + init_std_errs_sc**2 delta_fits_ypd_in_sc_std_errs = numpy.sqrt(delta_fits_ypd_in_sc_vars/pops_per_seg_ypd) delta_fits_sc_in_ypd_vars = numpy.dot((delta_fits_sc_in_ypd - numpy.dot(helper_matrix_sc_pops,delta_fits_sc_in_ypd_means))**2, helper_matrix_sc_pops)/(pops_per_seg_sc - 1.) + init_std_errs_ypd**2 #- measurement_error_ypd delta_fits_sc_in_ypd_std_errs = numpy.sqrt(delta_fits_sc_in_ypd_vars/pops_per_seg_sc) ####First calculation: number of nonsynonymous, genic mutations vs. fitness in each evolution condition clone_vector_sc_pops = numpy.array(clone_vector_sc_pops) clone_vector_ypd_pops = numpy.array(clone_vector_ypd_pops) clones_sc = [ i + '_' + j for [i,j] in numpy.stack((segregant_vector_sc_pops, clone_vector_sc_pops)).T] clones_ypd = [i + '_' + j for [i,j] in numpy.stack((segregant_vector_ypd_pops, clone_vector_ypd_pops)).T] num_muts_fit_array_sc = [] num_muts_fit_array_ypd = [] seg_list_sc_seq = [] seg_list_ypd_seq = [] num_muts_seg_dict_sc = {} num_muts_seg_dict_ypd = {} for clone in gene_dict_by_sample: name_strs = clone.split('_') seg = name_strs[0] evol_env = name_strs[2] clone_num = name_strs[1] seg_index = segregant_vector.index(seg) full_name = seg + '_' + clone_num if seg not in num_muts_seg_dict_sc: num_muts_seg_dict_sc[seg] = {} num_muts_seg_dict_sc[seg]['init_fit'] = init_fits_sc[seg_index] num_muts_seg_dict_sc[seg]['kre'] = rm_allele[seg_index] num_muts_seg_dict_sc[seg]['num_muts'] = [] if seg not in num_muts_seg_dict_ypd: num_muts_seg_dict_ypd[seg] = {} num_muts_seg_dict_ypd[seg]['init_fit'] = init_fits_ypd[seg_index] num_muts_seg_dict_ypd[seg]['kre'] = rm_allele[seg_index] num_muts_seg_dict_ypd[seg]['num_muts'] = [] if (evol_env == 'sc' and full_name in clones_sc): index_sc = clones_sc.index(full_name) seg_list_sc_seq.append(seg) elif (evol_env == 'ypd' and full_name in clones_ypd): index_ypd = clones_ypd.index(full_name) seg_list_ypd_seq.append(seg) num_muts = len(gene_dict_by_sample[clone]) if (evol_env == 'sc' and full_name in clones_sc): num_muts_seg_dict_sc[seg]['num_muts'].append(num_muts) num_muts_fit_array_sc.append([init_fits_sc[seg_index], delta_fits_sc[index_sc], num_muts, init_std_errs_sc[seg_index], rm_allele[seg_index]]) elif (evol_env == 'ypd' and full_name in clones_ypd): num_muts_seg_dict_ypd[seg]['num_muts'].append(num_muts) num_muts_fit_array_ypd.append([init_fits_ypd[seg_index], delta_fits_ypd[index_ypd], num_muts, init_std_errs_ypd[seg_index], rm_allele[seg_index]]) ##To plot just the sequenced segregants: num_muts_fit_array_sc = numpy.array(num_muts_fit_array_sc) num_muts_fit_array_ypd = numpy.array(num_muts_fit_array_ypd) msc, bsc = numpy.polyfit(num_muts_fit_array_sc[:,0], num_muts_fit_array_sc[:,2], 1) mypd, bypd = numpy.polyfit(num_muts_fit_array_ypd[:,0], num_muts_fit_array_ypd[:,2], 1) r_sc, p_sc = scipy.stats.pearsonr(num_muts_fit_array_sc[:,0], num_muts_fit_array_sc[:,2]) r_ypd, p_ypd = scipy.stats.pearsonr(num_muts_fit_array_ypd[:,0], num_muts_fit_array_ypd[:,2]) print p_sc, p_ypd ### fig, (ax1, ax2) = pt.subplots(1,2,figsize=(8,4)) colors = ['brown','Tomato'] for seg in num_muts_seg_dict_sc: init_fit = num_muts_seg_dict_sc[seg]['init_fit'] num_muts = num_muts_seg_dict_sc[seg]['num_muts'] kre_status = num_muts_seg_dict_sc[seg]['kre'] color1 = colors[kre_status] offset = 0 for num in sorted(num_muts): ax2.plot(init_fit, num + offset, 'o', color=color1, alpha=.9, markeredgewidth=0) offset += .08 ax2.plot([init_fit,init_fit], [min(num_muts), max(num_muts) + offset - .08], color=color1,alpha=.9,linewidth=.5) ax2.set_ylim(-.5,13) ax2.set_xlim(-.2,.18) ax2.set_xlabel('Initial fitness, 37 C (%)') ax2.set_ylabel('Number of nonsynon. muts') #ax2.set_frame_on(False) ax2.set_axisbelow(True) ax2.get_xaxis().tick_bottom() ax2.get_yaxis().tick_left() ax2.tick_params( axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom='on', # ticks along the bottom edge are on top='off', # ticks along the top edge are off labelbottom='on') xmin, xmax = ax2.get_xaxis().get_view_interval() ymin, ymax = ax2.get_yaxis().get_view_interval() #ax2.add_artist(Line2D((xmin, xmax), (ymin, ymin), color='black', linewidth=2)) #ax2.add_artist(Line2D((xmin, xmin), (ymin, ymax), color='black', linewidth=2)) ax2.set_xticks(numpy.arange(-.2,.19,.05)) ax2.plot(numpy.arange(-.19,.18,.01), msc*numpy.arange(-.19,.18,.01) + bsc, 'k') ax2.set_xticklabels(numpy.arange(-20,19,5)) ax2.text(.06,10,'$r^2=$' + str(round(r_sc**2,2)), fontsize=12) ax2.set_title('Evolved at 37 C') colors=['DarkSlateBlue','MediumSlateBlue'] for seg in num_muts_seg_dict_ypd: init_fit = num_muts_seg_dict_ypd[seg]['init_fit'] num_muts = num_muts_seg_dict_ypd[seg]['num_muts'] kre_status = num_muts_seg_dict_ypd[seg]['kre'] color1 = colors[kre_status] offset = 0 for num in sorted(num_muts): ax1.plot(init_fit, num + offset, 'o', color=color1, alpha=.9, markeredgewidth=0) offset += .08 ax1.plot([init_fit,init_fit], [min(num_muts), max(num_muts) + offset - .08], color=color1,alpha=.9,linewidth=.5) ax1.set_ylim(-.25,6) ax1.set_xlim(-.15,.1) #ax1.set_frame_on(False) ax1.set_axisbelow(True) ax1.get_xaxis().tick_bottom() ax1.get_yaxis().tick_left() ax1.tick_params( axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom='on', # ticks along the bottom edge are on top='off', # ticks along the top edge are off labelbottom='on') xmin, xmax = ax1.get_xaxis().get_view_interval() ymin, ymax = ax1.get_yaxis().get_view_interval() #ax1.add_artist(Line2D((xmin, xmax), (ymin, ymin), color='black', linewidth=2)) #ax1.add_artist(Line2D((xmin, xmin), (ymin, ymax), color='black', linewidth=2)) ax1.set_xticks(numpy.arange(-.15,.11,.05)) ax1.plot(numpy.arange(-.13,.1,.01), mypd*numpy.arange(-.13,.1,.01) + bypd, 'k') ax1.set_xticklabels(numpy.arange(-15,11,5)) ax1.set_xlabel('Initial fitness, 30 C (%)') ax1.set_ylabel('Number of nonsynon. muts') ax1.set_title('Evolved at 30 C') ax1.text(.025,4.5,'$r^2=$' + str(round(r_ypd**2,2)), fontsize=12) pt.savefig('Init_fit_v_num_mut_1_9_2016.pdf',bbox_inches='tight')
mit
cpcloud/blaze
blaze/compute/tests/test_hdfstore.py
14
1791
import pytest tables = pytest.importorskip('tables') from blaze.compute.hdfstore import * from blaze.utils import tmpfile from blaze import symbol, discover, compute import pandas as pd from datetime import datetime from odo import Chunks, resource, into import os try: f = pd.HDFStore('foo') except (RuntimeError, ImportError) as e: pytest.skip('skipping test_hdfstore.py %s' % e) else: f.close() os.remove('foo') df = pd.DataFrame([['a', 1, 10., datetime(2000, 1, 1)], ['ab', 2, 20., datetime(2000, 2, 2)], ['abc', 3, 30., datetime(2000, 3, 3)], ['abcd', 4, 40., datetime(2000, 4, 4)]], columns=['name', 'a', 'b', 'time']) def test_hdfstore(): with tmpfile('.hdf5') as fn: df.to_hdf(fn, '/appendable', format='table') df.to_hdf(fn, '/fixed') hdf = resource('hdfstore://%s' % fn) s = symbol('s', discover(hdf)) assert isinstance(compute(s.fixed, hdf), (pd.DataFrame, pd.io.pytables.Fixed)) assert isinstance(compute(s.appendable, hdf), (pd.io.pytables.AppendableFrameTable, Chunks)) s = symbol('s', discover(df)) f = resource('hdfstore://%s::/fixed' % fn) a = resource('hdfstore://%s::/appendable' % fn) assert isinstance(pre_compute(s, a), Chunks) hdf.close() f.parent.close() a.parent.close() def test_groups(): with tmpfile('.hdf5') as fn: df.to_hdf(fn, '/data/fixed') hdf = resource('hdfstore://%s' % fn) assert discover(hdf) == discover({'data': {'fixed': df}}) s = symbol('s', discover(hdf)) assert list(compute(s.data.fixed, hdf).a) == [1, 2, 3, 4] hdf.close()
bsd-3-clause
AllenDowney/ThinkBayes2
scripts/sat.py
3
12381
"""This file contains code used in "Think Bayes", by Allen B. Downey, available from greenteapress.com Copyright 2012 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function, division import csv import math import numpy import sys import matplotlib import matplotlib.pyplot as pyplot import thinkbayes2 import thinkplot def ReadScale(filename='sat_scale.csv', col=2): """Reads a CSV file of SAT scales (maps from raw score to standard score). Args: filename: string filename col: which column to start with (0=Reading, 2=Math, 4=Writing) Returns: thinkbayes2.Interpolator object """ def ParseRange(s): """Parse a range of values in the form 123-456 s: string """ t = [int(x) for x in s.split('-')] return 1.0 * sum(t) / len(t) fp = open(filename) reader = csv.reader(fp) raws = [] scores = [] for t in reader: try: raw = int(t[col]) raws.append(raw) score = ParseRange(t[col+1]) scores.append(score) except ValueError: pass raws.sort() scores.sort() return thinkbayes2.Interpolator(raws, scores) def ReadRanks(filename='sat_ranks.csv'): """Reads a CSV file of SAT scores. Args: filename: string filename Returns: list of (score, freq) pairs """ fp = open(filename) reader = csv.reader(fp) res = [] for t in reader: try: score = int(t[0]) freq = int(t[1]) res.append((score, freq)) except ValueError: pass return res def DivideValues(pmf, denom): """Divides the values in a Pmf by denom. Returns a new Pmf. """ new = thinkbayes2.Pmf() denom = float(denom) for val, prob in pmf.Items(): x = val / denom new.Set(x, prob) return new class Exam(object): """Encapsulates information about an exam. Contains the distribution of scaled scores and an Interpolator that maps between scaled and raw scores. """ def __init__(self): self.scale = ReadScale() scores = ReadRanks() score_pmf = thinkbayes2.Pmf(dict(scores)) self.raw = self.ReverseScale(score_pmf) self.max_score = max(self.raw.Values()) self.prior = DivideValues(self.raw, denom=self.max_score) center = -0.05 width = 1.8 self.difficulties = MakeDifficulties(center, width, self.max_score) def CompareScores(self, a_score, b_score, constructor): """Computes posteriors for two test scores and the likelihood ratio. a_score, b_score: scales SAT scores constructor: function that instantiates an Sat or Sat2 object """ a_sat = constructor(self, a_score) b_sat = constructor(self, b_score) a_sat.PlotPosteriors(b_sat) if constructor is Sat: PlotJointDist(a_sat, b_sat) top = TopLevel('AB') top.Update((a_sat, b_sat)) top.Print() ratio = top.Prob('A') / top.Prob('B') print('Likelihood ratio', ratio) posterior = ratio / (ratio + 1) print('Posterior', posterior) if constructor is Sat2: ComparePosteriorPredictive(a_sat, b_sat) def MakeRawScoreDist(self, efficacies): """Makes the distribution of raw scores for given difficulty. efficacies: Pmf of efficacy """ pmfs = thinkbayes2.Pmf() for efficacy, prob in efficacies.Items(): scores = self.PmfCorrect(efficacy) pmfs.Set(scores, prob) mix = thinkbayes2.MakeMixture(pmfs) return mix def CalibrateDifficulty(self): """Make a plot showing the model distribution of raw scores.""" thinkplot.Clf() thinkplot.PrePlot(num=2) cdf = thinkbayes2.Cdf(self.raw, label='data') thinkplot.Cdf(cdf) efficacies = thinkbayes2.MakeNormalPmf(0, 1.5, 3) pmf = self.MakeRawScoreDist(efficacies) cdf = thinkbayes2.Cdf(pmf, label='model') thinkplot.Cdf(cdf) thinkplot.Save(root='sat_calibrate', xlabel='raw score', ylabel='CDF', formats=['pdf', 'eps']) def PmfCorrect(self, efficacy): """Returns the PMF of number of correct responses. efficacy: float """ pmf = PmfCorrect(efficacy, self.difficulties) return pmf def Lookup(self, raw): """Looks up a raw score and returns a scaled score.""" return self.scale.Lookup(raw) def Reverse(self, score): """Looks up a scaled score and returns a raw score. Since we ignore the penalty, negative scores round up to zero. """ raw = self.scale.Reverse(score) return raw if raw > 0 else 0 def ReverseScale(self, pmf): """Applies the reverse scale to the values of a PMF. Args: pmf: Pmf object scale: Interpolator object Returns: new Pmf """ new = thinkbayes2.Pmf() for val, prob in pmf.Items(): raw = self.Reverse(val) new.Incr(raw, prob) return new class Sat(thinkbayes2.Suite): """Represents the distribution of p_correct for a test-taker.""" def __init__(self, exam, score): self.exam = exam self.score = score # start with the prior distribution thinkbayes2.Suite.__init__(self, exam.prior) # update based on an exam score self.Update(score) def Likelihood(self, data, hypo): """Computes the likelihood of a test score, given efficacy.""" p_correct = hypo score = data k = self.exam.Reverse(score) n = self.exam.max_score like = thinkbayes2.EvalBinomialPmf(k, n, p_correct) return like def PlotPosteriors(self, other): """Plots posterior distributions of efficacy. self, other: Sat objects. """ thinkplot.Clf() thinkplot.PrePlot(num=2) cdf1 = thinkbayes2.Cdf(self, label='posterior %d' % self.score) cdf2 = thinkbayes2.Cdf(other, label='posterior %d' % other.score) thinkplot.Cdfs([cdf1, cdf2]) thinkplot.Save(xlabel='p_correct', ylabel='CDF', axis=[0.7, 1.0, 0.0, 1.0], root='sat_posteriors_p_corr', formats=['pdf', 'eps']) class Sat2(thinkbayes2.Suite): """Represents the distribution of efficacy for a test-taker.""" def __init__(self, exam, score): self.exam = exam self.score = score # start with the Normal prior efficacies = thinkbayes2.MakeNormalPmf(0, 1.5, 3) thinkbayes2.Suite.__init__(self, efficacies) # update based on an exam score self.Update(score) def Likelihood(self, data, hypo): """Computes the likelihood of a test score, given efficacy.""" efficacy = hypo score = data raw = self.exam.Reverse(score) pmf = self.exam.PmfCorrect(efficacy) like = pmf.Prob(raw) return like def MakePredictiveDist(self): """Returns the distribution of raw scores expected on a re-test.""" raw_pmf = self.exam.MakeRawScoreDist(self) return raw_pmf def PlotPosteriors(self, other): """Plots posterior distributions of efficacy. self, other: Sat objects. """ thinkplot.Clf() thinkplot.PrePlot(num=2) cdf1 = thinkbayes2.Cdf(self, label='posterior %d' % self.score) cdf2 = thinkbayes2.Cdf(other, label='posterior %d' % other.score) thinkplot.Cdfs([cdf1, cdf2]) thinkplot.Save(xlabel='efficacy', ylabel='CDF', axis=[0, 4.6, 0.0, 1.0], root='sat_posteriors_eff', formats=['pdf', 'eps']) def PlotJointDist(pmf1, pmf2, thresh=0.8): """Plot the joint distribution of p_correct. pmf1, pmf2: posterior distributions thresh: lower bound of the range to be plotted """ def Clean(pmf): """Removes values below thresh.""" vals = [val for val in pmf.Values() if val < thresh] [pmf.Remove(val) for val in vals] Clean(pmf1) Clean(pmf2) pmf = thinkbayes2.MakeJoint(pmf1, pmf2) thinkplot.Figure(figsize=(6, 6)) thinkplot.Contour(pmf, contour=False, pcolor=True) thinkplot.Plot([thresh, 1.0], [thresh, 1.0], color='gray', alpha=0.2, linewidth=4) thinkplot.Save(root='sat_joint', xlabel='p_correct Alice', ylabel='p_correct Bob', axis=[thresh, 1.0, thresh, 1.0], formats=['pdf', 'eps']) def ComparePosteriorPredictive(a_sat, b_sat): """Compares the predictive distributions of raw scores. a_sat: posterior distribution b_sat: """ a_pred = a_sat.MakePredictiveDist() b_pred = b_sat.MakePredictiveDist() #thinkplot.Clf() #thinkplot.Pmfs([a_pred, b_pred]) #thinkplot.Show() a_like = thinkbayes2.PmfProbGreater(a_pred, b_pred) b_like = thinkbayes2.PmfProbLess(a_pred, b_pred) c_like = thinkbayes2.PmfProbEqual(a_pred, b_pred) print('Posterior predictive') print('A', a_like) print('B', b_like) print('C', c_like) def PlotPriorDist(pmf): """Plot the prior distribution of p_correct. pmf: prior """ thinkplot.Clf() thinkplot.PrePlot(num=1) cdf1 = thinkbayes2.Cdf(pmf, label='prior') thinkplot.Cdf(cdf1) thinkplot.Save(root='sat_prior', xlabel='p_correct', ylabel='CDF', formats=['pdf', 'eps']) class TopLevel(thinkbayes2.Suite): """Evaluates the top-level hypotheses about Alice and Bob. Uses the bottom-level posterior distribution about p_correct (or efficacy). """ def Update(self, data): a_sat, b_sat = data a_like = thinkbayes2.PmfProbGreater(a_sat, b_sat) b_like = thinkbayes2.PmfProbLess(a_sat, b_sat) c_like = thinkbayes2.PmfProbEqual(a_sat, b_sat) a_like += c_like / 2 b_like += c_like / 2 self.Mult('A', a_like) self.Mult('B', b_like) self.Normalize() def ProbCorrect(efficacy, difficulty, a=1): """Returns the probability that a person gets a question right. efficacy: personal ability to answer questions difficulty: how hard the question is Returns: float prob """ return 1 / (1 + math.exp(-a * (efficacy - difficulty))) def BinaryPmf(p): """Makes a Pmf with values 1 and 0. p: probability given to 1 Returns: Pmf object """ pmf = thinkbayes2.Pmf() pmf.Set(1, p) pmf.Set(0, 1-p) return pmf def PmfCorrect(efficacy, difficulties): """Computes the distribution of correct responses. efficacy: personal ability to answer questions difficulties: list of difficulties, one for each question Returns: new Pmf object """ pmf0 = thinkbayes2.Pmf([0]) ps = [ProbCorrect(efficacy, difficulty) for difficulty in difficulties] pmfs = [BinaryPmf(p) for p in ps] dist = sum(pmfs, pmf0) return dist def MakeDifficulties(center, width, n): """Makes a list of n difficulties with a given center and width. Returns: list of n floats between center-width and center+width """ low, high = center-width, center+width return numpy.linspace(low, high, n) def ProbCorrectTable(): """Makes a table of p_correct for a range of efficacy and difficulty.""" efficacies = [3, 1.5, 0, -1.5, -3] difficulties = [-1.85, -0.05, 1.75] for eff in efficacies: print('%0.2f & ' % eff, end=' ') for diff in difficulties: p = ProbCorrect(eff, diff) print('%0.2f & ' % p, end=' ') print(r'\\') def main(script): ProbCorrectTable() exam = Exam() PlotPriorDist(exam.prior) exam.CalibrateDifficulty() exam.CompareScores(780, 740, constructor=Sat) exam.CompareScores(780, 740, constructor=Sat2) if __name__ == '__main__': main(*sys.argv)
mit
apache/spark
python/pyspark/pandas/tests/test_series.py
9
118972
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest from collections import defaultdict from distutils.version import LooseVersion import inspect from itertools import product from datetime import datetime, timedelta import numpy as np import pandas as pd from pyspark.ml.linalg import SparseVector from pyspark import pandas as ps from pyspark.testing.pandasutils import ( have_tabulate, PandasOnSparkTestCase, SPARK_CONF_ARROW_ENABLED, tabulate_requirement_message, ) from pyspark.testing.sqlutils import SQLTestUtils from pyspark.pandas.exceptions import PandasNotImplementedError from pyspark.pandas.missing.series import MissingPandasLikeSeries from pyspark.pandas.typedef.typehints import ( extension_dtypes, extension_dtypes_available, extension_float_dtypes_available, extension_object_dtypes_available, ) class SeriesTest(PandasOnSparkTestCase, SQLTestUtils): @property def pser(self): return pd.Series([1, 2, 3, 4, 5, 6, 7], name="x") @property def psser(self): return ps.from_pandas(self.pser) def test_series_ops(self): pser = self.pser psser = self.psser self.assert_eq(psser + 1 + 10 * psser, pser + 1 + 10 * pser) self.assert_eq(psser + 1 + 10 * psser.index, pser + 1 + 10 * pser.index) self.assert_eq(psser.index + 1 + 10 * psser, pser.index + 1 + 10 * pser) def test_series_tuple_name(self): pser = self.pser pser.name = ("x", "a") psser = ps.from_pandas(pser) self.assert_eq(psser, pser) self.assert_eq(psser.name, pser.name) pser.name = ("y", "z") psser.name = ("y", "z") self.assert_eq(psser, pser) self.assert_eq(psser.name, pser.name) def test_repr_cache_invalidation(self): # If there is any cache, inplace operations should invalidate it. s = ps.range(10)["id"] s.__repr__() s.rename("a", inplace=True) self.assertEqual(s.__repr__(), s.rename("a").__repr__()) def _check_extension(self, psser, pser): if LooseVersion("1.1") <= LooseVersion(pd.__version__) < LooseVersion("1.2.2"): self.assert_eq(psser, pser, check_exact=False) self.assertTrue(isinstance(psser.dtype, extension_dtypes)) else: self.assert_eq(psser, pser) def test_empty_series(self): pser_a = pd.Series([], dtype="i1") pser_b = pd.Series([], dtype="str") self.assert_eq(ps.from_pandas(pser_a), pser_a) psser_b = ps.from_pandas(pser_b) self.assert_eq(psser_b, pser_b) with self.sql_conf({SPARK_CONF_ARROW_ENABLED: False}): self.assert_eq(ps.from_pandas(pser_a), pser_a) self.assert_eq(ps.from_pandas(pser_b), pser_b) def test_all_null_series(self): pser_a = pd.Series([None, None, None], dtype="float64") pser_b = pd.Series([None, None, None], dtype="str") self.assert_eq(ps.from_pandas(pser_a), pser_a) psser_b = ps.from_pandas(pser_b) self.assert_eq(psser_b, pser_b) with self.sql_conf({SPARK_CONF_ARROW_ENABLED: False}): self.assert_eq(ps.from_pandas(pser_a), pser_a) self.assert_eq(ps.from_pandas(pser_b), pser_b) def test_head(self): psser = self.psser pser = self.pser self.assert_eq(psser.head(3), pser.head(3)) self.assert_eq(psser.head(0), pser.head(0)) self.assert_eq(psser.head(-3), pser.head(-3)) self.assert_eq(psser.head(-10), pser.head(-10)) def test_last(self): with self.assertRaises(TypeError): self.psser.last("1D") index = pd.date_range("2018-04-09", periods=4, freq="2D") pser = pd.Series([1, 2, 3, 4], index=index) psser = ps.from_pandas(pser) self.assert_eq(psser.last("1D"), pser.last("1D")) def test_first(self): with self.assertRaises(TypeError): self.psser.first("1D") index = pd.date_range("2018-04-09", periods=4, freq="2D") pser = pd.Series([1, 2, 3, 4], index=index) psser = ps.from_pandas(pser) self.assert_eq(psser.first("1D"), pser.first("1D")) def test_rename(self): pser = pd.Series([1, 2, 3, 4, 5, 6, 7], name="x") psser = ps.from_pandas(pser) pser.name = "renamed" psser.name = "renamed" self.assertEqual(psser.name, "renamed") self.assert_eq(psser, pser) pser.name = None psser.name = None self.assertEqual(psser.name, None) self.assert_eq(psser, pser) pidx = pser.index psidx = psser.index pidx.name = "renamed" psidx.name = "renamed" self.assertEqual(psidx.name, "renamed") self.assert_eq(psidx, pidx) expected_error_message = "Series.name must be a hashable type" with self.assertRaisesRegex(TypeError, expected_error_message): psser.name = ["renamed"] with self.assertRaisesRegex(TypeError, expected_error_message): psser.name = ["0", "1"] with self.assertRaisesRegex(TypeError, expected_error_message): ps.Series([1, 2, 3], name=["0", "1"]) def test_rename_method(self): # Series name pser = pd.Series([1, 2, 3, 4, 5, 6, 7], name="x") psser = ps.from_pandas(pser) self.assert_eq(psser.rename("y"), pser.rename("y")) self.assertEqual(psser.name, "x") # no mutation self.assert_eq(psser.rename(), pser.rename()) self.assert_eq((psser.rename("y") + 1).head(), (pser.rename("y") + 1).head()) psser.rename("z", inplace=True) pser.rename("z", inplace=True) self.assertEqual(psser.name, "z") self.assert_eq(psser, pser) expected_error_message = "Series.name must be a hashable type" with self.assertRaisesRegex(TypeError, expected_error_message): psser.rename(["0", "1"]) # Series index # pser = pd.Series(['a', 'b', 'c', 'd', 'e', 'f', 'g'], name='x') # psser = ps.from_pandas(s) # TODO: index # res = psser.rename(lambda x: x ** 2) # self.assert_eq(res, pser.rename(lambda x: x ** 2)) # res = psser.rename(pser) # self.assert_eq(res, pser.rename(pser)) # res = psser.rename(psser) # self.assert_eq(res, pser.rename(pser)) # res = psser.rename(lambda x: x**2, inplace=True) # self.assertis(res, psser) # s.rename(lambda x: x**2, inplace=True) # self.assert_eq(psser, pser) def test_rename_axis(self): index = pd.Index(["A", "B", "C"], name="index") pser = pd.Series([1.0, 2.0, 3.0], index=index, name="name") psser = ps.from_pandas(pser) self.assert_eq( pser.rename_axis("index2").sort_index(), psser.rename_axis("index2").sort_index(), ) self.assert_eq( (pser + 1).rename_axis("index2").sort_index(), (psser + 1).rename_axis("index2").sort_index(), ) pser2 = pser.copy() psser2 = psser.copy() pser2.rename_axis("index2", inplace=True) psser2.rename_axis("index2", inplace=True) self.assert_eq(pser2.sort_index(), psser2.sort_index()) self.assertRaises(ValueError, lambda: psser.rename_axis(["index2", "index3"])) self.assertRaises(TypeError, lambda: psser.rename_axis(mapper=["index2"], index=["index3"])) # index/columns parameters and dict_like/functions mappers introduced in pandas 0.24.0 if LooseVersion(pd.__version__) >= LooseVersion("0.24.0"): self.assert_eq( pser.rename_axis(index={"index": "index2", "missing": "index4"}).sort_index(), psser.rename_axis(index={"index": "index2", "missing": "index4"}).sort_index(), ) self.assert_eq( pser.rename_axis(index=str.upper).sort_index(), psser.rename_axis(index=str.upper).sort_index(), ) else: expected = psser expected.index.name = "index2" result = psser.rename_axis(index={"index": "index2", "missing": "index4"}).sort_index() self.assert_eq(expected, result) expected = psser expected.index.name = "INDEX" result = psser.rename_axis(index=str.upper).sort_index() self.assert_eq(expected, result) index = pd.MultiIndex.from_tuples( [("A", "B"), ("C", "D"), ("E", "F")], names=["index1", "index2"] ) pser = pd.Series([1.0, 2.0, 3.0], index=index, name="name") psser = ps.from_pandas(pser) self.assert_eq( pser.rename_axis(["index3", "index4"]).sort_index(), psser.rename_axis(["index3", "index4"]).sort_index(), ) self.assertRaises(ValueError, lambda: psser.rename_axis(["index3", "index4", "index5"])) # index/columns parameters and dict_like/functions mappers introduced in pandas 0.24.0 if LooseVersion(pd.__version__) >= LooseVersion("0.24.0"): self.assert_eq( pser.rename_axis( index={"index1": "index3", "index2": "index4", "missing": "index5"} ).sort_index(), psser.rename_axis( index={"index1": "index3", "index2": "index4", "missing": "index5"} ).sort_index(), ) self.assert_eq( pser.rename_axis(index=str.upper).sort_index(), psser.rename_axis(index=str.upper).sort_index(), ) else: expected = psser expected.index.names = ["index3", "index4"] result = psser.rename_axis( index={"index1": "index3", "index2": "index4", "missing": "index5"} ).sort_index() self.assert_eq(expected, result) expected.index.names = ["INDEX1", "INDEX2"] result = psser.rename_axis(index=str.upper).sort_index() self.assert_eq(expected, result) def test_or(self): pdf = pd.DataFrame( { "left": [True, False, True, False, np.nan, np.nan, True, False, np.nan], "right": [True, False, False, True, True, False, np.nan, np.nan, np.nan], } ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf["left"] | psdf["right"], pdf["left"] | pdf["right"]) self.assert_eq(psdf["left"] | True, pdf["left"] | True) self.assert_eq(psdf["left"] | False, pdf["left"] | False) self.assert_eq(psdf["left"] | None, pdf["left"] | None) self.assert_eq(True | psdf["right"], True | pdf["right"]) self.assert_eq(False | psdf["right"], False | pdf["right"]) self.assert_eq(None | psdf["right"], None | pdf["right"]) @unittest.skipIf( not extension_object_dtypes_available, "pandas extension object dtypes are not available" ) def test_or_extenstion_dtypes(self): pdf = pd.DataFrame( { "left": [True, False, True, False, np.nan, np.nan, True, False, np.nan], "right": [True, False, False, True, True, False, np.nan, np.nan, np.nan], } ).astype("boolean") psdf = ps.from_pandas(pdf) self._check_extension(psdf["left"] | psdf["right"], pdf["left"] | pdf["right"]) self._check_extension(psdf["left"] | True, pdf["left"] | True) self._check_extension(psdf["left"] | False, pdf["left"] | False) self._check_extension(psdf["left"] | pd.NA, pdf["left"] | pd.NA) self._check_extension(True | psdf["right"], True | pdf["right"]) self._check_extension(False | psdf["right"], False | pdf["right"]) self._check_extension(pd.NA | psdf["right"], pd.NA | pdf["right"]) def test_and(self): pdf = pd.DataFrame( { "left": [True, False, True, False, np.nan, np.nan, True, False, np.nan], "right": [True, False, False, True, True, False, np.nan, np.nan, np.nan], } ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf["left"] & psdf["right"], pdf["left"] & pdf["right"]) self.assert_eq(psdf["left"] & True, pdf["left"] & True) self.assert_eq(psdf["left"] & False, pdf["left"] & False) self.assert_eq(psdf["left"] & None, pdf["left"] & None) self.assert_eq(True & psdf["right"], True & pdf["right"]) self.assert_eq(False & psdf["right"], False & pdf["right"]) self.assert_eq(None & psdf["right"], None & pdf["right"]) @unittest.skipIf( not extension_object_dtypes_available, "pandas extension object dtypes are not available" ) def test_and_extenstion_dtypes(self): pdf = pd.DataFrame( { "left": [True, False, True, False, np.nan, np.nan, True, False, np.nan], "right": [True, False, False, True, True, False, np.nan, np.nan, np.nan], } ).astype("boolean") psdf = ps.from_pandas(pdf) self._check_extension(psdf["left"] & psdf["right"], pdf["left"] & pdf["right"]) self._check_extension(psdf["left"] & True, pdf["left"] & True) self._check_extension(psdf["left"] & False, pdf["left"] & False) self._check_extension(psdf["left"] & pd.NA, pdf["left"] & pd.NA) self._check_extension(True & psdf["right"], True & pdf["right"]) self._check_extension(False & psdf["right"], False & pdf["right"]) self._check_extension(pd.NA & psdf["right"], pd.NA & pdf["right"]) def test_to_numpy(self): pser = pd.Series([1, 2, 3, 4, 5, 6, 7], name="x") psser = ps.from_pandas(pser) self.assert_eq(psser.to_numpy(), pser.values) def test_isin(self): pser = pd.Series(["lama", "cow", "lama", "beetle", "lama", "hippo"], name="animal") psser = ps.from_pandas(pser) self.assert_eq(psser.isin(["cow", "lama"]), pser.isin(["cow", "lama"])) self.assert_eq(psser.isin(np.array(["cow", "lama"])), pser.isin(np.array(["cow", "lama"]))) self.assert_eq(psser.isin({"cow"}), pser.isin({"cow"})) pser = pd.Series([np.int64(1), np.int32(1), 1]) psser = ps.from_pandas(pser) self.assert_eq(psser.isin([np.int64(1)]), pser.isin([np.int64(1)])) msg = "only list-like objects are allowed to be passed to isin()" with self.assertRaisesRegex(TypeError, msg): psser.isin(1) def test_drop_duplicates(self): pdf = pd.DataFrame({"animal": ["lama", "cow", "lama", "beetle", "lama", "hippo"]}) psdf = ps.from_pandas(pdf) pser = pdf.animal psser = psdf.animal self.assert_eq(psser.drop_duplicates().sort_index(), pser.drop_duplicates().sort_index()) self.assert_eq( psser.drop_duplicates(keep="last").sort_index(), pser.drop_duplicates(keep="last").sort_index(), ) # inplace psser.drop_duplicates(keep=False, inplace=True) pser.drop_duplicates(keep=False, inplace=True) self.assert_eq(psser.sort_index(), pser.sort_index()) self.assert_eq(psdf, pdf) def test_reindex(self): index = ["A", "B", "C", "D", "E"] pser = pd.Series([1.0, 2.0, 3.0, 4.0, None], index=index, name="x") psser = ps.from_pandas(pser) self.assert_eq(pser, psser) self.assert_eq( pser.reindex(["A", "B"]).sort_index(), psser.reindex(["A", "B"]).sort_index(), ) self.assert_eq( pser.reindex(["A", "B", "2", "3"]).sort_index(), psser.reindex(["A", "B", "2", "3"]).sort_index(), ) self.assert_eq( pser.reindex(["A", "E", "2"], fill_value=0).sort_index(), psser.reindex(["A", "E", "2"], fill_value=0).sort_index(), ) self.assertRaises(TypeError, lambda: psser.reindex(index=123)) def test_reindex_like(self): data = [1.0, 2.0, None] index = pd.Index(["A", "B", "C"], name="index1") pser = pd.Series(data=data, index=index, name="name1") psser = ps.from_pandas(pser) # Reindexing single Index on single Index data2 = [3.0, None, 4.0] index2 = pd.Index(["A", "C", "D"], name="index2") pser2 = pd.Series(data=data2, index=index2, name="name2") psser2 = ps.from_pandas(pser2) self.assert_eq( pser.reindex_like(pser2).sort_index(), psser.reindex_like(psser2).sort_index(), ) self.assert_eq( (pser + 1).reindex_like(pser2).sort_index(), (psser + 1).reindex_like(psser2).sort_index(), ) # Reindexing MultiIndex on single Index index2 = pd.MultiIndex.from_tuples( [("A", "G"), ("C", "D"), ("I", "J")], names=["index3", "index4"] ) pser2 = pd.Series(data=data2, index=index2, name="name2") psser2 = ps.from_pandas(pser2) self.assert_eq( pser.reindex_like(pser2).sort_index(), psser.reindex_like(psser2).sort_index(), ) self.assertRaises(TypeError, lambda: psser.reindex_like(index2)) self.assertRaises(AssertionError, lambda: psser2.reindex_like(psser)) # Reindexing MultiIndex on MultiIndex index = pd.MultiIndex.from_tuples( [("A", "B"), ("C", "D"), ("E", "F")], names=["index1", "index2"] ) pser = pd.Series(data=data, index=index, name="name1") psser = ps.from_pandas(pser) self.assert_eq( pser.reindex_like(pser2).sort_index(), psser.reindex_like(psser2).sort_index(), ) # Reindexing with DataFrame index2 = pd.MultiIndex.from_tuples( [("A", "B"), ("C", "D"), ("E", "F")], names=["name3", "name4"] ) pdf = pd.DataFrame(data=data, index=index2) psdf = ps.from_pandas(pdf) self.assert_eq( pser.reindex_like(pdf).sort_index(), psser.reindex_like(psdf).sort_index(), ) def test_fillna(self): pdf = pd.DataFrame({"x": [np.nan, 2, 3, 4, np.nan, 6], "y": [np.nan, 2, 3, 4, np.nan, 6]}) psdf = ps.from_pandas(pdf) pser = pdf.x psser = psdf.x self.assert_eq(psser.fillna(0), pser.fillna(0)) self.assert_eq(psser.fillna(np.nan).fillna(0), pser.fillna(np.nan).fillna(0)) psser.fillna(0, inplace=True) pser.fillna(0, inplace=True) self.assert_eq(psser, pser) self.assert_eq(psdf, pdf) # test considering series does not have NA/NaN values psser.fillna(0, inplace=True) pser.fillna(0, inplace=True) self.assert_eq(psser, pser) psser = psdf.x.rename("y") pser = pdf.x.rename("y") psser.fillna(0, inplace=True) pser.fillna(0, inplace=True) self.assert_eq(psser.head(), pser.head()) pser = pd.Series([1, 2, 3, 4, 5, 6], name="x") psser = ps.from_pandas(pser) pser.loc[3] = np.nan psser.loc[3] = np.nan self.assert_eq(psser.fillna(0), pser.fillna(0)) self.assert_eq(psser.fillna(method="ffill"), pser.fillna(method="ffill")) self.assert_eq(psser.fillna(method="bfill"), pser.fillna(method="bfill")) # inplace fillna on non-nullable column pdf = pd.DataFrame({"a": [1, 2, None], "b": [1, 2, 3]}) psdf = ps.from_pandas(pdf) pser = pdf.b psser = psdf.b self.assert_eq(psser.fillna(0), pser.fillna(0)) self.assert_eq(psser.fillna(np.nan).fillna(0), pser.fillna(np.nan).fillna(0)) psser.fillna(0, inplace=True) pser.fillna(0, inplace=True) self.assert_eq(psser, pser) self.assert_eq(psdf, pdf) def test_dropna(self): pdf = pd.DataFrame({"x": [np.nan, 2, 3, 4, np.nan, 6]}) psdf = ps.from_pandas(pdf) pser = pdf.x psser = psdf.x self.assert_eq(psser.dropna(), pser.dropna()) pser.dropna(inplace=True) psser.dropna(inplace=True) self.assert_eq(psser, pser) self.assert_eq(psdf, pdf) def test_nunique(self): pser = pd.Series([1, 2, 1, np.nan]) psser = ps.from_pandas(pser) # Assert NaNs are dropped by default nunique_result = psser.nunique() self.assertEqual(nunique_result, 2) self.assert_eq(nunique_result, pser.nunique()) # Assert including NaN values nunique_result = psser.nunique(dropna=False) self.assertEqual(nunique_result, 3) self.assert_eq(nunique_result, pser.nunique(dropna=False)) # Assert approximate counts self.assertEqual(ps.Series(range(100)).nunique(approx=True), 103) self.assertEqual(ps.Series(range(100)).nunique(approx=True, rsd=0.01), 100) def test_value_counts(self): # this is also containing test for Index & MultiIndex pser = pd.Series( [1, 2, 1, 3, 3, np.nan, 1, 4, 2, np.nan, 3, np.nan, 3, 1, 3], index=[1, 2, 1, 3, 3, np.nan, 1, 4, 2, np.nan, 3, np.nan, 3, 1, 3], name="x", ) psser = ps.from_pandas(pser) exp = pser.value_counts() res = psser.value_counts() self.assertEqual(res.name, exp.name) self.assert_eq(res, exp) self.assert_eq(psser.value_counts(normalize=True), pser.value_counts(normalize=True)) self.assert_eq(psser.value_counts(ascending=True), pser.value_counts(ascending=True)) self.assert_eq( psser.value_counts(normalize=True, dropna=False), pser.value_counts(normalize=True, dropna=False), ) self.assert_eq( psser.value_counts(ascending=True, dropna=False), pser.value_counts(ascending=True, dropna=False), ) self.assert_eq( psser.index.value_counts(normalize=True), pser.index.value_counts(normalize=True) ) self.assert_eq( psser.index.value_counts(ascending=True), pser.index.value_counts(ascending=True) ) self.assert_eq( psser.index.value_counts(normalize=True, dropna=False), pser.index.value_counts(normalize=True, dropna=False), ) self.assert_eq( psser.index.value_counts(ascending=True, dropna=False), pser.index.value_counts(ascending=True, dropna=False), ) with self.assertRaisesRegex( NotImplementedError, "value_counts currently does not support bins" ): psser.value_counts(bins=3) pser.name = "index" psser.name = "index" self.assert_eq(psser.value_counts(), pser.value_counts()) # Series from DataFrame pdf = pd.DataFrame({"a": [2, 2, 3], "b": [None, 1, None]}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.a.value_counts(normalize=True), pdf.a.value_counts(normalize=True)) self.assert_eq(psdf.a.value_counts(ascending=True), pdf.a.value_counts(ascending=True)) self.assert_eq( psdf.a.value_counts(normalize=True, dropna=False), pdf.a.value_counts(normalize=True, dropna=False), ) self.assert_eq( psdf.a.value_counts(ascending=True, dropna=False), pdf.a.value_counts(ascending=True, dropna=False), ) self.assert_eq( psser.index.value_counts(normalize=True), pser.index.value_counts(normalize=True) ) self.assert_eq( psser.index.value_counts(ascending=True), pser.index.value_counts(ascending=True) ) self.assert_eq( psser.index.value_counts(normalize=True, dropna=False), pser.index.value_counts(normalize=True, dropna=False), ) self.assert_eq( psser.index.value_counts(ascending=True, dropna=False), pser.index.value_counts(ascending=True, dropna=False), ) # Series with NaN index pser = pd.Series([3, 2, 3, 1, 2, 3], index=[2.0, None, 5.0, 5.0, None, 5.0]) psser = ps.from_pandas(pser) self.assert_eq(psser.value_counts(normalize=True), pser.value_counts(normalize=True)) self.assert_eq(psser.value_counts(ascending=True), pser.value_counts(ascending=True)) self.assert_eq( psser.value_counts(normalize=True, dropna=False), pser.value_counts(normalize=True, dropna=False), ) self.assert_eq( psser.value_counts(ascending=True, dropna=False), pser.value_counts(ascending=True, dropna=False), ) self.assert_eq( psser.index.value_counts(normalize=True), pser.index.value_counts(normalize=True) ) self.assert_eq( psser.index.value_counts(ascending=True), pser.index.value_counts(ascending=True) ) self.assert_eq( psser.index.value_counts(normalize=True, dropna=False), pser.index.value_counts(normalize=True, dropna=False), ) self.assert_eq( psser.index.value_counts(ascending=True, dropna=False), pser.index.value_counts(ascending=True, dropna=False), ) # Series with MultiIndex pser.index = pd.MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "c"), ("x", "a"), ("y", "c"), ("x", "a")] ) psser = ps.from_pandas(pser) self.assert_eq(psser.value_counts(normalize=True), pser.value_counts(normalize=True)) self.assert_eq(psser.value_counts(ascending=True), pser.value_counts(ascending=True)) self.assert_eq( psser.value_counts(normalize=True, dropna=False), pser.value_counts(normalize=True, dropna=False), ) self.assert_eq( psser.value_counts(ascending=True, dropna=False), pser.value_counts(ascending=True, dropna=False), ) # FIXME: MultiIndex.value_counts returns wrong indices. self.assert_eq( psser.index.value_counts(normalize=True), pser.index.value_counts(normalize=True), almost=True, ) self.assert_eq( psser.index.value_counts(ascending=True), pser.index.value_counts(ascending=True), almost=True, ) self.assert_eq( psser.index.value_counts(normalize=True, dropna=False), pser.index.value_counts(normalize=True, dropna=False), almost=True, ) self.assert_eq( psser.index.value_counts(ascending=True, dropna=False), pser.index.value_counts(ascending=True, dropna=False), almost=True, ) # Series with MultiIndex some of index has NaN pser.index = pd.MultiIndex.from_tuples( [("x", "a"), ("x", None), ("y", "c"), ("x", "a"), ("y", "c"), ("x", "a")] ) psser = ps.from_pandas(pser) self.assert_eq(psser.value_counts(normalize=True), pser.value_counts(normalize=True)) self.assert_eq(psser.value_counts(ascending=True), pser.value_counts(ascending=True)) self.assert_eq( psser.value_counts(normalize=True, dropna=False), pser.value_counts(normalize=True, dropna=False), ) self.assert_eq( psser.value_counts(ascending=True, dropna=False), pser.value_counts(ascending=True, dropna=False), ) # FIXME: MultiIndex.value_counts returns wrong indices. self.assert_eq( psser.index.value_counts(normalize=True), pser.index.value_counts(normalize=True), almost=True, ) self.assert_eq( psser.index.value_counts(ascending=True), pser.index.value_counts(ascending=True), almost=True, ) self.assert_eq( psser.index.value_counts(normalize=True, dropna=False), pser.index.value_counts(normalize=True, dropna=False), almost=True, ) self.assert_eq( psser.index.value_counts(ascending=True, dropna=False), pser.index.value_counts(ascending=True, dropna=False), almost=True, ) # Series with MultiIndex some of index is NaN. # This test only available for pandas >= 0.24. if LooseVersion(pd.__version__) >= LooseVersion("0.24"): pser.index = pd.MultiIndex.from_tuples( [("x", "a"), None, ("y", "c"), ("x", "a"), ("y", "c"), ("x", "a")] ) psser = ps.from_pandas(pser) self.assert_eq(psser.value_counts(normalize=True), pser.value_counts(normalize=True)) self.assert_eq(psser.value_counts(ascending=True), pser.value_counts(ascending=True)) self.assert_eq( psser.value_counts(normalize=True, dropna=False), pser.value_counts(normalize=True, dropna=False), ) self.assert_eq( psser.value_counts(ascending=True, dropna=False), pser.value_counts(ascending=True, dropna=False), ) # FIXME: MultiIndex.value_counts returns wrong indices. self.assert_eq( psser.index.value_counts(normalize=True), pser.index.value_counts(normalize=True), almost=True, ) self.assert_eq( psser.index.value_counts(ascending=True), pser.index.value_counts(ascending=True), almost=True, ) self.assert_eq( psser.index.value_counts(normalize=True, dropna=False), pser.index.value_counts(normalize=True, dropna=False), almost=True, ) self.assert_eq( psser.index.value_counts(ascending=True, dropna=False), pser.index.value_counts(ascending=True, dropna=False), almost=True, ) def test_nsmallest(self): sample_lst = [1, 2, 3, 4, np.nan, 6] pser = pd.Series(sample_lst, name="x") psser = ps.Series(sample_lst, name="x") self.assert_eq(psser.nsmallest(n=3), pser.nsmallest(n=3)) self.assert_eq(psser.nsmallest(), pser.nsmallest()) self.assert_eq((psser + 1).nsmallest(), (pser + 1).nsmallest()) def test_nlargest(self): sample_lst = [1, 2, 3, 4, np.nan, 6] pser = pd.Series(sample_lst, name="x") psser = ps.Series(sample_lst, name="x") self.assert_eq(psser.nlargest(n=3), pser.nlargest(n=3)) self.assert_eq(psser.nlargest(), pser.nlargest()) self.assert_eq((psser + 1).nlargest(), (pser + 1).nlargest()) def test_notnull(self): pser = pd.Series([1, 2, 3, 4, np.nan, 6], name="x") psser = ps.from_pandas(pser) self.assert_eq(psser.notnull(), pser.notnull()) pser = self.pser psser = self.psser self.assert_eq(psser.notnull(), pser.notnull()) def test_all(self): for pser in [ pd.Series([True, True], name="x"), pd.Series([True, False], name="x"), pd.Series([0, 1], name="x"), pd.Series([1, 2, 3], name="x"), pd.Series([True, True, None], name="x"), pd.Series([True, False, None], name="x"), pd.Series([], name="x"), pd.Series([np.nan], name="x"), ]: psser = ps.from_pandas(pser) self.assert_eq(psser.all(), pser.all()) pser = pd.Series([1, 2, 3, 4], name="x") psser = ps.from_pandas(pser) self.assert_eq((psser % 2 == 0).all(), (pser % 2 == 0).all()) with self.assertRaisesRegex( NotImplementedError, 'axis should be either 0 or "index" currently.' ): psser.all(axis=1) def test_any(self): for pser in [ pd.Series([False, False], name="x"), pd.Series([True, False], name="x"), pd.Series([0, 1], name="x"), pd.Series([1, 2, 3], name="x"), pd.Series([True, True, None], name="x"), pd.Series([True, False, None], name="x"), pd.Series([], name="x"), pd.Series([np.nan], name="x"), ]: psser = ps.from_pandas(pser) self.assert_eq(psser.any(), pser.any()) pser = pd.Series([1, 2, 3, 4], name="x") psser = ps.from_pandas(pser) self.assert_eq((psser % 2 == 0).any(), (pser % 2 == 0).any()) with self.assertRaisesRegex( NotImplementedError, 'axis should be either 0 or "index" currently.' ): psser.any(axis=1) def test_reset_index(self): pdf = pd.DataFrame({"foo": [1, 2, 3, 4]}, index=pd.Index(["a", "b", "c", "d"], name="idx")) psdf = ps.from_pandas(pdf) pser = pdf.foo psser = psdf.foo self.assert_eq(psser.reset_index(), pser.reset_index()) self.assert_eq(psser.reset_index(name="values"), pser.reset_index(name="values")) self.assert_eq(psser.reset_index(drop=True), pser.reset_index(drop=True)) # inplace psser.reset_index(drop=True, inplace=True) pser.reset_index(drop=True, inplace=True) self.assert_eq(psser, pser) self.assert_eq(psdf, pdf) def test_reset_index_with_default_index_types(self): pser = pd.Series([1, 2, 3], name="0", index=np.random.rand(3)) psser = ps.from_pandas(pser) with ps.option_context("compute.default_index_type", "sequence"): self.assert_eq(psser.reset_index(), pser.reset_index()) with ps.option_context("compute.default_index_type", "distributed-sequence"): # the order might be changed. self.assert_eq(psser.reset_index().sort_index(), pser.reset_index()) with ps.option_context("compute.default_index_type", "distributed"): # the index is different. self.assert_eq( psser.reset_index().to_pandas().reset_index(drop=True), pser.reset_index() ) def test_index_to_series_reset_index(self): def check(psser, pser): self.assert_eq(psser.reset_index(), pser.reset_index()) self.assert_eq(psser.reset_index(drop=True), pser.reset_index(drop=True)) pser.reset_index(drop=True, inplace=True) psser.reset_index(drop=True, inplace=True) self.assert_eq(psser, pser) pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0]}, index=np.random.rand(9), ) psdf = ps.from_pandas(pdf) check(psdf.index.to_series(), pdf.index.to_series()) check(psdf.index.to_series(name="a"), pdf.index.to_series(name="a")) check(psdf.index.to_series(name=("x", "a")), pdf.index.to_series(name=("x", "a"))) def test_sort_values(self): pdf = pd.DataFrame({"x": [1, 2, 3, 4, 5, None, 7]}) psdf = ps.from_pandas(pdf) pser = pdf.x psser = psdf.x self.assert_eq(psser.sort_values(), pser.sort_values()) self.assert_eq(psser.sort_values(ascending=False), pser.sort_values(ascending=False)) self.assert_eq( psser.sort_values(na_position="first"), pser.sort_values(na_position="first") ) self.assertRaises(ValueError, lambda: psser.sort_values(na_position="invalid")) # inplace # pandas raises an exception when the Series is derived from DataFrame psser.sort_values(inplace=True) self.assert_eq(psser, pser.sort_values()) self.assert_eq(psdf, pdf) pser = pdf.x.copy() psser = psdf.x.copy() psser.sort_values(inplace=True) pser.sort_values(inplace=True) self.assert_eq(psser, pser) self.assert_eq(psdf, pdf) def test_sort_index(self): pdf = pd.DataFrame({"x": [2, 1, np.nan]}, index=["b", "a", np.nan]) psdf = ps.from_pandas(pdf) pser = pdf.x psser = psdf.x # Assert invalid parameters self.assertRaises(NotImplementedError, lambda: psser.sort_index(axis=1)) self.assertRaises(NotImplementedError, lambda: psser.sort_index(kind="mergesort")) self.assertRaises(ValueError, lambda: psser.sort_index(na_position="invalid")) # Assert default behavior without parameters self.assert_eq(psser.sort_index(), pser.sort_index()) # Assert sorting descending self.assert_eq(psser.sort_index(ascending=False), pser.sort_index(ascending=False)) # Assert sorting NA indices first self.assert_eq(psser.sort_index(na_position="first"), pser.sort_index(na_position="first")) # Assert sorting inplace # pandas sorts pdf.x by the index and update the column only # when the Series is derived from DataFrame. psser.sort_index(inplace=True) self.assert_eq(psser, pser.sort_index()) self.assert_eq(psdf, pdf) pser = pdf.x.copy() psser = psdf.x.copy() psser.sort_index(inplace=True) pser.sort_index(inplace=True) self.assert_eq(psser, pser) self.assert_eq(psdf, pdf) # Assert multi-indices pser = pd.Series(range(4), index=[["b", "b", "a", "a"], [1, 0, 1, 0]], name="0") psser = ps.from_pandas(pser) self.assert_eq(psser.sort_index(), pser.sort_index()) self.assert_eq(psser.sort_index(level=[1, 0]), pser.sort_index(level=[1, 0])) self.assert_eq(psser.reset_index().sort_index(), pser.reset_index().sort_index()) def test_to_datetime(self): pser = pd.Series(["3/11/2000", "3/12/2000", "3/13/2000"] * 100) psser = ps.from_pandas(pser) self.assert_eq( pd.to_datetime(pser, infer_datetime_format=True), ps.to_datetime(psser, infer_datetime_format=True), ) def test_missing(self): psser = self.psser missing_functions = inspect.getmembers(MissingPandasLikeSeries, inspect.isfunction) unsupported_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "unsupported_function" ] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Series.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(psser, name)() deprecated_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "deprecated_function" ] for name in deprecated_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Series.*{}.*is deprecated".format(name) ): getattr(psser, name)() missing_properties = inspect.getmembers( MissingPandasLikeSeries, lambda o: isinstance(o, property) ) unsupported_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "unsupported_property" ] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Series.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(psser, name) deprecated_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "deprecated_property" ] for name in deprecated_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Series.*{}.*is deprecated".format(name) ): getattr(psser, name) def test_clip(self): pser = pd.Series([0, 2, 4], index=np.random.rand(3)) psser = ps.from_pandas(pser) # Assert list-like values are not accepted for 'lower' and 'upper' msg = "List-like value are not supported for 'lower' and 'upper' at the moment" with self.assertRaises(TypeError, msg=msg): psser.clip(lower=[1]) with self.assertRaises(TypeError, msg=msg): psser.clip(upper=[1]) # Assert no lower or upper self.assert_eq(psser.clip(), pser.clip()) # Assert lower only self.assert_eq(psser.clip(1), pser.clip(1)) # Assert upper only self.assert_eq(psser.clip(upper=3), pser.clip(upper=3)) # Assert lower and upper self.assert_eq(psser.clip(1, 3), pser.clip(1, 3)) # Assert behavior on string values str_psser = ps.Series(["a", "b", "c"]) self.assert_eq(str_psser.clip(1, 3), str_psser) def test_compare(self): if LooseVersion(pd.__version__) >= LooseVersion("1.1"): pser = pd.Series([1, 2]) psser = ps.from_pandas(pser) res_psdf = psser.compare(psser) self.assertTrue(res_psdf.empty) self.assert_eq(res_psdf.columns, pd.Index(["self", "other"])) self.assert_eq( pser.compare(pser + 1).sort_index(), psser.compare(psser + 1).sort_index() ) pser = pd.Series([1, 2], index=["x", "y"]) psser = ps.from_pandas(pser) self.assert_eq( pser.compare(pser + 1).sort_index(), psser.compare(psser + 1).sort_index() ) else: psser = ps.Series([1, 2]) res_psdf = psser.compare(psser) self.assertTrue(res_psdf.empty) self.assert_eq(res_psdf.columns, pd.Index(["self", "other"])) expected = ps.DataFrame([[1, 2], [2, 3]], columns=["self", "other"]) self.assert_eq(expected, psser.compare(psser + 1).sort_index()) psser = ps.Series([1, 2], index=["x", "y"]) expected = ps.DataFrame([[1, 2], [2, 3]], index=["x", "y"], columns=["self", "other"]) self.assert_eq(expected, psser.compare(psser + 1).sort_index()) def test_is_unique(self): # We can't use pandas' is_unique for comparison. pandas 0.23 ignores None pser = pd.Series([1, 2, 2, None, None]) psser = ps.from_pandas(pser) self.assertEqual(False, psser.is_unique) self.assertEqual(False, (psser + 1).is_unique) pser = pd.Series([1, None, None]) psser = ps.from_pandas(pser) self.assertEqual(False, psser.is_unique) self.assertEqual(False, (psser + 1).is_unique) pser = pd.Series([1]) psser = ps.from_pandas(pser) self.assertEqual(pser.is_unique, psser.is_unique) self.assertEqual((pser + 1).is_unique, (psser + 1).is_unique) pser = pd.Series([1, 1, 1]) psser = ps.from_pandas(pser) self.assertEqual(pser.is_unique, psser.is_unique) self.assertEqual((pser + 1).is_unique, (psser + 1).is_unique) def test_to_list(self): self.assert_eq(self.psser.tolist(), self.pser.tolist()) def test_append(self): pser1 = pd.Series([1, 2, 3], name="0") pser2 = pd.Series([4, 5, 6], name="0") pser3 = pd.Series([4, 5, 6], index=[3, 4, 5], name="0") psser1 = ps.from_pandas(pser1) psser2 = ps.from_pandas(pser2) psser3 = ps.from_pandas(pser3) self.assert_eq(psser1.append(psser2), pser1.append(pser2)) self.assert_eq(psser1.append(psser3), pser1.append(pser3)) self.assert_eq( psser1.append(psser2, ignore_index=True), pser1.append(pser2, ignore_index=True) ) psser1.append(psser3, verify_integrity=True) msg = "Indices have overlapping values" with self.assertRaises(ValueError, msg=msg): psser1.append(psser2, verify_integrity=True) def test_map(self): pser = pd.Series(["cat", "dog", None, "rabbit"]) psser = ps.from_pandas(pser) # Currently Koalas doesn't return NaN as pandas does. self.assert_eq(psser.map({}), pser.map({}).replace({pd.np.nan: None})) d = defaultdict(lambda: "abc") self.assertTrue("abc" in repr(psser.map(d))) self.assert_eq(psser.map(d), pser.map(d)) def tomorrow(date) -> datetime: return date + timedelta(days=1) pser = pd.Series([datetime(2019, 10, 24)]) psser = ps.from_pandas(pser) self.assert_eq(psser.map(tomorrow), pser.map(tomorrow)) def test_add_prefix(self): pser = pd.Series([1, 2, 3, 4], name="0") psser = ps.from_pandas(pser) self.assert_eq(pser.add_prefix("item_"), psser.add_prefix("item_")) pser = pd.Series( [1, 2, 3], name="0", index=pd.MultiIndex.from_tuples([("A", "X"), ("A", "Y"), ("B", "X")]), ) psser = ps.from_pandas(pser) self.assert_eq(pser.add_prefix("item_"), psser.add_prefix("item_")) def test_add_suffix(self): pser = pd.Series([1, 2, 3, 4], name="0") psser = ps.from_pandas(pser) self.assert_eq(pser.add_suffix("_item"), psser.add_suffix("_item")) pser = pd.Series( [1, 2, 3], name="0", index=pd.MultiIndex.from_tuples([("A", "X"), ("A", "Y"), ("B", "X")]), ) psser = ps.from_pandas(pser) self.assert_eq(pser.add_suffix("_item"), psser.add_suffix("_item")) def test_cummin(self): pser = pd.Series([1.0, None, 0.0, 4.0, 9.0]) psser = ps.from_pandas(pser) self.assert_eq(pser.cummin(), psser.cummin()) self.assert_eq(pser.cummin(skipna=False), psser.cummin(skipna=False)) self.assert_eq(pser.cummin().sum(), psser.cummin().sum()) # with reversed index pser.index = [4, 3, 2, 1, 0] psser = ps.from_pandas(pser) self.assert_eq(pser.cummin(), psser.cummin()) self.assert_eq(pser.cummin(skipna=False), psser.cummin(skipna=False)) def test_cummax(self): pser = pd.Series([1.0, None, 0.0, 4.0, 9.0]) psser = ps.from_pandas(pser) self.assert_eq(pser.cummax(), psser.cummax()) self.assert_eq(pser.cummax(skipna=False), psser.cummax(skipna=False)) self.assert_eq(pser.cummax().sum(), psser.cummax().sum()) # with reversed index pser.index = [4, 3, 2, 1, 0] psser = ps.from_pandas(pser) self.assert_eq(pser.cummax(), psser.cummax()) self.assert_eq(pser.cummax(skipna=False), psser.cummax(skipna=False)) def test_cumsum(self): pser = pd.Series([1.0, None, 0.0, 4.0, 9.0]) psser = ps.from_pandas(pser) self.assert_eq(pser.cumsum(), psser.cumsum()) self.assert_eq(pser.cumsum(skipna=False), psser.cumsum(skipna=False)) self.assert_eq(pser.cumsum().sum(), psser.cumsum().sum()) # with reversed index pser.index = [4, 3, 2, 1, 0] psser = ps.from_pandas(pser) self.assert_eq(pser.cumsum(), psser.cumsum()) self.assert_eq(pser.cumsum(skipna=False), psser.cumsum(skipna=False)) # bool pser = pd.Series([True, True, False, True]) psser = ps.from_pandas(pser) self.assert_eq(pser.cumsum().astype(int), psser.cumsum()) self.assert_eq(pser.cumsum(skipna=False).astype(int), psser.cumsum(skipna=False)) def test_cumprod(self): pser = pd.Series([1.0, None, 1.0, 4.0, 9.0]) psser = ps.from_pandas(pser) self.assert_eq(pser.cumprod(), psser.cumprod()) self.assert_eq(pser.cumprod(skipna=False), psser.cumprod(skipna=False)) self.assert_eq(pser.cumprod().sum(), psser.cumprod().sum()) # with integer type pser = pd.Series([1, 10, 1, 4, 9]) psser = ps.from_pandas(pser) self.assert_eq(pser.cumprod(), psser.cumprod()) self.assert_eq(pser.cumprod(skipna=False), psser.cumprod(skipna=False)) self.assert_eq(pser.cumprod().sum(), psser.cumprod().sum()) # with reversed index pser.index = [4, 3, 2, 1, 0] psser = ps.from_pandas(pser) self.assert_eq(pser.cumprod(), psser.cumprod()) self.assert_eq(pser.cumprod(skipna=False), psser.cumprod(skipna=False)) # including zero pser = pd.Series([1, 2, 0, 3]) psser = ps.from_pandas(pser) self.assert_eq(pser.cumprod(), psser.cumprod()) self.assert_eq(pser.cumprod(skipna=False), psser.cumprod(skipna=False)) # including negative values pser = pd.Series([1, -1, -2]) psser = ps.from_pandas(pser) self.assert_eq(pser.cumprod(), psser.cumprod()) self.assert_eq(pser.cumprod(skipna=False), psser.cumprod(skipna=False)) # bool pser = pd.Series([True, True, False, True]) psser = ps.from_pandas(pser) self.assert_eq(pser.cumprod(), psser.cumprod()) self.assert_eq(pser.cumprod(skipna=False).astype(int), psser.cumprod(skipna=False)) def test_median(self): with self.assertRaisesRegex(TypeError, "accuracy must be an integer; however"): ps.Series([24.0, 21.0, 25.0, 33.0, 26.0]).median(accuracy="a") def test_rank(self): pser = pd.Series([1, 2, 3, 1], name="x") psser = ps.from_pandas(pser) self.assert_eq(pser.rank(), psser.rank().sort_index()) self.assert_eq(pser.rank().sum(), psser.rank().sum()) self.assert_eq(pser.rank(ascending=False), psser.rank(ascending=False).sort_index()) self.assert_eq(pser.rank(method="min"), psser.rank(method="min").sort_index()) self.assert_eq(pser.rank(method="max"), psser.rank(method="max").sort_index()) self.assert_eq(pser.rank(method="first"), psser.rank(method="first").sort_index()) self.assert_eq(pser.rank(method="dense"), psser.rank(method="dense").sort_index()) msg = "method must be one of 'average', 'min', 'max', 'first', 'dense'" with self.assertRaisesRegex(ValueError, msg): psser.rank(method="nothing") def test_round(self): pser = pd.Series([0.028208, 0.038683, 0.877076], name="x") psser = ps.from_pandas(pser) self.assert_eq(pser.round(2), psser.round(2)) msg = "decimals must be an integer" with self.assertRaisesRegex(TypeError, msg): psser.round(1.5) def test_quantile(self): pser = pd.Series([]) psser = ps.from_pandas(pser) self.assert_eq(psser.quantile(0.5), pser.quantile(0.5)) self.assert_eq(psser.quantile([0.25, 0.5, 0.75]), pser.quantile([0.25, 0.5, 0.75])) with self.assertRaisesRegex(TypeError, "accuracy must be an integer; however"): ps.Series([24.0, 21.0, 25.0, 33.0, 26.0]).quantile(accuracy="a") with self.assertRaisesRegex(TypeError, "q must be a float or an array of floats;"): ps.Series([24.0, 21.0, 25.0, 33.0, 26.0]).quantile(q="a") with self.assertRaisesRegex(TypeError, "q must be a float or an array of floats;"): ps.Series([24.0, 21.0, 25.0, 33.0, 26.0]).quantile(q=["a"]) with self.assertRaisesRegex(TypeError, "Could not convert object \\(string\\) to numeric"): ps.Series(["a", "b", "c"]).quantile() with self.assertRaisesRegex(TypeError, "Could not convert object \\(string\\) to numeric"): ps.Series(["a", "b", "c"]).quantile([0.25, 0.5, 0.75]) def test_idxmax(self): pser = pd.Series(data=[1, 4, 5], index=["A", "B", "C"]) psser = ps.Series(pser) self.assertEqual(psser.idxmax(), pser.idxmax()) self.assertEqual(psser.idxmax(skipna=False), pser.idxmax(skipna=False)) index = pd.MultiIndex.from_arrays( [["a", "a", "b", "b"], ["c", "d", "e", "f"]], names=("first", "second") ) pser = pd.Series(data=[1, 2, 4, 5], index=index) psser = ps.Series(pser) self.assertEqual(psser.idxmax(), pser.idxmax()) self.assertEqual(psser.idxmax(skipna=False), pser.idxmax(skipna=False)) psser = ps.Series([]) with self.assertRaisesRegex(ValueError, "an empty sequence"): psser.idxmax() pser = pd.Series([1, 100, None, 100, 1, 100], index=[10, 3, 5, 2, 1, 8]) psser = ps.Series(pser) self.assertEqual(psser.idxmax(), pser.idxmax()) self.assertEqual(repr(psser.idxmax(skipna=False)), repr(pser.idxmax(skipna=False))) def test_idxmin(self): pser = pd.Series(data=[1, 4, 5], index=["A", "B", "C"]) psser = ps.Series(pser) self.assertEqual(psser.idxmin(), pser.idxmin()) self.assertEqual(psser.idxmin(skipna=False), pser.idxmin(skipna=False)) index = pd.MultiIndex.from_arrays( [["a", "a", "b", "b"], ["c", "d", "e", "f"]], names=("first", "second") ) pser = pd.Series(data=[1, 2, 4, 5], index=index) psser = ps.Series(pser) self.assertEqual(psser.idxmin(), pser.idxmin()) self.assertEqual(psser.idxmin(skipna=False), pser.idxmin(skipna=False)) psser = ps.Series([]) with self.assertRaisesRegex(ValueError, "an empty sequence"): psser.idxmin() pser = pd.Series([1, 100, None, 100, 1, 100], index=[10, 3, 5, 2, 1, 8]) psser = ps.Series(pser) self.assertEqual(psser.idxmin(), pser.idxmin()) self.assertEqual(repr(psser.idxmin(skipna=False)), repr(pser.idxmin(skipna=False))) def test_shift(self): pser = pd.Series([10, 20, 15, 30, 45], name="x") psser = ps.Series(pser) self.assert_eq(psser.shift(2), pser.shift(2)) self.assert_eq(psser.shift().shift(-1), pser.shift().shift(-1)) self.assert_eq(psser.shift().sum(), pser.shift().sum()) if LooseVersion(pd.__version__) < LooseVersion("0.24.2"): self.assert_eq(psser.shift(periods=2), pser.shift(periods=2)) else: self.assert_eq( psser.shift(periods=2, fill_value=0), pser.shift(periods=2, fill_value=0) ) with self.assertRaisesRegex(TypeError, "periods should be an int; however"): psser.shift(periods=1.5) def test_diff(self): pser = pd.Series([10, 20, 15, 30, 45], name="x") psser = ps.Series(pser) self.assert_eq(psser.diff(2), pser.diff(2)) self.assert_eq(psser.diff().diff(-1), pser.diff().diff(-1)) self.assert_eq(psser.diff().sum(), pser.diff().sum()) def _test_numeric_astype(self, pser): psser = ps.Series(pser) self.assert_eq(psser.astype(int), pser.astype(int)) self.assert_eq(psser.astype(np.int), pser.astype(np.int)) self.assert_eq(psser.astype(np.int8), pser.astype(np.int8)) self.assert_eq(psser.astype(np.int16), pser.astype(np.int16)) self.assert_eq(psser.astype(np.int32), pser.astype(np.int32)) self.assert_eq(psser.astype(np.int64), pser.astype(np.int64)) self.assert_eq(psser.astype(np.byte), pser.astype(np.byte)) self.assert_eq(psser.astype("int"), pser.astype("int")) self.assert_eq(psser.astype("int8"), pser.astype("int8")) self.assert_eq(psser.astype("int16"), pser.astype("int16")) self.assert_eq(psser.astype("int32"), pser.astype("int32")) self.assert_eq(psser.astype("int64"), pser.astype("int64")) self.assert_eq(psser.astype("b"), pser.astype("b")) self.assert_eq(psser.astype("byte"), pser.astype("byte")) self.assert_eq(psser.astype("i"), pser.astype("i")) self.assert_eq(psser.astype("long"), pser.astype("long")) self.assert_eq(psser.astype("short"), pser.astype("short")) self.assert_eq(psser.astype(np.float), pser.astype(np.float)) self.assert_eq(psser.astype(np.float32), pser.astype(np.float32)) self.assert_eq(psser.astype(np.float64), pser.astype(np.float64)) self.assert_eq(psser.astype("float"), pser.astype("float")) self.assert_eq(psser.astype("float32"), pser.astype("float32")) self.assert_eq(psser.astype("float64"), pser.astype("float64")) self.assert_eq(psser.astype("double"), pser.astype("double")) self.assert_eq(psser.astype("f"), pser.astype("f")) self.assert_eq(psser.astype(bool), pser.astype(bool)) self.assert_eq(psser.astype("bool"), pser.astype("bool")) self.assert_eq(psser.astype("?"), pser.astype("?")) self.assert_eq(psser.astype(np.unicode_), pser.astype(np.unicode_)) self.assert_eq(psser.astype("str"), pser.astype("str")) self.assert_eq(psser.astype("U"), pser.astype("U")) if extension_dtypes_available: from pandas import Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype self._check_extension(psser.astype("Int8"), pser.astype("Int8")) self._check_extension(psser.astype("Int16"), pser.astype("Int16")) self._check_extension(psser.astype("Int32"), pser.astype("Int32")) self._check_extension(psser.astype("Int64"), pser.astype("Int64")) self._check_extension(psser.astype(Int8Dtype()), pser.astype(Int8Dtype())) self._check_extension(psser.astype(Int16Dtype()), pser.astype(Int16Dtype())) self._check_extension(psser.astype(Int32Dtype()), pser.astype(Int32Dtype())) self._check_extension(psser.astype(Int64Dtype()), pser.astype(Int64Dtype())) if extension_object_dtypes_available: from pandas import StringDtype if LooseVersion(pd.__version__) >= LooseVersion("1.1"): self._check_extension(psser.astype("string"), pser.astype("string")) self._check_extension(psser.astype(StringDtype()), pser.astype(StringDtype())) else: self._check_extension( psser.astype("string"), pd.Series(["10", "20", "15", "30", "45"], name="x", dtype="string"), ) self._check_extension( psser.astype(StringDtype()), pd.Series(["10", "20", "15", "30", "45"], name="x", dtype=StringDtype()), ) if extension_float_dtypes_available: from pandas import Float32Dtype, Float64Dtype self._check_extension(psser.astype("Float32"), pser.astype("Float32")) self._check_extension(psser.astype("Float64"), pser.astype("Float64")) self._check_extension(psser.astype(Float32Dtype()), pser.astype(Float32Dtype())) self._check_extension(psser.astype(Float64Dtype()), pser.astype(Float64Dtype())) def test_astype(self): psers = [pd.Series([10, 20, 15, 30, 45], name="x")] if extension_dtypes_available: psers.append(pd.Series([10, 20, 15, 30, 45], name="x", dtype="Int64")) if extension_float_dtypes_available: psers.append(pd.Series([10, 20, 15, 30, 45], name="x", dtype="Float64")) for pser in psers: self._test_numeric_astype(pser) pser = pd.Series([10, 20, 15, 30, 45, None, np.nan], name="x") psser = ps.Series(pser) self.assert_eq(psser.astype(bool), pser.astype(bool)) self.assert_eq(psser.astype(str), pser.astype(str)) pser = pd.Series(["hi", "hi ", " ", " \t", "", None], name="x") psser = ps.Series(pser) self.assert_eq(psser.astype(bool), pser.astype(bool)) if LooseVersion("1.1.1") <= LooseVersion(pd.__version__) < LooseVersion("1.1.4"): # a pandas bug: https://github.com/databricks/koalas/pull/1818#issuecomment-703961980 self.assert_eq(psser.astype(str).tolist(), ["hi", "hi ", " ", " \t", "", "None"]) else: self.assert_eq(psser.astype(str), pser.astype(str)) self.assert_eq(psser.str.strip().astype(bool), pser.str.strip().astype(bool)) if extension_object_dtypes_available: from pandas import StringDtype self._check_extension(psser.astype("string"), pser.astype("string")) self._check_extension(psser.astype(StringDtype()), pser.astype(StringDtype())) pser = pd.Series([True, False, None], name="x") psser = ps.Series(pser) self.assert_eq(psser.astype(bool), pser.astype(bool)) self.assert_eq(psser.astype(str), pser.astype(str)) if extension_object_dtypes_available: from pandas import BooleanDtype, StringDtype self._check_extension(psser.astype("boolean"), pser.astype("boolean")) self._check_extension(psser.astype(BooleanDtype()), pser.astype(BooleanDtype())) if LooseVersion(pd.__version__) >= LooseVersion("1.1"): self._check_extension(psser.astype("string"), pser.astype("string")) self._check_extension(psser.astype(StringDtype()), pser.astype(StringDtype())) else: self._check_extension( psser.astype("string"), pd.Series(["True", "False", None], name="x", dtype="string"), ) self._check_extension( psser.astype(StringDtype()), pd.Series(["True", "False", None], name="x", dtype=StringDtype()), ) pser = pd.Series(["2020-10-27 00:00:01", None], name="x") psser = ps.Series(pser) self.assert_eq(psser.astype(np.datetime64), pser.astype(np.datetime64)) self.assert_eq(psser.astype("datetime64[ns]"), pser.astype("datetime64[ns]")) self.assert_eq(psser.astype("M"), pser.astype("M")) self.assert_eq(psser.astype("M").astype(str), pser.astype("M").astype(str)) # Comment out the below test cause because pandas returns `NaT` or `nan` randomly # self.assert_eq( # psser.astype("M").dt.date.astype(str), pser.astype("M").dt.date.astype(str) # ) if extension_object_dtypes_available: from pandas import StringDtype self._check_extension( psser.astype("M").astype("string"), pser.astype("M").astype("string") ) self._check_extension( psser.astype("M").astype(StringDtype()), pser.astype("M").astype(StringDtype()) ) with self.assertRaisesRegex(TypeError, "not understood"): psser.astype("int63") def test_aggregate(self): pser = pd.Series([10, 20, 15, 30, 45], name="x") psser = ps.Series(pser) msg = "func must be a string or list of strings" with self.assertRaisesRegex(TypeError, msg): psser.aggregate({"x": ["min", "max"]}) msg = ( "If the given function is a list, it " "should only contains function names as strings." ) with self.assertRaisesRegex(ValueError, msg): psser.aggregate(["min", max]) def test_drop(self): pser = pd.Series([10, 20, 15, 30, 45], name="x") psser = ps.Series(pser) self.assert_eq(psser.drop(1), pser.drop(1)) self.assert_eq(psser.drop([1, 4]), pser.drop([1, 4])) msg = "Need to specify at least one of 'labels' or 'index'" with self.assertRaisesRegex(ValueError, msg): psser.drop() self.assertRaises(KeyError, lambda: psser.drop((0, 1))) # For MultiIndex midx = pd.MultiIndex( [["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) pser = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx) psser = ps.from_pandas(pser) self.assert_eq(psser.drop("lama"), pser.drop("lama")) self.assert_eq(psser.drop(labels="weight", level=1), pser.drop(labels="weight", level=1)) self.assert_eq(psser.drop(("lama", "weight")), pser.drop(("lama", "weight"))) self.assert_eq( psser.drop([("lama", "speed"), ("falcon", "weight")]), pser.drop([("lama", "speed"), ("falcon", "weight")]), ) self.assert_eq(psser.drop({"lama": "speed"}), pser.drop({"lama": "speed"})) msg = "'level' should be less than the number of indexes" with self.assertRaisesRegex(ValueError, msg): psser.drop(labels="weight", level=2) msg = ( "If the given index is a list, it " "should only contains names as all tuples or all non tuples " "that contain index names" ) with self.assertRaisesRegex(ValueError, msg): psser.drop(["lama", ["cow", "falcon"]]) msg = "Cannot specify both 'labels' and 'index'" with self.assertRaisesRegex(ValueError, msg): psser.drop("lama", index="cow") msg = r"'Key length \(2\) exceeds index depth \(3\)'" with self.assertRaisesRegex(KeyError, msg): psser.drop(("lama", "speed", "x")) def test_pop(self): midx = pd.MultiIndex( [["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) pdf = pd.DataFrame({"x": [45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3]}, index=midx) psdf = ps.from_pandas(pdf) pser = pdf.x psser = psdf.x self.assert_eq(psser.pop(("lama", "speed")), pser.pop(("lama", "speed"))) self.assert_eq(psser, pser) self.assert_eq(psdf, pdf) msg = r"'Key length \(3\) exceeds index depth \(2\)'" with self.assertRaisesRegex(KeyError, msg): psser.pop(("lama", "speed", "x")) def test_replace(self): pser = pd.Series([10, 20, 15, 30, np.nan], name="x") psser = ps.Series(pser) self.assert_eq(psser.replace(), pser.replace()) self.assert_eq(psser.replace({}), pser.replace({})) self.assert_eq(psser.replace(np.nan, 45), pser.replace(np.nan, 45)) self.assert_eq(psser.replace([10, 15], 45), pser.replace([10, 15], 45)) self.assert_eq(psser.replace((10, 15), 45), pser.replace((10, 15), 45)) self.assert_eq(psser.replace([10, 15], [45, 50]), pser.replace([10, 15], [45, 50])) self.assert_eq(psser.replace((10, 15), (45, 50)), pser.replace((10, 15), (45, 50))) msg = "'to_replace' should be one of str, list, tuple, dict, int, float" with self.assertRaisesRegex(TypeError, msg): psser.replace(ps.range(5)) msg = "Replacement lists must match in length. Expecting 3 got 2" with self.assertRaisesRegex(ValueError, msg): psser.replace([10, 20, 30], [1, 2]) msg = "replace currently not support for regex" with self.assertRaisesRegex(NotImplementedError, msg): psser.replace(r"^1.$", regex=True) def test_xs(self): midx = pd.MultiIndex( [["a", "b", "c"], ["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) pser = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx) psser = ps.from_pandas(pser) self.assert_eq(psser.xs(("a", "lama", "speed")), pser.xs(("a", "lama", "speed"))) def test_duplicates(self): psers = { "test on texts": pd.Series( ["lama", "cow", "lama", "beetle", "lama", "hippo"], name="animal" ), "test on numbers": pd.Series([1, 1, 2, 4, 3]), } keeps = ["first", "last", False] for (msg, pser), keep in product(psers.items(), keeps): with self.subTest(msg, keep=keep): psser = ps.Series(pser) self.assert_eq( pser.drop_duplicates(keep=keep).sort_values(), psser.drop_duplicates(keep=keep).sort_values(), ) def test_update(self): pser = pd.Series([10, 20, 15, 30, 45], name="x") psser = ps.Series(pser) msg = "'other' must be a Series" with self.assertRaisesRegex(TypeError, msg): psser.update(10) def test_where(self): pser1 = pd.Series([0, 1, 2, 3, 4]) psser1 = ps.from_pandas(pser1) self.assert_eq(pser1.where(pser1 > 3), psser1.where(psser1 > 3).sort_index()) def test_mask(self): pser1 = pd.Series([0, 1, 2, 3, 4]) psser1 = ps.from_pandas(pser1) self.assert_eq(pser1.mask(pser1 > 3), psser1.mask(psser1 > 3).sort_index()) def test_truncate(self): pser1 = pd.Series([10, 20, 30, 40, 50, 60, 70], index=[1, 2, 3, 4, 5, 6, 7]) psser1 = ps.Series(pser1) pser2 = pd.Series([10, 20, 30, 40, 50, 60, 70], index=[7, 6, 5, 4, 3, 2, 1]) psser2 = ps.Series(pser2) self.assert_eq(psser1.truncate(), pser1.truncate()) self.assert_eq(psser1.truncate(before=2), pser1.truncate(before=2)) self.assert_eq(psser1.truncate(after=5), pser1.truncate(after=5)) self.assert_eq(psser1.truncate(copy=False), pser1.truncate(copy=False)) self.assert_eq(psser1.truncate(2, 5, copy=False), pser1.truncate(2, 5, copy=False)) # The bug for these tests has been fixed in pandas 1.1.0. if LooseVersion(pd.__version__) >= LooseVersion("1.1.0"): self.assert_eq(psser2.truncate(4, 6), pser2.truncate(4, 6)) self.assert_eq(psser2.truncate(4, 6, copy=False), pser2.truncate(4, 6, copy=False)) else: expected_psser = ps.Series([20, 30, 40], index=[6, 5, 4]) self.assert_eq(psser2.truncate(4, 6), expected_psser) self.assert_eq(psser2.truncate(4, 6, copy=False), expected_psser) psser = ps.Series([10, 20, 30, 40, 50, 60, 70], index=[1, 2, 3, 4, 3, 2, 1]) msg = "truncate requires a sorted index" with self.assertRaisesRegex(ValueError, msg): psser.truncate() psser = ps.Series([10, 20, 30, 40, 50, 60, 70], index=[1, 2, 3, 4, 5, 6, 7]) msg = "Truncate: 2 must be after 5" with self.assertRaisesRegex(ValueError, msg): psser.truncate(5, 2) def test_getitem(self): pser = pd.Series([10, 20, 15, 30, 45], ["A", "A", "B", "C", "D"]) psser = ps.Series(pser) self.assert_eq(psser["A"], pser["A"]) self.assert_eq(psser["B"], pser["B"]) self.assert_eq(psser[psser > 15], pser[pser > 15]) # for MultiIndex midx = pd.MultiIndex( [["a", "b", "c"], ["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 0, 0, 0, 1, 2, 0, 1, 2]], ) pser = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], name="0", index=midx) psser = ps.Series(pser) self.assert_eq(psser["a"], pser["a"]) self.assert_eq(psser["a", "lama"], pser["a", "lama"]) self.assert_eq(psser[psser > 1.5], pser[pser > 1.5]) msg = r"'Key length \(4\) exceeds index depth \(3\)'" with self.assertRaisesRegex(KeyError, msg): psser[("a", "lama", "speed", "x")] def test_keys(self): midx = pd.MultiIndex( [["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) pser = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx) psser = ps.from_pandas(pser) self.assert_eq(psser.keys(), pser.keys()) def test_index(self): # to check setting name of Index properly. idx = pd.Index([1, 2, 3, 4, 5, 6, 7, 8, 9]) pser = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=idx) psser = ps.from_pandas(pser) psser.name = "koalas" pser.name = "koalas" self.assert_eq(psser.index.name, pser.index.name) # for check setting names of MultiIndex properly. psser.names = ["hello", "koalas"] pser.names = ["hello", "koalas"] self.assert_eq(psser.index.names, pser.index.names) def test_pct_change(self): pser = pd.Series([90, 91, 85], index=[2, 4, 1]) psser = ps.from_pandas(pser) self.assert_eq(psser.pct_change(), pser.pct_change(), check_exact=False) self.assert_eq(psser.pct_change().sum(), pser.pct_change().sum(), almost=True) self.assert_eq(psser.pct_change(periods=2), pser.pct_change(periods=2), check_exact=False) self.assert_eq(psser.pct_change(periods=-1), pser.pct_change(periods=-1), check_exact=False) self.assert_eq(psser.pct_change(periods=-100000000), pser.pct_change(periods=-100000000)) self.assert_eq(psser.pct_change(periods=100000000), pser.pct_change(periods=100000000)) # for MultiIndex midx = pd.MultiIndex( [["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) pser = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx) psser = ps.from_pandas(pser) self.assert_eq(psser.pct_change(), pser.pct_change(), check_exact=False) self.assert_eq(psser.pct_change().sum(), pser.pct_change().sum(), almost=True) self.assert_eq(psser.pct_change(periods=2), pser.pct_change(periods=2), check_exact=False) self.assert_eq(psser.pct_change(periods=-1), pser.pct_change(periods=-1), check_exact=False) self.assert_eq(psser.pct_change(periods=-100000000), pser.pct_change(periods=-100000000)) self.assert_eq(psser.pct_change(periods=100000000), pser.pct_change(periods=100000000)) def test_axes(self): pser = pd.Series([90, 91, 85], index=[2, 4, 1]) psser = ps.from_pandas(pser) self.assert_eq(psser.axes, pser.axes) # for MultiIndex midx = pd.MultiIndex( [["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) pser = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx) psser = ps.from_pandas(pser) self.assert_eq(psser.axes, pser.axes) def test_udt(self): sparse_values = {0: 0.1, 1: 1.1} sparse_vector = SparseVector(len(sparse_values), sparse_values) pser = pd.Series([sparse_vector]) psser = ps.from_pandas(pser) self.assert_eq(psser, pser) def test_repeat(self): pser = pd.Series(["a", "b", "c"], name="0", index=np.random.rand(3)) psser = ps.from_pandas(pser) self.assert_eq(psser.repeat(3).sort_index(), pser.repeat(3).sort_index()) self.assert_eq(psser.repeat(0).sort_index(), pser.repeat(0).sort_index()) self.assertRaises(ValueError, lambda: psser.repeat(-1)) self.assertRaises(TypeError, lambda: psser.repeat("abc")) pdf = pd.DataFrame({"a": ["a", "b", "c"], "rep": [10, 20, 30]}, index=np.random.rand(3)) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.a.repeat(psdf.rep).sort_index(), pdf.a.repeat(pdf.rep).sort_index()) def test_take(self): pser = pd.Series([100, 200, 300, 400, 500], name="Koalas") psser = ps.from_pandas(pser) self.assert_eq(psser.take([0, 2, 4]).sort_values(), pser.take([0, 2, 4]).sort_values()) self.assert_eq( psser.take(range(0, 5, 2)).sort_values(), pser.take(range(0, 5, 2)).sort_values() ) self.assert_eq(psser.take([-4, -2, 0]).sort_values(), pser.take([-4, -2, 0]).sort_values()) self.assert_eq( psser.take(range(-2, 1, 2)).sort_values(), pser.take(range(-2, 1, 2)).sort_values() ) # Checking the type of indices. self.assertRaises(TypeError, lambda: psser.take(1)) self.assertRaises(TypeError, lambda: psser.take("1")) self.assertRaises(TypeError, lambda: psser.take({1, 2})) self.assertRaises(TypeError, lambda: psser.take({1: None, 2: None})) def test_divmod(self): pser = pd.Series([100, None, 300, None, 500], name="Koalas") psser = ps.from_pandas(pser) if LooseVersion(pd.__version__) >= LooseVersion("1.0.0"): kdiv, kmod = psser.divmod(-100) pdiv, pmod = pser.divmod(-100) self.assert_eq(kdiv, pdiv) self.assert_eq(kmod, pmod) kdiv, kmod = psser.divmod(100) pdiv, pmod = pser.divmod(100) self.assert_eq(kdiv, pdiv) self.assert_eq(kmod, pmod) elif LooseVersion(pd.__version__) < LooseVersion("1.0.0"): kdiv, kmod = psser.divmod(-100) pdiv, pmod = pser.floordiv(-100), pser.mod(-100) self.assert_eq(kdiv, pdiv) self.assert_eq(kmod, pmod) kdiv, kmod = psser.divmod(100) pdiv, pmod = pser.floordiv(100), pser.mod(100) self.assert_eq(kdiv, pdiv) self.assert_eq(kmod, pmod) def test_rdivmod(self): pser = pd.Series([100, None, 300, None, 500]) psser = ps.from_pandas(pser) if LooseVersion(pd.__version__) >= LooseVersion("1.0.0"): krdiv, krmod = psser.rdivmod(-100) prdiv, prmod = pser.rdivmod(-100) self.assert_eq(krdiv, prdiv) self.assert_eq(krmod, prmod) krdiv, krmod = psser.rdivmod(100) prdiv, prmod = pser.rdivmod(100) self.assert_eq(krdiv, prdiv) self.assert_eq(krmod, prmod) elif LooseVersion(pd.__version__) < LooseVersion("1.0.0"): krdiv, krmod = psser.rdivmod(-100) prdiv, prmod = pser.rfloordiv(-100), pser.rmod(-100) self.assert_eq(krdiv, prdiv) self.assert_eq(krmod, prmod) krdiv, krmod = psser.rdivmod(100) prdiv, prmod = pser.rfloordiv(100), pser.rmod(100) self.assert_eq(krdiv, prdiv) self.assert_eq(krmod, prmod) def test_mod(self): pser = pd.Series([100, None, -300, None, 500, -700], name="Koalas") psser = ps.from_pandas(pser) self.assert_eq(psser.mod(-150), pser.mod(-150)) self.assert_eq(psser.mod(0), pser.mod(0)) self.assert_eq(psser.mod(150), pser.mod(150)) pdf = pd.DataFrame({"a": [100, None, -300, None, 500, -700], "b": [150] * 6}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.a.mod(psdf.b), pdf.a.mod(pdf.b)) def test_mode(self): pser = pd.Series([0, 0, 1, 1, 1, np.nan, np.nan, np.nan]) psser = ps.from_pandas(pser) self.assert_eq(psser.mode(), pser.mode()) if LooseVersion(pd.__version__) >= LooseVersion("0.24"): # The `dropna` argument is added in pandas 0.24. self.assert_eq( psser.mode(dropna=False).sort_values().reset_index(drop=True), pser.mode(dropna=False).sort_values().reset_index(drop=True), ) pser.name = "x" psser = ps.from_pandas(pser) self.assert_eq(psser.mode(), pser.mode()) if LooseVersion(pd.__version__) >= LooseVersion("0.24"): # The `dropna` argument is added in pandas 0.24. self.assert_eq( psser.mode(dropna=False).sort_values().reset_index(drop=True), pser.mode(dropna=False).sort_values().reset_index(drop=True), ) def test_rmod(self): pser = pd.Series([100, None, -300, None, 500, -700], name="Koalas") psser = ps.from_pandas(pser) self.assert_eq(psser.rmod(-150), pser.rmod(-150)) self.assert_eq(psser.rmod(0), pser.rmod(0)) self.assert_eq(psser.rmod(150), pser.rmod(150)) pdf = pd.DataFrame({"a": [100, None, -300, None, 500, -700], "b": [150] * 6}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.a.rmod(psdf.b), pdf.a.rmod(pdf.b)) def test_asof(self): pser = pd.Series([1, 2, np.nan, 4], index=[10, 20, 30, 40], name="Koalas") psser = ps.from_pandas(pser) self.assert_eq(psser.asof(20), pser.asof(20)) self.assert_eq(psser.asof([5, 20]).sort_index(), pser.asof([5, 20]).sort_index()) self.assert_eq(psser.asof(100), pser.asof(100)) self.assert_eq(repr(psser.asof(-100)), repr(pser.asof(-100))) self.assert_eq(psser.asof([-100, 100]).sort_index(), pser.asof([-100, 100]).sort_index()) # where cannot be an Index, Series or a DataFrame self.assertRaises(ValueError, lambda: psser.asof(ps.Index([-100, 100]))) self.assertRaises(ValueError, lambda: psser.asof(ps.Series([-100, 100]))) self.assertRaises(ValueError, lambda: psser.asof(ps.DataFrame({"A": [1, 2, 3]}))) # asof is not supported for a MultiIndex pser.index = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c"), ("y", "d")]) psser = ps.from_pandas(pser) self.assertRaises(ValueError, lambda: psser.asof(20)) # asof requires a sorted index (More precisely, should be a monotonic increasing) psser = ps.Series([1, 2, np.nan, 4], index=[10, 30, 20, 40], name="Koalas") self.assertRaises(ValueError, lambda: psser.asof(20)) psser = ps.Series([1, 2, np.nan, 4], index=[40, 30, 20, 10], name="Koalas") self.assertRaises(ValueError, lambda: psser.asof(20)) pidx = pd.DatetimeIndex(["2013-12-31", "2014-01-02", "2014-01-03"]) pser = pd.Series([1, 2, np.nan], index=pidx) psser = ps.from_pandas(pser) self.assert_eq(psser.asof("2014-01-01"), pser.asof("2014-01-01")) self.assert_eq(psser.asof("2014-01-02"), pser.asof("2014-01-02")) self.assert_eq(repr(psser.asof("1999-01-02")), repr(pser.asof("1999-01-02"))) def test_squeeze(self): # Single value pser = pd.Series([90]) psser = ps.from_pandas(pser) self.assert_eq(psser.squeeze(), pser.squeeze()) # Single value with MultiIndex midx = pd.MultiIndex.from_tuples([("a", "b", "c")]) pser = pd.Series([90], index=midx) psser = ps.from_pandas(pser) self.assert_eq(psser.squeeze(), pser.squeeze()) # Multiple values pser = pd.Series([90, 91, 85]) psser = ps.from_pandas(pser) self.assert_eq(psser.squeeze(), pser.squeeze()) # Multiple values with MultiIndex midx = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) pser = pd.Series([90, 91, 85], index=midx) psser = ps.from_pandas(pser) self.assert_eq(psser.squeeze(), pser.squeeze()) def test_swaplevel(self): # MultiIndex with two levels arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] pidx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pser = pd.Series(["a", "b", "c", "d"], index=pidx) psser = ps.from_pandas(pser) self.assert_eq(pser.swaplevel(), psser.swaplevel()) self.assert_eq(pser.swaplevel(0, 1), psser.swaplevel(0, 1)) self.assert_eq(pser.swaplevel(1, 1), psser.swaplevel(1, 1)) self.assert_eq(pser.swaplevel("number", "color"), psser.swaplevel("number", "color")) # MultiIndex with more than two levels arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"], ["l", "m", "s", "xs"]] pidx = pd.MultiIndex.from_arrays(arrays, names=("number", "color", "size")) pser = pd.Series(["a", "b", "c", "d"], index=pidx) psser = ps.from_pandas(pser) self.assert_eq(pser.swaplevel(), psser.swaplevel()) self.assert_eq(pser.swaplevel(0, 1), psser.swaplevel(0, 1)) self.assert_eq(pser.swaplevel(0, 2), psser.swaplevel(0, 2)) self.assert_eq(pser.swaplevel(1, 2), psser.swaplevel(1, 2)) self.assert_eq(pser.swaplevel(1, 1), psser.swaplevel(1, 1)) self.assert_eq(pser.swaplevel(-1, -2), psser.swaplevel(-1, -2)) self.assert_eq(pser.swaplevel("number", "color"), psser.swaplevel("number", "color")) self.assert_eq(pser.swaplevel("number", "size"), psser.swaplevel("number", "size")) self.assert_eq(pser.swaplevel("color", "size"), psser.swaplevel("color", "size")) # Error conditions self.assertRaises(AssertionError, lambda: ps.Series([1, 2]).swaplevel()) self.assertRaises(IndexError, lambda: psser.swaplevel(0, 9)) self.assertRaises(KeyError, lambda: psser.swaplevel("not_number", "color")) self.assertRaises(AssertionError, lambda: psser.swaplevel(copy=False)) def test_swapaxes(self): pser = pd.Series([1, 2, 3], index=["x", "y", "z"], name="ser") psser = ps.from_pandas(pser) self.assert_eq(psser.swapaxes(0, 0), pser.swapaxes(0, 0)) self.assert_eq(psser.swapaxes("index", "index"), pser.swapaxes("index", "index")) self.assert_eq((psser + 1).swapaxes(0, 0), (pser + 1).swapaxes(0, 0)) self.assertRaises(AssertionError, lambda: psser.swapaxes(0, 1, copy=False)) self.assertRaises(ValueError, lambda: psser.swapaxes(0, 1)) self.assertRaises(ValueError, lambda: psser.swapaxes("index", "columns")) def test_div_zero_and_nan(self): pser = pd.Series([100, None, -300, None, 500, -700, np.inf, -np.inf], name="Koalas") psser = ps.from_pandas(pser) self.assert_eq(pser.div(0), psser.div(0)) self.assert_eq(pser.truediv(0), psser.truediv(0)) self.assert_eq(pser / 0, psser / 0) self.assert_eq(pser.div(np.nan), psser.div(np.nan)) self.assert_eq(pser.truediv(np.nan), psser.truediv(np.nan)) self.assert_eq(pser / np.nan, psser / np.nan) # floordiv has different behavior in pandas > 1.0.0 when divide by 0 if LooseVersion(pd.__version__) >= LooseVersion("1.0.0"): self.assert_eq(pser.floordiv(0), psser.floordiv(0)) self.assert_eq(pser // 0, psser // 0) else: result = pd.Series( [np.inf, np.nan, -np.inf, np.nan, np.inf, -np.inf, np.inf, -np.inf], name="Koalas" ) self.assert_eq(psser.floordiv(0), result) self.assert_eq(psser // 0, result) self.assert_eq(pser.floordiv(np.nan), psser.floordiv(np.nan)) def test_mad(self): pser = pd.Series([1, 2, 3, 4], name="Koalas") psser = ps.from_pandas(pser) self.assert_eq(pser.mad(), psser.mad()) pser = pd.Series([None, -2, 5, 10, 50, np.nan, -20], name="Koalas") psser = ps.from_pandas(pser) self.assert_eq(pser.mad(), psser.mad()) pmidx = pd.MultiIndex.from_tuples( [("a", "1"), ("a", "2"), ("b", "1"), ("b", "2"), ("c", "1")] ) pser = pd.Series([1, 2, 3, 4, 5], name="Koalas") pser.index = pmidx psser = ps.from_pandas(pser) self.assert_eq(pser.mad(), psser.mad()) pmidx = pd.MultiIndex.from_tuples( [("a", "1"), ("a", "2"), ("b", "1"), ("b", "2"), ("c", "1")] ) pser = pd.Series([None, -2, 5, 50, np.nan], name="Koalas") pser.index = pmidx psser = ps.from_pandas(pser) self.assert_eq(pser.mad(), psser.mad()) def test_to_frame(self): pser = pd.Series(["a", "b", "c"]) psser = ps.from_pandas(pser) self.assert_eq(pser.to_frame(name="a"), psser.to_frame(name="a")) # for MultiIndex midx = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) pser = pd.Series(["a", "b", "c"], index=midx) psser = ps.from_pandas(pser) self.assert_eq(pser.to_frame(name="a"), psser.to_frame(name="a")) def test_shape(self): pser = pd.Series(["a", "b", "c"]) psser = ps.from_pandas(pser) self.assert_eq(pser.shape, psser.shape) # for MultiIndex midx = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) pser = pd.Series(["a", "b", "c"], index=midx) psser = ps.from_pandas(pser) self.assert_eq(pser.shape, psser.shape) @unittest.skipIf(not have_tabulate, tabulate_requirement_message) def test_to_markdown(self): pser = pd.Series(["elk", "pig", "dog", "quetzal"], name="animal") psser = ps.from_pandas(pser) # `to_markdown()` is supported in pandas >= 1.0.0 since it's newly added in pandas 1.0.0. if LooseVersion(pd.__version__) < LooseVersion("1.0.0"): self.assertRaises(NotImplementedError, lambda: psser.to_markdown()) else: self.assert_eq(pser.to_markdown(), psser.to_markdown()) def test_unstack(self): pser = pd.Series( [10, -2, 4, 7], index=pd.MultiIndex.from_tuples( [("one", "a", "z"), ("one", "b", "x"), ("two", "a", "c"), ("two", "b", "v")], names=["A", "B", "C"], ), ) psser = ps.from_pandas(pser) levels = [-3, -2, -1, 0, 1, 2] for level in levels: pandas_result = pser.unstack(level=level) pandas_on_spark_result = psser.unstack(level=level).sort_index() self.assert_eq(pandas_result, pandas_on_spark_result) self.assert_eq(pandas_result.index.names, pandas_on_spark_result.index.names) self.assert_eq(pandas_result.columns.names, pandas_on_spark_result.columns.names) # non-numeric datatypes pser = pd.Series( list("abcd"), index=pd.MultiIndex.from_product([["one", "two"], ["a", "b"]]) ) psser = ps.from_pandas(pser) levels = [-2, -1, 0, 1] for level in levels: pandas_result = pser.unstack(level=level) pandas_on_spark_result = psser.unstack(level=level).sort_index() self.assert_eq(pandas_result, pandas_on_spark_result) self.assert_eq(pandas_result.index.names, pandas_on_spark_result.index.names) self.assert_eq(pandas_result.columns.names, pandas_on_spark_result.columns.names) # Exceeding the range of level self.assertRaises(IndexError, lambda: psser.unstack(level=3)) self.assertRaises(IndexError, lambda: psser.unstack(level=-4)) # Only support for MultiIndex psser = ps.Series([10, -2, 4, 7]) self.assertRaises(ValueError, lambda: psser.unstack()) def test_item(self): psser = ps.Series([10, 20]) self.assertRaises(ValueError, lambda: psser.item()) def test_filter(self): pser = pd.Series([0, 1, 2], index=["one", "two", "three"]) psser = ps.from_pandas(pser) self.assert_eq(pser.filter(items=["one", "three"]), psser.filter(items=["one", "three"])) self.assert_eq(pser.filter(regex="e$"), psser.filter(regex="e$")) self.assert_eq(pser.filter(like="hre"), psser.filter(like="hre")) with self.assertRaisesRegex(ValueError, "Series does not support columns axis."): psser.filter(like="hre", axis=1) # for MultiIndex midx = pd.MultiIndex.from_tuples([("one", "x"), ("two", "y"), ("three", "z")]) pser = pd.Series([0, 1, 2], index=midx) psser = ps.from_pandas(pser) self.assert_eq( pser.filter(items=[("one", "x"), ("three", "z")]), psser.filter(items=[("one", "x"), ("three", "z")]), ) with self.assertRaisesRegex(TypeError, "Unsupported type list"): psser.filter(items=[["one", "x"], ("three", "z")]) with self.assertRaisesRegex(ValueError, "The item should not be empty."): psser.filter(items=[(), ("three", "z")]) def test_abs(self): pser = pd.Series([-2, -1, 0, 1]) psser = ps.from_pandas(pser) self.assert_eq(abs(psser), abs(pser)) self.assert_eq(np.abs(psser), np.abs(pser)) def test_bfill(self): pdf = pd.DataFrame({"x": [np.nan, 2, 3, 4, np.nan, 6], "y": [np.nan, 2, 3, 4, np.nan, 6]}) psdf = ps.from_pandas(pdf) pser = pdf.x psser = psdf.x self.assert_eq(psser.bfill(), pser.bfill()) self.assert_eq(psser.bfill()[0], pser.bfill()[0]) psser.bfill(inplace=True) pser.bfill(inplace=True) self.assert_eq(psser, pser) self.assert_eq(psser[0], pser[0]) self.assert_eq(psdf, pdf) def test_ffill(self): pdf = pd.DataFrame({"x": [np.nan, 2, 3, 4, np.nan, 6], "y": [np.nan, 2, 3, 4, np.nan, 6]}) psdf = ps.from_pandas(pdf) pser = pdf.x psser = psdf.x self.assert_eq(psser.ffill(), pser.ffill()) self.assert_eq(psser.ffill()[4], pser.ffill()[4]) psser.ffill(inplace=True) pser.ffill(inplace=True) self.assert_eq(psser, pser) self.assert_eq(psser[4], pser[4]) self.assert_eq(psdf, pdf) def test_iteritems(self): pser = pd.Series(["A", "B", "C"]) psser = ps.from_pandas(pser) for (p_name, p_items), (k_name, k_items) in zip(pser.iteritems(), psser.iteritems()): self.assert_eq(p_name, k_name) self.assert_eq(p_items, k_items) def test_droplevel(self): # droplevel is new in pandas 0.24.0 if LooseVersion(pd.