repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
caseyjlaw/tpipe
leanpipedt.py
1
51791
########################################## # functional style, uses multiprocessing # # this version threads within processing # ########################################## import numpy as n import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as p import applytelcal, applycals2 from scipy import signal from math import ceil import multiprocessing as mp import string, os, ctypes, types import cPickle as pickle import time as timestamp import leanpipedt_cython as lib #import leanpipe_external as lib import qimg_cython as qimg # Optional imports that have extra dependencies # can choose fft from numpy or pyfftw. from numpy import fft as fft #import pyfftw.interfaces.NUMPY_fft as fft # # optionally can use CASA outside of casapy session. requires hacking CASA shared-object libraries... #import casautil #ms = casautil.tools.ms() #qa = casautil.tools.quanta() def numpyview(arr, datatype, shape): """ Takes mp.Array and returns numpy array with shape of data in MS. """ # return n.frombuffer(arr.get_obj()).view(n.dtype(datatype)).reshape((iterint, nbl, nchan, npol)) return n.frombuffer(arr.get_obj(), dtype=n.dtype(datatype)).view(n.dtype(datatype)).reshape(shape) def calc_hexcenters(fwhmsurvey, fwhmfield, show=0): """ Tile a large circular area with a small circular areas. sizes are assumed to be fwhm. assumes flat sky. """ large = fwhmsurvey small = fwhmfield centers = [] (l0,m0) = (0.,0.) centers.append((l0,m0)) l1 = l0-(small/2.)*n.cos(n.radians(60)) m1 = m0-(small/2.)*n.sin(n.radians(60)) ii = 0 while ( n.sqrt((l1-l0)**2+(m1-m0)**2) < large/2.): l1 = l1+((-1)**ii)*(small/2.)*n.cos(n.radians(60)) m1 = m1+(small/2.)*n.sin(n.radians(60)) l2 = l1+small/2 m2 = m1 while ( n.sqrt((l2-l0)**2+(m2-m0)**2) < large/2.): centers.append((l2,m2)) l2 = l2+small/2 l2 = l1-small/2 m2 = m1 while ( n.sqrt((l2-l0)**2+(m2-m0)**2) < large/2.): centers.append((l2,m2)) l2 = l2-small/2 ii = ii+1 l1 = l0 m1 = m0 ii = 0 while ( n.sqrt((l1-l0)**2+(m1-m0)**2) < large/2.): l1 = l1-((-1)**ii)*(small/2.)*n.cos(n.radians(60)) m1 = m1-(small/2.)*n.sin(n.radians(60)) l2 = l1 m2 = m1 while ( n.sqrt((l2-l0)**2+(m2-m0)**2) < large/2.): centers.append((l2,m2)) l2 = l2+small/2 l2 = l1-small/2 m2 = m1 while ( n.sqrt((l2-l0)**2+(m2-m0)**2) < large/2.): centers.append((l2,m2)) l2 = l2-small/2 ii = ii+1 delaycenters = n.array(centers) if len(delaycenters) == 1: plural = '' else: plural = 's' print 'For a search area of %.3f and delay beam of %.3f, we will use %d delay beam%s' % (fwhmsurvey, fwhmfield, len(delaycenters), plural) return delaycenters def detect_bispectra(ba, d, sigma=5., tol=1.3, Q=0, show=0, save=0, verbose=0): """ Function to detect transient in bispectra sigma gives the threshold for SNR_bisp (apparent). tol gives the amount of tolerance in the sigma_b cut for point-like sources (rfi filter). Q is noise per baseline and can be input. Otherwise estimated from data. save=0 is no saving, save=1 is save with default name, save=<string>.png uses custom name (must include .png). """ # using s=S/Q mu = lambda s: 1. # for bispectra formed from visibilities sigbQ3 = lambda s: n.sqrt((1 + 3*mu(s)**2) + 3*(1 + mu(s)**2)*s**2 + 3*s**4) # from kulkarni 1989, normalized by Q**3, also rogers et al 1995 s = lambda basnr, ntr: (2.*basnr/n.sqrt(ntr))**(1/3.) # see rogers et al. 1995 for factor of 2 # measure SNR_bl==Q from sigma clipped times with normal mean and std of bispectra. put into time,dm order bamean = ba.real.mean(axis=1) bastd = ba.real.std(axis=1) (meanmin,meanmax) = lib.sigma_clip(bamean) # remove rfi to estimate noise-like parts (stdmin,stdmax) = lib.sigma_clip(bastd) clipped = n.where((bamean > meanmin) & (bamean < meanmax) & (bastd > stdmin) & (bastd < stdmax) & (bamean != 0.0))[0] # remove rfi and zeros bameanstd = ba[clipped].real.mean(axis=1).std() basnr = bamean/bameanstd # = S**3/(Q**3 / n.sqrt(n_tr)) = s**3 * n.sqrt(n_tr) if Q and verbose: print 'Using given Q =', Q else: Q = ((bameanstd/2.)*n.sqrt(d['ntr']))**(1/3.) if verbose: print 'Estimating noise per baseline from data. Q (per DM) =', Q # detect cands = n.where( (bastd/Q**3 < tol*sigbQ3(s(basnr, d['ntr']))) & (basnr > sigma) ) # get compact sources with high snr if show or save: p.figure() ax = p.axes() p.subplot(211) p.title(str(d['nskip']) + ' nskip, ' + str(len(cands))+' candidates', transform = ax.transAxes) p.plot(basnr, 'b.') if len(cands[0]) > 0: p.plot(cands, basnr[cands], 'r*') p.ylim(-2*basnr[cands].max(),2*basnr[cands].max()) p.xlabel('Integration',fontsize=12,fontweight="bold") p.ylabel('SNR_b',fontsize=12,fontweight="bold") ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_position(('outward', 20)) ax.spines['left'].set_position(('outward', 30)) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') p.subplot(212) p.plot(bastd/Q**3, basnr, 'b.') # plot reference theory lines smax = s(basnr.max(), d['nants']) sarr = smax*n.arange(0,101)/100. p.plot(sigbQ3(sarr), 1/2.*sarr**3*n.sqrt(d['ntr']), 'k') p.plot(tol*sigbQ3(sarr), 1/2.*sarr**3*n.sqrt(d['ntr']), 'k--') if len(cands[0]) > 0: p.plot(bastd[cands]/Q**3, basnr[cands], 'r*') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_position(('outward', 20)) ax.spines['left'].set_position(('outward', 30)) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') if len(cands[0]) > 0: p.axis([0, tol*sigbQ3(s(basnr[cands].max(), d['nants'])), -0.5*basnr[cands].max(), 1.1*basnr[cands].max()]) # show spectral modulation next to each point for candint in cands: sm = n.single(round(specmod(data, d, candint),1)) p.text(bastd[candint]/Q**3, basnr[candint], str(sm), horizontalalignment='right', verticalalignment='bottom') p.xlabel('sigma_b/Q^3',fontsize=12,fontweight="bold") p.ylabel('SNR_b',fontsize=12,fontweight="bold") if save: if save == 1: savename = d['filename'].split('.')[:-1] savename.append(str(d['nskip']) + '_bisp.png') savename = string.join(savename,'.') elif isinstance(save, types.StringType): savename = save print 'Saving file as ', savename p.savefig(self.pathout+savename) return cands[0], basnr, bastd, Q def estimate_noiseperbl(data0): """ Takes large data array and sigma clips it to find noise per bl for input to detect_bispectra. Takes mean across pols and channels for now, as in detect_bispectra. """ # define noise per baseline for data seen by detect_bispectra or image data0mean = data0.mean(axis=2).imag # use imaginary part to estimate noise without calibrated, on-axis signal (data0meanmin, data0meanmax) = lib.sigma_clip(data0mean.flatten()) good = n.where( (data0mean>data0meanmin) & (data0mean<data0meanmax) ) noiseperbl = data0mean[good].std() # measure single noise for input to detect_bispectra print 'Sigma clip of %.3f to %.3f keeps %d%% of data' % (data0meanmin, data0meanmax, (100.*len(good[0]))/len(data0mean.flatten())) print 'Estimate of noise per baseline: %.3f' % noiseperbl return noiseperbl def save(d, cands, verbose=0): """ Save all candidates in pkl file for later aggregation and filtering. """ if len(cands): loclist = [] proplist = [] for cand in cands: # first unpack # (beamnum, dtind, i, dmind, snr, img, specpol) = cand # big set (beamnum, dtind, i, dmind, snr, lm, snr2, lm2) = cand # midsize set # then build list to dump loclist.append( [beamnum, dtind, i, dmind] ) # proplist.append( (snr, img, specpol) ) # full set proplist.append( [snr, lm[0], lm[1], snr2, lm2[0], lm2[1]] ) # midsize set if verbose: print loclist, proplist # save candidate info in pickle file pkl = open(d['candsfile'], 'a') pickle.dump((loclist, proplist), pkl) pkl.close() else: if verbose: print 'No cands to save...' def imgallloop(d, dmind, dtind, beamnum): """ Parallelizable function for imaging a chunk of data for a single dm. runs cython qimg library for image, then filters results based on spectral modulation of candidate. """ # THIS ONE does the uv gridding and searches for the candidates # NOTE, the qimg_cython.pyx defines all the different imaging algorithms Casey has written. twindow = 15 # window to save for plotting data in pickle # dedisperse using global 'data' data0 = dataprep(d, dmind, dtind) # returns masked array of dedispersed and stitched data ims,snr,candints = qimg.imgallfullfilterxy(n.outer(u[d['iterint']/2], d['freq']/d['freq_orig'][0]), n.outer(v[d['iterint']/2], d['freq']/d['freq_orig'][0]), data0.data, d['sizex'], d['sizey'], d['res'], d['sigma_image']) # IF WE FOUND CANDIDATES, MAKE THEIR CANDIDATE PLOTS if len(candints) > 0: # spectra = [] goodcandints = [] lmarr = []; lm2arr = [] snr2arr = [] for i in xrange(len(candints)): # phase shift to get dynamic spectrum peakl, peakm = n.where(ims[i] == ims[i].max()) # assumes new style u->u and v->v gridding l1 = (float((d['sizex'])/d['res'])/2. - peakl[0])/d['sizex'] m1 = (float((d['sizey'])/d['res'])/2. - peakm[0])/d['sizey'] if d['secondaryfilter'] == 'specmod': # filter by spectral modulation # return spectrogram per pol # minint = max(candints[i]-twindow, 0) # maxint = min(candints[i]+twindow, len(data0)) data0_snip = data0[candints[i]].copy() # get candidate integration lib.phaseshift_threaded(data0_snip[None,:,:,:], d, l1, m1, u[candints[i]], v[candints[i]]) # snipint = min(candints[i],twindow) # correct for edge effects # print i, candints[i], minint, maxint, peakl, peakm, snipint, data0_snip.mean() bfspec = data0_snip.mean(axis=0).mean(axis=1).real # mean over bl and pol for known int # bflc = data0_snip.mean(axis=3).mean(axis=2).mean(axis=1).real # mean over ch, bl and pol # snrlc = bflc[snipint] / bflc[range(0,snipint-1)+range(snipint+2,twindow)].std() # lc snr of event. more accurate than img snr sm = n.sqrt( ((bfspec**2).mean() - bfspec.mean()**2) / bfspec.mean()**2 ) if sm < n.sqrt(d['nchan']/snr[i]**2 + d['specmodfilter']): print 'Got one! Int=%d, DM=%d, dt=%d, SNR_im=%.1f @ (%d,%d), SM=%.1f < %.1f, so keeping candidate.' % (d['nskip']+d['itercount']+candints[i]*d['dtarr'][dtind], d['dmarr'][dmind], d['dtarr'][dtind], snr[i], peakl, peakm, sm, n.sqrt(d['nchan']/snr[i]**2 + d['specmodfilter'])) # spectra.append(data0_snip.mean(axis=1)) # get real part of spectrogram of candidate goodcandints.append(i) lmarr.append( (l1, m1) ) else: print 'Almost... Int=%d, DM=%d, dt=%d, SNR_im=%.1f @ (%d,%d), SM=%.1f > %.1f, so rejecting candidate.' % (d['nskip']+d['itercount']+candints[i]*d['dtarr'][dtind], d['dmarr'][dmind], d['dtarr'][dtind], snr[i], peakl, peakm, sm, n.sqrt(d['nchan']/snr[i]**2 + d['specmodfilter'])) elif d['secondaryfilter'] == 'fullim': # filter with an image of all data im2 = qimg.imgonefullxy(n.outer(u[candints[i]], d['freq']/d['freq_orig'][0]), n.outer(v[candints[i]], d['freq']/d['freq_orig'][0]), data0.data[candints[i]], d['full_sizex'], d['full_sizey'], d['res']) snr2 = im2.max()/im2.std() peakl2, peakm2 = n.where(im2 == im2.max()) # assumes new style u->u and v->v gridding l2 = (float((d['full_sizex'])/d['res'])/2. - peakl2[0])/d['full_sizex'] m2 = (float((d['full_sizey'])/d['res'])/2. - peakm2[0])/d['full_sizey'] if snr2 > d['sigma_image']: print 'Got one! Int=%d, DM=%d, dt=%d: SNR_im=%.1f @ (%.2e,%.2e) and SNR2=%.1f @ (%.2e, %.2e), so keeping candidate.' % (d['nskip']+d['itercount']+candints[i]*d['dtarr'][dtind], d['dmarr'][dmind], d['dtarr'][dtind], snr[i], l1, m1, snr2, l2, m2) goodcandints.append(i) lmarr.append( (l1, m1) ) lm2arr.append( (l2, m2) ) snr2arr.append(snr2) else: print 'Almost... Int=%d, DM=%d, dt=%d: SNR_im=%.1f @ (%.2e,%.2e) and SNR2=%.1f @ (%.2e, %.2e), so rejecting candidate.' % (d['nskip']+d['itercount']+candints[i]*d['dtarr'][dtind], d['dmarr'][dmind], d['dtarr'][dtind], snr[i], l1, m1, snr2, l2, m2) if d['secondaryfilter'] == 'specmod': # filter by spectral modulation return [(beamnum, dtind, d['nskip']+d['itercount']+candints[goodcandints[i]]*d['dtarr'][dtind], dmind, snr[goodcandints[i]], lmarr[i]) for i in xrange(len(goodcandints))] # smaller data returned elif d['secondaryfilter'] == 'fullim': # filter with an image of all data return [(beamnum, dtind, d['nskip']+d['itercount']+candints[goodcandints[i]]*d['dtarr'][dtind], dmind, snr[goodcandints[i]], lmarr[i], snr2arr[i], lm2arr[i]) for i in xrange(len(goodcandints))] # smaller data returned # return [(beamnum, dtind, d['nskip']+d['itercount']+candints[goodcandints[i]]*d['dtarr'][dtind], dmind, snr[goodcandints[i]], ims[goodcandints[i]], spectra[i]) for i in xrange(len(goodcandints))] # return data coods (delta_t, int, dm) and properties (snr, image, spectrum*pol) else: return 0 # return ( n.empty( (0,7) ) ) def time_filter(data0, d, width, show=0): """ Replaces data array with filtered version via convolution in time. Note that this has trouble with zeroed data. kernel specifies the convolution kernel. 'm' for mexican hat (a.k.a. ricker, effectively does bg subtraction), 'g' for gaussian. 't' for a tophat. 'b' is a tophat with bg subtraction (or square 'm'). 'w' is a tophat with width that varies with channel, as kept in 'twidth[dmind]'. width is the kernel width with length nchan. should be tuned to expected pulse width in each channel. bgwindow is used by 'b' only. An alternate design for this method would be to make a new data array after filtering, so this can be repeated for many assumed widths without reading data in anew. That would require more memory, so going with repalcement for now. """ kernel = d['filtershape'] bgwindow = d['bgwindow'] if not isinstance(width, types.ListType): width = [width] * len(d['chans']) # time filter by convolution. functions have different normlizations. m has central peak integral=1 and total is 0. others integrate to 1, so they don't do bg subtraction. kernelset = {} # optionally could make set of kernels. one per width needed. (used only by 'w' for now). if kernel == 't': print 'Applying tophat time filter.' for w in n.unique(width): kernel = n.zeros(len(data0)) # tophat. onrange = range(len(kernel)/2 - w/2, len(kernel)/2 + int(ceil(w/2.))) kernel[onrange] = 1. kernelset[w] = kernel/n.where(kernel>0, kernel, 0).sum() # normalize to have peak integral=1, thus outside integral=-1. elif kernel == 'b': print 'Applying tophat time filter with bg subtraction (square mexican hat) total width=%d.' % (bgwindow) for w in n.unique(width): kernel = n.zeros(len(data0)) # tophat. onrange = range(len(kernel)/2 - w/2, len(kernel)/2 + int(ceil(w/2.))) kernel[onrange] = 1. offrange = range(len(kernel)/2 - (bgwindow+w)/2, len(kernel)/2-w/2) + range(len(kernel)/2 + int(ceil(w/2.)), len(kernel)/2 + int(ceil((w+bgwindow)/2.))) kernel[offrange] = -1. posnorm = n.where(kernel>0, kernel, 0).sum() # find normalization of positive negnorm = n.abs(n.where(kernel<0, kernel, 0).sum()) # find normalization of negative kernelset[w] = n.where(kernel>0, kernel/posnorm, kernel/negnorm) # pos and neg both sum to 1/-1, so total integral=0 elif kernel == 'g': print 'Applying gaussian time filter. Note that effective width is much larger than equivalent tophat width.' for w in n.unique(width): kernel = signal.gaussian(len(data0), w) # gaussian. peak not quite at 1 for widths less than 3, so it is later renormalized. kernelset[w] = kernel / (w * n.sqrt(2*n.pi)) # normalize to pdf, not peak of 1. elif kernel == 'w': print 'Applying tophat time filter that varies with channel.' for w in n.unique(width): kernel = n.zeros(len(data0)) # tophat. onrange = range(len(kernel)/2 - w/2, len(kernel)/2 + int(ceil(w/2.))) kernel[onrange] = 1. kernelset[w] = kernel/n.where(kernel>0, kernel, 0).sum() # normalize to have peak integral=1, thus outside integral=-1. elif kernel == None: print 'Applying no time filter.' return data0 if show: for kernel in kernelset.values(): p.plot(kernel,'.') p.title('Time filter kernel') p.show() # take ffts (in time) datafft = fft.fft(data0, axis=0) # kernelsetfft = {} # for w in n.unique(width): # kernelsetfft[w] = fft.fft(n.roll(kernelset[w], len(data0)/2)) # seemingly need to shift kernel to have peak centered near first bin if convolving complex array (but not for real array?) # **take first kernel. assumes single width in hacky way** kernelsetfft = fft.fft(n.roll(kernelset[kernelset.keys()[0]], len(data0)/2)) # seemingly need to shift kernel to have peak centered near first bin if convolving complex array (but not for real array?) # filter by product in fourier space # for i in range(d['nbl']): # **can't find matrix product I need, so iterating over nbl, chans, npol** # for j in range(len(d['chans'])): # for k in range(d['npol']): # datafft[:,i,j,k] = datafft[:,i,j,k]*kernelsetfft[width[j]] # index fft kernel by twidth datafft = datafft * kernelsetfft[:,None,None,None] # ifft to restore time series # return n.ma.masked_array(fft.ifft(datafft, axis=0), self.flags[:self.nints,:, self.chans,:] == 0) return n.array(fft.ifft(datafft, axis=0)) def specmod(data0, d, ii): """Calculate spectral modulation for given track. Spectral modulation is basically the standard deviation of a spectrum. This helps quantify whether the flux is located in a narrow number of channels or across all channels. Broadband signal has small modulation (<sqrt(nchan)/SNR) while RFI has larger values. See Spitler et al 2012 for details. """ bfspec = data0[ii].mean(axis=0).mean(axis=1).real # mean over bl and pol sm = n.sqrt( ((bfspec**2).mean() - bfspec.mean()**2) / bfspec.mean()**2 ) return sm def readprep(d): """ Prepare to read data """ filename = d['filename']; spw = d['spw']; iterint = d['iterint']; datacol = d['datacol']; selectpol = d['selectpol'] scan = d['scan']; nints = d['nints']; nskip = d['nskip'] # read metadata either from pickle or ms file pklname = string.join(filename.split('.')[:-1], '.') + '_init.pkl' if os.path.exists(pklname): print 'Pickle of initializing info found. Loading...' pkl = open(pklname, 'r') try: (d['npol_orig'], d['nbl'], d['blarr'], d['inttime'], spwinfo, scansummary) = pickle.load(pkl) except EOFError: print 'Bad pickle file. Exiting...' return 1 scanlist = sorted(scansummary.keys()) starttime_mjd = scansummary[scanlist[scan]]['0']['BeginTime'] else: print 'No pickle of initializing info found. Making anew...' pkl = open(pklname, 'wb') ms.open(filename) spwinfo = ms.getspectralwindowinfo() scansummary = ms.getscansummary() ms.selectinit(datadescid=0) # reset select params for later data selection selection = {'uvdist': [1., 1e10]} # exclude auto-corrs ms.select(items = selection) ms.selectpolarization(selectpol) scanlist = sorted(scansummary.keys()) starttime_mjd = scansummary[scanlist[scan]]['0']['BeginTime'] d['inttime'] = scansummary[scanlist[scan]]['0']['IntegrationTime'] print 'Initializing integration time (s):', d['inttime'] ms.iterinit(['TIME'], iterint*d['inttime']) ms.iterorigin() da = ms.getdata([datacol, 'axis_info'], ifraxis=True) ms.close() d['nbl'] = da[datacol].shape[2] bls = da['axis_info']['ifr_axis']['ifr_shortname'] d['blarr'] = n.array([[int(bls[i].split('-')[0]),int(bls[i].split('-')[1])] for i in xrange(len(bls))]) # d['npol'] = len(selectpol) d['npol_orig'] = da[datacol].shape[0] print 'Initializing %d polarizations' % (d['npol']) pickle.dump((d['npol_orig'], d['nbl'], d['blarr'], d['inttime'], spwinfo, scansummary), pkl) pkl.close() # set ants if len(d['excludeants']): print 'Excluding ant(s) %s' % d['excludeants'] antlist = list(n.unique(d['blarr'])) d['ants'] = [ant for ant in range(len(antlist)) if antlist[ant] not in d['excludeants']] d['blarr'] = n.array( [(ant1,ant2) for (ant1,ant2) in d['blarr'] if ((ant1 not in d['excludeants']) and (ant2 not in d['excludeants']))] ) d['nbl'] = len(d['blarr']) d['nants'] = len(n.unique(d['blarr'])) print 'Initializing nants:', d['nants'] print 'Initializing nbl:', d['nbl'] # define list of spw keys (may not be in order!) freqs = [] for i in spwinfo.keys(): freqs.append(spwinfo[i]['Chan1Freq']) d['spwlist'] = n.array(sorted(zip(freqs, spwinfo.keys())))[:,1][spw].astype(int) # spwlist defines order of spw to iterate in freq order d['freq_orig'] = n.array([]) for spw in d['spwlist']: nch = spwinfo[str(spw)]['NumChan'] ch0 = spwinfo[str(spw)]['Chan1Freq'] chw = spwinfo[str(spw)]['ChanWidth'] d['freq_orig'] = n.concatenate( (d['freq_orig'], (ch0 + chw * n.arange(nch)) * 1e-9) ).astype('float32') d['freq'] = d['freq_orig'][d['chans']] d['nchan'] = len(d['chans']) print 'Initializing nchan:', d['nchan'] # set requested time range based on given parameters timeskip = d['inttime']*nskip starttime = qa.getvalue(qa.convert(qa.time(qa.quantity(starttime_mjd+timeskip/(24.*60*60),'d'),form=['ymd'], prec=9)[0], 's'))[0] stoptime = qa.getvalue(qa.convert(qa.time(qa.quantity(starttime_mjd+(timeskip+(nints+1)*d['inttime'])/(24.*60*60), 'd'), form=['ymd'], prec=9)[0], 's'))[0] # nints+1 to be avoid buffer running out and stalling iteration print 'First integration of scan:', qa.time(qa.quantity(starttime_mjd,'d'),form=['ymd'],prec=9)[0] print print 'Reading scan', str(scanlist[scan]) ,'for times', qa.time(qa.quantity(starttime_mjd+timeskip/(24.*60*60),'d'),form=['hms'], prec=9)[0], 'to', qa.time(qa.quantity(starttime_mjd+(timeskip+(nints+1)*d['inttime'])/(24.*60*60), 'd'), form=['hms'], prec=9)[0] # read data into data structure ms.open(filename) if len(d['spwlist']) == 1: ms.selectinit(datadescid=d['spwlist'][0]) else: ms.selectinit(datadescid=0, reset=True) # reset includes spw in iteration over time selection = {'time': [starttime, stoptime], 'uvdist': [1., 1e10], 'antenna1': d['ants'], 'antenna2': d['ants']} # exclude auto-corrs ms.select(items = selection) ms.selectpolarization(selectpol) ms.iterinit(['TIME'], iterint*d['inttime'], 0, adddefaultsortcolumns=False) # read with a bit of padding to get at least nints iterstatus = ms.iterorigin() d['itercount1'] = 0 d['l0'] = 0.; d['m0'] = 0. # find full res/size and set actual res/size d['full_res'] = n.round(25./(3e-1/d['freq'][len(d['freq'])/2])/2).astype('int') # full field of view. assumes freq in GHz #set actual res/size if d['res'] == 0: d['res'] = d['full_res'] da = ms.getdata(['u','v','w']) uu = n.outer(da['u'], d['freq']).flatten() * (1e9/3e8) vv = n.outer(da['v'], d['freq']).flatten() * (1e9/3e8) # **this may let vis slip out of bounds. should really define grid out to 2*max(abs(u)) and 2*max(abs(v)). in practice, very few are lost.** powers = n.fromfunction(lambda i,j: 2**i*3**j, (12,8), dtype='int') # power array for 2**i * 3**j rangex = n.round(uu.max() - uu.min()).astype('int') rangey = n.round(vv.max() - vv.min()).astype('int') largerx = n.where(powers-rangex/d['res'] > 0, powers, powers[-1,-1]) p2x, p3x = n.where(largerx == largerx.min()) largery = n.where(powers-rangey/d['res'] > 0, powers, powers[-1,-1]) p2y, p3y = n.where(largery == largery.min()) d['full_sizex'] = ((2**p2x * 3**p3x)*d['res'])[0] d['full_sizey'] = ((2**p2y * 3**p3y)*d['res'])[0] print 'Ideal uvgrid size=(%d,%d) for res=%d' % (d['full_sizex'], d['full_sizey'], d['res']) if d['size'] == 0: d['sizex'] = d['full_sizex'] d['sizey'] = d['full_sizey'] print 'Using uvgrid size=(%d,%d) (2**(%d,%d)*3**(%d,%d) = (%d,%d)) and res=%d' % (d['sizex'], d['sizey'], p2x, p2y, p3x, p3y, 2**p2x*3**p3x, 2**p2y*3**p3y, d['res']) else: d['sizex'] = d['size'] d['sizey'] = d['size'] print 'Using uvgrid size=(%d,%d) and res=%d' % (d['sizex'], d['sizey'], d['res']) d['size'] = max(d['sizex'], d['sizey']) print 'Image memory usage for %d threads is %d GB' % (d['nthreads'], 8 * d['sizex']/d['res'] * d['sizey']/d['res'] * d['iterint'] * d['nthreads']/1024**3) return iterstatus def readiter(d): """ Iterates over ms. Returns everything needed for analysis as tuple. """ da = ms.getdata([d['datacol'],'axis_info','u','v','w','flag','data_desc_id'], ifraxis=True) # spws = n.unique(da['data_desc_id']) # spw in use # good = n.where((da['data_desc_id']) == spws[0])[0] # take first spw good = n.where((da['data_desc_id']) == d['spwlist'][0])[0] # take first spw time0 = da['axis_info']['time_axis']['MJDseconds'][good] data0 = n.transpose(da[d['datacol']], axes=[3,2,1,0])[good] if d['telcalfile']: # apply telcal solutions if len(d['spwlist']) > 1: spwbin = d['spwlist'][0] else: spwbin = 0 chanfreq = da['axis_info']['freq_axis']['chan_freq'][:,spwbin] sols = applytelcal.solutions(d['telcalfile'], chanfreq) for i in range(len(d['selectpol'])): try: sols.setselection(d['telcalcalibrator'], time0[0]/(24*3600), d['selectpol'][i], verbose=0) # chooses solutions closest in time that match pol and source name sols.apply(data0, d['blarr'], i) print 'Applied cal for spw %d and pol %s' % (spwbin, d['selectpol'][i]) except: pass flag0 = n.transpose(da['flag'], axes=[3,2,1,0])[good] u0 = da['u'].transpose()[good] * d['freq_orig'][0] * (1e9/3e8) # uvw are in m, so divide by wavelength of first chan to set in lambda v0 = da['v'].transpose()[good] * d['freq_orig'][0] * (1e9/3e8) w0 = da['w'].transpose()[good] * d['freq_orig'][0] * (1e9/3e8) if len(d['spwlist']) > 1: for spw in d['spwlist'][1:]: good = n.where((da['data_desc_id']) == spw)[0] data1 = n.transpose(da[d['datacol']], axes=[3,2,1,0])[good] if d['telcalfile']: # apply telcal solutions chanfreq = da['axis_info']['freq_axis']['chan_freq'][:,spw] sols = applytelcal.solutions(d['telcalfile'], chanfreq) for i in range(len(d['selectpol'])): try: sols.setselection(d['telcalcalibrator'], time0[0]/(24*3600), d['selectpol'][i], verbose=0) # chooses solutions closest in time that match pol and source name sols.apply(data1, d['blarr'], i) print 'Applied cal for spw %d and pol %s' % (spw, d['selectpol'][i]) except: pass data0 = n.concatenate( (data0, data1), axis=2 ) flag0 = n.concatenate( (flag0, n.transpose(da['flag'], axes=[3,2,1,0])[good]), axis=2 ) del da data0 = data0[:,:,d['chans'],:] * n.invert(flag0[:,:,d['chans'],:]) # flag==1 means bad data (for vla) if d['gainfile']: sols = applycals2.solutions(d['gainfile'], flagants=d['flagantsol']) sols.parsebp(d['bpfile']) # sols.setselection(time0[0]/(24*3600.), d['freq']*1e9, d['spw'], d['selectpol']) sols.setselection(time0[0]/(24*3600.), d['freq']*1e9) # only dualpol, 2sb mode implemented sols.apply(data0, d['blarr']) d['iterstatus1'] = ms.iternext() return data0.astype('complex64'), u0.astype('float32'), v0.astype('float32'), w0.astype('float32'), time0.astype('float32') def dataprep(d, dmind, dtind, usetrim=True): """ Takes most recent data read and dedisperses with white space. also adds previously trimmed data. data2 is next iteration of data of size iterint by ... usetrim is default behavior, but can be turned off to have large single-segment reading to reproduce cands. """ dt = d['dtarr'][dtind] if d['datadelay'][dmind] >= dt: # if doing dedispersion... data2 = n.concatenate( (n.zeros( (d['datadelay'][dmind], d['nbl'], d['nchan'], d['npol']), dtype='complex64'), data), axis=0) # prepend with zeros of length maximal dm delay lib.dedisperse_resample(data2, d['freq'], d['inttime'], d['dmarr'][dmind], dt, verbose=0) # dedisperses data. if usetrim: for i in xrange(len(datatrim[dmind][dtind])): data2[i] = data2[i] + datatrim[dmind][dtind][i] datatrim[dmind][dtind][:] = data2[d['iterint']/dt: d['iterint']/dt + len(datatrim[dmind][dtind])] return n.ma.masked_array(data2[:d['iterint']/dt], data2[:d['iterint']/dt] == 0j) else: # if no dedispersion data2 = data.copy() lib.dedisperse_resample(data2, d['freq'], d['inttime'], d['dmarr'][dmind], dt, verbose=0) # only resample data return n.ma.masked_array(data2[:d['iterint']/dt], data2[:d['iterint']/dt] == 0j) def readloop(d, eproc, emove): """ Data generating stage of parallel data function. data is either read into 'data' buffer, when ready this keeps data reading bottleneck to 1x the read time. """ # now start main work of readloop iterint = d['iterint']; nbl = d['nbl']; nchan = d['nchan']; npol = d['npol'] # data1_mem = mp.sharedctypes.RawArray(ctypes.c_float, (d['iterint']*d['nbl']*d['nchan']*d['npol']*2)) # x2 to store complex values in single array datacal_mem = mp.Array(ctypes.c_float, (iterint*nbl*nchan*len(d['selectpol'])*2)) # x2 to store complex values in single array datacal = numpyview(datacal_mem, 'complex64', (iterint, nbl, nchan, len(d['selectpol']))) datacap, ucap, vcap, wcap, timecap = readiter(d) # read "cap", a hack to make sure any single iteration has enough integrations (artifact of irregular inttime) print 'Read first iteration with shape', datacap.shape while 1: # name = mp.current_process().name # print '%s: filling buffer' % name datanext, unext, vnext, wnext, timenext = readiter(d) print 'Read next %d ints from iter %d' % (len(datanext), d['itercount1']+iterint) datanext = n.vstack((datacap,datanext)) unext = n.vstack((ucap,unext)) vnext = n.vstack((vcap,vnext)) wnext = n.vstack((wcap,wnext)) timenext = n.concatenate((timecap,timenext)) if ((len(datanext) < iterint) and d['iterstatus1']): # read once more if data buffer is too small. don't read if no data! iterator gets confused. datanext2, unext2, vnext2, wnext2, timenext2 = readiter(d) print 'Read another %d ints for iter %d' % (len(datanext2), d['itercount1']+iterint) datanext = n.vstack((datanext,datanext2)) unext = n.vstack((unext,unext2)) vnext = n.vstack((vnext,vnext2)) wnext = n.vstack((wnext,wnext2)) timenext = n.concatenate((timenext,timenext2)) del datanext2, unext2, vnext2, wnext2, timenext2 # clean up # select just the next iteration's worth of data and metadata. leave rest for next iteration's buffer cap. if len(datanext) >= iterint: datacal[:] = datanext[:iterint] datacap = datanext[iterint:] # save rest for next iteration u1 = unext[:iterint] ucap = unext[iterint:] v1 = vnext[:iterint] vcap = vnext[iterint:] w1 = wnext[:iterint] wcap = wnext[iterint:] time1 = timenext[:iterint] timecap = timenext[iterint:] # optionally can insert transient here # lib.phaseshift(data1, d, n.radians(0.1), n.radians(0.), u, v) # phase shifts data in place # data1[100] = data1[100] + 10+0j # lib.phaseshift(data1, d, n.radians(0.), n.radians(0.1), u, v) # phase shifts data in place # flag data before moving into place # bg subtract in time if d['filtershape']: if d['filtershape'] == 'z': # 'z' means do zero-mean subtraction in time pass else: # otherwise do fft convolution datacal = time_filter(datacal, d, 1) # assumes pulse width of 1 integration # flag data if (d['flagmode'] == 'standard'): lib.dataflag(datacal, d, 2.5, convergence=0.05, mode='badch') lib.dataflag(datacal, d, 3., mode='badap') lib.dataflag(datacal, d, 4., convergence=0.1, mode='blstd') lib.dataflag(datacal, d, 4., mode='ring') else: print 'No real-time flagging.' if d['filtershape'] == 'z': print 'Subtracting mean visibility in time...' lib.meantsub(datacal) # write noise pkl with: itercount, noiseperbl, zerofrac, imstd_midtdm0 noiseperbl = estimate_noiseperbl(datacal) if d['savecands'] and n.any(datacal[d['iterint']/2]): imstd = qimg.imgonefullxy(n.outer(u1[d['iterint']/2], d['freq']/d['freq_orig'][0]), n.outer(v1[d['iterint']/2], d['freq']/d['freq_orig'][0]), datacal[d['iterint']/2], d['sizex'], d['sizey'], d['res']).std() zerofrac = float(len(n.where(datacal == 0j)[0]))/datacal.size noisefile = 'noise_' + string.join(d['candsfile'].split('_')[1:-1], '_') + '.pkl' pkl = open(noisefile,'a') pickle.dump( (d['itercount1'], noiseperbl, zerofrac, imstd), pkl ) pkl.close() # after cal and flagging, can optionally average to Stokes I to save memory # do this after measuring noise, etc to keep zero counting correct in imaging if 'lowmem' in d['searchtype']: datacal[...,0] = datacal.sum(axis=3) # emove is THE MOVE EVENT THAT WAITS FOR PROCESSOR TO TELL IT TO GO # wait for signal to move everything to processing buffers print 'Ready to move data into place for itercount ', d['itercount1'] emove.wait() emove.clear() if 'lowmem' in d['searchtype']: data[...,0] = datacal[...,0] else: data[:] = datacal[:] # flag[:] = flag1[:] u[:] = u1[:] v[:] = v1[:] w[:] = w1[:] time[:] = time1[:] d['itercount'] = d['itercount1'] d['iterstatus'] = d['iterstatus1'] d['itercount1'] += iterint eproc.set() # reading buffer filled, start processing # NOW MAKE SURE ALL ENDS GRACEFULLY else: print 'End of data (in buffer)' d['iterstatus'] = False # to force processloop to end eproc.set() ms.iterend() ms.close() break if not d['iterstatus']: # using iterstatus1 is more conservative here. trying to get around hangup on darwin. print 'End of data (iterator)' eproc.set() ms.iterend() ms.close() break def readtriggerloop(d, eproc, emove): """ Defined purely to trigger readloop to continue without starting processloop """ while 1: eproc.wait() eproc.clear() print 'Iterating readloop...' emove.set() if not d['iterstatus']: # using iterstatus1 is more conservative here. trying to get around hangup on darwin. print 'End of data (iterator)' eproc.set() ms.iterend() ms.close() break def processloop(d, eproc, emove): """ Processing stage of parallel data function. Only processes from data. Assumes a "first in, first out" model, where 'data' defines next buffer to process. Event triggered by readloop when 'data' is filled. """ while 1: eproc.wait() eproc.clear() print 'Processing for itercount %d. ' % (d['itercount']) # name = mp.current_process().name # print '%s: processing data' % name # optionally can flag or insert transients here. done in readloop to improve parallelization # lib.phaseshift(data, d, n.radians(0.1), n.radians(0.), u, v) # phase shifts data in place # data[100] = data[100] + 10+0j # lib.phaseshift(data, d, n.radians(0.), n.radians(0.1), u, v) # phase shifts data in place # lib.dataflag(datacal, sigma=1000., mode='blstd') beamnum = 0 resultlist = [] # SUBMITTING THE LOOPS pool = mp.Pool(processes=d['nthreads']) # reserve one for reading. also one for processloop? if n.any(data): for dmind in xrange(len(d['dmarr'])): print 'Processing DM = %d (max %d)' % (d['dmarr'][dmind], d['dmarr'][-1]) for dtind in xrange(len(d['dtarr'])): result = pool.apply_async(imgallloop, [d, dmind, dtind, beamnum]) resultlist.append(result) else: print 'Data for processing is zeros. Moving on...' # COLLECTING THE RESULTS candslist = [] for i in xrange(len(resultlist)): results = resultlist[i].get() if results: for i in xrange(len(results)): candslist.append(results[i]) print 'Adding %d from itercount %d of %s. ' % (len(candslist), d['itercount'], d['filename']) # if the readloop has run out of data, close down processloop, else continue if not d['iterstatus']: pool.close() pool.join() if d['savecands']: save(d, candslist) emove.set() # clear up any loose ends print 'End of processloop' break else: # we're continuing, so signal data move, then save cands emove.set() pool.close() pool.join() if d['savecands']: save(d, candslist) def readloop2(d, eproc, emove): """ Profiles readloop """ cProfile.runctx('readloop(d, eproc, emove)', globals(), locals(), 'readloop.prof') def processloop2(d, eproc, emove): """ Profiles processloop """ cProfile.runctx('processloop(d, eproc, emove)', globals(), locals(), 'processloop.prof') def calc_dmlist(dm_lo,dm_hi,t_samp,t_intr,b_chan,ctr_freq,n_chans,tolerance=1.25): """ This procedure runs the HTRU-style calculation of DM trial steps. Input parameters: - Lowest DM desired - Highest DM desired - tsamp - intrinsic pulse width - bandwidth of single channel - center freq - n channels - tolerance of how much you're willing to smear out your signal (in units of ideal sample time) """ dmarr = [] dm = dm_lo while (dm <= dm_hi): dmarr.append(dm) old_dm = dm ch_fac = 8.3*b_chan/(ctr_freq*ctr_freq*ctr_freq) bw_fac = 8.3*b_chan*n_chans/4/(ctr_freq*ctr_freq*ctr_freq) t00 = n.sqrt(t_samp*t_samp + t_intr*t_intr + (dm*ch_fac)**2) tol_fac = tolerance*tolerance*t00*t00 - t_samp*t_samp - t_intr*t_intr new_dm = (bw_fac*bw_fac*dm + n.sqrt(-1.*(ch_fac*bw_fac*dm)**2. + ch_fac*ch_fac*tol_fac + bw_fac*bw_fac*tol_fac))/(ch_fac**2. + bw_fac**2) dm = new_dm return dmarr ### THIS IS THREAD IS THE "MAIN" def pipe_thread(filename, nints=200, nskip=0, iterint=200, spw=[0], chans=range(5,59), dmarr=[0.], dtarr=[1], fwhmsurvey=0.5, fwhmfield=0.5, selectpol=['RR','LL'], scan=0, datacol='data', size=0, res=0, sigma_bisp=6.5, sigma_image=6.5, filtershape=None, secondaryfilter='fullim', specmodfilter=1.5, searchtype='imageall', telcalfile='', telcalcalibrator='', gainfile='', bpfile='', savecands=0, candsfile='', flagmode='standard', flagantsol=True, nthreads=1, wplanes=0, excludeants=[]): """ Threading for parallel data reading and processing. Either side can be faster than the other, since data are held for processing in shared buffer. size/res define uvgrid parameters. if either set to 0, then they are dynamically set to image full field of view and include all visibilities. searchtype can be 'readonly', '' to do little but setup, or any string to do image search, or include 'lowmem' for low memory version that sums polarizations. DESCRIPTION OF PARAMETERS: nints to datacol parameters define data to read size gives uv extent in N_wavelengths res chosen to be 50 to cover the full FOV of VLA sigma_'s tell what threshold to use for bispec or image filtershape etc. is about matched filtering for candidate detection. 'b' uses conv to subtract bgwindow, 'z' subtracts mean over all times in iterint. secondaryfilter defines how imaged candidates are filtered ('specmod' or 'fullim' are the options) specmodfilter IS A FUDGE FACTOR. In qimg, this factor tells you how much to tolerate spectral modulation deviance. searchtype tells what algorithm to do detection. List defined by Casey. Don't change this, it might break things. telcal thru bpfile --> options for calibration savecands is bool to save candidates or not. candsfile is the prefix used to name candidates. flagmode defines algorithm to do flagging. applies casa flags always. flagantsol --> uses CASA antenna flagging or not nthreads --> size of pool for multithreaded work. wplanes defines the number of w-planes for w-projection (0 means don't do w-projection) """ # set up thread management and shared memory and metadata global data, datatrim, u, v, w, time mgr = mp.Manager() d = mgr.dict() eproc = mp.Event() # event signalling to begin processing emove = mp.Event() # event signalling to move data into processing buffers (data, flag, u, v, w, time) # define basic shared params d['filename'] = filename d['spw'] = spw d['datacol'] = datacol d['dmarr'] = dmarr d['dtarr'] = dtarr d['scan'] = scan d['nskip'] = nskip d['nints'] = nints # total ints to iterate over d['iterint'] = iterint # time step for msiter d['chans'] = chans d['nchan'] = len(chans) d['selectpol'] = selectpol if 'lowmem' in searchtype: print 'Running in \'lowmem\' mode. Reading pols %s, then summing after cal, flag, and filter. Flux scale not right if pols asymmetrically flagged.' % selectpol d['npol'] = 1 else: d['npol'] = len(selectpol) d['filtershape'] = filtershape d['bgwindow'] = 10 d['sigma_bisp'] = sigma_bisp d['sigma_image'] = sigma_image d['size'] = size d['sizex'] = size d['sizey'] = size d['res'] = res d['secondaryfilter'] = secondaryfilter d['specmodfilter'] = specmodfilter # fudge factor for spectral modulation. 1==ideal, 0==do not apply, >1==non-ideal broad-band signal d['searchtype'] = searchtype d['delaycenters'] = calc_hexcenters(fwhmsurvey, fwhmfield) d['telcalfile'] = telcalfile # telcal file produced by online system d['telcalcalibrator'] = telcalcalibrator d['gainfile'] = gainfile d['bpfile'] = bpfile d['savecands'] = savecands d['excludeants'] = excludeants d['candsfile'] = candsfile d['flagmode'] = flagmode d['flagantsol'] = flagantsol d['nthreads'] = nthreads d['wplanes'] = wplanes # flag to turn on/off wproj. later overwritten with wplane inv conv kernel # define basic data state print 'Preparing to read...' d['iterstatus'] = readprep(d) # d['datadelay'] = n.array([[lib.calc_delay(d['freq'], d['inttime']*d['dtarr'][i], d['dmarr'][j]).max() for i in range(len(d['dtarr']))] for j in range(len(d['dmarr']))]) # keep track of delay shift as array indexed with [dmind][dtind] d['datadelay'] = n.array([lib.calc_delay(d['freq'], d['inttime'], d['dmarr'][i]).max() for i in range(len(d['dmarr']))]) # keep track of delay shift as array indexed with [dmind][dtind] # time stamp and candidate save file tt = timestamp.localtime() d['starttime'] = tt print 'Start time: %s_%s_%s:%s:%s:%s' % (tt.tm_year, tt.tm_mon, tt.tm_mday, tt.tm_hour, tt.tm_min, tt.tm_sec) # define candidate file if d['savecands']: if not d['candsfile']: timestring = '%s_%s_%s:%s:%s:%s' % (tt.tm_year, tt.tm_mon, tt.tm_mday, tt.tm_hour, tt.tm_min, tt.tm_sec) d['candsfile'] = 'cands_'+filename[:-3]+'.pkl' # d['candsfile'] = 'cands_'+timestring+'.pkl' picklabledict = d.copy() pkl = open(d['candsfile'], 'wb') pickle.dump(picklabledict, pkl) pkl.close() # create shared data arrays print 'Preparing shared memory objects...' # data_mem = {} # data = {} # for dmind in xrange(len(d['dmarr'])): # data_mem[dmind] = mp.Array(ctypes.c_float, ((d['iterint']/d['resamplearr'][dmind])*d['nbl']*d['nchan']*d['npol']*2)) # x2 to store complex values in single array # data[dmind] = numpyview(data_mem[dmind], 'complex64', ((d['iterint']/d['resamplearr'][dmind]), d['nbl'], d['nchan'], d['npol'])) # data[dmind][:] = n.zeros(((d['iterint']/d['resamplearr'][dmind]), d['nbl'], d['nchan'], d['npol'])) data_mem = mp.Array(ctypes.c_float, (d['iterint']*d['nbl']*d['nchan']*d['npol']*2)) # x2 to store complex values in single array data = numpyview(data_mem, 'complex64', (d['iterint'], d['nbl'], d['nchan'], d['npol'])) data[:] = n.zeros((d['iterint'], d['nbl'], d['nchan'], d['npol'])) datatrim = {}; datatrim_mem = {} totalnint = iterint # start counting size of memory in integrations for dmind in xrange(len(d['dmarr'])): # save the trimmings! datatrim[dmind] = {}; datatrim_mem[dmind] = {} for dtind in xrange(len(d['dtarr'])): dt = d['dtarr'][dtind] if d['datadelay'][dmind] >= dt: datatrim_mem[dmind][dtind] = mp.Array(ctypes.c_float, ((d['datadelay'][dmind]/dt)*d['nbl']*d['nchan']*d['npol']*2)) # x2 to store complex values in single array datatrim[dmind][dtind] = numpyview(datatrim_mem[dmind][dtind], 'complex64', ((d['datadelay'][dmind]/dt), d['nbl'], d['nchan'], d['npol'])) datatrim[dmind][dtind][:] = n.zeros(((d['datadelay'][dmind]/dt), d['nbl'], d['nchan'], d['npol']), dtype='complex64') totalnint += d['datadelay'][dmind]/dt else: datatrim[dmind][dtind] = n.array([]) print 'Visibility memory usage is %d GB' % (8*(totalnint * d['nbl'] * d['nchan'] * d['npol'])/1024**3) # factor of 2? # later need to update these too # flag_mem = mp.Array(ctypes.c_bool, iterint*d['nbl']*d['nchan']*d['npol']) u_mem = mp.Array(ctypes.c_float, iterint*d['nbl']) v_mem = mp.Array(ctypes.c_float, iterint*d['nbl']) w_mem = mp.Array(ctypes.c_float, iterint*d['nbl']) time_mem = mp.Array(ctypes.c_float, iterint) # new way is to convert later # flag = numpyview(flag_mem, 'bool', (iterint, d['nbl'], d['nchan'], d['npol'])) u = numpyview(u_mem, 'float32', (iterint, d['nbl'])) v = numpyview(v_mem, 'float32', (iterint, d['nbl'])) w = numpyview(w_mem, 'float32', (iterint, d['nbl'])) time = numpyview(time_mem, 'float32', (iterint)) print 'Starting processing and reading loops...' try: if searchtype: if searchtype == 'readonly': pread = mp.Process(target=readloop, args=(d,eproc,emove)) pread.start() pproc = mp.Process(target=readtriggerloop, args=(d, eproc,emove)) pproc.start() # trigger events to allow moving data to working area # This initial set makes it so the read loop bypasses the emove event the first time through. emove.set() # wait for threads to end (when read iteration runs out of data) pread.join() pproc.join() else: # start processes pread = mp.Process(target=readloop, args=(d,eproc,emove)) pread.start() pproc = mp.Process(target=processloop, args=(d,eproc,emove)) pproc.start() # trigger events to allow moving data to working area # This initial set makes it so the read loop bypasses the emove event the first time through. emove.set() # wait for threads to end (when read iteration runs out of data) pread.join() pproc.join() else: print 'Not starting read and process threads...' except KeyboardInterrupt: print 'Ctrl-C received. Shutting down threads...' pread.terminate() pproc.terminate() pread.join() pproc.join() return d.copy()
apache-2.0
djgagne/scikit-learn
benchmarks/bench_sparsify.py
323
3372
""" Benchmark SGD prediction time with dense/sparse coefficients. Invoke with ----------- $ kernprof.py -l sparsity_benchmark.py $ python -m line_profiler sparsity_benchmark.py.lprof Typical output -------------- input data sparsity: 0.050000 true coef sparsity: 0.000100 test data sparsity: 0.027400 model sparsity: 0.000024 r^2 on test data (dense model) : 0.233651 r^2 on test data (sparse model) : 0.233651 Wrote profile results to sparsity_benchmark.py.lprof Timer unit: 1e-06 s File: sparsity_benchmark.py Function: benchmark_dense_predict at line 51 Total time: 0.532979 s Line # Hits Time Per Hit % Time Line Contents ============================================================== 51 @profile 52 def benchmark_dense_predict(): 53 301 640 2.1 0.1 for _ in range(300): 54 300 532339 1774.5 99.9 clf.predict(X_test) File: sparsity_benchmark.py Function: benchmark_sparse_predict at line 56 Total time: 0.39274 s Line # Hits Time Per Hit % Time Line Contents ============================================================== 56 @profile 57 def benchmark_sparse_predict(): 58 1 10854 10854.0 2.8 X_test_sparse = csr_matrix(X_test) 59 301 477 1.6 0.1 for _ in range(300): 60 300 381409 1271.4 97.1 clf.predict(X_test_sparse) """ from scipy.sparse.csr import csr_matrix import numpy as np from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.metrics import r2_score np.random.seed(42) def sparsity_ratio(X): return np.count_nonzero(X) / float(n_samples * n_features) n_samples, n_features = 5000, 300 X = np.random.randn(n_samples, n_features) inds = np.arange(n_samples) np.random.shuffle(inds) X[inds[int(n_features / 1.2):]] = 0 # sparsify input print("input data sparsity: %f" % sparsity_ratio(X)) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[n_features/2:]] = 0 # sparsify coef print("true coef sparsity: %f" % sparsity_ratio(coef)) y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] print("test data sparsity: %f" % sparsity_ratio(X_test)) ############################################################################### clf = SGDRegressor(penalty='l1', alpha=.2, fit_intercept=True, n_iter=2000) clf.fit(X_train, y_train) print("model sparsity: %f" % sparsity_ratio(clf.coef_)) def benchmark_dense_predict(): for _ in range(300): clf.predict(X_test) def benchmark_sparse_predict(): X_test_sparse = csr_matrix(X_test) for _ in range(300): clf.predict(X_test_sparse) def score(y_test, y_pred, case): r2 = r2_score(y_test, y_pred) print("r^2 on test data (%s) : %f" % (case, r2)) score(y_test, clf.predict(X_test), 'dense model') benchmark_dense_predict() clf.sparsify() score(y_test, clf.predict(X_test), 'sparse model') benchmark_sparse_predict()
bsd-3-clause
dsm054/pandas
pandas/tests/frame/test_arithmetic.py
1
24964
# -*- coding: utf-8 -*- from collections import deque from datetime import datetime import operator import pytest import numpy as np from pandas.compat import range import pandas as pd import pandas.util.testing as tm from pandas.tests.frame.common import _check_mixed_float, _check_mixed_int # ------------------------------------------------------------------- # Comparisons class TestFrameComparisons(object): # Specifically _not_ flex-comparisons def test_comparison_invalid(self): def check(df, df2): for (x, y) in [(df, df2), (df2, df)]: # we expect the result to match Series comparisons for # == and !=, inequalities should raise result = x == y expected = pd.DataFrame({col: x[col] == y[col] for col in x.columns}, index=x.index, columns=x.columns) tm.assert_frame_equal(result, expected) result = x != y expected = pd.DataFrame({col: x[col] != y[col] for col in x.columns}, index=x.index, columns=x.columns) tm.assert_frame_equal(result, expected) with pytest.raises(TypeError): x >= y with pytest.raises(TypeError): x > y with pytest.raises(TypeError): x < y with pytest.raises(TypeError): x <= y # GH4968 # invalid date/int comparisons df = pd.DataFrame(np.random.randint(10, size=(10, 1)), columns=['a']) df['dates'] = pd.date_range('20010101', periods=len(df)) df2 = df.copy() df2['dates'] = df['a'] check(df, df2) df = pd.DataFrame(np.random.randint(10, size=(10, 2)), columns=['a', 'b']) df2 = pd.DataFrame({'a': pd.date_range('20010101', periods=len(df)), 'b': pd.date_range('20100101', periods=len(df))}) check(df, df2) def test_timestamp_compare(self): # make sure we can compare Timestamps on the right AND left hand side # GH#4982 df = pd. DataFrame({'dates1': pd.date_range('20010101', periods=10), 'dates2': pd.date_range('20010102', periods=10), 'intcol': np.random.randint(1000000000, size=10), 'floatcol': np.random.randn(10), 'stringcol': list(tm.rands(10))}) df.loc[np.random.rand(len(df)) > 0.5, 'dates2'] = pd.NaT ops = {'gt': 'lt', 'lt': 'gt', 'ge': 'le', 'le': 'ge', 'eq': 'eq', 'ne': 'ne'} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) # no nats if left in ['eq', 'ne']: expected = left_f(df, pd.Timestamp('20010109')) result = right_f(pd.Timestamp('20010109'), df) tm.assert_frame_equal(result, expected) else: with pytest.raises(TypeError): left_f(df, pd.Timestamp('20010109')) with pytest.raises(TypeError): right_f(pd.Timestamp('20010109'), df) # nats expected = left_f(df, pd.Timestamp('nat')) result = right_f(pd.Timestamp('nat'), df) tm.assert_frame_equal(result, expected) def test_mixed_comparison(self): # GH#13128, GH#22163 != datetime64 vs non-dt64 should be False, # not raise TypeError # (this appears to be fixed before GH#22163, not sure when) df = pd.DataFrame([['1989-08-01', 1], ['1989-08-01', 2]]) other = pd.DataFrame([['a', 'b'], ['c', 'd']]) result = df == other assert not result.any().any() result = df != other assert result.all().all() def test_df_boolean_comparison_error(self): # GH#4576, GH#22880 # comparing DataFrame against list/tuple with len(obj) matching # len(df.columns) is supported as of GH#22800 df = pd.DataFrame(np.arange(6).reshape((3, 2))) expected = pd.DataFrame([[False, False], [True, False], [False, False]]) result = df == (2, 2) tm.assert_frame_equal(result, expected) result = df == [2, 2] tm.assert_frame_equal(result, expected) def test_df_float_none_comparison(self): df = pd.DataFrame(np.random.randn(8, 3), index=range(8), columns=['A', 'B', 'C']) result = df.__eq__(None) assert not result.any().any() def test_df_string_comparison(self): df = pd.DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}]) mask_a = df.a > 1 tm.assert_frame_equal(df[mask_a], df.loc[1:1, :]) tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :]) mask_b = df.b == "foo" tm.assert_frame_equal(df[mask_b], df.loc[0:0, :]) tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :]) class TestFrameFlexComparisons(object): # TODO: test_bool_flex_frame needs a better name def test_bool_flex_frame(self): data = np.random.randn(5, 3) other_data = np.random.randn(5, 3) df = pd.DataFrame(data) other = pd.DataFrame(other_data) ndim_5 = np.ones(df.shape + (1, 3)) # Unaligned def _check_unaligned_frame(meth, op, df, other): part_o = other.loc[3:, 1:].copy() rs = meth(part_o) xp = op(df, part_o.reindex(index=df.index, columns=df.columns)) tm.assert_frame_equal(rs, xp) # DataFrame assert df.eq(df).values.all() assert not df.ne(df).values.any() for op in ['eq', 'ne', 'gt', 'lt', 'ge', 'le']: f = getattr(df, op) o = getattr(operator, op) # No NAs tm.assert_frame_equal(f(other), o(df, other)) _check_unaligned_frame(f, o, df, other) # ndarray tm.assert_frame_equal(f(other.values), o(df, other.values)) # scalar tm.assert_frame_equal(f(0), o(df, 0)) # NAs msg = "Unable to coerce to Series/DataFrame" tm.assert_frame_equal(f(np.nan), o(df, np.nan)) with pytest.raises(ValueError, match=msg): f(ndim_5) # Series def _test_seq(df, idx_ser, col_ser): idx_eq = df.eq(idx_ser, axis=0) col_eq = df.eq(col_ser) idx_ne = df.ne(idx_ser, axis=0) col_ne = df.ne(col_ser) tm.assert_frame_equal(col_eq, df == pd.Series(col_ser)) tm.assert_frame_equal(col_eq, -col_ne) tm.assert_frame_equal(idx_eq, -idx_ne) tm.assert_frame_equal(idx_eq, df.T.eq(idx_ser).T) tm.assert_frame_equal(col_eq, df.eq(list(col_ser))) tm.assert_frame_equal(idx_eq, df.eq(pd.Series(idx_ser), axis=0)) tm.assert_frame_equal(idx_eq, df.eq(list(idx_ser), axis=0)) idx_gt = df.gt(idx_ser, axis=0) col_gt = df.gt(col_ser) idx_le = df.le(idx_ser, axis=0) col_le = df.le(col_ser) tm.assert_frame_equal(col_gt, df > pd.Series(col_ser)) tm.assert_frame_equal(col_gt, -col_le) tm.assert_frame_equal(idx_gt, -idx_le) tm.assert_frame_equal(idx_gt, df.T.gt(idx_ser).T) idx_ge = df.ge(idx_ser, axis=0) col_ge = df.ge(col_ser) idx_lt = df.lt(idx_ser, axis=0) col_lt = df.lt(col_ser) tm.assert_frame_equal(col_ge, df >= pd.Series(col_ser)) tm.assert_frame_equal(col_ge, -col_lt) tm.assert_frame_equal(idx_ge, -idx_lt) tm.assert_frame_equal(idx_ge, df.T.ge(idx_ser).T) idx_ser = pd.Series(np.random.randn(5)) col_ser = pd.Series(np.random.randn(3)) _test_seq(df, idx_ser, col_ser) # list/tuple _test_seq(df, idx_ser.values, col_ser.values) # NA df.loc[0, 0] = np.nan rs = df.eq(df) assert not rs.loc[0, 0] rs = df.ne(df) assert rs.loc[0, 0] rs = df.gt(df) assert not rs.loc[0, 0] rs = df.lt(df) assert not rs.loc[0, 0] rs = df.ge(df) assert not rs.loc[0, 0] rs = df.le(df) assert not rs.loc[0, 0] # complex arr = np.array([np.nan, 1, 6, np.nan]) arr2 = np.array([2j, np.nan, 7, None]) df = pd.DataFrame({'a': arr}) df2 = pd.DataFrame({'a': arr2}) rs = df.gt(df2) assert not rs.values.any() rs = df.ne(df2) assert rs.values.all() arr3 = np.array([2j, np.nan, None]) df3 = pd.DataFrame({'a': arr3}) rs = df3.gt(2j) assert not rs.values.any() # corner, dtype=object df1 = pd.DataFrame({'col': ['foo', np.nan, 'bar']}) df2 = pd.DataFrame({'col': ['foo', datetime.now(), 'bar']}) result = df1.ne(df2) exp = pd.DataFrame({'col': [False, True, False]}) tm.assert_frame_equal(result, exp) def test_flex_comparison_nat(self): # GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT, # and _definitely_ not be NaN df = pd.DataFrame([pd.NaT]) result = df == pd.NaT # result.iloc[0, 0] is a np.bool_ object assert result.iloc[0, 0].item() is False result = df.eq(pd.NaT) assert result.iloc[0, 0].item() is False result = df != pd.NaT assert result.iloc[0, 0].item() is True result = df.ne(pd.NaT) assert result.iloc[0, 0].item() is True @pytest.mark.parametrize('opname', ['eq', 'ne', 'gt', 'lt', 'ge', 'le']) def test_df_flex_cmp_constant_return_types(self, opname): # GH 15077, non-empty DataFrame df = pd.DataFrame({'x': [1, 2, 3], 'y': [1., 2., 3.]}) const = 2 result = getattr(df, opname)(const).get_dtype_counts() tm.assert_series_equal(result, pd.Series([2], ['bool'])) @pytest.mark.parametrize('opname', ['eq', 'ne', 'gt', 'lt', 'ge', 'le']) def test_df_flex_cmp_constant_return_types_empty(self, opname): # GH 15077 empty DataFrame df = pd.DataFrame({'x': [1, 2, 3], 'y': [1., 2., 3.]}) const = 2 empty = df.iloc[:0] result = getattr(empty, opname)(const).get_dtype_counts() tm.assert_series_equal(result, pd.Series([2], ['bool'])) # ------------------------------------------------------------------- # Arithmetic class TestFrameFlexArithmetic(object): def test_df_add_td64_columnwise(self): # GH 22534 Check that column-wise addition broadcasts correctly dti = pd.date_range('2016-01-01', periods=10) tdi = pd.timedelta_range('1', periods=10) tser = pd.Series(tdi) df = pd.DataFrame({0: dti, 1: tdi}) result = df.add(tser, axis=0) expected = pd.DataFrame({0: dti + tdi, 1: tdi + tdi}) tm.assert_frame_equal(result, expected) def test_df_add_flex_filled_mixed_dtypes(self): # GH 19611 dti = pd.date_range('2016-01-01', periods=3) ser = pd.Series(['1 Day', 'NaT', '2 Days'], dtype='timedelta64[ns]') df = pd.DataFrame({'A': dti, 'B': ser}) other = pd.DataFrame({'A': ser, 'B': ser}) fill = pd.Timedelta(days=1).to_timedelta64() result = df.add(other, fill_value=fill) expected = pd.DataFrame( {'A': pd.Series(['2016-01-02', '2016-01-03', '2016-01-05'], dtype='datetime64[ns]'), 'B': ser * 2}) tm.assert_frame_equal(result, expected) def test_arith_flex_frame(self, all_arithmetic_operators, float_frame, mixed_float_frame): # one instance of parametrized fixture op = all_arithmetic_operators def f(x, y): # r-versions not in operator-stdlib; get op without "r" and invert if op.startswith('__r'): return getattr(operator, op.replace('__r', '__'))(y, x) return getattr(operator, op)(x, y) result = getattr(float_frame, op)(2 * float_frame) expected = f(float_frame, 2 * float_frame) tm.assert_frame_equal(result, expected) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype=dict(C=None)) @pytest.mark.parametrize('op', ['__add__', '__sub__', '__mul__']) def test_arith_flex_frame_mixed(self, op, int_frame, mixed_int_frame, mixed_float_frame): f = getattr(operator, op) # vs mix int result = getattr(mixed_int_frame, op)(2 + mixed_int_frame) expected = f(mixed_int_frame, 2 + mixed_int_frame) # no overflow in the uint dtype = None if op in ['__sub__']: dtype = dict(B='uint64', C=None) elif op in ['__add__', '__mul__']: dtype = dict(C=None) tm.assert_frame_equal(result, expected) _check_mixed_int(result, dtype=dtype) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype=dict(C=None)) # vs plain int result = getattr(int_frame, op)(2 * int_frame) expected = f(int_frame, 2 * int_frame) tm.assert_frame_equal(result, expected) def test_arith_flex_frame_raise(self, all_arithmetic_operators, float_frame): # one instance of parametrized fixture op = all_arithmetic_operators # Check that arrays with dim >= 3 raise for dim in range(3, 6): arr = np.ones((1,) * dim) msg = "Unable to coerce to Series/DataFrame" with pytest.raises(ValueError, match=msg): getattr(float_frame, op)(arr) def test_arith_flex_frame_corner(self, float_frame): const_add = float_frame.add(1) tm.assert_frame_equal(const_add, float_frame + 1) # corner cases result = float_frame.add(float_frame[:0]) tm.assert_frame_equal(result, float_frame * np.nan) result = float_frame[:0].add(float_frame) tm.assert_frame_equal(result, float_frame * np.nan) with pytest.raises(NotImplementedError, match='fill_value'): float_frame.add(float_frame.iloc[0], fill_value=3) with pytest.raises(NotImplementedError, match='fill_value'): float_frame.add(float_frame.iloc[0], axis='index', fill_value=3) def test_arith_flex_series(self, simple_frame): df = simple_frame row = df.xs('a') col = df['two'] # after arithmetic refactor, add truediv here ops = ['add', 'sub', 'mul', 'mod'] for op in ops: f = getattr(df, op) op = getattr(operator, op) tm.assert_frame_equal(f(row), op(df, row)) tm.assert_frame_equal(f(col, axis=0), op(df.T, col).T) # special case for some reason tm.assert_frame_equal(df.add(row, axis=None), df + row) # cases which will be refactored after big arithmetic refactor tm.assert_frame_equal(df.div(row), df / row) tm.assert_frame_equal(df.div(col, axis=0), (df.T / col).T) # broadcasting issue in GH 7325 df = pd.DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype='int64') expected = pd.DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis='index') tm.assert_frame_equal(result, expected) df = pd.DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype='float64') expected = pd.DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis='index') tm.assert_frame_equal(result, expected) def test_arith_flex_zero_len_raises(self): # GH 19522 passing fill_value to frame flex arith methods should # raise even in the zero-length special cases ser_len0 = pd.Series([]) df_len0 = pd.DataFrame([], columns=['A', 'B']) df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B']) with pytest.raises(NotImplementedError, match='fill_value'): df.add(ser_len0, fill_value='E') with pytest.raises(NotImplementedError, match='fill_value'): df_len0.sub(df['A'], axis=None, fill_value=3) class TestFrameArithmetic(object): def test_df_add_2d_array_rowlike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=['A', 'B', 'C']) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) expected = pd.DataFrame([[2, 4], [4, 6], [6, 8]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype) result = df + rowlike tm.assert_frame_equal(result, expected) result = rowlike + df tm.assert_frame_equal(result, expected) def test_df_add_2d_array_collike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=['A', 'B', 'C']) collike = arr[:, [1]] # shape --> (nrows, 1) assert collike.shape == (df.shape[0], 1) expected = pd.DataFrame([[1, 2], [5, 6], [9, 10]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype) result = df + collike tm.assert_frame_equal(result, expected) result = collike + df tm.assert_frame_equal(result, expected) def test_df_arith_2d_array_rowlike_broadcasts(self, all_arithmetic_operators): # GH#23000 opname = all_arithmetic_operators arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=['A', 'B', 'C']) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) exvals = [getattr(df.loc['A'], opname)(rowlike.squeeze()), getattr(df.loc['B'], opname)(rowlike.squeeze()), getattr(df.loc['C'], opname)(rowlike.squeeze())] expected = pd.DataFrame(exvals, columns=df.columns, index=df.index) if opname in ['__rmod__', '__rfloordiv__']: # exvals will have dtypes [f8, i8, i8] so expected will be # all-f8, but the DataFrame operation will return mixed dtypes # use exvals[-1].dtype instead of "i8" for compat with 32-bit # systems/pythons expected[False] = expected[False].astype(exvals[-1].dtype) result = getattr(df, opname)(rowlike) tm.assert_frame_equal(result, expected) def test_df_arith_2d_array_collike_broadcasts(self, all_arithmetic_operators): # GH#23000 opname = all_arithmetic_operators arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=['A', 'B', 'C']) collike = arr[:, [1]] # shape --> (nrows, 1) assert collike.shape == (df.shape[0], 1) exvals = {True: getattr(df[True], opname)(collike.squeeze()), False: getattr(df[False], opname)(collike.squeeze())} dtype = None if opname in ['__rmod__', '__rfloordiv__']: # Series ops may return mixed int/float dtypes in cases where # DataFrame op will return all-float. So we upcast `expected` dtype = np.common_type(*[x.values for x in exvals.values()]) expected = pd.DataFrame(exvals, columns=df.columns, index=df.index, dtype=dtype) result = getattr(df, opname)(collike) tm.assert_frame_equal(result, expected) def test_df_bool_mul_int(self): # GH 22047, GH 22163 multiplication by 1 should result in int dtype, # not object dtype df = pd.DataFrame([[False, True], [False, False]]) result = df * 1 # On appveyor this comes back as np.int32 instead of np.int64, # so we check dtype.kind instead of just dtype kinds = result.dtypes.apply(lambda x: x.kind) assert (kinds == 'i').all() result = 1 * df kinds = result.dtypes.apply(lambda x: x.kind) assert (kinds == 'i').all() def test_td64_df_add_int_frame(self): # GH#22696 Check that we don't dispatch to numpy implementation, # which treats int64 as m8[ns] tdi = pd.timedelta_range('1', periods=3) df = tdi.to_frame() other = pd.DataFrame([1, 2, 3], index=tdi) # indexed like `df` with pytest.raises(TypeError): df + other with pytest.raises(TypeError): other + df with pytest.raises(TypeError): df - other with pytest.raises(TypeError): other - df def test_arith_mixed(self): left = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 2, 3]}) result = left + left expected = pd.DataFrame({'A': ['aa', 'bb', 'cc'], 'B': [2, 4, 6]}) tm.assert_frame_equal(result, expected) def test_arith_getitem_commute(self): df = pd.DataFrame({'A': [1.1, 3.3], 'B': [2.5, -3.9]}) def _test_op(df, op): result = op(df, 1) if not df.columns.is_unique: raise ValueError("Only unique columns supported by this test") for col in result.columns: tm.assert_series_equal(result[col], op(df[col], 1)) _test_op(df, operator.add) _test_op(df, operator.sub) _test_op(df, operator.mul) _test_op(df, operator.truediv) _test_op(df, operator.floordiv) _test_op(df, operator.pow) _test_op(df, lambda x, y: y + x) _test_op(df, lambda x, y: y - x) _test_op(df, lambda x, y: y * x) _test_op(df, lambda x, y: y / x) _test_op(df, lambda x, y: y ** x) _test_op(df, lambda x, y: x + y) _test_op(df, lambda x, y: x - y) _test_op(df, lambda x, y: x * y) _test_op(df, lambda x, y: x / y) _test_op(df, lambda x, y: x ** y) @pytest.mark.parametrize('values', [[1, 2], (1, 2), np.array([1, 2]), range(1, 3), deque([1, 2])]) def test_arith_alignment_non_pandas_object(self, values): # GH#17901 df = pd.DataFrame({'A': [1, 1], 'B': [1, 1]}) expected = pd.DataFrame({'A': [2, 2], 'B': [3, 3]}) result = df + values tm.assert_frame_equal(result, expected) def test_arith_non_pandas_object(self): df = pd.DataFrame(np.arange(1, 10, dtype='f8').reshape(3, 3), columns=['one', 'two', 'three'], index=['a', 'b', 'c']) val1 = df.xs('a').values added = pd.DataFrame(df.values + val1, index=df.index, columns=df.columns) tm.assert_frame_equal(df + val1, added) added = pd.DataFrame((df.values.T + val1).T, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val1, axis=0), added) val2 = list(df['two']) added = pd.DataFrame(df.values + val2, index=df.index, columns=df.columns) tm.assert_frame_equal(df + val2, added) added = pd.DataFrame((df.values.T + val2).T, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val2, axis='index'), added) val3 = np.random.rand(*df.shape) added = pd.DataFrame(df.values + val3, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val3), added)
bsd-3-clause
abhishekkrthakur/scikit-learn
sklearn/feature_selection/tests/test_base.py
170
3666
import numpy as np from scipy import sparse as sp from nose.tools import assert_raises, assert_equal from numpy.testing import assert_array_equal from sklearn.base import BaseEstimator from sklearn.feature_selection.base import SelectorMixin from sklearn.utils import check_array class StepSelector(SelectorMixin, BaseEstimator): """Retain every `step` features (beginning with 0)""" def __init__(self, step=2): self.step = step def fit(self, X, y=None): X = check_array(X, 'csc') self.n_input_feats = X.shape[1] return self def _get_support_mask(self): mask = np.zeros(self.n_input_feats, dtype=bool) mask[::self.step] = True return mask support = [True, False] * 5 support_inds = [0, 2, 4, 6, 8] X = np.arange(20).reshape(2, 10) Xt = np.arange(0, 20, 2).reshape(2, 5) Xinv = X.copy() Xinv[:, 1::2] = 0 y = [0, 1] feature_names = list('ABCDEFGHIJ') feature_names_t = feature_names[::2] feature_names_inv = np.array(feature_names) feature_names_inv[1::2] = '' def test_transform_dense(): sel = StepSelector() Xt_actual = sel.fit(X, y).transform(X) Xt_actual2 = StepSelector().fit_transform(X, y) assert_array_equal(Xt, Xt_actual) assert_array_equal(Xt, Xt_actual2) # Check dtype matches assert_equal(np.int32, sel.transform(X.astype(np.int32)).dtype) assert_equal(np.float32, sel.transform(X.astype(np.float32)).dtype) # Check 1d list and other dtype: names_t_actual = sel.transform(feature_names) assert_array_equal(feature_names_t, names_t_actual.ravel()) # Check wrong shape raises error assert_raises(ValueError, sel.transform, np.array([[1], [2]])) def test_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xt_actual = sel.fit(sparse(X)).transform(sparse(X)) Xt_actual2 = sel.fit_transform(sparse(X)) assert_array_equal(Xt, Xt_actual.toarray()) assert_array_equal(Xt, Xt_actual2.toarray()) # Check dtype matches assert_equal(np.int32, sel.transform(sparse(X).astype(np.int32)).dtype) assert_equal(np.float32, sel.transform(sparse(X).astype(np.float32)).dtype) # Check wrong shape raises error assert_raises(ValueError, sel.transform, np.array([[1], [2]])) def test_inverse_transform_dense(): sel = StepSelector() Xinv_actual = sel.fit(X, y).inverse_transform(Xt) assert_array_equal(Xinv, Xinv_actual) # Check dtype matches assert_equal(np.int32, sel.inverse_transform(Xt.astype(np.int32)).dtype) assert_equal(np.float32, sel.inverse_transform(Xt.astype(np.float32)).dtype) # Check 1d list and other dtype: names_inv_actual = sel.inverse_transform(feature_names_t) assert_array_equal(feature_names_inv, names_inv_actual.ravel()) # Check wrong shape raises error assert_raises(ValueError, sel.inverse_transform, np.array([[1], [2]])) def test_inverse_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xinv_actual = sel.fit(sparse(X)).inverse_transform(sparse(Xt)) assert_array_equal(Xinv, Xinv_actual.toarray()) # Check dtype matches assert_equal(np.int32, sel.inverse_transform(sparse(Xt).astype(np.int32)).dtype) assert_equal(np.float32, sel.inverse_transform(sparse(Xt).astype(np.float32)).dtype) # Check wrong shape raises error assert_raises(ValueError, sel.inverse_transform, np.array([[1], [2]])) def test_get_support(): sel = StepSelector() sel.fit(X, y) assert_array_equal(support, sel.get_support()) assert_array_equal(support_inds, sel.get_support(indices=True))
bsd-3-clause
dssg/wikienergy
disaggregator/build/pandas/doc/sphinxext/numpydoc/plot_directive.py
89
20530
""" A special directive for generating a matplotlib plot. .. warning:: This is a hacked version of plot_directive.py from Matplotlib. It's very much subject to change! Usage ----- Can be used like this:: .. plot:: examples/example.py .. plot:: import matplotlib.pyplot as plt plt.plot([1,2,3], [4,5,6]) .. plot:: A plotting example: >>> import matplotlib.pyplot as plt >>> plt.plot([1,2,3], [4,5,6]) The content is interpreted as doctest formatted if it has a line starting with ``>>>``. The ``plot`` directive supports the options format : {'python', 'doctest'} Specify the format of the input include-source : bool Whether to display the source code. Default can be changed in conf.py and the ``image`` directive options ``alt``, ``height``, ``width``, ``scale``, ``align``, ``class``. Configuration options --------------------- The plot directive has the following configuration options: plot_include_source Default value for the include-source option plot_pre_code Code that should be executed before each plot. plot_basedir Base directory, to which plot:: file names are relative to. (If None or empty, file names are relative to the directoly where the file containing the directive is.) plot_formats File formats to generate. List of tuples or strings:: [(suffix, dpi), suffix, ...] that determine the file format and the DPI. For entries whose DPI was omitted, sensible defaults are chosen. plot_html_show_formats Whether to show links to the files in HTML. TODO ---- * Refactor Latex output; now it's plain images, but it would be nice to make them appear side-by-side, or in floats. """ from __future__ import division, absolute_import, print_function import sys, os, glob, shutil, imp, warnings, re, textwrap, traceback import sphinx if sys.version_info[0] >= 3: from io import StringIO else: from io import StringIO import warnings warnings.warn("A plot_directive module is also available under " "matplotlib.sphinxext; expect this numpydoc.plot_directive " "module to be deprecated after relevant features have been " "integrated there.", FutureWarning, stacklevel=2) #------------------------------------------------------------------------------ # Registration hook #------------------------------------------------------------------------------ def setup(app): setup.app = app setup.config = app.config setup.confdir = app.confdir app.add_config_value('plot_pre_code', '', True) app.add_config_value('plot_include_source', False, True) app.add_config_value('plot_formats', ['png', 'hires.png', 'pdf'], True) app.add_config_value('plot_basedir', None, True) app.add_config_value('plot_html_show_formats', True, True) app.add_directive('plot', plot_directive, True, (0, 1, False), **plot_directive_options) #------------------------------------------------------------------------------ # plot:: directive #------------------------------------------------------------------------------ from docutils.parsers.rst import directives from docutils import nodes def plot_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): return run(arguments, content, options, state_machine, state, lineno) plot_directive.__doc__ = __doc__ def _option_boolean(arg): if not arg or not arg.strip(): # no argument given, assume used as a flag return True elif arg.strip().lower() in ('no', '0', 'false'): return False elif arg.strip().lower() in ('yes', '1', 'true'): return True else: raise ValueError('"%s" unknown boolean' % arg) def _option_format(arg): return directives.choice(arg, ('python', 'lisp')) def _option_align(arg): return directives.choice(arg, ("top", "middle", "bottom", "left", "center", "right")) plot_directive_options = {'alt': directives.unchanged, 'height': directives.length_or_unitless, 'width': directives.length_or_percentage_or_unitless, 'scale': directives.nonnegative_int, 'align': _option_align, 'class': directives.class_option, 'include-source': _option_boolean, 'format': _option_format, } #------------------------------------------------------------------------------ # Generating output #------------------------------------------------------------------------------ from docutils import nodes, utils try: # Sphinx depends on either Jinja or Jinja2 import jinja2 def format_template(template, **kw): return jinja2.Template(template).render(**kw) except ImportError: import jinja def format_template(template, **kw): return jinja.from_string(template, **kw) TEMPLATE = """ {{ source_code }} {{ only_html }} {% if source_link or (html_show_formats and not multi_image) %} ( {%- if source_link -%} `Source code <{{ source_link }}>`__ {%- endif -%} {%- if html_show_formats and not multi_image -%} {%- for img in images -%} {%- for fmt in img.formats -%} {%- if source_link or not loop.first -%}, {% endif -%} `{{ fmt }} <{{ dest_dir }}/{{ img.basename }}.{{ fmt }}>`__ {%- endfor -%} {%- endfor -%} {%- endif -%} ) {% endif %} {% for img in images %} .. figure:: {{ build_dir }}/{{ img.basename }}.png {%- for option in options %} {{ option }} {% endfor %} {% if html_show_formats and multi_image -%} ( {%- for fmt in img.formats -%} {%- if not loop.first -%}, {% endif -%} `{{ fmt }} <{{ dest_dir }}/{{ img.basename }}.{{ fmt }}>`__ {%- endfor -%} ) {%- endif -%} {% endfor %} {{ only_latex }} {% for img in images %} .. image:: {{ build_dir }}/{{ img.basename }}.pdf {% endfor %} """ class ImageFile(object): def __init__(self, basename, dirname): self.basename = basename self.dirname = dirname self.formats = [] def filename(self, format): return os.path.join(self.dirname, "%s.%s" % (self.basename, format)) def filenames(self): return [self.filename(fmt) for fmt in self.formats] def run(arguments, content, options, state_machine, state, lineno): if arguments and content: raise RuntimeError("plot:: directive can't have both args and content") document = state_machine.document config = document.settings.env.config options.setdefault('include-source', config.plot_include_source) # determine input rst_file = document.attributes['source'] rst_dir = os.path.dirname(rst_file) if arguments: if not config.plot_basedir: source_file_name = os.path.join(rst_dir, directives.uri(arguments[0])) else: source_file_name = os.path.join(setup.confdir, config.plot_basedir, directives.uri(arguments[0])) code = open(source_file_name, 'r').read() output_base = os.path.basename(source_file_name) else: source_file_name = rst_file code = textwrap.dedent("\n".join(map(str, content))) counter = document.attributes.get('_plot_counter', 0) + 1 document.attributes['_plot_counter'] = counter base, ext = os.path.splitext(os.path.basename(source_file_name)) output_base = '%s-%d.py' % (base, counter) base, source_ext = os.path.splitext(output_base) if source_ext in ('.py', '.rst', '.txt'): output_base = base else: source_ext = '' # ensure that LaTeX includegraphics doesn't choke in foo.bar.pdf filenames output_base = output_base.replace('.', '-') # is it in doctest format? is_doctest = contains_doctest(code) if 'format' in options: if options['format'] == 'python': is_doctest = False else: is_doctest = True # determine output directory name fragment source_rel_name = relpath(source_file_name, setup.confdir) source_rel_dir = os.path.dirname(source_rel_name) while source_rel_dir.startswith(os.path.sep): source_rel_dir = source_rel_dir[1:] # build_dir: where to place output files (temporarily) build_dir = os.path.join(os.path.dirname(setup.app.doctreedir), 'plot_directive', source_rel_dir) if not os.path.exists(build_dir): os.makedirs(build_dir) # output_dir: final location in the builder's directory dest_dir = os.path.abspath(os.path.join(setup.app.builder.outdir, source_rel_dir)) # how to link to files from the RST file dest_dir_link = os.path.join(relpath(setup.confdir, rst_dir), source_rel_dir).replace(os.path.sep, '/') build_dir_link = relpath(build_dir, rst_dir).replace(os.path.sep, '/') source_link = dest_dir_link + '/' + output_base + source_ext # make figures try: results = makefig(code, source_file_name, build_dir, output_base, config) errors = [] except PlotError as err: reporter = state.memo.reporter sm = reporter.system_message( 2, "Exception occurred in plotting %s: %s" % (output_base, err), line=lineno) results = [(code, [])] errors = [sm] # generate output restructuredtext total_lines = [] for j, (code_piece, images) in enumerate(results): if options['include-source']: if is_doctest: lines = [''] lines += [row.rstrip() for row in code_piece.split('\n')] else: lines = ['.. code-block:: python', ''] lines += [' %s' % row.rstrip() for row in code_piece.split('\n')] source_code = "\n".join(lines) else: source_code = "" opts = [':%s: %s' % (key, val) for key, val in list(options.items()) if key in ('alt', 'height', 'width', 'scale', 'align', 'class')] only_html = ".. only:: html" only_latex = ".. only:: latex" if j == 0: src_link = source_link else: src_link = None result = format_template( TEMPLATE, dest_dir=dest_dir_link, build_dir=build_dir_link, source_link=src_link, multi_image=len(images) > 1, only_html=only_html, only_latex=only_latex, options=opts, images=images, source_code=source_code, html_show_formats=config.plot_html_show_formats) total_lines.extend(result.split("\n")) total_lines.extend("\n") if total_lines: state_machine.insert_input(total_lines, source=source_file_name) # copy image files to builder's output directory if not os.path.exists(dest_dir): os.makedirs(dest_dir) for code_piece, images in results: for img in images: for fn in img.filenames(): shutil.copyfile(fn, os.path.join(dest_dir, os.path.basename(fn))) # copy script (if necessary) if source_file_name == rst_file: target_name = os.path.join(dest_dir, output_base + source_ext) f = open(target_name, 'w') f.write(unescape_doctest(code)) f.close() return errors #------------------------------------------------------------------------------ # Run code and capture figures #------------------------------------------------------------------------------ import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.image as image from matplotlib import _pylab_helpers import exceptions def contains_doctest(text): try: # check if it's valid Python as-is compile(text, '<string>', 'exec') return False except SyntaxError: pass r = re.compile(r'^\s*>>>', re.M) m = r.search(text) return bool(m) def unescape_doctest(text): """ Extract code from a piece of text, which contains either Python code or doctests. """ if not contains_doctest(text): return text code = "" for line in text.split("\n"): m = re.match(r'^\s*(>>>|\.\.\.) (.*)$', line) if m: code += m.group(2) + "\n" elif line.strip(): code += "# " + line.strip() + "\n" else: code += "\n" return code def split_code_at_show(text): """ Split code at plt.show() """ parts = [] is_doctest = contains_doctest(text) part = [] for line in text.split("\n"): if (not is_doctest and line.strip() == 'plt.show()') or \ (is_doctest and line.strip() == '>>> plt.show()'): part.append(line) parts.append("\n".join(part)) part = [] else: part.append(line) if "\n".join(part).strip(): parts.append("\n".join(part)) return parts class PlotError(RuntimeError): pass def run_code(code, code_path, ns=None): # Change the working directory to the directory of the example, so # it can get at its data files, if any. pwd = os.getcwd() old_sys_path = list(sys.path) if code_path is not None: dirname = os.path.abspath(os.path.dirname(code_path)) os.chdir(dirname) sys.path.insert(0, dirname) # Redirect stdout stdout = sys.stdout sys.stdout = StringIO() # Reset sys.argv old_sys_argv = sys.argv sys.argv = [code_path] try: try: code = unescape_doctest(code) if ns is None: ns = {} if not ns: exec(setup.config.plot_pre_code, ns) exec(code, ns) except (Exception, SystemExit) as err: raise PlotError(traceback.format_exc()) finally: os.chdir(pwd) sys.argv = old_sys_argv sys.path[:] = old_sys_path sys.stdout = stdout return ns #------------------------------------------------------------------------------ # Generating figures #------------------------------------------------------------------------------ def out_of_date(original, derived): """ Returns True if derivative is out-of-date wrt original, both of which are full file paths. """ return (not os.path.exists(derived) or os.stat(derived).st_mtime < os.stat(original).st_mtime) def makefig(code, code_path, output_dir, output_base, config): """ Run a pyplot script *code* and save the images under *output_dir* with file names derived from *output_base* """ # -- Parse format list default_dpi = {'png': 80, 'hires.png': 200, 'pdf': 50} formats = [] for fmt in config.plot_formats: if isinstance(fmt, str): formats.append((fmt, default_dpi.get(fmt, 80))) elif type(fmt) in (tuple, list) and len(fmt)==2: formats.append((str(fmt[0]), int(fmt[1]))) else: raise PlotError('invalid image format "%r" in plot_formats' % fmt) # -- Try to determine if all images already exist code_pieces = split_code_at_show(code) # Look for single-figure output files first all_exists = True img = ImageFile(output_base, output_dir) for format, dpi in formats: if out_of_date(code_path, img.filename(format)): all_exists = False break img.formats.append(format) if all_exists: return [(code, [img])] # Then look for multi-figure output files results = [] all_exists = True for i, code_piece in enumerate(code_pieces): images = [] for j in range(1000): img = ImageFile('%s_%02d_%02d' % (output_base, i, j), output_dir) for format, dpi in formats: if out_of_date(code_path, img.filename(format)): all_exists = False break img.formats.append(format) # assume that if we have one, we have them all if not all_exists: all_exists = (j > 0) break images.append(img) if not all_exists: break results.append((code_piece, images)) if all_exists: return results # -- We didn't find the files, so build them results = [] ns = {} for i, code_piece in enumerate(code_pieces): # Clear between runs plt.close('all') # Run code run_code(code_piece, code_path, ns) # Collect images images = [] fig_managers = _pylab_helpers.Gcf.get_all_fig_managers() for j, figman in enumerate(fig_managers): if len(fig_managers) == 1 and len(code_pieces) == 1: img = ImageFile(output_base, output_dir) else: img = ImageFile("%s_%02d_%02d" % (output_base, i, j), output_dir) images.append(img) for format, dpi in formats: try: figman.canvas.figure.savefig(img.filename(format), dpi=dpi) except exceptions.BaseException as err: raise PlotError(traceback.format_exc()) img.formats.append(format) # Results results.append((code_piece, images)) return results #------------------------------------------------------------------------------ # Relative pathnames #------------------------------------------------------------------------------ try: from os.path import relpath except ImportError: # Copied from Python 2.7 if 'posix' in sys.builtin_module_names: def relpath(path, start=os.path.curdir): """Return a relative version of a path""" from os.path import sep, curdir, join, abspath, commonprefix, \ pardir if not path: raise ValueError("no path specified") start_list = abspath(start).split(sep) path_list = abspath(path).split(sep) # Work out how much of the filepath is shared by start and path. i = len(commonprefix([start_list, path_list])) rel_list = [pardir] * (len(start_list)-i) + path_list[i:] if not rel_list: return curdir return join(*rel_list) elif 'nt' in sys.builtin_module_names: def relpath(path, start=os.path.curdir): """Return a relative version of a path""" from os.path import sep, curdir, join, abspath, commonprefix, \ pardir, splitunc if not path: raise ValueError("no path specified") start_list = abspath(start).split(sep) path_list = abspath(path).split(sep) if start_list[0].lower() != path_list[0].lower(): unc_path, rest = splitunc(path) unc_start, rest = splitunc(start) if bool(unc_path) ^ bool(unc_start): raise ValueError("Cannot mix UNC and non-UNC paths (%s and %s)" % (path, start)) else: raise ValueError("path is on drive %s, start on drive %s" % (path_list[0], start_list[0])) # Work out how much of the filepath is shared by start and path. for i in range(min(len(start_list), len(path_list))): if start_list[i].lower() != path_list[i].lower(): break else: i += 1 rel_list = [pardir] * (len(start_list)-i) + path_list[i:] if not rel_list: return curdir return join(*rel_list) else: raise RuntimeError("Unsupported platform (no relpath available!)")