__version__) >= LooseVersion("0.24.0"): pser = pd.Series( [1, 2, 3], index=pd.MultiIndex.from_tuples( [("x", "a", "q"), ("x", "b", "w"), ("y", "c", "e")], names=["level_1", "level_2", "level_3"], ), ) psser = ps.from_pandas(pser) self.assert_eq(pser.droplevel(0), psser.droplevel(0)) self.assert_eq(pser.droplevel("level_1"), psser.droplevel("level_1")) self.assert_eq(pser.droplevel(-1), psser.droplevel(-1)) self.assert_eq(pser.droplevel([0]), psser.droplevel([0])) self.assert_eq(pser.droplevel(["level_1"]), psser.droplevel(["level_1"])) self.assert_eq(pser.droplevel((0,)), psser.droplevel((0,))) self.assert_eq(pser.droplevel(("level_1",)), psser.droplevel(("level_1",))) self.assert_eq(pser.droplevel([0, 2]), psser.droplevel([0, 2])) self.assert_eq( pser.droplevel(["level_1", "level_3"]), psser.droplevel(["level_1", "level_3"]) ) self.assert_eq(pser.droplevel((1, 2)), psser.droplevel((1, 2))) self.assert_eq( pser.droplevel(("level_2", "level_3")), psser.droplevel(("level_2", "level_3")) ) with self.assertRaisesRegex(KeyError, "Level {0, 1, 2} not found"): psser.droplevel({0, 1, 2}) with self.assertRaisesRegex(KeyError, "Level level_100 not found"): psser.droplevel(["level_1", "level_100"]) with self.assertRaisesRegex( IndexError, "Too many levels: Index has only 3 levels, not 11" ): psser.droplevel(10) with self.assertRaisesRegex( IndexError, "Too many levels: Index has only 3 levels, -10 is not a valid level number", ): psser.droplevel(-10) with self.assertRaisesRegex( ValueError, "Cannot remove 3 levels from an index with 3 levels: " "at least one level must be left.", ): psser.droplevel([0, 1, 2]) with self.assertRaisesRegex( ValueError, "Cannot remove 5 levels from an index with 3 levels: " "at least one level must be left.", ): psser.droplevel([1, 1, 1, 1, 1]) # Tupled names pser.index.names = [("a", "1"), ("b", "2"), ("c", "3")] psser = ps.from_pandas(pser) self.assert_eq( pser.droplevel([("a", "1"), ("c", "3")]), psser.droplevel([("a", "1"), ("c", "3")]) ) def test_dot(self): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) psdf = ps.from_pandas(pdf) self.assert_eq((psdf["b"] * 10).dot(psdf["a"]), (pdf["b"] * 10).dot(pdf["a"])) self.assert_eq((psdf["b"] * 10).dot(psdf), (pdf["b"] * 10).dot(pdf)) self.assert_eq((psdf["b"] * 10).dot(psdf + 1), (pdf["b"] * 10).dot(pdf + 1)) def test_tail(self): pser = pd.Series(range(1000), name="Koalas") psser = ps.from_pandas(pser) self.assert_eq(pser.tail(), psser.tail()) self.assert_eq(pser.tail(10), psser.tail(10)) self.assert_eq(pser.tail(-990), psser.tail(-990)) self.assert_eq(pser.tail(0), psser.tail(0)) self.assert_eq(pser.tail(1001), psser.tail(1001)) self.assert_eq(pser.tail(-1001), psser.tail(-1001)) self.assert_eq((pser + 1).tail(), (psser + 1).tail()) self.assert_eq((pser + 1).tail(10), (psser + 1).tail(10)) self.assert_eq((pser + 1).tail(-990), (psser + 1).tail(-990)) self.assert_eq((pser + 1).tail(0), (psser + 1).tail(0)) self.assert_eq((pser + 1).tail(1001), (psser + 1).tail(1001)) self.assert_eq((pser + 1).tail(-1001), (psser + 1).tail(-1001)) with self.assertRaisesRegex(TypeError, "bad operand type for unary -: 'str'"): psser.tail("10") def test_product(self): pser = pd.Series([10, 20, 30, 40, 50]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(), psser.prod()) # Containing NA values pser = pd.Series([10, np.nan, 30, np.nan, 50]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(), psser.prod(), almost=True) # All-NA values pser = pd.Series([np.nan, np.nan, np.nan]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(), psser.prod()) # Empty Series pser = pd.Series([]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(), psser.prod()) # Boolean Series pser = pd.Series([True, True, True]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(), psser.prod()) pser = pd.Series([False, False, False]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(), psser.prod()) pser = pd.Series([True, False, True]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(), psser.prod()) # With `min_count` parameter pser = pd.Series([10, 20, 30, 40, 50]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(min_count=5), psser.prod(min_count=5)) self.assert_eq(pser.prod(min_count=6), psser.prod(min_count=6)) pser = pd.Series([10, np.nan, 30, np.nan, 50]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(min_count=3), psser.prod(min_count=3), almost=True) self.assert_eq(pser.prod(min_count=4), psser.prod(min_count=4)) pser = pd.Series([np.nan, np.nan, np.nan]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(min_count=1), psser.prod(min_count=1)) pser = pd.Series([]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(min_count=1), psser.prod(min_count=1)) with self.assertRaisesRegex(TypeError, "Could not convert object \\(string\\) to numeric"): ps.Series(["a", "b", "c"]).prod() with self.assertRaisesRegex( TypeError, "Could not convert datetime64\\[ns\\] \\(timestamp\\) to numeric" ): ps.Series([pd.Timestamp("2016-01-01") for _ in range(3)]).prod() def test_hasnans(self): # BooleanType pser = pd.Series([True, False, True, True]) psser = ps.from_pandas(pser) self.assert_eq(pser.hasnans, psser.hasnans) pser = pd.Series([True, False, np.nan, True]) psser = ps.from_pandas(pser) self.assert_eq(pser.hasnans, psser.hasnans) # TimestampType pser = pd.Series([pd.Timestamp("2020-07-30") for _ in range(3)]) psser = ps.from_pandas(pser) self.assert_eq(pser.hasnans, psser.hasnans) pser = pd.Series([pd.Timestamp("2020-07-30"), np.nan, pd.Timestamp("2020-07-30")]) psser = ps.from_pandas(pser) self.assert_eq(pser.hasnans, psser.hasnans) def test_last_valid_index(self): pser = pd.Series([250, 1.5, 320, 1, 0.3, None, None, None, None]) psser = ps.from_pandas(pser) self.assert_eq(pser.last_valid_index(), psser.last_valid_index()) # MultiIndex columns midx = pd.MultiIndex( [["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) pser.index = midx psser = ps.from_pandas(pser) self.assert_eq(pser.last_valid_index(), psser.last_valid_index()) # Empty Series pser = pd.Series([]) psser = ps.from_pandas(pser) self.assert_eq(pser.last_valid_index(), psser.last_valid_index()) def test_first_valid_index(self): # Empty Series pser = pd.Series([]) psser = ps.from_pandas(pser) self.assert_eq(pser.first_valid_index(), psser.first_valid_index()) def test_factorize(self): pser = pd.Series(["a", "b", "a", "b"]) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize(sort=True) kcodes, kuniques = psser.factorize() self.assert_eq(pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) pser = pd.Series([5, 1, 5, 1]) psser = ps.from_pandas(pser) pcodes, puniques = (pser + 1).factorize(sort=True) kcodes, kuniques = (psser + 1).factorize() self.assert_eq(pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) pser = pd.Series(["a", "b", "a", "b"], name="ser", index=["w", "x", "y", "z"]) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize(sort=True) kcodes, kuniques = psser.factorize() self.assert_eq(pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) pser = pd.Series( ["a", "b", "a", "b"], index=pd.MultiIndex.from_arrays([[4, 3, 2, 1], [1, 2, 3, 4]]) ) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize(sort=True) kcodes, kuniques = psser.factorize() self.assert_eq(pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) # # Deals with None and np.nan # pser = pd.Series(["a", "b", "a", np.nan]) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize(sort=True) kcodes, kuniques = psser.factorize() self.assert_eq(pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) pser = pd.Series([1, None, 3, 2, 1]) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize(sort=True) kcodes, kuniques = psser.factorize() self.assert_eq(pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) pser = pd.Series(["a", None, "a"]) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize(sort=True) kcodes, kuniques = psser.factorize() self.assert_eq(pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) pser = pd.Series([None, np.nan]) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize() kcodes, kuniques = psser.factorize() self.assert_eq(pcodes, kcodes.to_list()) # pandas: Float64Index([], dtype='float64') self.assert_eq(pd.Index([]), kuniques) pser = pd.Series([np.nan, np.nan]) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize() kcodes, kuniques = psser.factorize() self.assert_eq(pcodes, kcodes.to_list()) # pandas: Float64Index([], dtype='float64') self.assert_eq(pd.Index([]), kuniques) # # Deals with na_sentinel # # pandas >= 1.1.2 support na_sentinel=None # pandas >= 0.24 support na_sentinel not to be -1 # pd_below_1_1_2 = LooseVersion(pd.__version__) < LooseVersion("1.1.2") pd_below_0_24 = LooseVersion(pd.__version__) < LooseVersion("0.24") pser = pd.Series(["a", "b", "a", np.nan, None]) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize(sort=True, na_sentinel=-2) kcodes, kuniques = psser.factorize(na_sentinel=-2) self.assert_eq([0, 1, 0, -2, -2] if pd_below_0_24 else pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) pcodes, puniques = pser.factorize(sort=True, na_sentinel=2) kcodes, kuniques = psser.factorize(na_sentinel=2) self.assert_eq([0, 1, 0, 2, 2] if pd_below_0_24 else pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) if not pd_below_1_1_2: pcodes, puniques = pser.factorize(sort=True, na_sentinel=None) kcodes, kuniques = psser.factorize(na_sentinel=None) self.assert_eq(pcodes.tolist(), kcodes.to_list()) # puniques is Index(['a', 'b', nan], dtype='object') self.assert_eq(ps.Index(["a", "b", None]), kuniques) psser = ps.Series([1, 2, np.nan, 4, 5]) # Arrow takes np.nan as null psser.loc[3] = np.nan # Spark takes np.nan as NaN kcodes, kuniques = psser.factorize(na_sentinel=None) pcodes, puniques = psser.to_pandas().factorize(sort=True, na_sentinel=None) self.assert_eq(pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) def test_pad(self): pser = pd.Series([np.nan, 2, 3, 4, np.nan, 6], name="x") psser = ps.from_pandas(pser) if LooseVersion(pd.__version__) >= LooseVersion("1.1"): self.assert_eq(pser.pad(), psser.pad()) # Test `inplace=True` pser.pad(inplace=True) psser.pad(inplace=True) self.assert_eq(pser, psser) else: expected = ps.Series([np.nan, 2, 3, 4, 4, 6], name="x") self.assert_eq(expected, psser.pad()) # Test `inplace=True` psser.pad(inplace=True) self.assert_eq(expected, psser) def test_explode(self): if LooseVersion(pd.__version__) >= LooseVersion("0.25"): pser = pd.Series([[1, 2, 3], [], None, [3, 4]]) psser = ps.from_pandas(pser) self.assert_eq(pser.explode(), psser.explode(), almost=True) # MultiIndex pser.index = pd.MultiIndex.from_tuples([("a", "w"), ("b", "x"), ("c", "y"), ("d", "z")]) psser = ps.from_pandas(pser) self.assert_eq(pser.explode(), psser.explode(), almost=True) # non-array type Series pser = pd.Series([1, 2, 3, 4]) psser = ps.from_pandas(pser) self.assert_eq(pser.explode(), psser.explode()) else: pser = pd.Series([[1, 2, 3], [], None, [3, 4]]) psser = ps.from_pandas(pser) expected = pd.Series([1.0, 2.0, 3.0, None, None, 3.0, 4.0], index=[0, 0, 0, 1, 2, 3, 3]) self.assert_eq(psser.explode(), expected) # MultiIndex pser.index = pd.MultiIndex.from_tuples([("a", "w"), ("b", "x"), ("c", "y"), ("d", "z")]) psser = ps.from_pandas(pser) expected = pd.Series( [1.0, 2.0, 3.0, None, None, 3.0, 4.0], index=pd.MultiIndex.from_tuples( [ ("a", "w"), ("a", "w"), ("a", "w"), ("b", "x"), ("c", "y"), ("d", "z"), ("d", "z"), ] ), ) self.assert_eq(psser.explode(), expected) # non-array type Series pser = pd.Series([1, 2, 3, 4]) psser = ps.from_pandas(pser) expected = pser self.assert_eq(psser.explode(), expected) def test_argsort(self): # Without null values pser = pd.Series([0, -100, 50, 100, 20], index=["A", "B", "C", "D", "E"]) psser = ps.from_pandas(pser) self.assert_eq(pser.argsort().sort_index(), psser.argsort().sort_index()) self.assert_eq((-pser).argsort().sort_index(), (-psser).argsort().sort_index()) # MultiIndex pser.index = pd.MultiIndex.from_tuples( [("a", "v"), ("b", "w"), ("c", "x"), ("d", "y"), ("e", "z")] ) psser = ps.from_pandas(pser) self.assert_eq(pser.argsort().sort_index(), psser.argsort().sort_index()) self.assert_eq((-pser).argsort().sort_index(), (-psser).argsort().sort_index()) # With name pser.name = "Koalas" psser = ps.from_pandas(pser) self.assert_eq(pser.argsort().sort_index(), psser.argsort().sort_index()) self.assert_eq((-pser).argsort().sort_index(), (-psser).argsort().sort_index()) # Series from Index pidx = pd.Index([4.0, -6.0, 2.0, -100.0, 11.0, 20.0, 1.0, -99.0]) psidx = ps.from_pandas(pidx) self.assert_eq( pidx.to_series().argsort().sort_index(), psidx.to_series().argsort().sort_index() ) self.assert_eq( (-pidx.to_series()).argsort().sort_index(), (-psidx.to_series()).argsort().sort_index() ) # Series from Index with name pidx.name = "Koalas" psidx = ps.from_pandas(pidx) self.assert_eq( pidx.to_series().argsort().sort_index(), psidx.to_series().argsort().sort_index() ) self.assert_eq( (-pidx.to_series()).argsort().sort_index(), (-psidx.to_series()).argsort().sort_index() ) # Series from DataFrame pdf = pd.DataFrame({"A": [4.0, -6.0, 2.0, np.nan, -100.0, 11.0, 20.0, np.nan, 1.0, -99.0]}) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.A.argsort().sort_index(), psdf.A.argsort().sort_index()) self.assert_eq((-pdf.A).argsort().sort_index(), (-psdf.A).argsort().sort_index()) # With null values pser = pd.Series([0, -100, np.nan, 100, np.nan], index=["A", "B", "C", "D", "E"]) psser = ps.from_pandas(pser) self.assert_eq(pser.argsort().sort_index(), psser.argsort().sort_index()) self.assert_eq((-pser).argsort().sort_index(), (-psser).argsort().sort_index()) # MultiIndex with null values pser.index = pd.MultiIndex.from_tuples( [("a", "v"), ("b", "w"), ("c", "x"), ("d", "y"), ("e", "z")] ) psser = ps.from_pandas(pser) self.assert_eq(pser.argsort().sort_index(), psser.argsort().sort_index()) self.assert_eq((-pser).argsort().sort_index(), (-psser).argsort().sort_index()) # With name with null values pser.name = "Koalas" psser = ps.from_pandas(pser) self.assert_eq(pser.argsort().sort_index(), psser.argsort().sort_index()) self.assert_eq((-pser).argsort().sort_index(), (-psser).argsort().sort_index()) # Series from Index with null values pidx = pd.Index([4.0, -6.0, 2.0, np.nan, -100.0, 11.0, 20.0, np.nan, 1.0, -99.0]) psidx = ps.from_pandas(pidx) self.assert_eq( pidx.to_series().argsort().sort_index(), psidx.to_series().argsort().sort_index() ) self.assert_eq( (-pidx.to_series()).argsort().sort_index(), (-psidx.to_series()).argsort().sort_index() ) # Series from Index with name with null values pidx.name = "Koalas" psidx = ps.from_pandas(pidx) self.assert_eq( pidx.to_series().argsort().sort_index(), psidx.to_series().argsort().sort_index() ) self.assert_eq( (-pidx.to_series()).argsort().sort_index(), (-psidx.to_series()).argsort().sort_index() ) # Series from DataFrame with null values pdf = pd.DataFrame({"A": [4.0, -6.0, 2.0, np.nan, -100.0, 11.0, 20.0, np.nan, 1.0, -99.0]}) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.A.argsort().sort_index(), psdf.A.argsort().sort_index()) self.assert_eq((-pdf.A).argsort().sort_index(), (-psdf.A).argsort().sort_index()) def test_argmin_argmax(self): pser = pd.Series( { "Corn Flakes": 100.0, "Almond Delight": 110.0, "Cinnamon Toast Crunch": 120.0, "Cocoa Puff": 110.0, "Expensive Flakes": 120.0, "Cheap Flakes": 100.0, }, name="Koalas", ) psser = ps.from_pandas(pser) if LooseVersion(pd.__version__) >= LooseVersion("1.0"): self.assert_eq(pser.argmin(), psser.argmin()) self.assert_eq(pser.argmax(), psser.argmax()) # MultiIndex pser.index = pd.MultiIndex.from_tuples( [("a", "t"), ("b", "u"), ("c", "v"), ("d", "w"), ("e", "x"), ("f", "u")] ) psser = ps.from_pandas(pser) self.assert_eq(pser.argmin(), psser.argmin()) self.assert_eq(pser.argmax(), psser.argmax()) # Null Series self.assert_eq(pd.Series([np.nan]).argmin(), ps.Series([np.nan]).argmin()) self.assert_eq(pd.Series([np.nan]).argmax(), ps.Series([np.nan]).argmax()) else: self.assert_eq(pser.values.argmin(), psser.argmin()) self.assert_eq(pser.values.argmax(), psser.argmax()) # MultiIndex pser.index = pd.MultiIndex.from_tuples( [("a", "t"), ("b", "u"), ("c", "v"), ("d", "w"), ("e", "x"), ("f", "u")] ) psser = ps.from_pandas(pser) self.assert_eq(pser.values.argmin(), psser.argmin()) self.assert_eq(pser.values.argmax(), psser.argmax()) # Null Series self.assert_eq(-1, ps.Series([np.nan]).argmin()) self.assert_eq(-1, ps.Series([np.nan]).argmax()) with self.assertRaisesRegex(ValueError, "attempt to get argmin of an empty sequence"): ps.Series([]).argmin() with self.assertRaisesRegex(ValueError, "attempt to get argmax of an empty sequence"): ps.Series([]).argmax() def test_backfill(self): pser = pd.Series([np.nan, 2, 3, 4, np.nan, 6], name="x") psser = ps.from_pandas(pser) if LooseVersion(pd.__version__) >= LooseVersion("1.1"): self.assert_eq(pser.backfill(), psser.backfill()) # Test `inplace=True` pser.backfill(inplace=True) psser.backfill(inplace=True) self.assert_eq(pser, psser) else: expected = ps.Series([2.0, 2.0, 3.0, 4.0, 6.0, 6.0], name="x") self.assert_eq(expected, psser.backfill()) # Test `inplace=True` psser.backfill(inplace=True) self.assert_eq(expected, psser) def test_align(self): pdf = pd.DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]}) psdf = ps.from_pandas(pdf) for join in ["outer", "inner", "left", "right"]: for axis in [None, 0]: psser_l, psser_r = psdf.a.align(psdf.b, join=join, axis=axis) pser_l, pser_r = pdf.a.align(pdf.b, join=join, axis=axis) self.assert_eq(psser_l, pser_l) self.assert_eq(psser_r, pser_r) psser_l, psdf_r = psdf.b.align(psdf[["b", "a"]], join=join, axis=axis) pser_l, pdf_r = pdf.b.align(pdf[["b", "a"]], join=join, axis=axis) self.assert_eq(psser_l, pser_l) self.assert_eq(psdf_r, pdf_r) self.assertRaises(ValueError, lambda: psdf.a.align(psdf.b, axis=1)) def test_pow_and_rpow(self): pser = pd.Series([1, 2, np.nan]) psser = ps.from_pandas(pser) self.assert_eq(pser.pow(np.nan), psser.pow(np.nan)) self.assert_eq(pser ** np.nan, psser ** np.nan) self.assert_eq(pser.rpow(np.nan), psser.rpow(np.nan)) self.assert_eq(1 ** pser, 1 ** psser) def test_between_time(self): idx = pd.date_range("2018-04-09", periods=4, freq="1D20min") pser = pd.Series([1, 2, 3, 4], index=idx) psser = ps.from_pandas(pser) self.assert_eq( pser.between_time("0:15", "0:45").sort_index(), psser.between_time("0:15", "0:45").sort_index(), ) pser.index.name = "ts" psser = ps.from_pandas(pser) self.assert_eq( pser.between_time("0:15", "0:45").sort_index(), psser.between_time("0:15", "0:45").sort_index(), ) pser.index.name = "index" psser = ps.from_pandas(pser) self.assert_eq( pser.between_time("0:15", "0:45").sort_index(), psser.between_time("0:15", "0:45").sort_index(), ) def test_at_time(self): idx = pd.date_range("2018-04-09", periods=4, freq="1D20min") pser = pd.Series([1, 2, 3, 4], index=idx) psser = ps.from_pandas(pser) self.assert_eq( pser.at_time("0:20").sort_index(), psser.at_time("0:20").sort_index(), ) pser.index.name = "ts" psser = ps.from_pandas(pser) self.assert_eq( pser.at_time("0:20").sort_index(), psser.at_time("0:20").sort_index(), ) pser.index.name = "index" psser = ps.from_pandas(pser) self.assert_eq( pser.at_time("0:20").sort_index(), psser.at_time("0:20").sort_index(), ) if __name__ == "__main__": from pyspark.pandas.tests.test_series import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
agadiraju/519finalproject
svm/test_poly_svm.py
1
1515
print(__doc__) import numpy as np from sklearn import metrics from sklearn import datasets from sklearn.svm import SVC from sklearn.svm import SVR from sklearn.svm import LinearSVC from sklearn.metrics import accuracy_score from datetime import datetime from import_train import rmsle from import_train import import_training_file from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report from sklearn import preprocessing as pre from scipy import sparse import sys if __name__ == '__main__': (X, y_total, y_regis, y_casual) = import_training_file(sys.argv[1], True) n,d = X.shape nTrain = 0.5*n Xtrain = X[:nTrain,:] y_casual_train = y_casual[:nTrain] y_regis_train = y_regis[:nTrain] y_total_train = y_total[:nTrain] Xtest = X[nTrain:,:] y_casual_test = y_casual[nTrain:] y_regis_test = y_regis[nTrain:] y_total_test = y_total[nTrain:] #linear #param_grid = {'C': [1, 5, 10, 100],} #clf = GridSearchCV(SVC(kernel='linear'), param_grid,n_jobs=-1) #clf = SVC(kernel='poly') #clf.fit(Xtrain,ytrain) #pred = clf.predict(Xtest) #print "best estimator = ",clf.best_estimator_ #print "RMSE poly = ", rmsle(ytest, pred) #new stuff clf_regis = SVR(kernel='poly') clf_regis.fit(Xtrain,y_regis_train) pred_regis = clf_regis.predict(Xtest) clf_casual = SVR(kernel='poly') clf_casual.fit(Xtrain,y_casual_train) pred_casual = clf_casual.predict(Xtest) pred_total = pred_casual + pred_regis print "RMSLE poly total = ", rmsle(y_total_test, pred_total)
mit
badbytes/pymeg
pdf2py/headshape.py
1
2025
# Copyright 2008 Dan Collins # # This is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # And is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with Build; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #try:from scipy.io.numpyio import * #except ImportError: from extra.numpyio import * from numpy import char, reshape from pdf2py import io_wrapper fread = io_wrapper.fread fwrite = io_wrapper.fwrite #import matplotlib.axes3d as p3 #legacy code '3d plotting doesnt work in pylab v .98' #danc changed units to mm from meters class read: def __init__(self, hsfile): self.fid=open(hsfile, "r") self.hdr_version = fread(self.fid, 1, 'i', 'i', 1); self.hdr_timestamp = fread(self.fid, 1, 'i', 'i', 1); self.hdr_checksum = fread(self.fid, 1, 'i', 'i', 1); self.hdr_npoints = fread(self.fid, 1, 'i', 'i', 1); self.index_lpa = fread(self.fid, 3, 'd', 'd', 1)*1000; self.index_rpa = fread(self.fid, 3, 'd', 'd', 1)*1000; self.index_nasion = fread(self.fid, 3, 'd', 'd', 1)*1000; self.index_cz = fread(self.fid, 3, 'd', 'd', 1)*1000; self.index_inion = fread(self.fid, 3, 'd', 'd', 1)*1000; hs_pointvec = fread(self.fid, self.hdr_npoints*3, 'd', 'd', 1)*1000; self.hs_point = reshape(hs_pointvec, [len(hs_pointvec)/3, 3]) self.fid.close if __name__ == "__main__": hsfile = '/media/2TB/4D_data/msw_data/spartan_data0/0611/IB_MOTb/04%13%11@14:55/1/hs_file' c = read(hsfile) print c.hdr_npoints, c.hs_point
gpl-3.0
IndraVikas/scikit-learn
examples/neural_networks/plot_rbm_logistic_classification.py
258
4609
""" ============================================================== Restricted Boltzmann Machine features for digit classification ============================================================== For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like handwritten digit recognition, the Bernoulli Restricted Boltzmann machine model (:class:`BernoulliRBM <sklearn.neural_network.BernoulliRBM>`) can perform effective non-linear feature extraction. In order to learn good latent representations from a small dataset, we artificially generate more labeled data by perturbing the training data with linear shifts of 1 pixel in each direction. This example shows how to build a classification pipeline with a BernoulliRBM feature extractor and a :class:`LogisticRegression <sklearn.linear_model.LogisticRegression>` classifier. The hyperparameters of the entire model (learning rate, hidden layer size, regularization) were optimized by grid search, but the search is not reproduced here because of runtime constraints. Logistic regression on raw pixel values is presented for comparison. The example shows that the features extracted by the BernoulliRBM help improve the classification accuracy. """ from __future__ import print_function print(__doc__) # Authors: Yann N. Dauphin, Vlad Niculae, Gabriel Synnaeve # License: BSD import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import convolve from sklearn import linear_model, datasets, metrics from sklearn.cross_validation import train_test_split from sklearn.neural_network import BernoulliRBM from sklearn.pipeline import Pipeline ############################################################################### # Setting up def nudge_dataset(X, Y): """ This produces a dataset 5 times bigger than the original one, by moving the 8x8 images in X around by 1px to left, right, down, up """ direction_vectors = [ [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]]] shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant', weights=w).ravel() X = np.concatenate([X] + [np.apply_along_axis(shift, 1, X, vector) for vector in direction_vectors]) Y = np.concatenate([Y for _ in range(5)], axis=0) return X, Y # Load Data digits = datasets.load_digits() X = np.asarray(digits.data, 'float32') X, Y = nudge_dataset(X, digits.target) X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0) # Models we will use logistic = linear_model.LogisticRegression() rbm = BernoulliRBM(random_state=0, verbose=True) classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)]) ############################################################################### # Training # Hyper-parameters. These were set by cross-validation, # using a GridSearchCV. Here we are not performing cross-validation to # save time. rbm.learning_rate = 0.06 rbm.n_iter = 20 # More components tend to give better prediction performance, but larger # fitting time rbm.n_components = 100 logistic.C = 6000.0 # Training RBM-Logistic Pipeline classifier.fit(X_train, Y_train) # Training Logistic regression logistic_classifier = linear_model.LogisticRegression(C=100.0) logistic_classifier.fit(X_train, Y_train) ############################################################################### # Evaluation print() print("Logistic regression using RBM features:\n%s\n" % ( metrics.classification_report( Y_test, classifier.predict(X_test)))) print("Logistic regression using raw pixel features:\n%s\n" % ( metrics.classification_report( Y_test, logistic_classifier.predict(X_test)))) ############################################################################### # Plotting plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(rbm.components_): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('100 components extracted by RBM', fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
ThomasMiconi/nupic.research
projects/sequence_prediction/reberGrammar/reberSequencePrediction_HMM.py
12
5350
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- from htmresearch.support.reberGrammar import * from htmresearch.algorithms.hidden_markov_model import HMM import matplotlib.pyplot as plt import numpy as np from copy import copy from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) plt.ion() from sys import stdout MAXLENGTH = 20 numTestSequence = 50 numStates = 2 numCats = len(chars) charsToInts = dict(zip(chars, range(numCats))) def initializeHMM(numStates=numStates, possibleObservations=numCats): print "Initializing HMM..." hmm = HMM(numStates=numStates, numCats=possibleObservations) hmm.pi = np.random.rand(numStates) hmm.pi /= sum(hmm.pi) hmm.A = np.random.rand(numStates, numStates) A_row_sums = hmm.A.sum(axis=1) hmm.A /= A_row_sums[:, np.newaxis] hmm.B = np.random.rand(numStates, numCats) B_row_sums = hmm.B.sum(axis=1) hmm.B /= B_row_sums[:, np.newaxis] print "Initial HMM stats" print "A: ", print hmm.A print "B: ", print hmm.B print "pi: ", print hmm.pi return hmm def learnHMM(numTrainSequence, numStates=numStates): hmm = initializeHMM(numStates) for i in range(numTrainSequence): sample, _ = generateSequences(MAXLENGTH) sampleInts = np.array([charsToInts[c] for c in sample]) hmm.train(sampleInts) print "HMM stats" print "A: ", print hmm.A print "B: ", print hmm.B print "pi: ", print hmm.pi return hmm def testHMM(hmm, numTestSequence=numTestSequence): outcomeAll = [] numOutcome = 0.0 numPred = 0.0 numMiss = 0.0 numFP = 0.0 numStep = 0.0 for _ in range(numTestSequence): sample, target = generateSequences(MAXLENGTH) hmm.reset() for i in range(len(sample)): current_input = charsToInts[sample[i]] possible_next_inputs = set(np.array([charsToInts[c] for c in target[i]])) predicted_next_inputs = hmm.predict_next_inputs(current_input) # fraction of predicted inputs that were in possible outputs numPreds = 1.0*len(predicted_next_inputs) if numPreds > 0: outcome = len(predicted_next_inputs & possible_next_inputs) / numPreds else: outcome = 0 outcomeAll.append(outcome) # missN is number of possible outcomes not predicted missN = len(possible_next_inputs - predicted_next_inputs) #fpN is number of predicted outcomes not possible fpN = len(predicted_next_inputs - possible_next_inputs) numPred += numPreds numOutcome += len(target) numMiss += missN numFP += fpN numStep += 1 correctRate = sum(outcomeAll)/float(len(outcomeAll)) missRate = float(numMiss)/float(numStep * 7) fpRate = float(numFP)/float(numStep * 7) errRate = float(numMiss + numFP)/float(numStep * 7) print("Correct Rate (Best Prediction): ", correctRate) print("Error Rate: ", errRate) print("Miss Rate: ", missRate) print("False Positive Rate: ", fpRate) return correctRate, missRate, fpRate def runSingleExperiment(numTrainSequence, numTestSequence=numTestSequence): hmm = learnHMM(numTrainSequence) return testHMM(hmm, numTestSequence) def runExperiment(): """ Experiment 1: Calculate error rate as a function of training sequence numbers :return: """ trainSeqN = [5, 10, 20, 50, 100, 200] rptPerCondition = 20 correctRateAll = np.zeros((len(trainSeqN), rptPerCondition)) missRateAll = np.zeros((len(trainSeqN), rptPerCondition)) fpRateAll = np.zeros((len(trainSeqN), rptPerCondition)) for i in xrange(len(trainSeqN)): for rpt in xrange(rptPerCondition): numTrainSequence = trainSeqN[i] correctRate, missRate, fpRate = runSingleExperiment(numTrainSequence=numTrainSequence) correctRateAll[i, rpt] = correctRate missRateAll[i, rpt] = missRate fpRateAll[i, rpt] = fpRate plt.figure() plt.subplot(2,2,1) plt.semilogx(trainSeqN, 100*np.mean(correctRateAll,1),'-*') plt.xlabel(' Training Sequence Number') plt.ylabel(' Hit Rate - Best Match (%)') plt.subplot(2,2,2) plt.semilogx(trainSeqN, 100*np.mean(missRateAll,1),'-*') plt.xlabel(' Training Sequence Number') plt.ylabel(' Miss Rate (%)') plt.subplot(2,2,3) plt.semilogx(trainSeqN, 100*np.mean(fpRateAll,1),'-*') plt.xlabel(' Training Sequence Number') plt.ylabel(' False Positive Rate (%)') plt.savefig('result/ReberSequence_HMMperformance.pdf') plt.show() if __name__ == "__main__": runExperiment()
agpl-3.0
mhdella/scikit-learn
examples/ensemble/plot_voting_probas.py
316
2824
""" =========================================================== Plot class probabilities calculated by the VotingClassifier =========================================================== Plot the class probabilities of the first sample in a toy dataset predicted by three different classifiers and averaged by the `VotingClassifier`. First, three examplary classifiers are initialized (`LogisticRegression`, `GaussianNB`, and `RandomForestClassifier`) and used to initialize a soft-voting `VotingClassifier` with weights `[1, 1, 5]`, which means that the predicted probabilities of the `RandomForestClassifier` count 5 times as much as the weights of the other classifiers when the averaged probability is calculated. To visualize the probability weighting, we fit each classifier on the training set and plot the predicted class probabilities for the first sample in this example dataset. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.0, -1.0], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 1, 5]) # predict class probabilities for all classifiers probas = [c.fit(X, y).predict_proba(X) for c in (clf1, clf2, clf3, eclf)] # get class probabilities for the first sample in the dataset class1_1 = [pr[0, 0] for pr in probas] class2_1 = [pr[0, 1] for pr in probas] # plotting N = 4 # number of groups ind = np.arange(N) # group positions width = 0.35 # bar width fig, ax = plt.subplots() # bars for classifier 1-3 p1 = ax.bar(ind, np.hstack(([class1_1[:-1], [0]])), width, color='green') p2 = ax.bar(ind + width, np.hstack(([class2_1[:-1], [0]])), width, color='lightgreen') # bars for VotingClassifier p3 = ax.bar(ind, [0, 0, 0, class1_1[-1]], width, color='blue') p4 = ax.bar(ind + width, [0, 0, 0, class2_1[-1]], width, color='steelblue') # plot annotations plt.axvline(2.8, color='k', linestyle='dashed') ax.set_xticks(ind + width) ax.set_xticklabels(['LogisticRegression\nweight 1', 'GaussianNB\nweight 1', 'RandomForestClassifier\nweight 5', 'VotingClassifier\n(average probabilities)'], rotation=40, ha='right') plt.ylim([0, 1]) plt.title('Class probabilities for sample 1 by different classifiers') plt.legend([p1[0], p2[0]], ['class 1', 'class 2'], loc='upper left') plt.show()
bsd-3-clause
winklerand/pandas
pandas/core/indexes/api.py
2
4715
from pandas.core.indexes.base import (Index, _new_Index, _ensure_index, _ensure_index_from_sequences, _get_na_value, InvalidIndexError) # noqa from pandas.core.indexes.category import CategoricalIndex # noqa from pandas.core.indexes.multi import MultiIndex # noqa from pandas.core.indexes.interval import IntervalIndex # noqa from pandas.core.indexes.numeric import (NumericIndex, Float64Index, # noqa Int64Index, UInt64Index) from pandas.core.indexes.range import RangeIndex # noqa from pandas.core.indexes.timedeltas import TimedeltaIndex from pandas.core.indexes.period import PeriodIndex from pandas.core.indexes.datetimes import DatetimeIndex import pandas.core.common as com from pandas._libs import lib from pandas._libs.tslib import NaT # TODO: there are many places that rely on these private methods existing in # pandas.core.index __all__ = ['Index', 'MultiIndex', 'NumericIndex', 'Float64Index', 'Int64Index', 'CategoricalIndex', 'IntervalIndex', 'RangeIndex', 'UInt64Index', 'InvalidIndexError', 'TimedeltaIndex', 'PeriodIndex', 'DatetimeIndex', '_new_Index', 'NaT', '_ensure_index', '_ensure_index_from_sequences', '_get_na_value', '_get_combined_index', '_get_objs_combined_axis', '_union_indexes', '_get_consensus_names', '_all_indexes_same'] def _get_objs_combined_axis(objs, intersect=False, axis=0): # Extract combined index: return intersection or union (depending on the # value of "intersect") of indexes on given axis, or None if all objects # lack indexes (e.g. they are numpy arrays) obs_idxes = [obj._get_axis(axis) for obj in objs if hasattr(obj, '_get_axis')] if obs_idxes: return _get_combined_index(obs_idxes, intersect=intersect) def _get_combined_index(indexes, intersect=False): # TODO: handle index names! indexes = com._get_distinct_objs(indexes) if len(indexes) == 0: return Index([]) if len(indexes) == 1: return indexes[0] if intersect: index = indexes[0] for other in indexes[1:]: index = index.intersection(other) return index union = _union_indexes(indexes) return _ensure_index(union) def _union_indexes(indexes): if len(indexes) == 0: raise AssertionError('Must have at least 1 Index to union') if len(indexes) == 1: result = indexes[0] if isinstance(result, list): result = Index(sorted(result)) return result indexes, kind = _sanitize_and_check(indexes) def _unique_indices(inds): def conv(i): if isinstance(i, Index): i = i.tolist() return i return Index(lib.fast_unique_multiple_list([conv(i) for i in inds])) if kind == 'special': result = indexes[0] if hasattr(result, 'union_many'): return result.union_many(indexes[1:]) else: for other in indexes[1:]: result = result.union(other) return result elif kind == 'array': index = indexes[0] for other in indexes[1:]: if not index.equals(other): return _unique_indices(indexes) name = _get_consensus_names(indexes)[0] if name != index.name: index = index._shallow_copy(name=name) return index else: return _unique_indices(indexes) def _sanitize_and_check(indexes): kinds = list({type(index) for index in indexes}) if list in kinds: if len(kinds) > 1: indexes = [Index(com._try_sort(x)) if not isinstance(x, Index) else x for x in indexes] kinds.remove(list) else: return indexes, 'list' if len(kinds) > 1 or Index not in kinds: return indexes, 'special' else: return indexes, 'array' def _get_consensus_names(indexes): # find the non-none names, need to tupleify to make # the set hashable, then reverse on return consensus_names = set(tuple(i.names) for i in indexes if com._any_not_none(*i.names)) if len(consensus_names) == 1: return list(list(consensus_names)[0]) return [None] * indexes[0].nlevels def _all_indexes_same(indexes): first = indexes[0] for index in indexes[1:]: if not first.equals(index): return False return True
bsd-3-clause
nuclear-wizard/moose
python/postprocessing/tests/test_combine_csv.py
4
5272
#!/usr/bin/env python3 #* This file is part of the MOOSE framework #* https://www.mooseframework.org #* #* All rights reserved, see COPYRIGHT for full restrictions #* https://github.com/idaholab/moose/blob/master/COPYRIGHT #* #* Licensed under LGPL 2.1, please see LICENSE for details #* https://www.gnu.org/licenses/lgpl-2.1.html import os import unittest import pandas try: from postprocessing import combine_csv except ModuleNotFoundError: pass class TestCombineCSV(unittest.TestCase): """ Test use of combine_csv.py for combining csv files. """ def setUp(self): """ Define the pattern for test files. """ self.__goldpath = os.path.abspath('../../test_files/gold') self.__basename = os.path.abspath('../../test_files/test_combine_in_') def tearDown(self): """ Remove made CSV files """ if os.path.exists("remove_me_54.csv"): os.remove("remove_me_54.csv") def testBasic(self): """ Test basic usage with minimal options and headers written. """ df_test = combine_csv.CombineCSV(self.__basename, "remove_me_54.csv", "large_number", write_header=True) self.assertTrue(df_test._ended) gold_df = pandas.read_csv("{}/combine_basic.csv".format( self.__goldpath)) self.assertTrue(df_test._final_df.equals(gold_df), msg="Pandas dataframe is different from gold CSV for basic usage.") def testBasicTime(self): """ Test basic usage with headers and a time file. """ df_test = combine_csv.CombineCSV(self.__basename, "remove_me_54.csv", "large_number", write_header=True, timefile=True) self.assertTrue(df_test._ended) gold_df = pandas.read_csv("{}/combine_basic_time.csv".format( self.__goldpath)) self.assertTrue(df_test._final_df.equals(gold_df), msg="Pandas dataframe is different from gold CSV for time usage.") def testBasicX(self): """ Test basic usage with headers and a "x" variable name. """ df_test = combine_csv.CombineCSV(self.__basename, "remove_me_54.csv", "large_number", write_header=True, x_varname='y') self.assertTrue(df_test._ended) gold_df = pandas.read_csv("{}/combine_basic_x.csv".format( self.__goldpath)) self.assertTrue(df_test._final_df.equals(gold_df), msg="Pandas dataframe is different from gold CSV for x variable usage.") def testBilinear(self): """ Test bilinear usage. """ df_test = combine_csv.CombineCSV(self.__basename, "remove_me_54.csv", "large_number", write_header=True, x_varname='y', timefile=True, bilinear=True) self.assertTrue(df_test._ended) gold_df = pandas.read_csv("{}/combine_bilinear.csv".format( self.__goldpath)) self.assertTrue(df_test._final_df.equals(gold_df), msg="Pandas dataframe is different from gold CSV for bilinear usage.") def testBasenameError(self): """ Test exception when bad basename is provided. """ with self.assertRaises(combine_csv.CombineCSV.CombineError) as cerr: df_test = combine_csv.CombineCSV('bad_basename_54', "remove_me_54.csv", "large_number") self.assertEqual(cerr.exception._name, "BasenameError") def testStepBoundsError(self): """ Test exception when mismatch of steps are provided. """ with self.assertRaises(combine_csv.CombineCSV.CombineError) as cerr: df_test = combine_csv.CombineCSV(self.__basename, "remove_me_54.csv", "large_number", lastn=2, endt=1) self.assertEqual(cerr.exception._name, "StepBoundsError") def testXVariableError(self): """ Test exception when bad "x" variable name is provided. """ with self.assertRaises(combine_csv.CombineCSV.CombineError) as cerr: df_test = combine_csv.CombineCSV(self.__basename, "remove_me_54.csv", "large_number", x_varname='bad_x54_name') self.assertEqual(cerr.exception._name, "XVariableError") def testInconsistentError(self): """ Test exception when data rows are not consistent. """ with self.assertRaises(combine_csv.CombineCSV.CombineError) as cerr: df_test = combine_csv.CombineCSV("{}54_bad_".format( self.__basename), "remove_me_54.csv", "large_number", x_varname='x') self.assertEqual(cerr.exception._name, "InconsistentError") def testYVariableError(self): """ Test exception when bad "y" variable name is provided. """ with self.assertRaises(combine_csv.CombineCSV.CombineError) as cerr: df_test = combine_csv.CombineCSV(self.__basename, "remove_me_54.csv", "bad_y54_name") self.assertEqual(cerr.exception._name, "YVariableError") if __name__ == '__main__': import sys sys.path.append("..") import combine_csv unittest.main(module=__name__, verbosity=2)
lgpl-2.1
noelevans/sandpit
time_series_prediction_1.py
1
2470
import datetime from matplotlib import pyplot as plt import numpy as np import pandas as pd DATA = [1807, 1957, 1574, 1531, 1026, 973, 1207, 1127, 1171, 811, 21534, 28001, 40021, 27690, 20560, 17119, 16904, 22417, 9585, 25978, 26957, 14802, 10794, 13838, 22581, 14669, 3684, 10126, 13599, 27646, 17838, 17028, 14616, 14433, 27013, 11949, 42065, 9907, 9951, 22854, 12362, 10369, 10833, 13040, 21326, 15637, 6846, 7070, 10412, 21954, 12614, 24361, 13038, 12850, 30691, 21348, 11775, 12354, 12098, 24439, 14209, 9804, 9589, 10614, 21312, 11933, 10310, 10138, 19546, 24428, 22483, 10746, 13125, 13556, 25044, 9880, 16182, 13138, 25781, 25709, 14522, 8779, 9969, 9779, 21988, 13763, 9075, 9544, 11393, 21210, 10454, 4307, 4456, 8944, 18892, 9262, 13495, 8258, 7197, 21006, 18046, 4002, 11867, 8192, 21920, 9979, 4031, 4840, 4820, 16573, 6917, 4084, 5296, 4821, 19136, 15487, 6127, 9275, 12540, 20698, 9229, 2389, 6735, 6563, 19895] def rolling_window(a, window): shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) strides = a.strides + (a.strides[-1],) return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) def main(): start = datetime.date(2015, 9, 12) data = [{'date': start + datetime.timedelta(days=n), 'vol': val} for n, val in enumerate(DATA)] df = pd.DataFrame(data, columns=['date', 'vol']) mean = np.mean(df.vol) std = np.std(df.vol) lower_pc = np.percentile(df.vol, 2.5) upper_pc = np.percentile(df.vol, 97.5) f, (ax1, ax2) = plt.subplots(2) df.plot(ax=ax1) window_len = 20 window = rolling_window(df.vol.values, window_len) rolling_lower_pc = np.percentile(window, 5, axis=1) rolling_upper_pc = np.percentile(window, 95, axis=1) X = np.arange(len(rolling_lower_pc)) + window_len ax1.fill_between(X, rolling_lower_pc, rolling_upper_pc, alpha=0.2, label='5-95th percentile window') ax2.hist(df.vol, 20, alpha=0.7) ax2.axvspan(mean - 2 * std, mean + 2 * std, alpha=0.2, label='SD', zorder=-1) ax2.axvspan(lower_pc, upper_pc, alpha=0.4, color='grey', hatch='/', label='Percentiles', zorder=-1) plt.legend() plt.show() if __name__ == '__main__': main()
mit
gotomypc/scikit-learn
sklearn/ensemble/forest.py
176
62555
"""Forest of trees-based ensemble methods Those methods include random forests and extremely randomized trees. The module structure is the following: - The ``BaseForest`` base class implements a common ``fit`` method for all the estimators in the module. The ``fit`` method of the base ``Forest`` class calls the ``fit`` method of each sub-estimator on random samples (with replacement, a.k.a. bootstrap) of the training set. The init of the sub-estimator is further delegated to the ``BaseEnsemble`` constructor. - The ``ForestClassifier`` and ``ForestRegressor`` base classes further implement the prediction logic by computing an average of the predicted outcomes of the sub-estimators. - The ``RandomForestClassifier`` and ``RandomForestRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using classical, deterministic ``DecisionTreeClassifier`` and ``DecisionTreeRegressor`` as sub-estimator implementations. - The ``ExtraTreesClassifier`` and ``ExtraTreesRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using the extremely randomized trees ``ExtraTreeClassifier`` and ``ExtraTreeRegressor`` as sub-estimator implementations. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <[email protected]> # Brian Holt <[email protected]> # Joly Arnaud <[email protected]> # Fares Hedayati <[email protected]> # # License: BSD 3 clause from __future__ import division import warnings from warnings import warn from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from ..base import ClassifierMixin, RegressorMixin from ..externals.joblib import Parallel, delayed from ..externals import six from ..feature_selection.from_model import _LearntSelectorMixin from ..metrics import r2_score from ..preprocessing import OneHotEncoder from ..tree import (DecisionTreeClassifier, DecisionTreeRegressor, ExtraTreeClassifier, ExtraTreeRegressor) from ..tree._tree import DTYPE, DOUBLE from ..utils import check_random_state, check_array, compute_sample_weight from ..utils.validation import DataConversionWarning, NotFittedError from .base import BaseEnsemble, _partition_estimators from ..utils.fixes import bincount __all__ = ["RandomForestClassifier", "RandomForestRegressor", "ExtraTreesClassifier", "ExtraTreesRegressor", "RandomTreesEmbedding"] MAX_INT = np.iinfo(np.int32).max def _generate_sample_indices(random_state, n_samples): """Private function used to _parallel_build_trees function.""" random_instance = check_random_state(random_state) sample_indices = random_instance.randint(0, n_samples, n_samples) return sample_indices def _generate_unsampled_indices(random_state, n_samples): """Private function used to forest._set_oob_score fuction.""" sample_indices = _generate_sample_indices(random_state, n_samples) sample_counts = bincount(sample_indices, minlength=n_samples) unsampled_mask = sample_counts == 0 indices_range = np.arange(n_samples) unsampled_indices = indices_range[unsampled_mask] return unsampled_indices def _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose=0, class_weight=None): """Private function used to fit a single tree in parallel.""" if verbose > 1: print("building tree %d of %d" % (tree_idx + 1, n_trees)) if forest.bootstrap: n_samples = X.shape[0] if sample_weight is None: curr_sample_weight = np.ones((n_samples,), dtype=np.float64) else: curr_sample_weight = sample_weight.copy() indices = _generate_sample_indices(tree.random_state, n_samples) sample_counts = bincount(indices, minlength=n_samples) curr_sample_weight *= sample_counts if class_weight == 'subsample': with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) curr_sample_weight *= compute_sample_weight('auto', y, indices) elif class_weight == 'balanced_subsample': curr_sample_weight *= compute_sample_weight('balanced', y, indices) tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) else: tree.fit(X, y, sample_weight=sample_weight, check_input=False) return tree def _parallel_helper(obj, methodname, *args, **kwargs): """Private helper to workaround Python 2 pickle limitations""" return getattr(obj, methodname)(*args, **kwargs) class BaseForest(six.with_metaclass(ABCMeta, BaseEnsemble, _LearntSelectorMixin)): """Base class for forests of trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(BaseForest, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.bootstrap = bootstrap self.oob_score = oob_score self.n_jobs = n_jobs self.random_state = random_state self.verbose = verbose self.warm_start = warm_start self.class_weight = class_weight def apply(self, X): """Apply trees in the forest to X, return leaf indices. Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- X_leaves : array_like, shape = [n_samples, n_estimators] For each datapoint x in X and for each tree in the forest, return the index of the leaf x ends up in. """ X = self._validate_X_predict(X) results = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_helper)(tree, 'apply', X, check_input=False) for tree in self.estimators_) return np.array(results).T def fit(self, X, y, sample_weight=None): """Build a forest of trees from the training set (X, y). Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. Returns ------- self : object Returns self. """ # Validate or convert input data X = check_array(X, dtype=DTYPE, accept_sparse="csc") if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() # Remap output n_samples, self.n_features_ = X.shape y = np.atleast_1d(y) if y.ndim == 2 and y.shape[1] == 1: warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples,), for example using ravel().", DataConversionWarning, stacklevel=2) if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] y, expanded_class_weight = self._validate_y_class_weight(y) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Check parameters self._validate_estimator() if not self.bootstrap and self.oob_score: raise ValueError("Out of bag estimation only available" " if bootstrap=True") random_state = check_random_state(self.random_state) if not self.warm_start: # Free allocated memory, if any self.estimators_ = [] n_more_estimators = self.n_estimators - len(self.estimators_) if n_more_estimators < 0: raise ValueError('n_estimators=%d must be larger or equal to ' 'len(estimators_)=%d when warm_start==True' % (self.n_estimators, len(self.estimators_))) elif n_more_estimators == 0: warn("Warm-start fitting without increasing n_estimators does not " "fit new trees.") else: if self.warm_start and len(self.estimators_) > 0: # We draw from the random state to get the random state we # would have got if we hadn't used a warm_start. random_state.randint(MAX_INT, size=len(self.estimators_)) trees = [] for i in range(n_more_estimators): tree = self._make_estimator(append=False) tree.set_params(random_state=random_state.randint(MAX_INT)) trees.append(tree) # Parallel loop: we use the threading backend as the Cython code # for fitting the trees is internally releasing the Python GIL # making threading always more efficient than multiprocessing in # that case. trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_build_trees)( t, self, X, y, sample_weight, i, len(trees), verbose=self.verbose, class_weight=self.class_weight) for i, t in enumerate(trees)) # Collect newly grown trees self.estimators_.extend(trees) if self.oob_score: self._set_oob_score(X, y) # Decapsulate classes_ attributes if hasattr(self, "classes_") and self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self @abstractmethod def _set_oob_score(self, X, y): """Calculate out of bag predictions and score.""" def _validate_y_class_weight(self, y): # Default implementation return y, None def _validate_X_predict(self, X): """Validate X whenever one tries to predict, apply, predict_proba""" if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, " "call `fit` before exploiting the model.") return self.estimators_[0]._validate_X_predict(X, check_input=True) @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, " "call `fit` before `feature_importances_`.") all_importances = Parallel(n_jobs=self.n_jobs, backend="threading")( delayed(getattr)(tree, 'feature_importances_') for tree in self.estimators_) return sum(all_importances) / len(self.estimators_) class ForestClassifier(six.with_metaclass(ABCMeta, BaseForest, ClassifierMixin)): """Base class for forest of trees-based classifiers. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ForestClassifier, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) def _set_oob_score(self, X, y): """Compute out-of-bag score""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_classes_ = self.n_classes_ n_samples = y.shape[0] oob_decision_function = [] oob_score = 0.0 predictions = [] for k in range(self.n_outputs_): predictions.append(np.zeros((n_samples, n_classes_[k]))) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict_proba(X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = [p_estimator] for k in range(self.n_outputs_): predictions[k][unsampled_indices, :] += p_estimator[k] for k in range(self.n_outputs_): if (predictions[k].sum(axis=1) == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") decision = (predictions[k] / predictions[k].sum(axis=1)[:, np.newaxis]) oob_decision_function.append(decision) oob_score += np.mean(y[:, k] == np.argmax(predictions[k], axis=1), axis=0) if self.n_outputs_ == 1: self.oob_decision_function_ = oob_decision_function[0] else: self.oob_decision_function_ = oob_decision_function self.oob_score_ = oob_score / self.n_outputs_ def _validate_y_class_weight(self, y): y = np.copy(y) expanded_class_weight = None if self.class_weight is not None: y_original = np.copy(y) self.classes_ = [] self.n_classes_ = [] y_store_unique_indices = np.zeros(y.shape, dtype=np.int) for k in range(self.n_outputs_): classes_k, y_store_unique_indices[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) y = y_store_unique_indices if self.class_weight is not None: valid_presets = ('auto', 'balanced', 'balanced_subsample', 'subsample', 'auto') if isinstance(self.class_weight, six.string_types): if self.class_weight not in valid_presets: raise ValueError('Valid presets for class_weight include ' '"balanced" and "balanced_subsample". Given "%s".' % self.class_weight) if self.class_weight == "subsample": warn("class_weight='subsample' is deprecated and will be removed in 0.18." " It was replaced by class_weight='balanced_subsample' " "using the balanced strategy.", DeprecationWarning) if self.warm_start: warn('class_weight presets "balanced" or "balanced_subsample" are ' 'not recommended for warm_start if the fitted data ' 'differs from the full dataset. In order to use ' '"balanced" weights, use compute_class_weight("balanced", ' 'classes, y). In place of y you can use a large ' 'enough sample of the full training set target to ' 'properly estimate the class frequency ' 'distributions. Pass the resulting weights as the ' 'class_weight parameter.') if (self.class_weight not in ['subsample', 'balanced_subsample'] or not self.bootstrap): if self.class_weight == 'subsample': class_weight = 'auto' elif self.class_weight == "balanced_subsample": class_weight = "balanced" else: class_weight = self.class_weight with warnings.catch_warnings(): if class_weight == "auto": warnings.simplefilter('ignore', DeprecationWarning) expanded_class_weight = compute_sample_weight(class_weight, y_original) return y, expanded_class_weight def predict(self, X): """Predict class for X. The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability estimates. That is, the predicted class is the one with highest mean probability estimate across the trees. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: n_samples = proba[0].shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take(np.argmax(proba[k], axis=1), axis=0) return predictions def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the mean predicted class probabilities of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class in a leaf. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_helper)(e, 'predict_proba', X, check_input=False) for e in self.estimators_) # Reduce proba = all_proba[0] if self.n_outputs_ == 1: for j in range(1, len(all_proba)): proba += all_proba[j] proba /= len(self.estimators_) else: for j in range(1, len(all_proba)): for k in range(self.n_outputs_): proba[k] += all_proba[j][k] for k in range(self.n_outputs_): proba[k] /= self.n_estimators return proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class probabilities of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class ForestRegressor(six.with_metaclass(ABCMeta, BaseForest, RegressorMixin)): """Base class for forest of trees-based regressors. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ForestRegressor, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) def predict(self, X): """Predict regression target for X. The predicted regression target of an input sample is computed as the mean predicted regression targets of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted values. """ # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_y_hat = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_helper)(e, 'predict', X, check_input=False) for e in self.estimators_) # Reduce y_hat = sum(all_y_hat) / len(self.estimators_) return y_hat def _set_oob_score(self, X, y): """Compute out-of-bag scores""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_samples = y.shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) n_predictions = np.zeros((n_samples, self.n_outputs_)) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict( X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = p_estimator[:, np.newaxis] predictions[unsampled_indices, :] += p_estimator n_predictions[unsampled_indices, :] += 1 if (n_predictions == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") n_predictions[n_predictions == 0] = 1 predictions /= n_predictions self.oob_prediction_ = predictions if self.n_outputs_ == 1: self.oob_prediction_ = \ self.oob_prediction_.reshape((n_samples, )) self.oob_score_ = 0.0 for k in range(self.n_outputs_): self.oob_score_ += r2_score(y[:, k], predictions[:, k]) self.oob_score_ /= self.n_outputs_ class RandomForestClassifier(ForestClassifier): """A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)` (same as "auto"). - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. Note: this parameter is tree-specific. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. Note: this parameter is tree-specific. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. Note: this parameter is tree-specific. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. Note: this parameter is tree-specific. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. Note: this parameter is tree-specific. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. Note: this parameter is tree-specific. bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool Whether to use out-of-bag samples to estimate the generalization error. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeClassifier, ExtraTreesClassifier """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(RandomForestClassifier, self).__init__( base_estimator=DecisionTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes class RandomForestRegressor(ForestRegressor): """A random forest regressor. A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. The only supported criterion is "mse" for the mean squared error. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. Note: this parameter is tree-specific. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. Note: this parameter is tree-specific. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. Note: this parameter is tree-specific. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. Note: this parameter is tree-specific. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. Note: this parameter is tree-specific. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. Note: this parameter is tree-specific. bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool whether to use out-of-bag samples to estimate the generalization error. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeRegressor, ExtraTreesRegressor """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomForestRegressor, self).__init__( base_estimator=DecisionTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes class ExtraTreesClassifier(ForestClassifier): """An extra-trees classifier. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. Note: this parameter is tree-specific. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. Note: this parameter is tree-specific. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. Note: this parameter is tree-specific. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. Note: this parameter is tree-specific. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. Note: this parameter is tree-specific. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. Note: this parameter is tree-specific. bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool Whether to use out-of-bag samples to estimate the generalization error. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeClassifier : Base classifier for this ensemble. RandomForestClassifier : Ensemble Classifier based on trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ExtraTreesClassifier, self).__init__( base_estimator=ExtraTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes class ExtraTreesRegressor(ForestRegressor): """An extra-trees regressor. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. The only supported criterion is "mse" for the mean squared error. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. Note: this parameter is tree-specific. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. Note: this parameter is tree-specific. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. Note: this parameter is tree-specific. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. Note: this parameter is tree-specific. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. Note: this parameter is tree-specific. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. Note: this parameter is tree-specific. bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. Note: this parameter is tree-specific. oob_score : bool Whether to use out-of-bag samples to estimate the generalization error. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features. n_outputs_ : int The number of outputs. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeRegressor: Base estimator for this ensemble. RandomForestRegressor: Ensemble regressor using trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ExtraTreesRegressor, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes class RandomTreesEmbedding(BaseForest): """An ensemble of totally random trees. An unsupervised transformation of a dataset to a high-dimensional sparse representation. A datapoint is coded according to which leaf of each tree it is sorted into. Using a one-hot encoding of the leaves, this leads to a binary coding with as many ones as there are trees in the forest. The dimensionality of the resulting representation is ``n_out <= n_estimators * max_leaf_nodes``. If ``max_leaf_nodes == None``, the number of leaf nodes is at most ``n_estimators * 2 ** max_depth``. Read more in the :ref:`User Guide <random_trees_embedding>`. Parameters ---------- n_estimators : int Number of trees in the forest. max_depth : int The maximum depth of each tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. sparse_output : bool, optional (default=True) Whether or not to return a sparse CSR matrix, as default behavior, or to return a dense array compatible with dense pipeline operators. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. .. [2] Moosmann, F. and Triggs, B. and Jurie, F. "Fast discriminative visual codebooks using randomized clustering forests" NIPS 2007 """ def __init__(self, n_estimators=10, max_depth=5, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_leaf_nodes=None, sparse_output=True, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomTreesEmbedding, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=False, oob_score=False, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = 'mse' self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = 1 self.max_leaf_nodes = max_leaf_nodes self.sparse_output = sparse_output def _set_oob_score(self, X, y): raise NotImplementedError("OOB score not supported by tree embedding") def fit(self, X, y=None, sample_weight=None): """Fit estimator. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) The input samples. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csc_matrix`` for maximum efficiency. Returns ------- self : object Returns self. """ self.fit_transform(X, y, sample_weight=sample_weight) return self def fit_transform(self, X, y=None, sample_weight=None): """Fit estimator and transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data used to build forests. Use ``dtype=np.float32`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ # ensure_2d=False because there are actually unit test checking we fail # for 1d. X = check_array(X, accept_sparse=['csc'], ensure_2d=False) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() rnd = check_random_state(self.random_state) y = rnd.uniform(size=X.shape[0]) super(RandomTreesEmbedding, self).fit(X, y, sample_weight=sample_weight) self.one_hot_encoder_ = OneHotEncoder(sparse=self.sparse_output) return self.one_hot_encoder_.fit_transform(self.apply(X)) def transform(self, X): """Transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data to be transformed. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csr_matrix`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ return self.one_hot_encoder_.transform(self.apply(X))
bsd-3-clause
ryfeus/lambda-packs
Tensorflow_Pandas_Numpy/source3.6/pandas/core/indexes/period.py
1
44774
# pylint: disable=E1101,E1103,W0232 from datetime import datetime, timedelta import numpy as np import warnings from pandas.core import common as com from pandas.core.dtypes.common import ( is_integer, is_float, is_integer_dtype, is_float_dtype, is_scalar, is_datetime64_dtype, is_datetime64_any_dtype, is_period_dtype, is_bool_dtype, pandas_dtype, _ensure_object) from pandas.core.dtypes.dtypes import PeriodDtype from pandas.core.dtypes.generic import ABCSeries import pandas.tseries.frequencies as frequencies from pandas.tseries.frequencies import get_freq_code as _gfc from pandas.tseries.offsets import Tick, DateOffset from pandas.core.indexes.datetimes import DatetimeIndex, Int64Index, Index from pandas.core.indexes.datetimelike import DatelikeOps, DatetimeIndexOpsMixin from pandas.core.tools.datetimes import parse_time_string from pandas._libs.lib import infer_dtype from pandas._libs import tslib, index as libindex from pandas._libs.tslibs.period import (Period, IncompatibleFrequency, get_period_field_arr, _validate_end_alias, _quarter_to_myear) from pandas._libs.tslibs.fields import isleapyear_arr from pandas._libs.tslibs import resolution, period from pandas._libs.tslibs.timedeltas import delta_to_nanoseconds from pandas.core.base import _shared_docs from pandas.core.indexes.base import _index_shared_docs, _ensure_index from pandas import compat from pandas.util._decorators import (Appender, Substitution, cache_readonly, deprecate_kwarg) from pandas.compat import zip, u import pandas.core.indexes.base as ibase _index_doc_kwargs = dict(ibase._index_doc_kwargs) _index_doc_kwargs.update( dict(target_klass='PeriodIndex or list of Periods')) def _field_accessor(name, alias, docstring=None): def f(self): base, mult = _gfc(self.freq) result = get_period_field_arr(alias, self._ndarray_values, base) return Index(result, name=self.name) f.__name__ = name f.__doc__ = docstring return property(f) def dt64arr_to_periodarr(data, freq, tz): if data.dtype != np.dtype('M8[ns]'): raise ValueError('Wrong dtype: %s' % data.dtype) freq = Period._maybe_convert_freq(freq) base, mult = _gfc(freq) return period.dt64arr_to_periodarr(data.view('i8'), base, tz) # --- Period index sketch _DIFFERENT_FREQ_INDEX = period._DIFFERENT_FREQ_INDEX def _period_index_cmp(opname, cls): """ Wrap comparison operations to convert Period-like to PeriodDtype """ nat_result = True if opname == '__ne__' else False def wrapper(self, other): op = getattr(self._ndarray_values, opname) if isinstance(other, Period): if other.freq != self.freq: msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, other.freqstr) raise IncompatibleFrequency(msg) result = op(other.ordinal) elif isinstance(other, PeriodIndex): if other.freq != self.freq: msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, other.freqstr) raise IncompatibleFrequency(msg) result = op(other._ndarray_values) mask = self._isnan | other._isnan if mask.any(): result[mask] = nat_result return result elif other is tslib.NaT: result = np.empty(len(self._ndarray_values), dtype=bool) result.fill(nat_result) else: other = Period(other, freq=self.freq) result = op(other.ordinal) if self.hasnans: result[self._isnan] = nat_result return result return compat.set_function_name(wrapper, opname, cls) def _new_PeriodIndex(cls, **d): # GH13277 for unpickling if d['data'].dtype == 'int64': values = d.pop('data') return cls._from_ordinals(values=values, **d) class PeriodIndex(DatelikeOps, DatetimeIndexOpsMixin, Int64Index): """ Immutable ndarray holding ordinal values indicating regular periods in time such as particular years, quarters, months, etc. Index keys are boxed to Period objects which carries the metadata (eg, frequency information). Parameters ---------- data : array-like (1-dimensional), optional Optional period-like data to construct index with copy : bool Make a copy of input ndarray freq : string or period object, optional One of pandas period strings or corresponding objects start : starting value, period-like, optional If data is None, used as the start point in generating regular period data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end value, period-like, optional If periods is none, generated index will extend to first conforming period on or just past end argument year : int, array, or Series, default None month : int, array, or Series, default None quarter : int, array, or Series, default None day : int, array, or Series, default None hour : int, array, or Series, default None minute : int, array, or Series, default None second : int, array, or Series, default None tz : object, default None Timezone for converting datetime64 data to Periods dtype : str or PeriodDtype, default None Attributes ---------- day dayofweek dayofyear days_in_month daysinmonth end_time freq freqstr hour is_leap_year minute month quarter qyear second start_time week weekday weekofyear year Methods ------- asfreq strftime to_timestamp tz_convert tz_localize Examples -------- >>> idx = PeriodIndex(year=year_arr, quarter=q_arr) >>> idx2 = PeriodIndex(start='2000', end='2010', freq='A') See Also --------- Index : The base pandas Index type Period : Represents a period of time DatetimeIndex : Index with datetime64 data TimedeltaIndex : Index of timedelta64 data """ _typ = 'periodindex' _attributes = ['name', 'freq'] # define my properties & methods for delegation _other_ops = [] _bool_ops = ['is_leap_year'] _object_ops = ['start_time', 'end_time', 'freq'] _field_ops = ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'weekday', 'week', 'dayofweek', 'dayofyear', 'quarter', 'qyear', 'days_in_month', 'daysinmonth'] _datetimelike_ops = _field_ops + _object_ops + _bool_ops _datetimelike_methods = ['strftime', 'to_timestamp', 'asfreq'] _is_numeric_dtype = False _infer_as_myclass = True _freq = None _engine_type = libindex.PeriodEngine @classmethod def _add_comparison_methods(cls): """ add in comparison methods """ cls.__eq__ = _period_index_cmp('__eq__', cls) cls.__ne__ = _period_index_cmp('__ne__', cls) cls.__lt__ = _period_index_cmp('__lt__', cls) cls.__gt__ = _period_index_cmp('__gt__', cls) cls.__le__ = _period_index_cmp('__le__', cls) cls.__ge__ = _period_index_cmp('__ge__', cls) def __new__(cls, data=None, ordinal=None, freq=None, start=None, end=None, periods=None, tz=None, dtype=None, copy=False, name=None, **fields): valid_field_set = {'year', 'month', 'day', 'quarter', 'hour', 'minute', 'second'} if not set(fields).issubset(valid_field_set): raise TypeError('__new__() got an unexpected keyword argument {}'. format(list(set(fields) - valid_field_set)[0])) if periods is not None: if is_float(periods): periods = int(periods) elif not is_integer(periods): msg = 'periods must be a number, got {periods}' raise TypeError(msg.format(periods=periods)) if name is None and hasattr(data, 'name'): name = data.name if dtype is not None: dtype = pandas_dtype(dtype) if not is_period_dtype(dtype): raise ValueError('dtype must be PeriodDtype') if freq is None: freq = dtype.freq elif freq != dtype.freq: msg = 'specified freq and dtype are different' raise IncompatibleFrequency(msg) # coerce freq to freq object, otherwise it can be coerced elementwise # which is slow if freq: freq = Period._maybe_convert_freq(freq) if data is None: if ordinal is not None: data = np.asarray(ordinal, dtype=np.int64) else: data, freq = cls._generate_range(start, end, periods, freq, fields) return cls._from_ordinals(data, name=name, freq=freq) if isinstance(data, PeriodIndex): if freq is None or freq == data.freq: # no freq change freq = data.freq data = data._ndarray_values else: base1, _ = _gfc(data.freq) base2, _ = _gfc(freq) data = period.period_asfreq_arr(data._ndarray_values, base1, base2, 1) return cls._simple_new(data, name=name, freq=freq) # not array / index if not isinstance(data, (np.ndarray, PeriodIndex, DatetimeIndex, Int64Index)): if is_scalar(data) or isinstance(data, Period): cls._scalar_data_error(data) # other iterable of some kind if not isinstance(data, (list, tuple)): data = list(data) data = np.asarray(data) # datetime other than period if is_datetime64_dtype(data.dtype): data = dt64arr_to_periodarr(data, freq, tz) return cls._from_ordinals(data, name=name, freq=freq) # check not floats if infer_dtype(data) == 'floating' and len(data) > 0: raise TypeError("PeriodIndex does not allow " "floating point in construction") # anything else, likely an array of strings or periods data = _ensure_object(data) freq = freq or period.extract_freq(data) data = period.extract_ordinals(data, freq) return cls._from_ordinals(data, name=name, freq=freq) @cache_readonly def _engine(self): return self._engine_type(lambda: self, len(self)) @classmethod def _generate_range(cls, start, end, periods, freq, fields): if freq is not None: freq = Period._maybe_convert_freq(freq) field_count = len(fields) if com._count_not_none(start, end) > 0: if field_count > 0: raise ValueError('Can either instantiate from fields ' 'or endpoints, but not both') subarr, freq = _get_ordinal_range(start, end, periods, freq) elif field_count > 0: subarr, freq = _range_from_fields(freq=freq, **fields) else: raise ValueError('Not enough parameters to construct ' 'Period range') return subarr, freq @classmethod def _simple_new(cls, values, name=None, freq=None, **kwargs): """ Values can be any type that can be coerced to Periods. Ordinals in an ndarray are fastpath-ed to `_from_ordinals` """ if not is_integer_dtype(values): values = np.array(values, copy=False) if len(values) > 0 and is_float_dtype(values): raise TypeError("PeriodIndex can't take floats") return cls(values, name=name, freq=freq, **kwargs) return cls._from_ordinals(values, name, freq, **kwargs) @classmethod def _from_ordinals(cls, values, name=None, freq=None, **kwargs): """ Values should be int ordinals `__new__` & `_simple_new` cooerce to ordinals and call this method """ values = np.array(values, dtype='int64', copy=False) result = object.__new__(cls) result._data = values result.name = name if freq is None: raise ValueError('freq is not specified and cannot be inferred') result._freq = Period._maybe_convert_freq(freq) result._reset_identity() return result def _shallow_copy_with_infer(self, values=None, **kwargs): """ we always want to return a PeriodIndex """ return self._shallow_copy(values=values, **kwargs) def _shallow_copy(self, values=None, freq=None, **kwargs): if freq is None: freq = self.freq if values is None: values = self._ndarray_values return super(PeriodIndex, self)._shallow_copy(values=values, freq=freq, **kwargs) def _coerce_scalar_to_index(self, item): """ we need to coerce a scalar to a compat for our index type Parameters ---------- item : scalar item to coerce """ return PeriodIndex([item], **self._get_attributes_dict()) @Appender(_index_shared_docs['__contains__']) def __contains__(self, key): if isinstance(key, Period): if key.freq != self.freq: return False else: return key.ordinal in self._engine else: try: self.get_loc(key) return True except Exception: return False return False contains = __contains__ @property def asi8(self): return self._ndarray_values.view('i8') @cache_readonly def _int64index(self): return Int64Index(self.asi8, name=self.name, fastpath=True) @property def values(self): return self.astype(object).values @property def _ndarray_values(self): # Ordinals return self._data def __array__(self, dtype=None): if is_integer_dtype(dtype): return self.asi8 else: return self.astype(object).values def __array_wrap__(self, result, context=None): """ Gets called after a ufunc. Needs additional handling as PeriodIndex stores internal data as int dtype Replace this to __numpy_ufunc__ in future version """ if isinstance(context, tuple) and len(context) > 0: func = context[0] if (func is np.add): pass elif (func is np.subtract): name = self.name left = context[1][0] right = context[1][1] if (isinstance(left, PeriodIndex) and isinstance(right, PeriodIndex)): name = left.name if left.name == right.name else None return Index(result, name=name) elif isinstance(left, Period) or isinstance(right, Period): return Index(result, name=name) elif isinstance(func, np.ufunc): if 'M->M' not in func.types: msg = "ufunc '{0}' not supported for the PeriodIndex" # This should be TypeError, but TypeError cannot be raised # from here because numpy catches. raise ValueError(msg.format(func.__name__)) if is_bool_dtype(result): return result # the result is object dtype array of Period # cannot pass _simple_new as it is return self._shallow_copy(result, freq=self.freq, name=self.name) @property def _box_func(self): return lambda x: Period._from_ordinal(ordinal=x, freq=self.freq) def _to_embed(self, keep_tz=False, dtype=None): """ return an array repr of this object, potentially casting to object """ if dtype is not None: return self.astype(dtype)._to_embed(keep_tz=keep_tz) return self.astype(object).values @property def size(self): # Avoid materializing self._values return self._ndarray_values.size @property def shape(self): # Avoid materializing self._values return self._ndarray_values.shape @property def _formatter_func(self): return lambda x: "'%s'" % x def asof_locs(self, where, mask): """ where : array of timestamps mask : array of booleans where data is not NA """ where_idx = where if isinstance(where_idx, DatetimeIndex): where_idx = PeriodIndex(where_idx.values, freq=self.freq) locs = self._ndarray_values[mask].searchsorted( where_idx._ndarray_values, side='right') locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() result[(locs == 0) & (where_idx._ndarray_values < self._ndarray_values[first])] = -1 return result @Appender(_index_shared_docs['astype']) def astype(self, dtype, copy=True, how='start'): dtype = pandas_dtype(dtype) if is_integer_dtype(dtype): return self._int64index.copy() if copy else self._int64index elif is_datetime64_any_dtype(dtype): tz = getattr(dtype, 'tz', None) return self.to_timestamp(how=how).tz_localize(tz) elif is_period_dtype(dtype): return self.asfreq(freq=dtype.freq) return super(PeriodIndex, self).astype(dtype, copy=copy) @Substitution(klass='PeriodIndex') @Appender(_shared_docs['searchsorted']) @deprecate_kwarg(old_arg_name='key', new_arg_name='value') def searchsorted(self, value, side='left', sorter=None): if isinstance(value, Period): if value.freq != self.freq: msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, value.freqstr) raise IncompatibleFrequency(msg) value = value.ordinal elif isinstance(value, compat.string_types): value = Period(value, freq=self.freq).ordinal return self._ndarray_values.searchsorted(value, side=side, sorter=sorter) @property def is_all_dates(self): return True @property def is_full(self): """ Returns True if there are any missing periods from start to end """ if len(self) == 0: return True if not self.is_monotonic: raise ValueError('Index is not monotonic') values = self.values return ((values[1:] - values[:-1]) < 2).all() @property def freq(self): """Return the frequency object if it is set, otherwise None""" return self._freq @freq.setter def freq(self, value): msg = ('Setting PeriodIndex.freq has been deprecated and will be ' 'removed in a future version; use PeriodIndex.asfreq instead. ' 'The PeriodIndex.freq setter is not guaranteed to work.') warnings.warn(msg, FutureWarning, stacklevel=2) self._freq = value def asfreq(self, freq=None, how='E'): """ Convert the PeriodIndex to the specified frequency `freq`. Parameters ---------- freq : str a frequency how : str {'E', 'S'} 'E', 'END', or 'FINISH' for end, 'S', 'START', or 'BEGIN' for start. Whether the elements should be aligned to the end or start within pa period. January 31st ('END') vs. Janury 1st ('START') for example. Returns ------- new : PeriodIndex with the new frequency Examples -------- >>> pidx = pd.period_range('2010-01-01', '2015-01-01', freq='A') >>> pidx <class 'pandas.core.indexes.period.PeriodIndex'> [2010, ..., 2015] Length: 6, Freq: A-DEC >>> pidx.asfreq('M') <class 'pandas.core.indexes.period.PeriodIndex'> [2010-12, ..., 2015-12] Length: 6, Freq: M >>> pidx.asfreq('M', how='S') <class 'pandas.core.indexes.period.PeriodIndex'> [2010-01, ..., 2015-01] Length: 6, Freq: M """ how = _validate_end_alias(how) freq = Period._maybe_convert_freq(freq) base1, mult1 = _gfc(self.freq) base2, mult2 = _gfc(freq) asi8 = self.asi8 # mult1 can't be negative or 0 end = how == 'E' if end: ordinal = asi8 + mult1 - 1 else: ordinal = asi8 new_data = period.period_asfreq_arr(ordinal, base1, base2, end) if self.hasnans: new_data[self._isnan] = tslib.iNaT return self._simple_new(new_data, self.name, freq=freq) year = _field_accessor('year', 0, "The year of the period") month = _field_accessor('month', 3, "The month as January=1, December=12") day = _field_accessor('day', 4, "The days of the period") hour = _field_accessor('hour', 5, "The hour of the period") minute = _field_accessor('minute', 6, "The minute of the period") second = _field_accessor('second', 7, "The second of the period") weekofyear = _field_accessor('week', 8, "The week ordinal of the year") week = weekofyear dayofweek = _field_accessor('dayofweek', 10, "The day of the week with Monday=0, Sunday=6") weekday = dayofweek dayofyear = day_of_year = _field_accessor('dayofyear', 9, "The ordinal day of the year") quarter = _field_accessor('quarter', 2, "The quarter of the date") qyear = _field_accessor('qyear', 1) days_in_month = _field_accessor('days_in_month', 11, "The number of days in the month") daysinmonth = days_in_month @property def is_leap_year(self): """ Logical indicating if the date belongs to a leap year """ return isleapyear_arr(np.asarray(self.year)) @property def start_time(self): return self.to_timestamp(how='start') @property def end_time(self): return self.to_timestamp(how='end') def _mpl_repr(self): # how to represent ourselves to matplotlib return self.astype(object).values def to_timestamp(self, freq=None, how='start'): """ Cast to DatetimeIndex Parameters ---------- freq : string or DateOffset, optional Target frequency. The default is 'D' for week or longer, 'S' otherwise how : {'s', 'e', 'start', 'end'} Returns ------- DatetimeIndex """ how = _validate_end_alias(how) if freq is None: base, mult = _gfc(self.freq) freq = frequencies.get_to_timestamp_base(base) else: freq = Period._maybe_convert_freq(freq) base, mult = _gfc(freq) new_data = self.asfreq(freq, how) new_data = period.periodarr_to_dt64arr(new_data._ndarray_values, base) return DatetimeIndex(new_data, freq='infer', name=self.name) def _maybe_convert_timedelta(self, other): if isinstance( other, (timedelta, np.timedelta64, Tick, np.ndarray)): offset = frequencies.to_offset(self.freq.rule_code) if isinstance(offset, Tick): if isinstance(other, np.ndarray): nanos = np.vectorize(delta_to_nanoseconds)(other) else: nanos = delta_to_nanoseconds(other) offset_nanos = delta_to_nanoseconds(offset) check = np.all(nanos % offset_nanos == 0) if check: return nanos // offset_nanos elif isinstance(other, DateOffset): freqstr = other.rule_code base = frequencies.get_base_alias(freqstr) if base == self.freq.rule_code: return other.n msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, other.freqstr) raise IncompatibleFrequency(msg) elif is_integer(other): # integer is passed to .shift via # _add_datetimelike_methods basically # but ufunc may pass integer to _add_delta return other # raise when input doesn't have freq msg = "Input has different freq from PeriodIndex(freq={0})" raise IncompatibleFrequency(msg.format(self.freqstr)) def _add_offset(self, other): assert not isinstance(other, Tick) base = frequencies.get_base_alias(other.rule_code) if base != self.freq.rule_code: msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, other.freqstr) raise IncompatibleFrequency(msg) return self.shift(other.n) def _add_delta_td(self, other): assert isinstance(other, (timedelta, np.timedelta64, Tick)) nanos = delta_to_nanoseconds(other) own_offset = frequencies.to_offset(self.freq.rule_code) if isinstance(own_offset, Tick): offset_nanos = delta_to_nanoseconds(own_offset) if np.all(nanos % offset_nanos == 0): return self.shift(nanos // offset_nanos) # raise when input doesn't have freq raise IncompatibleFrequency("Input has different freq from " "{cls}(freq={freqstr})" .format(cls=type(self).__name__, freqstr=self.freqstr)) def _add_delta(self, other): ordinal_delta = self._maybe_convert_timedelta(other) return self.shift(ordinal_delta) def _sub_datelike(self, other): assert other is not tslib.NaT return NotImplemented def _sub_period(self, other): if self.freq != other.freq: msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, other.freqstr) raise IncompatibleFrequency(msg) asi8 = self.asi8 new_data = asi8 - other.ordinal if self.hasnans: new_data = new_data.astype(np.float64) new_data[self._isnan] = np.nan # result must be Int64Index or Float64Index return Index(new_data) def shift(self, n): """ Specialized shift which produces an PeriodIndex Parameters ---------- n : int Periods to shift by Returns ------- shifted : PeriodIndex """ values = self._ndarray_values + n * self.freq.n if self.hasnans: values[self._isnan] = tslib.iNaT return self._shallow_copy(values=values) @cache_readonly def dtype(self): return PeriodDtype.construct_from_string(self.freq) @property def inferred_type(self): # b/c data is represented as ints make sure we can't have ambiguous # indexing return 'period' def get_value(self, series, key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ s = com._values_from_object(series) try: return com._maybe_box(self, super(PeriodIndex, self).get_value(s, key), series, key) except (KeyError, IndexError): try: asdt, parsed, reso = parse_time_string(key, self.freq) grp = resolution.Resolution.get_freq_group(reso) freqn = resolution.get_freq_group(self.freq) vals = self._ndarray_values # if our data is higher resolution than requested key, slice if grp < freqn: iv = Period(asdt, freq=(grp, 1)) ord1 = iv.asfreq(self.freq, how='S').ordinal ord2 = iv.asfreq(self.freq, how='E').ordinal if ord2 < vals[0] or ord1 > vals[-1]: raise KeyError(key) pos = np.searchsorted(self._ndarray_values, [ord1, ord2]) key = slice(pos[0], pos[1] + 1) return series[key] elif grp == freqn: key = Period(asdt, freq=self.freq).ordinal return com._maybe_box(self, self._engine.get_value(s, key), series, key) else: raise KeyError(key) except TypeError: pass key = Period(key, self.freq).ordinal return com._maybe_box(self, self._engine.get_value(s, key), series, key) @Appender(_index_shared_docs['get_indexer'] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): target = _ensure_index(target) if hasattr(target, 'freq') and target.freq != self.freq: msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, target.freqstr) raise IncompatibleFrequency(msg) if isinstance(target, PeriodIndex): target = target.asi8 if tolerance is not None: tolerance = self._convert_tolerance(tolerance, target) return Index.get_indexer(self._int64index, target, method, limit, tolerance) def _get_unique_index(self, dropna=False): """ wrap Index._get_unique_index to handle NaT """ res = super(PeriodIndex, self)._get_unique_index(dropna=dropna) if dropna: res = res.dropna() return res def get_loc(self, key, method=None, tolerance=None): """ Get integer location for requested label Returns ------- loc : int """ try: return self._engine.get_loc(key) except KeyError: if is_integer(key): raise try: asdt, parsed, reso = parse_time_string(key, self.freq) key = asdt except TypeError: pass try: key = Period(key, freq=self.freq) except ValueError: # we cannot construct the Period # as we have an invalid type raise KeyError(key) try: ordinal = tslib.iNaT if key is tslib.NaT else key.ordinal if tolerance is not None: tolerance = self._convert_tolerance(tolerance, np.asarray(key)) return self._int64index.get_loc(ordinal, method, tolerance) except KeyError: raise KeyError(key) def _maybe_cast_slice_bound(self, label, side, kind): """ If label is a string or a datetime, cast it to Period.ordinal according to resolution. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} Returns ------- bound : Period or object Notes ----- Value of `side` parameter should be validated in caller. """ assert kind in ['ix', 'loc', 'getitem'] if isinstance(label, datetime): return Period(label, freq=self.freq) elif isinstance(label, compat.string_types): try: _, parsed, reso = parse_time_string(label, self.freq) bounds = self._parsed_string_to_bounds(reso, parsed) return bounds[0 if side == 'left' else 1] except Exception: raise KeyError(label) elif is_integer(label) or is_float(label): self._invalid_indexer('slice', label) return label def _parsed_string_to_bounds(self, reso, parsed): if reso == 'year': t1 = Period(year=parsed.year, freq='A') elif reso == 'month': t1 = Period(year=parsed.year, month=parsed.month, freq='M') elif reso == 'quarter': q = (parsed.month - 1) // 3 + 1 t1 = Period(year=parsed.year, quarter=q, freq='Q-DEC') elif reso == 'day': t1 = Period(year=parsed.year, month=parsed.month, day=parsed.day, freq='D') elif reso == 'hour': t1 = Period(year=parsed.year, month=parsed.month, day=parsed.day, hour=parsed.hour, freq='H') elif reso == 'minute': t1 = Period(year=parsed.year, month=parsed.month, day=parsed.day, hour=parsed.hour, minute=parsed.minute, freq='T') elif reso == 'second': t1 = Period(year=parsed.year, month=parsed.month, day=parsed.day, hour=parsed.hour, minute=parsed.minute, second=parsed.second, freq='S') else: raise KeyError(reso) return (t1.asfreq(self.freq, how='start'), t1.asfreq(self.freq, how='end')) def _get_string_slice(self, key): if not self.is_monotonic: raise ValueError('Partial indexing only valid for ' 'ordered time series') key, parsed, reso = parse_time_string(key, self.freq) grp = resolution.Resolution.get_freq_group(reso) freqn = resolution.get_freq_group(self.freq) if reso in ['day', 'hour', 'minute', 'second'] and not grp < freqn: raise KeyError(key) t1, t2 = self._parsed_string_to_bounds(reso, parsed) return slice(self.searchsorted(t1.ordinal, side='left'), self.searchsorted(t2.ordinal, side='right')) def _convert_tolerance(self, tolerance, target): tolerance = DatetimeIndexOpsMixin._convert_tolerance(self, tolerance, target) if target.size != tolerance.size and tolerance.size > 1: raise ValueError('list-like tolerance size must match ' 'target index size') return self._maybe_convert_timedelta(tolerance) def insert(self, loc, item): if not isinstance(item, Period) or self.freq != item.freq: return self.astype(object).insert(loc, item) idx = np.concatenate((self[:loc].asi8, np.array([item.ordinal]), self[loc:].asi8)) return self._shallow_copy(idx) def join(self, other, how='left', level=None, return_indexers=False, sort=False): """ See Index.join """ self._assert_can_do_setop(other) result = Int64Index.join(self, other, how=how, level=level, return_indexers=return_indexers, sort=sort) if return_indexers: result, lidx, ridx = result return self._apply_meta(result), lidx, ridx return self._apply_meta(result) def _assert_can_do_setop(self, other): super(PeriodIndex, self)._assert_can_do_setop(other) if not isinstance(other, PeriodIndex): raise ValueError('can only call with other PeriodIndex-ed objects') if self.freq != other.freq: msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, other.freqstr) raise IncompatibleFrequency(msg) def _wrap_union_result(self, other, result): name = self.name if self.name == other.name else None result = self._apply_meta(result) result.name = name return result def _apply_meta(self, rawarr): if not isinstance(rawarr, PeriodIndex): rawarr = PeriodIndex._from_ordinals(rawarr, freq=self.freq, name=self.name) return rawarr def _format_native_types(self, na_rep=u('NaT'), date_format=None, **kwargs): values = self.astype(object).values if date_format: formatter = lambda dt: dt.strftime(date_format) else: formatter = lambda dt: u('%s') % dt if self.hasnans: mask = self._isnan values[mask] = na_rep imask = ~mask values[imask] = np.array([formatter(dt) for dt in values[imask]]) else: values = np.array([formatter(dt) for dt in values]) return values def __setstate__(self, state): """Necessary for making this object picklable""" if isinstance(state, dict): super(PeriodIndex, self).__setstate__(state) elif isinstance(state, tuple): # < 0.15 compat if len(state) == 2: nd_state, own_state = state data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) # backcompat self._freq = Period._maybe_convert_freq(own_state[1]) else: # pragma: no cover data = np.empty(state) np.ndarray.__setstate__(self, state) self._data = data else: raise Exception("invalid pickle state") _unpickle_compat = __setstate__ def tz_convert(self, tz): """ Convert tz-aware DatetimeIndex from one time zone to another (using pytz/dateutil) Parameters ---------- tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding UTC time. Returns ------- normalized : DatetimeIndex Notes ----- Not currently implemented for PeriodIndex """ raise NotImplementedError("Not yet implemented for PeriodIndex") def tz_localize(self, tz, ambiguous='raise'): """ Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), or remove timezone from tz-aware DatetimeIndex Parameters ---------- tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding local time. Returns ------- localized : DatetimeIndex Notes ----- Not currently implemented for PeriodIndex """ raise NotImplementedError("Not yet implemented for PeriodIndex") PeriodIndex._add_comparison_methods() PeriodIndex._add_numeric_methods_disabled() PeriodIndex._add_logical_methods_disabled() PeriodIndex._add_datetimelike_methods() def _get_ordinal_range(start, end, periods, freq, mult=1): if com._count_not_none(start, end, periods) != 2: raise ValueError('Of the three parameters: start, end, and periods, ' 'exactly two must be specified') if freq is not None: _, mult = _gfc(freq) if start is not None: start = Period(start, freq) if end is not None: end = Period(end, freq) is_start_per = isinstance(start, Period) is_end_per = isinstance(end, Period) if is_start_per and is_end_per and start.freq != end.freq: raise ValueError('start and end must have same freq') if (start is tslib.NaT or end is tslib.NaT): raise ValueError('start and end must not be NaT') if freq is None: if is_start_per: freq = start.freq elif is_end_per: freq = end.freq else: # pragma: no cover raise ValueError('Could not infer freq from start/end') if periods is not None: periods = periods * mult if start is None: data = np.arange(end.ordinal - periods + mult, end.ordinal + 1, mult, dtype=np.int64) else: data = np.arange(start.ordinal, start.ordinal + periods, mult, dtype=np.int64) else: data = np.arange(start.ordinal, end.ordinal + 1, mult, dtype=np.int64) return data, freq def _range_from_fields(year=None, month=None, quarter=None, day=None, hour=None, minute=None, second=None, freq=None): if hour is None: hour = 0 if minute is None: minute = 0 if second is None: second = 0 if day is None: day = 1 ordinals = [] if quarter is not None: if freq is None: freq = 'Q' base = frequencies.FreqGroup.FR_QTR else: base, mult = _gfc(freq) if base != frequencies.FreqGroup.FR_QTR: raise AssertionError("base must equal FR_QTR") year, quarter = _make_field_arrays(year, quarter) for y, q in zip(year, quarter): y, m = _quarter_to_myear(y, q, freq) val = period.period_ordinal(y, m, 1, 1, 1, 1, 0, 0, base) ordinals.append(val) else: base, mult = _gfc(freq) arrays = _make_field_arrays(year, month, day, hour, minute, second) for y, mth, d, h, mn, s in zip(*arrays): ordinals.append(period.period_ordinal( y, mth, d, h, mn, s, 0, 0, base)) return np.array(ordinals, dtype=np.int64), freq def _make_field_arrays(*fields): length = None for x in fields: if isinstance(x, (list, np.ndarray, ABCSeries)): if length is not None and len(x) != length: raise ValueError('Mismatched Period array lengths') elif length is None: length = len(x) arrays = [np.asarray(x) if isinstance(x, (np.ndarray, list, ABCSeries)) else np.repeat(x, length) for x in fields] return arrays def pnow(freq=None): # deprecation, xref #13790 warnings.warn("pd.pnow() and pandas.core.indexes.period.pnow() " "are deprecated. Please use Period.now()", FutureWarning, stacklevel=2) return Period.now(freq=freq) def period_range(start=None, end=None, periods=None, freq='D', name=None): """ Return a fixed frequency PeriodIndex, with day (calendar) as the default frequency Parameters ---------- start : string or period-like, default None Left bound for generating periods end : string or period-like, default None Right bound for generating periods periods : integer, default None Number of periods to generate freq : string or DateOffset, default 'D' (calendar daily) Frequency alias name : string, default None Name of the resulting PeriodIndex Notes ----- Of the three parameters: ``start``, ``end``, and ``periods``, exactly two must be specified. To learn more about the frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. Returns ------- prng : PeriodIndex Examples -------- >>> pd.period_range(start='2017-01-01', end='2018-01-01', freq='M') PeriodIndex(['2017-01', '2017-02', '2017-03', '2017-04', '2017-05', '2017-06', '2017-06', '2017-07', '2017-08', '2017-09', '2017-10', '2017-11', '2017-12', '2018-01'], dtype='period[M]', freq='M') If ``start`` or ``end`` are ``Period`` objects, they will be used as anchor endpoints for a ``PeriodIndex`` with frequency matching that of the ``period_range`` constructor. >>> pd.period_range(start=pd.Period('2017Q1', freq='Q'), ... end=pd.Period('2017Q2', freq='Q'), freq='M') PeriodIndex(['2017-03', '2017-04', '2017-05', '2017-06'], dtype='period[M]', freq='M') """ if com._count_not_none(start, end, periods) != 2: raise ValueError('Of the three parameters: start, end, and periods, ' 'exactly two must be specified') return PeriodIndex(start=start, end=end, periods=periods, freq=freq, name=name)
mit
zrhans/pythonanywhere
.virtualenvs/django19/lib/python3.4/site-packages/matplotlib/backends/backend_gtkcairo.py
8
2374
""" GTK+ Matplotlib interface using cairo (not GDK) drawing operations. Author: Steve Chaplin """ from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six import gtk if gtk.pygtk_version < (2,7,0): import cairo.gtk from matplotlib.backends import backend_cairo from matplotlib.backends.backend_gtk import * backend_version = 'PyGTK(%d.%d.%d) ' % gtk.pygtk_version + \ 'Pycairo(%s)' % backend_cairo.backend_version _debug = False #_debug = True def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ if _debug: print('backend_gtkcairo.%s()' % fn_name()) FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, thisFig) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ canvas = FigureCanvasGTKCairo(figure) return FigureManagerGTK(canvas, num) class RendererGTKCairo (backend_cairo.RendererCairo): if gtk.pygtk_version >= (2,7,0): def set_pixmap (self, pixmap): self.gc.ctx = pixmap.cairo_create() else: def set_pixmap (self, pixmap): self.gc.ctx = cairo.gtk.gdk_cairo_create (pixmap) class FigureCanvasGTKCairo(backend_cairo.FigureCanvasCairo, FigureCanvasGTK): filetypes = FigureCanvasGTK.filetypes.copy() filetypes.update(backend_cairo.FigureCanvasCairo.filetypes) def _renderer_init(self): """Override to use cairo (rather than GDK) renderer""" if _debug: print('%s.%s()' % (self.__class__.__name__, _fn_name())) self._renderer = RendererGTKCairo (self.figure.dpi) class FigureManagerGTKCairo(FigureManagerGTK): def _get_toolbar(self, canvas): # must be inited after the window, drawingArea and figure # attrs are set if matplotlib.rcParams['toolbar']=='toolbar2': toolbar = NavigationToolbar2GTKCairo (canvas, self.window) else: toolbar = None return toolbar class NavigationToolbar2Cairo(NavigationToolbar2GTK): def _get_canvas(self, fig): return FigureCanvasGTKCairo(fig) FigureCanvas = FigureCanvasGTKCairo FigureManager = FigureManagerGTKCairo
apache-2.0
GRAAL-Research/Transductive-PAC-Bayes
experiment_bound_figures.py
1
5518