mit
UNR-AERIAL/scikit-learn
sklearn/utils/testing.py
84
24860
"""Testing utilities.""" # Copyright (c) 2011, 2012 # Authors: Pietro Berkes, # Andreas Muller # Mathieu Blondel # Olivier Grisel # Arnaud Joly # Denis Engemann # License: BSD 3 clause import os import inspect import pkgutil import warnings import sys import re import platform import scipy as sp import scipy.io from functools import wraps try: # Python 2 from urllib2 import urlopen from urllib2 import HTTPError except ImportError: # Python 3+ from urllib.request import urlopen from urllib.error import HTTPError import tempfile import shutil import os.path as op import atexit # WindowsError only exist on Windows try: WindowsError except NameError: WindowsError = None import sklearn from sklearn.base import BaseEstimator from sklearn.externals import joblib # Conveniently import all assertions in one place. from nose.tools import assert_equal from nose.tools import assert_not_equal from nose.tools import assert_true from nose.tools import assert_false from nose.tools import assert_raises from nose.tools import raises from nose import SkipTest from nose import with_setup from numpy.testing import assert_almost_equal from numpy.testing import assert_array_equal from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_less import numpy as np from sklearn.base import (ClassifierMixin, RegressorMixin, TransformerMixin, ClusterMixin) __all__ = ["assert_equal", "assert_not_equal", "assert_raises", "assert_raises_regexp", "raises", "with_setup", "assert_true", "assert_false", "assert_almost_equal", "assert_array_equal", "assert_array_almost_equal", "assert_array_less", "assert_less", "assert_less_equal", "assert_greater", "assert_greater_equal"] try: from nose.tools import assert_in, assert_not_in except ImportError: # Nose < 1.0.0 def assert_in(x, container): assert_true(x in container, msg="%r in %r" % (x, container)) def assert_not_in(x, container): assert_false(x in container, msg="%r in %r" % (x, container)) try: from nose.tools import assert_raises_regex except ImportError: # for Python 2 def assert_raises_regex(expected_exception, expected_regexp, callable_obj=None, *args, **kwargs): """Helper function to check for message patterns in exceptions""" not_raised = False try: callable_obj(*args, **kwargs) not_raised = True except expected_exception as e: error_message = str(e) if not re.compile(expected_regexp).search(error_message): raise AssertionError("Error message should match pattern " "%r. %r does not." % (expected_regexp, error_message)) if not_raised: raise AssertionError("%s not raised by %s" % (expected_exception.__name__, callable_obj.__name__)) # assert_raises_regexp is deprecated in Python 3.4 in favor of # assert_raises_regex but lets keep the bacward compat in scikit-learn with # the old name for now assert_raises_regexp = assert_raises_regex def _assert_less(a, b, msg=None): message = "%r is not lower than %r" % (a, b) if msg is not None: message += ": " + msg assert a < b, message def _assert_greater(a, b, msg=None): message = "%r is not greater than %r" % (a, b) if msg is not None: message += ": " + msg assert a > b, message def assert_less_equal(a, b, msg=None): message = "%r is not lower than or equal to %r" % (a, b) if msg is not None: message += ": " + msg assert a <= b, message def assert_greater_equal(a, b, msg=None): message = "%r is not greater than or equal to %r" % (a, b) if msg is not None: message += ": " + msg assert a >= b, message def assert_warns(warning_class, func, *args, **kw): """Test that a certain warning occurs. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func` Returns ------- result : the return value of `func` """ # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. result = func(*args, **kw) if hasattr(np, 'VisibleDeprecationWarning'): # Filter out numpy-specific warnings in numpy >= 1.9 w = [e for e in w if e.category is not np.VisibleDeprecationWarning] # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) found = any(warning.category is warning_class for warning in w) if not found: raise AssertionError("%s did not give warning: %s( is %s)" % (func.__name__, warning_class, w)) return result def assert_warns_message(warning_class, message, func, *args, **kw): # very important to avoid uncontrolled state propagation """Test that a certain warning occurs and with a certain message. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. message : str | callable The entire message or a substring to test for. If callable, it takes a string as argument and will trigger an assertion error if it returns `False`. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func`. Returns ------- result : the return value of `func` """ clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") if hasattr(np, 'VisibleDeprecationWarning'): # Let's not catch the numpy internal DeprecationWarnings warnings.simplefilter('ignore', np.VisibleDeprecationWarning) # Trigger a warning. result = func(*args, **kw) # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) found = [issubclass(warning.category, warning_class) for warning in w] if not any(found): raise AssertionError("No warning raised for %s with class " "%s" % (func.__name__, warning_class)) message_found = False # Checks the message of all warnings belong to warning_class for index in [i for i, x in enumerate(found) if x]: # substring will match, the entire message with typo won't msg = w[index].message # For Python 3 compatibility msg = str(msg.args[0] if hasattr(msg, 'args') else msg) if callable(message): # add support for certain tests check_in_message = message else: check_in_message = lambda msg: message in msg if check_in_message(msg): message_found = True break if not message_found: raise AssertionError("Did not receive the message you expected " "('%s') for <%s>, got: '%s'" % (message, func.__name__, msg)) return result # To remove when we support numpy 1.7 def assert_no_warnings(func, *args, **kw): # XXX: once we may depend on python >= 2.6, this can be replaced by the # warnings module context manager. # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') result = func(*args, **kw) if hasattr(np, 'VisibleDeprecationWarning'): # Filter out numpy-specific warnings in numpy >= 1.9 w = [e for e in w if e.category is not np.VisibleDeprecationWarning] if len(w) > 0: raise AssertionError("Got warnings when calling %s: %s" % (func.__name__, w)) return result def ignore_warnings(obj=None): """ Context manager and decorator to ignore warnings Note. Using this (in both variants) will clear all warnings from all python modules loaded. In case you need to test cross-module-warning-logging this is not your tool of choice. Examples -------- >>> with ignore_warnings(): ... warnings.warn('buhuhuhu') >>> def nasty_warn(): ... warnings.warn('buhuhuhu') ... print(42) >>> ignore_warnings(nasty_warn)() 42 """ if callable(obj): return _ignore_warnings(obj) else: return _IgnoreWarnings() def _ignore_warnings(fn): """Decorator to catch and hide warnings without visual nesting""" @wraps(fn) def wrapper(*args, **kwargs): # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') return fn(*args, **kwargs) w[:] = [] return wrapper class _IgnoreWarnings(object): """Improved and simplified Python warnings context manager Copied from Python 2.7.5 and modified as required. """ def __init__(self): """ Parameters ========== category : warning class The category to filter. Defaults to Warning. If None, all categories will be muted. """ self._record = True self._module = sys.modules['warnings'] self._entered = False self.log = [] def __repr__(self): args = [] if self._record: args.append("record=True") if self._module is not sys.modules['warnings']: args.append("module=%r" % self._module) name = type(self).__name__ return "%s(%s)" % (name, ", ".join(args)) def __enter__(self): clean_warning_registry() # be safe and not propagate state + chaos warnings.simplefilter('always') if self._entered: raise RuntimeError("Cannot enter %r twice" % self) self._entered = True self._filters = self._module.filters self._module.filters = self._filters[:] self._showwarning = self._module.showwarning if self._record: self.log = [] def showwarning(*args, **kwargs): self.log.append(warnings.WarningMessage(*args, **kwargs)) self._module.showwarning = showwarning return self.log else: return None def __exit__(self, *exc_info): if not self._entered: raise RuntimeError("Cannot exit %r without entering first" % self) self._module.filters = self._filters self._module.showwarning = self._showwarning self.log[:] = [] clean_warning_registry() # be safe and not propagate state + chaos try: from nose.tools import assert_less except ImportError: assert_less = _assert_less try: from nose.tools import assert_greater except ImportError: assert_greater = _assert_greater def _assert_allclose(actual, desired, rtol=1e-7, atol=0, err_msg='', verbose=True): actual, desired = np.asanyarray(actual), np.asanyarray(desired) if np.allclose(actual, desired, rtol=rtol, atol=atol): return msg = ('Array not equal to tolerance rtol=%g, atol=%g: ' 'actual %s, desired %s') % (rtol, atol, actual, desired) raise AssertionError(msg) if hasattr(np.testing, 'assert_allclose'): assert_allclose = np.testing.assert_allclose else: assert_allclose = _assert_allclose def assert_raise_message(exceptions, message, function, *args, **kwargs): """Helper function to test error messages in exceptions Parameters ---------- exceptions : exception or tuple of exception Name of the estimator func : callable Calable object to raise error *args : the positional arguments to `func`. **kw : the keyword arguments to `func` """ try: function(*args, **kwargs) except exceptions as e: error_message = str(e) if message not in error_message: raise AssertionError("Error message does not include the expected" " string: %r. Observed error message: %r" % (message, error_message)) else: # concatenate exception names if isinstance(exceptions, tuple): names = " or ".join(e.__name__ for e in exceptions) else: names = exceptions.__name__ raise AssertionError("%s not raised by %s" % (names, function.__name__)) def fake_mldata(columns_dict, dataname, matfile, ordering=None): """Create a fake mldata data set. Parameters ---------- columns_dict : dict, keys=str, values=ndarray Contains data as columns_dict[column_name] = array of data. dataname : string Name of data set. matfile : string or file object The file name string or the file-like object of the output file. ordering : list, default None List of column_names, determines the ordering in the data set. Notes ----- This function transposes all arrays, while fetch_mldata only transposes 'data', keep that into account in the tests. """ datasets = dict(columns_dict) # transpose all variables for name in datasets: datasets[name] = datasets[name].T if ordering is None: ordering = sorted(list(datasets.keys())) # NOTE: setting up this array is tricky, because of the way Matlab # re-packages 1D arrays datasets['mldata_descr_ordering'] = sp.empty((1, len(ordering)), dtype='object') for i, name in enumerate(ordering): datasets['mldata_descr_ordering'][0, i] = name scipy.io.savemat(matfile, datasets, oned_as='column') class mock_mldata_urlopen(object): def __init__(self, mock_datasets): """Object that mocks the urlopen function to fake requests to mldata. `mock_datasets` is a dictionary of {dataset_name: data_dict}, or {dataset_name: (data_dict, ordering). `data_dict` itself is a dictionary of {column_name: data_array}, and `ordering` is a list of column_names to determine the ordering in the data set (see `fake_mldata` for details). When requesting a dataset with a name that is in mock_datasets, this object creates a fake dataset in a StringIO object and returns it. Otherwise, it raises an HTTPError. """ self.mock_datasets = mock_datasets def __call__(self, urlname): dataset_name = urlname.split('/')[-1] if dataset_name in self.mock_datasets: resource_name = '_' + dataset_name from io import BytesIO matfile = BytesIO() dataset = self.mock_datasets[dataset_name] ordering = None if isinstance(dataset, tuple): dataset, ordering = dataset fake_mldata(dataset, resource_name, matfile, ordering) matfile.seek(0) return matfile else: raise HTTPError(urlname, 404, dataset_name + " is not available", [], None) def install_mldata_mock(mock_datasets): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = mock_mldata_urlopen(mock_datasets) def uninstall_mldata_mock(): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = urlopen # Meta estimators need another estimator to be instantiated. META_ESTIMATORS = ["OneVsOneClassifier", "OutputCodeClassifier", "OneVsRestClassifier", "RFE", "RFECV", "BaseEnsemble"] # estimators that there is no way to default-construct sensibly OTHER = ["Pipeline", "FeatureUnion", "GridSearchCV", "RandomizedSearchCV"] # some trange ones DONT_TEST = ['SparseCoder', 'EllipticEnvelope', 'DictVectorizer', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', 'TfidfTransformer', 'TfidfVectorizer', 'IsotonicRegression', 'OneHotEncoder', 'RandomTreesEmbedding', 'FeatureHasher', 'DummyClassifier', 'DummyRegressor', 'TruncatedSVD', 'PolynomialFeatures', 'GaussianRandomProjectionHash', 'HashingVectorizer', 'CheckingClassifier', 'PatchExtractor', 'CountVectorizer', # GradientBoosting base estimators, maybe should # exclude them in another way 'ZeroEstimator', 'ScaledLogOddsEstimator', 'QuantileEstimator', 'MeanEstimator', 'LogOddsEstimator', 'PriorProbabilityEstimator', '_SigmoidCalibration', 'VotingClassifier'] def all_estimators(include_meta_estimators=False, include_other=False, type_filter=None, include_dont_test=False): """Get a list of all estimators from sklearn. This function crawls the module and gets all classes that inherit from BaseEstimator. Classes that are defined in test-modules are not included. By default meta_estimators such as GridSearchCV are also not included. Parameters ---------- include_meta_estimators : boolean, default=False Whether to include meta-estimators that can be constructed using an estimator as their first argument. These are currently BaseEnsemble, OneVsOneClassifier, OutputCodeClassifier, OneVsRestClassifier, RFE, RFECV. include_other : boolean, default=False Wether to include meta-estimators that are somehow special and can not be default-constructed sensibly. These are currently Pipeline, FeatureUnion and GridSearchCV include_dont_test : boolean, default=False Whether to include "special" label estimator or test processors. type_filter : string, list of string, or None, default=None Which kind of estimators should be returned. If None, no filter is applied and all estimators are returned. Possible values are 'classifier', 'regressor', 'cluster' and 'transformer' to get estimators only of these specific types, or a list of these to get the estimators that fit at least one of the types. Returns ------- estimators : list of tuples List of (name, class), where ``name`` is the class name as string and ``class`` is the actuall type of the class. """ def is_abstract(c): if not(hasattr(c, '__abstractmethods__')): return False if not len(c.__abstractmethods__): return False return True all_classes = [] # get parent folder path = sklearn.__path__ for importer, modname, ispkg in pkgutil.walk_packages( path=path, prefix='sklearn.', onerror=lambda x: None): if ".tests." in modname: continue module = __import__(modname, fromlist="dummy") classes = inspect.getmembers(module, inspect.isclass) all_classes.extend(classes) all_classes = set(all_classes) estimators = [c for c in all_classes if (issubclass(c[1], BaseEstimator) and c[0] != 'BaseEstimator')] # get rid of abstract base classes estimators = [c for c in estimators if not is_abstract(c[1])] if not include_dont_test: estimators = [c for c in estimators if not c[0] in DONT_TEST] if not include_other: estimators = [c for c in estimators if not c[0] in OTHER] # possibly get rid of meta estimators if not include_meta_estimators: estimators = [c for c in estimators if not c[0] in META_ESTIMATORS] if type_filter is not None: if not isinstance(type_filter, list): type_filter = [type_filter] else: type_filter = list(type_filter) # copy filtered_estimators = [] filters = {'classifier': ClassifierMixin, 'regressor': RegressorMixin, 'transformer': TransformerMixin, 'cluster': ClusterMixin} for name, mixin in filters.items(): if name in type_filter: type_filter.remove(name) filtered_estimators.extend([est for est in estimators if issubclass(est[1], mixin)]) estimators = filtered_estimators if type_filter: raise ValueError("Parameter type_filter must be 'classifier', " "'regressor', 'transformer', 'cluster' or None, got" " %s." % repr(type_filter)) # drop duplicates, sort for reproducibility return sorted(set(estimators)) def set_random_state(estimator, random_state=0): if "random_state" in estimator.get_params().keys(): estimator.set_params(random_state=random_state) def if_matplotlib(func): """Test decorator that skips test if matplotlib not installed. """ @wraps(func) def run_test(*args, **kwargs): try: import matplotlib matplotlib.use('Agg', warn=False) # this fails if no $DISPLAY specified import matplotlib.pyplot as plt plt.figure() except ImportError: raise SkipTest('Matplotlib not available.') else: return func(*args, **kwargs) return run_test def if_not_mac_os(versions=('10.7', '10.8', '10.9'), message='Multi-process bug in Mac OS X >= 10.7 ' '(see issue #636)'): """Test decorator that skips test if OS is Mac OS X and its major version is one of ``versions``. """ mac_version, _, _ = platform.mac_ver() skip = '.'.join(mac_version.split('.')[:2]) in versions def decorator(func): if skip: @wraps(func) def func(*args, **kwargs): raise SkipTest(message) return func return decorator def clean_warning_registry(): """Safe way to reset warnings """ warnings.resetwarnings() reg = "__warningregistry__" for mod_name, mod in list(sys.modules.items()): if 'six.moves' in mod_name: continue if hasattr(mod, reg): getattr(mod, reg).clear() def check_skip_network(): if int(os.environ.get('SKLEARN_SKIP_NETWORK_TESTS', 0)): raise SkipTest("Text tutorial requires large dataset download") def check_skip_travis(): """Skip test if being run on Travis.""" if os.environ.get('TRAVIS') == "true": raise SkipTest("This test needs to be skipped on Travis") def _delete_folder(folder_path, warn=False): """Utility function to cleanup a temporary folder if still existing. Copy from joblib.pool (for independance)""" try: if os.path.exists(folder_path): # This can fail under windows, # but will succeed when called by atexit shutil.rmtree(folder_path) except WindowsError: if warn: warnings.warn("Could not delete temporary folder %s" % folder_path) class TempMemmap(object): def __init__(self, data, mmap_mode='r'): self.temp_folder = tempfile.mkdtemp(prefix='sklearn_testing_') self.mmap_mode = mmap_mode self.data = data def __enter__(self): fpath = op.join(self.temp_folder, 'data.pkl') joblib.dump(self.data, fpath) data_read_only = joblib.load(fpath, mmap_mode=self.mmap_mode) atexit.register(lambda: _delete_folder(self.temp_folder, warn=True)) return data_read_only def __exit__(self, exc_type, exc_val, exc_tb): _delete_folder(self.temp_folder) with_network = with_setup(check_skip_network) with_travis = with_setup(check_skip_travis)
bsd-3-clause
seckcoder/lang-learn
python/sklearn/examples/svm/plot_svm_regression.py
5
1430
""" =================================================================== Support Vector Regression (SVR) using linear and non-linear kernels =================================================================== Toy example of 1D regression using linear, polynominial and RBF kernels. """ print __doc__ ############################################################################### # Generate sample data import numpy as np X = np.sort(5 * np.random.rand(40, 1), axis=0) y = np.sin(X).ravel() ############################################################################### # Add noise to targets y[::5] += 3 * (0.5 - np.random.rand(8)) ############################################################################### # Fit regression model from sklearn.svm import SVR svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) svr_lin = SVR(kernel='linear', C=1e3) svr_poly = SVR(kernel='poly', C=1e3, degree=2) y_rbf = svr_rbf.fit(X, y).predict(X) y_lin = svr_lin.fit(X, y).predict(X) y_poly = svr_poly.fit(X, y).predict(X) ############################################################################### # look at the results import pylab as pl pl.scatter(X, y, c='k', label='data') pl.hold('on') pl.plot(X, y_rbf, c='g', label='RBF model') pl.plot(X, y_lin, c='r', label='Linear model') pl.plot(X, y_poly, c='b', label='Polynomial model') pl.xlabel('data') pl.ylabel('target') pl.title('Support Vector Regression') pl.legend() pl.show()
unlicense
y3ah/Sentiment_Categorization
source/decision_tree_classifier.py
1
2065
# -*- coding: utf-8 -*- ## ##decision_tree_classifier.py import codecs import numpy #from scipy.sparse import csr_matrix from sklearn import cross_validation from sklearn.tree import DecisionTreeClassifier from feature_extraction import * from feature_selection import * import time #从文件读入语料 #in_file_name = '../data/train_text.txt' in_file_name = '../data/train_text2.txt' #去除标签,处理A_B #in_file_name = '../data/train_text3.txt' #换stop bin_vectorizer, term_occurence = feature_extraction(in_file_name) def train(inputs, feature_name, tree_depth=5): print 'training with %s feature...'%(feature_name) clf = DecisionTreeClassifier(max_depth=tree_depth, criterion='entropy') start_time = time.time() f = cross_validation.cross_val_score(clf,\ inputs,class_label,scoring='f1',cv=10) end_time = time.time() print 'time: %f, result: mean:%f std:%f'%(end_time - start_time, \ f.mean(), f.std()) return clf, f #clf, f = train(term_occurence.toarray(), 'term_occurence') term_occurence_new = select_features(term_occurence.toarray(), class_label, 10.0) clf, f = train(term_occurence_new, 'term_occurence_new') #train(tf.toarray(), 'tf') #train(tfidf.toarray(), 'tfidf') ''' # result on Mac, 5 layers In [20]: run decision_tree_classifier.py training with term_occurence feature… time: 192.313983, result: mean:0.604118 std:0.087560 training with tf feature… time: 178.886782, result: mean:0.555732 std:0.095158 training with tfidf feature… time: 176.856054, result: mean:0.508084 std:0.080090 # result on Win, 5 layers run time: 2.482095 s f1: 0.604198, f1_std: 0.084368 run time: 3.129976 s f1: 0.556025, f1_std: 0.094461 run time: 3.141502 s f1: 0.506478, f1_std: 0.080185 # result on Mac, 15 layers training with term_occurence feature... time: 386.084352, result: mean:0.682572 std:0.054867 # result on Win, 15 layers run time: 10.412181 s f1: 0.681385, f1_std: 0.059790 run time: 12.176176 s f1: 0.653785, f1_std: 0.065988 run time: 11.532466 s f1: 0.657862, f1_std: 0.064292 '''
mit
lbishal/scikit-learn
examples/gaussian_process/plot_gpr_co2.py
131
5705
""" ======================================================== Gaussian process regression (GPR) on Mauna Loa CO2 data. ======================================================== This example is based on Section 5.4.3 of "Gaussian Processes for Machine Learning" [RW2006]. It illustrates an example of complex kernel engineering and hyperparameter optimization using gradient ascent on the log-marginal-likelihood. The data consists of the monthly average atmospheric CO2 concentrations (in parts per million by volume (ppmv)) collected at the Mauna Loa Observatory in Hawaii, between 1958 and 1997. The objective is to model the CO2 concentration as a function of the time t. The kernel is composed of several terms that are responsible for explaining different properties of the signal: - a long term, smooth rising trend is to be explained by an RBF kernel. The RBF kernel with a large length-scale enforces this component to be smooth; it is not enforced that the trend is rising which leaves this choice to the GP. The specific length-scale and the amplitude are free hyperparameters. - a seasonal component, which is to be explained by the periodic ExpSineSquared kernel with a fixed periodicity of 1 year. The length-scale of this periodic component, controlling its smoothness, is a free parameter. In order to allow decaying away from exact periodicity, the product with an RBF kernel is taken. The length-scale of this RBF component controls the decay time and is a further free parameter. - smaller, medium term irregularities are to be explained by a RationalQuadratic kernel component, whose length-scale and alpha parameter, which determines the diffuseness of the length-scales, are to be determined. According to [RW2006], these irregularities can better be explained by a RationalQuadratic than an RBF kernel component, probably because it can accommodate several length-scales. - a "noise" term, consisting of an RBF kernel contribution, which shall explain the correlated noise components such as local weather phenomena, and a WhiteKernel contribution for the white noise. The relative amplitudes and the RBF's length scale are further free parameters. Maximizing the log-marginal-likelihood after subtracting the target's mean yields the following kernel with an LML of -83.214:: 34.4**2 * RBF(length_scale=41.8) + 3.27**2 * RBF(length_scale=180) * ExpSineSquared(length_scale=1.44, periodicity=1) + 0.446**2 * RationalQuadratic(alpha=17.7, length_scale=0.957) + 0.197**2 * RBF(length_scale=0.138) + WhiteKernel(noise_level=0.0336) Thus, most of the target signal (34.4ppm) is explained by a long-term rising trend (length-scale 41.8 years). The periodic component has an amplitude of 3.27ppm, a decay time of 180 years and a length-scale of 1.44. The long decay time indicates that we have a locally very close to periodic seasonal component. The correlated noise has an amplitude of 0.197ppm with a length scale of 0.138 years and a white-noise contribution of 0.197ppm. Thus, the overall noise level is very small, indicating that the data can be very well explained by the model. The figure shows also that the model makes very confident predictions until around 2015. """ print(__doc__) # Authors: Jan Hendrik Metzen <[email protected]> # # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels \ import RBF, WhiteKernel, RationalQuadratic, ExpSineSquared from sklearn.datasets import fetch_mldata data = fetch_mldata('mauna-loa-atmospheric-co2').data X = data[:, [1]] y = data[:, 0] # Kernel with parameters given in GPML book k1 = 66.0**2 * RBF(length_scale=67.0) # long term smooth rising trend k2 = 2.4**2 * RBF(length_scale=90.0) \ * ExpSineSquared(length_scale=1.3, periodicity=1.0) # seasonal component # medium term irregularity k3 = 0.66**2 \ * RationalQuadratic(length_scale=1.2, alpha=0.78) k4 = 0.18**2 * RBF(length_scale=0.134) \ + WhiteKernel(noise_level=0.19**2) # noise terms kernel_gpml = k1 + k2 + k3 + k4 gp = GaussianProcessRegressor(kernel=kernel_gpml, alpha=0, optimizer=None, normalize_y=True) gp.fit(X, y) print("GPML kernel: %s" % gp.kernel_) print("Log-marginal-likelihood: %.3f" % gp.log_marginal_likelihood(gp.kernel_.theta)) # Kernel with optimized parameters k1 = 50.0**2 * RBF(length_scale=50.0) # long term smooth rising trend k2 = 2.0**2 * RBF(length_scale=100.0) \ * ExpSineSquared(length_scale=1.0, periodicity=1.0, periodicity_bounds="fixed") # seasonal component # medium term irregularities k3 = 0.5**2 * RationalQuadratic(length_scale=1.0, alpha=1.0) k4 = 0.1**2 * RBF(length_scale=0.1) \ + WhiteKernel(noise_level=0.1**2, noise_level_bounds=(1e-3, np.inf)) # noise terms kernel = k1 + k2 + k3 + k4 gp = GaussianProcessRegressor(kernel=kernel, alpha=0, normalize_y=True) gp.fit(X, y) print("\nLearned kernel: %s" % gp.kernel_) print("Log-marginal-likelihood: %.3f" % gp.log_marginal_likelihood(gp.kernel_.theta)) X_ = np.linspace(X.min(), X.max() + 30, 1000)[:, np.newaxis] y_pred, y_std = gp.predict(X_, return_std=True) # Illustration plt.scatter(X, y, c='k') plt.plot(X_, y_pred) plt.fill_between(X_[:, 0], y_pred - y_std, y_pred + y_std, alpha=0.5, color='k') plt.xlim(X_.min(), X_.max()) plt.xlabel("Year") plt.ylabel(r"CO$_2$ in ppm") plt.title(r"Atmospheric CO$_2$ concentration at Mauna Loa") plt.tight_layout() plt.show()
bsd-3-clause
bigdataelephants/scikit-learn
benchmarks/bench_plot_ward.py
290
1260
""" Benchmark scikit-learn's Ward implement compared to SciPy's """ import time import numpy as np from scipy.cluster import hierarchy import pylab as pl from sklearn.cluster import AgglomerativeClustering ward = AgglomerativeClustering(n_clusters=3, linkage='ward') n_samples = np.logspace(.5, 3, 9) n_features = np.logspace(1, 3.5, 7) N_samples, N_features = np.meshgrid(n_samples, n_features) scikits_time = np.zeros(N_samples.shape) scipy_time = np.zeros(N_samples.shape) for i, n in enumerate(n_samples): for j, p in enumerate(n_features): X = np.random.normal(size=(n, p)) t0 = time.time() ward.fit(X) scikits_time[j, i] = time.time() - t0 t0 = time.time() hierarchy.ward(X) scipy_time[j, i] = time.time() - t0 ratio = scikits_time / scipy_time pl.figure("scikit-learn Ward's method benchmark results") pl.imshow(np.log(ratio), aspect='auto', origin="lower") pl.colorbar() pl.contour(ratio, levels=[1, ], colors='k') pl.yticks(range(len(n_features)), n_features.astype(np.int)) pl.ylabel('N features') pl.xticks(range(len(n_samples)), n_samples.astype(np.int)) pl.xlabel('N samples') pl.title("Scikit's time, in units of scipy time (log)") pl.show()
bsd-3-clause
JonWel/CoolProp
dev/pseudo-pure/fit_pseudo-pure_eos.py
5
24174
import numpy as np from CoolProp.CoolProp import Props import matplotlib.pyplot as plt import matplotlib.mlab as mlab import scipy.optimize import scipy.stats import random import h5py from templates import * indices = [] class TermLibrary(): """ Build a term library using the coefficients from Wagner and Pruss (IAPWS95) """ def __init__(self): L,D,T = [],[],[] for i in range(1,6): for j in range(-4,9): T.append(float(j)/8.0) D.append(float(i)) L.append(float(0)) for i in range(1,16): for j in range(1,16): T.append(float(j)) D.append(float(i)) L.append(float(1)) for i in range(1,13): for j in range(1,11): T.append(float(j)) D.append(float(i)) L.append(float(2)) for i in range(1,6): for j in range(10,24): T.append(float(j)) D.append(float(i)) L.append(float(3)) for i in range(1,10): for j in range(10,21): T.append(float(j)) D.append(float(i)*2) L.append(float(4)) self.T = T self.D = D self.L = L from Helmholtz import helmholtz def rsquared(x, y): """ Return R^2 where x and y are array-like.""" slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(x, y) return r_value**2 def get_fluid_constants(Ref): if Ref == 'R407F': RefString = 'REFPROP-MIX:R32[0.47319469]&R125[0.2051091]&R134a[0.32169621]' elif Ref == 'R410A': RefString = 'REFPROP-MIX:R32[0.6976147]&R125[0.3023853]' LIBRARY = TermLibrary() # Coefficients for HFC blends LIBRARY.N = np.array([9.87252E-01, -1.03017E+00, 1.17666E+00, 6.10984E+00, -7.79453E+00, 1.83377E-02, 1.05880E+00, -1.12018E+00, 6.29064E-01, 6.24982E+00, -8.07855E+00, 2.64843E-02, -2.53639E+00, 8.50922E-01, -5.20084E-01, -4.64225E-02, -1.75725E+00, 1.38469E+00, -9.22473E-01, -5.03562E-02, 6.79757E-01, -6.52431E-01, 2.33779E-01, -2.91790E-01, -1.38991E-01, 2.62270E-01, -3.51688E-03, -3.51953E-01, 2.86215E-01, -5.07076E-03, -1.96680E+00, 6.21190E-01, -1.95505E-01, -1.12009E+00, 2.77353E-02, 8.22098E-01, -2.77727E-01, -7.58262E-02, -8.15653E-02, 2.00760E-02, -1.39761E-02, 6.89437E-02, -4.42552E-03, 7.55927E-02, -8.30480E-01, 3.36159E-01, 8.98881E-01, -1.17591E+00, 3.58172E-01, -2.21041E-02, -2.33323E-02, -5.07525E-02, -5.42007E-02, 1.16181E-02, 1.09552E-02, -3.76062E-02, -1.26426E-02, 5.53849E-02, -7.10970E-02, 3.10441E-02, 1.32798E-02, 1.54776E-02, -3.14579E-02, 3.52952E-02, 1.59566E-02, -1.85110E-02, -1.01254E-02, 3.02373E-03, 4.55978E-03, 1.72477E-01, -2.61116E-01, -7.45473E-02, 8.18591E-02, -7.94097E-02, -1.04047E-05, 1.71939E-02, 1.61382E-02, 9.15953E-03, 1.70451E-02, 1.05992E-03, 1.16124E-03, -4.82049E-03, -3.61575E-03, -6.36579E-03, -6.07010E-03, -8.75332E-04]) LIBRARY.T = np.array([0.44, 1.2, 2.97, 0.67, 0.91, 5.96, 0.241, 0.69, 2.58, 0.692, 0.943, 5.8, 1.93, 1.7, 3.3, 7, 2.15, 2, 3, 7, 2.1, 4.3, 3.3, 4.7, 2.95, 0.7, 6, 1.15, 0.77, 5.84, 1.78, 2.05, 4.3, 2.43, 5.3, 2.2, 4.3, 12, 12, 13, 16, 13, 16.2, 13, 3, 2.7, 0.76, 1.48, 2.7, 6, 6, 17, 17, 0.3, 0.24, 1.8, 1.2, 0.25, 7, 8.7, 11.6, 0.45, 8.4, 8.5, 11.5, 25, 26, 0.2, 0.248, 0.2, 0.74, 3, 0.24, 2.86, 8, 17, 16, 16, 16.2, 0.7, 0.69, 7.4, 8.7, 1.25, 1.23, 4.7]) LIBRARY.D = np.array([1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 9]) LIBRARY.L = np.array([0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 2, 2, 3, 3, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 0, 0, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 0, 0, 3, 3, 1, 1, 2]) global indices indices = set() while len(indices) < 23: indices.add(random.randint(0, len(LIBRARY.T)-1)) print indices, len(LIBRARY.T) T0 = np.array([LIBRARY.T[i] for i in indices]) D0 = np.array([LIBRARY.D[i] for i in indices]) L0 = np.array([LIBRARY.L[i] for i in indices]) N0 = np.array([LIBRARY.N[i] for i in indices]) # Values from Span short(2003) (polar) # D0 = np.array([0, 1.0, 1.0, 1.0, 3.0, 7.0, 1.0, 2.0, 5.0, 1.0, 1.0, 4.0, 2.0]) # L0 = np.array([0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0]) # T0 = np.array([0, 0.25, 1.25, 1.5, 0.25, 0.875, 2.375, 2.0, 2.125, 3.5, 6.5, 4.75, 12.5]) # N0 = 0.5*np.ones_like(D0) # values from R410A N0 = np.array([0.0, 0.987252, -1.03017, 1.17666, -0.138991, 0.00302373, -2.53639, -1.96680, -0.830480, 0.172477, -0.261116, -0.0745473, 0.679757, -0.652431, 0.0553849, -0.0710970, -0.000875332, 0.0200760, -0.0139761, -0.0185110, 0.0171939, -0.00482049]) T0 = np.array([0.0,0.44,1.2,2.97,2.95,0.2,1.93,1.78,3.0,0.2,0.74,3.0,2.1,4.3,0.25,7.0,4.7,13.0,16.0,25.0,17.0,7.4]) D0 = np.array([0,1.0,1,1,2,5,1,2,3,5,5,5,1,1,4,4,9,2,2,4,5,6]) L0 = np.array([0,0.0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3]) indices = set() while len(indices) < 5: indices.add(random.randint(0, len(LIBRARY.T)-1)) print indices, len(LIBRARY.T) T0 = np.append(T0, [LIBRARY.T[i] for i in indices]) D0 = np.append(D0, [LIBRARY.D[i] for i in indices]) L0 = np.append(L0, [LIBRARY.L[i] for i in indices]) N0 = np.append(N0, [LIBRARY.N[i] for i in indices]) # values from R407C # N0 = np.array([0.0, 1.0588,-1.12018, 0.629064,-0.351953, 0.00455978,-1.75725,-1.12009, 0.0277353, 0.898881,-1.17591, 0.0818591,-0.0794097,-0.0000104047, 0.233779,-0.291790, 0.0154776,-0.0314579,-0.00442552,-0.0101254, 0.00915953,-0.003615]) # T0 = np.array([0.0,0.241,0.69,2.58,1.15,0.248,2.15,2.43,5.3,0.76,1.48,0.24,2.86,8.0,3.3,4.7,0.45,8.4,16.2,26.0,16.0,8.7]) # D0 = np.array([0.0,1,1,1,2,5,1,2,2,3,3,5,5,5,1,1,4,4,2,4,5,6]) # L0 = np.array([0.0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3]) return RefString, N0, T0, D0, L0 class IdealPartFitter(object): def __init__(self, Ref): self.Ref = Ref self.RefString, N0, T0, D0, L0 = get_fluid_constants(Ref) self.molemass = Props(self.RefString,'molemass') self.Tc = Props(self.RefString, 'Tcrit') self.rhoc = Props(self.RefString, 'rhocrit') self.pc = Props(self.RefString, 'pcrit') self.T = np.linspace(100, 450, 200) self.tau = self.Tc/self.T self.C = Props('C', 'T', self.T, 'D', 1e-15, self.RefString) R = 8.314472/self.molemass self.cp0_R = self.C/R def cp0_R_from_fit(self, a_e): a = a_e[0:len(a_e)//2] e = a_e[len(a_e)//2::] u1 = e[1]/self.T u2 = e[2]/self.T u3 = e[3]/self.T return a[0]*self.T**e[0]+a[1]*u1**2*np.exp(u1)/(np.exp(u1)-1)**2+a[2]*u2**2*np.exp(u2)/(np.exp(u2)-1)**2+a[3]*u3**2*np.exp(u3)/(np.exp(u3)-1)**2 def OBJECTIVE_cp0_R(self, a_e): cp0_R_fit = self.cp0_R_from_fit(a_e) RMS = np.sqrt(np.mean(np.power((self.cp0_R-cp0_R_fit)/self.cp0_R, 2))) return RMS def fit(self): a_e = [2.8749, 2.0623, 5.9751, 1.5612, 0.1, 697.0, 1723.0, 3875.0] a_e = scipy.optimize.minimize(self.OBJECTIVE_cp0_R, a_e).x self.a = a_e[0:len(a_e)//2] self.e = a_e[len(a_e)//2::] cp0_over_R_check = 1-self.tau**2*self.d2phi0_dTau2(self.tau) plt.plot(self.T, (self.cp0_R_from_fit(a_e)/self.cp0_R-1)*100, '-', self.T, (cp0_over_R_check/self.cp0_R-1)*100, '^') plt.xlabel('Temperature [K]') plt.ylabel('($c_{p0}/R$ (fit) / $c_{p0}/R$ (REFPROP) -1)*100 [%]') plt.savefig('cp0.pdf') plt.close() def d2phi0_dTau2(self, tau): d = [] for _tau in tau: #lead term is killed d.append(helmholtz.phi0_logtau(-1.0).dTau2(_tau, _tau) + helmholtz.phi0_cp0_poly(self.a[0],self.e[0],self.Tc,298.15).dTau2(_tau, _tau) + helmholtz.phi0_Planck_Einstein(self.a,self.e/self.Tc,1,len(self.a)-1).dTau2(_tau, _tau) ) return np.array(d) class ResidualPartFitter(object): def __init__(self, Ref, IPF): self.Ref = Ref self.IPF = IPF self.RefString, self.N0, self.T0, self.D0, self.L0 = get_fluid_constants(Ref) self.Tc = Props(self.RefString,'Tcrit') self.rhoc = Props(self.RefString,'rhocrit') molemass = Props(self.RefString,'molemass') self.R = 8.314472/ molemass def termwise_Rsquared(self): keepers = [] values = [] print len(self.N0), 'terms at start' for i in range(len(self.N0)): n = helmholtz.vectord([float(1)]) d = helmholtz.vectord([self.D0[i]]) t = helmholtz.vectord([self.T0[i]]) l = helmholtz.vectord([self.L0[i]]) self.phir = helmholtz.phir_power(n, d, t, l, 0, 0) PPF = self.evaluate_EOS(np.array(list(n))) R2 = rsquared(PPF.p,self.phir.dDeltaV(self.tauV,self.deltaV)) values.append((R2,i)) if R2 > 0.9: keepers.append(i) values,indices = zip(*reversed(sorted(values))) keepers = list(indices[0:30]) self.N0 = self.N0[keepers] self.T0 = self.T0[keepers] self.D0 = self.D0[keepers] self.L0 = self.L0[keepers] print len(self.N0), 'terms at end' def generate_1phase_data(self): Tc = Props(self.RefString, 'Tcrit') rhoc = Props(self.RefString, 'rhocrit') TTT, RHO, PPP, CPP, CVV, AAA = [], [], [], [], [], [] for _T in np.linspace(220, 450, 100): print _T for _rho in np.logspace(np.log10(1e-2), np.log10(rhoc), 100): try: if _T > Tc: p = Props('P', 'T', _T, 'D', _rho, self.RefString) cp = Props('C', 'T', _T, 'D', _rho, self.RefString) cv = Props('O', 'T', _T, 'D', _rho, self.RefString) a = Props('A', 'T', _T, 'D', _rho, self.RefString) else: DL = Props('D', 'T', _T, 'Q', 0, self.RefString) DV = Props('D', 'T', _T, 'Q', 1, self.RefString) if _rho < DV or _rho > DL: p = Props('P', 'T', _T, 'D', _rho, self.RefString) cp = Props('C', 'T', _T, 'D', _rho, self.RefString) cv = Props('O', 'T', _T, 'D', _rho, self.RefString) a = Props('A', 'T', _T, 'D', _rho, self.RefString) else: p = None if p is not None: TTT.append(_T) RHO.append(_rho) PPP.append(p) CPP.append(cp) CVV.append(cv) AAA.append(a) except ValueError as VE: print VE pass for _rho in np.linspace(rhoc, 3.36*rhoc, 50): try: if _T > Tc: p = Props('P', 'T', _T, 'D', _rho, self.RefString) cp = Props('C', 'T', _T, 'D', _rho, self.RefString) cv = Props('O', 'T', _T, 'D', _rho, self.RefString) a = Props('A', 'T', _T, 'D', _rho, self.RefString) else: DL = Props('D', 'T', _T, 'Q', 0, self.RefString) DV = Props('D', 'T', _T, 'Q', 1, self.RefString) if _rho < DV or _rho > DL: p = Props('P', 'T', _T, 'D', _rho, self.RefString) cp = Props('C', 'T', _T, 'D', _rho, self.RefString) cv = Props('O', 'T', _T, 'D', _rho, self.RefString) a = Props('A', 'T', _T, 'D', _rho, self.RefString) else: p = None if p is not None: TTT.append(_T) RHO.append(_rho) PPP.append(p) CPP.append(cp) CVV.append(cv) AAA.append(a) except ValueError as VE: print VE pass h = h5py.File('T_rho_p.h5','w') grp = h.create_group(self.Ref) grp.create_dataset("T",data = np.array(TTT),compression = "gzip") grp.create_dataset("rho", data = np.array(RHO),compression = "gzip") grp.create_dataset("p", data = np.array(PPP),compression = "gzip") grp.create_dataset("cp", data = np.array(CPP),compression = "gzip") grp.create_dataset("cv", data = np.array(CVV),compression = "gzip") grp.create_dataset("speed_sound", data = np.array(AAA),compression = "gzip") h.close() def load_data(self): h = h5py.File('T_rho_p.h5','r') self.T = h.get(self.Ref + '/T').value self.rho = h.get(self.Ref + '/rho').value self.p = h.get(self.Ref + '/p').value self.cp = h.get(self.Ref + '/cp').value self.cv = h.get(self.Ref + '/cv').value self.speed_sound = h.get(self.Ref + '/speed_sound').value self.tau = self.Tc/self.T self.delta = self.rho/self.rhoc self.tauV = helmholtz.vectord(self.tau) self.deltaV = helmholtz.vectord(self.delta) # Get the derivative d2phi0_dTau2 from the ideal part fitter self.d2phi0_dTau2 = self.IPF.d2phi0_dTau2(self.tau) def evaluate_EOS(self, N): self.phir.n = helmholtz.vectord(N) dDelta = self.phir.dDeltaV(self.tauV, self.deltaV) dTau2 = self.phir.dTau2V(self.tauV, self.deltaV) dDelta2 = self.phir.dDelta2V(self.tauV, self.deltaV) dDelta_dTau = self.phir.dDelta_dTauV(self.tauV, self.deltaV) # Evaluate the pressure p = (self.rho*self.R*self.T)*(1 + self.delta*dDelta) # Evaluate the specific heat at constant volume cv_over_R = -self.tau**2*(self.d2phi0_dTau2 + dTau2) cv = cv_over_R*self.R # Evaluate the specific heat at constant pressure cp_over_R = cv_over_R+(1.0+self.delta*dDelta-self.delta*self.tau*dDelta_dTau)**2/(1+2*self.delta*dDelta+self.delta**2*dDelta2) cp = cp_over_R*self.R # Evaluate the speed of sound w = np.sqrt(1000*self.R*self.T*cp_over_R/cv_over_R*(1+2*self.delta*dDelta+self.delta**2*dDelta2)) class stub: pass PPF = stub() PPF.p = np.array(p, ndmin = 1).T PPF.cp = np.array(cp, ndmin = 1).T PPF.cv = np.array(cv, ndmin = 1).T PPF.w = np.array(w, ndmin = 1).T return PPF def OBJECTIVE(self, N): PPF = self.evaluate_EOS(N) ## plt.plot(PPF.p, self.p); plt.show() ## plt.plot(PPF.cp, self.cp); plt.show() ## plt.plot(PPF.cv, self.cv); plt.show() ## plt.plot(PPF.w, self.speed_sound); plt.show() w_p = 1.0 w_cv = 1.0 w_w = 1.0 w_cp = 1.0 w_total = (w_p+w_cv+w_w+w_cp)/4 w_p_norm = w_p/w_total w_cv_norm = w_cv/w_total w_cp_norm = w_cp/w_total w_w_norm = w_w/w_total residuals = np.r_[(PPF.p/self.p-1),(PPF.cv/self.cv-1),(PPF.cp/self.cp-1)]#,(PPF.w**2/self.speed_sound**2-1)] RMS = np.sqrt(np.mean(np.power(residuals, 2))) print 'RMS:',RMS*100, '% Max',np.max(np.abs(residuals))*100,'%' self.RMS = RMS self.MaxError = np.max(np.abs(residuals)) return RMS def fit(self): # Kill off some not as good terms #self.termwise_Rsquared() # Load up the residual Helmholtz term with parameters n = helmholtz.vectord(self.N0) d = helmholtz.vectord(self.D0) t = helmholtz.vectord(self.T0) l = helmholtz.vectord(self.L0) self.phir = helmholtz.phir_power(n, d, t, l, 1, len(self.N0)-1) # Solve for the coefficients Nbounds = [(-10,10) for _ in range(len(self.N0))] tbounds = [(-1,30) for _ in range(len(self.T0))] print self.OBJECTIVE(np.array(list(self.N0))) #self.N = self.N0 #self.N = scipy.optimize.minimize(self.OBJECTIVE, np.array(list(self.N0)), bounds = Nbounds, options = dict(maxiter = 5)).x self.N = scipy.optimize.minimize(self.OBJECTIVE, np.array(list(self.N0)), method = 'L-BFGS-B', bounds = Nbounds, options = dict(maxiter = 100)).x # Write the coefficients to HDF5 file h = h5py.File('fit_coeffs.h5','w') grp = h.create_group(self.Ref) grp.create_dataset("n", data = np.array(self.N), compression = "gzip") print self.N #grp.create_dataset("t", data = np.array(self.N[len(self.N)//2::]), compression = "gzip") h.close() def evaluate_REFPROP(self, Ref, T, rho): p,cp,cv,w = [],[],[],[] R = 8.314472/Props(Ref,'molemass') for _T,_rho in zip(T, rho): p.append(Props("P",'T',_T,'D',_rho,Ref)) cp.append(Props("C",'T',_T,'D',_rho,Ref)) cv.append(Props("O",'T',_T,'D',_rho,Ref)) w.append(Props("A",'T',_T,'D',_rho,Ref)) class stub: pass PPF = stub() PPF.p = np.array(p, ndmin = 1).T PPF.cp = np.array(cp, ndmin = 1).T PPF.cv = np.array(cv, ndmin = 1).T PPF.w = np.array(w, ndmin = 1).T return PPF def check(self): # Load the coefficients from file h = h5py.File('fit_coeffs.h5','r') grp = h.get(self.Ref) n = grp.get('n').value h.close() print n import matplotlib.colors as colors cNorm = colors.LogNorm(vmin=1e-3, vmax=50) PPF = self.evaluate_EOS(np.array(list(n))) self.OBJECTIVE(np.array(list(n))) print 'max error (p)',np.max(np.abs(PPF.p/self.p-1)*100),'%' SC1 = plt.scatter(self.rho, self.T, s = 8, c = np.abs(PPF.p/self.p-1)*100, edgecolors = 'none', cmap = plt.get_cmap('jet'), norm = cNorm) plt.gca().set_xscale('log') cb = plt.colorbar() cb.set_label('abs(PPF.p/self.p-1)*100') plt.savefig('pressure.png') plt.show() print 'max error (cp)',np.max(np.abs(PPF.cp/self.cp-1)*100),'%' SC1 = plt.scatter(self.rho, self.T, s = 8, c = np.abs(PPF.cp/self.cp-1)*100, edgecolors = 'none', cmap = plt.get_cmap('jet'), norm = cNorm) plt.gca().set_xscale('log') cb = plt.colorbar() cb.set_label('abs(PPF.cp/self.cp-1)*100') plt.savefig('cp.png') plt.show() ## plt.plot(self.T,PPF.p/self.p,'.'); plt.show() ## plt.plot(self.T,PPF.cp/self.cp,'.'); plt.show() ## plt.plot(self.T,PPF.cv/self.cv,'.'); plt.show() ## plt.plot(self.T,PPF.w/self.speed_sound,'.'); plt.show() class PPFFitterClass(object): def __init__(self, Ref, regenerate_data = True, fit = True): self.Ref = Ref self.IPF = IdealPartFitter(Ref) self.IPF.fit() for i in range(1): self.RPF = ResidualPartFitter(Ref, IPF = self.IPF) if regenerate_data: self.RPF.generate_1phase_data() self.RPF.load_data() if fit: self.RPF.fit() f = open('results.txt','a+') print >> f, indices, self.RPF.RMS, self.RPF.MaxError f.close() self.RPF.check() quit() self.output_files() def contour_plot(values): """ Parameters ---------- values : iterable, same size as T and rho """ plt.semilogx(self.RPF.rho,self.RPF.T,'o') plt.show() # Generate a regular grid to interpolate the data. xi = np.linspace(min(self.RPF.T), max(self.RPF.T), 100) yi = np.linspace(min(self.RPF.rho), max(self.RPF.rho), 100) xi, yi = np.meshgrid(xi, yi) # Interpolate using delaunay triangularization zi = mlab.griddata(np.array(self.RPF.T),np.array(self.RPF.rho),np.array(values),xi,yi) cont = plt.contourf(yi,xi,zi,30) plt.colorbar() plt.show() def output_files(self): h = h5py.File('fit_coeffs.h5','r') n = h.get(self.Ref+'/n').value #t = h.get(self.Ref+'/t').value # Output the header file header = PPF_h_template.format(Ref = self.Ref, RefUpper = self.Ref.upper()) acoeffs = '0, '+', '.join(['{a:0.6f}'.format(a=_) for _ in self.IPF.a]) # First one doesn't get divided by critical temperature, later ones do bcoeffs = '0, ' bcoeffs += str(self.IPF.e[0])+', ' bcoeffs += ', '.join(['{b:0.4f}/{Tcrit:g}'.format(b=_,Tcrit = self.IPF.Tc) for _ in self.IPF.e[1::]]) ncoeffs = ', '.join(['{a:0.6g}'.format(a=_) for _ in n]) tcoeffs = ', '.join(['{a:0.6g}'.format(a=_) for _ in self.RPF.T0]) dcoeffs = ', '.join(['{a:0.6g}'.format(a=_) for _ in self.RPF.D0]) lcoeffs = ', '.join(['{a:0.6g}'.format(a=_) for _ in self.RPF.L0]) import sys sys.path.append('..') from fit_ancillary_ODRPACK import saturation_pressure, saturation_density pL = saturation_pressure(self.IPF.RefString, self.IPF.Ref, LV = 'L') pV = saturation_pressure(self.IPF.RefString, self.IPF.Ref, LV = 'V') rhoL = saturation_density(self.IPF.RefString, self.IPF.Ref, form='A', LV='L', add_critical = False) rhoV = saturation_density(self.IPF.RefString, self.IPF.Ref, form='B', LV='V', add_critical = False) code = PPF_cpp_template.format(Ref = self.Ref, RefUpper = self.Ref.upper(), acoeffs = acoeffs, bcoeffs = bcoeffs, Ncoeffs = ncoeffs, tcoeffs = tcoeffs, dcoeffs = dcoeffs, Lcoeffs = lcoeffs, N_phir = len(n), N_cp0 = len(self.IPF.a), molemass = self.IPF.molemass, Ttriple = 200, accentric = 0.7, pcrit = self.IPF.pc, Tcrit = self.IPF.Tc, rhocrit = self.IPF.rhoc, pL = pL, pV = pV, rhoL = rhoL, rhoV = rhoV ) f = open(self.IPF.Ref+'.h','w') f.write(header) f.close() f = open(self.IPF.Ref+'.cpp','w') f.write(code) f.close() if __name__=='__main__': Ref = 'R407F' PPFFitterClass(Ref)
mit
tedunderwood/biographies
code/make_diff_matrix.py
1
8947
# Make diff matrix. # USAGE: # python3 make_diff_matrix.py name_of_outfile pathtodata1 pathtodata2 etc # This will create ../data/name_of_outfile.csv and ..data/name_of_outfile.slopes.csv # for instance, I did this: # python3 make_diff_matrix.py 8-20-2017_diffmatrix ../natalie/out_files/all_post23bio_out.tsv ../natalie/out_files/all_pre23bio_new.tsv VOCABLENGTH = 6000 import csv, sys, os import numpy as np import pandas as pd import math # from random import shuffle # from random import random as randomprob from sklearn.linear_model import LinearRegression from collections import Counter csv.field_size_limit(sys.maxsize) arguments = sys.argv out_filename = arguments[1] if os.path.isfile(out_filename + '.csv'): print(out_filename + ' already exists, and I refuse to overwrite it.') files_to_use = [] for f in arguments[2:]: if os.path.isfile(f): files_to_use.append(f) else: print("Cannot find " + f) # Let's load some metadata about the publication dates of these works, # and the inferred genders of their authors. personalnames = set() with open("../lexicons/PersonalNames.txt", encoding="utf-8") as f: names = f.readlines() for line in names: name = line.rstrip() personalnames.add(name) personalnames.add('said-' + name) vocab = Counter() def add2vocab(vocab, filepath): with open(filepath, encoding = 'utf-8') as f: reader = csv.DictReader(f, delimiter = '\t') for row in reader: gender = row['chargender'] if gender.startswith('u'): continue words = row['words'].split() for w in words: if not w.startswith('said-') and w not in personalnames: vocab[w] += 1 # Let's create the vocabulary. for f in files_to_use: add2vocab(vocab, f) vocabcount = len(vocab) print("The data includes " + str(vocabcount) + " words") wordsinorder = [x[0] for x in vocab.most_common(VOCABLENGTH)] vocabulary = dict() vocabset = set() for idx, word in enumerate(wordsinorder): vocabulary[word] = idx vocabset.add(word) print("Vocabulary sorted, top " + str(VOCABLENGTH) + " kept.") vecbyyear = dict() vecbyyear['m'] = dict() vecbyyear['f'] = dict() datevector = list(range(1780, 2008)) for g in ['f', 'm']: for i in range(1780, 2008): vecbyyear[g][i] = np.zeros((VOCABLENGTH)) def add2counts(vecbyyear, path): with open(path, encoding = 'utf-8') as f: reader = csv.DictReader(f, delimiter = '\t') for row in reader: gender = row['chargender'] if gender.startswith('u'): continue date = int(row['pubdate']) if date < 1780 or date > 2008: continue words = row['words'].split() for w in words: if w in vocabset: idx = vocabulary[w] np.add.at(vecbyyear[gender][date], idx, 1) # Let's actually count words. for f in files_to_use: add2counts(vecbyyear, f) def dunnings(vectora, vectorb): assert len(vectora) == len(vectorb) veclen = len(vectora) totala = np.sum(vectora) totalb = np.sum(vectorb) totalboth = totala + totalb dunningvector = np.zeros(veclen) for i in range(veclen): if vectora[i] == 0 or vectorb[i] == 0: continue # Cause you know you're going to get div0 errors. try: probI = (vectora[i] + vectorb[i]) / totalboth probnotI = 1 - probI expectedIA = totala * probI expectedIB = totalb * probI expectedNotIA = totala * probnotI expectedNotIB = totalb * probnotI expected_table = np.array([[expectedIA, expectedNotIA], [expectedIB, expectedNotIB]]) actual_table = np.array([[vectora[i], (totala - vectora[i])], [vectorb[i], (totalb - vectorb[i])]]) G = np.sum(actual_table * np.log(actual_table / expected_table)) # We're going to use a signed version of Dunnings, so features where # B is higher than expected will be negative. if expectedIB > vectorb[i]: G = -G dunningvector[i] = G except: pass # There are a million ways to get a div-by-zero or log-zero error # in that calculation. I could check them all, or just do this. # The vector was initialized with zeroes, which are the default # value I want for failed calculations anyhow. return dunningvector def pure_rank_matrix(femalevectorsbyyear, malevectorsbyyear, datevector): rankmatrix = [] magnitudematrix = [] for i in datevector: d = dunnings(femalevectorsbyyear[i], malevectorsbyyear[i]) # transform this into a nonparametric ranking decorated = [x for x in zip(d, [x for x in range(len(d))])] decorated.sort() negativeidx = -sum(d < 0) positiveidx = 1 numzeros = sum(d == 0) ranking = np.zeros(len(d)) for dvalue, index in decorated: # to understand what follows, it's crucial to remember that # we're iterating through decorated in dvalue order if dvalue < 0: ranking[index] = negativeidx negativeidx += 1 elif dvalue > 0: ranking[index] = positiveidx positiveidx += 1 else: # dvalue is zero pass checkzeros = sum(ranking == 0) if numzeros != checkzeros: print('error in number of zeros') rawmagnitude = femalevectorsbyyear[i] + malevectorsbyyear[i] normalizedmagnitude = rawmagnitude / np.sum(rawmagnitude) assert len(ranking) == len(normalizedmagnitude) rank_adjusted_by_magnitude = ranking * normalizedmagnitude rankmatrix.append(ranking) magnitudematrix.append(rank_adjusted_by_magnitude) return np.array(magnitudematrix), np.array(rankmatrix) def diff_proportion(vecbyyear, datevector): diffmatrix = [] for yr in datevector: if np.sum(vecbyyear['m'][yr]) == 0: mvec = np.full(len(vecbyyear['m'][yr]), 0) else: mvec = (vecbyyear['m'][yr] * 5000) / np.sum(vecbyyear['m'][yr]) if np.sum(vecbyyear['f'][yr]) == 0: fvec = np.full(len(vecbyyear['f'][yr]), 0) else: fvec = (vecbyyear['f'][yr] * 5000) / np.sum(vecbyyear['f'][yr]) dvec = fvec - mvec diffmatrix.append(dvec) return np.array(diffmatrix) diffmatrix = diff_proportion(vecbyyear, datevector) def writematrix(amatrix, outpath): global wordsinorder, datevector with open(outpath, mode = 'w', encoding = 'utf-8') as f: writer = csv.writer(f) writer.writerow(['thedate'] + wordsinorder) for i, date in enumerate(datevector): writer.writerow(np.insert(amatrix[i, : ], 0, date)) writematrix(diffmatrix, '../data/' + out_filename + '.csv') print('Linear regression to infer slopes.') datevector = np.array(datevector) outrows = [] for i in range(VOCABLENGTH): thiscolumn = diffmatrix[ : , [i]] # note: the brackets around i extract it as a *column* rather than row notmissing = thiscolumn != 0 # still a column y = thiscolumn[notmissing].transpose() # that's a cheap hack to create an array w/ more than one column, # which the linear regression seems to want x = datevector[notmissing.transpose()[0]] # We have to transpose the column "notmissing" to index a row. x = x[ : , np.newaxis] # Then we have to make x a row of an array with two # dimensions (even though it only has one row). vectorlen = len(x) word = wordsinorder[i] model = LinearRegression() model.fit(x, y) slope = model.coef_[0] intercept = model.intercept_ standard_deviation = np.std(y) nineteenth = np.mean(thiscolumn[0:120]) twentieth =np.mean(thiscolumn[120:]) change = twentieth - nineteenth approachmid = abs(np.nanmean(thiscolumn[0:60])) - abs(np.nanmean(thiscolumn[150:210])) approachstd = approachmid / standard_deviation # note that it's important we use thiscolumn rather than y here, because y has been reduced # in length out = dict() out['word'] = word out['slope'] = slope out['mean'] = np.mean(thiscolumn) out['intercept'] = intercept out['change'] = change out['approachmid'] = approachmid out['approachstd'] = approachstd outrows.append(out) with open('../data/' + out_filename + '.slopes.csv', mode = 'w', encoding = 'utf-8') as f: writer = csv.DictWriter(f, fieldnames = ['word', 'slope', 'mean', 'intercept', 'change', 'approachmid', 'approachstd']) writer.writeheader() for row in outrows: writer.writerow(row)
mit
aravart/poolmate
poolmate/test/dummy.py
2
1137
import sys import numpy as np from sklearn.datasets import make_classification from sklearn.metrics import zero_one_loss from sklearn.neighbors import KNeighborsClassifier def inline(inputfile, outputfile): # data = np.loadtxt(sys.stdin) data = np.loadtxt(inputfile, delimiter=',') if np.ndim(data) == 1: data = np.array([data]) train_x = data[:, 1:] train_y = data[:, 0] candidate_size = 1000 evaluation_size = 1000 x, y = make_classification(n_samples=candidate_size + evaluation_size, n_features=2, n_informative=1, n_redundant=1, n_clusters_per_class=1, random_state=37) eval_x = x[candidate_size:] eval_y = y[candidate_size:] learner = KNeighborsClassifier(n_neighbors=1) learner = learner.fit(train_x, train_y) pred_y = learner.predict(eval_x) with open(outputfile, 'w') as f: l = zero_one_loss(eval_y, pred_y) f.write(str(l)) if __name__ == "__main__": inline(sys.argv[1], sys.argv[2])
mit
Traecp/MCA_GUI
build/lib.linux-x86_64-2.7/McaGUI_v15.py
2
74488
#!/usr/bin/python # -*- coding: utf-8 -*- import numpy as np import scipy.ndimage from scipy import stats from scipy.fftpack import fft, fftfreq, fftshift import os, sys import gc from os import listdir from os.path import isfile,join import gtk import matplotlib as mpl import matplotlib.pyplot as plt #mpl.use('GtkAgg') from matplotlib.figure import Figure #from matplotlib.axes import Subplot from matplotlib.backends.backend_gtkagg import FigureCanvasGTKAgg as FigureCanvas from matplotlib.backends.backend_gtkagg import NavigationToolbar2GTKAgg as NavigationToolbar from matplotlib.cm import jet#, gist_rainbow # colormap from matplotlib.widgets import Cursor #from matplotlib.patches import Rectangle from matplotlib import path #import matplotlib.patches as patches from matplotlib.ticker import MaxNLocator import xrayutilities as xu from lmfit import Parameters, minimize import h5py as h5 #from Vantec_GUI.spec_complete_MCA import * from MCA_GUI import mca_spec as SP __version__ = "1.1.5" __date__ = "16/10/2014" __author__ = "Thanh-Tra NGUYEN" __email__ = "[email protected]" #mpl.rcParams['font.size'] = 18.0 #mpl.rcParams['axes.labelsize'] = 'large' mpl.rcParams['legend.fancybox'] = True mpl.rcParams['legend.handletextpad'] = 0.5 mpl.rcParams['legend.fontsize'] = 'medium' mpl.rcParams['figure.subplot.bottom'] = 0.13 mpl.rcParams['figure.subplot.top'] = 0.93 mpl.rcParams['figure.subplot.left'] = 0.14 mpl.rcParams['figure.subplot.right'] = 0.915 mpl.rcParams['savefig.dpi'] = 300 def Fourier(X,vect): N = vect.size #number of data points T = X[1] - X[0] #sample spacing TF = fft(vect) xf = fftfreq(N,T) xf = fftshift(xf) yplot = fftshift(TF) yplot = np.abs(yplot) yplot = yplot[N/2:] xf = xf[N/2:] return xf, yplot/yplot.max() def flat_data(data,dynlow, dynhigh, log): """ Returns data where maximum superior than 10^dynhigh will be replaced by 10^dynhigh, inferior than 10^dynlow will be replaced by 10^dynlow""" if log: mi = 10**dynlow ma = 10**dynhigh data=np.minimum(np.maximum(data,mi),ma) data=np.log10(data) else: mi = dynlow ma = dynhigh data=np.minimum(np.maximum(data,mi),ma) return data def psdVoigt(parameters,x): """Define pseudovoigt function""" y0 = parameters['y0'].value xc = parameters['xc'].value A = parameters['A'].value w = parameters['w'].value mu = parameters['mu'].value y = y0 + A * ( mu * (2/np.pi) * (w / (4*(x-xc)**2 + w**2)) + (1 - mu) * (np.sqrt(4*np.log(2)) / (np.sqrt(np.pi) * w)) * np.exp(-(4*np.log(2)/w**2)*(x-xc)**2) ) return y def objective(pars,y,x): #we will minimize this function err = y - psdVoigt(pars,x) return err def init(data_x,data_y,xc,arbitrary=False): """ param = [y0, xc, A, w, mu] Je veux que Xc soit la position que l'utilisateur pointe sur l'image pour tracer les profiles""" param = Parameters() #idA=np.where(data_x - xc < 1e-4)[0] if arbitrary: A = data_y.max() else: idA=np.where(data_x==xc)[0][0] A = data_y[idA] y0 = 1.0 w = 0.5 mu = 0.5 param.add('y0', value=y0) param.add('xc', value=xc) param.add('A', value=A) param.add('w', value=w) param.add('mu', value=mu, min=0., max=1.) return param def fit(data_x,data_y,xc, arbitrary=False): """ return: fitted data y, fitted parameters """ param_init = init(data_x,data_y,xc,arbitrary) if data_x[0] > data_x[-1]: data_x = data_x[::-1] result = minimize(objective, param_init, args=(data_y,data_x)) x = np.linspace(data_x.min(),data_x.max(),data_x.shape[0]) y = psdVoigt(param_init,x) return param_init, y class PopUpFringes(object): def __init__(self, xdata, xlabel, ylabel, title): self.popupwin=gtk.Window() self.popupwin.set_size_request(600,550) self.popupwin.set_position(gtk.WIN_POS_CENTER) self.popupwin.set_border_width(10) self.xdata = xdata vbox = gtk.VBox() self.fig=Figure(dpi=100) self.ax = self.fig.add_subplot(111) self.canvas = FigureCanvas(self.fig) self.main_figure_navBar = NavigationToolbar(self.canvas, self) self.cursor = Cursor(self.ax, color='k', linewidth=1, useblit=True) self.ax.set_xlabel(xlabel, fontsize = 18) self.ax.set_ylabel(ylabel, fontsize = 18) self.ax.set_title(title, fontsize = 18) xi = np.arange(len(self.xdata)) slope, intercept, r_value, p_value, std_err = stats.linregress(self.xdata,xi) fitline = slope*self.xdata+intercept self.ax.plot(self.xdata, fitline, 'r-',self.xdata,xi, 'bo') self.ax.axis([self.xdata.min(),self.xdata.max(),xi.min()-1, xi.max()+1]) self.ax.text(0.3, 0.9,'Slope = %.4f +- %.4f' % (slope, std_err), horizontalalignment='center', verticalalignment='center', transform = self.ax.transAxes, color='red') vbox.pack_start(self.main_figure_navBar, False, False, 0) vbox.pack_start(self.canvas, True, True, 2) self.popupwin.add(vbox) self.popupwin.connect("destroy", self.dest) self.popupwin.show_all() def dest(self,widget): self.popupwin.destroy() class PopUpImage(object): def __init__(self, xdata, ydata, xlabel, ylabel, title): self.popupwin=gtk.Window() self.popupwin.set_size_request(600,550) self.popupwin.set_position(gtk.WIN_POS_CENTER) self.popupwin.set_border_width(10) self.xdata = xdata self.ydata = ydata vbox = gtk.VBox() self.fig=Figure(dpi=100) self.ax = self.fig.add_subplot(111) self.canvas = FigureCanvas(self.fig) self.main_figure_navBar = NavigationToolbar(self.canvas, self) self.cursor = Cursor(self.ax, color='k', linewidth=1, useblit=True) self.canvas.mpl_connect("button_press_event",self.on_press) self.ax.set_xlabel(xlabel, fontsize = 18) self.ax.set_ylabel(ylabel, fontsize = 18) self.ax.set_title(title, fontsize = 18) self.ax.plot(self.xdata, self.ydata, 'b-', lw=2) self.textes = [] self.plots = [] vbox.pack_start(self.main_figure_navBar, False, False, 0) vbox.pack_start(self.canvas, True, True, 2) self.popupwin.add(vbox) self.popupwin.connect("destroy", self.dest) self.popupwin.show_all() def dest(self,widget): self.popupwin.destroy() def on_press(self, event): if event.inaxes == self.ax and event.button==3: self.clear_notes() xc = event.xdata #***** Find the closest x value ***** residuel = self.xdata - xc residuel = np.abs(residuel) j = np.argmin(residuel) #y = self.ydata[i-1:i+1] #yc= y.max() #j = np.where(self.ydata == yc) #j = j[0][0] xc= self.xdata[j] x_fit = self.xdata[j-3:j+3] y_fit = self.ydata[j-3:j+3] fitted_param, fitted_data = fit(x_fit, y_fit, xc, True) x_fit = np.linspace(x_fit.min(), x_fit.max(), 200) y_fit = psdVoigt(fitted_param, x_fit) period = fitted_param['xc'].value std_err= fitted_param['xc'].stderr p = self.ax.plot(x_fit, y_fit,'r-') p2 = self.ax.axvline(period,color='green',lw=2) txt=self.ax.text(0.05, 0.9, 'Period = %.4f +- %.4f (nm)'%(period, std_err), transform = self.ax.transAxes, color='red') self.textes.append(txt) self.plots.append(p[0]) self.plots.append(p2) elif event.inaxes == self.ax and event.button==2: dif = np.diff(self.ydata) dif = dif/dif.max() p3=self.ax.plot(dif,'r-') self.plots.append(p3[0]) self.canvas.draw() def clear_notes(self): if len(self.textes)>0: for t in self.textes: t.remove() if len(self.plots)>0: for p in self.plots: p.remove() self.textes = [] self.plots = [] class MyMainWindow(gtk.Window): def __init__(self): super(MyMainWindow, self).__init__() self.set_title("MCA Reciprocal space map processing. Version %s - last update on: %s"%(__version__,__date__)) self.set_size_request(1200,900) self.set_position(gtk.WIN_POS_CENTER) self.set_border_width(10) self.toolbar = gtk.Toolbar() self.toolbar.set_style(gtk.TOOLBAR_ICONS) self.refreshtb = gtk.ToolButton(gtk.STOCK_REFRESH) self.opentb = gtk.ToolButton(gtk.STOCK_OPEN) self.sep = gtk.SeparatorToolItem() self.aspecttb = gtk.ToolButton(gtk.STOCK_PAGE_SETUP) self.quittb = gtk.ToolButton(gtk.STOCK_QUIT) self.toolbar.insert(self.opentb, 0) self.toolbar.insert(self.refreshtb, 1) self.toolbar.insert(self.aspecttb, 2) self.toolbar.insert(self.sep, 3) self.toolbar.insert(self.quittb, 4) self.tooltips = gtk.Tooltips() self.tooltips.set_tip(self.refreshtb,"Reload data files") self.tooltips.set_tip(self.opentb,"Open a folder containing HDF5 (*.h5) data files") self.tooltips.set_tip(self.aspecttb,"Change the graph's aspect ratio") self.tooltips.set_tip(self.quittb,"Quit the program") self.opentb.connect("clicked", self.choose_folder) self.refreshtb.connect("clicked",self.folder_update) self.aspecttb.connect("clicked",self.change_aspect_ratio) self.quittb.connect("clicked", gtk.main_quit) self.graph_aspect = False #Flag to change the aspect ratio of the graph, False = Auto, True = equal ############################# BOXES ############################################### vbox = gtk.VBox() vbox.pack_start(self.toolbar,False,False,0) hbox=gtk.HBox() ######################### TREE VIEW ############################################# self.sw = gtk.ScrolledWindow() self.sw.set_shadow_type(gtk.SHADOW_ETCHED_IN) self.sw.set_policy(gtk.POLICY_NEVER, gtk.POLICY_AUTOMATIC) hbox.pack_start(self.sw, False, False, 0) self.store=[] self.list_store = gtk.ListStore(str) self.treeView = gtk.TreeView(self.list_store) self.treeView.connect("row-activated",self.on_changed_rsm) rendererText = gtk.CellRendererText() self.TVcolumn = gtk.TreeViewColumn("RSM data files", rendererText, text=0) self.TVcolumn.set_sort_column_id(0) self.treeView.append_column(self.TVcolumn) self.sw.add(self.treeView) self.GUI_current_folder = self.DATA_current_folder = os.getcwd() #****************************************************************** # Notebooks #****************************************************************** self.notebook = gtk.Notebook() self.page_GUI = gtk.HBox() self.page_conversion = gtk.VBox() self.page_XRDML = gtk.VBox() ######################################FIGURES####################33 #self.page_single_figure = gtk.HBox() self.midle_panel = gtk.VBox() self.rsm = "" self.rsm_choosen = "" self.my_notes = [] self.lines = [] self.points=[] self.polygons=[] self.fig=Figure(dpi=100) ## Draw line for arbitrary profiles self.arb_lines_X = [] self.arb_lines_Y = [] self.arb_line_points = 0 #self.ax = self.fig.add_subplot(111) self.ax = self.fig.add_axes([0.1,0.2,0.7,0.7]) self.fig.subplots_adjust(left=0.1,bottom=0.20, top=0.90) self.vmin = 0 self.vmax = 1000 self.vmax_range = self.vmax self.canvas = FigureCanvas(self.fig) Fig_hbox = gtk.HBox() self.Export_HQ_Image_btn = gtk.Button("Save HQ image") self.Export_HQ_Image_btn.connect("clicked", self.Export_HQ_Image) self.main_figure_navBar = NavigationToolbar(self.canvas, self) self.cursor = Cursor(self.ax, color='k', linewidth=1, useblit=True) #Global color bar self.cax = self.fig.add_axes([0.85, 0.20, 0.03, 0.70])#left,bottom,width,height #self.canvas.mpl_connect("motion_notify_event",self.on_motion) self.canvas.mpl_connect("button_press_event",self.on_press) #self.canvas.mpl_connect("button_release_event",self.on_release) self.mouse_moved = False #If click without move: donot zoom the image Fig_hbox.pack_start(self.Export_HQ_Image_btn, False, False, 0) Fig_hbox.pack_start(self.main_figure_navBar, True,True, 0) self.midle_panel.pack_start(Fig_hbox, False,False, 0) self.midle_panel.pack_start(self.canvas, True,True, 2) self.page_GUI.pack_start(self.midle_panel, True,True, 0) #hbox.pack_start(self.midle_panel, True,True, 0) ########################################## RIGHT PANEL ################### self.right_panel = gtk.VBox(False,0) self.linear_scale_btn = gtk.ToggleButton("Linear scale") self.linear_scale_btn.set_usize(30,0) self.linear_scale_btn.connect("toggled",self.log_update) self.log_scale=0 #self.wavelength_txt = gtk.Label("Energy (eV)") ##self.wavelength_txt.set_alignment(1,0.5) #self.wavelength_field = gtk.Entry() #self.wavelength_field.set_text("8333") #self.wavelength_field.set_usize(30,0) #self.lattice_const_txt = gtk.Label("Lattice constant (nm)") #self.lattice_const_txt.set_alignment(1,0.5) #self.lattice_const = gtk.Entry() #self.lattice_const.set_text("0.5431") #self.lattice_const.set_usize(30,0) self.int_range_txt = gtk.Label("Integration range") self.int_range_txt.set_alignment(1,0.5) self.int_range = gtk.Entry() self.int_range.set_text("0.05") self.int_range.set_usize(30,0) self.fitting_range_txt = gtk.Label("Fitting range") self.fitting_range_txt.set_alignment(1,0.5) self.fitting_range = gtk.Entry() self.fitting_range.set_text("0.1") self.fitting_range.set_usize(30,0) # ********** Set the default values for configuration ************* self.plotXYprofiles_btn = gtk.RadioButton(None,"Plot X,Y profiles") self.plotXYprofiles_btn.set_active(False) self.arbitrary_profiles_btn = gtk.RadioButton(self.plotXYprofiles_btn,"Arbitrary profiles") self.rectangle_profiles_btn = gtk.RadioButton(self.plotXYprofiles_btn,"ROI projection") self.option_table = gtk.Table(4,3,False)#Pack the options self.option_table.attach(self.linear_scale_btn, 0,1,0,1) self.option_table.attach(self.plotXYprofiles_btn,0,1,1,2) self.option_table.attach(self.arbitrary_profiles_btn,0,1,2,3) self.option_table.attach(self.rectangle_profiles_btn,0,1,3,4) # self.option_table.attach(self.wavelength_txt,1,2,0,1) # self.option_table.attach(self.wavelength_field,2,3,0,1) # self.option_table.attach(self.lattice_const_txt,1,2,1,2) # self.option_table.attach(self.lattice_const, 2,3,1,2) self.option_table.attach(self.int_range_txt, 1,2,0,1) self.option_table.attach(self.int_range, 2,3,0,1) self.option_table.attach(self.fitting_range_txt, 1,2,1,2) self.option_table.attach(self.fitting_range, 2,3,1,2) ### Options for profile plots self.profiles_log_btn = gtk.ToggleButton("Y-Log") self.profiles_log_btn.connect("toggled",self.profiles_update) self.profiles_export_data_btn = gtk.Button("Export data") self.profiles_export_data_btn.connect("clicked",self.profiles_export) self.profiles_option_box = gtk.HBox(False,0) self.profiles_option_box.pack_start(self.profiles_log_btn, False, False, 0) self.profiles_option_box.pack_start(self.profiles_export_data_btn, False, False, 0) ### Figure of profiles plot self.profiles_fringes = [] self.fig_profiles = Figure() self.profiles_ax1 = self.fig_profiles.add_subplot(211) self.profiles_ax1.set_title("Qz profile", size=14) self.profiles_ax2 = self.fig_profiles.add_subplot(212) self.profiles_ax2.set_title("Qx profile", size=14) self.profiles_canvas = FigureCanvas(self.fig_profiles) self.profiles_canvas.set_size_request(450,50) self.profiles_canvas.mpl_connect("button_press_event",self.profile_press) self.profiles_navBar = NavigationToolbar(self.profiles_canvas, self) self.cursor_pro1 = Cursor(self.profiles_ax1, color='k', linewidth=1, useblit=True) self.cursor_pro2 = Cursor(self.profiles_ax2, color='k', linewidth=1, useblit=True) #### Results of fitted curves self.fit_results_table = gtk.Table(7,3, False) title = gtk.Label("Fitted results:") self.chi_title = gtk.Label("Qz profile") self.tth_title = gtk.Label("Qx profile") y0 = gtk.Label("y0:") xc = gtk.Label("xc:") A = gtk.Label("A:") w = gtk.Label("FWHM:") mu = gtk.Label("mu:") y0.set_alignment(0,0.5) xc.set_alignment(0,0.5) A.set_alignment(0,0.5) w.set_alignment(0,0.5) mu.set_alignment(0,0.5) self.Qz_fitted_y0 = gtk.Label() self.Qz_fitted_xc = gtk.Label() self.Qz_fitted_A = gtk.Label() self.Qz_fitted_w = gtk.Label() self.Qz_fitted_mu = gtk.Label() self.Qx_fitted_y0 = gtk.Label() self.Qx_fitted_xc = gtk.Label() self.Qx_fitted_A = gtk.Label() self.Qx_fitted_w = gtk.Label() self.Qx_fitted_mu = gtk.Label() self.fit_results_table.attach(title,0,3,0,1) self.fit_results_table.attach(self.chi_title,1,2,1,2) self.fit_results_table.attach(self.tth_title,2,3,1,2) self.fit_results_table.attach(y0,0,1,2,3) self.fit_results_table.attach(xc,0,1,3,4) self.fit_results_table.attach(A,0,1,4,5) self.fit_results_table.attach(w,0,1,5,6) self.fit_results_table.attach(mu,0,1,6,7) self.fit_results_table.attach(self.Qz_fitted_y0,1,2,2,3) self.fit_results_table.attach(self.Qz_fitted_xc,1,2,3,4) self.fit_results_table.attach(self.Qz_fitted_A,1,2,4,5) self.fit_results_table.attach(self.Qz_fitted_w,1,2,5,6) self.fit_results_table.attach(self.Qz_fitted_mu,1,2,6,7) self.fit_results_table.attach(self.Qx_fitted_y0,2,3,2,3) self.fit_results_table.attach(self.Qx_fitted_xc,2,3,3,4) self.fit_results_table.attach(self.Qx_fitted_A,2,3,4,5) self.fit_results_table.attach(self.Qx_fitted_w,2,3,5,6) self.fit_results_table.attach(self.Qx_fitted_mu,2,3,6,7) #### PACK the right panel self.right_panel.pack_start(self.option_table, False, False, 0) self.right_panel.pack_start(self.profiles_option_box,False,False,0) self.right_panel.pack_start(self.profiles_navBar,False,False,0) self.right_panel.pack_start(self.profiles_canvas,True,True,0) self.right_panel.pack_start(self.fit_results_table, False, False, 0) self.page_GUI.pack_end(self.right_panel,False, False,5) #******************************************************************** # Conversion data SPEC to HDF page #******************************************************************** self.conv_box = gtk.VBox() self.box1 = gtk.HBox() self.det_frame = gtk.Frame() self.det_frame.set_label("Detector Vantec") self.det_frame.set_label_align(0.5,0.5) self.exp_frame = gtk.Frame() self.exp_frame.set_label("Experiment parameters") self.exp_frame.set_label_align(0.5,0.5) self.conv_frame = gtk.Frame() self.conv_frame.set_label("Data conversion: SPEC-HDF5") self.conv_frame.set_label_align(0.5,0.5) #self.conv_frame.set_alignment(0.5,0.5) #******************************************************************** # Detector parameters #******************************************************************** self.det_table = gtk.Table(6,2,False) self.t1 = gtk.Label("Detector size (mm)") self.t2 = gtk.Label("Number of channels") self.t3 = gtk.Label("Center channel") self.t4 = gtk.Label("Channels/Degree") self.t5 = gtk.Label("ROI (from-to)") self.t6 = gtk.Label("Orientation") self.t1.set_alignment(0,0.5) self.t2.set_alignment(0,0.5) self.t3.set_alignment(0,0.5) self.t4.set_alignment(0,0.5) self.t5.set_alignment(0,0.5) self.t6.set_alignment(0,0.5) self.t1_entry = gtk.Entry() self.t1_entry.set_text("50") self.t2_entry = gtk.Entry() self.t2_entry.set_text("2048") self.t3_entry = gtk.Entry() self.t3_entry.set_text("819.87") self.t4_entry = gtk.Entry() self.t4_entry.set_text("211.012") self.small_box = gtk.HBox() self.t5_label = gtk.Label("-") self.t5_entry1 = gtk.Entry() self.t5_entry1.set_text("40") self.t5_entry2 = gtk.Entry() self.t5_entry2.set_text("1300") self.small_box.pack_start(self.t5_entry1,True, True,0) self.small_box.pack_start(self.t5_label,True, True,0) self.small_box.pack_start(self.t5_entry2,True, True,0) self.t6_entry = gtk.combo_box_new_text() self.t6_entry.append_text("Up (zero on the bottom)") self.t6_entry.append_text("Down (zero on the top)") self.t6_entry.set_active(1) self.det_table.attach(self.t1, 0,1,0,1) self.det_table.attach(self.t2, 0,1,1,2) self.det_table.attach(self.t3, 0,1,2,3) self.det_table.attach(self.t4, 0,1,3,4) self.det_table.attach(self.t5, 0,1,4,5) self.det_table.attach(self.t6, 0,1,5,6) self.det_table.attach(self.t1_entry, 1,2,0,1) self.det_table.attach(self.t2_entry, 1,2,1,2) self.det_table.attach(self.t3_entry, 1,2,2,3) self.det_table.attach(self.t4_entry, 1,2,3,4) self.det_table.attach(self.small_box, 1,2,4,5) self.det_table.attach(self.t6_entry, 1,2,5,6) self.det_table_align = gtk.Alignment() self.det_table_align.set_padding(15,10,10,10) self.det_table_align.set(0.5, 0.5, 1.0, 1.0) self.det_table_align.add(self.det_table) self.det_frame.add(self.det_table_align) #******************************************************************** # Experiment parameters #******************************************************************** self.exp_table = gtk.Table(6,2,False) self.e1 = gtk.Label("Substrate material:") self.e1_other = gtk.Label("If other:") self.e2 = gtk.Label("Energy (eV)") self.e3 = gtk.Label("Attenuation coefficient file") self.e4 = gtk.Label("Foil colunm name (in SPEC file)") self.e5 = gtk.Label("Monitor colunm name (in SPEC file)") self.e6 = gtk.Label("Reference monitor (for normalization)") self.e1.set_alignment(0,0.5) self.e1_other.set_alignment(1,0.5) self.e2.set_alignment(0,0.5) self.e3.set_alignment(0,0.5) self.e4.set_alignment(0,0.5) self.e5.set_alignment(0,0.5) self.e6.set_alignment(0,0.5) #self.e1_entry = gtk.Label("Si for now") self.e1_entry = gtk.combo_box_new_text() self.e1_entry.append_text("-- other") self.e1_entry.append_text("Si") self.e1_entry.append_text("Ge") self.e1_entry.append_text("GaAs") self.e1_entry.append_text("GaP") self.e1_entry.append_text("GaSb") self.e1_entry.append_text("InAs") self.e1_entry.append_text("InP") self.e1_entry.append_text("InSb") self.e1_entry.set_active(1) self.e1_entry_other = gtk.Entry() self.e1_entry_other.set_text("") self.e2_entry = gtk.Entry() self.e2_entry.set_text("8333") self.e3_box = gtk.HBox() self.e3_path =gtk.Entry() self.e3_browse = gtk.Button("Browse") self.e3_browse.connect("clicked", self.select_file, self.e3_path, "A") self.e3_box.pack_start(self.e3_path, False, False, 0) self.e3_box.pack_start(self.e3_browse, False, False, 0) self.e4_entry = gtk.Entry() self.e4_entry.set_text("pfoil") self.e5_entry = gtk.Entry() self.e5_entry.set_text("vct3") self.e6_entry = gtk.Entry() self.e6_entry.set_text("1e6") substrate_box1 = gtk.HBox() substrate_box2 = gtk.HBox() substrate_box1.pack_start(self.e1, False, False, 0) substrate_box1.pack_start(self.e1_entry, False, False, 0) substrate_box2.pack_start(self.e1_other, False, False, 0) substrate_box2.pack_start(self.e1_entry_other, False, False, 0) self.exp_table.attach(substrate_box1, 0,1,0,1) self.exp_table.attach(self.e2, 0,1,1,2) self.exp_table.attach(self.e3, 0,1,2,3) self.exp_table.attach(self.e4, 0,1,3,4) self.exp_table.attach(self.e5, 0,1,4,5) self.exp_table.attach(self.e6, 0,1,5,6) self.exp_table.attach(substrate_box2, 1,2,0,1) self.exp_table.attach(self.e2_entry, 1,2,1,2) self.exp_table.attach(self.e3_box, 1,2,2,3) self.exp_table.attach(self.e4_entry, 1,2,3,4) self.exp_table.attach(self.e5_entry, 1,2,4,5) self.exp_table.attach(self.e6_entry, 1,2,5,6) self.exp_table_align = gtk.Alignment() self.exp_table_align.set_padding(15,10,10,10) self.exp_table_align.set(0.5, 0.5, 1.0, 1.0) self.exp_table_align.add(self.exp_table) self.exp_frame.add(self.exp_table_align) #******************************************************************** # Data conversion information #******************************************************************** self.conv_table = gtk.Table(6,3,False) self.c1 = gtk.Label("Spec file") self.c2 = gtk.Label("MCA file") self.c3 = gtk.Label("Destination folder") self.c4 = gtk.Label("Scan number (from-to)") self.c5 = gtk.Label("Description for each RSM (optional-separate by comma)") self.c6 = gtk.Label("Problem of foil delay (foil[n]-->data[n+1])") self.c1.set_alignment(0,0.5) self.c2.set_alignment(0,0.5) self.c3.set_alignment(0,0.5) self.c4.set_alignment(0,0.5) self.c5.set_alignment(0,0.5) self.c6.set_alignment(0,0.5) self.c1_entry1 = gtk.Entry() self.c2_entry1 = gtk.Entry() self.c3_entry1 = gtk.Entry() self.c4_entry1 = gtk.Entry() self.c5_entry1 = gtk.Entry() self.c5_entry1.set_text("") self.c6_entry = gtk.CheckButton() self.c1_entry2 = gtk.Button("Browse SPEC") self.c2_entry2 = gtk.Button("Browse MCA") self.c3_entry2 = gtk.Button("Browse Folder") self.c4_entry2 = gtk.Entry() self.c1_entry2.connect("clicked", self.select_file, self.c1_entry1, "S") self.c2_entry2.connect("clicked", self.select_file, self.c2_entry1, "M") self.c3_entry2.connect("clicked", self.select_folder, self.c3_entry1, "D") self.conv_table.attach(self.c1, 0,1,0,1) self.conv_table.attach(self.c2, 0,1,1,2) self.conv_table.attach(self.c3, 0,1,2,3) self.conv_table.attach(self.c4, 0,1,3,4) self.conv_table.attach(self.c5, 0,1,4,5) self.conv_table.attach(self.c6, 0,1,5,6) self.conv_table.attach(self.c1_entry1, 1,2,0,1) self.conv_table.attach(self.c2_entry1, 1,2,1,2) self.conv_table.attach(self.c3_entry1, 1,2,2,3) self.conv_table.attach(self.c4_entry1, 1,2,3,4) self.conv_table.attach(self.c5_entry1, 1,3,4,5) self.conv_table.attach(self.c6_entry, 1,2,5,6) self.conv_table.attach(self.c1_entry2, 2,3,0,1) self.conv_table.attach(self.c2_entry2, 2,3,1,2) self.conv_table.attach(self.c3_entry2, 2,3,2,3) self.conv_table.attach(self.c4_entry2, 2,3,3,4) self.conv_table_align = gtk.Alignment() self.conv_table_align.set_padding(15,10,10,10) self.conv_table_align.set(0.5, 0.5, 1.0, 1.0) self.conv_table_align.add(self.conv_table) self.conv_frame.add(self.conv_table_align) #******************************************************************** # The RUN button #******************************************************************** self.run_conversion = gtk.Button("Execute") self.run_conversion.connect("clicked", self.spec2HDF) self.run_conversion.set_size_request(50,30) self.show_info = gtk.Label() #******************************************************************** # Pack the frames #******************************************************************** self.box1.pack_start(self.det_frame,padding=15) self.box1.pack_end(self.exp_frame, padding =15) self.conv_box.pack_start(self.box1,padding=15) self.conv_box.pack_start(self.conv_frame,padding=5) self.conv_box.pack_start(self.run_conversion, False,False,10) self.conv_box.pack_start(self.show_info, False,False,10) self.page_conversion.pack_start(self.conv_box,False, False,20) #******************************************************************** # Conversion XRDML data to HDF #******************************************************************** self.XRDML_conv_box = gtk.VBox() self.Instrument_table = gtk.Table(1,4,True) self.Inst_txt = gtk.Label("Instrument:") self.Inst_txt.set_alignment(0,0.5) self.Instrument = gtk.combo_box_new_text() self.Instrument.append_text("Bruker") self.Instrument.append_text("PANalytical") self.Instrument.set_active(0) self.Instrument_table.attach(self.Inst_txt,0,1,0,1) self.Instrument_table.attach(self.Instrument, 1,2,0,1) self.Instrument.connect("changed",self.Change_Lab_Instrument) self.XRDML_table = gtk.Table(7,4,True) self.XRDML_tooltip = gtk.Tooltips() self.XRDML_substrate_txt = gtk.Label("Substrate material:") self.XRDML_substrate_other_txt = gtk.Label("If other:") self.XRDML_substrate_inplane_txt= gtk.Label("In-plane direction (i.e. 1 1 0)") self.XRDML_substrate_outplane_txt= gtk.Label("Out-of-plane direction (i.e. 0 0 1)") self.XRDML_reflection_txt = gtk.Label("Reflection (H K L) - optional:") self.XRDML_energy_txt = gtk.Label("Energy (eV):") self.XRDML_description_txt = gtk.Label("Description of the sample:") self.XRDML_xrdml_file_txt = gtk.Label("Select RAW file:") self.XRDML_destination_txt = gtk.Label("Select a destination folder:") self.XRDML_tooltip.set_tip(self.XRDML_substrate_txt, "Substrate material") self.XRDML_tooltip.set_tip(self.XRDML_substrate_other_txt, "The substrate material, i.e. Al, SiO2, CdTe, GaN,...") self.XRDML_tooltip.set_tip(self.XRDML_substrate_inplane_txt, "The substrate in-plane an out-of-plane direction - for calculation of the orientation matrix.") self.XRDML_tooltip.set_tip(self.XRDML_reflection_txt, "H K L, separate by space, i.e. 2 2 4 (0 0 0 for a XRR map). This is used for offset correction.") self.XRDML_tooltip.set_tip(self.XRDML_energy_txt, "If empty, the default Cu K_alpha_1 will be used.") self.XRDML_tooltip.set_tip(self.XRDML_description_txt, "Description of the sample, this will be the name of the converted file. If empty, it will be named 'RSM.h5'") self.XRDML_tooltip.set_tip(self.XRDML_xrdml_file_txt, "Select the data file recorded by the chosen equipment") self.XRDML_tooltip.set_tip(self.XRDML_destination_txt, "Select a destination folder to store the converted file.") self.XRDML_substrate_txt.set_alignment(0,0.5) self.XRDML_substrate_other_txt.set_alignment(1,0.5) self.XRDML_substrate_inplane_txt.set_alignment(0,0.5) self.XRDML_substrate_outplane_txt.set_alignment(1,0.5) self.XRDML_reflection_txt.set_alignment(0,0.5) self.XRDML_energy_txt.set_alignment(0,0.5) self.XRDML_description_txt.set_alignment(0,0.5) self.XRDML_xrdml_file_txt.set_alignment(0,0.5) self.XRDML_destination_txt.set_alignment(0,0.5) self.XRDML_substrate = gtk.combo_box_new_text() self.XRDML_substrate.append_text("-- other") self.XRDML_substrate.append_text("Si") self.XRDML_substrate.append_text("Ge") self.XRDML_substrate.append_text("GaAs") self.XRDML_substrate.append_text("GaP") self.XRDML_substrate.append_text("GaSb") self.XRDML_substrate.append_text("InAs") self.XRDML_substrate.append_text("InP") self.XRDML_substrate.append_text("InSb") self.XRDML_substrate.set_active(0) self.XRDML_substrate_other = gtk.Entry() self.XRDML_substrate_other.set_text("") self.XRDML_substrate_inplane = gtk.Entry() self.XRDML_substrate_inplane.set_text("") self.XRDML_substrate_outplane = gtk.Entry() self.XRDML_substrate_outplane.set_text("") self.XRDML_reflection = gtk.Entry() self.XRDML_reflection.set_text("") self.XRDML_energy = gtk.Entry() self.XRDML_energy.set_text("") self.XRDML_description = gtk.Entry() self.XRDML_description.set_text("") self.XRDML_xrdml_file_path = gtk.Entry() self.XRDML_destination_path = gtk.Entry() self.XRDML_xrdml_file_browse = gtk.Button("Browse RAW file") self.XRDML_destination_browse= gtk.Button("Browse destination folder") self.XRDML_xrdml_file_browse.connect("clicked", self.select_file, self.XRDML_xrdml_file_path, "S") self.XRDML_destination_browse.connect("clicked", self.select_folder, self.XRDML_destination_path, "D") self.XRDML_table.attach(self.XRDML_substrate_txt, 0,1,0,1) self.XRDML_table.attach(self.XRDML_substrate, 1,2,0,1) self.XRDML_table.attach(self.XRDML_substrate_other_txt, 2,3,0,1) self.XRDML_table.attach(self.XRDML_substrate_other, 3,4,0,1) self.XRDML_table.attach(self.XRDML_substrate_inplane_txt, 0,1,1,2) self.XRDML_table.attach(self.XRDML_substrate_inplane, 1,2,1,2) self.XRDML_table.attach(self.XRDML_substrate_outplane_txt, 2,3,1,2) self.XRDML_table.attach(self.XRDML_substrate_outplane, 3,4,1,2) self.XRDML_table.attach(self.XRDML_reflection_txt, 0,1,2,3) self.XRDML_table.attach(self.XRDML_reflection, 1,2,2,3) self.XRDML_table.attach(self.XRDML_energy_txt,0,1,3,4) self.XRDML_table.attach(self.XRDML_energy, 1,2,3,4) self.XRDML_table.attach(self.XRDML_description_txt, 0,1,4,5) self.XRDML_table.attach(self.XRDML_description, 1,2,4,5) self.XRDML_table.attach(self.XRDML_xrdml_file_txt, 0,1,5,6) self.XRDML_table.attach(self.XRDML_xrdml_file_path, 1,2,5,6) self.XRDML_table.attach(self.XRDML_xrdml_file_browse, 2,3,5,6) self.XRDML_table.attach(self.XRDML_destination_txt, 0,1,6,7) self.XRDML_table.attach(self.XRDML_destination_path, 1,2,6,7) self.XRDML_table.attach(self.XRDML_destination_browse, 2,3,6,7) #******************************************************************** # The RUN button #******************************************************************** self.XRDML_run = gtk.Button("Execute") self.XRDML_run.connect("clicked", self.Convert_Lab_Source) self.XRDML_run.set_size_request(50,30) self.XRDML_show_info = gtk.Label() #******************************************************************** # Pack the XRDML options #******************************************************************** self.XRDML_conv_box.pack_start(self.Instrument_table, False, False,5) self.XRDML_conv_box.pack_start(self.XRDML_table, False, False, 10) self.XRDML_conv_box.pack_start(self.XRDML_run, False, False, 5) self.XRDML_conv_box.pack_start(self.XRDML_show_info, False,False,10) self.page_XRDML.pack_start(self.XRDML_conv_box,False, False,20) #******************************************************************** # Pack the notebook #******************************************************************** self.notebook.append_page(self.page_GUI, gtk.Label("RSM GUI")) self.notebook.append_page(self.page_conversion, gtk.Label("ESRF-MCA spec file (Vantec)")) self.notebook.append_page(self.page_XRDML, gtk.Label("Lab instruments")) hbox.pack_start(self.notebook) vbox.pack_start(hbox,True,True,0) ############################### Sliders ###################################### #sld_box = gtk.Fixed() sld_box = gtk.HBox(False,2) self.vmin_txt = gtk.Label("Vmin") self.vmin_txt.set_alignment(0,0.5) #self.vmin_txt.set_justify(gtk.JUSTIFY_CENTER) self.vmax_txt = gtk.Label("Vmax") self.vmax_txt.set_alignment(0,0.5) #self.vmax_txt.set_justify(gtk.JUSTIFY_CENTER) self.sld_vmin = gtk.HScale() self.sld_vmax = gtk.HScale() self.sld_vmin.set_size_request(200,25) self.sld_vmax.set_size_request(200,25) self.sld_vmin.set_range(0,self.vmax) self.sld_vmax.set_range(0,self.vmax) self.sld_vmax.set_value(self.vmax) self.sld_vmin.set_value(0) self.sld_vmin.connect('value-changed',self.scale_update) self.sld_vmax.connect('value-changed',self.scale_update) vmax_spin_adj = gtk.Adjustment(self.vmax, 0, self.vmax_range, 0.5, 10.0, 0.0) self.vmax_spin_btn = gtk.SpinButton(vmax_spin_adj,1,1) self.vmax_spin_btn.set_numeric(True) self.vmax_spin_btn.set_wrap(True) self.vmax_spin_btn.set_size_request(80,-1) #self.vmax_spin_btn.set_alignment(0,0.5) self.vmax_spin_btn.connect('value-changed',self.scale_update_spin) vmin_spin_adj = gtk.Adjustment(self.vmin, 0, self.vmax_range, 0.5, 10.0, 0.0) self.vmin_spin_btn = gtk.SpinButton(vmin_spin_adj,1,1) self.vmin_spin_btn.set_numeric(True) self.vmin_spin_btn.set_wrap(True) self.vmin_spin_btn.set_size_request(80,-1) #self.vmax_spin_btn.set_alignment(0,0.5) self.vmin_spin_btn.connect('value-changed',self.scale_update_spin) sld_box.pack_start(self.vmin_txt,False,False,0) sld_box.pack_start(self.sld_vmin,False,False,0) sld_box.pack_start(self.vmin_spin_btn,False,False,0) sld_box.pack_start(self.vmax_txt,False,False,0) sld_box.pack_start(self.sld_vmax,False,False,0) sld_box.pack_start(self.vmax_spin_btn,False,False,0) #sld_box.pack_start(self.slider_reset_btn,False,False,0) vbox.pack_start(sld_box,False,False,3) self.add(vbox) self.connect("destroy", gtk.main_quit) self.show_all() ######################################################################################################################### def format_coord(self, x, y): #***** Add intensity information into the navigation toolbar ******************************* numrows, numcols = (self.gridder.data.T).shape col,row = xu.analysis.line_cuts.getindex(x, y, self.gridder.xaxis, self.gridder.yaxis) if col>=0 and col<numcols and row>=0 and row<numrows: z = self.gridder.data.T[row,col] return 'x=%1.4f, y=%1.4f, z=%1.4f'%(x, y, z) else: return 'x=%1.4f, y=%1.4f'%(x, y) def pro_format_coord(self,x,y): return 'x=%.4f, y=%.1f'%(x,y) def init_image(self,log=False): self.ax.cla() self.cax.cla() #print "Initialize image ..." # #self.clevels = np.linspace(self.vmin, self.vmax, 100) if log: self.img = self.ax.pcolormesh(self.gridder.xaxis, self.gridder.yaxis, np.log10(self.gridder.data.T),vmin=self.vmin, vmax=self.vmax) #self.img = self.ax.contour(self.gridder.xaxis, self.gridder.yaxis, np.log10(self.gridder.data.T), self.clevels, vmin=self.vmin, vmax=self.vmax) else: self.img = self.ax.pcolormesh(self.gridder.xaxis, self.gridder.yaxis, self.gridder.data.T,vmin=self.vmin, vmax=self.vmax) #self.img = self.ax.contour(self.gridder.xaxis, self.gridder.yaxis, self.gridder.data.T, self.clevels, vmin=self.vmin, vmax=self.vmax) self.img.cmap.set_under(alpha=0) self.ax.axis([self.gridder.xaxis.min(), self.gridder.xaxis.max(), self.gridder.yaxis.min(), self.gridder.yaxis.max()]) #self.ax.set_aspect('equal') xlabel = r'$Q_x (nm^{-1})$' ylabel = r'$Q_z (nm^{-1})$' self.ax.set_xlabel(xlabel) self.ax.set_ylabel(ylabel) self.ax.yaxis.label.set_size(20) self.ax.xaxis.label.set_size(20) self.ax.set_title(self.rsm_description,fontsize=20) self.ax.format_coord = self.format_coord self.cb = self.fig.colorbar(self.img, cax = self.cax, format="%.1f")#format=fm if self.log_scale==1: self.cb.set_label(r'$Log_{10}\ (Intensity)\ [arb.