""" Empirical experiments of 'PAC-Bayesian Theory for Transductive Learning' (Begin et al., 2014) http://graal.ift.ulaval.ca/aistats2014/ This file allows to reproduce Figures 1, 2 and 3 (the two latter are in Supplementary Material). Please uncomment the lines in the 'main' function and play with parameters at your will! Code authors: Pascal Germain, Jean-Francis Roy Released under the Simplified BSD license """ def main(): # Generate Figure 1 of Begin et al. (2014), without N=5000 for quicker calculations generate_bound_figures(N_list=[200,500], ratios_list=[0.1, 0.5, 0.9], risk=0.2, KLQP=5.0) # Generate the whole Figure 1 of Begin et al. (2014) #generate_bound_figures(N_list=[200,500,5000], ratios_list=[0.1, 0.5, 0.9], risk=0.2, KLQP=5.0) # Generate the whole Figure 2 of Begin et al. (2014, Supplementary Material) #generate_bound_figures(N_list=[200,500,5000], ratios_list=[0.1, 0.5, 0.9], risk=0.1, KLQP=5.0) # Generate the whole Figure 3 of Begin et al. (2014, Supplementary Material) #generate_bound_figures(N_list=[200,500,5000], ratios_list=[0.1, 0.5, 0.9], risk=0.01, KLQP=5.0) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # import numpy as np from collections import OrderedDict from math import log from matplotlib import pyplot from transductive_bounds import compute_general_transductive_gibbs_bound, compute_transductive_complexity_term import d_functions # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def generate_bound_figures(N_list, ratios_list, risk, KLQP, delta=0.05): """ Illustrate of the bound calculations N_list : List of full sample size ratios_list : List of m/N rations ( where m is the number of labeled examples) risk : Gibbs risk observed on the training set KLQP : Kullback-Leibler divergence between prior and posterior delta : confidence parameter (default=0.05) """ divergences_dict = OrderedDict() divergences_dict["Kullback-Leibler"] = d_functions.kl_divergence divergences_dict["D*-function"] = d_functions.new_transductive_divergence divergences_dict["Quadratic Distance"] = d_functions.quadratic_distance divergences_dict["Variation Distance"] = d_functions.variation_distance divergences_dict["Triangular Discrimination"] = d_functions.triangular_discrimination n_rows = len(ratios_list) n_cols = len(divergences_dict) x_values = np.arange(0., 1.0, .005) pyplot.subplots_adjust(wspace=0.1, hspace=0.1) STATS_dict = dict() for i, divergence_name in enumerate(divergences_dict.keys()): print('*** D-function: ' + divergence_name + ' ***') for j, ratio in enumerate(ratios_list): ax = pyplot.subplot(n_rows, n_cols, j*n_cols + i + 1) # Compute and draw d-function values (blue curves) divergence = divergences_dict[divergence_name] divergence_values = [divergence(risk, x, ratio) for x in x_values] pyplot.plot(x_values, divergence_values, linewidth=2) # Compute and draw bound values (horizontal lines) for each value of N for N in N_list: m = N * ratio complexity_term = compute_transductive_complexity_term(divergence, m, N) bound = compute_general_transductive_gibbs_bound(divergence, risk, m, N, KLQP, delta=delta, complexity_term=complexity_term) rhs = (KLQP + log(complexity_term / delta)) / m print('m=%d N=%d bound=%0.3f' % (m,N,bound) ) handle = pyplot.plot([-1., bound, 2.], 3*[rhs], 'o--', label='%0.3f' % bound)[0] STATS_dict[(i, N, ratio)] = (bound, rhs, handle) # Compute and draw risk limits (vertical dashed lines) risk_sup = 1. - ratio * (1.-risk) risk_inf = ratio * risk pyplot.plot(2*[risk_sup], [0., 1.], 'k:') pyplot.plot(2*[risk_inf], [0., 1.], 'k:') # Set plot properties pyplot.legend(loc=2) pyplot.xlim(0., 1.) pyplot.ylim(0., .5 if ratio > .4 else 1.) if j == n_rows-1: pyplot.xlabel(divergence_name) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(13) else: pyplot.setp(ax.get_xticklabels(), visible=False) if i == 0: pyplot.ylabel("m/N = %0.1f" % ratio) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(13) else: pyplot.setp(ax.get_yticklabels(), visible=False) # Highlight lower bounds for each (m,N) pairs for N in N_list: for j, ratio in enumerate(ratios_list): best_bound = 1e6 best_i = -1 for i, _ in enumerate(divergences_dict.keys()): bound, rhs, handle = STATS_dict[(i, N, ratio)] if bound < best_bound: best_bound, best_handle, best_i = bound, handle, i best_handle.set_marker('*') best_handle.set_markersize(14.) best_handle.set_markeredgewidth(0.) pyplot.subplot(n_rows, n_cols, j * n_cols + best_i + 1) pyplot.legend(loc=2) pyplot.show() # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # if __name__ == '__main__': print( __doc__ ) main()
bsd-2-clause
ky822/scikit-learn
sklearn/covariance/robust_covariance.py
198
29735
""" Robust location and covariance estimators. Here are implemented estimators that are resistant to outliers. """ # Author: Virgile Fritsch <[email protected]> # # License: BSD 3 clause import warnings import numbers import numpy as np from scipy import linalg from scipy.stats import chi2 from . import empirical_covariance, EmpiricalCovariance from ..utils.extmath import fast_logdet, pinvh from ..utils import check_random_state, check_array # Minimum Covariance Determinant # Implementing of an algorithm by Rousseeuw & Van Driessen described in # (A Fast Algorithm for the Minimum Covariance Determinant Estimator, # 1999, American Statistical Association and the American Society # for Quality, TECHNOMETRICS) # XXX Is this really a public function? It's not listed in the docs or # exported by sklearn.covariance. Deprecate? def c_step(X, n_support, remaining_iterations=30, initial_estimates=None, verbose=False, cov_computation_method=empirical_covariance, random_state=None): """C_step procedure described in [Rouseeuw1984]_ aiming at computing MCD. Parameters ---------- X : array-like, shape (n_samples, n_features) Data set in which we look for the n_support observations whose scatter matrix has minimum determinant. n_support : int, > n_samples / 2 Number of observations to compute the robust estimates of location and covariance from. remaining_iterations : int, optional Number of iterations to perform. According to [Rouseeuw1999]_, two iterations are sufficient to get close to the minimum, and we never need more than 30 to reach convergence. initial_estimates : 2-tuple, optional Initial estimates of location and shape from which to run the c_step procedure: - initial_estimates[0]: an initial location estimate - initial_estimates[1]: an initial covariance estimate verbose : boolean, optional Verbose mode. random_state : integer or numpy.RandomState, optional The random generator used. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. cov_computation_method : callable, default empirical_covariance The function which will be used to compute the covariance. Must return shape (n_features, n_features) Returns ------- location : array-like, shape (n_features,) Robust location estimates. covariance : array-like, shape (n_features, n_features) Robust covariance estimates. support : array-like, shape (n_samples,) A mask for the `n_support` observations whose scatter matrix has minimum determinant. References ---------- .. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS """ X = np.asarray(X) random_state = check_random_state(random_state) return _c_step(X, n_support, remaining_iterations=remaining_iterations, initial_estimates=initial_estimates, verbose=verbose, cov_computation_method=cov_computation_method, random_state=random_state) def _c_step(X, n_support, random_state, remaining_iterations=30, initial_estimates=None, verbose=False, cov_computation_method=empirical_covariance): n_samples, n_features = X.shape # Initialisation support = np.zeros(n_samples, dtype=bool) if initial_estimates is None: # compute initial robust estimates from a random subset support[random_state.permutation(n_samples)[:n_support]] = True else: # get initial robust estimates from the function parameters location = initial_estimates[0] covariance = initial_estimates[1] # run a special iteration for that case (to get an initial support) precision = pinvh(covariance) X_centered = X - location dist = (np.dot(X_centered, precision) * X_centered).sum(1) # compute new estimates support[np.argsort(dist)[:n_support]] = True X_support = X[support] location = X_support.mean(0) covariance = cov_computation_method(X_support) # Iterative procedure for Minimum Covariance Determinant computation det = fast_logdet(covariance) previous_det = np.inf while (det < previous_det) and (remaining_iterations > 0): # save old estimates values previous_location = location previous_covariance = covariance previous_det = det previous_support = support # compute a new support from the full data set mahalanobis distances precision = pinvh(covariance) X_centered = X - location dist = (np.dot(X_centered, precision) * X_centered).sum(axis=1) # compute new estimates support = np.zeros(n_samples, dtype=bool) support[np.argsort(dist)[:n_support]] = True X_support = X[support] location = X_support.mean(axis=0) covariance = cov_computation_method(X_support) det = fast_logdet(covariance) # update remaining iterations for early stopping remaining_iterations -= 1 previous_dist = dist dist = (np.dot(X - location, precision) * (X - location)).sum(axis=1) # Catch computation errors if np.isinf(det): raise ValueError( "Singular covariance matrix. " "Please check that the covariance matrix corresponding " "to the dataset is full rank and that MinCovDet is used with " "Gaussian-distributed data (or at least data drawn from a " "unimodal, symmetric distribution.") # Check convergence if np.allclose(det, previous_det): # c_step procedure converged if verbose: print("Optimal couple (location, covariance) found before" " ending iterations (%d left)" % (remaining_iterations)) results = location, covariance, det, support, dist elif det > previous_det: # determinant has increased (should not happen) warnings.warn("Warning! det > previous_det (%.15f > %.15f)" % (det, previous_det), RuntimeWarning) results = previous_location, previous_covariance, \ previous_det, previous_support, previous_dist # Check early stopping if remaining_iterations == 0: if verbose: print('Maximum number of iterations reached') results = location, covariance, det, support, dist return results def select_candidates(X, n_support, n_trials, select=1, n_iter=30, verbose=False, cov_computation_method=empirical_covariance, random_state=None): """Finds the best pure subset of observations to compute MCD from it. The purpose of this function is to find the best sets of n_support observations with respect to a minimization of their covariance matrix determinant. Equivalently, it removes n_samples-n_support observations to construct what we call a pure data set (i.e. not containing outliers). The list of the observations of the pure data set is referred to as the `support`. Starting from a random support, the pure data set is found by the c_step procedure introduced by Rousseeuw and Van Driessen in [Rouseeuw1999]_. Parameters ---------- X : array-like, shape (n_samples, n_features) Data (sub)set in which we look for the n_support purest observations. n_support : int, [(n + p + 1)/2] < n_support < n The number of samples the pure data set must contain. select : int, int > 0 Number of best candidates results to return. n_trials : int, nb_trials > 0 or 2-tuple Number of different initial sets of observations from which to run the algorithm. Instead of giving a number of trials to perform, one can provide a list of initial estimates that will be used to iteratively run c_step procedures. In this case: - n_trials[0]: array-like, shape (n_trials, n_features) is the list of `n_trials` initial location estimates - n_trials[1]: array-like, shape (n_trials, n_features, n_features) is the list of `n_trials` initial covariances estimates n_iter : int, nb_iter > 0 Maximum number of iterations for the c_step procedure. (2 is enough to be close to the final solution. "Never" exceeds 20). random_state : integer or numpy.RandomState, default None The random generator used. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. cov_computation_method : callable, default empirical_covariance The function which will be used to compute the covariance. Must return shape (n_features, n_features) verbose : boolean, default False Control the output verbosity. See Also --------- c_step Returns ------- best_locations : array-like, shape (select, n_features) The `select` location estimates computed from the `select` best supports found in the data set (`X`). best_covariances : array-like, shape (select, n_features, n_features) The `select` covariance estimates computed from the `select` best supports found in the data set (`X`). best_supports : array-like, shape (select, n_samples) The `select` best supports found in the data set (`X`). References ---------- .. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS """ random_state = check_random_state(random_state) n_samples, n_features = X.shape if isinstance(n_trials, numbers.Integral): run_from_estimates = False elif isinstance(n_trials, tuple): run_from_estimates = True estimates_list = n_trials n_trials = estimates_list[0].shape[0] else: raise TypeError("Invalid 'n_trials' parameter, expected tuple or " " integer, got %s (%s)" % (n_trials, type(n_trials))) # compute `n_trials` location and shape estimates candidates in the subset all_estimates = [] if not run_from_estimates: # perform `n_trials` computations from random initial supports for j in range(n_trials): all_estimates.append( _c_step( X, n_support, remaining_iterations=n_iter, verbose=verbose, cov_computation_method=cov_computation_method, random_state=random_state)) else: # perform computations from every given initial estimates for j in range(n_trials): initial_estimates = (estimates_list[0][j], estimates_list[1][j]) all_estimates.append(_c_step( X, n_support, remaining_iterations=n_iter, initial_estimates=initial_estimates, verbose=verbose, cov_computation_method=cov_computation_method, random_state=random_state)) all_locs_sub, all_covs_sub, all_dets_sub, all_supports_sub, all_ds_sub = \ zip(*all_estimates) # find the `n_best` best results among the `n_trials` ones index_best = np.argsort(all_dets_sub)[:select] best_locations = np.asarray(all_locs_sub)[index_best] best_covariances = np.asarray(all_covs_sub)[index_best] best_supports = np.asarray(all_supports_sub)[index_best] best_ds = np.asarray(all_ds_sub)[index_best] return best_locations, best_covariances, best_supports, best_ds def fast_mcd(X, support_fraction=None, cov_computation_method=empirical_covariance, random_state=None): """Estimates the Minimum Covariance Determinant matrix. Read more in the :ref:`User Guide <robust_covariance>`. Parameters ---------- X : array-like, shape (n_samples, n_features) The data matrix, with p features and n samples. support_fraction : float, 0 < support_fraction < 1 The proportion of points to be included in the support of the raw MCD estimate. Default is None, which implies that the minimum value of support_fraction will be used within the algorithm: `[n_sample + n_features + 1] / 2`. random_state : integer or numpy.RandomState, optional The generator used to randomly subsample. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. cov_computation_method : callable, default empirical_covariance The function which will be used to compute the covariance. Must return shape (n_features, n_features) Notes ----- The FastMCD algorithm has been introduced by Rousseuw and Van Driessen in "A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS". The principle is to compute robust estimates and random subsets before pooling them into a larger subsets, and finally into the full data set. Depending on the size of the initial sample, we have one, two or three such computation levels. Note that only raw estimates are returned. If one is interested in the correction and reweighting steps described in [Rouseeuw1999]_, see the MinCovDet object. References ---------- .. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS .. [Butler1993] R. W. Butler, P. L. Davies and M. Jhun, Asymptotics For The Minimum Covariance Determinant Estimator, The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400 Returns ------- location : array-like, shape (n_features,) Robust location of the data. covariance : array-like, shape (n_features, n_features) Robust covariance of the features. support : array-like, type boolean, shape (n_samples,) A mask of the observations that have been used to compute the robust location and covariance estimates of the data set. """ random_state = check_random_state(random_state) X = np.asarray(X) if X.ndim == 1: X = np.reshape(X, (1, -1)) warnings.warn("Only one sample available. " "You may want to reshape your data array") n_samples, n_features = X.shape # minimum breakdown value if support_fraction is None: n_support = int(np.ceil(0.5 * (n_samples + n_features + 1))) else: n_support = int(support_fraction * n_samples) # 1-dimensional case quick computation # (Rousseeuw, P. J. and Leroy, A. M. (2005) References, in Robust # Regression and Outlier Detection, John Wiley & Sons, chapter 4) if n_features == 1: if n_support < n_samples: # find the sample shortest halves X_sorted = np.sort(np.ravel(X)) diff = X_sorted[n_support:] - X_sorted[:(n_samples - n_support)] halves_start = np.where(diff == np.min(diff))[0] # take the middle points' mean to get the robust location estimate location = 0.5 * (X_sorted[n_support + halves_start] + X_sorted[halves_start]).mean() support = np.zeros(n_samples, dtype=bool) X_centered = X - location support[np.argsort(np.abs(X_centered), 0)[:n_support]] = True covariance = np.asarray([[np.var(X[support])]]) location = np.array([location]) # get precision matrix in an optimized way precision = pinvh(covariance) dist = (np.dot(X_centered, precision) * (X_centered)).sum(axis=1) else: support = np.ones(n_samples, dtype=bool) covariance = np.asarray([[np.var(X)]]) location = np.asarray([np.mean(X)]) X_centered = X - location # get precision matrix in an optimized way precision = pinvh(covariance) dist = (np.dot(X_centered, precision) * (X_centered)).sum(axis=1) # Starting FastMCD algorithm for p-dimensional case if (n_samples > 500) and (n_features > 1): # 1. Find candidate supports on subsets # a. split the set in subsets of size ~ 300 n_subsets = n_samples // 300 n_samples_subsets = n_samples // n_subsets samples_shuffle = random_state.permutation(n_samples) h_subset = int(np.ceil(n_samples_subsets * (n_support / float(n_samples)))) # b. perform a total of 500 trials n_trials_tot = 500 # c. select 10 best (location, covariance) for each subset n_best_sub = 10 n_trials = max(10, n_trials_tot // n_subsets) n_best_tot = n_subsets * n_best_sub all_best_locations = np.zeros((n_best_tot, n_features)) try: all_best_covariances = np.zeros((n_best_tot, n_features, n_features)) except MemoryError: # The above is too big. Let's try with something much small # (and less optimal) all_best_covariances = np.zeros((n_best_tot, n_features, n_features)) n_best_tot = 10 n_best_sub = 2 for i in range(n_subsets): low_bound = i * n_samples_subsets high_bound = low_bound + n_samples_subsets current_subset = X[samples_shuffle[low_bound:high_bound]] best_locations_sub, best_covariances_sub, _, _ = select_candidates( current_subset, h_subset, n_trials, select=n_best_sub, n_iter=2, cov_computation_method=cov_computation_method, random_state=random_state) subset_slice = np.arange(i * n_best_sub, (i + 1) * n_best_sub) all_best_locations[subset_slice] = best_locations_sub all_best_covariances[subset_slice] = best_covariances_sub # 2. Pool the candidate supports into a merged set # (possibly the full dataset) n_samples_merged = min(1500, n_samples) h_merged = int(np.ceil(n_samples_merged * (n_support / float(n_samples)))) if n_samples > 1500: n_best_merged = 10 else: n_best_merged = 1 # find the best couples (location, covariance) on the merged set selection = random_state.permutation(n_samples)[:n_samples_merged] locations_merged, covariances_merged, supports_merged, d = \ select_candidates( X[selection], h_merged, n_trials=(all_best_locations, all_best_covariances), select=n_best_merged, cov_computation_method=cov_computation_method, random_state=random_state) # 3. Finally get the overall best (locations, covariance) couple if n_samples < 1500: # directly get the best couple (location, covariance) location = locations_merged[0] covariance = covariances_merged[0] support = np.zeros(n_samples, dtype=bool) dist = np.zeros(n_samples) support[selection] = supports_merged[0] dist[selection] = d[0] else: # select the best couple on the full dataset locations_full, covariances_full, supports_full, d = \ select_candidates( X, n_support, n_trials=(locations_merged, covariances_merged), select=1, cov_computation_method=cov_computation_method, random_state=random_state) location = locations_full[0] covariance = covariances_full[0] support = supports_full[0] dist = d[0] elif n_features > 1: # 1. Find the 10 best couples (location, covariance) # considering two iterations n_trials = 30 n_best = 10 locations_best, covariances_best, _, _ = select_candidates( X, n_support, n_trials=n_trials, select=n_best, n_iter=2, cov_computation_method=cov_computation_method, random_state=random_state) # 2. Select the best couple on the full dataset amongst the 10 locations_full, covariances_full, supports_full, d = select_candidates( X, n_support, n_trials=(locations_best, covariances_best), select=1, cov_computation_method=cov_computation_method, random_state=random_state) location = locations_full[0] covariance = covariances_full[0] support = supports_full[0] dist = d[0] return location, covariance, support, dist class MinCovDet(EmpiricalCovariance): """Minimum Covariance Determinant (MCD): robust estimator of covariance. The Minimum Covariance Determinant covariance estimator is to be applied on Gaussian-distributed data, but could still be relevant on data drawn from a unimodal, symmetric distribution. It is not meant to be used with multi-modal data (the algorithm used to fit a MinCovDet object is likely to fail in such a case). One should consider projection pursuit methods to deal with multi-modal datasets. Read more in the :ref:`User Guide <robust_covariance>`. Parameters ---------- store_precision : bool Specify if the estimated precision is stored. assume_centered : Boolean If True, the support of the robust location and the covariance estimates is computed, and a covariance estimate is recomputed from it, without centering the data. Useful to work with data whose mean is significantly equal to zero but is not exactly zero. If False, the robust location and covariance are directly computed with the FastMCD algorithm without additional treatment. support_fraction : float, 0 < support_fraction < 1 The proportion of points to be included in the support of the raw MCD estimate. Default is None, which implies that the minimum value of support_fraction will be used within the algorithm: [n_sample + n_features + 1] / 2 random_state : integer or numpy.RandomState, optional The random generator used. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- raw_location_ : array-like, shape (n_features,) The raw robust estimated location before correction and re-weighting. raw_covariance_ : array-like, shape (n_features, n_features) The raw robust estimated covariance before correction and re-weighting. raw_support_ : array-like, shape (n_samples,) A mask of the observations that have been used to compute the raw robust estimates of location and shape, before correction and re-weighting. location_ : array-like, shape (n_features,) Estimated robust location covariance_ : array-like, shape (n_features, n_features) Estimated robust covariance matrix precision_ : array-like, shape (n_features, n_features) Estimated pseudo inverse matrix. (stored only if store_precision is True) support_ : array-like, shape (n_samples,) A mask of the observations that have been used to compute the robust estimates of location and shape. dist_ : array-like, shape (n_samples,) Mahalanobis distances of the training set (on which `fit` is called) observations. References ---------- .. [Rouseeuw1984] `P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984.` .. [Rouseeuw1999] `A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS` .. [Butler1993] `R. W. Butler, P. L. Davies and M. Jhun, Asymptotics For The Minimum Covariance Determinant Estimator, The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400` """ _nonrobust_covariance = staticmethod(empirical_covariance) def __init__(self, store_precision=True, assume_centered=False, support_fraction=None, random_state=None): self.store_precision = store_precision self.assume_centered = assume_centered self.support_fraction = support_fraction self.random_state = random_state def fit(self, X, y=None): """Fits a Minimum Covariance Determinant with the FastMCD algorithm. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data, where n_samples is the number of samples and n_features is the number of features. y : not used, present for API consistence purpose. Returns ------- self : object Returns self. """ X = check_array(X) random_state = check_random_state(self.random_state) n_samples, n_features = X.shape # check that the empirical covariance is full rank if (linalg.svdvals(np.dot(X.T, X)) > 1e-8).sum() != n_features: warnings.warn("The covariance matrix associated to your dataset " "is not full rank") # compute and store raw estimates raw_location, raw_covariance, raw_support, raw_dist = fast_mcd( X, support_fraction=self.support_fraction, cov_computation_method=self._nonrobust_covariance, random_state=random_state) if self.assume_centered: raw_location = np.zeros(n_features) raw_covariance = self._nonrobust_covariance(X[raw_support], assume_centered=True) # get precision matrix in an optimized way precision = pinvh(raw_covariance) raw_dist = np.sum(np.dot(X, precision) * X, 1) self.raw_location_ = raw_location self.raw_covariance_ = raw_covariance self.raw_support_ = raw_support self.location_ = raw_location self.support_ = raw_support self.dist_ = raw_dist # obtain consistency at normal models self.correct_covariance(X) # re-weight estimator self.reweight_covariance(X) return self def correct_covariance(self, data): """Apply a correction to raw Minimum Covariance Determinant estimates. Correction using the empirical correction factor suggested by Rousseeuw and Van Driessen in [Rouseeuw1984]_. Parameters ---------- data : array-like, shape (n_samples, n_features) The data matrix, with p features and n samples. The data set must be the one which was used to compute the raw estimates. Returns ------- covariance_corrected : array-like, shape (n_features, n_features) Corrected robust covariance estimate. """ correction = np.median(self.dist_) / chi2(data.shape[1]).isf(0.5) covariance_corrected = self.raw_covariance_ * correction self.dist_ /= correction return covariance_corrected def reweight_covariance(self, data): """Re-weight raw Minimum Covariance Determinant estimates. Re-weight observations using Rousseeuw's method (equivalent to deleting outlying observations from the data set before computing location and covariance estimates). [Rouseeuw1984]_ Parameters ---------- data : array-like, shape (n_samples, n_features) The data matrix, with p features and n samples. The data set must be the one which was used to compute the raw estimates. Returns ------- location_reweighted : array-like, shape (n_features, ) Re-weighted robust location estimate. covariance_reweighted : array-like, shape (n_features, n_features) Re-weighted robust covariance estimate. support_reweighted : array-like, type boolean, shape (n_samples,) A mask of the observations that have been used to compute the re-weighted robust location and covariance estimates. """ n_samples, n_features = data.shape mask = self.dist_ < chi2(n_features).isf(0.025) if self.assume_centered: location_reweighted = np.zeros(n_features) else: location_reweighted = data[mask].mean(0) covariance_reweighted = self._nonrobust_covariance( data[mask], assume_centered=self.assume_centered) support_reweighted = np.zeros(n_samples, dtype=bool) support_reweighted[mask] = True self._set_covariance(covariance_reweighted) self.location_ = location_reweighted self.support_ = support_reweighted X_centered = data - self.location_ self.dist_ = np.sum( np.dot(X_centered, self.get_precision()) * X_centered, 1) return location_reweighted, covariance_reweighted, support_reweighted
bsd-3-clause
BigTone2009/sms-tools
lectures/03-Fourier-properties/plots-code/zero-padding.py
26
1083
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming from scipy.fftpack import fft, fftshift plt.figure(1, figsize=(9.5, 6)) M = 8 N1 = 8 N2 = 16 N3 = 32 x = np.cos(2*np.pi*2/M*np.arange(M)) * np.hanning(M) plt.subplot(4,1,1) plt.title('x, M=8') plt.plot(np.arange(-M/2.0,M/2), x, 'b', marker='x', lw=1.5) plt.axis([-M/2,M/2-1,-1,1]) mX = 20 * np.log10(np.abs(fftshift(fft(x, N1)))) plt.subplot(4,1,2) plt.plot(np.arange(-N1/2.0,N1/2), mX, marker='x', color='r', lw=1.5) plt.axis([-N1/2,N1/2-1,-20,max(mX)+1]) plt.title('magnitude spectrum: mX1, N=8') mX = 20 * np.log10(np.abs(fftshift(fft(x, N2)))) plt.subplot(4,1,3) plt.plot(np.arange(-N2/2.0,N2/2),mX,marker='x',color='r', lw=1.5) plt.axis([-N2/2,N2/2-1,-20,max(mX)+1]) plt.title('magnitude spectrum: mX2, N=16') mX = 20 * np.log10(np.abs(fftshift(fft(x, N3)))) plt.subplot(4,1,4) plt.plot(np.arange(-N3/2.0,N3/2),mX,marker='x',color='r', lw=1.5) plt.axis([-N3/2,N3/2-1,-20,max(mX)+1]) plt.title('magnitude spectrum: mX3, N=32') plt.tight_layout() plt.savefig('zero-padding.png') plt.show()
agpl-3.0
ClimbsRocks/scikit-learn
sklearn/metrics/tests/test_score_objects.py
23
15933
import pickle import tempfile import shutil import os import numbers import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_not_equal from sklearn.base import BaseEstimator from sklearn.metrics import (f1_score, r2_score, roc_auc_score, fbeta_score, log_loss, precision_score, recall_score) from sklearn.metrics.cluster import adjusted_rand_score from sklearn.metrics.scorer import (check_scoring, _PredictScorer, _passthrough_scorer) from sklearn.metrics import make_scorer, get_scorer, SCORERS from sklearn.svm import LinearSVC from sklearn.pipeline import make_pipeline from sklearn.cluster import KMeans from sklearn.dummy import DummyRegressor from sklearn.linear_model import Ridge, LogisticRegression from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.datasets import make_blobs from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.datasets import load_diabetes from sklearn.model_selection import train_test_split, cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.multiclass import OneVsRestClassifier from sklearn.externals import joblib REGRESSION_SCORERS = ['r2', 'mean_absolute_error', 'mean_squared_error', 'median_absolute_error'] CLF_SCORERS = ['accuracy', 'f1', 'f1_weighted', 'f1_macro', 'f1_micro', 'roc_auc', 'average_precision', 'precision', 'precision_weighted', 'precision_macro', 'precision_micro', 'recall', 'recall_weighted', 'recall_macro', 'recall_micro', 'log_loss', 'adjusted_rand_score' # not really, but works ] MULTILABEL_ONLY_SCORERS = ['precision_samples', 'recall_samples', 'f1_samples'] def _make_estimators(X_train, y_train, y_ml_train): # Make estimators that make sense to test various scoring methods sensible_regr = DummyRegressor(strategy='median') sensible_regr.fit(X_train, y_train) sensible_clf = DecisionTreeClassifier(random_state=0) sensible_clf.fit(X_train, y_train) sensible_ml_clf = DecisionTreeClassifier(random_state=0) sensible_ml_clf.fit(X_train, y_ml_train) return dict( [(name, sensible_regr) for name in REGRESSION_SCORERS] + [(name, sensible_clf) for name in CLF_SCORERS] + [(name, sensible_ml_clf) for name in MULTILABEL_ONLY_SCORERS] ) X_mm, y_mm, y_ml_mm = None, None, None ESTIMATORS = None TEMP_FOLDER = None def setup_module(): # Create some memory mapped data global X_mm, y_mm, y_ml_mm, TEMP_FOLDER, ESTIMATORS TEMP_FOLDER = tempfile.mkdtemp(prefix='sklearn_test_score_objects_') X, y = make_classification(n_samples=30, n_features=5, random_state=0) _, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0) filename = os.path.join(TEMP_FOLDER, 'test_data.pkl') joblib.dump((X, y, y_ml), filename) X_mm, y_mm, y_ml_mm = joblib.load(filename, mmap_mode='r') ESTIMATORS = _make_estimators(X_mm, y_mm, y_ml_mm) def teardown_module(): global X_mm, y_mm, y_ml_mm, TEMP_FOLDER, ESTIMATORS # GC closes the mmap file descriptors X_mm, y_mm, y_ml_mm, ESTIMATORS = None, None, None, None shutil.rmtree(TEMP_FOLDER) class EstimatorWithoutFit(object): """Dummy estimator to test check_scoring""" pass class EstimatorWithFit(BaseEstimator): """Dummy estimator to test check_scoring""" def fit(self, X, y): return self class EstimatorWithFitAndScore(object): """Dummy estimator to test check_scoring""" def fit(self, X, y): return self def score(self, X, y): return 1.0 class EstimatorWithFitAndPredict(object): """Dummy estimator to test check_scoring""" def fit(self, X, y): self.y = y return self def predict(self, X): return self.y class DummyScorer(object): """Dummy scorer that always returns 1.""" def __call__(self, est, X, y): return 1 def test_all_scorers_repr(): # Test that all scorers have a working repr for name, scorer in SCORERS.items(): repr(scorer) def test_check_scoring(): # Test all branches of check_scoring estimator = EstimatorWithoutFit() pattern = (r"estimator should be an estimator implementing 'fit' method," r" .* was passed") assert_raises_regexp(TypeError, pattern, check_scoring, estimator) estimator = EstimatorWithFitAndScore() estimator.fit([[1]], [1]) scorer = check_scoring(estimator) assert_true(scorer is _passthrough_scorer) assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0) estimator = EstimatorWithFitAndPredict() estimator.fit([[1]], [1]) pattern = (r"If no scoring is specified, the estimator passed should have" r" a 'score' method\. The estimator .* does not\.") assert_raises_regexp(TypeError, pattern, check_scoring, estimator) scorer = check_scoring(estimator, "accuracy") assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0) estimator = EstimatorWithFit() scorer = check_scoring(estimator, "accuracy") assert_true(isinstance(scorer, _PredictScorer)) estimator = EstimatorWithFit() scorer = check_scoring(estimator, allow_none=True) assert_true(scorer is None) def test_check_scoring_gridsearchcv(): # test that check_scoring works on GridSearchCV and pipeline. # slightly redundant non-regression test. grid = GridSearchCV(LinearSVC(), param_grid={'C': [.1, 1]}) scorer = check_scoring(grid, "f1") assert_true(isinstance(scorer, _PredictScorer)) pipe = make_pipeline(LinearSVC()) scorer = check_scoring(pipe, "f1") assert_true(isinstance(scorer, _PredictScorer)) # check that cross_val_score definitely calls the scorer # and doesn't make any assumptions about the estimator apart from having a # fit. scores = cross_val_score(EstimatorWithFit(), [[1], [2], [3]], [1, 0, 1], scoring=DummyScorer()) assert_array_equal(scores, 1) def test_make_scorer(): # Sanity check on the make_scorer factory function. f = lambda *args: 0 assert_raises(ValueError, make_scorer, f, needs_threshold=True, needs_proba=True) def test_classification_scores(): # Test classification scorers. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LinearSVC(random_state=0) clf.fit(X_train, y_train) for prefix, metric in [('f1', f1_score), ('precision', precision_score), ('recall', recall_score)]: score1 = get_scorer('%s_weighted' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='weighted') assert_almost_equal(score1, score2) score1 = get_scorer('%s_macro' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='macro') assert_almost_equal(score1, score2) score1 = get_scorer('%s_micro' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='micro') assert_almost_equal(score1, score2) score1 = get_scorer('%s' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=1) assert_almost_equal(score1, score2) # test fbeta score that takes an argument scorer = make_scorer(fbeta_score, beta=2) score1 = scorer(clf, X_test, y_test) score2 = fbeta_score(y_test, clf.predict(X_test), beta=2) assert_almost_equal(score1, score2) # test that custom scorer can be pickled unpickled_scorer = pickle.loads(pickle.dumps(scorer)) score3 = unpickled_scorer(clf, X_test, y_test) assert_almost_equal(score1, score3) # smoke test the repr: repr(fbeta_score) def test_regression_scorers(): # Test regression scorers. diabetes = load_diabetes() X, y = diabetes.data, diabetes.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = Ridge() clf.fit(X_train, y_train) score1 = get_scorer('r2')(clf, X_test, y_test) score2 = r2_score(y_test, clf.predict(X_test)) assert_almost_equal(score1, score2) def test_thresholded_scorers(): # Test scorers that take thresholds. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LogisticRegression(random_state=0) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.decision_function(X_test)) score3 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]) assert_almost_equal(score1, score2) assert_almost_equal(score1, score3) logscore = get_scorer('log_loss')(clf, X_test, y_test) logloss = log_loss(y_test, clf.predict_proba(X_test)) assert_almost_equal(-logscore, logloss) # same for an estimator without decision_function clf = DecisionTreeClassifier() clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]) assert_almost_equal(score1, score2) # test with a regressor (no decision_function) reg = DecisionTreeRegressor() reg.fit(X_train, y_train) score1 = get_scorer('roc_auc')(reg, X_test, y_test) score2 = roc_auc_score(y_test, reg.predict(X_test)) assert_almost_equal(score1, score2) # Test that an exception is raised on more than two classes X, y = make_blobs(random_state=0, centers=3) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf.fit(X_train, y_train) assert_raises(ValueError, get_scorer('roc_auc'), clf, X_test, y_test) def test_thresholded_scorers_multilabel_indicator_data(): # Test that the scorer work with multilabel-indicator format # for multilabel and multi-output multi-class classifier X, y = make_multilabel_classification(allow_unlabeled=False, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Multi-output multi-class predict_proba clf = DecisionTreeClassifier() clf.fit(X_train, y_train) y_proba = clf.predict_proba(X_test) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, np.vstack(p[:, -1] for p in y_proba).T) assert_almost_equal(score1, score2) # Multi-output multi-class decision_function # TODO Is there any yet? clf = DecisionTreeClassifier() clf.fit(X_train, y_train) clf._predict_proba = clf.predict_proba clf.predict_proba = None clf.decision_function = lambda X: [p[:, 1] for p in clf._predict_proba(X)] y_proba = clf.decision_function(X_test) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, np.vstack(p for p in y_proba).T) assert_almost_equal(score1, score2) # Multilabel predict_proba clf = OneVsRestClassifier(DecisionTreeClassifier()) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.predict_proba(X_test)) assert_almost_equal(score1, score2) # Multilabel decision function clf = OneVsRestClassifier(LinearSVC(random_state=0)) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.decision_function(X_test)) assert_almost_equal(score1, score2) def test_unsupervised_scorers(): # Test clustering scorers against gold standard labeling. # We don't have any real unsupervised Scorers yet. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) km = KMeans(n_clusters=3) km.fit(X_train) score1 = get_scorer('adjusted_rand_score')(km, X_test, y_test) score2 = adjusted_rand_score(y_test, km.predict(X_test)) assert_almost_equal(score1, score2) @ignore_warnings def test_raises_on_score_list(): # Test that when a list of scores is returned, we raise proper errors. X, y = make_blobs(random_state=0) f1_scorer_no_average = make_scorer(f1_score, average=None) clf = DecisionTreeClassifier() assert_raises(ValueError, cross_val_score, clf, X, y, scoring=f1_scorer_no_average) grid_search = GridSearchCV(clf, scoring=f1_scorer_no_average, param_grid={'max_depth': [1, 2]}) assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_scorer_sample_weight(): # Test that scorers support sample_weight or raise sensible errors # Unlike the metrics invariance test, in the scorer case it's harder # to ensure that, on the classifier output, weighted and unweighted # scores really should be unequal. X, y = make_classification(random_state=0) _, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0) split = train_test_split(X, y, y_ml, random_state=0) X_train, X_test, y_train, y_test, y_ml_train, y_ml_test = split sample_weight = np.ones_like(y_test) sample_weight[:10] = 0 # get sensible estimators for each metric estimator = _make_estimators(X_train, y_train, y_ml_train) for name, scorer in SCORERS.items(): if name in MULTILABEL_ONLY_SCORERS: target = y_ml_test else: target = y_test try: weighted = scorer(estimator[name], X_test, target, sample_weight=sample_weight) ignored = scorer(estimator[name], X_test[10:], target[10:]) unweighted = scorer(estimator[name], X_test, target) assert_not_equal(weighted, unweighted, msg="scorer {0} behaves identically when " "called with sample weights: {1} vs " "{2}".format(name, weighted, unweighted)) assert_almost_equal(weighted, ignored, err_msg="scorer {0} behaves differently when " "ignoring samples and setting sample_weight to" " 0: {1} vs {2}".format(name, weighted, ignored)) except TypeError as e: assert_true("sample_weight" in str(e), "scorer {0} raises unhelpful exception when called " "with sample weights: {1}".format(name, str(e))) @ignore_warnings # UndefinedMetricWarning for P / R scores def check_scorer_memmap(scorer_name): scorer, estimator = SCORERS[scorer_name], ESTIMATORS[scorer_name] if scorer_name in MULTILABEL_ONLY_SCORERS: score = scorer(estimator, X_mm, y_ml_mm) else: score = scorer(estimator, X_mm, y_mm) assert isinstance(score, numbers.Number), scorer_name def test_scorer_memmap_input(): # Non-regression test for #6147: some score functions would # return singleton memmap when computed on memmap data instead of scalar # float values. for name in SCORERS.keys(): yield check_scorer_memmap, name
bsd-3-clause
GillesPy/gillespy
examples/Volume_test.py
1
2476
# -*- coding: utf-8 -*- """ Created on Wed Aug 5 16:50:12 2015 @author: john """ import scipy as sp import numpy as np import matplotlib.pyplot as plt import sys sys.path.append('../') import gillespy class Simple1(gillespy.Model): """ This is a simple example for mass-action degradation of species S. """ def __init__(self, parameter_values=None,volume=1.0): # Initialize the model. gillespy.Model.__init__(self, name="simple1", volume=volume) # Parameters k1 = gillespy.Parameter(name='k1', expression=0.03) self.add_parameter(k1) # Species r1 = gillespy.Species(name='r1', initial_value=100) self.add_species(r1) r2 = gillespy.Species(name='r2', initial_value=100) self.add_species(r2) # Reactions rxn1 = gillespy.Reaction( name = 'r1d', reactants = {r1:2}, products = {}, rate = k1 ) self.add_reaction(rxn1) rxn2 = gillespy.Reaction( name = 'r2d', reactants = {r2:2}, products = {}, propensity_function = 'k1/2 * r2*(r2-1)/vol' ) self.add_reaction(rxn2) if __name__ == '__main__': # Here, we create the model object. # We could pass new parameter values to this model here if we wished. simple_1 = Simple1(volume=10) import time tick = time.time() # The model object is simulated with the StochKit solver, and 25 # trajectories are returned. num_trajectories = 1 simple_1trajectories = gillespy.StochKitSolver.run(simple_1, number_of_trajectories = num_trajectories, show_labels=False) print time.time() - tick # PLOTTING # here, we will plot all trajectories with the mean overlaid from matplotlib import gridspec gs = gridspec.GridSpec(1,1) plt.figure() ax0 = plt.subplot(gs[0,0]) # extract time values time = np.array(simple_1trajectories[0][:,0]) # extract just the trajectories for S into a numpy array #plot mean ax0.plot(time,simple_1trajectories[0][:,1],'k--',label='ma') ax0.plot(time,simple_1trajectories[0][:,2],'g+',label='custom') ax0.legend() ax0.set_xlabel('Time') ax0.set_ylabel('Species r Count') plt.tight_layout() plt.show()
gpl-3.0
trankmichael/scikit-learn
examples/cluster/plot_digits_agglomeration.py
377
1694
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Feature agglomeration ========================================================= These images how similar features are merged together using feature agglomeration. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, cluster from sklearn.feature_extraction.image import grid_to_graph digits = datasets.load_digits() images = digits.images X = np.reshape(images, (len(images), -1)) connectivity = grid_to_graph(*images[0].shape) agglo = cluster.FeatureAgglomeration(connectivity=connectivity, n_clusters=32) agglo.fit(X) X_reduced = agglo.transform(X) X_restored = agglo.inverse_transform(X_reduced) images_restored = np.reshape(X_restored, images.shape) plt.figure(1, figsize=(4, 3.5)) plt.clf() plt.subplots_adjust(left=.01, right=.99, bottom=.01, top=.91) for i in range(4): plt.subplot(3, 4, i + 1) plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') plt.xticks(()) plt.yticks(()) if i == 1: plt.title('Original data') plt.subplot(3, 4, 4 + i + 1) plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') if i == 1: plt.title('Agglomerated data') plt.xticks(()) plt.yticks(()) plt.subplot(3, 4, 10) plt.imshow(np.reshape(agglo.labels_, images[0].shape), interpolation='nearest', cmap=plt.cm.spectral) plt.xticks(()) plt.yticks(()) plt.title('Labels') plt.show()
bsd-3-clause
kmather73/zipline
zipline/data/ffc/loaders/us_equity_pricing.py
16
21283
# Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ( ABCMeta, abstractmethod, ) from contextlib import contextmanager from errno import ENOENT from os import remove from os.path import exists from bcolz import ( carray, ctable, ) from click import progressbar from numpy import ( array, array_equal, float64, floating, full, iinfo, integer, issubdtype, uint32, ) from pandas import ( DatetimeIndex, read_csv, Timestamp, ) from six import ( iteritems, string_types, with_metaclass, ) import sqlite3 from zipline.data.ffc.base import FFCLoader from zipline.data.ffc.loaders._us_equity_pricing import ( _compute_row_slices, _read_bcolz_data, load_adjustments_from_sqlite, ) from zipline.lib.adjusted_array import ( adjusted_array, ) from zipline.errors import NoFurtherDataError OHLC = frozenset(['open', 'high', 'low', 'close']) US_EQUITY_PRICING_BCOLZ_COLUMNS = [ 'open', 'high', 'low', 'close', 'volume', 'day', 'id' ] DAILY_US_EQUITY_PRICING_DEFAULT_FILENAME = 'daily_us_equity_pricing.bcolz' SQLITE_ADJUSTMENT_COLUMNS = frozenset(['effective_date', 'ratio', 'sid']) SQLITE_ADJUSTMENT_COLUMN_DTYPES = { 'effective_date': integer, 'ratio': floating, 'sid': integer, } SQLITE_ADJUSTMENT_TABLENAMES = frozenset(['splits', 'dividends', 'mergers']) UINT32_MAX = iinfo(uint32).max @contextmanager def passthrough(obj): yield obj class BcolzDailyBarWriter(with_metaclass(ABCMeta)): """ Class capable of writing daily OHLCV data to disk in a format that can be read efficiently by BcolzDailyOHLCVReader. See Also -------- BcolzDailyBarReader : Consumer of the data written by this class. """ @abstractmethod def gen_tables(self, assets): """ Return an iterator of pairs of (asset_id, bcolz.ctable). """ raise NotImplementedError() @abstractmethod def to_uint32(self, array, colname): """ Convert raw column values produced by gen_tables into uint32 values. Parameters ---------- array : np.array An array of raw values. colname : str, {'open', 'high', 'low', 'close', 'volume', 'day'} The name of the column being loaded. For output being read by the default BcolzOHLCVReader, data should be stored in the following manner: - Pricing columns (Open, High, Low, Close) should be stored as 1000 * as-traded dollar value. - Volume should be the as-traded volume. - Dates should be stored as seconds since midnight UTC, Jan 1, 1970. """ raise NotImplementedError() def write(self, filename, calendar, assets, show_progress=False): """ Parameters ---------- filename : str The location at which we should write our output. calendar : pandas.DatetimeIndex Calendar to use to compute asset calendar offsets. assets : pandas.Int64Index The assets for which to write data. show_progress : bool Whether or not to show a progress bar while writing. Returns ------- table : bcolz.ctable The newly-written table. """ _iterator = self.gen_tables(assets) if show_progress: pbar = progressbar( _iterator, length=len(assets), item_show_func=lambda i: i if i is None else str(i[0]), label="Merging asset files:", ) with pbar as pbar_iterator: return self._write_internal(filename, calendar, pbar_iterator) return self._write_internal(filename, calendar, _iterator) def _write_internal(self, filename, calendar, iterator): """ Internal implementation of write. `iterator` should be an iterator yielding pairs of (asset, ctable). """ total_rows = 0 first_row = {} last_row = {} calendar_offset = {} # Maps column name -> output carray. columns = { k: carray(array([], dtype=uint32)) for k in US_EQUITY_PRICING_BCOLZ_COLUMNS } for asset_id, table in iterator: nrows = len(table) for column_name in columns: if column_name == 'id': # We know what the content of this column is, so don't # bother reading it. columns['id'].append(full((nrows,), asset_id)) continue columns[column_name].append( self.to_uint32(table[column_name][:], column_name) ) # Bcolz doesn't support ints as keys in `attrs`, so convert # assets to strings for use as attr keys. asset_key = str(asset_id) # Calculate the index into the array of the first and last row # for this asset. This allows us to efficiently load single # assets when querying the data back out of the table. first_row[asset_key] = total_rows last_row[asset_key] = total_rows + nrows - 1 total_rows += nrows # Calculate the number of trading days between the first date # in the stored data and the first date of **this** asset. This # offset used for output alignment by the reader. # HACK: Index with a list so that we get back an array we can pass # to self.to_uint32. We could try to extract this in the loop # above, but that makes the logic a lot messier. asset_first_day = self.to_uint32(table['day'][[0]], 'day')[0] calendar_offset[asset_key] = calendar.get_loc( Timestamp(asset_first_day, unit='s', tz='UTC'), ) # This writes the table to disk. full_table = ctable( columns=[ columns[colname] for colname in US_EQUITY_PRICING_BCOLZ_COLUMNS ], names=US_EQUITY_PRICING_BCOLZ_COLUMNS, rootdir=filename, mode='w', ) full_table.attrs['first_row'] = first_row full_table.attrs['last_row'] = last_row full_table.attrs['calendar_offset'] = calendar_offset full_table.attrs['calendar'] = calendar.asi8.tolist() return full_table class DailyBarWriterFromCSVs(BcolzDailyBarWriter): """ BcolzDailyBarWriter constructed from a map from csvs to assets. Parameters ---------- asset_map : dict A map from asset_id -> path to csv with data for that asset. CSVs should have the following columns: day : datetime64 open : float64 high : float64 low : float64 close : float64 volume : int64 """ _csv_dtypes = { 'open': float64, 'high': float64, 'low': float64, 'close': float64, 'volume': float64, } def __init__(self, asset_map): self._asset_map = asset_map def gen_tables(self, assets): """ Read CSVs as DataFrames from our asset map. """ dtypes = self._csv_dtypes for asset in assets: path = self._asset_map.get(asset) if path is None: raise KeyError("No path supplied for asset %s" % asset) data = read_csv(path, parse_dates=['day'], dtype=dtypes) yield asset, ctable.fromdataframe(data) def to_uint32(self, array, colname): arrmax = array.max() if colname in OHLC: self.check_uint_safe(arrmax * 1000, colname) return (array * 1000).astype(uint32) elif colname == 'volume': self.check_uint_safe(arrmax, colname) return array.astype(uint32) elif colname == 'day': nanos_per_second = (1000 * 1000 * 1000) self.check_uint_safe(arrmax.view(int) / nanos_per_second, colname) return (array.view(int) / nanos_per_second).astype(uint32) @staticmethod def check_uint_safe(value, colname): if value >= UINT32_MAX: raise ValueError( "Value %s from column '%s' is too large" % (value, colname) ) class BcolzDailyBarReader(object): """ Reader for raw pricing data written by BcolzDailyOHLCVWriter. A Bcolz CTable is comprised of Columns and Attributes. Columns ------- The table with which this loader interacts contains the following columns: ['open', 'high', 'low', 'close', 'volume', 'day', 'id']. The data in these columns is interpreted as follows: - Price columns ('open', 'high', 'low', 'close') are interpreted as 1000 * as-traded dollar value. - Volume is interpreted as as-traded volume. - Day is interpreted as seconds since midnight UTC, Jan 1, 1970. - Id is the asset id of the row. The data in each column is grouped by asset and then sorted by day within each asset block. The table is built to represent a long time range of data, e.g. ten years of equity data, so the lengths of each asset block is not equal to each other. The blocks are clipped to the known start and end date of each asset to cut down on the number of empty values that would need to be included to make a regular/cubic dataset. When read across the open, high, low, close, and volume with the same index should represent the same asset and day. Attributes ---------- The table with which this loader interacts contains the following attributes: first_row : dict Map from asset_id -> index of first row in the dataset with that id. last_row : dict Map from asset_id -> index of last row in the dataset with that id. calendar_offset : dict Map from asset_id -> calendar index of first row. calendar : list[int64] Calendar used to compute offsets, in asi8 format (ns since EPOCH). We use first_row and last_row together to quickly find ranges of rows to load when reading an asset's data into memory. We use calendar_offset and calendar to orient loaded blocks within a range of queried dates. """ def __init__(self, table): if isinstance(table, string_types): table = ctable(rootdir=table, mode='r') self._table = table self._calendar = DatetimeIndex(table.attrs['calendar'], tz='UTC') self._first_rows = { int(asset_id): start_index for asset_id, start_index in iteritems(table.attrs['first_row']) } self._last_rows = { int(asset_id): end_index for asset_id, end_index in iteritems(table.attrs['last_row']) } self._calendar_offsets = { int(id_): offset for id_, offset in iteritems(table.attrs['calendar_offset']) } def _slice_locs(self, start_date, end_date): try: start = self._calendar.get_loc(start_date) except KeyError: if start_date < self._calendar[0]: raise NoFurtherDataError( msg=( "FFC Query requesting data starting on {query_start}, " "but first known date is {calendar_start}" ).format( query_start=str(start_date), calendar_start=str(self._calendar[0]), ) ) else: raise ValueError("Query start %s not in calendar" % start_date) try: stop = self._calendar.get_loc(end_date) except: if end_date > self._calendar[-1]: raise NoFurtherDataError( msg=( "FFC Query requesting data up to {query_end}, " "but last known date is {calendar_end}" ).format( query_end=end_date, calendar_end=self._calendar[-1], ) ) else: raise ValueError("Query end %s not in calendar" % end_date) return start, stop def _compute_slices(self, dates, assets): """ Compute the raw row indices to load for each asset on a query for the given dates. Parameters ---------- dates : pandas.DatetimeIndex Dates of the query on which we want to compute row indices. assets : pandas.Int64Index Assets for which we want to compute row indices Returns ------- A 3-tuple of (first_rows, last_rows, offsets): first_rows : np.array[intp] Array with length == len(assets) containing the index of the first row to load for each asset in `assets`. last_rows : np.array[intp] Array with length == len(assets) containing the index of the last row to load for each asset in `assets`. offset : np.array[intp] Array with length == (len(asset) containing the index in a buffer of length `dates` corresponding to the first row of each asset. The value of offset[i] will be 0 if asset[i] existed at the start of a query. Otherwise, offset[i] will be equal to the number of entries in `dates` for which the asset did not yet exist. """ start, stop = self._slice_locs(dates[0], dates[-1]) # Sanity check that the requested date range matches our calendar. # This could be removed in the future if it's materially affecting # performance. query_dates = self._calendar[start:stop + 1] if not array_equal(query_dates.values, dates.values): raise ValueError("Incompatible calendars!") # The core implementation of the logic here is implemented in Cython # for efficiency. return _compute_row_slices( self._first_rows, self._last_rows, self._calendar_offsets, start, stop, assets, ) def load_raw_arrays(self, columns, dates, assets): first_rows, last_rows, offsets = self._compute_slices(dates, assets) return _read_bcolz_data( self._table, (len(dates), len(assets)), [column.name for column in columns], first_rows, last_rows, offsets, ) class SQLiteAdjustmentWriter(object): """ Writer for data to be read by SQLiteAdjustmentWriter Parameters ---------- conn_or_path : str or sqlite3.Connection A handle to the target sqlite database. overwrite : bool, optional, default=False If True and conn_or_path is a string, remove any existing files at the given path before connecting. See Also -------- SQLiteAdjustmentReader """ def __init__(self, conn_or_path, overwrite=False): if isinstance(conn_or_path, sqlite3.Connection): self.conn = conn_or_path elif isinstance(conn_or_path, str): if overwrite and exists(conn_or_path): try: remove(conn_or_path) except OSError as e: if e.errno != ENOENT: raise self.conn = sqlite3.connect(conn_or_path) else: raise TypeError("Unknown connection type %s" % type(conn_or_path)) def write_frame(self, tablename, frame): if frozenset(frame.columns) != SQLITE_ADJUSTMENT_COLUMNS: raise ValueError( "Unexpected frame columns:\n" "Expected Columns: %s\n" "Received Columns: %s" % ( SQLITE_ADJUSTMENT_COLUMNS, frame.columns.tolist(), ) ) elif tablename not in SQLITE_ADJUSTMENT_TABLENAMES: raise ValueError( "Adjustment table %s not in %s" % ( tablename, SQLITE_ADJUSTMENT_TABLENAMES ) ) expected_dtypes = SQLITE_ADJUSTMENT_COLUMN_DTYPES actual_dtypes = frame.dtypes for colname, expected in iteritems(expected_dtypes): actual = actual_dtypes[colname] if not issubdtype(actual, expected): raise TypeError( "Expected data of type {expected} for column '{colname}', " "but got {actual}.".format( expected=expected, colname=colname, actual=actual, ) ) return frame.to_sql(tablename, self.conn) def write(self, splits, mergers, dividends): """ Writes data to a SQLite file to be read by SQLiteAdjustmentReader. Parameters ---------- splits : pandas.DataFrame Dataframe containing split data. mergers : pandas.DataFrame DataFrame containing merger data. dividends : pandas.DataFrame DataFrame containing dividend data. Notes ----- DataFrame input (`splits`, `mergers`, and `dividends`) should all have the following columns: effective_date : int The date, represented as seconds since Unix epoch, on which the adjustment should be applied. ratio : float A value to apply to all data earlier than the effective date. sid : int The asset id associated with this adjustment. The ratio column is interpreted as follows: - For all adjustment types, multiply price fields ('open', 'high', 'low', and 'close') by the ratio. - For **splits only**, **divide** volume by the adjustment ratio. Dividend ratios should be calculated as 1.0 - (dividend_value / "close on day prior to dividend ex_date"). Returns ------- None See Also -------- SQLiteAdjustmentReader : Consumer for the data written by this class """ self.write_frame('splits', splits) self.write_frame('mergers', mergers) self.write_frame('dividends', dividends) self.conn.execute( "CREATE INDEX splits_sids " "ON splits(sid)" ) self.conn.execute( "CREATE INDEX splits_effective_date " "ON splits(effective_date)" ) self.conn.execute( "CREATE INDEX mergers_sids " "ON mergers(sid)" ) self.conn.execute( "CREATE INDEX mergers_effective_date " "ON mergers(effective_date)" ) self.conn.execute( "CREATE INDEX dividends_sid " "ON dividends(sid)" ) self.conn.execute( "CREATE INDEX dividends_effective_date " "ON dividends(effective_date)" ) def close(self): self.conn.close() class SQLiteAdjustmentReader(object): """ Loads adjustments based on corporate actions from a SQLite database. Expects data written in the format output by `SQLiteAdjustmentWriter`. Parameters ---------- conn : str or sqlite3.Connection Connection from which to load data. """ def __init__(self, conn): if isinstance(conn, str): conn = sqlite3.connect(conn) self.conn = conn def load_adjustments(self, columns, dates, assets): return load_adjustments_from_sqlite( self.conn, [column.name for column in columns], dates, assets, ) class USEquityPricingLoader(FFCLoader): """ FFCLoader for US Equity Pricing Delegates loading of baselines and adjustments. """ def __init__(self, raw_price_loader, adjustments_loader): self.raw_price_loader = raw_price_loader self.adjustments_loader = adjustments_loader def load_adjusted_array(self, columns, mask): dates, assets = mask.index, mask.columns raw_arrays = self.raw_price_loader.load_raw_arrays( columns, dates, assets, ) adjustments = self.adjustments_loader.load_adjustments( columns, dates, assets, ) return [ adjusted_array(raw_array, mask.values, col_adjustments) for raw_array, col_adjustments in zip(raw_arrays, adjustments) ]
apache-2.0
RoanFourie/ArchestrA-Tools
aaTools/ww-history-daily-max.py
1
2991
''' Python v3.8 or later Windows DESCRIPTION: Get from Historian the daily maximum values (filtered between two time ranges during days) between two dates. OWNER: Roan Fourie REVISION: 0 REVISION DATE: 2020-08-17 (Week 34) REVISION AUTHOR: Roan Fourie REVISION DESCRIPTION: Edit the list of tags and edit the dates and times where data must be parsed from. Return files with the day's maximum value. USAGE: NOTES: ''' import pyodbc import pandas as pd import numpy as np ################################################################################ ########################### EDIT START HERE ################################# ################################################################################ tags = ['KDCE_GP2_00INS01_00IQWT320.FA_PV0', 'KDCE_GP2_00INS02_00IQWT320.FA_PV0', 'KDCE_GP2_00INS03_00IQWT320.FA_PV0' ] server_name = 'HISTORIANSERVERNAME' start_dt = '20200501 05:00:00.000' # Note the format: '20200501 05:00:00.000' end_dt = '20200814 05:00:00.000' # Note the format: '20200814 05:00:00.000' time_gt = '01:00' # The begin time ('01:00') time_lt = '05:30' # The end time ('05:00') # The time periods could be removed if you want to check the complete day. # Remember to take it out of the SQL Query as well. ################################################################################ ########################### EDIT END HERE ################################# ################################################################################ # Make a SQL connection cnxn = pyodbc.connect("Driver={SQL Server Native Client 11.0};" f"Server={server_name};" "Database=Runtime;" "Trusted_Connection=yes;") with cnxn: # using the with statement will automatically close the connections cursor = cnxn.cursor() for tag in tags: # Query results from SQL into a Pandas Data Frame df = pd.read_sql_query(f"SET QUOTED_IDENTIFIER OFF \ SELECT * FROM OPENQUERY(INSQL, \"SELECT DateTime = convert(nvarchar, DateTime, 21),Time = convert(char(5), DateTime, 108), [{tag}] \ FROM WideHistory \ WHERE wwRetrievalMode = 'Cyclic' \ AND wwResolution = 600000 \ AND wwQualityRule = 'Extended' \ AND wwVersion = 'Latest' \ AND DateTime >= '{start_dt}' \ AND DateTime <= '{end_dt}'\") \ where Time >= '{time_gt}' \ AND Time <= '{time_lt}'", cnxn) # Convert DateTime string to date time object type df['DateTime'] = pd.to_datetime(df['DateTime']) # Get only the date without the time df['DT'] = df['DateTime'].dt.date # Group the dates together A-Z then select the one with the largest value in the group # This will give the maximum for the day in a new data frame df1 = df.groupby(['DT'], sort=False)[tag].max() print(df1) df1.to_csv(f'{tag}-results.csv', sep=",", encoding='utf-8')
mit
fmfn/UnbalancedDataset
imblearn/ensemble/tests/test_weight_boosting.py
2
3494
import pytest import numpy as np from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.utils._testing import assert_array_equal from imblearn.ensemble import RUSBoostClassifier @pytest.fixture def imbalanced_dataset(): return make_classification( n_samples=10000, n_features=3, n_informative=2, n_redundant=0, n_repeated=0, n_classes=3, n_clusters_per_class=1, weights=[0.01, 0.05, 0.94], class_sep=0.8, random_state=0, ) @pytest.mark.parametrize( "boosting_params, err_msg", [ ({"n_estimators": "whatever"}, "n_estimators must be an integer"), ({"n_estimators": -100}, "n_estimators must be greater than zero"), ], ) def test_rusboost_error(imbalanced_dataset, boosting_params, err_msg): rusboost = RUSBoostClassifier(**boosting_params) with pytest.raises(ValueError, match=err_msg): rusboost.fit(*imbalanced_dataset) @pytest.mark.parametrize("algorithm", ["SAMME", "SAMME.R"]) def test_rusboost(imbalanced_dataset, algorithm): X, y = imbalanced_dataset X_train, X_test, y_train, y_test = train_test_split( X, y, stratify=y, random_state=1 ) classes = np.unique(y) n_estimators = 500 rusboost = RUSBoostClassifier( n_estimators=n_estimators, algorithm=algorithm, random_state=0 ) rusboost.fit(X_train, y_train) assert_array_equal(classes, rusboost.classes_) # check that we have an ensemble of samplers and estimators with a # consistent size assert len(rusboost.estimators_) > 1 assert len(rusboost.estimators_) == len(rusboost.samplers_) assert len(rusboost.pipelines_) == len(rusboost.samplers_) # each sampler in the ensemble should have different random state assert len({sampler.random_state for sampler in rusboost.samplers_}) == len( rusboost.samplers_ ) # each estimator in the ensemble should have different random state assert len({est.random_state for est in rusboost.estimators_}) == len( rusboost.estimators_ ) # check the consistency of the feature importances assert len(rusboost.feature_importances_) == imbalanced_dataset[0].shape[1] # check the consistency of the prediction outpus y_pred = rusboost.predict_proba(X_test) assert y_pred.shape[1] == len(classes) assert rusboost.decision_function(X_test).shape[1] == len(classes) score = rusboost.score(X_test, y_test) assert score > 0.7, f"Failed with algorithm {algorithm} and score {score}" y_pred = rusboost.predict(X_test) assert y_pred.shape == y_test.shape @pytest.mark.parametrize("algorithm", ["SAMME", "SAMME.R"]) def test_rusboost_sample_weight(imbalanced_dataset, algorithm): X, y = imbalanced_dataset sample_weight = np.ones_like(y) rusboost = RUSBoostClassifier(algorithm=algorithm, random_state=0) # Predictions should be the same when sample_weight are all ones y_pred_sample_weight = rusboost.fit(X, y, sample_weight).predict(X) y_pred_no_sample_weight = rusboost.fit(X, y).predict(X) assert_array_equal(y_pred_sample_weight, y_pred_no_sample_weight) rng = np.random.RandomState(42) sample_weight = rng.rand(y.shape[0]) y_pred_sample_weight = rusboost.fit(X, y, sample_weight).predict(X) with pytest.raises(AssertionError): assert_array_equal(y_pred_no_sample_weight, y_pred_sample_weight)
mit
procoder317/scikit-learn
benchmarks/bench_rcv1_logreg_convergence.py
149
7173
# Authors: Tom Dupre la Tour <[email protected]> # Olivier Grisel <[email protected]> # # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np import gc import time from sklearn.externals.joblib import Memory from sklearn.linear_model import (LogisticRegression, SGDClassifier) from sklearn.datasets import fetch_rcv1 from sklearn.linear_model.sag import get_auto_step_size from sklearn.linear_model.sag_fast import get_max_squared_sum try: import lightning.classification as lightning_clf except ImportError: lightning_clf = None m = Memory(cachedir='.', verbose=0) # compute logistic loss def get_loss(w, intercept, myX, myy, C): n_samples = myX.shape[0] w = w.ravel() p = np.mean(np.log(1. + np.exp(-myy * (myX.dot(w) + intercept)))) print("%f + %f" % (p, w.dot(w) / 2. / C / n_samples)) p += w.dot(w) / 2. / C / n_samples return p # We use joblib to cache individual fits. Note that we do not pass the dataset # as argument as the hashing would be too slow, so we assume that the dataset # never changes. @m.cache() def bench_one(name, clf_type, clf_params, n_iter): clf = clf_type(**clf_params) try: clf.set_params(max_iter=n_iter, random_state=42) except: clf.set_params(n_iter=n_iter, random_state=42) st = time.time() clf.fit(X, y) end = time.time() try: C = 1.0 / clf.alpha / n_samples except: C = clf.C try: intercept = clf.intercept_ except: intercept = 0. train_loss = get_loss(clf.coef_, intercept, X, y, C) train_score = clf.score(X, y) test_score = clf.score(X_test, y_test) duration = end - st return train_loss, train_score, test_score, duration def bench(clfs): for (name, clf, iter_range, train_losses, train_scores, test_scores, durations) in clfs: print("training %s" % name) clf_type = type(clf) clf_params = clf.get_params() for n_iter in iter_range: gc.collect() train_loss, train_score, test_score, duration = bench_one( name, clf_type, clf_params, n_iter) train_losses.append(train_loss) train_scores.append(train_score) test_scores.append(test_score) durations.append(duration) print("classifier: %s" % name) print("train_loss: %.8f" % train_loss) print("train_score: %.8f" % train_score) print("test_score: %.8f" % test_score) print("time for fit: %.8f seconds" % duration) print("") print("") return clfs def plot_train_losses(clfs): plt.figure() for (name, _, _, train_losses, _, _, durations) in clfs: plt.plot(durations, train_losses, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("train loss") def plot_train_scores(clfs): plt.figure() for (name, _, _, _, train_scores, _, durations) in clfs: plt.plot(durations, train_scores, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("train score") plt.ylim((0.92, 0.96)) def plot_test_scores(clfs): plt.figure() for (name, _, _, _, _, test_scores, durations) in clfs: plt.plot(durations, test_scores, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("test score") plt.ylim((0.92, 0.96)) def plot_dloss(clfs): plt.figure() pobj_final = [] for (name, _, _, train_losses, _, _, durations) in clfs: pobj_final.append(train_losses[-1]) indices = np.argsort(pobj_final) pobj_best = pobj_final[indices[0]] for (name, _, _, train_losses, _, _, durations) in clfs: log_pobj = np.log(abs(np.array(train_losses) - pobj_best)) / np.log(10) plt.plot(durations, log_pobj, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("log(best - train_loss)") rcv1 = fetch_rcv1() X = rcv1.data n_samples, n_features = X.shape # consider the binary classification problem 'CCAT' vs the rest ccat_idx = rcv1.target_names.tolist().index('CCAT') y = rcv1.target.tocsc()[:, ccat_idx].toarray().ravel().astype(np.float64) y[y == 0] = -1 # parameters C = 1. fit_intercept = True tol = 1.0e-14 # max_iter range sgd_iter_range = list(range(1, 121, 10)) newton_iter_range = list(range(1, 25, 3)) lbfgs_iter_range = list(range(1, 242, 12)) liblinear_iter_range = list(range(1, 37, 3)) liblinear_dual_iter_range = list(range(1, 85, 6)) sag_iter_range = list(range(1, 37, 3)) clfs = [ ("LR-liblinear", LogisticRegression(C=C, tol=tol, solver="liblinear", fit_intercept=fit_intercept, intercept_scaling=1), liblinear_iter_range, [], [], [], []), ("LR-liblinear-dual", LogisticRegression(C=C, tol=tol, dual=True, solver="liblinear", fit_intercept=fit_intercept, intercept_scaling=1), liblinear_dual_iter_range, [], [], [], []), ("LR-SAG", LogisticRegression(C=C, tol=tol, solver="sag", fit_intercept=fit_intercept), sag_iter_range, [], [], [], []), ("LR-newton-cg", LogisticRegression(C=C, tol=tol, solver="newton-cg", fit_intercept=fit_intercept), newton_iter_range, [], [], [], []), ("LR-lbfgs", LogisticRegression(C=C, tol=tol, solver="lbfgs", fit_intercept=fit_intercept), lbfgs_iter_range, [], [], [], []), ("SGD", SGDClassifier(alpha=1.0 / C / n_samples, penalty='l2', loss='log', fit_intercept=fit_intercept, verbose=0), sgd_iter_range, [], [], [], [])] if lightning_clf is not None and not fit_intercept: alpha = 1. / C / n_samples # compute the same step_size than in LR-sag max_squared_sum = get_max_squared_sum(X) step_size = get_auto_step_size(max_squared_sum, alpha, "log", fit_intercept) clfs.append( ("Lightning-SVRG", lightning_clf.SVRGClassifier(alpha=alpha, eta=step_size, tol=tol, loss="log"), sag_iter_range, [], [], [], [])) clfs.append( ("Lightning-SAG", lightning_clf.SAGClassifier(alpha=alpha, eta=step_size, tol=tol, loss="log"), sag_iter_range, [], [], [], [])) # We keep only 200 features, to have a dense dataset, # and compare to lightning SAG, which seems incorrect in the sparse case. X_csc = X.tocsc() nnz_in_each_features = X_csc.indptr[1:] - X_csc.indptr[:-1] X = X_csc[:, np.argsort(nnz_in_each_features)[-200:]] X = X.toarray() print("dataset: %.3f MB" % (X.nbytes / 1e6)) # Split training and testing. Switch train and test subset compared to # LYRL2004 split, to have a larger training dataset. n = 23149 X_test = X[:n, :] y_test = y[:n] X = X[n:, :] y = y[n:] clfs = bench(clfs) plot_train_scores(clfs) plot_test_scores(clfs) plot_train_losses(clfs) plot_dloss(clfs) plt.show()
bsd-3-clause
bottydim/detect-credit-card-fraud
ccfd_dnn/model_subsample.py
1
13527
import pandas as pd import matplotlib import numpy as np import math import matplotlib.pyplot as plt from sklearn.preprocessing import Imputer from sklearn.cross_validation import train_test_split from sklearn import preprocessing import plotly.tools as tls import pandas as pd from sqlalchemy import create_engine # database connection import datetime as dt import io import plotly.plotly as py # interactive graphing from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot from plotly.graph_objs import Bar, Scatter, Marker, Layout from heraspy.model import HeraModel np.random.seed(1337) import theano import keras from keras.preprocessing.sequence import pad_sequences from keras.models import Model from keras.layers import Input, Dense, GRU, LSTM, TimeDistributed, Masking,merge from model import * if __name__ == "__main__": print "Commencing..." data_dir = './data/' evt_name = 'Featurespace_events_output.csv' auth_name = 'Featurespace_auths_output.csv' db_name = 'c1_agg.db' disk_engine = create_engine('sqlite:///'+data_dir+db_name,convert_unicode=True) disk_engine.raw_connection().connection.text_factory = str ####################################DATA SOURCE################################ # table = 'data_trim' # rsl_file = './data/gs_results_trim.csv' table = 'data_little' rsl_file = './data/gs_results_little.csv' # table = 'data_more' # rsl_file = './data/gs_results_more.csv' ################################################################################ #######################Settings############################################# samples_per_epoch = trans_num_table(table,disk_engine,mode='train',trans_mode='train') samples_per_epoch = 1879 epoch_limit = samples_per_epoch print "SAMPLES per epoch:",samples_per_epoch user_sample_size = 1232 # user_sample_size = 2000 print "User sample size:",user_sample_size # samples_per_epoch = 1959 # table = 'data_trim' # samples_per_epoch = 485 nb_epoch = 30 lbl_pad_val = 2 pad_val = -1 hid_dims = [256,320] num_l = [3,4] lr_s = [2.5e-4] # lr_s = [1e-2,1e-3,1e-4] # lr_s = [1e-1,1e-2,1e-3] num_opt = 1 opts = lambda x,lr:[keras.optimizers.RMSprop(lr=lr, rho=0.9, epsilon=1e-08), # keras.optimizers.Adam(lr=lr, beta_1=0.9, beta_2=0.999, epsilon=1e-08), # keras.optimizers.Nadam(lr=lr, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004) ][x] add_info = str(int(seq_len_param))+'subsample_class_w' encoders = populate_encoders_scale(table,disk_engine) gru_dict = {} lstm_dict = {} for hidden_dim in hid_dims: # gru for opt_id in range(num_opt): for lr in lr_s: optimizer = opts(opt_id,lr) for num_layers in num_l: for rnn in ['gru']: title = 'Bidirectional_Loss'+'_'+rnn.upper()+'_'+str(hidden_dim)+'_'+str(num_layers)+'_'+str(type(optimizer).__name__)+'_'+str(lr) print title input_layer = Input(shape=(int(seq_len_param), 44),name='main_input') mask = Masking(mask_value=0)(input_layer) x = mask for i in range(num_layers): if rnn == 'gru': prev_frw = GRU(hidden_dim,#input_length=50, return_sequences=True,go_backwards=False,stateful=False, unroll=False,consume_less='gpu', init='glorot_uniform', inner_init='orthogonal', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=0.0, dropout_U=0.0)(x) prev_bck = GRU(hidden_dim,#input_length=50, return_sequences=True,go_backwards=True,stateful=False, unroll=False,consume_less='gpu', init='glorot_uniform', inner_init='orthogonal', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=0.0, dropout_U=0.0)(x) else: prev_frw = LSTM(hidden_dim, return_sequences=True,go_backwards=False,stateful=False, init='glorot_uniform', inner_init='orthogonal', forget_bias_init='one', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=0.0, dropout_U=0.0)(x) prev_bck = LSTM(hidden_dim, return_sequences=True,go_backwards=True,stateful=False, init='glorot_uniform', inner_init='orthogonal', forget_bias_init='one', activation='tanh', inner_activation='hard_sigmoid', W_regularizer=None, U_regularizer=None, b_regularizer=None, dropout_W=0.0, dropout_U=0.0)(x) x = merge([prev_frw, prev_bck], mode='concat') output_layer = TimeDistributed(Dense(3,activation='softmax'))(x) model = Model(input=[input_layer],output=[output_layer]) model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy']) user_mode = 'train' trans_mode = 'train' data_gen = data_generator(user_mode,trans_mode,disk_engine,encoders,table=table, batch_size=400,usr_ratio=80,class_weight=None,lbl_pad_val = 2, pad_val = -1, sub_sample=user_sample_size,epoch_size=epoch_limit) # sub_sample=user_sample_size,epoch_size=samples_per_epoch) history = model.fit_generator(data_gen, samples_per_epoch, nb_epoch, verbose=1, callbacks=[],validation_data=None, nb_val_samples=None, class_weight=None, max_q_size=10000) py.sign_in('bottydim', 'o1kuyms9zv') auc_list = [] print '#########################TRAIN STATS################' user_mode = 'train' trans_mode = 'train' val_samples = trans_num_table(table,disk_engine,mode=user_mode,trans_mode=trans_mode) print '# samples',val_samples plt_filename = './figures/GS/'+table+'/'+'ROC_'+user_mode+'_'+trans_mode+'_'+title+'_'+add_info+".png" data_gen = data_generator(user_mode,trans_mode,disk_engine,encoders,table=table, batch_size=400,usr_ratio=80,class_weight=None,lbl_pad_val = 2, pad_val = -1) eval_list = eval_auc_generator(model, data_gen, val_samples, max_q_size=10000,plt_filename=plt_filename) auc_val = eval_list[0] clc_report = eval_list[1] acc = eval_list[2] print "AUC:",auc_val print 'CLassification report' print clc_report print 'Accuracy' print acc auc_list.append(str(auc_val)) print '##################EVALUATION USERS#########################' user_mode = 'test' trans_mode = 'train' val_samples = trans_num_table(table,disk_engine,mode=user_mode,trans_mode=trans_mode) print '# samples',val_samples plt_filename = './figures/GS/'+table+'/'+'ROC_'+user_mode+'_'+trans_mode+'_'+title+'_'+add_info+".png" eval_gen = data_generator(user_mode,trans_mode,disk_engine,encoders,table=table, batch_size=400,usr_ratio=80,class_weight=None,lbl_pad_val = 2, pad_val = -1) eval_list = eval_auc_generator(model, eval_gen, val_samples, max_q_size=10000,plt_filename=plt_filename) auc_val = eval_list[0] clc_report = eval_list[1] acc = eval_list[2] print "AUC:",auc_val print 'CLassification report' print clc_report print 'Accuracy' print acc auc_list.append(str(auc_val)) print '#####################################################' print '##################EVALUATION Transactions#########################' user_mode = 'train' trans_mode = 'test' val_samples = trans_num_table(table,disk_engine,mode=user_mode,trans_mode=trans_mode) print '# samples',val_samples plt_filename = './figures/GS/'+table+'/'+'ROC_'+user_mode+'_'+trans_mode+'_'+title+'_'+add_info+".png" eval_gen = data_generator(user_mode,trans_mode,disk_engine,encoders,table=table, batch_size=400,usr_ratio=80,class_weight=None,lbl_pad_val = 2, pad_val = -1) eval_list = eval_auc_generator(model, eval_gen, val_samples, max_q_size=10000,plt_filename=plt_filename) auc_val = eval_list[0] clc_report = eval_list[1] acc = eval_list[2] print "AUC:",auc_val print 'CLassification report' print clc_report print 'Accuracy' print acc auc_list.append(str(auc_val)) print '#####################################################' print '##################EVALUATION Pure#########################' user_mode = 'test' trans_mode = 'test' val_samples = trans_num_table(table,disk_engine,mode=user_mode,trans_mode=trans_mode) print '# samples',val_samples plt_filename = './figures/GS/'+table+'/'+'ROC_'+user_mode+'_'+trans_mode+'_'+title+'_'+add_info+".png" eval_gen = data_generator(user_mode,trans_mode,disk_engine,encoders,table=table, batch_size=400,usr_ratio=80,class_weight=None,lbl_pad_val = 2, pad_val = -1) eval_list = eval_auc_generator(model, eval_gen, val_samples, max_q_size=10000,plt_filename=plt_filename) auc_val = eval_list[0] clc_report = eval_list[1] acc = eval_list[2] print "AUC:",auc_val print 'CLassification report' print clc_report print 'Accuracy' print acc auc_list.append(str(auc_val)) print '#####################################################' with io.open(rsl_file, 'a', encoding='utf-8') as file: auc_string = ','.join(auc_list) title_csv = title.replace('_',',')+','+str(history.history['acc'][-1])+','+str(history.history['loss'][-1])+','+str(auc_val)+','+str(acc)+','+auc_string+'\n' file.write(unicode(title_csv)) print 'logged' trim_point = -15 fig = { 'data': [Scatter( x=history.epoch[trim_point:], y=history.history['loss'][trim_point:])], 'layout': {'title': title} } py.image.save_as(fig,filename='./figures/GS/'+table+'/'+title+'_'+table+'_'+add_info+".png") # iplot(fig,filename='figures/'+title,image='png') title = title.replace('Loss','Acc') fig = { 'data': [Scatter( x=history.epoch[trim_point:], y=history.history['acc'][trim_point:])], 'layout': {'title': title} } py.image.save_as(fig,filename='./figures/GS/'+table+'/'+title+'_'+table+'_'+add_info+".png")
mit
beni55/sympy
sympy/plotting/plot.py
3
64516
"""Plotting module for Sympy. A plot is represented by the ``Plot`` class that contains a reference to the backend and a list of the data series to be plotted. The data series are instances of classes meant to simplify getting points and meshes from sympy expressions. ``plot_backends`` is a dictionary with all the backends. This module gives only the essential. For all the fancy stuff use directly the backend. You can get the backend wrapper for every plot from the ``_backend`` attribute. Moreover the data series classes have various useful methods like ``get_points``, ``get_segments``, ``get_meshes``, etc, that may be useful if you wish to use another plotting library. Especially if you need publication ready graphs and this module is not enough for you - just get the ``_backend`` attribute and add whatever you want directly to it. In the case of matplotlib (the common way to graph data in python) just copy ``_backend.fig`` which is the figure and ``_backend.ax`` which is the axis and work on them as you would on any other matplotlib object. Simplicity of code takes much greater importance than performance. Don't use it if you care at all about performance. A new backend instance is initialized every time you call ``show()`` and the old one is left to the garbage collector. """ from __future__ import print_function, division from inspect import getargspec from itertools import chain from collections import Callable import warnings from sympy import sympify, Expr, Tuple, Dummy, Symbol from sympy.external import import_module from sympy.utilities.decorator import doctest_depends_on from sympy.utilities.iterables import is_sequence from .experimental_lambdify import (vectorized_lambdify, lambdify) # N.B. # When changing the minimum module version for matplotlib, please change # the same in the `SymPyDocTestFinder`` in `sympy/utilities/runtests.py` # Backend specific imports - textplot from sympy.plotting.textplot import textplot # Global variable # Set to False when running tests / doctests so that the plots don't show. _show = True def unset_show(): global _show _show = False ############################################################################## # The public interface ############################################################################## class Plot(object): """The central class of the plotting module. For interactive work the function ``plot`` is better suited. This class permits the plotting of sympy expressions using numerous backends (matplotlib, textplot, the old pyglet module for sympy, Google charts api, etc). The figure can contain an arbitrary number of plots of sympy expressions, lists of coordinates of points, etc. Plot has a private attribute _series that contains all data series to be plotted (expressions for lines or surfaces, lists of points, etc (all subclasses of BaseSeries)). Those data series are instances of classes not imported by ``from sympy import *``. The customization of the figure is on two levels. Global options that concern the figure as a whole (eg title, xlabel, scale, etc) and per-data series options (eg name) and aesthetics (eg. color, point shape, line type, etc.). The difference between options and aesthetics is that an aesthetic can be a function of the coordinates (or parameters in a parametric plot). The supported values for an aesthetic are: - None (the backend uses default values) - a constant - a function of one variable (the first coordinate or parameter) - a function of two variables (the first and second coordinate or parameters) - a function of three variables (only in nonparametric 3D plots) Their implementation depends on the backend so they may not work in some backends. If the plot is parametric and the arity of the aesthetic function permits it the aesthetic is calculated over parameters and not over coordinates. If the arity does not permit calculation over parameters the calculation is done over coordinates. Only cartesian coordinates are supported for the moment, but you can use the parametric plots to plot in polar, spherical and cylindrical coordinates. The arguments for the constructor Plot must be subclasses of BaseSeries. Any global option can be specified as a keyword argument. The global options for a figure are: - title : str - xlabel : str - ylabel : str - legend : bool - xscale : {'linear', 'log'} - yscale : {'linear', 'log'} - axis : bool - axis_center : tuple of two floats or {'center', 'auto'} - xlim : tuple of two floats - ylim : tuple of two floats - aspect_ratio : tuple of two floats or {'auto'} - autoscale : bool - margin : float in [0, 1] The per data series options and aesthetics are: There are none in the base series. See below for options for subclasses. Some data series support additional aesthetics or options: ListSeries, LineOver1DRangeSeries, Parametric2DLineSeries, Parametric3DLineSeries support the following: Aesthetics: - line_color : function which returns a float. options: - label : str - steps : bool - integers_only : bool SurfaceOver2DRangeSeries, ParametricSurfaceSeries support the following: aesthetics: - surface_color : function which returns a float. """ def __init__(self, *args, **kwargs): super(Plot, self).__init__() # Options for the graph as a whole. # The possible values for each option are described in the docstring of # Plot. They are based purely on convention, no checking is done. self.title = None self.xlabel = None self.ylabel = None self.aspect_ratio = 'auto' self.xlim = None self.ylim = None self.axis_center = 'auto' self.axis = True self.xscale = 'linear' self.yscale = 'linear' self.legend = False self.autoscale = True self.margin = 0 # Contains the data objects to be plotted. The backend should be smart # enough to iterate over this list. self._series = [] self._series.extend(args) # The backend type. On every show() a new backend instance is created # in self._backend which is tightly coupled to the Plot instance # (thanks to the parent attribute of the backend). self.backend = DefaultBackend # The keyword arguments should only contain options for the plot. for key, val in kwargs.items(): if hasattr(self, key): setattr(self, key, val) def show(self): # TODO move this to the backend (also for save) if hasattr(self, '_backend'): self._backend.close() self._backend = self.backend(self) self._backend.show() def save(self, path): if hasattr(self, '_backend'): self._backend.close() self._backend = self.backend(self) self._backend.save(path) def __str__(self): series_strs = [('[%d]: ' % i) + str(s) for i, s in enumerate(self._series)] return 'Plot object containing:\n' + '\n'.join(series_strs) def __getitem__(self, index): return self._series[index] def __setitem__(self, index, *args): if len(args) == 1 and isinstance(args[0], BaseSeries): self._series[index] = args def __delitem__(self, index): del self._series[index] @doctest_depends_on(modules=('numpy', 'matplotlib',)) def append(self, arg): """Adds an element from a plot's series to an existing plot. Examples ======== Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the second plot's first series object to the first, use the ``append`` method, like so: >>> from sympy import symbols >>> from sympy.plotting import plot >>> x = symbols('x') >>> p1 = plot(x*x) >>> p2 = plot(x) >>> p1.append(p2[0]) >>> p1 Plot object containing: [0]: cartesian line: x**2 for x over (-10.0, 10.0) [1]: cartesian line: x for x over (-10.0, 10.0) See Also ======== extend """ if isinstance(arg, BaseSeries): self._series.append(arg) else: raise TypeError('Must specify element of plot to append.') @doctest_depends_on(modules=('numpy', 'matplotlib',)) def extend(self, arg): """Adds all series from another plot. Examples ======== Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the second plot to the first, use the ``extend`` method, like so: >>> from sympy import symbols >>> from sympy.plotting import plot >>> x = symbols('x') >>> p1 = plot(x*x) >>> p2 = plot(x) >>> p1.extend(p2) >>> p1 Plot object containing: [0]: cartesian line: x**2 for x over (-10.0, 10.0) [1]: cartesian line: x for x over (-10.0, 10.0) """ if isinstance(arg, Plot): self._series.extend(arg._series) elif is_sequence(arg): self._series.extend(arg) else: raise TypeError('Expecting Plot or sequence of BaseSeries') ############################################################################## # Data Series ############################################################################## #TODO more general way to calculate aesthetics (see get_color_array) ### The base class for all series class BaseSeries(object): """Base class for the data objects containing stuff to be plotted. The backend should check if it supports the data series that it's given. (eg TextBackend supports only LineOver1DRange). It's the backend responsibility to know how to use the class of data series that it's given. Some data series classes are grouped (using a class attribute like is_2Dline) according to the api they present (based only on convention). The backend is not obliged to use that api (eg. The LineOver1DRange belongs to the is_2Dline group and presents the get_points method, but the TextBackend does not use the get_points method). """ # Some flags follow. The rationale for using flags instead of checking base # classes is that setting multiple flags is simpler than multiple # inheritance. is_2Dline = False # Some of the backends expect: # - get_points returning 1D np.arrays list_x, list_y # - get_segments returning np.array (done in Line2DBaseSeries) # - get_color_array returning 1D np.array (done in Line2DBaseSeries) # with the colors calculated at the points from get_points is_3Dline = False # Some of the backends expect: # - get_points returning 1D np.arrays list_x, list_y, list_y # - get_segments returning np.array (done in Line2DBaseSeries) # - get_color_array returning 1D np.array (done in Line2DBaseSeries) # with the colors calculated at the points from get_points is_3Dsurface = False # Some of the backends expect: # - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays) # - get_points an alias for get_meshes is_contour = False # Some of the backends expect: # - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays) # - get_points an alias for get_meshes is_implicit = False # Some of the backends expect: # - get_meshes returning mesh_x (1D array), mesh_y(1D array, # mesh_z (2D np.arrays) # - get_points an alias for get_meshes #Different from is_contour as the colormap in backend will be #different is_parametric = False # The calculation of aesthetics expects: # - get_parameter_points returning one or two np.arrays (1D or 2D) # used for calculation aesthetics def __init__(self): super(BaseSeries, self).__init__() @property def is_3D(self): flags3D = [ self.is_3Dline, self.is_3Dsurface ] return any(flags3D) @property def is_line(self): flagslines = [ self.is_2Dline, self.is_3Dline ] return any(flagslines) ### 2D lines class Line2DBaseSeries(BaseSeries): """A base class for 2D lines. - adding the label, steps and only_integers options - making is_2Dline true - defining get_segments and get_color_array """ is_2Dline = True _dim = 2 def __init__(self): super(Line2DBaseSeries, self).__init__() self.label = None self.steps = False self.only_integers = False self.line_color = None def get_segments(self): np = import_module('numpy') points = self.get_points() if self.steps is True: x = np.array((points[0], points[0])).T.flatten()[1:] y = np.array((points[1], points[1])).T.flatten()[:-1] points = (x, y) points = np.ma.array(points).T.reshape(-1, 1, self._dim) return np.ma.concatenate([points[:-1], points[1:]], axis=1) def get_color_array(self): np = import_module('numpy') c = self.line_color if hasattr(c, '__call__'): f = np.vectorize(c) arity = len(getargspec(c)[0]) if arity == 1 and self.is_parametric: x = self.get_parameter_points() return f(centers_of_segments(x)) else: variables = list(map(centers_of_segments, self.get_points())) if arity == 1: return f(variables[0]) elif arity == 2: return f(*variables[:2]) else: # only if the line is 3D (otherwise raises an error) return f(*variables) else: return c*np.ones(self.nb_of_points) class List2DSeries(Line2DBaseSeries): """Representation for a line consisting of list of points.""" def __init__(self, list_x, list_y): np = import_module('numpy') super(List2DSeries, self).__init__() self.list_x = np.array(list_x) self.list_y = np.array(list_y) self.label = 'list' def __str__(self): return 'list plot' def get_points(self): return (self.list_x, self.list_y) class LineOver1DRangeSeries(Line2DBaseSeries): """Representation for a line consisting of a SymPy expression over a range.""" def __init__(self, expr, var_start_end, **kwargs): super(LineOver1DRangeSeries, self).__init__() self.expr = sympify(expr) self.label = str(self.expr) self.var = sympify(var_start_end[0]) self.start = float(var_start_end[1]) self.end = float(var_start_end[2]) self.nb_of_points = kwargs.get('nb_of_points', 300) self.adaptive = kwargs.get('adaptive', True) self.depth = kwargs.get('depth', 12) self.line_color = kwargs.get('line_color', None) def __str__(self): return 'cartesian line: %s for %s over %s' % ( str(self.expr), str(self.var), str((self.start, self.end))) def get_segments(self): """ Adaptively gets segments for plotting. The adaptive sampling is done by recursively checking if three points are almost collinear. If they are not collinear, then more points are added between those points. References ========== [1] Adaptive polygonal approximation of parametric curves, Luiz Henrique de Figueiredo. """ if self.only_integers or not self.adaptive: return super(LineOver1DRangeSeries, self).get_segments() else: f = lambdify([self.var], self.expr) list_segments = [] def sample(p, q, depth): """ Samples recursively if three points are almost collinear. For depth < 6, points are added irrespective of whether they satisfy the collinearity condition or not. The maximum depth allowed is 12. """ np = import_module('numpy') #Randomly sample to avoid aliasing. random = 0.45 + np.random.rand() * 0.1 xnew = p[0] + random * (q[0] - p[0]) ynew = f(xnew) new_point = np.array([xnew, ynew]) #Maximum depth if depth > self.depth: list_segments.append([p, q]) #Sample irrespective of whether the line is flat till the #depth of 6. We are not using linspace to avoid aliasing. elif depth < 6: sample(p, new_point, depth + 1) sample(new_point, q, depth + 1) #Sample ten points if complex values are encountered #at both ends. If there is a real value in between, then #sample those points further. elif p[1] is None and q[1] is None: xarray = np.linspace(p[0], q[0], 10) yarray = list(map(f, xarray)) if any(y is not None for y in yarray): for i in range(len(yarray) - 1): if yarray[i] is not None or yarray[i + 1] is not None: sample([xarray[i], yarray[i]], [xarray[i + 1], yarray[i + 1]], depth + 1) #Sample further if one of the end points in None( i.e. a complex #value) or the three points are not almost collinear. elif (p[1] is None or q[1] is None or new_point[1] is None or not flat(p, new_point, q)): sample(p, new_point, depth + 1) sample(new_point, q, depth + 1) else: list_segments.append([p, q]) f_start = f(self.start) f_end = f(self.end) sample([self.start, f_start], [self.end, f_end], 0) return list_segments def get_points(self): np = import_module('numpy') if self.only_integers is True: list_x = np.linspace(int(self.start), int(self.end), num=int(self.end) - int(self.start) + 1) else: list_x = np.linspace(self.start, self.end, num=self.nb_of_points) f = vectorized_lambdify([self.var], self.expr) list_y = f(list_x) return (list_x, list_y) class Parametric2DLineSeries(Line2DBaseSeries): """Representation for a line consisting of two parametric sympy expressions over a range.""" is_parametric = True def __init__(self, expr_x, expr_y, var_start_end, **kwargs): super(Parametric2DLineSeries, self).__init__() self.expr_x = sympify(expr_x) self.expr_y = sympify(expr_y) self.label = "(%s, %s)" % (str(self.expr_x), str(self.expr_y)) self.var = sympify(var_start_end[0]) self.start = float(var_start_end[1]) self.end = float(var_start_end[2]) self.nb_of_points = kwargs.get('nb_of_points', 300) self.adaptive = kwargs.get('adaptive', True) self.depth = kwargs.get('depth', 12) self.line_color = kwargs.get('line_color', None) def __str__(self): return 'parametric cartesian line: (%s, %s) for %s over %s' % ( str(self.expr_x), str(self.expr_y), str(self.var), str((self.start, self.end))) def get_parameter_points(self): np = import_module('numpy') return np.linspace(self.start, self.end, num=self.nb_of_points) def get_points(self): param = self.get_parameter_points() fx = vectorized_lambdify([self.var], self.expr_x) fy = vectorized_lambdify([self.var], self.expr_y) list_x = fx(param) list_y = fy(param) return (list_x, list_y) def get_segments(self): """ Adaptively gets segments for plotting. The adaptive sampling is done by recursively checking if three points are almost collinear. If they are not collinear, then more points are added between those points. References ========== [1] Adaptive polygonal approximation of parametric curves, Luiz Henrique de Figueiredo. """ if not self.adaptive: return super(Parametric2DLineSeries, self).get_segments() f_x = lambdify([self.var], self.expr_x) f_y = lambdify([self.var], self.expr_y) list_segments = [] def sample(param_p, param_q, p, q, depth): """ Samples recursively if three points are almost collinear. For depth < 6, points are added irrespective of whether they satisfy the collinearity condition or not. The maximum depth allowed is 12. """ #Randomly sample to avoid aliasing. np = import_module('numpy') random = 0.45 + np.random.rand() * 0.1 param_new = param_p + random * (param_q - param_p) xnew = f_x(param_new) ynew = f_y(param_new) new_point = np.array([xnew, ynew]) #Maximum depth if depth > self.depth: list_segments.append([p, q]) #Sample irrespective of whether the line is flat till the #depth of 6. We are not using linspace to avoid aliasing. elif depth < 6: sample(param_p, param_new, p, new_point, depth + 1) sample(param_new, param_q, new_point, q, depth + 1) #Sample ten points if complex values are encountered #at both ends. If there is a real value in between, then #sample those points further. elif ((p[0] is None and q[1] is None) or (p[1] is None and q[1] is None)): param_array = np.linspace(param_p, param_q, 10) x_array = list(map(f_x, param_array)) y_array = list(map(f_y, param_array)) if any(x is not None and y is not None for x, y in zip(x_array, y_array)): for i in range(len(y_array) - 1): if ((x_array[i] is not None and y_array[i] is not None) or (x_array[i + 1] is not None and y_array[i + 1] is not None)): point_a = [x_array[i], y_array[i]] point_b = [x_array[i + 1], y_array[i + 1]] sample(param_array[i], param_array[i], point_a, point_b, depth + 1) #Sample further if one of the end points in None( ie a complex #value) or the three points are not almost collinear. elif (p[0] is None or p[1] is None or q[1] is None or q[0] is None or not flat(p, new_point, q)): sample(param_p, param_new, p, new_point, depth + 1) sample(param_new, param_q, new_point, q, depth + 1) else: list_segments.append([p, q]) f_start_x = f_x(self.start) f_start_y = f_y(self.start) start = [f_start_x, f_start_y] f_end_x = f_x(self.end) f_end_y = f_y(self.end) end = [f_end_x, f_end_y] sample(self.start, self.end, start, end, 0) return list_segments ### 3D lines class Line3DBaseSeries(Line2DBaseSeries): """A base class for 3D lines. Most of the stuff is derived from Line2DBaseSeries.""" is_2Dline = False is_3Dline = True _dim = 3 def __init__(self): super(Line3DBaseSeries, self).__init__() class Parametric3DLineSeries(Line3DBaseSeries): """Representation for a 3D line consisting of two parametric sympy expressions and a range.""" def __init__(self, expr_x, expr_y, expr_z, var_start_end, **kwargs): super(Parametric3DLineSeries, self).__init__() self.expr_x = sympify(expr_x) self.expr_y = sympify(expr_y) self.expr_z = sympify(expr_z) self.label = "(%s, %s)" % (str(self.expr_x), str(self.expr_y)) self.var = sympify(var_start_end[0]) self.start = float(var_start_end[1]) self.end = float(var_start_end[2]) self.nb_of_points = kwargs.get('nb_of_points', 300) self.line_color = kwargs.get('line_color', None) def __str__(self): return '3D parametric cartesian line: (%s, %s, %s) for %s over %s' % ( str(self.expr_x), str(self.expr_y), str(self.expr_z), str(self.var), str((self.start, self.end))) def get_parameter_points(self): np = import_module('numpy') return np.linspace(self.start, self.end, num=self.nb_of_points) def get_points(self): param = self.get_parameter_points() fx = vectorized_lambdify([self.var], self.expr_x) fy = vectorized_lambdify([self.var], self.expr_y) fz = vectorized_lambdify([self.var], self.expr_z) list_x = fx(param) list_y = fy(param) list_z = fz(param) return (list_x, list_y, list_z) ### Surfaces class SurfaceBaseSeries(BaseSeries): """A base class for 3D surfaces.""" is_3Dsurface = True def __init__(self): super(SurfaceBaseSeries, self).__init__() self.surface_color = None def get_color_array(self): np = import_module('numpy') c = self.surface_color if isinstance(c, Callable): f = np.vectorize(c) arity = len(getargspec(c)[0]) if self.is_parametric: variables = list(map(centers_of_faces, self.get_parameter_meshes())) if arity == 1: return f(variables[0]) elif arity == 2: return f(*variables) variables = list(map(centers_of_faces, self.get_meshes())) if arity == 1: return f(variables[0]) elif arity == 2: return f(*variables[:2]) else: return f(*variables) else: return c*np.ones(self.nb_of_points) class SurfaceOver2DRangeSeries(SurfaceBaseSeries): """Representation for a 3D surface consisting of a sympy expression and 2D range.""" def __init__(self, expr, var_start_end_x, var_start_end_y, **kwargs): super(SurfaceOver2DRangeSeries, self).__init__() self.expr = sympify(expr) self.var_x = sympify(var_start_end_x[0]) self.start_x = float(var_start_end_x[1]) self.end_x = float(var_start_end_x[2]) self.var_y = sympify(var_start_end_y[0]) self.start_y = float(var_start_end_y[1]) self.end_y = float(var_start_end_y[2]) self.nb_of_points_x = kwargs.get('nb_of_points_x', 50) self.nb_of_points_y = kwargs.get('nb_of_points_y', 50) self.surface_color = kwargs.get('surface_color', None) def __str__(self): return ('cartesian surface: %s for' ' %s over %s and %s over %s') % ( str(self.expr), str(self.var_x), str((self.start_x, self.end_x)), str(self.var_y), str((self.start_y, self.end_y))) def get_meshes(self): np = import_module('numpy') mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x, num=self.nb_of_points_x), np.linspace(self.start_y, self.end_y, num=self.nb_of_points_y)) f = vectorized_lambdify((self.var_x, self.var_y), self.expr) return (mesh_x, mesh_y, f(mesh_x, mesh_y)) class ParametricSurfaceSeries(SurfaceBaseSeries): """Representation for a 3D surface consisting of three parametric sympy expressions and a range.""" is_parametric = True def __init__( self, expr_x, expr_y, expr_z, var_start_end_u, var_start_end_v, **kwargs): super(ParametricSurfaceSeries, self).__init__() self.expr_x = sympify(expr_x) self.expr_y = sympify(expr_y) self.expr_z = sympify(expr_z) self.var_u = sympify(var_start_end_u[0]) self.start_u = float(var_start_end_u[1]) self.end_u = float(var_start_end_u[2]) self.var_v = sympify(var_start_end_v[0]) self.start_v = float(var_start_end_v[1]) self.end_v = float(var_start_end_v[2]) self.nb_of_points_u = kwargs.get('nb_of_points_u', 50) self.nb_of_points_v = kwargs.get('nb_of_points_v', 50) self.surface_color = kwargs.get('surface_color', None) def __str__(self): return ('parametric cartesian surface: (%s, %s, %s) for' ' %s over %s and %s over %s') % ( str(self.expr_x), str(self.expr_y), str(self.expr_z), str(self.var_u), str((self.start_u, self.end_u)), str(self.var_v), str((self.start_v, self.end_v))) def get_parameter_meshes(self): np = import_module('numpy') return np.meshgrid(np.linspace(self.start_u, self.end_u, num=self.nb_of_points_u), np.linspace(self.start_v, self.end_v, num=self.nb_of_points_v)) def get_meshes(self): mesh_u, mesh_v = self.get_parameter_meshes() fx = vectorized_lambdify((self.var_u, self.var_v), self.expr_x) fy = vectorized_lambdify((self.var_u, self.var_v), self.expr_y) fz = vectorized_lambdify((self.var_u, self.var_v), self.expr_z) return (fx(mesh_u, mesh_v), fy(mesh_u, mesh_v), fz(mesh_u, mesh_v)) ### Contours class ContourSeries(BaseSeries): """Representation for a contour plot.""" #The code is mostly repetition of SurfaceOver2DRange. #XXX: Presently not used in any of those functions. #XXX: Add contour plot and use this seties. is_contour = True def __init__(self, expr, var_start_end_x, var_start_end_y): super(ContourSeries, self).__init__() self.nb_of_points_x = 50 self.nb_of_points_y = 50 self.expr = sympify(expr) self.var_x = sympify(var_start_end_x[0]) self.start_x = float(var_start_end_x[1]) self.end_x = float(var_start_end_x[2]) self.var_y = sympify(var_start_end_y[0]) self.start_y = float(var_start_end_y[1]) self.end_y = float(var_start_end_y[2]) self.get_points = self.get_meshes def __str__(self): return ('contour: %s for ' '%s over %s and %s over %s') % ( str(self.expr), str(self.var_x), str((self.start_x, self.end_x)), str(self.var_y), str((self.start_y, self.end_y))) def get_meshes(self): np = import_module('numpy') mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x, num=self.nb_of_points_x), np.linspace(self.start_y, self.end_y, num=self.nb_of_points_y)) f = vectorized_lambdify((self.var_x, self.var_y), self.expr) return (mesh_x, mesh_y, f(mesh_x, mesh_y)) ############################################################################## # Backends ############################################################################## class BaseBackend(object): def __init__(self, parent): super(BaseBackend, self).__init__() self.parent = parent ## don't have to check for the success of importing matplotlib in each case; ## we will only be using this backend if we can successfully import matploblib class MatplotlibBackend(BaseBackend): def __init__(self, parent): super(MatplotlibBackend, self).__init__(parent) are_3D = [s.is_3D for s in self.parent._series] self.matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['pyplot', 'cm', 'collections']}, min_module_version='1.1.0', catch=(RuntimeError,)) self.plt = self.matplotlib.pyplot self.cm = self.matplotlib.cm self.LineCollection = self.matplotlib.collections.LineCollection if any(are_3D) and not all(are_3D): raise ValueError('The matplotlib backend can not mix 2D and 3D.') elif not any(are_3D): self.fig = self.plt.figure() self.ax = self.fig.add_subplot(111) self.ax.spines['left'].set_position('zero') self.ax.spines['right'].set_color('none') self.ax.spines['bottom'].set_position('zero') self.ax.spines['top'].set_color('none') self.ax.spines['left'].set_smart_bounds(True) self.ax.spines['bottom'].set_smart_bounds(False) self.ax.xaxis.set_ticks_position('bottom') self.ax.yaxis.set_ticks_position('left') elif all(are_3D): ## mpl_toolkits.mplot3d is necessary for ## projection='3d' mpl_toolkits = import_module('mpl_toolkits', __import__kwargs={'fromlist': ['mplot3d']}) self.fig = self.plt.figure() self.ax = self.fig.add_subplot(111, projection='3d') def process_series(self): parent = self.parent for s in self.parent._series: # Create the collections if s.is_2Dline: collection = self.LineCollection(s.get_segments()) self.ax.add_collection(collection) elif s.is_contour: self.ax.contour(*s.get_meshes()) elif s.is_3Dline: # TODO too complicated, I blame matplotlib mpl_toolkits = import_module('mpl_toolkits', __import__kwargs={'fromlist': ['mplot3d']}) art3d = mpl_toolkits.mplot3d.art3d collection = art3d.Line3DCollection(s.get_segments()) self.ax.add_collection(collection) x, y, z = s.get_points() self.ax.set_xlim((min(x), max(x))) self.ax.set_ylim((min(y), max(y))) self.ax.set_zlim((min(z), max(z))) elif s.is_3Dsurface: x, y, z = s.get_meshes() collection = self.ax.plot_surface(x, y, z, cmap=self.cm.jet, rstride=1, cstride=1, linewidth=0.1) elif s.is_implicit: #Smart bounds have to be set to False for implicit plots. self.ax.spines['left'].set_smart_bounds(False) self.ax.spines['bottom'].set_smart_bounds(False) points = s.get_raster() if len(points) == 2: #interval math plotting x, y = _matplotlib_list(points[0]) self.ax.fill(x, y, facecolor='b', edgecolor='None' ) else: # use contourf or contour depending on whether it is # an inequality or equality. #XXX: ``contour`` plots multiple lines. Should be fixed. ListedColormap = self.matplotlib.colors.ListedColormap colormap = ListedColormap(["white", "blue"]) xarray, yarray, zarray, plot_type = points if plot_type == 'contour': self.ax.contour(xarray, yarray, zarray, contours=(0, 0), fill=False, cmap=colormap) else: self.ax.contourf(xarray, yarray, zarray, cmap=colormap) else: raise ValueError('The matplotlib backend supports only ' 'is_2Dline, is_3Dline, is_3Dsurface and ' 'is_contour objects.') # Customise the collections with the corresponding per-series # options. if hasattr(s, 'label'): collection.set_label(s.label) if s.is_line and s.line_color: if isinstance(s.line_color, (float, int)) or isinstance(s.line_color, Callable): color_array = s.get_color_array() collection.set_array(color_array) else: collection.set_color(s.line_color) if s.is_3Dsurface and s.surface_color: if self.matplotlib.__version__ < "1.2.0": # TODO in the distant future remove this check warnings.warn('The version of matplotlib is too old to use surface coloring.') elif isinstance(s.surface_color, (float, int)) or isinstance(s.surface_color, Callable): color_array = s.get_color_array() color_array = color_array.reshape(color_array.size) collection.set_array(color_array) else: collection.set_color(s.surface_color) # Set global options. # TODO The 3D stuff # XXX The order of those is important. mpl_toolkits = import_module('mpl_toolkits', __import__kwargs={'fromlist': ['mplot3d']}) Axes3D = mpl_toolkits.mplot3d.Axes3D if parent.xscale and not isinstance(self.ax, Axes3D): self.ax.set_xscale(parent.xscale) if parent.yscale and not isinstance(self.ax, Axes3D): self.ax.set_yscale(parent.yscale) if parent.xlim: self.ax.set_xlim(parent.xlim) else: if all(isinstance(s, LineOver1DRangeSeries) for s in parent._series): starts = [s.start for s in parent._series] ends = [s.end for s in parent._series] self.ax.set_xlim(min(starts), max(ends)) if parent.ylim: self.ax.set_ylim(parent.ylim) if not isinstance(self.ax, Axes3D) or self.matplotlib.__version__ >= '1.2.0': # XXX in the distant future remove this check self.ax.set_autoscale_on(parent.autoscale) if parent.axis_center: val = parent.axis_center if isinstance(self.ax, Axes3D): pass elif val == 'center': self.ax.spines['left'].set_position('center') self.ax.spines['bottom'].set_position('center') elif val == 'auto': xl, xh = self.ax.get_xlim() yl, yh = self.ax.get_ylim() pos_left = ('data', 0) if xl*xh <= 0 else 'center' pos_bottom = ('data', 0) if yl*yh <= 0 else 'center' self.ax.spines['left'].set_position(pos_left) self.ax.spines['bottom'].set_position(pos_bottom) else: self.ax.spines['left'].set_position(('data', val[0])) self.ax.spines['bottom'].set_position(('data', val[1])) if not parent.axis: self.ax.set_axis_off() if parent.legend: if self.ax.legend(): self.ax.legend_.set_visible(parent.legend) if parent.margin: self.ax.set_xmargin(parent.margin) self.ax.set_ymargin(parent.margin) if parent.title: self.ax.set_title(parent.title) if parent.xlabel: self.ax.set_xlabel(parent.xlabel, position=(1, 0)) if parent.ylabel: self.ax.set_ylabel(parent.ylabel, position=(0, 1)) def show(self): self.process_series() #TODO after fixing https://github.com/ipython/ipython/issues/1255 # you can uncomment the next line and remove the pyplot.show() call #self.fig.show() if _show: self.plt.show() def save(self, path): self.process_series() self.fig.savefig(path) def close(self): self.plt.close(self.fig) class TextBackend(BaseBackend): def __init__(self, parent): super(TextBackend, self).__init__(parent) def show(self): if len(self.parent._series) != 1: raise ValueError( 'The TextBackend supports only one graph per Plot.') elif not isinstance(self.parent._series[0], LineOver1DRangeSeries): raise ValueError( 'The TextBackend supports only expressions over a 1D range') else: ser = self.parent._series[0] textplot(ser.expr, ser.start, ser.end) def close(self): pass class DefaultBackend(BaseBackend): def __new__(cls, parent): matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: return MatplotlibBackend(parent) else: return TextBackend(parent) plot_backends = { 'matplotlib': MatplotlibBackend, 'text': TextBackend, 'default': DefaultBackend } ############################################################################## # Finding the centers of line segments or mesh faces ############################################################################## def centers_of_segments(array): np = import_module('numpy') return np.average(np.vstack((array[:-1], array[1:])), 0) def centers_of_faces(array): np = import_module('numpy') return np.average(np.dstack((array[:-1, :-1], array[1:, :-1], array[:-1, 1: ], array[:-1, :-1], )), 2) def flat(x, y, z, eps=1e-3): """Checks whether three points are almost collinear""" np = import_module('numpy') vector_a = x - y vector_b = z - y dot_product = np.dot(vector_a, vector_b) vector_a_norm = np.linalg.norm(vector_a) vector_b_norm = np.linalg.norm(vector_b) cos_theta = dot_product / (vector_a_norm * vector_b_norm) return abs(cos_theta + 1) < eps def _matplotlib_list(interval_list): """ Returns lists for matplotlib ``fill`` command from a list of bounding rectangular intervals """ xlist = [] ylist = [] if len(interval_list): for intervals in interval_list: intervalx = intervals[0] intervaly = intervals[1] xlist.extend([intervalx.start, intervalx.start, intervalx.end, intervalx.end, None]) ylist.extend([intervaly.start, intervaly.end, intervaly.end, intervaly.start, None]) else: #XXX Ugly hack. Matplotlib does not accept empty lists for ``fill`` xlist.extend([None, None, None, None]) ylist.extend([None, None, None, None]) return xlist, ylist ####New API for plotting module #### # TODO: Add color arrays for plots. # TODO: Add more plotting options for 3d plots. # TODO: Adaptive sampling for 3D plots. @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot(*args, **kwargs): """ Plots a function of a single variable and returns an instance of the ``Plot`` class (also, see the description of the ``show`` keyword argument below). The plotting uses an adaptive algorithm which samples recursively to accurately plot the plot. The adaptive algorithm uses a random point near the midpoint of two points that has to be further sampled. Hence the same plots can appear slightly different. Usage ===== Single Plot ``plot(expr, range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with same range. ``plot(expr1, expr2, ..., range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot((expr1, range), (expr2, range), ..., **kwargs)`` Range has to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr`` : Expression representing the function of single variable ``range``: (x, 0, 5), A 3-tuple denoting the range of the free variable. Keyword Arguments ================= Arguments for ``plot`` function: ``show``: Boolean. The default value is set to ``True``. Set show to ``False`` and the function will not display the plot. The returned instance of the ``Plot`` class can then be used to save or display the plot by calling the ``save()`` and ``show()`` methods respectively. Arguments for ``LineOver1DRangeSeries`` class: ``adaptive``: Boolean. The default value is set to True. Set adaptive to False and specify ``nb_of_points`` if uniform sampling is required. ``depth``: int Recursion depth of the adaptive algorithm. A depth of value ``n`` samples a maximum of `2^{n}` points. ``nb_of_points``: int. Used when the ``adaptive`` is set to False. The function is uniformly sampled at ``nb_of_points`` number of points. Aesthetics options: ``line_color``: float. Specifies the color for the plot. See ``Plot`` to see how to set color for the plots. If there are multiple plots, then the same series series are applied to all the plots. If you want to set these options separately, you can index the ``Plot`` object returned and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. It is set to the latex representation of the expression, if the plot has only one expression. ``xlabel`` : str. Label for the x-axis. ``ylabel`` : str. Label for the y-axis. ``xscale``: {'linear', 'log'} Sets the scaling of the x-axis. ``yscale``: {'linear', 'log'} Sets the scaling if the y-axis. ``axis_center``: tuple of two floats denoting the coordinates of the center or {'center', 'auto'} ``xlim`` : tuple of two floats, denoting the x-axis limits. ``ylim`` : tuple of two floats, denoting the y-axis limits. Examples ======== >>> from sympy import symbols >>> from sympy.plotting import plot >>> x = symbols('x') Single Plot >>> plot(x**2, (x, -5, 5)) Plot object containing: [0]: cartesian line: x**2 for x over (-5.0, 5.0) Multiple plots with single range. >>> plot(x, x**2, x**3, (x, -5, 5)) Plot object containing: [0]: cartesian line: x for x over (-5.0, 5.0) [1]: cartesian line: x**2 for x over (-5.0, 5.0) [2]: cartesian line: x**3 for x over (-5.0, 5.0) Multiple plots with different ranges. >>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5))) Plot object containing: [0]: cartesian line: x**2 for x over (-6.0, 6.0) [1]: cartesian line: x for x over (-5.0, 5.0) No adaptive sampling. >>> plot(x**2, adaptive=False, nb_of_points=400) Plot object containing: [0]: cartesian line: x**2 for x over (-10.0, 10.0) See Also ======== Plot, LineOver1DRangeSeries. """ args = list(map(sympify, args)) free = set() for a in args: if isinstance(a, Expr): free |= a.free_symbols if len(free) > 1: raise ValueError( 'The same variable should be used in all ' 'univariate expressions being plotted.') x = free.pop() if free else Symbol('x') kwargs.setdefault('xlabel', x.name) kwargs.setdefault('ylabel', 'f(%s)' % x.name) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 1, 1) series = [LineOver1DRangeSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot_parametric(*args, **kwargs): """ Plots a 2D parametric plot. The plotting uses an adaptive algorithm which samples recursively to accurately plot the plot. The adaptive algorithm uses a random point near the midpoint of two points that has to be further sampled. Hence the same plots can appear slightly different. Usage ===== Single plot. ``plot_parametric(expr_x, expr_y, range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with same range. ``plot_parametric((expr1_x, expr1_y), (expr2_x, expr2_y), range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot_parametric((expr_x, expr_y, range), ..., **kwargs)`` Range has to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr_x`` : Expression representing the function along x. ``expr_y`` : Expression representing the function along y. ``range``: (u, 0, 5), A 3-tuple denoting the range of the parameter variable. Keyword Arguments ================= Arguments for ``Parametric2DLineSeries`` class: ``adaptive``: Boolean. The default value is set to True. Set adaptive to False and specify ``nb_of_points`` if uniform sampling is required. ``depth``: int Recursion depth of the adaptive algorithm. A depth of value ``n`` samples a maximum of `2^{n}` points. ``nb_of_points``: int. Used when the ``adaptive`` is set to False. The function is uniformly sampled at ``nb_of_points`` number of points. Aesthetics ---------- ``line_color``: function which returns a float. Specifies the color for the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same Series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``xlabel`` : str. Label for the x-axis. ``ylabel`` : str. Label for the y-axis. ``xscale``: {'linear', 'log'} Sets the scaling of the x-axis. ``yscale``: {'linear', 'log'} Sets the scaling if the y-axis. ``axis_center``: tuple of two floats denoting the coordinates of the center or {'center', 'auto'} ``xlim`` : tuple of two floats, denoting the x-axis limits. ``ylim`` : tuple of two floats, denoting the y-axis limits. Examples ======== >>> from sympy import symbols, cos, sin >>> from sympy.plotting import plot_parametric >>> u = symbols('u') Single Parametric plot >>> plot_parametric(cos(u), sin(u), (u, -5, 5)) Plot object containing: [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0) Multiple parametric plot with single range. >>> plot_parametric((cos(u), sin(u)), (u, cos(u))) Plot object containing: [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0) [1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0) Multiple parametric plots. >>> plot_parametric((cos(u), sin(u), (u, -5, 5)), ... (cos(u), u, (u, -5, 5))) Plot object containing: [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0) [1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0) See Also ======== Plot, Parametric2DLineSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 2, 1) series = [Parametric2DLineSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot3d_parametric_line(*args, **kwargs): """ Plots a 3D parametric line plot. Usage ===== Single plot: ``plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots. ``plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr_x`` : Expression representing the function along x. ``expr_y`` : Expression representing the function along y. ``expr_z`` : Expression representing the function along z. ``range``: ``(u, 0, 5)``, A 3-tuple denoting the range of the parameter variable. Keyword Arguments ================= Arguments for ``Parametric3DLineSeries`` class. ``nb_of_points``: The range is uniformly sampled at ``nb_of_points`` number of points. Aesthetics: ``line_color``: function which returns a float. Specifies the color for the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class. ``title`` : str. Title of the plot. Examples ======== >>> from sympy import symbols, cos, sin >>> from sympy.plotting import plot3d_parametric_line >>> u = symbols('u') Single plot. >>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5)) Plot object containing: [0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0) Multiple plots. >>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)), ... (sin(u), u**2, u, (u, -5, 5))) Plot object containing: [0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0) [1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0) See Also ======== Plot, Parametric3DLineSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 3, 1) series = [Parametric3DLineSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot3d(*args, **kwargs): """ Plots a 3D surface plot. Usage ===== Single plot ``plot3d(expr, range_x, range_y, **kwargs)`` If the ranges are not specified, then a default range of (-10, 10) is used. Multiple plot with the same range. ``plot3d(expr1, expr2, range_x, range_y, **kwargs)`` If the ranges are not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr`` : Expression representing the function along x. ``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x variable. ``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y variable. Keyword Arguments ================= Arguments for ``SurfaceOver2DRangeSeries`` class: ``nb_of_points_x``: int. The x range is sampled uniformly at ``nb_of_points_x`` of points. ``nb_of_points_y``: int. The y range is sampled uniformly at ``nb_of_points_y`` of points. Aesthetics: ``surface_color``: Function which returns a float. Specifies the color for the surface of the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. Examples ======== >>> from sympy import symbols >>> from sympy.plotting import plot3d >>> x, y = symbols('x y') Single plot >>> plot3d(x*y, (x, -5, 5), (y, -5, 5)) Plot object containing: [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) Multiple plots with same range >>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5)) Plot object containing: [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) [1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) Multiple plots with different ranges. >>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)), ... (x*y, (x, -3, 3), (y, -3, 3))) Plot object containing: [0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0) [1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0) See Also ======== Plot, SurfaceOver2DRangeSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 1, 2) series = [SurfaceOver2DRangeSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot3d_parametric_surface(*args, **kwargs): """ Plots a 3D parametric surface plot. Usage ===== Single plot. ``plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)`` If the ranges is not specified, then a default range of (-10, 10) is used. Multiple plots. ``plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr_x``: Expression representing the function along ``x``. ``expr_y``: Expression representing the function along ``y``. ``expr_z``: Expression representing the function along ``z``. ``range_u``: ``(u, 0, 5)``, A 3-tuple denoting the range of the ``u`` variable. ``range_v``: ``(v, 0, 5)``, A 3-tuple denoting the range of the v variable. Keyword Arguments ================= Arguments for ``ParametricSurfaceSeries`` class: ``nb_of_points_u``: int. The ``u`` range is sampled uniformly at ``nb_of_points_v`` of points ``nb_of_points_y``: int. The ``v`` range is sampled uniformly at ``nb_of_points_y`` of points Aesthetics: ``surface_color``: Function which returns a float. Specifies the color for the surface of the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied for all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. Examples ======== >>> from sympy import symbols, cos, sin >>> from sympy.plotting import plot3d_parametric_surface >>> u, v = symbols('u v') Single plot. >>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v, ... (u, -5, 5), (v, -5, 5)) Plot object containing: [0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0) See Also ======== Plot, ParametricSurfaceSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 3, 2) series = [ParametricSurfaceSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots def check_arguments(args, expr_len, nb_of_free_symbols): """ Checks the arguments and converts into tuples of the form (exprs, ranges) Examples ======== >>> from sympy import plot, cos, sin, symbols >>> from sympy.plotting.plot import check_arguments >>> x = symbols('x') >>> check_arguments([cos(x), sin(x)], 2, 1) [(cos(x), sin(x), (x, -10, 10))] >>> check_arguments([x, x**2], 1, 1) [(x, (x, -10, 10)), (x**2, (x, -10, 10))] """ if expr_len > 1 and isinstance(args[0], Expr): # Multiple expressions same range. # The arguments are tuples when the expression length is # greater than 1. if len(args) < expr_len: raise ValueError("len(args) should not be less than expr_len") for i in range(len(args)): if isinstance(args[i], Tuple): break else: i = len(args) + 1 exprs = Tuple(*args[:i]) free_symbols = list(set().union(*[e.free_symbols for e in exprs])) if len(args) == expr_len + nb_of_free_symbols: #Ranges given plots = [exprs + Tuple(*args[expr_len:])] else: default_range = Tuple(-10, 10) ranges = [] for symbol in free_symbols: ranges.append(Tuple(symbol) + default_range) for i in range(len(free_symbols) - nb_of_free_symbols): ranges.append(Tuple(Dummy()) + default_range) plots = [exprs + Tuple(*ranges)] return plots if isinstance(args[0], Expr) or (isinstance(args[0], Tuple) and len(args[0]) == expr_len and expr_len != 3): # Cannot handle expressions with number of expression = 3. It is # not possible to differentiate between expressions and ranges. #Series of plots with same range for i in range(len(args)): if isinstance(args[i], Tuple) and len(args[i]) != expr_len: break if not isinstance(args[i], Tuple): args[i] = Tuple(args[i]) else: i = len(args) + 1 exprs = args[:i] assert all(isinstance(e, Expr) for expr in exprs for e in expr) free_symbols = list(set().union(*[e.free_symbols for expr in exprs for e in expr])) if len(free_symbols) > nb_of_free_symbols: raise ValueError("The number of free_symbols in the expression " "is greater than %d" % nb_of_free_symbols) if len(args) == i + nb_of_free_symbols and isinstance(args[i], Tuple): ranges = Tuple(*[range_expr for range_expr in args[ i:i + nb_of_free_symbols]]) plots = [expr + ranges for expr in exprs] return plots else: #Use default ranges. default_range = Tuple(-10, 10) ranges = [] for symbol in free_symbols: ranges.append(Tuple(symbol) + default_range) for i in range(len(free_symbols) - nb_of_free_symbols): ranges.append(Tuple(Dummy()) + default_range) ranges = Tuple(*ranges) plots = [expr + ranges for expr in exprs] return plots elif isinstance(args[0], Tuple) and len(args[0]) == expr_len + nb_of_free_symbols: #Multiple plots with different ranges. for arg in args: for i in range(expr_len): if not isinstance(arg[i], Expr): raise ValueError("Expected an expression, given %s" % str(arg[i])) for i in range(nb_of_free_symbols): if not len(arg[i + expr_len]) == 3: raise ValueError("The ranges should be a tuple of " "length 3, got %s" % str(arg[i + expr_len])) return args
bsd-3-clause
seansu4you87/kupo
projects/MOOCs/udacity/drive/project-5-vehicle-detection/src/explore/hog_model.py
1
5680
import matplotlib.image as mpimg import matplotlib.pyplot as plt import numpy as np import cv2 import glob import time from sklearn.svm import LinearSVC from sklearn.preprocessing import StandardScaler from skimage.feature import hog # NOTE: the next import is only valid for scikit-learn version <= 0.17 # for scikit-learn >= 0.18 use: # from sklearn.model_selection import train_test_split from sklearn.cross_validation import train_test_split # Define a function to return HOG features and visualization def get_hog_features(img, orient, pix_per_cell, cell_per_block, vis=False, feature_vec=True): # Call with two outputs if vis==True if vis == True: features, hog_image = hog(img, orientations=orient, pixels_per_cell=(pix_per_cell, pix_per_cell), cells_per_block=(cell_per_block, cell_per_block), transform_sqrt=True, visualise=vis, feature_vector=feature_vec) return features, hog_image # Otherwise call with one output else: features = hog(img, orientations=orient, pixels_per_cell=(pix_per_cell, pix_per_cell), cells_per_block=(cell_per_block, cell_per_block), transform_sqrt=True, visualise=vis, feature_vector=feature_vec) return features # Define a function to extract features from a list of images # Have this function call bin_spatial() and color_hist() def extract_features(imgs, cspace='RGB', orient=9, pix_per_cell=8, cell_per_block=2, hog_channel=0): # Create a list to append feature vectors to features = [] # Iterate through the list of images for file in imgs: # Read in each one by one image = mpimg.imread(file) # apply color conversion if other than 'RGB' if cspace != 'RGB': if cspace == 'HSV': feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) elif cspace == 'LUV': feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2LUV) elif cspace == 'HLS': feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2HLS) elif cspace == 'YUV': feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2YUV) elif cspace == 'YCrCb': feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2YCrCb) else: feature_image = np.copy(image) # Call get_hog_features() with vis=False, feature_vec=True if hog_channel == 'ALL': hog_features = [] for channel in range(feature_image.shape[2]): hog_features.append(get_hog_features(feature_image[:,:,channel], orient, pix_per_cell, cell_per_block, vis=False, feature_vec=True)) hog_features = np.ravel(hog_features) else: hog_features = get_hog_features(feature_image[:,:,hog_channel], orient, pix_per_cell, cell_per_block, vis=False, feature_vec=True) # Append the new feature vector to the features list features.append(hog_features) # Return list of feature vectors return features # Divide up into cars and notcars cars = glob.glob("../resources/vehicles/**/*.png", recursive=True) notcars = glob.glob("../resources/non-vehicles/**/*.png", recursive=True) # Reduce the sample size because HOG features are slow to compute # The quiz evaluator times out after 13s of CPU time sample_size = 500 cars = cars[0:sample_size] notcars = notcars[0:sample_size] ### TODO: Tweak these parameters and see how the results change. colorspace = 'RGB' # Can be RGB, HSV, LUV, HLS, YUV, YCrCb orient = 9 pix_per_cell = 8 cell_per_block = 2 hog_channel = 0 # Can be 0, 1, 2, or "ALL" t=time.time() car_features = extract_features(cars, cspace=colorspace, orient=orient, pix_per_cell=pix_per_cell, cell_per_block=cell_per_block, hog_channel=hog_channel) notcar_features = extract_features(notcars, cspace=colorspace, orient=orient, pix_per_cell=pix_per_cell, cell_per_block=cell_per_block, hog_channel=hog_channel) t2 = time.time() print(round(t2-t, 2), 'Seconds to extract HOG features...') # Create an array stack of feature vectors X = np.vstack((car_features, notcar_features)).astype(np.float64) # Fit a per-column scaler X_scaler = StandardScaler().fit(X) # Apply the scaler to X scaled_X = X_scaler.transform(X) # Define the labels vector y = np.hstack((np.ones(len(car_features)), np.zeros(len(notcar_features)))) # Split up data into randomized training and test sets rand_state = np.random.randint(0, 100) X_train, X_test, y_train, y_test = train_test_split( scaled_X, y, test_size=0.2, random_state=rand_state) print('Using:',orient,'orientations',pix_per_cell, 'pixels per cell and', cell_per_block,'cells per block') print('Feature vector length:', len(X_train[0])) # Use a linear SVC svc = LinearSVC() # Check the training time for the SVC t=time.time() svc.fit(X_train, y_train) t2 = time.time() print(round(t2-t, 2), 'Seconds to train SVC...') # Check the score of the SVC print('Test Accuracy of SVC = ', round(svc.score(X_test, y_test), 4)) # Check the prediction time for a single sample t=time.time() n_predict = 10 print('My SVC predicts: ', svc.predict(X_test[0:n_predict])) print('For these',n_predict, 'labels: ', y_test[0:n_predict]) t2 = time.time() print(round(t2-t, 5), 'Seconds to predict', n_predict,'labels with SVC')
mit
ruthfranklin/hande
tools/plot_dynamics.py
1
3047
#!/usr/bin/env python '''plot_dynamics.py file Plot the population dynamics and energy profile of a HANDE QMC output file.''' import argparse import os import pkgutil import sys import matplotlib.pyplot as pyplot import numpy as np import pandas as pd if not pkgutil.find_loader('pyblock'): _script_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(_script_dir, '../pyhande')) import pyhande def main(datafile, plotfile): hande_out = pyhande.extract.extract_data(datafile) for (metadata, data) in hande_out: shoulder = pyhande.analysis.plateau_estimator(data) # Plot the total population over the entire range pyplot.subplot(3,1,1) pyplot.plot(data['iterations'], data['# H psips']) pyplot.xlabel('iteration') pyplot.ylabel('Total Population') # Plot the energy estimators over the entire range pyplot.subplot(3,1,2) pyplot.plot(data['iterations'], data['\sum H_0j N_j']/data['N_0'], label='Proj. Energy') pyplot.plot(data['iterations'], data['Shift'], label='Shift') pyplot.xlabel('iteration') pyplot.ylabel('Energy / $E_{h}$') pyplot.legend() pyplot.subplot(3,1,3) # Plot the total population up to the shoulder height = shoulder['mean']['shoulder height'] data_around_shoulder = data[np.logical_and(data['# H psips'] < 1.1*height, data['# H psips'] > 0.9*height) ] pyplot.plot(data_around_shoulder['iterations'], data_around_shoulder['# H psips'], label='Total Population') x_points = [min(data_around_shoulder['iterations']), max(data_around_shoulder['iterations'])] pyplot.plot(x_points, [height, height], label='Shoulder Height') pyplot.xlabel('iteration') pyplot.ylabel('Population') pyplot.legend(loc=2) pyplot.draw() if plotfile == '-': pyplot.show() else: pyplot.savefig(plotfile) # Also print out the information about the shoulder # Stealing from reblock_hande.py try: float_fmt = '{0:-#.8e}'.format float_fmt(1.0) except ValueError: # GAH. Alternate formatting only added to format function after # python 2.6.. float_fmt = '{0:-.8e}'.format print(shoulder.to_string(float_format=float_fmt, line_width=80)) def parse_args(args): parser = argparse.ArgumentParser(description='Plot the population and energy estimators of an FCIQMC/CCMC calulation') parser.add_argument('-p', '--plotfile', default='-', help='File to save the graphs to. ' 'The graphs are shown interactively if "-". Default: %(default)s') parser.add_argument('file', help='File to plot.') opts = parser.parse_args(args) return (opts.file, opts.plotfile) if __name__ == '__main__': (datafile, plotfile) = parse_args(sys.argv[1:]) main(datafile, plotfile)
lgpl-2.1
GGoussar/scikit-image
doc/examples/edges/plot_canny.py
16
1603
""" =================== Canny edge detector =================== The Canny filter is a multi-stage edge detector. It uses a filter based on the derivative of a Gaussian in order to compute the intensity of the gradients.The Gaussian reduces the effect of noise present in the image. Then, potential edges are thinned down to 1-pixel curves by removing non-maximum pixels of the gradient magnitude. Finally, edge pixels are kept or removed using hysteresis thresholding on the gradient magnitude. The Canny has three adjustable parameters: the width of the Gaussian (the noisier the image, the greater the width), and the low and high threshold for the hysteresis thresholding. """ import numpy as np import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage import feature # Generate noisy image of a square im = np.zeros((128, 128)) im[32:-32, 32:-32] = 1 im = ndi.rotate(im, 15, mode='constant') im = ndi.gaussian_filter(im, 4) im += 0.2 * np.random.random(im.shape) # Compute the Canny filter for two values of sigma edges1 = feature.canny(im) edges2 = feature.canny(im, sigma=3) # display results fig, (ax1, ax2, ax3) = plt.subplots(nrows=1, ncols=3, figsize=(8, 3), sharex=True, sharey=True) ax1.imshow(im, cmap=plt.cm.gray) ax1.axis('off') ax1.set_title('noisy image', fontsize=20) ax2.imshow(edges1, cmap=plt.cm.gray) ax2.axis('off') ax2.set_title('Canny filter, $\sigma=1$', fontsize=20) ax3.imshow(edges2, cmap=plt.cm.gray) ax3.axis('off') ax3.set_title('Canny filter, $\sigma=3$', fontsize=20) fig.tight_layout() plt.show()
bsd-3-clause
larsoner/mne-python
mne/viz/evoked.py
3
106814
# -*- coding: utf-8 -*- """Functions to plot evoked M/EEG data (besides topographies).""" # Authors: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # Martin Luessi <[email protected]> # Eric Larson <[email protected]> # Cathy Nangini <[email protected]> # Mainak Jas <[email protected]> # Daniel McCloy <[email protected]> # # License: Simplified BSD from copy import deepcopy from functools import partial from numbers import Integral import numpy as np from ..io.pick import (channel_type, _VALID_CHANNEL_TYPES, channel_indices_by_type, _DATA_CH_TYPES_SPLIT, _pick_inst, _get_channel_types, _PICK_TYPES_DATA_DICT, _picks_to_idx, pick_info) from ..defaults import _handle_default from .utils import (_draw_proj_checkbox, tight_layout, _check_delayed_ssp, plt_show, _process_times, DraggableColorbar, _setup_cmap, _setup_vmin_vmax, _check_cov, _make_combine_callable, _validate_if_list_of_axes, _triage_rank_sss, _connection_line, _get_color_list, _setup_ax_spines, _setup_plot_projector, _prepare_joint_axes, _check_option, _set_title_multiple_electrodes, _check_time_unit, _plot_masked_image, _trim_ticks, _set_window_title) from ..utils import (logger, _clean_names, warn, _pl, verbose, _validate_type, _check_if_nan, _check_ch_locs, fill_doc, _is_numeric) from .topo import _plot_evoked_topo from .topomap import (_prepare_topomap_plot, plot_topomap, _get_pos_outlines, _draw_outlines, _prepare_topomap, _set_contour_locator, _check_sphere, _make_head_outlines) from ..channels.layout import _pair_grad_sensors, find_layout def _butterfly_onpick(event, params): """Add a channel name on click.""" params['need_draw'] = True ax = event.artist.axes ax_idx = np.where([ax is a for a in params['axes']])[0] if len(ax_idx) == 0: # this can happen if ax param is used return # let the other axes handle it else: ax_idx = ax_idx[0] lidx = np.where([ line is event.artist for line in params['lines'][ax_idx]])[0][0] ch_name = params['ch_names'][params['idxs'][ax_idx][lidx]] text = params['texts'][ax_idx] x = event.artist.get_xdata()[event.ind[0]] y = event.artist.get_ydata()[event.ind[0]] text.set_x(x) text.set_y(y) text.set_text(ch_name) text.set_color(event.artist.get_color()) text.set_alpha(1.) text.set_zorder(len(ax.lines)) # to make sure it goes on top of the lines text.set_path_effects(params['path_effects']) # do NOT redraw here, since for butterfly plots hundreds of lines could # potentially be picked -- use on_button_press (happens once per click) # to do the drawing def _butterfly_on_button_press(event, params): """Only draw once for picking.""" if params['need_draw']: event.canvas.draw() else: idx = np.where([event.inaxes is ax for ax in params['axes']])[0] if len(idx) == 1: text = params['texts'][idx[0]] text.set_alpha(0.) text.set_path_effects([]) event.canvas.draw() params['need_draw'] = False def _line_plot_onselect(xmin, xmax, ch_types, info, data, times, text=None, psd=False, time_unit='s', sphere=None): """Draw topomaps from the selected area.""" import matplotlib.pyplot as plt ch_types = [type_ for type_ in ch_types if type_ in ('eeg', 'grad', 'mag')] if len(ch_types) == 0: raise ValueError('Interactive topomaps only allowed for EEG ' 'and MEG channels.') if ('grad' in ch_types and len(_pair_grad_sensors(info, topomap_coords=False, raise_error=False)) < 2): ch_types.remove('grad') if len(ch_types) == 0: return vert_lines = list() if text is not None: text.set_visible(True) ax = text.axes vert_lines.append(ax.axvline(xmin, zorder=0, color='red')) vert_lines.append(ax.axvline(xmax, zorder=0, color='red')) fill = ax.axvspan(xmin, xmax, alpha=0.2, color='green') evoked_fig = plt.gcf() evoked_fig.canvas.draw() evoked_fig.canvas.flush_events() minidx = np.abs(times - xmin).argmin() maxidx = np.abs(times - xmax).argmin() fig, axarr = plt.subplots(1, len(ch_types), squeeze=False, figsize=(3 * len(ch_types), 3)) for idx, ch_type in enumerate(ch_types): if ch_type not in ('eeg', 'grad', 'mag'): continue picks, pos, merge_channels, _, ch_type, this_sphere, clip_origin = \ _prepare_topomap_plot(info, ch_type, sphere=sphere) outlines = _make_head_outlines(this_sphere, pos, 'head', clip_origin) if len(pos) < 2: fig.delaxes(axarr[0][idx]) continue this_data = data[picks, minidx:maxidx] if merge_channels: from ..channels.layout import _merge_ch_data method = 'mean' if psd else 'rms' this_data, _ = _merge_ch_data(this_data, ch_type, [], method=method) title = '%s %s' % (ch_type, method.upper()) else: title = ch_type this_data = np.average(this_data, axis=1) axarr[0][idx].set_title(title) vmin = min(this_data) if psd else None vmax = max(this_data) if psd else None # All negative for dB psd. cmap = 'Reds' if psd else None plot_topomap(this_data, pos, cmap=cmap, vmin=vmin, vmax=vmax, axes=axarr[0][idx], show=False, sphere=this_sphere, outlines=outlines) unit = 'Hz' if psd else time_unit fig.suptitle('Average over %.2f%s - %.2f%s' % (xmin, unit, xmax, unit), y=0.1) tight_layout(pad=2.0, fig=fig) plt_show() if text is not None: text.set_visible(False) close_callback = partial(_topo_closed, ax=ax, lines=vert_lines, fill=fill) fig.canvas.mpl_connect('close_event', close_callback) evoked_fig.canvas.draw() evoked_fig.canvas.flush_events() def _topo_closed(events, ax, lines, fill): """Remove lines from evoked plot as topomap is closed.""" for line in lines: ax.lines.remove(line) ax.patches.remove(fill) ax.get_figure().canvas.draw() def _rgb(x, y, z): """Transform x, y, z values into RGB colors.""" rgb = np.array([x, y, z]).T rgb -= rgb.min(0) rgb /= np.maximum(rgb.max(0), 1e-16) # avoid div by zero return rgb def _plot_legend(pos, colors, axis, bads, outlines, loc, size=30): """Plot (possibly colorized) channel legends for evoked plots.""" from mpl_toolkits.axes_grid1.inset_locator import inset_axes axis.get_figure().canvas.draw() bbox = axis.get_window_extent() # Determine the correct size. ratio = bbox.width / bbox.height ax = inset_axes(axis, width=str(size / ratio) + '%', height=str(size) + '%', loc=loc) ax.set_adjustable('box') ax.set_aspect('equal') _prepare_topomap(pos, ax, check_nonzero=False) pos_x, pos_y = pos.T ax.scatter(pos_x, pos_y, color=colors, s=size * .8, marker='.', zorder=1) if bads: bads = np.array(bads) ax.scatter(pos_x[bads], pos_y[bads], s=size / 6, marker='.', color='w', zorder=1) _draw_outlines(ax, outlines) def _plot_evoked(evoked, picks, exclude, unit, show, ylim, proj, xlim, hline, units, scalings, titles, axes, plot_type, cmap=None, gfp=False, window_title=None, spatial_colors=False, selectable=True, zorder='unsorted', noise_cov=None, colorbar=True, mask=None, mask_style=None, mask_cmap=None, mask_alpha=.25, time_unit='s', show_names=False, group_by=None, sphere=None): """Aux function for plot_evoked and plot_evoked_image (cf. docstrings). Extra param is: plot_type : str, value ('butterfly' | 'image') The type of graph to plot: 'butterfly' plots each channel as a line (x axis: time, y axis: amplitude). 'image' plots a 2D image where color depicts the amplitude of each channel at a given time point (x axis: time, y axis: channel). In 'image' mode, the plot is not interactive. """ import matplotlib.pyplot as plt # For evoked.plot_image ... # First input checks for group_by and axes if any of them is not None. # Either both must be dicts, or neither. # If the former, the two dicts provide picks and axes to plot them to. # Then, we call this function recursively for each entry in `group_by`. if plot_type == "image" and isinstance(group_by, dict): if axes is None: axes = dict() for sel in group_by: plt.figure() axes[sel] = plt.axes() if not isinstance(axes, dict): raise ValueError("If `group_by` is a dict, `axes` must be " "a dict of axes or None.") _validate_if_list_of_axes(list(axes.values())) remove_xlabels = any([_is_last_row(ax) for ax in axes.values()]) for sel in group_by: # ... we loop over selections if sel not in axes: raise ValueError(sel + " present in `group_by`, but not " "found in `axes`") ax = axes[sel] # the unwieldy dict comp below defaults the title to the sel titles = ({channel_type(evoked.info, idx): sel for idx in group_by[sel]} if titles is None else titles) _plot_evoked(evoked, group_by[sel], exclude, unit, show, ylim, proj, xlim, hline, units, scalings, titles, ax, plot_type, cmap=cmap, gfp=gfp, window_title=window_title, selectable=selectable, noise_cov=noise_cov, colorbar=colorbar, mask=mask, mask_style=mask_style, mask_cmap=mask_cmap, mask_alpha=mask_alpha, time_unit=time_unit, show_names=show_names, sphere=sphere) if remove_xlabels and not _is_last_row(ax): ax.set_xticklabels([]) ax.set_xlabel("") ims = [ax.images[0] for ax in axes.values()] clims = np.array([im.get_clim() for im in ims]) min, max = clims.min(), clims.max() for im in ims: im.set_clim(min, max) figs = [ax.get_figure() for ax in axes.values()] if len(set(figs)) == 1: return figs[0] else: return figs elif isinstance(axes, dict): raise ValueError("If `group_by` is not a dict, " "`axes` must not be a dict either.") time_unit, times = _check_time_unit(time_unit, evoked.times) evoked = evoked.copy() # we modify info info = evoked.info if axes is not None and proj == 'interactive': raise RuntimeError('Currently only single axis figures are supported' ' for interactive SSP selection.') if isinstance(gfp, str) and gfp != 'only': raise ValueError('gfp must be boolean or "only". Got %s' % gfp) scalings = _handle_default('scalings', scalings) titles = _handle_default('titles', titles) units = _handle_default('units', units) picks = _picks_to_idx(info, picks, none='all', exclude=()) if len(picks) != len(set(picks)): raise ValueError("`picks` are not unique. Please remove duplicates.") bad_ch_idx = [info['ch_names'].index(ch) for ch in info['bads'] if ch in info['ch_names']] if len(exclude) > 0: if isinstance(exclude, str) and exclude == 'bads': exclude = bad_ch_idx elif (isinstance(exclude, list) and all(isinstance(ch, str) for ch in exclude)): exclude = [info['ch_names'].index(ch) for ch in exclude] else: raise ValueError( 'exclude has to be a list of channel names or "bads"') picks = np.array([pick for pick in picks if pick not in exclude]) types = np.array(_get_channel_types(info, picks), str) ch_types_used = list() for this_type in _VALID_CHANNEL_TYPES: if this_type in types: ch_types_used.append(this_type) fig = None if axes is None: fig, axes = plt.subplots(len(ch_types_used), 1) fig.subplots_adjust(left=0.125, bottom=0.1, right=0.975, top=0.92, hspace=0.63) if isinstance(axes, plt.Axes): axes = [axes] fig.set_size_inches(6.4, 2 + len(axes)) if isinstance(axes, plt.Axes): axes = [axes] elif isinstance(axes, np.ndarray): axes = list(axes) if fig is None: fig = axes[0].get_figure() if window_title is not None: _set_window_title(fig, window_title) if len(axes) != len(ch_types_used): raise ValueError('Number of axes (%g) must match number of channel ' 'types (%d: %s)' % (len(axes), len(ch_types_used), sorted(ch_types_used))) _check_option('proj', proj, (True, False, 'interactive', 'reconstruct')) noise_cov = _check_cov(noise_cov, info) if proj == 'reconstruct' and noise_cov is not None: raise ValueError('Cannot use proj="reconstruct" when noise_cov is not ' 'None') projector, whitened_ch_names = _setup_plot_projector( info, noise_cov, proj=proj is True, nave=evoked.nave) if len(whitened_ch_names) > 0: unit = False if projector is not None: evoked.data[:] = np.dot(projector, evoked.data) if proj == 'reconstruct': evoked = evoked._reconstruct_proj() if plot_type == 'butterfly': _plot_lines(evoked.data, info, picks, fig, axes, spatial_colors, unit, units, scalings, hline, gfp, types, zorder, xlim, ylim, times, bad_ch_idx, titles, ch_types_used, selectable, False, line_alpha=1., nave=evoked.nave, time_unit=time_unit, sphere=sphere) plt.setp(axes, xlabel='Time (%s)' % time_unit) elif plot_type == 'image': for ai, (ax, this_type) in enumerate(zip(axes, ch_types_used)): use_nave = evoked.nave if ai == 0 else None this_picks = list(picks[types == this_type]) _plot_image(evoked.data, ax, this_type, this_picks, cmap, unit, units, scalings, times, xlim, ylim, titles, colorbar=colorbar, mask=mask, mask_style=mask_style, mask_cmap=mask_cmap, mask_alpha=mask_alpha, nave=use_nave, time_unit=time_unit, show_names=show_names, ch_names=evoked.ch_names) if proj == 'interactive': _check_delayed_ssp(evoked) params = dict(evoked=evoked, fig=fig, projs=info['projs'], axes=axes, types=types, units=units, scalings=scalings, unit=unit, ch_types_used=ch_types_used, picks=picks, plot_update_proj_callback=_plot_update_evoked, plot_type=plot_type) _draw_proj_checkbox(None, params) plt.setp(fig.axes[:len(ch_types_used) - 1], xlabel='') fig.canvas.draw() # for axes plots update axes. plt_show(show) return fig def _is_last_row(ax): try: return ax.get_subplotspec().is_last_row() except AttributeError: # XXX old mpl return ax.is_last_row() def _plot_lines(data, info, picks, fig, axes, spatial_colors, unit, units, scalings, hline, gfp, types, zorder, xlim, ylim, times, bad_ch_idx, titles, ch_types_used, selectable, psd, line_alpha, nave, time_unit, sphere): """Plot data as butterfly plot.""" from matplotlib import patheffects, pyplot as plt from matplotlib.widgets import SpanSelector assert len(axes) == len(ch_types_used) texts = list() idxs = list() lines = list() sphere = _check_sphere(sphere, info) path_effects = [patheffects.withStroke(linewidth=2, foreground="w", alpha=0.75)] gfp_path_effects = [patheffects.withStroke(linewidth=5, foreground="w", alpha=0.75)] if selectable: selectables = np.ones(len(ch_types_used), dtype=bool) for type_idx, this_type in enumerate(ch_types_used): idx = picks[types == this_type] if len(idx) < 2 or (this_type == 'grad' and len(idx) < 4): # prevent unnecessary warnings for e.g. EOG if this_type in _DATA_CH_TYPES_SPLIT: logger.info('Need more than one channel to make ' 'topography for %s. Disabling interactivity.' % (this_type,)) selectables[type_idx] = False if selectable: # Parameters for butterfly interactive plots params = dict(axes=axes, texts=texts, lines=lines, ch_names=info['ch_names'], idxs=idxs, need_draw=False, path_effects=path_effects) fig.canvas.mpl_connect('pick_event', partial(_butterfly_onpick, params=params)) fig.canvas.mpl_connect('button_press_event', partial(_butterfly_on_button_press, params=params)) for ai, (ax, this_type) in enumerate(zip(axes, ch_types_used)): line_list = list() # 'line_list' contains the lines for this axes if unit is False: this_scaling = 1.0 ch_unit = 'NA' # no unit else: this_scaling = 1. if scalings is None else scalings[this_type] ch_unit = units[this_type] idx = list(picks[types == this_type]) idxs.append(idx) if len(idx) > 0: # Set amplitude scaling D = this_scaling * data[idx, :] _check_if_nan(D) gfp_only = (isinstance(gfp, str) and gfp == 'only') if not gfp_only: chs = [info['chs'][i] for i in idx] locs3d = np.array([ch['loc'][:3] for ch in chs]) if spatial_colors is True and not _check_ch_locs(chs): warn('Channel locations not available. Disabling spatial ' 'colors.') spatial_colors = selectable = False if spatial_colors is True and len(idx) != 1: x, y, z = locs3d.T colors = _rgb(x, y, z) _handle_spatial_colors(colors, info, idx, this_type, psd, ax, sphere) else: if isinstance(spatial_colors, (tuple, str)): col = [spatial_colors] else: col = ['k'] colors = col * len(idx) for i in bad_ch_idx: if i in idx: colors[idx.index(i)] = 'r' if zorder == 'std': # find the channels with the least activity # to map them in front of the more active ones z_ord = D.std(axis=1).argsort() elif zorder == 'unsorted': z_ord = list(range(D.shape[0])) elif not callable(zorder): error = ('`zorder` must be a function, "std" ' 'or "unsorted", not {0}.') raise TypeError(error.format(type(zorder))) else: z_ord = zorder(D) # plot channels for ch_idx, z in enumerate(z_ord): line_list.append( ax.plot(times, D[ch_idx], picker=True, zorder=z + 1 if spatial_colors is True else 1, color=colors[ch_idx], alpha=line_alpha, linewidth=0.5)[0]) line_list[-1].set_pickradius(3.) if gfp: # 'only' or boolean True gfp_color = 3 * (0.,) if spatial_colors is True else (0., 1., 0.) this_gfp = np.sqrt((D * D).mean(axis=0)) this_ylim = ax.get_ylim() if (ylim is None or this_type not in ylim.keys()) else ylim[this_type] if gfp_only: y_offset = 0. else: y_offset = this_ylim[0] this_gfp += y_offset ax.fill_between(times, y_offset, this_gfp, color='none', facecolor=gfp_color, zorder=1, alpha=0.2) line_list.append(ax.plot(times, this_gfp, color=gfp_color, zorder=3, alpha=line_alpha)[0]) ax.text(times[0] + 0.01 * (times[-1] - times[0]), this_gfp[0] + 0.05 * np.diff(ax.get_ylim())[0], 'GFP', zorder=4, color=gfp_color, path_effects=gfp_path_effects) for ii, line in zip(idx, line_list): if ii in bad_ch_idx: line.set_zorder(2) if spatial_colors is True: line.set_linestyle("--") ax.set_ylabel(ch_unit) texts.append(ax.text(0, 0, '', zorder=3, verticalalignment='baseline', horizontalalignment='left', fontweight='bold', alpha=0, clip_on=True)) if xlim is not None: if xlim == 'tight': xlim = (times[0], times[-1]) ax.set_xlim(xlim) if ylim is not None and this_type in ylim: ax.set_ylim(ylim[this_type]) ax.set(title=r'%s (%d channel%s)' % (titles[this_type], len(D), _pl(len(D)))) if ai == 0: _add_nave(ax, nave) if hline is not None: for h in hline: c = ('grey' if spatial_colors is True else 'r') ax.axhline(h, linestyle='--', linewidth=2, color=c) lines.append(line_list) if selectable: for ax in np.array(axes)[selectables]: if len(ax.lines) == 1: continue text = ax.annotate('Loading...', xy=(0.01, 0.1), xycoords='axes fraction', fontsize=20, color='green', zorder=3) text.set_visible(False) callback_onselect = partial(_line_plot_onselect, ch_types=ch_types_used, info=info, data=data, times=times, text=text, psd=psd, time_unit=time_unit, sphere=sphere) blit = False if plt.get_backend() == 'MacOSX' else True minspan = 0 if len(times) < 2 else times[1] - times[0] ax._span_selector = SpanSelector( ax, callback_onselect, 'horizontal', minspan=minspan, useblit=blit, rectprops=dict(alpha=0.5, facecolor='red')) def _add_nave(ax, nave): """Add nave to axes.""" if nave is not None: ax.annotate( r'N$_{\mathrm{ave}}$=%d' % nave, ha='left', va='bottom', xy=(0, 1), xycoords='axes fraction', xytext=(0, 5), textcoords='offset pixels') def _handle_spatial_colors(colors, info, idx, ch_type, psd, ax, sphere): """Set up spatial colors.""" used_nm = np.array(_clean_names(info['ch_names']))[idx] # find indices for bads bads = [np.where(used_nm == bad)[0][0] for bad in info['bads'] if bad in used_nm] pos, outlines = _get_pos_outlines(info, idx, sphere=sphere) loc = 1 if psd else 2 # Legend in top right for psd plot. _plot_legend(pos, colors, ax, bads, outlines, loc) def _plot_image(data, ax, this_type, picks, cmap, unit, units, scalings, times, xlim, ylim, titles, colorbar=True, mask=None, mask_cmap=None, mask_style=None, mask_alpha=.25, nave=None, time_unit='s', show_names=False, ch_names=None): """Plot images.""" import matplotlib.pyplot as plt assert time_unit is not None if show_names == "auto": if picks is not None: show_names = "all" if len(picks) < 25 else True else: show_names = False cmap = _setup_cmap(cmap) ch_unit = units[this_type] this_scaling = scalings[this_type] if unit is False: this_scaling = 1.0 ch_unit = 'NA' # no unit if picks is not None: data = data[picks] if mask is not None: mask = mask[picks] # Show the image # Set amplitude scaling data = this_scaling * data if ylim is None or this_type not in ylim: vmax = np.abs(data).max() vmin = -vmax else: vmin, vmax = ylim[this_type] _check_if_nan(data) im, t_end = _plot_masked_image( ax, data, times, mask, yvals=None, cmap=cmap[0], vmin=vmin, vmax=vmax, mask_style=mask_style, mask_alpha=mask_alpha, mask_cmap=mask_cmap) # ignore xlim='tight'; happens automatically with `extent` in imshow xlim = None if xlim == 'tight' else xlim if xlim is not None: ax.set_xlim(xlim) if colorbar: cbar = plt.colorbar(im, ax=ax) cbar.ax.set_title(ch_unit) if cmap[1]: ax.CB = DraggableColorbar(cbar, im) ylabel = 'Channels' if show_names else 'Channel (index)' t = titles[this_type] + ' (%d channel%s' % (len(data), _pl(data)) + t_end ax.set(ylabel=ylabel, xlabel='Time (%s)' % (time_unit,), title=t) _add_nave(ax, nave) yticks = np.arange(len(picks)) if show_names != 'all': yticks = np.intersect1d(np.round(ax.get_yticks()).astype(int), yticks) yticklabels = np.array(ch_names)[picks] if show_names else np.array(picks) ax.set(yticks=yticks, yticklabels=yticklabels[yticks]) @verbose def plot_evoked(evoked, picks=None, exclude='bads', unit=True, show=True, ylim=None, xlim='tight', proj=False, hline=None, units=None, scalings=None, titles=None, axes=None, gfp=False, window_title=None, spatial_colors=False, zorder='unsorted', selectable=True, noise_cov=None, time_unit='s', sphere=None, verbose=None): """Plot evoked data using butterfly plots. Left click to a line shows the channel name. Selecting an area by clicking and holding left mouse button plots a topographic map of the painted area. .. note:: If bad channels are not excluded they are shown in red. Parameters ---------- evoked : instance of Evoked The evoked data. %(picks_all)s exclude : list of str | 'bads' Channels names to exclude from being shown. If 'bads', the bad channels are excluded. unit : bool Scale plot with channel (SI) unit. show : bool Show figure if True. ylim : dict | None Y limits for plots (after scaling has been applied). e.g. ylim = dict(eeg=[-20, 20]) Valid keys are eeg, mag, grad, misc. If None, the ylim parameter for each channel equals the pyplot default. xlim : 'tight' | tuple | None X limits for plots. %(plot_proj)s hline : list of float | None The values at which to show an horizontal line. units : dict | None The units of the channel types used for axes labels. If None, defaults to ``dict(eeg='µV', grad='fT/cm', mag='fT')``. scalings : dict | None The scalings of the channel types to be applied for plotting. If None, defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``. titles : dict | None The titles associated with the channels. If None, defaults to ``dict(eeg='EEG', grad='Gradiometers', mag='Magnetometers')``. axes : instance of Axes | list | None The axes to plot to. If list, the list must be a list of Axes of the same length as the number of channel types. If instance of Axes, there must be only one channel type plotted. gfp : bool | 'only' Plot GFP in green if True or "only". If "only", then the individual channel traces will not be shown. window_title : str | None The title to put at the top of the figure. spatial_colors : bool If True, the lines are color coded by mapping physical sensor coordinates into color values. Spatially similar channels will have similar colors. Bad channels will be dotted. If False, the good channels are plotted black and bad channels red. Defaults to False. zorder : str | callable Which channels to put in the front or back. Only matters if ``spatial_colors`` is used. If str, must be ``std`` or ``unsorted`` (defaults to ``unsorted``). If ``std``, data with the lowest standard deviation (weakest effects) will be put in front so that they are not obscured by those with stronger effects. If ``unsorted``, channels are z-sorted as in the evoked instance. If callable, must take one argument: a numpy array of the same dimensionality as the evoked raw data; and return a list of unique integers corresponding to the number of channels. .. versionadded:: 0.13.0 selectable : bool Whether to use interactive features. If True (default), it is possible to paint an area to draw topomaps. When False, the interactive features are disabled. Disabling interactive features reduces memory consumption and is useful when using ``axes`` parameter to draw multiaxes figures. .. versionadded:: 0.13.0 noise_cov : instance of Covariance | str | None Noise covariance used to whiten the data while plotting. Whitened data channel names are shown in italic. Can be a string to load a covariance from disk. See also :meth:`mne.Evoked.plot_white` for additional inspection of noise covariance properties when whitening evoked data. For data processed with SSS, the effective dependence between magnetometers and gradiometers may introduce differences in scaling, consider using :meth:`mne.Evoked.plot_white`. .. versionadded:: 0.16.0 time_unit : str The units for the time axis, can be "ms" or "s" (default). .. versionadded:: 0.16 %(topomap_sphere_auto)s %(verbose)s Returns ------- fig : instance of matplotlib.figure.Figure Figure containing the butterfly plots. See Also -------- mne.viz.plot_evoked_white """ return _plot_evoked( evoked=evoked, picks=picks, exclude=exclude, unit=unit, show=show, ylim=ylim, proj=proj, xlim=xlim, hline=hline, units=units, scalings=scalings, titles=titles, axes=axes, plot_type="butterfly", gfp=gfp, window_title=window_title, spatial_colors=spatial_colors, selectable=selectable, zorder=zorder, noise_cov=noise_cov, time_unit=time_unit, sphere=sphere) def plot_evoked_topo(evoked, layout=None, layout_scale=0.945, color=None, border='none', ylim=None, scalings=None, title=None, proj=False, vline=[0.0], fig_background=None, merge_grads=False, legend=True, axes=None, background_color='w', noise_cov=None, show=True): """Plot 2D topography of evoked responses. Clicking on the plot of an individual sensor opens a new figure showing the evoked response for the selected sensor. Parameters ---------- evoked : list of Evoked | Evoked The evoked response to plot. layout : instance of Layout | None Layout instance specifying sensor positions (does not need to be specified for Neuromag data). If possible, the correct layout is inferred from the data. layout_scale : float Scaling factor for adjusting the relative size of the layout on the canvas. color : list of color | color | None Everything matplotlib accepts to specify colors. If not list-like, the color specified will be repeated. If None, colors are automatically drawn. border : str Matplotlib borders style to be used for each sensor plot. ylim : dict | None Y limits for plots (after scaling has been applied). The value determines the upper and lower subplot limits. e.g. ylim = dict(eeg=[-20, 20]). Valid keys are eeg, mag, grad, misc. If None, the ylim parameter for each channel is determined by the maximum absolute peak. scalings : dict | None The scalings of the channel types to be applied for plotting. If None,` defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``. title : str Title of the figure. proj : bool | 'interactive' If true SSP projections are applied before display. If 'interactive', a check box for reversible selection of SSP projection vectors will be shown. vline : list of float | None The values at which to show a vertical line. fig_background : None | ndarray A background image for the figure. This must work with a call to plt.imshow. Defaults to None. merge_grads : bool Whether to use RMS value of gradiometer pairs. Only works for Neuromag data. Defaults to False. legend : bool | int | str | tuple If True, create a legend based on evoked.comment. If False, disable the legend. Otherwise, the legend is created and the parameter value is passed as the location parameter to the matplotlib legend call. It can be an integer (e.g. 0 corresponds to upper right corner of the plot), a string (e.g. 'upper right'), or a tuple (x, y coordinates of the lower left corner of the legend in the axes coordinate system). See matplotlib documentation for more details. axes : instance of matplotlib Axes | None Axes to plot into. If None, axes will be created. background_color : color Background color. Typically 'k' (black) or 'w' (white; default). .. versionadded:: 0.15.0 noise_cov : instance of Covariance | str | None Noise covariance used to whiten the data while plotting. Whitened data channel names are shown in italic. Can be a string to load a covariance from disk. .. versionadded:: 0.16.0 show : bool Show figure if True. Returns ------- fig : instance of matplotlib.figure.Figure Images of evoked responses at sensor locations. """ from matplotlib.colors import colorConverter if not type(evoked) in (tuple, list): evoked = [evoked] dark_background = \ np.mean(colorConverter.to_rgb(background_color)) < 0.5 if dark_background: fig_facecolor = background_color axis_facecolor = background_color font_color = 'w' else: fig_facecolor = background_color axis_facecolor = background_color font_color = 'k' if color is None: if dark_background: color = ['w'] + _get_color_list() else: color = _get_color_list() color = color * ((len(evoked) % len(color)) + 1) color = color[:len(evoked)] return _plot_evoked_topo(evoked=evoked, layout=layout, layout_scale=layout_scale, color=color, border=border, ylim=ylim, scalings=scalings, title=title, proj=proj, vline=vline, fig_facecolor=fig_facecolor, fig_background=fig_background, axis_facecolor=axis_facecolor, font_color=font_color, merge_channels=merge_grads, legend=legend, axes=axes, show=show, noise_cov=noise_cov) @fill_doc def plot_evoked_image(evoked, picks=None, exclude='bads', unit=True, show=True, clim=None, xlim='tight', proj=False, units=None, scalings=None, titles=None, axes=None, cmap='RdBu_r', colorbar=True, mask=None, mask_style=None, mask_cmap="Greys", mask_alpha=.25, time_unit='s', show_names="auto", group_by=None, sphere=None): """Plot evoked data as images. Parameters ---------- evoked : instance of Evoked The evoked data. %(picks_all)s This parameter can also be used to set the order the channels are shown in, as the channel image is sorted by the order of picks. exclude : list of str | 'bads' Channels names to exclude from being shown. If 'bads', the bad channels are excluded. unit : bool Scale plot with channel (SI) unit. show : bool Show figure if True. clim : dict | None Color limits for plots (after scaling has been applied). e.g. ``clim = dict(eeg=[-20, 20])``. Valid keys are eeg, mag, grad, misc. If None, the clim parameter for each channel equals the pyplot default. xlim : 'tight' | tuple | None X limits for plots. proj : bool | 'interactive' If true SSP projections are applied before display. If 'interactive', a check box for reversible selection of SSP projection vectors will be shown. units : dict | None The units of the channel types used for axes labels. If None, defaults to ``dict(eeg='µV', grad='fT/cm', mag='fT')``. scalings : dict | None The scalings of the channel types to be applied for plotting. If None,` defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``. titles : dict | None The titles associated with the channels. If None, defaults to ``dict(eeg='EEG', grad='Gradiometers', mag='Magnetometers')``. axes : instance of Axes | list | dict | None The axes to plot to. If list, the list must be a list of Axes of the same length as the number of channel types. If instance of Axes, there must be only one channel type plotted. If ``group_by`` is a dict, this cannot be a list, but it can be a dict of lists of axes, with the keys matching those of ``group_by``. In that case, the provided axes will be used for the corresponding groups. Defaults to ``None``. cmap : matplotlib colormap | (colormap, bool) | 'interactive' Colormap. If tuple, the first value indicates the colormap to use and the second value is a boolean defining interactivity. In interactive mode the colors are adjustable by clicking and dragging the colorbar with left and right mouse button. Left mouse button moves the scale up and down and right mouse button adjusts the range. Hitting space bar resets the scale. Up and down arrows can be used to change the colormap. If 'interactive', translates to ``('RdBu_r', True)``. Defaults to ``'RdBu_r'``. colorbar : bool If True, plot a colorbar. Defaults to True. .. versionadded:: 0.16 mask : ndarray | None An array of booleans of the same shape as the data. Entries of the data that correspond to ``False`` in the mask are masked (see ``do_mask`` below). Useful for, e.g., masking for statistical significance. .. versionadded:: 0.16 mask_style : None | 'both' | 'contour' | 'mask' If ``mask`` is not None: if 'contour', a contour line is drawn around the masked areas (``True`` in ``mask``). If 'mask', entries not ``True`` in ``mask`` are shown transparently. If 'both', both a contour and transparency are used. If ``None``, defaults to 'both' if ``mask`` is not None, and is ignored otherwise. .. versionadded:: 0.16 mask_cmap : matplotlib colormap | (colormap, bool) | 'interactive' The colormap chosen for masked parts of the image (see below), if ``mask`` is not ``None``. If None, ``cmap`` is reused. Defaults to ``Greys``. Not interactive. Otherwise, as ``cmap``. mask_alpha : float A float between 0 and 1. If ``mask`` is not None, this sets the alpha level (degree of transparency) for the masked-out segments. I.e., if 0, masked-out segments are not visible at all. Defaults to .25. .. versionadded:: 0.16 time_unit : str The units for the time axis, can be "ms" or "s" (default). .. versionadded:: 0.16 show_names : bool | 'auto' | 'all' Determines if channel names should be plotted on the y axis. If False, no names are shown. If True, ticks are set automatically by matplotlib and the corresponding channel names are shown. If "all", all channel names are shown. If "auto", is set to False if ``picks`` is ``None``, to ``True`` if ``picks`` contains 25 or more entries, or to "all" if ``picks`` contains fewer than 25 entries. group_by : None | dict If a dict, the values must be picks, and ``axes`` must also be a dict with matching keys, or None. If ``axes`` is None, one figure and one axis will be created for each entry in ``group_by``.Then, for each entry, the picked channels will be plotted to the corresponding axis. If ``titles`` are None, keys will become plot titles. This is useful for e.g. ROIs. Each entry must contain only one channel type. For example:: group_by=dict(Left_ROI=[1, 2, 3, 4], Right_ROI=[5, 6, 7, 8]) If None, all picked channels are plotted to the same axis. %(topomap_sphere_auto)s Returns ------- fig : instance of matplotlib.figure.Figure Figure containing the images. """ return _plot_evoked(evoked=evoked, picks=picks, exclude=exclude, unit=unit, show=show, ylim=clim, proj=proj, xlim=xlim, hline=None, units=units, scalings=scalings, titles=titles, axes=axes, plot_type="image", cmap=cmap, colorbar=colorbar, mask=mask, mask_style=mask_style, mask_cmap=mask_cmap, mask_alpha=mask_alpha, time_unit=time_unit, show_names=show_names, group_by=group_by, sphere=sphere) def _plot_update_evoked(params, bools): """Update the plot evoked lines.""" picks, evoked = [params[k] for k in ('picks', 'evoked')] projs = [proj for ii, proj in enumerate(params['projs']) if ii in np.where(bools)[0]] params['proj_bools'] = bools new_evoked = evoked.copy() new_evoked.info['projs'] = [] new_evoked.add_proj(projs) new_evoked.apply_proj() for ax, t in zip(params['axes'], params['ch_types_used']): this_scaling = params['scalings'][t] idx = [picks[i] for i in range(len(picks)) if params['types'][i] == t] D = this_scaling * new_evoked.data[idx, :] if params['plot_type'] == 'butterfly': for line, di in zip(ax.lines, D): line.set_ydata(di) else: ax.images[0].set_data(D) params['fig'].canvas.draw() @verbose def plot_evoked_white(evoked, noise_cov, show=True, rank=None, time_unit='s', sphere=None, axes=None, verbose=None): """Plot whitened evoked response. Plots the whitened evoked response and the whitened GFP as described in [1]_. This function is especially useful for investigating noise covariance properties to determine if data are properly whitened (e.g., achieving expected values in line with model assumptions, see Notes below). Parameters ---------- evoked : instance of mne.Evoked The evoked response. noise_cov : list | instance of Covariance | str The noise covariance. Can be a string to load a covariance from disk. show : bool Show figure if True. %(rank_None)s time_unit : str The units for the time axis, can be "ms" or "s" (default). .. versionadded:: 0.16 %(topomap_sphere_auto)s axes : list | None List of axes to plot into. .. versionadded:: 0.21.0 %(verbose)s Returns ------- fig : instance of matplotlib.figure.Figure The figure object containing the plot. See Also -------- mne.Evoked.plot Notes ----- If baseline signals match the assumption of Gaussian white noise, values should be centered at 0, and be within 2 standard deviations (±1.96) for 95%% of the time points. For the global field power (GFP), we expect it to fluctuate around a value of 1. If one single covariance object is passed, the GFP panel (bottom) will depict different sensor types. If multiple covariance objects are passed as a list, the left column will display the whitened evoked responses for each channel based on the whitener from the noise covariance that has the highest log-likelihood. The left column will depict the whitened GFPs based on each estimator separately for each sensor type. Instead of numbers of channels the GFP display shows the estimated rank. Note. The rank estimation will be printed by the logger (if ``verbose=True``) for each noise covariance estimator that is passed. References ---------- .. [1] Engemann D. and Gramfort A. (2015) Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals, vol. 108, 328-342, NeuroImage. """ from ..cov import whiten_evoked, read_cov # recursive import import matplotlib.pyplot as plt time_unit, times = _check_time_unit(time_unit, evoked.times) if isinstance(noise_cov, str): noise_cov = read_cov(noise_cov) if not isinstance(noise_cov, (list, tuple)): noise_cov = [noise_cov] evoked = evoked.copy() # handle ref meg passive_idx = [idx for idx, proj in enumerate(evoked.info['projs']) if not proj['active']] # either applied already or not-- else issue for idx in passive_idx[::-1]: # reverse order so idx does not change evoked.del_proj(idx) evoked.pick_types(ref_meg=False, exclude='bads', **_PICK_TYPES_DATA_DICT) n_ch_used, rank_list, picks_list, has_sss = _triage_rank_sss( evoked.info, noise_cov, rank, scalings=None) if has_sss: logger.info('SSS has been applied to data. Showing mag and grad ' 'whitening jointly.') # get one whitened evoked per cov evokeds_white = [whiten_evoked(evoked, cov, picks=None, rank=r) for cov, r in zip(noise_cov, rank_list)] def whitened_gfp(x, rank=None): """Whitened Global Field Power. The MNE inverse solver assumes zero mean whitened data as input. Therefore, a chi^2 statistic will be best to detect model violations. """ return np.sum(x ** 2, axis=0) / (len(x) if rank is None else rank) # prepare plot if len(noise_cov) > 1: n_columns = 2 n_extra_row = 0 else: n_columns = 1 n_extra_row = 1 n_rows = n_ch_used + n_extra_row want_shape = (n_rows, n_columns) if len(noise_cov) > 1 else (n_rows,) _validate_type(axes, (list, tuple, np.ndarray, None), 'axes') if axes is None: _, axes = plt.subplots(n_rows, n_columns, sharex=True, sharey=False, figsize=(8.8, 2.2 * n_rows)) else: axes = np.array(axes) for ai, ax in enumerate(axes.flat): _validate_type(ax, plt.Axes, 'axes.flat[%d]' % (ai,)) if axes.shape != want_shape: raise ValueError(f'axes must have shape {want_shape}, got ' f'{axes.shape}') fig = axes.flat[0].figure if n_columns > 1: suptitle = ('Whitened evoked (left, best estimator = "%s")\n' 'and global field power ' '(right, comparison of estimators)' % noise_cov[0].get('method', 'empirical')) fig.suptitle(suptitle) if any(((n_columns == 1 and n_ch_used >= 1), (n_columns == 2 and n_ch_used == 1))): axes_evoked = axes[:n_ch_used] ax_gfp = axes[-1:] elif n_columns == 2 and n_ch_used > 1: axes_evoked = axes[:n_ch_used, 0] ax_gfp = axes[:, 1] else: raise RuntimeError('Wrong axes inputs') titles_ = _handle_default('titles') if has_sss: titles_['meg'] = 'MEG (combined)' colors = [plt.cm.Set1(i) for i in np.linspace(0, 0.5, len(noise_cov))] ch_colors = _handle_default('color', None) iter_gfp = zip(evokeds_white, noise_cov, rank_list, colors) # the first is by law the best noise cov, on the left we plot that one. if not has_sss: evokeds_white[0].plot(unit=False, axes=axes_evoked, hline=[-1.96, 1.96], show=False, time_unit=time_unit) else: for ((ch_type, picks), ax) in zip(picks_list, axes_evoked): ax.plot(times, evokeds_white[0].data[picks].T, color='k', lw=0.5) for hline in [-1.96, 1.96]: ax.axhline(hline, color='red', linestyle='--', lw=2) ax.set(title='%s (%d channel%s)' % (titles_[ch_type], len(picks), _pl(len(picks)))) # Now plot the GFP for all covs if indicated. for evoked_white, noise_cov, rank_, color in iter_gfp: i = 0 for ch, sub_picks in picks_list: this_rank = rank_[ch] title = '{0} ({2}{1})'.format( titles_[ch] if n_columns > 1 else ch, this_rank, 'rank ' if n_columns > 1 else '') label = noise_cov.get('method', 'empirical') ax = ax_gfp[i] ax.set_title(title if n_columns > 1 else 'Whitened GFP, method = "%s"' % label) data = evoked_white.data[sub_picks] gfp = whitened_gfp(data, rank=this_rank) # Wrap SSS-processed data (MEG) to the mag color color_ch = 'mag' if ch == 'meg' else ch ax.plot(times, gfp, label=label if n_columns > 1 else title, color=color if n_columns > 1 else ch_colors[color_ch], lw=0.5) ax.set(xlabel='Time (%s)' % (time_unit,), ylabel=r'GFP ($\chi^2$)', xlim=[times[0], times[-1]], ylim=(0, 10)) ax.axhline(1, color='red', linestyle='--', lw=2.) if n_columns > 1: i += 1 ax = ax_gfp[0] if n_columns == 1: ax.legend( # mpl < 1.2.1 compatibility: use prop instead of fontsize loc='upper right', bbox_to_anchor=(0.98, 0.9), prop=dict(size=12)) else: ax.legend(loc='upper right', prop=dict(size=10)) params = dict(top=[0.69, 0.82, 0.87][n_rows - 1], bottom=[0.22, 0.13, 0.09][n_rows - 1]) if has_sss: params['hspace'] = 0.49 fig.subplots_adjust(**params) fig.canvas.draw() plt_show(show) return fig @verbose def plot_snr_estimate(evoked, inv, show=True, axes=None, verbose=None): """Plot a data SNR estimate. Parameters ---------- evoked : instance of Evoked The evoked instance. This should probably be baseline-corrected. inv : instance of InverseOperator The minimum-norm inverse operator. show : bool Show figure if True. axes : instance of Axes | None The axes to plot into. .. versionadded:: 0.21.0 %(verbose)s Returns ------- fig : instance of matplotlib.figure.Figure The figure object containing the plot. Notes ----- The bluish green line is the SNR determined by the GFP of the whitened evoked data. The orange line is the SNR estimated based on the mismatch between the data and the data re-estimated from the regularized inverse. .. versionadded:: 0.9.0 """ import matplotlib.pyplot as plt from ..minimum_norm import estimate_snr snr, snr_est = estimate_snr(evoked, inv) _validate_type(axes, (None, plt.Axes)) if axes is None: _, ax = plt.subplots(1, 1) else: ax = axes del axes fig = ax.figure lims = np.concatenate([evoked.times[[0, -1]], [-1, snr_est.max()]]) ax.axvline(0, color='k', ls=':', lw=1) ax.axhline(0, color='k', ls=':', lw=1) # Colors are "bluish green" and "vermilion" taken from: # http://bconnelly.net/2013/10/creating-colorblind-friendly-figures/ hs = list() labels = ('Inverse', 'Whitened GFP') hs.append(ax.plot( evoked.times, snr_est, color=[0.0, 0.6, 0.5])[0]) hs.append(ax.plot( evoked.times, snr - 1, color=[0.8, 0.4, 0.0])[0]) ax.set(xlim=lims[:2], ylim=lims[2:], ylabel='SNR', xlabel='Time (s)') if evoked.comment is not None: ax.set_title(evoked.comment) ax.legend(hs, labels, title='Estimation method') plt_show(show) return fig @fill_doc def plot_evoked_joint(evoked, times="peaks", title='', picks=None, exclude=None, show=True, ts_args=None, topomap_args=None): """Plot evoked data as butterfly plot and add topomaps for time points. .. note:: Axes to plot in can be passed by the user through ``ts_args`` or ``topomap_args``. In that case both ``ts_args`` and ``topomap_args`` axes have to be used. Be aware that when the axes are provided, their position may be slightly modified. Parameters ---------- evoked : instance of Evoked The evoked instance. times : float | array of float | "auto" | "peaks" The time point(s) to plot. If ``"auto"``, 5 evenly spaced topographies between the first and last time instant will be shown. If ``"peaks"``, finds time points automatically by checking for 3 local maxima in Global Field Power. Defaults to ``"peaks"``. title : str | None The title. If ``None``, suppress printing channel type title. If an empty string, a default title is created. Defaults to ''. If custom axes are passed make sure to set ``title=None``, otherwise some of your axes may be removed during placement of the title axis. %(picks_all)s exclude : None | list of str | 'bads' Channels names to exclude from being shown. If ``'bads'``, the bad channels are excluded. Defaults to ``None``. show : bool Show figure if ``True``. Defaults to ``True``. ts_args : None | dict A dict of ``kwargs`` that are forwarded to :meth:`mne.Evoked.plot` to style the butterfly plot. If they are not in this dict, the following defaults are passed: ``spatial_colors=True``, ``zorder='std'``. ``show`` and ``exclude`` are illegal. If ``None``, no customizable arguments will be passed. Defaults to ``None``. topomap_args : None | dict A dict of ``kwargs`` that are forwarded to :meth:`mne.Evoked.plot_topomap` to style the topomaps. If it is not in this dict, ``outlines='skirt'`` will be passed. ``show``, ``times``, ``colorbar`` are illegal. If ``None``, no customizable arguments will be passed. Defaults to ``None``. Returns ------- fig : instance of matplotlib.figure.Figure | list The figure object containing the plot. If ``evoked`` has multiple channel types, a list of figures, one for each channel type, is returned. Notes ----- .. versionadded:: 0.12.0 """ import matplotlib.pyplot as plt if ts_args is not None and not isinstance(ts_args, dict): raise TypeError('ts_args must be dict or None, got type %s' % (type(ts_args),)) ts_args = dict() if ts_args is None else ts_args.copy() ts_args['time_unit'], _ = _check_time_unit( ts_args.get('time_unit', 's'), evoked.times) topomap_args = dict() if topomap_args is None else topomap_args.copy() got_axes = False illegal_args = {"show", 'times', 'exclude'} for args in (ts_args, topomap_args): if any((x in args for x in illegal_args)): raise ValueError("Don't pass any of {} as *_args.".format( ", ".join(list(illegal_args)))) if ("axes" in ts_args) or ("axes" in topomap_args): if not (("axes" in ts_args) and ("axes" in topomap_args)): raise ValueError("If one of `ts_args` and `topomap_args` contains " "'axes', the other must, too.") _validate_if_list_of_axes([ts_args["axes"]], 1) n_topomaps = (3 if times is None else len(times)) + 1 _validate_if_list_of_axes(list(topomap_args["axes"]), n_topomaps) got_axes = True # channel selection # simply create a new evoked object with the desired channel selection # Need to deal with proj before picking to avoid bad projections proj = topomap_args.get('proj', True) proj_ts = ts_args.get('proj', True) if proj_ts != proj: raise ValueError( f'topomap_args["proj"] (default True, got {proj}) must match ' f'ts_args["proj"] (default True, got {proj_ts})') _check_option('topomap_args["proj"]', proj, (True, False, 'reconstruct')) evoked = evoked.copy() if proj: evoked.apply_proj() if proj == 'reconstruct': evoked._reconstruct_proj() topomap_args['proj'] = ts_args['proj'] = False # don't reapply evoked = _pick_inst(evoked, picks, exclude, copy=False) info = evoked.info ch_types = _get_channel_types(info, unique=True, only_data_chs=True) # if multiple sensor types: one plot per channel type, recursive call if len(ch_types) > 1: if got_axes: raise NotImplementedError( "Currently, passing axes manually (via `ts_args` or " "`topomap_args`) is not supported for multiple channel types.") figs = list() for this_type in ch_types: # pick only the corresponding channel type ev_ = evoked.copy().pick_channels( [info['ch_names'][idx] for idx in range(info['nchan']) if channel_type(info, idx) == this_type]) if len(_get_channel_types(ev_.info, unique=True)) > 1: raise RuntimeError('Possibly infinite loop due to channel ' 'selection problem. This should never ' 'happen! Please check your channel types.') figs.append( plot_evoked_joint( ev_, times=times, title=title, show=show, ts_args=ts_args, exclude=list(), topomap_args=topomap_args)) return figs # set up time points to show topomaps for times_sec = _process_times(evoked, times, few=True) del times _, times_ts = _check_time_unit(ts_args['time_unit'], times_sec) # prepare axes for topomap if not got_axes: fig, ts_ax, map_ax, cbar_ax = _prepare_joint_axes(len(times_sec), figsize=(8.0, 4.2)) else: ts_ax = ts_args["axes"] del ts_args["axes"] map_ax = topomap_args["axes"][:-1] cbar_ax = topomap_args["axes"][-1] del topomap_args["axes"] fig = cbar_ax.figure # butterfly/time series plot # most of this code is about passing defaults on demand ts_args_def = dict(picks=None, unit=True, ylim=None, xlim='tight', proj=False, hline=None, units=None, scalings=None, titles=None, gfp=False, window_title=None, spatial_colors=True, zorder='std', sphere=None) ts_args_def.update(ts_args) _plot_evoked(evoked, axes=ts_ax, show=False, plot_type='butterfly', exclude=[], **ts_args_def) # handle title # we use a new axis for the title to handle scaling of plots old_title = ts_ax.get_title() ts_ax.set_title('') if title is not None: title_ax = plt.subplot(4, 3, 2) if title == '': title = old_title title_ax.text(.5, .5, title, transform=title_ax.transAxes, horizontalalignment='center', verticalalignment='center') title_ax.axis('off') # topomap contours = topomap_args.get('contours', 6) ch_type = ch_types.pop() # set should only contain one element # Since the data has all the ch_types, we get the limits from the plot. vmin, vmax = ts_ax.get_ylim() norm = ch_type == 'grad' vmin = 0 if norm else vmin vmin, vmax = _setup_vmin_vmax(evoked.data, vmin, vmax, norm) if not isinstance(contours, (list, np.ndarray)): locator, contours = _set_contour_locator(vmin, vmax, contours) else: locator = None topomap_args_pass = topomap_args.copy() topomap_args_pass['outlines'] = topomap_args.get('outlines', 'skirt') topomap_args_pass['contours'] = contours evoked.plot_topomap(times=times_sec, axes=map_ax, show=False, colorbar=False, **topomap_args_pass) if topomap_args.get('colorbar', True): from matplotlib import ticker cbar = plt.colorbar(map_ax[0].images[0], cax=cbar_ax) if isinstance(contours, (list, np.ndarray)): cbar.set_ticks(contours) else: if locator is None: locator = ticker.MaxNLocator(nbins=5) cbar.locator = locator cbar.update_ticks() if not got_axes: plt.subplots_adjust(left=.1, right=.93, bottom=.14, top=1. if title is not None else 1.2) # connection lines # draw the connection lines between time series and topoplots lines = [_connection_line(timepoint, fig, ts_ax, map_ax_) for timepoint, map_ax_ in zip(times_ts, map_ax)] for line in lines: fig.lines.append(line) # mark times in time series plot for timepoint in times_ts: ts_ax.axvline(timepoint, color='grey', linestyle='-', linewidth=1.5, alpha=.66, zorder=0) # show and return it plt_show(show) return fig ############################################################################### # The following functions are all helpers for plot_compare_evokeds. # ############################################################################### def _check_loc_legal(loc, what='your choice', default=1): """Check if loc is a legal location for MPL subordinate axes.""" true_default = {"legend": 2, "show_sensors": 1}.get(what, default) if isinstance(loc, (bool, np.bool_)) and loc: loc = true_default loc_dict = {'upper right': 1, 'upper left': 2, 'lower left': 3, 'lower right': 4, 'right': 5, 'center left': 6, 'center right': 7, 'lower center': 8, 'upper center': 9, 'center': 10} loc_ = loc_dict.get(loc, loc) if loc_ not in range(11): raise ValueError(str(loc) + " is not a legal MPL loc, please supply" "another value for " + what + ".") return loc_ def _validate_style_keys_pce(styles, conditions, tags): """Validate styles dict keys for plot_compare_evokeds.""" styles = deepcopy(styles) if not set(styles).issubset(tags.union(conditions)): raise ValueError('The keys in "styles" ({}) must match the keys in ' '"evokeds" ({}).'.format(list(styles), conditions)) # make sure all the keys are in there for cond in conditions: if cond not in styles: styles[cond] = dict() # deal with matplotlib's synonymous handling of "c" and "color" / # "ls" and "linestyle" / "lw" and "linewidth" elif 'c' in styles[cond]: styles[cond]['color'] = styles[cond].pop('c') elif 'ls' in styles[cond]: styles[cond]['linestyle'] = styles[cond].pop('ls') elif 'lw' in styles[cond]: styles[cond]['linewidth'] = styles[cond].pop('lw') # transfer styles from partial-matched entries for tag in cond.split('/'): if tag in styles: styles[cond].update(styles[tag]) # remove the (now transferred) partial-matching style entries for key in list(styles): if key not in conditions: del styles[key] return styles def _validate_colors_pce(colors, cmap, conditions, tags): """Check and assign colors for plot_compare_evokeds.""" err_suffix = '' if colors is None: if cmap is None: colors = _get_color_list() err_suffix = ' in the default color cycle' else: colors = list(range(len(conditions))) # convert color list to dict if isinstance(colors, (list, tuple, np.ndarray)): if len(conditions) > len(colors): raise ValueError('Trying to plot {} conditions, but there are only' ' {} colors{}. Please specify colors manually.' .format(len(conditions), len(colors), err_suffix)) colors = dict(zip(conditions, colors)) # should be a dict by now... if not isinstance(colors, dict): raise TypeError('"colors" must be a dict, list, or None; got {}.' .format(type(colors).