\ units]$',fontsize=20) else: self.cb.set_label(r'$Intensity\ (Counts\ per\ second)$', fontsize=20) self.cb.locator = MaxNLocator(nbins=6) #self.cursor = Cursor(self.ax, color='k', linewidth=1, useblit=True) #print "Image is initialized." def change_aspect_ratio(self,w): self.graph_aspect = not (self.graph_aspect) if self.graph_aspect == True: self.ax.set_aspect('equal') else: self.ax.set_aspect('auto') self.canvas.draw() def on_changed_rsm(self,widget,row,col): #print "************Change RSM*************" gc.collect() #Clear unused variables to gain memory #************** Remind the structure of these HDF5 files: # ************* file=[scan_id={'eta'=[data], '2theta'=[data], 'intensity'=[data], 'description'='RSM 004 ...'}] self.clear_notes() #self.init_image() model = widget.get_model() self.rsm_choosen = model[row][0] self.rsm = join(self.GUI_current_folder,self.rsm_choosen)#file path self.rsm_info = h5.File(self.rsm,'r')#HDF5 object that collects all information of this scan #self.ax.set_title(self.rsm_choosen,fontsize=20) ### Data Loading ## groups = self.rsm_info.keys() scan = groups[0] self.scan = self.rsm_info[scan] self.data = self.scan.get('intensity').value self.Qx = self.scan.get('Qx').value self.Qy = self.scan.get('Qy').value self.Qz = self.scan.get('Qz').value self.rsm_description = self.scan.get('description').value self.rsm_info.close() #print "Data are successfully loaded." self.gridder = xu.Gridder2D(self.data.shape[0],self.data.shape[1]) #print "Gridder is calculated." # MM = self.data.max() # M = np.log10(MM) # data = flat_data(self.data,0,M) self.gridder(self.Qx, self.Qz, self.data) self.data = self.gridder.data.T self.vmin=self.data.min() self.vmax=self.data.max() #print "Starting scale_plot()" self.scale_plot() #self.slider_update() def scale_plot(self): #print "Scale_plot() is called." data = self.data.copy() #self.init_image() if self.linear_scale_btn.get_active(): self.linear_scale_btn.set_label("--> Linear scale") data = np.log10(data) #print data.max() self.init_image(log=True) actual_vmin = self.sld_vmin.get_value() actual_vmax = self.sld_vmax.get_value() self.vmax = np.log10(actual_vmax) if self.log_scale == 0 else actual_vmax if actual_vmin == 0: self.vmin=0 elif actual_vmin >0: self.vmin = np.log10(actual_vmin) if self.log_scale == 0 else actual_vmin self.vmax_range = data.max() self.log_scale = 1 #log=True else: self.linear_scale_btn.set_label("--> Log scale") self.init_image(log=False) #print "Calculating min max and update slider..." actual_vmin = self.sld_vmin.get_value() actual_vmax = self.sld_vmax.get_value() #print "Actual vmax: ",actual_vmax if self.log_scale == 1: self.vmax = np.power(10.,actual_vmax) else: self.vmax = actual_vmax self.vmax_range = data.max() if actual_vmin ==0: self.vmin = 0 elif actual_vmin>0: if self.log_scale == 0: self.vmin = actual_vmin elif self.log_scale == 1: self.vmin = np.power(10,actual_vmin) self.log_scale = 0 #log=False #print "Min max are calculated." self.sld_vmax.set_range(-6,self.vmax_range) self.sld_vmin.set_range(-6,self.vmax_range) #self.init_image(log) self.slider_update() def log_update(self,widget): self.scale_plot() if self.log_scale==1: self.cb.set_label(r'$Log_{10}\ (Counts\ per\ second)\ [arb.\ units]$',fontsize=18) else: self.cb.set_label(r'$Intensity\ (Counts\ per\ second)$', fontsize=18) #self.slider_update() def scale_update(self,widget): #print "Scale_update() is called." self.vmin = self.sld_vmin.get_value() self.vmax = self.sld_vmax.get_value() self.vmin_spin_btn.set_value(self.vmin) self.vmax_spin_btn.set_value(self.vmax) self.slider_update() def scale_update_spin(self,widget): #print "Spin_update() is called" self.vmin = self.vmin_spin_btn.get_value() self.vmax = self.vmax_spin_btn.get_value() self.slider_update() def slider_update(self): #print "slider_update() is called" #self.img.set_clim(self.vmin, self.vmax) self.sld_vmax.set_value(self.vmax) self.sld_vmin.set_value(self.vmin) if self.linear_scale_btn.get_active(): self.vmin_spin_btn.set_adjustment(gtk.Adjustment(self.vmin, 0, self.vmax_range, 0.1, 1.0, 0)) self.vmax_spin_btn.set_adjustment(gtk.Adjustment(self.vmax, 0, self.vmax_range, 0.1, 1.0, 0)) else: self.vmin_spin_btn.set_adjustment(gtk.Adjustment(self.vmin, 0, self.vmax_range, 10, 100, 0)) self.vmax_spin_btn.set_adjustment(gtk.Adjustment(self.vmax, 0, self.vmax_range, 10, 100, 0)) #self.vmax_spin_btn.update() self.img.set_clim(self.vmin, self.vmax) self.ax.relim() self.canvas.draw() #print "slider_update() stoped." def choose_folder(self, w): dialog = gtk.FileChooserDialog(title="Select a data folder",action=gtk.FILE_CHOOSER_ACTION_SELECT_FOLDER, buttons = (gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL, gtk.STOCK_OPEN, gtk.RESPONSE_OK)) dialog.set_current_folder(self.GUI_current_folder) response=dialog.run() if response==gtk.RESPONSE_OK: folder=dialog.get_filename() folder = folder.decode('utf8') folder_basename = folder.split("/")[-1] #print folder_basename self.store= [i for i in listdir(folder) if isfile(join(folder,i)) and i.endswith(".data") or i.endswith(".h5")] self.GUI_current_folder = folder #print store if len(self.store)>0: self.list_store.clear() for i in self.store: self.list_store.append([i]) self.TVcolumn.set_title(folder_basename) else: pass else: pass dialog.destroy() def folder_update(self, w): folder = self.GUI_current_folder if folder is not os.getcwd(): store= [i for i in listdir(folder) if isfile(join(folder,i)) and i.endswith(".data") or i.endswith(".h5")] self.store=[] self.list_store.clear() for i in store: self.list_store.append([i]) self.store.append(i) def arbitrary_line_cut(self, x, y): #**** num: integer - number of points to be extracted #**** convert Q coordinates to pixel coordinates x0, y0 = xu.analysis.line_cuts.getindex(x[0], y[0], self.gridder.xaxis, self.gridder.yaxis) x1, y1 = xu.analysis.line_cuts.getindex(x[1], y[1], self.gridder.xaxis, self.gridder.yaxis) num = int(np.hypot(x1-x0, y1-y0)) #number of points that will be plotted xi, yi = np.linspace(x0, x1, num), np.linspace(y0, y1, num) profiles_data_X = profiles_data_Y = scipy.ndimage.map_coordinates(self.gridder.data, np.vstack((xi,yi))) coor_X_export,coor_Y_export = np.linspace(x[0], x[1], num), np.linspace(y[0], y[1], num) #coor_X_export = np.sort(coor_X_export) #coor_Y_export = np.sort(coor_Y_export) return coor_X_export,coor_Y_export, profiles_data_X, profiles_data_Y def boundary_rectangles(self, x, y): """ IN : x[0,1], y[0,1]: positions of the line cut (arbitrary direction) OUT: ROI rectangle: the rectangle in which the data will be taken Bound rectangle: the limit values for Qx, Qz line cuts (min, max) """ x = np.asarray(x) y = np.asarray(y) alpha = np.arctan(abs((y[1]-y[0])/(x[1]-x[0]))) # inclined angle of the ROI w.r.t the horizontal line. Attention to the sign of alpha #print np.degrees(alpha) T = self.largueur_int/2. if np.degrees(alpha)>55.0: inc_x = 1 inc_y = 0 else: inc_x = 0 inc_y = 1 y1 = y + T*inc_y y2 = y - T*inc_y x1 = x + T*inc_x x2 = x - T*inc_x #These positions are in reciprocal space units. The boundary order will be: 1-2-2-1 roi_rect = [[y1[0],x1[0]],[y2[0],x2[0]],[y2[1],x2[1]],[y1[1],x1[1]],[y1[0],x1[0]]] roi_rect = path.Path(roi_rect) #***************** Get the corresponding index of these points *************************** i1,j1 = xu.analysis.line_cuts.getindex(x1[0], y1[0], self.gridder.xaxis, self.gridder.yaxis) i2,j2 = xu.analysis.line_cuts.getindex(x2[0], y2[0], self.gridder.xaxis, self.gridder.yaxis) i3,j3 = xu.analysis.line_cuts.getindex(x2[1], y2[1], self.gridder.xaxis, self.gridder.yaxis) i4,j4 = xu.analysis.line_cuts.getindex(x1[1], y1[1], self.gridder.xaxis, self.gridder.yaxis) roi_box = [[j1,i1],[j2,i2],[j3,i3],[j4,i4],[j1,i1]] roi_box = path.Path(roi_box) #******* Calculate the limit boundary rectangle y_tmp = np.vstack((y1, y2)) x_tmp = np.vstack((x1, x2)) y_min = y_tmp.min() y_max = y_tmp.max() x_min = x_tmp.min() x_max = x_tmp.max() bound_rect = [x_min, x_max, y_min, y_max] bound_rect = np.asarray(bound_rect) contours = roi_rect.vertices p=self.ax.plot(contours[:,1], contours[:,0], linewidth=1.5, color='white') self.polygons.append(p[0]) self.canvas.draw() return roi_box, bound_rect def extract_roi_data(self, roi_box, bound_rect): #***** Extraction of the ROI defined by the ROI box ****************** qx_min = bound_rect[0] qx_max = bound_rect[1] qz_min = bound_rect[2] qz_max = bound_rect[3] #***** Getting index of the boundary points in order to calculate the length of the extracted array ixmin, izmin = xu.analysis.line_cuts.getindex(qx_min, qz_min, self.gridder.xaxis, self.gridder.yaxis) ixmax, izmax = xu.analysis.line_cuts.getindex(qx_max, qz_max, self.gridder.xaxis, self.gridder.yaxis) x_steps = ixmax - ixmin +1 z_steps = izmax - izmin +1 qx_coor = np.linspace(qx_min, qx_max, x_steps) qz_coor = np.linspace(qz_min, qz_max, z_steps) ROI = np.zeros(shape=(x_steps)) #****** Extract Qx line cuts ************************ for zi in range(izmin, izmax+1): qx_int = self.gridder.data[ixmin:ixmax+1,zi] #****** if the point is inside the ROI box: point = 0 inpoints = [] for i in range(ixmin,ixmax+1): inpoint= roi_box.contains_point([zi,i]) inpoints.append(inpoint) for b in range(len(inpoints)): if inpoints[b]==False: qx_int[b] = 0 ROI = np.vstack((ROI, qx_int)) ROI = np.delete(ROI, 0, 0) #Delete the first line which contains zeros #****** Sum them up! Return Qx, Qz projection zones and Qx,Qz intensity qx_ROI = ROI.sum(axis=0)/ROI.shape[0] qz_ROI = ROI.sum(axis=1)/ROI.shape[1] return qx_coor, qx_ROI, qz_coor, qz_ROI def plot_profiles(self, x, y, cross_line=True): if cross_line: """Drawing lines where I want to plot profiles""" # ******** if this is not an arbitrary profile, x and y are not lists but just one individual point x=x[0] y=y[0] hline = self.ax.axhline(y, color='k', ls='--', lw=1) self.lines.append(hline) vline = self.ax.axvline(x, color='k', ls='--', lw=1) self.lines.append(vline) """Getting data to be plotted""" self.coor_X_export, self.profiles_data_X = xu.analysis.line_cuts.get_qx_scan(self.gridder.xaxis, self.gridder.yaxis, self.gridder.data, y, qrange=self.largueur_int) self.coor_Y_export, self.profiles_data_Y = xu.analysis.line_cuts.get_qz_scan(self.gridder.xaxis, self.gridder.yaxis, self.gridder.data, x, qrange=self.largueur_int) xc = x yc = y """ Fitting information """ ix,iy = xu.analysis.line_cuts.getindex(x, y, self.gridder.xaxis, self.gridder.yaxis) ix_left,iy = xu.analysis.line_cuts.getindex(x-self.fitting_width, y, self.gridder.xaxis, self.gridder.yaxis) qx_2_fit = self.coor_X_export[ix_left:ix*2-ix_left+1] qx_int_2_fit = self.profiles_data_X[ix_left:2*ix-ix_left+1] X_fitted_params, X_fitted_data = fit(qx_2_fit, qx_int_2_fit,xc, cross_line) ####################axX.plot(qx_2_fit, qx_fit_data, color='red',linewidth=2) ix,iy_down = xu.analysis.line_cuts.getindex(x, y-self.fitting_width, self.gridder.xaxis, self.gridder.yaxis) qz_2_fit = self.coor_Y_export[iy_down:iy*2-iy_down+1] qz_int_2_fit = self.profiles_data_Y[iy_down:iy*2-iy_down+1] Y_fitted_params, Y_fitted_data = fit(qz_2_fit, qz_int_2_fit,yc, cross_line) ####################axY.plot(qz_2_fit, qz_fit_data, color='red',linewidth=2) else: #**** extract arbitrary line cut #**** extract one single line cut: if not self.rectangle_profiles_btn.get_active(): self.coor_X_export, self.coor_Y_export, self.profiles_data_X, self.profiles_data_Y = self.arbitrary_line_cut(x,y) else: roi_box,bound_rect = self.boundary_rectangles(x,y) self.coor_X_export, self.profiles_data_X, self.coor_Y_export, self.profiles_data_Y = self.extract_roi_data(roi_box, bound_rect) tmpX = np.sort(self.coor_X_export) tmpY = np.sort(self.coor_Y_export) xc = tmpX[self.profiles_data_X.argmax()] yc = tmpY[self.profiles_data_Y.argmax()] """ Fitting information """ X_fitted_params, X_fitted_data = fit(self.coor_X_export, self.profiles_data_X, xc, not cross_line) Y_fitted_params, Y_fitted_data = fit(self.coor_Y_export, self.profiles_data_Y, yc, not cross_line) qx_2_fit = self.coor_X_export qz_2_fit = self.coor_Y_export """ Plotting profiles """ self.profiles_ax1.cla() self.profiles_ax2.cla() self.profiles_ax1.format_coord = self.pro_format_coord self.profiles_ax2.format_coord = self.pro_format_coord #self.cursor_pro1 = Cursor(self.profiles_ax1, color='k', linewidth=1, useblit=True) #self.cursor_pro2 = Cursor(self.profiles_ax2, color='k', linewidth=1, useblit=True) self.profiles_ax1.plot(self.coor_Y_export, self.profiles_data_Y, color='blue', lw=3) self.profiles_ax1.plot(qz_2_fit, Y_fitted_data, color='red', lw=1.5, alpha=0.8) self.profiles_ax2.plot(self.coor_X_export, self.profiles_data_X, color='blue', lw=3) self.profiles_ax2.plot(qx_2_fit, X_fitted_data, color='red', lw=1.5, alpha=0.8) self.profiles_ax1.set_title("Qz profile", size=14) self.profiles_ax2.set_title("Qx profile", size=14) self.profiles_canvas.draw() # Show the fitted results self.Qz_fitted_y0.set_text("%.4f"%Y_fitted_params['y0'].value) self.Qz_fitted_xc.set_text("%.4f"%Y_fitted_params['xc'].value) self.Qz_fitted_A.set_text("%.4f"%Y_fitted_params['A'].value) self.Qz_fitted_w.set_text("%.4f"%Y_fitted_params['w'].value) self.Qz_fitted_mu.set_text("%.4f"%Y_fitted_params['mu'].value) self.Qx_fitted_y0.set_text("%.4f"%X_fitted_params['y0'].value) self.Qx_fitted_xc.set_text("%.4f"%X_fitted_params['xc'].value) self.Qx_fitted_A.set_text("%.4f"%X_fitted_params['A'].value) self.Qx_fitted_w.set_text("%.4f"%X_fitted_params['w'].value) self.Qx_fitted_mu.set_text("%.4f"%X_fitted_params['mu'].value) self.profiles_refresh() self.canvas.draw() def draw_pointed(self, x, y, finished=False): #if len(self.lines)>0: # self.clear_notes() p=self.ax.plot(x,y,'ro') self.points.append(p[0]) if finished: l=self.ax.plot(self.arb_lines_X, self.arb_lines_Y, '--',linewidth=1.5, color='white') self.lines.append(l[0]) self.canvas.draw() def profiles_refresh(self): """ """ if self.profiles_log_btn.get_active(): self.profiles_ax1.set_yscale('log') self.profiles_ax2.set_yscale('log') else: self.profiles_ax1.set_yscale('linear') self.profiles_ax2.set_yscale('linear') self.profiles_canvas.draw() #return def profiles_update(self, widget): self.profiles_refresh() def profiles_export(self,widget): """ Export X,Y profiles data in the same folder as the EDF image """ proX_fname = self.rsm.split(".")[0]+"_Qx_profile.dat" proY_fname = self.rsm.split(".")[0]+"_Qz_profile.dat" proX_export= np.vstack([self.coor_X_export, self.profiles_data_X]) proX_export=proX_export.T proY_export= np.vstack([self.coor_Y_export, self.profiles_data_Y]) proY_export=proY_export.T try: np.savetxt(proX_fname, proX_export) np.savetxt(proY_fname, proY_export) self.popup_info('info','Data are successfully exported!') except: self.popup_info('error','ERROR! Data not exported!') def on_press(self, event): #******************** Plot X,Y cross profiles *************************************************** if (event.inaxes == self.ax) and (event.button==3) and self.plotXYprofiles_btn.get_active(): x = event.xdata y = event.ydata xx=[] yy=[] xx.append(x) yy.append(y) self.clear_notes() try: self.largueur_int = float(self.int_range.get_text()) self.fitting_width = float(self.fitting_range.get_text()) self.plot_profiles(xx,yy,cross_line=True) except: self.popup_info("error","Please check that you have entered all the parameters correctly !") #******************** Plot arbitrary profiles *************************************************** elif (event.inaxes == self.ax) and (event.button==1) and (self.arbitrary_profiles_btn.get_active() or self.rectangle_profiles_btn.get_active()): #self.clear_notes() try: self.largueur_int = float(self.int_range.get_text()) self.fitting_width = float(self.fitting_range.get_text()) except: self.popup_info("error","Please check that you have entered all the parameters correctly !") self.arb_line_points +=1 #print "Number of points clicked: ",self.arb_line_points if self.arb_line_points>2: self.clear_notes() self.arb_line_points=1 x = event.xdata y = event.ydata self.arb_lines_X.append(x) self.arb_lines_Y.append(y) if len(self.arb_lines_X)<2: finished=False elif len(self.arb_lines_X)==2: finished = True self.draw_pointed(x,y,finished)#If finished clicking, connect the two points by a line if finished: self.plot_profiles(self.arb_lines_X, self.arb_lines_Y, cross_line=False) self.arb_lines_X=[] self.arb_lines_Y=[] #self.canvas.draw() #******************** Clear cross lines in the main image **************************************** elif event.button==2: self.clear_notes() def profile_press(self, event): """ Calculate thickness fringes """ if event.inaxes == self.profiles_ax1: draw_fringes = True ax = self.profiles_ax1 X_data = self.coor_Y_export Y_data = self.profiles_data_Y xlabel = r'$Q_z (nm^{-1})$' title = "Linear regression of Qz fringes" title_FFT = "Fast Fourier Transform of Qz profiles" xlabel_FFT= "Period (nm)" elif event.inaxes == self.profiles_ax2: draw_fringes = True ax = self.profiles_ax2 X_data = self.coor_X_export Y_data = self.profiles_data_X xlabel = r'$Q_x (nm^{-1})$' title = "Linear regression of Qx fringes" title_FFT = "Fast Fourier Transform of Qx profiles" xlabel_FFT= "Period (nm)" else: draw_fringes = False if draw_fringes and (event.button==1): if len(self.profiles_fringes)>0: self.profiles_fringes = np.asarray(self.profiles_fringes) self.profiles_fringes = np.sort(self.profiles_fringes) fringes_popup = PopUpFringes(self.profiles_fringes, xlabel, "Fringes order", title) self.profiles_fringes=[] self.clear_notes() elif draw_fringes and (event.button == 3): vline=ax.axvline(event.xdata, linewidth=2, color="green") self.lines.append(vline) self.profiles_fringes.append(event.xdata) elif draw_fringes and event.button == 2: XF,YF = Fourier(X_data, Y_data) popup_window=PopUpImage(XF, YF, xlabel_FFT, "Normalized intensity", title_FFT) self.profiles_canvas.draw() #plt.clf() def clear_notes(self): """ print "Number of notes: ",len(self.my_notes) print "Number of lines: ",len(self.lines) print "Number of points: ",len(self.points) print "Number of polygons: ",len(self.polygons) """ if len(self.my_notes)>0: for txt in self.my_notes: txt.remove() if len(self.lines)>0: for line in self.lines: line.remove() if len(self.points)>0: for p in self.points: p.remove() if len(self.polygons)>0: for p in self.polygons: p.remove() self.canvas.draw() self.my_notes = [] #self.profiles_notes = [] self.lines=[] self.points=[] self.polygons=[] self.arb_lines_X=[] self.arb_lines_Y=[] self.arb_line_points = 0 def on_motion(self,event): print "Mouse moved !" if event.inaxes == self.ax and self.arbitrary_profiles_btn.get_active() and self.arb_line_points==1: x = event.xdata y = event.ydata self.clear_notes() line = self.ax.plot([self.arb_lines_X[0], x], [self.arb_lines_Y[0],y], 'ro-') self.lines.append(line) self.canvas.draw() def on_release(self, event): if event.inaxes == self.ax: if self.mouse_moved==True: self.mouse_moved = False def popup_info(self,info_type,text): """ info_type = WARNING, INFO, QUESTION, ERROR """ if info_type.upper() == "WARNING": mess_type = gtk.MESSAGE_WARNING elif info_type.upper() == "INFO": mess_type = gtk.MESSAGE_INFO elif info_type.upper() == "ERROR": mess_type = gtk.MESSAGE_ERROR elif info_type.upper() == "QUESTION": mess_type = gtk.MESSAGE_QUESTION self.warning=gtk.MessageDialog(self, gtk.DIALOG_DESTROY_WITH_PARENT, mess_type, gtk.BUTTONS_CLOSE,text) self.warning.run() self.warning.destroy() #******************************************************************** # Functions for the Spec-HDF5 data conversion #******************************************************************** def select_file(self,widget,path,label): dialog = gtk.FileChooserDialog("Select file",None,gtk.FILE_CHOOSER_ACTION_OPEN,(gtk.STOCK_CANCEL,gtk.RESPONSE_CANCEL, gtk.STOCK_OPEN, gtk.RESPONSE_OK)) dialog.set_current_folder(self.DATA_current_folder) response = dialog.run() if response == gtk.RESPONSE_OK: file_choosen = dialog.get_filename() path.set_text(file_choosen) self.DATA_current_folder = os.path.dirname(file_choosen) if label == "A": self.attenuation_file = file_choosen.decode('utf8') elif label == "S": self.spec_file = file_choosen.decode('utf8') elif label == "M": self.mca_file = file_choosen.decode('utf8') else: pass dialog.destroy() def select_folder(self, widget, path, label): dialog = gtk.FileChooserDialog(title="Select folder",action=gtk.FILE_CHOOSER_ACTION_SELECT_FOLDER, buttons = (gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL, gtk.STOCK_OPEN, gtk.RESPONSE_OK)) dialog.set_current_folder(self.DATA_current_folder) response=dialog.run() if response==gtk.RESPONSE_OK: folder=dialog.get_filename() path.set_text(folder) self.DATA_current_folder = folder.decode('utf8') if label == "D": self.des_folder = folder.decode('utf8') else: pass dialog.destroy() def HKL2Q(self,H,K,L,a): """ Q// est dans la direction [110], Qz // [001]""" Qx = H*np.sqrt(2.)/a Qy = K*np.sqrt(2.)/a Qz = L/a return [Qx, Qy, Qz] def loadAmap(self,scanid,specfile,mapData,retard): try: psdSize = float(self.t1_entry.get_text()) Nchannels = int(self.t2_entry.get_text()) psdMin = int(self.t5_entry1.get_text()) psdMax = int(self.t5_entry2.get_text()) psd0 = float(self.t3_entry.get_text()) pixelSize = psdSize/Nchannels pixelPerDeg = float(self.t4_entry.get_text()) distance = pixelSize * pixelPerDeg / np.tan(np.radians(1.0)) # sample-detector distance in mm psdor = self.t6_entry.get_active() #psd orientation (up, down, in, out) if psdor == 0: psdor = 'z+' elif psdor == 1: psdor = 'z-' else: psdor = 'unknown' energy = float(self.e2_entry.get_text()) filter_data = self.attenuation_file monitor_col = self.e5_entry.get_text() foil_col = self.e4_entry.get_text() monitor_ref = float(self.e6_entry.get_text()) #****************** Calculation ************************ headers, scan_kappa = SP.ReadSpec(specfile,scanid) Eta = scan_kappa['Eta'] print Eta.shape tth = headers['P'][0] omega = headers['P'][1] tth = float(tth) omega = float(omega) print "Del: %.2f, Eta: %.2f"%(tth,omega) #Si = xu.materials.Si hxrd = xu.HXRD(self.substrate.Q(self.in_plane), self.substrate.Q(self.out_of_plane), en = energy) hxrd.Ang2Q.init_linear(psdor,psd0, Nchannels, distance=distance, pixelwidth=pixelSize, chpdeg=pixelPerDeg) HKL = hxrd.Ang2HKL(omega, tth) HKL = np.asarray(HKL) HKL = HKL.astype(int) print "HKL = ",HKL H=K=L=np.zeros(shape=(0,Nchannels)) for i in range(len(Eta)): om=Eta[i] q=hxrd.Ang2HKL(om,tth,mat=self.substrate,dettype='linear') H = np.vstack((H,q[0])) K = np.vstack((K,q[1])) L = np.vstack((L,q[2])) filtre_foil = scan_kappa[foil_col] filtre = filtre_foil.copy() monitor= scan_kappa[monitor_col] foil_data = np.loadtxt(filter_data) for f in xrange(foil_data.shape[0]): coef = filtre_foil == f filtre[coef] = foil_data[f,1] #print filtre mapData = mapData + 1e-6 if retard: for i in range(len(filtre)-1): mapData[i+1] = mapData[i+1]*filtre[i] else: for i in range(len(filtre)): mapData[i] = mapData[i]*filtre[i] for i in range(len(monitor)): mapData[i] = mapData[i]*monitor_ref/monitor[i] mapData = mapData[:,psdMin:psdMax] H = H[:,psdMin:psdMax] K = K[:,psdMin:psdMax] L = L[:,psdMin:psdMax] ########## Correction d'offset ############### x,y=np.unravel_index(np.argmax(mapData),mapData.shape) H_sub = H[x,y] K_sub = K[x,y] L_sub = L[x,y] H_offset = HKL[0] - H_sub K_offset = HKL[1] - K_sub L_offset = HKL[2] - L_sub H = H + H_offset K = K + K_offset L = L + L_offset a = self.substrate._geta1()[0] #in Angstrom a = a/10. Q = self.HKL2Q(H, K, L, a) return Q,mapData except: self.popup_info("warning", "Please make sure that you have correctly entered the all parameters.") return None,None def gtk_waiting(self): while gtk.events_pending(): gtk.main_iteration() def Change_Lab_Instrument(self, widget): self.choosen_instrument = self.Instrument.get_active_text() print "I choose ",self.choosen_instrument if self.choosen_instrument == "Bruker": self.XRDML_xrdml_file_txt.set_text("Select RAW file: ") self.XRDML_xrdml_file_browse.set_label("Browse RAW file") elif self.choosen_instrument == "PANalytical": self.XRDML_xrdml_file_txt.set_text("Select XRDML file: ") self.XRDML_xrdml_file_browse.set_label("Browse XRDML file") def Convert_Lab_Source(self, widget): print "Instrument chosen: ",self.choosen_instrument if self.choosen_instrument == "Bruker": self.Bruker2HDF() elif self.choosen_instrument == "PANalytical": self.XRDML2HDF() def XRDML2HDF(self): try: xrdml_file = self.spec_file energy = self.XRDML_energy.get_text() HKL = self.XRDML_reflection.get_text() if HKL == "": self.offset_correction = False else: self.offset_correction = True HKL = HKL.split() HKL = np.asarray([int(i) for i in HKL]) substrate = self.XRDML_substrate.get_active_text() if substrate == "-- other": substrate = self.XRDML_substrate_other.get_text() command = "self.substrate = xu.materials."+substrate exec(command) in_plane = self.XRDML_substrate_inplane.get_text() out_of_plane = self.XRDML_substrate_outplane.get_text() in_plane = in_plane.split() self.in_plane = np.asarray([int(i) for i in in_plane]) out_of_plane = out_of_plane.split() self.out_of_plane = np.asarray([int(i) for i in out_of_plane]) description = self.XRDML_description.get_text() self.XRDML_show_info.set_text("Reading XRDML data ...") self.gtk_waiting() dataFile = xu.io.XRDMLFile(xrdml_file) scan = dataFile.scan #omega_exp = scan['Omega'] #tth_exp = scan['2Theta'] data = scan['detector'] omega,tth,psd = xu.io.getxrdml_map(xrdml_file) if energy == "": exp = xu.HXRD(self.substrate.Q(self.in_plane),self.substrate.Q(self.out_of_plane)) else: energy = float(energy) exp = xu.HXRD(self.substrate.Q(self.in_plane),self.substrate.Q(self.out_of_plane), en=energy) [qx,qy,qz] = exp.Ang2Q(omega, tth) mapData = psd.reshape(data.shape) H = qy.reshape(data.shape) K = qy.reshape(data.shape) L = qz.reshape(data.shape) ########## Correction d'offset ############### #if self.offset_correction: #x,y=np.unravel_index(np.argmax(mapData),mapData.shape) #omalign = omega_exp[x,y] #ttalign = tth_exp[x,y] #[omnominal, dummy, dummy, ttnominal] = exp.Q2Ang(self.substrate.Q(HKL)) #omalign, ttalign, p, cov = xu.analysis.fit_bragg_peak(omega, tth, psd, omalign, ttalign, exp, plot=False) #[qx, qy, qz] = exp.Ang2Q(omega, tth, delta=[omalign - omnominal,ttalign - ttnominal]) if self.offset_correction: x,y=np.unravel_index(np.argmax(mapData),mapData.shape) H_sub = H[x,y] K_sub = K[x,y] L_sub = L[x,y] H_offset = HKL[0] - H_sub K_offset = HKL[1] - K_sub L_offset = HKL[2] - L_sub H = H + H_offset K = K + K_offset L = L + L_offset a = self.substrate._geta1()[0] #in Angstrom a = a/10. Q = self.HKL2Q(H, K, L, a) self.XRDML_show_info.set_text("XRDML data are successfully loaded.") self.gtk_waiting() if description == "": no_description = True description = "XRDML_Map" else: no_description = False h5file = description+".h5" info = "\nSaving file: %s"%(h5file) self.XRDML_show_info.set_text(info) self.gtk_waiting() h5file = join(self.des_folder,h5file) if os.path.isfile(h5file): del_file = "rm -f %s"%h5file os.system(del_file) h5file = h5.File(h5file,"w") s = h5file.create_group(description) s.create_dataset('intensity', data=mapData, compression='gzip', compression_opts=9) s.create_dataset('Qx', data=Q[0], compression='gzip', compression_opts=9) s.create_dataset('Qy', data=Q[1], compression='gzip', compression_opts=9) s.create_dataset('Qz', data=Q[2], compression='gzip', compression_opts=9) s.create_dataset('description', data=description) h5file.close() self.popup_info("info","Data conversion completed!") except: exc_type, exc_value, exc_traceback = sys.exc_info() self.popup_info("warning", "ERROR: %s"%str(exc_value)) def Bruker2HDF(self): try: raw_file = self.spec_file from MCA_GUI.Bruker import convert_raw_to_uxd,get_Bruker uxd_file = raw_file.split(".")[0]+".uxd" convert_raw_to_uxd(raw_file, uxd_file) energy = self.XRDML_energy.get_text() if energy == "": energy = 8048 else: energy = float(energy) HKL = self.XRDML_reflection.get_text() if HKL == "": self.offset_correction = False else: self.offset_correction = True HKL = HKL.split() HKL = np.asarray([int(i) for i in HKL]) substrate = self.XRDML_substrate.get_active_text() if substrate == "-- other": substrate = self.XRDML_substrate_other.get_text() command = "self.substrate = xu.materials."+substrate exec(command) description = self.XRDML_description.get_text() self.XRDML_show_info.set_text("Reading Raw data ...") self.gtk_waiting() acos = np.arccos asin = np.arcsin sqrt = np.sqrt pi = np.pi lam = xu.lam2en(energy)/10 #nm a = self.substrate._geta1()[0] #in Angstrom a = a/10. dataset = get_Bruker(uxd_file) theta = dataset['omega'] dTheta = dataset['tth'] ########## Correction d'offset ############### #----Calcul de omega et 2 Theta théorique--> pour correction if self.offset_correction: H=HKL[0] K=HKL[1] L=HKL[2] tilt = acos(L / sqrt(H**2 + K**2 + L**2))*180.0/pi teta = asin(lam * sqrt(H**2 + K**2 + L**2) / (2.0 * a))*180.0/pi dTheta_theorique = 2.0 * teta omega_theorique = teta + tilt x,y=np.unravel_index(np.argmax(dataset['data']),dataset['data'].shape) dT_sub = dataset['tth'][x,y] om_sub = dataset['omega'][x,y] dT_offset=dTheta_theorique - dT_sub om_offset=omega_theorique - om_sub #--- Correction: dTheta += dT_offset theta += om_offset psi = np.zeros(shape=theta.shape) Qmod = np.zeros(shape=theta.shape) Qx = np.zeros(shape=theta.shape) Qz = np.zeros(shape=theta.shape) psi = theta - dTheta/2.0 #print psi Qmod = 2.0/lam * np.sin(np.radians(dTheta/2.0)) Qx = Qmod * np.sin(np.radians(psi)) Qz = Qmod * np.cos(np.radians(psi)) self.XRDML_show_info.set_text("Raw data are successfully loaded.") self.gtk_waiting() if description == "": no_description = True description = "RSM" else: no_description = False h5file = description+".h5" info = "\nSaving file: %s"%(h5file) self.XRDML_show_info.set_text(info) self.gtk_waiting() h5file = join(self.des_folder,h5file) if os.path.isfile(h5file): del_file = "rm -f %s"%h5file os.system(del_file) h5file = h5.File(h5file,"w") s = h5file.create_group(description) s.create_dataset('intensity', data=dataset['data'], compression='gzip', compression_opts=9) s.create_dataset('Qx', data=Qx, compression='gzip', compression_opts=9) s.create_dataset('Qy', data=Qx, compression='gzip', compression_opts=9) s.create_dataset('Qz', data=Qz, compression='gzip', compression_opts=9) s.create_dataset('description', data=description) h5file.close() self.popup_info("info","Data conversion completed!") except: exc_type, exc_value, exc_traceback = sys.exc_info() self.popup_info("warning", "ERROR: %s"%str(exc_value)) def spec2HDF(self,widget): try: specfile = self.spec_file mcafile = self.mca_file scan_beg = int(self.c4_entry1.get_text()) scan_end = int(self.c4_entry2.get_text()) substrate = self.e1_entry.get_active_text() if substrate == "-- other": substrate = self.e1_entry_other.get_text() command = "self.substrate = xu.materials."+substrate exec(command) scanid = range(scan_beg, scan_end+1) self.show_info.set_text("Reading MCA data ...") self.gtk_waiting() allMaps = SP.ReadMCA2D_complete(mcafile) description = self.c5_entry1.get_text() retard = self.c6_entry.get_active() total = len(allMaps) total_maps_loaded = "Number of map(s) loaded: %d"%total self.show_info.set_text(total_maps_loaded) self.gtk_waiting() if description == "": no_description = True else: description = description.split(",") no_description = False for i in range(len(allMaps)): scannumber = scanid[i] scan_name = "Scan_%d"%scannumber if no_description: h5file = scan_name+".h5" d = scan_name else: h5file = description[i].strip()+".h5" d = description[i].strip() info = "\nSaving file N# %d/%d: %s"%(i+1,total,h5file) out_info = total_maps_loaded + info self.show_info.set_text(out_info) self.gtk_waiting() h5file = join(self.des_folder,h5file) if os.path.isfile(h5file): del_file = "rm -f %s"%h5file os.system(del_file) h5file = h5.File(h5file,"w") Q,mapdata = self.loadAmap(scannumber, specfile, allMaps[i], retard) s = h5file.create_group(scan_name) s.create_dataset('intensity', data=mapdata, compression='gzip', compression_opts=9) s.create_dataset('Qx', data=Q[0], compression='gzip', compression_opts=9) s.create_dataset('Qy', data=Q[1], compression='gzip', compression_opts=9) s.create_dataset('Qz', data=Q[2], compression='gzip', compression_opts=9) s.create_dataset('description', data=d) h5file.close() self.popup_info("info","Data conversion completed!") except: exc_type, exc_value, exc_traceback = sys.exc_info() self.popup_info("warning", "ERROR: %s"%str(exc_value)) def Export_HQ_Image(self, widget): dialog = gtk.FileChooserDialog(title="Save image", action=gtk.FILE_CHOOSER_ACTION_SAVE, buttons = (gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL, gtk.STOCK_SAVE, gtk.RESPONSE_OK)) filename = self.rsm_choosen.split(".")[0] if self.rsm_choosen != "" else "Img" dialog.set_current_name(filename+".png") #dialog.set_filename(filename) dialog.set_current_folder(self.GUI_current_folder) filtre = gtk.FileFilter() filtre.set_name("images") filtre.add_pattern("*.png") filtre.add_pattern("*.jpg") filtre.add_pattern("*.pdf") filtre.add_pattern("*.ps") filtre.add_pattern("*.eps") dialog.add_filter(filtre) filtre = gtk.FileFilter() filtre.set_name("Other") filtre.add_pattern("*") dialog.add_filter(filtre) response = dialog.run() if response==gtk.RESPONSE_OK: #self.fig.savefig(dialog.get_filename()) xlabel = r'$Q_x (nm^{-1})$' ylabel = r'$Q_z (nm^{-1})$' fig = plt.figure(figsize=(10,8),dpi=100) ax = fig.add_axes([0.1,0.2,0.7,0.7]) cax = fig.add_axes([0.85,0.2,0.03,0.7]) clabel = r'$Intensity\ (Counts\ per\ second)$' fmt = "%d" if self.linear_scale_btn.get_active(): clabel = r'$Log_{10}\ (Intensity)\ [arb.\ units]$' fmt = "%.2f" data = self.gridder.data.T data = flat_data(data, self.vmin, self.vmax, self.linear_scale_btn.get_active()) img = ax.contourf(self.gridder.xaxis, self.gridder.yaxis, data, 100, vmin=self.vmin*1.05, vmax=self.vmax) cb = fig.colorbar(img,cax=cax, format=fmt) cb.set_label(clabel, fontsize=20) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.yaxis.label.set_size(20) ax.xaxis.label.set_size(20) ax.set_title(self.rsm_description,fontsize=20) fig.savefig(dialog.get_filename()) plt.close() dialog.destroy() if __name__=="__main__": MyMainWindow() gtk.main()
gpl-2.0
williampma/opencog
opencog/python/spatiotemporal/temporal_events/animation.py
34
4896
from matplotlib.lines import Line2D from matplotlib.ticker import AutoMinorLocator from numpy.core.multiarray import zeros from spatiotemporal.temporal_events.trapezium import TemporalEventTrapezium from spatiotemporal.time_intervals import TimeInterval from matplotlib import pyplot as plt from matplotlib import animation __author__ = 'keyvan' x_axis = xrange(13) zeros_13 = zeros(13) class Animation(object): def __init__(self, event_a, event_b, event_c, plt=plt): self.event_a = event_a self.event_c = event_c self.event_b_length_beginning = event_b.beginning - event_b.a self.event_b_length_middle = self.event_b_length_beginning + event_b.ending - event_b.beginning self.event_b_length_total = event_b.b - event_b.ending self.plt = plt self.fig = plt.figure(1) self.ax_a_b = self.fig.add_subplot(4, 1, 1) self.ax_b_c = self.fig.add_subplot(4, 1, 2) self.ax_a_c = self.fig.add_subplot(4, 1, 3) self.ax_relations = self.fig.add_subplot(4, 1, 4) self.ax_a_b.set_xlim(0, 13) self.ax_a_b.set_ylim(0, 1) self.ax_b_c.set_xlim(0, 13) self.ax_b_c.set_ylim(0, 1) self.ax_a_c.set_xlim(0, 13) self.ax_a_c.set_ylim(0, 1) self.rects_a_b = self.ax_a_b.bar(x_axis, zeros_13) self.rects_b_c = self.ax_b_c.bar(x_axis, zeros_13) self.rects_a_c = self.ax_a_c.bar(x_axis, zeros_13) self.line_a = Line2D([], []) self.line_b = Line2D([], []) self.line_c = Line2D([], []) self.ax_relations.add_line(self.line_a) self.ax_relations.add_line(self.line_b) self.ax_relations.add_line(self.line_c) a = min(event_a.a, event_c.a) - self.event_b_length_total b = max(event_a.b, event_c.b) self.ax_relations.set_xlim(a, b + self.event_b_length_total) self.ax_relations.set_ylim(0, 1.1) # self.interval = TimeInterval(a, b, 150) self.interval = TimeInterval(a, b, 2) self.ax_a_b.xaxis.set_minor_formatter(self.ax_a_b.xaxis.get_major_formatter()) self.ax_a_b.xaxis.set_minor_locator(AutoMinorLocator(2)) self.ax_a_b.xaxis.set_ticklabels('poDedOP') self.ax_a_b.xaxis.set_ticklabels('mFsSfM', minor=True) self.ax_b_c.xaxis.set_minor_formatter(self.ax_b_c.xaxis.get_major_formatter()) self.ax_b_c.xaxis.set_minor_locator(AutoMinorLocator(2)) self.ax_b_c.xaxis.set_ticklabels('poDedOP') self.ax_b_c.xaxis.set_ticklabels('mFsSfM', minor=True) self.ax_a_c.xaxis.set_minor_formatter(self.ax_a_c.xaxis.get_major_formatter()) self.ax_a_c.xaxis.set_minor_locator(AutoMinorLocator(2)) self.ax_a_c.xaxis.set_ticklabels('poDedOP') self.ax_a_c.xaxis.set_ticklabels('mFsSfM', minor=True) def init(self): artists = [] self.line_a.set_data(self.event_a, self.event_a.membership_function) self.line_b.set_data([], []) self.line_c.set_data(self.event_c, self.event_c.membership_function) artists.append(self.line_a) artists.append(self.line_b) artists.append(self.line_c) for rect, h in zip(self.rects_a_b, zeros_13): rect.set_height(h) artists.append(rect) for rect, h in zip(self.rects_b_c, zeros_13): rect.set_height(h) artists.append(rect) for rect, h in zip(self.rects_a_c, (self.event_a * self.event_c).to_list()): rect.set_height(h) artists.append(rect) return artists def animate(self, t): interval = self.interval B = TemporalEventTrapezium(interval[t], interval[t] + self.event_b_length_total, interval[t] + self.event_b_length_beginning, interval[t] + self.event_b_length_middle) plt.figure() B.plot().show() a_b = (self.event_a * B).to_list() b_c = (B * self.event_c).to_list() self.line_b.set_data(B, B.membership_function) artists = [] for rect, h in zip(self.rects_a_b, a_b): rect.set_height(h) artists.append(rect) for rect, h in zip(self.rects_b_c, b_c): rect.set_height(h) artists.append(rect) artists.append(self.line_a) artists.append(self.line_b) artists.append(self.line_c) return artists def show(self): fr = len(self.interval) - 1 anim = animation.FuncAnimation(self.fig, self.animate, init_func=self.init, frames=fr, interval=fr, blit=True) self.plt.show() if __name__ == '__main__': anim = Animation(TemporalEventTrapezium(4, 8, 5, 7), TemporalEventTrapezium(0, 10, 6, 9), TemporalEventTrapezium(0.5, 11, 1, 3)) # anim.show()
agpl-3.0
DarkEnergyScienceCollaboration/WeakLensingDeblending
fisher.py
2
10873
#!/usr/bin/env python """Create plots to illustrate galaxy parameter error estimation using Fisher matrices. """ from __future__ import print_function, division import argparse import numpy as np import matplotlib.pyplot as plt import astropy.table import descwl def main(): # Initialize and parse command-line arguments. parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--verbose', action = 'store_true', help = 'Provide verbose output.') descwl.output.Reader.add_args(parser) parser.add_argument('--no-display', action = 'store_true', help = 'Do not display the image on screen.') parser.add_argument('-o','--output-name',type = str, default = None, metavar = 'FILE', help = 'Name of the output file to write.') parser.add_argument('--galaxy', type = int, default = None, metavar = 'ID', help = 'Use the galaxy with this database ID, ignoring any overlaps.') parser.add_argument('--group', type = int, default = None, metavar = 'ID', help = 'Use the overlapping group of galaxies with this group ID.') parser.add_argument('--partials', action = 'store_true', help = 'Show partial derivative images (instead of Fisher matrix images).') parser.add_argument('--matrix', action = 'store_true', help = 'Show summed Fisher matrix elements (instead of Fisher matrix images).') parser.add_argument('--covariance', action = 'store_true', help = 'Show covariance matrix elements (instead of Fisher matrix images).') parser.add_argument('--correlation', action = 'store_true', help = 'Show correlation matrix elements (instead of Fisher matrix images).') display_group = parser.add_argument_group('Display options') display_group.add_argument('--figure-size', type = float, default = 12., metavar = 'SIZE', help = 'Size of the longest edge of the figure in inches.') display_group.add_argument('--colormap', type = str, default = 'RdBu', metavar = 'CMAP', help = 'Matplotlib colormap name to use.') display_group.add_argument('--no-labels', action = 'store_true', help = 'Do not display any text labels.') display_group.add_argument('--label-color', type = str, default = 'greenyellow', metavar = 'COL', help = 'Matplotlib color name to use for label text.') display_group.add_argument('--label-size', type = str, default = 'medium', metavar = 'SIZE', help = 'Matplotlib font size specification in points or relative (small,large,...)') display_group.add_argument('--value-format', type = str, default = '%.3g', metavar = 'FMT', help = 'Printf format to use for matrix element values.') display_group.add_argument('--clip-percentile', type = float, default = 10.0, metavar = 'PCT', help = 'Percentile level for clipping color scale.') args = parser.parse_args() if args.no_display and not args.output_name: print('No display our output requested.') return 0 if args.galaxy is None and args.group is None: print('Must specify either a galaxy or a group.') return -1 if args.galaxy is not None and args.group is not None: print('Cannot specify both a galaxy and a group.') return -1 if args.partials + args.matrix + args.covariance + args.correlation > 1: print('Can only specify one of the partials,matrix,covariance options.') return -1 if args.clip_percentile < 0 or args.clip_percentile >= 50: print('Invalid --clip-percentile %f (should be 0-50).' % args.clip_percentile) return -1 # Load the analysis results file we will get partial derivative images from. try: reader = descwl.output.Reader.from_args(defer_stamp_loading = True,args = args) results = reader.results npartials = len(results.slice_labels) if args.verbose: print(results.survey.description()) except RuntimeError as e: print(str(e)) return -1 if results.table is None: print('Input file is missing a results catalog.') return -1 if results.stamps is None: print('Input file is missing stamp datacubes.') return -1 # Look for the selected galaxy or group. if args.galaxy: selected = results.select('db_id==%d' % args.galaxy) if len(selected) == 0: print('No such galaxy with ID %d' % args.galaxy) return -1 title = 'galaxy-%d' % args.galaxy else: selected = results.select('grp_id==%d' % args.group) if len(selected) == 0: print('No such group with ID %d' % args.group) return -1 title = 'group-%d' % args.group # Sort selected galaxies in increasing rank order. sort_order = np.argsort(results.table['grp_rank'][selected]) selected = selected[sort_order] num_selected = len(selected) npar = npartials*num_selected nrows,ncols = npar,npar # Get the background image for these galaxies. background = results.get_subimage(selected) height,width = background.array.shape # Calculate matrix elements. fisher,covariance,variance,correlation = results.get_matrices(selected) show_matrix = args.matrix or args.covariance or args.correlation if show_matrix: if args.matrix: matrix = fisher elif args.covariance: matrix = covariance else: matrix = correlation # Print a summary table of RMS errors on each parameter. if args.verbose and correlation is not None: dtypes = [ (name,np.float32) for name in results.slice_labels ] dtypes.insert(0,('id',np.int64)) summary = np.empty(shape = (len(selected),),dtype = dtypes) summary['id'] = results.table['db_id'][selected] for index in range(ncols): galaxy = index//npartials islice = index%npartials summary[galaxy][islice+1] = np.sqrt(variance[index]) print(astropy.table.Table(summary)) # Calculate the bounds for our figure. if args.partials: nrows = 1 figure_scale = args.figure_size/(ncols*max(height,width)) figure_width = ncols*width*figure_scale figure_height = nrows*height*figure_scale figure = plt.figure(figsize = (figure_width,figure_height),frameon=False) figure.canvas.set_window_title(title) plt.subplots_adjust(left = 0,bottom = 0,right = 1,top = 1,wspace = 0,hspace = 0) def draw(row,col,pixels): axes = plt.subplot(nrows,ncols,row*ncols+col+1) axes.set_axis_off() if row == col: # All values are positive. vmax = np.percentile(pixels[pixels != 0], 100 - args.clip_percentile) else: vmax = np.max(np.fabs(np.percentile(pixels[pixels != 0], (args.clip_percentile, 100 - args.clip_percentile)))) vmin = -vmax scaled = np.clip(pixels,vmin,vmax) plt.imshow(scaled,origin = 'lower',interpolation = 'nearest', cmap = args.colormap,vmin = vmin,vmax = vmax) def draw_param_label(index,row,col): # index determines which parameter label to draw. # row,col determine where the label will be drawn. islice = index%npartials igalaxy = index//npartials rank = results.table['grp_rank'][selected[igalaxy]] # Latex labels do not get the correct vertical alignment. ##param_label = '$%s_{%d}$' % (results.slice_labels[islice],rank) param_label = '%s_%d' % (results.slice_labels[islice],rank) x = (col+1.)/ncols y = 1.-float(row)/nrows plt.annotate(param_label,xy = (x,y),xycoords = 'figure fraction', color = args.label_color, fontsize = args.label_size, horizontalalignment = 'right',verticalalignment = 'top') if args.partials: # Draw the partial-derivative images on a single row. stamp = results.get_subimage(selected) for col in range(ncols): galaxy = selected[col//npartials] islice = col%npartials stamp.array[:] = 0. stamp[results.bounds[galaxy]] = results.get_stamp(galaxy,islice) if islice == 0: # Normalize to give partial with respect to added flux in electrons. stamp /= results.table['flux'][galaxy] draw(0,col,stamp.array) if not args.no_labels: draw_param_label(index=col,row=0,col=col) elif show_matrix: # Draw the values of the matrix we calculated above. span = np.arange(nrows) row,col = np.meshgrid(span,span) lower_triangle = np.ma.masked_where(row > col,matrix) axes = plt.subplot(1,1,1) axes.set_axis_off() vmin,vmax = (-1.,+1.) if args.correlation else (None,None) plt.imshow(lower_triangle,interpolation = 'nearest',aspect = 'auto', cmap = args.colormap,vmin = vmin,vmax = vmax) if not args.no_labels: for row in range(nrows): for col in range(row+1): value_label = args.value_format % matrix[row,col] xc = (col+0.5)/ncols yc = 1.-(row+0.5)/nrows plt.annotate(value_label,xy = (xc,yc),xycoords = 'figure fraction', color = args.label_color, fontsize = args.label_size, horizontalalignment = 'center',verticalalignment = 'center') if row == col and not args.no_labels: draw_param_label(index=row,row=row,col=col) else: # Draw Fisher-matrix images. stamp = background.copy() for row,index1 in enumerate(selected): for col,index2 in enumerate(selected[:row+1]): images,overlap = results.get_fisher_images(index1,index2,background) if overlap is None: continue for par1 in range(npartials): fisher_row = npartials*row+par1 for par2 in range(npartials): fisher_col = npartials*col+par2 if fisher_col > fisher_row: continue stamp.array[:] = 0. stamp[overlap].array[:] = images[par1,par2] draw(fisher_row,fisher_col,stamp.array) if fisher_row == fisher_col and not args.no_labels: draw_param_label(index = fisher_row,row = fisher_row,col = fisher_col) if args.output_name: figure.savefig(args.output_name) if not args.no_display: plt.show() if __name__ == '__main__': main()
mit
mne-tools/mne-python
mne/viz/epochs.py
1
43884
"""Functions to plot epochs data.""" # Authors: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # Martin Luessi <[email protected]> # Eric Larson <[email protected]> # Jaakko Leppakangas <[email protected]> # Jona Sassenhagen <[email protected]> # Stefan Repplinger <[email protected]> # Daniel McCloy <[email protected]> # # License: Simplified BSD from collections import Counter from copy import deepcopy import warnings import numpy as np from .raw import _setup_channel_selections from ..defaults import _handle_default from ..utils import verbose, logger, warn, fill_doc, _check_option from ..io.meas_info import create_info, _validate_type from ..io.pick import (_get_channel_types, _picks_to_idx, _DATA_CH_TYPES_SPLIT, _VALID_CHANNEL_TYPES) from .utils import (tight_layout, _setup_vmin_vmax, plt_show, _check_cov, _compute_scalings, DraggableColorbar, _setup_cmap, _handle_decim, _set_title_multiple_electrodes, _make_combine_callable, _set_window_title, _make_event_color_dict, _get_channel_plotting_order) @fill_doc def plot_epochs_image(epochs, picks=None, sigma=0., vmin=None, vmax=None, colorbar=True, order=None, show=True, units=None, scalings=None, cmap=None, fig=None, axes=None, overlay_times=None, combine=None, group_by=None, evoked=True, ts_args=None, title=None, clear=False): """Plot Event Related Potential / Fields image. Parameters ---------- epochs : instance of Epochs The epochs. %(picks_good_data)s ``picks`` interacts with ``group_by`` and ``combine`` to determine the number of figures generated; see Notes. sigma : float The standard deviation of a Gaussian smoothing window applied along the epochs axis of the image. If 0, no smoothing is applied. Defaults to 0. vmin : None | float | callable The min value in the image (and the ER[P/F]). The unit is µV for EEG channels, fT for magnetometers and fT/cm for gradiometers. If vmin is None and multiple plots are returned, the limit is equalized within channel types. Hint: to specify the lower limit of the data, use ``vmin=lambda data: data.min()``. vmax : None | float | callable The max value in the image (and the ER[P/F]). The unit is µV for EEG channels, fT for magnetometers and fT/cm for gradiometers. If vmin is None and multiple plots are returned, the limit is equalized within channel types. colorbar : bool Display or not a colorbar. order : None | array of int | callable If not ``None``, order is used to reorder the epochs along the y-axis of the image. If it is an array of :class:`int`, its length should match the number of good epochs. If it is a callable it should accept two positional parameters (``times`` and ``data``, where ``data.shape == (len(good_epochs), len(times))``) and return an :class:`array <numpy.ndarray>` of indices that will sort ``data`` along its first axis. show : bool Show figure if True. units : dict | None The units of the channel types used for axes labels. If None, defaults to ``units=dict(eeg='µV', grad='fT/cm', mag='fT')``. scalings : dict | None The scalings of the channel types to be applied for plotting. If None, defaults to ``scalings=dict(eeg=1e6, grad=1e13, mag=1e15, eog=1e6)``. cmap : None | colormap | (colormap, bool) | 'interactive' Colormap. If tuple, the first value indicates the colormap to use and the second value is a boolean defining interactivity. In interactive mode the colors are adjustable by clicking and dragging the colorbar with left and right mouse button. Left mouse button moves the scale up and down and right mouse button adjusts the range. Hitting space bar resets the scale. Up and down arrows can be used to change the colormap. If 'interactive', translates to ('RdBu_r', True). If None, "RdBu_r" is used, unless the data is all positive, in which case "Reds" is used. fig : Figure | None :class:`~matplotlib.figure.Figure` instance to draw the image to. Figure must contain the correct number of axes for drawing the epochs image, the evoked response, and a colorbar (depending on values of ``evoked`` and ``colorbar``). If ``None`` a new figure is created. Defaults to ``None``. axes : list of Axes | dict of list of Axes | None List of :class:`~matplotlib.axes.Axes` objects in which to draw the image, evoked response, and colorbar (in that order). Length of list must be 1, 2, or 3 (depending on values of ``colorbar`` and ``evoked`` parameters). If a :class:`dict`, each entry must be a list of Axes objects with the same constraints as above. If both ``axes`` and ``group_by`` are dicts, their keys must match. Providing non-``None`` values for both ``fig`` and ``axes`` results in an error. Defaults to ``None``. overlay_times : array_like, shape (n_epochs,) | None Times (in seconds) at which to draw a line on the corresponding row of the image (e.g., a reaction time associated with each epoch). Note that ``overlay_times`` should be ordered to correspond with the :class:`~mne.Epochs` object (i.e., ``overlay_times[0]`` corresponds to ``epochs[0]``, etc). %(combine)s If callable, the callable must accept one positional input (data of shape ``(n_epochs, n_channels, n_times)``) and return an :class:`array <numpy.ndarray>` of shape ``(n_epochs, n_times)``. For example:: combine = lambda data: np.median(data, axis=1) If ``combine`` is ``None``, channels are combined by computing GFP, unless ``group_by`` is also ``None`` and ``picks`` is a list of specific channels (not channel types), in which case no combining is performed and each channel gets its own figure. See Notes for further details. Defaults to ``None``. group_by : None | dict Specifies which channels are aggregated into a single figure, with aggregation method determined by the ``combine`` parameter. If not ``None``, one :class:`~matplotlib.figure.Figure` is made per dict entry; the dict key will be used as the figure title and the dict values must be lists of picks (either channel names or integer indices of ``epochs.ch_names``). For example:: group_by=dict(Left_ROI=[1, 2, 3, 4], Right_ROI=[5, 6, 7, 8]) Note that within a dict entry all channels must have the same type. ``group_by`` interacts with ``picks`` and ``combine`` to determine the number of figures generated; see Notes. Defaults to ``None``. evoked : bool Draw the ER[P/F] below the image or not. ts_args : None | dict Arguments passed to a call to `~mne.viz.plot_compare_evokeds` to style the evoked plot below the image. Defaults to an empty dictionary, meaning `~mne.viz.plot_compare_evokeds` will be called with default parameters. title : None | str If :class:`str`, will be plotted as figure title. Otherwise, the title will indicate channel(s) or channel type being plotted. Defaults to ``None``. clear : bool Whether to clear the axes before plotting (if ``fig`` or ``axes`` are provided). Defaults to ``False``. Returns ------- figs : list of Figure One figure per channel, channel type, or group, depending on values of ``picks``, ``group_by``, and ``combine``. See Notes. Notes ----- You can control how channels are aggregated into one figure or plotted in separate figures through a combination of the ``picks``, ``group_by``, and ``combine`` parameters. If ``group_by`` is a :class:`dict`, the result is one :class:`~matplotlib.figure.Figure` per dictionary key (for any valid values of ``picks`` and ``combine``). If ``group_by`` is ``None``, the number and content of the figures generated depends on the values of ``picks`` and ``combine``, as summarized in this table: .. cssclass:: table-bordered .. rst-class:: midvalign +----------+----------------------------+------------+-------------------+ | group_by | picks | combine | result | +==========+============================+============+===================+ | | None, int, list of int, | None, | | | dict | ch_name, list of ch_names, | string, or | 1 figure per | | | ch_type, list of ch_types | callable | dict key | +----------+----------------------------+------------+-------------------+ | | None, | None, | | | | ch_type, | string, or | 1 figure per | | | list of ch_types | callable | ch_type | | None +----------------------------+------------+-------------------+ | | int, | None | 1 figure per pick | | | ch_name, +------------+-------------------+ | | list of int, | string or | 1 figure | | | list of ch_names | callable | | +----------+----------------------------+------------+-------------------+ """ from scipy.ndimage import gaussian_filter1d from .. import EpochsArray _validate_type(group_by, (dict, None), 'group_by') units = _handle_default('units', units) scalings = _handle_default('scalings', scalings) if set(units) != set(scalings): raise ValueError('Scalings and units must have the same keys.') # is picks a channel type (or None)? picks, picked_types = _picks_to_idx(epochs.info, picks, return_kind=True) ch_types = _get_channel_types(epochs.info, picks) # `combine` defaults to 'gfp' unless picks are specific channels and # there was no group_by passed combine_given = combine is not None if combine is None and (group_by is not None or picked_types): combine = 'gfp' # convert `combine` into callable (if None or str) combine_func = _make_combine_callable(combine) # handle ts_args (params for the evoked time series) ts_args = dict() if ts_args is None else ts_args manual_ylims = 'ylim' in ts_args if combine is not None: ts_args['show_sensors'] = False vlines = [0] if (epochs.times[0] < 0 < epochs.times[-1]) else [] ts_defaults = dict(colors={'cond': 'k'}, title='', show=False, truncate_yaxis=False, truncate_xaxis=False, vlines=vlines, legend=False) ts_defaults.update(**ts_args) ts_args = ts_defaults.copy() # construct a group_by dict if one wasn't supplied if group_by is None: if picked_types: # one fig per ch_type group_by = {ch_type: picks[np.array(ch_types) == ch_type] for ch_type in set(ch_types) if ch_type in _DATA_CH_TYPES_SPLIT} elif combine is None: # one fig per pick group_by = {epochs.ch_names[pick]: [pick] for pick in picks} else: # one fig to rule them all ch_names = np.array(epochs.ch_names)[picks].tolist() key = _set_title_multiple_electrodes(None, combine, ch_names) group_by = {key: picks} else: group_by = deepcopy(group_by) # check for heterogeneous sensor type combinations / "combining" 1 channel for this_group, these_picks in group_by.items(): this_ch_type = np.array(ch_types)[np.in1d(picks, these_picks)] if len(set(this_ch_type)) > 1: types = ', '.join(set(this_ch_type)) raise ValueError('Cannot combine sensors of different types; "{}" ' 'contains types {}.'.format(this_group, types)) # now we know they're all the same type... group_by[this_group] = dict(picks=these_picks, ch_type=this_ch_type[0], title=title) # are they trying to combine a single channel? if len(these_picks) < 2 and combine_given: warn('Only one channel in group "{}"; cannot combine by method ' '"{}".'.format(this_group, combine)) # check for compatible `fig` / `axes`; instantiate figs if needed; add # fig(s) and axes into group_by group_by = _validate_fig_and_axes(fig, axes, group_by, evoked, colorbar, clear=clear) # prepare images in advance to get consistent vmin/vmax. # At the same time, create a subsetted epochs object for each group data = epochs.get_data() vmin_vmax = {ch_type: dict(images=list(), norm=list()) for ch_type in set(ch_types)} for this_group, this_group_dict in group_by.items(): these_picks = this_group_dict['picks'] this_ch_type = this_group_dict['ch_type'] this_ch_info = [epochs.info['chs'][n] for n in these_picks] these_ch_names = np.array(epochs.info['ch_names'])[these_picks] this_data = data[:, these_picks] # create subsetted epochs object this_info = create_info(sfreq=epochs.info['sfreq'], ch_names=list(these_ch_names), ch_types=[this_ch_type] * len(these_picks)) this_info['chs'] = this_ch_info this_epochs = EpochsArray(this_data, this_info, tmin=epochs.times[0]) # apply scalings (only to image, not epochs object), combine channels this_image = combine_func(this_data * scalings[this_ch_type]) # handle `order`. NB: this can potentially yield different orderings # in each figure! this_image, _overlay_times = _order_epochs(this_image, epochs.times, order, overlay_times) this_norm = np.all(this_image > 0) # apply smoothing if sigma > 0.: this_image = gaussian_filter1d(this_image, sigma=sigma, axis=0, mode='nearest') # update the group_by and vmin_vmax dicts group_by[this_group].update(image=this_image, epochs=this_epochs, norm=this_norm) vmin_vmax[this_ch_type]['images'].append(this_image) vmin_vmax[this_ch_type]['norm'].append(this_norm) # compute overall vmin/vmax for images for ch_type, this_vmin_vmax_dict in vmin_vmax.items(): image_list = this_vmin_vmax_dict['images'] image_stack = np.stack(image_list) norm = all(this_vmin_vmax_dict['norm']) vmin_vmax[ch_type] = _setup_vmin_vmax(image_stack, vmin, vmax, norm) del image_stack, vmin, vmax # prepare to plot auto_ylims = {ch_type: [0., 0.] for ch_type in set(ch_types)} # plot for this_group, this_group_dict in group_by.items(): this_ch_type = this_group_dict['ch_type'] this_axes_dict = this_group_dict['axes'] vmin, vmax = vmin_vmax[this_ch_type] # plot title if this_group_dict['title'] is None: title = _handle_default('titles').get(this_group, this_group) if isinstance(combine, str) and len(title): _comb = combine.upper() if combine == 'gfp' else combine _comb = 'std. dev.' if _comb == 'std' else _comb title += f' ({_comb})' # plot the image this_fig = _plot_epochs_image( this_group_dict['image'], epochs=this_group_dict['epochs'], picks=picks, colorbar=colorbar, vmin=vmin, vmax=vmax, cmap=cmap, style_axes=True, norm=this_group_dict['norm'], unit=units[this_ch_type], ax=this_axes_dict, show=False, title=title, combine=combine, combine_given=combine_given, overlay_times=_overlay_times, evoked=evoked, ts_args=ts_args) group_by[this_group].update(fig=this_fig) # detect ylims across figures if evoked and not manual_ylims: # ensure get_ylim works properly this_axes_dict['evoked'].figure.canvas.draw_idle() this_bot, this_top = this_axes_dict['evoked'].get_ylim() this_min = min(this_bot, this_top) this_max = max(this_bot, this_top) curr_min, curr_max = auto_ylims[ch_type] auto_ylims[this_ch_type] = [min(curr_min, this_min), max(curr_max, this_max)] # equalize ylims across figures (does not adjust ticks) if evoked: for this_group_dict in group_by.values(): ax = this_group_dict['axes']['evoked'] ch_type = this_group_dict['ch_type'] if not manual_ylims: args = auto_ylims[ch_type] if 'invert_y' in ts_args: args = args[::-1] ax.set_ylim(*args) plt_show(show) # impose deterministic order of returned objects return_order = np.array(sorted(group_by)) are_ch_types = np.in1d(return_order, _VALID_CHANNEL_TYPES) if any(are_ch_types): return_order = np.concatenate((return_order[are_ch_types], return_order[~are_ch_types])) return [group_by[group]['fig'] for group in return_order] def _validate_fig_and_axes(fig, axes, group_by, evoked, colorbar, clear=False): """Check user-provided fig/axes compatibility with plot_epochs_image.""" from matplotlib.pyplot import figure, Axes, subplot2grid n_axes = 1 + int(evoked) + int(colorbar) ax_names = ('image', 'evoked', 'colorbar') ax_names = np.array(ax_names)[np.where([True, evoked, colorbar])] prefix = 'Since evoked={} and colorbar={}, '.format(evoked, colorbar) # got both fig and axes if fig is not None and axes is not None: raise ValueError('At least one of "fig" or "axes" must be None; got ' 'fig={}, axes={}.'.format(fig, axes)) # got fig=None and axes=None: make fig(s) and axes if fig is None and axes is None: axes = dict() colspan = 9 if colorbar else 10 rowspan = 2 if evoked else 3 shape = (3, 10) for this_group in group_by: this_fig = figure() _set_window_title(this_fig, this_group) subplot2grid(shape, (0, 0), colspan=colspan, rowspan=rowspan, fig=this_fig) if evoked: subplot2grid(shape, (2, 0), colspan=colspan, rowspan=1, fig=this_fig) if colorbar: subplot2grid(shape, (0, 9), colspan=1, rowspan=rowspan, fig=this_fig) axes[this_group] = this_fig.axes # got a Figure instance if fig is not None: # If we're re-plotting into a fig made by a previous call to # `plot_image`, be forgiving of presence/absence of sensor inset axis. if len(fig.axes) not in (n_axes, n_axes + 1): raise ValueError('{}"fig" must contain {} axes, got {}.' ''.format(prefix, n_axes, len(fig.axes))) if len(list(group_by)) != 1: raise ValueError('When "fig" is not None, "group_by" can only ' 'have one group (got {}: {}).' .format(len(group_by), ', '.join(group_by))) key = list(group_by)[0] if clear: # necessary if re-plotting into previous figure _ = [ax.clear() for ax in fig.axes] if len(fig.axes) > n_axes: # get rid of sensor inset fig.axes[-1].remove() _set_window_title(fig, key) axes = {key: fig.axes} # got an Axes instance, be forgiving (if evoked and colorbar are False) if isinstance(axes, Axes): axes = [axes] # got an ndarray; be forgiving if isinstance(axes, np.ndarray): axes = axes.ravel().tolist() # got a list of axes, make it a dict if isinstance(axes, list): if len(axes) != n_axes: raise ValueError('{}"axes" must be length {}, got {}.' ''.format(prefix, n_axes, len(axes))) # for list of axes to work, must be only one group if len(list(group_by)) != 1: raise ValueError('When axes is a list, can only plot one group ' '(got {} groups: {}).' .format(len(group_by), ', '.join(group_by))) key = list(group_by)[0] axes = {key: axes} # got a dict of lists of axes, make it dict of dicts if isinstance(axes, dict): # in theory a user could pass a dict of axes but *NOT* pass a group_by # dict, but that is forbidden in the docstring so it shouldn't happen. # The next test could fail in that case because we've constructed a # group_by dict and the user won't have known what keys we chose. if set(axes) != set(group_by): raise ValueError('If "axes" is a dict its keys ({}) must match ' 'the keys in "group_by" ({}).' .format(list(axes), list(group_by))) for this_group, this_axes_list in axes.items(): if len(this_axes_list) != n_axes: raise ValueError('{}each value in "axes" must be a list of {} ' 'axes, got {}.'.format(prefix, n_axes, len(this_axes_list))) # NB: next line assumes all axes in each list are in same figure group_by[this_group]['fig'] = this_axes_list[0].get_figure() group_by[this_group]['axes'] = {key: axis for key, axis in zip(ax_names, this_axes_list)} return group_by def _order_epochs(data, times, order=None, overlay_times=None): """Sort epochs image data (2D). Helper for plot_epochs_image.""" n_epochs = len(data) if overlay_times is not None: if len(overlay_times) != n_epochs: raise ValueError( f'size of overlay_times parameter ({len(overlay_times)}) does ' f'not match the number of epochs ({n_epochs}).') overlay_times = np.array(overlay_times) times_min = np.min(overlay_times) times_max = np.max(overlay_times) if (times_min < times[0]) or (times_max > times[-1]): warn('Some values in overlay_times fall outside of the epochs ' f'time interval (between {times[0]} s and {times[-1]} s)') if callable(order): order = order(times, data) if order is not None: if len(order) != n_epochs: raise ValueError(f'If order is a {type(order).__name__}, its ' f'length ({len(order)}) must match the length of ' f'the data ({n_epochs}).') order = np.array(order) data = data[order] if overlay_times is not None: overlay_times = overlay_times[order] return data, overlay_times def _plot_epochs_image(image, style_axes=True, epochs=None, picks=None, vmin=None, vmax=None, colorbar=False, show=False, unit=None, cmap=None, ax=None, overlay_times=None, title=None, evoked=False, ts_args=None, combine=None, combine_given=False, norm=False): """Plot epochs image. Helper function for plot_epochs_image.""" from matplotlib.ticker import AutoLocator if cmap is None: cmap = 'Reds' if norm else 'RdBu_r' tmin = epochs.times[0] tmax = epochs.times[-1] ax_im = ax['image'] fig = ax_im.get_figure() # draw the image cmap = _setup_cmap(cmap, norm=norm) n_epochs = len(image) extent = [tmin, tmax, 0, n_epochs] im = ax_im.imshow(image, vmin=vmin, vmax=vmax, cmap=cmap[0], aspect='auto', origin='lower', interpolation='nearest', extent=extent) # optional things if style_axes: ax_im.set_title(title) ax_im.set_ylabel('Epochs') if not evoked: ax_im.set_xlabel('Time (s)') ax_im.axis('auto') ax_im.axis('tight') ax_im.axvline(0, color='k', linewidth=1, linestyle='--') if overlay_times is not None: ax_im.plot(overlay_times, 0.5 + np.arange(n_epochs), 'k', linewidth=2) ax_im.set_xlim(tmin, tmax) # draw the evoked if evoked: from . import plot_compare_evokeds pass_combine = (combine if combine_given else None) _picks = [0] if len(picks) == 1 else None # prevent applying GFP plot_compare_evokeds({'cond': list(epochs.iter_evoked(copy=False))}, picks=_picks, axes=ax['evoked'], combine=pass_combine, **ts_args) ax['evoked'].set_xlim(tmin, tmax) ax['evoked'].lines[0].set_clip_on(True) ax['evoked'].collections[0].set_clip_on(True) ax['evoked'].get_shared_x_axes().join(ax['evoked'], ax_im) # fix the axes for proper updating during interactivity loc = ax_im.xaxis.get_major_locator() ax['evoked'].xaxis.set_major_locator(loc) ax['evoked'].yaxis.set_major_locator(AutoLocator()) # draw the colorbar if colorbar: from matplotlib.pyplot import colorbar as cbar this_colorbar = cbar(im, cax=ax['colorbar']) this_colorbar.ax.set_ylabel(unit, rotation=270, labelpad=12) if cmap[1]: ax_im.CB = DraggableColorbar(this_colorbar, im) with warnings.catch_warnings(record=True): warnings.simplefilter('ignore') tight_layout(fig=fig) # finish plt_show(show) return fig def plot_drop_log(drop_log, threshold=0, n_max_plot=20, subject='Unknown subj', color=(0.8, 0.8, 0.8), width=0.8, ignore=('IGNORED',), show=True): """Show the channel stats based on a drop_log from Epochs. Parameters ---------- drop_log : list of list Epoch drop log from Epochs.drop_log. threshold : float The percentage threshold to use to decide whether or not to plot. Default is zero (always plot). n_max_plot : int Maximum number of channels to show stats for. subject : str | None The subject name to use in the title of the plot. If ``None``, do not display a subject name. .. versionchanged:: 0.23 Added support for ``None``. color : tuple | str Color to use for the bars. width : float Width of the bars. ignore : list The drop reasons to ignore. show : bool Show figure if True. Returns ------- fig : instance of matplotlib.figure.Figure The figure. """ import matplotlib.pyplot as plt from ..epochs import _drop_log_stats percent = _drop_log_stats(drop_log, ignore) if percent < threshold: logger.info('Percent dropped epochs < supplied threshold; not ' 'plotting drop log.') return scores = Counter([ch for d in drop_log for ch in d if ch not in ignore]) ch_names = np.array(list(scores.keys())) counts = np.array(list(scores.values())) # init figure, handle easy case (no drops) fig, ax = plt.subplots() title = f'{percent:.1f}% of all epochs rejected' if subject is not None: title = f'{subject}: {title}' ax.set_title(title) if len(ch_names) == 0: ax.text(0.5, 0.5, 'No drops', ha='center', fontsize=14) return fig # count epochs that aren't fully caught by `ignore` n_used = sum([any(ch not in ignore for ch in d) or len(d) == 0 for d in drop_log]) # calc plot values n_bars = min(n_max_plot, len(ch_names)) x = np.arange(n_bars) y = 100 * counts / n_used order = np.flipud(np.argsort(y)) ax.bar(x, y[order[:n_bars]], color=color, width=width, align='center') ax.set_xticks(x) ax.set_xticklabels(ch_names[order[:n_bars]], rotation=45, size=10, horizontalalignment='right') ax.set_ylabel('% of epochs rejected') ax.grid(axis='y') tight_layout(pad=1, fig=fig) plt_show(show) return fig @fill_doc def plot_epochs(epochs, picks=None, scalings=None, n_epochs=20, n_channels=20, title=None, events=None, event_color=None, order=None, show=True, block=False, decim='auto', noise_cov=None, butterfly=False, show_scrollbars=True, epoch_colors=None, event_id=None, group_by='type'): """Visualize epochs. Bad epochs can be marked with a left click on top of the epoch. Bad channels can be selected by clicking the channel name on the left side of the main axes. Calling this function drops all the selected bad epochs as well as bad epochs marked beforehand with rejection parameters. Parameters ---------- epochs : instance of Epochs The epochs object. %(picks_good_data)s scalings : dict | 'auto' | None Scaling factors for the traces. If any fields in scalings are 'auto', the scaling factor is set to match the 99.5th percentile of a subset of the corresponding data. If scalings == 'auto', all scalings fields are set to 'auto'. If any fields are 'auto' and data is not preloaded, a subset of epochs up to 100 Mb will be loaded. If None, defaults to:: dict(mag=1e-12, grad=4e-11, eeg=20e-6, eog=150e-6, ecg=5e-4, emg=1e-3, ref_meg=1e-12, misc=1e-3, stim=1, resp=1, chpi=1e-4, whitened=10.) n_epochs : int The number of epochs per view. Defaults to 20. n_channels : int The number of channels per view. Defaults to 20. title : str | None The title of the window. If None, epochs name will be displayed. Defaults to None. events : None | array, shape (n_events, 3) Events to show with vertical bars. You can use `~mne.viz.plot_events` as a legend for the colors. By default, the coloring scheme is the same. Defaults to ``None``. .. warning:: If the epochs have been resampled, the events no longer align with the data. .. versionadded:: 0.14.0 %(event_color)s Defaults to ``None``. order : array of str | None Order in which to plot channel types. .. versionadded:: 0.18.0 show : bool Show figure if True. Defaults to True. block : bool Whether to halt program execution until the figure is closed. Useful for rejecting bad trials on the fly by clicking on an epoch. Defaults to False. decim : int | 'auto' Amount to decimate the data during display for speed purposes. You should only decimate if the data are sufficiently low-passed, otherwise aliasing can occur. The 'auto' mode (default) uses the decimation that results in a sampling rate at least three times larger than ``info['lowpass']`` (e.g., a 40 Hz lowpass will result in at least a 120 Hz displayed sample rate). .. versionadded:: 0.15.0 noise_cov : instance of Covariance | str | None Noise covariance used to whiten the data while plotting. Whitened data channels are scaled by ``scalings['whitened']``, and their channel names are shown in italic. Can be a string to load a covariance from disk. See also :meth:`mne.Evoked.plot_white` for additional inspection of noise covariance properties when whitening evoked data. For data processed with SSS, the effective dependence between magnetometers and gradiometers may introduce differences in scaling, consider using :meth:`mne.Evoked.plot_white`. .. versionadded:: 0.16.0 butterfly : bool Whether to directly call the butterfly view. .. versionadded:: 0.18.0 %(show_scrollbars)s epoch_colors : list of (n_epochs) list (of n_channels) | None Colors to use for individual epochs. If None, use default colors. event_id : dict | None Dictionary of event labels (e.g. 'aud_l') as keys and associated event integers as values. Useful when ``events`` contains event numbers not present in ``epochs.event_id`` (e.g., because of event subselection). Values in ``event_id`` will take precedence over those in ``epochs.event_id`` when there are overlapping keys. .. versionadded:: 0.20 %(browse_group_by)s Returns ------- fig : instance of matplotlib.figure.Figure The figure. Notes ----- The arrow keys (up/down/left/right) can be used to navigate between channels and epochs and the scaling can be adjusted with - and + (or =) keys, but this depends on the backend matplotlib is configured to use (e.g., mpl.use(``TkAgg``) should work). Full screen mode can be toggled with f11 key. The amount of epochs and channels per view can be adjusted with home/end and page down/page up keys. These can also be set through options dialog by pressing ``o`` key. ``h`` key plots a histogram of peak-to-peak values along with the used rejection thresholds. Butterfly plot can be toggled with ``b`` key. Right mouse click adds a vertical line to the plot. Click 'help' button at bottom left corner of the plotter to view all the options. .. versionadded:: 0.10.0 """ from ._figure import _browse_figure epochs.drop_bad() info = epochs.info.copy() sfreq = info['sfreq'] projs = info['projs'] projs_on = np.full_like(projs, epochs.proj, dtype=bool) if not epochs.proj: info['projs'] = list() # handle defaults / check arg validity color = _handle_default('color', None) scalings = _compute_scalings(scalings, epochs) scalings = _handle_default('scalings_plot_raw', scalings) if scalings['whitened'] == 'auto': scalings['whitened'] = 1. units = _handle_default('units', None) unit_scalings = _handle_default('scalings', None) decim, picks_data = _handle_decim(epochs.info.copy(), decim, None) noise_cov = _check_cov(noise_cov, epochs.info) event_id_rev = {v: k for k, v in (event_id or {}).items()} _check_option('group_by', group_by, ('selection', 'position', 'original', 'type')) # validate epoch_colors _validate_type(epoch_colors, (list, None), 'epoch_colors') if epoch_colors is not None: if len(epoch_colors) != len(epochs.events): msg = ('epoch_colors must have length equal to the number of ' f'epochs ({len(epochs)}); got length {len(epoch_colors)}.') raise ValueError(msg) for ix, this_colors in enumerate(epoch_colors): _validate_type(this_colors, list, f'epoch_colors[{ix}]') if len(this_colors) != len(epochs.ch_names): msg = (f'epoch colors for epoch {ix} has length ' f'{len(this_colors)}, expected {len(epochs.ch_names)}.') raise ValueError(msg) # handle time dimension n_epochs = min(n_epochs, len(epochs)) n_times = len(epochs) * len(epochs.times) duration = n_epochs * len(epochs.times) / sfreq # NB: this includes start and end of data: boundary_times = np.arange(len(epochs) + 1) * len(epochs.times) / sfreq # events if events is not None: event_nums = events[:, 2] event_samps = events[:, 0] epoch_n_samps = len(epochs.times) # handle overlapping epochs (each event may show up in multiple places) boundaries = (epochs.events[:, [0]] + np.array([-1, 1]) * epochs.time_as_index(0)) in_bounds = np.logical_and(boundaries[:, [0]] <= event_samps, event_samps < boundaries[:, [1]]) event_ixs = [np.nonzero(a)[0] for a in in_bounds.T] warned = False event_times = list() event_numbers = list() for samp, num, _ixs in zip(event_samps, event_nums, event_ixs): relevant_epoch_events = epochs.events[:, 0][_ixs] if len(relevant_epoch_events) > 1 and not warned: logger.info('You seem to have overlapping epochs. Some event ' 'lines may be duplicated in the plot.') warned = True offsets = samp - relevant_epoch_events + epochs.time_as_index(0) this_event_times = (_ixs * epoch_n_samps + offsets) / sfreq event_times.extend(this_event_times) event_numbers.extend([num] * len(_ixs)) event_nums = np.array(event_numbers) event_times = np.array(event_times) else: event_nums = None event_times = None event_color_dict = _make_event_color_dict(event_color, events, event_id) # determine trace order picks = _picks_to_idx(info, picks) n_channels = min(n_channels, len(picks)) ch_names = np.array(epochs.ch_names) ch_types = np.array(epochs.get_channel_types()) order = _get_channel_plotting_order(order, ch_types, picks) selections = None if group_by in ('selection', 'position'): selections = _setup_channel_selections(epochs, group_by, order) order = np.concatenate(list(selections.values())) default_selection = list(selections)[0] n_channels = len(selections[default_selection]) # generate window title if title is None: title = epochs._name if title is None or len(title) == 0: title = 'Epochs' elif not isinstance(title, str): raise TypeError(f'title must be None or a string, got a {type(title)}') params = dict(inst=epochs, info=info, n_epochs=n_epochs, # channels and channel order ch_names=ch_names, ch_types=ch_types, ch_order=order, picks=order[:n_channels], n_channels=n_channels, picks_data=picks_data, group_by=group_by, ch_selections=selections, # time t_start=0, duration=duration, n_times=n_times, first_time=0, time_format='float', decim=decim, boundary_times=boundary_times, # events event_id_rev=event_id_rev, event_color_dict=event_color_dict, event_nums=event_nums, event_times=event_times, # preprocessing projs=projs, projs_on=projs_on, apply_proj=epochs.proj, remove_dc=True, filter_coefs=None, filter_bounds=None, noise_cov=noise_cov, use_noise_cov=noise_cov is not None, # scalings scalings=scalings, units=units, unit_scalings=unit_scalings, # colors ch_color_bad=(0.8, 0.8, 0.8), ch_color_dict=color, epoch_color_bad=(1, 0, 0), epoch_colors=epoch_colors, # display butterfly=butterfly, clipping=None, scrollbars_visible=show_scrollbars, scalebars_visible=False, window_title=title, xlabel='Epoch number') fig = _browse_figure(**params) fig._update_picks() # make channel selection dialog, if requested (doesn't work well in init) if group_by in ('selection', 'position'): fig._create_selection_fig() fig._update_projector() fig._update_trace_offsets() fig._update_data() fig._draw_traces() plt_show(show, block=block) return fig @verbose def plot_epochs_psd(epochs, fmin=0, fmax=np.inf, tmin=None, tmax=None, proj=False, bandwidth=None, adaptive=False, low_bias=True, normalization='length', picks=None, ax=None, color='black', xscale='linear', area_mode='std', area_alpha=0.33, dB=True, estimate='auto', show=True, n_jobs=1, average=False, line_alpha=None, spatial_colors=True, sphere=None, exclude='bads', verbose=None): """%(plot_psd_doc)s. Parameters ---------- epochs : instance of Epochs The epochs object. fmin : float Start frequency to consider. fmax : float End frequency to consider. tmin : float | None Start time to consider. tmax : float | None End time to consider. proj : bool Apply projection. bandwidth : float The bandwidth of the multi taper windowing function in Hz. The default value is a window half-bandwidth of 4. adaptive : bool Use adaptive weights to combine the tapered spectra into PSD (slow, use n_jobs >> 1 to speed up computation). low_bias : bool Only use tapers with more than 90%% spectral concentration within bandwidth. normalization : str Either "full" or "length" (default). If "full", the PSD will be normalized by the sampling rate as well as the length of the signal (as in nitime). %(plot_psd_picks_good_data)s ax : instance of Axes | None Axes to plot into. If None, axes will be created. %(plot_psd_color)s %(plot_psd_xscale)s %(plot_psd_area_mode)s %(plot_psd_area_alpha)s %(plot_psd_dB)s %(plot_psd_estimate)s %(show)s %(n_jobs)s %(plot_psd_average)s %(plot_psd_line_alpha)s %(plot_psd_spatial_colors)s %(topomap_sphere_auto)s exclude : list of str | 'bads' Channels names to exclude from being shown. If 'bads', the bad channels are excluded. Pass an empty list to plot all channels (including channels marked "bad", if any). .. versionadded:: 0.24.0 %(verbose)s Returns ------- fig : instance of Figure Figure with frequency spectra of the data channels. """ from ._figure import _psd_figure # generate figure # epochs always use multitaper, not Welch, so no need to allow "window" # param above fig = _psd_figure( inst=epochs, proj=proj, picks=picks, axes=ax, tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax, sphere=sphere, xscale=xscale, dB=dB, average=average, estimate=estimate, area_mode=area_mode, line_alpha=line_alpha, area_alpha=area_alpha, color=color, spatial_colors=spatial_colors, n_jobs=n_jobs, bandwidth=bandwidth, adaptive=adaptive, low_bias=low_bias, normalization=normalization, window='hamming', exclude=exclude) plt_show(show) return fig
bsd-3-clause
jdrudolph/scikit-bio
setup.py
6
4944
#!/usr/bin/env python # ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- import os import platform import re import ast from setuptools import find_packages, setup from setuptools.extension import Extension from setuptools.command.build_ext import build_ext as _build_ext # Bootstrap setup.py with numpy # Huge thanks to coldfix's solution # http://stackoverflow.com/a/21621689/579416 class build_ext(_build_ext): def finalize_options(self): _build_ext.finalize_options(self) # Prevent numpy from thinking it is still in its setup process: __builtins__.__NUMPY_SETUP__ = False import numpy self.include_dirs.append(numpy.get_include()) # version parsing from __init__ pulled from Flask's setup.py # https://github.com/mitsuhiko/flask/blob/master/setup.py _version_re = re.compile(r'__version__\s+=\s+(.*)') with open('skbio/__init__.py', 'rb') as f: hit = _version_re.search(f.read().decode('utf-8')).group(1) version = str(ast.literal_eval(hit)) classes = """ Development Status :: 4 - Beta License :: OSI Approved :: BSD License Topic :: Software Development :: Libraries Topic :: Scientific/Engineering Topic :: Scientific/Engineering :: Bio-Informatics Programming Language :: Python Programming Language :: Python :: 2 Programming Language :: Python :: 2.7 Programming Language :: Python :: 3 Programming Language :: Python :: 3.3 Programming Language :: Python :: 3.4 Operating System :: Unix Operating System :: POSIX Operating System :: MacOS :: MacOS X """ classifiers = [s.strip() for s in classes.split('\n') if s] description = ('Data structures, algorithms and educational ' 'resources for bioinformatics.') with open('README.rst') as f: long_description = f.read() # Dealing with Cython USE_CYTHON = os.environ.get('USE_CYTHON', False) ext = '.pyx' if USE_CYTHON else '.c' # There's a bug in some versions of Python 3.4 that propagates # -Werror=declaration-after-statement to extensions, instead of just affecting # the compilation of the interpreter. See http://bugs.python.org/issue21121 for # details. This acts as a workaround until the next Python 3 release -- thanks # Wolfgang Maier (wolma) for the workaround! ssw_extra_compile_args = ['-Wno-error=declaration-after-statement'] # Users with i686 architectures have reported that adding this flag allows # SSW to be compiled. See https://github.com/biocore/scikit-bio/issues/409 and # http://stackoverflow.com/q/26211814/3776794 for details. if platform.machine() == 'i686': ssw_extra_compile_args.append('-msse2') extensions = [ Extension("skbio.stats.__subsample", ["skbio/stats/__subsample" + ext]), Extension("skbio.alignment._ssw_wrapper", ["skbio/alignment/_ssw_wrapper" + ext, "skbio/alignment/_lib/ssw.c"], extra_compile_args=ssw_extra_compile_args) ] if USE_CYTHON: from Cython.Build import cythonize extensions = cythonize(extensions) setup(name='scikit-bio', version=version, license='BSD', description=description, long_description=long_description, author="scikit-bio development team", author_email="[email protected]", maintainer="scikit-bio development team", maintainer_email="[email protected]", url='http://scikit-bio.org', test_suite='nose.collector', packages=find_packages(), ext_modules=extensions, cmdclass={'build_ext': build_ext}, setup_requires=['numpy >= 1.9.2'], install_requires=[ 'bz2file >= 0.98', 'CacheControl[FileCache] >= 0.11.5', 'contextlib2 >= 0.4.0', 'decorator >= 3.4.2', 'future >= 0.14.3', 'IPython >= 3.2.0', 'matplotlib >= 1.4.3', 'natsort >= 4.0.3', 'numpy >= 1.9.2', 'pandas >= 0.16.2', 'scipy >= 0.15.1', 'six >= 1.9.0' ], extras_require={'test': ["HTTPretty", "nose", "pep8", "flake8", "python-dateutil", "check-manifest"], 'doc': ["Sphinx == 1.2.2", "sphinx-bootstrap-theme"]}, classifiers=classifiers, package_data={ 'skbio.diversity.alpha.tests': ['data/qiime-191-tt/*'], 'skbio.diversity.beta.tests': ['data/qiime-191-tt/*'], 'skbio.io.tests': ['data/*'], 'skbio.io.format.tests': ['data/*'], 'skbio.stats.tests': ['data/*'], 'skbio.stats.distance.tests': ['data/*'], 'skbio.stats.ordination.tests': ['data/*'] } )
bsd-3-clause
mfittere/SixDeskDB
old/danilo/DA_FullStat_v2.py
2
8226
#!/usr/bin/python # python re-implementation of read10b.f done by Danilo Banfi ([email protected]) # This compute DA starting from the local .db produced by CreateDB.py # Below are indicated thing that need to be edited by hand. # You only have to provide the name of the study <study_name> like # python CreateDB.py <write_your_fancy_study_name_here> # DA result will be written in file DA_<study_name>.txt with the usual meaning for all seeds # In file DA_<study_name>_summary.txt you will find study,angle,min,mean,max,nega,Amin,Amax of # lost1 , as in old .plot file # # NOTA: please use python version >=2.6 import sys import getopt from sixdesk import * import numpy as np import math import matplotlib.pyplot as plt # PART TO BE EDITED ======================================================================== Elhc=2.5 #normalized emittance as in "general input" Einj=7460.5 #gamma as in "general input" workarea='/afs/cern.ch/user/d/dbanfi/SixTrack_NEW' #where input db is, and where output will be written # DO NOT EDIT BEYOND HERE IF YOU'RE NOT REALLY SURE ======================================= rectype=[('study','S100'),('seed','int'),('betx' ,'float'),('bety' ,'float'),('sigx1' ,'float'),('sigy1' ,'float'),('emitx' ,'float'),('emity' ,'float'), ('sigxavgnld' ,'float') ,('sigyavgnld' ,'float'),('betx2' ,'float'),('bety2' ,'float'),('distp' ,'float'),('dist' ,'float'), ('sturns1' ,'int') ,('sturns2' ,'int') ,('turn_max','int') ,('amp1' ,'float'),('amp2' ,'float'),('angle' ,'float')] names='study,seed,betx,bety,sigx1,sigy1,emitx,emity,sigxavgnld,sigyavgnld,betx2,bety2,distp,dist,sturns1,sturns2,turn_max,amp1,amp2,angle' outtype=[('study','S100'),('seed','int'),('angle','float'),('achaos','float'),('achaos1','float'),('alost1','float'),('alost2','float'),('Amin','float'),('Amax','float')] def main(): try: opts, args = getopt.getopt(sys.argv[1:], "h", ["help"]) except getopt.error, msg: print msg print "for help use --help" sys.exit(2) for o, a in opts: if o in ("-h", "--help"): print "use: DA_FullStat_public <study_name>" sys.exit(0) if len(args)<1 : print "too few options: please provide <study_name>" sys.exit() if len(args)>1 : print "too many options: please provide only <study_name>" sys.exit() database='%s/%s.db'%(workarea,args[0]) if os.path.isfile(database): sd=SixDeskDB(database) else: print "ERROR: file %s does not exists!" %(database) sys.exit() f = open('DA_%s.txt'%args[0], 'w') tmp=np.array(sd.execute('SELECT DISTINCT %s FROM results'%names),dtype=rectype) for angle in np.unique(tmp['angle']): for seed in np.unique(tmp['seed']): ich1 = 0 ich2 = 0 ich3 = 0 icount = 1. itest = 0 iin = -999 iend = -999 alost1 = 0. alost2 = 0. achaos = 0 achaos1 = 0 mask=[(tmp['betx']>0) & (tmp['emitx']>0) & (tmp['bety']>0) & (tmp['emity']>0) & (tmp['angle']==angle) & (tmp['seed']==seed)] inp=tmp[mask] if inp.size<2 : print 'not enought data for angle = %s' %angle break zero = 1e-10 for itest in range(0,inp.size): if inp['betx'][itest]>zero and inp['emitx'][itest]>zero : inp['sigx1'][itest] = math.sqrt(inp['betx'][itest]*inp['emitx'][itest]) if inp['bety'][itest]>zero and inp['emity'][itest]>zero : inp['sigy1'][itest] = math.sqrt(inp['bety'][itest]*inp['emity'][itest]) if inp['betx'][itest]>zero and inp['emitx'][itest]>zero and inp['bety'][itest]>zero and inp['emity'][itest]>zero: itest+=1 iel=inp.size-1 rat=0 if inp['sigx1'][0]>0: rat=pow(inp['sigy1'][0],2)*inp['betx'][0]/(pow(inp['sigx1'][0],2)*inp['bety'][0]) if pow(inp['sigx1'][0],2)*inp['bety'][0]<pow(inp['sigy1'][0],2)*inp['betx'][0]: rat=2 if inp['emity'][0]>inp['emitx'][0]: rat=0 dummy=np.copy(inp['betx']) inp['betx']=inp['bety'] inp['bety']=dummy dummy=np.copy(inp['betx2']) inp['betx2']=inp['bety2'] inp['bety2']=dummy dummy=np.copy(inp['sigx1']) inp['sigx1']=inp['sigy1'] inp['sigy1']=dummy dummy=np.copy(inp['sigxavgnld']) inp['sigxavgnld']=inp['sigyavgnld'] inp['sigyavgnld']=dummy dummy=np.copy(inp['emitx']) inp['emitx']=inp['emity'] inp['emity']=dummy sigma=math.sqrt(inp['betx'][0]*Elhc/Einj) if abs(inp['emity'][0])>0 and abs(inp['sigx1'][0])>0: if abs(inp['emitx'][0])<zero : rad=math.sqrt(1+(pow(inp['sigy1'][0],2)*inp['betx'][0])/(pow(inp['sigx1'][0],2)*inp['bety'][0]))/sigma else: rad=math.sqrt((abs(inp['emitx'][0])+abs(inp['emity'][0]))/abs(inp['emitx'][0]))/sigma if abs(inp['sigxavgnld'][0])>zero and abs(inp['bety'][0])>zero: if abs(inp['emitx'][0]) < zero : rad1=math.sqrt(1+(pow(inp['sigyavgnld'][0],2)*inp['betx'][0])/(pow(inp['sigxavgnld'][0],2)*inp['bety'][0]))/sigma else: rad1=(inp['sigyavgnld'][0]*math.sqrt(inp['betx'][0])-inp['sigxavgnld'][0]*math.sqrt(inp['bety2'][0]))/(inp['sigxavgnld'][0]*math.sqrt(inp['bety'][0])-inp['sigyavgnld'][0]*math.sqrt(inp['betx2'][0])) rad1=math.sqrt(1+rad1*rad1)/sigma else: rad1 = 1 for i in range(0,iel+1): if ich1 == 0 and (inp['distp'][i] > 2. or inp['distp'][i]<=0.5): ich1 = 1 achaos=rad*inp['sigx1'][i] iin=i if ich3 == 0 and inp['dist'][i] > 1e-2 : ich3=1 iend=i achaos1=rad*inp['sigx1'][i] if ich2 == 0 and (inp['sturns1'][i]<inp['turn_max'][i] or inp['sturns2'][i]<inp['turn_max'][i]): ich2 = 1 alost2 = rad*inp['sigx1'][i] if iin != -999 and iend == -999 : iend=iel if iin != -999 and iend >= iin : for i in range(iin,iend+1) : alost1 += (rad1/rad) * (inp['sigxavgnld'][i]/inp['sigx1'][i]) alost1 = alost1/(float(iend)-iin+1) if alost1 >= 1.1 or alost1 <= 0.9: alost1= -1. * alost1 else: alost1 = 1.0 alost1=alost1*alost2 # print "study=%s seed=%s angle = %s achaos= %s achaos1= %s alost1= %s alost2= %s rad*sigx1[1]= %s rad*sigx1[iel]= %s" %(args[0],seed,angle,achaos,achaos1,alost1,alost2,rad*inp['sigx1'][0],rad*inp['sigx1'][iel]) f.write('%s %s %s %s %s %s %s %s %s \n'%(args[0],seed,angle,achaos,achaos1,alost1,alost2,rad*inp['sigx1'][0],rad*inp['sigx1'][iel])) f.close() f = open('DA_%s.txt'%args[0], 'r') final=np.genfromtxt(f,dtype=outtype) f.close() f1 = open('DA_%s_summary.txt'%args[0], 'w') for angle in np.unique(final['angle']): study=final['study'][0] mini = np.min(np.abs(final['alost1'][(final['angle']==angle)])) mean =np.mean(np.abs(final['alost1'][(final['angle']==angle)&(final['alost1']!=0)])) maxi = np.max(np.abs(final['alost1'][(final['angle']==angle)])) nega = len(final['alost1'][(final['angle']==angle)&(final['alost1']<0)]) Amin = np.min(final['Amin'][final['angle']==angle]) Amax = np.max(final['Amax'][final['angle']==angle]) print study, angle, mini , mean, maxi,nega , Amin, Amax f1.write('%s %.2f %.2f %.2f %.2f %.0f %.2f %.2f \n'%(study,angle, mini , mean, maxi,nega , Amin, Amax)) f1.close() if __name__ == "__main__": main()
lgpl-2.1
mjgrav2001/scikit-learn
examples/classification/plot_classifier_comparison.py
181
4699
#!/usr/bin/python # -*- coding: utf-8 -*- """ ===================== Classifier comparison ===================== A comparison of a several classifiers in scikit-learn on synthetic datasets. The point of this example is to illustrate the nature of decision boundaries of different classifiers. This should be taken with a grain of salt, as the intuition conveyed by these examples does not necessarily carry over to real datasets. Particularly in high-dimensional spaces, data can more easily be separated linearly and the simplicity of classifiers such as naive Bayes and linear SVMs might lead to better generalization than is achieved by other classifiers. The plots show training points in solid colors and testing points semi-transparent. The lower right shows the classification accuracy on the test set. """ print(__doc__) # Code source: Gaël Varoquaux # Andreas Müller # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.lda import LDA from sklearn.qda import QDA h = .02 # step size in the mesh names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree", "Random Forest", "AdaBoost", "Naive Bayes", "LDA", "QDA"] classifiers = [ KNeighborsClassifier(3), SVC(kernel="linear", C=0.025), SVC(gamma=2, C=1), DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), AdaBoostClassifier(), GaussianNB(), LDA(), QDA()] X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [make_moons(noise=0.3, random_state=0), make_circles(noise=0.2, factor=0.5, random_state=1), linearly_separable ] figure = plt.figure(figsize=(27, 9)) i = 1 # iterate over datasets for ds in datasets: # preprocess dataset, split into training and test part X, y = ds X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4) x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # just plot the dataset first cm = plt.cm.RdBu cm_bright = ListedColormap(['#FF0000', '#0000FF']) ax = plt.subplot(len(datasets), len(classifiers) + 1, i) # Plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) i += 1 # iterate over classifiers for name, clf in zip(names, classifiers): ax = plt.subplot(len(datasets), len(classifiers) + 1, i) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. if hasattr(clf, "decision_function"): Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] # Put the result into a color plot Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm, alpha=.8) # Plot also the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) ax.set_title(name) ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right') i += 1 figure.subplots_adjust(left=.02, right=.98) plt.show()
bsd-3-clause
Mistobaan/tensorflow
tensorflow/contrib/learn/python/learn/estimators/kmeans_test.py
13
20278
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for KMeans.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import time import numpy as np from sklearn.cluster import KMeans as SklearnKMeans # pylint: disable=g-import-not-at-top from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn.estimators import kmeans as kmeans_lib from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import random_ops from tensorflow.python.platform import benchmark from tensorflow.python.platform import flags from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner FLAGS = flags.FLAGS def normalize(x): return x / np.sqrt(np.sum(x * x, axis=-1, keepdims=True)) def cosine_similarity(x, y): return np.dot(normalize(x), np.transpose(normalize(y))) def make_random_centers(num_centers, num_dims, center_norm=500): return np.round( np.random.rand(num_centers, num_dims).astype(np.float32) * center_norm) def make_random_points(centers, num_points, max_offset=20): num_centers, num_dims = centers.shape assignments = np.random.choice(num_centers, num_points) offsets = np.round( np.random.randn(num_points, num_dims).astype(np.float32) * max_offset) return (centers[assignments] + offsets, assignments, np.add.reduce( offsets * offsets, 1)) class KMeansTestBase(test.TestCase): def input_fn(self, batch_size=None, points=None, randomize=None, num_epochs=None): """Returns an input_fn that randomly selects batches from given points.""" batch_size = batch_size or self.batch_size points = points if points is not None else self.points num_points = points.shape[0] if randomize is None: randomize = (self.use_mini_batch and self.mini_batch_steps_per_iteration <= 1) def _fn(): x = constant_op.constant(points) if batch_size == num_points: return input_lib.limit_epochs(x, num_epochs=num_epochs), None if randomize: indices = random_ops.random_uniform( constant_op.constant([batch_size]), minval=0, maxval=num_points - 1, dtype=dtypes.int32, seed=10) else: # We need to cycle through the indices sequentially. We create a queue # to maintain the list of indices. q = data_flow_ops.FIFOQueue(num_points, dtypes.int32, ()) # Conditionally initialize the Queue. def _init_q(): with ops.control_dependencies( [q.enqueue_many(math_ops.range(num_points))]): return control_flow_ops.no_op() init_q = control_flow_ops.cond(q.size() <= 0, _init_q, control_flow_ops.no_op) with ops.control_dependencies([init_q]): offsets = q.dequeue_many(batch_size) with ops.control_dependencies([q.enqueue_many(offsets)]): indices = array_ops.identity(offsets) batch = array_ops.gather(x, indices) return (input_lib.limit_epochs(batch, num_epochs=num_epochs), None) return _fn @staticmethod def config(tf_random_seed): return run_config.RunConfig(tf_random_seed=tf_random_seed) @property def initial_clusters(self): return kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT @property def batch_size(self): return self.num_points @property def use_mini_batch(self): return False @property def mini_batch_steps_per_iteration(self): return 1 class KMeansTest(KMeansTestBase): def setUp(self): np.random.seed(3) self.num_centers = 5 self.num_dims = 2 self.num_points = 1000 self.true_centers = make_random_centers(self.num_centers, self.num_dims) self.points, _, self.scores = make_random_points(self.true_centers, self.num_points) self.true_score = np.add.reduce(self.scores) def _kmeans(self, relative_tolerance=None): return kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=self.initial_clusters, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, random_seed=24, relative_tolerance=relative_tolerance) def test_clusters(self): kmeans = self._kmeans() kmeans.fit(input_fn=self.input_fn(), steps=1) clusters = kmeans.clusters() self.assertAllEqual(list(clusters.shape), [self.num_centers, self.num_dims]) def test_fit(self): kmeans = self._kmeans() kmeans.fit(input_fn=self.input_fn(), steps=1) score1 = kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) steps = 10 * self.num_points // self.batch_size kmeans.fit(input_fn=self.input_fn(), steps=steps) score2 = kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertTrue(score1 > score2) self.assertNear(self.true_score, score2, self.true_score * 0.05) def test_monitor(self): if self.use_mini_batch: # We don't test for use_mini_batch case since the loss value can be noisy. return kmeans = kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=self.initial_clusters, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=learn.RunConfig(tf_random_seed=14), random_seed=12, relative_tolerance=1e-4) kmeans.fit( input_fn=self.input_fn(), # Force it to train until the relative tolerance monitor stops it. steps=None) score = kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertNear(self.true_score, score, self.true_score * 0.01) def _infer_helper(self, kmeans, clusters, num_points): points, true_assignments, true_offsets = make_random_points( clusters, num_points) # Test predict assignments = list( kmeans.predict_cluster_idx(input_fn=self.input_fn( batch_size=num_points, points=points, num_epochs=1))) self.assertAllEqual(assignments, true_assignments) # Test score score = kmeans.score( input_fn=lambda: (constant_op.constant(points), None), steps=1) self.assertNear(score, np.sum(true_offsets), 0.01 * score) # Test transform transform = kmeans.transform( input_fn=lambda: (constant_op.constant(points), None)) true_transform = np.maximum( 0, np.sum(np.square(points), axis=1, keepdims=True) - 2 * np.dot(points, np.transpose(clusters)) + np.transpose(np.sum(np.square(clusters), axis=1, keepdims=True))) self.assertAllClose(transform, true_transform, rtol=0.05, atol=10) def test_infer(self): kmeans = self._kmeans() # Make a call to fit to initialize the cluster centers. max_steps = 1 kmeans.fit(input_fn=self.input_fn(), max_steps=max_steps) clusters = kmeans.clusters() # Run inference on small datasets. self._infer_helper(kmeans, clusters, num_points=10) self._infer_helper(kmeans, clusters, num_points=1) class KMeansTestMultiStageInit(KMeansTestBase): def test_random(self): points = np.array( [[1, 2], [3, 4], [5, 6], [7, 8], [9, 0]], dtype=np.float32) kmeans = kmeans_lib.KMeansClustering( num_clusters=points.shape[0], initial_clusters=kmeans_lib.KMeansClustering.RANDOM_INIT, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=True, mini_batch_steps_per_iteration=100, random_seed=24, relative_tolerance=None) kmeans.fit( input_fn=self.input_fn(batch_size=1, points=points, randomize=False), steps=1) clusters = kmeans.clusters() self.assertAllEqual(points, clusters) def test_kmeans_plus_plus_batch_just_right(self): points = np.array([[1, 2]], dtype=np.float32) kmeans = kmeans_lib.KMeansClustering( num_clusters=points.shape[0], initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=True, mini_batch_steps_per_iteration=100, random_seed=24, relative_tolerance=None) kmeans.fit( input_fn=self.input_fn(batch_size=1, points=points, randomize=False), steps=1) clusters = kmeans.clusters() self.assertAllEqual(points, clusters) def test_kmeans_plus_plus_batch_too_small(self): points = np.array( [[1, 2], [3, 4], [5, 6], [7, 8], [9, 0]], dtype=np.float32) kmeans = kmeans_lib.KMeansClustering( num_clusters=points.shape[0], initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=True, mini_batch_steps_per_iteration=100, random_seed=24, relative_tolerance=None) with self.assertRaisesOpError(AssertionError): kmeans.fit( input_fn=self.input_fn(batch_size=4, points=points, randomize=False), steps=1) class MiniBatchKMeansTest(KMeansTest): @property def batch_size(self): return 50 @property def use_mini_batch(self): return True class FullBatchAsyncKMeansTest(KMeansTest): @property def batch_size(self): return 50 @property def use_mini_batch(self): return True @property def mini_batch_steps_per_iteration(self): return self.num_points // self.batch_size class KMeansCosineDistanceTest(KMeansTestBase): def setUp(self): self.points = np.array( [[2.5, 0.1], [2, 0.2], [3, 0.1], [4, 0.2], [0.1, 2.5], [0.2, 2], [0.1, 3], [0.2, 4]], dtype=np.float32) self.num_points = self.points.shape[0] self.true_centers = np.array( [ normalize( np.mean(normalize(self.points)[0:4, :], axis=0, keepdims=True))[ 0], normalize( np.mean(normalize(self.points)[4:, :], axis=0, keepdims=True))[ 0] ], dtype=np.float32) self.true_assignments = np.array([0] * 4 + [1] * 4) self.true_score = len(self.points) - np.tensordot( normalize(self.points), self.true_centers[self.true_assignments]) self.num_centers = 2 self.kmeans = kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=kmeans_lib.KMeansClustering.RANDOM_INIT, distance_metric=kmeans_lib.KMeansClustering.COSINE_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=self.config(3)) def test_fit(self): max_steps = 10 * self.num_points // self.batch_size self.kmeans.fit(input_fn=self.input_fn(), max_steps=max_steps) centers = normalize(self.kmeans.clusters()) centers = centers[centers[:, 0].argsort()] true_centers = self.true_centers[self.true_centers[:, 0].argsort()] self.assertAllClose(centers, true_centers, atol=0.04) def test_transform(self): self.kmeans.fit(input_fn=self.input_fn(), steps=10) centers = normalize(self.kmeans.clusters()) true_transform = 1 - cosine_similarity(self.points, centers) transform = self.kmeans.transform(input_fn=self.input_fn( batch_size=self.num_points)) self.assertAllClose(transform, true_transform, atol=1e-3) def test_predict(self): max_steps = 10 * self.num_points // self.batch_size self.kmeans.fit(input_fn=self.input_fn(), max_steps=max_steps) centers = normalize(self.kmeans.clusters()) assignments = list( self.kmeans.predict_cluster_idx(input_fn=self.input_fn( num_epochs=1, batch_size=self.num_points))) self.assertAllClose( centers[assignments], self.true_centers[self.true_assignments], atol=1e-2) centers = centers[centers[:, 0].argsort()] true_centers = self.true_centers[self.true_centers[:, 0].argsort()] self.assertAllClose(centers, true_centers, atol=0.04) score = self.kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertAllClose(score, self.true_score, atol=1e-2) def test_predict_kmeans_plus_plus(self): # Most points are concetrated near one center. KMeans++ is likely to find # the less populated centers. points = np.array( [[2.5, 3.5], [2.5, 3.5], [-2, 3], [-2, 3], [-3, -3], [-3.1, -3.2], [-2.8, -3.], [-2.9, -3.1], [-3., -3.1], [-3., -3.1], [-3.2, -3.], [-3., -3.]], dtype=np.float32) true_centers = np.array( [ normalize( np.mean(normalize(points)[0:2, :], axis=0, keepdims=True))[0], normalize( np.mean(normalize(points)[2:4, :], axis=0, keepdims=True))[0], normalize( np.mean(normalize(points)[4:, :], axis=0, keepdims=True))[0] ], dtype=np.float32) true_assignments = [0] * 2 + [1] * 2 + [2] * 8 true_score = len(points) - np.tensordot( normalize(points), true_centers[true_assignments]) kmeans = kmeans_lib.KMeansClustering( 3, initial_clusters=self.initial_clusters, distance_metric=kmeans_lib.KMeansClustering.COSINE_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=self.config(3)) kmeans.fit(input_fn=lambda: (constant_op.constant(points), None), steps=30) centers = normalize(kmeans.clusters()) self.assertAllClose( sorted(centers.tolist()), sorted(true_centers.tolist()), atol=1e-2) def _input_fn(): return (input_lib.limit_epochs( constant_op.constant(points), num_epochs=1), None) assignments = list(kmeans.predict_cluster_idx(input_fn=_input_fn)) self.assertAllClose( centers[assignments], true_centers[true_assignments], atol=1e-2) score = kmeans.score( input_fn=lambda: (constant_op.constant(points), None), steps=1) self.assertAllClose(score, true_score, atol=1e-2) class MiniBatchKMeansCosineTest(KMeansCosineDistanceTest): @property def batch_size(self): return 2 @property def use_mini_batch(self): return True class FullBatchAsyncKMeansCosineTest(KMeansCosineDistanceTest): @property def batch_size(self): return 2 @property def use_mini_batch(self): return True @property def mini_batch_steps_per_iteration(self): return self.num_points // self.batch_size class KMeansBenchmark(benchmark.Benchmark): """Base class for benchmarks.""" def SetUp(self, dimension=50, num_clusters=50, points_per_cluster=10000, center_norm=500, cluster_width=20): np.random.seed(123456) self.num_clusters = num_clusters self.num_points = num_clusters * points_per_cluster self.centers = make_random_centers( self.num_clusters, dimension, center_norm=center_norm) self.points, _, scores = make_random_points( self.centers, self.num_points, max_offset=cluster_width) self.score = float(np.sum(scores)) def _report(self, num_iters, start, end, scores): print(scores) self.report_benchmark( iters=num_iters, wall_time=(end - start) / num_iters, extras={'true_sum_squared_distances': self.score, 'fit_scores': scores}) def _fit(self, num_iters=10): pass def benchmark_01_2dim_5center_500point(self): self.SetUp(dimension=2, num_clusters=5, points_per_cluster=100) self._fit() def benchmark_02_20dim_20center_10kpoint(self): self.SetUp(dimension=20, num_clusters=20, points_per_cluster=500) self._fit() def benchmark_03_100dim_50center_50kpoint(self): self.SetUp(dimension=100, num_clusters=50, points_per_cluster=1000) self._fit() def benchmark_03_100dim_50center_50kpoint_unseparated(self): self.SetUp( dimension=100, num_clusters=50, points_per_cluster=1000, cluster_width=250) self._fit() def benchmark_04_100dim_500center_500kpoint(self): self.SetUp(dimension=100, num_clusters=500, points_per_cluster=1000) self._fit(num_iters=4) def benchmark_05_100dim_500center_500kpoint_unseparated(self): self.SetUp( dimension=100, num_clusters=500, points_per_cluster=1000, cluster_width=250) self._fit(num_iters=4) class TensorflowKMeansBenchmark(KMeansBenchmark): def _fit(self, num_iters=10): scores = [] start = time.time() for i in range(num_iters): print('Starting tensorflow KMeans: %d' % i) tf_kmeans = kmeans_lib.KMeansClustering( self.num_clusters, initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT, kmeans_plus_plus_num_retries=int(math.log(self.num_clusters) + 2), random_seed=i * 42, relative_tolerance=1e-6, config=run_config.RunConfig(tf_random_seed=3)) tf_kmeans.fit( input_fn=lambda: (constant_op.constant(self.points), None), steps=50) _ = tf_kmeans.clusters() scores.append( tf_kmeans.score( input_fn=lambda: (constant_op.constant(self.points), None), steps=1)) self._report(num_iters, start, time.time(), scores) class SklearnKMeansBenchmark(KMeansBenchmark): def _fit(self, num_iters=10): scores = [] start = time.time() for i in range(num_iters): print('Starting sklearn KMeans: %d' % i) sklearn_kmeans = SklearnKMeans( n_clusters=self.num_clusters, init='k-means++', max_iter=50, n_init=1, tol=1e-4, random_state=i * 42) sklearn_kmeans.fit(self.points) scores.append(sklearn_kmeans.inertia_) self._report(num_iters, start, time.time(), scores) class KMeansTestQueues(test.TestCase): def input_fn(self): def _fn(): queue = data_flow_ops.FIFOQueue( capacity=10, dtypes=dtypes.float32, shapes=[10, 3]) enqueue_op = queue.enqueue(array_ops.zeros([10, 3], dtype=dtypes.float32)) queue_runner.add_queue_runner( queue_runner.QueueRunner(queue, [enqueue_op])) return queue.dequeue(), None return _fn # This test makes sure that there are no deadlocks when using a QueueRunner. # Note that since cluster initialization is dependendent on inputs, if input # is generated using a QueueRunner, one has to make sure that these runners # are started before the initialization. def test_queues(self): kmeans = kmeans_lib.KMeansClustering(5) kmeans.fit(input_fn=self.input_fn(), steps=1) if __name__ == '__main__': test.main()
apache-2.0
jereze/scikit-learn
sklearn/neighbors/unsupervised.py
117
4755
"""Unsupervised nearest neighbors learner""" from .base import NeighborsBase from .base import KNeighborsMixin from .base import RadiusNeighborsMixin from .base import UnsupervisedMixin class NearestNeighbors(NeighborsBase, KNeighborsMixin, RadiusNeighborsMixin, UnsupervisedMixin): """Unsupervised learner for implementing neighbor searches. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. p: integer, optional (default = 2) Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric : string or callable, default 'minkowski' metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_params : dict, optional (default = None) Additional keyword arguments for the metric function. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Affects only :meth:`k_neighbors` and :meth:`kneighbors_graph` methods. Examples -------- >>> import numpy as np >>> from sklearn.neighbors import NearestNeighbors >>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]] >>> neigh = NearestNeighbors(2, 0.4) >>> neigh.fit(samples) #doctest: +ELLIPSIS NearestNeighbors(...) >>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False) ... #doctest: +ELLIPSIS array([[2, 0]]...) >>> nbrs = neigh.radius_neighbors([[0, 0, 1.3]], 0.4, return_distance=False) >>> np.asarray(nbrs[0][0]) array(2) See also -------- KNeighborsClassifier RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor BallTree Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, n_jobs=1, **kwargs): self._init_params(n_neighbors=n_neighbors, radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs)
bsd-3-clause
wavelets/BayesDataAnalysisWithPyMC
BayesDataAnalysisWithPymc/BernTwoPyMC.py
2
2263
# -*- coding: utf-8 -*- ''' Model for inferring two binomial proportions via MCMC. Python (PyMC) adaptation of the R code from "Doing Bayesian Data Analysis", by John K. Krushcke. More info: http://doingbayesiandataanalysis.blogspot.com.br/ ''' from __future__ import division import pymc from matplotlib import pyplot as plot from plot_post import plot_post # TODO: It would be good to import data from CSV files. # Model specification in PyMC goes backwards, in comparison to JAGS: # first the prior are specified, THEN the likelihood function. # TODO: With PyMC, it´s possible to define many stochastic variables # in just one variable name using the 'size' function parameter. # But for now, I will use multiple variable names for simplicity. theta1 = pymc.Beta('theta1', alpha=3, beta=3) theta2 = pymc.Beta('theta2', alpha=3, beta=3) # Define the observed data. data = [[1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1], [1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0]] # Define the likelihood function for the observed data. like1 = pymc.Bernoulli('like1', theta1, observed=True, value=data[0]) like2 = pymc.Bernoulli('like2', theta2, observed=True, value=data[1]) # Use the PyMC 'Model' class to collect all the variables we are interested in. model = pymc.Model([theta1, theta2]) # And instantiate the MCMC class to sample the posterior. mcmc = pymc.MCMC(model) mcmc.sample(40000, 10000, 1) # Use PyMC built-in plot function to show graphs of the samples. # pymc.Matplot.plot(mcmc) # plot.show() # Let's try plotting using Matplotlib's 'pyplot'. # First, we extract the traces for the parameters of interest. theta1_samples = mcmc.trace('theta1')[:] theta2_samples = mcmc.trace('theta2')[:] theta_diff = theta2_samples - theta1_samples # Then, we plot a histogram of their individual sample values. plot.figure(figsize=(8.0, 10)) plot.subplot(311) plot_post(theta1_samples, title=r'Posterior of $\theta_1$') plot.subplot(312) plot_post(theta2_samples, title=r'Posterior of $\theta_2$') plot.subplot(313) plot_post(theta_diff, title=r'Posterior of $\Delta\theta$', comp=0.0) plot.subplots_adjust(hspace=0.5) plot.show()
mit
crunchbang/Machine_Perception-DS863
Assignment_1/src/question_7.py
2
1036
import cv2 import numpy as np from matplotlib import pyplot as plt orig = cv2.imread("lenna.jpg", cv2.IMREAD_GRAYSCALE) noisy_img = orig.copy() # add salt and pepper noise # There are multiple ways to do it, this being one of them # choose a random value in the range 0 - 0.05, the # probablity of there being noise in a pixel p = np.random.uniform(0, 0.05) # create a noise matrix of the same dimension as the image with # values uniformly distributed in the range [0, 1) rand_noise = np.random.rand(*orig.shape) # add noise (make the pixel black or white) at locations of the original # image where the conditions are satisfied noisy_img[rand_noise < p] = 0 noisy_img[rand_noise > 1 - p] = 255 filtered_img = cv2.medianBlur(noisy_img, 3) fig = plt.figure() images = [orig, noisy_img, filtered_img] titles = ["Original", "Salt and Pepper noise", "filtered image"] for i in range(len(images)): ax = fig.add_subplot(2, 2, i + 1) ax.set_title(titles[i]) ax.imshow(images[i], cmap="gray") plt.axis("off") plt.show()
mit
ritviksahajpal/LUH2
LUH2/GlobalCropRotations/crop_rotations.py
1
9833
import itertools import logging import os import re import sys import pdb import matplotlib.pyplot as plt import matplotlib.ticker as mtick import numpy as np import pandas as pd import pygeoutil.util as util import constants import crop_stats import plots # Logging cur_flname = os.path.splitext(os.path.basename(__file__))[0] LOG_FILENAME = constants.log_dir + os.sep + 'Log_' + cur_flname + '.txt' util.make_dir_if_missing(constants.log_dir) logging.basicConfig(filename=LOG_FILENAME, level=logging.INFO, filemode='w', format='%(asctime)s %(levelname)s %(module)s - %(funcName)s: %(message)s', datefmt="%m-%d %H:%M") # Logging levels are DEBUG, INFO, WARNING, ERROR, and CRITICAL # Output to screen logger = logging.getLogger(cur_flname) logger.addHandler(logging.StreamHandler(sys.stdout)) class CropRotations: def __init__(self): self.name_country_col = 'Country_FAO' self.cft_type = 'functional crop type' @staticmethod def get_list_decades(lyrs): """ Convert a list of years to lists of list of years FROM: [1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977] TO: [[1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969], [1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977]] :param lyrs: :return: """ return np.array([list(g) for k, g in itertools.groupby(lyrs, lambda i: i // 10)]) @staticmethod def get_list_yrs(df, already_processed=False): """ From an input dataframe, get the list of years. The years could be in the form of columns labeled Y1961... or in the form of 1961.... :param df: :param already_processed: :return: """ if already_processed: vals = df.columns[df.columns.astype(str).str.contains(r'\d{4}$')].values else: # Create a list of columns of the form Y1961...remove the 'Y' and return list of integers years = df.filter(regex=r'^Y\d{4}$').columns.values vals = [y[1:] for y in years] return map(int, vals) def select_data_by_country(self, df, country, name_column): """ Select data for a country/region by country code or name :param df: :param country: :param name_column: :return: """ df_country = df[df[name_column] == country] return df_country def rename_years(self, col_name): """ If col_name is of the form Y1961 then return 1961, If col_name is like 1961 then return 1961 :param col_name: :return: """ if re.match(r'^Y\d{4}', col_name): return int(col_name[1:]) else: return col_name def per_CFT_by_decade(self, df, cnt_name, already_processed=False): """ Aggregate years to decades and compute fraction of each crop functional type in that decade :param df: :param cnt_name: :param already_processed: :return: """ dec_df = pd.DataFrame() # Get list of years in FAO data list_yrs = CropRotations.get_list_yrs(df, already_processed) if not already_processed: # renaming columns for years so that they do not start with a 'Y' print self.rename_years df.rename(columns=self.rename_years, inplace=True) # Separate years into decades yrs_dec = CropRotations.get_list_decades(list_yrs) # Select data by country out_df = self.select_data_by_country(df, cnt_name, name_column=self.name_country_col) for dec in yrs_dec: dec_name = str(util.round_closest(dec[0])) + 's' total_ar = np.sum(out_df.ix[:, dec].values) dec_df[dec_name] = out_df.ix[:, dec].sum(axis=1)/total_ar * 100 # Join the decadal dataframe with country and crop functional type name columns dec_df = pd.concat([out_df[[self.name_country_col, self.cft_type]], dec_df], axis=1, join='inner') return dec_df def per_CFT_annual(self, df, cnt_name, already_processed=False): """ Convert a dataframe containing cropland areas by CFT for each country into percentage values :param df: :param cnt_name: :param already_processed: :return: """ per_df = pd.DataFrame() # Select data by country out_df = self.select_data_by_country(df, cnt_name, name_column=self.name_country_col) # Get list of years in FAO data list_yrs = CropRotations.get_list_yrs(out_df, already_processed) for yr in list_yrs: grp_df = out_df.groupby([self.name_country_col, self.cft_type]).agg({yr: 'sum'}) pct_df = grp_df.groupby(level=0).apply(lambda x: 100*x/float(x.sum())) per_df = pd.concat([per_df, pct_df], axis=1, join='inner') return per_df def diff_ann_decadal(self): pass def call_R(self): pass def read_processed_FAO_data(self): """ Read in data on FAO crop acreages globally (already processed) :return: """ fao_file = util.open_or_die(constants.data_dir + os.sep + constants.FAO_FILE) return fao_file.parse(constants.FAO_SHEET) def plot_cnt_decade(self, inp_fao_df, cnt, already_processed=False): """ Plot percentage of cropland area occupied by each crop functional type for a country :param inp_fao_df: :param cnt: :param already_processed: :return: """ out_dec_df = self.per_CFT_by_decade(inp_fao_df, cnt, already_processed) out_dec_df = out_dec_df.set_index(self.cft_type) ax = out_dec_df.drop(self.name_country_col, axis=1).T.\ plot(kind='bar', stacked=True, color=plots.get_colors(palette='tableau'), linewidth=0) plots.simple_axis(ax) # Simple axis, no axis on top and right of plot # Transparent legend in lower left corner leg = plt.legend(loc='lower left', fancybox=None) leg.get_frame().set_linewidth(0.0) leg.get_frame().set_alpha(0.5) # Set X and Y axis labels and title ax.set_title(cnt) ax.set_xlabel('') plt.ylim(ymax=100) ax.set_ylabel('Percentage of cropland area \noccupied by each crop functional type') fmt = '%.0f%%' # Format you want the ticks, e.g. '40%' yticks = mtick.FormatStrFormatter(fmt) ax.yaxis.set_major_formatter(yticks) # remove ticks from X axis plt.tick_params( axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom='off', # ticks along the bottom edge are off top='off') # ticks along the top edge are off # Rotate the X axis labels to be horizontal locs, labels = plt.xticks() plt.setp(labels, rotation=0) plt.tight_layout() plt.savefig(constants.out_dir + os.sep + cnt + '.png', bbox_inches='tight', dpi=600) plt.close() def plot_cnt_mean_decade(self, inp_fao_df, cnt, already_processed=False): """ Plot mean crop functional type area in each decade :param inp_fao_df: :param cnt: :param already_processed: :return: """ out_dec_df = self.per_CFT_by_decade(inp_fao_df, cnt, already_processed) out_dec_df = out_dec_df.set_index(self.cft_type) ax = out_dec_df.drop(self.name_country_col, axis=1).T.\ plot(kind='bar', stacked=True, color=plots.get_colors(palette='tableau'), linewidth=0) plots.simple_axis(ax) # Simple axis, no axis on top and right of plot # Transparent legend in lower left corner leg = plt.legend(loc='lower left', fancybox=None) leg.get_frame().set_linewidth(0.0) leg.get_frame().set_alpha(0.5) # Set X and Y axis labels and title ax.set_title(cnt) ax.set_xlabel('') plt.ylim(ymax=100) ax.set_ylabel('Mean crop functional type area in each decade') fmt = '%.0f%%' # Format you want the ticks, e.g. '40%' yticks = mtick.FormatStrFormatter(fmt) ax.yaxis.set_major_formatter(yticks) # remove ticks from X axis plt.tick_params( axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom='off', # ticks along the bottom edge are off top='off') # ticks along the top edge are off # Rotate the X axis labels to be horizontal locs, labels = plt.xticks() plt.setp(labels, rotation=0) plt.tight_layout() plt.savefig(constants.out_dir + os.sep + 'Mean_' + cnt + '.png', bbox_inches='tight', dpi=600) plt.close() def process_rotations(self): cs = crop_stats.CropStats() # 1. Read in data on raw FAO crop acreages globally. # 2. Delete redundant data, data from continents/regions # 3. Replace NaNs by 0 fao_df = cs.read_raw_FAO_data() # Merge FAO data (raw or processed) with our crop functional type definitions fao_df, grp_crp, grp_cnt, per_df = cs.merge_FAO_CFT(fao_df) already_processed = False list_countries = fao_df[self.name_country_col].unique() for country in list_countries: logger.info(country) self.plot_cnt_decade(fao_df, country, already_processed) if not already_processed: already_processed = True if __name__ == '__main__': obj = CropRotations() obj.process_rotations()
mit
bmazin/SDR
DataReadout/ReadoutControls/lib/make_image_v2.py
2
5473
# make_image.py # 05/30/11 version 2 updated to make image as numpy array and return mplib figure to arcons quicklook #from data2ascii import unpack_data from PIL import Image from PIL import ImageDraw from numpy import * import matplotlib from matplotlib.pyplot import plot, figure, show, rc, grid import matplotlib.pyplot as plt #will actually need intermediate work to unpack these arrays from file and pass them in def make_image(photon_count, median_energy, color_on = True, white_pixels = .10): ''' Updated from 08/31/10 version. Image generation will happen on GUI machine now. organize_data will be run on SDR to pass over binary file with arrays of each pixels photon count and median energy. Those arrays will be unpacked in GUI image generation thread, combined into cumulative arrays if we are doing an observation, then passes arrays of photon counts and energies to make_image ''' array_rows = 32 array_cols = 32 total_pixels = array_rows * array_cols print "Generating image" im = Image.new("RGB",(array_cols,array_rows)) draw = ImageDraw.ImageDraw(im) #to get better v gradient we want to saturate brightest 10% of pixels #make histogram out of the lengths of each pixel. Histogram peak will be at the low end #as most pixels will be dark, thus having small "lengths" for their photon lists. hist_counts, hist_bins = histogram(photon_count, bins=100) brightest_pixels = 0 nbrightestcounts = 0.0 q=1 #starting at the high end of the histogram (bins containing the pixels with the most photons), #count backwards until we get to the 5th brightest, then set that to maximum v value. #Thus the few brighter pixels will be saturated, and the rest will be scaled to this #5th brightest pixel. ncounts = float(sum(photon_count)) #print "ncounts ", ncounts cdf = array(cumsum(hist_counts*hist_bins[:-1]),dtype = float32) #print cdf idx = (where(cdf > (ncounts*(1.0-white_pixels))))[0][0] #where cdf has 1-white_pixels percent of max number of counts #print idx vmax = hist_bins[idx] #while float(nbrightestcounts/float(ncounts)) <= white_pixels: #brightest_pixels += hist_bins[-q] #nbrightestcounts += hist_counts[-q] #q+=1 #if vmax == 0: #if vmax = 0 then no pixels are illuminated #while vmax ==0: #check through brightest pixels until one is found #q -= 1 #vmax = pixel_hist[1][-q] for m in range(total_pixels): try: if median_energy[m] >= 3.1: hue= 300 elif median_energy[m] <= 1.9: hue= 0 else: hue = int(((median_energy[m]-1.9)/(3.1-1.9))*300) except ValueError: hue = 150 #if median energy is NaN, that pixel has no photons, so set hue to green and v will be 0 #normalize number of photons in that pixel by vmax, then *80 to give brightness try: v = int((photon_count[m]/vmax)*80) if v < 0: v=0 #after sky subtraction we may get negative counts for some pixels except ValueError: v=0 #if v is NaN set v to 0 if color_on == True: s=v #scale saturation with v so brightest pixels show most color, dimmer show less color else: s=0 #make image black and white if color is turned off colorstring = "hsl(%i,%i%%,%i%%)" %(hue,s,v) imx = m%(array_cols) #to flip image vertically use: imy = m/array_cols imy = (array_rows - 1) - m/(array_cols) draw.point((imx,imy),colorstring) return im #10/5/10 added main portion so single binary data file can be turned into an image if __name__ == "__main__": file = raw_input("enter binary data file name: ") newpixel, newtime, newenergy = unpack_data(file) imagefile = raw_input("enter image file name to save data to: ") obs = len(newenergy) print "creating list of each pixel's photons" each_pixels_photons = [] lengths = [] #generate empty list for pixels to have photons dumped into for j in range(1024): each_pixels_photons.append([]) #search through data and place energies in right pixels for k in range(obs): each_pixels_photons[newpixel[k]].append(newenergy[k]) for l in range(1024): lengths.append(len(each_pixels_photons[l])) print "Generating image" im = Image.new("RGB",(32,32)) draw = ImageDraw.ImageDraw(im) #to get better v distribution we want to saturate brightest 0.5% of pixels pixel_hist = histogram(lengths, bins=100) photon_sum=0 q=1 while photon_sum <=4: photon_sum += pixel_hist[0][-q] q+=1 vmax = pixel_hist[1][-q] for m in range(1024): #normalize pixel's ave energy by max of 5, then multiply by 300 to give hue value between 0 and 300 median_energy = median(each_pixels_photons[m]) try: if median_energy >= 3.1: hue= 300 elif median_energy <= 1.9: hue= 0 else: hue = int(((median_energy-1.9)/(3.1-1.9))*300) except ValueError: hue = 150 #if median energy is NaN, that pixel has no photons, so set hue to green and v will be 0 #normalize number of photons in that pixel by vmax, then *80 to give brightness try: v = (len(each_pixels_photons[m])/vmax)*80 except ValueError: v=0 #if v is NaN set v to 0 s=v #scale saturation with v so brightest pixels show most color, dimmer show less color colorstring = "hsl(%i,%i%%,%i%%)" %(hue,s,v) imx = m%(32) #switch between two lines below to flip array vertically #imy = m/array_cols imy = (31) - m/(32) #imy = m/(32) draw.point((imx,imy),colorstring) im.show()
gpl-2.0
superbobry/pymc3
pymc3/stats.py
1
20493
"""Utility functions for PyMC""" import numpy as np import pandas as pd import itertools import sys import warnings from .model import modelcontext from .backends import tracetab as ttab __all__ = ['autocorr', 'autocov', 'dic', 'bpic', 'waic', 'hpd', 'quantiles', 'mc_error', 'summary', 'df_summary'] def statfunc(f): """ Decorator for statistical utility function to automatically extract the trace array from whatever object is passed. """ def wrapped_f(pymc3_obj, *args, **kwargs): try: vars = kwargs.pop('vars', pymc3_obj.varnames) chains = kwargs.pop('chains', pymc3_obj.chains) except AttributeError: # If fails, assume that raw data was passed. return f(pymc3_obj, *args, **kwargs) burn = kwargs.pop('burn', 0) thin = kwargs.pop('thin', 1) combine = kwargs.pop('combine', False) ## Remove outer level chain keys if only one chain) squeeze = kwargs.pop('squeeze', True) results = {chain: {} for chain in chains} for var in vars: samples = pymc3_obj.get_values(var, chains=chains, burn=burn, thin=thin, combine=combine, squeeze=False) for chain, data in zip(chains, samples): results[chain][var] = f(np.squeeze(data), *args, **kwargs) if squeeze and (len(chains) == 1 or combine): results = results[chains[0]] return results wrapped_f.__doc__ = f.__doc__ wrapped_f.__name__ = f.__name__ return wrapped_f @statfunc def autocorr(x, lag=1): """Sample autocorrelation at specified lag. The autocorrelation is the correlation of x_i with x_{i+lag}. """ S = autocov(x, lag) return S[0, 1]/np.sqrt(np.prod(np.diag(S))) @statfunc def autocov(x, lag=1): """ Sample autocovariance at specified lag. The autocovariance is a 2x2 matrix with the variances of x[:-lag] and x[lag:] in the diagonal and the autocovariance on the off-diagonal. """ x = np.asarray(x) if not lag: return 1 if lag < 0: raise ValueError("Autocovariance lag must be a positive integer") return np.cov(x[:-lag], x[lag:], bias=1) def dic(trace, model=None): """ Calculate the deviance information criterion of the samples in trace from model Read more theory here - in a paper by some of the leading authorities on Model Selection - http://bit.ly/1W2YJ7c """ model = modelcontext(model) transformed_rvs = [rv for rv in model.free_RVs if hasattr(rv.distribution, 'transform_used')] if transformed_rvs: warnings.warn(""" DIC estimates are biased for models that include transformed random variables. See https://github.com/pymc-devs/pymc3/issues/789. The following random variables are the result of transformations: {} """.format(', '.join(rv.name for rv in transformed_rvs))) mean_deviance = -2 * np.mean([model.logp(pt) for pt in trace]) free_rv_means = {rv.name: trace[rv.name].mean(axis=0) for rv in model.free_RVs} deviance_at_mean = -2 * model.logp(free_rv_means) return 2 * mean_deviance - deviance_at_mean def waic(trace, model=None): """ Calculate the widely available information criterion of the samples in trace from model. Read more theory here - in a paper by some of the leading authorities on Model Selection - http://bit.ly/1W2YJ7c """ model = modelcontext(model) transformed_rvs = [rv for rv in model.free_RVs if hasattr(rv.distribution, 'transform_used')] if transformed_rvs: warnings.warn(""" WAIC estimates are biased for models that include transformed random variables. See https://github.com/pymc-devs/pymc3/issues/789. The following random variables are the result of transformations: {} """.format(', '.join(rv.name for rv in transformed_rvs))) log_py = [] for obs in model.observed_RVs: log_py.append([obs.logp_elemwise(pt) for pt in trace ]) log_py = np.hstack(log_py) lppd = np.sum(np.log(np.mean(np.exp(log_py), axis=0))) p_waic = np.sum(np.var(log_py, axis=0)) return -2 * lppd + 2 * p_waic def bpic(trace, model=None): """ Calculates Bayesian predictive information criterion n of the samples in trace from model Read more theory here - in a paper by some of the leading authorities on Model Selection - http://bit.ly/1W2YJ7c """ model = modelcontext(model) transformed_rvs = [rv for rv in model.free_RVs if hasattr(rv.distribution, 'transform_used')] if transformed_rvs: warnings.warn(""" BPIC estimates are biased for models that include transformed random variables. See https://github.com/pymc-devs/pymc3/issues/789. The following random variables are the result of transformations: {} """.format(', '.join(rv.name for rv in transformed_rvs))) mean_deviance = -2 * np.mean([model.logp(pt) for pt in trace]) free_rv_means = {rv.name: trace[rv.name].mean(axis=0) for rv in model.free_RVs} deviance_at_mean = -2 * model.logp(free_rv_means) return 3 * mean_deviance - 2 * deviance_at_mean def make_indices(dimensions): # Generates complete set of indices for given dimensions level = len(dimensions) if level == 1: return list(range(dimensions[0])) indices = [[]] while level: _indices = [] for j in range(dimensions[level-1]): _indices += [[j]+i for i in indices] indices = _indices level -= 1 try: return [tuple(i) for i in indices] except TypeError: return indices def calc_min_interval(x, alpha): """Internal method to determine the minimum interval of a given width Assumes that x is sorted numpy array. """ n = len(x) cred_mass = 1.0-alpha interval_idx_inc = int(np.floor(cred_mass*n)) n_intervals = n - interval_idx_inc interval_width = x[interval_idx_inc:] - x[:n_intervals] if len(interval_width) == 0: raise ValueError('Too few elements for interval calculation') min_idx = np.argmin(interval_width) hdi_min = x[min_idx] hdi_max = x[min_idx+interval_idx_inc] return hdi_min, hdi_max @statfunc def hpd(x, alpha=0.05): """Calculate highest posterior density (HPD) of array for given alpha. The HPD is the minimum width Bayesian credible interval (BCI). :Arguments: x : Numpy array An array containing MCMC samples alpha : float Desired probability of type I error (defaults to 0.05) """ # Make a copy of trace x = x.copy() # For multivariate node if x.ndim > 1: # Transpose first, then sort tx = np.transpose(x, list(range(x.ndim))[1:]+[0]) dims = np.shape(tx) # Container list for intervals intervals = np.resize(0.0, dims[:-1]+(2,)) for index in make_indices(dims[:-1]): try: index = tuple(index) except TypeError: pass # Sort trace sx = np.sort(tx[index]) # Append to list intervals[index] = calc_min_interval(sx, alpha) # Transpose back before returning return np.array(intervals) else: # Sort univariate node sx = np.sort(x) return np.array(calc_min_interval(sx, alpha)) @statfunc def mc_error(x, batches=5): """ Calculates the simulation standard error, accounting for non-independent samples. The trace is divided into batches, and the standard deviation of the batch means is calculated. :Arguments: x : Numpy array An array containing MCMC samples batches : integer Number of batchas """ if x.ndim > 1: dims = np.shape(x) #ttrace = np.transpose(np.reshape(trace, (dims[0], sum(dims[1:])))) trace = np.transpose([t.ravel() for t in x]) return np.reshape([mc_error(t, batches) for t in trace], dims[1:]) else: if batches == 1: return np.std(x)/np.sqrt(len(x)) try: batched_traces = np.resize(x, (batches, len(x)/batches)) except ValueError: # If batches do not divide evenly, trim excess samples resid = len(x) % batches new_shape = (batches, (len(x) - resid) / batches) batched_traces = np.resize(x[:-resid], new_shape) means = np.mean(batched_traces, 1) return np.std(means)/np.sqrt(batches) @statfunc def quantiles(x, qlist=(2.5, 25, 50, 75, 97.5)): """Returns a dictionary of requested quantiles from array :Arguments: x : Numpy array An array containing MCMC samples qlist : tuple or list A list of desired quantiles (defaults to (2.5, 25, 50, 75, 97.5)) """ # Make a copy of trace x = x.copy() # For multivariate node if x.ndim > 1: # Transpose first, then sort, then transpose back sx = np.sort(x.T).T else: # Sort univariate node sx = np.sort(x) try: # Generate specified quantiles quants = [sx[int(len(sx)*q/100.0)] for q in qlist] return dict(zip(qlist, quants)) except IndexError: print("Too few elements for quantile calculation") def df_summary(trace, varnames=None, stat_funcs=None, extend=False, alpha=0.05, batches=100): """Create a data frame with summary statistics. Parameters ---------- trace : MultiTrace instance varnames : list Names of variables to include in summary stat_funcs : None or list A list of functions used to calculate statistics. By default, the mean, standard deviation, simulation standard error, and highest posterior density intervals are included. The functions will be given one argument, the samples for a variable as a 2 dimensional array, where the first axis corresponds to sampling iterations and the second axis represents the flattened variable (e.g., x__0, x__1,...). Each function should return either 1) A `pandas.Series` instance containing the result of calculating the statistic along the first axis. The name attribute will be taken as the name of the statistic. 2) A `pandas.DataFrame` where each column contains the result of calculating the statistic along the first axis. The column names will be taken as the names of the statistics. extend : boolean If True, use the statistics returned by `stat_funcs` in addition to, rather than in place of, the default statistics. This is only meaningful when `stat_funcs` is not None. alpha : float The alpha level for generating posterior intervals. Defaults to 0.05. This is only meaningful when `stat_funcs` is None. batches : int Batch size for calculating standard deviation for non-independent samples. Defaults to 100. This is only meaningful when `stat_funcs` is None. See also -------- summary : Generate a pretty-printed summary of a trace. Returns ------- `pandas.DataFrame` with summary statistics for each variable Examples -------- >>> import pymc3 as pm >>> trace.mu.shape (1000, 2) >>> pm.df_summary(trace, ['mu']) mean sd mc_error hpd_5 hpd_95 mu__0 0.106897 0.066473 0.001818 -0.020612 0.231626 mu__1 -0.046597 0.067513 0.002048 -0.174753 0.081924 Other statistics can be calculated by passing a list of functions. >>> import pandas as pd >>> def trace_sd(x): ... return pd.Series(np.std(x, 0), name='sd') ... >>> def trace_quantiles(x): ... return pd.DataFrame(pm.quantiles(x, [5, 50, 95])) ... >>> pm.df_summary(trace, ['mu'], stat_funcs=[trace_sd, trace_quantiles]) sd 5 50 95 mu__0 0.066473 0.000312 0.105039 0.214242 mu__1 0.067513 -0.159097 -0.045637 0.062912 """ if varnames is None: varnames = trace.varnames funcs = [lambda x: pd.Series(np.mean(x, 0), name='mean'), lambda x: pd.Series(np.std(x, 0), name='sd'), lambda x: pd.Series(mc_error(x, batches), name='mc_error'), lambda x: _hpd_df(x, alpha)] if stat_funcs is not None and extend: stat_funcs = funcs + stat_funcs elif stat_funcs is None: stat_funcs = funcs var_dfs = [] for var in varnames: vals = trace.get_values(var, combine=True) flat_vals = vals.reshape(vals.shape[0], -1) var_df = pd.concat([f(flat_vals) for f in stat_funcs], axis=1) var_df.index = ttab.create_flat_names(var, vals.shape[1:]) var_dfs.append(var_df) return pd.concat(var_dfs, axis=0) def _hpd_df(x, alpha): cnames = ['hpd_{0:g}'.format(100 * alpha/2), 'hpd_{0:g}'.format(100 * (1 - alpha/2))] return pd.DataFrame(hpd(x, alpha), columns=cnames) def summary(trace, varnames=None, alpha=0.05, start=0, batches=100, roundto=3, to_file=None): """ Generate a pretty-printed summary of the node. :Parameters: trace : Trace object Trace containing MCMC sample varnames : list of strings List of variables to summarize. Defaults to None, which results in all variables summarized. alpha : float The alpha level for generating posterior intervals. Defaults to 0.05. start : int The starting index from which to summarize (each) chain. Defaults to zero. batches : int Batch size for calculating standard deviation for non-independent samples. Defaults to 100. roundto : int The number of digits to round posterior statistics. tofile : None or string File to write results to. If not given, print to stdout. """ if varnames is None: varnames = trace.varnames stat_summ = _StatSummary(roundto, batches, alpha) pq_summ = _PosteriorQuantileSummary(roundto, alpha) if to_file is None: fh = sys.stdout else: fh = open(to_file, mode='w') for var in varnames: # Extract sampled values sample = trace.get_values(var, burn=start, combine=True) fh.write('\n%s:\n\n' % var) fh.write(stat_summ.output(sample)) fh.write(pq_summ.output(sample)) if fh is not sys.stdout: fh.close() class _Summary(object): """Base class for summary output""" def __init__(self, roundto): self.roundto = roundto self.header_lines = None self.leader = ' ' self.spaces = None self.width = None def output(self, sample): return '\n'.join(list(self._get_lines(sample))) + '\n\n' def _get_lines(self, sample): for line in self.header_lines: yield self.leader + line summary_lines = self._calculate_values(sample) for line in self._create_value_output(summary_lines): yield self.leader + line def _create_value_output(self, lines): for values in lines: try: self._format_values(values) yield self.value_line.format(pad=self.spaces, **values).strip() except AttributeError: # This is a key for the leading indices, not a normal row. # `values` will be an empty tuple unless it is 2d or above. if values: leading_idxs = [str(v) for v in values] numpy_idx = '[{}, :]'.format(', '.join(leading_idxs)) yield self._create_idx_row(numpy_idx) else: yield '' def _calculate_values(self, sample): raise NotImplementedError def _format_values(self, summary_values): for key, val in summary_values.items(): summary_values[key] = '{:.{ndec}f}'.format( float(val), ndec=self.roundto) def _create_idx_row(self, value): return '{:.^{}}'.format(value, self.width) class _StatSummary(_Summary): def __init__(self, roundto, batches, alpha): super(_StatSummary, self).__init__(roundto) spaces = 17 hpd_name = '{0:g}% HPD interval'.format(100 * (1 - alpha)) value_line = '{mean:<{pad}}{sd:<{pad}}{mce:<{pad}}{hpd:<{pad}}' header = value_line.format(mean='Mean', sd='SD', mce='MC Error', hpd=hpd_name, pad=spaces).strip() self.width = len(header) hline = '-' * self.width self.header_lines = [header, hline] self.spaces = spaces self.value_line = value_line self.batches = batches self.alpha = alpha def _calculate_values(self, sample): return _calculate_stats(sample, self.batches, self.alpha) def _format_values(self, summary_values): roundto = self.roundto for key, val in summary_values.items(): if key == 'hpd': summary_values[key] = '[{:.{ndec}f}, {:.{ndec}f}]'.format( *val, ndec=roundto) else: summary_values[key] = '{:.{ndec}f}'.format( float(val), ndec=roundto) class _PosteriorQuantileSummary(_Summary): def __init__(self, roundto, alpha): super(_PosteriorQuantileSummary, self).__init__(roundto) spaces = 15 title = 'Posterior quantiles:' value_line = '{lo:<{pad}}{q25:<{pad}}{q50:<{pad}}{q75:<{pad}}{hi:<{pad}}' lo, hi = 100 * alpha / 2, 100 * (1. - alpha / 2) qlist = (lo, 25, 50, 75, hi) header = value_line.format(lo=lo, q25=25, q50=50, q75=75, hi=hi, pad=spaces).strip() self.width = len(header) hline = '|{thin}|{thick}|{thick}|{thin}|'.format( thin='-' * (spaces - 1), thick='=' * (spaces - 1)) self.header_lines = [title, header, hline] self.spaces = spaces self.lo, self.hi = lo, hi self.qlist = qlist self.value_line = value_line def _calculate_values(self, sample): return _calculate_posterior_quantiles(sample, self.qlist) def _calculate_stats(sample, batches, alpha): means = sample.mean(0) sds = sample.std(0) mces = mc_error(sample, batches) intervals = hpd(sample, alpha) for key, idxs in _groupby_leading_idxs(sample.shape[1:]): yield key for idx in idxs: mean, sd, mce = [stat[idx] for stat in (means, sds, mces)] interval = intervals[idx].squeeze().tolist() yield {'mean': mean, 'sd': sd, 'mce': mce, 'hpd': interval} def _calculate_posterior_quantiles(sample, qlist): var_quantiles = quantiles(sample, qlist=qlist) ## Replace ends of qlist with 'lo' and 'hi' qends = {qlist[0]: 'lo', qlist[-1]: 'hi'} qkeys = {q: qends[q] if q in qends else 'q{}'.format(q) for q in qlist} for key, idxs in _groupby_leading_idxs(sample.shape[1:]): yield key for idx in idxs: yield {qkeys[q]: var_quantiles[q][idx] for q in qlist} def _groupby_leading_idxs(shape): """Group the indices for `shape` by the leading indices of `shape`. All dimensions except for the rightmost dimension are used to create groups. A 3d shape will be grouped by the indices for the two leading dimensions. >>> for key, idxs in _groupby_leading_idxs((3, 2, 2)): ... print('key: {}'.format(key)) ... print(list(idxs)) key: (0, 0) [(0, 0, 0), (0, 0, 1)] key: (0, 1) [(0, 1, 0), (0, 1, 1)] key: (1, 0) [(1, 0, 0), (1, 0, 1)] key: (1, 1) [(1, 1, 0), (1, 1, 1)] key: (2, 0) [(2, 0, 0), (2, 0, 1)] key: (2, 1) [(2, 1, 0), (2, 1, 1)] A 1d shape will only have one group. >>> for key, idxs in _groupby_leading_idxs((2,)): ... print('key: {}'.format(key)) ... print(list(idxs)) key: () [(0,), (1,)] """ idxs = itertools.product(*[range(s) for s in shape]) return itertools.groupby(idxs, lambda x: x[:-1])
apache-2.0
gregcaporaso/scikit-bio
skbio/stats/gradient.py
2
32198