__name__)) # validate color dict keys if not set(colors).issubset(tags.union(conditions)): raise ValueError('If "colors" is a dict its keys ({}) must ' 'match the keys/conditions in "evokeds" ({}).' .format(list(colors), conditions)) # validate color dict values color_vals = list(colors.values()) all_numeric = all(_is_numeric(_color) for _color in color_vals) if cmap is not None and not all_numeric: raise TypeError('if "cmap" is specified, then "colors" must be ' 'None or a (list or dict) of (ints or floats); got {}.' .format(', '.join(color_vals))) # convert provided ints to sequential, rank-ordered ints all_int = all([isinstance(_color, Integral) for _color in color_vals]) if all_int: colors = deepcopy(colors) ranks = {val: ix for ix, val in enumerate(sorted(set(color_vals)))} for key, orig_int in colors.items(): colors[key] = ranks[orig_int] # if no cmap, convert color ints to real colors if cmap is None: color_list = _get_color_list() for cond, color_int in colors.items(): colors[cond] = color_list[color_int] # recompute color_vals as a sorted set (we'll need it that way later) color_vals = set(colors.values()) if all_numeric: color_vals = sorted(color_vals) return colors, color_vals def _validate_cmap_pce(cmap, colors, color_vals): """Check and assign colormap for plot_compare_evokeds.""" from matplotlib.cm import get_cmap from matplotlib.colors import Colormap all_int = all([isinstance(_color, Integral) for _color in color_vals]) lut = len(color_vals) if all_int else None colorbar_title = '' if isinstance(cmap, (list, tuple, np.ndarray)) and len(cmap) == 2: colorbar_title, cmap = cmap if isinstance(cmap, str): cmap = get_cmap(cmap, lut=lut) elif isinstance(cmap, Colormap) and all_int: cmap = cmap._resample(lut) return cmap, colorbar_title def _validate_linestyles_pce(linestyles, conditions, tags): """Check and assign linestyles for plot_compare_evokeds.""" # make linestyles a list if it's not defined if linestyles is None: linestyles = [None] * len(conditions) # will get changed to defaults # convert linestyle list to dict if isinstance(linestyles, (list, tuple, np.ndarray)): if len(conditions) > len(linestyles): raise ValueError('Trying to plot {} conditions, but there are ' 'only {} linestyles. Please specify linestyles ' 'manually.' .format(len(conditions), len(linestyles))) linestyles = dict(zip(conditions, linestyles)) # should be a dict by now... if not isinstance(linestyles, dict): raise TypeError('"linestyles" must be a dict, list, or None; got {}.' .format(type(linestyles).__name__)) # validate linestyle dict keys if not set(linestyles).issubset(tags.union(conditions)): raise ValueError('If "linestyles" is a dict its keys ({}) must ' 'match the keys/conditions in "evokeds" ({}).' .format(list(linestyles), conditions)) # normalize linestyle values (so we can accurately count unique linestyles # later). See https://github.com/matplotlib/matplotlib/blob/master/matplotlibrc.template#L131-L133 # noqa linestyle_map = {'solid': (0, ()), 'dotted': (0, (1., 1.65)), 'dashed': (0, (3.7, 1.6)), 'dashdot': (0, (6.4, 1.6, 1., 1.6)), '-': (0, ()), ':': (0, (1., 1.65)), '--': (0, (3.7, 1.6)), '-.': (0, (6.4, 1.6, 1., 1.6))} for cond, _ls in linestyles.items(): linestyles[cond] = linestyle_map.get(_ls, _ls) return linestyles def _populate_style_dict_pce(condition, condition_styles, style_name, style_dict, cmap): """Transfer styles into condition_styles dict for plot_compare_evokeds.""" defaults = dict(color='gray', linestyle=(0, ())) # (0, ()) == 'solid' # if condition X doesn't yet have style Y defined: if condition_styles.get(style_name, None) is None: # check the style dict for the full condition name try: condition_styles[style_name] = style_dict[condition] # if it's not in there, try the slash-separated condition tags except KeyError: for tag in condition.split('/'): try: condition_styles[style_name] = style_dict[tag] # if the tag's not in there, assign a default value (but also # continue looping in search of a tag that *is* in there) except KeyError: condition_styles[style_name] = defaults[style_name] # if we found a valid tag, keep track of it for colorbar # legend purposes, and also stop looping (so we don't overwrite # a valid tag's style with an invalid tag → default style) else: if style_name == 'color' and cmap is not None: condition_styles['cmap_label'] = tag break return condition_styles def _handle_styles_pce(styles, linestyles, colors, cmap, conditions): """Check and assign styles for plot_compare_evokeds.""" styles = deepcopy(styles) # validate style dict structure (doesn't check/assign values yet) tags = set(tag for cond in conditions for tag in cond.split('/')) if styles is None: styles = {cond: dict() for cond in conditions} styles = _validate_style_keys_pce(styles, conditions, tags) # validate color dict colors, color_vals = _validate_colors_pce(colors, cmap, conditions, tags) all_int = all([isinstance(_color, Integral) for _color in color_vals]) # instantiate cmap cmap, colorbar_title = _validate_cmap_pce(cmap, colors, color_vals) # validate linestyles linestyles = _validate_linestyles_pce(linestyles, conditions, tags) # prep for colorbar tick handling colorbar_ticks = None if cmap is None else dict() # array mapping color integers (indices) to tick locations (array values) tick_locs = np.linspace(0, 1, 2 * len(color_vals) + 1)[1::2] # transfer colors/linestyles dicts into styles dict; fall back on defaults color_and_linestyle = dict(color=colors, linestyle=linestyles) for cond, cond_styles in styles.items(): for _name, _style in color_and_linestyle.items(): cond_styles = _populate_style_dict_pce(cond, cond_styles, _name, _style, cmap) # convert numeric colors into cmap color values; store colorbar ticks if cmap is not None: color_number = cond_styles['color'] cond_styles['color'] = cmap(color_number) tick_loc = tick_locs[color_number] if all_int else color_number key = cond_styles.pop('cmap_label', cond) colorbar_ticks[key] = tick_loc return styles, linestyles, colors, cmap, colorbar_title, colorbar_ticks def _evoked_sensor_legend(info, picks, ymin, ymax, show_sensors, ax, sphere): """Show sensor legend (location of a set of sensors on the head).""" if show_sensors is True: ymin, ymax = np.abs(ax.get_ylim()) show_sensors = "lower right" if ymin > ymax else "upper right" pos, outlines = _get_pos_outlines(info, picks, sphere=sphere) show_sensors = _check_loc_legal(show_sensors, "show_sensors") _plot_legend(pos, ["k"] * len(picks), ax, list(), outlines, show_sensors, size=25) def _draw_colorbar_pce(ax, colors, cmap, colorbar_title, colorbar_ticks): """Draw colorbar for plot_compare_evokeds.""" from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.colorbar import ColorbarBase from matplotlib.transforms import Bbox # create colorbar axes orig_bbox = ax.get_position() divider = make_axes_locatable(ax) cax = divider.append_axes('right', size='5%', pad=0.1) cax.yaxis.tick_right() cb = ColorbarBase(cax, cmap=cmap, norm=None, orientation='vertical') cb.set_label(colorbar_title) # handle ticks ticks = sorted(set(colorbar_ticks.values())) ticklabels = [''] * len(ticks) for label, tick in colorbar_ticks.items(): idx = ticks.index(tick) if len(ticklabels[idx]): # handle labels with the same color/location ticklabels[idx] = '\n'.join([ticklabels[idx], label]) else: ticklabels[idx] = label assert all(len(label) for label in ticklabels) cb.set_ticks(ticks) cb.set_ticklabels(ticklabels) # shrink colorbar if discrete colors color_vals = set(colors.values()) if all([isinstance(_color, Integral) for _color in color_vals]): fig = ax.get_figure() fig.canvas.draw() fig_aspect = np.divide(*fig.get_size_inches()) new_bbox = ax.get_position() cax_width = 0.75 * (orig_bbox.xmax - new_bbox.xmax) # add extra space for multiline colorbar labels h_mult = max(2, max([len(label.split('\n')) for label in ticklabels])) cax_height = len(color_vals) * h_mult * cax_width / fig_aspect x0 = orig_bbox.xmax - cax_width y0 = (new_bbox.ymax + new_bbox.ymin - cax_height) / 2 x1 = orig_bbox.xmax y1 = y0 + cax_height new_bbox = Bbox([[x0, y0], [x1, y1]]) cax.set_axes_locator(None) cax.set_position(new_bbox) def _draw_legend_pce(legend, split_legend, styles, linestyles, colors, cmap, do_topo, ax): """Draw legend for plot_compare_evokeds.""" import matplotlib.lines as mlines lines = list() # triage if split_legend is None: split_legend = cmap is not None n_colors = len(set(colors.values())) n_linestyles = len(set(linestyles.values())) draw_styles = cmap is None and not split_legend draw_colors = cmap is None and split_legend and n_colors > 1 draw_linestyles = (cmap is None or split_legend) and n_linestyles > 1 # create the fake lines for the legend if draw_styles: for label, cond_styles in styles.items(): line = mlines.Line2D([], [], label=label, **cond_styles) lines.append(line) else: if draw_colors: for label, color in colors.items(): line = mlines.Line2D([], [], label=label, linestyle='solid', color=color) lines.append(line) if draw_linestyles: for label, linestyle in linestyles.items(): line = mlines.Line2D([], [], label=label, linestyle=linestyle, color='black') lines.append(line) # legend params ncol = 1 + (len(lines) // 5) loc = _check_loc_legal(legend, 'legend') legend_params = dict(loc=loc, frameon=True, ncol=ncol) # special placement (above dedicated legend axes) in topoplot if do_topo and isinstance(legend, bool): legend_params.update(loc='lower right', bbox_to_anchor=(1, 1)) # draw the legend if any([draw_styles, draw_colors, draw_linestyles]): labels = [line.get_label() for line in lines] ax.legend(lines, labels, **legend_params) def _draw_axes_pce(ax, ymin, ymax, truncate_yaxis, truncate_xaxis, invert_y, vlines, tmin, tmax, unit, skip_axlabel=True): """Position, draw, and truncate axes for plot_compare_evokeds.""" # avoid matplotlib errors if ymin == ymax: ymax += 1e-15 if tmin == tmax: tmax += 1e-9 ax.set_xlim(tmin, tmax) # for dark backgrounds: ax.patch.set_alpha(0) if not np.isfinite([ymin, ymax]).all(): # nothing plotted return ax.set_ylim(ymin, ymax) ybounds = (ymin, ymax) # determine ymin/ymax for spine truncation trunc_y = True if truncate_yaxis == 'auto' else truncate_yaxis if truncate_yaxis: if isinstance(truncate_yaxis, bool): # truncate to half the max abs. value and round to a nice-ish # number. ylims are already symmetric about 0 or have a lower bound # of 0, so div. by 2 should suffice. ybounds = np.array([ymin, ymax]) / 2. precision = 0.25 ybounds = np.round(ybounds / precision) * precision elif truncate_yaxis == 'auto': # truncate to existing max/min ticks ybounds = _trim_ticks(ax.get_yticks(), ymin, ymax)[[0, -1]] else: raise ValueError('"truncate_yaxis" must be bool or ' '"auto", got {}'.format(truncate_yaxis)) _setup_ax_spines(ax, vlines, tmin, tmax, ybounds[0], ybounds[1], invert_y, unit, truncate_xaxis, trunc_y, skip_axlabel) def _get_data_and_ci(evoked, combine, combine_func, picks, scaling=1, ci_fun=None): """Compute (sensor-aggregated, scaled) time series and possibly CI.""" picks = np.array(picks).flatten() # apply scalings data = np.array([evk.data[picks] * scaling for evk in evoked]) # combine across sensors if combine is not None: logger.info('combining channels using "{}"'.format(combine)) data = combine_func(data) # get confidence band if ci_fun is not None: ci = ci_fun(data) # get grand mean across evokeds data = np.mean(data, axis=0) _check_if_nan(data) return (data,) if ci_fun is None else (data, ci) def _get_ci_function_pce(ci, do_topo=False): """Get confidence interval function for plot_compare_evokeds.""" if ci is None: return None elif callable(ci): return ci elif isinstance(ci, bool) and not ci: return None elif isinstance(ci, bool): ci = 0.95 if isinstance(ci, float): from ..stats import _ci method = 'parametric' if do_topo else 'bootstrap' return partial(_ci, ci=ci, method=method) else: raise TypeError('"ci" must be None, bool, float or callable, got {}' .format(type(ci).__name__)) def _plot_compare_evokeds(ax, data_dict, conditions, times, ci_dict, styles, title, all_positive, topo): """Plot evokeds (to compare them; with CIs) based on a data_dict.""" for condition in conditions: # plot the actual data ('dat') as a line dat = data_dict[condition].T ax.plot(times, dat, zorder=1000, label=condition, clip_on=False, **styles[condition]) # plot the confidence interval if available if ci_dict.get(condition, None) is not None: ci_ = ci_dict[condition] ax.fill_between(times, ci_[0].flatten(), ci_[1].flatten(), zorder=9, color=styles[condition]['color'], alpha=0.3, clip_on=False) if topo: ax.text(-.1, 1, title, transform=ax.transAxes) else: ax.set_title(title) def _title_helper_pce(title, picked_types, picks, ch_names, combine): """Format title for plot_compare_evokeds.""" if title is None: title = (_handle_default('titles').get(picks, None) if picked_types else _set_title_multiple_electrodes(title, combine, ch_names)) # add the `combine` modifier do_combine = picked_types or len(ch_names) > 1 if (title is not None and len(title) and isinstance(combine, str) and do_combine): _comb = combine.upper() if combine == 'gfp' else combine _comb = 'std. dev.' if _comb == 'std' else _comb title += ' ({})'.format(_comb) return title @fill_doc def plot_compare_evokeds(evokeds, picks=None, colors=None, linestyles=None, styles=None, cmap=None, vlines='auto', ci=True, truncate_yaxis='auto', truncate_xaxis=True, ylim=None, invert_y=False, show_sensors=None, legend=True, split_legend=None, axes=None, title=None, show=True, combine=None, sphere=None): """Plot evoked time courses for one or more conditions and/or channels. Parameters ---------- evokeds : instance of mne.Evoked | list | dict If a single Evoked instance, it is plotted as a time series. If a list of Evokeds, the contents are plotted with their ``.comment`` attributes used as condition labels. If no comment is set, the index of the respective Evoked the list will be used instead, starting with ``1`` for the first Evoked. If a dict whose values are Evoked objects, the contents are plotted as single time series each and the keys are used as labels. If a [dict/list] of lists, the unweighted mean is plotted as a time series and the parametric confidence interval is plotted as a shaded area. All instances must have the same shape - channel numbers, time points etc. If dict, keys must be of type str. %(picks_all_data)s * If picks is None or a (collection of) data channel types, the global field power will be plotted for all data channels. Otherwise, picks will be averaged. * If multiple channel types are selected, one figure will be returned for each channel type. * If the selected channels are gradiometers, the signal from corresponding (gradiometer) pairs will be combined. colors : list | dict | None Colors to use when plotting the ERP/F lines and confidence bands. If ``cmap`` is not ``None``, ``colors`` must be a :class:`list` or :class:`dict` of :class:`ints <int>` or :class:`floats <float>` indicating steps or percentiles (respectively) along the colormap. If ``cmap`` is ``None``, list elements or dict values of ``colors`` must be :class:`ints <int>` or valid :doc:`matplotlib colors <tutorials/colors/colors>`; lists are cycled through sequentially, while dicts must have keys matching the keys or conditions of an ``evokeds`` dict (see Notes for details). If ``None``, the current :doc:`matplotlib color cycle <gallery/color/color_cycle_default>` is used. Defaults to ``None``. linestyles : list | dict | None Styles to use when plotting the ERP/F lines. If a :class:`list` or :class:`dict`, elements must be valid :doc:`matplotlib linestyles <matplotlib:gallery/lines_bars_and_markers/linestyles>`. Lists are cycled through sequentially; dictionaries must have keys matching the keys or conditions of an ``evokeds`` dict (see Notes for details). If ``None``, all lines will be solid. Defaults to ``None``. styles : dict | None Dictionary of styles to use when plotting ERP/F lines. Keys must match keys or conditions of ``evokeds``, and values must be a :class:`dict` of legal inputs to :func:`matplotlib.pyplot.plot`. Those values will be passed as parameters to the line plot call of the corresponding condition, overriding defaults (e.g., ``styles={"Aud/L": {"linewidth": 3}}`` will set the linewidth for "Aud/L" to 3). As with ``colors`` and ``linestyles``, keys matching conditions in ``/``-separated ``evokeds`` keys are supported (see Notes for details). cmap : None | str | tuple | instance of matplotlib.colors.Colormap Colormap from which to draw color values when plotting the ERP/F lines and confidence bands. If not ``None``, ints or floats in the ``colors`` parameter are mapped to steps or percentiles (respectively) along the colormap. If ``cmap`` is a :class:`str`, it will be passed to :func:`matplotlib.cm.get_cmap`; if ``cmap`` is a tuple, its first element will be used as a string to label the colorbar, and its second element will be passed to :func:`matplotlib.cm.get_cmap` (unless it is already an instance of :class:`~matplotlib.colors.Colormap`). .. versionchanged:: 0.19 Support for passing :class:`~matplotlib.colors.Colormap` instances. vlines : "auto" | list of float A list in seconds at which to plot dashed vertical lines. If "auto" and the supplied data includes 0, it is set to [0.] and a vertical bar is plotted at time 0. If an empty list is passed, no vertical lines are plotted. ci : float | bool | callable | None Confidence band around each ERP/F time series. If ``False`` or ``None`` no confidence band is drawn. If :class:`float`, ``ci`` must be between 0 and 1, and will set the threshold for a bootstrap (single plot)/parametric (when ``axes=='topo'``) estimation of the confidence band; ``True`` is equivalent to setting a threshold of 0.95 (i.e., the 95%% confidence band is drawn). If a callable, it must take a single array (n_observations × n_times) as input and return upper and lower confidence margins (2 × n_times). Defaults to ``True``. truncate_yaxis : bool | 'auto' Whether to shorten the y-axis spine. If 'auto', the spine is truncated at the minimum and maximum ticks. If ``True``, it is truncated at the multiple of 0.25 nearest to half the maximum absolute value of the data. If ``truncate_xaxis=False``, only the far bound of the y-axis will be truncated. Defaults to 'auto'. truncate_xaxis : bool Whether to shorten the x-axis spine. If ``True``, the spine is truncated at the minimum and maximum ticks. If ``truncate_yaxis=False``, only the far bound of the x-axis will be truncated. Defaults to ``True``. ylim : dict | None Y-axis limits for plots (after scaling has been applied). :class:`dict` keys should match channel types; valid keys are eeg, mag, grad, misc (example: ``ylim=dict(eeg=[-20, 20])``). If ``None``, the y-axis limits will be set automatically by matplotlib. Defaults to ``None``. invert_y : bool Whether to plot negative values upward (as is sometimes done for ERPs out of tradition). Defaults to ``False``. show_sensors : bool | int | str | None Whether to display an inset showing sensor locations on a head outline. If :class:`int` or :class:`str`, indicates position of the inset (see :func:`mpl_toolkits.axes_grid1.inset_locator.inset_axes`). If ``None``, treated as ``True`` if there is only one channel in ``picks``. If ``True``, location is upper or lower right corner, depending on data values. Defaults to ``None``. legend : bool | int | str Whether to show a legend for the colors/linestyles of the conditions plotted. If :class:`int` or :class:`str`, indicates position of the legend (see :func:`mpl_toolkits.axes_grid1.inset_locator.inset_axes`). If ``True``, equivalent to ``'upper left'``. Defaults to ``True``. split_legend : bool | None Whether to separate color and linestyle in the legend. If ``None``, a separate linestyle legend will still be shown if ``cmap`` is specified. Defaults to ``None``. axes : None | Axes instance | list of Axes | 'topo' :class:`~matplotlib.axes.Axes` object to plot into. If plotting multiple channel types (or multiple channels when ``combine=None``), ``axes`` should be a list of appropriate length containing :class:`~matplotlib.axes.Axes` objects. If ``'topo'``, a new :class:`~matplotlib.figure.Figure` is created with one axis for each channel, in a topographical layout. If ``None``, a new :class:`~matplotlib.figure.Figure` is created for each channel type. Defaults to ``None``. title : str | None Title printed above the plot. If ``None``, a title will be automatically generated based on channel name(s) or type(s) and the value of the ``combine`` parameter. Defaults to ``None``. show : bool Whether to show the figure. Defaults to ``True``. %(combine)s If callable, the callable must accept one positional input (data of shape ``(n_evokeds, n_channels, n_times)``) and return an :class:`array <numpy.ndarray>` of shape ``(n_epochs, n_times)``. For example:: combine = lambda data: np.median(data, axis=1) If ``combine`` is ``None``, channels are combined by computing GFP, unless ``picks`` is a single channel (not channel type) or ``axes='topo'``, in which cases no combining is performed. Defaults to ``None``. %(topomap_sphere_auto)s Returns ------- fig : list of Figure instances A list of the figure(s) generated. Notes ----- If the parameters ``styles``, ``colors``, or ``linestyles`` are passed as :class:`dicts <python:dict>`, then ``evokeds`` must also be a :class:`python:dict`, and the keys of the plot-style parameters must either match the keys of ``evokeds``, or match a ``/``-separated partial key ("condition") of ``evokeds``. For example, if evokeds has keys "Aud/L", "Aud/R", "Vis/L", and "Vis/R", then ``linestyles=dict(L='--', R='-')`` will plot both Aud/L and Vis/L conditions with dashed lines and both Aud/R and Vis/R conditions with solid lines. Similarly, ``colors=dict(Aud='r', Vis='b')`` will plot Aud/L and Aud/R conditions red and Vis/L and Vis/R conditions blue. Color specification depends on whether a colormap has been provided in the ``cmap`` parameter. The following table summarizes how the ``colors`` parameter is interpreted: .. cssclass:: table-bordered .. rst-class:: midvalign +-------------+----------------+------------------------------------------+ | ``cmap`` | ``colors`` | result | +=============+================+==========================================+ | | None | matplotlib default color cycle; unique | | | | color for each condition | | +----------------+------------------------------------------+ | | | matplotlib default color cycle; lowest | | | list or dict | integer mapped to first cycle color; | | | of integers | conditions with same integer get same | | None | | color; unspecified conditions are "gray" | | +----------------+------------------------------------------+ | | list or dict | ``ValueError`` | | | of floats | | | +----------------+------------------------------------------+ | | list or dict | the specified hex colors; unspecified | | | of hexadecimal | conditions are "gray" | | | color strings | | +-------------+----------------+------------------------------------------+ | | None | equally spaced colors on the colormap; | | | | unique color for each condition | | +----------------+------------------------------------------+ | | | equally spaced colors on the colormap; | | | list or dict | lowest integer mapped to first cycle | | string or | of integers | color; conditions with same integer | | instance of | | get same color | | matplotlib +----------------+------------------------------------------+ | Colormap | list or dict | floats mapped to corresponding colormap | | | of floats | values | | +----------------+------------------------------------------+ | | list or dict | | | | of hexadecimal | ``TypeError`` | | | color strings | | +-------------+----------------+------------------------------------------+ """ import matplotlib.pyplot as plt from ..evoked import Evoked, _check_evokeds_ch_names_times # build up evokeds into a dict, if it's not already if isinstance(evokeds, Evoked): evokeds = [evokeds] if isinstance(evokeds, (list, tuple)): evokeds_copy = evokeds.copy() evokeds = dict() comments = [getattr(_evk, 'comment', None) for _evk in evokeds_copy] for idx, (comment, _evoked) in enumerate(zip(comments, evokeds_copy)): key = str(idx + 1) if comment: # only update key if comment is non-empty if comments.count(comment) == 1: # comment is unique key = comment else: # comment is non-unique: prepend index key = f'{key}: {comment}' evokeds[key] = _evoked del evokeds_copy if not isinstance(evokeds, dict): raise TypeError('"evokeds" must be a dict, list, or instance of ' 'mne.Evoked; got {}'.format(type(evokeds).__name__)) evokeds = deepcopy(evokeds) # avoid modifying dict outside function scope for cond, evoked in evokeds.items(): _validate_type(cond, 'str', 'Conditions') if isinstance(evoked, Evoked): evokeds[cond] = [evoked] # wrap singleton evokeds in a list for evk in evokeds[cond]: _validate_type(evk, Evoked, 'All evokeds entries ', 'Evoked') # ensure same channels and times across all evokeds all_evoked = sum(evokeds.values(), []) _check_evokeds_ch_names_times(all_evoked) del all_evoked # get some representative info conditions = list(evokeds) one_evoked = evokeds[conditions[0]][0] times = one_evoked.times info = one_evoked.info sphere = _check_sphere(sphere, info) tmin, tmax = times[0], times[-1] # set some defaults if ylim is None: ylim = dict() if vlines == 'auto': vlines = [0.] if (tmin < 0 < tmax) else [] _validate_type(vlines, (list, tuple), 'vlines', 'list or tuple') # is picks a channel type (or None)? orig_picks = deepcopy(picks) picks, picked_types = _picks_to_idx(info, picks, return_kind=True) # some things that depend on picks: ch_names = np.array(one_evoked.ch_names)[picks].tolist() ch_types = list(_get_channel_types(info, picks=picks, unique=True) .intersection(_DATA_CH_TYPES_SPLIT + ('misc',))) # miscICA picks_by_type = channel_indices_by_type(info, picks) # discard picks from non-data channels (e.g., ref_meg) good_picks = sum([picks_by_type[ch_type] for ch_type in ch_types], []) picks = np.intersect1d(picks, good_picks) if show_sensors is None: show_sensors = (len(picks) == 1) # cannot combine a single channel if (len(picks) < 2) and combine is not None: warn('Only {} channel in "picks"; cannot combine by method "{}".' .format(len(picks), combine)) # `combine` defaults to GFP unless picked a single channel or axes='topo' if combine is None and len(picks) > 1 and axes != 'topo': combine = 'gfp' # convert `combine` into callable (if None or str) combine_func = _make_combine_callable(combine) # title title = _title_helper_pce(title, picked_types, picks=orig_picks, ch_names=ch_names, combine=combine) # setup axes do_topo = (axes == 'topo') if do_topo: show_sensors = False if len(picks) > 70: logger.info('You are plotting to a topographical layout with >70 ' 'sensors. This can be extremely slow. Consider using ' 'mne.viz.plot_topo, which is optimized for speed.') axes = ['topo'] * len(ch_types) else: if axes is None: axes = (plt.subplots(figsize=(8, 6))[1] for _ in ch_types) elif isinstance(axes, plt.Axes): axes = [axes] _validate_if_list_of_axes(axes, obligatory_len=len(ch_types)) if len(ch_types) > 1: logger.info('Multiple channel types selected, returning one figure ' 'per type.') figs = list() for ch_type, ax in zip(ch_types, axes): _picks = picks_by_type[ch_type] _ch_names = np.array(one_evoked.ch_names)[_picks].tolist() _picks = ch_type if picked_types else _picks # don't pass `combine` here; title will run through this helper # function a second time & it will get added then _title = _title_helper_pce(title, picked_types, picks=_picks, ch_names=_ch_names, combine=None) figs.extend(plot_compare_evokeds( evokeds, picks=_picks, colors=colors, cmap=cmap, linestyles=linestyles, styles=styles, vlines=vlines, ci=ci, truncate_yaxis=truncate_yaxis, ylim=ylim, invert_y=invert_y, legend=legend, show_sensors=show_sensors, axes=ax, title=_title, split_legend=split_legend, show=show, sphere=sphere)) return figs # colors and colormap. This yields a `styles` dict with one entry per # condition, specifying at least color and linestyle. THIS MUST BE DONE # AFTER THE "MULTIPLE CHANNEL TYPES" LOOP (_styles, _linestyles, _colors, _cmap, colorbar_title, colorbar_ticks) = _handle_styles_pce(styles, linestyles, colors, cmap, conditions) # From now on there is only 1 channel type assert len(ch_types) == 1 ch_type = ch_types[0] # some things that depend on ch_type: units = _handle_default('units')[ch_type] scalings = _handle_default('scalings')[ch_type] # prep for topo pos_picks = picks # need this version of picks for sensor location inset info = pick_info(info, sel=picks, copy=True) all_ch_names = info['ch_names'] if not do_topo: # add vacuous "index" (needed for topo) so same code works for both axes = [(ax, 0) for ax in axes] if np.array(picks).ndim < 2: picks = [picks] # enables zipping w/ axes else: from .topo import iter_topography fig = plt.figure(figsize=(18, 14)) def click_func( ax_, pick_, evokeds=evokeds, colors=colors, linestyles=linestyles, styles=styles, cmap=cmap, vlines=vlines, ci=ci, truncate_yaxis=truncate_yaxis, truncate_xaxis=truncate_xaxis, ylim=ylim, invert_y=invert_y, show_sensors=show_sensors, legend=legend, split_legend=split_legend, picks=picks, combine=combine): plot_compare_evokeds( evokeds=evokeds, colors=colors, linestyles=linestyles, styles=styles, cmap=cmap, vlines=vlines, ci=ci, truncate_yaxis=truncate_yaxis, truncate_xaxis=truncate_xaxis, ylim=ylim, invert_y=invert_y, show_sensors=show_sensors, legend=legend, split_legend=split_legend, picks=picks[pick_], combine=combine, axes=ax_, show=True, sphere=sphere) layout = find_layout(info) # shift everything to the right by 15% of one axes width layout.pos[:, 0] += layout.pos[0, 2] * .15 layout.pos[:, 1] += layout.pos[0, 3] * .15 # `axes` will be a list of (axis_object, channel_index) tuples axes = list(iter_topography( info, layout=layout, on_pick=click_func, fig=fig, fig_facecolor='w', axis_facecolor='w', axis_spinecolor='k', layout_scale=.925, legend=True)) picks = list(picks) del info # for each axis, compute the grand average and (maybe) the CI # (per sensor if topo, otherwise aggregating over sensors) c_func = None if do_topo else combine_func all_data = list() all_cis = list() for _picks, (ax, idx) in zip(picks, axes): data_dict = dict() ci_dict = dict() for cond in conditions: this_evokeds = evokeds[cond] # skip CIs when possible; assign ci_fun first to get arg checking ci_fun = _get_ci_function_pce(ci, do_topo=do_topo) ci_fun = ci_fun if len(this_evokeds) > 1 else None res = _get_data_and_ci(this_evokeds, combine, c_func, picks=_picks, scaling=scalings, ci_fun=ci_fun) data_dict[cond] = res[0] if ci_fun is not None: ci_dict[cond] = res[1] all_data.append(data_dict) # grand means, or indiv. sensors if do_topo all_cis.append(ci_dict) del evokeds # compute ylims allvalues = list() for _dict in all_data: for _array in list(_dict.values()): allvalues.append(_array[np.newaxis]) # to get same .ndim as CIs for _dict in all_cis: allvalues.extend(list(_dict.values())) allvalues = np.concatenate(allvalues) norm = np.all(allvalues > 0) orig_ymin, orig_ymax = ylim.get(ch_type, [None, None]) ymin, ymax = _setup_vmin_vmax(allvalues, orig_ymin, orig_ymax, norm) del allvalues # add empty data and title for the legend axis if do_topo: all_data.append({cond: np.array([]) for cond in data_dict}) all_cis.append({cond: None for cond in ci_dict}) all_ch_names.append('') # plot! for (ax, idx), data, cis in zip(axes, all_data, all_cis): if do_topo: title = all_ch_names[idx] # plot the data _times = [] if idx == -1 else times _plot_compare_evokeds(ax, data, conditions, _times, cis, _styles, title, norm, do_topo) # draw axes & vlines skip_axlabel = do_topo and (idx != -1) _draw_axes_pce(ax, ymin, ymax, truncate_yaxis, truncate_xaxis, invert_y, vlines, tmin, tmax, units, skip_axlabel) # add inset scalp plot showing location of sensors picked if show_sensors: _validate_type(show_sensors, (np.int64, bool, str, type(None)), 'show_sensors', 'numeric, str, None or bool') if not _check_ch_locs(np.array(one_evoked.info['chs'])[pos_picks]): warn('Cannot find channel coordinates in the supplied Evokeds. ' 'Not showing channel locations.') else: _evoked_sensor_legend(one_evoked.info, pos_picks, ymin, ymax, show_sensors, ax, sphere) # add color/linestyle/colormap legend(s) if legend: _draw_legend_pce(legend, split_legend, _styles, _linestyles, _colors, _cmap, do_topo, ax) if cmap is not None: _draw_colorbar_pce(ax, _colors, _cmap, colorbar_title, colorbar_ticks) # finish plt_show(show) return [ax.figure]
bsd-3-clause
pizzathief/scipy
scipy/special/_precompute/lambertw.py
8
2025
"""Compute a Pade approximation for the principle branch of the Lambert W function around 0 and compare it to various other approximations. """ import numpy as np try: import mpmath # type: ignore[import] import matplotlib.pyplot as plt # type: ignore[import] except ImportError: pass def lambertw_pade(): derivs = [mpmath.diff(mpmath.lambertw, 0, n=n) for n in range(6)] p, q = mpmath.pade(derivs, 3, 2) return p, q def main(): print(__doc__) with mpmath.workdps(50): p, q = lambertw_pade() p, q = p[::-1], q[::-1] print("p = {}".format(p)) print("q = {}".format(q)) x, y = np.linspace(-1.5, 1.5, 75), np.linspace(-1.5, 1.5, 75) x, y = np.meshgrid(x, y) z = x + 1j*y lambertw_std = [] for z0 in z.flatten(): lambertw_std.append(complex(mpmath.lambertw(z0))) lambertw_std = np.array(lambertw_std).reshape(x.shape) fig, axes = plt.subplots(nrows=3, ncols=1) # Compare Pade approximation to true result p = np.array([float(p0) for p0 in p]) q = np.array([float(q0) for q0 in q]) pade_approx = np.polyval(p, z)/np.polyval(q, z) pade_err = abs(pade_approx - lambertw_std) axes[0].pcolormesh(x, y, pade_err) # Compare two terms of asymptotic series to true result asy_approx = np.log(z) - np.log(np.log(z)) asy_err = abs(asy_approx - lambertw_std) axes[1].pcolormesh(x, y, asy_err) # Compare two terms of the series around the branch point to the # true result p = np.sqrt(2*(np.exp(1)*z + 1)) series_approx = -1 + p - p**2/3 series_err = abs(series_approx - lambertw_std) im = axes[2].pcolormesh(x, y, series_err) fig.colorbar(im, ax=axes.ravel().tolist()) plt.show() fig, ax = plt.subplots(nrows=1, ncols=1) pade_better = pade_err < asy_err im = ax.pcolormesh(x, y, pade_better) t = np.linspace(-0.3, 0.3) ax.plot(-2.5*abs(t) - 0.2, t, 'r') fig.colorbar(im, ax=ax) plt.show() if __name__ == '__main__': main()
bsd-3-clause
ltiao/scikit-learn
examples/cluster/plot_kmeans_silhouette_analysis.py
242
5885
""" =============================================================================== Selecting the number of clusters with silhouette analysis on KMeans clustering =============================================================================== Silhouette analysis can be used to study the separation distance between the resulting clusters. The silhouette plot displays a measure of how close each point in one cluster is to points in the neighboring clusters and thus provides a way to assess parameters like number of clusters visually. This measure has a range of [-1, 1]. Silhoette coefficients (as these values are referred to as) near +1 indicate that the sample is far away from the neighboring clusters. A value of 0 indicates that the sample is on or very close to the decision boundary between two neighboring clusters and negative values indicate that those samples might have been assigned to the wrong cluster. In this example the silhouette analysis is used to choose an optimal value for ``n_clusters``. The silhouette plot shows that the ``n_clusters`` value of 3, 5 and 6 are a bad pick for the given data due to the presence of clusters with below average silhouette scores and also due to wide fluctuations in the size of the silhouette plots. Silhouette analysis is more ambivalent in deciding between 2 and 4. Also from the thickness of the silhouette plot the cluster size can be visualized. The silhouette plot for cluster 0 when ``n_clusters`` is equal to 2, is bigger in size owing to the grouping of the 3 sub clusters into one big cluster. However when the ``n_clusters`` is equal to 4, all the plots are more or less of similar thickness and hence are of similar sizes as can be also verified from the labelled scatter plot on the right. """ from __future__ import print_function from sklearn.datasets import make_blobs from sklearn.cluster import KMeans from sklearn.metrics import silhouette_samples, silhouette_score import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np print(__doc__) # Generating the sample data from make_blobs # This particular setting has one distict cluster and 3 clusters placed close # together. X, y = make_blobs(n_samples=500, n_features=2, centers=4, cluster_std=1, center_box=(-10.0, 10.0), shuffle=True, random_state=1) # For reproducibility range_n_clusters = [2, 3, 4, 5, 6] for n_clusters in range_n_clusters: # Create a subplot with 1 row and 2 columns fig, (ax1, ax2) = plt.subplots(1, 2) fig.set_size_inches(18, 7) # The 1st subplot is the silhouette plot # The silhouette coefficient can range from -1, 1 but in this example all # lie within [-0.1, 1] ax1.set_xlim([-0.1, 1]) # The (n_clusters+1)*10 is for inserting blank space between silhouette # plots of individual clusters, to demarcate them clearly. ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10]) # Initialize the clusterer with n_clusters value and a random generator # seed of 10 for reproducibility. clusterer = KMeans(n_clusters=n_clusters, random_state=10) cluster_labels = clusterer.fit_predict(X) # The silhouette_score gives the average value for all the samples. # This gives a perspective into the density and separation of the formed # clusters silhouette_avg = silhouette_score(X, cluster_labels) print("For n_clusters =", n_clusters, "The average silhouette_score is :", silhouette_avg) # Compute the silhouette scores for each sample sample_silhouette_values = silhouette_samples(X, cluster_labels) y_lower = 10 for i in range(n_clusters): # Aggregate the silhouette scores for samples belonging to # cluster i, and sort them ith_cluster_silhouette_values = \ sample_silhouette_values[cluster_labels == i] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = y_lower + size_cluster_i color = cm.spectral(float(i) / n_clusters) ax1.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) # Label the silhouette plots with their cluster numbers at the middle ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) # Compute the new y_lower for next plot y_lower = y_upper + 10 # 10 for the 0 samples ax1.set_title("The silhouette plot for the various clusters.") ax1.set_xlabel("The silhouette coefficient values") ax1.set_ylabel("Cluster label") # The vertical line for average silhoutte score of all the values ax1.axvline(x=silhouette_avg, color="red", linestyle="--") ax1.set_yticks([]) # Clear the yaxis labels / ticks ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) # 2nd Plot showing the actual clusters formed colors = cm.spectral(cluster_labels.astype(float) / n_clusters) ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7, c=colors) # Labeling the clusters centers = clusterer.cluster_centers_ # Draw white circles at cluster centers ax2.scatter(centers[:, 0], centers[:, 1], marker='o', c="white", alpha=1, s=200) for i, c in enumerate(centers): ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, s=50) ax2.set_title("The visualization of the clustered data.") ax2.set_xlabel("Feature space for the 1st feature") ax2.set_ylabel("Feature space for the 2nd feature") plt.suptitle(("Silhouette analysis for KMeans clustering on sample data " "with n_clusters = %d" % n_clusters), fontsize=14, fontweight='bold') plt.show()
bsd-3-clause
Mega-DatA-Lab/mxnet
example/mxnet_adversarial_vae/vaegan_mxnet.py
18
37473
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. ''' Created on Jun 15, 2017 @author: shujon ''' from __future__ import print_function import mxnet as mx import numpy as np from sklearn.datasets import fetch_mldata from matplotlib import pyplot as plt import logging import cv2 from datetime import datetime from PIL import Image import os import argparse from scipy.io import savemat #from layer import GaussianSampleLayer ###################################################################### #An adversarial variational autoencoder implementation in mxnet # following the implementation at https://github.com/JeremyCCHsu/tf-vaegan # of paper `Larsen, Anders Boesen Lindbo, et al. "Autoencoding beyond pixels using a # learned similarity metric." arXiv preprint arXiv:1512.09300 (2015).` ###################################################################### #constant operator in mxnet, not used in this code @mx.init.register class MyConstant(mx.init.Initializer): def __init__(self, value): super(MyConstant, self).__init__(value=value) self.value = value def _init_weight(self, _, arr): arr[:] = mx.nd.array(self.value) ####################################################################### #The encoder is a CNN which takes 32x32 image as input # generates the 100 dimensional shape embedding as a sample from normal distribution # using predicted meand and variance ####################################################################### def encoder(nef, z_dim, batch_size, no_bias=True, fix_gamma=True, eps=1e-5 + 1e-12): BatchNorm = mx.sym.BatchNorm data = mx.sym.Variable('data') #label = mx.sym.Variable('label') e1 = mx.sym.Convolution(data, name='enc1', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=nef, no_bias=no_bias) ebn1 = BatchNorm(e1, name='encbn1', fix_gamma=fix_gamma, eps=eps) eact1 = mx.sym.LeakyReLU(ebn1, name='encact1', act_type='leaky', slope=0.2) e2 = mx.sym.Convolution(eact1, name='enc2', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=nef*2, no_bias=no_bias) ebn2 = BatchNorm(e2, name='encbn2', fix_gamma=fix_gamma, eps=eps) eact2 = mx.sym.LeakyReLU(ebn2, name='encact2', act_type='leaky', slope=0.2) e3 = mx.sym.Convolution(eact2, name='enc3', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=nef*4, no_bias=no_bias) ebn3 = BatchNorm(e3, name='encbn3', fix_gamma=fix_gamma, eps=eps) eact3 = mx.sym.LeakyReLU(ebn3, name='encact3', act_type='leaky', slope=0.2) e4 = mx.sym.Convolution(eact3, name='enc4', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=nef*8, no_bias=no_bias) ebn4 = BatchNorm(e4, name='encbn4', fix_gamma=fix_gamma, eps=eps) eact4 = mx.sym.LeakyReLU(ebn4, name='encact4', act_type='leaky', slope=0.2) eact4 = mx.sym.Flatten(eact4) z_mu = mx.sym.FullyConnected(eact4, num_hidden=z_dim, name="enc_mu") z_lv = mx.sym.FullyConnected(eact4, num_hidden=z_dim, name="enc_lv") #eps = mx.symbol.random_normal(loc=0, scale=1, shape=(batch_size,z_dim) ) #std = mx.symbol.sqrt(mx.symbol.exp(z_lv)) #z = mx.symbol.elemwise_add(z_mu, mx.symbol.broadcast_mul(eps, std)) z = z_mu + mx.symbol.broadcast_mul(mx.symbol.exp(0.5*z_lv),mx.symbol.random_normal(loc=0, scale=1,shape=(batch_size,z_dim))) return z_mu, z_lv, z ####################################################################### #The genrator is a CNN which takes 100 dimensional embedding as input # and reconstructs the input image given to the encoder ####################################################################### def generator(ngf, nc, no_bias=True, fix_gamma=True, eps=1e-5 + 1e-12, z_dim=100, activation='sigmoid'): BatchNorm = mx.sym.BatchNorm rand = mx.sym.Variable('rand') rand = mx.sym.Reshape(rand, shape=(-1, z_dim, 1, 1)) #g1 = mx.sym.FullyConnected(rand, name="g1", num_hidden=2*2*ngf*8, no_bias=True) g1 = mx.sym.Deconvolution(rand, name='gen1', kernel=(5,5), stride=(2,2),target_shape=(2,2), num_filter=ngf*8, no_bias=no_bias) gbn1 = BatchNorm(g1, name='genbn1', fix_gamma=fix_gamma, eps=eps) gact1 = mx.sym.Activation(gbn1, name="genact1", act_type="relu") # 4 x 4 #gact1 = mx.sym.Reshape(gact1, shape=(-1, ngf * 8, 2, 2)) #g1 = mx.sym.Deconvolution(g0, name='g1', kernel=(4,4), num_filter=ngf*8, no_bias=no_bias) #gbn1 = BatchNorm(g1, name='gbn1', fix_gamma=fix_gamma, eps=eps) #gact1 = mx.sym.Activation(gbn1, name='gact1', act_type='relu') g2 = mx.sym.Deconvolution(gact1, name='gen2', kernel=(5,5), stride=(2,2),target_shape=(4,4), num_filter=ngf*4, no_bias=no_bias) gbn2 = BatchNorm(g2, name='genbn2', fix_gamma=fix_gamma, eps=eps) gact2 = mx.sym.Activation(gbn2, name='genact2', act_type='relu') g3 = mx.sym.Deconvolution(gact2, name='gen3', kernel=(5,5), stride=(2,2), target_shape=(8,8), num_filter=ngf*2, no_bias=no_bias) gbn3 = BatchNorm(g3, name='genbn3', fix_gamma=fix_gamma, eps=eps) gact3 = mx.sym.Activation(gbn3, name='genact3', act_type='relu') g4 = mx.sym.Deconvolution(gact3, name='gen4', kernel=(5,5), stride=(2,2), target_shape=(16,16), num_filter=ngf, no_bias=no_bias) gbn4 = BatchNorm(g4, name='genbn4', fix_gamma=fix_gamma, eps=eps) gact4 = mx.sym.Activation(gbn4, name='genact4', act_type='relu') g5 = mx.sym.Deconvolution(gact4, name='gen5', kernel=(5,5), stride=(2,2), target_shape=(32,32), num_filter=nc, no_bias=no_bias) gout = mx.sym.Activation(g5, name='genact5', act_type=activation) return gout ####################################################################### # First part of the discriminator which takes a 32x32 image as input # and output a convolutional feature map, this is required to calculate # the layer loss ####################################################################### def discriminator1(ndf, no_bias=True, fix_gamma=True, eps=1e-5 + 1e-12): BatchNorm = mx.sym.BatchNorm data = mx.sym.Variable('data') #label = mx.sym.Variable('label') d1 = mx.sym.Convolution(data, name='d1', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=ndf, no_bias=no_bias) dact1 = mx.sym.LeakyReLU(d1, name='dact1', act_type='leaky', slope=0.2) d2 = mx.sym.Convolution(dact1, name='d2', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=ndf*2, no_bias=no_bias) dbn2 = BatchNorm(d2, name='dbn2', fix_gamma=fix_gamma, eps=eps) dact2 = mx.sym.LeakyReLU(dbn2, name='dact2', act_type='leaky', slope=0.2) d3 = mx.sym.Convolution(dact2, name='d3', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=ndf*4, no_bias=no_bias) dbn3 = BatchNorm(d3, name='dbn3', fix_gamma=fix_gamma, eps=eps) dact3 = mx.sym.LeakyReLU(dbn3, name='dact3', act_type='leaky', slope=0.2) return dact3 ####################################################################### # Second part of the discriminator which takes a 256x8x8 feature map as input # and generates the loss based on whether the input image was a real one or fake one ####################################################################### def discriminator2(ndf, no_bias=True, fix_gamma=True, eps=1e-5 + 1e-12): BatchNorm = mx.sym.BatchNorm data = mx.sym.Variable('data') label = mx.sym.Variable('label') d4 = mx.sym.Convolution(data, name='d4', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=ndf*8, no_bias=no_bias) dbn4 = BatchNorm(d4, name='dbn4', fix_gamma=fix_gamma, eps=eps) dact4 = mx.sym.LeakyReLU(dbn4, name='dact4', act_type='leaky', slope=0.2) #d5 = mx.sym.Convolution(dact4, name='d5', kernel=(4,4), num_filter=1, no_bias=no_bias) #d5 = mx.sym.Flatten(d5) h = mx.sym.Flatten(dact4) d5 = mx.sym.FullyConnected(h, num_hidden=1, name="d5") #dloss = (0.5 * (label == 0) + (label != 0) ) * mx.sym.LogisticRegressionOutput(data=d5, label=label, name='dloss') dloss = mx.sym.LogisticRegressionOutput(data=d5, label=label, name='dloss') return dloss ####################################################################### # GaussianLogDensity loss calculation for layer wise loss ####################################################################### def GaussianLogDensity(x, mu, log_var, name='GaussianLogDensity', EPSILON = 1e-6): c = mx.sym.ones_like(log_var)*2.0 * 3.1416 c = mx.symbol.log(c) var = mx.sym.exp(log_var) x_mu2 = mx.symbol.square(x - mu) # [Issue] not sure the dim works or not? x_mu2_over_var = mx.symbol.broadcast_div(x_mu2, var + EPSILON) log_prob = -0.5 * (c + log_var + x_mu2_over_var) #log_prob = (x_mu2) log_prob = mx.symbol.sum(log_prob, axis=1, name=name) # keep_dims=True, return log_prob ####################################################################### # Calculate the discriminator layer loss ####################################################################### def DiscriminatorLayerLoss(): data = mx.sym.Variable('data') label = mx.sym.Variable('label') data = mx.sym.Flatten(data) label = mx.sym.Flatten(label) label = mx.sym.BlockGrad(label) zeros = mx.sym.zeros_like(data) output = -GaussianLogDensity(label, data, zeros) dloss = mx.symbol.MakeLoss(mx.symbol.mean(output),name='lloss') #dloss = mx.sym.MAERegressionOutput(data=data, label=label, name='lloss') return dloss ####################################################################### # KLDivergence loss ####################################################################### def KLDivergenceLoss(): data = mx.sym.Variable('data') mu1, lv1 = mx.sym.split(data, num_outputs=2, axis=0) mu2 = mx.sym.zeros_like(mu1) lv2 = mx.sym.zeros_like(lv1) v1 = mx.sym.exp(lv1) v2 = mx.sym.exp(lv2) mu_diff_sq = mx.sym.square(mu1 - mu2) dimwise_kld = .5 * ( (lv2 - lv1) + mx.symbol.broadcast_div(v1, v2) + mx.symbol.broadcast_div(mu_diff_sq, v2) - 1.) KL = mx.symbol.sum(dimwise_kld, axis=1) KLloss = mx.symbol.MakeLoss(mx.symbol.mean(KL),name='KLloss') return KLloss ####################################################################### # Get the dataset ####################################################################### def get_data(path, activation): #mnist = fetch_mldata('MNIST original') #import ipdb; ipdb.set_trace() data = [] image_names = [] #set the path to the 32x32 images of caltech101 dataset created using the convert_data_inverted.py script #path = '/home/ubuntu/datasets/caltech101/data/images32x32/' #path_wo_ext = '/home/ubuntu/datasets/caltech101/data/images/' for filename in os.listdir(path): img = cv2.imread(os.path.join(path,filename), cv2.IMREAD_GRAYSCALE) image_names.append(filename) if img is not None: data.append(img) data = np.asarray(data) if activation == 'sigmoid': #converting image values from 0 to 1 as the generator activation is sigmoid data = data.astype(np.float32)/(255.0) elif activation == 'tanh': #converting image values from -1 to 1 as the generator activation is tanh data = data.astype(np.float32)/(255.0/2) - 1.0 data = data.reshape((data.shape[0], 1, data.shape[1], data.shape[2])) np.random.seed(1234) # set seed for deterministic ordering p = np.random.permutation(data.shape[0]) X = data[p] return X, image_names ####################################################################### # Create a random iterator for generator ####################################################################### class RandIter(mx.io.DataIter): def __init__(self, batch_size, ndim): self.batch_size = batch_size self.ndim = ndim self.provide_data = [('rand', (batch_size, ndim, 1, 1))] self.provide_label = [] def iter_next(self): return True def getdata(self): return [mx.random.normal(0, 1.0, shape=(self.batch_size, self.ndim, 1, 1))] ####################################################################### # fill the ith grid of the buffer matrix with the values from the img # buf : buffer matrix # i : serial of the image in the 2D grid # img : image data # shape : ( height width depth ) of image ####################################################################### def fill_buf(buf, i, img, shape): #n = buf.shape[0]/shape[1] # grid height is a multiple of individual image height m = buf.shape[0]/shape[0] sx = (i%m)*shape[1] sy = (i/m)*shape[0] buf[sy:sy+shape[0], sx:sx+shape[1], :] = img ####################################################################### # create a grid of images and save it as a final image # title : grid image name # X : array of images ####################################################################### def visual(title, X, activation): assert len(X.shape) == 4 X = X.transpose((0, 2, 3, 1)) if activation == 'sigmoid': X = np.clip((X)*(255.0), 0, 255).astype(np.uint8) elif activation == 'tanh': X = np.clip((X+1.0)*(255.0/2.0), 0, 255).astype(np.uint8) n = np.ceil(np.sqrt(X.shape[0])) buff = np.zeros((int(n*X.shape[1]), int(n*X.shape[2]), int(X.shape[3])), dtype=np.uint8) for i, img in enumerate(X): fill_buf(buff, i, img, X.shape[1:3]) #buff = cv2.cvtColor(buff, cv2.COLOR_BGR2RGB) #local_out = 1 #num = 1 cv2.imwrite('%s.jpg' % (title), buff) ####################################################################### # adverial training of the VAE ####################################################################### def train(dataset, nef, ndf, ngf, nc, batch_size, Z, lr, beta1, epsilon, ctx, check_point, g_dl_weight, output_path, checkpoint_path, data_path, activation,num_epoch, save_after_every, visualize_after_every, show_after_every): #encoder z_mu, z_lv, z = encoder(nef, Z, batch_size) symE = mx.sym.Group([z_mu, z_lv, z]) #generator symG = generator(ngf, nc, no_bias=True, fix_gamma=True, eps=1e-5 + 1e-12, z_dim = Z, activation=activation ) #discriminator h = discriminator1(ndf) dloss = discriminator2(ndf) #symD = mx.sym.Group([dloss, h]) symD1 = h symD2 = dloss #symG, symD = make_dcgan_sym(nef, ngf, ndf, nc) #mx.viz.plot_network(symG, shape={'rand': (batch_size, 100, 1, 1)}).view() #mx.viz.plot_network(symD, shape={'data': (batch_size, nc, 64, 64)}).view() # ==============data============== #if dataset == 'caltech': X_train, _ = get_data(data_path, activation) #import ipdb; ipdb.set_trace() train_iter = mx.io.NDArrayIter(X_train, batch_size=batch_size, shuffle=True) #elif dataset == 'imagenet': # train_iter = ImagenetIter(imgnet_path, batch_size, (3, 32, 32)) #print('=============================================', str(batch_size), str(Z)) rand_iter = RandIter(batch_size, Z) label = mx.nd.zeros((batch_size,), ctx=ctx) # =============module E============= modE = mx.mod.Module(symbol=symE, data_names=('data',), label_names=None, context=ctx) modE.bind(data_shapes=train_iter.provide_data) modE.init_params(initializer=mx.init.Normal(0.02)) modE.init_optimizer( optimizer='adam', optimizer_params={ 'learning_rate': lr, 'wd': 1e-6, 'beta1': beta1, 'epsilon': epsilon, 'rescale_grad': (1.0/batch_size) }) mods = [modE] # =============module G============= modG = mx.mod.Module(symbol=symG, data_names=('rand',), label_names=None, context=ctx) modG.bind(data_shapes=rand_iter.provide_data, inputs_need_grad=True) modG.init_params(initializer=mx.init.Normal(0.02)) modG.init_optimizer( optimizer='adam', optimizer_params={ 'learning_rate': lr, 'wd': 1e-6, 'beta1': beta1, 'epsilon': epsilon, #'rescale_grad': (1.0/batch_size) }) mods.append(modG) # =============module D============= modD1 = mx.mod.Module(symD1, label_names=[], context=ctx) modD2 = mx.mod.Module(symD2, label_names=('label',), context=ctx) modD = mx.mod.SequentialModule() modD.add(modD1).add(modD2, take_labels=True, auto_wiring=True) #modD = mx.mod.Module(symbol=symD, data_names=('data',), label_names=('label',), context=ctx) modD.bind(data_shapes=train_iter.provide_data, label_shapes=[('label', (batch_size,))], inputs_need_grad=True) modD.init_params(initializer=mx.init.Normal(0.02)) modD.init_optimizer( optimizer='adam', optimizer_params={ 'learning_rate': lr, 'wd': 1e-3, 'beta1': beta1, 'epsilon': epsilon, 'rescale_grad': (1.0/batch_size) }) mods.append(modD) # =============module DL============= symDL = DiscriminatorLayerLoss() modDL = mx.mod.Module(symbol=symDL, data_names=('data',), label_names=('label',), context=ctx) modDL.bind(data_shapes=[('data', (batch_size,nef * 4,4,4))], ################################################################################################################################ fix 512 here label_shapes=[('label', (batch_size,nef * 4,4,4))], inputs_need_grad=True) modDL.init_params(initializer=mx.init.Normal(0.02)) modDL.init_optimizer( optimizer='adam', optimizer_params={ 'learning_rate': lr, 'wd': 0., 'beta1': beta1, 'epsilon': epsilon, 'rescale_grad': (1.0/batch_size) }) # =============module KL============= symKL = KLDivergenceLoss() modKL = mx.mod.Module(symbol=symKL, data_names=('data',), label_names=None, context=ctx) modKL.bind(data_shapes=[('data', (batch_size*2,Z))], inputs_need_grad=True) modKL.init_params(initializer=mx.init.Normal(0.02)) modKL.init_optimizer( optimizer='adam', optimizer_params={ 'learning_rate': lr, 'wd': 0., 'beta1': beta1, 'epsilon': epsilon, 'rescale_grad': (1.0/batch_size) }) mods.append(modKL) def norm_stat(d): return mx.nd.norm(d)/np.sqrt(d.size) mon = mx.mon.Monitor(10, norm_stat, pattern=".*output|d1_backward_data", sort=True) mon = None if mon is not None: for mod in mods: pass # ============calculating prediction accuracy============== def facc(label, pred): pred = pred.ravel() label = label.ravel() return ((pred > 0.5) == label).mean() # ============calculating binary cross-entropy loss============== def fentropy(label, pred): pred = pred.ravel() label = label.ravel() return -(label*np.log(pred+1e-12) + (1.-label)*np.log(1.-pred+1e-12)).mean() # ============calculating KL divergence loss============== def kldivergence(label, pred): #pred = pred.ravel() #label = label.ravel() mean, log_var = np.split(pred, 2, axis=0) var = np.exp(log_var) KLLoss = -0.5 * np.sum(1 + log_var - np.power(mean, 2) - var) KLLoss = KLLoss / nElements return KLLoss mG = mx.metric.CustomMetric(fentropy) mD = mx.metric.CustomMetric(fentropy) mE = mx.metric.CustomMetric(kldivergence) mACC = mx.metric.CustomMetric(facc) print('Training...') stamp = datetime.now().strftime('%Y_%m_%d-%H_%M') # =============train=============== for epoch in range(num_epoch): train_iter.reset() for t, batch in enumerate(train_iter): rbatch = rand_iter.next() if mon is not None: mon.tic() modG.forward(rbatch, is_train=True) outG = modG.get_outputs() #print('======================================================================') #print(outG) # update discriminator on fake label[:] = 0 modD.forward(mx.io.DataBatch(outG, [label]), is_train=True) modD.backward() #modD.update() gradD11 = [[grad.copyto(grad.context) for grad in grads] for grads in modD1._exec_group.grad_arrays] gradD12 = [[grad.copyto(grad.context) for grad in grads] for grads in modD2._exec_group.grad_arrays] modD.update_metric(mD, [label]) modD.update_metric(mACC, [label]) #update discriminator on decoded modE.forward(batch, is_train=True) mu, lv, z = modE.get_outputs() #z = GaussianSampleLayer(mu, lv) z = z.reshape((batch_size, Z, 1, 1)) sample = mx.io.DataBatch([z], label=None, provide_data = [('rand', (batch_size, Z, 1, 1))]) modG.forward(sample, is_train=True) xz = modG.get_outputs() label[:] = 0 modD.forward(mx.io.DataBatch(xz, [label]), is_train=True) modD.backward() #modD.update() gradD21 = [[grad.copyto(grad.context) for grad in grads] for grads in modD1._exec_group.grad_arrays] gradD22 = [[grad.copyto(grad.context) for grad in grads] for grads in modD2._exec_group.grad_arrays] modD.update_metric(mD, [label]) modD.update_metric(mACC, [label]) # update discriminator on real label[:] = 1 batch.label = [label] modD.forward(batch, is_train=True) lx = [out.copyto(out.context) for out in modD1.get_outputs()] modD.backward() for gradsr, gradsf, gradsd in zip(modD1._exec_group.grad_arrays, gradD11, gradD21): for gradr, gradf, gradd in zip(gradsr, gradsf, gradsd): gradr += 0.5 * (gradf + gradd) for gradsr, gradsf, gradsd in zip(modD2._exec_group.grad_arrays, gradD12, gradD22): for gradr, gradf, gradd in zip(gradsr, gradsf, gradsd): gradr += 0.5 * (gradf + gradd) modD.update() modD.update_metric(mD, [label]) modD.update_metric(mACC, [label]) # update generator twice as the discriminator is too strong #>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 1 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< modG.forward(rbatch, is_train=True) outG = modG.get_outputs() label[:] = 1 modD.forward(mx.io.DataBatch(outG, [label]), is_train=True) modD.backward() diffD = modD1.get_input_grads() modG.backward(diffD) #modG.update() gradG1 = [[grad.copyto(grad.context) for grad in grads] for grads in modG._exec_group.grad_arrays] mG.update([label], modD.get_outputs()) modG.forward(sample, is_train=True) xz = modG.get_outputs() label[:] = 1 modD.forward(mx.io.DataBatch(xz, [label]), is_train=True) modD.backward() diffD = modD1.get_input_grads() modG.backward(diffD) gradG2 = [[grad.copyto(grad.context) for grad in grads] for grads in modG._exec_group.grad_arrays] #modG.update() mG.update([label], modD.get_outputs()) modG.forward(sample, is_train=True) xz = modG.get_outputs() modD1.forward(mx.io.DataBatch(xz, []), is_train=True) outD1 = modD1.get_outputs() modDL.forward(mx.io.DataBatch(outD1, lx), is_train=True) modDL.backward() dlGrad = modDL.get_input_grads() modD1.backward(dlGrad) diffD = modD1.get_input_grads() modG.backward(diffD) for grads, gradsG1, gradsG2 in zip(modG._exec_group.grad_arrays, gradG1, gradG2): for grad, gradg1, gradg2 in zip(grads, gradsG1, gradsG2): grad = g_dl_weight * grad + 0.5 * (gradg1 + gradg2) modG.update() mG.update([label], modD.get_outputs()) #>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 2 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< modG.forward(rbatch, is_train=True) outG = modG.get_outputs() label[:] = 1 modD.forward(mx.io.DataBatch(outG, [label]), is_train=True) modD.backward() diffD = modD1.get_input_grads() modG.backward(diffD) #modG.update() gradG1 = [[grad.copyto(grad.context) for grad in grads] for grads in modG._exec_group.grad_arrays] mG.update([label], modD.get_outputs()) modG.forward(sample, is_train=True) xz = modG.get_outputs() label[:] = 1 modD.forward(mx.io.DataBatch(xz, [label]), is_train=True) modD.backward() diffD = modD1.get_input_grads() modG.backward(diffD) gradG2 = [[grad.copyto(grad.context) for grad in grads] for grads in modG._exec_group.grad_arrays] #modG.update() mG.update([label], modD.get_outputs()) modG.forward(sample, is_train=True) xz = modG.get_outputs() modD1.forward(mx.io.DataBatch(xz, []), is_train=True) outD1 = modD1.get_outputs() modDL.forward(mx.io.DataBatch(outD1, lx), is_train=True) modDL.backward() dlGrad = modDL.get_input_grads() modD1.backward(dlGrad) diffD = modD1.get_input_grads() modG.backward(diffD) for grads, gradsG1, gradsG2 in zip(modG._exec_group.grad_arrays, gradG1, gradG2): for grad, gradg1, gradg2 in zip(grads, gradsG1, gradsG2): grad = g_dl_weight * grad + 0.5 * (gradg1 + gradg2) modG.update() mG.update([label], modD.get_outputs()) ##update encoder-------------------------------------------------- #modE.forward(batch, is_train=True) #mu, lv, z = modE.get_outputs() #z = z.reshape((batch_size, Z, 1, 1)) #sample = mx.io.DataBatch([z], label=None, provide_data = [('rand', (batch_size, Z, 1, 1))]) modG.forward(sample, is_train=True) xz = modG.get_outputs() #update generator modD1.forward(mx.io.DataBatch(xz, []), is_train=True) outD1 = modD1.get_outputs() modDL.forward(mx.io.DataBatch(outD1, lx), is_train=True) DLloss = modDL.get_outputs() modDL.backward() dlGrad = modDL.get_input_grads() modD1.backward(dlGrad) diffD = modD1.get_input_grads() modG.backward(diffD) #modG.update() #print('updating encoder=====================================') #update encoder nElements = batch_size #var = mx.ndarray.exp(lv) modKL.forward(mx.io.DataBatch([mx.ndarray.concat(mu,lv, dim=0)]), is_train=True) KLloss = modKL.get_outputs() modKL.backward() gradKLLoss = modKL.get_input_grads() diffG = modG.get_input_grads() #print('======================================================================') #print(np.sum(diffG[0].asnumpy())) diffG = diffG[0].reshape((batch_size, Z)) modE.backward(mx.ndarray.split(gradKLLoss[0], num_outputs=2, axis=0) + [diffG]) modE.update() #print('mu type : ') #print(type(mu)) pred = mx.ndarray.concat(mu,lv, dim=0) #print(pred) mE.update([pred], [pred]) if mon is not None: mon.toc_print() t += 1 if t % show_after_every == 0: print('epoch:', epoch, 'iter:', t, 'metric:', mACC.get(), mG.get(), mD.get(), mE.get(), KLloss[0].asnumpy(), DLloss[0].asnumpy()) mACC.reset() mG.reset() mD.reset() mE.reset() if epoch % visualize_after_every == 0: visual(output_path +'gout'+str(epoch), outG[0].asnumpy(), activation) #diff = diffD[0].asnumpy() #diff = (diff - diff.mean())/diff.std() #visual('diff', diff) visual(output_path + 'data'+str(epoch), batch.data[0].asnumpy(), activation) if check_point and epoch % save_after_every == 0: print('Saving...') modG.save_params(checkpoint_path + '/%s_G-%04d.params'%(dataset, epoch)) modD.save_params(checkpoint_path + '/%s_D-%04d.params'%(dataset, epoch)) modE.save_params(checkpoint_path + '/%s_E-%04d.params'%(dataset, epoch)) ####################################################################### # Test the VAE with a pretrained encoder and generator. # Keep the batch size 1 ####################################################################### def test(nef, ngf, nc, batch_size, Z, ctx, pretrained_encoder_path, pretrained_generator_path, output_path, data_path, activation, save_embedding, embedding_path = ''): #encoder z_mu, z_lv, z = encoder(nef, Z, batch_size) symE = mx.sym.Group([z_mu, z_lv, z]) #generator symG = generator(ngf, nc, no_bias=True, fix_gamma=True, eps=1e-5 + 1e-12, z_dim = Z, activation=activation ) #symG, symD = make_dcgan_sym(nef, ngf, ndf, nc) #mx.viz.plot_network(symG, shape={'rand': (batch_size, 100, 1, 1)}).view() #mx.viz.plot_network(symD, shape={'data': (batch_size, nc, 64, 64)}).view() # ==============data============== X_test, image_names = get_data(data_path, activation) #import ipdb; ipdb.set_trace() test_iter = mx.io.NDArrayIter(X_test, batch_size=batch_size, shuffle=False) # =============module E============= modE = mx.mod.Module(symbol=symE, data_names=('data',), label_names=None, context=ctx) modE.bind(data_shapes=test_iter.provide_data) #modE.init_params(initializer=mx.init.Normal(0.02)) modE.load_params(pretrained_encoder_path) # =============module G============= modG = mx.mod.Module(symbol=symG, data_names=('rand',), label_names=None, context=ctx) modG.bind(data_shapes=[('rand', (1, Z, 1, 1))]) #modG.init_params(initializer=mx.init.Normal(0.02)) modG.load_params(pretrained_generator_path) print('Testing...') # =============test=============== test_iter.reset() for t, batch in enumerate(test_iter): #update discriminator on decoded modE.forward(batch, is_train=False) mu, lv, z = modE.get_outputs() #z = GaussianSampleLayer(mu, lv) mu = mu.reshape((batch_size, Z, 1, 1)) sample = mx.io.DataBatch([mu], label=None, provide_data = [('rand', (batch_size, Z, 1, 1))]) modG.forward(sample, is_train=False) outG = modG.get_outputs() visual(output_path + '/' + 'gout'+str(t), outG[0].asnumpy(), activation) visual(output_path + '/' + 'data'+str(t), batch.data[0].asnumpy(), activation) image_name = image_names[t].split('.')[0] if save_embedding: savemat(embedding_path+'/'+image_name+'.mat', {'embedding':mu.asnumpy()}) def parse_args(): parser = argparse.ArgumentParser(description='Train and Test an Adversarial Variatiional Encoder') parser.add_argument('--train', help='train the network', action='store_true') parser.add_argument('--test', help='test the network', action='store_true') parser.add_argument('--save_embedding', help='saves the shape embedding of each input image', action='store_true') parser.add_argument('--dataset', help='dataset name', default='caltech', type=str) parser.add_argument('--activation', help='activation i.e. sigmoid or tanh', default='sigmoid', type=str) parser.add_argument('--training_data_path', help='training data path', default='/home/ubuntu/datasets/caltech101/data/images32x32/', type=str) parser.add_argument('--testing_data_path', help='testing data path', default='/home/ubuntu/datasets/MPEG7dataset/images/', type=str) parser.add_argument('--pretrained_encoder_path', help='pretrained encoder model path', default='checkpoints32x32_sigmoid/caltech_E-0045.params', type=str) parser.add_argument('--pretrained_generator_path', help='pretrained generator model path', default='checkpoints32x32_sigmoid/caltech_G-0045.params', type=str) parser.add_argument('--output_path', help='output path for the generated images', default='outputs32x32_sigmoid/', type=str) parser.add_argument('--embedding_path', help='output path for the generated embeddings', default='outputs32x32_sigmoid/', type=str) parser.add_argument('--checkpoint_path', help='checkpoint saving path ', default='checkpoints32x32_sigmoid/', type=str) parser.add_argument('--nef', help='encoder filter count in the first layer', default=64, type=int) parser.add_argument('--ndf', help='discriminator filter count in the first layer', default=64, type=int) parser.add_argument('--ngf', help='generator filter count in the second last layer', default=64, type=int) parser.add_argument('--nc', help='generator filter count in the last layer i.e. 1 for grayscale image, 3 for RGB image', default=1, type=int) parser.add_argument('--batch_size', help='batch size, keep it 1 during testing', default=64, type=int) parser.add_argument('--Z', help='embedding size', default=100, type=int) parser.add_argument('--lr', help='learning rate', default=0.0002, type=float) parser.add_argument('--beta1', help='beta1 for adam optimizer', default=0.5, type=float) parser.add_argument('--epsilon', help='epsilon for adam optimizer', default=1e-5, type=float) parser.add_argument('--g_dl_weight', help='discriminator layer loss weight', default=1e-1, type=float) parser.add_argument('--gpu', help='gpu index', default=0, type=int) parser.add_argument('--num_epoch', help='number of maximum epochs ', default=45, type=int) parser.add_argument('--save_after_every', help='save checkpoint after every this number of epochs ', default=5, type=int) parser.add_argument('--visualize_after_every', help='save output images after every this number of epochs', default=5, type=int) parser.add_argument('--show_after_every', help='show metrics after this number of iterations', default=10, type=int) args = parser.parse_args() return args def main(): args = parse_args() # gpu context ctx = mx.gpu(args.gpu) # checkpoint saving flags check_point = True if args.train: train(args.dataset, args.nef, args.ndf, args.ngf, args.nc, args.batch_size, args.Z, args.lr, args.beta1, args.epsilon, ctx, check_point, args.g_dl_weight, args.output_path, args.checkpoint_path, args.training_data_path, args.activation, args.num_epoch, args.save_after_every, args.visualize_after_every, args.show_after_every) if args.test: test(args.nef, args.ngf, args.nc, 1, args.Z, ctx, args.pretrained_encoder_path, args.pretrained_generator_path, args.output_path, args.testing_data_path, args.activation, args.save_embedding, args.embedding_path) if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) main()
apache-2.0
jhpyle/docassemble
docassemble_webapp/docassemble/webapp/machinelearning.py
1
35497
from docassemble.webapp.core.models import MachineLearning from docassemble.base.core import DAObject, DAList, DADict from docassemble.webapp.db_object import db from sqlalchemy import or_, and_, select, delete from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestClassifier import pandas as pd from pandas.api.types import CategoricalDtype import numpy as np import re import random import codecs import pickle import datetime import os import yaml import json import sys from docassemble_pattern.vector import count, KNN, SVM, stem, PORTER, words, Document from docassemble.base.logger import logmessage from docassemble.webapp.backend import get_info_from_file_reference from docassemble.webapp.fixpickle import fix_pickle_obj import docassemble.base.functions learners = dict() svms = dict() lastmodtime = dict() reset_counter = dict() class MachineLearningEntry(DAObject): """An entry in the machine learning system""" def classify(self, dependent=None): """Sets the dependent variable of the machine learning entry""" if dependent is not None: self.dependent = dependent self.ml.set_dependent_by_id(self.id, self.dependent) return self def save(self): """Saves the entry to the data set. The independent variable must be defined in order to save.""" args = dict(independent=self.independent) if hasattr(self, 'dependent'): args['dependent'] = self.dependent if hasattr(self, 'key'): args['key'] = self.key if hasattr(self, 'id'): args['id'] = self.id if hasattr(self, 'info') and self.info is not None: args['info'] = self.info self.ml._save_entry(**args) return self def predict(self, probabilities=False): """Returns predictions for this entry's independent variable.""" return self.ml.predict(self.independent, probabilities=probabilities) class MachineLearner(object): """Base class for machine learning objects""" def __init__(self, *pargs, **kwargs): if len(pargs) > 0: if ':' in pargs[0]: raise Exception("MachineLearner: you cannot use a colon in a machine learning name") question = docassemble.base.functions.get_current_question() if question is not None: self.group_id = question.interview.get_ml_store() + ':' + pargs[0] else: self.group_id = pargs[0] if len(pargs) > 1: self.initial_file = pargs[1] if 'group_id' in kwargs: self.group_id = kwargs['group_id'] if 'initial_file' in kwargs: self.initial_file = kwargs['initial_file'] if kwargs.get('use_initial_file', False): question = docassemble.base.functions.get_current_question() if question is not None: self.initial_file = question.interview.get_ml_store() self.reset_counter = 0 def reset(self): self.reset_counter += 1 def _initialize(self, reset=False): if hasattr(self, 'initial_file'): self.start_from_file(self.initial_file) if hasattr(self, 'group_id') and (self.group_id not in lastmodtime or reset): lastmodtime[self.group_id] = datetime.datetime(year=1970, month=1, day=1) reset_counter = self.reset_counter def export_training_set(self, output_format='json', key=None): self._initialize() output = list() for entry in self.classified_entries(key=key): the_entry = dict(independent=entry.independent, dependent=entry.dependent) if entry.info is not None: the_entry['info'] = entry.info output.append(the_entry) if output_format == 'json': return json.dumps(output, sort_keys=True, indent=4) elif output_format == 'yaml': return yaml.safe_dump(output, default_flow_style=False) else: raise Exception("Unknown output format " + str(output_format)) def dependent_in_use(self, key=None): in_use = set() if key is None: query = db.session.execute(select(MachineLearning.dependent).where(MachineLearning.group_id == self.group_id).group_by(MachineLearning.dependent)) else: query = db.session.execute(select(MachineLearning.dependent).where(and_(MachineLearning.group_id == self.group_id, MachineLearning.key == key)).group_by(MachineLearning.dependent)) for record in query: if record.dependent is not None: in_use.add(fix_pickle_obj(codecs.decode(bytearray(record.dependent, encoding='utf-8'), 'base64'))) return sorted(in_use) def is_empty(self): existing_entry = db.session.execute(select(MachineLearning).filter_by(group_id=self.group_id)).first() if existing_entry is None: return True return False def start_from_file(self, fileref): #logmessage("Starting from file " + str(fileref)) existing_entry = db.session.execute(select(MachineLearning).filter_by(group_id=self.group_id)).first() if existing_entry is not None: return file_info = get_info_from_file_reference(fileref, folder='sources') if 'fullpath' not in file_info or file_info['fullpath'] is None or not os.path.exists(file_info['fullpath']): return #raise Exception("File reference " + str(fileref) + " is invalid") with open(file_info['fullpath'], 'r', encoding='utf-8') as fp: content = fp.read() if 'mimetype' in file_info and file_info['mimetype'] == 'application/json': aref = json.loads(content) elif 'extension' in file_info and file_info['extension'].lower() in ['yaml', 'yml']: aref = yaml.load(content, Loader=yaml.FullLoader) if type(aref) is dict and hasattr(self, 'group_id'): the_group_id = re.sub(r'.*:', '', self.group_id) if the_group_id in aref: aref = aref[the_group_id] if type(aref) is list: nowtime = datetime.datetime.utcnow() for entry in aref: if 'independent' in entry: new_entry = MachineLearning(group_id=self.group_id, independent=codecs.encode(pickle.dumps(entry['independent']), 'base64').decode(), dependent=codecs.encode(pickle.dumps(entry.get('dependent', None)), 'base64').decode(), modtime=nowtime, create_time=nowtime, active=True, key=entry.get('key', None), info=codecs.encode(pickle.dumps(entry['info']), 'base64').decode() if entry.get('info', None) is not None else None) db.session.add(new_entry) db.session.commit() def add_to_training_set(self, independent, dependent, key=None, info=None): self._initialize() nowtime = datetime.datetime.utcnow() new_entry = MachineLearning(group_id=self.group_id, independent=codecs.encode(pickle.dumps(independent), 'base64').decode(), dependent=codecs.encode(pickle.dumps(dependent), 'base64').decode(), info=codecs.encode(pickle.dumps(info), 'base64').decode() if info is not None else None, create_time=nowtime, modtime=nowtime, active=True, key=key) db.session.add(new_entry) db.session.commit() return new_entry.id def save_for_classification(self, indep, key=None, info=None): self._initialize() if key is None: existing_entry = db.session.execute(select(MachineLearning).filter_by(group_id=self.group_id, dependent=None, independent=codecs.encode(pickle.dumps(indep), 'base64').decode())).scalar() else: existing_entry = db.session.execute(select(MachineLearning).filter_by(group_id=self.group_id, key=key, independent=codecs.encode(pickle.dumps(indep), 'base64').decode())).scalar() if existing_entry is not None: #logmessage("entry is already there") return existing_entry.id new_entry = MachineLearning(group_id=self.group_id, independent=codecs.encode(pickle.dumps(indep), 'base64').decode(), create_time=datetime.datetime.utcnow(), active=False, key=key, info=codecs.encode(pickle.dumps(info), 'base64').decode() if info is not None else None) db.session.add(new_entry) db.session.commit() return new_entry.id def retrieve_by_id(self, the_id): self._initialize() existing_entry = db.session.execute(select(MachineLearning).filter_by(group_id=self.group_id, id=the_id)).scalar() if existing_entry is None: raise Exception("There was no entry in the database for id " + str(the_id) + " with group id " + str(self.group_id)) if existing_entry.dependent: dependent = fix_pickle_obj(codecs.decode(bytearray(existing_entry.dependent, encoding='utf-8'), 'base64')) return MachineLearningEntry(ml=self, id=existing_entry.id, independent=fix_pickle_obj(codecs.decode(bytearray(existing_entry.independent, encoding='utf-8'), 'base64')), dependent=dependent, create_time=existing_entry.create_time, key=existing_entry.key, info=fix_pickle_obj(codecs.decode(bytearray(existing_entry.info, encoding='utf-8'), 'base64')) if existing_entry.info is not None else None) else: return MachineLearningEntry(ml=self, id=existing_entry.id, independent=fix_pickle_obj(codecs.decode(bytearray(existing_entry.independent, encoding='utf-8'), 'base64')), create_time=existing_entry.create_time, key=existing_entry.key, info=fix_pickle_obj(codecs.decode(bytearray(existing_entry.info, encoding='utf-8'), 'base64')) if existing_entry.info is not None else None) def one_unclassified_entry(self, key=None): self._initialize() if key is None: entry = db.session.execute(select(MachineLearning).filter_by(group_id=self.group_id, active=False).order_by(MachineLearning.id)).scalar() else: entry = db.session.execute(select(MachineLearning).filter_by(group_id=self.group_id, key=key, active=False).order_by(MachineLearning.id)).scalar() if entry is None: return None return MachineLearningEntry(ml=self, id=entry.id, independent=fix_pickle_obj(codecs.decode(bytearray(entry.independent, encoding='utf-8'), 'base64')), create_time=entry.create_time, key=entry.key, info=fix_pickle_obj(codecs.decode(bytearray(entry.info, encoding='utf-8'), 'base64')) if entry.info is not None else None)._set_instance_name_for_method() def new_entry(self, **kwargs): return MachineLearningEntry(ml=self, **kwargs)._set_instance_name_for_method() def unclassified_entries(self, key=None): self._initialize() results = DAList()._set_instance_name_for_method() results.gathered = True if key is None: query = db.session.execute(select(MachineLearning).filter_by(group_id=self.group_id, active=False).order_by(MachineLearning.id)).scalars() else: query = db.session.execute(select(MachineLearning).filter_by(group_id=self.group_id, key=key, active=False).order_by(MachineLearning.id)).scalars() for entry in query: results.appendObject(MachineLearningEntry, ml=self, id=entry.id, independent=fix_pickle_obj(codecs.decode(bytearray(entry.independent, encoding='utf-8'), 'base64')), create_time=entry.create_time, key=entry.key, info=fix_pickle_obj(codecs.decode(bytearray(entry.info, encoding='utf-8'), 'base64')) if entry.info is not None else None) return results def classified_entries(self, key=None): self._initialize() results = DAList() results.gathered = True results.set_random_instance_name() if key is None: query = db.session.execute(select(MachineLearning).filter_by(group_id=self.group_id, active=True).order_by(MachineLearning.id)).scalars() else: query = db.session.execute(select(MachineLearning).filter_by(group_id=self.group_id, active=True, key=key).order_by(MachineLearning.id)).scalars() for entry in query: results.appendObject(MachineLearningEntry, ml=self, id=entry.id, independent=fix_pickle_obj(codecs.decode(bytearray(entry.independent, encoding='utf-8'), 'base64')), dependent=fix_pickle_obj(codecs.decode(bytearray(entry.dependent, encoding='utf-8'), 'base64')), info=fix_pickle_obj(codecs.decode(bytearray(entry.info, encoding='utf-8'), 'base64')) if entry.info is not None else None, create_time=entry.create_time, key=entry.key) return results def _save_entry(self, **kwargs): self._initialize() the_id = kwargs.get('id', None) need_to_reset = False if the_id is None: the_entry = MachineLearning(group_id=self.group_id) existing = False else: the_entry = db.session.execute(select(MachineLearning).filter_by(group_id=self.group_id, id=the_id)).scalar() existing = True if the_entry is None: raise Exception("There was no entry in the database for id " + str(the_id) + " with group id " + str(self.group_id)) if 'dependent' in kwargs: if existing and the_entry.dependent is not None and the_entry.dependent != kwargs['dependent']: need_to_reset = True the_entry.dependent = codecs.encode(pickle.dumps(kwargs['dependent']), 'base64').decode() the_entry.active = True if 'independent' in kwargs: if existing and the_entry.independent is not None and the_entry.independent != kwargs['independent']: need_to_reset = True the_entry.independent = codecs.encode(pickle.dumps(kwargs['independent']), 'base64').decode() if 'key' in kwargs: the_entry.key = kwargs['key'] if 'info' in kwargs: the_entry.info = codecs.encode(pickle.dumps(kwargs['info']), 'base64').decode() the_entry.modtime = datetime.datetime.utcnow() if not existing: db.session.add(the_entry) db.session.commit() if need_to_reset: self.reset() def set_dependent_by_id(self, the_id, the_dependent): self._initialize() existing_entry = db.session.execute(select(MachineLearning).filter_by(group_id=self.group_id, id=the_id).with_for_update()).scalar() if existing_entry is None: db.session.commit() raise Exception("There was no entry in the database for id " + str(the_id) + " with group id " + str(self.group_id)) existing_entry.dependent = codecs.encode(pickle.dumps(the_dependent), 'base64').decode() existing_entry.modtime = datetime.datetime.utcnow() existing_entry.active = True db.session.commit() def delete_by_id(self, the_id): self._initialize() db.session.execute(delete(MachineLearning).filter_by(group_id=self.group_id, id=the_id)) db.session.commit() self.reset() def delete_by_key(self, key): self._initialize() db.session.execute(delete(MachineLearning).filter_by(group_id=self.group_id, key=key)) db.session.commit() self.reset() def save(self): db.session.commit() def _train_from_db(self): #logmessage("Doing train_from_db") self._initialize() nowtime = datetime.datetime.utcnow() success = False for record in db.session.execute(select(MachineLearning.independent, MachineLearning.dependent).where(and_(MachineLearning.group_id == self.group_id, MachineLearning.active == True, MachineLearning.modtime > lastmodtime[self.group_id]))).all(): #logmessage("Training...") self._train(fix_pickle_obj(codecs.decode(bytearray(record.independent, encoding='utf-8'), 'base64')), fix_pickle_obj(codecs.decode(bytearray(record.dependent, encoding='utf-8'), 'base64'))) success = True lastmodtime[self.group_id] = nowtime return success def delete_training_set(self): self._initialize() db.session.execute(delete(MachineLearning).filter_by(group_id=self.group_id)) db.session.commit() def _train(self, indep, depend): pass def _predict(self, indep): pass class SimpleTextMachineLearner(MachineLearner): """A class used to interact with the machine learning system, using the K Nearest Neighbors method""" def _learner(self): return KNN() def _initialize(self): """Initializes a fresh machine learner.""" if self.group_id not in reset_counter or self.reset_counter != reset_counter[self.group_id]: need_to_reset = True if hasattr(self, 'group_id') and (self.group_id not in learners or need_to_reset): learners[self.group_id] = self._learner() return super()._initialize(reset=need_to_reset) def _train(self, indep, depend): """Trains the machine learner given an independent variable and a corresponding dependent variable.""" if indep is None: return the_text = re.sub(r'[\n\r]+', r' ', indep).lower() learners[self.group_id].train(Document(the_text.lower(), stemmer=PORTER), depend) def predict(self, indep, probabilities=False): """Returns a list of predicted dependent variables for a given independent variable.""" indep = re.sub(r'[\n\r]+', r' ', indep).lower() if not self._train_from_db(): return list() probs = dict() for key, value in learners[self.group_id].classify(Document(indep.lower(), stemmer=PORTER), discrete=False).items(): probs[key] = value if not len(probs): single_result = learners[self.group_id].classify(Document(indep.lower(), stemmer=PORTER)) if single_result is not None: probs[single_result] = 1.0 if probabilities: return [(x, probs[x]) for x in sorted(probs.keys(), key=probs.get, reverse=True)] else: return sorted(probs.keys(), key=probs.get, reverse=True) def confusion_matrix(self, key=None, output_format=None, split=False): """Returns a confusion matrix for the model based on splitting the data set randomly into two pieces, training on one and testing on the other""" if split: list_of_dependent = self.dependent_in_use(key=key) else: list_of_dependent = [None] output = '' matrices = dict() for current_dep in list_of_dependent: testing_set = list() model = self._learner() for record in self.classified_entries(key=key): if split: dep_result = str(record.dependent == current_dep) else: dep_result = record.dependent if random.random() < 0.5: model.train(Document(record.independent.lower(), stemmer=PORTER), dep_result) else: testing_set.append((Document(record.independent.lower(), stemmer=PORTER), dep_result)) matrix = model.confusion_matrix(documents=testing_set) matrices[current_dep] = matrix if output_format == 'html': if split: output += '<h4>' + current_dep + "</h4>" vals = matrix.keys() output += '<table class="table table-bordered"><thead><tr><td></td><td></td><td style="text-align: center" colspan="' + str(len(vals)) + '">Actual</td></tr><tr><th></th><th></th>' first = True for val in vals: output += '<th>' + val + '</th>' output += '</tr></thead><tbody>' for val_a in vals: output += '<tr>' if first: output += '<td style="text-align: right; vertical-align: middle;" rowspan="' + str(len(vals)) + '">Predicted</td>' first = False output += '<th>' + val_a + '</th>' for val_b in vals: output += '<td>' + str(matrix[val_b].get(val_a, 0)) + '</td>' output += '</tr>' output += '</tbody></table>' #output += "\n\n`" + str(matrix) + "`" # output += '<ul>' # for document, actual in testing_set: # predicted = model.classify(document) # output += '<li>Predicted: ' + predicted + '; Actual: ' + actual + '</li>' # output += '</ul>' if output_format == 'html': return output if split: ret_val = matrices else: ret_val = matrices[None] if output_format == 'json': return json.dumps(ret_val, sort_keys=True, indent=4) if output_format == 'yaml': return yaml.safe_dump(ret_val, default_flow_style=False) if output_format is None: return ret_val return ret_val def reset(self): """Clears the cache of the machine learner""" return super().reset() def delete_training_set(self): """Deletes all of the training data in the database""" return super().delete_training_set() def delete_by_key(self, key): """Deletes all of the training data in the database that was added with a given key""" return super().delete_training_set(key) def delete_by_id(self, the_id): """Deletes the entry in the training data with the given ID""" return super().delete_by_id(the_id) def set_dependent_by_id(self, the_id, depend): """Sets the dependent variable for the entry in the training data with the given ID""" return super().set_dependent_by_id(the_id, depend) def classified_entries(self, key=None): """Returns a list of entries in the data that have been classified.""" return super().classified_entries(key=key) def unclassified_entries(self, key=None): """Returns a list of entries in the data that have not yet been classified.""" return super().unclassified_entries(key=key) def one_unclassified_entry(self, key=None): """Returns the first entry in the data that has not yet been classified, or None if all entries have been classified.""" return super().one_unclassified_entry(key=key) def retrieve_by_id(self, the_id): """Returns the entry in the data that has the given ID.""" return super().retrieve_by_id(the_id) def save_for_classification(self, indep, key=None, info=None): """Creates a not-yet-classified entry in the data for the given independent variable and returns the ID of the entry.""" return super().save_for_classification(indep, key=key, info=info) def add_to_training_set(self, indep, depend, key=None, info=None): """Creates an entry in the data for the given independent and dependent variable and returns the ID of the entry.""" return super().add_to_training_set(indep, depend, key=key, info=info) def is_empty(self): """Returns True if no data have been defined, otherwise returns False.""" return super().is_empty() def dependent_in_use(self, key=None): """Returns a sorted list of unique dependent variables in the data.""" return super().dependent_in_use(key=key) def export_training_set(self, output_format='json'): """Returns the classified entries in the data as JSON or YAML.""" return super().export_training_set(output_format=output_format) def new_entry(self, **kwargs): """Creates a new entry in the data.""" return super().new_entry(**kwargs) class SVMMachineLearner(SimpleTextMachineLearner): """Machine Learning object using the Symmetric Vector Machine method""" def _learner(self): return SVM(extension='libsvm') class RandomForestMachineLearner(MachineLearner): def _learner(self): return RandomForestClassifier() def feature_importances(self): """Returns the importances of each of the features""" if not self._train_from_db(): return list() return learners[self.group_id]['learner'].feature_importances_ def _initialize(self): """Initializes a fresh machine learner.""" if self.group_id not in reset_counter or self.reset_counter != reset_counter[self.group_id]: need_to_reset = True if hasattr(self, 'group_id') and (self.group_id not in learners or need_to_reset): learners[self.group_id] = dict(learner=self._learner(), dep_type=None, indep_type=dict(), indep_categories=dict(), dep_categories=None) return super()._initialize(reset=need_to_reset) def _train_from_db(self): #logmessage("Doing train_from_db") self._initialize() nowtime = datetime.datetime.utcnow() success = False data = list() depend_data = list() for record in db.session.execute(select(MachineLearning).where(and_(MachineLearning.group_id == self.group_id, MachineLearning.active == True, MachineLearning.modtime > lastmodtime[self.group_id]))).scalars().all(): indep_var = fix_pickle_obj(codecs.decode(bytearray(record.independent, encoding='utf-8'), 'base64')) depend_var = fix_pickle_obj(codecs.decode(bytearray(record.dependent, encoding='utf-8'), 'base64')) if type(depend_var) is str: depend_var = str(depend_var) if learners[self.group_id]['dep_type'] is not None: if type(depend_var) is not learners[self.group_id]['dep_type']: if type(depend_var) is int and learners[self.group_id]['dep_type'] is float: depend_var = float(depend_var) elif type(depend_var) is float and learners[self.group_id]['dep_type'] is int: learners[self.group_id]['dep_type'] = float else: raise Exception("RandomForestMachineLearner: dependent variable type was not consistent") else: if not isinstance(depend_var, (str, int, bool, float)): raise Exception("RandomForestMachineLearner: dependent variable type for key " + repr(key) + " was not a standard variable type") learners[self.group_id]['dep_type'] = type(depend_var) depend_data.append(depend_var) if isinstance(indep_var, DADict): indep_var = indep_var.elements if type(indep_var) is not dict: raise Exception("RandomForestMachineLearner: independent variable was not a dictionary") for key, val in indep_var.items(): if type(val) is str: val = str(val) if key in learners[self.group_id]['indep_type']: if type(val) is not learners[self.group_id]['indep_type'][key]: if type(val) is int and learners[self.group_id]['indep_type'][key] is float: val = float(val) elif type(val) is float and learners[self.group_id]['indep_type'][key] is int: learners[self.group_id]['indep_type'][key] = float else: raise Exception("RandomForestMachineLearner: independent variable type for key " + repr(key) + " was not consistent") else: if not isinstance(val, (str, int, bool, float)): raise Exception("RandomForestMachineLearner: independent variable type for key " + repr(key) + " was not a standard variable type") learners[self.group_id]['indep_type'][key] = type(val) data.append(indep_var) success = True if success: df = pd.DataFrame(data) for key, val in learners[self.group_id]['indep_type'].items(): if val is str: df[key] = pd.Series(df[key], dtype="category") learners[self.group_id]['indep_categories'][key] = df[key].cat.categories df = pd.get_dummies(df, dummy_na=True) if learners[self.group_id]['dep_type'] is str: y = pd.Series(depend_data, dtype="category") learners[self.group_id]['dep_categories'] = y.cat.categories else: y = pd.Series(depend_data) learners[self.group_id]['learner'].fit(df, list(y)) lastmodtime[self.group_id] = nowtime return success def predict(self, indep, probabilities=False): """Returns a list of predicted dependent variables for a given independent variable.""" if not self._train_from_db(): return list() if isinstance(indep, DADict): indep = indep.elements if type(indep) is not dict: raise Exception("RandomForestMachineLearner: independent variable was not a dictionary") indep = process_independent_data(indep) indep_to_use = dict() for key, val in indep.items(): if key in learners[self.group_id]['indep_type']: if type(val) is str: val = str(val) if type(val) is not learners[self.group_id]['indep_type'][key]: if type(val) is int and learners[self.group_id]['indep_type'][key] is float: val = float(val) elif type(val) is float and learners[self.group_id]['indep_type'][key] is int: learners[self.group_id]['indep_type'][key] = float else: raise Exception("RandomForestMachineLearner: the independent variable type for key " + repr(key) + " was not consistent. Stored was " + str(learners[self.group_id]['indep_type'][key]) + " and type was " + str(type(val))) else: raise Exception("RandomForestMachineLearner: independent variable key " + repr(key) + " was not recognized") if isinstance(val, str): if val not in learners[self.group_id]['indep_categories'][key]: val = np.nan indep_to_use[key] = val df = pd.DataFrame([indep_to_use]) for key, val in indep_to_use.items(): if learners[self.group_id]['indep_type'][key] is str: #df[key] = pd.Series(df[key]).astype('category', categories=learners[self.group_id]['indep_categories'][key]) df[key] = pd.Series(df[key]).astype(CategoricalDtype(learners[self.group_id]['indep_categories'][key])) df = pd.get_dummies(df, dummy_na=True) pred = learners[self.group_id]['learner'].predict_proba(df) indexno = 0 result = list() for x in pred[0]: result.append((learners[self.group_id]['dep_categories'][indexno], x)) indexno += 1 result = sorted(result, key=lambda x: x[1], reverse=True) if probabilities: return result return [x[0] for x in result] def reset(self): """Clears the cache of the machine learner""" return super().reset() def delete_training_set(self): """Deletes all of the training data in the database""" return super().delete_training_set() def delete_by_key(self, key): """Deletes all of the training data in the database that was added with a given key""" return super().delete_training_set(key) def delete_by_id(self, the_id): """Deletes the entry in the training data with the given ID""" return super().delete_by_id(the_id) def set_dependent_by_id(self, the_id, depend): """Sets the dependent variable for the entry in the training data with the given ID""" return super().set_dependent_by_id(the_id, depend) def classified_entries(self, key=None): """Returns a list of entries in the data that have been classified.""" return super().classified_entries(key=key) def unclassified_entries(self, key=None): """Returns a list of entries in the data that have not yet been classified.""" return super().unclassified_entries(key=key) def one_unclassified_entry(self, key=None): """Returns the first entry in the data that has not yet been classified, or None if all entries have been classified.""" return super().one_unclassified_entry(key=key) def retrieve_by_id(self, the_id): """Returns the entry in the data that has the given ID.""" return super().retrieve_by_id(the_id) def save_for_classification(self, indep, key=None, info=None): """Creates a not-yet-classified entry in the data for the given independent variable and returns the ID of the entry.""" indep = process_independent_data(indep) return super().save_for_classification(indep, key=key, info=info) def add_to_training_set(self, indep, depend, key=None, info=None): """Creates an entry in the data for the given independent and dependent variable and returns the ID of the entry.""" indep = process_independent_data(indep) return super().add_to_training_set(indep, depend, key=key, info=info) def is_empty(self): """Returns True if no data have been defined, otherwise returns False.""" return super().is_empty() def dependent_in_use(self, key=None): """Returns a sorted list of unique dependent variables in the data.""" return super().dependent_in_use(key=key) def export_training_set(self, output_format='json'): """Returns the classified entries in the data as JSON or YAML.""" return super().export_training_set(output_format=output_format) def new_entry(self, **kwargs): """Creates a new entry in the data.""" return super().new_entry(**kwargs) # def export_training_sets(prefix, output_format='json'): # output = dict() # re_prefix = re.compile(r'^' + prefix + ':') # for record in db.session.query(MachineLearning).filter(MachineLearning.group_id.like(prefix + '%')).group_by(MachineLearning.group_id): # the_group_id = re_prefix.sub('', record.group_id) # output[the_group_id].append(dict(independent=record.independent, dependent=record.dependent)) # if output_format == 'json': # return json.dumps(output, sort_keys=True, indent=4) # elif output_format == 'yaml': # return yaml.safe_dump(output, default_flow_style=False) # else: # raise Exception("Unknown output format " + str(output_format)) def process_independent_data(data): result = dict() for key, val in data.items(): if isinstance(val, DADict) or type(val) is dict: for subkey, subval in val.items(): if not isinstance(subval, (str, bool, int, float)): raise Exception('RandomForestMachineLearner: invalid data type ' + subval.__class__.__name__ + ' in data') result[key + '_' + subkey] = subval else: if not isinstance(val, (str, bool, int, float)): raise Exception('RandomForestMachineLearner: invalid data type ' + subval.__class__.__name__ + ' in data') result[key] = val return result