r""" Gradient analyses (:mod:`skbio.stats.gradient`) =============================================== .. currentmodule:: skbio.stats.gradient This module provides functionality for performing gradient analyses. The algorithms included in this module mainly allows performing analysis of volatility on time series data, but they can be applied to any data that contains a gradient. Classes ------- .. autosummary:: :toctree: GradientANOVA AverageGradientANOVA TrajectoryGradientANOVA FirstDifferenceGradientANOVA WindowDifferenceGradientANOVA GroupResults CategoryResults GradientANOVAResults Examples -------- Assume we have the following coordinates: >>> import numpy as np >>> import pandas as pd >>> from skbio.stats.gradient import AverageGradientANOVA >>> coord_data = {'PC.354': np.array([0.2761, -0.0341, 0.0633, 0.1004]), ... 'PC.355': np.array([0.2364, 0.2186, -0.0301, -0.0225]), ... 'PC.356': np.array([0.2208, 0.0874, -0.3519, -0.0031]), ... 'PC.607': np.array([-0.1055, -0.4140, -0.15, -0.116]), ... 'PC.634': np.array([-0.3716, 0.1154, 0.0721, 0.0898])} >>> coords = pd.DataFrame.from_dict(coord_data, orient='index') the following metadata map: >>> metadata_map = {'PC.354': {'Treatment': 'Control', 'Weight': '60'}, ... 'PC.355': {'Treatment': 'Control', 'Weight': '55'}, ... 'PC.356': {'Treatment': 'Control', 'Weight': '50'}, ... 'PC.607': {'Treatment': 'Fast', 'Weight': '65'}, ... 'PC.634': {'Treatment': 'Fast', 'Weight': '68'}} >>> metadata_map = pd.DataFrame.from_dict(metadata_map, orient='index') and the following array with the proportion explained of each coord: >>> prop_expl = np.array([25.6216, 15.7715, 14.1215, 11.6913, 9.8304]) Then to compute the average trajectory of this data: >>> av = AverageGradientANOVA(coords, prop_expl, metadata_map, ... trajectory_categories=['Treatment'], ... sort_category='Weight') >>> trajectory_results = av.get_trajectories() Check the algorithm used to compute the trajectory_results: >>> print(trajectory_results.algorithm) avg Check if we weighted the data or not: >>> print(trajectory_results.weighted) False Check the results of one of the categories: >>> print(trajectory_results.categories[0].category) Treatment >>> print(trajectory_results.categories[0].probability) 0.0118478282382 Check the results of one group of one of the categories: >>> print(trajectory_results.categories[0].groups[0].name) Control >>> print(trajectory_results.categories[0].groups[0].trajectory) [ 3.52199973 2.29597001 3.20309816] >>> print(trajectory_results.categories[0].groups[0].info) {'avg': 3.007022633956606} """ # ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from copy import deepcopy from collections import defaultdict from numbers import Integral import numpy as np from natsort import realsorted from scipy.stats import f_oneway from skbio.util._decorator import experimental def _weight_by_vector(trajectories, w_vector): r"""weights the values of `trajectories` given a weighting vector `w_vector`. Each value in `trajectories` will be weighted by the 'rate of change' to 'optimal rate of change' ratio. The 'rate of change' of a vector measures how each point in the vector changes with respect to its predecessor point. The 'optimal rate of change' is the rate of change in which each point in the vector performs the same change than its predecessor, meaning that when calling this function over evenly spaced `w_vector` values, no change will be reflected on the output. Parameters ---------- trajectories: pandas.DataFrame Values to weight w_vector: pandas.Series Values used to weight `trajectories` Returns ------- pandas.DataFrame A weighted version of `trajectories`. Raises ------ ValueError If `trajectories` and `w_vector` don't have equal lengths If `w_vector` is not a gradient TypeError If `trajectories` and `w_vector` are not iterables """ try: if len(trajectories) != len(w_vector): raise ValueError("trajectories (%d) & w_vector (%d) must be equal " "lengths" % (len(trajectories), len(w_vector))) except TypeError: raise TypeError("trajectories and w_vector must be iterables") # check no repeated values are passed in the weighting vector if len(set(w_vector)) != len(w_vector): raise ValueError("The weighting vector must be a gradient") # no need to weight in case of a one element vector if len(w_vector) == 1: return trajectories # Cast to float so divisions have a floating point resolution total_length = float(max(w_vector) - min(w_vector)) # Reflects the expected gradient between subsequent values in w_vector # the first value isn't weighted so subtract one from the number of # elements optimal_gradient = total_length/(len(w_vector)-1) # for all elements apply the weighting function for i, idx in enumerate(trajectories.index): # Skipping the first element is it doesn't need to be weighted if i != 0: trajectories.loc[idx] = ( trajectories.loc[idx] * optimal_gradient / np.abs((w_vector[i] - w_vector[i-1])) ) return trajectories def _ANOVA_trajectories(category, res_by_group): r"""Run ANOVA over `res_by_group` If ANOVA cannot be run in the current category (because either there is only one group in category or there is a group with only one member) the result CategoryResults instance has `probability` and `groups` set to None and message is set to a string explaining why ANOVA was not run Returns ------- CategoryResults An instance of CategoryResults holding the results of the trajectory analysis applied on `category` """ # If there is only one group under category we cannot run ANOVA if len(res_by_group) == 1: return CategoryResults(category, None, None, 'Only one value in the group.') # Check if groups can be tested using ANOVA. ANOVA testing requires # all elements to have at least size greater to one. values = [res.trajectory.astype(float) for res in res_by_group] if any([len(value) == 1 for value in values]): return CategoryResults(category, None, None, 'This group can not be used. All groups ' 'should have more than 1 element.') # We are ok to run ANOVA _, p_val = f_oneway(*values) return CategoryResults(category, p_val, res_by_group, None) class GroupResults: """Store the trajectory results of a group of a metadata category Attributes ---------- name : str The name of the group within the metadata category trajectory : array like The result trajectory in an 1-D numpy array mean : float The mean of the trajectory info : dict Any extra information computed by the trajectory algorithm. Depends on the algorithm message : str A message with information of the execution of the algorithm """ @experimental(as_of="0.4.0") def __init__(self, name, trajectory, mean, info, message): self.name = name self.trajectory = trajectory self.mean = mean self.info = info self.message = message @experimental(as_of="0.4.0") def to_files(self, out_f, raw_f): r"""Save the trajectory analysis results for a category group to files in text format. Parameters ---------- out_f : file-like object File-like object to write trajectory analysis data to. Must have a `write` method. It is the caller's responsibility to close `out_f` when done (if necessary) raw_f : file-like object File-like object to write trajectories trajectory values. Must have a `write` method. It is the caller's responsibility to close `out_f` when done (if necessary) """ out_f.write('For group "%s", the group means is: %f\n' % (self.name, self.mean)) raw_f.write('For group "%s":\n' % self.name) if self.message: out_f.write('%s\n' % self.message) raw_f.write('%s\n' % self.message) out_f.write('The info is: %s\n' % sorted(((k, v) for k, v in self.info.items()))) raw_f.write('The trajectory is:\n[%s]\n' % ", ".join(map(str, self.trajectory))) class CategoryResults: """Store the trajectory results of a metadata category Attributes ---------- category : str The name of the category probability : float The ANOVA probability that the category groups are independent groups : list of GroupResults The trajectory results for each group in the category message : str A message with information of the execution of the algorithm """ @experimental(as_of="0.4.0") def __init__(self, category, probability, groups, message): self.category = category self.probability = probability self.groups = groups self.message = message @experimental(as_of="0.4.0") def to_files(self, out_f, raw_f): r"""Save the trajectory analysis results for a category to files in text format. Parameters ---------- out_f : file-like object File-like object to write trajectory analysis data to. Must have a `write` method. It is the caller's responsibility to close `out_f` when done (if necessary) raw_f : file-like object File-like object to write trajectory raw values. Must have a `write` method. It is the caller's responsibility to close `out_f` when done (if necessary) """ if self.probability is None: out_f.write('Grouped by "%s": %s\n' % (self.category, self.message)) else: out_f.write('Grouped by "%s", probability: %f\n' % (self.category, self.probability)) raw_f.write('Grouped by "%s"\n' % self.category) for group in self.groups: group.to_files(out_f, raw_f) class GradientANOVAResults: """Store the trajectory results Attributes ---------- algorithm : str The algorithm used to compute trajectories weighted : bool If true, a weighting vector was used categories : list of CategoryResults The trajectory results for each metadata category """ @experimental(as_of="0.4.0") def __init__(self, algorithm, weighted, categories): self.algorithm = algorithm self.weighted = weighted self.categories = categories @experimental(as_of="0.4.0") def to_files(self, out_f, raw_f): r"""Save the trajectory analysis results to files in text format. Parameters ---------- out_f : file-like object File-like object to write trajectories analysis data to. Must have a `write` method. It is the caller's responsibility to close `out_f` when done (if necessary) raw_f : file-like object File-like object to write trajectories raw values. Must have a `write` method. It is the caller's responsibility to close `out_f` when done (if necessary) """ out_f.write('Trajectory algorithm: %s\n' % self.algorithm) raw_f.write('Trajectory algorithm: %s\n' % self.algorithm) if self.weighted: out_f.write('** This output is weighted **\n') raw_f.write('** This output is weighted **\n') out_f.write('\n') raw_f.write('\n') for cat_results in self.categories: cat_results.to_files(out_f, raw_f) out_f.write('\n') raw_f.write('\n') class GradientANOVA: r"""Base class for the Trajectory algorithms Parameters ---------- coords : pandas.DataFrame The coordinates for each sample id prop_expl : array like The numpy 1-D array with the proportion explained by each axis in coords metadata_map : pandas.DataFrame The metadata map, indexed by sample ids and columns are metadata categories trajectory_categories : list of str, optional A list of metadata categories to use to create the trajectories. If None is passed, the trajectories for all metadata categories are computed. Default: None, compute all of them sort_category : str, optional The metadata category to use to sort the trajectories. Default: None axes : int, optional The number of axes to account while doing the trajectory specific calculations. Pass 0 to compute all of them. Default: 3 weighted : bool, optional If true, the output is weighted by the space between samples in the `sort_category` column Raises ------ ValueError If any category of `trajectory_categories` is not present in `metadata_map` If `sort_category` is not present in `metadata_map` If `axes` is not between 0 and the maximum number of axes available If `weighted` is True and no `sort_category` is provided If `weighted` is True and the values under `sort_category` are not numerical If `coords` and `metadata_map` does not have samples in common """ # Should be defined by the derived classes _alg_name = None @experimental(as_of="0.4.0") def __init__(self, coords, prop_expl, metadata_map, trajectory_categories=None, sort_category=None, axes=3, weighted=False): if not trajectory_categories: # If trajectory_categories is not provided, use all the categories # present in the metadata map trajectory_categories = metadata_map.keys() else: # Check that trajectory_categories are in metadata_map for category in trajectory_categories: if category not in metadata_map: raise ValueError("Category %s not present in metadata." % category) # Check that sort_categories is in metadata_map if sort_category and sort_category not in metadata_map: raise ValueError("Sort category %s not present in metadata." % sort_category) if axes == 0: # If axes == 0, we should compute the trajectories for all axes axes = len(prop_expl) elif axes > len(prop_expl) or axes < 0: # Axes should be 0 <= axes <= len(prop_expl) raise ValueError("axes should be between 0 and the max number of " "axes available (%d), found: %d " % (len(prop_expl), axes)) # Restrict coordinates to those axes that we actually need to compute self._coords = coords.loc[:, :axes-1] self._prop_expl = prop_expl[:axes] self._metadata_map = metadata_map self._weighted = weighted # Remove any samples from coords not present in mapping file # and remove any samples from metadata_map not present in coords self._normalize_samples() # Create groups self._make_groups(trajectory_categories, sort_category) # Compute the weighting_vector self._weighting_vector = None if weighted: if not sort_category: raise ValueError("You should provide a sort category if you " "want to weight the trajectories") try: self._weighting_vector = \ self._metadata_map[sort_category].astype(np.float64) except ValueError: raise ValueError("The sorting category must be numeric") # Initialize the message buffer self._message_buffer = [] @experimental(as_of="0.4.0") def get_trajectories(self): r"""Compute the trajectories for each group in each category and run ANOVA over the results to test group independence. Returns ------- GradientANOVAResults An instance of GradientANOVAResults holding the results. """ result = GradientANOVAResults(self._alg_name, self._weighted, []) # Loop through all the categories that we should compute # the trajectories for cat, cat_groups in self._groups.items(): # Loop through all the category values present in the current # category and compute the trajectory for each of them res_by_group = [] for group in sorted(cat_groups, key=lambda k: str(k)): res_by_group.append( self._get_group_trajectories(group, cat_groups[group])) result.categories.append(_ANOVA_trajectories(cat, res_by_group)) return result def _normalize_samples(self): r"""Ensures that `self._coords` and `self._metadata_map` have the same sample ids Raises ------ ValueError If `coords` and `metadata_map` does not have samples in common """ # Figure out the sample ids in common coords_sample_ids = set(self._coords.index) mm_sample_ids = set(self._metadata_map.index) sample_ids = coords_sample_ids.intersection(mm_sample_ids) # Check if they actually have sample ids in common if not sample_ids: raise ValueError("Coordinates and metadata map had no samples " "in common") # Need to take a subset of coords if coords_sample_ids != sample_ids: self._coords = self._coords.loc[sample_ids] # Need to take a subset of metadata_map if mm_sample_ids != sample_ids: self._metadata_map = self._metadata_map.loc[sample_ids] def _make_groups(self, trajectory_categories, sort_category): r"""Groups the sample ids in `self._metadata_map` by the values in `trajectory_categories` Creates `self._groups`, a dictionary keyed by category and values are dictionaries in which the keys represent the group name within the category and values are ordered lists of sample ids If `sort_category` is not None, the sample ids are sorted based on the values under this category in the metadata map. Otherwise, they are sorted using the sample id. Parameters ---------- trajectory_categories : list of str A list of metadata categories to use to create the groups. Default: None, compute all of them sort_category : str or None The category from self._metadata_map to use to sort groups """ # If sort_category is provided, we used the value of such category to # sort. Otherwise, we use the sample id. if sort_category: def sort_val(sid): return self._metadata_map[sort_category][sid] else: def sort_val(sid): return sid self._groups = defaultdict(dict) for cat in trajectory_categories: # Group samples by category gb = self._metadata_map.groupby(cat) for g, df in gb: self._groups[cat][g] = realsorted(df.index, key=sort_val) def _get_group_trajectories(self, group_name, sids): r"""Compute the trajectory results for `group_name` containing the samples `sids`. Weights the data if `self._weighted` is True and ``len(sids) > 1`` Parameters ---------- group_name : str The name of the group sids : list of str The sample ids in the group Returns ------- GroupResults The trajectory results for the given group Raises ------ RuntimeError If sids is an empty list """ # We multiply the coord values with the prop_expl trajectories = self._coords.loc[sids] * self._prop_expl if trajectories.empty: # Raising a RuntimeError since in a usual execution this should # never happen. The only way this can happen is if the user # directly calls this method, which shouldn't be done # (that's why the method is private) raise RuntimeError("No samples to process, an empty list cannot " "be processed") # The weighting can only be done over trajectories with a length # greater than 1 if self._weighted and len(sids) > 1: trajectories_copy = deepcopy(trajectories) try: trajectories = _weight_by_vector(trajectories_copy, self._weighting_vector[sids]) except (FloatingPointError, ValueError): self._message_buffer.append("Could not weight group, no " "gradient in the the " "weighting vector.\n") trajectories = trajectories_copy return self._compute_trajectories_results(group_name, trajectories.loc[sids]) def _compute_trajectories_results(self, group_name, trajectories): r"""Do the actual trajectories computation over trajectories Parameters ---------- group_name : str The name of the group trajectories : pandas.DataFrame The sorted trajectories for each sample in the group Raises ------ NotImplementedError This is the base class """ raise NotImplementedError("No algorithm is implemented on the base " "class.") class AverageGradientANOVA(GradientANOVA): r"""Perform trajectory analysis using the RMS average algorithm For each group in a category, it computes the average point among the samples in such group and then computes the norm of each sample from the averaged one. See Also -------- GradientANOVA """ _alg_name = 'avg' def _compute_trajectories_results(self, group_name, trajectories): r"""Do the actual trajectory computation over trajectories Parameters ---------- group_name : str The name of the group trajectories : pandas.DataFrame The sorted trajectories for each sample in the group Returns ------- GroupResults The trajectory results for `group_name` using the average trajectories method """ center = np.average(trajectories, axis=0) if len(trajectories) == 1: trajectory = np.array([np.linalg.norm(center)]) calc = {'avg': trajectory[0]} else: trajectory = np.array([np.linalg.norm(row[1].to_numpy() - center) for row in trajectories.iterrows()]) calc = {'avg': np.average(trajectory)} msg = ''.join(self._message_buffer) if self._message_buffer else None # Reset the message buffer self._message_buffer = [] return GroupResults(group_name, trajectory, np.mean(trajectory), calc, msg) class TrajectoryGradientANOVA(GradientANOVA): r"""Perform trajectory analysis using the RMS trajectory algorithm For each group in a category, each component of the result trajectory is computed as taking the sorted list of samples in the group and taking the norm of the coordinates of the 2nd sample minus 1st sample, 3rd sample minus 2nd sample and so on. See Also -------- GradientANOVA """ _alg_name = 'trajectory' def _compute_trajectories_results(self, group_name, trajectories): r"""Do the actual trajectory computation over trajectories Parameters ---------- group_name : str The name of the group trajectories : pandas.DataFrame The sorted trajectories for each sample in the group Returns ------- GroupResults The trajectory results for `group_name` using the trajectory method """ if len(trajectories) == 1: trajectory = np.array([np.linalg.norm(trajectories)]) calc = {'2-norm': trajectory[0]} else: # Loop through all the rows in trajectories and create '2-norm' # by taking the norm of the 2nd row - 1st row, 3rd row - 2nd row... trajectory = \ np.array([np.linalg.norm(trajectories.iloc[i+1].to_numpy() - trajectories.iloc[i].to_numpy()) for i in range(len(trajectories) - 1)]) calc = {'2-norm': np.linalg.norm(trajectory)} msg = ''.join(self._message_buffer) if self._message_buffer else None # Reset the message buffer self._message_buffer = [] return GroupResults(group_name, trajectory, np.mean(trajectory), calc, msg) class FirstDifferenceGradientANOVA(GradientANOVA): r"""Perform trajectory analysis using the first difference algorithm It calculates the norm for all the time-points and then calculates the first difference for each resulting point See Also -------- GradientANOVA """ _alg_name = 'diff' def _compute_trajectories_results(self, group_name, trajectories): r"""Do the actual trajectory computation over trajectories Parameters ---------- group_name : str The name of the group trajectories : pandas.DataFrame The sorted trajectories for each sample in the group Returns ------- GroupResults The trajectory results for `group_name` using the first difference method """ if len(trajectories) == 1: trajectory = np.array([np.linalg.norm(trajectories)]) calc = {'mean': trajectory[0], 'std': 0} elif len(trajectories) == 2: trajectory = np.array([np.linalg.norm(trajectories[1] - trajectories[0])]) calc = {'mean': trajectory[0], 'std': 0} else: vec_norm = \ np.array([np.linalg.norm(trajectories.iloc[i+1].to_numpy() - trajectories.iloc[i].to_numpy()) for i in range(len(trajectories) - 1)]) trajectory = np.diff(vec_norm) calc = {'mean': np.mean(trajectory), 'std': np.std(trajectory)} msg = ''.join(self._message_buffer) if self._message_buffer else None # Reset the message buffer self._message_buffer = [] return GroupResults(group_name, trajectory, np.mean(trajectory), calc, msg) class WindowDifferenceGradientANOVA(GradientANOVA): r"""Perform trajectory analysis using the modified first difference algorithm It calculates the norm for all the time-points and subtracts the mean of the next number of elements specified in `window_size` and the current element. Parameters ---------- coords : pandas.DataFrame The coordinates for each sample id prop_expl : array like The numpy 1-D array with the proportion explained by each axis in coords metadata_map : pandas.DataFrame The metadata map, indexed by sample ids and columns are metadata categories window_size : int or long The window size to use while computing the differences Raises ------ ValueError If the window_size is not a positive integer See Also -------- GradientANOVA """ _alg_name = 'wdiff' @experimental(as_of="0.4.0") def __init__(self, coords, prop_expl, metadata_map, window_size, **kwargs): super(WindowDifferenceGradientANOVA, self).__init__(coords, prop_expl, metadata_map, **kwargs) if not isinstance(window_size, Integral) or window_size < 1: raise ValueError("The window_size must be a positive integer") self._window_size = window_size def _compute_trajectories_results(self, group_name, trajectories): r"""Do the actual trajectory computation over trajectories If the first difference cannot be calculated of the provided window size, no difference is applied and a message is added to the results. Parameters ---------- group_name : str The name of the group trajectories : pandas.DataFrame The sorted trajectories for each sample in the group Returns ------- GroupResults The trajectory results for `group_name` using the windowed difference method """ if len(trajectories) == 1: trajectory = np.array([np.linalg.norm(trajectories)]) calc = {'mean': trajectory, 'std': 0} elif len(trajectories) == 2: trajectory = np.array([np.linalg.norm(trajectories[1] - trajectories[0])]) calc = {'mean': trajectory, 'std': 0} else: vec_norm = \ np.array([np.linalg.norm(trajectories.iloc[i+1].to_numpy() - trajectories.iloc[i].to_numpy()) for i in range(len(trajectories) - 1)]) # windowed first differences won't be able on every group, # specially given the variation of size that a trajectory tends # to have if len(vec_norm) <= self._window_size: trajectory = vec_norm self._message_buffer.append("Cannot calculate the first " "difference with a window of size " "(%d)." % self._window_size) else: # Replicate the last element as many times as required for idx in range(0, self._window_size): vec_norm = np.append(vec_norm, vec_norm[-1:], axis=0) trajectory = [] for idx in range(0, len(vec_norm) - self._window_size): # Meas has to be over axis 0 so it handles arrays of arrays element = np.mean(vec_norm[(idx + 1): (idx + 1 + self._window_size)], axis=0) trajectory.append(element - vec_norm[idx]) trajectory = np.array(trajectory) calc = {'mean': np.mean(trajectory), 'std': np.std(trajectory)} msg = ''.join(self._message_buffer) if self._message_buffer else None # Reset the message buffer self._message_buffer = [] return GroupResults(group_name, trajectory, np.mean(trajectory), calc, msg)
bsd-3-clause
geopandas/geopandas
geopandas/sindex.py
1
21624
import warnings from shapely.geometry.base import BaseGeometry import pandas as pd import numpy as np from . import _compat as compat from ._decorator import doc def _get_sindex_class(): """Dynamically chooses a spatial indexing backend. Required to comply with _compat.USE_PYGEOS. The selection order goes PyGEOS > RTree > Error. """ if compat.USE_PYGEOS: return PyGEOSSTRTreeIndex if compat.HAS_RTREE: return RTreeIndex raise ImportError( "Spatial indexes require either `rtree` or `pygeos`. " "See installation instructions at https://geopandas.org/install.html" ) class BaseSpatialIndex: @property def valid_query_predicates(self): """Returns valid predicates for this spatial index. Returns ------- set Set of valid predicates for this spatial index. Examples -------- >>> from shapely.geometry import Point >>> s = geopandas.GeoSeries([Point(0, 0), Point(1, 1)]) >>> s.sindex.valid_query_predicates # doctest: +SKIP {'contains', 'crosses', 'intersects', 'within', 'touches', \ 'overlaps', None, 'covers', 'contains_properly'} """ raise NotImplementedError def query(self, geometry, predicate=None, sort=False): """Return the index of all geometries in the tree with extents that intersect the envelope of the input geometry. When using the ``rtree`` package, this is not a vectorized function. If speed is important, please use PyGEOS. Parameters ---------- geometry : shapely geometry A single shapely geometry to query against the spatial index. predicate : {None, 'intersects', 'within', 'contains', \ 'overlaps', 'crosses', 'touches'}, optional If predicate is provided, the input geometry is tested using the predicate function against each item in the tree whose extent intersects the envelope of the input geometry: predicate(input_geometry, tree_geometry). If possible, prepared geometries are used to help speed up the predicate operation. sort : bool, default False If True, the results will be sorted in ascending order. If False, results are often sorted but there is no guarantee. Returns ------- matches : ndarray of shape (n_results, ) Integer indices for matching geometries from the spatial index. Examples -------- >>> from shapely.geometry import Point, box >>> s = geopandas.GeoSeries(geopandas.points_from_xy(range(10), range(10))) >>> s 0 POINT (0.00000 0.00000) 1 POINT (1.00000 1.00000) 2 POINT (2.00000 2.00000) 3 POINT (3.00000 3.00000) 4 POINT (4.00000 4.00000) 5 POINT (5.00000 5.00000) 6 POINT (6.00000 6.00000) 7 POINT (7.00000 7.00000) 8 POINT (8.00000 8.00000) 9 POINT (9.00000 9.00000) dtype: geometry >>> s.sindex.query(box(1, 1, 3, 3)) array([1, 2, 3]) >>> s.sindex.query(box(1, 1, 3, 3), predicate="contains") array([2]) """ raise NotImplementedError def query_bulk(self, geometry, predicate=None, sort=False): """ Returns all combinations of each input geometry and geometries in the tree where the envelope of each input geometry intersects with the envelope of a tree geometry. In the context of a spatial join, input geometries are the “left” geometries that determine the order of the results, and tree geometries are “right” geometries that are joined against the left geometries. This effectively performs an inner join, where only those combinations of geometries that can be joined based on envelope overlap or optional predicate are returned. When using the ``rtree`` package, this is not a vectorized function and may be slow. If speed is important, please use PyGEOS. Parameters ---------- geometry : {GeoSeries, GeometryArray, numpy.array of PyGEOS geometries} Accepts GeoPandas geometry iterables (GeoSeries, GeometryArray) or a numpy array of PyGEOS geometries. predicate : {None, 'intersects', 'within', 'contains', 'overlaps', \ 'crosses', 'touches'}, optional If predicate is provided, the input geometries are tested using the predicate function against each item in the tree whose extent intersects the envelope of the each input geometry: predicate(input_geometry, tree_geometry). If possible, prepared geometries are used to help speed up the predicate operation. sort : bool, default False If True, results sorted lexicographically using geometry's indexes as the primary key and the sindex's indexes as the secondary key. If False, no additional sorting is applied. Returns ------- ndarray with shape (2, n) The first subarray contains input geometry integer indexes. The second subarray contains tree geometry integer indexes. Examples -------- >>> from shapely.geometry import Point, box >>> s = geopandas.GeoSeries(geopandas.points_from_xy(range(10), range(10))) >>> s 0 POINT (0.00000 0.00000) 1 POINT (1.00000 1.00000) 2 POINT (2.00000 2.00000) 3 POINT (3.00000 3.00000) 4 POINT (4.00000 4.00000) 5 POINT (5.00000 5.00000) 6 POINT (6.00000 6.00000) 7 POINT (7.00000 7.00000) 8 POINT (8.00000 8.00000) 9 POINT (9.00000 9.00000) dtype: geometry >>> s2 = geopandas.GeoSeries([box(2, 2, 4, 4), box(5, 5, 6, 6)]) >>> s2 0 POLYGON ((4.00000 2.00000, 4.00000 4.00000, 2.... 1 POLYGON ((6.00000 5.00000, 6.00000 6.00000, 5.... dtype: geometry >>> s.sindex.query_bulk(s2) array([[0, 0, 0, 1, 1], [2, 3, 4, 5, 6]]) >>> s.sindex.query_bulk(s2, predicate="contains") array([[0], [3]]) """ raise NotImplementedError def intersection(self, coordinates): """Compatibility wrapper for rtree.index.Index.intersection, use ``query`` intead. Parameters ---------- coordinates : sequence or array Sequence of the form (min_x, min_y, max_x, max_y) to query a rectangle or (x, y) to query a point. Examples -------- >>> from shapely.geometry import Point, box >>> s = geopandas.GeoSeries(geopandas.points_from_xy(range(10), range(10))) >>> s 0 POINT (0.00000 0.00000) 1 POINT (1.00000 1.00000) 2 POINT (2.00000 2.00000) 3 POINT (3.00000 3.00000) 4 POINT (4.00000 4.00000) 5 POINT (5.00000 5.00000) 6 POINT (6.00000 6.00000) 7 POINT (7.00000 7.00000) 8 POINT (8.00000 8.00000) 9 POINT (9.00000 9.00000) dtype: geometry >>> s.sindex.intersection(box(1, 1, 3, 3).bounds) array([1, 2, 3]) Alternatively, you can use ``query``: >>> s.sindex.query(box(1, 1, 3, 3)) array([1, 2, 3]) """ raise NotImplementedError @property def size(self): """Size of the spatial index Number of leaves (input geometries) in the index. Examples -------- >>> from shapely.geometry import Point >>> s = geopandas.GeoSeries(geopandas.points_from_xy(range(10), range(10))) >>> s 0 POINT (0.00000 0.00000) 1 POINT (1.00000 1.00000) 2 POINT (2.00000 2.00000) 3 POINT (3.00000 3.00000) 4 POINT (4.00000 4.00000) 5 POINT (5.00000 5.00000) 6 POINT (6.00000 6.00000) 7 POINT (7.00000 7.00000) 8 POINT (8.00000 8.00000) 9 POINT (9.00000 9.00000) dtype: geometry >>> s.sindex.size 10 """ raise NotImplementedError @property def is_empty(self): """Check if the spatial index is empty Examples -------- >>> from shapely.geometry import Point >>> s = geopandas.GeoSeries(geopandas.points_from_xy(range(10), range(10))) >>> s 0 POINT (0.00000 0.00000) 1 POINT (1.00000 1.00000) 2 POINT (2.00000 2.00000) 3 POINT (3.00000 3.00000) 4 POINT (4.00000 4.00000) 5 POINT (5.00000 5.00000) 6 POINT (6.00000 6.00000) 7 POINT (7.00000 7.00000) 8 POINT (8.00000 8.00000) 9 POINT (9.00000 9.00000) dtype: geometry >>> s.sindex.is_empty False >>> s2 = geopandas.GeoSeries() >>> s2.sindex.is_empty True """ raise NotImplementedError if compat.HAS_RTREE: import rtree.index # noqa from rtree.core import RTreeError # noqa from shapely.prepared import prep # noqa class SpatialIndex(rtree.index.Index, BaseSpatialIndex): """Original rtree wrapper, kept for backwards compatibility.""" def __init__(self, *args): warnings.warn( "Directly using SpatialIndex is deprecated, and the class will be " "removed in a future version. Access the spatial index through the " "`GeoSeries.sindex` attribute, or use `rtree.index.Index` directly.", FutureWarning, stacklevel=2, ) super().__init__(*args) @doc(BaseSpatialIndex.intersection) def intersection(self, coordinates, *args, **kwargs): return super().intersection(coordinates, *args, **kwargs) @property @doc(BaseSpatialIndex.size) def size(self): return len(self.leaves()[0][1]) @property @doc(BaseSpatialIndex.is_empty) def is_empty(self): if len(self.leaves()) > 1: return False return self.size < 1 class RTreeIndex(rtree.index.Index): """A simple wrapper around rtree's RTree Index Parameters ---------- geometry : np.array of Shapely geometries Geometries from which to build the spatial index. """ def __init__(self, geometry): stream = ( (i, item.bounds, None) for i, item in enumerate(geometry) if pd.notnull(item) and not item.is_empty ) try: super().__init__(stream) except RTreeError: # What we really want here is an empty generator error, or # for the bulk loader to log that the generator was empty # and move on. # See https://github.com/Toblerity/rtree/issues/20. super().__init__() # store reference to geometries for predicate queries self.geometries = geometry # create a prepared geometry cache self._prepared_geometries = np.array( [None] * self.geometries.size, dtype=object ) @property @doc(BaseSpatialIndex.valid_query_predicates) def valid_query_predicates(self): return { None, "intersects", "within", "contains", "overlaps", "crosses", "touches", "covers", "contains_properly", } @doc(BaseSpatialIndex.query) def query(self, geometry, predicate=None, sort=False): # handle invalid predicates if predicate not in self.valid_query_predicates: raise ValueError( "Got `predicate` = `{}`, `predicate` must be one of {}".format( predicate, self.valid_query_predicates ) ) # handle empty / invalid geometries if geometry is None: # return an empty integer array, similar to pygeys.STRtree.query. return np.array([], dtype=np.intp) if not isinstance(geometry, BaseGeometry): raise TypeError( "Got `geometry` of type `{}`, `geometry` must be ".format( type(geometry) ) + "a shapely geometry." ) if geometry.is_empty: return np.array([], dtype=np.intp) # query tree bounds = geometry.bounds # rtree operates on bounds tree_idx = list(self.intersection(bounds)) if not tree_idx: return np.array([], dtype=np.intp) # Check predicate # This is checked as input_geometry.predicate(tree_geometry) # When possible, we use prepared geometries. # Prepared geometries only support "intersects" and "contains" # For the special case of "within", we are able to flip the # comparison and check if tree_geometry.contains(input_geometry) # to still take advantage of prepared geometries. if predicate == "within": # To use prepared geometries for within, # we compare tree_geom.contains(input_geom) # Since we are preparing the tree geometries, # we cache them for multiple comparisons. res = [] for index_in_tree in tree_idx: if self._prepared_geometries[index_in_tree] is None: # if not already prepared, prepare and cache self._prepared_geometries[index_in_tree] = prep( self.geometries[index_in_tree] ) if self._prepared_geometries[index_in_tree].contains(geometry): res.append(index_in_tree) tree_idx = res elif predicate is not None: # For the remaining predicates, # we compare input_geom.predicate(tree_geom) if predicate in ( "contains", "intersects", "covers", "contains_properly", ): # prepare this input geometry geometry = prep(geometry) tree_idx = [ index_in_tree for index_in_tree in tree_idx if getattr(geometry, predicate)(self.geometries[index_in_tree]) ] # sort if requested if sort: # sorted return np.sort(np.array(tree_idx, dtype=np.intp)) # unsorted return np.array(tree_idx, dtype=np.intp) @doc(BaseSpatialIndex.query_bulk) def query_bulk(self, geometry, predicate=None, sort=False): # Iterates over geometry, applying func. tree_index = [] input_geometry_index = [] for i, geo in enumerate(geometry): res = self.query(geo, predicate=predicate, sort=sort) tree_index.extend(res) input_geometry_index.extend([i] * len(res)) return np.vstack([input_geometry_index, tree_index]) @doc(BaseSpatialIndex.intersection) def intersection(self, coordinates): return super().intersection(coordinates, objects=False) @property @doc(BaseSpatialIndex.size) def size(self): if hasattr(self, "_size"): size = self._size else: # self.leaves are lists of tuples of (int, lists...) # index [0][1] always has an element, even for empty sindex # for an empty index, it will be an empty list size = len(self.leaves()[0][1]) self._size = size return size @property @doc(BaseSpatialIndex.is_empty) def is_empty(self): return self.geometries.size == 0 or self.size == 0 def __len__(self): return self.size if compat.HAS_PYGEOS: from . import geoseries # noqa from . import array # noqa import pygeos # noqa class PyGEOSSTRTreeIndex(pygeos.STRtree): """A simple wrapper around pygeos's STRTree. Parameters ---------- geometry : np.array of PyGEOS geometries Geometries from which to build the spatial index. """ def __init__(self, geometry): # set empty geometries to None to avoid segfault on GEOS <= 3.6 # see: # https://github.com/pygeos/pygeos/issues/146 # https://github.com/pygeos/pygeos/issues/147 non_empty = geometry.copy() non_empty[pygeos.is_empty(non_empty)] = None # set empty geometries to None to mantain indexing super().__init__(non_empty) # store geometries, including empty geometries for user access self.geometries = geometry.copy() @property def valid_query_predicates(self): """Returns valid predicates for the used spatial index. Returns ------- set Set of valid predicates for this spatial index. Examples -------- >>> from shapely.geometry import Point >>> s = geopandas.GeoSeries([Point(0, 0), Point(1, 1)]) >>> s.sindex.valid_query_predicates # doctest: +SKIP {'contains', 'crosses', 'covered_by', None, 'intersects', 'within', \ 'touches', 'overlaps', 'contains_properly', 'covers'} """ return {p.name for p in pygeos.strtree.BinaryPredicate} | set([None]) @doc(BaseSpatialIndex.query) def query(self, geometry, predicate=None, sort=False): if predicate not in self.valid_query_predicates: raise ValueError( "Got `predicate` = `{}`; ".format(predicate) + "`predicate` must be one of {}".format( self.valid_query_predicates ) ) if isinstance(geometry, BaseGeometry): geometry = array._shapely_to_geom(geometry) matches = super().query(geometry=geometry, predicate=predicate) if sort: return np.sort(matches) return matches @doc(BaseSpatialIndex.query_bulk) def query_bulk(self, geometry, predicate=None, sort=False): if predicate not in self.valid_query_predicates: raise ValueError( "Got `predicate` = `{}`, `predicate` must be one of {}".format( predicate, self.valid_query_predicates ) ) if isinstance(geometry, geoseries.GeoSeries): geometry = geometry.values.data elif isinstance(geometry, array.GeometryArray): geometry = geometry.data elif not isinstance(geometry, np.ndarray): geometry = np.asarray(geometry) res = super().query_bulk(geometry, predicate) if sort: # sort by first array (geometry) and then second (tree) geo_res, tree_res = res indexing = np.lexsort((tree_res, geo_res)) return np.vstack((geo_res[indexing], tree_res[indexing])) return res @doc(BaseSpatialIndex.intersection) def intersection(self, coordinates): # convert bounds to geometry # the old API uses tuples of bound, but pygeos uses geometries try: iter(coordinates) except TypeError: # likely not an iterable # this is a check that rtree does, we mimic it # to ensure a useful failure message raise TypeError( "Invalid coordinates, must be iterable in format " "(minx, miny, maxx, maxy) (for bounds) or (x, y) (for points). " "Got `coordinates` = {}.".format(coordinates) ) # need to convert tuple of bounds to a geometry object if len(coordinates) == 4: indexes = super().query(pygeos.box(*coordinates)) elif len(coordinates) == 2: indexes = super().query(pygeos.points(*coordinates)) else: raise TypeError( "Invalid coordinates, must be iterable in format " "(minx, miny, maxx, maxy) (for bounds) or (x, y) (for points). " "Got `coordinates` = {}.".format(coordinates) ) return indexes @property @doc(BaseSpatialIndex.size) def size(self): return len(self) @property @doc(BaseSpatialIndex.is_empty) def is_empty(self): return len(self) == 0
bsd-3-clause
abimannans/scikit-learn
sklearn/utils/random.py
234
10510
# Author: Hamzeh Alsalhi <[email protected]> # # License: BSD 3 clause from __future__ import division import numpy as np import scipy.sparse as sp import operator import array from sklearn.utils import check_random_state from sklearn.utils.fixes import astype from ._random import sample_without_replacement __all__ = ['sample_without_replacement', 'choice'] # This is a backport of np.random.choice from numpy 1.7 # The function can be removed when we bump the requirements to >=1.7 def choice(a, size=None, replace=True, p=None, random_state=None): """ choice(a, size=None, replace=True, p=None) Generates a random sample from a given 1-D array .. versionadded:: 1.7.0 Parameters ----------- a : 1-D array-like or int If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if a was np.arange(n) size : int or tuple of ints, optional Output shape. Default is None, in which case a single value is returned. replace : boolean, optional Whether the sample is with or without replacement. p : 1-D array-like, optional The probabilities associated with each entry in a. If not given the sample assumes a uniform distribtion over all entries in a. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns -------- samples : 1-D ndarray, shape (size,) The generated random samples Raises ------- ValueError If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size See Also --------- randint, shuffle, permutation Examples --------- Generate a uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3) # doctest: +SKIP array([0, 3, 4]) >>> #This is equivalent to np.random.randint(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) # doctest: +SKIP array([3, 3, 0]) Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False) # doctest: +SKIP array([3,1,0]) >>> #This is equivalent to np.random.shuffle(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) ... # doctest: +SKIP array([2, 3, 0]) Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) ... # doctest: +SKIP array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], dtype='|S11') """ random_state = check_random_state(random_state) # Format and Verify input a = np.array(a, copy=False) if a.ndim == 0: try: # __index__ must return an integer by python rules. pop_size = operator.index(a.item()) except TypeError: raise ValueError("a must be 1-dimensional or an integer") if pop_size <= 0: raise ValueError("a must be greater than 0") elif a.ndim != 1: raise ValueError("a must be 1-dimensional") else: pop_size = a.shape[0] if pop_size is 0: raise ValueError("a must be non-empty") if None != p: p = np.array(p, dtype=np.double, ndmin=1, copy=False) if p.ndim != 1: raise ValueError("p must be 1-dimensional") if p.size != pop_size: raise ValueError("a and p must have same size") if np.any(p < 0): raise ValueError("probabilities are not non-negative") if not np.allclose(p.sum(), 1): raise ValueError("probabilities do not sum to 1") shape = size if shape is not None: size = np.prod(shape, dtype=np.intp) else: size = 1 # Actual sampling if replace: if None != p: cdf = p.cumsum() cdf /= cdf[-1] uniform_samples = random_state.random_sample(shape) idx = cdf.searchsorted(uniform_samples, side='right') # searchsorted returns a scalar idx = np.array(idx, copy=False) else: idx = random_state.randint(0, pop_size, size=shape) else: if size > pop_size: raise ValueError("Cannot take a larger sample than " "population when 'replace=False'") if None != p: if np.sum(p > 0) < size: raise ValueError("Fewer non-zero entries in p than size") n_uniq = 0 p = p.copy() found = np.zeros(shape, dtype=np.int) flat_found = found.ravel() while n_uniq < size: x = random_state.rand(size - n_uniq) if n_uniq > 0: p[flat_found[0:n_uniq]] = 0 cdf = np.cumsum(p) cdf /= cdf[-1] new = cdf.searchsorted(x, side='right') _, unique_indices = np.unique(new, return_index=True) unique_indices.sort() new = new.take(unique_indices) flat_found[n_uniq:n_uniq + new.size] = new n_uniq += new.size idx = found else: idx = random_state.permutation(pop_size)[:size] if shape is not None: idx.shape = shape if shape is None and isinstance(idx, np.ndarray): # In most cases a scalar will have been made an array idx = idx.item(0) # Use samples as indices for a if a is array-like if a.ndim == 0: return idx if shape is not None and idx.ndim == 0: # If size == () then the user requested a 0-d array as opposed to # a scalar object when size is None. However a[idx] is always a # scalar and not an array. So this makes sure the result is an # array, taking into account that np.array(item) may not work # for object arrays. res = np.empty((), dtype=a.dtype) res[()] = a[idx] return res return a[idx] def random_choice_csc(n_samples, classes, class_probability=None, random_state=None): """Generate a sparse random matrix given column class distributions Parameters ---------- n_samples : int, Number of samples to draw in each column. classes : list of size n_outputs of arrays of size (n_classes,) List of classes for each column. class_probability : list of size n_outputs of arrays of size (n_classes,) Optional (default=None). Class distribution of each column. If None the uniform distribution is assumed. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- random_matrix : sparse csc matrix of size (n_samples, n_outputs) """ data = array.array('i') indices = array.array('i') indptr = array.array('i', [0]) for j in range(len(classes)): classes[j] = np.asarray(classes[j]) if classes[j].dtype.kind != 'i': raise ValueError("class dtype %s is not supported" % classes[j].dtype) classes[j] = astype(classes[j], np.int64, copy=False) # use uniform distribution if no class_probability is given if class_probability is None: class_prob_j = np.empty(shape=classes[j].shape[0]) class_prob_j.fill(1 / classes[j].shape[0]) else: class_prob_j = np.asarray(class_probability[j]) if np.sum(class_prob_j) != 1.0: raise ValueError("Probability array at index {0} does not sum to " "one".format(j)) if class_prob_j.shape[0] != classes[j].shape[0]: raise ValueError("classes[{0}] (length {1}) and " "class_probability[{0}] (length {2}) have " "different length.".format(j, classes[j].shape[0], class_prob_j.shape[0])) # If 0 is not present in the classes insert it with a probability 0.0 if 0 not in classes[j]: classes[j] = np.insert(classes[j], 0, 0) class_prob_j = np.insert(class_prob_j, 0, 0.0) # If there are nonzero classes choose randomly using class_probability rng = check_random_state(random_state) if classes[j].shape[0] > 1: p_nonzero = 1 - class_prob_j[classes[j] == 0] nnz = int(n_samples * p_nonzero) ind_sample = sample_without_replacement(n_population=n_samples, n_samples=nnz, random_state=random_state) indices.extend(ind_sample) # Normalize probabilites for the nonzero elements classes_j_nonzero = classes[j] != 0 class_probability_nz = class_prob_j[classes_j_nonzero] class_probability_nz_norm = (class_probability_nz / np.sum(class_probability_nz)) classes_ind = np.searchsorted(class_probability_nz_norm.cumsum(), rng.rand(nnz)) data.extend(classes[j][classes_j_nonzero][classes_ind]) indptr.append(len(indices)) return sp.csc_matrix((data, indices, indptr), (n_samples, len(classes)), dtype=int)
bsd-3-clause
mizzao/ggplot
ggplot/themes/theme_gray.py
12
4162
from .theme import theme import matplotlib as mpl class theme_gray(theme): """ Standard theme for ggplot. Gray background w/ white gridlines. Copied from the the ggplot2 codebase: https://github.com/hadley/ggplot2/blob/master/R/theme-defaults.r """ def __init__(self): super(theme_gray, self).__init__(complete=True) self._rcParams["timezone"] = "UTC" self._rcParams["lines.linewidth"] = "1.0" self._rcParams["lines.antialiased"] = "True" self._rcParams["patch.linewidth"] = "0.5" self._rcParams["patch.facecolor"] = "348ABD" self._rcParams["patch.edgecolor"] = "#E5E5E5" self._rcParams["patch.antialiased"] = "True" self._rcParams["font.family"] = "sans-serif" self._rcParams["font.size"] = "12.0" self._rcParams["font.serif"] = ["Times", "Palatino", "New Century Schoolbook", "Bookman", "Computer Modern Roman", "Times New Roman"] self._rcParams["font.sans-serif"] = ["Helvetica", "Avant Garde", "Computer Modern Sans serif", "Arial"] self._rcParams["axes.facecolor"] = "#E5E5E5" self._rcParams["axes.edgecolor"] = "bcbcbc" self._rcParams["axes.linewidth"] = "1" self._rcParams["axes.grid"] = "True" self._rcParams["axes.titlesize"] = "x-large" self._rcParams["axes.labelsize"] = "large" self._rcParams["axes.labelcolor"] = "black" self._rcParams["axes.axisbelow"] = "True" self._rcParams["axes.color_cycle"] = ["#333333", "348ABD", "7A68A6", "A60628", "467821", "CF4457", "188487", "E24A33"] self._rcParams["grid.color"] = "white" self._rcParams["grid.linewidth"] = "1.4" self._rcParams["grid.linestyle"] = "solid" self._rcParams["xtick.major.size"] = "0" self._rcParams["xtick.minor.size"] = "0" self._rcParams["xtick.major.pad"] = "6" self._rcParams["xtick.minor.pad"] = "6" self._rcParams["xtick.color"] = "#7F7F7F" self._rcParams["xtick.direction"] = "out" # pointing out of axis self._rcParams["ytick.major.size"] = "0" self._rcParams["ytick.minor.size"] = "0" self._rcParams["ytick.major.pad"] = "6" self._rcParams["ytick.minor.pad"] = "6" self._rcParams["ytick.color"] = "#7F7F7F" self._rcParams["ytick.direction"] = "out" # pointing out of axis self._rcParams["legend.fancybox"] = "True" self._rcParams["figure.figsize"] = "11, 8" self._rcParams["figure.facecolor"] = "1.0" self._rcParams["figure.edgecolor"] = "0.50" self._rcParams["figure.subplot.hspace"] = "0.5" def apply_theme(self, ax): '''Styles x,y axes to appear like ggplot2 Must be called after all plot and axis manipulation operations have been carried out (needs to know final tick spacing) From: https://github.com/wrobstory/climatic/blob/master/climatic/stylers.py ''' #Remove axis border for child in ax.get_children(): if isinstance(child, mpl.spines.Spine): child.set_alpha(0) #Restyle the tick lines for line in ax.get_xticklines() + ax.get_yticklines(): line.set_markersize(5) line.set_markeredgewidth(1.4) #Only show bottom left ticks ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') #Set minor grid lines ax.grid(True, 'minor', color='#F2F2F2', linestyle='-', linewidth=0.7) if not isinstance(ax.xaxis.get_major_locator(), mpl.ticker.LogLocator): ax.xaxis.set_minor_locator(mpl.ticker.AutoMinorLocator(2)) if not isinstance(ax.yaxis.get_major_locator(), mpl.ticker.LogLocator): ax.yaxis.set_minor_locator(mpl.ticker.AutoMinorLocator(2))
bsd-2-clause
simon-pepin/scikit-learn
sklearn/datasets/svmlight_format.py
114
15826
"""This module implements a loader and dumper for the svmlight format This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. This format is used as the default format for both svmlight and the libsvm command line programs. """ # Authors: Mathieu Blondel <[email protected]> # Lars Buitinck <[email protected]> # Olivier Grisel <[email protected]> # License: BSD 3 clause from contextlib import closing import io import os.path import numpy as np import scipy.sparse as sp from ._svmlight_format import _load_svmlight_file from .. import __version__ from ..externals import six from ..externals.six import u, b from ..externals.six.moves import range, zip from ..utils import check_array from ..utils.fixes import frombuffer_empty def load_svmlight_file(f, n_features=None, dtype=np.float64, multilabel=False, zero_based="auto", query_id=False): """Load datasets in the svmlight / libsvm format into sparse CSR matrix This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. This format is used as the default format for both svmlight and the libsvm command line programs. Parsing a text based source can be expensive. When working on repeatedly on the same dataset, it is recommended to wrap this loader with joblib.Memory.cache to store a memmapped backup of the CSR results of the first call and benefit from the near instantaneous loading of memmapped structures for the subsequent calls. In case the file contains a pairwise preference constraint (known as "qid" in the svmlight format) these are ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to constraint the combination of samples when using pairwise loss functions (as is the case in some learning to rank problems) so that only pairs with the same query_id value are considered. This implementation is written in Cython and is reasonably fast. However, a faster API-compatible loader is also available at: https://github.com/mblondel/svmlight-loader Parameters ---------- f : {str, file-like, int} (Path to) a file to load. If a path ends in ".gz" or ".bz2", it will be uncompressed on the fly. If an integer is passed, it is assumed to be a file descriptor. A file-like or file descriptor will not be closed by this function. A file-like object must be opened in binary mode. n_features : int or None The number of features to use. If None, it will be inferred. This argument is useful to load several files that are subsets of a bigger sliced dataset: each subset might not have examples of every feature, hence the inferred shape might vary from one slice to another. multilabel : boolean, optional, default False Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) zero_based : boolean or "auto", optional, default "auto" Whether column indices in f are zero-based (True) or one-based (False). If column indices are one-based, they are transformed to zero-based to match Python/NumPy conventions. If set to "auto", a heuristic check is applied to determine this from the file contents. Both kinds of files occur "in the wild", but they are unfortunately not self-identifying. Using "auto" or True should always be safe. query_id : boolean, default False If True, will return the query_id array for each file. dtype : numpy data type, default np.float64 Data type of dataset to be loaded. This will be the data type of the output numpy arrays ``X`` and ``y``. Returns ------- X: scipy.sparse matrix of shape (n_samples, n_features) y: ndarray of shape (n_samples,), or, in the multilabel a list of tuples of length n_samples. query_id: array of shape (n_samples,) query_id for each sample. Only returned when query_id is set to True. See also -------- load_svmlight_files: similar function for loading multiple files in this format, enforcing the same number of features/columns on all of them. Examples -------- To use joblib.Memory to cache the svmlight file:: from sklearn.externals.joblib import Memory from sklearn.datasets import load_svmlight_file mem = Memory("./mycache") @mem.cache def get_data(): data = load_svmlight_file("mysvmlightfile") return data[0], data[1] X, y = get_data() """ return tuple(load_svmlight_files([f], n_features, dtype, multilabel, zero_based, query_id)) def _gen_open(f): if isinstance(f, int): # file descriptor return io.open(f, "rb", closefd=False) elif not isinstance(f, six.string_types): raise TypeError("expected {str, int, file-like}, got %s" % type(f)) _, ext = os.path.splitext(f) if ext == ".gz": import gzip return gzip.open(f, "rb") elif ext == ".bz2": from bz2 import BZ2File return BZ2File(f, "rb") else: return open(f, "rb") def _open_and_load(f, dtype, multilabel, zero_based, query_id): if hasattr(f, "read"): actual_dtype, data, ind, indptr, labels, query = \ _load_svmlight_file(f, dtype, multilabel, zero_based, query_id) # XXX remove closing when Python 2.7+/3.1+ required else: with closing(_gen_open(f)) as f: actual_dtype, data, ind, indptr, labels, query = \ _load_svmlight_file(f, dtype, multilabel, zero_based, query_id) # convert from array.array, give data the right dtype if not multilabel: labels = frombuffer_empty(labels, np.float64) data = frombuffer_empty(data, actual_dtype) indices = frombuffer_empty(ind, np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) # never empty query = frombuffer_empty(query, np.intc) data = np.asarray(data, dtype=dtype) # no-op for float{32,64} return data, indices, indptr, labels, query def load_svmlight_files(files, n_features=None, dtype=np.float64, multilabel=False, zero_based="auto", query_id=False): """Load dataset from multiple files in SVMlight format This function is equivalent to mapping load_svmlight_file over a list of files, except that the results are concatenated into a single, flat list and the samples vectors are constrained to all have the same number of features. In case the file contains a pairwise preference constraint (known as "qid" in the svmlight format) these are ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to constraint the combination of samples when using pairwise loss functions (as is the case in some learning to rank problems) so that only pairs with the same query_id value are considered. Parameters ---------- files : iterable over {str, file-like, int} (Paths of) files to load. If a path ends in ".gz" or ".bz2", it will be uncompressed on the fly. If an integer is passed, it is assumed to be a file descriptor. File-likes and file descriptors will not be closed by this function. File-like objects must be opened in binary mode. n_features: int or None The number of features to use. If None, it will be inferred from the maximum column index occurring in any of the files. This can be set to a higher value than the actual number of features in any of the input files, but setting it to a lower value will cause an exception to be raised. multilabel: boolean, optional Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) zero_based: boolean or "auto", optional Whether column indices in f are zero-based (True) or one-based (False). If column indices are one-based, they are transformed to zero-based to match Python/NumPy conventions. If set to "auto", a heuristic check is applied to determine this from the file contents. Both kinds of files occur "in the wild", but they are unfortunately not self-identifying. Using "auto" or True should always be safe. query_id: boolean, defaults to False If True, will return the query_id array for each file. dtype : numpy data type, default np.float64 Data type of dataset to be loaded. This will be the data type of the output numpy arrays ``X`` and ``y``. Returns ------- [X1, y1, ..., Xn, yn] where each (Xi, yi) pair is the result from load_svmlight_file(files[i]). If query_id is set to True, this will return instead [X1, y1, q1, ..., Xn, yn, qn] where (Xi, yi, qi) is the result from load_svmlight_file(files[i]) Notes ----- When fitting a model to a matrix X_train and evaluating it against a matrix X_test, it is essential that X_train and X_test have the same number of features (X_train.shape[1] == X_test.shape[1]). This may not be the case if you load the files individually with load_svmlight_file. See also -------- load_svmlight_file """ r = [_open_and_load(f, dtype, multilabel, bool(zero_based), bool(query_id)) for f in files] if (zero_based is False or zero_based == "auto" and all(np.min(tmp[1]) > 0 for tmp in r)): for ind in r: indices = ind[1] indices -= 1 n_f = max(ind[1].max() for ind in r) + 1 if n_features is None: n_features = n_f elif n_features < n_f: raise ValueError("n_features was set to {}," " but input file contains {} features" .format(n_features, n_f)) result = [] for data, indices, indptr, y, query_values in r: shape = (indptr.shape[0] - 1, n_features) X = sp.csr_matrix((data, indices, indptr), shape) X.sort_indices() result += X, y if query_id: result.append(query_values) return result def _dump_svmlight(X, y, f, multilabel, one_based, comment, query_id): is_sp = int(hasattr(X, "tocsr")) if X.dtype.kind == 'i': value_pattern = u("%d:%d") else: value_pattern = u("%d:%.16g") if y.dtype.kind == 'i': label_pattern = u("%d") else: label_pattern = u("%.16g") line_pattern = u("%s") if query_id is not None: line_pattern += u(" qid:%d") line_pattern += u(" %s\n") if comment: f.write(b("# Generated by dump_svmlight_file from scikit-learn %s\n" % __version__)) f.write(b("# Column indices are %s-based\n" % ["zero", "one"][one_based])) f.write(b("#\n")) f.writelines(b("# %s\n" % line) for line in comment.splitlines()) for i in range(X.shape[0]): if is_sp: span = slice(X.indptr[i], X.indptr[i + 1]) row = zip(X.indices[span], X.data[span]) else: nz = X[i] != 0 row = zip(np.where(nz)[0], X[i, nz]) s = " ".join(value_pattern % (j + one_based, x) for j, x in row) if multilabel: nz_labels = np.where(y[i] != 0)[0] labels_str = ",".join(label_pattern % j for j in nz_labels) else: labels_str = label_pattern % y[i] if query_id is not None: feat = (labels_str, query_id[i], s) else: feat = (labels_str, s) f.write((line_pattern % feat).encode('ascii')) def dump_svmlight_file(X, y, f, zero_based=True, comment=None, query_id=None, multilabel=False): """Dump the dataset in svmlight / libsvm file format. This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. f : string or file-like in binary mode If string, specifies the path that will contain the data. If file-like, data will be written to f. f should be opened in binary mode. zero_based : boolean, optional Whether column indices should be written zero-based (True) or one-based (False). comment : string, optional Comment to insert at the top of the file. This should be either a Unicode string, which will be encoded as UTF-8, or an ASCII byte string. If a comment is given, then it will be preceded by one that identifies the file as having been dumped by scikit-learn. Note that not all tools grok comments in SVMlight files. query_id : array-like, shape = [n_samples] Array containing pairwise preference constraints (qid in svmlight format). multilabel: boolean, optional Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) """ if comment is not None: # Convert comment string to list of lines in UTF-8. # If a byte string is passed, then check whether it's ASCII; # if a user wants to get fancy, they'll have to decode themselves. # Avoid mention of str and unicode types for Python 3.x compat. if isinstance(comment, bytes): comment.decode("ascii") # just for the exception else: comment = comment.encode("utf-8") if six.b("\0") in comment: raise ValueError("comment string contains NUL byte") y = np.asarray(y) if y.ndim != 1 and not multilabel: raise ValueError("expected y of shape (n_samples,), got %r" % (y.shape,)) Xval = check_array(X, accept_sparse='csr') if Xval.shape[0] != y.shape[0]: raise ValueError("X.shape[0] and y.shape[0] should be the same, got" " %r and %r instead." % (Xval.shape[0], y.shape[0])) # We had some issues with CSR matrices with unsorted indices (e.g. #1501), # so sort them here, but first make sure we don't modify the user's X. # TODO We can do this cheaper; sorted_indices copies the whole matrix. if Xval is X and hasattr(Xval, "sorted_indices"): X = Xval.sorted_indices() else: X = Xval if hasattr(X, "sort_indices"): X.sort_indices() if query_id is not None: query_id = np.asarray(query_id) if query_id.shape[0] != y.shape[0]: raise ValueError("expected query_id of shape (n_samples,), got %r" % (query_id.shape,)) one_based = not zero_based if hasattr(f, "write"): _dump_svmlight(X, y, f, multilabel, one_based, comment, query_id) else: with open(f, "wb") as f: _dump_svmlight(X, y, f, multilabel, one_based, comment, query_id)
bsd-3-clause
ryandougherty/mwa-capstone
MWA_Tools/build/matplotlib/lib/matplotlib/backends/backend_cairo.py
1
16708
""" A Cairo backend for matplotlib Author: Steve Chaplin Cairo is a vector graphics library with cross-device output support. Features of Cairo: * anti-aliasing * alpha channel * saves image files as PNG, PostScript, PDF http://cairographics.org Requires (in order, all available from Cairo website): cairo, pycairo Naming Conventions * classes MixedUpperCase * varables lowerUpper * functions underscore_separated """ from __future__ import division import os, sys, warnings, gzip import numpy as np def _fn_name(): return sys._getframe(1).f_code.co_name try: import cairo except ImportError: raise ImportError("Cairo backend requires that pycairo is installed.") _version_required = (1,2,0) if cairo.version_info < _version_required: raise ImportError ("Pycairo %d.%d.%d is installed\n" "Pycairo %d.%d.%d or later is required" % (cairo.version_info + _version_required)) backend_version = cairo.version del _version_required from matplotlib.backend_bases import RendererBase, GraphicsContextBase,\ FigureManagerBase, FigureCanvasBase from matplotlib.cbook import is_string_like from matplotlib.figure import Figure from matplotlib.mathtext import MathTextParser from matplotlib.path import Path from matplotlib.transforms import Bbox, Affine2D from matplotlib.font_manager import ttfFontProperty from matplotlib import rcParams _debug = False #_debug = True # Image::color_conv(format) for draw_image() if sys.byteorder == 'little': BYTE_FORMAT = 0 # BGRA else: BYTE_FORMAT = 1 # ARGB class RendererCairo(RendererBase): fontweights = { 100 : cairo.FONT_WEIGHT_NORMAL, 200 : cairo.FONT_WEIGHT_NORMAL, 300 : cairo.FONT_WEIGHT_NORMAL, 400 : cairo.FONT_WEIGHT_NORMAL, 500 : cairo.FONT_WEIGHT_NORMAL, 600 : cairo.FONT_WEIGHT_BOLD, 700 : cairo.FONT_WEIGHT_BOLD, 800 : cairo.FONT_WEIGHT_BOLD, 900 : cairo.FONT_WEIGHT_BOLD, 'ultralight' : cairo.FONT_WEIGHT_NORMAL, 'light' : cairo.FONT_WEIGHT_NORMAL, 'normal' : cairo.FONT_WEIGHT_NORMAL, 'medium' : cairo.FONT_WEIGHT_NORMAL, 'semibold' : cairo.FONT_WEIGHT_BOLD, 'bold' : cairo.FONT_WEIGHT_BOLD, 'heavy' : cairo.FONT_WEIGHT_BOLD, 'ultrabold' : cairo.FONT_WEIGHT_BOLD, 'black' : cairo.FONT_WEIGHT_BOLD, } fontangles = { 'italic' : cairo.FONT_SLANT_ITALIC, 'normal' : cairo.FONT_SLANT_NORMAL, 'oblique' : cairo.FONT_SLANT_OBLIQUE, } def __init__(self, dpi): """ """ if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) self.dpi = dpi self.gc = GraphicsContextCairo (renderer=self) self.text_ctx = cairo.Context ( cairo.ImageSurface (cairo.FORMAT_ARGB32,1,1)) self.mathtext_parser = MathTextParser('Cairo') RendererBase.__init__(self) def set_ctx_from_surface (self, surface): self.gc.ctx = cairo.Context (surface) def set_width_height(self, width, height): self.width = width self.height = height self.matrix_flipy = cairo.Matrix (yy=-1, y0=self.height) # use matrix_flipy for ALL rendering? # - problem with text? - will need to switch matrix_flipy off, or do a # font transform? def _fill_and_stroke (self, ctx, fill_c, alpha): if fill_c is not None: ctx.save() if len(fill_c) == 3: ctx.set_source_rgba (fill_c[0], fill_c[1], fill_c[2], alpha) else: ctx.set_source_rgba (fill_c[0], fill_c[1], fill_c[2], alpha*fill_c[3]) ctx.fill_preserve() ctx.restore() ctx.stroke() @staticmethod def convert_path(ctx, path, transform): for points, code in path.iter_segments(transform): if code == Path.MOVETO: ctx.move_to(*points) elif code == Path.LINETO: ctx.line_to(*points) elif code == Path.CURVE3: ctx.curve_to(points[0], points[1], points[0], points[1], points[2], points[3]) elif code == Path.CURVE4: ctx.curve_to(*points) elif code == Path.CLOSEPOLY: ctx.close_path() def draw_path(self, gc, path, transform, rgbFace=None): if len(path.vertices) > 18980: raise ValueError("The Cairo backend can not draw paths longer than 18980 points.") ctx = gc.ctx transform = transform + \ Affine2D().scale(1.0, -1.0).translate(0, self.height) ctx.new_path() self.convert_path(ctx, path, transform) self._fill_and_stroke(ctx, rgbFace, gc.get_alpha()) def draw_image(self, gc, x, y, im): # bbox - not currently used if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) clippath, clippath_trans = gc.get_clip_path() im.flipud_out() rows, cols, buf = im.color_conv (BYTE_FORMAT) surface = cairo.ImageSurface.create_for_data ( buf, cairo.FORMAT_ARGB32, cols, rows, cols*4) # function does not pass a 'gc' so use renderer.ctx ctx = self.gc.ctx ctx.save() if clippath is not None: ctx.new_path() RendererCairo.convert_path(ctx, clippath, clippath_trans) ctx.clip() y = self.height - y - rows ctx.set_source_surface (surface, x, y) ctx.paint() ctx.restore() im.flipud_out() def draw_text(self, gc, x, y, s, prop, angle, ismath=False): # Note: x,y are device/display coords, not user-coords, unlike other # draw_* methods if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) if ismath: self._draw_mathtext(gc, x, y, s, prop, angle) else: ctx = gc.ctx ctx.new_path() ctx.move_to (x, y) ctx.select_font_face (prop.get_name(), self.fontangles [prop.get_style()], self.fontweights[prop.get_weight()]) size = prop.get_size_in_points() * self.dpi / 72.0 ctx.save() if angle: ctx.rotate (-angle * np.pi / 180) ctx.set_font_size (size) ctx.show_text (s.encode("utf-8")) ctx.restore() def _draw_mathtext(self, gc, x, y, s, prop, angle): if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) ctx = gc.ctx width, height, descent, glyphs, rects = self.mathtext_parser.parse( s, self.dpi, prop) ctx.save() ctx.translate(x, y) if angle: ctx.rotate (-angle * np.pi / 180) for font, fontsize, s, ox, oy in glyphs: ctx.new_path() ctx.move_to(ox, oy) fontProp = ttfFontProperty(font) ctx.save() ctx.select_font_face (fontProp.name, self.fontangles [fontProp.style], self.fontweights[fontProp.weight]) size = fontsize * self.dpi / 72.0 ctx.set_font_size(size) ctx.show_text(s.encode("utf-8")) ctx.restore() for ox, oy, w, h in rects: ctx.new_path() ctx.rectangle (ox, oy, w, h) ctx.set_source_rgb (0, 0, 0) ctx.fill_preserve() ctx.restore() def flipy(self): if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) return True #return False # tried - all draw objects ok except text (and images?) # which comes out mirrored! def get_canvas_width_height(self): if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) return self.width, self.height def get_text_width_height_descent(self, s, prop, ismath): if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) if ismath: width, height, descent, fonts, used_characters = self.mathtext_parser.parse( s, self.dpi, prop) return width, height, descent ctx = self.text_ctx ctx.save() ctx.select_font_face (prop.get_name(), self.fontangles [prop.get_style()], self.fontweights[prop.get_weight()]) # Cairo (says it) uses 1/96 inch user space units, ref: cairo_gstate.c # but if /96.0 is used the font is too small size = prop.get_size_in_points() * self.dpi / 72.0 # problem - scale remembers last setting and font can become # enormous causing program to crash # save/restore prevents the problem ctx.set_font_size (size) y_bearing, w, h = ctx.text_extents (s)[1:4] ctx.restore() return w, h, h + y_bearing def new_gc(self): if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) self.gc.ctx.save() self.gc._alpha = 1.0 self.gc._forced_alpha = False # if True, _alpha overrides A from RGBA return self.gc def points_to_pixels(self, points): if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) return points/72.0 * self.dpi class GraphicsContextCairo(GraphicsContextBase): _joind = { 'bevel' : cairo.LINE_JOIN_BEVEL, 'miter' : cairo.LINE_JOIN_MITER, 'round' : cairo.LINE_JOIN_ROUND, } _capd = { 'butt' : cairo.LINE_CAP_BUTT, 'projecting' : cairo.LINE_CAP_SQUARE, 'round' : cairo.LINE_CAP_ROUND, } def __init__(self, renderer): GraphicsContextBase.__init__(self) self.renderer = renderer def restore(self): self.ctx.restore() def set_alpha(self, alpha): GraphicsContextBase.set_alpha(self, alpha) _alpha = self.get_alpha() rgb = self._rgb self.ctx.set_source_rgba (rgb[0], rgb[1], rgb[2], _alpha) #def set_antialiased(self, b): # enable/disable anti-aliasing is not (yet) supported by Cairo def set_capstyle(self, cs): if cs in ('butt', 'round', 'projecting'): self._capstyle = cs self.ctx.set_line_cap (self._capd[cs]) else: raise ValueError('Unrecognized cap style. Found %s' % cs) def set_clip_rectangle(self, rectangle): if not rectangle: return x,y,w,h = rectangle.bounds # pixel-aligned clip-regions are faster x,y,w,h = round(x), round(y), round(w), round(h) ctx = self.ctx ctx.new_path() ctx.rectangle (x, self.renderer.height - h - y, w, h) ctx.clip () def set_clip_path(self, path): if not path: return tpath, affine = path.get_transformed_path_and_affine() ctx = self.ctx ctx.new_path() affine = affine + Affine2D().scale(1.0, -1.0).translate(0.0, self.renderer.height) RendererCairo.convert_path(ctx, tpath, affine) ctx.clip() def set_dashes(self, offset, dashes): self._dashes = offset, dashes if dashes == None: self.ctx.set_dash([], 0) # switch dashes off else: self.ctx.set_dash ( self.renderer.points_to_pixels (np.asarray(dashes)), offset) def set_foreground(self, fg, isRGB=None): GraphicsContextBase.set_foreground(self, fg, isRGB) if len(self._rgb) == 3: self.ctx.set_source_rgb(*self._rgb) else: self.ctx.set_source_rgba(*self._rgb) def set_graylevel(self, frac): GraphicsContextBase.set_graylevel(self, frac) if len(self._rgb) == 3: self.ctx.set_source_rgb(*self._rgb) else: self.ctx.set_source_rgba(*self._rgb) def set_joinstyle(self, js): if js in ('miter', 'round', 'bevel'): self._joinstyle = js self.ctx.set_line_join(self._joind[js]) else: raise ValueError('Unrecognized join style. Found %s' % js) def set_linewidth(self, w): self._linewidth = w self.ctx.set_line_width (self.renderer.points_to_pixels(w)) def new_figure_manager(num, *args, **kwargs): # called by backends/__init__.py """ Create a new figure manager instance """ if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) canvas = FigureCanvasCairo(thisFig) manager = FigureManagerBase(canvas, num) return manager class FigureCanvasCairo (FigureCanvasBase): def print_png(self, fobj, *args, **kwargs): width, height = self.get_width_height() renderer = RendererCairo (self.figure.dpi) renderer.set_width_height (width, height) surface = cairo.ImageSurface (cairo.FORMAT_ARGB32, width, height) renderer.set_ctx_from_surface (surface) self.figure.draw (renderer) surface.write_to_png (fobj) def print_pdf(self, fobj, *args, **kwargs): return self._save(fobj, 'pdf', *args, **kwargs) def print_ps(self, fobj, *args, **kwargs): return self._save(fobj, 'ps', *args, **kwargs) def print_svg(self, fobj, *args, **kwargs): return self._save(fobj, 'svg', *args, **kwargs) def print_svgz(self, fobj, *args, **kwargs): return self._save(fobj, 'svgz', *args, **kwargs) def get_default_filetype(self): return rcParams['cairo.format'] def _save (self, fo, format, **kwargs): # save PDF/PS/SVG orientation = kwargs.get('orientation', 'portrait') dpi = 72 self.figure.dpi = dpi w_in, h_in = self.figure.get_size_inches() width_in_points, height_in_points = w_in * dpi, h_in * dpi if orientation == 'landscape': width_in_points, height_in_points = (height_in_points, width_in_points) if format == 'ps': if not cairo.HAS_PS_SURFACE: raise RuntimeError ('cairo has not been compiled with PS ' 'support enabled') surface = cairo.PSSurface (fo, width_in_points, height_in_points) elif format == 'pdf': if not cairo.HAS_PDF_SURFACE: raise RuntimeError ('cairo has not been compiled with PDF ' 'support enabled') surface = cairo.PDFSurface (fo, width_in_points, height_in_points) elif format in ('svg', 'svgz'): if not cairo.HAS_SVG_SURFACE: raise RuntimeError ('cairo has not been compiled with SVG ' 'support enabled') if format == 'svgz': filename = fo if is_string_like(fo): fo = open(fo, 'wb') fo = gzip.GzipFile(None, 'wb', fileobj=fo) surface = cairo.SVGSurface (fo, width_in_points, height_in_points) else: warnings.warn ("unknown format: %s" % format) return # surface.set_dpi() can be used renderer = RendererCairo (self.figure.dpi) renderer.set_width_height (width_in_points, height_in_points) renderer.set_ctx_from_surface (surface) ctx = renderer.gc.ctx if orientation == 'landscape': ctx.rotate (np.pi/2) ctx.translate (0, -height_in_points) # cairo/src/cairo_ps_surface.c # '%%Orientation: Portrait' is always written to the file header # '%%Orientation: Landscape' would possibly cause problems # since some printers would rotate again ? # TODO: # add portrait/landscape checkbox to FileChooser self.figure.draw (renderer) show_fig_border = False # for testing figure orientation and scaling if show_fig_border: ctx.new_path() ctx.rectangle(0, 0, width_in_points, height_in_points) ctx.set_line_width(4.0) ctx.set_source_rgb(1,0,0) ctx.stroke() ctx.move_to(30,30) ctx.select_font_face ('sans-serif') ctx.set_font_size(20) ctx.show_text('Origin corner') ctx.show_page() surface.finish()
gpl-2.0
hollabaq86/haikuna-matata
env/lib/python2.7/site-packages/nltk/parse/dependencygraph.py
5
31002
# Natural Language Toolkit: Dependency Grammars # # Copyright (C) 2001-2017 NLTK Project # Author: Jason Narad <[email protected]> # Steven Bird <[email protected]> (modifications) # # URL: <http://nltk.org/> # For license information, see LICENSE.TXT # """ Tools for reading and writing dependency trees. The input is assumed to be in Malt-TAB format (http://stp.lingfil.uu.se/~nivre/research/MaltXML.html). """ from __future__ import print_function, unicode_literals from collections import defaultdict from itertools import chain from pprint import pformat import subprocess import warnings from nltk.tree import Tree from nltk.compat import python_2_unicode_compatible, string_types ################################################################# # DependencyGraph Class ################################################################# @python_2_unicode_compatible class DependencyGraph(object): """ A container for the nodes and labelled edges of a dependency structure. """ def __init__(self, tree_str=None, cell_extractor=None, zero_based=False, cell_separator=None, top_relation_label='ROOT'): """Dependency graph. We place a dummy `TOP` node with the index 0, since the root node is often assigned 0 as its head. This also means that the indexing of the nodes corresponds directly to the Malt-TAB format, which starts at 1. If zero-based is True, then Malt-TAB-like input with node numbers starting at 0 and the root node assigned -1 (as produced by, e.g., zpar). :param str cell_separator: the cell separator. If not provided, cells are split by whitespace. :param str top_relation_label: the label by which the top relation is identified, for examlple, `ROOT`, `null` or `TOP`. """ self.nodes = defaultdict(lambda: {'address': None, 'word': None, 'lemma': None, 'ctag': None, 'tag': None, 'feats': None, 'head': None, 'deps': defaultdict(list), 'rel': None, }) self.nodes[0].update( { 'ctag': 'TOP', 'tag': 'TOP', 'address': 0, } ) self.root = None if tree_str: self._parse( tree_str, cell_extractor=cell_extractor, zero_based=zero_based, cell_separator=cell_separator, top_relation_label=top_relation_label, ) def remove_by_address(self, address): """ Removes the node with the given address. References to this node in others will still exist. """ del self.nodes[address] def redirect_arcs(self, originals, redirect): """ Redirects arcs to any of the nodes in the originals list to the redirect node address. """ for node in self.nodes.values(): new_deps = [] for dep in node['deps']: if dep in originals: new_deps.append(redirect) else: new_deps.append(dep) node['deps'] = new_deps def add_arc(self, head_address, mod_address): """ Adds an arc from the node specified by head_address to the node specified by the mod address. """ relation = self.nodes[mod_address]['rel'] self.nodes[head_address]['deps'].setdefault(relation, []) self.nodes[head_address]['deps'][relation].append(mod_address) #self.nodes[head_address]['deps'].append(mod_address) def connect_graph(self): """ Fully connects all non-root nodes. All nodes are set to be dependents of the root node. """ for node1 in self.nodes.values(): for node2 in self.nodes.values(): if node1['address'] != node2['address'] and node2['rel'] != 'TOP': relation = node2['rel'] node1['deps'].setdefault(relation, []) node1['deps'][relation].append(node2['address']) #node1['deps'].append(node2['address']) def get_by_address(self, node_address): """Return the node with the given address.""" return self.nodes[node_address] def contains_address(self, node_address): """ Returns true if the graph contains a node with the given node address, false otherwise. """ return node_address in self.nodes def to_dot(self): """Return a dot representation suitable for using with Graphviz. >>> dg = DependencyGraph( ... 'John N 2\\n' ... 'loves V 0\\n' ... 'Mary N 2' ... ) >>> print(dg.to_dot()) digraph G{ edge [dir=forward] node [shape=plaintext] <BLANKLINE> 0 [label="0 (None)"] 0 -> 2 [label="ROOT"] 1 [label="1 (John)"] 2 [label="2 (loves)"] 2 -> 1 [label=""] 2 -> 3 [label=""] 3 [label="3 (Mary)"] } """ # Start the digraph specification s = 'digraph G{\n' s += 'edge [dir=forward]\n' s += 'node [shape=plaintext]\n' # Draw the remaining nodes for node in sorted(self.nodes.values(), key=lambda v: v['address']): s += '\n%s [label="%s (%s)"]' % (node['address'], node['address'], node['word']) for rel, deps in node['deps'].items(): for dep in deps: if rel is not None: s += '\n%s -> %s [label="%s"]' % (node['address'], dep, rel) else: s += '\n%s -> %s ' % (node['address'], dep) s += "\n}" return s def _repr_svg_(self): """Show SVG representation of the transducer (IPython magic). >>> dg = DependencyGraph( ... 'John N 2\\n' ... 'loves V 0\\n' ... 'Mary N 2' ... ) >>> dg._repr_svg_().split('\\n')[0] '<?xml version="1.0" encoding="UTF-8" standalone="no"?>' """ dot_string = self.to_dot() try: process = subprocess.Popen( ['dot', '-Tsvg'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, ) except OSError: raise Exception('Cannot find the dot binary from Graphviz package') out, err = process.communicate(dot_string) if err: raise Exception( 'Cannot create svg representation by running dot from string: {}' ''.format(dot_string)) return out def __str__(self): return pformat(self.nodes) def __repr__(self): return "<DependencyGraph with {0} nodes>".format(len(self.nodes)) @staticmethod def load(filename, zero_based=False, cell_separator=None, top_relation_label='ROOT'): """ :param filename: a name of a file in Malt-TAB format :param zero_based: nodes in the input file are numbered starting from 0 rather than 1 (as produced by, e.g., zpar) :param str cell_separator: the cell separator. If not provided, cells are split by whitespace. :param str top_relation_label: the label by which the top relation is identified, for examlple, `ROOT`, `null` or `TOP`. :return: a list of DependencyGraphs """ with open(filename) as infile: return [ DependencyGraph( tree_str, zero_based=zero_based, cell_separator=cell_separator, top_relation_label=top_relation_label, ) for tree_str in infile.read().split('\n\n') ] def left_children(self, node_index): """ Returns the number of left children under the node specified by the given address. """ children = chain.from_iterable(self.nodes[node_index]['deps'].values()) index = self.nodes[node_index]['address'] return sum(1 for c in children if c < index) def right_children(self, node_index): """ Returns the number of right children under the node specified by the given address. """ children = chain.from_iterable(self.nodes[node_index]['deps'].values()) index = self.nodes[node_index]['address'] return sum(1 for c in children if c > index) def add_node(self, node): if not self.contains_address(node['address']): self.nodes[node['address']].update(node) def _parse(self, input_, cell_extractor=None, zero_based=False, cell_separator=None, top_relation_label='ROOT'): """Parse a sentence. :param extractor: a function that given a tuple of cells returns a 7-tuple, where the values are ``word, lemma, ctag, tag, feats, head, rel``. :param str cell_separator: the cell separator. If not provided, cells are split by whitespace. :param str top_relation_label: the label by which the top relation is identified, for examlple, `ROOT`, `null` or `TOP`. """ def extract_3_cells(cells, index): word, tag, head = cells return index, word, word, tag, tag, '', head, '' def extract_4_cells(cells, index): word, tag, head, rel = cells return index, word, word, tag, tag, '', head, rel def extract_7_cells(cells, index): line_index, word, lemma, tag, _, head, rel = cells try: index = int(line_index) except ValueError: # index can't be parsed as an integer, use default pass return index, word, lemma, tag, tag, '', head, rel def extract_10_cells(cells, index): line_index, word, lemma, ctag, tag, feats, head, rel, _, _ = cells try: index = int(line_index) except ValueError: # index can't be parsed as an integer, use default pass return index, word, lemma, ctag, tag, feats, head, rel extractors = { 3: extract_3_cells, 4: extract_4_cells, 7: extract_7_cells, 10: extract_10_cells, } if isinstance(input_, string_types): input_ = (line for line in input_.split('\n')) lines = (l.rstrip() for l in input_) lines = (l for l in lines if l) cell_number = None for index, line in enumerate(lines, start=1): cells = line.split(cell_separator) if cell_number is None: cell_number = len(cells) else: assert cell_number == len(cells) if cell_extractor is None: try: cell_extractor = extractors[cell_number] except KeyError: raise ValueError( 'Number of tab-delimited fields ({0}) not supported by ' 'CoNLL(10) or Malt-Tab(4) format'.format(cell_number) ) try: index, word, lemma, ctag, tag, feats, head, rel = cell_extractor(cells, index) except (TypeError, ValueError): # cell_extractor doesn't take 2 arguments or doesn't return 8 # values; assume the cell_extractor is an older external # extractor and doesn't accept or return an index. word, lemma, ctag, tag, feats, head, rel = cell_extractor(cells) if head == '_': continue head = int(head) if zero_based: head += 1 self.nodes[index].update( { 'address': index, 'word': word, 'lemma': lemma, 'ctag': ctag, 'tag': tag, 'feats': feats, 'head': head, 'rel': rel, } ) # Make sure that the fake root node has labeled dependencies. if (cell_number == 3) and (head == 0): rel = top_relation_label self.nodes[head]['deps'][rel].append(index) if self.nodes[0]['deps'][top_relation_label]: root_address = self.nodes[0]['deps'][top_relation_label][0] self.root = self.nodes[root_address] self.top_relation_label = top_relation_label else: warnings.warn( "The graph doesn't contain a node " "that depends on the root element." ) def _word(self, node, filter=True): w = node['word'] if filter: if w != ',': return w return w def _tree(self, i): """ Turn dependency graphs into NLTK trees. :param int i: index of a node :return: either a word (if the indexed node is a leaf) or a ``Tree``. """ node = self.get_by_address(i) word = node['word'] deps = sorted(chain.from_iterable(node['deps'].values())) if deps: return Tree(word, [self._tree(dep) for dep in deps]) else: return word def tree(self): """ Starting with the ``root`` node, build a dependency tree using the NLTK ``Tree`` constructor. Dependency labels are omitted. """ node = self.root word = node['word'] deps = sorted(chain.from_iterable(node['deps'].values())) return Tree(word, [self._tree(dep) for dep in deps]) def triples(self, node=None): """ Extract dependency triples of the form: ((head word, head tag), rel, (dep word, dep tag)) """ if not node: node = self.root head = (node['word'], node['ctag']) for i in sorted(chain.from_iterable(node['deps'].values())): dep = self.get_by_address(i) yield (head, dep['rel'], (dep['word'], dep['ctag'])) for triple in self.triples(node=dep): yield triple def _hd(self, i): try: return self.nodes[i]['head'] except IndexError: return None def _rel(self, i): try: return self.nodes[i]['rel'] except IndexError: return None # what's the return type? Boolean or list? def contains_cycle(self): """Check whether there are cycles. >>> dg = DependencyGraph(treebank_data) >>> dg.contains_cycle() False >>> cyclic_dg = DependencyGraph() >>> top = {'word': None, 'deps': [1], 'rel': 'TOP', 'address': 0} >>> child1 = {'word': None, 'deps': [2], 'rel': 'NTOP', 'address': 1} >>> child2 = {'word': None, 'deps': [4], 'rel': 'NTOP', 'address': 2} >>> child3 = {'word': None, 'deps': [1], 'rel': 'NTOP', 'address': 3} >>> child4 = {'word': None, 'deps': [3], 'rel': 'NTOP', 'address': 4} >>> cyclic_dg.nodes = { ... 0: top, ... 1: child1, ... 2: child2, ... 3: child3, ... 4: child4, ... } >>> cyclic_dg.root = top >>> cyclic_dg.contains_cycle() [3, 1, 2, 4] """ distances = {} for node in self.nodes.values(): for dep in node['deps']: key = tuple([node['address'], dep]) distances[key] = 1 for _ in self.nodes: new_entries = {} for pair1 in distances: for pair2 in distances: if pair1[1] == pair2[0]: key = tuple([pair1[0], pair2[1]]) new_entries[key] = distances[pair1] + distances[pair2] for pair in new_entries: distances[pair] = new_entries[pair] if pair[0] == pair[1]: path = self.get_cycle_path(self.get_by_address(pair[0]), pair[0]) return path return False # return []? def get_cycle_path(self, curr_node, goal_node_index): for dep in curr_node['deps']: if dep == goal_node_index: return [curr_node['address']] for dep in curr_node['deps']: path = self.get_cycle_path(self.get_by_address(dep), goal_node_index) if len(path) > 0: path.insert(0, curr_node['address']) return path return [] def to_conll(self, style): """ The dependency graph in CoNLL format. :param style: the style to use for the format (3, 4, 10 columns) :type style: int :rtype: str """ if style == 3: template = '{word}\t{tag}\t{head}\n' elif style == 4: template = '{word}\t{tag}\t{head}\t{rel}\n' elif style == 10: template = '{i}\t{word}\t{lemma}\t{ctag}\t{tag}\t{feats}\t{head}\t{rel}\t_\t_\n' else: raise ValueError( 'Number of tab-delimited fields ({0}) not supported by ' 'CoNLL(10) or Malt-Tab(4) format'.format(style) ) return ''.join(template.format(i=i, **node) for i, node in sorted(self.nodes.items()) if node['tag'] != 'TOP') def nx_graph(self): """Convert the data in a ``nodelist`` into a networkx labeled directed graph.""" import networkx nx_nodelist = list(range(1, len(self.nodes))) nx_edgelist = [ (n, self._hd(n), self._rel(n)) for n in nx_nodelist if self._hd(n) ] self.nx_labels = {} for n in nx_nodelist: self.nx_labels[n] = self.nodes[n]['word'] g = networkx.MultiDiGraph() g.add_nodes_from(nx_nodelist) g.add_edges_from(nx_edgelist) return g class DependencyGraphError(Exception): """Dependency graph exception.""" def demo(): malt_demo() conll_demo() conll_file_demo() cycle_finding_demo() def malt_demo(nx=False): """ A demonstration of the result of reading a dependency version of the first sentence of the Penn Treebank. """ dg = DependencyGraph("""Pierre NNP 2 NMOD Vinken NNP 8 SUB , , 2 P 61 CD 5 NMOD years NNS 6 AMOD old JJ 2 NMOD , , 2 P will MD 0 ROOT join VB 8 VC the DT 11 NMOD board NN 9 OBJ as IN 9 VMOD a DT 15 NMOD nonexecutive JJ 15 NMOD director NN 12 PMOD Nov. NNP 9 VMOD 29 CD 16 NMOD . . 9 VMOD """) tree = dg.tree() tree.pprint() if nx: # currently doesn't work import networkx from matplotlib import pylab g = dg.nx_graph() g.info() pos = networkx.spring_layout(g, dim=1) networkx.draw_networkx_nodes(g, pos, node_size=50) # networkx.draw_networkx_edges(g, pos, edge_color='k', width=8) networkx.draw_networkx_labels(g, pos, dg.nx_labels) pylab.xticks([]) pylab.yticks([]) pylab.savefig('tree.png') pylab.show() def conll_demo(): """ A demonstration of how to read a string representation of a CoNLL format dependency tree. """ dg = DependencyGraph(conll_data1) tree = dg.tree() tree.pprint() print(dg) print(dg.to_conll(4)) def conll_file_demo(): print('Mass conll_read demo...') graphs = [DependencyGraph(entry) for entry in conll_data2.split('\n\n') if entry] for graph in graphs: tree = graph.tree() print('\n') tree.pprint() def cycle_finding_demo(): dg = DependencyGraph(treebank_data) print(dg.contains_cycle()) cyclic_dg = DependencyGraph() cyclic_dg.add_node({'word': None, 'deps': [1], 'rel': 'TOP', 'address': 0}) cyclic_dg.add_node({'word': None, 'deps': [2], 'rel': 'NTOP', 'address': 1}) cyclic_dg.add_node({'word': None, 'deps': [4], 'rel': 'NTOP', 'address': 2}) cyclic_dg.add_node({'word': None, 'deps': [1], 'rel': 'NTOP', 'address': 3}) cyclic_dg.add_node({'word': None, 'deps': [3], 'rel': 'NTOP', 'address': 4}) print(cyclic_dg.contains_cycle()) treebank_data = """Pierre NNP 2 NMOD Vinken NNP 8 SUB , , 2 P 61 CD 5 NMOD years NNS 6 AMOD old JJ 2 NMOD , , 2 P will MD 0 ROOT join VB 8 VC the DT 11 NMOD board NN 9 OBJ as IN 9 VMOD a DT 15 NMOD nonexecutive JJ 15 NMOD director NN 12 PMOD Nov. NNP 9 VMOD 29 CD 16 NMOD . . 9 VMOD """ conll_data1 = """ 1 Ze ze Pron Pron per|3|evofmv|nom 2 su _ _ 2 had heb V V trans|ovt|1of2of3|ev 0 ROOT _ _ 3 met met Prep Prep voor 8 mod _ _ 4 haar haar Pron Pron bez|3|ev|neut|attr 5 det _ _ 5 moeder moeder N N soort|ev|neut 3 obj1 _ _ 6 kunnen kan V V hulp|ott|1of2of3|mv 2 vc _ _ 7 gaan ga V V hulp|inf 6 vc _ _ 8 winkelen winkel V V intrans|inf 11 cnj _ _ 9 , , Punc Punc komma 8 punct _ _ 10 zwemmen zwem V V intrans|inf 11 cnj _ _ 11 of of Conj Conj neven 7 vc _ _ 12 terrassen terras N N soort|mv|neut 11 cnj _ _ 13 . . Punc Punc punt 12 punct _ _ """ conll_data2 = """1 Cathy Cathy N N eigen|ev|neut 2 su _ _ 2 zag zie V V trans|ovt|1of2of3|ev 0 ROOT _ _ 3 hen hen Pron Pron per|3|mv|datofacc 2 obj1 _ _ 4 wild wild Adj Adj attr|stell|onverv 5 mod _ _ 5 zwaaien zwaai N N soort|mv|neut 2 vc _ _ 6 . . Punc Punc punt 5 punct _ _ 1 Ze ze Pron Pron per|3|evofmv|nom 2 su _ _ 2 had heb V V trans|ovt|1of2of3|ev 0 ROOT _ _ 3 met met Prep Prep voor 8 mod _ _ 4 haar haar Pron Pron bez|3|ev|neut|attr 5 det _ _ 5 moeder moeder N N soort|ev|neut 3 obj1 _ _ 6 kunnen kan V V hulp|ott|1of2of3|mv 2 vc _ _ 7 gaan ga V V hulp|inf 6 vc _ _ 8 winkelen winkel V V intrans|inf 11 cnj _ _ 9 , , Punc Punc komma 8 punct _ _ 10 zwemmen zwem V V intrans|inf 11 cnj _ _ 11 of of Conj Conj neven 7 vc _ _ 12 terrassen terras N N soort|mv|neut 11 cnj _ _ 13 . . Punc Punc punt 12 punct _ _ 1 Dat dat Pron Pron aanw|neut|attr 2 det _ _ 2 werkwoord werkwoord N N soort|ev|neut 6 obj1 _ _ 3 had heb V V hulp|ovt|1of2of3|ev 0 ROOT _ _ 4 ze ze Pron Pron per|3|evofmv|nom 6 su _ _ 5 zelf zelf Pron Pron aanw|neut|attr|wzelf 3 predm _ _ 6 uitgevonden vind V V trans|verldw|onverv 3 vc _ _ 7 . . Punc Punc punt 6 punct _ _ 1 Het het Pron Pron onbep|neut|zelfst 2 su _ _ 2 hoorde hoor V V trans|ovt|1of2of3|ev 0 ROOT _ _ 3 bij bij Prep Prep voor 2 ld _ _ 4 de de Art Art bep|zijdofmv|neut 6 det _ _ 5 warme warm Adj Adj attr|stell|vervneut 6 mod _ _ 6 zomerdag zomerdag N N soort|ev|neut 3 obj1 _ _ 7 die die Pron Pron betr|neut|zelfst 6 mod _ _ 8 ze ze Pron Pron per|3|evofmv|nom 12 su _ _ 9 ginds ginds Adv Adv gew|aanw 12 mod _ _ 10 achter achter Adv Adv gew|geenfunc|stell|onverv 12 svp _ _ 11 had heb V V hulp|ovt|1of2of3|ev 7 body _ _ 12 gelaten laat V V trans|verldw|onverv 11 vc _ _ 13 . . Punc Punc punt 12 punct _ _ 1 Ze ze Pron Pron per|3|evofmv|nom 2 su _ _ 2 hadden heb V V trans|ovt|1of2of3|mv 0 ROOT _ _ 3 languit languit Adv Adv gew|geenfunc|stell|onverv 11 mod _ _ 4 naast naast Prep Prep voor 11 mod _ _ 5 elkaar elkaar Pron Pron rec|neut 4 obj1 _ _ 6 op op Prep Prep voor 11 ld _ _ 7 de de Art Art bep|zijdofmv|neut 8 det _ _ 8 strandstoelen strandstoel N N soort|mv|neut 6 obj1 _ _ 9 kunnen kan V V hulp|inf 2 vc _ _ 10 gaan ga V V hulp|inf 9 vc _ _ 11 liggen lig V V intrans|inf 10 vc _ _ 12 . . Punc Punc punt 11 punct _ _ 1 Zij zij Pron Pron per|3|evofmv|nom 2 su _ _ 2 zou zal V V hulp|ovt|1of2of3|ev 7 cnj _ _ 3 mams mams N N soort|ev|neut 4 det _ _ 4 rug rug N N soort|ev|neut 5 obj1 _ _ 5 ingewreven wrijf V V trans|verldw|onverv 6 vc _ _ 6 hebben heb V V hulp|inf 2 vc _ _ 7 en en Conj Conj neven 0 ROOT _ _ 8 mam mam V V trans|ovt|1of2of3|ev 7 cnj _ _ 9 de de Art Art bep|zijdofmv|neut 10 det _ _ 10 hare hare Pron Pron bez|3|ev|neut|attr 8 obj1 _ _ 11 . . Punc Punc punt 10 punct _ _ 1 Of of Conj Conj onder|metfin 0 ROOT _ _ 2 ze ze Pron Pron per|3|evofmv|nom 3 su _ _ 3 had heb V V hulp|ovt|1of2of3|ev 0 ROOT _ _ 4 gewoon gewoon Adj Adj adv|stell|onverv 10 mod _ _ 5 met met Prep Prep voor 10 mod _ _ 6 haar haar Pron Pron bez|3|ev|neut|attr 7 det _ _ 7 vriendinnen vriendin N N soort|mv|neut 5 obj1 _ _ 8 rond rond Adv Adv deelv 10 svp _ _ 9 kunnen kan V V hulp|inf 3 vc _ _ 10 slenteren slenter V V intrans|inf 9 vc _ _ 11 in in Prep Prep voor 10 mod _ _ 12 de de Art Art bep|zijdofmv|neut 13 det _ _ 13 buurt buurt N N soort|ev|neut 11 obj1 _ _ 14 van van Prep Prep voor 13 mod _ _ 15 Trafalgar_Square Trafalgar_Square MWU N_N eigen|ev|neut_eigen|ev|neut 14 obj1 _ _ 16 . . Punc Punc punt 15 punct _ _ """ if __name__ == '__main__': demo()
mit