mit
kazemakase/scikit-learn
examples/classification/plot_classifier_comparison.py
181
4699
#!/usr/bin/python # -*- coding: utf-8 -*- """ ===================== Classifier comparison ===================== A comparison of a several classifiers in scikit-learn on synthetic datasets. The point of this example is to illustrate the nature of decision boundaries of different classifiers. This should be taken with a grain of salt, as the intuition conveyed by these examples does not necessarily carry over to real datasets. Particularly in high-dimensional spaces, data can more easily be separated linearly and the simplicity of classifiers such as naive Bayes and linear SVMs might lead to better generalization than is achieved by other classifiers. The plots show training points in solid colors and testing points semi-transparent. The lower right shows the classification accuracy on the test set. """ print(__doc__) # Code source: Gaël Varoquaux # Andreas Müller # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.lda import LDA from sklearn.qda import QDA h = .02 # step size in the mesh names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree", "Random Forest", "AdaBoost", "Naive Bayes", "LDA", "QDA"] classifiers = [ KNeighborsClassifier(3), SVC(kernel="linear", C=0.025), SVC(gamma=2, C=1), DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), AdaBoostClassifier(), GaussianNB(), LDA(), QDA()] X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [make_moons(noise=0.3, random_state=0), make_circles(noise=0.2, factor=0.5, random_state=1), linearly_separable ] figure = plt.figure(figsize=(27, 9)) i = 1 # iterate over datasets for ds in datasets: # preprocess dataset, split into training and test part X, y = ds X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4) x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # just plot the dataset first cm = plt.cm.RdBu cm_bright = ListedColormap(['#FF0000', '#0000FF']) ax = plt.subplot(len(datasets), len(classifiers) + 1, i) # Plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) i += 1 # iterate over classifiers for name, clf in zip(names, classifiers): ax = plt.subplot(len(datasets), len(classifiers) + 1, i) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. if hasattr(clf, "decision_function"): Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] # Put the result into a color plot Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm, alpha=.8) # Plot also the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) ax.set_title(name) ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right') i += 1 figure.subplots_adjust(left=.02, right=.98) plt.show()
bsd-3-clause
akrherz/idep
scripts/cligen/qc_summarize.py
2
7378
"""Need something that prints diagnostics of our climate file""" import sys import datetime import numpy as np import netCDF4 import pytz import pandas as pd import requests from pyiem.dep import read_cli from pyiem.iemre import hourly_offset from pyiem.util import c2f, mm2inch def compute_stage4(lon, lat, year): """Build a daily dataframe for the stage4 data""" nc = netCDF4.Dataset("/mesonet/data/stage4/%s_stage4_hourly.nc" % (year,)) lons = nc.variables["lon"][:] lats = nc.variables["lat"][:] dist = ((lons - lon) ** 2 + (lats - lat) ** 2) ** 0.5 (yidx, xidx) = np.unravel_index(dist.argmin(), dist.shape) print( ("Computed stage4 nclon:%.2f nclat:%.2f yidx:%s xidx:%s ") % (lons[yidx, xidx], lats[yidx, xidx], yidx, xidx) ) p01i = mm2inch(nc.variables["p01m"][:, yidx, xidx]) nc.close() df = pd.DataFrame( {"precip": 0.0}, index=pd.date_range( "%s-01-01" % (year,), "%s-12-31" % (year,), tz="America/Chicago" ), ) for date in df.index.values: date2 = datetime.datetime.utcfromtimestamp(date.tolist() / 1e9) ts = datetime.datetime(date2.year, date2.month, date2.day, 6) ts = ts.replace(tzinfo=pytz.utc) ts = ts.astimezone(pytz.timezone("America/Chicago")) ts = ts.replace(hour=0) ts = ts.astimezone(pytz.utc) tidx = hourly_offset(ts) # values are in the rears val = np.ma.sum(p01i[tidx + 1 : tidx + 25]) if val > 0: df.at[date, "precip"] = val # close enough return df def fn2lonlat(filename): """Convert the filename to lon and lat""" tokens = filename.split("/")[-1].rsplit(".", 1)[0].split("x") return [0 - float(tokens[0]), float(tokens[1])] def do_qc(fn, df, year): """Run some checks on this dataframe""" (lon, lat) = fn2lonlat(fn) stage4 = compute_stage4(lon, lat, year) # Does the frame appear to have all dates? if len(df.index) != len(df.resample("D").mean().index): print("ERROR: Appears to be missing dates!") if open(fn).read()[-1] != "\n": print("ERROR: File does not end with \\n") print("--------- Summary stats from the .cli file") print("YEAR | RAIN | MAXRATE | MAXACC | #DAYS | #>1RT | RAD/D") print(" --- | --- | --- | --- | --- | --- | ---") for _year, gdf in df.groupby(by=df.index.year): print( ("%s | %6.2f | %7.2f | %7.2f | %6i | %6i | %6.0f") % ( _year, mm2inch(gdf["pcpn"].sum()), mm2inch(gdf["maxr"].max()), mm2inch(gdf["pcpn"].max()), len(gdf[gdf["pcpn"] > 0].index), len(gdf[gdf["maxr"] > 25.4].index), gdf["rad"].mean(), ) ) print("---- Months with < 0.05 precipitation ----") gdf = df.groupby(by=[df.index.year, df.index.month])["pcpn"].sum() print(gdf[gdf < 1.0]) print("----- Average high temperature -----") print("YEAR | Avg High F | Avg Low F | Days > 100F") print(" --- | --- | --- | ---") for _year, gdf in df.groupby(by=df.index.year): print( ("%s | %6.2f | %6.2f | %3i") % ( _year, c2f(gdf["tmax"].mean()), c2f(gdf["tmin"].mean()), len(gdf[gdf["tmax"] > 37.7].index), ) ) monthly = df[df.index.year == year]["pcpn"].resample("M").sum().copy() monthly = pd.DataFrame( {"dep": mm2inch(monthly.values)}, index=range(1, 13) ) # Get prism, for a bulk comparison prism = requests.get( ( "http://mesonet.agron.iastate.edu/json/prism/" "%.2f/%.2f/%s0101-%s1231" ) % (lon, lat, year, year) ).json() rows = [] for entry in prism["data"]: rows.append( { "date": datetime.datetime.strptime( entry["valid"][:10], "%Y-%m-%d" ), "precip": entry["precip_in"], } ) prismdf = pd.DataFrame(rows) prismdf.set_index("date", inplace=True) monthly["prism"] = prismdf["precip"].resample("M").sum().copy().values # Compare daily values iemjson = requests.get( ( "http://mesonet.agron.iastate.edu/iemre/multiday/" "%s-01-01/%s-12-31/%s/%s/json" ) % (year, year, lat, lon) ).json() rows = [] for entry in iemjson["data"]: rows.append( { "date": datetime.datetime.strptime(entry["date"], "%Y-%m-%d"), "precip": entry["daily_precip_in"], } ) iemdf = pd.DataFrame(rows) iemdf.set_index("date", inplace=True) print("PRISM %s precip is: %.2f" % (year, prismdf["precip"].sum())) print("IEMRE sum precip is: %.2f" % (iemdf["precip"].sum(),)) print("StageIV sum precip is: %.2f" % (stage4["precip"].sum(),)) monthly["stage4"] = stage4["precip"].resample("M").sum().copy().values monthly["iemre"] = iemdf["precip"].resample("M").sum().copy().values monthly["prism-dep"] = monthly["prism"] - monthly["dep"] monthly["iemre-dep"] = monthly["iemre"] - monthly["dep"] print(" --------- %s Monthly Totals --------" % (year,)) print(monthly) df.at[ slice(datetime.date(year, 1, 1), datetime.date(year, 12, 31)), "stage4_precip", ] = stage4["precip"].values df["iemre_precip"] = iemdf["precip"] df["diff_precip"] = df["pcpn_in"] - df["iemre_precip"] df["diff_stage4"] = df["pcpn_in"] - df["stage4_precip"] print(" --- Top 5 Largest DEP > IEMRE ----") print( df[ [ "diff_precip", "pcpn_in", "iemre_precip", "stage4_precip", "diff_stage4", ] ] .sort_values(by="diff_precip", ascending=False) .head() ) print(" --- Top 5 Largest IEMRE > DEP ----") print( df[ [ "diff_precip", "pcpn_in", "iemre_precip", "stage4_precip", "diff_stage4", ] ] .sort_values(by="diff_precip", ascending=True) .head() ) print(" --- Top 10 Largest Stage4 > DEP ----") print( df[ [ "diff_precip", "pcpn_in", "iemre_precip", "stage4_precip", "diff_stage4", ] ] .sort_values(by="diff_stage4", ascending=True) .head(10) ) print(" vvv job listing based on the above vvv") for dt in df.sort_values(by="diff_stage4", ascending=True).head(10).index: print( "python daily_clifile_editor.py 0 %s %s %s" % (dt.year, dt.month, dt.day) ) df2 = df.loc[slice(datetime.date(year, 1, 1), datetime.date(year, 1, 31))][ ["diff_precip", "pcpn_in", "iemre_precip", "stage4_precip"] ].sort_values(by="diff_precip") print(" --- Daily values for month " "") print(df2) def main(argv): """Do Stuff""" fn = argv[1] year = int(argv[2]) df = read_cli(fn) df["pcpn_in"] = mm2inch(df["pcpn"].values) do_qc(fn, df, year) if __name__ == "__main__": main(sys.argv)
mit
LSSTDESC/Twinkles
python/desc/twinkles/sprinkler.py
2
28310
''' Created on Feb 6, 2015 @author: cmccully ''' from __future__ import absolute_import, division, print_function from future.utils import iteritems import time import om10 import numpy as np import re import json import os import pandas as pd import copy import gzip import shutil from lsst.utils import getPackageDir from lsst.sims.utils import SpecMap, defaultSpecMap from lsst.sims.catUtils.baseCatalogModels import GalaxyTileCompoundObj from lsst.sims.catUtils.matchSED import matchBase from lsst.sims.photUtils import Bandpass, BandpassDict, Sed from lsst.sims.utils import radiansFromArcsec from lsst.sims.catUtils.supernovae import SNObject __all__ = ['sprinklerCompound', 'sprinkler'] class sprinklerCompound(GalaxyTileCompoundObj): objid = 'sprinklerCompound' objectTypeId = 66 cached_sprinkling = False agn_cache_file = None sne_cache_file = None defs_file = None sed_path = None def _final_pass(self, results): #From the original GalaxyTileCompoundObj final pass method for name in results.dtype.fields: if 'raJ2000' in name or 'decJ2000' in name: results[name] = np.radians(results[name]) # the stored procedure on fatboy that queries the galaxies # constructs galtileid by taking # # tileid*10^8 + galid # # this causes galtileid to be so large that the uniqueIDs in the # Twinkles InstanceCatalogs are too large for PhoSim to handle. # Since Twinkles is only focused on one tile on the sky, we will remove # the factor of 10^8, making the uniqueIDs a more manageable size # results['galtileid'] = results['galtileid']#%100000000 #Use Sprinkler now sp = sprinkler(results, self.mjd, self.specFileMap, self.sed_path, density_param=1.0, cached_sprinkling=self.cached_sprinkling, agn_cache_file=self.agn_cache_file, sne_cache_file=self.sne_cache_file, defs_file=self.defs_file) results = sp.sprinkle() return results class sprinkler(): def __init__(self, catsim_cat, visit_mjd, specFileMap, sed_path, om10_cat='twinkles_lenses_v2.fits', sne_cat='dc2_sne_cat.csv', density_param=1., cached_sprinkling=False, agn_cache_file=None, sne_cache_file=None, defs_file=None, write_sn_sed=True): """ Parameters ---------- catsim_cat: catsim catalog The results array from an instance catalog. visit_mjd: float The mjd of the visit specFileMap: This will tell the instance catalog where to write the files sed_path: str This tells where to write out SNe SED files om10_cat: optional, defaults to 'twinkles_lenses_v2.fits fits file with OM10 catalog sne_cat: optional, defaults to 'dc2_sne_cat.csv' density_param: `np.float`, optioanl, defaults to 1.0 the fraction of eligible agn objects that become lensed and should be between 0.0 and 1.0. cached_sprinkling: boolean If true then pick from a preselected list of galtileids agn_cache_file: str sne_cache_file: str defs_file: str write_sn_sed: boolean Controls whether or not to actually write supernova SEDs to disk (default=True) Returns ------- input_catalog: results array with lens systems added. """ t_start = time.time() twinklesDir = getPackageDir('Twinkles') om10_cat = os.path.join(twinklesDir, 'data', om10_cat) self.write_sn_sed = write_sn_sed self.catalog_column_names = catsim_cat.dtype.names # ****** THIS ASSUMES THAT THE ENVIRONMENT VARIABLE OM10_DIR IS SET ******* lensdb = om10.DB(catalog=om10_cat, vb=False) self.lenscat = lensdb.lenses.copy() self.density_param = density_param self.bandpassDict = BandpassDict.loadTotalBandpassesFromFiles(bandpassNames=['i']) self.lsst_band_indexes = {'u':0, 'g':1, 'r':2, 'i':3, 'z':4, 'y':5} self.sne_catalog = pd.read_csv(os.path.join(twinklesDir, 'data', sne_cat)) #self.sne_catalog = self.sne_catalog.iloc[:101] ### Remove this after testing self.used_systems = [] self._visit_mjd = visit_mjd self.sn_obj = SNObject(0., 0.) self.write_dir = specFileMap.subdir_map['(^specFileGLSN)'] self.sed_path = sed_path self.cached_sprinkling = cached_sprinkling if self.cached_sprinkling is True: if ((agn_cache_file is None) | (sne_cache_file is None)): raise AttributeError('Must specify cache files if using cached_sprinkling.') #agn_cache_file = os.path.join(twinklesDir, 'data', 'test_agn_galtile_cache.csv') self.agn_cache = pd.read_csv(agn_cache_file) #sne_cache_file = os.path.join(twinklesDir, 'data', 'test_sne_galtile_cache.csv') self.sne_cache = pd.read_csv(sne_cache_file) else: self.agn_cache = None self.sne_cache = None if defs_file is None: self.defs_file = os.path.join(twinklesDir, 'data', 'catsim_defs.csv') else: self.defs_file = defs_file self.sedDir = getPackageDir('sims_sed_library') self.imSimBand = Bandpass() self.imSimBand.imsimBandpass() #self.LRG_name = 'Burst.25E09.1Z.spec' #self.LRG = Sed() #self.LRG.readSED_flambda(str(galDir + self.LRG_name)) #return #Calculate imsimband magnitudes of source galaxies for matching agn_fname = str(getPackageDir('sims_sed_library') + '/agnSED/agn.spec.gz') src_iband = self.lenscat['MAGI_IN'] src_z = self.lenscat['ZSRC'] self.src_mag_norm = [] for src, s_z in zip(src_iband, src_z): agn_sed = Sed() agn_sed.readSED_flambda(agn_fname) agn_sed.redshiftSED(s_z, dimming=True) self.src_mag_norm.append(matchBase().calcMagNorm([src], agn_sed, self.bandpassDict)) #self.src_mag_norm = matchBase().calcMagNorm(src_iband, # [agn_sed]*len(src_iband), # # self.bandpassDict) has_sn_truth_params = False for name in self.catalog_column_names: if 'sn_truth_params' in name: has_sn_truth_params = True break self.defs_dict = {} self.logging_is_sprinkled = False self.store_sn_truth_params = False with open(self.defs_file, 'r') as f: for line in f: line_defs = line.strip().split(',') if len(line_defs) > 1: if 'is_sprinkled' in line_defs[1]: self.logging_is_sprinkled = True if 'sn_truth_params' in line_defs[1] and has_sn_truth_params: self.store_sn_truth_params = True if len(line_defs) == 2: self.defs_dict[line_defs[0]] = line_defs[1] else: self.defs_dict[line_defs[0]] = tuple((ll for ll in line_defs[1:])) duration = time.time()-t_start duration /= 3600.0 print('initialized sprinkler in %e hours' % duration) @property def visit_mjd(self): return self._visit_mjd @visit_mjd.setter def visit_mjd(self, val): self._visit_mjd = val def sprinkle(self, input_catalog, catalog_band): # Define a list that we can write out to a text file lenslines = [] # For each galaxy in the catsim catalog if isinstance(self.defs_dict['galtileid'], tuple): galid_dex = self.defs_dict['galtileid'][0] else: galid_dex = self.defs_dict['galtileid'] agn_magnorm_dex = self.defs_dict['galaxyAgn_magNorm'] agn_magnorm_array = np.array([row[agn_magnorm_dex] for row in input_catalog]) nan_magnorm = np.isnan(agn_magnorm_array) if self.cached_sprinkling: if not hasattr(self, '_unq_agn_gid'): self._unq_agn_gid = np.unique(self.agn_cache['galtileid'].values) self._unq_sne_gid = np.unique(self.sne_cache['galtileid'].values) galtileid_array = np.array([row[galid_dex] for row in input_catalog]) valid_agn = np.where(np.logical_and(np.logical_not(nan_magnorm), np.in1d(galtileid_array, self._unq_agn_gid, assume_unique=True)))[0] valid_sne = np.where(np.logical_and(nan_magnorm, np.in1d(galtileid_array, self._unq_sne_gid, assume_unique=True)))[0] else: valid_agn = np.where(np.logical_not(nan_magnorm))[0] valid_sne = np.where(nan_magnorm)[0] new_rows = [] # print("Running sprinkler. Catalog Length: ", len(input_catalog)) for rowNum in valid_agn: row = input_catalog[rowNum] galtileid = row[galid_dex] if not self.cached_sprinkling: candidates = self.find_lens_candidates(row[self.defs_dict['galaxyAgn_redshift']], row[self.defs_dict['galaxyAgn_magNorm']]) rng = np.random.RandomState(galtileid % (2**32 -1)) pick_value = rng.uniform() if len(candidates) == 0 or pick_value>self.density_param: # If there aren't any lensed sources at this redshift from # OM10 move on the next object continue # Randomly choose one the lens systems # (can decide with or without replacement) # Sort first to make sure the same choice is made every time candidates = candidates[np.argsort(candidates['twinklesId'])] newlens = rng.choice(candidates) else: twinkles_sys_cache = self.agn_cache.query('galtileid == %i' % galtileid)['twinkles_system'].values[0] newlens = self.lenscat[np.where(self.lenscat['twinklesId'] == twinkles_sys_cache)[0]][0] #varString = json.loads(row[self.defs_dict['galaxyAgn_varParamStr']]) # varString[self.defs_dict['pars']]['t0_mjd'] = 59300.0 #row[self.defs_dict['galaxyAgn_varParamStr']] = json.dumps(varString) # Append the lens galaxy # For each image, append the lens images default_lensrow = None if newlens['NIMG'] > 0: default_lensrow = row.copy() default_lensrow[self.defs_dict['galaxyDisk_majorAxis']] = 0.0 default_lensrow[self.defs_dict['galaxyDisk_minorAxis']] = 0.0 default_lensrow[self.defs_dict['galaxyDisk_positionAngle']] = 0.0 default_lensrow[self.defs_dict['galaxyDisk_internalAv']] = 0.0 default_lensrow[self.defs_dict['galaxyDisk_magNorm']] = 999. default_lensrow[self.defs_dict['galaxyDisk_sedFilename']] = None default_lensrow[self.defs_dict['galaxyBulge_majorAxis']] = 0.0 default_lensrow[self.defs_dict['galaxyBulge_minorAxis']] = 0.0 default_lensrow[self.defs_dict['galaxyBulge_positionAngle']] = 0.0 default_lensrow[self.defs_dict['galaxyBulge_internalAv']] = 0.0 default_lensrow[self.defs_dict['galaxyBulge_magNorm']] = 999. default_lensrow[self.defs_dict['galaxyBulge_sedFilename']] = None default_lensrow[self.defs_dict['galaxyBulge_redshift']] = newlens['ZSRC'] default_lensrow[self.defs_dict['galaxyDisk_redshift']] = newlens['ZSRC'] default_lensrow[self.defs_dict['galaxyAgn_redshift']] = newlens['ZSRC'] for i in range(newlens['NIMG']): lensrow = default_lensrow.copy() # XIMG and YIMG are in arcseconds # raPhSim and decPhoSim are in radians # Shift all parts of the lensed object, # not just its agn part delta_dec = np.radians(newlens['YIMG'][i] / 3600.0) delta_ra = np.radians(newlens['XIMG'][i] / 3600.0) lens_ra = lensrow[self.defs_dict['raJ2000']] lens_dec = lensrow[self.defs_dict['decJ2000']] lensrow[self.defs_dict['raJ2000']] = lens_ra + delta_ra/np.cos(lens_dec) lensrow[self.defs_dict['decJ2000']] = lens_dec + delta_dec mag_adjust = 2.5*np.log10(np.abs(newlens['MAG'][i])) lensrow[self.defs_dict['galaxyAgn_magNorm']] -= mag_adjust varString = json.loads(lensrow[self.defs_dict['galaxyAgn_varParamStr']]) varString[self.defs_dict['pars']]['t0Delay'] = newlens['DELAY'][i] varString[self.defs_dict['varMethodName']] = 'applyAgnTimeDelay' lensrow[self.defs_dict['galaxyAgn_varParamStr']] = json.dumps(varString) if self.logging_is_sprinkled: lensrow[self.defs_dict['galaxyAgn_is_sprinkled']] = 1 lensrow[self.defs_dict['galaxyBulge_is_sprinkled']] = 1 lensrow[self.defs_dict['galaxyDisk_is_sprinkled']] = 1 #To get back twinklesID in lens catalog from phosim catalog id number #just use np.right_shift(phosimID-28, 10). Take the floor of the last #3 numbers to get twinklesID in the twinkles lens catalog and the remainder is #the image number minus 1. if not isinstance(self.defs_dict['galtileid'], tuple): lensrow[self.defs_dict['galtileid']] = ((lensrow[self.defs_dict['galtileid']]+int(1.5e10))*100000 + newlens['twinklesId']*8 + i) else: for col_name in self.defs_dict['galtileid']: lensrow[col_name] = ((lensrow[col_name]+int(1.5e10))*100000 + newlens['twinklesId']*8 + i) new_rows.append(lensrow) #Now manipulate original entry to be the lens galaxy with desired properties #Start by deleting Disk and AGN properties if not np.isnan(row[self.defs_dict['galaxyDisk_magNorm']]): row[self.defs_dict['galaxyDisk_majorAxis']] = 0.0 row[self.defs_dict['galaxyDisk_minorAxis']] = 0.0 row[self.defs_dict['galaxyDisk_positionAngle']] = 0.0 row[self.defs_dict['galaxyDisk_internalAv']] = 0.0 row[self.defs_dict['galaxyDisk_magNorm']] = 999. row[self.defs_dict['galaxyDisk_sedFilename']] = None row[self.defs_dict['galaxyAgn_magNorm']] = None row[self.defs_dict['galaxyDisk_magNorm']] = 999. row[self.defs_dict['galaxyAgn_sedFilename']] = None #Now insert desired Bulge properties row[self.defs_dict['galaxyBulge_sedFilename']] = newlens['lens_sed'] row[self.defs_dict['galaxyBulge_redshift']] = newlens['ZLENS'] row[self.defs_dict['galaxyDisk_redshift']] = newlens['ZLENS'] row[self.defs_dict['galaxyAgn_redshift']] = newlens['ZLENS'] row_lens_sed = Sed() row_lens_sed.readSED_flambda(os.path.join(self.sedDir, newlens['lens_sed'])) row_lens_sed.redshiftSED(newlens['ZLENS'], dimming=True) # Get the correct magnorm to maintain galaxy colors row[self.defs_dict['galaxyBulge_magNorm']] = newlens['sed_magNorm'][self.lsst_band_indexes[catalog_band]] row[self.defs_dict['galaxyBulge_majorAxis']] = radiansFromArcsec(newlens['REFF'] / np.sqrt(1 - newlens['ELLIP'])) row[self.defs_dict['galaxyBulge_minorAxis']] = radiansFromArcsec(newlens['REFF'] * np.sqrt(1 - newlens['ELLIP'])) #Convert orientation angle to west of north from east of north by *-1.0 and convert to radians row[self.defs_dict['galaxyBulge_positionAngle']] = newlens['PHIE']*(-1.0)*np.pi/180.0 row[self.defs_dict['galaxyBulge_internalAv']] = newlens['lens_av'] row[self.defs_dict['galaxyBulge_internalRv']] = newlens['lens_rv'] if self.logging_is_sprinkled: row[self.defs_dict['galaxyAgn_is_sprinkled']] = 1 row[self.defs_dict['galaxyBulge_is_sprinkled']] = 1 row[self.defs_dict['galaxyDisk_is_sprinkled']] = 1 #Replace original entry with new entry input_catalog[rowNum] = row for rowNum in valid_sne: row = input_catalog[rowNum] galtileid = row[galid_dex] if self.cached_sprinkling is True: if galtileid in self.sne_cache['galtileid'].values: use_system = self.sne_cache.query('galtileid == %i' % galtileid)['twinkles_system'].values use_df = self.sne_catalog.query('twinkles_sysno == %i' % use_system) self.used_systems.append(use_system) else: continue else: lens_sne_candidates = self.find_sne_lens_candidates(row[self.defs_dict['galaxyDisk_redshift']]) candidate_sysno = np.unique(lens_sne_candidates['twinkles_sysno']) num_candidates = len(candidate_sysno) if num_candidates == 0: continue used_already = np.array([sys_num in self.used_systems for sys_num in candidate_sysno]) unused_sysno = candidate_sysno[~used_already] if len(unused_sysno) == 0: continue rng2 = np.random.RandomState(galtileid % (2**32 -1)) use_system = rng2.choice(unused_sysno) use_df = self.sne_catalog.query('twinkles_sysno == %i' % use_system) default_lensrow = row.copy() default_lensrow[self.defs_dict['galaxyDisk_majorAxis']] = 0.0 default_lensrow[self.defs_dict['galaxyDisk_minorAxis']] = 0.0 default_lensrow[self.defs_dict['galaxyDisk_positionAngle']] = 0.0 default_lensrow[self.defs_dict['galaxyDisk_internalAv']] = 0.0 default_lensrow[self.defs_dict['galaxyDisk_magNorm']] = 999. default_lensrow[self.defs_dict['galaxyDisk_sedFilename']] = None default_lensrow[self.defs_dict['galaxyBulge_majorAxis']] = 0.0 default_lensrow[self.defs_dict['galaxyBulge_minorAxis']] = 0.0 default_lensrow[self.defs_dict['galaxyBulge_positionAngle']] = 0.0 default_lensrow[self.defs_dict['galaxyBulge_internalAv']] = 0.0 default_lensrow[self.defs_dict['galaxyBulge_magNorm']] = 999. default_lensrow[self.defs_dict['galaxyBulge_sedFilename']] = None varString = 'None' default_lensrow[self.defs_dict['galaxyAgn_varParamStr']] = varString for i in range(len(use_df)): lensrow = default_lensrow.copy() delta_ra = np.radians(use_df['x'].iloc[i] / 3600.0) delta_dec = np.radians(use_df['y'].iloc[i] / 3600.0) lens_ra = lensrow[self.defs_dict['raJ2000']] lens_dec = lensrow[self.defs_dict['decJ2000']] lensrow[self.defs_dict['raJ2000']] = lens_ra + delta_ra/np.cos(lens_dec) lensrow[self.defs_dict['decJ2000']] = lens_dec + delta_dec # varString = json.loads(lensrow[self.defs_dict['galaxyAgn_varParamStr']]) z_s = use_df['zs'].iloc[i] lensrow[self.defs_dict['galaxyBulge_redshift']] = z_s lensrow[self.defs_dict['galaxyDisk_redshift']] = z_s lensrow[self.defs_dict['galaxyAgn_redshift']] = z_s #To get back twinklesID in lens catalog from phosim catalog id number #just use np.right_shift(phosimID-28, 10). Take the floor of the last #3 numbers to get twinklesID in the twinkles lens catalog and the remainder is #the image number minus 1. if not isinstance(self.defs_dict['galtileid'], tuple): lensrow[self.defs_dict['galtileid']] = ((lensrow[self.defs_dict['galtileid']]+int(1.5e10))*100000 + use_system*8 + i) else: for col_name in self.defs_dict['galtileid']: lensrow[col_name] = ((lensrow[col_name]+int(1.5e10))*100000 + use_system*8 + i) (add_to_cat, sn_magnorm, sn_fname, sn_param_dict) = self.create_sn_sed(use_df.iloc[i], lensrow[self.defs_dict['raJ2000']], lensrow[self.defs_dict['decJ2000']], self.visit_mjd, write_sn_sed=self.write_sn_sed) if self.store_sn_truth_params: add_to_cat = True lensrow[self.defs_dict['galaxyAgn_sn_truth_params']] = json.dumps(sn_param_dict) lensrow[self.defs_dict['galaxyAgn_sn_t0']] = sn_param_dict['t0'] lensrow[self.defs_dict['galaxyAgn_sedFilename']] = sn_fname lensrow[self.defs_dict['galaxyAgn_magNorm']] = sn_magnorm #This will need to be adjusted to proper band mag_adjust = 2.5*np.log10(np.abs(use_df['mu'].iloc[i])) lensrow[self.defs_dict['galaxyAgn_magNorm']] -= mag_adjust if self.logging_is_sprinkled: lensrow[self.defs_dict['galaxyAgn_is_sprinkled']] = 1 lensrow[self.defs_dict['galaxyBulge_is_sprinkled']] = 1 lensrow[self.defs_dict['galaxyDisk_is_sprinkled']] = 1 if add_to_cat is True: new_rows.append(lensrow) #Now manipulate original entry to be the lens galaxy with desired properties #Start by deleting Disk and AGN properties if not np.isnan(row[self.defs_dict['galaxyDisk_magNorm']]): row[self.defs_dict['galaxyDisk_majorAxis']] = 0.0 row[self.defs_dict['galaxyDisk_minorAxis']] = 0.0 row[self.defs_dict['galaxyDisk_positionAngle']] = 0.0 row[self.defs_dict['galaxyDisk_internalAv']] = 0.0 row[self.defs_dict['galaxyDisk_magNorm']] = 999. row[self.defs_dict['galaxyDisk_sedFilename']] = None row[self.defs_dict['galaxyAgn_magNorm']] = None row[self.defs_dict['galaxyDisk_magNorm']] = 999. row[self.defs_dict['galaxyAgn_sedFilename']] = None #Now insert desired Bulge properties row[self.defs_dict['galaxyBulge_sedFilename']] = use_df['lensgal_sed'].iloc[0] row[self.defs_dict['galaxyBulge_redshift']] = use_df['zl'].iloc[0] row[self.defs_dict['galaxyDisk_redshift']] = use_df['zl'].iloc[0] row[self.defs_dict['galaxyAgn_redshift']] = use_df['zl'].iloc[0] row[self.defs_dict['galaxyBulge_magNorm']] = use_df['lensgal_magnorm_%s' % catalog_band].iloc[0] # row[self.defs_dict['galaxyBulge_magNorm']] = matchBase().calcMagNorm([newlens['APMAG_I']], self.LRG, self.bandpassDict) #Changed from i band to imsimband row[self.defs_dict['galaxyBulge_majorAxis']] = radiansFromArcsec(use_df['lensgal_reff'].iloc[0] / np.sqrt(1 - use_df['e'].iloc[0])) row[self.defs_dict['galaxyBulge_minorAxis']] = radiansFromArcsec(use_df['lensgal_reff'].iloc[0] * np.sqrt(1 - use_df['e'].iloc[0])) #Convert orientation angle to west of north from east of north by *-1.0 and convert to radians row[self.defs_dict['galaxyBulge_positionAngle']] = use_df['theta_e'].iloc[0]*(-1.0)*np.pi/180.0 row[self.defs_dict['galaxyBulge_internalAv']] = use_df['lens_av'].iloc[0] row[self.defs_dict['galaxyBulge_internalRv']] = use_df['lens_rv'].iloc[0] if self.logging_is_sprinkled: row[self.defs_dict['galaxyAgn_is_sprinkled']] = 1 row[self.defs_dict['galaxyBulge_is_sprinkled']] = 1 row[self.defs_dict['galaxyDisk_is_sprinkled']] = 1 #Replace original entry with new entry input_catalog[rowNum] = row if len(new_rows)>0: input_catalog = np.append(input_catalog, new_rows) return input_catalog def find_lens_candidates(self, galz, gal_mag): # search the OM10 catalog for all sources +- 0.1 dex in redshift # and within .25 mags of the CATSIM source w = np.where((np.abs(np.log10(self.lenscat['ZSRC']) - np.log10(galz)) <= 0.1) & (np.abs(self.src_mag_norm - gal_mag) <= .25))[0] lens_candidates = self.lenscat[w] return lens_candidates def find_sne_lens_candidates(self, galz): w = np.where((np.abs(np.log10(self.sne_catalog['zs']) - np.log10(galz)) <= 0.1)) lens_candidates = self.sne_catalog.iloc[w] return lens_candidates def create_sn_sed(self, system_df, sn_ra, sn_dec, sed_mjd, write_sn_sed=True): sn_param_dict = copy.deepcopy(self.sn_obj.SNstate) sn_param_dict['_ra'] = sn_ra sn_param_dict['_dec'] = sn_dec sn_param_dict['z'] = system_df['zs'] sn_param_dict['c'] = system_df['c'] sn_param_dict['x0'] = system_df['x0'] sn_param_dict['x1'] = system_df['x1'] sn_param_dict['t0'] = system_df['t_start'] #sn_param_dict['t0'] = 62746.27 #+1500. ### For testing only current_sn_obj = self.sn_obj.fromSNState(sn_param_dict) current_sn_obj.mwEBVfromMaps() wavelen_max = 1800. wavelen_min = 30. wavelen_step = 0.1 sn_sed_obj = current_sn_obj.SNObjectSED(time=sed_mjd, wavelen=np.arange(wavelen_min, wavelen_max, wavelen_step)) flux_500 = sn_sed_obj.flambda[np.where(sn_sed_obj.wavelen >= 499.99)][0] if flux_500 > 0.: add_to_cat = True sn_magnorm = current_sn_obj.catsimBandMag(self.imSimBand, sed_mjd) sn_name = None if write_sn_sed: sn_name = 'specFileGLSN_%i_%i_%.4f.txt' % (system_df['twinkles_sysno'], system_df['imno'], sed_mjd) sed_filename = '%s/%s' % (self.sed_path, sn_name) sn_sed_obj.writeSED(sed_filename) with open(sed_filename, 'rb') as f_in, gzip.open(str(sed_filename + '.gz'), 'wb') as f_out: shutil.copyfileobj(f_in, f_out) os.remove(sed_filename) else: add_to_cat = False sn_magnorm = np.nan sn_name = None return add_to_cat, sn_magnorm, sn_name, current_sn_obj.SNstate def update_catsim(self): # Remove the catsim object # Add lensed images to the catsim given source brightness and magnifications # Add lens galaxy to catsim return def catsim_to_phosim(self): # Pass this catsim to phosim to make images return
mit
macks22/scikit-learn
sklearn/feature_selection/__init__.py
244
1088
""" The :mod:`sklearn.feature_selection` module implements feature selection algorithms. It currently includes univariate filter selection methods and the recursive feature elimination algorithm. """ from .univariate_selection import chi2 from .univariate_selection import f_classif from .univariate_selection import f_oneway from .univariate_selection import f_regression from .univariate_selection import SelectPercentile from .univariate_selection import SelectKBest from .univariate_selection import SelectFpr from .univariate_selection import SelectFdr from .univariate_selection import SelectFwe from .univariate_selection import GenericUnivariateSelect from .variance_threshold import VarianceThreshold from .rfe import RFE from .rfe import RFECV __all__ = ['GenericUnivariateSelect', 'RFE', 'RFECV', 'SelectFdr', 'SelectFpr', 'SelectFwe', 'SelectKBest', 'SelectPercentile', 'VarianceThreshold', 'chi2', 'f_classif', 'f_oneway', 'f_regression']
bsd-3-clause
idlead/scikit-learn
examples/cluster/plot_adjusted_for_chance_measures.py
286
4353
""" ========================================================== Adjustment for chance in clustering performance evaluation ========================================================== The following plots demonstrate the impact of the number of clusters and number of samples on various clustering performance evaluation metrics. Non-adjusted measures such as the V-Measure show a dependency between the number of clusters and the number of samples: the mean V-Measure of random labeling increases significantly as the number of clusters is closer to the total number of samples used to compute the measure. Adjusted for chance measure such as ARI display some random variations centered around a mean score of 0.0 for any number of samples and clusters. Only adjusted measures can hence safely be used as a consensus index to evaluate the average stability of clustering algorithms for a given value of k on various overlapping sub-samples of the dataset. """ print(__doc__) # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from time import time from sklearn import metrics def uniform_labelings_scores(score_func, n_samples, n_clusters_range, fixed_n_classes=None, n_runs=5, seed=42): """Compute score for 2 random uniform cluster labelings. Both random labelings have the same number of clusters for each value possible value in ``n_clusters_range``. When fixed_n_classes is not None the first labeling is considered a ground truth class assignment with fixed number of classes. """ random_labels = np.random.RandomState(seed).random_integers scores = np.zeros((len(n_clusters_range), n_runs)) if fixed_n_classes is not None: labels_a = random_labels(low=0, high=fixed_n_classes - 1, size=n_samples) for i, k in enumerate(n_clusters_range): for j in range(n_runs): if fixed_n_classes is None: labels_a = random_labels(low=0, high=k - 1, size=n_samples) labels_b = random_labels(low=0, high=k - 1, size=n_samples) scores[i, j] = score_func(labels_a, labels_b) return scores score_funcs = [ metrics.adjusted_rand_score, metrics.v_measure_score, metrics.adjusted_mutual_info_score, metrics.mutual_info_score, ] # 2 independent random clusterings with equal cluster number n_samples = 100 n_clusters_range = np.linspace(2, n_samples, 10).astype(np.int) plt.figure(1) plots = [] names = [] for score_func in score_funcs: print("Computing %s for %d values of n_clusters and n_samples=%d" % (score_func.__name__, len(n_clusters_range), n_samples)) t0 = time() scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range) print("done in %0.3fs" % (time() - t0)) plots.append(plt.errorbar( n_clusters_range, np.median(scores, axis=1), scores.std(axis=1))[0]) names.append(score_func.__name__) plt.title("Clustering measures for 2 random uniform labelings\n" "with equal number of clusters") plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples) plt.ylabel('Score value') plt.legend(plots, names) plt.ylim(ymin=-0.05, ymax=1.05) # Random labeling with varying n_clusters against ground class labels # with fixed number of clusters n_samples = 1000 n_clusters_range = np.linspace(2, 100, 10).astype(np.int) n_classes = 10 plt.figure(2) plots = [] names = [] for score_func in score_funcs: print("Computing %s for %d values of n_clusters and n_samples=%d" % (score_func.__name__, len(n_clusters_range), n_samples)) t0 = time() scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range, fixed_n_classes=n_classes) print("done in %0.3fs" % (time() - t0)) plots.append(plt.errorbar( n_clusters_range, scores.mean(axis=1), scores.std(axis=1))[0]) names.append(score_func.__name__) plt.title("Clustering measures for random uniform labeling\n" "against reference assignment with %d classes" % n_classes) plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples) plt.ylabel('Score value') plt.ylim(ymin=-0.05, ymax=1.05) plt.legend(plots, names) plt.show()
bsd-3-clause
vrv/tensorflow
tensorflow/examples/learn/text_classification.py
39
5106
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of Estimator for DNN-based text classification with DBpedia data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas from sklearn import metrics import tensorflow as tf from tensorflow.contrib.layers.python.layers import encoders learn = tf.contrib.learn FLAGS = None MAX_DOCUMENT_LENGTH = 10 EMBEDDING_SIZE = 50 n_words = 0 def bag_of_words_model(features, target): """A bag-of-words model. Note it disregards the word order in the text.""" target = tf.one_hot(target, 15, 1, 0) features = encoders.bow_encoder( features, vocab_size=n_words, embed_dim=EMBEDDING_SIZE) logits = tf.contrib.layers.fully_connected(features, 15, activation_fn=None) loss = tf.contrib.losses.softmax_cross_entropy(logits, target) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adam', learning_rate=0.01) return ({ 'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits) }, loss, train_op) def rnn_model(features, target): """RNN model to predict from sequence of words to a class.""" # Convert indexes of words into embeddings. # This creates embeddings matrix of [n_words, EMBEDDING_SIZE] and then # maps word indexes of the sequence into [batch_size, sequence_length, # EMBEDDING_SIZE]. word_vectors = tf.contrib.layers.embed_sequence( features, vocab_size=n_words, embed_dim=EMBEDDING_SIZE, scope='words') # Split into list of embedding per word, while removing doc length dim. # word_list results to be a list of tensors [batch_size, EMBEDDING_SIZE]. word_list = tf.unstack(word_vectors, axis=1) # Create a Gated Recurrent Unit cell with hidden size of EMBEDDING_SIZE. cell = tf.contrib.rnn.GRUCell(EMBEDDING_SIZE) # Create an unrolled Recurrent Neural Networks to length of # MAX_DOCUMENT_LENGTH and passes word_list as inputs for each unit. _, encoding = tf.contrib.rnn.static_rnn(cell, word_list, dtype=tf.float32) # Given encoding of RNN, take encoding of last step (e.g hidden size of the # neural network of last step) and pass it as features for logistic # regression over output classes. target = tf.one_hot(target, 15, 1, 0) logits = tf.contrib.layers.fully_connected(encoding, 15, activation_fn=None) loss = tf.contrib.losses.softmax_cross_entropy(logits, target) # Create a training op. train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adam', learning_rate=0.01) return ({ 'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits) }, loss, train_op) def main(unused_argv): global n_words # Prepare training and testing data dbpedia = learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data) x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary vocab_processor = learn.preprocessing.VocabularyProcessor(MAX_DOCUMENT_LENGTH) x_transform_train = vocab_processor.fit_transform(x_train) x_transform_test = vocab_processor.transform(x_test) x_train = np.array(list(x_transform_train)) x_test = np.array(list(x_transform_test)) n_words = len(vocab_processor.vocabulary_) print('Total words: %d' % n_words) # Build model # Switch between rnn_model and bag_of_words_model to test different models. model_fn = rnn_model if FLAGS.bow_model: model_fn = bag_of_words_model classifier = learn.Estimator(model_fn=model_fn) # Train and predict classifier.fit(x_train, y_train, steps=100) y_predicted = [ p['class'] for p in classifier.predict( x_test, as_iterable=True) ] score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true') parser.add_argument( '--bow_model', default=False, help='Run with BOW model instead of RNN.', action='store_true') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
evan-magnusson/dynamic
Data/Calibration/Firm_Calibration_Python/parameters/employment/script_wages.py
6
1821
''' ------------------------------------------------------------------------------- Date created: 5/22/2015 Last updated 5/22/2015 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- Packages: ------------------------------------------------------------------------------- ''' import os.path import sys import numpy as np import pandas as pd # Find the directory of this file: cur_dir = os.path.dirname(__file__) # Import naics processing file: try: import naics_processing as naics except ImportError: data_struct_dir = os.path.dirname(os.path.dirname(cur_dir)) data_struct_dir += "\\data_structures" data_struct_dir = os.path.abspath(data_struct_dir) sys.path.append(data_struct_dir) try: import naics_processing as naics except ImportError: print "\n\n ImportError: Failed to import naics_processing \n\n" # Import the helper functions to read in the national income data: import read_wages_data as read_wages ''' ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- ''' data_folder = os.path.abspath(cur_dir + "\\data") naics_codes_file = os.path.abspath(data_folder + "\\NAICS_Codes.csv") output_folder = os.path.abspath(cur_dir + "\\output") def main(): # naics_tree = naics.load_naics(naics_codes_file) # read_wages.load_nipa_wages_ind(data_folder, naics_tree) # parameters = [read_wages.WAGES] # naics.pop_back(naics_tree, parameters) naics.pop_forward(naics_tree, parameters, None, None, None, True) # naics.print_tree_dfs(naics_tree, output_folder) if __name__ == "script_wages": main()
mit
EVEprosper/ProsperAPI
tests/test_crest_endpoint.py
1
14676
from os import path, listdir, remove import platform import io from datetime import datetime, timedelta import time import json import pandas as pd from tinymongo import TinyMongoClient import pytest from flask import url_for import publicAPI.exceptions as exceptions import publicAPI.config as api_utils import helpers HERE = path.abspath(path.dirname(__file__)) ROOT = path.dirname(HERE) CONFIG_FILENAME = path.join(HERE, 'test_config.cfg') CONFIG = helpers.get_config(CONFIG_FILENAME) ROOT_CONFIG = helpers.get_config( path.join(ROOT, 'scripts', 'app.cfg') ) TEST_CACHE_PATH = path.join(HERE, 'cache') CACHE_PATH = path.join(ROOT, 'publicAPI', 'cache') BASE_URL = 'http://localhost:8000' def test_clear_caches(): """remove cache files for test""" helpers.clear_caches(True) VIRGIN_RUNTIME = None @pytest.mark.usefixtures('client_class') class TestODBCcsv: """test framework for collecting endpoint stats""" def test_odbc_happypath(self): """exercise `collect_stats`""" global VIRGIN_RUNTIME fetch_start = time.time() req = self.client.get( url_for('ohlc_endpoint', return_type='csv') + '?typeID={type_id}&regionID={region_id}'.format( type_id=CONFIG.get('TEST', 'nosplit_id'), region_id=CONFIG.get('TEST', 'region_id') ) ) fetch_end = time.time() VIRGIN_RUNTIME = fetch_end - fetch_start print(req.__dict__) data = None with io.StringIO(req.data.decode()) as buff: data = pd.read_csv(buff) assert req._status_code == 200 expected_headers = [ 'date', 'open', 'high', 'low', 'close', 'volume' ] assert set(expected_headers) == set(data.columns.values) def test_odbc_happypath_cached(self): """rerun test with cached values""" fetch_start = time.time() req = self.client.get( url_for('ohlc_endpoint', return_type='csv') + '?typeID={type_id}&regionID={region_id}'.format( type_id=CONFIG.get('TEST', 'nosplit_id'), region_id=CONFIG.get('TEST', 'region_id') ) ) fetch_end = time.time() runtime = fetch_end - fetch_start if runtime > VIRGIN_RUNTIME/1.5: pytest.xfail('cached performance slower than expected') def test_odbc_bad_typeid(self): """make sure expected errors happen on bad typeid""" req = self.client.get( url_for('ohlc_endpoint', return_type='csv') + '?typeID={type_id}&regionID={region_id}'.format( type_id=CONFIG.get('TEST', 'bad_typeid'), region_id=CONFIG.get('TEST', 'region_id') ) ) assert req._status_code == 404 def test_odbc_bad_regionid(self): """make sure expected errors happen on bad typeid""" req = self.client.get( url_for('ohlc_endpoint', return_type='csv') + '?typeID={type_id}&regionID={region_id}'.format( type_id=CONFIG.get('TEST', 'nosplit_id'), region_id=CONFIG.get('TEST', 'bad_regionid') ) ) assert req._status_code == 404 def test_odbc_bad_format(self): """make sure expected errors happen on bad typeid""" req = self.client.get( url_for('ohlc_endpoint', return_type='butts') + '?typeID={type_id}&regionID={region_id}'.format( type_id=CONFIG.get('TEST', 'nosplit_id'), region_id=CONFIG.get('TEST', 'region_id') ) ) assert req._status_code == 405 @pytest.mark.usefixtures('client_class') class TestODBCjson: """test framework for collecting endpoint stats""" def test_odbc_happypath(self): """exercise `collect_stats`""" test_clear_caches() global VIRGIN_RUNTIME fetch_start = time.time() req = self.client.get( url_for('ohlc_endpoint', return_type='json') + '?typeID={type_id}&regionID={region_id}'.format( type_id=CONFIG.get('TEST', 'nosplit_id'), region_id=CONFIG.get('TEST', 'region_id') ) ) fetch_end = time.time() VIRGIN_RUNTIME = fetch_end - fetch_start raw_data = json.loads(req.data.decode()) data = pd.DataFrame(raw_data) assert req._status_code == 200 expected_headers = [ 'date', 'open', 'high', 'low', 'close', 'volume' ] assert set(expected_headers) == set(data.columns.values) def test_odbc_bad_typeid(self): """make sure expected errors happen on bad typeid""" req = self.client.get( url_for('ohlc_endpoint', return_type='json') + '?typeID={type_id}&regionID={region_id}'.format( type_id=CONFIG.get('TEST', 'bad_typeid'), region_id=CONFIG.get('TEST', 'region_id') ) ) assert req._status_code == 404 def test_odbc_bad_regionid(self): """make sure expected errors happen on bad typeid""" req = self.client.get( url_for('ohlc_endpoint', return_type='json') + '?typeID={type_id}&regionID={region_id}'.format( type_id=CONFIG.get('TEST', 'nosplit_id'), region_id=CONFIG.get('TEST', 'bad_regionid') ) ) assert req._status_code == 404 TEST_API_KEY = '' def test_get_api_key(): """fetch api key from cache for testing""" global TEST_API_KEY connection = TinyMongoClient(CACHE_PATH) api_db = connection.prosperAPI.users vals = api_db.find() if not vals: pytest.xfail('Unable to test without test keys') test_key = vals['api_key'] connection.close() TEST_API_KEY = test_key @pytest.mark.prophet @pytest.mark.usefixtures('client_class') class TestProphetcsv: """test framework for collecting endpoint stats""" def test_prophet_happypath(self): """exercise `collect_stats`""" test_clear_caches() assert TEST_API_KEY != '' global VIRGIN_RUNTIME fetch_start = time.time() req = self.client.get( url_for('prophetendpoint', return_type='csv') + '?typeID={type_id}&regionID={region_id}&api={api_key}&range={range}'.format( type_id=CONFIG.get('TEST', 'nosplit_id'), region_id=CONFIG.get('TEST', 'region_id'), api_key=TEST_API_KEY, range=CONFIG.get('TEST', 'forecast_range') ) ) fetch_end = time.time() VIRGIN_RUNTIME = fetch_end - fetch_start data = None with io.StringIO(req.data.decode()) as buff: data = pd.read_csv(buff) assert req._status_code == 200 expected_headers = [ 'date', 'avgPrice', 'yhat', 'yhat_low', 'yhat_high', 'prediction' ] assert set(expected_headers) == set(data.columns.values) ##TODO: validate ranges? def test_prophet_happypath_cached(self): """exercise `collect_stats`""" fetch_start = time.time() req = self.client.get( url_for('prophetendpoint', return_type='csv') + '?typeID={type_id}&regionID={region_id}&api={api_key}&range={range}'.format( type_id=CONFIG.get('TEST', 'nosplit_id'), region_id=CONFIG.get('TEST', 'region_id'), api_key=TEST_API_KEY, range=CONFIG.get('TEST', 'forecast_range') ) ) fetch_end = time.time() runtime = fetch_end - fetch_start if runtime > VIRGIN_RUNTIME/1.5: pytest.xfail('cached performance slower than expected') def test_prophet_bad_regionid(self): """exercise `collect_stats`""" req = self.client.get( url_for('prophetendpoint', return_type='csv') + '?typeID={type_id}&regionID={region_id}&api={api_key}&range={range}'.format( type_id=CONFIG.get('TEST', 'nosplit_id'), region_id=CONFIG.get('TEST', 'bad_regionid'), api_key=TEST_API_KEY, range=CONFIG.get('TEST', 'forecast_range') ) ) assert req._status_code == 404 def test_prophet_bad_typeid(self): """exercise `collect_stats`""" req = self.client.get( url_for('prophetendpoint', return_type='csv') + '?typeID={type_id}&regionID={region_id}&api={api_key}&range={range}'.format( type_id=CONFIG.get('TEST', 'bad_typeid'), region_id=CONFIG.get('TEST', 'region_id'), api_key=TEST_API_KEY, range=CONFIG.get('TEST', 'forecast_range') ) ) assert req._status_code == 404 def test_prophet_bad_api(self): """exercise `collect_stats`""" req = self.client.get( url_for('prophetendpoint', return_type='csv') + '?typeID={type_id}&regionID={region_id}&api={api_key}&range={range}'.format( type_id=CONFIG.get('TEST', 'nosplit_id'), region_id=CONFIG.get('TEST', 'region_id'), api_key='IMAHUGEBUTT', range=CONFIG.get('TEST', 'forecast_range') ) ) assert req._status_code == 401 def test_prophet_bad_range(self): """exercise `collect_stats`""" req = self.client.get( url_for('prophetendpoint', return_type='csv') + '?typeID={type_id}&regionID={region_id}&api={api_key}&range={range}'.format( type_id=CONFIG.get('TEST', 'nosplit_id'), region_id=CONFIG.get('TEST', 'region_id'), api_key=TEST_API_KEY, range=9001 ) ) assert req._status_code == 413 def test_prophet_bad_format(self): """exercise `collect_stats`""" req = self.client.get( url_for('prophetendpoint', return_type='butts') + '?typeID={type_id}&regionID={region_id}&api={api_key}&range={range}'.format( type_id=CONFIG.get('TEST', 'nosplit_id'), region_id=CONFIG.get('TEST', 'region_id'), api_key=TEST_API_KEY, range=CONFIG.get('TEST', 'forecast_range') ) ) assert req._status_code == 405 @pytest.mark.prophet @pytest.mark.usefixtures('client_class') class TestProphetjson: """test framework for collecting endpoint stats""" def test_prophet_happypath(self): """exercise `collect_stats`""" test_clear_caches() global VIRGIN_RUNTIME fetch_start = time.time() req = self.client.get( url_for('prophetendpoint', return_type='json') + '?typeID={type_id}&regionID={region_id}&api={api_key}&range={range}'.format( type_id=CONFIG.get('TEST', 'nosplit_id'), region_id=CONFIG.get('TEST', 'region_id'), api_key=TEST_API_KEY, range=CONFIG.get('TEST', 'forecast_range') ) ) fetch_end = time.time() VIRGIN_RUNTIME = fetch_end - fetch_start raw_data = json.loads(req.data.decode()) data = pd.DataFrame(raw_data) assert req._status_code == 200 expected_headers = [ 'date', 'avgPrice', 'yhat', 'yhat_low', 'yhat_high', 'prediction' ] assert set(expected_headers) == set(data.columns.values) ##TODO: validate ranges? def test_prophet_happypath_cached(self): """exercise `collect_stats`""" fetch_start = time.time() req = self.client.get( url_for('prophetendpoint', return_type='json') + '?typeID={type_id}&regionID={region_id}&api={api_key}&range={range}'.format( type_id=CONFIG.get('TEST', 'nosplit_id'), region_id=CONFIG.get('TEST', 'region_id'), api_key=TEST_API_KEY, range=CONFIG.get('TEST', 'forecast_range') ) ) fetch_end = time.time() runtime = fetch_end - fetch_start if runtime > VIRGIN_RUNTIME/1.5: pytest.xfail('cached performance slower than expected') def test_prophet_bad_regionid(self): """exercise `collect_stats`""" req = self.client.get( url_for('prophetendpoint', return_type='json') + '?typeID={type_id}&regionID={region_id}&api={api_key}&range={range}'.format( type_id=CONFIG.get('TEST', 'nosplit_id'), region_id=CONFIG.get('TEST', 'bad_regionid'), api_key=TEST_API_KEY, range=CONFIG.get('TEST', 'forecast_range') ) ) assert req._status_code == 404 def test_prophet_bad_typeid(self): """exercise `collect_stats`""" req = self.client.get( url_for('prophetendpoint', return_type='json') + '?typeID={type_id}&regionID={region_id}&api={api_key}&range={range}'.format( type_id=CONFIG.get('TEST', 'bad_typeid'), region_id=CONFIG.get('TEST', 'region_id'), api_key=TEST_API_KEY, range=CONFIG.get('TEST', 'forecast_range') ) ) assert req._status_code == 404 def test_prophet_bad_api(self): """exercise `collect_stats`""" req = self.client.get( url_for('prophetendpoint', return_type='json') + '?typeID={type_id}&regionID={region_id}&api={api_key}&range={range}'.format( type_id=CONFIG.get('TEST', 'nosplit_id'), region_id=CONFIG.get('TEST', 'region_id'), api_key='IMAHUGEBUTT', range=CONFIG.get('TEST', 'forecast_range') ) ) assert req._status_code == 401 def test_prophet_bad_range(self): """exercise `collect_stats`""" req = self.client.get( url_for('prophetendpoint', return_type='json') + '?typeID={type_id}&regionID={region_id}&api={api_key}&range={range}'.format( type_id=CONFIG.get('TEST', 'nosplit_id'), region_id=CONFIG.get('TEST', 'region_id'), api_key=TEST_API_KEY, range=9000 ) ) assert req._status_code == 413
mit
themrmax/scikit-learn
examples/semi_supervised/plot_label_propagation_digits.py
55
2723
""" =================================================== Label Propagation digits: Demonstrating performance =================================================== This example demonstrates the power of semisupervised learning by training a Label Spreading model to classify handwritten digits with sets of very few labels. The handwritten digit dataset has 1797 total points. The model will be trained using all points, but only 30 will be labeled. Results in the form of a confusion matrix and a series of metrics over each class will be very good. At the end, the top 10 most uncertain predictions will be shown. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # License: BSD import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn import datasets from sklearn.semi_supervised import label_propagation from sklearn.metrics import confusion_matrix, classification_report digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 30 indices = np.arange(n_total_samples) unlabeled_set = indices[n_labeled_points:] # shuffle everything around y_train = np.copy(y) y_train[unlabeled_set] = -1 ############################################################################### # Learn with LabelSpreading lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_set] true_labels = y[unlabeled_set] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print("Label Spreading model: %d labeled & %d unlabeled points (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # calculate uncertainty values for each transduced distribution pred_entropies = stats.distributions.entropy(lp_model.label_distributions_.T) # pick the top 10 most uncertain labels uncertainty_index = np.argsort(pred_entropies)[-10:] ############################################################################### # plot f = plt.figure(figsize=(7, 5)) for index, image_index in enumerate(uncertainty_index): image = images[image_index] sub = f.add_subplot(2, 5, index + 1) sub.imshow(image, cmap=plt.cm.gray_r) plt.xticks([]) plt.yticks([]) sub.set_title('predict: %i\ntrue: %i' % ( lp_model.transduction_[image_index], y[image_index])) f.suptitle('Learning with small amount of labeled data') plt.show()
bsd-3-clause
sanja7s/SR_Twitter
src_COMM/InfoMap_COMM_stats.py
1
26064
#!/usr/bin/env python # -*- coding: UTF-8 -*- from collections import defaultdict, OrderedDict import codecs import matplotlib import matplotlib.pyplot as plt import pylab as P import numpy as np import networkx as nx import time import matplotlib.dates as mdates import os from igraph import * from scipy.stats.stats import pearsonr from scipy import stats import seaborn as sns sns.set(color_codes=True, font_scale=2) sns.set_style('whitegrid') WORKING_FOLDER = "../../../DATA/mention_graph/InfoMap" os.chdir(WORKING_FOLDER) F_IN = 'ment_comm' f_in_graph = 'mention_graph_weights.dat' # DONE def output_basic_stats_COMM(): num_COMM = 0 COMM_sizes = [] input_file = codecs.open(F_IN, 'r', encoding='utf8') for line in input_file: line = line.split() num_COMM += 1 COMM_sizes.append(len(line)) print 'Read in BigClam output: %d COMM ' % (num_COMM) print 'Their size in decreasing order ' print sorted(COMM_sizes) print sum(COMM_sizes) input_file.close() def find_nodes_in_more_COMM(): nodes_num_COMM = defaultdict(int) input_file = codecs.open(F_IN, 'r', encoding='utf8') for line in input_file: node, comm = line.split() nodes_num_COMM[int(node)] += 1 #nodes_num_COMM2 = {node: nodes_num_COMM[node] if nodes_num_COMM[node] < 10 else 10 for node in nodes_num_COMM} sorted_nodes_num_COMM = OrderedDict(sorted(nodes_num_COMM.items(), key=lambda t:t[1])) print len(sorted_nodes_num_COMM) return sorted_nodes_num_COMM def read_in_mention_graph(): d = defaultdict(int) fn = 'mention_graph_weights.dat' f = open(fn, 'r') for line in f: (u1, u2, w) = line.split() #print u1, u2, w d[int(u1), int(u2)] = int(w) return d def read_in_mention_graph_undir(): d = defaultdict(int) fn = 'undirected_mention_graph_with_SR_weight.dat' f = open(fn, 'r') for line in f: (u1, u2, w, SR) = line.split() #print u1, u2, w if int(u1) > int(u2): pom = u1 u1 = u2 u2 = pom if (int(u1), int(u2)) in d: w1 = d[int(u1), int(u2)] w2 = min(w1, int(w)) d[int(u1), int(u2)] = int(w2) else: d[int(u1), int(u2)] = int(w) print len(d) return d def read_all_users(): d = [] fn = 'mention_graph_weights.dat' f = open(fn, 'r') for line in f: (u1, u2, w) = line.split() d.append(int(u1)) d.append(int(u2)) d = set(d) print len(d) return d # nodes with highest avg COMM membership def read_nodes_COMM(): COMM = 0 nodes_COMM = defaultdict(list) input_file = codecs.open(F_IN, 'r', encoding='utf8') for line in input_file: line = line.split() for node in line: nodes_COMM[int(node)].append(COMM) COMM += 1 return nodes_COMM def find_node_interaction_comm_propensity(): d = read_in_mention_graph_undir() d_all = read_all_users() d_weak = read_in_mention_graph() cnt_edges = 0 node_comm_membership = read_nodes_COMM() comm_mem = defaultdict(list) for (u1, u2) in d: comms_u1 = node_comm_membership[u1] comms_u2 = node_comm_membership[u2] shared = len(set(comms_u1).intersection(set(comms_u2))) comm_mem[shared].append(d[(u1, u2)]) cnt_edges += 1 N = cnt_edges print N cnt_edges = 0 comm_mem_weak = defaultdict(list) for (u1, u2) in d_weak: comms_u1 = node_comm_membership[u1] comms_u2 = node_comm_membership[u2] shared = len(set(comms_u1).intersection(set(comms_u2))) comm_mem_weak[shared].append(d[(u1, u2)]) cnt_edges += 1 N_weak = cnt_edges print N_weak cnt = 0 """ print len(d_all) print len(d_all) * len(d_all) full_comm_mem = defaultdict(int) for u1 in d_all: for u2 in d_all: if u1 >= u2: continue #print u1, u2 comms_u1 = node_comm_membership[u1] comms_u2 = node_comm_membership[u2] shared = len(set(comms_u1).intersection(set(comms_u2))) #shared = cnt full_comm_mem[shared] += 1 if cnt % 1000000 == 0: print cnt cnt += 1 print cnt #print full_comm_mem """ comm_mem2 = OrderedDict() comm_mem3 = OrderedDict() comm_mem4 = OrderedDict() comm_mem5 = OrderedDict() for comm in comm_mem: #comm_mem2[comm] = np.mean(np.array(comm_mem[comm])) comm_mem2[comm] = stats.mode(np.array(comm_mem[comm]))[0][0] comm_mem3[comm] = np.std(np.array(comm_mem[comm])) comm_mem4[comm] = float(len(np.array(comm_mem[comm]))) / float(N) #n = full_comm_mem[comm] #comm_mem4[comm] = float(len(np.array(comm_mem[comm]))) / float((n*(n-1)/2)) if n > 0 else 0 comm_mem5[comm] = float(len(np.array(comm_mem_weak[comm]))) / float(N_weak) return comm_mem2, comm_mem3 , comm_mem4, comm_mem5 #find_node_interaction_comm_propensity() def plot_interaction_comm_propensity(): cm1, cm2, cm3, cm4 = find_node_interaction_comm_propensity() x = cm3.keys() y = cm3.values() #e = cm2.values() #x = cm3.keys() z = cm4.values() print y print z plt.plot(x, y, c='r') plt.plot(x, z, c='b') #plt.errorbar(x, y, e) #plt.xlim(-1,12) #plt.yscale('log') print pearsonr(np.array(x), np.array(y)) print pearsonr(np.array(x), np.array(z)) plt.show() # nodes with highest avg COMM membership def find_overlapping_COMM(): COMM = 0 nodes_num_COMM = find_nodes_in_more_COMM() COMM_density = defaultdict(list) input_file = codecs.open(F_IN, 'r', encoding='utf8') for line in input_file: line = line.split() for node in line: COMM_density[COMM].append(nodes_num_COMM[int(node)]) COMM += 1 COMM_density2 = defaultdict(tuple) for COMM in COMM_density: COMM_density2[COMM] = (np.mean(np.array(COMM_density[COMM])), len(COMM_density[COMM])) COMM_density3 = OrderedDict(sorted(COMM_density2.items(), key=lambda t:t[1][0])) #for COMM in COMM_density3: # print COMM, COMM_density3[COMM] return COMM_density3 # nodes with highest avg COMM membership def find_overlapping_COMM_MEDIAN_density(): COMM = 0 nodes_num_COMM = find_nodes_in_more_COMM() COMM_density = defaultdict(list) input_file = codecs.open(F_IN, 'r', encoding='utf8') for line in input_file: line = line.split() for node in line: COMM_density[COMM].append(nodes_num_COMM[int(node)]) COMM += 1 COMM_density2 = defaultdict(tuple) for COMM in COMM_density: COMM_density2[COMM] = (np.median(np.array(COMM_density[COMM])), len(COMM_density[COMM])) COMM_density3 = OrderedDict(sorted(COMM_density2.items(), key=lambda t:t[1][0])) #for COMM in COMM_density3: # print COMM, COMM_density3[COMM] return COMM_density3 def plot_COMM_size_vs_MEDIAN_density(): import seaborn as sns sns.set(color_codes=True, font_scale=2) x = [] y = [] data = find_overlapping_COMM_MEDIAN_density() for COMM in data: x.append(data[COMM][0]) y.append(data[COMM][1]) x = np.array(x) y = np.array(y) print 'Corrcoef COMM size and density ', pearsonr(np.array(x), np.array(y)) (r, p) = pearsonr(np.array(x), np.array(y)) lab = r'$r=' + "{:.2f}".format(r) + '$, $p= ' + "{:.2f}".format(p) + '$' xlabel = 'comm density' ylabel = 'comm size' #plt.scatter(x, y, edgecolors='none', c='c', label=lab) sns.set_style("white") g = sns.jointplot(x=x, y=y, kind='reg',annot_kws=dict(stat="r"), \ joint_kws={'line_kws':{'color':'gray', 'alpha':0.3, 'markeredgewidth':0}}).set_axis_labels(xlabel, ylabel) regline = g.ax_joint.get_lines()[0] regline.set_color('c') regline.set_zorder('5') labelsx = ['0','','1','', '2','', '3','','4'] g.ax_joint.set_xticklabels(labelsx) #plt.legend(frameon=0, loc=2) #plt.show() #plt.tight_layout() plt.savefig('node_comm_size_MEDIAN_density77.pdf',bbox_inches='tight' , dpi=550) plt.show() def plot_COMM_size_vs_density(): import seaborn as sns sns.set(color_codes=True, font_scale=2) x = [] y = [] data = find_overlapping_COMM() for COMM in data: x.append(data[COMM][0]) y.append(data[COMM][1]) x = np.array(x) y = np.array(y) print 'Corrcoef COMM size and density ', pearsonr(np.array(x), np.array(y)) (r, p) = pearsonr(np.array(x), np.array(y)) lab = r'$r=' + "{:.2f}".format(r) + '$, $p= ' + "{:.2f}".format(p) + '$' xlabel = 'comm density' ylabel = 'comm size' #plt.scatter(x, y, edgecolors='none', c='c', label=lab) sns.set_style("white") g = sns.jointplot(x=x, y=y, kind='reg',annot_kws=dict(stat="r"), \ joint_kws={'line_kws':{'color':'gray', 'alpha':0.3, 'markeredgewidth':0}}).set_axis_labels(xlabel, ylabel) regline = g.ax_joint.get_lines()[0] regline.set_color('c') regline.set_zorder('5') labelsx = ['0','','1','', '2','', '3','','4'] g.ax_joint.set_xticklabels(labelsx) #plt.legend(frameon=0, loc=2) #plt.show() #plt.tight_layout() plt.savefig('node_comm_size_density777.pdf',bbox_inches='tight' , dpi=550) plt.show() ######################### # read from a file that is an edge list with weights ######################### def read_in_graph(): G = Graph.Read_Ncol(f_in_graph, directed=True, weights=True) print f_in_graph print G.summary() return G ######################### # read from a file that is an edge list with SR weights ######################### def read_in_SR_graph(): G = Graph.Read_Ncol('undirected_mention_graph_with_SR.csv', directed=False, weights=True) print G.summary() return G def find_avg_neighborhood_SR_per_node_COMM_membership(): node_comm_membership = find_nodes_in_more_COMM() G = read_in_SR_graph() res = defaultdict(list) for node in node_comm_membership: n = G.vs.select(name = str(node)) nCOMM = node_comm_membership[node] if node_comm_membership[node] < 10 else 10 total_SR = G.strength(n[0].index, weights='weight') total_neighbors = G.degree(n[0].index) meanSR = total_SR / float(total_neighbors) res[nCOMM].append(meanSR) res_mean = defaultdict(float) res_stdev = defaultdict(float) for COMM in res: res_mean[COMM] = np.mean(np.array(res[COMM])) res_stdev[COMM] = np.std(np.array(res[COMM])) return res_mean, res_stdev def read_sem_capital(f_name='user_entities.tab', tname='entities'): f = open(f_name, "r") cap = defaultdict(int) cnt = 0 for line in f: if tname == 'sentiment': (vid, vn, val) = line.split('\t') val = float(val) else: (vid, val) = line.split('\t') val = float(val) cap[vid] = val cnt += 1 return cap def find_avg_ST_INC_per_node_COMM_membership(): node_comm_membership = find_nodes_in_more_COMM() sem_cap = read_sem_capital(f_name='status_inconsistency', tname='status_inconsistency') res = defaultdict(list) for node in node_comm_membership: n_sem = sem_cap[str(node)] nCOMM = node_comm_membership[node] if node_comm_membership[node] < 10 else 10 res[nCOMM].append(n_sem) res_mean = defaultdict(float) res_stdev = defaultdict(float) for COMM in res: res_mean[COMM] = np.mean(np.array(res[COMM])) res_stdev[COMM] = np.std(np.array(res[COMM])) return res_mean, res_stdev def find_MEDIAN_ST_INC_per_node_COMM_membership(): node_comm_membership = find_nodes_in_more_COMM() sem_cap = read_sem_capital(f_name='status_inconsistency', tname='status_inconsistency') res = defaultdict(list) for node in node_comm_membership: n_sem = sem_cap[str(node)] nCOMM = node_comm_membership[node] if node_comm_membership[node] < 10 else 10 res[nCOMM].append(abs(n_sem)) res_mean = defaultdict(float) res_stdev = defaultdict(float) for COMM in res: res_mean[COMM] = np.median(np.array(res[COMM])) res_stdev[COMM] = np.std(np.array(res[COMM])) return res_mean, res_stdev def find_avg_SEM_cap_per_node_COMM_membership(): node_comm_membership = find_nodes_in_more_COMM() sem_cap = read_sem_capital() res = defaultdict(list) for node in node_comm_membership: n_sem = sem_cap[str(node)] nCOMM = node_comm_membership[node] if node_comm_membership[node] < 10 else 10 res[nCOMM].append(n_sem) res_mean = defaultdict(float) res_stdev = defaultdict(float) for COMM in res: res_mean[COMM] = np.mean(np.array(res[COMM])) res_stdev[COMM] = np.std(np.array(res[COMM])) return res_mean, res_stdev def find_MEDIAN_SEM_cap_per_node_COMM_membership(): node_comm_membership = find_nodes_in_more_COMM() sem_cap = read_sem_capital() res = defaultdict(list) for node in node_comm_membership: n_sem = sem_cap[str(node)] nCOMM = node_comm_membership[node] if node_comm_membership[node] < 10 else 10 res[nCOMM].append(n_sem) res_mean = defaultdict(float) res_stdev = defaultdict(float) for COMM in res: res_mean[COMM] = np.median(np.array(res[COMM])) res_stdev[COMM] = np.std(np.array(res[COMM])) return res_mean, res_stdev def find_avg_sentiment_per_node_COMM_membership(): node_comm_membership = find_nodes_in_more_COMM() sem_cap = read_sem_capital(f_name='user_sentiment.tab', tname='sentiment') res = defaultdict(list) for node in node_comm_membership: n_sem = sem_cap[str(node)] nCOMM = node_comm_membership[node] if node_comm_membership[node] < 35 else 35 res[nCOMM].append(n_sem) res_mean = defaultdict(float) res_stdev = defaultdict(float) for COMM in res: res_mean[COMM] = np.median(np.array(res[COMM])) res_stdev[COMM] = np.std(np.array(res[COMM])) return res_mean, res_stdev def find_avg_deg_per_node_COMM_membership(): node_comm_membership = find_nodes_in_more_COMM() G = read_in_graph() G_undir = G.copy() # this copy is then transformed into undir weighted mutual G_undir.to_undirected(mode="mutual", combine_edges='sum') res = defaultdict(list) for node in node_comm_membership: n = G_undir.vs.select(name = str(node)) nCOMM = node_comm_membership[node] #if node_comm_membership[node] < 10 else 10 try: res[nCOMM].append(G_undir.degree(n[0].index)) except IndexError: print 'Index Error' res_mean = defaultdict(float) res_stdev = defaultdict(float) for COMM in res: res_mean[COMM] = np.mean(np.array(res[COMM])) res_stdev[COMM] = np.std(np.array(res[COMM])) return res_mean, res_stdev def find_avg_WEIGHTED_deg_per_node_COMM_membership(): node_comm_membership = find_nodes_in_more_COMM() G = read_in_graph() G_undir = G.copy() # this copy is then transformed into undir weighted mutual G_undir.to_undirected(mode="mutual", combine_edges='min') res = defaultdict(list) for node in node_comm_membership: n = G_undir.vs.select(name = str(node)) nCOMM = node_comm_membership[node] if node_comm_membership[node] < 40 else 40 try: res[nCOMM].append(G_undir.degree(n[0].index)) except IndexError: print 'IndexError' res_mean = defaultdict(float) res_stdev = defaultdict(float) for COMM in res: res_mean[COMM] = np.mean(np.array(res[COMM])) res_stdev[COMM] = np.std(np.array(res[COMM])) return res_mean, res_stdev def find_avg_DIR_deg_per_node_COMM_membership(): node_comm_membership = find_nodes_in_more_COMM() G = read_in_graph() res_IN = defaultdict(list) res_OUT = defaultdict(list) cnt_IE = 0 for node in node_comm_membership: try: n = G.vs.select(name = str(node)) IN_deg = G.strength(n[0].index, weights='weight', mode=IN) OUT_deg = G.strength(n[0].index, weights='weight', mode=OUT) nCOMM = node_comm_membership[node] if node_comm_membership[node] < 40 else 40 res_IN[nCOMM].append(IN_deg) res_OUT[nCOMM].append(OUT_deg) except IndexError: print 'IndexError' cnt_IE += 1 print 'Skipped nodes ', cnt_IE res_IN_mean = defaultdict(float) res_IN_std = defaultdict(float) res_OUT_mean = defaultdict(float) res_OUT_std = defaultdict(float) for COMM in res_IN: res_IN_mean[COMM] = np.mean(np.array(res_IN[COMM])) res_OUT_mean[COMM] = np.mean(np.array(res_OUT[COMM])) res_IN_std[COMM] = np.std(np.array(res_IN[COMM])) res_OUT_std[COMM] = np.std(np.array(res_OUT[COMM])) return res_IN_mean, res_IN_std, res_OUT_mean, res_OUT_std def find_median_DIR_deg_per_node_COMM_membership(): node_comm_membership = find_nodes_in_more_COMM() G = read_in_graph() res_IN = defaultdict(list) res_OUT = defaultdict(list) for node in node_comm_membership: n = G.vs.select(name = str(node)) IN_deg = G.strength(n[0].index, weights='weight', mode=IN) OUT_deg = G.strength(n[0].index, weights='weight', mode=OUT) nCOMM = node_comm_membership[node] if node_comm_membership[node] < 10 else 10 res_IN[nCOMM].append(IN_deg) res_OUT[nCOMM].append(OUT_deg) res_IN_m = defaultdict(float) res_IN_std = defaultdict(float) res_OUT_m = defaultdict(float) res_OUT_std = defaultdict(float) for COMM in res_IN: res_IN_m[COMM] = np.median(np.array(res_IN[COMM])) res_OUT_m[COMM] = np.median(np.array(res_OUT[COMM])) res_IN_std[COMM] = np.std(np.array(res_IN[COMM])) res_OUT_std[COMM] = np.std(np.array(res_OUT[COMM])) return res_IN_m, res_IN_std, res_OUT_m, res_OUT_std def calculate_pdf(ydata, logscale=True): x = np.array(ydata) mu = np.mean(x) sigma = np.std(x) print '$\mu=' + "{:.3f}".format(mu) + '$, $\sigma= ' + "{:.3f}".format(sigma) + '$' lab = ' $\mu=' + "{:.3f}".format(mu) + '$, $\sigma= ' + "{:.3f}".format(sigma) + '$' num_bins = 10 # the histogram of the data n, bins, patches = plt.hist(x, normed=1, bins=num_bins) plt.clf() # Get rid of this histogram since not the one we want. nx_frac = n/float(len(n)) # Each bin divided by total number of objects. width = bins[1] - bins[0] # Width of each bin. x = np.ravel(zip(bins[:-1], bins[:-1]+width)) y = np.ravel(zip(nx_frac,nx_frac)) return x, y, lab def plot_pdf_node_in_COMM(): fig7s = plt.gcf() fig7s.set_size_inches((8,6)) node_in_COMM = find_nodes_in_more_COMM() ydata = node_in_COMM.values() x, y,lab = calculate_pdf(ydata) plt.plot(x,y,linestyle="-",color='red',label=lab) plt.yscale('log', nonposy='clip') plt.xlabel('node comm membership') plt.ylabel('p(node comm membership)') plt.legend(loc='best', frameon=0) plt.xlim(1,10) #plt.title(r'Histogram for mention network pairwise SR: $\mu=' + "{:.3f}".format(mu) + '$, $\sigma= ' + "{:.3f}".format(sigma) + '$') plt.grid(True) plt.tight_layout() plt.savefig('node_comm_membership_pdf777.eps',bbox_inches='tight' , dpi=550) def plot_deg_vs_COMM_membership(): d, std = find_avg_deg_per_node_COMM_membership() x = d.keys() y = d.values() e = std.values() plt.errorbar(x,y,e,linestyle="-",marker='*',color='red',label='mean contacts per comm membership ') #plt.yscale('log', nonposy='clip') plt.xlabel('node comm membership') plt.ylabel('mean node contacts') plt.legend(loc='best',frameon=False) plt.xlim(0,11) #plt.title(r'Histogram for mention network pairwise SR: $\mu=' + "{:.3f}".format(mu) + '$, $\sigma= ' + "{:.3f}".format(sigma) + '$') plt.grid(True) plt.savefig('node_comm_membership_vs_avg_deg4.eps', dpi=550) plt.show() def plot_WEIGHTED_deg_vs_COMM_membership(): d, std = find_avg_WEIGHTED_deg_per_node_COMM_membership() x = d.keys() y = d.values() e = std.values() fig7s = plt.gcf() fig7s.set_size_inches((8,6)) sns.set_style('white') print 'Corrcoef strong commun int and comm membership ', pearsonr(np.array(x), np.array(y)) plt.errorbar(x,y,e,linestyle="-",marker='*',color='maroon',label='mean strong communication intensity') #plt.yscale('log', nonposy='clip') plt.xlabel('node comm membership') plt.ylabel('mean strong communication intensity') plt.legend(loc='best',frameon=False) plt.xlim(0,11) #plt.title(r'Histogram for mention network pairwise SR: $\mu=' + "{:.3f}".format(mu) + '$, $\sigma= ' + "{:.3f}".format(sigma) + '$') plt.grid(True) plt.savefig('node_comm_membership_vs_mean_strong_comm_intensity_40.eps', dpi=550) plt.show() def plot_avg_neighborhood_SR_vs_COMM_membership(): plt.rcParams['figure.figsize']=(6,6) fig7s = plt.gcf() fig7s.set_size_inches((6,6)) d, std = find_avg_neighborhood_SR_per_node_COMM_membership() x = d.keys() y = d.values() e = std.values() print 'Corrcoef SR and comm membership ', pearsonr(np.array(x), np.array(y)) plt.errorbar(x,y,e,linestyle="-",marker='*',color='darkgreen',fmt='o',elinewidth=3.4) #,label='mean node neighborhood SR per comm membership ') #plt.yscale('log', nonposy='clip') plt.xlabel('node comm membership') plt.ylabel('mean node SR with neighbors') #plt.legend(loc='best',frameon=False) plt.xlim(0,11) plt.tight_layout() #plt.title(r'Histogram for mention network pairwise SR: $\mu=' + "{:.3f}".format(mu) + '$, $\sigma= ' + "{:.3f}".format(sigma) + '$') #plt.grid(True) plt.savefig('node_comm_membership_vs_mean_SR77.eps', bbox_inches='tight' ,dpi=550) plt.show() def plot_SEM_CAP_vs_COMM_membership(): d, std = find_avg_SEM_cap_per_node_COMM_membership() x = d.keys() y = d.values() e = std.values() plt.rcParams['figure.figsize']=(6,6) fig7s = plt.gcf() fig7s.set_size_inches((6,6)) plt.errorbar(x,y,e,linestyle="-",marker='*',color='darkred',fmt='o',elinewidth=3.4) #plt.yscale('log', nonposy='clip') plt.xlabel('node comm membership') plt.ylabel('mean node semantic capital') plt.legend(loc=2,frameon=False) plt.xlim(0,11) #plt.title(r'Histogram for mention network pairwise SR: $\mu=' + "{:.3f}".format(mu) + '$, $\sigma= ' + "{:.3f}".format(sigma) + '$') #plt.grid(True) plt.tight_layout() plt.savefig('node_comm_membership_vs_avg_SEM_CAP77.eps', bbox_inches='tight', dpi=550) plt.show() def plot_MEDIAN_SEM_CAP_vs_COMM_membership(): d, std = find_MEDIAN_SEM_cap_per_node_COMM_membership() x = d.keys() y = d.values() e = std.values() plt.errorbar(x,y,e,linestyle="-",marker='*',color='darkred',label='mean sem capital per comm membership ') #plt.yscale('log', nonposy='clip') plt.xlabel('node comm membership') plt.ylabel('mean node semantic capital') plt.legend(loc=2,frameon=False) plt.xlim(0,11) #plt.title(r'Histogram for mention network pairwise SR: $\mu=' + "{:.3f}".format(mu) + '$, $\sigma= ' + "{:.3f}".format(sigma) + '$') #plt.grid(True) plt.savefig('node_comm_membership_vs_MEDIAN_SEM_CAP1.eps', dpi=550) plt.show() def plot_ST_INC_vs_COMM_membership(): d, std = find_avg_ST_INC_per_node_COMM_membership() x = d.keys() y = d.values() e = std.values() print 'Corrcoef ST INC and comm membership ', pearsonr(np.array(x), np.array(y)) plt.errorbar(x,y,e,linestyle="-",marker='*',color='darkcyan',label='mean status inconsistency per comm membership ') #plt.yscale('log', nonposy='clip') plt.xlabel('node comm membership') plt.ylabel('mean node status inconsistency') plt.legend(loc=2,frameon=False) plt.xlim(0,11) #plt.title(r'Histogram for mention network pairwise SR: $\mu=' + "{:.3f}".format(mu) + '$, $\sigma= ' + "{:.3f}".format(sigma) + '$') #plt.grid(True) plt.savefig('node_comm_membership_vs_mean_ST_INC2.eps', dpi=550) plt.show() def plot_MEDIAN_ST_INC_vs_COMM_membership(): d, std = find_avg_ST_INC_per_node_COMM_membership() x = d.keys() y = d.values() e = std.values() plt.rcParams['figure.figsize']=(6,6) fig7s = plt.gcf() fig7s.set_size_inches((6,6)) print 'Corrcoef MEDIAN ST INC and comm membership ', pearsonr(np.array(x), np.array(y)) plt.errorbar(x,y,e,linestyle="-",marker='*',fmt='o',elinewidth=3.4,color='darkcyan') plt.xlabel('node comm membership') plt.ylabel(r'mean node $st_{inc}$') plt.legend(loc=2,frameon=False) plt.xlim(0,11) plt.tight_layout() #plt.title(r'Histogram for mention network pairwise SR: $\mu=' + "{:.3f}".format(mu) + '$, $\sigma= ' + "{:.3f}".format(sigma) + '$') #plt.grid(True) plt.savefig('node_comm_membership_vs_MEDIAN_ST_INC77.eps', bbox_inches='tight' , dpi=550) plt.show() def plot_sentiment_vs_COMM_membership(): d, std = find_avg_sentiment_per_node_COMM_membership() x = d.keys() y = d.values() e = std.values() print 'Corrcoef sentiment and comm membership ', pearsonr(np.array(x), np.array(y)) plt.errorbar(x,y,e,linestyle="-",marker='*',color='darkcyan',label='mean sentiment per comm membership ') #plt.yscale('log', nonposy='clip') plt.xlabel('node comm membership') plt.ylabel('mean node sentiment') #plt.legend(loc=2,frameon=False) #plt.xlim(0,11) #plt.ylim(-0.1,0.1) #plt.title(r'Histogram for mention network pairwise SR: $\mu=' + "{:.3f}".format(mu) + '$, $\sigma= ' + "{:.3f}".format(sigma) + '$') #plt.grid(True) plt.savefig('node_comm_membership_vs_avg_sentiment_35.eps', dpi=550) plt.show() def plot_DIR_deg_vs_COMM_membership(): plt.rcParams['figure.figsize']=(6,6) fig7s = plt.gcf() fig7s.set_size_inches((6,6)) rIN_deg, rIN_std, rOUT_deg, rOUT_std = find_avg_DIR_deg_per_node_COMM_membership() x1 = np.array(rIN_deg.keys()) y1 = np.array(rIN_deg.values()) e1 = np.array(rIN_std.values()) print 'Corrcoef weighted INdeg and comm membership ', pearsonr(np.array(x1), np.array(y1)) x2 = np.array(rOUT_deg.keys()) y2 = np.array(rOUT_deg.values()) e2 = np.array(rOUT_std.values()) print 'Corrcoef weighted OUTdeg and comm membership ', pearsonr(np.array(x2), np.array(y2)) plt.errorbar(x1-0.07,y1,e1,linestyle="-",marker='*',fmt='o',elinewidth=3.4,color='darkred',label='popularity') plt.errorbar(x2+0.07,y2,e2,linestyle="-",marker='*',fmt='o',elinewidth=3.4,color='darkblue',label='activity') plt.xlabel('node comm membership') plt.ylabel('mean node social capital') plt.legend(loc='best',frameon=False) #plt.xlim(0,11) plt.tight_layout() #plt.grid(True) plt.savefig('node_comm_membership_vs_avg_DIR_deg_40.eps', bbox_inches='tight' , dpi=550) plt.show() def plot_MEDIAN_DIR_deg_vs_COMM_membership(): rIN_deg, rIN_std, rOUT_deg, rOUT_std = find_median_DIR_deg_per_node_COMM_membership() x1 = rIN_deg.keys() y1 = rIN_deg.values() e1 = rIN_std.values() x2 = rOUT_deg.keys() y2 = rOUT_deg.values() e2 = rOUT_std.values() plt.errorbar(x1,y1,e1,linestyle="-",marker='*',color='darkred',label='median popularity per comm membership ') plt.errorbar(x2,y2,e2,linestyle="-",marker='*',color='darkblue',label='median activity per comm membership ') plt.xlabel('node comm membership') plt.ylabel('median node social capital') plt.legend(loc='best',frameon=False) plt.xlim(0,11) #plt.grid(True) plt.savefig('node_comm_membership_vs_DIR_deg_40.eps', dpi=550) plt.show() #plot_DIR_deg_vs_COMM_membership() #plot_WEIGHTED_deg_vs_COMM_membership() #plot_MEDIAN_ST_INC_vs_COMM_membership() #plot_sentiment_vs_COMM_membership() #plot_avg_neighborhood_SR_vs_COMM_membership() #plot_SEM_CAP_vs_COMM_membership() #plot_DIR_deg_vs_COMM_membership() plot_DIR_deg_vs_COMM_membership() #plot_deg_vs_COMM_membership() #output_basic_stats_BigClam_COMM() #find_nodes_in_more_COMM() #plot_pdf_node_in_COMM() #plot_MEDIAN_SEM_CAP_vs_COMM_membership() #plot_COMM_size_vs_density() #plot_COMM_size_vs_MEDIAN_density()
mit
kmather73/pymc3
pymc3/model.py
5
16723
from .vartypes import * from theano import theano, tensor as t, function from theano.tensor.var import TensorVariable import numpy as np from functools import wraps from .theanof import * from inspect import getargspec from .memoize import memoize __all__ = ['Model', 'Factor', 'compilef', 'fn', 'fastfn', 'modelcontext', 'Point', 'Deterministic', 'Potential'] class Context(object): """Functionality for objects that put themselves in a context using the `with` statement.""" def __enter__(self): type(self).get_contexts().append(self) return self def __exit__(self, typ, value, traceback): type(self).get_contexts().pop() @classmethod def get_contexts(cls): if not hasattr(cls, "contexts"): cls.contexts = [] return cls.contexts @classmethod def get_context(cls): """Return the deepest context on the stack.""" try: return cls.get_contexts()[-1] except IndexError: raise TypeError("No context on context stack") def modelcontext(model): """return the given model or try to find it in the context if there was none supplied.""" if model is None: return Model.get_context() return model class Factor(object): """Common functionality for objects with a log probability density associated with them.""" @property def logp(self): """Compiled log probability density function""" return self.model.fn(self.logpt) @property def logp_elemwise(self): return self.model.fn(self.logp_elemwiset) def dlogp(self, vars=None): """Compiled log probability density gradient function""" return self.model.fn(gradient(self.logpt, vars)) def d2logp(self, vars=None): """Compiled log probability density hessian function""" return self.model.fn(hessian(self.logpt, vars)) @property def fastlogp(self): """Compiled log probability density function""" return self.model.fastfn(self.logpt) def fastdlogp(self, vars=None): """Compiled log probability density gradient function""" return self.model.fastfn(gradient(self.logpt, vars)) def fastd2logp(self, vars=None): """Compiled log probability density hessian function""" return self.model.fastfn(hessian(self.logpt, vars)) @property def logpt(self): """Theano scalar of log-probability of the model""" return t.sum(self.logp_elemwiset) class Model(Context, Factor): """Encapsulates the variables and likelihood factors of a model.""" def __init__(self): self.named_vars = {} self.free_RVs = [] self.observed_RVs = [] self.deterministics = [] self.potentials = [] self.missing_values = [] self.model = self @property @memoize def logpt(self): """Theano scalar of log-probability of the model""" factors = [var.logpt for var in self.basic_RVs] + self.potentials return t.add(*map(t.sum, factors)) @property def vars(self): """List of unobserved random variables used as inputs to the model (which excludes deterministics).""" return self.free_RVs @property def basic_RVs(self): """List of random variables the model is defined in terms of (which excludes deterministics).""" return (self.free_RVs + self.observed_RVs) @property def unobserved_RVs(self): """List of all random variable, including deterministic ones.""" return self.vars + self.deterministics @property def test_point(self): """Test point used to check that the model doesn't generate errors""" return Point(((var, var.tag.test_value) for var in self.vars), model=self) @property def disc_vars(self): """All the discrete variables in the model""" return list(typefilter(self.vars, discrete_types)) @property def cont_vars(self): """All the continuous variables in the model""" return list(typefilter(self.vars, continuous_types)) def Var(self, name, dist, data=None): """Create and add (un)observed random variable to the model with an appropriate prior distribution. Parameters ---------- name : str dist : distribution for the random variable data : arraylike (optional) if data is provided, the variable is observed. If None, the variable is unobserved. Returns ------- FreeRV or ObservedRV """ if data is None: if getattr(dist, "transform", None) is None: var = FreeRV(name=name, distribution=dist, model=self) self.free_RVs.append(var) else: var = TransformedRV(name=name, distribution=dist, model=self, transform=dist.transform) self.deterministics.append(var) return var elif isinstance(data, dict): var = MultiObservedRV(name=name, data=data, distribution=dist, model=self) self.observed_RVs.append(var) if var.missing_values: self.free_RVs += var.missing_values self.missing_values += var.missing_values for v in var.missing_values: self.named_vars[v.name] = v else: var = ObservedRV(name=name, data=data, distribution=dist, model=self) self.observed_RVs.append(var) if var.missing_values: self.free_RVs.append(var.missing_values) self.missing_values.append(var.missing_values) self.named_vars[var.missing_values.name] = var.missing_values self.add_random_variable(var) return var def add_random_variable(self, var): """Add a random variable to the named variables of the model.""" self.named_vars[var.name] = var if not hasattr(self, var.name): setattr(self, var.name, var) def __getitem__(self, key): return self.named_vars[key] @memoize def makefn(self, outs, mode=None, *args, **kwargs): """Compiles a Theano function which returns `outs` and takes the variable ancestors of `outs` as inputs. Parameters ---------- outs : Theano variable or iterable of Theano variables mode : Theano compilation mode Returns ------- Compiled Theano function""" return function(self.vars, outs, allow_input_downcast=True, on_unused_input='ignore', accept_inplace=True, mode=mode, *args, **kwargs) def fn(self, outs, mode=None, *args, **kwargs): """Compiles a Theano function which returns the values of `outs` and takes values of model vars as arguments. Parameters ---------- outs : Theano variable or iterable of Theano variables mode : Theano compilation mode Returns ------- Compiled Theano function""" return LoosePointFunc(self.makefn(outs, mode, *args, **kwargs), self) def fastfn(self, outs, mode=None, *args, **kwargs): """Compiles a Theano function which returns `outs` and takes values of model vars as a dict as an argument. Parameters ---------- outs : Theano variable or iterable of Theano variables mode : Theano compilation mode Returns ------- Compiled Theano function as point function.""" f = self.makefn(outs, mode, *args, **kwargs) return FastPointFunc(f) def profile(self, outs, n=1000, point=None, profile=True, *args, **kwargs): """Compiles and profiles a Theano function which returns `outs` and takes values of model vars as a dict as an argument. Parameters ---------- outs : Theano variable or iterable of Theano variables n : int, default 1000 Number of iterations to run point : point Point to pass to the function profile : True or ProfileStats *args, **kwargs Compilation args Returns ------- ProfileStats Use .summary() to print stats.""" f = self.makefn(outs, profile=profile, *args, **kwargs) if point is None: point = self.test_point for i in range(n): f(**point) return f.profile def fn(outs, mode=None, model=None, *args, **kwargs): """Compiles a Theano function which returns the values of `outs` and takes values of model vars as arguments. Parameters ---------- outs : Theano variable or iterable of Theano variables mode : Theano compilation mode Returns ------- Compiled Theano function""" model = modelcontext(model) return model.fn(outs,mode, *args, **kwargs) def fastfn(outs, mode=None, model=None): """Compiles a Theano function which returns `outs` and takes values of model vars as a dict as an argument. Parameters ---------- outs : Theano variable or iterable of Theano variables mode : Theano compilation mode Returns ------- Compiled Theano function as point function.""" model = modelcontext(model) return model.fastfn(outs,mode) def Point(*args, **kwargs): """Build a point. Uses same args as dict() does. Filters out variables not in the model. All keys are strings. Parameters ---------- *args, **kwargs arguments to build a dict""" model = modelcontext(kwargs.pop('model', None)) args = [a for a in args] try: d = dict(*args, **kwargs) except Exception as e: raise TypeError( "can't turn " + str(args) + " and " + str(kwargs) + " into a dict. " + str(e)) varnames = list(map(str, model.vars)) return dict((str(k), np.array(v)) for (k, v) in d.items() if str(k) in varnames) class FastPointFunc(object): """Wraps so a function so it takes a dict of arguments instead of arguments.""" def __init__(self, f): self.f = f def __call__(self, state): return self.f(**state) class LoosePointFunc(object): """Wraps so a function so it takes a dict of arguments instead of arguments but can still take arguments.""" def __init__(self, f, model): self.f = f self.model = model def __call__(self, *args, **kwargs): point = Point(model=self.model, *args, **kwargs) return self.f(**point) compilef = fastfn class FreeRV(Factor, TensorVariable): """Unobserved random variable that a model is specified in terms of.""" def __init__(self, type=None, owner=None, index=None, name=None, distribution=None, model=None): """ Parameters ---------- type : theano type (optional) owner : theano owner (optional) name : str distribution : Distribution model : Model""" if type is None: type = distribution.type super(FreeRV, self).__init__(type, owner, index, name) if distribution is not None: self.dshape = tuple(distribution.shape) self.dsize = int(np.prod(distribution.shape)) self.distribution = distribution self.tag.test_value = np.ones( distribution.shape, distribution.dtype) * distribution.default() self.logp_elemwiset = distribution.logp(self) self.model = model def pandas_to_array(data): if hasattr(data, 'values'): #pandas if data.isnull().any().any(): #missing values return np.ma.MaskedArray(data.values, data.isnull().values) else: return data.values elif hasattr(data, 'mask'): return data elif isinstance(data, theano.gof.graph.Variable): return data else: return np.asarray(data) def as_tensor(data, name,model, dtype): data = pandas_to_array(data).astype(dtype) if hasattr(data, 'mask'): from .distributions import NoDistribution fakedist = NoDistribution.dist(shape=data.mask.sum(), dtype=dtype, testval=data.mean().astype(dtype)) missing_values = FreeRV(name=name + '_missing', distribution=fakedist, model=model) constant = t.as_tensor_variable(data.filled()) dataTensor = theano.tensor.set_subtensor(constant[data.mask.nonzero()], missing_values) dataTensor.missing_values = missing_values return dataTensor else: data = t.as_tensor_variable(data, name=name) data.missing_values = None return data class ObservedRV(Factor, TensorVariable): """Observed random variable that a model is specified in terms of. Potentially partially observed. """ def __init__(self, type=None, owner=None, index=None, name=None, data=None, distribution=None, model=None): """ Parameters ---------- type : theano type (optional) owner : theano owner (optional) name : str distribution : Distribution model : Model """ from .distributions import TensorType if type is None: data = pandas_to_array(data) type = TensorType(distribution.dtype, data.shape) super(TensorVariable, self).__init__(type, None, None, name) if distribution is not None: data = as_tensor(data, name,model,distribution.dtype) self.missing_values = data.missing_values self.logp_elemwiset = distribution.logp(data) self.model = model self.distribution = distribution #make this RV a view on the combined missing/nonmissing array theano.gof.Apply(theano.compile.view_op, inputs=[data], outputs=[self]) self.tag.test_value = theano.compile.view_op(data).tag.test_value class MultiObservedRV(Factor): """Observed random variable that a model is specified in terms of. Potentially partially observed. """ def __init__(self, name, data, distribution, model): """ Parameters ---------- type : theano type (optional) owner : theano owner (optional) name : str distribution : Distribution model : Model """ self.name = name self.data = { name : as_tensor(data, name, model, distribution.dtype) for name, data in data.items()} self.missing_values = [ data.missing_values for data in self.data.values() if data.missing_values is not None] self.logp_elemwiset = distribution.logp(**self.data) self.model = model self.distribution = distribution def Deterministic(name, var, model=None): """Create a named deterministic variable Parameters ---------- name : str var : theano variables Returns ------- n : var but with name name""" var.name = name modelcontext(model).deterministics.append(var) modelcontext(model).add_random_variable(var) return var def Potential(name, var, model=None): """Add an arbitrary factor potential to the model likelihood Parameters ---------- name : str var : theano variables Returns ------- var : var, with name attribute """ var.name = name modelcontext(model).potentials.append(var) return var class TransformedRV(TensorVariable): def __init__(self, type=None, owner=None, index=None, name=None, distribution=None, model=None, transform=None): """ Parameters ---------- type : theano type (optional) owner : theano owner (optional) name : str distribution : Distribution model : Model""" if type is None: type = distribution.type super(TransformedRV, self).__init__(type, owner, index, name) if distribution is not None: self.model = model self.transformed = model.Var(name + "_" + transform.name, transform.apply(distribution)) normalRV = transform.backward(self.transformed) theano.Apply(theano.compile.view_op, inputs=[normalRV], outputs=[self]) self.tag.test_value = normalRV.tag.test_value def as_iterargs(data): if isinstance(data, tuple): return data else: return [data] # theano stuff theano.config.warn.sum_div_dimshuffle_bug = False theano.config.compute_test_value = 'raise'
apache-2.0
rabipanda/tensorflow
tensorflow/examples/tutorials/input_fn/boston.py
76
2920
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DNNRegressor with custom input_fn for Housing dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import pandas as pd import tensorflow as tf tf.logging.set_verbosity(tf.logging.INFO) COLUMNS = ["crim", "zn", "indus", "nox", "rm", "age", "dis", "tax", "ptratio", "medv"] FEATURES = ["crim", "zn", "indus", "nox", "rm", "age", "dis", "tax", "ptratio"] LABEL = "medv" def get_input_fn(data_set, num_epochs=None, shuffle=True): return tf.estimator.inputs.pandas_input_fn( x=pd.DataFrame({k: data_set[k].values for k in FEATURES}), y=pd.Series(data_set[LABEL].values), num_epochs=num_epochs, shuffle=shuffle) def main(unused_argv): # Load datasets training_set = pd.read_csv("boston_train.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) test_set = pd.read_csv("boston_test.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) # Set of 6 examples for which to predict median house values prediction_set = pd.read_csv("boston_predict.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) # Feature cols feature_cols = [tf.feature_column.numeric_column(k) for k in FEATURES] # Build 2 layer fully connected DNN with 10, 10 units respectively. regressor = tf.estimator.DNNRegressor(feature_columns=feature_cols, hidden_units=[10, 10], model_dir="/tmp/boston_model") # Train regressor.train(input_fn=get_input_fn(training_set), steps=5000) # Evaluate loss over one epoch of test_set. ev = regressor.evaluate( input_fn=get_input_fn(test_set, num_epochs=1, shuffle=False)) loss_score = ev["loss"] print("Loss: {0:f}".format(loss_score)) # Print out predictions over a slice of prediction_set. y = regressor.predict( input_fn=get_input_fn(prediction_set, num_epochs=1, shuffle=False)) # .predict() returns an iterator of dicts; convert to a list and print # predictions predictions = list(p["predictions"] for p in itertools.islice(y, 6)) print("Predictions: {}".format(str(predictions))) if __name__ == "__main__": tf.app.run()
apache-2.0
lxybox1/MissionPlanner
Lib/site-packages/numpy/lib/twodim_base.py
70
23431
""" Basic functions for manipulating 2d arrays """ __all__ = ['diag','diagflat','eye','fliplr','flipud','rot90','tri','triu', 'tril','vander','histogram2d','mask_indices', 'tril_indices','tril_indices_from','triu_indices','triu_indices_from', ] from numpy.core.numeric import asanyarray, equal, subtract, arange, \ zeros, greater_equal, multiply, ones, asarray, alltrue, where, \ empty def fliplr(m): """ Flip array in the left/right direction. Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array. Returns ------- f : ndarray A view of `m` with the columns reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- flipud : Flip array in the up/down direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to A[:,::-1]. Does not require the array to be two-dimensional. Examples -------- >>> A = np.diag([1.,2.,3.]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.fliplr(A) array([[ 0., 0., 1.], [ 0., 2., 0.], [ 3., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.fliplr(A)==A[:,::-1,...]) True """ m = asanyarray(m) if m.ndim < 2: raise ValueError("Input must be >= 2-d.") return m[:, ::-1] def flipud(m): """ Flip array in the up/down direction. Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array. Returns ------- out : array_like A view of `m` with the rows reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- fliplr : Flip array in the left/right direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to ``A[::-1,...]``. Does not require the array to be two-dimensional. Examples -------- >>> A = np.diag([1.0, 2, 3]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.flipud(A) array([[ 0., 0., 3.], [ 0., 2., 0.], [ 1., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.flipud(A)==A[::-1,...]) True >>> np.flipud([1,2]) array([2, 1]) """ m = asanyarray(m) if m.ndim < 1: raise ValueError("Input must be >= 1-d.") return m[::-1,...] def rot90(m, k=1): """ Rotate an array by 90 degrees in the counter-clockwise direction. The first two dimensions are rotated; therefore, the array must be at least 2-D. Parameters ---------- m : array_like Array of two or more dimensions. k : integer Number of times the array is rotated by 90 degrees. Returns ------- y : ndarray Rotated array. See Also -------- fliplr : Flip an array horizontally. flipud : Flip an array vertically. Examples -------- >>> m = np.array([[1,2],[3,4]], int) >>> m array([[1, 2], [3, 4]]) >>> np.rot90(m) array([[2, 4], [1, 3]]) >>> np.rot90(m, 2) array([[4, 3], [2, 1]]) """ m = asanyarray(m) if m.ndim < 2: raise ValueError("Input must >= 2-d.") k = k % 4 if k == 0: return m elif k == 1: return fliplr(m).swapaxes(0,1) elif k == 2: return fliplr(flipud(m)) else: # k == 3 return fliplr(m.swapaxes(0,1)) def eye(N, M=None, k=0, dtype=float): """ Return a 2-D array with ones on the diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the output. M : int, optional Number of columns in the output. If None, defaults to `N`. k : int, optional Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype : data-type, optional Data-type of the returned array. Returns ------- I : ndarray of shape (N,M) An array where all elements are equal to zero, except for the `k`-th diagonal, whose values are equal to one. See Also -------- identity : (almost) equivalent function diag : diagonal 2-D array from a 1-D array specified by the user. Examples -------- >>> np.eye(2, dtype=int) array([[1, 0], [0, 1]]) >>> np.eye(3, k=1) array([[ 0., 1., 0.], [ 0., 0., 1.], [ 0., 0., 0.]]) """ if M is None: M = N m = zeros((N, M), dtype=dtype) if k >= M: return m if k >= 0: i = k else: i = (-k) * M m[:M-k].flat[i::M+1] = 1 return m def diag(v, k=0): """ Extract a diagonal or construct a diagonal array. Parameters ---------- v : array_like If `v` is a 2-D array, return a copy of its `k`-th diagonal. If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th diagonal. k : int, optional Diagonal in question. The default is 0. Use `k>0` for diagonals above the main diagonal, and `k<0` for diagonals below the main diagonal. Returns ------- out : ndarray The extracted diagonal or constructed diagonal array. See Also -------- diagonal : Return specified diagonals. diagflat : Create a 2-D array with the flattened input as a diagonal. trace : Sum along diagonals. triu : Upper triangle of an array. tril : Lower triange of an array. Examples -------- >>> x = np.arange(9).reshape((3,3)) >>> x array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> np.diag(x) array([0, 4, 8]) >>> np.diag(x, k=1) array([1, 5]) >>> np.diag(x, k=-1) array([3, 7]) >>> np.diag(np.diag(x)) array([[0, 0, 0], [0, 4, 0], [0, 0, 8]]) """ v = asarray(v) s = v.shape if len(s) == 1: n = s[0]+abs(k) res = zeros((n,n), v.dtype) if k >= 0: i = k else: i = (-k) * n res[:n-k].flat[i::n+1] = v return res elif len(s) == 2: if k >= s[1]: return empty(0, dtype=v.dtype) if v.flags.f_contiguous: # faster slicing v, k, s = v.T, -k, s[::-1] if k >= 0: i = k else: i = (-k) * s[1] return v[:s[1]-k].flat[i::s[1]+1] else: raise ValueError("Input must be 1- or 2-d.") def diagflat(v, k=0): """ Create a two-dimensional array with the flattened input as a diagonal. Parameters ---------- v : array_like Input data, which is flattened and set as the `k`-th diagonal of the output. k : int, optional Diagonal to set; 0, the default, corresponds to the "main" diagonal, a positive (negative) `k` giving the number of the diagonal above (below) the main. Returns ------- out : ndarray The 2-D output array. See Also -------- diag : MATLAB work-alike for 1-D and 2-D arrays. diagonal : Return specified diagonals. trace : Sum along diagonals. Examples -------- >>> np.diagflat([[1,2], [3,4]]) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) >>> np.diagflat([1,2], 1) array([[0, 1, 0], [0, 0, 2], [0, 0, 0]]) """ try: wrap = v.__array_wrap__ except AttributeError: wrap = None v = asarray(v).ravel() s = len(v) n = s + abs(k) res = zeros((n,n), v.dtype) if (k >= 0): i = arange(0,n-k) fi = i+k+i*n else: i = arange(0,n+k) fi = i+(i-k)*n res.flat[fi] = v if not wrap: return res return wrap(res) def tri(N, M=None, k=0, dtype=float): """ An array with ones at and below the given diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the array. M : int, optional Number of columns in the array. By default, `M` is taken equal to `N`. k : int, optional The sub-diagonal at and below which the array is filled. `k` = 0 is the main diagonal, while `k` < 0 is below it, and `k` > 0 is above. The default is 0. dtype : dtype, optional Data type of the returned array. The default is float. Returns ------- T : ndarray of shape (N, M) Array with its lower triangle filled with ones and zero elsewhere; in other words ``T[i,j] == 1`` for ``i <= j + k``, 0 otherwise. Examples -------- >>> np.tri(3, 5, 2, dtype=int) array([[1, 1, 1, 0, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1]]) >>> np.tri(3, 5, -1) array([[ 0., 0., 0., 0., 0.], [ 1., 0., 0., 0., 0.], [ 1., 1., 0., 0., 0.]]) """ if M is None: M = N m = greater_equal(subtract.outer(arange(N), arange(M)),-k) return m.astype(dtype) def tril(m, k=0): """ Lower triangle of an array. Return a copy of an array with elements above the `k`-th diagonal zeroed. Parameters ---------- m : array_like, shape (M, N) Input array. k : int, optional Diagonal above which to zero elements. `k = 0` (the default) is the main diagonal, `k < 0` is below it and `k > 0` is above. Returns ------- L : ndarray, shape (M, N) Lower triangle of `m`, of same shape and data-type as `m`. See Also -------- triu : same thing, only for the upper triangle Examples -------- >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 0, 0, 0], [ 4, 0, 0], [ 7, 8, 0], [10, 11, 12]]) """ m = asanyarray(m) out = multiply(tri(m.shape[0], m.shape[1], k=k, dtype=int),m) return out def triu(m, k=0): """ Upper triangle of an array. Return a copy of a matrix with the elements below the `k`-th diagonal zeroed. Please refer to the documentation for `tril` for further details. See Also -------- tril : lower triangle of an array Examples -------- >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) """ m = asanyarray(m) out = multiply((1 - tri(m.shape[0], m.shape[1], k - 1, int)), m) return out # borrowed from John Hunter and matplotlib def vander(x, N=None): """ Generate a Van der Monde matrix. The columns of the output matrix are decreasing powers of the input vector. Specifically, the `i`-th output column is the input vector raised element-wise to the power of ``N - i - 1``. Such a matrix with a geometric progression in each row is named for Alexandre-Theophile Vandermonde. Parameters ---------- x : array_like 1-D input array. N : int, optional Order of (number of columns in) the output. If `N` is not specified, a square array is returned (``N = len(x)``). Returns ------- out : ndarray Van der Monde matrix of order `N`. The first column is ``x^(N-1)``, the second ``x^(N-2)`` and so forth. Examples -------- >>> x = np.array([1, 2, 3, 5]) >>> N = 3 >>> np.vander(x, N) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> np.column_stack([x**(N-1-i) for i in range(N)]) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> x = np.array([1, 2, 3, 5]) >>> np.vander(x) array([[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]]) The determinant of a square Vandermonde matrix is the product of the differences between the values of the input vector: >>> np.linalg.det(np.vander(x)) 48.000000000000043 >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) 48 """ x = asarray(x) if N is None: N=len(x) X = ones( (len(x),N), x.dtype) for i in range(N - 1): X[:,i] = x**(N - i - 1) return X def histogram2d(x, y, bins=10, range=None, normed=False, weights=None): """ Compute the bi-dimensional histogram of two data samples. Parameters ---------- x : array_like, shape(N,) A sequence of values to be histogrammed along the first dimension. y : array_like, shape(M,) A sequence of values to be histogrammed along the second dimension. bins : int or [int, int] or array_like or [array, array], optional The bin specification: * If int, the number of bins for the two dimensions (nx=ny=bins). * If [int, int], the number of bins in each dimension (nx, ny = bins). * If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins). * If [array, array], the bin edges in each dimension (x_edges, y_edges = bins). range : array_like, shape(2,2), optional The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the `bins` parameters): ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range will be considered outliers and not tallied in the histogram. normed : bool, optional If False, returns the number of samples in each bin. If True, returns the bin density, i.e. the bin count divided by the bin area. weights : array_like, shape(N,), optional An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. Weights are normalized to 1 if `normed` is True. If `normed` is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray, shape(nx, ny) The bi-dimensional histogram of samples `x` and `y`. Values in `x` are histogrammed along the first dimension and values in `y` are histogrammed along the second dimension. xedges : ndarray, shape(nx,) The bin edges along the first dimension. yedges : ndarray, shape(ny,) The bin edges along the second dimension. See Also -------- histogram: 1D histogram histogramdd: Multidimensional histogram Notes ----- When `normed` is True, then the returned histogram is the sample density, defined such that: .. math:: \\sum_{i=0}^{nx-1} \\sum_{j=0}^{ny-1} H_{i,j} \\Delta x_i \\Delta y_j = 1 where `H` is the histogram array and :math:`\\Delta x_i \\Delta y_i` the area of bin `{i,j}`. Please note that the histogram does not follow the Cartesian convention where `x` values are on the abcissa and `y` values on the ordinate axis. Rather, `x` is histogrammed along the first dimension of the array (vertical), and `y` along the second dimension of the array (horizontal). This ensures compatibility with `histogramdd`. Examples -------- >>> x, y = np.random.randn(2, 100) >>> H, xedges, yedges = np.histogram2d(x, y, bins=(5, 8)) >>> H.shape, xedges.shape, yedges.shape ((5, 8), (6,), (9,)) We can now use the Matplotlib to visualize this 2-dimensional histogram: >>> extent = [yedges[0], yedges[-1], xedges[-1], xedges[0]] >>> import matplotlib.pyplot as plt >>> plt.imshow(H, extent=extent, interpolation='nearest') <matplotlib.image.AxesImage object at ...> >>> plt.colorbar() <matplotlib.colorbar.Colorbar instance at ...> >>> plt.show() """ from numpy import histogramdd try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = asarray(bins, float) bins = [xedges, yedges] hist, edges = histogramdd([x,y], bins, range, normed, weights) return hist, edges[0], edges[1] def mask_indices(n, mask_func, k=0): """ Return the indices to access (n, n) arrays, given a masking function. Assume `mask_func` is a function that, for a square array a of size ``(n, n)`` with a possible offset argument `k`, when called as ``mask_func(a, k)`` returns a new array with zeros in certain locations (functions like `triu` or `tril` do precisely this). Then this function returns the indices where the non-zero values would be located. Parameters ---------- n : int The returned indices will be valid to access arrays of shape (n, n). mask_func : callable A function whose call signature is similar to that of `triu`, `tril`. That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`. `k` is an optional argument to the function. k : scalar An optional argument which is passed through to `mask_func`. Functions like `triu`, `tril` take a second argument that is interpreted as an offset. Returns ------- indices : tuple of arrays. The `n` arrays of indices corresponding to the locations where ``mask_func(np.ones((n, n)), k)`` is True. See Also -------- triu, tril, triu_indices, tril_indices Notes ----- .. versionadded:: 1.4.0 Examples -------- These are the indices that would allow you to access the upper triangular part of any 3x3 array: >>> iu = np.mask_indices(3, np.triu) For example, if `a` is a 3x3 array: >>> a = np.arange(9).reshape(3, 3) >>> a array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> a[iu] array([0, 1, 2, 4, 5, 8]) An offset can be passed also to the masking function. This gets us the indices starting on the first diagonal right of the main one: >>> iu1 = np.mask_indices(3, np.triu, 1) with which we now extract only three elements: >>> a[iu1] array([1, 2, 5]) """ m = ones((n,n), int) a = mask_func(m, k) return where(a != 0) def tril_indices(n, k=0): """ Return the indices for the lower-triangle of an (n, n) array. Parameters ---------- n : int The row dimension of the square arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `tril` for details). Returns ------- inds : tuple of arrays The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. See also -------- triu_indices : similar function, for upper-triangular. mask_indices : generic function accepting an arbitrary mask function. tril, triu Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the lower triangular part starting at the main diagonal, and one starting two diagonals further right: >>> il1 = np.tril_indices(4) >>> il2 = np.tril_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[il1] array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15]) And for assigning values: >>> a[il1] = -1 >>> a array([[-1, 1, 2, 3], [-1, -1, 6, 7], [-1, -1, -1, 11], [-1, -1, -1, -1]]) These cover almost the whole array (two diagonals right of the main one): >>> a[il2] = -10 >>> a array([[-10, -10, -10, 3], [-10, -10, -10, -10], [-10, -10, -10, -10], [-10, -10, -10, -10]]) """ return mask_indices(n, tril, k) def tril_indices_from(arr, k=0): """ Return the indices for the lower-triangle of arr. See `tril_indices` for full details. Parameters ---------- arr : array_like The indices will be valid for square arrays whose dimensions are the same as arr. k : int, optional Diagonal offset (see `tril` for details). See Also -------- tril_indices, tril Notes ----- .. versionadded:: 1.4.0 """ if not (arr.ndim == 2 and arr.shape[0] == arr.shape[1]): raise ValueError("input array must be 2-d and square") return tril_indices(arr.shape[0], k) def triu_indices(n, k=0): """ Return the indices for the upper-triangle of an (n, n) array. Parameters ---------- n : int The size of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `triu` for details). Returns ------- inds : tuple of arrays The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. See also -------- tril_indices : similar function, for lower-triangular. mask_indices : generic function accepting an arbitrary mask function. triu, tril Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main diagonal, and one starting two diagonals further right: >>> iu1 = np.triu_indices(4) >>> iu2 = np.triu_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[iu1] array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15]) And for assigning values: >>> a[iu1] = -1 >>> a array([[-1, -1, -1, -1], [ 4, -1, -1, -1], [ 8, 9, -1, -1], [12, 13, 14, -1]]) These cover only a small part of the whole array (two diagonals right of the main one): >>> a[iu2] = -10 >>> a array([[ -1, -1, -10, -10], [ 4, -1, -1, -10], [ 8, 9, -1, -1], [ 12, 13, 14, -1]]) """ return mask_indices(n, triu, k) def triu_indices_from(arr, k=0): """ Return the indices for the upper-triangle of an (n, n) array. See `triu_indices` for full details. Parameters ---------- arr : array_like The indices will be valid for square arrays whose dimensions are the same as arr. k : int, optional Diagonal offset (see `triu` for details). See Also -------- triu_indices, triu Notes ----- .. versionadded:: 1.4.0 """ if not (arr.ndim == 2 and arr.shape[0] == arr.shape[1]): raise ValueError("input array must be 2-d and square") return triu_indices(arr.shape[0],k)
gpl-3.0
rgommers/scipy
doc/source/tutorial/stats/plots/qmc_plot_conv_mc_sobol.py
12
2386
"""Integration convergence comparison: MC vs Sobol'. The function is a synthetic example specifically designed to verify the correctness of the implementation [2]_. References ---------- .. [1] I. M. Sobol. The distribution of points in a cube and the accurate evaluation of integrals. Zh. Vychisl. Mat. i Mat. Phys., 7:784-802, 1967. .. [2] Art B. Owen. On dropping the first Sobol' point. arXiv 2008.08051, 2020. """ from collections import namedtuple import numpy as np import matplotlib.pyplot as plt from scipy.stats import qmc n_conv = 99 ns_gen = 2 ** np.arange(4, 13) # 13 def art_2(sample): # dim 3, true value 5/3 + 5*(5 - 1)/4 return np.sum(sample, axis=1) ** 2 functions = namedtuple('functions', ['name', 'func', 'dim', 'ref']) case = functions('Art 2', art_2, 5, 5 / 3 + 5 * (5 - 1) / 4) def conv_method(sampler, func, n_samples, n_conv, ref): samples = [sampler(n_samples) for _ in range(n_conv)] samples = np.array(samples) evals = [np.sum(func(sample)) / n_samples for sample in samples] squared_errors = (ref - np.array(evals)) ** 2 rmse = (np.sum(squared_errors) / n_conv) ** 0.5 return rmse # Analysis sample_mc_rmse = [] sample_sobol_rmse = [] rng = np.random.default_rng() for ns in ns_gen: # Monte Carlo sampler_mc = lambda x: rng.random((x, case.dim)) conv_res = conv_method(sampler_mc, case.func, ns, n_conv, case.ref) sample_mc_rmse.append(conv_res) # Sobol' engine = qmc.Sobol(d=case.dim, scramble=False) conv_res = conv_method(engine.random, case.func, ns, 1, case.ref) sample_sobol_rmse.append(conv_res) sample_mc_rmse = np.array(sample_mc_rmse) sample_sobol_rmse = np.array(sample_sobol_rmse) # Plot fig, ax = plt.subplots(figsize=(4, 4)) ax.set_aspect('equal') # MC ratio = sample_mc_rmse[0] / ns_gen[0] ** (-1 / 2) ax.plot(ns_gen, ns_gen ** (-1 / 2) * ratio, ls='-', c='k') ax.scatter(ns_gen, sample_mc_rmse, label="MC") # Sobol' ratio = sample_sobol_rmse[0] / ns_gen[0] ** (-2/2) ax.plot(ns_gen, ns_gen ** (-2/2) * ratio, ls='-', c='k') ax.scatter(ns_gen, sample_sobol_rmse, label="Sobol' unscrambled") ax.set_xlabel(r'$N_s$') ax.set_xscale('log') ax.set_xticks(ns_gen) ax.set_xticklabels([fr'$2^{{{ns}}}$' for ns in np.arange(4, 13)]) ax.set_ylabel(r'$\log (\epsilon)$') ax.set_yscale('log') ax.legend(loc='upper right') fig.tight_layout() plt.show()
bsd-3-clause
samzhang111/scikit-learn
examples/decomposition/plot_sparse_coding.py
247
3846
""" =========================================== Sparse coding with a precomputed dictionary =========================================== Transform a signal as a sparse combination of Ricker wavelets. This example visually compares different sparse coding methods using the :class:`sklearn.decomposition.SparseCoder` estimator. The Ricker (also known as Mexican hat or the second derivative of a Gaussian) is not a particularly good kernel to represent piecewise constant signals like this one. It can therefore be seen how much adding different widths of atoms matters and it therefore motivates learning the dictionary to best fit your type of signals. The richer dictionary on the right is not larger in size, heavier subsampling is performed in order to stay on the same order of magnitude. """ print(__doc__) import numpy as np import matplotlib.pylab as pl from sklearn.decomposition import SparseCoder def ricker_function(resolution, center, width): """Discrete sub-sampled Ricker (Mexican hat) wavelet""" x = np.linspace(0, resolution - 1, resolution) x = ((2 / ((np.sqrt(3 * width) * np.pi ** 1 / 4))) * (1 - ((x - center) ** 2 / width ** 2)) * np.exp((-(x - center) ** 2) / (2 * width ** 2))) return x def ricker_matrix(width, resolution, n_components): """Dictionary of Ricker (Mexican hat) wavelets""" centers = np.linspace(0, resolution - 1, n_components) D = np.empty((n_components, resolution)) for i, center in enumerate(centers): D[i] = ricker_function(resolution, center, width) D /= np.sqrt(np.sum(D ** 2, axis=1))[:, np.newaxis] return D resolution = 1024 subsampling = 3 # subsampling factor width = 100 n_components = resolution / subsampling # Compute a wavelet dictionary D_fixed = ricker_matrix(width=width, resolution=resolution, n_components=n_components) D_multi = np.r_[tuple(ricker_matrix(width=w, resolution=resolution, n_components=np.floor(n_components / 5)) for w in (10, 50, 100, 500, 1000))] # Generate a signal y = np.linspace(0, resolution - 1, resolution) first_quarter = y < resolution / 4 y[first_quarter] = 3. y[np.logical_not(first_quarter)] = -1. # List the different sparse coding methods in the following format: # (title, transform_algorithm, transform_alpha, transform_n_nozero_coefs) estimators = [('OMP', 'omp', None, 15), ('Lasso', 'lasso_cd', 2, None), ] pl.figure(figsize=(13, 6)) for subplot, (D, title) in enumerate(zip((D_fixed, D_multi), ('fixed width', 'multiple widths'))): pl.subplot(1, 2, subplot + 1) pl.title('Sparse coding against %s dictionary' % title) pl.plot(y, ls='dotted', label='Original signal') # Do a wavelet approximation for title, algo, alpha, n_nonzero in estimators: coder = SparseCoder(dictionary=D, transform_n_nonzero_coefs=n_nonzero, transform_alpha=alpha, transform_algorithm=algo) x = coder.transform(y) density = len(np.flatnonzero(x)) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) pl.plot(x, label='%s: %s nonzero coefs,\n%.2f error' % (title, density, squared_error)) # Soft thresholding debiasing coder = SparseCoder(dictionary=D, transform_algorithm='threshold', transform_alpha=20) x = coder.transform(y) _, idx = np.where(x != 0) x[0, idx], _, _, _ = np.linalg.lstsq(D[idx, :].T, y) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) pl.plot(x, label='Thresholding w/ debiasing:\n%d nonzero coefs, %.2f error' % (len(idx), squared_error)) pl.axis('tight') pl.legend() pl.subplots_adjust(.04, .07, .97, .90, .09, .2) pl.show()
bsd-3-clause
leesavide/pythonista-docs
Documentation/matplotlib/mpl_examples/units/artist_tests.py
6
1475
""" Test unit support with each of the matplotlib primitive artist types The axes handles unit conversions and the artists keep a pointer to their axes parent, so you must init the artists with the axes instance if you want to initialize them with unit data, or else they will not know how to convert the units to scalars """ import random import matplotlib.lines as lines import matplotlib.patches as patches import matplotlib.text as text import matplotlib.collections as collections from basic_units import cm, inch import numpy as np import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.xaxis.set_units(cm) ax.yaxis.set_units(cm) if 0: # test a line collection # Not supported at present. verts = [] for i in range(10): # a random line segment in inches verts.append(zip(*inch*10*np.random.rand(2, random.randint(2,15)))) lc = collections.LineCollection(verts, axes=ax) ax.add_collection(lc) # test a plain-ol-line line = lines.Line2D([0*cm, 1.5*cm], [0*cm, 2.5*cm], lw=2, color='black', axes=ax) ax.add_line(line) if 0: # test a patch # Not supported at present. rect = patches.Rectangle( (1*cm, 1*cm), width=5*cm, height=2*cm, alpha=0.2, axes=ax) ax.add_patch(rect) t = text.Text(3*cm, 2.5*cm, 'text label', ha='left', va='bottom', axes=ax) ax.add_artist(t) ax.set_xlim(-1*cm, 10*cm) ax.set_ylim(-1*cm, 10*cm) #ax.xaxis.set_units(inch) ax.grid(True) ax.set_title("Artists with units") plt.show()
apache-2.0
hrjn/scikit-learn
sklearn/datasets/tests/test_svmlight_format.py
53
13398
from bz2 import BZ2File import gzip from io import BytesIO import numpy as np import scipy.sparse as sp import os import shutil from tempfile import NamedTemporaryFile from sklearn.externals.six import b from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import raises from sklearn.utils.testing import assert_in import sklearn from sklearn.datasets import (load_svmlight_file, load_svmlight_files, dump_svmlight_file) currdir = os.path.dirname(os.path.abspath(__file__)) datafile = os.path.join(currdir, "data", "svmlight_classification.txt") multifile = os.path.join(currdir, "data", "svmlight_multilabel.txt") invalidfile = os.path.join(currdir, "data", "svmlight_invalid.txt") invalidfile2 = os.path.join(currdir, "data", "svmlight_invalid_order.txt") def test_load_svmlight_file(): X, y = load_svmlight_file(datafile) # test X's shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 21) assert_equal(y.shape[0], 6) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (0, 15, 1.5), (1, 5, 1.0), (1, 12, -3), (2, 20, 27)): assert_equal(X[i, j], val) # tests X's zero values assert_equal(X[0, 3], 0) assert_equal(X[0, 5], 0) assert_equal(X[1, 8], 0) assert_equal(X[1, 16], 0) assert_equal(X[2, 18], 0) # test can change X's values X[0, 2] *= 2 assert_equal(X[0, 2], 5) # test y assert_array_equal(y, [1, 2, 3, 4, 1, 2]) def test_load_svmlight_file_fd(): # test loading from file descriptor X1, y1 = load_svmlight_file(datafile) fd = os.open(datafile, os.O_RDONLY) try: X2, y2 = load_svmlight_file(fd) assert_array_equal(X1.data, X2.data) assert_array_equal(y1, y2) finally: os.close(fd) def test_load_svmlight_file_multilabel(): X, y = load_svmlight_file(multifile, multilabel=True) assert_equal(y, [(0, 1), (2,), (), (1, 2)]) def test_load_svmlight_files(): X_train, y_train, X_test, y_test = load_svmlight_files([datafile] * 2, dtype=np.float32) assert_array_equal(X_train.toarray(), X_test.toarray()) assert_array_equal(y_train, y_test) assert_equal(X_train.dtype, np.float32) assert_equal(X_test.dtype, np.float32) X1, y1, X2, y2, X3, y3 = load_svmlight_files([datafile] * 3, dtype=np.float64) assert_equal(X1.dtype, X2.dtype) assert_equal(X2.dtype, X3.dtype) assert_equal(X3.dtype, np.float64) def test_load_svmlight_file_n_features(): X, y = load_svmlight_file(datafile, n_features=22) # test X'shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 22) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (1, 5, 1.0), (1, 12, -3)): assert_equal(X[i, j], val) # 21 features in file assert_raises(ValueError, load_svmlight_file, datafile, n_features=20) def test_load_compressed(): X, y = load_svmlight_file(datafile) with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, gzip.open(tmp.name, "wb")) Xgz, ygz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xgz.toarray()) assert_array_equal(y, ygz) with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, BZ2File(tmp.name, "wb")) Xbz, ybz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xbz.toarray()) assert_array_equal(y, ybz) @raises(ValueError) def test_load_invalid_file(): load_svmlight_file(invalidfile) @raises(ValueError) def test_load_invalid_order_file(): load_svmlight_file(invalidfile2) @raises(ValueError) def test_load_zero_based(): f = BytesIO(b("-1 4:1.\n1 0:1\n")) load_svmlight_file(f, zero_based=False) def test_load_zero_based_auto(): data1 = b("-1 1:1 2:2 3:3\n") data2 = b("-1 0:0 1:1\n") f1 = BytesIO(data1) X, y = load_svmlight_file(f1, zero_based="auto") assert_equal(X.shape, (1, 3)) f1 = BytesIO(data1) f2 = BytesIO(data2) X1, y1, X2, y2 = load_svmlight_files([f1, f2], zero_based="auto") assert_equal(X1.shape, (1, 4)) assert_equal(X2.shape, (1, 4)) def test_load_with_qid(): # load svmfile with qid attribute data = b(""" 3 qid:1 1:0.53 2:0.12 2 qid:1 1:0.13 2:0.1 7 qid:2 1:0.87 2:0.12""") X, y = load_svmlight_file(BytesIO(data), query_id=False) assert_array_equal(y, [3, 2, 7]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) res1 = load_svmlight_files([BytesIO(data)], query_id=True) res2 = load_svmlight_file(BytesIO(data), query_id=True) for X, y, qid in (res1, res2): assert_array_equal(y, [3, 2, 7]) assert_array_equal(qid, [1, 1, 2]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) @raises(ValueError) def test_load_invalid_file2(): load_svmlight_files([datafile, invalidfile, datafile]) @raises(TypeError) def test_not_a_filename(): # in python 3 integers are valid file opening arguments (taken as unix # file descriptors) load_svmlight_file(.42) @raises(IOError) def test_invalid_filename(): load_svmlight_file("trou pic nic douille") def test_dump(): X_sparse, y_dense = load_svmlight_file(datafile) X_dense = X_sparse.toarray() y_sparse = sp.csr_matrix(y_dense) # slicing a csr_matrix can unsort its .indices, so test that we sort # those correctly X_sliced = X_sparse[np.arange(X_sparse.shape[0])] y_sliced = y_sparse[np.arange(y_sparse.shape[0])] for X in (X_sparse, X_dense, X_sliced): for y in (y_sparse, y_dense, y_sliced): for zero_based in (True, False): for dtype in [np.float32, np.float64, np.int32]: f = BytesIO() # we need to pass a comment to get the version info in; # LibSVM doesn't grok comments so they're not put in by # default anymore. if (sp.issparse(y) and y.shape[0] == 1): # make sure y's shape is: (n_samples, n_labels) # when it is sparse y = y.T dump_svmlight_file(X.astype(dtype), y, f, comment="test", zero_based=zero_based) f.seek(0) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in("scikit-learn %s" % sklearn.__version__, comment) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in(["one", "zero"][zero_based] + "-based", comment) X2, y2 = load_svmlight_file(f, dtype=dtype, zero_based=zero_based) assert_equal(X2.dtype, dtype) assert_array_equal(X2.sorted_indices().indices, X2.indices) X2_dense = X2.toarray() if dtype == np.float32: # allow a rounding error at the last decimal place assert_array_almost_equal( X_dense.astype(dtype), X2_dense, 4) assert_array_almost_equal( y_dense.astype(dtype), y2, 4) else: # allow a rounding error at the last decimal place assert_array_almost_equal( X_dense.astype(dtype), X2_dense, 15) assert_array_almost_equal( y_dense.astype(dtype), y2, 15) def test_dump_multilabel(): X = [[1, 0, 3, 0, 5], [0, 0, 0, 0, 0], [0, 5, 0, 1, 0]] y_dense = [[0, 1, 0], [1, 0, 1], [1, 1, 0]] y_sparse = sp.csr_matrix(y_dense) for y in [y_dense, y_sparse]: f = BytesIO() dump_svmlight_file(X, y, f, multilabel=True) f.seek(0) # make sure it dumps multilabel correctly assert_equal(f.readline(), b("1 0:1 2:3 4:5\n")) assert_equal(f.readline(), b("0,2 \n")) assert_equal(f.readline(), b("0,1 1:5 3:1\n")) def test_dump_concise(): one = 1 two = 2.1 three = 3.01 exact = 1.000000000000001 # loses the last decimal place almost = 1.0000000000000001 X = [[one, two, three, exact, almost], [1e9, 2e18, 3e27, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] y = [one, two, three, exact, almost] f = BytesIO() dump_svmlight_file(X, y, f) f.seek(0) # make sure it's using the most concise format possible assert_equal(f.readline(), b("1 0:1 1:2.1 2:3.01 3:1.000000000000001 4:1\n")) assert_equal(f.readline(), b("2.1 0:1000000000 1:2e+18 2:3e+27\n")) assert_equal(f.readline(), b("3.01 \n")) assert_equal(f.readline(), b("1.000000000000001 \n")) assert_equal(f.readline(), b("1 \n")) f.seek(0) # make sure it's correct too :) X2, y2 = load_svmlight_file(f) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) def test_dump_comment(): X, y = load_svmlight_file(datafile) X = X.toarray() f = BytesIO() ascii_comment = "This is a comment\nspanning multiple lines." dump_svmlight_file(X, y, f, comment=ascii_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) # XXX we have to update this to support Python 3.x utf8_comment = b("It is true that\n\xc2\xbd\xc2\xb2 = \xc2\xbc") f = BytesIO() assert_raises(UnicodeDecodeError, dump_svmlight_file, X, y, f, comment=utf8_comment) unicode_comment = utf8_comment.decode("utf-8") f = BytesIO() dump_svmlight_file(X, y, f, comment=unicode_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y, f, comment="I've got a \0.") def test_dump_invalid(): X, y = load_svmlight_file(datafile) f = BytesIO() y2d = [y] assert_raises(ValueError, dump_svmlight_file, X, y2d, f) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y[:-1], f) def test_dump_query_id(): # test dumping a file with query_id X, y = load_svmlight_file(datafile) X = X.toarray() query_id = np.arange(X.shape[0]) // 2 f = BytesIO() dump_svmlight_file(X, y, f, query_id=query_id, zero_based=True) f.seek(0) X1, y1, query_id1 = load_svmlight_file(f, query_id=True, zero_based=True) assert_array_almost_equal(X, X1.toarray()) assert_array_almost_equal(y, y1) assert_array_almost_equal(query_id, query_id1) def test_load_with_long_qid(): # load svmfile with longint qid attribute data = b(""" 1 qid:0 0:1 1:2 2:3 0 qid:72048431380967004 0:1440446648 1:72048431380967004 2:236784985 0 qid:-9223372036854775807 0:1440446648 1:72048431380967004 2:236784985 3 qid:9223372036854775807 0:1440446648 1:72048431380967004 2:236784985""") X, y, qid = load_svmlight_file(BytesIO(data), query_id=True) true_X = [[1, 2, 3], [1440446648, 72048431380967004, 236784985], [1440446648, 72048431380967004, 236784985], [1440446648, 72048431380967004, 236784985]] true_y = [1, 0, 0, 3] trueQID = [0, 72048431380967004, -9223372036854775807, 9223372036854775807] assert_array_equal(y, true_y) assert_array_equal(X.toarray(), true_X) assert_array_equal(qid, trueQID) f = BytesIO() dump_svmlight_file(X, y, f, query_id=qid, zero_based=True) f.seek(0) X, y, qid = load_svmlight_file(f, query_id=True, zero_based=True) assert_array_equal(y, true_y) assert_array_equal(X.toarray(), true_X) assert_array_equal(qid, trueQID) f.seek(0) X, y = load_svmlight_file(f, query_id=False, zero_based=True) assert_array_equal(y, true_y) assert_array_equal(X.toarray(), true_X)
bsd-3-clause
lthurlow/Network-Grapher
proj/external/matplotlib-1.2.1/build/lib.linux-i686-2.7/matplotlib/stackplot.py
2
1846
""" Stacked area plot for 1D arrays inspired by Douglas Y'barbo's stackoverflow answer: http://stackoverflow.com/questions/2225995/how-can-i-create-stacked-line-graph-with-matplotlib (http://stackoverflow.com/users/66549/doug) """ import numpy as np __all__ = ['stackplot'] def stackplot(axes, x, *args, **kwargs): """Draws a stacked area plot. *x* : 1d array of dimension N *y* : 2d array of dimension MxN, OR any number 1d arrays each of dimension 1xN. The data is assumed to be unstacked. Each of the following calls is legal:: stackplot(x, y) # where y is MxN stackplot(x, y1, y2, y3, y4) # where y1, y2, y3, y4, are all 1xNm Keyword arguments: *colors* : A list or tuple of colors. These will be cycled through and used to colour the stacked areas. All other keyword arguments are passed to :func:`~matplotlib.Axes.fill_between` Returns *r* : A list of :class:`~matplotlib.collections.PolyCollection`, one for each element in the stacked area plot. """ if len(args) == 1: y = np.atleast_2d(*args) elif len(args) > 1: y = np.row_stack(args) colors = kwargs.pop('colors', None) if colors is not None: axes.set_color_cycle(colors) # Assume data passed has not been 'stacked', so stack it here. y_stack = np.cumsum(y, axis=0) r = [] # Color between x = 0 and the first array. r.append(axes.fill_between(x, 0, y_stack[0, :], facecolor=axes._get_lines.color_cycle.next(), **kwargs)) # Color between array i-1 and array i for i in xrange(len(y) - 1): r.append(axes.fill_between(x, y_stack[i, :], y_stack[i + 1, :], facecolor=axes._get_lines.color_cycle.next(), **kwargs)) return r
mit
yask123/scikit-learn
examples/exercises/plot_cv_digits.py
232
1206
""" ============================================= Cross-validation on Digits Dataset Exercise ============================================= A tutorial exercise using Cross-validation with an SVM on the Digits dataset. This exercise is used in the :ref:`cv_generators_tut` part of the :ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. """ print(__doc__) import numpy as np from sklearn import cross_validation, datasets, svm digits = datasets.load_digits() X = digits.data y = digits.target svc = svm.SVC(kernel='linear') C_s = np.logspace(-10, 0, 10) scores = list() scores_std = list() for C in C_s: svc.C = C this_scores = cross_validation.cross_val_score(svc, X, y, n_jobs=1) scores.append(np.mean(this_scores)) scores_std.append(np.std(this_scores)) # Do the plotting import matplotlib.pyplot as plt plt.figure(1, figsize=(4, 3)) plt.clf() plt.semilogx(C_s, scores) plt.semilogx(C_s, np.array(scores) + np.array(scores_std), 'b--') plt.semilogx(C_s, np.array(scores) - np.array(scores_std), 'b--') locs, labels = plt.yticks() plt.yticks(locs, list(map(lambda x: "%g" % x, locs))) plt.ylabel('CV score') plt.xlabel('Parameter C') plt.ylim(0, 1.1) plt.show()
bsd-3-clause
mihaic/brainiak
brainiak/fcma/mvpa_voxelselector.py
2
4426
# Copyright 2016 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Full Correlation Matrix Analysis (FCMA) Activity-based voxel selection """ # Authors: Yida Wang # (Intel Labs), 2017 import numpy as np from sklearn import model_selection import logging from mpi4py import MPI logger = logging.getLogger(__name__) __all__ = [ "MVPAVoxelSelector", ] def _sfn(data, mask, myrad, bcast_var): """Score classifier on searchlight data using cross-validation. The classifier is in `bcast_var[2]`. The labels are in `bast_var[0]`. The number of cross-validation folds is in `bast_var[1]. """ clf = bcast_var[2] masked_data = data[0][mask, :].T # print(l[0].shape, mask.shape, data.shape) skf = model_selection.StratifiedKFold(n_splits=bcast_var[1], shuffle=False) accuracy = np.mean(model_selection.cross_val_score(clf, masked_data, y=bcast_var[0], cv=skf, n_jobs=1)) return accuracy class MVPAVoxelSelector: """Activity-based voxel selection component of FCMA Parameters ---------- data: 4D array in shape [brain 3D + epoch] contains the averaged and normalized brain data epoch by epoch. It is generated by .io.prepare_searchlight_mvpa_data mask: 3D array labels: 1D array contains the labels of the epochs. It is generated by .io.prepare_searchlight_mvpa_data num_folds: int the number of folds to be conducted in the cross validation sl: Searchlight the distributed Searchlight object """ def __init__(self, data, mask, labels, num_folds, sl ): self.data = data self.mask = mask.astype(np.bool) self.labels = labels self.num_folds = num_folds self.sl = sl num_voxels = np.sum(self.mask) if num_voxels == 0: raise ValueError('Zero processed voxels') def run(self, clf): """ run activity-based voxel selection Sort the voxels based on the cross-validation accuracy of their activity vectors within the searchlight Parameters ---------- clf: classification function the classifier to be used in cross validation Returns ------- result_volume: 3D array of accuracy numbers contains the voxelwise accuracy numbers obtained via Searchlight results: list of tuple (voxel_id, accuracy) the accuracy numbers of all voxels, in accuracy descending order the length of array equals the number of voxels """ rank = MPI.COMM_WORLD.Get_rank() if rank == 0: logger.info( 'running activity-based voxel selection via Searchlight' ) self.sl.distribute([self.data], self.mask) self.sl.broadcast((self.labels, self.num_folds, clf)) if rank == 0: logger.info( 'data preparation done' ) # obtain a 3D array with accuracy numbers result_volume = self.sl.run_searchlight(_sfn) # get result tuple list from the volume result_list = result_volume[self.mask] results = [] if rank == 0: for idx, value in enumerate(result_list): if value is None: value = 0 results.append((idx, value)) # Sort the voxels results.sort(key=lambda tup: tup[1], reverse=True) logger.info( 'activity-based voxel selection via Searchlight is done' ) return result_volume, results
apache-2.0
fabianp/scikit-learn
examples/ensemble/plot_gradient_boosting_quantile.py
392
2114
""" ===================================================== Prediction Intervals for Gradient Boosting Regression ===================================================== This example shows how quantile regression can be used to create prediction intervals. """ import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import GradientBoostingRegressor np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) #---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d(np.random.uniform(0, 10.0, size=100)).T X = X.astype(np.float32) # Observations y = f(X).ravel() dy = 1.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise y = y.astype(np.float32) # Mesh the input space for evaluations of the real function, the prediction and # its MSE xx = np.atleast_2d(np.linspace(0, 10, 1000)).T xx = xx.astype(np.float32) alpha = 0.95 clf = GradientBoostingRegressor(loss='quantile', alpha=alpha, n_estimators=250, max_depth=3, learning_rate=.1, min_samples_leaf=9, min_samples_split=9) clf.fit(X, y) # Make the prediction on the meshed x-axis y_upper = clf.predict(xx) clf.set_params(alpha=1.0 - alpha) clf.fit(X, y) # Make the prediction on the meshed x-axis y_lower = clf.predict(xx) clf.set_params(loss='ls') clf.fit(X, y) # Make the prediction on the meshed x-axis y_pred = clf.predict(xx) # Plot the function, the prediction and the 90% confidence interval based on # the MSE fig = plt.figure() plt.plot(xx, f(xx), 'g:', label=u'$f(x) = x\,\sin(x)$') plt.plot(X, y, 'b.', markersize=10, label=u'Observations') plt.plot(xx, y_pred, 'r-', label=u'Prediction') plt.plot(xx, y_upper, 'k-') plt.plot(xx, y_lower, 'k-') plt.fill(np.concatenate([xx, xx[::-1]]), np.concatenate([y_upper, y_lower[::-1]]), alpha=.5, fc='b', ec='None', label='90% prediction interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 20) plt.legend(loc='upper left') plt.show()
bsd-3-clause
vortex-ape/scikit-learn
sklearn/datasets/tests/test_base.py
9
8508
import os import shutil import tempfile import warnings import numpy from pickle import loads from pickle import dumps from functools import partial import pytest from sklearn.datasets import get_data_home from sklearn.datasets import clear_data_home from sklearn.datasets import load_files from sklearn.datasets import load_sample_images from sklearn.datasets import load_sample_image from sklearn.datasets import load_digits from sklearn.datasets import load_diabetes from sklearn.datasets import load_linnerud from sklearn.datasets import load_iris from sklearn.datasets import load_breast_cancer from sklearn.datasets import load_boston from sklearn.datasets import load_wine from sklearn.datasets.base import Bunch from sklearn.datasets.tests.test_common import check_return_X_y from sklearn.externals.six import b, u from sklearn.externals._pilutil import pillow_installed from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises def _remove_dir(path): if os.path.isdir(path): shutil.rmtree(path) @pytest.fixture(scope="module") def data_home(tmpdir_factory): tmp_file = str(tmpdir_factory.mktemp("scikit_learn_data_home_test")) yield tmp_file _remove_dir(tmp_file) @pytest.fixture(scope="module") def load_files_root(tmpdir_factory): tmp_file = str(tmpdir_factory.mktemp("scikit_learn_load_files_test")) yield tmp_file _remove_dir(tmp_file) @pytest.fixture def test_category_dir_1(load_files_root): test_category_dir1 = tempfile.mkdtemp(dir=load_files_root) sample_file = tempfile.NamedTemporaryFile(dir=test_category_dir1, delete=False) sample_file.write(b("Hello World!\n")) sample_file.close() yield str(test_category_dir1) _remove_dir(test_category_dir1) @pytest.fixture def test_category_dir_2(load_files_root): test_category_dir2 = tempfile.mkdtemp(dir=load_files_root) yield str(test_category_dir2) _remove_dir(test_category_dir2) def test_data_home(data_home): # get_data_home will point to a pre-existing folder data_home = get_data_home(data_home=data_home) assert_equal(data_home, data_home) assert_true(os.path.exists(data_home)) # clear_data_home will delete both the content and the folder it-self clear_data_home(data_home=data_home) assert_false(os.path.exists(data_home)) # if the folder is missing it will be created again data_home = get_data_home(data_home=data_home) assert_true(os.path.exists(data_home)) def test_default_empty_load_files(load_files_root): res = load_files(load_files_root) assert_equal(len(res.filenames), 0) assert_equal(len(res.target_names), 0) assert_equal(res.DESCR, None) def test_default_load_files(test_category_dir_1, test_category_dir_2, load_files_root): res = load_files(load_files_root) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.data, [b("Hello World!\n")]) def test_load_files_w_categories_desc_and_encoding( test_category_dir_1, test_category_dir_2, load_files_root): category = os.path.abspath(test_category_dir_1).split('/').pop() res = load_files(load_files_root, description="test", categories=category, encoding="utf-8") assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 1) assert_equal(res.DESCR, "test") assert_equal(res.data, [u("Hello World!\n")]) def test_load_files_wo_load_content( test_category_dir_1, test_category_dir_2, load_files_root): res = load_files(load_files_root, load_content=False) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.get('data'), None) def test_load_sample_images(): try: res = load_sample_images() assert_equal(len(res.images), 2) assert_equal(len(res.filenames), 2) assert_true(res.DESCR) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_digits(): digits = load_digits() assert_equal(digits.data.shape, (1797, 64)) assert_equal(numpy.unique(digits.target).size, 10) # test return_X_y option check_return_X_y(digits, partial(load_digits)) def test_load_digits_n_class_lt_10(): digits = load_digits(9) assert_equal(digits.data.shape, (1617, 64)) assert_equal(numpy.unique(digits.target).size, 9) def test_load_sample_image(): try: china = load_sample_image('china.jpg') assert_equal(china.dtype, 'uint8') assert_equal(china.shape, (427, 640, 3)) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_missing_sample_image_error(): if pillow_installed: assert_raises(AttributeError, load_sample_image, 'blop.jpg') else: warnings.warn("Could not load sample images, PIL is not available.") def test_load_diabetes(): res = load_diabetes() assert_equal(res.data.shape, (442, 10)) assert_true(res.target.size, 442) assert_equal(len(res.feature_names), 10) assert_true(res.DESCR) # test return_X_y option check_return_X_y(res, partial(load_diabetes)) def test_load_linnerud(): res = load_linnerud() assert_equal(res.data.shape, (20, 3)) assert_equal(res.target.shape, (20, 3)) assert_equal(len(res.target_names), 3) assert_true(res.DESCR) assert_true(os.path.exists(res.data_filename)) assert_true(os.path.exists(res.target_filename)) # test return_X_y option check_return_X_y(res, partial(load_linnerud)) def test_load_iris(): res = load_iris() assert_equal(res.data.shape, (150, 4)) assert_equal(res.target.size, 150) assert_equal(res.target_names.size, 3) assert_true(res.DESCR) assert_true(os.path.exists(res.filename)) # test return_X_y option check_return_X_y(res, partial(load_iris)) def test_load_wine(): res = load_wine() assert_equal(res.data.shape, (178, 13)) assert_equal(res.target.size, 178) assert_equal(res.target_names.size, 3) assert_true(res.DESCR) # test return_X_y option check_return_X_y(res, partial(load_wine)) def test_load_breast_cancer(): res = load_breast_cancer() assert_equal(res.data.shape, (569, 30)) assert_equal(res.target.size, 569) assert_equal(res.target_names.size, 2) assert_true(res.DESCR) assert_true(os.path.exists(res.filename)) # test return_X_y option check_return_X_y(res, partial(load_breast_cancer)) def test_load_boston(): res = load_boston() assert_equal(res.data.shape, (506, 13)) assert_equal(res.target.size, 506) assert_equal(res.feature_names.size, 13) assert_true(res.DESCR) assert_true(os.path.exists(res.filename)) # test return_X_y option check_return_X_y(res, partial(load_boston)) def test_loads_dumps_bunch(): bunch = Bunch(x="x") bunch_from_pkl = loads(dumps(bunch)) bunch_from_pkl.x = "y" assert_equal(bunch_from_pkl['x'], bunch_from_pkl.x) def test_bunch_pickle_generated_with_0_16_and_read_with_0_17(): bunch = Bunch(key='original') # This reproduces a problem when Bunch pickles have been created # with scikit-learn 0.16 and are read with 0.17. Basically there # is a surprising behaviour because reading bunch.key uses # bunch.__dict__ (which is non empty for 0.16 Bunch objects) # whereas assigning into bunch.key uses bunch.__setattr__. See # https://github.com/scikit-learn/scikit-learn/issues/6196 for # more details bunch.__dict__['key'] = 'set from __dict__' bunch_from_pkl = loads(dumps(bunch)) # After loading from pickle the __dict__ should have been ignored assert_equal(bunch_from_pkl.key, 'original') assert_equal(bunch_from_pkl['key'], 'original') # Making sure that changing the attr does change the value # associated with __getitem__ as well bunch_from_pkl.key = 'changed' assert_equal(bunch_from_pkl.key, 'changed') assert_equal(bunch_from_pkl['key'], 'changed') def test_bunch_dir(): # check that dir (important for autocomplete) shows attributes data = load_iris() assert_true("data" in dir(data))
bsd-3-clause
jcasner/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/collections.py
69
39876
""" Classes for the efficient drawing of large collections of objects that share most properties, e.g. a large number of line segments or polygons. The classes are not meant to be as flexible as their single element counterparts (e.g. you may not be able to select all line styles) but they are meant to be fast for common use cases (e.g. a bunch of solid line segemnts) """ import copy, math, warnings import numpy as np from numpy import ma import matplotlib as mpl import matplotlib.cbook as cbook import matplotlib.colors as _colors # avoid conflict with kwarg import matplotlib.cm as cm import matplotlib.transforms as transforms import matplotlib.artist as artist import matplotlib.backend_bases as backend_bases import matplotlib.path as mpath import matplotlib.mlab as mlab class Collection(artist.Artist, cm.ScalarMappable): """ Base class for Collections. Must be subclassed to be usable. All properties in a collection must be sequences or scalars; if scalars, they will be converted to sequences. The property of the ith element of the collection is:: prop[i % len(props)] Keyword arguments and default values: * *edgecolors*: None * *facecolors*: None * *linewidths*: None * *antialiaseds*: None * *offsets*: None * *transOffset*: transforms.IdentityTransform() * *norm*: None (optional for :class:`matplotlib.cm.ScalarMappable`) * *cmap*: None (optional for :class:`matplotlib.cm.ScalarMappable`) *offsets* and *transOffset* are used to translate the patch after rendering (default no offsets). If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their :data:`matplotlib.rcParams` patch setting, in sequence form. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not None (ie a call to set_array has been made), at draw time a call to scalar mappable will be made to set the face colors. """ _offsets = np.array([], np.float_) _transOffset = transforms.IdentityTransform() _transforms = [] zorder = 1 def __init__(self, edgecolors=None, facecolors=None, linewidths=None, linestyles='solid', antialiaseds = None, offsets = None, transOffset = None, norm = None, # optional for ScalarMappable cmap = None, # ditto pickradius = 5.0, urls = None, **kwargs ): """ Create a Collection %(Collection)s """ artist.Artist.__init__(self) cm.ScalarMappable.__init__(self, norm, cmap) self.set_edgecolor(edgecolors) self.set_facecolor(facecolors) self.set_linewidth(linewidths) self.set_linestyle(linestyles) self.set_antialiased(antialiaseds) self.set_urls(urls) self._uniform_offsets = None self._offsets = np.array([], np.float_) if offsets is not None: offsets = np.asarray(offsets) if len(offsets.shape) == 1: offsets = offsets[np.newaxis,:] # Make it Nx2. if transOffset is not None: self._offsets = offsets self._transOffset = transOffset else: self._uniform_offsets = offsets self._pickradius = pickradius self.update(kwargs) def _get_value(self, val): try: return (float(val), ) except TypeError: if cbook.iterable(val) and len(val): try: float(val[0]) except TypeError: pass # raise below else: return val raise TypeError('val must be a float or nonzero sequence of floats') def _get_bool(self, val): try: return (bool(val), ) except TypeError: if cbook.iterable(val) and len(val): try: bool(val[0]) except TypeError: pass # raise below else: return val raise TypeError('val must be a bool or nonzero sequence of them') def get_paths(self): raise NotImplementedError def get_transforms(self): return self._transforms def get_datalim(self, transData): transform = self.get_transform() transOffset = self._transOffset offsets = self._offsets paths = self.get_paths() if not transform.is_affine: paths = [transform.transform_path_non_affine(p) for p in paths] transform = transform.get_affine() if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) transOffset = transOffset.get_affine() offsets = np.asarray(offsets, np.float_) result = mpath.get_path_collection_extents( transform.frozen(), paths, self.get_transforms(), offsets, transOffset.frozen()) result = result.inverse_transformed(transData) return result def get_window_extent(self, renderer): bbox = self.get_datalim(transforms.IdentityTransform()) #TODO:check to ensure that this does not fail for #cases other than scatter plot legend return bbox def _prepare_points(self): """Point prep for drawing and hit testing""" transform = self.get_transform() transOffset = self._transOffset offsets = self._offsets paths = self.get_paths() if self.have_units(): paths = [] for path in self.get_paths(): vertices = path.vertices xs, ys = vertices[:, 0], vertices[:, 1] xs = self.convert_xunits(xs) ys = self.convert_yunits(ys) paths.append(mpath.Path(zip(xs, ys), path.codes)) if len(self._offsets): xs = self.convert_xunits(self._offsets[:0]) ys = self.convert_yunits(self._offsets[:1]) offsets = zip(xs, ys) offsets = np.asarray(offsets, np.float_) if not transform.is_affine: paths = [transform.transform_path_non_affine(path) for path in paths] transform = transform.get_affine() if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) transOffset = transOffset.get_affine() return transform, transOffset, offsets, paths def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__class__.__name__) self.update_scalarmappable() clippath, clippath_trans = self.get_transformed_clip_path_and_affine() if clippath_trans is not None: clippath_trans = clippath_trans.frozen() transform, transOffset, offsets, paths = self._prepare_points() renderer.draw_path_collection( transform.frozen(), self.clipbox, clippath, clippath_trans, paths, self.get_transforms(), offsets, transOffset, self.get_facecolor(), self.get_edgecolor(), self._linewidths, self._linestyles, self._antialiaseds, self._urls) renderer.close_group(self.__class__.__name__) def contains(self, mouseevent): """ Test whether the mouse event occurred in the collection. Returns True | False, ``dict(ind=itemlist)``, where every item in itemlist contains the event. """ if callable(self._contains): return self._contains(self,mouseevent) if not self.get_visible(): return False,{} transform, transOffset, offsets, paths = self._prepare_points() ind = mpath.point_in_path_collection( mouseevent.x, mouseevent.y, self._pickradius, transform.frozen(), paths, self.get_transforms(), offsets, transOffset, len(self._facecolors)>0) return len(ind)>0,dict(ind=ind) def set_pickradius(self,pickradius): self.pickradius = 5 def get_pickradius(self): return self.pickradius def set_urls(self, urls): if urls is None: self._urls = [None,] else: self._urls = urls def get_urls(self): return self._urls def set_offsets(self, offsets): """ Set the offsets for the collection. *offsets* can be a scalar or a sequence. ACCEPTS: float or sequence of floats """ offsets = np.asarray(offsets, np.float_) if len(offsets.shape) == 1: offsets = offsets[np.newaxis,:] # Make it Nx2. #This decision is based on how they are initialized above if self._uniform_offsets is None: self._offsets = offsets else: self._uniform_offsets = offsets def get_offsets(self): """ Return the offsets for the collection. """ #This decision is based on how they are initialized above in __init__() if self._uniform_offsets is None: return self._offsets else: return self._uniform_offsets def set_linewidth(self, lw): """ Set the linewidth(s) for the collection. *lw* can be a scalar or a sequence; if it is a sequence the patches will cycle through the sequence ACCEPTS: float or sequence of floats """ if lw is None: lw = mpl.rcParams['patch.linewidth'] self._linewidths = self._get_value(lw) def set_linewidths(self, lw): """alias for set_linewidth""" return self.set_linewidth(lw) def set_lw(self, lw): """alias for set_linewidth""" return self.set_linewidth(lw) def set_linestyle(self, ls): """ Set the linestyle(s) for the collection. ACCEPTS: ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ] """ try: dashd = backend_bases.GraphicsContextBase.dashd if cbook.is_string_like(ls): if ls in dashd: dashes = [dashd[ls]] elif ls in cbook.ls_mapper: dashes = [dashd[cbook.ls_mapper[ls]]] else: raise ValueError() elif cbook.iterable(ls): try: dashes = [] for x in ls: if cbook.is_string_like(x): if x in dashd: dashes.append(dashd[x]) elif x in cbook.ls_mapper: dashes.append(dashd[cbook.ls_mapper[x]]) else: raise ValueError() elif cbook.iterable(x) and len(x) == 2: dashes.append(x) else: raise ValueError() except ValueError: if len(ls)==2: dashes = ls else: raise ValueError() else: raise ValueError() except ValueError: raise ValueError('Do not know how to convert %s to dashes'%ls) self._linestyles = dashes def set_linestyles(self, ls): """alias for set_linestyle""" return self.set_linestyle(ls) def set_dashes(self, ls): """alias for set_linestyle""" return self.set_linestyle(ls) def set_antialiased(self, aa): """ Set the antialiasing state for rendering. ACCEPTS: Boolean or sequence of booleans """ if aa is None: aa = mpl.rcParams['patch.antialiased'] self._antialiaseds = self._get_bool(aa) def set_antialiaseds(self, aa): """alias for set_antialiased""" return self.set_antialiased(aa) def set_color(self, c): """ Set both the edgecolor and the facecolor. ACCEPTS: matplotlib color arg or sequence of rgba tuples .. seealso:: :meth:`set_facecolor`, :meth:`set_edgecolor` """ self.set_facecolor(c) self.set_edgecolor(c) def set_facecolor(self, c): """ Set the facecolor(s) of the collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence ACCEPTS: matplotlib color arg or sequence of rgba tuples """ if c is None: c = mpl.rcParams['patch.facecolor'] self._facecolors_original = c self._facecolors = _colors.colorConverter.to_rgba_array(c, self._alpha) def set_facecolors(self, c): """alias for set_facecolor""" return self.set_facecolor(c) def get_facecolor(self): return self._facecolors get_facecolors = get_facecolor def get_edgecolor(self): if self._edgecolors == 'face': return self.get_facecolors() else: return self._edgecolors get_edgecolors = get_edgecolor def set_edgecolor(self, c): """ Set the edgecolor(s) of the collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence. If *c* is 'face', the edge color will always be the same as the face color. ACCEPTS: matplotlib color arg or sequence of rgba tuples """ if c == 'face': self._edgecolors = 'face' self._edgecolors_original = 'face' else: if c is None: c = mpl.rcParams['patch.edgecolor'] self._edgecolors_original = c self._edgecolors = _colors.colorConverter.to_rgba_array(c, self._alpha) def set_edgecolors(self, c): """alias for set_edgecolor""" return self.set_edgecolor(c) def set_alpha(self, alpha): """ Set the alpha tranparencies of the collection. *alpha* must be a float. ACCEPTS: float """ try: float(alpha) except TypeError: raise TypeError('alpha must be a float') else: artist.Artist.set_alpha(self, alpha) try: self._facecolors = _colors.colorConverter.to_rgba_array( self._facecolors_original, self._alpha) except (AttributeError, TypeError, IndexError): pass try: if self._edgecolors_original != 'face': self._edgecolors = _colors.colorConverter.to_rgba_array( self._edgecolors_original, self._alpha) except (AttributeError, TypeError, IndexError): pass def get_linewidths(self): return self._linewidths get_linewidth = get_linewidths def get_linestyles(self): return self._linestyles get_dashes = get_linestyle = get_linestyles def update_scalarmappable(self): """ If the scalar mappable array is not none, update colors from scalar data """ if self._A is None: return if self._A.ndim > 1: raise ValueError('Collections can only map rank 1 arrays') if len(self._facecolors): self._facecolors = self.to_rgba(self._A, self._alpha) else: self._edgecolors = self.to_rgba(self._A, self._alpha) def update_from(self, other): 'copy properties from other to self' artist.Artist.update_from(self, other) self._antialiaseds = other._antialiaseds self._edgecolors_original = other._edgecolors_original self._edgecolors = other._edgecolors self._facecolors_original = other._facecolors_original self._facecolors = other._facecolors self._linewidths = other._linewidths self._linestyles = other._linestyles self._pickradius = other._pickradius # these are not available for the object inspector until after the # class is built so we define an initial set here for the init # function and they will be overridden after object defn artist.kwdocd['Collection'] = """\ Valid Collection keyword arguments: * *edgecolors*: None * *facecolors*: None * *linewidths*: None * *antialiaseds*: None * *offsets*: None * *transOffset*: transforms.IdentityTransform() * *norm*: None (optional for :class:`matplotlib.cm.ScalarMappable`) * *cmap*: None (optional for :class:`matplotlib.cm.ScalarMappable`) *offsets* and *transOffset* are used to translate the patch after rendering (default no offsets) If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their :data:`matplotlib.rcParams` patch setting, in sequence form. """ class QuadMesh(Collection): """ Class for the efficient drawing of a quadrilateral mesh. A quadrilateral mesh consists of a grid of vertices. The dimensions of this array are (*meshWidth* + 1, *meshHeight* + 1). Each vertex in the mesh has a different set of "mesh coordinates" representing its position in the topology of the mesh. For any values (*m*, *n*) such that 0 <= *m* <= *meshWidth* and 0 <= *n* <= *meshHeight*, the vertices at mesh coordinates (*m*, *n*), (*m*, *n* + 1), (*m* + 1, *n* + 1), and (*m* + 1, *n*) form one of the quadrilaterals in the mesh. There are thus (*meshWidth* * *meshHeight*) quadrilaterals in the mesh. The mesh need not be regular and the polygons need not be convex. A quadrilateral mesh is represented by a (2 x ((*meshWidth* + 1) * (*meshHeight* + 1))) numpy array *coordinates*, where each row is the *x* and *y* coordinates of one of the vertices. To define the function that maps from a data point to its corresponding color, use the :meth:`set_cmap` method. Each of these arrays is indexed in row-major order by the mesh coordinates of the vertex (or the mesh coordinates of the lower left vertex, in the case of the colors). For example, the first entry in *coordinates* is the coordinates of the vertex at mesh coordinates (0, 0), then the one at (0, 1), then at (0, 2) .. (0, meshWidth), (1, 0), (1, 1), and so on. """ def __init__(self, meshWidth, meshHeight, coordinates, showedges, antialiased=True): Collection.__init__(self) self._meshWidth = meshWidth self._meshHeight = meshHeight self._coordinates = coordinates self._showedges = showedges self._antialiased = antialiased self._paths = None self._bbox = transforms.Bbox.unit() self._bbox.update_from_data_xy(coordinates.reshape( ((meshWidth + 1) * (meshHeight + 1), 2))) # By converting to floats now, we can avoid that on every draw. self._coordinates = self._coordinates.reshape((meshHeight + 1, meshWidth + 1, 2)) self._coordinates = np.array(self._coordinates, np.float_) def get_paths(self, dataTrans=None): if self._paths is None: self._paths = self.convert_mesh_to_paths( self._meshWidth, self._meshHeight, self._coordinates) return self._paths #@staticmethod def convert_mesh_to_paths(meshWidth, meshHeight, coordinates): """ Converts a given mesh into a sequence of :class:`matplotlib.path.Path` objects for easier rendering by backends that do not directly support quadmeshes. This function is primarily of use to backend implementers. """ Path = mpath.Path if ma.isMaskedArray(coordinates): c = coordinates.data else: c = coordinates points = np.concatenate(( c[0:-1, 0:-1], c[0:-1, 1: ], c[1: , 1: ], c[1: , 0:-1], c[0:-1, 0:-1] ), axis=2) points = points.reshape((meshWidth * meshHeight, 5, 2)) return [Path(x) for x in points] convert_mesh_to_paths = staticmethod(convert_mesh_to_paths) def get_datalim(self, transData): return self._bbox def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__class__.__name__) transform = self.get_transform() transOffset = self._transOffset offsets = self._offsets if self.have_units(): if len(self._offsets): xs = self.convert_xunits(self._offsets[:0]) ys = self.convert_yunits(self._offsets[:1]) offsets = zip(xs, ys) offsets = np.asarray(offsets, np.float_) if self.check_update('array'): self.update_scalarmappable() clippath, clippath_trans = self.get_transformed_clip_path_and_affine() if clippath_trans is not None: clippath_trans = clippath_trans.frozen() if not transform.is_affine: coordinates = self._coordinates.reshape( (self._coordinates.shape[0] * self._coordinates.shape[1], 2)) coordinates = transform.transform(coordinates) coordinates = coordinates.reshape(self._coordinates.shape) transform = transforms.IdentityTransform() else: coordinates = self._coordinates if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) transOffset = transOffset.get_affine() renderer.draw_quad_mesh( transform.frozen(), self.clipbox, clippath, clippath_trans, self._meshWidth, self._meshHeight, coordinates, offsets, transOffset, self.get_facecolor(), self._antialiased, self._showedges) renderer.close_group(self.__class__.__name__) class PolyCollection(Collection): def __init__(self, verts, sizes = None, closed = True, **kwargs): """ *verts* is a sequence of ( *verts0*, *verts1*, ...) where *verts_i* is a sequence of *xy* tuples of vertices, or an equivalent :mod:`numpy` array of shape (*nv*, 2). *sizes* is *None* (default) or a sequence of floats that scale the corresponding *verts_i*. The scaling is applied before the Artist master transform; if the latter is an identity transform, then the overall scaling is such that if *verts_i* specify a unit square, then *sizes_i* is the area of that square in points^2. If len(*sizes*) < *nv*, the additional values will be taken cyclically from the array. *closed*, when *True*, will explicitly close the polygon. %(Collection)s """ Collection.__init__(self,**kwargs) self._sizes = sizes self.set_verts(verts, closed) __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd def set_verts(self, verts, closed=True): '''This allows one to delay initialization of the vertices.''' if closed: self._paths = [] for xy in verts: if np.ma.isMaskedArray(xy): if len(xy) and (xy[0] != xy[-1]).any(): xy = np.ma.concatenate([xy, [xy[0]]]) else: xy = np.asarray(xy) if len(xy) and (xy[0] != xy[-1]).any(): xy = np.concatenate([xy, [xy[0]]]) self._paths.append(mpath.Path(xy)) else: self._paths = [mpath.Path(xy) for xy in verts] def get_paths(self): return self._paths def draw(self, renderer): if self._sizes is not None: self._transforms = [ transforms.Affine2D().scale( (np.sqrt(x) * self.figure.dpi / 72.0)) for x in self._sizes] return Collection.draw(self, renderer) class BrokenBarHCollection(PolyCollection): """ A collection of horizontal bars spanning *yrange* with a sequence of *xranges*. """ def __init__(self, xranges, yrange, **kwargs): """ *xranges* sequence of (*xmin*, *xwidth*) *yrange* *ymin*, *ywidth* %(Collection)s """ ymin, ywidth = yrange ymax = ymin + ywidth verts = [ [(xmin, ymin), (xmin, ymax), (xmin+xwidth, ymax), (xmin+xwidth, ymin), (xmin, ymin)] for xmin, xwidth in xranges] PolyCollection.__init__(self, verts, **kwargs) __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd @staticmethod def span_where(x, ymin, ymax, where, **kwargs): """ Create a BrokenBarHCollection to plot horizontal bars from over the regions in *x* where *where* is True. The bars range on the y-axis from *ymin* to *ymax* A :class:`BrokenBarHCollection` is returned. *kwargs* are passed on to the collection """ xranges = [] for ind0, ind1 in mlab.contiguous_regions(where): xslice = x[ind0:ind1] if not len(xslice): continue xranges.append((xslice[0], xslice[-1]-xslice[0])) collection = BrokenBarHCollection(xranges, [ymin, ymax-ymin], **kwargs) return collection class RegularPolyCollection(Collection): """Draw a collection of regular polygons with *numsides*.""" _path_generator = mpath.Path.unit_regular_polygon def __init__(self, numsides, rotation = 0 , sizes = (1,), **kwargs): """ *numsides* the number of sides of the polygon *rotation* the rotation of the polygon in radians *sizes* gives the area of the circle circumscribing the regular polygon in points^2 %(Collection)s Example: see :file:`examples/dynamic_collection.py` for complete example:: offsets = np.random.rand(20,2) facecolors = [cm.jet(x) for x in np.random.rand(20)] black = (0,0,0,1) collection = RegularPolyCollection( numsides=5, # a pentagon rotation=0, sizes=(50,), facecolors = facecolors, edgecolors = (black,), linewidths = (1,), offsets = offsets, transOffset = ax.transData, ) """ Collection.__init__(self,**kwargs) self._sizes = sizes self._numsides = numsides self._paths = [self._path_generator(numsides)] self._rotation = rotation self.set_transform(transforms.IdentityTransform()) __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd def draw(self, renderer): self._transforms = [ transforms.Affine2D().rotate(-self._rotation).scale( (np.sqrt(x) * self.figure.dpi / 72.0) / np.sqrt(np.pi)) for x in self._sizes] return Collection.draw(self, renderer) def get_paths(self): return self._paths def get_numsides(self): return self._numsides def get_rotation(self): return self._rotation def get_sizes(self): return self._sizes class StarPolygonCollection(RegularPolyCollection): """ Draw a collection of regular stars with *numsides* points.""" _path_generator = mpath.Path.unit_regular_star class AsteriskPolygonCollection(RegularPolyCollection): """ Draw a collection of regular asterisks with *numsides* points.""" _path_generator = mpath.Path.unit_regular_asterisk class LineCollection(Collection): """ All parameters must be sequences or scalars; if scalars, they will be converted to sequences. The property of the ith line segment is:: prop[i % len(props)] i.e., the properties cycle if the ``len`` of props is less than the number of segments. """ zorder = 2 def __init__(self, segments, # Can be None. linewidths = None, colors = None, antialiaseds = None, linestyles = 'solid', offsets = None, transOffset = None, norm = None, cmap = None, pickradius = 5, **kwargs ): """ *segments* a sequence of (*line0*, *line1*, *line2*), where:: linen = (x0, y0), (x1, y1), ... (xm, ym) or the equivalent numpy array with two columns. Each line can be a different length. *colors* must be a sequence of RGBA tuples (eg arbitrary color strings, etc, not allowed). *antialiaseds* must be a sequence of ones or zeros *linestyles* [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ] a string or dash tuple. The dash tuple is:: (offset, onoffseq), where *onoffseq* is an even length tuple of on and off ink in points. If *linewidths*, *colors*, or *antialiaseds* is None, they default to their rcParams setting, in sequence form. If *offsets* and *transOffset* are not None, then *offsets* are transformed by *transOffset* and applied after the segments have been transformed to display coordinates. If *offsets* is not None but *transOffset* is None, then the *offsets* are added to the segments before any transformation. In this case, a single offset can be specified as:: offsets=(xo,yo) and this value will be added cumulatively to each successive segment, so as to produce a set of successively offset curves. *norm* None (optional for :class:`matplotlib.cm.ScalarMappable`) *cmap* None (optional for :class:`matplotlib.cm.ScalarMappable`) *pickradius* is the tolerance for mouse clicks picking a line. The default is 5 pt. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` matrix :attr:`~matplotlib.cm.ScalarMappable._A` is not None (ie a call to :meth:`~matplotlib.cm.ScalarMappable.set_array` has been made), at draw time a call to scalar mappable will be made to set the colors. """ if colors is None: colors = mpl.rcParams['lines.color'] if linewidths is None: linewidths = (mpl.rcParams['lines.linewidth'],) if antialiaseds is None: antialiaseds = (mpl.rcParams['lines.antialiased'],) self.set_linestyles(linestyles) colors = _colors.colorConverter.to_rgba_array(colors) Collection.__init__( self, edgecolors=colors, linewidths=linewidths, linestyles=linestyles, antialiaseds=antialiaseds, offsets=offsets, transOffset=transOffset, norm=norm, cmap=cmap, pickradius=pickradius, **kwargs) self.set_facecolors([]) self.set_segments(segments) def get_paths(self): return self._paths def set_segments(self, segments): if segments is None: return _segments = [] for seg in segments: if not np.ma.isMaskedArray(seg): seg = np.asarray(seg, np.float_) _segments.append(seg) if self._uniform_offsets is not None: _segments = self._add_offsets(_segments) self._paths = [mpath.Path(seg) for seg in _segments] set_verts = set_segments # for compatibility with PolyCollection def _add_offsets(self, segs): offsets = self._uniform_offsets Nsegs = len(segs) Noffs = offsets.shape[0] if Noffs == 1: for i in range(Nsegs): segs[i] = segs[i] + i * offsets else: for i in range(Nsegs): io = i%Noffs segs[i] = segs[i] + offsets[io:io+1] return segs def set_color(self, c): """ Set the color(s) of the line collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence ACCEPTS: matplotlib color arg or sequence of rgba tuples """ self._edgecolors = _colors.colorConverter.to_rgba_array(c) def color(self, c): """ Set the color(s) of the line collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence ACCEPTS: matplotlib color arg or sequence of rgba tuples """ warnings.warn('LineCollection.color deprecated; use set_color instead') return self.set_color(c) def get_color(self): return self._edgecolors get_colors = get_color # for compatibility with old versions class CircleCollection(Collection): """ A collection of circles, drawn using splines. """ def __init__(self, sizes, **kwargs): """ *sizes* Gives the area of the circle in points^2 %(Collection)s """ Collection.__init__(self,**kwargs) self._sizes = sizes self.set_transform(transforms.IdentityTransform()) self._paths = [mpath.Path.unit_circle()] __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd def draw(self, renderer): # sizes is the area of the circle circumscribing the polygon # in points^2 self._transforms = [ transforms.Affine2D().scale( (np.sqrt(x) * self.figure.dpi / 72.0) / np.sqrt(np.pi)) for x in self._sizes] return Collection.draw(self, renderer) def get_paths(self): return self._paths class EllipseCollection(Collection): """ A collection of ellipses, drawn using splines. """ def __init__(self, widths, heights, angles, units='points', **kwargs): """ *widths*: sequence half-lengths of first axes (e.g., semi-major axis lengths) *heights*: sequence half-lengths of second axes *angles*: sequence angles of first axes, degrees CCW from the X-axis *units*: ['points' | 'inches' | 'dots' | 'width' | 'height' | 'x' | 'y'] units in which majors and minors are given; 'width' and 'height' refer to the dimensions of the axes, while 'x' and 'y' refer to the *offsets* data units. Additional kwargs inherited from the base :class:`Collection`: %(Collection)s """ Collection.__init__(self,**kwargs) self._widths = np.asarray(widths).ravel() self._heights = np.asarray(heights).ravel() self._angles = np.asarray(angles).ravel() *(np.pi/180.0) self._units = units self.set_transform(transforms.IdentityTransform()) self._transforms = [] self._paths = [mpath.Path.unit_circle()] self._initialized = False __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd def _init(self): def on_dpi_change(fig): self._transforms = [] self.figure.callbacks.connect('dpi_changed', on_dpi_change) self._initialized = True def set_transforms(self): if not self._initialized: self._init() self._transforms = [] ax = self.axes fig = self.figure if self._units in ('x', 'y'): if self._units == 'x': dx0 = ax.viewLim.width dx1 = ax.bbox.width else: dx0 = ax.viewLim.height dx1 = ax.bbox.height sc = dx1/dx0 else: if self._units == 'inches': sc = fig.dpi elif self._units == 'points': sc = fig.dpi / 72.0 elif self._units == 'width': sc = ax.bbox.width elif self._units == 'height': sc = ax.bbox.height elif self._units == 'dots': sc = 1.0 else: raise ValueError('unrecognized units: %s' % self._units) _affine = transforms.Affine2D for x, y, a in zip(self._widths, self._heights, self._angles): trans = _affine().scale(x * sc, y * sc).rotate(a) self._transforms.append(trans) def draw(self, renderer): if True: ###not self._transforms: self.set_transforms() return Collection.draw(self, renderer) def get_paths(self): return self._paths class PatchCollection(Collection): """ A generic collection of patches. This makes it easier to assign a color map to a heterogeneous collection of patches. This also may improve plotting speed, since PatchCollection will draw faster than a large number of patches. """ def __init__(self, patches, match_original=False, **kwargs): """ *patches* a sequence of Patch objects. This list may include a heterogeneous assortment of different patch types. *match_original* If True, use the colors and linewidths of the original patches. If False, new colors may be assigned by providing the standard collection arguments, facecolor, edgecolor, linewidths, norm or cmap. If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their :data:`matplotlib.rcParams` patch setting, in sequence form. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not None (ie a call to set_array has been made), at draw time a call to scalar mappable will be made to set the face colors. """ if match_original: def determine_facecolor(patch): if patch.fill: return patch.get_facecolor() return [0, 0, 0, 0] facecolors = [determine_facecolor(p) for p in patches] edgecolors = [p.get_edgecolor() for p in patches] linewidths = [p.get_linewidths() for p in patches] antialiaseds = [p.get_antialiased() for p in patches] Collection.__init__( self, edgecolors=edgecolors, facecolors=facecolors, linewidths=linewidths, linestyles='solid', antialiaseds = antialiaseds) else: Collection.__init__(self, **kwargs) paths = [p.get_transform().transform_path(p.get_path()) for p in patches] self._paths = paths def get_paths(self): return self._paths artist.kwdocd['Collection'] = patchstr = artist.kwdoc(Collection) for k in ('QuadMesh', 'PolyCollection', 'BrokenBarHCollection', 'RegularPolyCollection', 'StarPolygonCollection', 'PatchCollection', 'CircleCollection'): artist.kwdocd[k] = patchstr artist.kwdocd['LineCollection'] = artist.kwdoc(LineCollection)
agpl-3.0
start-jsk/jsk_apc
jsk_2015_05_baxter_apc/scripts/stat_object_size.py
2
1680
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import os.path as osp import pickle import cv2 import numpy as np import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import jsk_apc2015_common def get_object_sizes(data_dir): cache_file = 'object_sizes.pkl' if osp.exists(cache_file): return pickle.load(open(cache_file, 'rb')) img_shape = None objects = jsk_apc2015_common.get_object_list() df = [] for obj in objects: mask_files = os.listdir(osp.join(data_dir, obj, 'masks')) for f in mask_files: if f.startswith('NP'): continue mask = cv2.imread(osp.join(data_dir, obj, 'masks', f), 0) if img_shape is None: img_shape = mask.shape else: assert img_shape == mask.shape mask = (mask > 127).astype(int) size = mask.sum() df.append([objects.index(obj), obj, f, size]) df = pd.DataFrame(df) df.columns = ['object_index', 'object_name', 'fname', 'size'] pickle.dump(df, open(cache_file, 'wb')) return df if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('data_dir', help='APC2015berkeley dataset path') args = parser.parse_args() df = get_object_sizes(data_dir=args.data_dir) median_size = df.groupby('object_name').median()['size'] df['size'] /= median_size.max() order = df.groupby('object_name').median().sort('size')[::-1]['object_index'].astype(np.int64) sns.boxplot(x='object_index', y='size', data=df, order=order) plt.savefig('apc2015_object_sizes.png')
bsd-3-clause
bravelittlescientist/kdd-particle-physics-ml-fall13
src/random_forest.py
1
1905
#!/usr/bin/python2 # This is a random forest ensemble classifier based on the scikit # ensembles module. # taking as input an X and Y and any tree complexity parameters, and # returning a classifier that can then be analyzed with the classifier. # See the example in the main method for that and error-checking. # # Decision tree documentation: # http://scikit-learn.org/stable/modules/tree.html import sys from util import get_split_training_dataset from metrics import suite import feature_selection_trees as fclassify from sklearn.ensemble import RandomForestClassifier from sklearn.grid_search import GridSearchCV def train(Xtrain, Ytrain, n=350, grid=False): """ Use entirety of provided X, Y to train random forest Arguments Xtrain -- Training data Ytrain -- Training prediction Returns classifier -- A random forest of n estimators, fitted to Xtrain and Ytrain """ if grid == True: forest = RandomForestClassifier(max_depth=None, random_state=0, min_samples_split=1,max_features=38) parameters = { 'n_estimators': [200,250,300], } # Classify over grid of parameters classifier = GridSearchCV(forest, parameters) else: classifier = RandomForestClassifier(n_estimators=n) classifier.fit(Xtrain, Ytrain) return classifier if __name__ == "__main__": # Let's take our training data and train a random forest # on a subset. Xt, Xv, Yt, Yv = get_split_training_dataset() print "Random Forest Classifier" Classifier = train(Xt, Yt) suite(Yv, Classifier.predict(Xv)) # smaller feature set Xtimp, features = fclassify.get_important_data_features(Xt, Yt) Xvimp = fclassify.compress_data_to_important_features(Xv, features) ClassifierImp = train(Xtimp,Yt) print "Forest Classiifer, ~25 important features" suite(Yv, ClassifierImp.predict(Xvimp))
gpl-2.0
yanlend/scikit-learn
sklearn/tests/test_grid_search.py
53
28730
""" Testing for grid search module (sklearn.grid_search) """ from collections import Iterable, Sized from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.externals.six.moves import xrange from itertools import chain, product import pickle import sys import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from scipy.stats import bernoulli, expon, uniform from sklearn.externals.six.moves import zip from sklearn.base import BaseEstimator from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_multilabel_classification from sklearn.grid_search import (GridSearchCV, RandomizedSearchCV, ParameterGrid, ParameterSampler, ChangedBehaviorWarning) from sklearn.svm import LinearSVC, SVC from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans from sklearn.neighbors import KernelDensity from sklearn.metrics import f1_score from sklearn.metrics import make_scorer from sklearn.metrics import roc_auc_score from sklearn.cross_validation import KFold, StratifiedKFold, FitFailedWarning from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline # Neither of the following two estimators inherit from BaseEstimator, # to test hyperparameter search on user-defined classifiers. class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) return self def predict(self, T): return T.shape[0] predict_proba = predict decision_function = predict transform = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=False): return {'foo_param': self.foo_param} def set_params(self, **params): self.foo_param = params['foo_param'] return self class LinearSVCNoScore(LinearSVC): """An LinearSVC classifier that has no score method.""" @property def score(self): raise AttributeError X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) def assert_grid_iter_equals_getitem(grid): assert_equal(list(grid), [grid[i] for i in range(len(grid))]) def test_parameter_grid(): # Test basic properties of ParameterGrid. params1 = {"foo": [1, 2, 3]} grid1 = ParameterGrid(params1) assert_true(isinstance(grid1, Iterable)) assert_true(isinstance(grid1, Sized)) assert_equal(len(grid1), 3) assert_grid_iter_equals_getitem(grid1) params2 = {"foo": [4, 2], "bar": ["ham", "spam", "eggs"]} grid2 = ParameterGrid(params2) assert_equal(len(grid2), 6) # loop to assert we can iterate over the grid multiple times for i in xrange(2): # tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2) points = set(tuple(chain(*(sorted(p.items())))) for p in grid2) assert_equal(points, set(("bar", x, "foo", y) for x, y in product(params2["bar"], params2["foo"]))) assert_grid_iter_equals_getitem(grid2) # Special case: empty grid (useful to get default estimator settings) empty = ParameterGrid({}) assert_equal(len(empty), 1) assert_equal(list(empty), [{}]) assert_grid_iter_equals_getitem(empty) assert_raises(IndexError, lambda: empty[1]) has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}]) assert_equal(len(has_empty), 4) assert_equal(list(has_empty), [{'C': 1}, {'C': 10}, {}, {'C': .5}]) assert_grid_iter_equals_getitem(has_empty) def test_grid_search(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) # make sure it selects the smallest parameter in case of ties old_stdout = sys.stdout sys.stdout = StringIO() grid_search.fit(X, y) sys.stdout = old_stdout assert_equal(grid_search.best_estimator_.foo_param, 2) for i, foo_i in enumerate([1, 2, 3]): assert_true(grid_search.grid_scores_[i][0] == {'foo_param': foo_i}) # Smoke test the score etc: grid_search.score(X, y) grid_search.predict_proba(X) grid_search.decision_function(X) grid_search.transform(X) # Test exception handling on scoring grid_search.scoring = 'sklearn' assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_grid_search_no_score(): # Test grid-search on classifier that has no score function. clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] clf_no_score = LinearSVCNoScore(random_state=0) grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy') grid_search.fit(X, y) grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}, scoring='accuracy') # smoketest grid search grid_search_no_score.fit(X, y) # check that best params are equal assert_equal(grid_search_no_score.best_params_, grid_search.best_params_) # check that we can call score and that it gives the correct result assert_equal(grid_search.score(X, y), grid_search_no_score.score(X, y)) # giving no scoring function raises an error grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}) assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit, [[1]]) def test_grid_search_score_method(): X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2, random_state=0) clf = LinearSVC(random_state=0) grid = {'C': [.1]} search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y) search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y) search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid, scoring='roc_auc').fit(X, y) search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y) # Check warning only occurs in situation where behavior changed: # estimator requires score method to compete with scoring parameter score_no_scoring = assert_no_warnings(search_no_scoring.score, X, y) score_accuracy = assert_warns(ChangedBehaviorWarning, search_accuracy.score, X, y) score_no_score_auc = assert_no_warnings(search_no_score_method_auc.score, X, y) score_auc = assert_warns(ChangedBehaviorWarning, search_auc.score, X, y) # ensure the test is sane assert_true(score_auc < 1.0) assert_true(score_accuracy < 1.0) assert_not_equal(score_auc, score_accuracy) assert_almost_equal(score_accuracy, score_no_scoring) assert_almost_equal(score_auc, score_no_score_auc) def test_trivial_grid_scores(): # Test search over a "grid" with only one point. # Non-regression test: grid_scores_ wouldn't be set by GridSearchCV. clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1]}) grid_search.fit(X, y) assert_true(hasattr(grid_search, "grid_scores_")) random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1) random_search.fit(X, y) assert_true(hasattr(random_search, "grid_scores_")) def test_no_refit(): # Test that grid search can be used for model selection only clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=False) grid_search.fit(X, y) assert_true(hasattr(grid_search, "best_params_")) def test_grid_search_error(): # Test that grid search will capture errors on data with different # length X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_[:180], y_) def test_grid_search_iid(): # test the iid parameter # noise-free simple 2d-data X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0, cluster_std=0.1, shuffle=False, n_samples=80) # split dataset into two folds that are not iid # first one contains data of all 4 blobs, second only from two. mask = np.ones(X.shape[0], dtype=np.bool) mask[np.where(y == 1)[0][::2]] = 0 mask[np.where(y == 2)[0][::2]] = 0 # this leads to perfect classification on one fold and a score of 1/3 on # the other svm = SVC(kernel='linear') # create "cv" for splits cv = [[mask, ~mask], [~mask, mask]] # once with iid=True (default) grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # for first split, 1/4 of dataset is in test, for second 3/4. # take weighted average assert_almost_equal(first.mean_validation_score, 1 * 1. / 4. + 1. / 3. * 3. / 4.) # once with iid=False grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv, iid=False) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) # scores are the same as above assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # averaged score is just mean of scores assert_almost_equal(first.mean_validation_score, np.mean(first.cv_validation_scores)) def test_grid_search_one_grid_point(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]} clf = SVC() cv = GridSearchCV(clf, param_dict) cv.fit(X_, y_) clf = SVC(C=1.0, kernel="rbf", gamma=0.1) clf.fit(X_, y_) assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_) def test_grid_search_bad_param_grid(): param_dict = {"C": 1.0} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": []} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": np.ones(6).reshape(3, 2)} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) def test_grid_search_sparse(): # Test that grid search works with both dense and sparse matrices X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180].tocoo(), y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_true(np.mean(y_pred == y_pred2) >= .9) assert_equal(C, C2) def test_grid_search_sparse_scoring(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_array_equal(y_pred, y_pred2) assert_equal(C, C2) # Smoke test the score # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]), # cv.score(X_[:180], y[:180])) # test loss where greater is worse def f1_loss(y_true_, y_pred_): return -f1_score(y_true_, y_pred_) F1Loss = make_scorer(f1_loss, greater_is_better=False) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss) cv.fit(X_[:180], y_[:180]) y_pred3 = cv.predict(X_[180:]) C3 = cv.best_estimator_.C assert_equal(C, C3) assert_array_equal(y_pred, y_pred3) def test_grid_search_precomputed_kernel(): # Test that grid search works when the input features are given in the # form of a precomputed kernel matrix X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) # compute the training kernel matrix corresponding to the linear kernel K_train = np.dot(X_[:180], X_[:180].T) y_train = y_[:180] clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(K_train, y_train) assert_true(cv.best_score_ >= 0) # compute the test kernel matrix K_test = np.dot(X_[180:], X_[:180].T) y_test = y_[180:] y_pred = cv.predict(K_test) assert_true(np.mean(y_pred == y_test) >= 0) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cv.fit, K_train.tolist(), y_train) def test_grid_search_precomputed_kernel_error_nonsquare(): # Test that grid search returns an error with a non-square precomputed # training kernel matrix K_train = np.zeros((10, 20)) y_train = np.ones((10, )) clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, K_train, y_train) def test_grid_search_precomputed_kernel_error_kernel_function(): # Test that grid search returns an error when using a kernel_function X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) kernel_function = lambda x1, x2: np.dot(x1, x2.T) clf = SVC(kernel=kernel_function) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_, y_) class BrokenClassifier(BaseEstimator): """Broken classifier that cannot be fit twice""" def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y): assert_true(not hasattr(self, 'has_been_fit_')) self.has_been_fit_ = True def predict(self, X): return np.zeros(X.shape[0]) @ignore_warnings def test_refit(): # Regression test for bug in refitting # Simulates re-fitting a broken estimator; this used to break with # sparse SVMs. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}], scoring="precision", refit=True) clf.fit(X, y) def test_gridsearch_nd(): # Pass X as list in GridSearchCV X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) check_X = lambda x: x.shape[1:] == (5, 3, 2) check_y = lambda x: x.shape[1:] == (7, 11) clf = CheckingClassifier(check_X=check_X, check_y=check_y) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_4d, y_3d).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_X_as_list(): # Pass X as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_X=lambda x: isinstance(x, list)) cv = KFold(n=len(X), n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X.tolist(), y).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_y_as_list(): # Pass y as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_y=lambda x: isinstance(x, list)) cv = KFold(n=len(X), n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X, y.tolist()).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_pandas_input(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((DataFrame, Series)) except ImportError: pass X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) for InputFeatureType, TargetType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_df, y_ser).score(X_df, y_ser) grid_search.predict(X_df) assert_true(hasattr(grid_search, "grid_scores_")) def test_unsupervised_grid_search(): # test grid-search with unsupervised estimator X, y = make_blobs(random_state=0) km = KMeans(random_state=0) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='adjusted_rand_score') grid_search.fit(X, y) # ARI can find the right number :) assert_equal(grid_search.best_params_["n_clusters"], 3) # Now without a score, and without y grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4])) grid_search.fit(X) assert_equal(grid_search.best_params_["n_clusters"], 4) def test_gridsearch_no_predict(): # test grid-search with an estimator without predict. # slight duplication of a test from KDE def custom_scoring(estimator, X): return 42 if estimator.bandwidth == .1 else 0 X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) search = GridSearchCV(KernelDensity(), param_grid=dict(bandwidth=[.01, .1, 1]), scoring=custom_scoring) search.fit(X) assert_equal(search.best_params_['bandwidth'], .1) assert_equal(search.best_score_, 42) def test_param_sampler(): # test basic properties of param sampler param_distributions = {"kernel": ["rbf", "linear"], "C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) samples = [x for x in sampler] assert_equal(len(samples), 10) for sample in samples: assert_true(sample["kernel"] in ["rbf", "linear"]) assert_true(0 <= sample["C"] <= 1) def test_randomized_search_grid_scores(): # Make a dataset with a lot of noise to get various kind of prediction # errors across CV folds and parameter settings X, y = make_classification(n_samples=200, n_features=100, n_informative=3, random_state=0) # XXX: as of today (scipy 0.12) it's not possible to set the random seed # of scipy.stats distributions: the assertions in this test should thus # not depend on the randomization params = dict(C=expon(scale=10), gamma=expon(scale=0.1)) n_cv_iter = 3 n_search_iter = 30 search = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_cv_iter, param_distributions=params, iid=False) search.fit(X, y) assert_equal(len(search.grid_scores_), n_search_iter) # Check consistency of the structure of each cv_score item for cv_score in search.grid_scores_: assert_equal(len(cv_score.cv_validation_scores), n_cv_iter) # Because we set iid to False, the mean_validation score is the # mean of the fold mean scores instead of the aggregate sample-wise # mean score assert_almost_equal(np.mean(cv_score.cv_validation_scores), cv_score.mean_validation_score) assert_equal(list(sorted(cv_score.parameters.keys())), list(sorted(params.keys()))) # Check the consistency with the best_score_ and best_params_ attributes sorted_grid_scores = list(sorted(search.grid_scores_, key=lambda x: x.mean_validation_score)) best_score = sorted_grid_scores[-1].mean_validation_score assert_equal(search.best_score_, best_score) tied_best_params = [s.parameters for s in sorted_grid_scores if s.mean_validation_score == best_score] assert_true(search.best_params_ in tied_best_params, "best_params_={0} is not part of the" " tied best models: {1}".format( search.best_params_, tied_best_params)) def test_grid_search_score_consistency(): # test that correct scores are used clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] for score in ['f1', 'roc_auc']: grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score) grid_search.fit(X, y) cv = StratifiedKFold(n_folds=3, y=y) for C, scores in zip(Cs, grid_search.grid_scores_): clf.set_params(C=C) scores = scores[2] # get the separate runs from grid scores i = 0 for train, test in cv: clf.fit(X[train], y[train]) if score == "f1": correct_score = f1_score(y[test], clf.predict(X[test])) elif score == "roc_auc": dec = clf.decision_function(X[test]) correct_score = roc_auc_score(y[test], dec) assert_almost_equal(correct_score, scores[i]) i += 1 def test_pickle(): # Test that a fit search can be pickled clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True) grid_search.fit(X, y) pickle.dumps(grid_search) # smoke test random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True, n_iter=3) random_search.fit(X, y) pickle.dumps(random_search) # smoke test def test_grid_search_with_multioutput_data(): # Test search with multi-output estimator X, y = make_multilabel_classification(random_state=0) est_parameters = {"max_depth": [1, 2, 3, 4]} cv = KFold(y.shape[0], random_state=0) estimators = [DecisionTreeRegressor(random_state=0), DecisionTreeClassifier(random_state=0)] # Test with grid search cv for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv) grid_search.fit(X, y) for parameters, _, cv_validation_scores in grid_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) # Test with a randomized search for est in estimators: random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3) random_search.fit(X, y) for parameters, _, cv_validation_scores in random_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) def test_predict_proba_disabled(): # Test predict_proba when disabled on estimator. X = np.arange(20).reshape(5, -1) y = [0, 0, 1, 1, 1] clf = SVC(probability=False) gs = GridSearchCV(clf, {}, cv=2).fit(X, y) assert_false(hasattr(gs, "predict_proba")) def test_grid_search_allows_nans(): # Test GridSearchCV with Imputer X = np.arange(20, dtype=np.float64).reshape(5, -1) X[2, :] = np.nan y = [0, 0, 1, 1, 1] p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y) class FailingClassifier(BaseEstimator): """Classifier that raises a ValueError on fit()""" FAILING_PARAMETER = 2 def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y=None): if self.parameter == FailingClassifier.FAILING_PARAMETER: raise ValueError("Failing classifier failed as required") def predict(self, X): return np.zeros(X.shape[0]) def test_grid_search_failing_classifier(): # GridSearchCV with on_error != 'raise' # Ensures that a warning is raised and score reset where appropriate. X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we only want to check that errors caused by fits # to individual folds will be caught and warnings raised instead. If # refit was done, then an exception would be raised on refit and not # caught by grid_search (expected behavior), and this would cause an # error in this test. gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=0.0) assert_warns(FitFailedWarning, gs.fit, X, y) # Ensure that grid scores were set to zero as required for those fits # that are expected to fail. assert all(np.all(this_point.cv_validation_scores == 0.0) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=float('nan')) assert_warns(FitFailedWarning, gs.fit, X, y) assert all(np.all(np.isnan(this_point.cv_validation_scores)) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) def test_grid_search_failing_classifier_raise(): # GridSearchCV with on_error == 'raise' raises the error X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we want to test the behaviour of the grid search part gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score='raise') # FailingClassifier issues a ValueError so this is what we look for. assert_raises(ValueError, gs.fit, X, y) def test_parameters_sampler_replacement(): # raise error if n_iter too large params = {'first': [0, 1], 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params, n_iter=7) assert_raises(ValueError, list, sampler) # degenerates to GridSearchCV if n_iter the same as grid_size sampler = ParameterSampler(params, n_iter=6) samples = list(sampler) assert_equal(len(samples), 6) for values in ParameterGrid(params): assert_true(values in samples) # test sampling without replacement in a large grid params = {'a': range(10), 'b': range(10), 'c': range(10)} sampler = ParameterSampler(params, n_iter=99, random_state=42) samples = list(sampler) assert_equal(len(samples), 99) hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c']) for p in samples] assert_equal(len(set(hashable_samples)), 99) # doesn't go into infinite loops params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params_distribution, n_iter=7) samples = list(sampler) assert_equal(len(samples), 7)