braghiere/JULESv4.6_clump
examples/tonzi_4.6/output/plotfapar.py
2
8722
from netCDF4 import Dataset # http://code.google.com/p/netcdf4-python/ import numpy as np import datetime as dt # Python standard library datetime module import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap, addcyclic, shiftgrid def ncdump(nc_fid, verb=True): ''' ncdump outputs dimensions, variables and their attribute information. The information is similar to that of NCAR's ncdump utility. ncdump requires a valid instance of Dataset. Parameters ---------- nc_fid : netCDF4.Dataset A netCDF4 dateset object verb : Boolean whether or not nc_attrs, nc_dims, and nc_vars are printed Returns ------- nc_attrs : list A Python list of the NetCDF file global attributes nc_dims : list A Python list of the NetCDF file dimensions nc_vars : list A Python list of the NetCDF file variables ''' def print_ncattr(key): """ Prints the NetCDF file attributes for a given key Parameters ---------- key : unicode a valid netCDF4.Dataset.variables key """ try: print "\t\ttype:", repr(nc_fid.variables[key].dtype) for ncattr in nc_fid.variables[key].ncattrs(): print '\t\t%s:' % ncattr,\ repr(nc_fid.variables[key].getncattr(ncattr)) except KeyError: print "\t\tWARNING: %s does not contain variable attributes" % key # NetCDF global attributes nc_attrs = nc_fid.ncattrs() if verb: print "NetCDF Global Attributes:" for nc_attr in nc_attrs: print '\t%s:' % nc_attr, repr(nc_fid.getncattr(nc_attr)) nc_dims = [dim for dim in nc_fid.dimensions] # list of nc dimensions # Dimension shape information. if verb: print "NetCDF dimension information:" for dim in nc_dims: print "\tName:", dim print "\t\tsize:", len(nc_fid.dimensions[dim]) print_ncattr(dim) # Variable information. nc_vars = [var for var in nc_fid.variables] # list of nc variables if verb: print "NetCDF variable information:" for var in nc_vars: if var not in nc_dims: print '\tName:', var print "\t\tdimensions:", nc_fid.variables[var].dimensions print "\t\tsize:", nc_fid.variables[var].size print_ncattr(var) return nc_attrs, nc_dims, nc_vars my_example_nc_file = '/home/mn811042/jules4.x/4.6/trunk/examples/point_loobos/output/loobos.tstep_can_struc_a_1.nc' my_example_nc_file_2 = '/home/mn811042/jules4.x/4.6/trunk/examples/point_loobos/output/loobos.tstep_can_struc_a_05.nc' my_example_nc_file_3 = '/home/mn811042/jules4.x/4.6/trunk/examples/point_loobos/output/loobos.tstep_can_struc_a_1_half_lai.nc' my_example_nc_file_4 = '/home/mn811042/jules4.x/4.6/trunk/examples/point_loobos/output/loobos.tstep_can_struc_a_025.nc' my_example_nc_file_5 = '/home/mn811042/jules4.x/4.6/trunk/examples/point_loobos/output/loobos.tstep_can_struc_a_075.nc' nc_fid = Dataset(my_example_nc_file, mode='r') nc_fid_2 = Dataset(my_example_nc_file_2, mode='r') nc_fid_3 = Dataset(my_example_nc_file_3, mode='r') nc_fid_4 = Dataset(my_example_nc_file_4, mode='r') nc_fid_5 = Dataset(my_example_nc_file_5, mode='r') nc_attrs, nc_dims, nc_vars = ncdump(nc_fid) # Extract data from NetCDF file lats = nc_fid.variables['latitude'][:] # extract/copy the data lons = nc_fid.variables['longitude'][:] time = nc_fid.variables['time'][:] fapar= nc_fid.variables['fapar'][:] # shape is time, lat, lon as shown above - 'PFT gross primary productivity' fapar_2 = nc_fid_2.variables['fapar'][:] # shape is time, lat, lon as shown above - 'PFT gross primary productivity' fapar_3 = nc_fid_3.variables['fapar'][:] # shape is time, lat, lon as shown above - 'PFT gross primary productivity' fapar_4 = nc_fid_4.variables['fapar'][:] # shape is time, lat, lon as shown above - 'PFT gross primary productivity' fapar_5 = nc_fid_5.variables['fapar'][:] # shape is time, lat, lon as shown above - 'PFT gross primary productivity' print dt.timedelta(hours=np.float64(24)) time_idx = 100 # some random day in 2012 # Python and the renalaysis are slightly off in time so this fixes that problem #offset = dt.timedelta(hours=t3) offset = dt.timedelta(hours=np.float64(24)) # List of all times in the file as datetime objects dt_time = [dt.date(1997, 1, 1) + dt.timedelta(hours=np.float64(t)) - offset\ for t in time] cur_time = dt_time[time_idx] # Plot of global temperature on our random day #>>>>>fig = plt.figure() #>>>>>fig.subplots_adjust(left=0., right=1., bottom=0., top=0.9) # Setup the map. See http://matplotlib.org/basemap/users/mapsetup.html # for other projections. #>>>>>m = Basemap(projection='moll', llcrnrlat=-90, urcrnrlat=90,\ #>>>>> llcrnrlon=0, urcrnrlon=360, resolution='c', lon_0=0) #>>>>>m.drawcoastlines() #>>>>>m.drawmapboundary() # Make the plot continuous #>>>>>air_cyclic, lons_cyclic = addcyclic(air[time_idx, :, :], lons) # Shift the grid so lons go from -180 to 180 instead of 0 to 360. #>>>>>air_cyclic, lons_cyclic = shiftgrid(180., air_cyclic, lons_cyclic, start=False) # Create 2D lat/lon arrays for Basemap #>>>>>lon2d, lat2d = np.meshgrid(lons_cyclic, lats) # Transforms lat/lon into plotting coordinates for projection #>>>>>x, y = m(lon2d, lat2d) # Plot of air temperature with 11 contour intervals #>>>>>cs = m.contourf(x, y, air_cyclic, 11, cmap=plt.cm.Spectral_r) #>>>>>cbar = plt.colorbar(cs, orientation='horizontal', shrink=0.5) #>>>>>cbar.set_label("%s (%s)" % (nc_fid.variables['air'].var_desc,\ #>>>>> nc_fid.variables['air'].units)) #>>>>>plt.title("%s on %s" % (nc_fid.variables['air'].var_desc, cur_time)) # Writing NetCDF files # For this example, we will create two NetCDF4 files. One with the global air # temperature departure from its value at Darwin, Australia. The other with # the temperature profile for the entire year at Darwin. darwin = {'name': 'Darwin, Australia', 'lat': -12.45, 'lon': 130.83} # Find the nearest latitude and longitude for Darwin lat_idx = np.abs(lats - darwin['lat']).argmin() lon_idx = np.abs(lons - darwin['lon']).argmin() # Simple example: temperature profile for the entire year at Darwin. # Open a new NetCDF file to write the data to. For format, you can choose from # 'NETCDF3_CLASSIC', 'NETCDF3_64BIT', 'NETCDF4_CLASSIC', and 'NETCDF4' #>>>>>w_nc_fid = Dataset('darwin_2012.nc', 'w', format='NETCDF4') #>>>>>w_nc_fid.description = "NCEP/NCAR Reanalysis %s from its value at %s. %s" %\ #>>>>> (nc_fid.variables['air'].var_desc.lower(),\ #>>>>> darwin['name'], nc_fid.description) # Using our previous dimension info, we can create the new time dimension # Even though we know the size, we are going to set the size to unknown #>>>>>w_nc_fid.createDimension('time', None) #>>>>>w_nc_dim = w_nc_fid.createVariable('time', nc_fid.variables['time'].dtype,\ #>>>>> ('time',)) # You can do this step yourself but someone else did the work for us. #>>>>>for ncattr in nc_fid.variables['time'].ncattrs(): #>>>>> w_nc_dim.setncattr(ncattr, nc_fid.variables['time'].getncattr(ncattr)) # Assign the dimension data to the new NetCDF file. #>>>>>w_nc_fid.variables['time'][:] = time #>>>>>w_nc_var = w_nc_fid.createVariable('air', 'f8', ('time')) #>>>>>w_nc_var.setncatts({'long_name': u"mean Daily Air temperature",\ #>>>>> 'units': u"degK", 'level_desc': u'Surface',\ #>>>>> 'var_desc': u"Air temperature",\ #>>>>> 'statistic': u'Mean\nM'}) #>>>>>w_nc_fid.variables['air'][:] = air[time_idx, lat_idx, lon_idx] #>>>>>w_nc_fid.close() # close the new file #plt.plot(dt_time, gpp_2[:, lat_idx, lon_idx], c='b', marker='o',label='PFT NEE - a = 0.5') plt.plot(dt_time, fapar[:, lat_idx, lon_idx], c='k', marker='o',label='a = 1.0, LAI = LAI') plt.plot(dt_time, fapar_5[:, lat_idx, lon_idx], c='y', marker='o',label='a = 0.75, LAI = LAI') plt.plot(dt_time, fapar_2[:, lat_idx, lon_idx], c='r', marker='o',label='a = 0.5, LAI = LAI') plt.plot(dt_time, fapar_4[:, lat_idx, lon_idx], c='b', marker='o',label='a = 0.25, LAI = LAI') plt.plot(dt_time, fapar_3[:, lat_idx, lon_idx], c='g', marker='_',label='a = 0.5, LAI = LAI/2') plt.xlabel("Time in seconds since 1997-01-01 00:00:00") plt.ylabel("fAPAR") plt.title("Loobos Flux site") plt.grid() plt.legend(loc="best") plt.show() #plt.savefig("/home/mn811042/jules4.x/4.6/trunk/examples/point_loobos/output/fapar_test_karina_code.png") # Close original NetCDF file. nc_fid.close()
gpl-2.0
eickenberg/scikit-learn
examples/cluster/plot_color_quantization.py
297
3443
# -*- coding: utf-8 -*- """ ================================== Color Quantization using K-Means ================================== Performs a pixel-wise Vector Quantization (VQ) of an image of the summer palace (China), reducing the number of colors required to show the image from 96,615 unique colors to 64, while preserving the overall appearance quality. In this example, pixels are represented in a 3D-space and K-means is used to find 64 color clusters. In the image processing literature, the codebook obtained from K-means (the cluster centers) is called the color palette. Using a single byte, up to 256 colors can be addressed, whereas an RGB encoding requires 3 bytes per pixel. The GIF file format, for example, uses such a palette. For comparison, a quantized image using a random codebook (colors picked up randomly) is also shown. """ # Authors: Robert Layton <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # # License: BSD 3 clause print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import pairwise_distances_argmin from sklearn.datasets import load_sample_image from sklearn.utils import shuffle from time import time n_colors = 64 # Load the Summer Palace photo china = load_sample_image("china.jpg") # Convert to floats instead of the default 8 bits integer coding. Dividing by # 255 is important so that plt.imshow behaves works well on float data (need to # be in the range [0-1] china = np.array(china, dtype=np.float64) / 255 # Load Image and transform to a 2D numpy array. w, h, d = original_shape = tuple(china.shape) assert d == 3 image_array = np.reshape(china, (w * h, d)) print("Fitting model on a small sub-sample of the data") t0 = time() image_array_sample = shuffle(image_array, random_state=0)[:1000] kmeans = KMeans(n_clusters=n_colors, random_state=0).fit(image_array_sample) print("done in %0.3fs." % (time() - t0)) # Get labels for all points print("Predicting color indices on the full image (k-means)") t0 = time() labels = kmeans.predict(image_array) print("done in %0.3fs." % (time() - t0)) codebook_random = shuffle(image_array, random_state=0)[:n_colors + 1] print("Predicting color indices on the full image (random)") t0 = time() labels_random = pairwise_distances_argmin(codebook_random, image_array, axis=0) print("done in %0.3fs." % (time() - t0)) def recreate_image(codebook, labels, w, h): """Recreate the (compressed) image from the code book & labels""" d = codebook.shape[1] image = np.zeros((w, h, d)) label_idx = 0 for i in range(w): for j in range(h): image[i][j] = codebook[labels[label_idx]] label_idx += 1 return image # Display all results, alongside original image plt.figure(1) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Original image (96,615 colors)') plt.imshow(china) plt.figure(2) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Quantized image (64 colors, K-Means)') plt.imshow(recreate_image(kmeans.cluster_centers_, labels, w, h)) plt.figure(3) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Quantized image (64 colors, Random)') plt.imshow(recreate_image(codebook_random, labels_random, w, h)) plt.show()
bsd-3-clause
developerator/Maturaarbeit
GAN-TransferLearning/Blondes32/Blondes32_Transfer_dcgan.py
1
5452
''' By Tim Ehrensberger The base of the functions for the network's training is taken from https://github.com/Zackory/Keras-MNIST-GAN/blob/master/mnist_gan.py by Zackory Erickson ''' import os import numpy as np from tqdm import tqdm import matplotlib.pyplot as plt from keras.layers import Input, BatchNormalization, Activation, MaxPooling2D, AveragePooling2D from keras.models import Model, Sequential, load_model from keras.layers.core import Reshape, Dense, Dropout, Flatten from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import Convolution2D, UpSampling2D from keras.datasets import cifar10 from keras.optimizers import Adam from keras.regularizers import l1_l2 #------ # DATA #------ from keras import backend as K K.set_image_dim_ordering('th') import h5py # Get hdf5 file # Please read the README_Info in GAN-TransferLearning for information about how to get the dataset Blondies32_Transfer.h5 hdf5_file = os.path.join("PATH TO DATASET", "Blondies32_Transfer.h5") with h5py.File(hdf5_file, "r") as hf: X_train = hf["data"] [()] #[()] makes it read the file into one array X_train = X_train.astype(np.float32) / 255 #---------------- # HYPERPARAMETERS #---------------- randomDim = 100 adam = Adam(lr=0.0002, beta_1=0.5) reg = lambda: l1_l2(l1=1e-7, l2=1e-7) # Load the old models # Please read the README_Info in GAN-TransferLearning for information about how to get the weight-files below old_discriminator = 'dcgan32_discriminator_transfer.h5' old_generator = 'dcgan32_generator_transfer.h5' # There is a strange bug if the optimizer is loaded from last network therefore just delete them with h5py.File(old_generator, 'a') as f: if 'optimizer_weights' in f.keys(): del f['optimizer_weights'] with h5py.File(old_discriminator, 'a') as f: if 'optimizer_weights' in f.keys(): del f['optimizer_weights'] generator = load_model(old_generator) discriminator = load_model(old_discriminator) #----- # GAN #----- discriminator.trainable = False ganInput = Input(shape=(randomDim,)) x = generator(ganInput) ganOutput = discriminator(x) gan = Model(inputs=ganInput, outputs=ganOutput) gan.compile(loss='binary_crossentropy', optimizer=adam) #----------- # FUNCTIONS #----------- def plotLoss(epoch): assertExists('images') plt.figure(figsize=(10, 8)) plt.plot(dLosses, label='Discriminative loss') plt.plot(gLosses, label='Generative loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.savefig('images/dcgan_loss_epoch_%d.png' % epoch) # Create a wall of generated images examples=100 noise = np.random.normal(0, 1, size=[examples, randomDim]) def plotGeneratedImages(epoch dim=(10, 10), figsize=(10, 10)): generatedImages = generator.predict(noise) generatedImages = generatedImages.transpose(0, 2, 3, 1) assertExists('images') plt.figure(figsize=figsize) for i in range(generatedImages.shape[0]): plt.subplot(dim[0], dim[1], i+1) plt.imshow(generatedImages[i, :, :, :], interpolation='nearest') plt.axis('off') plt.tight_layout() plt.savefig('images/transfer_dcgan_generated_image_epoch_%d.png' % epoch) # Save the generator and discriminator networks (and weights) for later use def savemodels(epoch): assertExists('models') generator.save('models/transfer_dcgan_generator_epoch_%d.h5' % epoch) discriminator.save('models/transfer_dcgan_discriminator_epoch_%d.h5' % epoch) dLosses = [] gLosses = [] def train(epochs=1, batchSize=128, save_interval=1, start_at=1): batchCount = X_train.shape[0] // batchSize print('Epochs:', epochs) print('Batch size:', batchSize) print('Batches per epoch:', batchCount) #plot once before training plotGeneratedImages(0) for e in range(start_at, epochs+1): print('-'*15, 'Epoch %d' % e, '-'*15) for _ in tqdm(range(batchCount)): # Get a random set of input noise and images noise = np.random.normal(0, 1, size=[batchSize, randomDim]) imageBatch = X_train[np.random.randint(0, X_train.shape[0], size=batchSize)] # Generate fake images generatedImages = generator.predict(noise) X = np.concatenate([imageBatch, generatedImages]) # Labels for generated and real data yDis = np.zeros(2*batchSize) # One-sided label smoothing = not exactly 1 yDis[:batchSize] = 0.95 # Train discriminator discriminator.trainable = True dloss = discriminator.train_on_batch(X, yDis) # here only D is trained # Train generator noise = np.random.normal(0, 1, size=[batchSize, randomDim]) yGen = np.ones(batchSize) discriminator.trainable = False gloss = gan.train_on_batch(noise, yGen) # here only G is trained because D is not trainable # Store loss of most recent batch from this epoch dLosses.append(dloss) gLosses.append(gloss) #plot after specified number of epochs if (e == 1 or e % save_interval == 0): plotGeneratedImages(e) savemodels(e) # Plot losses from all epochs plotLoss(e) def assertExists(path): if not os.path.exists(path): os.makedirs(path) if __name__ == '__main__': train(100, 64, 1)
mit
lukasmerten/GitPlayground
UsefulPythonScripts/Ferrie2007_Innen.py
1
3648
import numpy as np import matplotlib.pyplot as plt import pylab import scipy.integrate as integrate x= -500 y= -500 z = 10 # Konstanten fuer CMZ xc =-50 # Position Mitte in allg Koordinaten yc = 50 TettaC = 70 #Konstanten fuer DISK alpha = 13.5 beta = 20. TettaD = 48.5 # Abmessungen in CMZ Koordinaten XMAX=250 XC = XMAX/2 LC = XMAX/(2*np.log(2)**0.25) HC = 18. HC2 = 54. # Abmessungen in DISK Koordinaten XD = 1200 LD = 438. HD = 42. HD2 = 120. #Konstanten fuer HII -WIM- y3 = -10 z3= -20 L3 = 145. H3 = 26. L2 = 3700. H2 = 140. L1 = 17000 H1=950. #Konstanen fuer HII VHIM alphaVH = 21 LVH=162 HVH = 90 def Bogenmass(x): # Trafo ins Bogenmass fuer Winkel zur Berechnung return x*np.pi/180 def cos(x): # Cos FKT fuer Gradmass x=Bogenmass(x) return np.cos(x) def sin(x): # Sin FKT fuer Gradmass x=Bogenmass(x) return np.sin(x) def sech2(x): return np.cosh(x)**2 def u(x): if x.all<0: return 0 else: return 1 def CMZ_X_Trafo(x,y): return (x-xc)*cos(TettaC) +(y-yc)*sin(TettaC) def CMZ_Y_Trafo(x,y): return -(x-xc)*sin(TettaC) +(y-yc)*cos(TettaC) def DISK_X_Trafo(x,y,z): return x*cos(beta)*cos(TettaD) - y*(sin(alpha)*sin(beta)*cos(TettaD) -cos(alpha)*sin(TettaD))-z*(cos(alpha)*sin(beta)*cos(TettaD) +sin(alpha)*sin(TettaD)) def DISK_Y_Trafo(x,y,z): xT= x*cos(beta)*sin(TettaD) yT = y*(sin(alpha)*sin(beta)*sin(TettaD) +cos(alpha)*cos(TettaD)) zT = z*(cos(alpha)*sin(beta)*sin(TettaD) -sin(alpha)*sin(TettaD)) return -xT+yT+zT def DISK_Z_Trafo(x,y,z): xT = x*sin(beta) yT = y*sin(alpha)*cos(beta) zT = z*cos(alpha)*cos(beta) return xT+yT+zT #Mollekularer Wasserstoff im CMZ, def n_H2_CMZ(x0,y0,z0): # Eingabe in Urspruenglichen koordinaten x = CMZ_X_Trafo(x0,y0) y = CMZ_Y_Trafo(x0,y0) XY_Help = ((np.sqrt(x**2+(2.5*y)**2)-XC)/LC)**4 return 150*np.exp(-XY_Help)*np.exp(-(z0/HC)**2) #Atomarer Wasserstoff im CMZ def n_HI_CMZ(x0,y0,z0): #Eingabe in Urspruenglichen Koordinaten x=CMZ_X_Trafo(x0,y0) y=CMZ_Y_Trafo(x0,y0) A=np.sqrt(x**2 +(2.5*y)**2) B= (A-XC)/LC XY_Help=B**4 Z = (z0/HC2)**2 return 8.8*np.exp(-XY_Help)*np.exp(-Z) #Mollekularer Wasserstoff in der DISK def n_H2_DISK(x0,y0,z0): x= DISK_X_Trafo(x0,y0,z0) y= DISK_Y_Trafo(x0,y0,z0) z=DISK_Z_Trafo(x0,y0,z0) return 4.8*np.exp(-((np.sqrt(x**2 + (3.1*y)**2) - XD)/LD)**4)*np.exp(-(z/HD)**2) #Atomarer Wasserstoff in der DISK def n_HI_DISK(x0,y0,z0): x= DISK_X_Trafo(x0,y0,z0) y= DISK_Y_Trafo(x0,y0,z0) z=DISK_Z_Trafo(x0,y0,z0) return 0.34*np.exp(-((np.sqrt(x**2 + (3.1*y)**2) - XD)/LD)**4)*np.exp(-(z/HD2)**2) #Ioniesierter Wasserstoff def n_HII_WIM(x0,y0,z0): r=np.sqrt(x0**2+y0**2+z0**2) P1 = np.exp(-(x**2+(y0-y3)**2)/L3**2)*np.exp(-(z0-z3)**2/H3**2) P2 = np.exp(-((r-L2)/(0.5*L2))**2)*sech2(z/H2) P3 = np.cos(np.pi*r*0.5/L1)*sech2(z/H1) return 8.0*(P1+0.009*P2+0.005*P3) def n_HII_VHIM(x0,y0,z0): e = y0*cos(alphaVH)+z0*sin(alphaVH) s = -y0*sin(alphaVH) + z*cos(alphaVH) return 0.29*np.exp(-((x0**2+e**2)/LVH**2 + s**2/HVH**2)) def n_HII(x0,y0,z0): return n_HII_VHIM(x0,y0,z0) +n_HII_WIM(x0,y0,z0) def n_HI(x,y,z): return n_HI_DISK(x,y,z) + n_HI_CMZ(x,y,z) def n_H2(x,y,z): return n_H2_CMZ(x,y,z) + n_H2_DISK(x,y,z) x = pylab.linspace(-100,100,200) y = pylab.linspace(-100,100,200) #2d Arrays Definieren xx,yy = pylab.meshgrid(x,y) #Daten fuellen zz = pylab.zeros(xx.shape) for i in range(xx.shape[0]): for j in range(xx.shape[1]): zz[i,j] = n_H2(xx[i,j], yy[i,j],0) # plotten plt.figure() plt.title('Massdistribution for H2') plt.pcolormesh(xx,yy,zz) plt.colorbar() plt.contour(xx,yy,zz) plt.gca().set_aspect("equal") plt.xlabel('x/pc') plt.ylabel('y/pc') plt.show()
mit
wuxue/altanalyze
misopy/sashimi_plot/Sashimi.py
2
4558
## ## Class for representing figures ## import os import matplotlib import matplotlib.pyplot as plt from matplotlib import rc import string import misopy.sashimi_plot.plot_utils.plot_settings as plot_settings import misopy.sashimi_plot.plot_utils.plotting as plotting matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['font.family'] = 'sans-serif' matplotlib.rcParams['font.sans-serif'] = 'Arial' class Sashimi: """ Representation of a figure. """ def __init__(self, label, output_dir, dimensions=None, png=False, output_filename=None, settings_filename=None, event=None, chrom=None, no_posteriors=False): """ Initialize image settings. """ self.output_ext = ".pdf" if png: self.output_ext = ".png" # Plot label, will be used in creating the plot # output filename self.label = label # Set output directory self.set_output_dir(output_dir) # Plot settings self.settings_filename = settings_filename if self.settings_filename != None: self.settings = plot_settings.parse_plot_settings(settings_filename, event=event, chrom=chrom, no_posteriors=no_posteriors) else: # Load default settings if no settings filename was given self.settings = plot_settings.get_default_settings() if output_filename != None: # If explicit output filename is given to us, use it self.output_filename = output_filename else: # Otherwise, use the label and the output directory self.set_output_filename() if dimensions != None: self.dimensions = dimensions else: fig_height = self.settings["fig_height"] fig_width = self.settings["fig_width"] #print "Reading dimensions from settings..." #print " - Height: %.2f" %(float(fig_height)) #print " - Width: %.2f" %(float(fig_width)) self.dimensions = [fig_width, fig_height] def set_output_dir(self, output_dir): self.output_dir = os.path.abspath(os.path.expanduser(output_dir)) def set_output_filename(self): plot_basename = "%s%s" %(self.label, self.output_ext) self.output_filename = os.path.join(self.output_dir, plot_basename) def setup_figure(self): #print "Setting up plot using dimensions: ", self.dimensions plt.figure(figsize=self.dimensions) # If asked, use sans serif fonts font_size = self.settings["font_size"] if self.settings["sans_serif"]: #print "Using sans serif fonts." plotting.make_sans_serif(font_size=font_size) def save_plot(self, plot_label=None,show=False): """ Save plot to the output directory. Determine the file type. """ if self.output_filename == None: raise Exception, "sashimi_plot does not know where to save the plot." output_fname = None if plot_label is not None: # Use custom plot label if given ext = self.output_filename.rsplit(".")[0] dirname = os.path.dirname(self.output_filename) output_fname = \ os.path.dirname(dirname, "%s.%s" %(plot_label, ext)) else: output_fname = self.output_filename ### determine whether to show the plot interactively, using a parameter file try: s = open(string.split(output_fname,'SashimiPlots')[0]\ +'SashimiPlots/show.txt','r') show_param=s.read() except Exception: show_param = 'False' print '.', #print "Saving plot to: %s" %(output_fname) #output_fname2=output_fname.replace(".pdf") plt.savefig(output_fname) ### An error here appears to be due to an issue with one of the BAM files (can't print out the bam file names in plot_gene.py) ### Write out a png as well output_fname = string.replace(output_fname,'.pdf','.png') plt.savefig(output_fname,dpi=120) if 'TRUE' in show_param: plt.show() plt.clf() else: plt.clf() plt.close() ### May result in TK associated errors later on
apache-2.0
garnachod/SimpleDoc2Vec
doc2vec.py
1
3551
# gensim modules from gensim import utils from gensim.models.doc2vec import TaggedDocument from gensim.models.doc2vec import LabeledSentence from gensim.models import Doc2Vec from collections import namedtuple import time import random from blist import blist # numpy import numpy as np # classifier from sklearn.linear_model import LogisticRegression class LabeledSentenceMio(namedtuple('LabeledSentenceMio', 'words tags')): def __new__(cls, words, tags): # add default values return super(LabeledSentenceMio, cls).__new__(cls, words, tags) ''' class LabeledSentenceMio(namedtuple): """docstring for LabeledSentenceMio""" def __init__(self, words=None, tags=None): super(LabeledSentenceMio, self).__init__() self.words = words self.tags = tags ''' class LabeledLineSentence(object): def __init__(self, sources): self.sources = sources self.sentences = None flipped = {} # make sure that keys are unique for key, value in sources.items(): if value not in flipped: flipped[value] = [key] else: raise Exception('Non-unique prefix encountered') def to_array(self): if self.sentences is None: self.sentences = blist() for source, prefix in self.sources.items(): with utils.smart_open(source) as fin: for item_no, line in enumerate(fin): line = line.replace("\n", "") self.sentences.append(TaggedDocument(utils.to_unicode(line).split(), [prefix + '_%s' % item_no])) return self.sentences def sentences_perm(self): random.shuffle(self.sentences) return self.sentences if __name__ == '__main__': sources = {'data/trainneg.txt':'TRAIN_NEG', 'data/trainpos.txt':'TRAIN_POS', 'data/trainunsup.txt':'TRAIN_UNSP'} dimension = 100 total_start = time.time() sentences = LabeledLineSentence(sources) dbow = True if dbow: model = Doc2Vec(min_count=1, window=10, size=dimension, sample=1e-3, negative=5, dm=0 ,workers=6, alpha=0.04) print "inicio vocab" model.build_vocab(sentences.to_array()) print "fin vocab" first_alpha = model.alpha last_alpha = 0.01 next_alpha = first_alpha epochs = 30 for epoch in range(epochs): start = time.time() print "iniciando epoca DBOW:" print model.alpha model.train(sentences.sentences_perm()) end = time.time() next_alpha = (((first_alpha - last_alpha) / float(epochs)) * float(epochs - (epoch+1)) + last_alpha) model.alpha = next_alpha print "tiempo de la epoca " + str(epoch) +": " + str(end - start) model.save('./imdb_dbow.d2v') dm = True if dm: #model = Doc2Vec(min_count=1, window=10, size=dimension, sample=1e-3, negative=5, workers=6, dm_mean=1, alpha=0.04) model = Doc2Vec(min_count=1, window=10, size=dimension, sample=1e-3, negative=5, workers=6, alpha=0.04) #model = Doc2Vec(min_count=1, window=10, size=dimension, sample=1e-3, negative=5, workers=6, alpha=0.04, dm_concat=1) # print "inicio vocab" model.build_vocab(sentences.to_array()) print "fin vocab" first_alpha = model.alpha last_alpha = 0.01 next_alpha = first_alpha epochs = 30 for epoch in range(epochs): start = time.time() print "iniciando epoca DM:" print model.alpha model.train(sentences.sentences_perm()) end = time.time() next_alpha = (((first_alpha - last_alpha) / float(epochs)) * float(epochs - (epoch+1)) + last_alpha) model.alpha = next_alpha print "tiempo de la epoca " + str(epoch) +": " + str(end - start) model.save('./imdb_dm.d2v') total_end = time.time() print "tiempo total:" + str((total_end - total_start)/60.0)
gpl-2.0
rbiswas4/AnalyzeSN
analyzeSN/cov_utils.py
3
5874
#!/usr/bin/env python """ A number of utility functions to conventientyly deal with covariances - generateCov : function to generate random covariances as `np.ndarray` - covariance : dress up `np.ndarray` covariances as `pd.DataFrames` - subcovariance : extract subcovariance for two indexes or parameter names - log_covariance : cov(log(x), params) given cov(x, params) in linear approx. - expAVsquare : < (A V)^2 > given Cov, where A is const, V ~ N(0, Cov) """ import numpy as np import pandas as pd # from copy import deepcopy __all__ = ['expAVsquare', 'log_covariance', 'subcovariance', 'covariance', 'generateCov'] def expAVsquare(covV, A): """ Return the expectation of (A^T V)^2 where A is a constant vector and V is a random vector V ~ N(0., covV) by computing A^T * covV * A Parameters ---------- covV : `np.ndarray`, mandatory A : `np.array`, mandatory vector of constants. Returns ------- float variance (scalar) """ va = np.sum(covV* A, axis=1) var = np.sum(A * va, axis=0) return var def log_covariance(covariance, paramName, paramValue, factor=1.): """ Covariance of the parameters with parameter paramName replaced by factor * np.log(param) everywhere, and its true value is paramValue, assuming linear propagation Parameters ---------- covariance : `pandas.DataFrame`, mandatory representing covariance matrix paramName : int or str, mandatory integer or parameter name specifying the position of the variable whose logarithm must be taken paramValue : float, mandatory true/estimated value of the variable itself factor : float, optional, defaults to 1. Factor multiplying the natural logarithm. For example, if the relevant transformation is going from 'f' to -2.5 log10(f), the factor should be -2.5 /np.log(10) Returns ------- Examples -------- """ if isinstance(paramName, np.int): cov = covariance.values cov[:, paramName] = factor * cov[:, paramName] / paramValue cov[paramName, :] = factor * cov[paramName, :] / paramValue return cov covariance[paramName] = factor * covariance[paramName] / paramValue covariance.loc[paramName] = factor * covariance.loc[paramName] / paramValue return covariance def subcovariance(covariance, paramList, array=False): """ returns the covariance of a subset of parameters in a covariance dataFrame. Parameters ---------- covariance : `pandas.DataFrame` representing square covariance matrix with parameters as column names, and index as returned by covariance paramList : list of strings, mandatory list of parameters for which the subCovariance matrix is desired. The set of parameters in paramList must be a subset of the columns and indices of covariance array : boolean, optional, defaults to False if true, return `numpy.ndarray`, if False return `pandas.DataFrame` Returns ------- """ df = covariance.ix[paramList, paramList] if array: return df.values else: return df def covariance(covArray, paramNames=None, normalized=False): """ converts a covariance matrix in `numpy.ndarray` to a `pandas.DataFrame`. If paramNames is not None, then the dataframe is indexed by the parameter names, and has columns corresponding to the parameter names enabling easy access by index or names. Parameters ---------- covArray : `numpy.ndarray` of the covariance, mandatory paramNames : iterable of strings, optional, defaults to None normalized : Bool, optional, defaults to False whether to return the normalized covariance matrix Returns ------- a `pandas.DataFrame` with column names and indexes given by the parameter names. If paramNames is None, the return is a DataFrame with indexes and column names chosen by pandas. Examples -------- >>> cov = covariance(covArray, paramNames=['t0', 'x0', 'x1, 'c']) >>> cov.ix[['t0', 'x1'],['t0', 'x1']] >>> cov.iloc[[0, 2], [0, 2]] """ l, w = np.shape(covArray) # Check for the covariance matrix being square, not checking for symmetry if l != w: raise ValueError('The covariance matrix is not square; length!=width') if paramNames is not None: if len(paramNames) != w: raise ValueError('The number of parameters must match the length' ' of the covariance matrix') cov = pd.DataFrame(covArray, columns=paramNames, index=paramNames) else: cov = pd.DataFrame(covArray) if not normalized: return cov # normalize if requested stds = cov.values.diagonal() for i, col in enumerate(cov.columns): cov[col] = cov[col]/stds[i] for i in range(len(cov)): cov.iloc[i] = cov.iloc[i]/stds[i] return cov def generateCov(dims, seed=None, low=-0.5, high=0.5): """ generate a 2D semi-positive definite matrix of size dimsXdims. While this will create different random matrices, the exact distribution of the matrices has not been checked. Parameters ---------- dims : integer, mandatory size of the matrix seed : integer, optional, defaults to None sets the seed of the random number generator. If None, numpy chooses the seed. low : float, optional defaults to -1. Entries are x * y, and the smallest value for x, or y is low high : float, optional defaults to 1. Entries are x * y, and the largest value for x, or y is high """ if seed is not None: np.random.seed(seed) x = np.random.uniform(low, high, size=dims) y = np.random.uniform(low, high,size=dims) m = np.outer(x, y) return np.dot(m, m.transpose())
mit
yunfeilu/scikit-learn
examples/svm/plot_iris.py
225
3252
""" ================================================== Plot different SVM classifiers in the iris dataset ================================================== Comparison of different linear SVM classifiers on a 2D projection of the iris dataset. We only consider the first 2 features of this dataset: - Sepal length - Sepal width This example shows how to plot the decision surface for four SVM classifiers with different kernels. The linear models ``LinearSVC()`` and ``SVC(kernel='linear')`` yield slightly different decision boundaries. This can be a consequence of the following differences: - ``LinearSVC`` minimizes the squared hinge loss while ``SVC`` minimizes the regular hinge loss. - ``LinearSVC`` uses the One-vs-All (also known as One-vs-Rest) multiclass reduction while ``SVC`` uses the One-vs-One multiclass reduction. Both linear models have linear decision boundaries (intersecting hyperplanes) while the non-linear kernel models (polynomial or Gaussian RBF) have more flexible non-linear decision boundaries with shapes that depend on the kind of kernel and its parameters. .. NOTE:: while plotting the decision function of classifiers for toy 2D datasets can help get an intuitive understanding of their respective expressive power, be aware that those intuitions don't always generalize to more realistic high-dimensional problems. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors C = 1.0 # SVM regularization parameter svc = svm.SVC(kernel='linear', C=C).fit(X, y) rbf_svc = svm.SVC(kernel='rbf', gamma=0.7, C=C).fit(X, y) poly_svc = svm.SVC(kernel='poly', degree=3, C=C).fit(X, y) lin_svc = svm.LinearSVC(C=C).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = ['SVC with linear kernel', 'LinearSVC (linear kernel)', 'SVC with RBF kernel', 'SVC with polynomial (degree 3) kernel'] for i, clf in enumerate((svc, lin_svc, rbf_svc, poly_svc)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(2, 2, i + 1) plt.subplots_adjust(wspace=0.4, hspace=0.4) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.title(titles[i]) plt.show()
bsd-3-clause
xyguo/scikit-learn
setup.py
25
11732
#! /usr/bin/env python # # Copyright (C) 2007-2009 Cournapeau David <[email protected]> # 2010 Fabian Pedregosa <[email protected]> # License: 3-clause BSD import subprocess descr = """A set of python modules for machine learning and data mining""" import sys import os import shutil from distutils.command.clean import clean as Clean from pkg_resources import parse_version if sys.version_info[0] < 3: import __builtin__ as builtins else: import builtins # This is a bit (!) hackish: we are setting a global variable so that the main # sklearn __init__ can detect if it is being loaded by the setup routine, to # avoid attempting to load components that aren't built yet: # the numpy distutils extensions that are used by scikit-learn to recursively # build the compiled extensions in sub-packages is based on the Python import # machinery. builtins.__SKLEARN_SETUP__ = True DISTNAME = 'scikit-learn' DESCRIPTION = 'A set of python modules for machine learning and data mining' with open('README.rst') as f: LONG_DESCRIPTION = f.read() MAINTAINER = 'Andreas Mueller' MAINTAINER_EMAIL = '[email protected]' URL = 'http://scikit-learn.org' LICENSE = 'new BSD' DOWNLOAD_URL = 'http://sourceforge.net/projects/scikit-learn/files/' # We can actually import a restricted version of sklearn that # does not need the compiled code import sklearn VERSION = sklearn.__version__ # Optional setuptools features # We need to import setuptools early, if we want setuptools features, # as it monkey-patches the 'setup' function # For some commands, use setuptools SETUPTOOLS_COMMANDS = set([ 'develop', 'release', 'bdist_egg', 'bdist_rpm', 'bdist_wininst', 'install_egg_info', 'build_sphinx', 'egg_info', 'easy_install', 'upload', 'bdist_wheel', '--single-version-externally-managed', ]) if SETUPTOOLS_COMMANDS.intersection(sys.argv): import setuptools extra_setuptools_args = dict( zip_safe=False, # the package can run out of an .egg file include_package_data=True, ) else: extra_setuptools_args = dict() # Custom clean command to remove build artifacts class CleanCommand(Clean): description = "Remove build artifacts from the source tree" def run(self): Clean.run(self) # Remove c files if we are not within a sdist package cwd = os.path.abspath(os.path.dirname(__file__)) remove_c_files = not os.path.exists(os.path.join(cwd, 'PKG-INFO')) if remove_c_files: cython_hash_file = os.path.join(cwd, 'cythonize.dat') if os.path.exists(cython_hash_file): os.unlink(cython_hash_file) print('Will remove generated .c files') if os.path.exists('build'): shutil.rmtree('build') for dirpath, dirnames, filenames in os.walk('sklearn'): for filename in filenames: if any(filename.endswith(suffix) for suffix in (".so", ".pyd", ".dll", ".pyc")): os.unlink(os.path.join(dirpath, filename)) continue extension = os.path.splitext(filename)[1] if remove_c_files and extension in ['.c', '.cpp']: pyx_file = str.replace(filename, extension, '.pyx') if os.path.exists(os.path.join(dirpath, pyx_file)): os.unlink(os.path.join(dirpath, filename)) for dirname in dirnames: if dirname == '__pycache__': shutil.rmtree(os.path.join(dirpath, dirname)) cmdclass = {'clean': CleanCommand} # Optional wheelhouse-uploader features # To automate release of binary packages for scikit-learn we need a tool # to download the packages generated by travis and appveyor workers (with # version number matching the current release) and upload them all at once # to PyPI at release time. # The URL of the artifact repositories are configured in the setup.cfg file. WHEELHOUSE_UPLOADER_COMMANDS = set(['fetch_artifacts', 'upload_all']) if WHEELHOUSE_UPLOADER_COMMANDS.intersection(sys.argv): import wheelhouse_uploader.cmd cmdclass.update(vars(wheelhouse_uploader.cmd)) def configuration(parent_package='', top_path=None): if os.path.exists('MANIFEST'): os.remove('MANIFEST') from numpy.distutils.misc_util import Configuration config = Configuration(None, parent_package, top_path) # Avoid non-useful msg: # "Ignoring attempt to set 'name' (from ... " config.set_options(ignore_setup_xxx_py=True, assume_default_configuration=True, delegate_options_to_subpackages=True, quiet=True) config.add_subpackage('sklearn') return config scipy_min_version = '0.9' numpy_min_version = '1.6.1' def get_scipy_status(): """ Returns a dictionary containing a boolean specifying whether SciPy is up-to-date, along with the version string (empty string if not installed). """ scipy_status = {} try: import scipy scipy_version = scipy.__version__ scipy_status['up_to_date'] = parse_version( scipy_version) >= parse_version(scipy_min_version) scipy_status['version'] = scipy_version except ImportError: scipy_status['up_to_date'] = False scipy_status['version'] = "" return scipy_status def get_numpy_status(): """ Returns a dictionary containing a boolean specifying whether NumPy is up-to-date, along with the version string (empty string if not installed). """ numpy_status = {} try: import numpy numpy_version = numpy.__version__ numpy_status['up_to_date'] = parse_version( numpy_version) >= parse_version(numpy_min_version) numpy_status['version'] = numpy_version except ImportError: numpy_status['up_to_date'] = False numpy_status['version'] = "" return numpy_status def generate_cython(): cwd = os.path.abspath(os.path.dirname(__file__)) print("Cythonizing sources") p = subprocess.call([sys.executable, os.path.join(cwd, 'build_tools', 'cythonize.py'), 'sklearn'], cwd=cwd) if p != 0: raise RuntimeError("Running cythonize failed!") def setup_package(): metadata = dict(name=DISTNAME, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, description=DESCRIPTION, license=LICENSE, url=URL, version=VERSION, download_url=DOWNLOAD_URL, long_description=LONG_DESCRIPTION, classifiers=['Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'License :: OSI Approved', 'Programming Language :: C', 'Programming Language :: Python', 'Topic :: Software Development', 'Topic :: Scientific/Engineering', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], cmdclass=cmdclass, **extra_setuptools_args) if len(sys.argv) == 1 or ( len(sys.argv) >= 2 and ('--help' in sys.argv[1:] or sys.argv[1] in ('--help-commands', 'egg_info', '--version', 'clean'))): # For these actions, NumPy is not required, nor Cythonization # # They are required to succeed without Numpy for example when # pip is used to install Scikit-learn when Numpy is not yet present in # the system. try: from setuptools import setup except ImportError: from distutils.core import setup metadata['version'] = VERSION else: numpy_status = get_numpy_status() numpy_req_str = "scikit-learn requires NumPy >= {0}.\n".format( numpy_min_version) scipy_status = get_scipy_status() scipy_req_str = "scikit-learn requires SciPy >= {0}.\n".format( scipy_min_version) instructions = ("Installation instructions are available on the " "scikit-learn website: " "http://scikit-learn.org/stable/install.html\n") if numpy_status['up_to_date'] is False: if numpy_status['version']: raise ImportError("Your installation of Numerical Python " "(NumPy) {0} is out-of-date.\n{1}{2}" .format(numpy_status['version'], numpy_req_str, instructions)) else: raise ImportError("Numerical Python (NumPy) is not " "installed.\n{0}{1}" .format(numpy_req_str, instructions)) if scipy_status['up_to_date'] is False: if scipy_status['version']: raise ImportError("Your installation of Scientific Python " "(SciPy) {0} is out-of-date.\n{1}{2}" .format(scipy_status['version'], scipy_req_str, instructions)) else: raise ImportError("Scientific Python (SciPy) is not " "installed.\n{0}{1}" .format(scipy_req_str, instructions)) from numpy.distutils.core import setup metadata['configuration'] = configuration if len(sys.argv) >= 2 and sys.argv[1] not in 'config': # Cythonize if needed print('Generating cython files') cwd = os.path.abspath(os.path.dirname(__file__)) if not os.path.exists(os.path.join(cwd, 'PKG-INFO')): # Generate Cython sources, unless building from source release generate_cython() # Clean left-over .so file for dirpath, dirnames, filenames in os.walk( os.path.join(cwd, 'sklearn')): for filename in filenames: extension = os.path.splitext(filename)[1] if extension in (".so", ".pyd", ".dll"): pyx_file = str.replace(filename, extension, '.pyx') print(pyx_file) if not os.path.exists(os.path.join(dirpath, pyx_file)): os.unlink(os.path.join(dirpath, filename)) setup(**metadata) if __name__ == "__main__": setup_package()
bsd-3-clause
hlin117/scikit-learn
sklearn/preprocessing/tests/test_label.py
40
18519
import numpy as np from scipy.sparse import issparse from scipy.sparse import coo_matrix from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils.multiclass import type_of_target from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.preprocessing.label import LabelBinarizer from sklearn.preprocessing.label import MultiLabelBinarizer from sklearn.preprocessing.label import LabelEncoder from sklearn.preprocessing.label import label_binarize from sklearn.preprocessing.label import _inverse_binarize_thresholding from sklearn.preprocessing.label import _inverse_binarize_multiclass from sklearn import datasets iris = datasets.load_iris() def toarray(a): if hasattr(a, "toarray"): a = a.toarray() return a def test_label_binarizer(): # one-class case defaults to negative label # For dense case: inp = ["pos", "pos", "pos", "pos"] lb = LabelBinarizer(sparse_output=False) expected = np.array([[0, 0, 0, 0]]).T got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ["pos"]) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) # For sparse case: lb = LabelBinarizer(sparse_output=True) got = lb.fit_transform(inp) assert_true(issparse(got)) assert_array_equal(lb.classes_, ["pos"]) assert_array_equal(expected, got.toarray()) assert_array_equal(lb.inverse_transform(got.toarray()), inp) lb = LabelBinarizer(sparse_output=False) # two-class case inp = ["neg", "pos", "pos", "neg"] expected = np.array([[0, 1, 1, 0]]).T got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ["neg", "pos"]) assert_array_equal(expected, got) to_invert = np.array([[1, 0], [0, 1], [0, 1], [1, 0]]) assert_array_equal(lb.inverse_transform(to_invert), inp) # multi-class case inp = ["spam", "ham", "eggs", "ham", "0"] expected = np.array([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]]) got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ['0', 'eggs', 'ham', 'spam']) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) def test_label_binarizer_unseen_labels(): lb = LabelBinarizer() expected = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) got = lb.fit_transform(['b', 'd', 'e']) assert_array_equal(expected, got) expected = np.array([[0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]) got = lb.transform(['a', 'b', 'c', 'd', 'e', 'f']) assert_array_equal(expected, got) def test_label_binarizer_set_label_encoding(): lb = LabelBinarizer(neg_label=-2, pos_label=0) # two-class case with pos_label=0 inp = np.array([0, 1, 1, 0]) expected = np.array([[-2, 0, 0, -2]]).T got = lb.fit_transform(inp) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) lb = LabelBinarizer(neg_label=-2, pos_label=2) # multi-class case inp = np.array([3, 2, 1, 2, 0]) expected = np.array([[-2, -2, -2, +2], [-2, -2, +2, -2], [-2, +2, -2, -2], [-2, -2, +2, -2], [+2, -2, -2, -2]]) got = lb.fit_transform(inp) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) @ignore_warnings def test_label_binarizer_errors(): # Check that invalid arguments yield ValueError one_class = np.array([0, 0, 0, 0]) lb = LabelBinarizer().fit(one_class) multi_label = [(2, 3), (0,), (0, 2)] assert_raises(ValueError, lb.transform, multi_label) lb = LabelBinarizer() assert_raises(ValueError, lb.transform, []) assert_raises(ValueError, lb.inverse_transform, []) assert_raises(ValueError, LabelBinarizer, neg_label=2, pos_label=1) assert_raises(ValueError, LabelBinarizer, neg_label=2, pos_label=2) assert_raises(ValueError, LabelBinarizer, neg_label=1, pos_label=2, sparse_output=True) # Fail on y_type assert_raises(ValueError, _inverse_binarize_thresholding, y=csr_matrix([[1, 2], [2, 1]]), output_type="foo", classes=[1, 2], threshold=0) # Sequence of seq type should raise ValueError y_seq_of_seqs = [[], [1, 2], [3], [0, 1, 3], [2]] assert_raises(ValueError, LabelBinarizer().fit_transform, y_seq_of_seqs) # Fail on the number of classes assert_raises(ValueError, _inverse_binarize_thresholding, y=csr_matrix([[1, 2], [2, 1]]), output_type="foo", classes=[1, 2, 3], threshold=0) # Fail on the dimension of 'binary' assert_raises(ValueError, _inverse_binarize_thresholding, y=np.array([[1, 2, 3], [2, 1, 3]]), output_type="binary", classes=[1, 2, 3], threshold=0) # Fail on multioutput data assert_raises(ValueError, LabelBinarizer().fit, np.array([[1, 3], [2, 1]])) assert_raises(ValueError, label_binarize, np.array([[1, 3], [2, 1]]), [1, 2, 3]) def test_label_encoder(): # Test LabelEncoder's transform and inverse_transform methods le = LabelEncoder() le.fit([1, 1, 4, 5, -1, 0]) assert_array_equal(le.classes_, [-1, 0, 1, 4, 5]) assert_array_equal(le.transform([0, 1, 4, 4, 5, -1, -1]), [1, 2, 3, 3, 4, 0, 0]) assert_array_equal(le.inverse_transform([1, 2, 3, 3, 4, 0, 0]), [0, 1, 4, 4, 5, -1, -1]) assert_raises(ValueError, le.transform, [0, 6]) le.fit(["apple", "orange"]) msg = "bad input shape" assert_raise_message(ValueError, msg, le.transform, "apple") def test_label_encoder_fit_transform(): # Test fit_transform le = LabelEncoder() ret = le.fit_transform([1, 1, 4, 5, -1, 0]) assert_array_equal(ret, [2, 2, 3, 4, 0, 1]) le = LabelEncoder() ret = le.fit_transform(["paris", "paris", "tokyo", "amsterdam"]) assert_array_equal(ret, [1, 1, 2, 0]) def test_label_encoder_errors(): # Check that invalid arguments yield ValueError le = LabelEncoder() assert_raises(ValueError, le.transform, []) assert_raises(ValueError, le.inverse_transform, []) # Fail on unseen labels le = LabelEncoder() le.fit([1, 2, 3, 1, -1]) assert_raises(ValueError, le.inverse_transform, [-1]) def test_sparse_output_multilabel_binarizer(): # test input as iterable of iterables inputs = [ lambda: [(2, 3), (1,), (1, 2)], lambda: (set([2, 3]), set([1]), set([1, 2])), lambda: iter([iter((2, 3)), iter((1,)), set([1, 2])]), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) inverse = inputs[0]() for sparse_output in [True, False]: for inp in inputs: # With fit_tranform mlb = MultiLabelBinarizer(sparse_output=sparse_output) got = mlb.fit_transform(inp()) assert_equal(issparse(got), sparse_output) if sparse_output: # verify CSR assumption that indices and indptr have same dtype assert_equal(got.indices.dtype, got.indptr.dtype) got = got.toarray() assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) # With fit mlb = MultiLabelBinarizer(sparse_output=sparse_output) got = mlb.fit(inp()).transform(inp()) assert_equal(issparse(got), sparse_output) if sparse_output: # verify CSR assumption that indices and indptr have same dtype assert_equal(got.indices.dtype, got.indptr.dtype) got = got.toarray() assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) assert_raises(ValueError, mlb.inverse_transform, csr_matrix(np.array([[0, 1, 1], [2, 0, 0], [1, 1, 0]]))) def test_multilabel_binarizer(): # test input as iterable of iterables inputs = [ lambda: [(2, 3), (1,), (1, 2)], lambda: (set([2, 3]), set([1]), set([1, 2])), lambda: iter([iter((2, 3)), iter((1,)), set([1, 2])]), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) inverse = inputs[0]() for inp in inputs: # With fit_tranform mlb = MultiLabelBinarizer() got = mlb.fit_transform(inp()) assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) # With fit mlb = MultiLabelBinarizer() got = mlb.fit(inp()).transform(inp()) assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) def test_multilabel_binarizer_empty_sample(): mlb = MultiLabelBinarizer() y = [[1, 2], [1], []] Y = np.array([[1, 1], [1, 0], [0, 0]]) assert_array_equal(mlb.fit_transform(y), Y) def test_multilabel_binarizer_unknown_class(): mlb = MultiLabelBinarizer() y = [[1, 2]] assert_raises(KeyError, mlb.fit(y).transform, [[0]]) mlb = MultiLabelBinarizer(classes=[1, 2]) assert_raises(KeyError, mlb.fit_transform, [[0]]) def test_multilabel_binarizer_given_classes(): inp = [(2, 3), (1,), (1, 2)] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 0, 1]]) # fit_transform() mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.classes_, [1, 3, 2]) # fit().transform() mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.classes_, [1, 3, 2]) # ensure works with extra class mlb = MultiLabelBinarizer(classes=[4, 1, 3, 2]) assert_array_equal(mlb.fit_transform(inp), np.hstack(([[0], [0], [0]], indicator_mat))) assert_array_equal(mlb.classes_, [4, 1, 3, 2]) # ensure fit is no-op as iterable is not consumed inp = iter(inp) mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) def test_multilabel_binarizer_same_length_sequence(): # Ensure sequences of the same length are not interpreted as a 2-d array inp = [[1], [0], [2]] indicator_mat = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) # fit_transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) # fit().transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) def test_multilabel_binarizer_non_integer_labels(): tuple_classes = np.empty(3, dtype=object) tuple_classes[:] = [(1,), (2,), (3,)] inputs = [ ([('2', '3'), ('1',), ('1', '2')], ['1', '2', '3']), ([('b', 'c'), ('a',), ('a', 'b')], ['a', 'b', 'c']), ([((2,), (3,)), ((1,),), ((1,), (2,))], tuple_classes), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) for inp, classes in inputs: # fit_transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.classes_, classes) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) # fit().transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.classes_, classes) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) mlb = MultiLabelBinarizer() assert_raises(TypeError, mlb.fit_transform, [({}), ({}, {'a': 'b'})]) def test_multilabel_binarizer_non_unique(): inp = [(1, 1, 1, 0)] indicator_mat = np.array([[1, 1]]) mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) def test_multilabel_binarizer_inverse_validation(): inp = [(1, 1, 1, 0)] mlb = MultiLabelBinarizer() mlb.fit_transform(inp) # Not binary assert_raises(ValueError, mlb.inverse_transform, np.array([[1, 3]])) # The following binary cases are fine, however mlb.inverse_transform(np.array([[0, 0]])) mlb.inverse_transform(np.array([[1, 1]])) mlb.inverse_transform(np.array([[1, 0]])) # Wrong shape assert_raises(ValueError, mlb.inverse_transform, np.array([[1]])) assert_raises(ValueError, mlb.inverse_transform, np.array([[1, 1, 1]])) def test_label_binarize_with_class_order(): out = label_binarize([1, 6], classes=[1, 2, 4, 6]) expected = np.array([[1, 0, 0, 0], [0, 0, 0, 1]]) assert_array_equal(out, expected) # Modified class order out = label_binarize([1, 6], classes=[1, 6, 4, 2]) expected = np.array([[1, 0, 0, 0], [0, 1, 0, 0]]) assert_array_equal(out, expected) out = label_binarize([0, 1, 2, 3], classes=[3, 2, 0, 1]) expected = np.array([[0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0]]) assert_array_equal(out, expected) def check_binarized_results(y, classes, pos_label, neg_label, expected): for sparse_output in [True, False]: if ((pos_label == 0 or neg_label != 0) and sparse_output): assert_raises(ValueError, label_binarize, y, classes, neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) continue # check label_binarize binarized = label_binarize(y, classes, neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) assert_array_equal(toarray(binarized), expected) assert_equal(issparse(binarized), sparse_output) # check inverse y_type = type_of_target(y) if y_type == "multiclass": inversed = _inverse_binarize_multiclass(binarized, classes=classes) else: inversed = _inverse_binarize_thresholding(binarized, output_type=y_type, classes=classes, threshold=((neg_label + pos_label) / 2.)) assert_array_equal(toarray(inversed), toarray(y)) # Check label binarizer lb = LabelBinarizer(neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) binarized = lb.fit_transform(y) assert_array_equal(toarray(binarized), expected) assert_equal(issparse(binarized), sparse_output) inverse_output = lb.inverse_transform(binarized) assert_array_equal(toarray(inverse_output), toarray(y)) assert_equal(issparse(inverse_output), issparse(y)) def test_label_binarize_binary(): y = [0, 1, 0] classes = [0, 1] pos_label = 2 neg_label = -1 expected = np.array([[2, -1], [-1, 2], [2, -1]])[:, 1].reshape((-1, 1)) yield check_binarized_results, y, classes, pos_label, neg_label, expected # Binary case where sparse_output = True will not result in a ValueError y = [0, 1, 0] classes = [0, 1] pos_label = 3 neg_label = 0 expected = np.array([[3, 0], [0, 3], [3, 0]])[:, 1].reshape((-1, 1)) yield check_binarized_results, y, classes, pos_label, neg_label, expected def test_label_binarize_multiclass(): y = [0, 1, 2] classes = [0, 1, 2] pos_label = 2 neg_label = 0 expected = 2 * np.eye(3) yield check_binarized_results, y, classes, pos_label, neg_label, expected assert_raises(ValueError, label_binarize, y, classes, neg_label=-1, pos_label=pos_label, sparse_output=True) def test_label_binarize_multilabel(): y_ind = np.array([[0, 1, 0], [1, 1, 1], [0, 0, 0]]) classes = [0, 1, 2] pos_label = 2 neg_label = 0 expected = pos_label * y_ind y_sparse = [sparse_matrix(y_ind) for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix]] for y in [y_ind] + y_sparse: yield (check_binarized_results, y, classes, pos_label, neg_label, expected) assert_raises(ValueError, label_binarize, y, classes, neg_label=-1, pos_label=pos_label, sparse_output=True) def test_invalid_input_label_binarize(): assert_raises(ValueError, label_binarize, [0, 2], classes=[0, 2], pos_label=0, neg_label=1) def test_inverse_binarize_multiclass(): got = _inverse_binarize_multiclass(csr_matrix([[0, 1, 0], [-1, 0, -1], [0, 0, 0]]), np.arange(3)) assert_array_equal(got, np.array([1, 1, 0]))
bsd-3-clause
Ziqi-Li/bknqgis
pandas/pandas/tseries/util.py
9
3286
import warnings from pandas.compat import lrange import numpy as np from pandas.core.dtypes.common import _ensure_platform_int from pandas.core.frame import DataFrame import pandas.core.algorithms as algorithms def pivot_annual(series, freq=None): """ Deprecated. Use ``pivot_table`` instead. Group a series by years, taking leap years into account. The output has as many rows as distinct years in the original series, and as many columns as the length of a leap year in the units corresponding to the original frequency (366 for daily frequency, 366*24 for hourly...). The fist column of the output corresponds to Jan. 1st, 00:00:00, while the last column corresponds to Dec, 31st, 23:59:59. Entries corresponding to Feb. 29th are masked for non-leap years. For example, if the initial series has a daily frequency, the 59th column of the output always corresponds to Feb. 28th, the 61st column to Mar. 1st, and the 60th column is masked for non-leap years. With a hourly initial frequency, the (59*24)th column of the output always correspond to Feb. 28th 23:00, the (61*24)th column to Mar. 1st, 00:00, and the 24 columns between (59*24) and (61*24) are masked. If the original frequency is less than daily, the output is equivalent to ``series.convert('A', func=None)``. Parameters ---------- series : Series freq : string or None, default None Returns ------- annual : DataFrame """ msg = "pivot_annual is deprecated. Use pivot_table instead" warnings.warn(msg, FutureWarning) index = series.index year = index.year years = algorithms.unique1d(year) if freq is not None: freq = freq.upper() else: freq = series.index.freq if freq == 'D': width = 366 offset = np.asarray(index.dayofyear) - 1 # adjust for leap year offset[(~isleapyear(year)) & (offset >= 59)] += 1 columns = lrange(1, 367) # todo: strings like 1/1, 1/25, etc.? elif freq in ('M', 'BM'): width = 12 offset = np.asarray(index.month) - 1 columns = lrange(1, 13) elif freq == 'H': width = 8784 grouped = series.groupby(series.index.year) defaulted = grouped.apply(lambda x: x.reset_index(drop=True)) defaulted.index = defaulted.index.droplevel(0) offset = np.asarray(defaulted.index) offset[~isleapyear(year) & (offset >= 1416)] += 24 columns = lrange(1, 8785) else: raise NotImplementedError(freq) flat_index = (year - years.min()) * width + offset flat_index = _ensure_platform_int(flat_index) values = np.empty((len(years), width)) values.fill(np.nan) values.put(flat_index, series.values) return DataFrame(values, index=years, columns=columns) def isleapyear(year): """ Returns true if year is a leap year. Parameters ---------- year : integer / sequence A given (list of) year(s). """ msg = "isleapyear is deprecated. Use .is_leap_year property instead" warnings.warn(msg, FutureWarning) year = np.asarray(year) return np.logical_or(year % 400 == 0, np.logical_and(year % 4 == 0, year % 100 > 0))
gpl-2.0
chrsrds/scikit-learn
examples/exercises/plot_cv_digits.py
24
1175
""" ============================================= Cross-validation on Digits Dataset Exercise ============================================= A tutorial exercise using Cross-validation with an SVM on the Digits dataset. This exercise is used in the :ref:`cv_generators_tut` part of the :ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. """ print(__doc__) import numpy as np from sklearn.model_selection import cross_val_score from sklearn import datasets, svm X, y = datasets.load_digits(return_X_y=True) svc = svm.SVC(kernel='linear') C_s = np.logspace(-10, 0, 10) scores = list() scores_std = list() for C in C_s: svc.C = C this_scores = cross_val_score(svc, X, y, n_jobs=1) scores.append(np.mean(this_scores)) scores_std.append(np.std(this_scores)) # Do the plotting import matplotlib.pyplot as plt plt.figure() plt.semilogx(C_s, scores) plt.semilogx(C_s, np.array(scores) + np.array(scores_std), 'b--') plt.semilogx(C_s, np.array(scores) - np.array(scores_std), 'b--') locs, labels = plt.yticks() plt.yticks(locs, list(map(lambda x: "%g" % x, locs))) plt.ylabel('CV score') plt.xlabel('Parameter C') plt.ylim(0, 1.1) plt.show()
bsd-3-clause
thypad/brew
test/test_selection_dynamic.py
2
3344
""" Tests for `brew.selection.dynamic` module. """ import numpy as np import sklearn from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import zero_one_loss from sklearn.cross_validation import train_test_split from brew.base import Ensemble from brew.generation.bagging import * from brew.selection.dynamic.knora import * N=10000 X, y = datasets.make_hastie_10_2(n_samples=N, random_state=1) for i, yi in enumerate(set(y)): y[y == yi] = i Xtra, Xtst, ytra, ytst = train_test_split(X, y, test_size=0.10) Xtra, Xval, ytra, yval = train_test_split(Xtra, ytra, test_size=0.30) bag = Bagging(base_classifier=DecisionTreeClassifier(), n_classifiers=100) bag.fit(Xtra, ytra) class KNORA_UNION_VALID(KNORA): def select(self, ensemble, x): neighbors_X, neighbors_y = self.get_neighbors(x) pool = [] for c in ensemble.classifiers: for i, neighbor in enumerate(neighbors_X): if c.predict(neighbor) == neighbors_y[i]: pool.append(c) break weights = [] for clf in pool: msk = clf.predict(neighbors_X) == neighbors_y weights = weights + [sum(msk)] return Ensemble(classifiers=pool), weights class KNORA_ELIMINATE_VALID(KNORA): def select(self, ensemble, x): neighbors_X, neighbors_y = self.get_neighbors(x) k = self.K pool = [] while k > 0: nn_X = neighbors_X[:k,:] nn_y = neighbors_y[:k] for i, c in enumerate(ensemble.classifiers): if np.all(c.predict(nn_X) == nn_y[np.newaxis, :]): pool.append(c) if not pool: # empty k = k-1 else: break if not pool: # still empty # select the classifier that recognizes # more samples in the whole neighborhood # also select classifiers that recognize # the same number of neighbors pool = self._get_best_classifiers(ensemble, neighbors_X, neighbors_y, x) return Ensemble(classifiers=pool), None class TestKNORA_E(): def test_simple(self): selector_pred = KNORA_ELIMINATE(Xval=Xval, yval=yval) selector_true = KNORA_ELIMINATE_VALID(Xval=Xval, yval=yval) for x in Xtst: pool_pred, w_pred = selector_pred.select(bag.ensemble, x) pool_true, w_true = selector_true.select(bag.ensemble, x) assert w_pred == w_true assert len(pool_pred) == len(pool_true) for c_p, c_t in zip(pool_pred.classifiers, pool_true.classifiers): assert c_p == c_t class TestKNORA_U(): def test_simple(self): selector_pred = KNORA_UNION(Xval=Xval, yval=yval) selector_true = KNORA_UNION_VALID(Xval=Xval, yval=yval) for x in Xtst: pool_pred, w_pred = selector_pred.select(bag.ensemble, x) pool_true, w_true = selector_true.select(bag.ensemble, x) assert len(pool_pred) == len(pool_true) for c_p, c_t in zip(pool_pred.classifiers, pool_true.classifiers): assert c_p == c_t assert len(w_pred) == len(w_true) assert np.all(np.array(w_pred) == np.array(w_true))
mit
BryanCutler/spark
python/pyspark/pandas/tests/test_config.py
1
6435
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pyspark import pandas as ps from pyspark.pandas import config from pyspark.pandas.config import Option, DictWrapper from pyspark.pandas.testing.utils import ReusedSQLTestCase class ConfigTest(ReusedSQLTestCase): def setUp(self): config._options_dict["test.config"] = Option(key="test.config", doc="", default="default") config._options_dict["test.config.list"] = Option( key="test.config.list", doc="", default=[], types=list ) config._options_dict["test.config.float"] = Option( key="test.config.float", doc="", default=1.2, types=float ) config._options_dict["test.config.int"] = Option( key="test.config.int", doc="", default=1, types=int, check_func=(lambda v: v > 0, "bigger then 0"), ) config._options_dict["test.config.int.none"] = Option( key="test.config.int", doc="", default=None, types=(int, type(None)) ) def tearDown(self): ps.reset_option("test.config") del config._options_dict["test.config"] del config._options_dict["test.config.list"] del config._options_dict["test.config.float"] del config._options_dict["test.config.int"] del config._options_dict["test.config.int.none"] def test_get_set_reset_option(self): self.assertEqual(ps.get_option("test.config"), "default") ps.set_option("test.config", "value") self.assertEqual(ps.get_option("test.config"), "value") ps.reset_option("test.config") self.assertEqual(ps.get_option("test.config"), "default") def test_get_set_reset_option_different_types(self): ps.set_option("test.config.list", [1, 2, 3, 4]) self.assertEqual(ps.get_option("test.config.list"), [1, 2, 3, 4]) ps.set_option("test.config.float", 5.0) self.assertEqual(ps.get_option("test.config.float"), 5.0) ps.set_option("test.config.int", 123) self.assertEqual(ps.get_option("test.config.int"), 123) self.assertEqual(ps.get_option("test.config.int.none"), None) # default None ps.set_option("test.config.int.none", 123) self.assertEqual(ps.get_option("test.config.int.none"), 123) ps.set_option("test.config.int.none", None) self.assertEqual(ps.get_option("test.config.int.none"), None) def test_different_types(self): with self.assertRaisesRegex(ValueError, "was <class 'int'>"): ps.set_option("test.config.list", 1) with self.assertRaisesRegex(ValueError, "however, expected types are"): ps.set_option("test.config.float", "abc") with self.assertRaisesRegex(ValueError, "[<class 'int'>]"): ps.set_option("test.config.int", "abc") with self.assertRaisesRegex(ValueError, "(<class 'int'>, <class 'NoneType'>)"): ps.set_option("test.config.int.none", "abc") def test_check_func(self): with self.assertRaisesRegex(ValueError, "bigger then 0"): ps.set_option("test.config.int", -1) def test_unknown_option(self): with self.assertRaisesRegex(config.OptionError, "No such option"): ps.get_option("unknown") with self.assertRaisesRegex(config.OptionError, "Available options"): ps.set_option("unknown", "value") with self.assertRaisesRegex(config.OptionError, "test.config"): ps.reset_option("unknown") def test_namespace_access(self): try: self.assertEqual(ps.options.compute.max_rows, ps.get_option("compute.max_rows")) ps.options.compute.max_rows = 0 self.assertEqual(ps.options.compute.max_rows, 0) self.assertTrue(isinstance(ps.options.compute, DictWrapper)) wrapper = ps.options.compute self.assertEqual(wrapper.max_rows, ps.get_option("compute.max_rows")) wrapper.max_rows = 1000 self.assertEqual(ps.options.compute.max_rows, 1000) self.assertRaisesRegex(config.OptionError, "No such option", lambda: ps.options.compu) self.assertRaisesRegex( config.OptionError, "No such option", lambda: ps.options.compute.max ) self.assertRaisesRegex( config.OptionError, "No such option", lambda: ps.options.max_rows1 ) with self.assertRaisesRegex(config.OptionError, "No such option"): ps.options.compute.max = 0 with self.assertRaisesRegex(config.OptionError, "No such option"): ps.options.compute = 0 with self.assertRaisesRegex(config.OptionError, "No such option"): ps.options.com = 0 finally: ps.reset_option("compute.max_rows") def test_dir_options(self): self.assertTrue("compute.default_index_type" in dir(ps.options)) self.assertTrue("plotting.sample_ratio" in dir(ps.options)) self.assertTrue("default_index_type" in dir(ps.options.compute)) self.assertTrue("sample_ratio" not in dir(ps.options.compute)) self.assertTrue("default_index_type" not in dir(ps.options.plotting)) self.assertTrue("sample_ratio" in dir(ps.options.plotting)) if __name__ == "__main__": import unittest from pyspark.pandas.tests.test_config import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
theoryno3/scikit-learn
sklearn/externals/joblib/parallel.py
29
28665
""" Helpers for embarrassingly parallel code. """ # Author: Gael Varoquaux < gael dot varoquaux at normalesup dot org > # Copyright: 2010, Gael Varoquaux # License: BSD 3 clause import os import sys import gc import warnings from collections import Sized from math import sqrt import functools import time import threading import itertools try: import cPickle as pickle except: import pickle from ._multiprocessing_helpers import mp if mp is not None: from .pool import MemmapingPool from multiprocessing.pool import ThreadPool from .format_stack import format_exc, format_outer_frames from .logger import Logger, short_format_time from .my_exceptions import TransportableException, _mk_exception from .disk import memstr_to_kbytes from ._compat import _basestring VALID_BACKENDS = ['multiprocessing', 'threading'] # Environment variables to protect against bad situations when nesting JOBLIB_SPAWNED_PROCESS = "__JOBLIB_SPAWNED_PARALLEL__" ############################################################################### # CPU that works also when multiprocessing is not installed (python2.5) def cpu_count(): """ Return the number of CPUs. """ if mp is None: return 1 return mp.cpu_count() ############################################################################### # For verbosity def _verbosity_filter(index, verbose): """ Returns False for indices increasingly apart, the distance depending on the value of verbose. We use a lag increasing as the square of index """ if not verbose: return True elif verbose > 10: return False if index == 0: return False verbose = .5 * (11 - verbose) ** 2 scale = sqrt(index / verbose) next_scale = sqrt((index + 1) / verbose) return (int(next_scale) == int(scale)) ############################################################################### class WorkerInterrupt(Exception): """ An exception that is not KeyboardInterrupt to allow subprocesses to be interrupted. """ pass ############################################################################### class SafeFunction(object): """ Wraps a function to make it exception with full traceback in their representation. Useful for parallel computing with multiprocessing, for which exceptions cannot be captured. """ def __init__(self, func): self.func = func def __call__(self, *args, **kwargs): try: return self.func(*args, **kwargs) except KeyboardInterrupt: # We capture the KeyboardInterrupt and reraise it as # something different, as multiprocessing does not # interrupt processing for a KeyboardInterrupt raise WorkerInterrupt() except: e_type, e_value, e_tb = sys.exc_info() text = format_exc(e_type, e_value, e_tb, context=10, tb_offset=1) raise TransportableException(text, e_type) ############################################################################### def delayed(function, check_pickle=True): """Decorator used to capture the arguments of a function. Pass `check_pickle=False` when: - performing a possibly repeated check is too costly and has been done already once outside of the call to delayed. - when used in conjunction `Parallel(backend='threading')`. """ # Try to pickle the input function, to catch the problems early when # using with multiprocessing: if check_pickle: pickle.dumps(function) def delayed_function(*args, **kwargs): return function, args, kwargs try: delayed_function = functools.wraps(function)(delayed_function) except AttributeError: " functools.wraps fails on some callable objects " return delayed_function ############################################################################### class ImmediateApply(object): """ A non-delayed apply function. """ def __init__(self, func, args, kwargs): # Don't delay the application, to avoid keeping the input # arguments in memory self.results = func(*args, **kwargs) def get(self): return self.results ############################################################################### class CallBack(object): """ Callback used by parallel: it is used for progress reporting, and to add data to be processed """ def __init__(self, index, parallel): self.parallel = parallel self.index = index def __call__(self, out): self.parallel.print_progress(self.index) if self.parallel._original_iterable: self.parallel.dispatch_next() class LockedIterator(object): """Wrapper to protect a thread-unsafe iterable against concurrent access. A Python generator is not thread-safe by default and will raise ValueError("generator already executing") if two threads consume it concurrently. In joblib this could typically happen when the passed iterator is a generator expression and pre_dispatch != 'all'. In that case a callback is passed to the multiprocessing apply_async call and helper threads will trigger the consumption of the source iterable in the dispatch_next method. """ def __init__(self, it): self._lock = threading.Lock() self._it = iter(it) def __iter__(self): return self def next(self): with self._lock: return next(self._it) # For Python 3 compat __next__ = next ############################################################################### class Parallel(Logger): ''' Helper class for readable parallel mapping. Parameters ----------- n_jobs : int The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. backend : str or None Specify the parallelization backend implementation. Supported backends are: - "multiprocessing" used by default, can induce some communication and memory overhead when exchanging input and output data with the with the worker Python processes. - "threading" is a very low-overhead backend but it suffers from the Python Global Interpreter Lock if the called function relies a lot on Python objects. "threading" is mostly useful when the execution bottleneck is a compiled extension that explicitly releases the GIL (for instance a Cython loop wrapped in a "with nogil" block or an expensive call to a library such as NumPy). verbose : int, optional The verbosity level: if non zero, progress messages are printed. Above 50, the output is sent to stdout. The frequency of the messages increases with the verbosity level. If it more than 10, all iterations are reported. pre_dispatch : {'all', integer, or expression, as in '3*n_jobs'} The amount of jobs to be pre-dispatched. Default is 'all', but it may be memory consuming, for instance if each job involves a lot of a data. temp_folder : str, optional Folder to be used by the pool for memmaping large arrays for sharing memory with worker processes. If None, this will try in order: - a folder pointed by the JOBLIB_TEMP_FOLDER environment variable, - /dev/shm if the folder exists and is writable: this is a RAMdisk filesystem available by default on modern Linux distributions, - the default system temporary folder that can be overridden with TMP, TMPDIR or TEMP environment variables, typically /tmp under Unix operating systems. Only active when backend="multiprocessing". max_nbytes : int, str, or None, optional, 100e6 (100MB) by default Threshold on the size of arrays passed to the workers that triggers automated memory mapping in temp_folder. Can be an int in Bytes, or a human-readable string, e.g., '1M' for 1 megabyte. Use None to disable memmaping of large arrays. Only active when backend="multiprocessing". mmap_mode : 'r', 'r+' or 'c' Mode for the created memmap datastructure. See the documentation of numpy.memmap for more details. Note: 'w+' is coerced to 'r+' automatically to avoid zeroing the data on unpickling. Notes ----- This object uses the multiprocessing module to compute in parallel the application of a function to many different arguments. The main functionality it brings in addition to using the raw multiprocessing API are (see examples for details): * More readable code, in particular since it avoids constructing list of arguments. * Easier debugging: - informative tracebacks even when the error happens on the client side - using 'n_jobs=1' enables to turn off parallel computing for debugging without changing the codepath - early capture of pickling errors * An optional progress meter. * Interruption of multiprocesses jobs with 'Ctrl-C' * Flexible pickling control for the communication to and from the worker processes. * Ability to use shared memory efficiently with worker processes for large numpy-based datastructures. Examples -------- A simple example: >>> from math import sqrt >>> from sklearn.externals.joblib import Parallel, delayed >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] Reshaping the output when the function has several return values: >>> from math import modf >>> from sklearn.externals.joblib import Parallel, delayed >>> r = Parallel(n_jobs=1)(delayed(modf)(i/2.) for i in range(10)) >>> res, i = zip(*r) >>> res (0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5) >>> i (0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0) The progress meter: the higher the value of `verbose`, the more messages:: >>> from time import sleep >>> from sklearn.externals.joblib import Parallel, delayed >>> r = Parallel(n_jobs=2, verbose=5)(delayed(sleep)(.1) for _ in range(10)) #doctest: +SKIP [Parallel(n_jobs=2)]: Done 1 out of 10 | elapsed: 0.1s remaining: 0.9s [Parallel(n_jobs=2)]: Done 3 out of 10 | elapsed: 0.2s remaining: 0.5s [Parallel(n_jobs=2)]: Done 6 out of 10 | elapsed: 0.3s remaining: 0.2s [Parallel(n_jobs=2)]: Done 9 out of 10 | elapsed: 0.5s remaining: 0.1s [Parallel(n_jobs=2)]: Done 10 out of 10 | elapsed: 0.5s finished Traceback example, note how the line of the error is indicated as well as the values of the parameter passed to the function that triggered the exception, even though the traceback happens in the child process:: >>> from heapq import nlargest >>> from sklearn.externals.joblib import Parallel, delayed >>> Parallel(n_jobs=2)(delayed(nlargest)(2, n) for n in (range(4), 'abcde', 3)) #doctest: +SKIP #... --------------------------------------------------------------------------- Sub-process traceback: --------------------------------------------------------------------------- TypeError Mon Nov 12 11:37:46 2012 PID: 12934 Python 2.7.3: /usr/bin/python ........................................................................... /usr/lib/python2.7/heapq.pyc in nlargest(n=2, iterable=3, key=None) 419 if n >= size: 420 return sorted(iterable, key=key, reverse=True)[:n] 421 422 # When key is none, use simpler decoration 423 if key is None: --> 424 it = izip(iterable, count(0,-1)) # decorate 425 result = _nlargest(n, it) 426 return map(itemgetter(0), result) # undecorate 427 428 # General case, slowest method TypeError: izip argument #1 must support iteration ___________________________________________________________________________ Using pre_dispatch in a producer/consumer situation, where the data is generated on the fly. Note how the producer is first called a 3 times before the parallel loop is initiated, and then called to generate new data on the fly. In this case the total number of iterations cannot be reported in the progress messages:: >>> from math import sqrt >>> from sklearn.externals.joblib import Parallel, delayed >>> def producer(): ... for i in range(6): ... print('Produced %s' % i) ... yield i >>> out = Parallel(n_jobs=2, verbose=100, pre_dispatch='1.5*n_jobs')( ... delayed(sqrt)(i) for i in producer()) #doctest: +SKIP Produced 0 Produced 1 Produced 2 [Parallel(n_jobs=2)]: Done 1 jobs | elapsed: 0.0s Produced 3 [Parallel(n_jobs=2)]: Done 2 jobs | elapsed: 0.0s Produced 4 [Parallel(n_jobs=2)]: Done 3 jobs | elapsed: 0.0s Produced 5 [Parallel(n_jobs=2)]: Done 4 jobs | elapsed: 0.0s [Parallel(n_jobs=2)]: Done 5 out of 6 | elapsed: 0.0s remaining: 0.0s [Parallel(n_jobs=2)]: Done 6 out of 6 | elapsed: 0.0s finished ''' def __init__(self, n_jobs=1, backend=None, verbose=0, pre_dispatch='all', temp_folder=None, max_nbytes=100e6, mmap_mode='r'): self.verbose = verbose self._mp_context = None if backend is None: backend = "multiprocessing" elif hasattr(backend, 'Pool') and hasattr(backend, 'Lock'): # Make it possible to pass a custom multiprocessing context as # backend to change the start method to forkserver or spawn or # preload modules on the forkserver helper process. self._mp_context = backend backend = "multiprocessing" if backend not in VALID_BACKENDS: raise ValueError("Invalid backend: %s, expected one of %r" % (backend, VALID_BACKENDS)) self.backend = backend self.n_jobs = n_jobs self.pre_dispatch = pre_dispatch self._pool = None self._temp_folder = temp_folder if isinstance(max_nbytes, _basestring): self._max_nbytes = 1024 * memstr_to_kbytes(max_nbytes) else: self._max_nbytes = max_nbytes self._mmap_mode = mmap_mode # Not starting the pool in the __init__ is a design decision, to be # able to close it ASAP, and not burden the user with closing it. self._output = None self._jobs = list() # A flag used to abort the dispatching of jobs in case an # exception is found self._aborting = False def dispatch(self, func, args, kwargs): """ Queue the function for computing, with or without multiprocessing """ if self._pool is None: job = ImmediateApply(func, args, kwargs) index = len(self._jobs) if not _verbosity_filter(index, self.verbose): self._print('Done %3i jobs | elapsed: %s', (index + 1, short_format_time(time.time() - self._start_time) )) self._jobs.append(job) self.n_dispatched += 1 else: # If job.get() catches an exception, it closes the queue: if self._aborting: return try: self._lock.acquire() job = self._pool.apply_async(SafeFunction(func), args, kwargs, callback=CallBack(self.n_dispatched, self)) self._jobs.append(job) self.n_dispatched += 1 except AssertionError: print('[Parallel] Pool seems closed') finally: self._lock.release() def dispatch_next(self): """ Dispatch more data for parallel processing """ self._dispatch_amount += 1 while self._dispatch_amount: try: # XXX: possible race condition shuffling the order of # dispatches in the next two lines. func, args, kwargs = next(self._original_iterable) self.dispatch(func, args, kwargs) self._dispatch_amount -= 1 except ValueError: """ Race condition in accessing a generator, we skip, the dispatch will be done later. """ except StopIteration: self._iterating = False self._original_iterable = None return def _print(self, msg, msg_args): """ Display the message on stout or stderr depending on verbosity """ # XXX: Not using the logger framework: need to # learn to use logger better. if not self.verbose: return if self.verbose < 50: writer = sys.stderr.write else: writer = sys.stdout.write msg = msg % msg_args writer('[%s]: %s\n' % (self, msg)) def print_progress(self, index): """Display the process of the parallel execution only a fraction of time, controlled by self.verbose. """ if not self.verbose: return elapsed_time = time.time() - self._start_time # This is heuristic code to print only 'verbose' times a messages # The challenge is that we may not know the queue length if self._original_iterable: if _verbosity_filter(index, self.verbose): return self._print('Done %3i jobs | elapsed: %s', (index + 1, short_format_time(elapsed_time), )) else: # We are finished dispatching queue_length = self.n_dispatched # We always display the first loop if not index == 0: # Display depending on the number of remaining items # A message as soon as we finish dispatching, cursor is 0 cursor = (queue_length - index + 1 - self._pre_dispatch_amount) frequency = (queue_length // self.verbose) + 1 is_last_item = (index + 1 == queue_length) if (is_last_item or cursor % frequency): return remaining_time = (elapsed_time / (index + 1) * (self.n_dispatched - index - 1.)) self._print('Done %3i out of %3i | elapsed: %s remaining: %s', (index + 1, queue_length, short_format_time(elapsed_time), short_format_time(remaining_time), )) def retrieve(self): self._output = list() while self._iterating or len(self._jobs) > 0: if len(self._jobs) == 0: # Wait for an async callback to dispatch new jobs time.sleep(0.01) continue # We need to be careful: the job queue can be filling up as # we empty it if hasattr(self, '_lock'): self._lock.acquire() job = self._jobs.pop(0) if hasattr(self, '_lock'): self._lock.release() try: self._output.append(job.get()) except tuple(self.exceptions) as exception: try: self._aborting = True self._lock.acquire() if isinstance(exception, (KeyboardInterrupt, WorkerInterrupt)): # We have captured a user interruption, clean up # everything if hasattr(self, '_pool'): self._pool.close() self._pool.terminate() # We can now allow subprocesses again os.environ.pop('__JOBLIB_SPAWNED_PARALLEL__', 0) raise exception elif isinstance(exception, TransportableException): # Capture exception to add information on the local # stack in addition to the distant stack this_report = format_outer_frames(context=10, stack_start=1) report = """Multiprocessing exception: %s --------------------------------------------------------------------------- Sub-process traceback: --------------------------------------------------------------------------- %s""" % ( this_report, exception.message, ) # Convert this to a JoblibException exception_type = _mk_exception(exception.etype)[0] raise exception_type(report) raise exception finally: self._lock.release() def __call__(self, iterable): if self._jobs: raise ValueError('This Parallel instance is already running') n_jobs = self.n_jobs if n_jobs == 0: raise ValueError('n_jobs == 0 in Parallel has no meaning') if n_jobs < 0 and mp is not None: n_jobs = max(mp.cpu_count() + 1 + n_jobs, 1) # The list of exceptions that we will capture self.exceptions = [TransportableException] self._lock = threading.Lock() # Whether or not to set an environment flag to track # multiple process spawning set_environ_flag = False if (n_jobs is None or mp is None or n_jobs == 1): n_jobs = 1 self._pool = None elif self.backend == 'threading': self._pool = ThreadPool(n_jobs) elif self.backend == 'multiprocessing': if mp.current_process().daemon: # Daemonic processes cannot have children n_jobs = 1 self._pool = None warnings.warn( 'Multiprocessing-backed parallel loops cannot be nested,' ' setting n_jobs=1', stacklevel=2) elif threading.current_thread().name != 'MainThread': # Prevent posix fork inside in non-main posix threads n_jobs = 1 self._pool = None warnings.warn( 'Multiprocessing backed parallel loops cannot be nested' ' below threads, setting n_jobs=1', stacklevel=2) else: already_forked = int(os.environ.get('__JOBLIB_SPAWNED_PARALLEL__', 0)) if already_forked: raise ImportError('[joblib] Attempting to do parallel computing ' 'without protecting your import on a system that does ' 'not support forking. To use parallel-computing in a ' 'script, you must protect your main loop using "if ' "__name__ == '__main__'" '". Please see the joblib documentation on Parallel ' 'for more information' ) # Make sure to free as much memory as possible before forking gc.collect() # Set an environment variable to avoid infinite loops set_environ_flag = True poolargs = dict( max_nbytes=self._max_nbytes, mmap_mode=self._mmap_mode, temp_folder=self._temp_folder, verbose=max(0, self.verbose - 50), context_id=0, # the pool is used only for one call ) if self._mp_context is not None: # Use Python 3.4+ multiprocessing context isolation poolargs['context'] = self._mp_context self._pool = MemmapingPool(n_jobs, **poolargs) # We are using multiprocessing, we also want to capture # KeyboardInterrupts self.exceptions.extend([KeyboardInterrupt, WorkerInterrupt]) else: raise ValueError("Unsupported backend: %s" % self.backend) pre_dispatch = self.pre_dispatch if isinstance(iterable, Sized): # We are given a sized (an object with len). No need to be lazy. pre_dispatch = 'all' if pre_dispatch == 'all' or n_jobs == 1: self._original_iterable = None self._pre_dispatch_amount = 0 else: # The dispatch mechanism relies on multiprocessing helper threads # to dispatch tasks from the original iterable concurrently upon # job completions. As Python generators are not thread-safe we # need to wrap it with a lock iterable = LockedIterator(iterable) self._original_iterable = iterable self._dispatch_amount = 0 if hasattr(pre_dispatch, 'endswith'): pre_dispatch = eval(pre_dispatch) self._pre_dispatch_amount = pre_dispatch = int(pre_dispatch) # The main thread will consume the first pre_dispatch items and # the remaining items will later be lazily dispatched by async # callbacks upon task completions iterable = itertools.islice(iterable, pre_dispatch) self._start_time = time.time() self.n_dispatched = 0 try: if set_environ_flag: # Set an environment variable to avoid infinite loops os.environ[JOBLIB_SPAWNED_PROCESS] = '1' self._iterating = True for function, args, kwargs in iterable: self.dispatch(function, args, kwargs) if pre_dispatch == "all" or n_jobs == 1: # The iterable was consumed all at once by the above for loop. # No need to wait for async callbacks to trigger to # consumption. self._iterating = False self.retrieve() # Make sure that we get a last message telling us we are done elapsed_time = time.time() - self._start_time self._print('Done %3i out of %3i | elapsed: %s finished', (len(self._output), len(self._output), short_format_time(elapsed_time) )) finally: if n_jobs > 1: self._pool.close() self._pool.terminate() # terminate does a join() if self.backend == 'multiprocessing': os.environ.pop(JOBLIB_SPAWNED_PROCESS, 0) self._jobs = list() output = self._output self._output = None return output def __repr__(self): return '%s(n_jobs=%s)' % (self.__class__.__name__, self.n_jobs)
bsd-3-clause
AlexRobson/scikit-learn
sklearn/metrics/__init__.py
214
3440
""" The :mod:`sklearn.metrics` module includes score functions, performance metrics and pairwise metrics and distance computations. """ from .ranking import auc from .ranking import average_precision_score from .ranking import coverage_error from .ranking import label_ranking_average_precision_score from .ranking import label_ranking_loss from .ranking import precision_recall_curve from .ranking import roc_auc_score from .ranking import roc_curve from .classification import accuracy_score from .classification import classification_report from .classification import cohen_kappa_score from .classification import confusion_matrix from .classification import f1_score from .classification import fbeta_score from .classification import hamming_loss from .classification import hinge_loss from .classification import jaccard_similarity_score from .classification import log_loss from .classification import matthews_corrcoef from .classification import precision_recall_fscore_support from .classification import precision_score from .classification import recall_score from .classification import zero_one_loss from .classification import brier_score_loss from . import cluster from .cluster import adjusted_mutual_info_score from .cluster import adjusted_rand_score from .cluster import completeness_score from .cluster import consensus_score from .cluster import homogeneity_completeness_v_measure from .cluster import homogeneity_score from .cluster import mutual_info_score from .cluster import normalized_mutual_info_score from .cluster import silhouette_samples from .cluster import silhouette_score from .cluster import v_measure_score from .pairwise import euclidean_distances from .pairwise import pairwise_distances from .pairwise import pairwise_distances_argmin from .pairwise import pairwise_distances_argmin_min from .pairwise import pairwise_kernels from .regression import explained_variance_score from .regression import mean_absolute_error from .regression import mean_squared_error from .regression import median_absolute_error from .regression import r2_score from .scorer import make_scorer from .scorer import SCORERS from .scorer import get_scorer __all__ = [ 'accuracy_score', 'adjusted_mutual_info_score', 'adjusted_rand_score', 'auc', 'average_precision_score', 'classification_report', 'cluster', 'completeness_score', 'confusion_matrix', 'consensus_score', 'coverage_error', 'euclidean_distances', 'explained_variance_score', 'f1_score', 'fbeta_score', 'get_scorer', 'hamming_loss', 'hinge_loss', 'homogeneity_completeness_v_measure', 'homogeneity_score', 'jaccard_similarity_score', 'label_ranking_average_precision_score', 'label_ranking_loss', 'log_loss', 'make_scorer', 'matthews_corrcoef', 'mean_absolute_error', 'mean_squared_error', 'median_absolute_error', 'mutual_info_score', 'normalized_mutual_info_score', 'pairwise_distances', 'pairwise_distances_argmin', 'pairwise_distances_argmin_min', 'pairwise_distances_argmin_min', 'pairwise_kernels', 'precision_recall_curve', 'precision_recall_fscore_support', 'precision_score', 'r2_score', 'recall_score', 'roc_auc_score', 'roc_curve', 'SCORERS', 'silhouette_samples', 'silhouette_score', 'v_measure_score', 'zero_one_loss', 'brier_score_loss', ]
bsd-3-clause
mne-tools/mne-tools.github.io
0.12/_downloads/plot_stats_spatio_temporal_cluster_sensors.py
4
7427
""" .. _stats_cluster_sensors_2samp_spatial: ===================================================== Spatiotemporal permutation F-test on full sensor data ===================================================== Tests for differential evoked responses in at least one condition using a permutation clustering test. The FieldTrip neighbor templates will be used to determine the adjacency between sensors. This serves as a spatial prior to the clustering. Significant spatiotemporal clusters will then be visualized using custom matplotlib code. """ # Authors: Denis Engemann <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from mne.viz import plot_topomap import mne from mne.stats import spatio_temporal_cluster_test from mne.datasets import sample from mne.channels import read_ch_connectivity print(__doc__) ############################################################################### # Set parameters # -------------- data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' event_id = {'Aud_L': 1, 'Aud_R': 2, 'Vis_L': 3, 'Vis_R': 4} tmin = -0.2 tmax = 0.5 # Setup for reading the raw data raw = mne.io.read_raw_fif(raw_fname, preload=True) raw.filter(1, 30) events = mne.read_events(event_fname) ############################################################################### # Read epochs for the channel of interest # --------------------------------------- picks = mne.pick_types(raw.info, meg='mag', eog=True) reject = dict(mag=4e-12, eog=150e-6) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=None, reject=reject, preload=True) epochs.drop_channels(['EOG 061']) epochs.equalize_event_counts(event_id, copy=False) condition_names = 'Aud_L', 'Aud_R', 'Vis_L', 'Vis_R' X = [epochs[k].get_data() for k in condition_names] # as 3D matrix X = [np.transpose(x, (0, 2, 1)) for x in X] # transpose for clustering ############################################################################### # Load FieldTrip neighbor definition to setup sensor connectivity # --------------------------------------------------------------- connectivity, ch_names = read_ch_connectivity('neuromag306mag') print(type(connectivity)) # it's a sparse matrix! plt.imshow(connectivity.toarray(), cmap='gray', origin='lower', interpolation='nearest') plt.xlabel('{} Magnetometers'.format(len(ch_names))) plt.ylabel('{} Magnetometers'.format(len(ch_names))) plt.title('Between-sensor adjacency') ############################################################################### # Compute permutation statistic # ----------------------------- # # How does it work? We use clustering to `bind` together features which are # similar. Our features are the magnetic fields measured over our sensor # array at different times. This reduces the multiple comparison problem. # To compute the actual test-statistic, we first sum all F-values in all # clusters. We end up with one statistic for each cluster. # Then we generate a distribution from the data by shuffling our conditions # between our samples and recomputing our clusters and the test statistics. # We test for the significance of a given cluster by computing the probability # of observing a cluster of that size. For more background read: # Maris/Oostenveld (2007), "Nonparametric statistical testing of EEG- and # MEG-data" Journal of Neuroscience Methods, Vol. 164, No. 1., pp. 177-190. # doi:10.1016/j.jneumeth.2007.03.024 # set cluster threshold threshold = 50.0 # very high, but the test is quite sensitive on this data # set family-wise p-value p_accept = 0.001 cluster_stats = spatio_temporal_cluster_test(X, n_permutations=1000, threshold=threshold, tail=1, n_jobs=1, connectivity=connectivity) T_obs, clusters, p_values, _ = cluster_stats good_cluster_inds = np.where(p_values < p_accept)[0] ############################################################################### # Note. The same functions work with source estimate. The only differences # are the origin of the data, the size, and the connectivity definition. # It can be used for single trials or for groups of subjects. # # Visualize clusters # ------------------ # configure variables for visualization times = epochs.times * 1e3 colors = 'r', 'r', 'steelblue', 'steelblue' linestyles = '-', '--', '-', '--' # grand average as numpy arrray grand_ave = np.array(X).mean(axis=1) # get sensor positions via layout pos = mne.find_layout(epochs.info).pos # loop over significant clusters for i_clu, clu_idx in enumerate(good_cluster_inds): # unpack cluster information, get unique indices time_inds, space_inds = np.squeeze(clusters[clu_idx]) ch_inds = np.unique(space_inds) time_inds = np.unique(time_inds) # get topography for F stat f_map = T_obs[time_inds, ...].mean(axis=0) # get signals at significant sensors signals = grand_ave[..., ch_inds].mean(axis=-1) sig_times = times[time_inds] # create spatial mask mask = np.zeros((f_map.shape[0], 1), dtype=bool) mask[ch_inds, :] = True # initialize figure fig, ax_topo = plt.subplots(1, 1, figsize=(10, 3)) title = 'Cluster #{0}'.format(i_clu + 1) fig.suptitle(title, fontsize=14) # plot average test statistic and mark significant sensors image, _ = plot_topomap(f_map, pos, mask=mask, axes=ax_topo, cmap='Reds', vmin=np.min, vmax=np.max) # advanced matplotlib for showing image with figure and colorbar # in one plot divider = make_axes_locatable(ax_topo) # add axes for colorbar ax_colorbar = divider.append_axes('right', size='5%', pad=0.05) plt.colorbar(image, cax=ax_colorbar) ax_topo.set_xlabel('Averaged F-map ({:0.1f} - {:0.1f} ms)'.format( *sig_times[[0, -1]] )) # add new axis for time courses and plot time courses ax_signals = divider.append_axes('right', size='300%', pad=1.2) for signal, name, col, ls in zip(signals, condition_names, colors, linestyles): ax_signals.plot(times, signal, color=col, linestyle=ls, label=name) # add information ax_signals.axvline(0, color='k', linestyle=':', label='stimulus onset') ax_signals.set_xlim([times[0], times[-1]]) ax_signals.set_xlabel('time [ms]') ax_signals.set_ylabel('evoked magnetic fields [fT]') # plot significant time range ymin, ymax = ax_signals.get_ylim() ax_signals.fill_betweenx((ymin, ymax), sig_times[0], sig_times[-1], color='orange', alpha=0.3) ax_signals.legend(loc='lower right') ax_signals.set_ylim(ymin, ymax) # clean up viz mne.viz.tight_layout(fig=fig) fig.subplots_adjust(bottom=.05) plt.show() ############################################################################### # Exercises # ---------- # # - What is the smallest p-value you can obtain, given the finite number of # permutations? # - use an F distribution to compute the threshold by traditional significance # levels. Hint: take a look at ``scipy.stats.distributions.f``
bsd-3-clause
shigh/py3d3v
model/figs/gaussian-screen.py
1
1277
import matplotlib import matplotlib.pyplot as plt import numpy as np from scipy.special import erf # Generate short and long range force values r = np.linspace(.01, 1, 100) beta_vals = np.arange(1, 5) sqpi = np.sqrt(np.pi) E_vals = [] F_vals = [] for beta in beta_vals: E = sqpi*erf(r*beta)/(2*r**2)-beta*np.exp(-beta**2*r**2)/r E = E/(2*sqpi**3) E_vals.append((E, beta)) F = 1/(4*np.pi*r**2) - E F_vals.append((F, beta)) # Plot short range forces fig = plt.figure(figsize=(12, 5)) ax = fig.add_subplot(1,2,1) for E, beta in E_vals: ax.plot(r, E, label="$\\beta=%i$"%(beta,)) ax.set_title("Field produced by Gaussian screen") ax.set_xlabel("$r$") ax.set_ylabel("$E(r)$") ax.legend() # Plot long range forces #fig = plt.figure() ax = fig.add_subplot(122) for F, beta in F_vals: ax.semilogy(r, F, label="$\\beta=%i$"%(beta,)) ax.set_title("Short range force using Gaussian screen") ax.set_xlabel("$r$") ax.set_ylabel("$E(r)$") ax.legend(loc="lower left") fig.savefig("p3m-gaussian-fields.pdf") # CIC x_vals = np.linspace(-1, 1, 1000) s_vals = np.zeros_like(x_vals) s_vals[np.abs(x_vals)<.5] = 1 fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x_vals, s_vals) ax.set_ylim((0, 1.1)) ax.set_title("CIC Particle Shape") fig.savefig("cic.pdf")
gpl-2.0
andrewcmyers/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/__init__.py
79
2464
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tools to allow different io formats.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.learn_io.dask_io import extract_dask_data from tensorflow.contrib.learn.python.learn.learn_io.dask_io import extract_dask_labels from tensorflow.contrib.learn.python.learn.learn_io.dask_io import HAS_DASK from tensorflow.contrib.learn.python.learn.learn_io.graph_io import queue_parsed_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_batch_examples from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_batch_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_batch_record_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_examples from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_examples_shared_queue from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_features_shared_queue from tensorflow.contrib.learn.python.learn.learn_io.numpy_io import numpy_input_fn from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import extract_pandas_data from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import extract_pandas_labels from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import extract_pandas_matrix from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import HAS_PANDAS from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import pandas_input_fn from tensorflow.contrib.learn.python.learn.learn_io.generator_io import generator_input_fn
apache-2.0
jmontoyam/mne-python
mne/viz/tests/test_topomap.py
3
12543
# Authors: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # Martin Luessi <[email protected]> # Eric Larson <[email protected]> # # License: Simplified BSD import os.path as op import warnings import numpy as np from numpy.testing import assert_raises, assert_array_equal from nose.tools import assert_true, assert_equal from mne import read_evokeds, read_proj from mne.io import read_raw_fif from mne.io.constants import FIFF from mne.io.pick import pick_info, channel_indices_by_type from mne.channels import read_layout, make_eeg_layout from mne.datasets import testing from mne.time_frequency.tfr import AverageTFR from mne.utils import slow_test, run_tests_if_main from mne.viz import plot_evoked_topomap, plot_projs_topomap from mne.viz.topomap import (_check_outlines, _onselect, plot_topomap, plot_psds_topomap) from mne.viz.utils import _find_peaks, _fake_click # Set our plotters to test mode import matplotlib matplotlib.use('Agg') # for testing don't use X server warnings.simplefilter('always') # enable b/c these tests throw warnings data_dir = testing.data_path(download=False) subjects_dir = op.join(data_dir, 'subjects') ecg_fname = op.join(data_dir, 'MEG', 'sample', 'sample_audvis_ecg-proj.fif') base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') evoked_fname = op.join(base_dir, 'test-ave.fif') fname = op.join(base_dir, 'test-ave.fif') raw_fname = op.join(base_dir, 'test_raw.fif') event_name = op.join(base_dir, 'test-eve.fif') layout = read_layout('Vectorview-all') def _get_raw(): """Get raw data.""" return read_raw_fif(raw_fname, preload=False, add_eeg_ref=False) @slow_test @testing.requires_testing_data def test_plot_topomap(): """Test topomap plotting.""" import matplotlib.pyplot as plt from matplotlib.patches import Circle # evoked warnings.simplefilter('always') res = 16 evoked = read_evokeds(evoked_fname, 'Left Auditory', baseline=(None, 0)) # Test animation _, anim = evoked.animate_topomap(ch_type='grad', times=[0, 0.1], butterfly=False) anim._func(1) # _animate has to be tested separately on 'Agg' backend. plt.close('all') ev_bad = evoked.copy().pick_types(meg=False, eeg=True) ev_bad.pick_channels(ev_bad.ch_names[:2]) ev_bad.plot_topomap(times=ev_bad.times[:2] - 1e-6) # auto, plots EEG assert_raises(ValueError, ev_bad.plot_topomap, ch_type='mag') assert_raises(TypeError, ev_bad.plot_topomap, head_pos='foo') assert_raises(KeyError, ev_bad.plot_topomap, head_pos=dict(foo='bar')) assert_raises(ValueError, ev_bad.plot_topomap, head_pos=dict(center=0)) assert_raises(ValueError, ev_bad.plot_topomap, times=[-100]) # bad time assert_raises(ValueError, ev_bad.plot_topomap, times=[[0]]) # bad time assert_raises(ValueError, ev_bad.plot_topomap, times=[[0]]) # bad time evoked.plot_topomap(0.1, layout=layout, scale=dict(mag=0.1)) plt.close('all') axes = [plt.subplot(221), plt.subplot(222)] evoked.plot_topomap(axes=axes, colorbar=False) plt.close('all') evoked.plot_topomap(times=[-0.1, 0.2]) plt.close('all') mask = np.zeros_like(evoked.data, dtype=bool) mask[[1, 5], :] = True evoked.plot_topomap(ch_type='mag', outlines=None) times = [0.1] evoked.plot_topomap(times, ch_type='eeg', res=res, scale=1) evoked.plot_topomap(times, ch_type='grad', mask=mask, res=res) evoked.plot_topomap(times, ch_type='planar1', res=res) evoked.plot_topomap(times, ch_type='planar2', res=res) evoked.plot_topomap(times, ch_type='grad', mask=mask, res=res, show_names=True, mask_params={'marker': 'x'}) plt.close('all') assert_raises(ValueError, evoked.plot_topomap, times, ch_type='eeg', res=res, average=-1000) assert_raises(ValueError, evoked.plot_topomap, times, ch_type='eeg', res=res, average='hahahahah') p = evoked.plot_topomap(times, ch_type='grad', res=res, show_names=lambda x: x.replace('MEG', ''), image_interp='bilinear') subplot = [x for x in p.get_children() if isinstance(x, matplotlib.axes.Subplot)][0] assert_true(all('MEG' not in x.get_text() for x in subplot.get_children() if isinstance(x, matplotlib.text.Text))) # Plot array for ch_type in ('mag', 'grad'): evoked_ = evoked.copy().pick_types(eeg=False, meg=ch_type) plot_topomap(evoked_.data[:, 0], evoked_.info) # fail with multiple channel types assert_raises(ValueError, plot_topomap, evoked.data[0, :], evoked.info) # Test title def get_texts(p): return [x.get_text() for x in p.get_children() if isinstance(x, matplotlib.text.Text)] p = evoked.plot_topomap(times, ch_type='eeg', res=res, average=0.01) assert_equal(len(get_texts(p)), 0) p = evoked.plot_topomap(times, ch_type='eeg', title='Custom', res=res) texts = get_texts(p) assert_equal(len(texts), 1) assert_equal(texts[0], 'Custom') plt.close('all') # delaunay triangulation warning with warnings.catch_warnings(record=True): # can't show warnings.simplefilter('always') evoked.plot_topomap(times, ch_type='mag', layout=None, res=res) assert_raises(RuntimeError, plot_evoked_topomap, evoked, 0.1, 'mag', proj='interactive') # projs have already been applied # change to no-proj mode evoked = read_evokeds(evoked_fname, 'Left Auditory', baseline=(None, 0), proj=False) with warnings.catch_warnings(record=True): warnings.simplefilter('always') evoked.plot_topomap(0.1, 'mag', proj='interactive', res=res) assert_raises(RuntimeError, plot_evoked_topomap, evoked, np.repeat(.1, 50)) assert_raises(ValueError, plot_evoked_topomap, evoked, [-3e12, 15e6]) with warnings.catch_warnings(record=True): # file conventions warnings.simplefilter('always') projs = read_proj(ecg_fname) projs = [pp for pp in projs if pp['desc'].lower().find('eeg') < 0] plot_projs_topomap(projs, res=res, colorbar=True) plt.close('all') ax = plt.subplot(111) plot_projs_topomap([projs[0]], res=res, axes=ax) # test axes param plt.close('all') for ch in evoked.info['chs']: if ch['coil_type'] == FIFF.FIFFV_COIL_EEG: ch['loc'].fill(0) # Remove extra digitization point, so EEG digitization points # correspond with the EEG electrodes del evoked.info['dig'][85] pos = make_eeg_layout(evoked.info).pos[:, :2] pos, outlines = _check_outlines(pos, 'head') assert_true('head' in outlines.keys()) assert_true('nose' in outlines.keys()) assert_true('ear_left' in outlines.keys()) assert_true('ear_right' in outlines.keys()) assert_true('autoshrink' in outlines.keys()) assert_true(outlines['autoshrink']) assert_true('clip_radius' in outlines.keys()) assert_array_equal(outlines['clip_radius'], 0.5) pos, outlines = _check_outlines(pos, 'skirt') assert_true('head' in outlines.keys()) assert_true('nose' in outlines.keys()) assert_true('ear_left' in outlines.keys()) assert_true('ear_right' in outlines.keys()) assert_true('autoshrink' in outlines.keys()) assert_true(not outlines['autoshrink']) assert_true('clip_radius' in outlines.keys()) assert_array_equal(outlines['clip_radius'], 0.625) pos, outlines = _check_outlines(pos, 'skirt', head_pos={'scale': [1.2, 1.2]}) assert_array_equal(outlines['clip_radius'], 0.75) # Plot skirt evoked.plot_topomap(times, ch_type='eeg', outlines='skirt') # Pass custom outlines without patch evoked.plot_topomap(times, ch_type='eeg', outlines=outlines) plt.close('all') # Test interactive cmap fig = plot_evoked_topomap(evoked, times=[0., 0.1], ch_type='eeg', cmap=('Reds', True), title='title') fig.canvas.key_press_event('up') fig.canvas.key_press_event(' ') fig.canvas.key_press_event('down') cbar = fig.get_axes()[0].CB # Fake dragging with mouse. ax = cbar.cbar.ax _fake_click(fig, ax, (0.1, 0.1)) _fake_click(fig, ax, (0.1, 0.2), kind='motion') _fake_click(fig, ax, (0.1, 0.3), kind='release') _fake_click(fig, ax, (0.1, 0.1), button=3) _fake_click(fig, ax, (0.1, 0.2), button=3, kind='motion') _fake_click(fig, ax, (0.1, 0.3), kind='release') fig.canvas.scroll_event(0.5, 0.5, -0.5) # scroll down fig.canvas.scroll_event(0.5, 0.5, 0.5) # scroll up plt.close('all') # Pass custom outlines with patch callable def patch(): return Circle((0.5, 0.4687), radius=.46, clip_on=True, transform=plt.gca().transAxes) outlines['patch'] = patch plot_evoked_topomap(evoked, times, ch_type='eeg', outlines=outlines) # Remove digitization points. Now topomap should fail evoked.info['dig'] = None assert_raises(RuntimeError, plot_evoked_topomap, evoked, times, ch_type='eeg') plt.close('all') # Error for missing names n_channels = len(pos) data = np.ones(n_channels) assert_raises(ValueError, plot_topomap, data, pos, show_names=True) # Test error messages for invalid pos parameter pos_1d = np.zeros(n_channels) pos_3d = np.zeros((n_channels, 2, 2)) assert_raises(ValueError, plot_topomap, data, pos_1d) assert_raises(ValueError, plot_topomap, data, pos_3d) assert_raises(ValueError, plot_topomap, data, pos[:3, :]) pos_x = pos[:, :1] pos_xyz = np.c_[pos, np.zeros(n_channels)[:, np.newaxis]] assert_raises(ValueError, plot_topomap, data, pos_x) assert_raises(ValueError, plot_topomap, data, pos_xyz) # An #channels x 4 matrix should work though. In this case (x, y, width, # height) is assumed. pos_xywh = np.c_[pos, np.zeros((n_channels, 2))] plot_topomap(data, pos_xywh) plt.close('all') # Test peak finder axes = [plt.subplot(131), plt.subplot(132)] with warnings.catch_warnings(record=True): # rightmost column evoked.plot_topomap(times='peaks', axes=axes) plt.close('all') evoked.data = np.zeros(evoked.data.shape) evoked.data[50][1] = 1 assert_array_equal(_find_peaks(evoked, 10), evoked.times[1]) evoked.data[80][100] = 1 assert_array_equal(_find_peaks(evoked, 10), evoked.times[[1, 100]]) evoked.data[2][95] = 2 assert_array_equal(_find_peaks(evoked, 10), evoked.times[[1, 95]]) assert_array_equal(_find_peaks(evoked, 1), evoked.times[95]) def test_plot_tfr_topomap(): """Test plotting of TFR data.""" import matplotlib as mpl import matplotlib.pyplot as plt raw = _get_raw() times = np.linspace(-0.1, 0.1, 200) n_freqs = 3 nave = 1 rng = np.random.RandomState(42) data = rng.randn(len(raw.ch_names), n_freqs, len(times)) tfr = AverageTFR(raw.info, data, times, np.arange(n_freqs), nave) tfr.plot_topomap(ch_type='mag', tmin=0.05, tmax=0.150, fmin=0, fmax=10, res=16) eclick = mpl.backend_bases.MouseEvent('button_press_event', plt.gcf().canvas, 0, 0, 1) eclick.xdata = eclick.ydata = 0.1 eclick.inaxes = plt.gca() erelease = mpl.backend_bases.MouseEvent('button_release_event', plt.gcf().canvas, 0.9, 0.9, 1) erelease.xdata = 0.3 erelease.ydata = 0.2 pos = [[0.11, 0.11], [0.25, 0.5], [0.0, 0.2], [0.2, 0.39]] _onselect(eclick, erelease, tfr, pos, 'grad', 1, 3, 1, 3, 'RdBu_r', list()) _onselect(eclick, erelease, tfr, pos, 'mag', 1, 3, 1, 3, 'RdBu_r', list()) eclick.xdata = eclick.ydata = 0. erelease.xdata = erelease.ydata = 0.9 tfr._onselect(eclick, erelease, None, 'mean', None) plt.close('all') # test plot_psds_topomap info = raw.info.copy() chan_inds = channel_indices_by_type(info) info = pick_info(info, chan_inds['grad'][:4]) fig, axes = plt.subplots() freqs = np.arange(3., 9.5) bands = [(4, 8, 'Theta')] psd = np.random.rand(len(info['ch_names']), freqs.shape[0]) plot_psds_topomap(psd, freqs, info, bands=bands, axes=[axes]) run_tests_if_main()
bsd-3-clause
architecture-building-systems/CEAforArcGIS
cea/plots/colors.py
2
1985
""" This is the official list of CEA colors to use in plots """ import os import pandas as pd import yaml import warnings import functools from typing import List, Callable __author__ = "Jimeno A. Fonseca" __copyright__ = "Copyright 2020, Architecture and Building Systems - ETH Zurich" __credits__ = ["Jimeno A. Fonseca"] __license__ = "MIT" __version__ = "0.1" __maintainer__ = "Daren Thomas" __email__ = "[email protected]" __status__ = "Production" COLORS_TO_RGB = {"red": "rgb(240,75,91)", "red_light": "rgb(246,148,143)", "red_lighter": "rgb(252,217,210)", "blue": "rgb(63,192,194)", "blue_light": "rgb(171,221,222)", "blue_lighter": "rgb(225,242,242)", "yellow": "rgb(255,209,29)", "yellow_light": "rgb(255,225,133)", "yellow_lighter": "rgb(255,243,211)", "brown": "rgb(174,148,72)", "brown_light": "rgb(201,183,135)", "brown_lighter": "rgb(233,225,207)", "purple": "rgb(171,95,127)", "purple_light": "rgb(198,149,167)", "purple_lighter": "rgb(231,214,219)", "green": "rgb(126,199,143)", "green_light": "rgb(178,219,183)", "green_lighter": "rgb(227,241,228)", "grey": "rgb(68,76,83)", "grey_light": "rgb(126,127,132)", "black": "rgb(35,31,32)", "white": "rgb(255,255,255)", "orange": "rgb(245,131,69)", "orange_light": "rgb(248,159,109)", "orange_lighter": "rgb(254,220,198)"} def color_to_rgb(color): try: return COLORS_TO_RGB[color] except KeyError: import re if re.match("rgb\(\s*\d+\s*,\s*\d+\s*,\s*\d+\s*\)", color): # already an rgb formatted color return color return COLORS_TO_RGB["black"]
mit
suku248/nest-simulator
pynest/nest/raster_plot.py
15
9348
# -*- coding: utf-8 -*- # # raster_plot.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Functions for raster plotting.""" import nest import numpy __all__ = [ 'extract_events', 'from_data', 'from_device', 'from_file', 'from_file_numpy', 'from_file_pandas' ] def extract_events(data, time=None, sel=None): """Extract all events within a given time interval. Both time and sel may be used at the same time such that all events are extracted for which both conditions are true. Parameters ---------- data : list Matrix such that data[:,0] is a vector of all node_ids and data[:,1] a vector with the corresponding time stamps. time : list, optional List with at most two entries such that time=[t_max] extracts all events with t< t_max time=[t_min, t_max] extracts all events with t_min <= t < t_max sel : list, optional List of node_ids such that sel=[node_id1, ... , node_idn] extracts all events from these node_ids. All others are discarded. Returns ------- numpy.array List of events as (node_id, t) tuples """ val = [] if time: t_max = time[-1] if len(time) > 1: t_min = time[0] else: t_min = 0 for v in data: t = v[1] node_id = v[0] if time and (t < t_min or t >= t_max): continue if not sel or node_id in sel: val.append(v) return numpy.array(val) def from_data(data, sel=None, **kwargs): """Plot raster plot from data array. Parameters ---------- data : list Matrix such that data[:,0] is a vector of all node_ids and data[:,1] a vector with the corresponding time stamps. sel : list, optional List of node_ids such that sel=[node_id1, ... , node_idn] extracts all events from these node_ids. All others are discarded. kwargs: Parameters passed to _make_plot """ if len(data) == 0: raise nest.kernel.NESTError("No data to plot.") ts = data[:, 1] d = extract_events(data, sel=sel) ts1 = d[:, 1] node_ids = d[:, 0] return _make_plot(ts, ts1, node_ids, data[:, 0], **kwargs) def from_file(fname, **kwargs): """Plot raster from file. Parameters ---------- fname : str or tuple(str) or list(str) File name or list of file names If a list of files is given, the data from them is concatenated as if it had been stored in a single file - useful when MPI is enabled and data is logged separately for each MPI rank, for example. kwargs: Parameters passed to _make_plot """ if isinstance(fname, str): fname = [fname] if isinstance(fname, (list, tuple)): try: global pandas pandas = __import__('pandas') from_file_pandas(fname, **kwargs) except ImportError: from_file_numpy(fname, **kwargs) else: print('fname should be one of str/list(str)/tuple(str).') def from_file_pandas(fname, **kwargs): """Use pandas.""" data = None for f in fname: dataFrame = pandas.read_table(f, header=2, skipinitialspace=True) newdata = dataFrame.values if data is None: data = newdata else: data = numpy.concatenate((data, newdata)) return from_data(data, **kwargs) def from_file_numpy(fname, **kwargs): """Use numpy.""" data = None for f in fname: newdata = numpy.loadtxt(f, skiprows=3) if data is None: data = newdata else: data = numpy.concatenate((data, newdata)) return from_data(data, **kwargs) def from_device(detec, **kwargs): """ Plot raster from a spike recorder. Parameters ---------- detec : TYPE Description kwargs: Parameters passed to _make_plot Raises ------ nest.kernel.NESTError """ type_id = nest.GetDefaults(detec.get('model'), 'type_id') if not type_id == "spike_recorder": raise nest.kernel.NESTError("Please provide a spike_recorder.") if detec.get('record_to') == "memory": ts, node_ids = _from_memory(detec) if not len(ts): raise nest.kernel.NESTError("No events recorded!") if "title" not in kwargs: kwargs["title"] = "Raster plot from device '%i'" % detec.get('global_id') if detec.get('time_in_steps'): xlabel = "Steps" else: xlabel = "Time (ms)" return _make_plot(ts, ts, node_ids, node_ids, xlabel=xlabel, **kwargs) elif detec.get("record_to") == "ascii": fname = detec.get("filenames") return from_file(fname, **kwargs) else: raise nest.kernel.NESTError("No data to plot. Make sure that \ record_to is set to either 'ascii' or 'memory'.") def _from_memory(detec): ev = detec.get("events") return ev["times"], ev["senders"] def _make_plot(ts, ts1, node_ids, neurons, hist=True, hist_binwidth=5.0, grayscale=False, title=None, xlabel=None): """Generic plotting routine. Constructs a raster plot along with an optional histogram (common part in all routines above). Parameters ---------- ts : list All timestamps ts1 : list Timestamps corresponding to node_ids node_ids : list Global ids corresponding to ts1 neurons : list Node IDs of neurons to plot hist : bool, optional Display histogram hist_binwidth : float, optional Width of histogram bins grayscale : bool, optional Plot in grayscale title : str, optional Plot title xlabel : str, optional Label for x-axis """ import matplotlib.pyplot as plt plt.figure() if grayscale: color_marker = ".k" color_bar = "gray" else: color_marker = "." color_bar = "blue" color_edge = "black" if xlabel is None: xlabel = "Time (ms)" ylabel = "Neuron ID" if hist: ax1 = plt.axes([0.1, 0.3, 0.85, 0.6]) plotid = plt.plot(ts1, node_ids, color_marker) plt.ylabel(ylabel) plt.xticks([]) xlim = plt.xlim() plt.axes([0.1, 0.1, 0.85, 0.17]) t_bins = numpy.arange( numpy.amin(ts), numpy.amax(ts), float(hist_binwidth) ) n, _ = _histogram(ts, bins=t_bins) num_neurons = len(numpy.unique(neurons)) heights = 1000 * n / (hist_binwidth * num_neurons) plt.bar(t_bins, heights, width=hist_binwidth, color=color_bar, edgecolor=color_edge) plt.yticks([ int(x) for x in numpy.linspace(0.0, int(max(heights) * 1.1) + 5, 4) ]) plt.ylabel("Rate (Hz)") plt.xlabel(xlabel) plt.xlim(xlim) plt.axes(ax1) else: plotid = plt.plot(ts1, node_ids, color_marker) plt.xlabel(xlabel) plt.ylabel(ylabel) if title is None: plt.title("Raster plot") else: plt.title(title) plt.draw() return plotid def _histogram(a, bins=10, bin_range=None, normed=False): """Calculate histogram for data. Parameters ---------- a : list Data to calculate histogram for bins : int, optional Number of bins bin_range : TYPE, optional Range of bins normed : bool, optional Whether distribution should be normalized Raises ------ ValueError """ from numpy import asarray, iterable, linspace, sort, concatenate a = asarray(a).ravel() if bin_range is not None: mn, mx = bin_range if mn > mx: raise ValueError("max must be larger than min in range parameter") if not iterable(bins): if bin_range is None: bin_range = (a.min(), a.max()) mn, mx = [mi + 0.0 for mi in bin_range] if mn == mx: mn -= 0.5 mx += 0.5 bins = linspace(mn, mx, bins, endpoint=False) else: if (bins[1:] - bins[:-1] < 0).any(): raise ValueError("bins must increase monotonically") # best block size probably depends on processor cache size block = 65536 n = sort(a[:block]).searchsorted(bins) for i in range(block, a.size, block): n += sort(a[i:i + block]).searchsorted(bins) n = concatenate([n, [len(a)]]) n = n[1:] - n[:-1] if normed: db = bins[1] - bins[0] return 1.0 / (a.size * db) * n, bins else: return n, bins
gpl-2.0
fmfn/UnbalancedDataset
imblearn/utils/tests/test_estimator_checks.py
2
3697
import pytest import numpy as np from sklearn.base import BaseEstimator from sklearn.utils.multiclass import check_classification_targets from imblearn.base import BaseSampler from imblearn.over_sampling.base import BaseOverSampler from imblearn.utils import check_target_type as target_check from imblearn.utils.estimator_checks import check_target_type from imblearn.utils.estimator_checks import check_samplers_one_label from imblearn.utils.estimator_checks import check_samplers_fit from imblearn.utils.estimator_checks import check_samplers_sparse from imblearn.utils.estimator_checks import check_samplers_preserve_dtype from imblearn.utils.estimator_checks import check_samplers_string from imblearn.utils.estimator_checks import check_samplers_nan class BaseBadSampler(BaseEstimator): """Sampler without inputs checking.""" _sampling_type = "bypass" def fit(self, X, y): return self def fit_resample(self, X, y): check_classification_targets(y) self.fit(X, y) return X, y class SamplerSingleClass(BaseSampler): """Sampler that would sample even with a single class.""" _sampling_type = "bypass" def fit_resample(self, X, y): return self._fit_resample(X, y) def _fit_resample(self, X, y): return X, y class NotFittedSampler(BaseBadSampler): """Sampler without target checking.""" def fit(self, X, y): X, y = self._validate_data(X, y) return self class NoAcceptingSparseSampler(BaseBadSampler): """Sampler which does not accept sparse matrix.""" def fit(self, X, y): X, y = self._validate_data(X, y) self.sampling_strategy_ = "sampling_strategy_" return self class NotPreservingDtypeSampler(BaseSampler): _sampling_type = "bypass" def _fit_resample(self, X, y): return X.astype(np.float64), y.astype(np.int64) class IndicesSampler(BaseOverSampler): def _check_X_y(self, X, y): y, binarize_y = target_check(y, indicate_one_vs_all=True) X, y = self._validate_data( X, y, reset=True, dtype=None, force_all_finite=False, ) return X, y, binarize_y def _fit_resample(self, X, y): n_max_count_class = np.bincount(y).max() indices = np.random.choice(np.arange(X.shape[0]), size=n_max_count_class * 2) return X[indices], y[indices] def test_check_samplers_string(): sampler = IndicesSampler() check_samplers_string(sampler.__class__.__name__, sampler) def test_check_samplers_nan(): sampler = IndicesSampler() check_samplers_nan(sampler.__class__.__name__, sampler) mapping_estimator_error = { "BaseBadSampler": (AssertionError, "ValueError not raised by fit"), "SamplerSingleClass": (AssertionError, "Sampler can't balance when only"), "NotFittedSampler": (AssertionError, "No fitted attribute"), "NoAcceptingSparseSampler": (TypeError, "A sparse matrix was passed"), "NotPreservingDtypeSampler": (AssertionError, "X dtype is not preserved"), } def _test_single_check(Estimator, check): estimator = Estimator() name = estimator.__class__.__name__ err_type, err_msg = mapping_estimator_error[name] with pytest.raises(err_type, match=err_msg): check(name, estimator) def test_all_checks(): _test_single_check(BaseBadSampler, check_target_type) _test_single_check(SamplerSingleClass, check_samplers_one_label) _test_single_check(NotFittedSampler, check_samplers_fit) _test_single_check(NoAcceptingSparseSampler, check_samplers_sparse) _test_single_check(NotPreservingDtypeSampler, check_samplers_preserve_dtype)
mit
shangwuhencc/scikit-learn
sklearn/tests/test_metaestimators.py
226
4954
"""Common tests for metaestimators""" import functools import numpy as np from sklearn.base import BaseEstimator from sklearn.externals.six import iterkeys from sklearn.datasets import make_classification from sklearn.utils.testing import assert_true, assert_false, assert_raises from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV, RandomizedSearchCV from sklearn.feature_selection import RFE, RFECV from sklearn.ensemble import BaggingClassifier class DelegatorData(object): def __init__(self, name, construct, skip_methods=(), fit_args=make_classification()): self.name = name self.construct = construct self.fit_args = fit_args self.skip_methods = skip_methods DELEGATING_METAESTIMATORS = [ DelegatorData('Pipeline', lambda est: Pipeline([('est', est)])), DelegatorData('GridSearchCV', lambda est: GridSearchCV( est, param_grid={'param': [5]}, cv=2), skip_methods=['score']), DelegatorData('RandomizedSearchCV', lambda est: RandomizedSearchCV( est, param_distributions={'param': [5]}, cv=2, n_iter=1), skip_methods=['score']), DelegatorData('RFE', RFE, skip_methods=['transform', 'inverse_transform', 'score']), DelegatorData('RFECV', RFECV, skip_methods=['transform', 'inverse_transform', 'score']), DelegatorData('BaggingClassifier', BaggingClassifier, skip_methods=['transform', 'inverse_transform', 'score', 'predict_proba', 'predict_log_proba', 'predict']) ] def test_metaestimator_delegation(): # Ensures specified metaestimators have methods iff subestimator does def hides(method): @property def wrapper(obj): if obj.hidden_method == method.__name__: raise AttributeError('%r is hidden' % obj.hidden_method) return functools.partial(method, obj) return wrapper class SubEstimator(BaseEstimator): def __init__(self, param=1, hidden_method=None): self.param = param self.hidden_method = hidden_method def fit(self, X, y=None, *args, **kwargs): self.coef_ = np.arange(X.shape[1]) return True def _check_fit(self): if not hasattr(self, 'coef_'): raise RuntimeError('Estimator is not fit') @hides def inverse_transform(self, X, *args, **kwargs): self._check_fit() return X @hides def transform(self, X, *args, **kwargs): self._check_fit() return X @hides def predict(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def predict_proba(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def predict_log_proba(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def decision_function(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def score(self, X, *args, **kwargs): self._check_fit() return 1.0 methods = [k for k in iterkeys(SubEstimator.__dict__) if not k.startswith('_') and not k.startswith('fit')] methods.sort() for delegator_data in DELEGATING_METAESTIMATORS: delegate = SubEstimator() delegator = delegator_data.construct(delegate) for method in methods: if method in delegator_data.skip_methods: continue assert_true(hasattr(delegate, method)) assert_true(hasattr(delegator, method), msg="%s does not have method %r when its delegate does" % (delegator_data.name, method)) # delegation before fit raises an exception assert_raises(Exception, getattr(delegator, method), delegator_data.fit_args[0]) delegator.fit(*delegator_data.fit_args) for method in methods: if method in delegator_data.skip_methods: continue # smoke test delegation getattr(delegator, method)(delegator_data.fit_args[0]) for method in methods: if method in delegator_data.skip_methods: continue delegate = SubEstimator(hidden_method=method) delegator = delegator_data.construct(delegate) assert_false(hasattr(delegate, method)) assert_false(hasattr(delegator, method), msg="%s has method %r when its delegate does not" % (delegator_data.name, method))
bsd-3-clause
endolith/numpy
tools/refguide_check.py
2
37851
#!/usr/bin/env python3 """ refguide_check.py [OPTIONS] [-- ARGS] - Check for a NumPy submodule whether the objects in its __all__ dict correspond to the objects included in the reference guide. - Check docstring examples - Check example blocks in RST files Example of usage:: $ python refguide_check.py optimize Note that this is a helper script to be able to check if things are missing; the output of this script does need to be checked manually. In some cases objects are left out of the refguide for a good reason (it's an alias of another function, or deprecated, or ...) Another use of this helper script is to check validity of code samples in docstrings:: $ python refguide_check.py --doctests ma or in RST-based documentations:: $ python refguide_check.py --rst docs """ import copy import doctest import inspect import io import os import re import shutil import sys import tempfile import warnings import docutils.core from argparse import ArgumentParser from contextlib import contextmanager, redirect_stderr from doctest import NORMALIZE_WHITESPACE, ELLIPSIS, IGNORE_EXCEPTION_DETAIL from docutils.parsers.rst import directives from pkg_resources import parse_version import sphinx import numpy as np sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', 'doc', 'sphinxext')) from numpydoc.docscrape_sphinx import get_doc_object SKIPBLOCK = doctest.register_optionflag('SKIPBLOCK') if parse_version(sphinx.__version__) >= parse_version('1.5'): # Enable specific Sphinx directives from sphinx.directives.other import SeeAlso, Only directives.register_directive('seealso', SeeAlso) directives.register_directive('only', Only) else: # Remove sphinx directives that don't run without Sphinx environment. # Sphinx < 1.5 installs all directives on import... directives._directives.pop('versionadded', None) directives._directives.pop('versionchanged', None) directives._directives.pop('moduleauthor', None) directives._directives.pop('sectionauthor', None) directives._directives.pop('codeauthor', None) directives._directives.pop('toctree', None) BASE_MODULE = "numpy" PUBLIC_SUBMODULES = [ 'core', 'doc.structured_arrays', 'f2py', 'linalg', 'lib', 'lib.recfunctions', 'fft', 'ma', 'polynomial', 'matrixlib', 'random', 'testing', ] # Docs for these modules are included in the parent module OTHER_MODULE_DOCS = { 'fftpack.convolve': 'fftpack', 'io.wavfile': 'io', 'io.arff': 'io', } # these names are known to fail doctesting and we like to keep it that way # e.g. sometimes pseudocode is acceptable etc DOCTEST_SKIPLIST = set([ # cases where NumPy docstrings import things from SciPy: 'numpy.lib.vectorize', 'numpy.random.standard_gamma', 'numpy.random.gamma', 'numpy.random.vonmises', 'numpy.random.power', 'numpy.random.zipf', # remote / local file IO with DataSource is problematic in doctest: 'numpy.lib.DataSource', 'numpy.lib.Repository', ]) # Skip non-numpy RST files, historical release notes # Any single-directory exact match will skip the directory and all subdirs. # Any exact match (like 'doc/release') will scan subdirs but skip files in # the matched directory. # Any filename will skip that file RST_SKIPLIST = [ 'scipy-sphinx-theme', 'sphinxext', 'neps', 'changelog', 'doc/release', 'doc/source/release', 'c-info.ufunc-tutorial.rst', 'c-info.python-as-glue.rst', 'f2py.getting-started.rst', 'arrays.nditer.cython.rst', ] # these names are not required to be present in ALL despite being in # autosummary:: listing REFGUIDE_ALL_SKIPLIST = [ r'scipy\.sparse\.linalg', r'scipy\.spatial\.distance', r'scipy\.linalg\.blas\.[sdczi].*', r'scipy\.linalg\.lapack\.[sdczi].*', ] # these names are not required to be in an autosummary:: listing # despite being in ALL REFGUIDE_AUTOSUMMARY_SKIPLIST = [ # NOTE: should NumPy have a better match between autosummary # listings and __all__? For now, TR isn't convinced this is a # priority -- focus on just getting docstrings executed / correct r'numpy\.*', ] # deprecated windows in scipy.signal namespace for name in ('barthann', 'bartlett', 'blackmanharris', 'blackman', 'bohman', 'boxcar', 'chebwin', 'cosine', 'exponential', 'flattop', 'gaussian', 'general_gaussian', 'hamming', 'hann', 'hanning', 'kaiser', 'nuttall', 'parzen', 'slepian', 'triang', 'tukey'): REFGUIDE_AUTOSUMMARY_SKIPLIST.append(r'scipy\.signal\.' + name) HAVE_MATPLOTLIB = False def short_path(path, cwd=None): """ Return relative or absolute path name, whichever is shortest. Parameters ---------- path: str or None cwd: str or None Returns ------- str Relative path or absolute path based on current working directory """ if not isinstance(path, str): return path if cwd is None: cwd = os.getcwd() abspath = os.path.abspath(path) relpath = os.path.relpath(path, cwd) if len(abspath) <= len(relpath): return abspath return relpath def find_names(module, names_dict): """ Finds the occurrences of function names, special directives like data and functions and scipy constants in the docstrings of `module`. The following patterns are searched for: * 3 spaces followed by function name, and maybe some spaces, some dashes, and an explanation; only function names listed in refguide are formatted like this (mostly, there may be some false positives * special directives, such as data and function * (scipy.constants only): quoted list The `names_dict` is updated by reference and accessible in calling method Parameters ---------- module : ModuleType The module, whose docstrings is to be searched names_dict : dict Dictionary which contains module name as key and a set of found function names and directives as value Returns ------- None """ patterns = [ r"^\s\s\s([a-z_0-9A-Z]+)(\s+-+.*)?$", r"^\.\. (?:data|function)::\s*([a-z_0-9A-Z]+)\s*$" ] if module.__name__ == 'scipy.constants': patterns += ["^``([a-z_0-9A-Z]+)``"] patterns = [re.compile(pattern) for pattern in patterns] module_name = module.__name__ for line in module.__doc__.splitlines(): res = re.search(r"^\s*\.\. (?:currentmodule|module):: ([a-z0-9A-Z_.]+)\s*$", line) if res: module_name = res.group(1) continue for pattern in patterns: res = re.match(pattern, line) if res is not None: name = res.group(1) entry = '.'.join([module_name, name]) names_dict.setdefault(module_name, set()).add(name) break def get_all_dict(module): """ Return a copy of the __all__ dict with irrelevant items removed. Parameters ---------- module : ModuleType The module whose __all__ dict has to be processed Returns ------- deprecated : list List of callable and deprecated sub modules not_deprecated : list List of non callable or non deprecated sub modules others : list List of remaining types of sub modules """ if hasattr(module, "__all__"): all_dict = copy.deepcopy(module.__all__) else: all_dict = copy.deepcopy(dir(module)) all_dict = [name for name in all_dict if not name.startswith("_")] for name in ['absolute_import', 'division', 'print_function']: try: all_dict.remove(name) except ValueError: pass if not all_dict: # Must be a pure documentation module like doc.structured_arrays all_dict.append('__doc__') # Modules are almost always private; real submodules need a separate # run of refguide_check. all_dict = [name for name in all_dict if not inspect.ismodule(getattr(module, name, None))] deprecated = [] not_deprecated = [] for name in all_dict: f = getattr(module, name, None) if callable(f) and is_deprecated(f): deprecated.append(name) else: not_deprecated.append(name) others = set(dir(module)).difference(set(deprecated)).difference(set(not_deprecated)) return not_deprecated, deprecated, others def compare(all_dict, others, names, module_name): """ Return sets of objects from all_dict. Will return three sets: {in module_name.__all__}, {in REFGUIDE*}, and {missing from others} Parameters ---------- all_dict : list List of non deprecated sub modules for module_name others : list List of sub modules for module_name names : set Set of function names or special directives present in docstring of module_name module_name : ModuleType Returns ------- only_all : set only_ref : set missing : set """ only_all = set() for name in all_dict: if name not in names: for pat in REFGUIDE_AUTOSUMMARY_SKIPLIST: if re.match(pat, module_name + '.' + name): break else: only_all.add(name) only_ref = set() missing = set() for name in names: if name not in all_dict: for pat in REFGUIDE_ALL_SKIPLIST: if re.match(pat, module_name + '.' + name): if name not in others: missing.add(name) break else: only_ref.add(name) return only_all, only_ref, missing def is_deprecated(f): """ Check if module `f` is deprecated Parameter --------- f : ModuleType Returns ------- bool """ with warnings.catch_warnings(record=True) as w: warnings.simplefilter("error") try: f(**{"not a kwarg":None}) except DeprecationWarning: return True except Exception: pass return False def check_items(all_dict, names, deprecated, others, module_name, dots=True): """ Check that `all_dict` is consistent with the `names` in `module_name` For instance, that there are no deprecated or extra objects. Parameters ---------- all_dict : list names : set deprecated : list others : list module_name : ModuleType dots : bool Whether to print a dot for each check Returns ------- list List of [(name, success_flag, output)...] """ num_all = len(all_dict) num_ref = len(names) output = "" output += "Non-deprecated objects in __all__: %i\n" % num_all output += "Objects in refguide: %i\n\n" % num_ref only_all, only_ref, missing = compare(all_dict, others, names, module_name) dep_in_ref = set(only_ref).intersection(deprecated) only_ref = set(only_ref).difference(deprecated) if len(dep_in_ref) > 0: output += "Deprecated objects in refguide::\n\n" for name in sorted(deprecated): output += " " + name + "\n" if len(only_all) == len(only_ref) == len(missing) == 0: if dots: output_dot('.') return [(None, True, output)] else: if len(only_all) > 0: output += "ERROR: objects in %s.__all__ but not in refguide::\n\n" % module_name for name in sorted(only_all): output += " " + name + "\n" output += "\nThis issue can be fixed by adding these objects to\n" output += "the function listing in __init__.py for this module\n" if len(only_ref) > 0: output += "ERROR: objects in refguide but not in %s.__all__::\n\n" % module_name for name in sorted(only_ref): output += " " + name + "\n" output += "\nThis issue should likely be fixed by removing these objects\n" output += "from the function listing in __init__.py for this module\n" output += "or adding them to __all__.\n" if len(missing) > 0: output += "ERROR: missing objects::\n\n" for name in sorted(missing): output += " " + name + "\n" if dots: output_dot('F') return [(None, False, output)] def validate_rst_syntax(text, name, dots=True): """ Validates the doc string in a snippet of documentation `text` from file `name` Parameters ---------- text : str Docstring text name : str File name for which the doc string is to be validated dots : bool Whether to print a dot symbol for each check Returns ------- (bool, str) """ if text is None: if dots: output_dot('E') return False, "ERROR: %s: no documentation" % (name,) ok_unknown_items = set([ 'mod', 'doc', 'currentmodule', 'autosummary', 'data', 'attr', 'obj', 'versionadded', 'versionchanged', 'module', 'class', 'ref', 'func', 'toctree', 'moduleauthor', 'term', 'c:member', 'sectionauthor', 'codeauthor', 'eq', 'doi', 'DOI', 'arXiv', 'arxiv' ]) # Run through docutils error_stream = io.StringIO() def resolve(name, is_label=False): return ("http://foo", name) token = '<RST-VALIDATE-SYNTAX-CHECK>' docutils.core.publish_doctree( text, token, settings_overrides = dict(halt_level=5, traceback=True, default_reference_context='title-reference', default_role='emphasis', link_base='', resolve_name=resolve, stylesheet_path='', raw_enabled=0, file_insertion_enabled=0, warning_stream=error_stream)) # Print errors, disregarding unimportant ones error_msg = error_stream.getvalue() errors = error_msg.split(token) success = True output = "" for error in errors: lines = error.splitlines() if not lines: continue m = re.match(r'.*Unknown (?:interpreted text role|directive type) "(.*)".*$', lines[0]) if m: if m.group(1) in ok_unknown_items: continue m = re.match(r'.*Error in "math" directive:.*unknown option: "label"', " ".join(lines), re.S) if m: continue output += name + lines[0] + "::\n " + "\n ".join(lines[1:]).rstrip() + "\n" success = False if not success: output += " " + "-"*72 + "\n" for lineno, line in enumerate(text.splitlines()): output += " %-4d %s\n" % (lineno+1, line) output += " " + "-"*72 + "\n\n" if dots: output_dot('.' if success else 'F') return success, output def output_dot(msg='.', stream=sys.stderr): stream.write(msg) stream.flush() def check_rest(module, names, dots=True): """ Check reStructuredText formatting of docstrings Parameters ---------- module : ModuleType names : set Returns ------- result : list List of [(module_name, success_flag, output),...] """ try: skip_types = (dict, str, unicode, float, int) except NameError: # python 3 skip_types = (dict, str, float, int) results = [] if module.__name__[6:] not in OTHER_MODULE_DOCS: results += [(module.__name__,) + validate_rst_syntax(inspect.getdoc(module), module.__name__, dots=dots)] for name in names: full_name = module.__name__ + '.' + name obj = getattr(module, name, None) if obj is None: results.append((full_name, False, "%s has no docstring" % (full_name,))) continue elif isinstance(obj, skip_types): continue if inspect.ismodule(obj): text = inspect.getdoc(obj) else: try: text = str(get_doc_object(obj)) except Exception: import traceback results.append((full_name, False, "Error in docstring format!\n" + traceback.format_exc())) continue m = re.search("([\x00-\x09\x0b-\x1f])", text) if m: msg = ("Docstring contains a non-printable character %r! " "Maybe forgot r\"\"\"?" % (m.group(1),)) results.append((full_name, False, msg)) continue try: src_file = short_path(inspect.getsourcefile(obj)) except TypeError: src_file = None if src_file: file_full_name = src_file + ':' + full_name else: file_full_name = full_name results.append((full_name,) + validate_rst_syntax(text, file_full_name, dots=dots)) return results ### Doctest helpers #### # the namespace to run examples in DEFAULT_NAMESPACE = {'np': np} # the namespace to do checks in CHECK_NAMESPACE = { 'np': np, 'numpy': np, 'assert_allclose': np.testing.assert_allclose, 'assert_equal': np.testing.assert_equal, # recognize numpy repr's 'array': np.array, 'matrix': np.matrix, 'int64': np.int64, 'uint64': np.uint64, 'int8': np.int8, 'int32': np.int32, 'float32': np.float32, 'float64': np.float64, 'dtype': np.dtype, 'nan': np.nan, 'NaN': np.nan, 'inf': np.inf, 'Inf': np.inf, 'StringIO': io.StringIO, } class DTRunner(doctest.DocTestRunner): """ The doctest runner """ DIVIDER = "\n" def __init__(self, item_name, checker=None, verbose=None, optionflags=0): self._item_name = item_name doctest.DocTestRunner.__init__(self, checker=checker, verbose=verbose, optionflags=optionflags) def _report_item_name(self, out, new_line=False): if self._item_name is not None: if new_line: out("\n") self._item_name = None def report_start(self, out, test, example): self._checker._source = example.source return doctest.DocTestRunner.report_start(self, out, test, example) def report_success(self, out, test, example, got): if self._verbose: self._report_item_name(out, new_line=True) return doctest.DocTestRunner.report_success(self, out, test, example, got) def report_unexpected_exception(self, out, test, example, exc_info): self._report_item_name(out) return doctest.DocTestRunner.report_unexpected_exception( self, out, test, example, exc_info) def report_failure(self, out, test, example, got): self._report_item_name(out) return doctest.DocTestRunner.report_failure(self, out, test, example, got) class Checker(doctest.OutputChecker): """ Check the docstrings """ obj_pattern = re.compile('at 0x[0-9a-fA-F]+>') vanilla = doctest.OutputChecker() rndm_markers = {'# random', '# Random', '#random', '#Random', "# may vary", "# uninitialized", "#uninitialized"} stopwords = {'plt.', '.hist', '.show', '.ylim', '.subplot(', 'set_title', 'imshow', 'plt.show', '.axis(', '.plot(', '.bar(', '.title', '.ylabel', '.xlabel', 'set_ylim', 'set_xlim', '# reformatted', '.set_xlabel(', '.set_ylabel(', '.set_zlabel(', '.set(xlim=', '.set(ylim=', '.set(xlabel=', '.set(ylabel='} def __init__(self, parse_namedtuples=True, ns=None, atol=1e-8, rtol=1e-2): self.parse_namedtuples = parse_namedtuples self.atol, self.rtol = atol, rtol if ns is None: self.ns = CHECK_NAMESPACE else: self.ns = ns def check_output(self, want, got, optionflags): # cut it short if they are equal if want == got: return True # skip stopwords in source if any(word in self._source for word in self.stopwords): return True # skip random stuff if any(word in want for word in self.rndm_markers): return True # skip function/object addresses if self.obj_pattern.search(got): return True # ignore comments (e.g. signal.freqresp) if want.lstrip().startswith("#"): return True # try the standard doctest try: if self.vanilla.check_output(want, got, optionflags): return True except Exception: pass # OK then, convert strings to objects try: a_want = eval(want, dict(self.ns)) a_got = eval(got, dict(self.ns)) except Exception: # Maybe we're printing a numpy array? This produces invalid python # code: `print(np.arange(3))` produces "[0 1 2]" w/o commas between # values. So, reinsert commas and retry. # TODO: handle (1) abberivation (`print(np.arange(10000))`), and # (2) n-dim arrays with n > 1 s_want = want.strip() s_got = got.strip() cond = (s_want.startswith("[") and s_want.endswith("]") and s_got.startswith("[") and s_got.endswith("]")) if cond: s_want = ", ".join(s_want[1:-1].split()) s_got = ", ".join(s_got[1:-1].split()) return self.check_output(s_want, s_got, optionflags) if not self.parse_namedtuples: return False # suppose that "want" is a tuple, and "got" is smth like # MoodResult(statistic=10, pvalue=0.1). # Then convert the latter to the tuple (10, 0.1), # and then compare the tuples. try: num = len(a_want) regex = (r'[\w\d_]+\(' + ', '.join([r'[\w\d_]+=(.+)']*num) + r'\)') grp = re.findall(regex, got.replace('\n', ' ')) if len(grp) > 1: # no more than one for now return False # fold it back to a tuple got_again = '(' + ', '.join(grp[0]) + ')' return self.check_output(want, got_again, optionflags) except Exception: return False # ... and defer to numpy try: return self._do_check(a_want, a_got) except Exception: # heterog tuple, eg (1, np.array([1., 2.])) try: return all(self._do_check(w, g) for w, g in zip(a_want, a_got)) except (TypeError, ValueError): return False def _do_check(self, want, got): # This should be done exactly as written to correctly handle all of # numpy-comparable objects, strings, and heterogeneous tuples try: if want == got: return True except Exception: pass return np.allclose(want, got, atol=self.atol, rtol=self.rtol) def _run_doctests(tests, full_name, verbose, doctest_warnings): """ Run modified doctests for the set of `tests`. Parameters ---------- tests: list full_name : str verbose : bool doctest_warning : bool Returns ------- tuple(bool, list) Tuple of (success, output) """ flags = NORMALIZE_WHITESPACE | ELLIPSIS runner = DTRunner(full_name, checker=Checker(), optionflags=flags, verbose=verbose) output = io.StringIO(newline='') success = True # Redirect stderr to the stdout or output tmp_stderr = sys.stdout if doctest_warnings else output @contextmanager def temp_cwd(): cwd = os.getcwd() tmpdir = tempfile.mkdtemp() try: os.chdir(tmpdir) yield tmpdir finally: os.chdir(cwd) shutil.rmtree(tmpdir) # Run tests, trying to restore global state afterward cwd = os.getcwd() with np.errstate(), np.printoptions(), temp_cwd() as tmpdir, \ redirect_stderr(tmp_stderr): # try to ensure random seed is NOT reproducible np.random.seed(None) ns = {} for t in tests: # We broke the tests up into chunks to try to avoid PSEUDOCODE # This has the unfortunate side effect of restarting the global # namespace for each test chunk, so variables will be "lost" after # a chunk. Chain the globals to avoid this t.globs.update(ns) t.filename = short_path(t.filename, cwd) # Process our options if any([SKIPBLOCK in ex.options for ex in t.examples]): continue fails, successes = runner.run(t, out=output.write, clear_globs=False) if fails > 0: success = False ns = t.globs output.seek(0) return success, output.read() def check_doctests(module, verbose, ns=None, dots=True, doctest_warnings=False): """ Check code in docstrings of the module's public symbols. Parameters ---------- module : ModuleType Name of module verbose : bool Should the result be verbose ns : dict Name space of module dots : bool doctest_warnings : bool Returns ------- results : list List of [(item_name, success_flag, output), ...] """ if ns is None: ns = dict(DEFAULT_NAMESPACE) # Loop over non-deprecated items results = [] for name in get_all_dict(module)[0]: full_name = module.__name__ + '.' + name if full_name in DOCTEST_SKIPLIST: continue try: obj = getattr(module, name) except AttributeError: import traceback results.append((full_name, False, "Missing item!\n" + traceback.format_exc())) continue finder = doctest.DocTestFinder() try: tests = finder.find(obj, name, globs=dict(ns)) except Exception: import traceback results.append((full_name, False, "Failed to get doctests!\n" + traceback.format_exc())) continue success, output = _run_doctests(tests, full_name, verbose, doctest_warnings) if dots: output_dot('.' if success else 'F') results.append((full_name, success, output)) if HAVE_MATPLOTLIB: import matplotlib.pyplot as plt plt.close('all') return results def check_doctests_testfile(fname, verbose, ns=None, dots=True, doctest_warnings=False): """ Check code in a text file. Mimic `check_doctests` above, differing mostly in test discovery. (which is borrowed from stdlib's doctest.testfile here, https://github.com/python-git/python/blob/master/Lib/doctest.py) Parameters ---------- fname : str File name verbose : bool ns : dict Name space dots : bool doctest_warnings : bool Returns ------- list List of [(item_name, success_flag, output), ...] Notes ----- refguide can be signalled to skip testing code by adding ``#doctest: +SKIP`` to the end of the line. If the output varies or is random, add ``# may vary`` or ``# random`` to the comment. for example >>> plt.plot(...) # doctest: +SKIP >>> random.randint(0,10) 5 # random We also try to weed out pseudocode: * We maintain a list of exceptions which signal pseudocode, * We split the text file into "blocks" of code separated by empty lines and/or intervening text. * If a block contains a marker, the whole block is then assumed to be pseudocode. It is then not being doctested. The rationale is that typically, the text looks like this: blah <BLANKLINE> >>> from numpy import some_module # pseudocode! >>> func = some_module.some_function >>> func(42) # still pseudocode 146 <BLANKLINE> blah <BLANKLINE> >>> 2 + 3 # real code, doctest it 5 """ if ns is None: ns = CHECK_NAMESPACE results = [] _, short_name = os.path.split(fname) if short_name in DOCTEST_SKIPLIST: return results full_name = fname with open(fname, encoding='utf-8') as f: text = f.read() PSEUDOCODE = set(['some_function', 'some_module', 'import example', 'ctypes.CDLL', # likely need compiling, skip it 'integrate.nquad(func,' # ctypes integrate tutotial ]) # split the text into "blocks" and try to detect and omit pseudocode blocks. parser = doctest.DocTestParser() good_parts = [] base_line_no = 0 for part in text.split('\n\n'): try: tests = parser.get_doctest(part, ns, fname, fname, base_line_no) except ValueError as e: if e.args[0].startswith('line '): # fix line number since `parser.get_doctest` does not increment # the reported line number by base_line_no in the error message parts = e.args[0].split() parts[1] = str(int(parts[1]) + base_line_no) e.args = (' '.join(parts),) + e.args[1:] raise if any(word in ex.source for word in PSEUDOCODE for ex in tests.examples): # omit it pass else: # `part` looks like a good code, let's doctest it good_parts.append((part, base_line_no)) base_line_no += part.count('\n') + 2 # Reassemble the good bits and doctest them: tests = [] for good_text, line_no in good_parts: tests.append(parser.get_doctest(good_text, ns, fname, fname, line_no)) success, output = _run_doctests(tests, full_name, verbose, doctest_warnings) if dots: output_dot('.' if success else 'F') results.append((full_name, success, output)) if HAVE_MATPLOTLIB: import matplotlib.pyplot as plt plt.close('all') return results def iter_included_files(base_path, verbose=0, suffixes=('.rst',)): """ Generator function to walk `base_path` and its subdirectories, skipping files or directories in RST_SKIPLIST, and yield each file with a suffix in `suffixes` Parameters ---------- base_path : str Base path of the directory to be processed verbose : int suffixes : tuple Yields ------ path Path of the directory and it's sub directories """ if os.path.exists(base_path) and os.path.isfile(base_path): yield base_path for dir_name, subdirs, files in os.walk(base_path, topdown=True): if dir_name in RST_SKIPLIST: if verbose > 0: sys.stderr.write('skipping files in %s' % dir_name) files = [] for p in RST_SKIPLIST: if p in subdirs: if verbose > 0: sys.stderr.write('skipping %s and subdirs' % p) subdirs.remove(p) for f in files: if (os.path.splitext(f)[1] in suffixes and f not in RST_SKIPLIST): yield os.path.join(dir_name, f) def check_documentation(base_path, results, args, dots): """ Check examples in any *.rst located inside `base_path`. Add the output to `results`. See Also -------- check_doctests_testfile """ for filename in iter_included_files(base_path, args.verbose): if dots: sys.stderr.write(filename + ' ') sys.stderr.flush() tut_results = check_doctests_testfile( filename, (args.verbose >= 2), dots=dots, doctest_warnings=args.doctest_warnings) # stub out a "module" which is needed when reporting the result def scratch(): pass scratch.__name__ = filename results.append((scratch, tut_results)) if dots: sys.stderr.write('\n') sys.stderr.flush() def init_matplotlib(): """ Check feasibility of matplotlib initialization. """ global HAVE_MATPLOTLIB try: import matplotlib matplotlib.use('Agg') HAVE_MATPLOTLIB = True except ImportError: HAVE_MATPLOTLIB = False def main(argv): """ Validates the docstrings of all the pre decided set of modules for errors and docstring standards. """ parser = ArgumentParser(usage=__doc__.lstrip()) parser.add_argument("module_names", metavar="SUBMODULES", default=[], nargs='*', help="Submodules to check (default: all public)") parser.add_argument("--doctests", action="store_true", help="Run also doctests on ") parser.add_argument("-v", "--verbose", action="count", default=0) parser.add_argument("--doctest-warnings", action="store_true", help="Enforce warning checking for doctests") parser.add_argument("--rst", nargs='?', const='doc', default=None, help=("Run also examples from *rst files " "discovered walking the directory(s) specified, " "defaults to 'doc'")) args = parser.parse_args(argv) modules = [] names_dict = {} if not args.module_names: args.module_names = list(PUBLIC_SUBMODULES) os.environ['SCIPY_PIL_IMAGE_VIEWER'] = 'true' module_names = list(args.module_names) for name in module_names: if name in OTHER_MODULE_DOCS: name = OTHER_MODULE_DOCS[name] if name not in module_names: module_names.append(name) dots = True success = True results = [] errormsgs = [] if args.doctests or args.rst: init_matplotlib() for submodule_name in module_names: module_name = BASE_MODULE + '.' + submodule_name __import__(module_name) module = sys.modules[module_name] if submodule_name not in OTHER_MODULE_DOCS: find_names(module, names_dict) if submodule_name in args.module_names: modules.append(module) if args.doctests or not args.rst: print("Running checks for %d modules:" % (len(modules),)) for module in modules: if dots: sys.stderr.write(module.__name__ + ' ') sys.stderr.flush() all_dict, deprecated, others = get_all_dict(module) names = names_dict.get(module.__name__, set()) mod_results = [] mod_results += check_items(all_dict, names, deprecated, others, module.__name__) mod_results += check_rest(module, set(names).difference(deprecated), dots=dots) if args.doctests: mod_results += check_doctests(module, (args.verbose >= 2), dots=dots, doctest_warnings=args.doctest_warnings) for v in mod_results: assert isinstance(v, tuple), v results.append((module, mod_results)) if dots: sys.stderr.write('\n') sys.stderr.flush() if args.rst: base_dir = os.path.join(os.path.abspath(os.path.dirname(__file__)), '..') rst_path = os.path.relpath(os.path.join(base_dir, args.rst)) if os.path.exists(rst_path): print('\nChecking files in %s:' % rst_path) check_documentation(rst_path, results, args, dots) else: sys.stderr.write(f'\ninvalid --rst argument "{args.rst}"') errormsgs.append('invalid directory argument to --rst') if dots: sys.stderr.write("\n") sys.stderr.flush() # Report results for module, mod_results in results: success = all(x[1] for x in mod_results) if not success: errormsgs.append(f'failed checking {module.__name__}') if success and args.verbose == 0: continue print("") print("=" * len(module.__name__)) print(module.__name__) print("=" * len(module.__name__)) print("") for name, success, output in mod_results: if name is None: if not success or args.verbose >= 1: print(output.strip()) print("") elif not success or (args.verbose >= 2 and output.strip()): print(name) print("-"*len(name)) print("") print(output.strip()) print("") if len(errormsgs) == 0: print("\nOK: all checks passed!") sys.exit(0) else: print('\nERROR: ', '\n '.join(errormsgs)) sys.exit(1) if __name__ == '__main__': main(argv=sys.argv[1:])