bsd-3-clause
ldamewood/renormalization
rain/abstaining.py
1
7862
#!/usr/bin/env python # -*- coding: utf-8 -*- # This is dumb from __future__ import print_function from sklearn.ensemble.base import BaseEnsemble from sklearn.ensemble.weight_boosting import AdaBoostClassifier from sklearn.multiclass import OneVsRestClassifier from scipy.stats import itemfreq import numpy as np import itertools def hash_row(row): one = np.uint64(1) zero = np.uint64(0) acc = zero for i in row: acc = np.left_shift(acc, one) acc = np.bitwise_or(acc, one if i else zero) return acc def unhash_row(h, cols = None): row = [] h = np.uint64(h) one = np.uint64(1) zero = np.uint64(0) if cols is None: while h > 0: row.append(np.bitwise_and(h, one)==zero) h = np.right_shift(h, one) else: for col in range(cols): row.append(np.bitwise_and(h, one)==zero) h = np.right_shift(h, one) return row[::-1] def weights(y): return {x : 1.*f/len(y) for x,f in itemfreq(y)} def transform_X_for_hash(X, h = 0): cols = np.array(unhash_row(h, X.shape[1])) rows = ~np.isnan(X[:,cols]).any(axis=1) return X[rows][:,cols], rows, cols class AbstainingClassifier(BaseEnsemble): def __init__(self, base_estimator=None, n_estimators=50, estimator_params=tuple(), learning_rate=1., random_state=None, verbose = False): super(AbstainingClassifier, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self._verbose = verbose self._poly2features = False def fit(self, X, y): self.classes_ = np.unique(y) self.n_classes_ = len(self.classes_) # Find all feature hashes # Feature: poly2 missing, etc hashes hashes = np.unique(np.array([hash_row(i) for i in np.isnan(X)], dtype = np.uint64)) if self._poly2features: hashes = np.unique([np.bitwise_or(i,j) for i,j in list(itertools.product(hashes, hashes))]) self._validate_estimator() self.estimators_ = {} self.estimator_weights_ = {} self.estimator_errors_ = {} for h in hashes: self.estimators_[h] = self._make_estimator(append = False) if self._verbose: print('Training on hash #%d' % h) X_trans, rows, cols = transform_X_for_hash(X, h) y_trans = y[rows] if np.unique(y_trans).shape[0] == 1: # Abstain from all data since there is only one class. # Possible improvement - could this tell us that these features don't do anything? self.estimator_weights_[h] = 0. del self.estimators_[h] continue self.estimators_[h].fit(X_trans,y_trans) incorrect = sum(self.estimators_[h].predict(X_trans) != y_trans) abstaining = X.shape[0] - rows.sum() wM = np.min(1. * incorrect / X.shape[0], 0.000001) wA = 1. * abstaining / X.shape[0] wC = 1 - wM - wA print(wC, wM, wA) self.estimator_weights_[h] = 1.#np.log(wC/wM) - np.log(len(self.estimators_[h].classes_) - 1) weightsum = sum(self.estimator_weights_.values()) for h in self.estimator_weights_.iterkeys(): self.estimator_weights_[h] /= weightsum def predict_proba(self, X): #hashes = np.array([hash_row(i) for i in np.isnan(X)], dtype=long) yres = np.zeros([X.shape[0], len(self.classes_)]) for h in self.estimators_.iterkeys(): weight = self.estimator_weights_[h] estimator = self.estimators_[h] X_trans, rows, cols = transform_X_for_hash(X, h) if X_trans.shape[0] < 2 or X_trans.shape[1] < 2: continue print(h,X_trans.shape) y_predict = estimator.predict_proba(X_trans) for cls in estimator.classes_: yres[rows][:,self.classes_ == cls] += weight * y_predict[:,estimator.classes_ == cls] return yres def predict(self, X): pred = self.decision_function(X) if self.n_classes_ == 2: return self.classes_.take(pred > 0, axis=0) return self.classes_.take(np.argmax(pred, axis=1), axis=0) def decision_function(self, X): #check_is_fitted(self, "n_classes_") #X = self._validate_X_predict(X) pred = None pred = np.zeros([X.shape[0], self.n_classes_]) for h in self.estimators_.iterkeys(): X_trans, rows, cols = transform_X_for_hash(X, h) classes = self.estimators_[h].classes_[:, np.newaxis] n_classes = len(self.estimators_[h].classes_) pred[rows] += np.array([self.classes_ == self.estimators_[h].classes_[i] for i in (self.estimators_[h].predict(X_trans) == classes).T]) pred[rows] *= self.estimator_weights_[h] #pred /= sum(self.estimator_weights_.values()) #if n_classes == 2: # pred[:, 0] *= -1 # return pred.sum(axis=1) return pred if __name__ == '__main__': print(__doc__) # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # License: BSD 3 clause # Standard scientific Python imports import matplotlib.pyplot as plt # Import datasets, classifiers and performance metrics from sklearn import datasets, linear_model, metrics, svm # The digits dataset digits = datasets.load_digits() # The data that we are interested in is made of 8x8 images of digits, let's # have a look at the first 3 images, stored in the `images` attribute of the # dataset. If we were working from image files, we could load them using # pylab.imread. Note that each image must have the same size. For these # images, we know which digit they represent: it is given in the 'target' of # the dataset. images_and_labels = list(zip(digits.images, digits.target)) for index, (image, label) in enumerate(images_and_labels[:4]): plt.subplot(2, 4, index + 1) plt.axis('off') plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') plt.title('Training: %i' % label) # To apply a classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) data = digits.images.reshape((n_samples, -1)) R = (np.random.random(data[:n_samples / 2].shape) > 0.01) data[:n_samples / 2] += np.power(R-1.,0.5) # Create a classifier: a support vector classifier baseclassifier = svm.SVC(gamma = 0.001) classifier = AbstainingClassifier(baseclassifier) # We learn the digits on the first half of the digits classifier.fit(data[:n_samples / 2], digits.target[:n_samples / 2]) # Now predict the value of the digit on the second half: expected = digits.target[n_samples / 2:] predicted = classifier.predict(data[n_samples / 2:]) print("Classification report for classifier %s:\n%s\n" % (classifier, metrics.classification_report(expected, predicted))) print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted)) images_and_predictions = list(zip(digits.images[n_samples / 2:], predicted)) for index, (image, prediction) in enumerate(images_and_predictions[:4]): plt.subplot(2, 4, index + 5) plt.axis('off') plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') plt.title('Prediction: %i' % prediction) plt.show()
mit
ctogle/dilapidator
src/dilap/BROKEN/graph/graph.py
1
15113
import dilap.core.base as db import dilap.core.tools as dpr import dilap.core.vector as dpv import dilap.core.pointset as dps #import dilap.core.graphnode as gnd #import dilap.core.graphedge as geg import dilap.mesh.tools as dtl import matplotlib.pyplot as plt import pdb class geometry(db.base): def radius(self): pmags = [] for x in range(self.points.pcnt): pmags.append(self.points.ps[x].magnitude()) return max(pmags) def __init__(self,*args,**kwargs): self.points = dps.pointset() self.curves = [] self.surfaces = [] class node(db.base): def connect(self,other): if not other in self.ring: self.ring.append(other) def disconnect(self,other): if other in self.ring: self.ring.remove(other) def __init__(self,index,px,**kwargs): self.index = index self.px = px self.ring = [] class edge(db.base): def connect(self,other): if not other in self.ring: self.ring.append(other) def disconnect(self,other): if other in self.ring: self.ring.remove(other) def __init__(self,index,one,two,**kwargs): self.index = index self.one = one self.two = two self.ring = [] class loop(db.base): def __init__(self,index,*edges,**kwargs): self.index = index self.edges = edges class face(db.base): def __init__(self,index,*loops,**kwargs): self.index = index self.loops = loops self.fnorm = None class body(db.base): def __init__(self,index,*faces,**kwargs): self.index = index self.faces = faces class hole(db.base): def __init__(self,index,body,**kwargs): self.index = index self.body = body class mesh(db.base): # returns all the d-cells incident on the # (d-1)-cells and adjacent to the (d+1)-cells, after # considering the restrictions imposed by non-None arguments def mask(self,d = 0,v = None,e = None,l = None): results = [] if d == 0: if not v is None: for ve in self.mask(1,v,None,None): for vv in self.mask(0,None,ve,None): if not vv is v:results.append(vv) if not e is None:results.extend([e.one,e.two]) if not l is None: for ve in self.mask(1,None,None,l): for vv in self.mask(0,None,ve,None): if not vv in results:results.append(vv) elif d == 1: if not v is None:results.extend(v.ring) if not e is None: for vv in self.mask(0,None,e,None): for ve in self.mask(1,vv,None,None): if not ve is e:results.append(ve) if not l is None:results.extend(l.edges) elif d == 2: if not v is None: for ve in self.mask(1,v,None,None): for vl in self.mask(2,None,ve,None): if not vl in results:results.append(vl) if not e is None:results.extend(e.ring) if not l is None: for ve in self.mask(1,None,None,l): for vl in self.mask(2,None,ve,None): if not vl is l:results.append(vl) return results def __init__(self,index,owner,**kwargs): self.index = index self.owner = owner self.nodes = [] self.edges = [] self.loops = [] self.faces = [] self.bdies = [] self.holes = [] self.nlook = {} self.elook = {} self.nodecount = 0 self.edgecount = 0 self.loopcount = 0 self.facecount = 0 self.bodycount = 0 self.holecount = 0 def topo(self): return (self.nodecount,self.edgecount,self.loopcount, self.facecount,self.bodycount,self.holecount) def eulerstate(self): v,e,l,f,s,g = self.topo() state = v-e+f-(l-f)-2*(s-g) return state # make-body-face-loop-vertex def mbflv(self,nx): newnode = self.add_node(nx) newloop = self.add_loop() newface = self.add_face(newloop) newbody = self.add_body(newface) return newface,newloop,newnode # make-edge-vertex # create an edge starting at e with angle a def mev(self,v,e = None,a = None): dp = dpv.vector(0,0,0) np = self.owner.geom.points.ps[v.index].copy().translate(dp) nx = self.owner.geom.new_point(np) newnode = self.add_node(nx) newedge = self.add_edge(v,newnode) return newedge,newnode # make-edge # def me(self,v1,v2,e1 = None,a1 = None,e2 = None,a2 = None): # call either mekl,mefl,or mekbfl #newedge = self.add_edge(v1,v2) #return newedge.index raise NotImplemented # make-edge-kill-loop def mekl(self):raise NotImplemented # make-edge-face-loop def mefl(self):raise NotImplemented # make-edge-kill-body-face-loop def mekbfl(self):raise NotImplemented def glue(self):raise NotImplemented def dkflev(self):raise NotImplemented def kev(self):raise NotImplemented def ke(self):raise NotImplemented def unglue(self):raise NotImplemented def mme(self):raise NotImplemented def esplit(self):raise NotImplemented def kve(self):raise NotImplemented def lmove(self):raise NotImplemented def add_node(self,npx,**kwargs): if npx in self.nlook:return self.nlook[npx] newnode = node(self.nodecount,npx,**kwargs) self.nodes.append(newnode) self.nlook[newnode.px] = self.nodecount self.nodecount += 1 return newnode def add_edge(self,nd1,nd2,**kwargs): if type(nd1) == type(1):nd1 = self.nodes[nd1] if type(nd2) == type(1):nd2 = self.nodes[nd2] ekey1 = (nd1.index,nd2.index) ekey2 = (nd2.index,nd1.index) if nd2 in nd1.ring:return self.elook[ekey1] newedge = edge(self.edgecount,nd1,nd2,**kwargs) nd1.connect(nd2) nd2.connect(nd1) self.edges.append(newedge) self.elook[ekey1] = newedge.index self.elook[ekey2] = newedge.index self.edgecount += 1 return newedge def add_loop(self,*edges,**kwargs): newloop = loop(self.loopcount,edges,**kwargs) for eg in edges:eg.connect(newloop) self.loops.append(newloop) self.loopcount += 1 return newloop def add_face(self,*loops,**kwargs): newface = face(self.facecount,loops,**kwargs) #for lp in loops:lp.connect(newface) self.faces.append(newface) self.facecount += 1 return newface def add_body(self,*faces,**kwargs): newbody = body(self.bodycount,faces,**kwargs) #for lp in loops:lp.connect(newface) self.bdies.append(newbody) self.bodycount += 1 return newbody def delete_edge(self,ex): eg = self.edges[ex] nd1,nd2 = eg.one,eg.two nd1.disconnect(nd2) nd2.disconnect(nd1) ekey1 = (nd1.index,nd2.index) ekey2 = (nd2.index,nd1.index) self.edges[eg.index] = None del self.elook[ekey1] del self.elook[ekey2] def replace_edge(self,rx,*exs): ering = self.edges[rx].ring self.delete_edge(rx) for ex in exs: for er in ering: self.edges[ex].connect(er) class brep(db.base): def plot(self,ax = None): if ax is None:ax = dtl.plot_axes() for n in self.mesh.nodes: dtl.plot_point(self.geom.points.ps[n.px],ax) for e in self.mesh.edges: if e is None:continue eps = self.geom.points.ps[e.one.px],self.geom.points.ps[e.two.px] dtl.plot_edges(eps,ax) r = self.geom.radius() ax.set_xlim([-r,r]) ax.set_ylim([-r,r]) ax.set_zlim([-r,r]) return ax def __init__(self,*args,**kwargs): self.geom = geometry() self.mesh = mesh(0,self) def new_body(self,np): nx = self.geom.points.new_point(np) self.mesh.mbflv(nx) def add_node(self,p): x = self.points.new_point(p) self.mesh.add_node(x) def add_edge(self,p1,p2): x1,x2 = self.points.new_points(p1,p2) self.mesh.add_edge(x1,x2) def add_face(self,*ps): pxs = self.geom.points.new_points(*ps) pxs = [self.mesh.add_node(pxs[x]) for x in range(len(pxs))] exs = [self.mesh.add_edge(pxs[x-1],pxs[x]) for x in range(len(pxs))] self.mesh.add_face(*exs) def split_edge(self,ex): e = self.mesh.edges[ex] nds = self.mesh.mask(0,None,e,None) mp = dpv.midpoint(*self.geom.points.get_points(nds[0].px,nds[1].px)) mx = self.mesh.add_node(self.geom.points.add_point(mp)) e1 = self.mesh.add_edge(nds[0].index,mx) e2 = self.mesh.add_edge(nds[1].index,mx) self.mesh.replace_edge(e.index,e1,e2) def model(self): pdb.set_trace() def fun(self): self.add_face( dpv.vector( 0, 0,0),dpv.vector(10, 0,0), dpv.vector(10,10,0),dpv.vector( 0,10,0)) self.add_face( dpv.vector(10, 0,0),dpv.vector(20, 0,0), dpv.vector(20,10,0),dpv.vector(10,10,0)) self.geom.points.ps[1].translate_z(10) self.geom.points.ps[2].translate_z(10) self.split_edge(2) self.geom.points.ps[6].translate_z(2) return def btest(): br = brep() nbp = dpv.vector(1,1,0) br.new_body(nbp).mev(0) #br.fun() br.plot() plt.show() class twomanifold_graph(db.base): def plot(self,ax = None): if ax is None:ax = dtl.plot_axes() for n in self.nodes: if not n is None:n.plot(ax) for e in self.edges: if not e is None:e.plot(ax) for f in self.faces: if not f is None:f.plot(ax) r = self.radius() ax.set_xlim([-r,r]) ax.set_ylim([-r,r]) ax.set_zlim([-r,r]) return ax def radius(self): pmags = [] for nx in range(self.nodecount): nd = self.nodes[nx] if nd is None:continue pmags.append(nd.p.magnitude()) return max(pmags) def euler_poincare(self): #V – E + F = H + 2 * (S – G) left = len(self.nodes)-len(self.edges)+len(self.faces) right = 0 + 2 * (1 - 0) return left == right nodeclass = node edgeclass = edge faceclass = face def __init__(self,**kwargs): self._def('index',None,**kwargs) self.nodes = [] self.nodes_lookup = {} self.edges = [] self.edges_lookup = {} self.faces = [] self.faces_lookup = {} self.nodecount = 0 self.edgecount = 0 self.facecount = 0 # add a new node to the graph if no existing node exists # ndkey is a tuple(x,y,z) def add_node(self,ndkey,**kwargs): if ndkey in self.nodes_lookup: nd = self.nodes[self.nodes_lookup[ndkey]] if not nd is None:return nd.index nx,ny,nz = ndkey newnode = self.nodeclass(self.nodecount, dpv.vector(nx,ny,nz),**kwargs) self.nodes.append(newnode) self.nodes_lookup[newnode.key()] = newnode.index self.nodecount += 1 return newnode.index # delete an existing node from the graph def del_node(self,ndkey): if ndkey in self.nodes_lookup: nd = self.nodes[self.nodes_lookup[ndkey]] if nd is None:return for ekey in self.edges_lookup: if nd.index in ekey: self.del_edge(*ekey) self.nodes[nd.index] = None del self.nodes_lookup[nd.key()] # add a new edge to the graph, or return existing index def add_edge(self,ndkey1,ndkey2,**kwargs): if ndkey1 in self.nodes_lookup: nd1 = self.nodes[self.nodes_lookup[ndkey1]] else:nd1 = self.nodes[self.add_node(ndkey1)] if ndkey2 in self.nodes_lookup: nd2 = self.nodes[self.nodes_lookup[ndkey2]] else:nd2 = self.nodes[self.add_node(ndkey2)] egkey = (ndkey1,ndkey2) if egkey in self.edges_lookup: eg = self.edges[self.edges_lookup[egkey]] if not eg is None:return eg.index egkey = (ndkey2,ndkey1) if egkey in self.edges_lookup: eg = self.edges[self.edges_lookup[egkey]] if not eg is None:return eg.index newedge = self.edgeclass(self.edgecount,nd1,nd2,**kwargs) self.edges_lookup[(ndkey1,ndkey2)] = newedge.index self.edges_lookup[(ndkey2,ndkey1)] = newedge.index self.edges.append(newedge) self.edgecount += 1 return newedge.index # delete an existing edge from the graph def del_edge(self,ndkey1,ndkey2): ekey = (ndkey1,ndkey2) if not ekey in self.edges_lookup:return edge = self.edges[self.edges_lookup[ekey]] del self.edges_lookup[ekey] del self.edges_lookup[ekey[::-1]] self.edges[edge.index] = None # add a new face to the graph if no existing face exists # fkey is a tuple(nkey1,...,nkeyN) def add_face(self,fkey,**kwargs): pdb.set_trace() # delete an existing face from the graph def del_face(self,fkey): pdb.set_trace() def test(): g = graph() g.add_edge(( 0, 0,0),(10, 10,0)) g.add_edge(( 0, 0,0),(10,-10,0)) g.add_edge((10,10,0),( 0,-10,0)) g.plot() plt.show() '''# def get_nodes(self,nkeys): nds = [] for nk in nkeys: nd = self.nodes[self.nodes_lookup[nk]] nds.append(nd) return nds def get_node_points(self,nkeys): nps = [] for nk in nkeys: np = self.nodes[self.nodes_lookup[nk]].p nps.append(np.copy()) return nps # add a new edges to the graph, return indicies def _add_edges(self,ndkeys,**kwargs): edgexs = [] for kdx in range(1,len(ndkeys)): ndkey1,ndkey2 = ndkeys[kdx-1],ndkeys[kdx] edgexs.append(self._add_edge(ndkey1,ndkey2,**kwargs)) return edgexs # remove existing edge from ndx1 to ndx2 # add two new edges, connecting n to ndx1 and to ndx2 def _split_edge(self,ndx1,ndx2,newndx,**kwargs): sekey = self.edges_lookup[(ndx1,ndx2)] if not sekey is None: sedge = self.edges[sekey] kwargs['interpolated'] = sedge.interpolated self._del_edge(ndx1,ndx2) nd1,nd2 = self.nodes[ndx1],self.nodes[newndx] if nd1.p.near(nd2.p):pdb.set_trace() newedge = edge(nd1,nd2,**kwargs) self._add_edge(newedge) nd1,nd2 = self.nodes[ndx2],self.nodes[newndx] if nd1.p.near(nd2.p):pdb.set_trace() newedge = edge(nd1,nd2,**kwargs) self._add_edge(newedge) '''#
mit
waterponey/scikit-learn
sklearn/covariance/tests/test_robust_covariance.py
77
3825
# Author: Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Virgile Fritsch <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.exceptions import NotFittedError from sklearn import datasets from sklearn.covariance import empirical_covariance, MinCovDet, \ EllipticEnvelope from sklearn.covariance import fast_mcd X = datasets.load_iris().data X_1d = X[:, 0] n_samples, n_features = X.shape def test_mcd(): # Tests the FastMCD algorithm implementation # Small data set # test without outliers (random independent normal data) launch_mcd_on_dataset(100, 5, 0, 0.01, 0.1, 80) # test with a contaminated data set (medium contamination) launch_mcd_on_dataset(100, 5, 20, 0.01, 0.01, 70) # test with a contaminated data set (strong contamination) launch_mcd_on_dataset(100, 5, 40, 0.1, 0.1, 50) # Medium data set launch_mcd_on_dataset(1000, 5, 450, 0.1, 0.1, 540) # Large data set launch_mcd_on_dataset(1700, 5, 800, 0.1, 0.1, 870) # 1D data set launch_mcd_on_dataset(500, 1, 100, 0.001, 0.001, 350) def test_fast_mcd_on_invalid_input(): X = np.arange(100) assert_raise_message(ValueError, 'fast_mcd expects at least 2 samples', fast_mcd, X) def test_mcd_class_on_invalid_input(): X = np.arange(100) mcd = MinCovDet() assert_raise_message(ValueError, 'MinCovDet expects at least 2 samples', mcd.fit, X) def launch_mcd_on_dataset(n_samples, n_features, n_outliers, tol_loc, tol_cov, tol_support): rand_gen = np.random.RandomState(0) data = rand_gen.randn(n_samples, n_features) # add some outliers outliers_index = rand_gen.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (rand_gen.randint(2, size=(n_outliers, n_features)) - 0.5) data[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False pure_data = data[inliers_mask] # compute MCD by fitting an object mcd_fit = MinCovDet(random_state=rand_gen).fit(data) T = mcd_fit.location_ S = mcd_fit.covariance_ H = mcd_fit.support_ # compare with the estimates learnt from the inliers error_location = np.mean((pure_data.mean(0) - T) ** 2) assert(error_location < tol_loc) error_cov = np.mean((empirical_covariance(pure_data) - S) ** 2) assert(error_cov < tol_cov) assert(np.sum(H) >= tol_support) assert_array_almost_equal(mcd_fit.mahalanobis(data), mcd_fit.dist_) def test_mcd_issue1127(): # Check that the code does not break with X.shape = (3, 1) # (i.e. n_support = n_samples) rnd = np.random.RandomState(0) X = rnd.normal(size=(3, 1)) mcd = MinCovDet() mcd.fit(X) def test_outlier_detection(): rnd = np.random.RandomState(0) X = rnd.randn(100, 10) clf = EllipticEnvelope(contamination=0.1) assert_raises(NotFittedError, clf.predict, X) assert_raises(NotFittedError, clf.decision_function, X) clf.fit(X) y_pred = clf.predict(X) decision = clf.decision_function(X, raw_values=True) decision_transformed = clf.decision_function(X, raw_values=False) assert_array_almost_equal( decision, clf.mahalanobis(X)) assert_array_almost_equal(clf.mahalanobis(X), clf.dist_) assert_almost_equal(clf.score(X, np.ones(100)), (100 - y_pred[y_pred == -1].size) / 100.) assert(sum(y_pred == -1) == sum(decision_transformed < 0))
bsd-3-clause
shenzebang/scikit-learn
examples/linear_model/plot_sgd_iris.py
286
2202
""" ======================================== Plot multi-class SGD on the iris dataset ======================================== Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import SGDClassifier # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target colors = "bry" # shuffle idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std h = .02 # step size in the mesh clf = SGDClassifier(alpha=0.001, n_iter=100).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('tight') # Plot also the training points for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.Paired) plt.title("Decision surface of multi-class SGD") plt.axis('tight') # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.legend() plt.show()
bsd-3-clause
dhhagan/py-openaq
docs/conf.py
1
5532
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # py-openaq documentation build configuration file, created by # sphinx-quickstart on Sun Mar 12 20:42:43 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys import sphinx_bootstrap_theme import matplotlib as mpl mpl.use("Agg") sys.path.insert(0, os.path.abspath('sphinxext')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx.ext.autosummary', 'sphinx.ext.githubpages', 'matplotlib.sphinxext.plot_directive', 'plot_generator', 'numpydoc', 'ipython_directive', 'ipython_console_highlighting' ] autosummary_generate = True numpydoc_show_class_members = False plot_include_source = True plot_formats = [("png", 90)] plot_html_show_formats = False plot_html_show_source_link = False # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = 'py-openaq' import time copyright = '{}, David H Hagan'.format(time.strftime("%Y")) author = 'David H Hagan' # The short X.Y version. sys.path.insert(0, os.path.abspath(os.path.pardir)) import openaq version = openaq.__version__ # The full version, including alpha/beta/rc tags. release = openaq.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- html_theme = 'bootstrap' # Add any paths that contain custom themes here, relative to this directory. html_theme_path = sphinx_bootstrap_theme.get_html_theme_path() html_theme_options = { 'source_link_position': 'footer', 'bootswatch_theme': 'paper', 'navbar_sidebarrel': False, 'bootstrap_version': "3", 'navbar_links': [ ("API", "api"), ("Tutorial", "tutorial"), ("Gallery", "examples/index") ] } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static', 'example_thumbs'] # Output file base name for HTML help builder. htmlhelp_basename = 'py-openaqdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'py-openaq.tex', 'py-openaq Documentation', 'David H Hagan', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'py-openaq', 'py-openaq Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'py-openaq', 'py-openaq Documentation', author, 'py-openaq', 'One line description of project.', 'Miscellaneous'), ] # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None} def setup(app): app.add_javascript("copybutton.js") app.add_stylesheet("style.css")
mit
poldrack/fmri-analysis-vm
analysis/utils/graph_utils.py
1
2407
def show_graph_from_adjmtx(A,B,C,title=''): import matplotlib.pyplot as plt import networkx as nx import numpy as np gr = nx.DiGraph() nodes=list(range(1,A.shape[0])) gr.add_nodes_from(nodes) gr.add_node('u') rows, cols = np.where(A == 1) edges_A = list(zip(cols.tolist(), rows.tolist())) gr.add_edges_from(edges_A) rows, cols = np.where(B == 1) edges_B = list(zip(cols.tolist(), rows.tolist())) gr.add_edges_from(edges_B) mylabels={i:'%d'%i for i in gr.nodes() if not i=='u'} # {(gr.nodes(),['%d'%i for i in gr.nodes()]) rows=np.where(C==1)[0] edges_C=[] for r in rows: edges_C.append(('u',r)) gr.add_edges_from(edges_C) mylabels['u']='u' pos=nx.circular_layout(gr) print(gr.edges()) nx.draw_networkx_nodes(gr, node_size=500, pos=pos,labels=mylabels, with_labels=True) nx.draw_networkx_labels(gr,pos=pos,labels=mylabels) nx.draw_networkx_edges(gr,pos,edgelist=edges_C,edge_color='k') print('Black: input') nx.draw_networkx_edges(gr,pos,edgelist=edges_A,edge_color='r') print('Red: unmodulated') if edges_B: nx.draw_networkx_edges(gr,pos,edgelist=edges_B,edge_color='b') print('Blue: modulated') plt.title(title) plt.show() return gr def show_graph_from_pattern(pattern_file,nnodes=5): import matplotlib.pyplot as plt import networkx as nx import numpy as np pf=[i.strip().replace('"','') for i in open(pattern_file).readlines()] if not pf[0].find('digraph')>-1: raise RuntimeError('input is not a valid dot file') gr = nx.DiGraph() nodes=[] edges=[] for l in pf[1:]: l_s=l.split(' ') print(l_s) if len(l_s)>1: # if it's a numeric node, add to the list try: nodes.append(int(l_s[0])) n1=int(l_s[0]) except: n1=l_s[0] try: nodes.append(int(l_s[2])) n2=int(l_s[2]) except: n2=l_s[2] edges.append((n1,n2)) assert l_s[4].find('arrowhead')>-1 if l_s[4].find('none')>-1: edges.append((n2,n1)) nodes=list(range(0,nnodes)) # include any nodes that had no connnections mylabels={i:'%d'%i for i in nodes} # {(gr.nodes(),['%d'%i for i in gr.nodes()]) mylabels['u']='u' nodes.append('u') gr.add_nodes_from(nodes) gr.add_edges_from(edges) pos=nx.circular_layout(gr) nx.draw_networkx_nodes(gr, node_size=500, pos=pos,labels=mylabels, with_labels=True) nx.draw_networkx_labels(gr,pos=pos,labels=mylabels) nx.draw_networkx_edges(gr,pos,edge_color='r') print('Red: unmodulated') plt.show() return gr
mit
fraserphysics/F_UNCLE
examples/make_notes.py
1
12712
"""Script for re-generating the notes figures """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals # Standard python packages import sys import os import pdb import argparse import time from collections import OrderedDict # External python packages import numpy as np import matplotlib.pyplot as plt # F_UNLCE packages sys.path.append(os.path.abspath('./../')) from F_UNCLE.Experiments.GunModel import Gun, GunExperiment from F_UNCLE.Experiments.Stick import Stick, StickExperiment from F_UNCLE.Experiments.Sphere import Sphere, SphereExperiment from F_UNCLE.Models.Isentrope import EOSModel, EOSBump from F_UNCLE.Opt.Bayesian import Bayesian from F_UNCLE.Models.Ptw import Ptw parser = argparse.ArgumentParser(description='Generate plots for notes.tex') parser.add_argument('--show', dest='show', action='store_true') parser.add_argument('--fig_dir', type=str, dest='fig_dir', default='./NotesFig/', help='Directory of figures') for s, h in ( ('eos_diff', 'Plot the difference between the prior and true eos'), ('eos', 'Plot prior and true eos'), ('eos_basis', 'Plots the eos basis functions'), ('info_all', 'Plot the eigenvalues and eigenfunctions for all experiments'), ('info_gun', 'Plot the eigenvalues and eigenfunctions for the gun experiment'), ('info_stick', 'Plot the eigenvalues and eigenfunctions for the stick experiment'), ('info_sphere', 'Plot the eigenvalues and eigenfunctions for the sphere experiment'), ('gun_sens', 'Plot the sensitivity of the gun results to the model'), ('stick_sens', 'Plot the sensitivity of the stick results to the model'), ('sphere_sens', 'Plot the sensitivity of the sphere results to the model'), ('conv', 'Plot the difference between the prior and true eos'), ('stick_results', 'Results from the stick experiment'), ('gun_results', 'Results from the gun experiment'), ('sphere_results', 'Results from the sphere experiment'), ('rayl_line', 'Rayleigh line results'), ): parser.add_argument('--' + s, dest=s, action='store_const', const=True, default=False, help=h) options = parser.parse_args() if not os.path.isdir(options.fig_dir): os.mkdir(options.fig_dir) if __name__ == '__main__': ################# # Get Data # ################# # 1. Generate a functional form for the prior init_prior = np.vectorize(lambda v: 2.56e9 / v**3) # 2. Create the model and *true* EOS eos_model = EOSModel(init_prior, Spline_sigma=0.005, spacing='lin') eos_true = EOSBump() # 3. Create the objects to generate simulations and pseudo experimental data gun_simulation = Gun(mass_he=1.0, sigma=1.0) gun_experiment = GunExperiment(model=eos_true, mass_he=1.0) stick_simulation = Stick(model_attribute=eos_true) stick_experiment = StickExperiment(model=eos_true, sigma_t=1E-9, sigma_x=2E-3) sphere_experiment = SphereExperiment(model=eos_true, ptw=Ptw()) sphere_simulation = Sphere() models = OrderedDict() models['eos'] = eos_model models['strength'] = Ptw() # 4. Create the analysis object analysis = Bayesian( simulations={ 'Gun': [gun_simulation, gun_experiment], 'Stick': [stick_simulation, stick_experiment], 'Sphere': [sphere_simulation, sphere_experiment] }, models= models, opt_keys=['eos'], constrain=True, outer_reltol=1E-6, precondition=True, debug=False, verb=True, sens_mode='ser', maxiter=1) # 5. Generate data from the simulations using the prior gun_prior_sim = gun_simulation(analysis.models) stick_prior_sim = stick_simulation(analysis.models) # sphere_prior_sim = sphere_simulation(analysis.models) # 6. Run the analysis to = time.time() opt_model, history, sens_matrix, fisher_matrix = analysis() print('time taken ', to - time.time() ) # 7. Update the simulations and get new data g_time_s, (g_vel_s, g_pos_s, labels), g_spline_s =\ opt_model.simulations['Gun']['sim'](opt_model.models) g_time_e, (g_vel_e, g_pos_e, tmp, labels), g_spline_e =\ opt_model.simulations['Gun']['exp']() s_pos_s, (s_time_s, labels), s_data_s =\ opt_model.simulations['Stick']['sim'](opt_model.models) s_pos_e, (s_time_e, tmp, tmp, lables), s_data_e = opt_model.simulations['Stick']['exp']() sp_res_s = opt_model.simulations['Sphere']['sim'](opt_model.models) sp_res_e = opt_model.simulations['Sphere']['exp']() #################### # Generate Figures # #################### from matplotlib import rcParams rcParams['axes.labelsize'] = 8 rcParams['xtick.labelsize'] = 8 rcParams['ytick.labelsize'] = 8 rcParams['legend.fontsize'] = 7 rcParams['legend.handlelength'] = 3.0 rcParams['backend'] = 'Agg' pagewidth = 360 # pts au_ratio = (np.sqrt(5) - 1.0) / 2.0 figwidth = 1.0 # fraction of \pagewidth for figure figwidth *= pagewidth / 72.27 figtype = '.pdf' out_dir = options.fig_dir square = (figwidth, figwidth) tall = (figwidth, 1.25 * figwidth) vrange=(0.2,0.9) def eos_diff(): ''' Compare EOS functions ''' fig = plt.figure(figsize=square) opt_model.models['eos'].plot_diff( axes=fig.gca(), isentropes=[eos_true], labels=['True'], vrange=vrange) return fig def rayl_line(): ''' Rayleigh line ''' fig = plt.figure(figsize=square) ax = fig.gca() opt_model.simulations['Stick']['sim'].\ plot(opt_model.models, axes=ax, vrange=vrange) eos_model.prior.plot(axes=ax, linestyles=['--b'], labels=['Prior EOS'], vrange=vrange) eos_true.plot(axes=ax, linestyles=['-.g'], labels=['True EOS'], vrange=vrange) ax.legend(loc='best') fig.tight_layout() return fig def eos(): ''' Nominal and true EOS: ''' fig = plt.figure(figsize=square) ax = fig.gca() eos_model.prior.plot(axes=ax, linestyles=['--b'], labels=['Prior EOS'], vrange=vrange) eos_true.plot(axes=ax, linestyles=['-.g'], labels=['True EOS'], vrange=vrange) ax.legend(loc='best') fig.tight_layout() return fig def info_all(): spec_data = Bayesian.fisher_decomposition( fisher_matrix, 'All', opt_model.models, 'isen') fig = plt.figure(figsize=tall) fig = opt_model.plot_fisher_data(spec_data, fig=fig) fig.set_size_inches(tall) fig.tight_layout() return fig def info_gun(): ''' Fisher information about the gun experiment ''' spec_data = Bayesian.fisher_decomposition( fisher_matrix, 'Gun', opt_model.models, 'eos') fig = plt.figure(figsize=tall) fig = opt_model.plot_fisher_data(spec_data, fig=fig) fig.set_size_inches(tall) fig.tight_layout() return fig def info_stick(): ''' Fisher information about the stick ''' spec_data = Bayesian.fisher_decomposition( fisher_matrix, 'Stick', opt_model.models, 'eos') fig = plt.figure(figsize=tall) fig = opt_model.plot_fisher_data(spec_data, fig=fig) fig.tight_layout() return fig def info_sphere(): ''' Fisher information about the sphere ''' spec_data = Bayesian.fisher_decomposition( fisher_matrix, 'Sphere', opt_model.models, 'eos') fig = plt.figure(figsize=tall) fig = opt_model.plot_fisher_data(spec_data, fig=fig) fig.tight_layout() return fig def stick_results(): ''' Results of the optimized stick simulation ''' fig = plt.figure(figsize=square) ax = fig.gca() stick_simulation.plot(opt_model.models, axes=ax, linestyles=['-k'], labels=['Fit EOS'], level=2, data=(s_pos_s, (s_time_s,), s_data_s)) stick_simulation.plot(opt_model.models, axes=ax, linestyles=['+g'], labels=['True EOS'], level=2, data=(s_pos_e, (s_time_e,), s_data_e)) stick_simulation.plot(opt_model.models, axes=ax, linestyles=['--b'], labels=['Prior EOS'], level=2, data=stick_prior_sim) ax.legend(loc='best') fig.tight_layout() return fig def gun_results(): ''' Results of the optimized gun simulation ''' fig = plt.figure(figsize=tall) ax1 = fig.add_subplot(211) ax2 = fig.add_subplot(212) opt_model.models['eos'].plot(axes=ax1, linestyles=['-k'], labels=['Fit EOS'], vrange=vrange) eos_model.prior.plot(axes=ax1, linestyles=['--b'], labels=['Prior EOS'], vrange=vrange) eos_true.plot(axes=ax1, linestyles=['-.g'], labels=['True EOS'], vrange=vrange) ax1.legend(loc='best') gun_simulation.plot(axes=ax2, linestyles=['-k', '-r'], labels=['Fit EOS', 'Error'], data=[(g_time_s, (g_vel_s, g_pos_s), g_spline_s), (g_time_e, (g_vel_e, g_pos_e), g_spline_e)]) gun_simulation.plot(axes=ax2, linestyles=['-.g'], labels=['True EOS'], data=[(g_time_e, (g_vel_e, g_pos_e), g_spline_e)]) gun_simulation.plot(axes=ax2, linestyles=['--b'], labels=['Prior EOS'], data=[gun_prior_sim]) ax2.legend(loc='upper left', framealpha=0.5) fig.tight_layout() return fig def sphere_results(): ''' Results of the optimized Sphere simulation ''' fig = plt.figure(figsize=tall) fig = sphere_simulation.plot(sp_res_s, fig=fig) fig.tight_layout() return fig def conv(): '''Convergence history ''' fig = plt.figure(figsize=square) opt_model.plot_convergence(history, axes=fig.gca()) fig.tight_layout() return fig gun_sens = lambda: EOSModel.plot_sens_matrix( sens_matrix, 'Gun', opt_model.models, 'eos', fig=plt.figure(figsize=square), ) # Gun sensitivity plot stick_sens = lambda: EOSModel.plot_sens_matrix( sens_matrix, 'Stick', opt_model.models, 'eos', fig=plt.figure(figsize=square), ) # Stick sensitivity plot sphere_sens = lambda: EOSModel.plot_sens_matrix( sens_matrix, 'Sphere', opt_model.models, 'eos', fig=plt.figure(figsize=square), ) # Sphere sensitivity plot eos_basis = lambda: eos_model.plot_basis( fig=plt.figure(figsize=square)) # EOS basis functions L = locals() for name in '''eos_diff rayl_line eos info_gun info_stick info_sphere stick_results gun_results sphere_results conv gun_sens stick_sens sphere_sens eos_basis '''.split(): # for name in """gun_results gun_sens eos_diff info_gun stick_results stick_sens info_stick""".split(): #for name in """gun_results gun_sens eos_diff info_gun stick_results stick_sens info_stick eos""".split(): # for name in '''eos_diff rayl_line eos info_stick conv stick_sens # stick_results eos_basis '''.split(): # if name in options: L[name]().savefig(out_dir + name + figtype, dpi=1000) if options.show: plt.show()
gpl-2.0
molmod/molmod
molmod/test/test_unit_cells.py
1
20815
# -*- coding: utf-8 -*- # MolMod is a collection of molecular modelling tools for python. # Copyright (C) 2007 - 2019 Toon Verstraelen <[email protected]>, Center # for Molecular Modeling (CMM), Ghent University, Ghent, Belgium; all rights # reserved unless otherwise stated. # # This file is part of MolMod. # # MolMod is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 3 # of the License, or (at your option) any later version. # # MolMod is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, see <http://www.gnu.org/licenses/> # # -- from __future__ import division import numpy as np import pytest from molmod.test.common import BaseTestCase from molmod import * __all__ = ["UnitCellTestCase"] def get_random_uc(scale=2, num_active=3, min_spacing=0.1): while True: active = np.random.randint(0, 2, 3).astype(bool) if active.sum() == num_active: break while True: try: result = UnitCell(np.random.uniform(-scale, scale, (3, 3)), active) if not active.any() or result.spacings[active].min() >= min_spacing: return result except ValueError: pass class UnitCellTestCase(BaseTestCase): def test_parameters(self): for counter in range(100): in_lengths = np.random.uniform(0.5, 1, (3,)) in_angles = np.random.uniform(0.3, np.pi/2, (3,)) try: uc = UnitCell.from_parameters3(in_lengths, in_angles) except ValueError as e: continue out_lengths, out_angles = uc.parameters self.assertArraysAlmostEqual(in_lengths, out_lengths) self.assertArraysAlmostEqual(in_angles, out_angles) def test_reciprocal(self): for counter in range(100): uc = get_random_uc(num_active=2) if uc.active[0]: self.assertAlmostEqual(np.dot(uc.matrix[:,0], uc.reciprocal[:,0]), 1.0) self.assertAlmostEqual(np.dot(uc.matrix[:,0], uc.reciprocal[:,1]), 0.0) self.assertAlmostEqual(np.dot(uc.matrix[:,0], uc.reciprocal[:,2]), 0.0) if uc.active[1]: self.assertAlmostEqual(np.dot(uc.matrix[:,1], uc.reciprocal[:,0]), 0.0) self.assertAlmostEqual(np.dot(uc.matrix[:,1], uc.reciprocal[:,1]), 1.0) self.assertAlmostEqual(np.dot(uc.matrix[:,1], uc.reciprocal[:,2]), 0.0) if uc.active[2]: self.assertAlmostEqual(np.dot(uc.matrix[:,2], uc.reciprocal[:,0]), 0.0) self.assertAlmostEqual(np.dot(uc.matrix[:,2], uc.reciprocal[:,1]), 0.0) self.assertAlmostEqual(np.dot(uc.matrix[:,2], uc.reciprocal[:,2]), 1.0) def test_reciprocal_bis(self): for i in range(100): uc = get_random_uc(num_active=2) active, inactive = uc.active_inactive for i in inactive: self.assertEqual(abs(uc.reciprocal[:,i]).max(), 0.0) if len(active) == 1: unit = uc.reciprocal[:,active[0]].copy() r = np.linalg.norm(unit) unit /= r cell_vector = unit/r self.assertArraysAlmostEqual(cell_vector, uc.matrix[:,active[0]]) elif len(active) == 2: # construct an auxiliary normal vector normal = np.cross(uc.reciprocal[:,active[0]], uc.reciprocal[:,active[1]]) norm = np.linalg.norm(normal) # reconstruct the cell vectors cell_vector0 = np.cross(uc.reciprocal[:,active[1]], normal)/norm**2 cell_vector1 = -np.cross(uc.reciprocal[:,active[0]], normal)/norm**2 self.assertArraysAlmostEqual(cell_vector0, uc.matrix[:,active[0]]) self.assertArraysAlmostEqual(cell_vector1, uc.matrix[:,active[1]]) elif len(active) == 3: self.assertArraysEqual(uc.reciprocal, uc.reciprocal) def test_to_fractional(self): for i in range(100): uc = get_random_uc() fractional = np.random.uniform(-0.5, 0.5, 3) cartesian = fractional[0]*uc.matrix[:,0] + fractional[1]*uc.matrix[:,1] + fractional[2]*uc.matrix[:,2] fractional_bis = uc.to_fractional(cartesian) self.assertArraysAlmostEqual(fractional, fractional_bis) for i in range(100): uc = get_random_uc() cartesian = np.random.uniform(-3, 3, (10,3)) fractional = uc.to_fractional(cartesian) for i in range(10): fractional_bis = uc.to_fractional(cartesian[i]) self.assertArraysAlmostEqual(fractional[i], fractional_bis) def test_to_cartesian(self): for i in range(100): uc = get_random_uc() cartesian = np.random.uniform(-3, 3, 3) fractional = cartesian[0]*uc.reciprocal[0] + cartesian[1]*uc.reciprocal[1] + cartesian[2]*uc.reciprocal[2] cartesian_bis = uc.to_cartesian(fractional) self.assertArraysAlmostEqual(cartesian, cartesian_bis) for i in range(100): uc = get_random_uc() fractional = np.random.uniform(-0.5, 0.5, (10,3)) cartesian = uc.to_cartesian(fractional) for i in range(10): cartesian_bis = uc.to_cartesian(fractional[i]) self.assertArraysAlmostEqual(cartesian[i], cartesian_bis) def test_consistency(self): for i in range(100): uc = get_random_uc() cartesian = np.random.uniform(-3, 3, 3) fractional = uc.to_fractional(cartesian) cartesian_bis = uc.to_cartesian(fractional) self.assertArraysAlmostEqual(cartesian, cartesian_bis) for i in range(100): uc = get_random_uc() fractional = np.random.uniform(-0.5, 0.5, (10,3)) cartesian = uc.to_cartesian(fractional) fractional_bis = uc.to_fractional(cartesian) self.assertArraysAlmostEqual(fractional, fractional_bis) def test_add_periodicities(self): for counter in range(100): uc0 = UnitCell(np.identity(3, float), np.zeros(3,bool)) uc1 = uc0.add_cell_vector(np.random.uniform(-2,2,3)) uc2 = uc1.add_cell_vector(np.random.uniform(-2,2,3)) uc3 = uc2.add_cell_vector(np.random.uniform(-2,2,3)) @pytest.mark.xfail def test_shortest_vector(self): # simple cases uc = UnitCell(np.identity(3,float)*3) self.assertArraysAlmostEqual(uc.shortest_vector([3, 0, 1]), np.array([0, 0, 1])) self.assertArraysAlmostEqual(uc.shortest_vector([-3, 0, 1]), np.array([0, 0, 1])) self.assertArraysAlmostEqual(uc.shortest_vector([-2, 0, 1]), np.array([1, 0, 1])) self.assertArraysAlmostEqual(uc.shortest_vector([-1.6, 1, 1]), np.array([1.4, 1, 1])) self.assertArraysAlmostEqual(uc.shortest_vector([-1.4, 1, 1]), np.array([-1.4, 1, 1])) # simple cases uc = UnitCell(np.identity(3,float)*3, np.array([True, False, False])) self.assertArraysAlmostEqual(uc.shortest_vector([3, 0, 1]), np.array([0, 0, 1])) self.assertArraysAlmostEqual(uc.shortest_vector([3, 0, 3]), np.array([0, 0, 3])) # random tests for uc_counter in range(1000): uc = get_random_uc(num_active=2) for r_counter in range(10): r0 = np.random.normal(0, 10, 3) r1 = uc.shortest_vector(r0) change = r1 - r0 assert np.dot(change, r0) <= 0 #assert np.linalg.norm(r0) >= np.linalg.norm(r1) index = uc.to_fractional(r0-r1) self.assertArraysAlmostEqual(index, np.round(index), doabs=True) index = uc.to_fractional(r1) assert index.max()<0.5 assert index.max()>=-0.5 r0 = np.random.normal(0, 10, (10,3)) r1 = uc.shortest_vector(r0) for i in range(10): r1_row_bis = uc.shortest_vector(r0[i]) self.assertArraysAlmostEqual(r1_row_bis, r1[i], doabs=True) def test_shortest_vector_trivial(self): uc = UnitCell(np.identity(3, float)) half = np.array([0.5,0.5,0.5]) self.assertArraysEqual(uc.shortest_vector(half), -half) self.assertArraysEqual(uc.shortest_vector(-half), -half) def test_spacings(self): uc = UnitCell(np.identity(3,float)*3) self.assertArraysAlmostEqual(uc.spacings, np.ones(3, float)*3.0) for i in range(100): uc = get_random_uc() a = uc.matrix[:,0] b = uc.matrix[:,1] c = uc.matrix[:,2] ap = np.cross(b,c) ap /= np.linalg.norm(ap) spacing = abs(np.dot(a, ap)) self.assertAlmostEqual(uc.spacings[0], spacing) def test_radius_ranges(self): for i in range(20): uc = get_random_uc() radius = np.random.uniform(1,5) ranges = uc.get_radius_ranges(radius) for j in range(100): c0 = uc.to_cartesian(np.random.uniform(-0.5, 0.5, 3)) c1 = c0 + radius*random_unit() f1 = uc.to_fractional(c1) assert (abs(f1) <= ranges+0.5).all(), "f1=%s ranges=%s" % (f1, ranges) def test_radius_ranges_2d(self): uc = UnitCell(np.identity(3, float), np.array([True, True, False])) self.assertArraysEqual(uc.get_radius_ranges(3), np.array([3,3,0])) def test_radius_indexes(self): for i in range(20): uc = get_random_uc() radius = np.random.uniform(1,2)*abs(uc.volume)**(0.333) #uc = UnitCell.from_parameters3( # np.array([3.73800243, 2.35503196, 3.25130153]), # np.array([29.78777448, 64.81228452, 86.7641093])*deg, #) #lengths, angles = uc.parameters #radius = 1.98042040465 #matrix = np.array([[2,0,0],[0,2,0],[0,0,2]], float) #uc = UnitCell(matrix) #radius = 5.3 #lengths, angles = uc.parameters #print lengths #print angles/deg #print radius ranges = uc.get_radius_ranges(radius) #print "ranges", ranges if np.product(ranges) > 100: continue indexes = uc.get_radius_indexes(radius) assert len(indexes)*abs(uc.volume) > 4.0/3.0*np.pi*radius**3 #print "testing distances" for j in range(20): c0 = uc.to_cartesian(np.random.uniform(-0.5, 0.5, 3)) c1 = uc.to_cartesian(np.random.uniform(-0.5, 0.5, 3)) relative = c1 - c0 # compute all distances between c0 and c1 based on radius # ranges distances_slow = [] for i0 in range(-ranges[0], ranges[0]+1): for i1 in range(-ranges[1], ranges[1]+1): for i2 in range(-ranges[2], ranges[2]+1): delta = uc.to_cartesian([i0,i1,i2]) distance = np.linalg.norm(relative + delta) if distance <= radius: distances_slow.append(distance) distances_slow.sort() distances_fast = [] for index in indexes: delta = uc.to_cartesian(index) distance = np.linalg.norm(relative + delta) if distance <= radius: distances_fast.append(distance) distances_fast.sort() #print distances_slow #print distances_fast #print self.assertArraysAlmostEqual(np.array(distances_slow), np.array(distances_fast)) def test_radius_indexes_1d(self): uc = UnitCell(np.identity(3, float), np.array([True, False, False])) indexes = uc.get_radius_indexes(0.5) expected_indexes = np.array([ [-1, 0, 0], [ 0, 0, 0], [ 1, 0, 0], ]) self.assertArraysEqual(indexes, expected_indexes) uc = UnitCell(np.identity(3, float), np.array([True, False, False])) indexes = uc.get_radius_indexes(1.8, np.array([4,-1,-1])) expected_indexes = np.array([ [-2, 0, 0], [-1, 0, 0], [ 0, 0, 0], [ 1, 0, 0], ]) self.assertArraysEqual(indexes, expected_indexes) def test_radius_indexes_2d(self): uc = UnitCell(np.identity(3, float), np.array([True, True, False])) indexes = uc.get_radius_indexes(0.5) expected_indexes = np.array([ [-1, -1, 0], [-1, 0, 0], [-1, 1, 0], [ 0, -1, 0], [ 0, 0, 0], [ 0, 1, 0], [ 1, -1, 0], [ 1, 0, 0], [ 1, 1, 0], ]) self.assertArraysEqual(indexes, expected_indexes) @pytest.mark.xfail def test_radius_indexes_2d_graphical(self): #uc = UnitCell(np.array([ # [2.0, 1.0, 0.0], # [0.0, 0.2, 0.0], # [0.0, 0.0, 10.0], #])) #radius = 0.8 uc = UnitCell(np.array([ [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 10.0], ])) radius = 5.3 #uc = UnitCell(np.array([ # [1.0, 1.0, 0.0], # [0.0, 1.0, 0.0], # [0.0, 0.0, 1.0], #])) #radius = 0.9 fracs = np.arange(-0.5, 0.55, 0.1) import pylab from matplotlib.patches import Circle, Polygon from matplotlib.lines import Line2D pylab.clf() for i0 in fracs: for i1 in fracs: center = uc.to_cartesian([i0,i1,0.0]) pylab.gca().add_artist(Circle((center[0], center[1]), radius, fill=True, fc='#7777AA', ec='none')) pylab.gca().add_artist(Circle((0, 0), radius, fill=True, fc='#0000AA', ec='none')) ranges = uc.get_radius_ranges(radius) indexes = uc.get_radius_indexes(radius) for i in range(-ranges[0]-1, ranges[0]+1): start = uc.to_cartesian([i+0.5, -ranges[1]-0.5, 0]) end = uc.to_cartesian([i+0.5, ranges[1]+0.5, 0]) pylab.gca().add_artist(Line2D([start[0], end[0]], [start[1], end[1]], color="k", linewidth=1)) for i in range(-ranges[1]-1, ranges[1]+1): start = uc.to_cartesian([-ranges[0]-0.5, i+0.5, 0]) end = uc.to_cartesian([ranges[0]+0.5, i+0.5, 0]) pylab.gca().add_artist(Line2D([start[0], end[0]], [start[1], end[1]], color="k", linewidth=1)) for i in range(-ranges[0], ranges[0]+1): start = uc.to_cartesian([i, -ranges[1]-0.5, 0]) end = uc.to_cartesian([i, ranges[1]+0.5, 0]) pylab.gca().add_artist(Line2D([start[0], end[0]], [start[1], end[1]], color="k", linewidth=0.5, linestyle="--")) for i in range(-ranges[1], ranges[1]+1): start = uc.to_cartesian([-ranges[0]-0.5, i, 0]) end = uc.to_cartesian([ranges[0]+0.5, i, 0]) pylab.gca().add_artist(Line2D([start[0], end[0]], [start[1], end[1]], color="k", linewidth=0.5, linestyle="--")) for i0,i1,i2 in indexes: if i2 != 0: continue corners = uc.to_cartesian(np.array([ [i0-0.5, i1-0.5, 0.0], [i0-0.5, i1+0.5, 0.0], [i0+0.5, i1+0.5, 0.0], [i0+0.5, i1-0.5, 0.0], ])) pylab.gca().add_artist(Polygon(corners[:,:2], fill=True, ec='none', fc='r', alpha=0.5)) corners = uc.to_cartesian(np.array([ [-ranges[0]-0.5, -ranges[1]-0.5, 0.0], [-ranges[0]-0.5, +ranges[1]+0.5, 0.0], [+ranges[0]+0.5, +ranges[1]+0.5, 0.0], [+ranges[0]+0.5, -ranges[1]-0.5, 0.0], ])) pylab.xlim(1.1*corners[:,:2].min(), 1.1*corners[:,:2].max()) pylab.ylim(1.1*corners[:,:2].min(), 1.1*corners[:,:2].max()) #pylab.xlim(-1.5*radius, 1.5*radius) #pylab.ylim(-1.5*radius, 1.5*radius) #pylab.savefig("radius_indexes_2d.png") def test_div(self): for i in range(20): uc0 = get_random_uc(num_active=2) x = np.random.uniform(1,2,3) uc1 = uc0/x self.assertArraysAlmostEqual(uc0.matrix/x, uc1.matrix) self.assertArraysEqual(uc0.active, uc1.active) self.assertAlmostEqual( np.dot(uc0.matrix[:,0], uc1.matrix[:,0]) /np.linalg.norm(uc0.matrix[:,0]) /np.linalg.norm(uc1.matrix[:,0]), 1 ) self.assertAlmostEqual( np.dot(uc0.matrix[:,1], uc1.matrix[:,1]) /np.linalg.norm(uc0.matrix[:,1]) /np.linalg.norm(uc1.matrix[:,1]), 1 ) self.assertAlmostEqual( np.dot(uc0.matrix[:,2], uc1.matrix[:,2]) /np.linalg.norm(uc0.matrix[:,2]) /np.linalg.norm(uc1.matrix[:,2]), 1 ) def test_mul(self): for i in range(20): uc0 = get_random_uc(num_active=2) x = np.random.uniform(1,2,3) uc1 = uc0*x self.assertArraysAlmostEqual(uc0.matrix*x, uc1.matrix) self.assertArraysEqual(uc0.active, uc1.active) self.assertAlmostEqual( np.dot(uc0.matrix[:,0], uc1.matrix[:,0]) /np.linalg.norm(uc0.matrix[:,0]) /np.linalg.norm(uc1.matrix[:,0]), 1 ) self.assertAlmostEqual( np.dot(uc0.matrix[:,1], uc1.matrix[:,1]) /np.linalg.norm(uc0.matrix[:,1]) /np.linalg.norm(uc1.matrix[:,1]), 1 ) self.assertAlmostEqual( np.dot(uc0.matrix[:,2], uc1.matrix[:,2]) /np.linalg.norm(uc0.matrix[:,2]) /np.linalg.norm(uc1.matrix[:,2]), 1 ) def test_volume(self): matrix = np.array([[10,0,0],[0,10,0],[0,0,10]], float) self.assertAlmostEqual(UnitCell(matrix, np.array([False,False,False])).volume, -1) self.assertAlmostEqual(UnitCell(matrix, np.array([True,False,False])).volume, 10) self.assertAlmostEqual(UnitCell(matrix, np.array([True,True,False])).volume, 100) self.assertAlmostEqual(UnitCell(matrix, np.array([True,True,True])).volume, 1000) def test_alignment_a(self): matrix = np.array([[10,10,0],[-10,10,0],[0,0,10]], float) uc = UnitCell(matrix) r = uc.alignment_a sh = np.sqrt(0.5) expected_r = np.array([ [sh, -sh, 0], [sh, sh, 0], [0, 0, 1], ], float) self.assertArraysAlmostEqual(r.r, expected_r) uc = r*uc expected_matrix = np.array([ [10/sh, 0, 0], [0, 10/sh, 0], [0, 0, 10], ]) self.assertArraysAlmostEqual(uc.matrix, expected_matrix) def test_alignment_c(self): matrix = np.array([[10,0,0],[0,10,-10],[0,10,10]], float) uc = UnitCell(matrix) r = uc.alignment_c uc = r*uc sh = np.sqrt(0.5) expected_matrix = np.array([ [10, 0, 0], [0, 10/sh, 0], [0, 0, 10/sh], ]) self.assertArraysAlmostEqual(uc.matrix, expected_matrix) def test_shortest_vector_aperiodic(self): unit_cell = UnitCell(np.identity(3, float), np.zeros(3, bool)) shortest = unit_cell.shortest_vector(np.ones(3, float)) expected = np.ones(3, float) self.assertArraysAlmostEqual(shortest, expected) def test_ordered(self): for i in range(10): uc0 = get_random_uc(num_active=2) uc1 = uc0.ordered self.assertAlmostEqual(uc0.volume, uc1.volume) self.assertEqual(uc0.active.sum(), uc1.active.sum()) assert uc1.active[0] >= uc1.active[1] assert uc1.active[1] >= uc1.active[2] for i1, i0 in enumerate(uc0.active_inactive[0]): self.assertArraysAlmostEqual(uc0.matrix[:,i0], uc1.matrix[:,i1]) self.assertEqual(uc0.active[i0], uc1.active[i1])
gpl-3.0
yavalvas/yav_com
build/matplotlib/examples/pylab_examples/font_table_ttf.py
3
1771
#!/usr/bin/env python # -*- noplot -*- """ matplotlib has support for freetype fonts. Here's a little example using the 'table' command to build a font table that shows the glyphs by character code. Usage python font_table_ttf.py somefile.ttf """ import sys import os import matplotlib from matplotlib.ft2font import FT2Font from matplotlib.font_manager import FontProperties from pylab import figure, table, show, axis, title import six from six import unichr # the font table grid labelc = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'] labelr = ['00', '10', '20', '30', '40', '50', '60', '70', '80', '90', 'A0', 'B0', 'C0', 'D0', 'E0', 'F0'] if len(sys.argv) > 1: fontname = sys.argv[1] else: fontname = os.path.join(matplotlib.get_data_path(), 'fonts', 'ttf', 'Vera.ttf') font = FT2Font(fontname) codes = list(font.get_charmap().items()) codes.sort() # a 16,16 array of character strings chars = [['' for c in range(16)] for r in range(16)] colors = [[(0.95, 0.95, 0.95) for c in range(16)] for r in range(16)] figure(figsize=(8, 4), dpi=120) for ccode, glyphind in codes: if ccode >= 256: continue r, c = divmod(ccode, 16) s = unichr(ccode) chars[r][c] = s lightgrn = (0.5, 0.8, 0.5) title(fontname) tab = table(cellText=chars, rowLabels=labelr, colLabels=labelc, rowColours=[lightgrn]*16, colColours=[lightgrn]*16, cellColours=colors, cellLoc='center', loc='upper left') for key, cell in tab.get_celld().items(): row, col = key if row > 0 and col > 0: cell.set_text_props(fontproperties=FontProperties(fname=fontname)) axis('off') show()
mit
Odingod/mne-python
mne/decoding/tests/test_csp.py
6
3498
# Author: Alexandre Gramfort <[email protected]> # Romain Trachel <[email protected]> # # License: BSD (3-clause) import os.path as op from nose.tools import assert_true, assert_raises import numpy as np from numpy.testing import assert_array_almost_equal from mne import io, Epochs, read_events, pick_types from mne.decoding.csp import CSP from mne.utils import requires_sklearn data_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') raw_fname = op.join(data_dir, 'test_raw.fif') event_name = op.join(data_dir, 'test-eve.fif') tmin, tmax = -0.2, 0.5 event_id = dict(aud_l=1, vis_l=3) # if stop is too small pca may fail in some cases, but we're okay on this file start, stop = 0, 8 def test_csp(): """Test Common Spatial Patterns algorithm on epochs """ raw = io.Raw(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') picks = picks[1:13:3] epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) epochs_data = epochs.get_data() n_channels = epochs_data.shape[1] n_components = 3 csp = CSP(n_components=n_components) csp.fit(epochs_data, epochs.events[:, -1]) y = epochs.events[:, -1] X = csp.fit_transform(epochs_data, y) assert_true(csp.filters_.shape == (n_channels, n_channels)) assert_true(csp.patterns_.shape == (n_channels, n_channels)) assert_array_almost_equal(csp.fit(epochs_data, y).transform(epochs_data), X) # test init exception assert_raises(ValueError, csp.fit, epochs_data, np.zeros_like(epochs.events)) assert_raises(ValueError, csp.fit, epochs, y) assert_raises(ValueError, csp.transform, epochs, y) csp.n_components = n_components sources = csp.transform(epochs_data) assert_true(sources.shape[1] == n_components) @requires_sklearn def test_regularized_csp(): """Test Common Spatial Patterns algorithm using regularized covariance """ raw = io.Raw(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') picks = picks[1:13:3] epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) epochs_data = epochs.get_data() n_channels = epochs_data.shape[1] n_components = 3 reg_cov = [None, 0.05, 'lws', 'oas'] for reg in reg_cov: csp = CSP(n_components=n_components, reg=reg) csp.fit(epochs_data, epochs.events[:, -1]) y = epochs.events[:, -1] X = csp.fit_transform(epochs_data, y) assert_true(csp.filters_.shape == (n_channels, n_channels)) assert_true(csp.patterns_.shape == (n_channels, n_channels)) assert_array_almost_equal(csp.fit(epochs_data, y). transform(epochs_data), X) # test init exception assert_raises(ValueError, csp.fit, epochs_data, np.zeros_like(epochs.events)) assert_raises(ValueError, csp.fit, epochs, y) assert_raises(ValueError, csp.transform, epochs, y) csp.n_components = n_components sources = csp.transform(epochs_data) assert_true(sources.shape[1] == n_components)
bsd-3-clause
nelango/ViralityAnalysis
model/lib/sklearn/tests/test_dummy.py
186
17778
from __future__ import division import numpy as np import scipy.sparse as sp from sklearn.base import clone from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.stats import _weighted_percentile from sklearn.dummy import DummyClassifier, DummyRegressor @ignore_warnings def _check_predict_proba(clf, X, y): proba = clf.predict_proba(X) # We know that we can have division by zero log_proba = clf.predict_log_proba(X) y = np.atleast_1d(y) if y.ndim == 1: y = np.reshape(y, (-1, 1)) n_outputs = y.shape[1] n_samples = len(X) if n_outputs == 1: proba = [proba] log_proba = [log_proba] for k in range(n_outputs): assert_equal(proba[k].shape[0], n_samples) assert_equal(proba[k].shape[1], len(np.unique(y[:, k]))) assert_array_equal(proba[k].sum(axis=1), np.ones(len(X))) # We know that we can have division by zero assert_array_equal(np.log(proba[k]), log_proba[k]) def _check_behavior_2d(clf): # 1d case X = np.array([[0], [0], [0], [0]]) # ignored y = np.array([1, 2, 1, 1]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) # 2d case y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) def _check_behavior_2d_for_constant(clf): # 2d case only X = np.array([[0], [0], [0], [0]]) # ignored y = np.array([[1, 0, 5, 4, 3], [2, 0, 1, 2, 5], [1, 0, 4, 5, 2], [1, 3, 3, 2, 0]]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) def _check_equality_regressor(statistic, y_learn, y_pred_learn, y_test, y_pred_test): assert_array_equal(np.tile(statistic, (y_learn.shape[0], 1)), y_pred_learn) assert_array_equal(np.tile(statistic, (y_test.shape[0], 1)), y_pred_test) def test_most_frequent_and_prior_strategy(): X = [[0], [0], [0], [0]] # ignored y = [1, 2, 1, 1] for strategy in ("most_frequent", "prior"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), np.ones(len(X))) _check_predict_proba(clf, X, y) if strategy == "prior": assert_array_equal(clf.predict_proba([X[0]]), clf.class_prior_.reshape((1, -1))) else: assert_array_equal(clf.predict_proba([X[0]]), clf.class_prior_.reshape((1, -1)) > 0.5) def test_most_frequent_and_prior_strategy_multioutput(): X = [[0], [0], [0], [0]] # ignored y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) n_samples = len(X) for strategy in ("prior", "most_frequent"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_stratified_strategy(): X = [[0]] * 5 # ignored y = [1, 2, 1, 1, 2] clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) p = np.bincount(y_pred) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[2], 2. / 5, decimal=1) _check_predict_proba(clf, X, y) def test_stratified_strategy_multioutput(): X = [[0]] * 5 # ignored y = np.array([[2, 1], [2, 2], [1, 1], [1, 2], [1, 1]]) clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[2], 2. / 5, decimal=1) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_uniform_strategy(): X = [[0]] * 4 # ignored y = [1, 2, 1, 1] clf = DummyClassifier(strategy="uniform", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) p = np.bincount(y_pred) / float(len(X)) assert_almost_equal(p[1], 0.5, decimal=1) assert_almost_equal(p[2], 0.5, decimal=1) _check_predict_proba(clf, X, y) def test_uniform_strategy_multioutput(): X = [[0]] * 4 # ignored y = np.array([[2, 1], [2, 2], [1, 2], [1, 1]]) clf = DummyClassifier(strategy="uniform", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 0.5, decimal=1) assert_almost_equal(p[2], 0.5, decimal=1) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_string_labels(): X = [[0]] * 5 y = ["paris", "paris", "tokyo", "amsterdam", "berlin"] clf = DummyClassifier(strategy="most_frequent") clf.fit(X, y) assert_array_equal(clf.predict(X), ["paris"] * 5) def test_classifier_exceptions(): clf = DummyClassifier(strategy="unknown") assert_raises(ValueError, clf.fit, [], []) assert_raises(ValueError, clf.predict, []) assert_raises(ValueError, clf.predict_proba, []) def test_mean_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 4 # ignored y = random_state.randn(4) reg = DummyRegressor() reg.fit(X, y) assert_array_equal(reg.predict(X), [np.mean(y)] * len(X)) def test_mean_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) mean = np.mean(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor() est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor(mean, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_regressor_exceptions(): reg = DummyRegressor() assert_raises(ValueError, reg.predict, []) def test_median_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="median") reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) def test_median_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) median = np.median(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="median") est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( median, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_quantile_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="quantile", quantile=0.5) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.min(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=1) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.max(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0.3) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.percentile(y, q=30)] * len(X)) def test_quantile_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) median = np.median(y_learn, axis=0).reshape((1, -1)) quantile_values = np.percentile(y_learn, axis=0, q=80).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="quantile", quantile=0.5) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( median, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) # Correctness oracle est = DummyRegressor(strategy="quantile", quantile=0.8) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( quantile_values, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_quantile_invalid(): X = [[0]] * 5 # ignored y = [0] * 5 # ignored est = DummyRegressor(strategy="quantile") assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=None) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=[0]) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=-0.1) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=1.1) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile='abc') assert_raises(TypeError, est.fit, X, y) def test_quantile_strategy_empty_train(): est = DummyRegressor(strategy="quantile", quantile=0.4) assert_raises(ValueError, est.fit, [], []) def test_constant_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="constant", constant=[43]) reg.fit(X, y) assert_array_equal(reg.predict(X), [43] * len(X)) reg = DummyRegressor(strategy="constant", constant=43) reg.fit(X, y) assert_array_equal(reg.predict(X), [43] * len(X)) def test_constant_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) # test with 2d array constants = random_state.randn(5) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="constant", constant=constants) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( constants, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d_for_constant(est) def test_y_mean_attribute_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] # when strategy = 'mean' est = DummyRegressor(strategy='mean') est.fit(X, y) assert_equal(est.constant_, np.mean(y)) def test_unknown_strategey_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] est = DummyRegressor(strategy='gona') assert_raises(ValueError, est.fit, X, y) def test_constants_not_specified_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] est = DummyRegressor(strategy='constant') assert_raises(TypeError, est.fit, X, y) def test_constant_size_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X = random_state.randn(10, 10) y = random_state.randn(10, 5) est = DummyRegressor(strategy='constant', constant=[1, 2, 3, 4]) assert_raises(ValueError, est.fit, X, y) def test_constant_strategy(): X = [[0], [0], [0], [0]] # ignored y = [2, 1, 2, 2] clf = DummyClassifier(strategy="constant", random_state=0, constant=1) clf.fit(X, y) assert_array_equal(clf.predict(X), np.ones(len(X))) _check_predict_proba(clf, X, y) X = [[0], [0], [0], [0]] # ignored y = ['two', 'one', 'two', 'two'] clf = DummyClassifier(strategy="constant", random_state=0, constant='one') clf.fit(X, y) assert_array_equal(clf.predict(X), np.array(['one'] * 4)) _check_predict_proba(clf, X, y) def test_constant_strategy_multioutput(): X = [[0], [0], [0], [0]] # ignored y = np.array([[2, 3], [1, 3], [2, 3], [2, 0]]) n_samples = len(X) clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0]) clf.fit(X, y) assert_array_equal(clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) _check_predict_proba(clf, X, y) def test_constant_strategy_exceptions(): X = [[0], [0], [0], [0]] # ignored y = [2, 1, 2, 2] clf = DummyClassifier(strategy="constant", random_state=0) assert_raises(ValueError, clf.fit, X, y) clf = DummyClassifier(strategy="constant", random_state=0, constant=[2, 0]) assert_raises(ValueError, clf.fit, X, y) def test_classification_sample_weight(): X = [[0], [0], [1]] y = [0, 1, 0] sample_weight = [0.1, 1., 0.1] clf = DummyClassifier().fit(X, y, sample_weight) assert_array_almost_equal(clf.class_prior_, [0.2 / 1.2, 1. / 1.2]) def test_constant_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[0, 1], [4, 0], [1, 1], [1, 4], [1, 1]])) n_samples = len(X) clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0]) clf.fit(X, y) y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) assert_array_equal(y_pred.toarray(), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) def test_uniform_strategy_sparse_target_warning(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[2, 1], [2, 2], [1, 4], [4, 2], [1, 1]])) clf = DummyClassifier(strategy="uniform", random_state=0) assert_warns_message(UserWarning, "the uniform strategy would not save memory", clf.fit, X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 1 / 3, decimal=1) assert_almost_equal(p[2], 1 / 3, decimal=1) assert_almost_equal(p[4], 1 / 3, decimal=1) def test_stratified_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[4, 1], [0, 0], [1, 1], [1, 4], [1, 1]])) clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) y_pred = y_pred.toarray() for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[0], 1. / 5, decimal=1) assert_almost_equal(p[4], 1. / 5, decimal=1) def test_most_frequent_and_prior_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[1, 0], [1, 3], [4, 0], [0, 1], [1, 0]])) n_samples = len(X) y_expected = np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))]) for strategy in ("most_frequent", "prior"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) assert_array_equal(y_pred.toarray(), y_expected) def test_dummy_regressor_sample_weight(n_samples=10): random_state = np.random.RandomState(seed=1) X = [[0]] * n_samples y = random_state.rand(n_samples) sample_weight = random_state.rand(n_samples) est = DummyRegressor(strategy="mean").fit(X, y, sample_weight) assert_equal(est.constant_, np.average(y, weights=sample_weight)) est = DummyRegressor(strategy="median").fit(X, y, sample_weight) assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 50.)) est = DummyRegressor(strategy="quantile", quantile=.95).fit(X, y, sample_weight) assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 95.))
mit
paulmueller/PyCorrFit
tests/test_simple.py
2
1310
import numpy as np from pycorrfit.correlation import Correlation from pycorrfit.fit import Fit def create_corr(): corr = Correlation() tau = np.exp(np.linspace(np.log(1e-3), np.log(1e6), 10)) data = corr.fit_model(corr.fit_parameters, tau) noise = (np.random.random(data.shape[0])-.5)*.0005 data += noise corr.correlation = np.dstack((tau, data))[0] return corr def test_simple_corr(): corr = create_corr() oldparms = corr.fit_parameters.copy() temp = corr.fit_parameters temp[0] *= 2 temp[-1] *= .1 Fit(corr) res = oldparms - corr.fit_parameters assert np.allclose(res, np.zeros_like(res), atol=0.010) if __name__ == "__main__": import matplotlib.pylab as plt corr = create_corr() fig, (ax1, ax2) = plt.subplots(2, 1) ax1.set_xscale("log") ax2.set_xscale("log") print(corr.fit_parameters) temp = corr.fit_parameters temp[0] *= 2 temp[-1] *= .1 ax1.plot(corr.correlation_fit[:, 0], corr.correlation_fit[:, 1]) ax1.plot(corr.modeled_fit[:, 0], corr.modeled_fit[:, 1]) print(corr.fit_parameters) Fit(corr) print(corr.fit_parameters) ax2.plot(corr.correlation_fit[:, 0], corr.correlation_fit[:, 1]) ax2.plot(corr.modeled_fit[:, 0], corr.modeled_fit[:, 1]) plt.show()
gpl-2.0
aayushidwivedi01/spark-tk
regression-tests/sparktkregtests/testcases/frames/frame_binary_classification_test.py
13
9995
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ tests multiclass classification metrics""" import unittest from sparktkregtests.lib import sparktk_test class BinaryClassificationMetrics(sparktk_test.SparkTKTestCase): def setUp(self): """Tests binary classification""" super(BinaryClassificationMetrics, self).setUp() self.dataset = [("blue", 1, 0, 0), ("blue", 3, 1, 0), ("green", 1, 0, 0), ("green", 0, 1, 0)] self.schema = [("a", str), ("b", int), ("labels", int), ("predictions", int)] self.frame = self.context.frame.create(self.dataset, schema=self.schema) def test_binary_classification_metrics(self): """test binary classification metrics with normal data""" # call the binary classification metrics function class_metrics = self.frame.binary_classification_metrics("labels", "predictions", 1, 1) # get the confusion matrix values conf_matrix = class_metrics.confusion_matrix.values # labeling each of the cells in our confusion matrix # makes this easier for me to read # the confusion matrix should look something like this: # predicted pos predicted neg # actual pos [0][0] [0][1] # actual neg [1][0] [1][1] true_pos = conf_matrix[0][0] false_neg = conf_matrix[0][1] false_pos = conf_matrix[1][0] true_neg = conf_matrix[1][1] # the total number of predictions, total number pos and neg total_pos = true_pos + false_neg total_neg = true_neg + false_pos total = total_pos + total_neg # recall is defined in the docs as the total number of true pos # results divided by the false negatives + pos recall = true_pos / (false_neg + true_pos) # from the docs, precision = true pos / false pos + true pos precision = true_pos / (false_pos + true_pos) # from the docs this is the def of f_measure f_measure = (recall * precision) / (recall + precision) # according to the documentation the accuracy # is defined as the total correct predictions divided by the # total number of predictions accuracy = float(true_pos + true_neg) / float(total) pos_count = 0 pandas_frame = self.frame.to_pandas() # calculate the number of pos results and neg results in the data for index, row in pandas_frame.iterrows(): if row["labels"] is 1: pos_count = pos_count + 1 neg_count = total - pos_count # finally we compare our results with sparktk's self.assertAlmostEqual(class_metrics.recall, recall) self.assertAlmostEqual(class_metrics.precision, precision) self.assertAlmostEqual(class_metrics.f_measure, f_measure) self.assertAlmostEqual(class_metrics.accuracy, accuracy) self.assertEqual(total_pos, pos_count) self.assertEqual(total_neg, neg_count) def test_binary_classification_metrics_bad_beta(self): """Test binary classification metrics with negative beta""" # should throw an error because beta must be >0 with self.assertRaisesRegexp(Exception, "greater than or equal to 0"): class_metrics = self.frame.binary_classification_metrics("labels", "predictions", 1, beta=-1) def test_binary_classification_metrics_valid_beta(self): """test binary class metrics with a valid value for beta""" # this is a valid value for beta so this should not throw an error class_metrics = self.frame.binary_classification_metrics("labels", "predictions", 1, beta=2) def test_binary_classification_matrics_with_invalid_beta_type(self): """Test binary class metrics with a beta of invalid type""" with self.assertRaisesRegexp(Exception, "could not convert string to float"): class_metrics = self.frame.binary_classification_metrics("labels", "predictions", 1, beta="bla") def test_binary_classification_metrics_with_invalid_pos_label(self): """Test binary class metrics with a pos label that does not exist""" # should not error but should return no pos predictions class_metrics = self.frame.binary_classification_metrics("labels", "predictions", "bla", 1) # assert that no positive results were found since # there are no labels in the data with "bla" conf_matrix = class_metrics.confusion_matrix.values # assert no predicted pos actual pos self.assertEqual(conf_matrix[0][0], 0) # assert no actual pos predicted neg self.assertEqual(conf_matrix[1][0], 0) def test_binary_classification_metrics_with_frequency_col(self): """test binay class metrics with a frequency column""" dataset = [("blue", 1, 0, 0, 1), ("blue", 3, 1, 0, 1), ("green", 1, 0, 0, 3), ("green", 0, 1, 0, 1)] schema = [("a", str), ("b", int), ("labels", int), ("predictions", int), ("frequency", int)] frame = self.context.frame.create(dataset, schema=schema) class_metrics = frame.binary_classification_metrics("labels", "predictions", 1, 1, frequency_column="frequency") conf_matrix = class_metrics.confusion_matrix.values true_pos = conf_matrix[0][0] false_neg = conf_matrix[0][1] false_pos = conf_matrix[1][0] true_neg = conf_matrix[1][1] total_pos = true_pos + false_neg total_neg = true_neg + false_pos total = total_pos + total_neg # these calculations use the definitions from the docs recall = true_pos / (false_neg + true_pos) precision = true_pos / (false_pos + true_pos) f_measure = (recall * precision) / (recall + precision) accuracy = float(true_pos + true_neg) / float(total) pos_count = 0 pandas_frame = self.frame.to_pandas() # calculate the number of pos results and neg results in the data for index, row in pandas_frame.iterrows(): if row["labels"] is 1: pos_count = pos_count + 1 neg_count = total - pos_count # finally we check that our values match sparktk's self.assertAlmostEqual(class_metrics.recall, recall) self.assertAlmostEqual(class_metrics.precision, precision) self.assertAlmostEqual(class_metrics.f_measure, f_measure) self.assertAlmostEqual(class_metrics.accuracy, accuracy) self.assertEqual(total_pos, pos_count) self.assertEqual(total_neg, neg_count) def test_binary_classification_metrics_with_invalid_frequency_col(self): """test binary class metrics with a frequency col of invalid type""" dataset = [("blue", 1, 0, 0, "bla"), ("blue", 3, 1, 0, "bla"), ("green", 1, 0, 0, "bla"), ("green", 0, 1, 0, "bla")] schema = [("a", str), ("b", int), ("labels", int), ("predictions", int), ("frequency", str)] frame = self.context.frame.create(dataset, schema=schema) # this should throw an error because the frequency col # we provided is of type str but should be of type int with self.assertRaisesRegexp(Exception, "NumberFormatException"): class_metrics = frame.binary_classification_metrics("labels", "predictions", 1, 1, frequency_column="frequency") if __name__ == '__main__': unittest.main()
apache-2.0
saguziel/incubator-airflow
setup.py
1
9154
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from setuptools import setup, find_packages, Command from setuptools.command.test import test as TestCommand import imp import logging import os import sys logger = logging.getLogger(__name__) # Kept manually in sync with airflow.__version__ version = imp.load_source( 'airflow.version', os.path.join('airflow', 'version.py')).version class Tox(TestCommand): user_options = [('tox-args=', None, "Arguments to pass to tox")] def initialize_options(self): TestCommand.initialize_options(self) self.tox_args = '' def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): #import here, cause outside the eggs aren't loaded import tox errno = tox.cmdline(args=self.tox_args.split()) sys.exit(errno) class CleanCommand(Command): """Custom clean command to tidy up the project root.""" user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): os.system('rm -vrf ./build ./dist ./*.pyc ./*.tgz ./*.egg-info') def git_version(version): """ Return a version to identify the state of the underlying git repo. The version will indicate whether the head of the current git-backed working directory is tied to a release tag or not : it will indicate the former with a 'release:{version}' prefix and the latter with a 'dev0' prefix. Following the prefix will be a sha of the current branch head. Finally, a "dirty" suffix is appended to indicate that uncommitted changes are present. """ repo = None try: import git repo = git.Repo('.git') except ImportError: logger.warning('gitpython not found: Cannot compute the git version.') return '' except Exception as e: logger.warning('Git repo not found: Cannot compute the git version.') return '' if repo: sha = repo.head.commit.hexsha if repo.is_dirty(): return '.dev0+{sha}.dirty'.format(sha=sha) # commit is clean # is it release of `version` ? try: tag = repo.git.describe( match='[0-9]*', exact_match=True, tags=True, dirty=True) assert tag == version, (tag, version) return '.release:{version}+{sha}'.format(version=version, sha=sha) except git.GitCommandError: return '.dev0+{sha}'.format(sha=sha) else: return 'no_git_version' def write_version(filename=os.path.join(*['airflow', 'git_version'])): text = "{}".format(git_version(version)) with open(filename, 'w') as a: a.write(text) async = [ 'greenlet>=0.4.9', 'eventlet>= 0.9.7', 'gevent>=0.13' ] celery = [ 'celery>=3.1.17', 'flower>=0.7.3' ] cgroups = [ 'cgroupspy>=0.1.4', ] crypto = ['cryptography>=0.9.3'] dask = [ 'distributed>=1.15.2, <2' ] datadog = ['datadog>=0.14.0'] doc = [ 'sphinx>=1.2.3', 'sphinx-argparse>=0.1.13', 'sphinx-rtd-theme>=0.1.6', 'Sphinx-PyPI-upload>=0.2.1' ] docker = ['docker-py>=1.6.0'] druid = ['pydruid>=0.2.1'] emr = ['boto3>=1.0.0'] gcp_api = [ 'httplib2', 'google-api-python-client>=1.5.0, <1.6.0', 'oauth2client>=2.0.2, <2.1.0', 'PyOpenSSL', ] hdfs = ['snakebite>=2.7.8'] webhdfs = ['hdfs[dataframe,avro,kerberos]>=2.0.4'] jira = ['JIRA>1.0.7'] hive = [ 'hive-thrift-py>=0.0.1', 'pyhive>=0.1.3', 'impyla>=0.13.3', 'unicodecsv>=0.14.1' ] jdbc = ['jaydebeapi>=0.2.0'] mssql = ['pymssql>=2.1.1', 'unicodecsv>=0.14.1'] mysql = ['mysqlclient>=1.3.6'] rabbitmq = ['librabbitmq>=1.6.1'] oracle = ['cx_Oracle>=5.1.2'] postgres = ['psycopg2>=2.6'] salesforce = ['simple-salesforce>=0.72'] s3 = [ 'boto>=2.36.0', 'filechunkio>=1.6', ] samba = ['pysmbclient>=0.1.3'] slack = ['slackclient>=1.0.0'] statsd = ['statsd>=3.0.1, <4.0'] vertica = ['vertica-python>=0.5.1'] ldap = ['ldap3>=0.9.9.1'] kerberos = ['pykerberos>=1.1.13', 'requests_kerberos>=0.10.0', 'thrift_sasl>=0.2.0', 'snakebite[kerberos]>=2.7.8', 'kerberos>=1.2.5'] password = [ 'bcrypt>=2.0.0', 'flask-bcrypt>=0.7.1', ] github_enterprise = ['Flask-OAuthlib>=0.9.1'] qds = ['qds-sdk>=1.9.0'] cloudant = ['cloudant>=0.5.9,<2.0'] # major update coming soon, clamp to 0.x all_dbs = postgres + mysql + hive + mssql + hdfs + vertica + cloudant devel = [ 'click', 'freezegun', 'jira', 'lxml>=3.3.4', 'mock', 'moto', 'nose', 'nose-ignore-docstring==0.2', 'nose-parameterized', 'nose-timer', 'rednose' ] devel_minreq = devel + mysql + doc + password + s3 + cgroups devel_hadoop = devel_minreq + hive + hdfs + webhdfs + kerberos devel_all = devel + all_dbs + doc + samba + s3 + slack + crypto + oracle + docker def do_setup(): write_version() setup( name='airflow', description='Programmatically author, schedule and monitor data pipelines', license='Apache License 2.0', version=version, packages=find_packages(), package_data={'': ['airflow/alembic.ini', "airflow/git_version"]}, include_package_data=True, zip_safe=False, scripts=['airflow/bin/airflow'], install_requires=[ 'alembic>=0.8.3, <0.9', 'croniter>=0.3.8, <0.4', 'dill>=0.2.2, <0.3', 'flask>=0.11, <0.12', 'flask-admin==1.4.1', 'flask-cache>=0.13.1, <0.14', 'flask-login==0.2.11', 'flask-swagger==0.2.13', 'flask-wtf==0.12', 'funcsigs==1.0.0', 'future>=0.15.0, <0.17', 'gitpython>=2.0.2', 'gunicorn>=19.3.0, <19.4.0', # 19.4.? seemed to have issues 'jinja2>=2.7.3, <2.9.0', 'lxml>=3.6.0, <4.0', 'markdown>=2.5.2, <3.0', 'pandas>=0.17.1, <1.0.0', 'psutil>=4.2.0, <5.0.0', 'pygments>=2.0.1, <3.0', 'python-daemon>=2.1.1, <2.2', 'python-dateutil>=2.3, <3', 'python-nvd3==0.14.2', 'requests>=2.5.1, <3', 'setproctitle>=1.1.8, <2', 'sqlalchemy>=0.9.8', 'tabulate>=0.7.5, <0.8.0', 'thrift>=0.9.2, <0.10', 'zope.deprecation>=4.0, <5.0', ], extras_require={ 'all': devel_all, 'all_dbs': all_dbs, 'async': async, 'celery': celery, 'cgroups': cgroups, 'cloudant': cloudant, 'crypto': crypto, 'dask': dask, 'datadog': datadog, 'devel': devel_minreq, 'devel_hadoop': devel_hadoop, 'doc': doc, 'docker': docker, 'druid': druid, 'emr': emr, 'gcp_api': gcp_api, 'github_enterprise': github_enterprise, 'hdfs': hdfs, 'hive': hive, 'jdbc': jdbc, 'kerberos': kerberos, 'ldap': ldap, 'mssql': mssql, 'mysql': mysql, 'oracle': oracle, 'password': password, 'postgres': postgres, 'qds': qds, 'rabbitmq': rabbitmq, 's3': s3, 'salesforce': salesforce, 'samba': samba, 'slack': slack, 'statsd': statsd, 'vertica': vertica, 'webhdfs': webhdfs, 'jira': jira, }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Topic :: System :: Monitoring', ], author='Apache Software Foundation', author_email='[email protected]', url='http://airflow.incubator.apache.org/', download_url=( 'https://dist.apache.org/repos/dist/release/incubator/airflow/' + version), cmdclass={ 'test': Tox, 'extra_clean': CleanCommand, }, ) if __name__ == "__main__": do_setup()
apache-2.0
dhruv13J/scikit-learn
sklearn/feature_selection/variance_threshold.py
238
2594
# Author: Lars Buitinck <[email protected]> # License: 3-clause BSD import numpy as np from ..base import BaseEstimator from .base import SelectorMixin from ..utils import check_array from ..utils.sparsefuncs import mean_variance_axis from ..utils.validation import check_is_fitted class VarianceThreshold(BaseEstimator, SelectorMixin): """Feature selector that removes all low-variance features. This feature selection algorithm looks only at the features (X), not the desired outputs (y), and can thus be used for unsupervised learning. Read more in the :ref:`User Guide <variance_threshold>`. Parameters ---------- threshold : float, optional Features with a training-set variance lower than this threshold will be removed. The default is to keep all features with non-zero variance, i.e. remove the features that have the same value in all samples. Attributes ---------- variances_ : array, shape (n_features,) Variances of individual features. Examples -------- The following dataset has integer features, two of which are the same in every sample. These are removed with the default setting for threshold:: >>> X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]] >>> selector = VarianceThreshold() >>> selector.fit_transform(X) array([[2, 0], [1, 4], [1, 1]]) """ def __init__(self, threshold=0.): self.threshold = threshold def fit(self, X, y=None): """Learn empirical variances from X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Sample vectors from which to compute variances. y : any Ignored. This parameter exists only for compatibility with sklearn.pipeline.Pipeline. Returns ------- self """ X = check_array(X, ('csr', 'csc'), dtype=np.float64) if hasattr(X, "toarray"): # sparse matrix _, self.variances_ = mean_variance_axis(X, axis=0) else: self.variances_ = np.var(X, axis=0) if np.all(self.variances_ <= self.threshold): msg = "No feature in X meets the variance threshold {0:.5f}" if X.shape[0] == 1: msg += " (X contains only one sample)" raise ValueError(msg.format(self.threshold)) return self def _get_support_mask(self): check_is_fitted(self, 'variances_') return self.variances_ > self.threshold
bsd-3-clause
hainm/statsmodels
statsmodels/sandbox/examples/example_gam_0.py
33
4574
'''first examples for gam and PolynomialSmoother used for debugging This example was written as a test case. The data generating process is chosen so the parameters are well identified and estimated. Note: uncomment plt.show() to display graphs ''' example = 2 #3 # 1,2 or 3 import numpy as np from statsmodels.compat.python import zip import numpy.random as R import matplotlib.pyplot as plt from statsmodels.sandbox.gam import AdditiveModel from statsmodels.sandbox.gam import Model as GAM #? from statsmodels.genmod import families from statsmodels.genmod.generalized_linear_model import GLM #np.random.seed(987654) standardize = lambda x: (x - x.mean()) / x.std() demean = lambda x: (x - x.mean()) nobs = 500 lb, ub = -1., 1. #for Poisson #lb, ub = -0.75, 2 #0.75 #for Binomial x1 = R.uniform(lb, ub, nobs) #R.standard_normal(nobs) x1 = np.linspace(lb, ub, nobs) x1.sort() x2 = R.uniform(lb, ub, nobs) # #x2 = R.standard_normal(nobs) x2.sort() #x2 = np.cos(x2) x2 = x2 + np.exp(x2/2.) #x2 = np.log(x2-x2.min()+0.1) y = 0.5 * R.uniform(lb, ub, nobs) #R.standard_normal((nobs,)) f1 = lambda x1: (2*x1 - 0.5 * x1**2 - 0.75 * x1**3) # + 0.1 * np.exp(-x1/4.)) f2 = lambda x2: (x2 - 1* x2**2) # - 0.75 * np.exp(x2)) z = standardize(f1(x1)) + standardize(f2(x2)) z = standardize(z) + 1 # 0.1 #try this z = f1(x1) + f2(x2) #z = demean(z) z -= np.median(z) print('z.std()', z.std()) #z = standardize(z) + 0.2 # with standardize I get better values, but I don't know what the true params are print(z.mean(), z.min(), z.max()) #y += z #noise y = z d = np.array([x1,x2]).T if example == 1: print("normal") m = AdditiveModel(d) m.fit(y) x = np.linspace(-2,2,50) print(m) import scipy.stats, time if example == 2: print("binomial") mod_name = 'Binomial' f = families.Binomial() #b = np.asarray([scipy.stats.bernoulli.rvs(p) for p in f.link.inverse(y)]) b = np.asarray([scipy.stats.bernoulli.rvs(p) for p in f.link.inverse(z)]) b.shape = y.shape m = GAM(b, d, family=f) toc = time.time() m.fit(b) tic = time.time() print(tic-toc) #for plotting yp = f.link.inverse(y) p = b if example == 3: print("Poisson") f = families.Poisson() #y = y/y.max() * 3 yp = f.link.inverse(z) #p = np.asarray([scipy.stats.poisson.rvs(p) for p in f.link.inverse(y)], float) p = np.asarray([scipy.stats.poisson.rvs(p) for p in f.link.inverse(z)], float) p.shape = y.shape m = GAM(p, d, family=f) toc = time.time() m.fit(p) tic = time.time() print(tic-toc) if example > 1: y_pred = m.results.mu# + m.results.alpha#m.results.predict(d) plt.figure() plt.subplot(2,2,1) plt.plot(p, '.') plt.plot(yp, 'b-', label='true') plt.plot(y_pred, 'r-', label='GAM') plt.legend(loc='upper left') plt.title('gam.GAM ' + mod_name) counter = 2 for ii, xx in zip(['z', 'x1', 'x2'], [z, x1, x2]): sortidx = np.argsort(xx) #plt.figure() plt.subplot(2, 2, counter) plt.plot(xx[sortidx], p[sortidx], '.') plt.plot(xx[sortidx], yp[sortidx], 'b.', label='true') plt.plot(xx[sortidx], y_pred[sortidx], 'r.', label='GAM') plt.legend(loc='upper left') plt.title('gam.GAM ' + mod_name + ' ' + ii) counter += 1 # counter = 2 # for ii, xx in zip(['z', 'x1', 'x2'], [z, x1, x2]): # #plt.figure() # plt.subplot(2, 2, counter) # plt.plot(xx, p, '.') # plt.plot(xx, yp, 'b-', label='true') # plt.plot(xx, y_pred, 'r-', label='GAM') # plt.legend(loc='upper left') # plt.title('gam.GAM Poisson ' + ii) # counter += 1 plt.figure() plt.plot(z, 'b-', label='true' ) plt.plot(np.log(m.results.mu), 'r-', label='GAM') plt.title('GAM Poisson, raw') plt.figure() plt.plot(x1, standardize(m.smoothers[0](x1)), 'r') plt.plot(x1, standardize(f1(x1)), linewidth=2) plt.figure() plt.plot(x2, standardize(m.smoothers[1](x2)), 'r') plt.plot(x2, standardize(f2(x2)), linewidth=2) ##y_pred = m.results.predict(d) ##plt.figure() ##plt.plot(z, p, '.') ##plt.plot(z, yp, 'b-', label='true') ##plt.plot(z, y_pred, 'r-', label='AdditiveModel') ##plt.legend() ##plt.title('gam.AdditiveModel') #plt.show() ## pylab.figure(num=1) ## pylab.plot(x1, standardize(m.smoothers[0](x1)), 'b') ## pylab.plot(x1, standardize(f1(x1)), linewidth=2) ## pylab.figure(num=2) ## pylab.plot(x2, standardize(m.smoothers[1](x2)), 'b') ## pylab.plot(x2, standardize(f2(x2)), linewidth=2) ## pylab.show()
bsd-3-clause