bsd-3-clause
Karl-Marka/data-mining
scleroderma-prediction/Build_model_v.2.py
1
3273
print('Importing libraries') from pandas import DataFrame, read_csv from sklearn import linear_model from sklearn.preprocessing import StandardScaler import numpy as np #positive = ['GSM489234', 'GSM489228', 'GSM489221', 'GSM489229', 'GSM489220', 'GSM489223', 'GSM489233', 'GSM489230', 'GSM489231', 'GSM489225', 'GSM489232', 'GSM489205', 'GSM489198', 'GSM489213', 'GSM489202', 'GSM489218', 'GSM489199', 'GSM489208', 'GSM489197', 'GSM489210', 'GSM489212', 'GSM489195', 'GSM489206', 'GSM489217', 'GSM489194', 'GSM489214', 'GSM489203', 'GSM489211'] normprobes = ['A_23_P414913', 'A_24_P237443', 'A_32_P168349', 'A_23_P414654', 'A_24_P192914'] train = read_csv('./datasets_large/train_nocorrelated_top60_normprobes.txt', header = 0, index_col = 0, sep = '\t') train = train.sort_index(axis = 0) normprobes_train = train.ix[normprobes] normprobes_train = normprobes_train.mean(axis = 0) train = train.subtract(normprobes_train, axis = 1) train = train.drop(normprobes) train = train.T #train_sc = train.ix[positive] labels_train_sc = read_csv('./datasets_large/labels_train_sc.txt', sep = '\t', header = None) labels_train_pah = read_csv('./datasets_large/labels_train_pah.txt', sep = '\t', header = None) labels_train_sc = labels_train_sc.unstack().tolist() labels_train_pah = labels_train_pah.unstack().tolist() header_train = train.columns index_train = train.index test = read_csv('./datasets_large/test_nocorrelated_top60_normprobes.txt', header = 0, index_col = 0, sep = '\t') test = test.sort_index(axis = 0) normprobes_test = test.ix[normprobes] normprobes_test = normprobes_test.mean(axis = 0) test = test.subtract(normprobes_test, axis = 1) test = test.drop(normprobes) test = test.T labels_test_sc = read_csv('./datasets_large/labels_test_sc.txt', sep = '\t', header = None) labels_test_pah = read_csv('./datasets_large/labels_test_pah.txt', sep = '\t', header = None) labels_test_sc = labels_test_sc.unstack().tolist() labels_test_pah = labels_test_pah.unstack().tolist() header_test = test.columns index_test = test.index stds = StandardScaler() stds = stds.fit(train) train = stds.transform(train) train = DataFrame(data = train, columns = header_train, index = index_train) test = stds.transform(test) test = DataFrame(data = test, columns = header_test, index = index_test) means = stds.mean_ std_deviations = stds.std_ means = list(means) std_deviations = list(std_deviations) #print(means) #print(std_deviations) lr1 = linear_model.LinearRegression() lr2 = linear_model.LinearRegression() sc = lr1.fit(train, labels_train_sc) pah = lr2.fit(train, labels_train_pah) intercept_sc = sc.intercept_ coefs_sc = sc.coef_ intercept_pah = pah.intercept_ coefs_pah = pah.coef_ print(intercept_sc) print(list(coefs_sc)) #print(intercept_pah) #print(list(coefs_pah)) predictions_train_sc = sc.predict(train) predictions_train_pah = pah.predict(train) predictions_test_sc = sc.predict(test) predictions_test_pah = pah.predict(test) MSE_sc = np.mean((predictions_test_sc - labels_test_sc)**2) MSE_pah = np.mean((predictions_test_pah - labels_test_pah)**2) #print('MSE on Sc:', MSE_sc) #print('MSE on PAH:', MSE_pah) #print(list(predictions_train_sc)) #print(list(predictions_train_pah)) #print(list(predictions_test_sc)) #print(list(predictions_test_pah))
gpl-3.0
zytaw/foraminifera
src/drawing/drawAuto.py
1
2095
# coding: utf-8 import drawTools import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import os, re, sys from numpy.ma import masked_array # BIAŁY = WSZECHOBECNA ODCHŁAŃ 0 # ZÓŁTY = FORAMINIFERA 2 # ZIELONY = ALGA 1 # NIEBIESKI = SMRÓD [0.;1) cmap = mpl.colors.ListedColormap(['white','green','yellow','blue']) grays = np.linspace(0.1,0.9,64) bounds = [0,1,2,4,99] norm = mpl.colors.BoundaryNorm(bounds, cmap.N) normBin = mpl.colors.Normalize(vmin=0.,vmax=0.999) colorBin = 'binary' simulation_steps = 0 automaton = drawTools.Grids(os.getcwd() + '/../output') # pause = True def onclick(event): global pause pause = not pause # with open(os.getcwd()+'/../simulation/records_for_test.hrl', 'r') as file: with open(os.getcwd()+'/../simulation/records.hrl', 'r') as file: text = file.read() automaton.setDim(int(re.findall('\d+', re.findall('GS,\s+[0-9]+', text)[0])[0])) simulation_steps = int(re.findall('\d+', re.findall('SIMULATION_STEPS,\s+[0-9]+', text)[0])[0]) N = automaton.getDim() f, axarr = plt.subplots(1) result = automaton.Grid(0) grid = np.array(result[0]) gridKind = masked_array(grid, grid<1.0) gridSmell = result[1] #masked_array(grid, grid>=1.0) # axarr.imshow(gridSmell, interpolation='nearest', cmap=colorBin)#, origin="lower") axarr.imshow(gridKind, interpolation='nearest', cmap=cmap, norm=norm)#, origin="lower") def update(N): N = int(N) result = automaton.Grid(N) grid = np.array(result[0]) gridKind = grid # gridKind = masked_array(grid, grid<1.0) gridSmell = result[1] #masked_array(grid, grid>=1.0) # axarr.imshow(gridSmell, interpolation='nearest', cmap=colorBin, origin="lower") axarr.imshow(gridKind, interpolation='nearest', cmap=cmap, norm=norm, origin="lower") # f.canvas.mpl_connect('button_press_event', onclick) # f.canvas.draw() plt.ion() for i in range(0, simulation_steps): print '\n', i update(i) # while pause: # plt.pause(0.2) # pause = True plt.pause(0.15)
mit
simonsfoundation/inferelator_ng
inferelator_ng/bbsr_python.py
1
11003
import pandas as pd import numpy as np import itertools from itertools import compress import math from scipy import special import multiprocessing from functools import partial import os, sys from . import utils # Wrapper function for BBSRforOneGene that's called in BBSR gx, gy, gpp, gwm, gns = None, None, None, None, None def BBSRforOneGeneWrapper(ind): return BBSRforOneGene(ind, gx, gy, gpp, gwm, gns) def BBSR(X, Y, clr_mat, nS, no_pr_val, weights_mat, prior_mat, kvs, rank, ownCheck): G = Y.shape[0] # number of genes genes = Y.index.values.tolist() K = X.shape[0] # max number of possible predictors (number of TFs) tfs = X.index.values.tolist() # Scale and permute design and response matrix X = ((X.transpose() - X.transpose().mean()) / X.transpose().std(ddof=1)).transpose() Y = ((Y.transpose() - Y.transpose().mean()) / Y.transpose().std(ddof=1)).transpose() weights_mat = weights_mat.loc[genes,tfs] clr_mat = clr_mat.loc[genes, tfs] prior_mat = prior_mat.loc[genes, tfs] # keep all predictors that we have priors for pp = pd.DataFrame(((prior_mat.ix[:,:] != 0)|(weights_mat.ix[:,:]!=no_pr_val)) & ~pd.isnull(clr_mat)) mask = clr_mat == 0 # for each gene, add the top nS predictors of the list to possible predictors clr_mat[mask] = np.nan for ind in range(0,G): clr_na = len(np.argwhere(np.isnan(clr_mat.ix[ind,])).flatten().tolist()) clr_w_na = np.argsort(clr_mat.ix[ind,].tolist()) if clr_na>0: clr_order = clr_w_na[:-clr_na][::-1] else: clr_order = clr_w_na[:][::-1] pp.ix[ind, clr_order[0:min(K, nS, len(clr_order))]] = True preds = np.intersect1d(genes, tfs) subset = pp.ix[preds,preds].values np.fill_diagonal(subset,False) pp=pp.set_value(preds, preds, subset) out_list=[] global gx, gy, gpp, gwm, gns gx, gy, gpp, gwm, gns = X, Y, pp, weights_mat, nS # Here we illustrate splitting a simple loop, but the same approach # would work with any iterative control structure, as long as it is # deterministic. s = [] limit = G for j in range(limit): if next(ownCheck): s.append(BBSRforOneGeneWrapper(j)) # Report partial result. kvs.put('plist',(rank,s)) # One participant gathers the partial results and generates the final # output. if 0 == rank: s=[] workers=int(os.environ['SLURM_NTASKS']) for p in range(workers): wrank,ps = kvs.get('plist') s.extend(ps) print ('final s', len(s)) utils.kvsTearDown(kvs, rank) return s else: return None def BBSRforOneGene(ind, X, Y, pp, weights_mat, nS): if ind % 100 == 0: print('Progress: computing BBSR for gene {}'.format(ind)) pp_i = pp.ix[ind,].values # converted to numpy array pp_i_index = [l for l, j in enumerate(pp_i) if j] if sum(pp_i) == 0: return dict(ind=ind,pp=np.repeat(True, len(pp_i)).tolist(),betas=0, betas_resc=0) # create BestSubsetRegression input y = Y.ix[ind,:][:, np.newaxis] x = X.ix[pp_i_index,:].transpose().values # converted to numpy array g = np.matrix(weights_mat.ix[ind,pp_i_index],dtype=np.float) # experimental stuff spp = ReduceNumberOfPredictors(y, x, g, nS) #check again pp_i[pp_i==True] = spp # this could cause issues if they aren't the same length pp_i_index = [l for l, j in enumerate(pp_i) if j] x = X.ix[pp_i_index,:].transpose().values # converted to numpy array g = np.matrix(weights_mat.ix[ind,pp_i_index],dtype=np.float) betas = BestSubsetRegression(y, x, g) betas_resc = PredictErrorReduction(y, x, betas) return (dict(ind=ind, pp=pp_i, betas=betas, betas_resc=betas_resc)) def ReduceNumberOfPredictors(y, x, g, n): K = x.shape[1] #what is the maximum size of K, print K spp = None if K <= n: spp = np.repeat(True, K).tolist() return spp combos = np.hstack((np.diag(np.repeat(True,K)),CombCols(K))) bics = ExpBICforAllCombos(y, x, g, combos) bics_sum = np.sum(np.multiply(combos.transpose(),bics[:, np.newaxis]).transpose(),1) bics_sum = list(bics_sum) ret = np.repeat(False, K) ret[np.argsort(bics_sum)[0:n]] = True return ret def BestSubsetRegression(y, x, g): # Do best subset regression by using all possible combinations of columns of #x as predictors of y. Model selection criterion is BIC using results of # Bayesian regression with Zellner's g-prior. # Args: # y: dependent variable # x: independent variable # g: value for Zellner's g-prior; can be single value or vector # Returns: # Beta vector of best mode K = x.shape[1] N = x.shape[0] ret = [] combos = AllCombinations(K) bics = ExpBICforAllCombos(y, x, g, combos) not_done = True while not_done: best = np.argmin(bics) betas = np.repeat(0.0,K) if best > 0: lst_combos_bool=combos[:, best] lst_true_index = [i for i, j in enumerate(lst_combos_bool) if j] x_tmp = x[:,lst_true_index] bhat = np.linalg.solve(np.dot(x_tmp.transpose(),x_tmp),np.dot(x_tmp.transpose(),y)) for m in range(len(lst_true_index)): ind_t=lst_true_index[m] betas[ind_t]=bhat[m] not_done = False else: not_done = False return betas def AllCombinations(k): # Create a boolean matrix with all possible combinations of 1:k. Output has k rows and 2^k columns where each column is one combination. # Note that the first column is all FALSE and corresponds to the null model. if k < 1: raise ValueError("No combinations for k < 1") lst = map(list, itertools.product([False, True], repeat=k)) out=np.array([i for i in lst]).transpose() return out # Get all possible pairs of K predictors def CombCols(K): num_pair = K*(K-1)/2 a = np.full((num_pair,K), False, dtype=bool) b = list(list(tup) for tup in itertools.combinations(range(K), 2)) for i in range(len(b)): a[i,b[i]]=True c = a.transpose() return c def ExpBICforAllCombos(y, x, g, combos): # For a list of combinations of predictors do Bayesian linear regression, more specifically calculate the parametrization of the inverse gamma # distribution that underlies sigma squared using Zellner's g-prior method. # Parameter g can be a vector. The expected value of the log of sigma squared is used to compute expected values of BIC. # Returns list of expected BIC values, one for each model. K = x.shape[1] N = x.shape[0] C = combos.shape[1] bics = np.array(np.repeat(0,C),dtype=np.float) # is the first combination the null model? first_combo = 0 if sum(combos[:,0]) == 0: bics[0] = N * math.log(np.var(y,ddof=1)) first_combo = 1 # shape parameter for the inverse gamma sigma squared would be drawn from shape = N / 2 # compute digamma of shape here, so we can re-use it later dig_shape = special.digamma(shape) #### pre-compute the dot products that we will need to solve for beta xtx = np.dot(x.transpose(),x) xty = np.dot(x.transpose(),y) # In Zellner's formulation there is a factor in the calculation of the rate parameter: 1 / (g + 1) # Here we replace the factor with the approriate matrix since g is a vector now. var_mult = np.array(np.repeat(np.sqrt(1 / (g + 1)), K,axis=0)).transpose() var_mult = np.multiply(var_mult,var_mult.transpose()) for i in range(first_combo, C): comb = combos[:, i] comb=np.where(comb)[0] x_tmp = x[:,comb] k = len(comb) xtx_tmp=xtx[:,comb][comb,:] # if the xtx_tmp matrix is singular, set bic to infinity if np.linalg.matrix_rank(xtx_tmp, tol=1e-10) == xtx_tmp.shape[1]: var_mult_tmp=var_mult[:,comb][comb,:] #faster than calling lm bhat = np.linalg.solve(xtx_tmp,xty[comb]) ssr = np.sum(np.power(np.subtract(y,np.dot(x_tmp, bhat)),2)) # sum of squares of residuals # rate parameter for the inverse gamma sigma squared would be drawn from our guess on the regression vector beta is all 0 for sparse models rate = (ssr + np.dot((0 - bhat.transpose()) , np.dot(np.multiply(xtx_tmp, var_mult_tmp) ,(0 - bhat.transpose()).transpose()))) / 2 # the expected value of the log of sigma squared based on the parametrization of the inverse gamma by rate and shape exp_log_sigma2 = math.log(rate) - dig_shape # expected value of BIC bics[i] = N * exp_log_sigma2 + k * math.log(N) # set bic to infinity if lin alg error else: bics[i] = np.inf return(bics) def PredictErrorReduction(y, x, beta): # Calculates the error reduction (measured by variance of residuals) of each # predictor - compare full model to model without that predictor N = x.shape[0] K = x.shape[1] pred = [True if item!=0 else False for item in beta] pred_index = [l for l, j in enumerate(pred) if j] P = sum(pred) # compute sigma^2 for full model residuals = np.subtract(y,np.dot(x,beta)[:, np.newaxis]) sigma_sq_full = np.var(residuals,ddof=1) # this will be the output err_red = np.repeat(0.0,K) # special case if there is only one predictor if P == 1: err_red[pred_index] = 1 - (sigma_sq_full/np.var(y,ddof=1)) # one by one leave out each predictor and re-compute the model with the remaining ones for i in pred_index[0:K]: pred_tmp = pred[:] pred_tmp[i] = False pred_tmp_index= [l for l, j in enumerate(pred_tmp) if j] x_tmp = x[:,pred_tmp_index] bhat = np.linalg.solve(np.dot(x_tmp.transpose(),x_tmp),np.dot(x_tmp.transpose(),y)) residuals = np.subtract(y,np.dot(x_tmp,bhat)) sigma_sq = np.var(residuals,ddof=1) err_red[i] = 1 - (sigma_sq_full / sigma_sq) return err_red class BBSR_runner: def run(self, X, Y, clr, prior_mat, kvs=None, rank=0, ownCheck=None): n = 10 no_prior_weight = 1 prior_weight = 1 # prior weight has to be larger than 1 to have an effect weights_mat = prior_mat * 0 + no_prior_weight weights_mat = weights_mat.mask(prior_mat != 0, other=prior_weight) run_result = BBSR(X, Y, clr, n, no_prior_weight, weights_mat, prior_mat, kvs, rank, ownCheck) if rank: return (None,None) bs_betas = pd.DataFrame(np.zeros((Y.shape[0],prior_mat.shape[1])),index=Y.index,columns=prior_mat.columns) bs_betas_resc = bs_betas.copy(deep=True) for res in run_result: bs_betas.ix[res['ind'],X.index.values[res['pp']]] = res['betas'] bs_betas_resc.ix[res['ind'],X.index.values[res['pp']]] = res['betas_resc'] return (bs_betas, bs_betas_resc)
bsd-2-clause
ddboline/kaggle_facebook_recruiting_human_or_bot
plot_data.py
2
2041
#!/usr/bin/python # -*- coding: utf-8 -*- """ Created on Tue Apr 28 23:15:29 2015 @author: ddboline """ import os import matplotlib matplotlib.use('Agg') import pylab as pl from pandas.tools.plotting import scatter_matrix def create_html_page_of_plots(list_of_plots, prefix='html'): """ create html page with png files """ if not os.path.exists(prefix): os.makedirs(prefix) os.system('mv *.png %s' % prefix) #print(list_of_plots) idx = 0 htmlfile = open('%s/index_0.html' % prefix, 'w') htmlfile.write('<!DOCTYPE html><html><body><div>\n') for plot in list_of_plots: if idx > 0 and idx % 200 == 0: htmlfile.write('</div></html></html>\n') htmlfile.close() htmlfile = open('%s/index_%d.html' % (prefix, (idx//200)), 'w') htmlfile.write('<!DOCTYPE html><html><body><div>\n') htmlfile.write('<p><img src="%s"></p>\n' % plot) idx += 1 htmlfile.write('</div></html></html>\n') htmlfile.close() def plot_data(indf, prefix='html'): """ create scatter matrix plot, histograms """ list_of_plots = [] column_groups = [] for idx in range(0, len(indf.columns), 3): print len(indf.columns), idx, (idx+3) column_groups.append(indf.columns[idx:(idx+3)]) for idx in range(len(column_groups)): for idy in range(0, idx): if idx == idy: continue print column_groups[idx]+column_groups[idy] pl.clf() scatter_matrix(indf[column_groups[idx]+column_groups[idy]]) pl.savefig('scatter_matrix_%d_%d.png' % (idx, idy)) list_of_plots.append('scatter_matrix_%d_%d.png' % (idx, idy)) pl.close() for col in indf: pl.clf() print col indf[col].hist(histtype='step', normed=True) pl.title(col) pl.savefig('%s_hist.png' % col) list_of_plots.append('%s_hist.png' % col) create_html_page_of_plots(list_of_plots, prefix) return
mit
andyraib/data-storage
python_scripts/env/lib/python3.6/site-packages/matplotlib/pylab.py
10
10782
""" This is a procedural interface to the matplotlib object-oriented plotting library. The following plotting commands are provided; the majority have MATLAB |reg| [*]_ analogs and similar arguments. .. |reg| unicode:: 0xAE _Plotting commands acorr - plot the autocorrelation function annotate - annotate something in the figure arrow - add an arrow to the axes axes - Create a new axes axhline - draw a horizontal line across axes axvline - draw a vertical line across axes axhspan - draw a horizontal bar across axes axvspan - draw a vertical bar across axes axis - Set or return the current axis limits autoscale - turn axis autoscaling on or off, and apply it bar - make a bar chart barh - a horizontal bar chart broken_barh - a set of horizontal bars with gaps box - set the axes frame on/off state boxplot - make a box and whisker plot violinplot - make a violin plot cla - clear current axes clabel - label a contour plot clf - clear a figure window clim - adjust the color limits of the current image close - close a figure window colorbar - add a colorbar to the current figure cohere - make a plot of coherence contour - make a contour plot contourf - make a filled contour plot csd - make a plot of cross spectral density delaxes - delete an axes from the current figure draw - Force a redraw of the current figure errorbar - make an errorbar graph figlegend - make legend on the figure rather than the axes figimage - make a figure image figtext - add text in figure coords figure - create or change active figure fill - make filled polygons findobj - recursively find all objects matching some criteria gca - return the current axes gcf - return the current figure gci - get the current image, or None getp - get a graphics property grid - set whether gridding is on hist - make a histogram ioff - turn interaction mode off ion - turn interaction mode on isinteractive - return True if interaction mode is on imread - load image file into array imsave - save array as an image file imshow - plot image data legend - make an axes legend locator_params - adjust parameters used in locating axis ticks loglog - a log log plot matshow - display a matrix in a new figure preserving aspect margins - set margins used in autoscaling pause - pause for a specified interval pcolor - make a pseudocolor plot pcolormesh - make a pseudocolor plot using a quadrilateral mesh pie - make a pie chart plot - make a line plot plot_date - plot dates plotfile - plot column data from an ASCII tab/space/comma delimited file pie - pie charts polar - make a polar plot on a PolarAxes psd - make a plot of power spectral density quiver - make a direction field (arrows) plot rc - control the default params rgrids - customize the radial grids and labels for polar savefig - save the current figure scatter - make a scatter plot setp - set a graphics property semilogx - log x axis semilogy - log y axis show - show the figures specgram - a spectrogram plot spy - plot sparsity pattern using markers or image stem - make a stem plot subplot - make one subplot (numrows, numcols, axesnum) subplots - make a figure with a set of (numrows, numcols) subplots subplots_adjust - change the params controlling the subplot positions of current figure subplot_tool - launch the subplot configuration tool suptitle - add a figure title table - add a table to the plot text - add some text at location x,y to the current axes thetagrids - customize the radial theta grids and labels for polar tick_params - control the appearance of ticks and tick labels ticklabel_format - control the format of tick labels title - add a title to the current axes tricontour - make a contour plot on a triangular grid tricontourf - make a filled contour plot on a triangular grid tripcolor - make a pseudocolor plot on a triangular grid triplot - plot a triangular grid xcorr - plot the autocorrelation function of x and y xlim - set/get the xlimits ylim - set/get the ylimits xticks - set/get the xticks yticks - set/get the yticks xlabel - add an xlabel to the current axes ylabel - add a ylabel to the current axes autumn - set the default colormap to autumn bone - set the default colormap to bone cool - set the default colormap to cool copper - set the default colormap to copper flag - set the default colormap to flag gray - set the default colormap to gray hot - set the default colormap to hot hsv - set the default colormap to hsv jet - set the default colormap to jet pink - set the default colormap to pink prism - set the default colormap to prism spring - set the default colormap to spring summer - set the default colormap to summer winter - set the default colormap to winter _Event handling connect - register an event handler disconnect - remove a connected event handler _Matrix commands cumprod - the cumulative product along a dimension cumsum - the cumulative sum along a dimension detrend - remove the mean or besdt fit line from an array diag - the k-th diagonal of matrix diff - the n-th differnce of an array eig - the eigenvalues and eigen vectors of v eye - a matrix where the k-th diagonal is ones, else zero find - return the indices where a condition is nonzero fliplr - flip the rows of a matrix up/down flipud - flip the columns of a matrix left/right linspace - a linear spaced vector of N values from min to max inclusive logspace - a log spaced vector of N values from min to max inclusive meshgrid - repeat x and y to make regular matrices ones - an array of ones rand - an array from the uniform distribution [0,1] randn - an array from the normal distribution rot90 - rotate matrix k*90 degress counterclockwise squeeze - squeeze an array removing any dimensions of length 1 tri - a triangular matrix tril - a lower triangular matrix triu - an upper triangular matrix vander - the Vandermonde matrix of vector x svd - singular value decomposition zeros - a matrix of zeros _Probability normpdf - The Gaussian probability density function rand - random numbers from the uniform distribution randn - random numbers from the normal distribution _Statistics amax - the maximum along dimension m amin - the minimum along dimension m corrcoef - correlation coefficient cov - covariance matrix mean - the mean along dimension m median - the median along dimension m norm - the norm of vector x prod - the product along dimension m ptp - the max-min along dimension m std - the standard deviation along dimension m asum - the sum along dimension m ksdensity - the kernel density estimate _Time series analysis bartlett - M-point Bartlett window blackman - M-point Blackman window cohere - the coherence using average periodiogram csd - the cross spectral density using average periodiogram fft - the fast Fourier transform of vector x hamming - M-point Hamming window hanning - M-point Hanning window hist - compute the histogram of x kaiser - M length Kaiser window psd - the power spectral density using average periodiogram sinc - the sinc function of array x _Dates date2num - convert python datetimes to numeric representation drange - create an array of numbers for date plots num2date - convert numeric type (float days since 0001) to datetime _Other angle - the angle of a complex array griddata - interpolate irregularly distributed data to a regular grid load - Deprecated--please use loadtxt. loadtxt - load ASCII data into array. polyfit - fit x, y to an n-th order polynomial polyval - evaluate an n-th order polynomial roots - the roots of the polynomial coefficients in p save - Deprecated--please use savetxt. savetxt - save an array to an ASCII file. trapz - trapezoidal integration __end .. [*] MATLAB is a registered trademark of The MathWorks, Inc. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six import sys, warnings from matplotlib.cbook import ( flatten, is_string_like, exception_to_str, silent_list, iterable, dedent) import matplotlib as mpl # make mpl.finance module available for backwards compatability, in case folks # using pylab interface depended on not having to import it with warnings.catch_warnings(): warnings.simplefilter("ignore") # deprecation: moved to a toolkit import matplotlib.finance from matplotlib.dates import ( date2num, num2date, datestr2num, strpdate2num, drange, epoch2num, num2epoch, mx2num, DateFormatter, IndexDateFormatter, DateLocator, RRuleLocator, YearLocator, MonthLocator, WeekdayLocator, DayLocator, HourLocator, MinuteLocator, SecondLocator, rrule, MO, TU, WE, TH, FR, SA, SU, YEARLY, MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY, SECONDLY, relativedelta) # bring all the symbols in so folks can import them from # pylab in one fell swoop ## We are still importing too many things from mlab; more cleanup is needed. from matplotlib.mlab import ( amap, base_repr, binary_repr, bivariate_normal, center_matrix, csv2rec, demean, detrend, detrend_linear, detrend_mean, detrend_none, dist, dist_point_to_segment, distances_along_curve, entropy, exp_safe, fftsurr, find, frange, get_sparse_matrix, get_xyz_where, griddata, identity, inside_poly, is_closed_polygon, ispower2, isvector, l1norm, l2norm, log2, longest_contiguous_ones, longest_ones, movavg, norm_flat, normpdf, path_length, poly_below, poly_between, prctile, prctile_rank, rec2csv, rec_append_fields, rec_drop_fields, rec_join, rk4, rms_flat, segments_intersect, slopes, stineman_interp, vector_lengths, window_hanning, window_none) from matplotlib import cbook, mlab, pyplot as plt from matplotlib.pyplot import * from numpy import * from numpy.fft import * from numpy.random import * from numpy.linalg import * import numpy as np import numpy.ma as ma # don't let numpy's datetime hide stdlib import datetime # This is needed, or bytes will be numpy.random.bytes from # "from numpy.random import *" above bytes = six.moves.builtins.bytes
apache-2.0
ASinanSaglam/Ramaplot
AmberForceField.py
1
38302
#!/usr/bin/python # -*- coding: utf-8 -*- # ramaplot.AmberForceField.py # # Copyright (C) 2015 Karl T Debiec # All rights reserved. # # This software may be modified and distributed under the terms of the # BSD license. See the LICENSE file for details. """ Reads and represents AMBER-format force fields """ ################################### MODULES ################################### from __future__ import absolute_import,division,print_function,unicode_literals import re from .ForceField import ForceField ################################### CLASSES ################################### class AmberForceField(ForceField): """ Reads and represents AMBER-format force fields """ @staticmethod def get_cache_key(parm=None, *args, **kwargs): """ Generates tuple of arguments to be used as key for dataset cache. """ from os.path import expandvars return (AmberForceField, expandvars(parm)) @staticmethod def get_cache_message(cache_key): return "previously loaded from '{0}'".format(cache_key[1]) par_re = dict( blank = "^\s*$", mass = "^(?P<type>{t}){w}" "(?P<mass>{f})" "(?P<polarizability>{w}{f}|{w})" "(?P<note>.*$)", atomlist = "^({t}{w})*$", bond = "^(?P<type_1>{t})-" "(?P<type_2>{t}){w}" "(?P<force_constant>{f}){w}" "(?P<length>{f}){w}" "(?P<note>.*$)", angle = "^(?P<type_1>{t})-" "(?P<type_2>{t})-" "(?P<type_3>{t}){w}" "(?P<force_constant>{f}){w}" "(?P<angle>{f}){w}" "(?P<note>.*$)", dihedral = "^(?P<type_1>{t})-" "(?P<type_2>{t})-" "(?P<type_3>{t})-" "(?P<type_4>{t}){w}" "(?P<divider>{i}){w}" "(?P<barrier>{sf}){w}" "(?P<phase>{sf}){w}" "(?P<periodicity>{sf}){w}" "(?P<note>.*$)", improper = "^(?P<type_1>{t})-" "(?P<type_2>{t})-" "(?P<type_3>{t})-" "(?P<type_4>{t}){w}" "(?P<barrier>{sf}){w}" "(?P<phase>{sf}){w}" "(?P<periodicity>{sf}){w}" "(?P<note>.*$)", hbond = "^{w}(?P<type_1>{t}){w}" "(?P<type_2>{t}){w}" "(?P<A>{f}){w}" "(?P<B>{f}){w}" "(?P<ASOLN>{f}){w}" "(?P<note>.*$)", vdw_format = "^.+{w}(?P<vdw_format>SK|RE|AC).*$", vdw = "^{w}(?P<type>{t}){w}" "(?P<radius>{f}){w}" "(?P<well_depth>{f}){w}" "(?P<note>.*$)", ljedit_title = "^LJEDIT$", ljedit = "^{w}(?P<type_1>{t}){w}" "(?P<type_2>{t}){w}" "(?P<radius_1>{f}){w}" "(?P<well_depth_1>{f}){w}" "(?P<radius_2>{f}){w}" "(?P<well_depth_2>{f}){w}" "(?P<note>.*$)", end = "^END$") lib_re = dict( blank = "^\s*$", atoms = "^\s*\"(?P<name>{a})\"{w}" "\"(?P<type>{t})\"{w}" "(?P<type_index>{i}){w}" "(?P<residue_index>{i}){w}" "(?P<flags>{i}){w}" "(?P<atom_index>{i}){w}" "(?P<element>{i}){w}" "(?P<charge>{sf}){w}" "(?P<note>.*$)", atom_edits = "^\s*\"(?P<name>{a})\"{w}" "\"(?P<type>{t})\"{w}" "(?P<type_index>{i}){w}" "(?P<element>{si}{w})" "(?P<charge>{sf}{w})" "(?P<note>.*$)", box = "^\s*(?P<box>{sf}){w}" "(?P<note>.*$)", res_seq = "^\s*(?P<childsequence>{i}){w}" "(?P<note>.*$)", res_connect = "^\s*(?P<connect>{i}){w}" "(?P<note>.*$)", bonds = "^\s*(?P<atom_index_1>{i}){w}" "(?P<atom_index_2>{t}){w}" "(?P<flag>{i}){w}" "(?P<note>.*$)", hierarchy = "^\s*\"(?P<above_type>U|R|A)\"{w}" "(?P<above_index>{i}){w}" "\"(?P<below_type>U|R|A)\"{w}" "(?P<below_index>{i}){w}" "(?P<note>.*$)", name = "^\s*\"(?P<name>{r})\"" "(?P<note>.*$)", coordinates = "^\s*(?P<x>{sfe}){w}" "(?P<y>{sfe}){w}" "(?P<z>{sfe}){w}" "(?P<note>.*$)", res_connect2 = "^\s*(?P<atom_index_1>{i}){w}" "(?P<atom_index_2>{i}){w}" "(?P<atom_index_3>{i}){w}" "(?P<atom_index_4>{i}){w}" "(?P<atom_index_5>{i}){w}" "(?P<atom_index_6>{i}){w}" "(?P<note>.*$)", residues = "^\s*\"(?P<name>{r})\"{w}" "(?P<residue_index>{i}){w}" "(?P<child_atom_index>{i}){w}" "(?P<start_atom_index>{i}){w}" "\"(?P<residue_type>p|n|w|\?)\"{w}" "(?P<note>.*$)", pdb_seq = "^\s*(?P<residue_index>{i}){w}" "(?P<note>.*$)", solventcap = "^\s*(?P<solventcap>{sf}){w}" "(?P<note>.*$)", velocities = "^\s*(?P<x>{sfe}){w}" "(?P<y>{sfe}){w}" "(?P<z>{sfe}){w}" "(?P<note>.*$)") def __init__(self, parm=None, **kwargs): """ """ if parm is not None: self.parameters = self.read_parm(parm, **kwargs) @staticmethod def amber_regex(regex, title=False): """ Prepares regex for matching AMBER fields Arguments: regex (string): regular expression Returns: (string): regular expression """ if title: regex = "^!entry\.(?P<residue_name>{r})\.unit\." + regex + "{w}.*$" return re.compile(regex.format( r = "[\w][\w][\w][\w]?", # Residue a = "[\w][\w]?[\w]?[\w]?", # Atom name t = "[\w][\w \*]?", # Atom type i = "\d+", # Integer si = "[-]?\d+", # Signed Integer f = "\d+\.?\d*?", # Float sf = "[-]?\d+\.?\d*?", # Signed float sfe = "[-]?\d+\.?\d*?[E]?[-]?\d*?", # Signed float in E notation w = "\s+")) # Whitespace @staticmethod def strip_dict(dictionary): """ Strips each string in a dict, and deletes if empty Arguements: dictionary (dict): dictionary to strip Returns: (dict): dictionary with each element stripped """ for key, value in dictionary.items(): value = value.strip() if value == "": del dictionary[key] else: dictionary[key] = value return dictionary @staticmethod def read_parm(infile, verbose=1, debug=0, **kwargs): """ Reads a parm file Arguments: infile (str): Path to input parm file verbose (int): Enable verbose output debug (int): Enable debug output kwargs (dict): Additional keyword arguments """ import pandas as pd if verbose >= 1: print("READING PARM: {0}".format(infile)) strip_dict = AmberForceField.strip_dict amber_regex = AmberForceField.amber_regex par_re = AmberForceField.par_re re_blank = amber_regex(par_re["blank"]) re_mass = amber_regex(par_re["mass"]) re_atomlist = amber_regex(par_re["atomlist"]) re_bond = amber_regex(par_re["bond"]) re_angle = amber_regex(par_re["angle"]) re_dihedral = amber_regex(par_re["dihedral"]) re_improper = amber_regex(par_re["improper"]) re_hbond = amber_regex(par_re["hbond"]) re_vdw_format = amber_regex(par_re["vdw_format"]) re_vdw = amber_regex(par_re["vdw"]) re_ljedit_title = amber_regex(par_re["ljedit_title"]) re_ljedit = amber_regex(par_re["ljedit"]) re_end = amber_regex(par_re["end"]) mass_types = pd.DataFrame(columns=["type", "mass", "polarizability", "note"]) hydrophobic_types = pd.DataFrame(columns=["type"]) bonds = pd.DataFrame(columns=["type_1", "type_2", "force_constant", "length", "note"]) angles = pd.DataFrame(columns=["type_1", "type_2", "type_3", "force_constant", "angle", "note"]) dihedrals = pd.DataFrame(columns=["type_1", "type_2", "type_3", "type_4", "divider", "barrier", "phase", "periodicity", "note"]) impropers = pd.DataFrame(columns=["type_1", "type_2", "type_3", "type_4", "barrier", "phase", "periodicity", "note"]) hbonds = pd.DataFrame(columns=["type_1", "type_2", "A", "B", "ASOLN"]) vdw_eq_types = pd.DataFrame() vdw_types = pd.DataFrame(columns= ["type", "radius", "well_depth", "note"]) ljedits = pd.DataFrame(columns= ["type_1", "type_2", "radius_1", "well_depth_1", "radius_2", "well_depth_2"]) section = 1 with open(infile, "r") as open_infile: line = open_infile.readline() while line: # BLANK if re.match(re_blank, line): if verbose >= 1: print("BLANK |{0}".format(line.strip())) # 1: TITLE elif section <= 1 and not re.match(re_mass, line): if verbose >= 1: print("TITLE |{0}".format(line.strip())) # 2: MASS elif section <= 2 and re.match(re_mass, line): section = 2 if verbose >= 1: print("MASS |{0}".format(line.strip())) fields = strip_dict(re.match(re_mass, line).groupdict()) mass_types = mass_types.append(fields, ignore_index=True) # 3: HYDROPHIC (list of types) elif section <= 3 and re.match(re_atomlist, line): section = 3 if verbose >= 1: print("HYDROPHOBIC |{0}".format(line.rstrip())) fields = [{"type": v} for v in amber_regex("{t}").findall(line)] hydrophobic_types = hydrophobic_types.append(fields, ignore_index=True) # 4: BOND elif section <= 4 and re.match(re_bond, line): section = 4 if verbose >= 1: print("BOND |{0}".format(line.rstrip())) fields = strip_dict(re.match(re_bond, line).groupdict()) bonds = bonds.append(fields, ignore_index=True) # 5: ANGLE elif section <= 5 and re.match(re_angle, line): section = 5 if verbose >= 1: print("ANGLE |{0}".format(line.rstrip())) fields = strip_dict(re.match(re_angle, line).groupdict()) angles = angles.append(fields, ignore_index=True) # 6: DIHEDRAL elif section <= 6 and re.match(re_dihedral, line): section = 6 if verbose >= 1: print("DIHEDRAL |{0}".format(line.rstrip())) fields = strip_dict(re.match(re_dihedral, line).groupdict()) dihedrals = dihedrals.append(fields, ignore_index=True) # 7: IMPROPER elif section <= 7 and re.match(re_improper, line): section = 7 if verbose >= 1: print("IMPROPER |{0}".format(line.rstrip())) fields = strip_dict(re.match(re_improper, line).groupdict()) impropers = impropers.append(fields, ignore_index=True) # 8: HBOND elif section <= 8 and re.match(re_hbond, line): section = 8 if verbose >= 1: print("HBOND |{0}".format(line.rstrip())) fields = strip_dict(re.match(re_hbond, line).groupdict()) hbonds = hbonds.append(fields, ignore_index=True) # 9: VDW (equivalent types) elif section <= 9 and re.match(re_atomlist, line): section = 9 if verbose >= 1: print("VDW EQUIVALENT |{0}".format(line.rstrip())) fields = [{"type_{0}".format(i): v for i, v in enumerate(re.compile(amber_regex("{t}")).findall(line))}] vdw_eq_types = vdw_eq_types.append(fields, ignore_index=True) # 10: VDW (format) elif section <= 10.3 and re.match(re_vdw_format, line): if verbose >= 1: print("VDW FORMAT |{0}".format(line.rstrip())) # 10.2: VDW (radius and well depth) elif section <= 10.2 and re.match(re_vdw, line): section = 10.2 if verbose >= 1: print("VDW |{0}".format(line.rstrip())) fields = strip_dict(re.match(re_vdw, line).groupdict()) vdw_types = vdw_types.append(fields, ignore_index=True) # 11: LJEDIT (title) elif (section <= 11 and re.match(re_ljedit_title, line)): section = 11 if verbose >= 1: print("LJEDIT |{0}".format(line.rstrip())) # 11.1: LJEDIT (atom types, radii, and well depth) elif (section <= 11.1 and re.match(re_ljedit, line)): section = 11.1 if verbose >= 1: print("LJEDIT |{0}".format(line.rstrip())) fields = strip_dict(re.match(re_ljedit, line).groupdict()) ljedits = ljedits.append(fields, ignore_index=True) # END elif re.match(re_end, line): if verbose >= 1: print("END |{0}".format(line.rstrip())) break # NO MATCH else: if verbose >= 1: print("NOMATCH |{0}".format(line.rstrip())) line = open_infile.readline() if debug >= 1: print(mass_types) print(hydrophobic_types) print(bonds) print(angles) print(dihedrals) print(impropers) print(hbonds) print(vdw_eq_types) print(vdw_types) print(ljedits) parameters = dict( mass_types = mass_types, hydrophobic_types = hydrophobic_types, bonds = bonds, angles = angles, dihedrals = dihedrals, impropers = impropers, hbonds = hbonds, vdw_eq_types = vdw_eq_types, vdw_types = vdw_types, ljedits = ljedits) return parameters # def read_frcmod(self, infile, verbose=1, debug=0, **kwargs): # """ # Arguments: # infile (str): Path to input lib file # verbose (int): Enable verbose output # debug (int): Enable debug output # kwargs (dict): Additional keyword arguments # """ # if verbose >= 1: # print("READING FRCMOD: {0}".format(infile)) # # are = self.amber_regex # strip_dict = self.strip_dict # re_blank = are("^\s*$") # # section = 1 # with open(infile, "r") as open_infile: # line = open_infile.readline() # while line: # # BLANK # if re.match(re_blank, line): # if verbose >= 1: # print("BLANK |{0}".format(line.strip())) # # 1: TITLE # elif section <= 1 and not re.match(re_mass, line): # if verbose >= 1: # print("TITLE |{0}".format(line.strip())) # # 2: MASS # elif section <= 2 and re.match(re_mass, line): # section = 2 # if verbose >= 1: # print("MASS |{0}".format(line.strip())) # fields = strip_dict(re.match(re_mass, line).groupdict()) # mass_types = mass_types.append(fields, ignore_index=True) # # 3: HYDROPHIC (list of types) # elif section <= 3 and re.match(re_atomlist, line): # section = 3 # if verbose >= 1: # print("HYDROPHOBIC |{0}".format(line.rstrip())) # fields = [{"type": v} for v in are("{t}").findall(line)] # hydrophobic_types = hydrophobic_types.append(fields, # ignore_index=True) # # 4: BOND # elif section <= 4 and re.match(re_bond, line): # section = 4 # if verbose >= 1: # print("BOND |{0}".format(line.rstrip())) # fields = strip_dict(re.match(re_bond, line).groupdict()) # bonds = bonds.append(fields, ignore_index=True) # # 5: ANGLE # elif section <= 5 and re.match(re_angle, line): # section = 5 # if verbose >= 1: # print("ANGLE |{0}".format(line.rstrip())) # fields = strip_dict(re.match(re_angle, line).groupdict()) # angles = angles.append(fields, ignore_index=True) # # 6: DIHEDRAL # elif section <= 6 and re.match(re_dihedral, line): # section = 6 # if verbose >= 1: # print("DIHEDRAL |{0}".format(line.rstrip())) # fields = strip_dict(re.match(re_dihedral, # line).groupdict()) # dihedrals = dihedrals.append(fields, ignore_index=True) # # 7: IMPROPER # elif section <= 7 and re.match(re_improper, line): # section = 7 # if verbose >= 1: # print("IMPROPER |{0}".format(line.rstrip())) # fields = strip_dict(re.match(re_improper, # line).groupdict()) # impropers = impropers.append(fields, ignore_index=True) # # 8: HBOND # elif section <= 8 and re.match(re_hbond, line): # section = 8 # if verbose >= 1: # print("HBOND |{0}".format(line.rstrip())) # fields = strip_dict(re.match(re_hbond, line).groupdict()) # hbonds = hbonds.append(fields, ignore_index=True) # # 9: VDW (equivalent types) # elif section <= 9 and re.match(re_atomlist, line): # section = 9 # if verbose >= 1: # print("VDW EQUIVALENT |{0}".format(line.rstrip())) # fields = [{"type_{0}".format(i): v for i, v in # enumerate(re.compile(are("{t}")).findall(line))}] # vdw_eq_types = vdw_eq_types.append(fields, # ignore_index=True) # # 10: VDW (format) # elif section <= 10.3 and re.match(re_vdw_format, line): # if verbose >= 1: # print("VDW FORMAT |{0}".format(line.rstrip())) # # 10.2: VDW (radius and well depth) # elif section <= 10.2 and re.match(re_vdw, line): # section = 10.2 # if verbose >= 1: # print("VDW |{0}".format(line.rstrip())) # fields = strip_dict(re.match(re_vdw, line).groupdict()) # vdw_types = vdw_types.append(fields, ignore_index=True) # # 11: LJEDIT (title) # elif (section <= 11 and re.match(re_ljedit_title, line)): # section = 11 # if verbose >= 1: # print("LJEDIT |{0}".format(line.rstrip())) # # 11.1: LJEDIT (atom types, radii, and well depth) # elif (section <= 11.1 and re.match(re_ljedit, line)): # section = 11.1 # if verbose >= 1: # print("LJEDIT |{0}".format(line.rstrip())) # fields = strip_dict(re.match(re_ljedit, line).groupdict()) # ljedits = ljedits.append(fields, ignore_index=True) # # END # elif re.match(re_end, line): # if verbose >= 1: # print("END |{0}".format(line.rstrip())) # break # # NO MATCH # else: # if verbose >= 1: # print("NOMATCH |{0}".format(line.rstrip())) # line = infile.readline() # def read_lib(self, infile, verbose=1, debug=0, **kwargs): # """ # Arguments: # infile (str): Path to input lib file # verbose (int): Enable verbose output # debug (int): Enable debug output # kwargs (dict): Additional keyword arguments # """ # if verbose >= 1: # print("READING LIB: {0}".format(infile)) # # stripd = self.strip_dict # re_blank = self.lib_re["blank"] # re_atoms = self.lib_re["atoms"] # re_atom_edits = self.lib_re["atom_edits"] # re_box = self.lib_re["box"] # re_res_seq = self.lib_re["res_seq"] # re_res_connect = self.lib_re["res_connect"] # re_bonds = self.lib_re["bonds"] # re_hierarchy = self.lib_re["hierarchy"] # re_name = self.lib_re["name"] # re_coordinates = self.lib_re["coordinates"] # re_res_connect2 = self.lib_re["res_connect2"] # re_residues = self.lib_re["residues"] # re_pdb_seq = self.lib_re["pdb_seq"] # re_solventcap = self.lib_re["solventcap"] # re_velocities = self.lib_re["velocities"] # # # Regular expressions for titles # re_t_atoms = self.amber_regex("atoms", title=True) # re_t_atom_edits = self.amber_regex("atomspertinfo", title=True) # re_t_box = self.amber_regex("boundbox", title=True) # re_t_res_seq = self.amber_regex("childsequence", title=True) # re_t_res_connect = self.amber_regex("connect", title=True) # re_t_bonds = self.amber_regex("connectivity", title=True) # re_t_hierarchy = self.amber_regex("hierarchy", title=True) # re_t_name = self.amber_regex("name", title=True) # re_t_coordinates = self.amber_regex("positions", title=True) # re_t_res_connect2 = self.amber_regex("residueconnect", title=True) # re_t_residues = self.amber_regex("residues", title=True) # re_t_pdb_seq = self.amber_regex("residuesPdbSequenceNumber", # title=True) # re_t_solventcap = self.amber_regex("solventcap", title=True) # re_t_velocities = self.amber_regex("velocities", title=True) # # # Regular expressions for contents # section = 0 # residue = None # # with open(infile, "r") as open_infile: # line = open_infile.readline() # while line: # # BLANK # if re.match(re_blank, line): # if verbose >= 1: # print("BLANK |{0}".format(line.strip())) # # 1: ATOMS # elif re.match(re_t_atoms, line): # if verbose >= 1: # print("ATOMS |{0}".format(line.strip())) # section = 1 # fields = stripd(re.match(re_t_atoms, line).groupdict()) # residue = self.residues[fields["residue_name"]] = {} # residue["atoms"] = pd.DataFrame(columns= # ["name", "type", "type_index", "residue_index", "flags", # "atom_index", "element", "charge", "note"]) # elif section == 1 and re.match(re_atoms, line): # if verbose >= 1: # print("ATOMS |{0}".format(line.strip())) # fields = stripd(re.match(re_atoms, line).groupdict()) # residue["atoms"] = residue["atoms"].append( # fields, ignore_index=True) # # 2: ATOMSPERTINFO # elif re.match(re_t_atom_edits, line): # if verbose >= 1: # print("ATOMSPERTINFO |{0}".format(line.strip())) # section = 2 # residue["atom_edits"] = pd.DataFrame(columns= # ["name", "type", "type_index", "element", "charge", # "note"]) # elif section == 2 and re.match(re_atom_edits, line): # if verbose >= 1: # print("ATOMSPERTINFO |{0}".format(line.strip())) # fields = stripd(re.match(re_atom_edits, line).groupdict()) # residue["atom_edits"] = residue["atom_edits"].append( # fields, ignore_index=True) # # 3: BOUNDBOX # elif re.match(re_t_box, line): # if verbose >= 1: # print("BOUNDBOX |{0}".format(line.strip())) # section = 3 # box_keys = ["box", "angle", "x_length", "y_length", # "z_length"] # box_items = [] # elif section == 3 and re.match(re_box, line): # if verbose >= 1: # print("BOUNDBOX |{0}".format(line.strip())) # fields = stripd(re.match(re_box, line).groupdict()) # box_items.append( # (box_keys.pop(0), [fields["box"]])) # if len(box_keys) == 0: # residue["box"] = pd.DataFrame.from_items(box_items) # # 4: CHILDSEQUENCE # elif re.match(re_t_res_seq, line): # if verbose >= 1: # print("CHILDSEQUENCE |{0}".format(line.strip())) # section = 4 # residue["res_seq"] = pd.DataFrame(columns= # ["childsequence", "note"]) # elif section == 4 and re.match(re_res_seq, line): # if verbose >= 1: # print("CHILDSEQUENCE |{0}".format(line.strip())) # fields = stripd(re.match(re_res_seq, line).groupdict()) # residue["res_seq"] = residue["res_seq"].append( # fields, ignore_index=True) # # 5: CONNECT # elif re.match(re_t_res_connect, line): # if verbose >= 1: # print("CONNECT |{0}".format(line.strip())) # section = 5 # connect_keys = [ # "connect_atom_index_1", "connect_atom_index_2", "note"] # connect_items = [] # elif section == 5 and re.match(re_res_connect, line): # if verbose >= 1: # print("CONNECT |{0}".format(line.strip())) # fields = stripd(re.match(re_res_connect, line).groupdict()) # connect_items.append( # (connect_keys.pop(0), [fields["connect"]])) # if len(connect_keys) == 0: # residue["res_connect"] = pd.DataFrame.from_items( # connect_items) # # 6: CONNECTIVITY # elif re.match(re_t_bonds, line): # if verbose >= 1: # print("CONNECTIVITY |{0}".format(line.strip())) # section = 6 # residue["bonds"] = pd.DataFrame(columns= # ["atom_index_1", "atom_index_2", "flag", "note"]) # elif section == 6 and re.match(re_bonds, line): # if verbose >= 1: # print("CONNECTIVITY |{0}".format(line.strip())) # fields = stripd(re.match(re_bonds, # line).groupdict()) # residue["bonds"] = residue["bonds"].append( # fields, ignore_index=True) # # 7: HIERARCHY # elif re.match(re_t_hierarchy, line): # if verbose >= 1: # print("HIERARCHY |{0}".format(line.strip())) # section = 7 # residue["hierarchy"] = pd.DataFrame(columns= # ["above_type", "above_index", "below_type", # "below_index", "note"]) # elif section == 7 and re.match(re_hierarchy, line): # if verbose >= 1: # print("HIERARCHY |{0}".format(line.strip())) # fields = stripd(re.match(re_hierarchy, # line).groupdict()) # residue["hierarchy"] = residue["hierarchy"].append( # fields, ignore_index=True) # # 8: NAME # elif re.match(re_t_name, line): # if verbose >= 1: # print("NAME |{0}".format(line.strip())) # section = 8 # residue["name"] = pd.DataFrame(columns= # ["childsequence", "note"]) # elif section == 8 and re.match(re_name, line): # if verbose >= 1: # print("NAME |{0}".format(line.strip())) # fields = stripd(re.match(re_name, line).groupdict()) # residue["name"] = residue["name"].append( # fields, ignore_index=True) # # 9: POSITIONS # elif re.match(re_t_coordinates, line): # if verbose >= 1: # print("POSITIONS |{0}".format(line.strip())) # section = 9 # residue["coordinates"] = pd.DataFrame(columns= # ["x", "y", "z", "note"]) # elif section == 9 and re.match(re_coordinates, line): # if verbose >= 1: # print("POSITIONS |{0}".format(line.strip())) # fields = stripd(re.match(re_coordinates, # line).groupdict()) # residue["coordinates"] = residue["coordinates"].append( # fields, ignore_index=True) # # 10: RESIDUECONNECT # elif re.match(re_t_res_connect2, line): # if verbose >= 1: # print("RESIDUECONNECT |{0}".format(line.strip())) # section = 10 # residue["res_connect2"] = pd.DataFrame(columns= # ["atom_index_1", "atom_index_2", "atom_index_3", # "atom_index_4", "atom_index_5", "atom_index_6", "note"]) # elif section == 10 and re.match(re_res_connect2, line): # if verbose >= 1: # print("RESIDUECONNECT |{0}".format(line.strip())) # fields = stripd(re.match(re_res_connect2, # line).groupdict()) # residue["res_connect2"] = residue["res_connect2"].append( # fields, ignore_index=True) # # 11: RESIDUES # elif re.match(re_t_residues, line): # if verbose >= 1: # print("RESIDUES |{0}".format(line.strip())) # section = 11 # residue["residues"] = pd.DataFrame(columns= # ["name", "residue_index", "child_atom_index", # "start_atom_index", "residue_type", "note"]) # elif re.match(re_residues, line): # if verbose >= 1: # print("RESIDUES |{0}".format(line.strip())) # fields = stripd(re.match(re_residues, # line).groupdict()) # residue["residues"] = residue["residues"].append( # fields, ignore_index=True) # # 12: RESIDUESPDBSEQUENCENUMBER # elif re.match(re_t_pdb_seq, line): # if verbose >= 1: # print("PDBSEQUENCENUM |{0}".format(line.strip())) # section = 12 # residue["pdb_seq"] = pd.DataFrame(columns= # ["residue_index", "note"]) # elif section == 12 and re.match(re_pdb_seq, line): # if verbose >= 1: # print("PDBSEQUENCENUM |{0}".format(line.strip())) # fields = stripd(re.match(re_pdb_seq, line).groupdict()) # residue["pdb_seq"] = residue["pdb_seq"].append( # fields, ignore_index=True) # # 13: SOLVENTCAP # elif re.match(re_t_solventcap, line): # if verbose >= 1: # print("SOLVENTCAP |{0}".format(line.strip())) # section = 13 # solventcap_keys = ["solventcap", "angle", "x_length", # "y_length", "z_length"] # solventcap_temp = [] # elif section == 13 and re.match(re_solventcap, line): # if verbose >= 1: # print("SOLVENTCAP |{0}".format(line.strip())) # fields = stripd(re.match(re_solventcap, line).groupdict()) # solventcap_temp.append( # (solventcap_keys.pop(0), [fields["solventcap"]])) # if len(solventcap_keys) == 0: # residue["solventcap"] = pd.DataFrame.from_items( # solventcap_temp) # # 14: VELOCITIES # elif re.match(re_t_velocities, line): # if verbose >= 1: # print("VELOCITIES |{0}".format(line.strip())) # section = 14 # residue["velocities"] = pd.DataFrame(columns= # ["x", "y", "z", "note"]) # elif section == 14 and re.match(re_velocities, line): # if verbose >= 1: # print("VELOCITIES |{0}".format(line.strip())) # fields = stripd(re.match(re_velocities, # line).groupdict()) # residue["velocities"] = residue["velocities"].append( # fields, ignore_index=True) # # NO MATCH # else: # if verbose >= 1: # print("NOMATCH |{0}".format(line.rstrip())) # line = open_infile.readline() # for name in sorted(self.residues): # residue = self.residues[name] # print() # print(name) # fields = ["atoms", "atom_edits", "box", "childsequence", # "connect", "bonds", "hierarchy", "name", # "coordinates", "residueconnect", "residues", # "pdbindex", "solventcap", "velocities"] # for field in fields: # if field in residue: # print(field) # print(residue[field])
bsd-3-clause
jjx02230808/project0223
examples/decomposition/plot_sparse_coding.py
12
4007
""" =========================================== Sparse coding with a precomputed dictionary =========================================== Transform a signal as a sparse combination of Ricker wavelets. This example visually compares different sparse coding methods using the :class:`sklearn.decomposition.SparseCoder` estimator. The Ricker (also known as Mexican hat or the second derivative of a Gaussian) is not a particularly good kernel to represent piecewise constant signals like this one. It can therefore be seen how much adding different widths of atoms matters and it therefore motivates learning the dictionary to best fit your type of signals. The richer dictionary on the right is not larger in size, heavier subsampling is performed in order to stay on the same order of magnitude. """ print(__doc__) import numpy as np import matplotlib.pylab as plt from sklearn.decomposition import SparseCoder def ricker_function(resolution, center, width): """Discrete sub-sampled Ricker (Mexican hat) wavelet""" x = np.linspace(0, resolution - 1, resolution) x = ((2 / ((np.sqrt(3 * width) * np.pi ** 1 / 4))) * (1 - ((x - center) ** 2 / width ** 2)) * np.exp((-(x - center) ** 2) / (2 * width ** 2))) return x def ricker_matrix(width, resolution, n_components): """Dictionary of Ricker (Mexican hat) wavelets""" centers = np.linspace(0, resolution - 1, n_components) D = np.empty((n_components, resolution)) for i, center in enumerate(centers): D[i] = ricker_function(resolution, center, width) D /= np.sqrt(np.sum(D ** 2, axis=1))[:, np.newaxis] return D resolution = 1024 subsampling = 3 # subsampling factor width = 100 n_components = resolution / subsampling # Compute a wavelet dictionary D_fixed = ricker_matrix(width=width, resolution=resolution, n_components=n_components) D_multi = np.r_[tuple(ricker_matrix(width=w, resolution=resolution, n_components=np.floor(n_components / 5)) for w in (10, 50, 100, 500, 1000))] # Generate a signal y = np.linspace(0, resolution - 1, resolution) first_quarter = y < resolution / 4 y[first_quarter] = 3. y[np.logical_not(first_quarter)] = -1. # List the different sparse coding methods in the following format: # (title, transform_algorithm, transform_alpha, transform_n_nozero_coefs) estimators = [('OMP', 'omp', None, 15, 'navy'), ('Lasso', 'lasso_cd', 2, None, 'turquoise'), ] lw = 2 plt.figure(figsize=(13, 6)) for subplot, (D, title) in enumerate(zip((D_fixed, D_multi), ('fixed width', 'multiple widths'))): plt.subplot(1, 2, subplot + 1) plt.title('Sparse coding against %s dictionary' % title) plt.plot(y, lw=lw, linestyle='--', label='Original signal') # Do a wavelet approximation for title, algo, alpha, n_nonzero, color in estimators: coder = SparseCoder(dictionary=D, transform_n_nonzero_coefs=n_nonzero, transform_alpha=alpha, transform_algorithm=algo) x = coder.transform(y) density = len(np.flatnonzero(x)) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) plt.plot(x, color=color, lw=lw, label='%s: %s nonzero coefs,\n%.2f error' % (title, density, squared_error)) # Soft thresholding debiasing coder = SparseCoder(dictionary=D, transform_algorithm='threshold', transform_alpha=20) x = coder.transform(y) _, idx = np.where(x != 0) x[0, idx], _, _, _ = np.linalg.lstsq(D[idx, :].T, y) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) plt.plot(x, color='darkorange', lw=lw, label='Thresholding w/ debiasing:\n%d nonzero coefs, %.2f error' % (len(idx), squared_error)) plt.axis('tight') plt.legend(shadow=False, loc='best') plt.subplots_adjust(.04, .07, .97, .90, .09, .2) plt.show()
bsd-3-clause
cybernet14/scikit-learn
examples/svm/plot_rbf_parameters.py
132
8096
''' ================== RBF SVM parameters ================== This example illustrates the effect of the parameters ``gamma`` and ``C`` of the Radial Basis Function (RBF) kernel SVM. Intuitively, the ``gamma`` parameter defines how far the influence of a single training example reaches, with low values meaning 'far' and high values meaning 'close'. The ``gamma`` parameters can be seen as the inverse of the radius of influence of samples selected by the model as support vectors. The ``C`` parameter trades off misclassification of training examples against simplicity of the decision surface. A low ``C`` makes the decision surface smooth, while a high ``C`` aims at classifying all training examples correctly by giving the model freedom to select more samples as support vectors. The first plot is a visualization of the decision function for a variety of parameter values on a simplified classification problem involving only 2 input features and 2 possible target classes (binary classification). Note that this kind of plot is not possible to do for problems with more features or target classes. The second plot is a heatmap of the classifier's cross-validation accuracy as a function of ``C`` and ``gamma``. For this example we explore a relatively large grid for illustration purposes. In practice, a logarithmic grid from :math:`10^{-3}` to :math:`10^3` is usually sufficient. If the best parameters lie on the boundaries of the grid, it can be extended in that direction in a subsequent search. Note that the heat map plot has a special colorbar with a midpoint value close to the score values of the best performing models so as to make it easy to tell them appart in the blink of an eye. The behavior of the model is very sensitive to the ``gamma`` parameter. If ``gamma`` is too large, the radius of the area of influence of the support vectors only includes the support vector itself and no amount of regularization with ``C`` will be able to prevent overfitting. When ``gamma`` is very small, the model is too constrained and cannot capture the complexity or "shape" of the data. The region of influence of any selected support vector would include the whole training set. The resulting model will behave similarly to a linear model with a set of hyperplanes that separate the centers of high density of any pair of two classes. For intermediate values, we can see on the second plot that good models can be found on a diagonal of ``C`` and ``gamma``. Smooth models (lower ``gamma`` values) can be made more complex by selecting a larger number of support vectors (larger ``C`` values) hence the diagonal of good performing models. Finally one can also observe that for some intermediate values of ``gamma`` we get equally performing models when ``C`` becomes very large: it is not necessary to regularize by limiting the number of support vectors. The radius of the RBF kernel alone acts as a good structural regularizer. In practice though it might still be interesting to limit the number of support vectors with a lower value of ``C`` so as to favor models that use less memory and that are faster to predict. We should also note that small differences in scores results from the random splits of the cross-validation procedure. Those spurious variations can be smoothed out by increasing the number of CV iterations ``n_iter`` at the expense of compute time. Increasing the value number of ``C_range`` and ``gamma_range`` steps will increase the resolution of the hyper-parameter heat map. ''' print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import Normalize from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris from sklearn.cross_validation import StratifiedShuffleSplit from sklearn.grid_search import GridSearchCV # Utility function to move the midpoint of a colormap to be around # the values of interest. class MidpointNormalize(Normalize): def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): self.midpoint = midpoint Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y)) ############################################################################## # Load and prepare data set # # dataset for grid search iris = load_iris() X = iris.data y = iris.target # Dataset for decision function visualization: we only keep the first two # features in X and sub-sample the dataset to keep only 2 classes and # make it a binary classification problem. X_2d = X[:, :2] X_2d = X_2d[y > 0] y_2d = y[y > 0] y_2d -= 1 # It is usually a good idea to scale the data for SVM training. # We are cheating a bit in this example in scaling all of the data, # instead of fitting the transformation on the training set and # just applying it on the test set. scaler = StandardScaler() X = scaler.fit_transform(X) X_2d = scaler.fit_transform(X_2d) ############################################################################## # Train classifiers # # For an initial search, a logarithmic grid with basis # 10 is often helpful. Using a basis of 2, a finer # tuning can be achieved but at a much higher cost. C_range = np.logspace(-2, 10, 13) gamma_range = np.logspace(-9, 3, 13) param_grid = dict(gamma=gamma_range, C=C_range) cv = StratifiedShuffleSplit(y, n_iter=5, test_size=0.2, random_state=42) grid = GridSearchCV(SVC(), param_grid=param_grid, cv=cv) grid.fit(X, y) print("The best parameters are %s with a score of %0.2f" % (grid.best_params_, grid.best_score_)) # Now we need to fit a classifier for all parameters in the 2d version # (we use a smaller set of parameters here because it takes a while to train) C_2d_range = [1e-2, 1, 1e2] gamma_2d_range = [1e-1, 1, 1e1] classifiers = [] for C in C_2d_range: for gamma in gamma_2d_range: clf = SVC(C=C, gamma=gamma) clf.fit(X_2d, y_2d) classifiers.append((C, gamma, clf)) ############################################################################## # visualization # # draw visualization of parameter effects plt.figure(figsize=(8, 6)) xx, yy = np.meshgrid(np.linspace(-3, 3, 200), np.linspace(-3, 3, 200)) for (k, (C, gamma, clf)) in enumerate(classifiers): # evaluate decision function in a grid Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # visualize decision function for these parameters plt.subplot(len(C_2d_range), len(gamma_2d_range), k + 1) plt.title("gamma=10^%d, C=10^%d" % (np.log10(gamma), np.log10(C)), size='medium') # visualize parameter's effect on decision function plt.pcolormesh(xx, yy, -Z, cmap=plt.cm.RdBu) plt.scatter(X_2d[:, 0], X_2d[:, 1], c=y_2d, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.axis('tight') # plot the scores of the grid # grid_scores_ contains parameter settings and scores # We extract just the scores scores = [x[1] for x in grid.grid_scores_] scores = np.array(scores).reshape(len(C_range), len(gamma_range)) # Draw heatmap of the validation accuracy as a function of gamma and C # # The score are encoded as colors with the hot colormap which varies from dark # red to bright yellow. As the most interesting scores are all located in the # 0.92 to 0.97 range we use a custom normalizer to set the mid-point to 0.92 so # as to make it easier to visualize the small variations of score values in the # interesting range while not brutally collapsing all the low score values to # the same color. plt.figure(figsize=(8, 6)) plt.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95) plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot, norm=MidpointNormalize(vmin=0.2, midpoint=0.92)) plt.xlabel('gamma') plt.ylabel('C') plt.colorbar() plt.xticks(np.arange(len(gamma_range)), gamma_range, rotation=45) plt.yticks(np.arange(len(C_range)), C_range) plt.title('Validation accuracy') plt.show()
bsd-3-clause
anselmobd/fo2
script/mails.py
1
1576
import pandas as pd mails = pd.read_csv('../clientes.csv', sep=";", nrows=5) print(mails.head()) col1 = mails[['NOME_CLIENTE', 'E_MAIL']] print(col1) col2 = mails[['NOME_CLIENTE', 'NFE_E_MAIL']] col2 = col2.rename(columns={"NFE_E_MAIL": "E_MAIL"}) print(col2) col = pd.concat([col1, col2], ignore_index=True) print(col) # print('sort_values') # col = col.sort_values(['NOME_CLIENTE', 'E_MAIL']) # print(col) print('drop_duplicates') col = col.drop_duplicates(subset =None, keep = 'first') print(col) col = col.reset_index() print(col) col["E_MAIL"] = col["E_MAIL"].str.split(",") print(col) col = col.apply( pd.Series.explode ) print(col) col["E_MAIL"] = col["E_MAIL"].str.strip() print(col) print('drop_duplicates') col = col.drop_duplicates(subset =None, keep = 'first') print(col) col = col.reset_index() print(col) col["E_MAIL"] = col["E_MAIL"].str.split(";") print(col) col = col.apply( pd.Series.explode ) print(col) col["E_MAIL"] = col["E_MAIL"].str.strip() print(col) print('drop_duplicates') col = col.drop_duplicates(subset =None, keep = 'first') print(col) # # col = col.set_index(['NOME_CLIENTE']) # # print(col) # col = col.stack() # print(col) # col = col.str.split(',', expand=True) # print(col) # col = col.stack() # print(col) # col = col.unstack(-2) # print(col) # col = col.reset_index(-1, drop=True) # print(col) # col = col.reset_index() # print(col) # (col.set_index(['NOME_CLIENTE']) # .stack() # .str.split(',', expand=True) # .stack() # .unstack(-2) # .reset_index(-1, drop=True) # .reset_index() # )
mit
rew4332/tensorflow
tensorflow/contrib/learn/python/learn/tests/base_test.py
1
11936
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test base estimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random import tempfile import numpy as np import tensorflow as tf from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn import datasets from tensorflow.contrib.learn.python.learn.estimators import base from tensorflow.contrib.learn.python.learn.estimators._sklearn import accuracy_score from tensorflow.contrib.learn.python.learn.estimators._sklearn import log_loss from tensorflow.contrib.learn.python.learn.estimators._sklearn import mean_squared_error # TODO(b/29580537): Remove when we deprecate feature column inference. class InferredfeatureColumnTest(tf.test.TestCase): """Test base estimators.""" def testOneDim(self): random.seed(42) x = np.random.rand(1000) y = 2 * x + 3 regressor = learn.TensorFlowLinearRegressor() regressor.fit(x, y) score = mean_squared_error(y, regressor.predict(x)) self.assertLess(score, 1.0, "Failed with score = {0}".format(score)) def testIris(self): iris = datasets.load_iris() classifier = learn.TensorFlowLinearClassifier(n_classes=3) classifier.fit(iris.data, [x for x in iris.target]) score = accuracy_score(iris.target, classifier.predict(iris.data)) self.assertGreater(score, 0.7, "Failed with score = {0}".format(score)) def testIrisClassWeight(self): iris = datasets.load_iris() # Note, class_weight are not supported anymore :( Use weight_column. with self.assertRaises(ValueError): classifier = learn.TensorFlowLinearClassifier( n_classes=3, class_weight=[0.1, 0.8, 0.1]) classifier.fit(iris.data, iris.target) score = accuracy_score(iris.target, classifier.predict(iris.data)) self.assertLess(score, 0.7, "Failed with score = {0}".format(score)) def testIrisAllVariables(self): iris = datasets.load_iris() classifier = learn.TensorFlowLinearClassifier(n_classes=3) classifier.fit(iris.data, [x for x in iris.target]) self.assertEqual( classifier.get_variable_names(), ["centered_bias_weight", "centered_bias_weight/Adagrad", "global_step", # Double slashes appear because the column name is empty. If it was not # empty, the variable names would be "linear/column_name/_weight" etc. "linear//_weight", "linear//_weight/Ftrl", "linear//_weight/Ftrl_1", "linear/bias_weight", "linear/bias_weight/Ftrl", "linear/bias_weight/Ftrl_1"]) def testIrisSummaries(self): iris = datasets.load_iris() output_dir = tempfile.mkdtemp() + "learn_tests/" classifier = learn.TensorFlowLinearClassifier(n_classes=3, model_dir=output_dir) classifier.fit(iris.data, iris.target) score = accuracy_score(iris.target, classifier.predict(iris.data)) self.assertGreater(score, 0.5, "Failed with score = {0}".format(score)) # TODO(ipolosukhin): Check that summaries are correclty written. def testIrisContinueTraining(self): iris = datasets.load_iris() classifier = learn.TensorFlowLinearClassifier(n_classes=3, learning_rate=0.01, continue_training=True, steps=250) classifier.fit(iris.data, iris.target) score1 = accuracy_score(iris.target, classifier.predict(iris.data)) classifier.fit(iris.data, iris.target, steps=500) score2 = accuracy_score(iris.target, classifier.predict(iris.data)) self.assertGreater( score2, score1, "Failed with score2 {0} <= score1 {1}".format(score2, score1)) def testIrisStreaming(self): iris = datasets.load_iris() def iris_data(): while True: for x in iris.data: yield x def iris_predict_data(): for x in iris.data: yield x def iris_target(): while True: for y in iris.target: yield y classifier = learn.TensorFlowLinearClassifier(n_classes=3, steps=100) classifier.fit(iris_data(), iris_target()) score1 = accuracy_score(iris.target, classifier.predict(iris.data)) score2 = accuracy_score(iris.target, classifier.predict(iris_predict_data())) self.assertGreater(score1, 0.5, "Failed with score = {0}".format(score1)) self.assertEqual(score2, score1, "Scores from {0} iterator doesn't " "match score {1} from full " "data.".format(score2, score1)) def testIris_proba(self): # If sklearn available. if log_loss: random.seed(42) iris = datasets.load_iris() classifier = learn.TensorFlowClassifier(n_classes=3, steps=250) classifier.fit(iris.data, iris.target) score = log_loss(iris.target, classifier.predict_proba(iris.data)) self.assertLess(score, 0.8, "Failed with score = {0}".format(score)) def testBoston(self): random.seed(42) boston = datasets.load_boston() regressor = learn.TensorFlowLinearRegressor(batch_size=boston.data.shape[0], steps=500, learning_rate=0.001) regressor.fit(boston.data, boston.target) score = mean_squared_error(boston.target, regressor.predict(boston.data)) self.assertLess(score, 150, "Failed with score = {0}".format(score)) class BaseTest(tf.test.TestCase): """Test base estimators.""" def testOneDim(self): random.seed(42) x = np.random.rand(1000) y = 2 * x + 3 feature_columns = learn.infer_real_valued_columns_from_input(x) regressor = learn.TensorFlowLinearRegressor(feature_columns=feature_columns) regressor.fit(x, y) score = mean_squared_error(y, regressor.predict(x)) self.assertLess(score, 1.0, "Failed with score = {0}".format(score)) def testIris(self): iris = datasets.load_iris() classifier = learn.TensorFlowLinearClassifier( feature_columns=learn.infer_real_valued_columns_from_input(iris.data), n_classes=3) classifier.fit(iris.data, [x for x in iris.target]) score = accuracy_score(iris.target, classifier.predict(iris.data)) self.assertGreater(score, 0.7, "Failed with score = {0}".format(score)) def testIrisClassWeight(self): iris = datasets.load_iris() # Note, class_weight are not supported anymore :( Use weight_column. with self.assertRaises(ValueError): classifier = learn.TensorFlowLinearClassifier( feature_columns=learn.infer_real_valued_columns_from_input(iris.data), n_classes=3, class_weight=[0.1, 0.8, 0.1]) classifier.fit(iris.data, iris.target) score = accuracy_score(iris.target, classifier.predict(iris.data)) self.assertLess(score, 0.7, "Failed with score = {0}".format(score)) def testIrisAllVariables(self): iris = datasets.load_iris() classifier = learn.TensorFlowLinearClassifier( feature_columns=learn.infer_real_valued_columns_from_input(iris.data), n_classes=3) classifier.fit(iris.data, [x for x in iris.target]) self.assertEqual( classifier.get_variable_names(), ["centered_bias_weight", "centered_bias_weight/Adagrad", "global_step", # Double slashes appear because the column name is empty. If it was not # empty, the variable names would be "linear/column_name/_weight" etc. "linear//_weight", "linear//_weight/Ftrl", "linear//_weight/Ftrl_1", "linear/bias_weight", "linear/bias_weight/Ftrl", "linear/bias_weight/Ftrl_1"]) def testIrisSummaries(self): iris = datasets.load_iris() output_dir = tempfile.mkdtemp() + "learn_tests/" classifier = learn.TensorFlowLinearClassifier( feature_columns=learn.infer_real_valued_columns_from_input(iris.data), n_classes=3, model_dir=output_dir) classifier.fit(iris.data, iris.target) score = accuracy_score(iris.target, classifier.predict(iris.data)) self.assertGreater(score, 0.5, "Failed with score = {0}".format(score)) # TODO(ipolosukhin): Check that summaries are correclty written. def testIrisContinueTraining(self): iris = datasets.load_iris() classifier = learn.TensorFlowLinearClassifier( feature_columns=learn.infer_real_valued_columns_from_input(iris.data), n_classes=3, learning_rate=0.01, continue_training=True, steps=250) classifier.fit(iris.data, iris.target) score1 = accuracy_score(iris.target, classifier.predict(iris.data)) classifier.fit(iris.data, iris.target, steps=500) score2 = accuracy_score(iris.target, classifier.predict(iris.data)) self.assertGreater( score2, score1, "Failed with score2 {0} <= score1 {1}".format(score2, score1)) def testIrisStreaming(self): iris = datasets.load_iris() def iris_data(): while True: for x in iris.data: yield x def iris_predict_data(): for x in iris.data: yield x def iris_target(): while True: for y in iris.target: yield y classifier = learn.TensorFlowLinearClassifier( feature_columns=learn.infer_real_valued_columns_from_input(iris.data), n_classes=3, steps=100) classifier.fit(iris_data(), iris_target()) score1 = accuracy_score(iris.target, classifier.predict(iris.data)) score2 = accuracy_score(iris.target, classifier.predict(iris_predict_data())) self.assertGreater(score1, 0.5, "Failed with score = {0}".format(score1)) self.assertEqual(score2, score1, "Scores from {0} iterator doesn't " "match score {1} from full " "data.".format(score2, score1)) def testIris_proba(self): # If sklearn available. if log_loss: random.seed(42) iris = datasets.load_iris() classifier = learn.TensorFlowClassifier( feature_columns=learn.infer_real_valued_columns_from_input(iris.data), n_classes=3, steps=250) classifier.fit(iris.data, iris.target) score = log_loss(iris.target, classifier.predict_proba(iris.data)) self.assertLess(score, 0.8, "Failed with score = {0}".format(score)) def testBoston(self): random.seed(42) boston = datasets.load_boston() regressor = learn.TensorFlowLinearRegressor( feature_columns=learn.infer_real_valued_columns_from_input(boston.data), batch_size=boston.data.shape[0], steps=500, learning_rate=0.001) regressor.fit(boston.data, boston.target) score = mean_squared_error(boston.target, regressor.predict(boston.data)) self.assertLess(score, 150, "Failed with score = {0}".format(score)) def testUnfitted(self): estimator = learn.TensorFlowEstimator(model_fn=None, n_classes=1) with self.assertRaises(base.NotFittedError): estimator.predict([1, 2, 3]) with self.assertRaises(base.NotFittedError): estimator.save("/tmp/path") if __name__ == "__main__": tf.test.main()
apache-2.0
ekansa/open-context-py
opencontext_py/apps/utilities/one-off-processes-two.py
1
111312
""" One off processing scripts to handle edge cases, cleanup, and straggler data """ from opencontext_py.apps.ocitems.manifest.models import Manifest from opencontext_py.apps.imports.records.models import ImportCell from opencontext_py.apps.ldata.linkentities.models import LinkEntity from opencontext_py.apps.ldata.linkannotations.models import LinkAnnotation from opencontext_py.apps.ocitems.identifiers.ezid.ezid import EZID from opencontext_py.apps.ocitems.strings.manage import StringManagement from opencontext_py.apps.ocitems.assertions.models import Assertion ezid = EZID() # ezid.ark_shoulder = EZID.ARK_TEST_SHOULDER source_id = 'ref:2348747658045' pred_uuid = '74b9bacf-e5e8-4f3a-b43d-18bab4b2d635' project_uuid = '141e814a-ba2d-4560-879f-80f1afb019e9' pdf_base_link = 'https://archive.org/download/ArchaeologyOfAnImage/Archaeology-of-an-Image.pdf' pdf_page_offset = 0 page_link_dict = {} uuid_pages = {} imp_uuid_cells = ImportCell.objects.filter(source_id=source_id, field_num=5) for imp_uuid in imp_uuid_cells: uuid = imp_uuid.record man_objs = Manifest.objects.filter(uuid=uuid)[:1] if len(man_objs) > 0: man_obj = man_objs[0] # get pages imp_page_cells = ImportCell.objects.filter(source_id=source_id, field_num=3, row_num=imp_uuid.row_num)[:1] imp_link_cells = ImportCell.objects.filter(source_id=source_id, field_num=6, row_num=imp_uuid.row_num)[:1] imp_link = imp_link_cells[0] page_str = imp_page_cells[0].record page_ex = page_str.split(',') page_links = [] for page in page_ex: page = page.strip() page_num = None ark_uri = None try: page_num = int(float(page)) except: page_num = None if len(page) > 0 and isinstance(page_num, int): if uuid not in uuid_pages: uuid_pages[uuid] = [] if page_num not in uuid_pages[uuid]: uuid_pages[uuid].append(page_num) pdf_page = pdf_page_offset + page_num pdf_link = pdf_base_link + '#page=' + str(pdf_page) if pdf_link not in page_link_dict: page_link_dict[pdf_link] = { 'ark_uri': None, 'uuids': [] } meta = { 'erc.who': 'Mark Lehner', 'erc.what': 'The Archaeology of an Image: The Great Sphinx of Giza (Page: ' + page + ')', 'erc.when': 1991 } url = pdf_link ark_id = ezid.mint_identifier(url, meta, 'ark') if isinstance(ark_id, str): ark_uri = 'https://n2t.net/' + ark_id page_link_dict[pdf_link]['ark_uri'] = ark_uri else: ark_uri = page_link_dict[pdf_link]['ark_uri'] if uuid not in page_link_dict[pdf_link]['uuids']: page_link_dict[pdf_link]['uuids'].append(uuid) if isinstance(ark_uri, str): print('Page: ' + page + ' at: ' + ark_uri + ' to: ' + pdf_link) a_link = '<a href="' + ark_uri + '" target="_blank" title="Jump to page ' + page + ' in the dissertation">' + page + '</a>' if a_link not in page_links: page_links.append(a_link) all_pages = ', '.join(page_links) imp_link.record = all_pages imp_link.save() imp_link_cells = ImportCell.objects.filter(source_id=source_id, field_num=6, row_num=imp_uuid.row_num)[:1] all_pages = imp_link_cells[0].record page_notes = '<div><p>Associated pages:</p> <p>' + all_pages + '</p></div>' str_m = StringManagement() str_m.project_uuid = man_obj.project_uuid str_m.source_id = source_id str_obj = str_m.get_make_string(page_notes) Assertion.objects.filter(uuid=man_obj.uuid, predicate_uuid=pred_uuid).delete() new_ass = Assertion() new_ass.uuid = man_obj.uuid new_ass.subject_type = man_obj.item_type new_ass.project_uuid = man_obj.project_uuid new_ass.source_id = source_id new_ass.obs_node = '#obs-1' new_ass.obs_num = 1 new_ass.sort = 50 new_ass.visibility = 1 new_ass.predicate_uuid = pred_uuid # predicate note for about non-specialist new_ass.object_type = 'xsd:string' new_ass.object_uuid = str_obj.uuid # tb entry try: new_ass.save() except: pass # Makes a note that a cataloged item was described by a specialist # Makes cataloging descriptions appear in the 2nd observation tab from opencontext_py.apps.ocitems.strings.manage import StringManagement from opencontext_py.apps.ocitems.obsmetadata.models import ObsMetadata from opencontext_py.apps.ocitems.assertions.models import Assertion from opencontext_py.apps.entities.entity.models import Entity has_sp_des_pred = '7c053560-2385-43af-af11-6e58afdbeb10' sp_note_pred = 'b019efa8-c67a-4641-9340-b667ab73d498' sp_pred_asses = Assertion.objects.filter(predicate_uuid=has_sp_des_pred) change_obj_types = [ "types", "xsd:integer", "xsd:double", "xsd:date", "xsd:string", "complex-description", "xsd:boolean" ] class_lookups = { 'oc-gen:cat-human-bone': 'Suellen Gauld (Bioarchaeology / Human Remains)', 'oc-gen:cat-animal-bone': 'Sarah Whitcher Kansa (Zooarchaeology / Animal Remains)' } change_source_ids = [] uuid_entities = {} for ass in sp_pred_asses: uuid = ass.uuid if uuid not in uuid_entities: uuid_entities[uuid] = [] entity = Entity() found = entity.dereference(ass.object_uuid) print('found a ' + entity.class_uri) uuid_entities[uuid].append(entity) for ass in sp_pred_asses: uuid = ass.uuid print('Update: ' + uuid) note = '<div>' note += '<p><strong>Catalog Record with Specialist Descriptions</strong></p>' note += '<p>This catalog record has additional descriptive information provided by one or more ' note += 'specialized researchers. Specialist provided descriptions should be regarded as more ' note += 'authoritative.</p>' note += '<br/>' note += '<p>Links to Specialist Records:</p>' note += '<ul class="list-unstyled">' for entity in uuid_entities[uuid]: note += '<li>' note += '<a target="_blank" href="../../subjects/' + entity.uuid + '">' + entity.label + '</a>' note += '; described by ' note += class_lookups[entity.class_uri] note += '</li>' note += '</ul>' note += '</div>' str_m = StringManagement() str_m.project_uuid = ass.project_uuid str_m.source_id = 'catalog-specialist-note' str_obj = str_m.get_make_string(note) new_ass = Assertion() new_ass.uuid = uuid new_ass.subject_type = ass.subject_type new_ass.project_uuid = ass.project_uuid new_ass.source_id = 'catalog-specialist-note' new_ass.obs_node = '#obs-1' new_ass.obs_num = 1 new_ass.sort = 1 new_ass.visibility = 1 new_ass.predicate_uuid = sp_note_pred # predicate note for about non-specialist new_ass.object_type = 'xsd:string' new_ass.object_uuid = str_obj.uuid # tb entry try: new_ass.save() except: pass change_asses = Assertion.objects\ .filter(uuid=uuid, obs_num=1, object_type__in=change_obj_types)\ .exclude(predicate_uuid=sp_note_pred)\ .exclude(source_id__startswith='sec-')\ .exclude(source_id='catalog-specialist-note')\ .exclude(visibility=0) for change_ass in change_asses: new_change_ass = change_ass change_ass.visibility = 0 change_ass.save() new_change_ass.hash_id = None new_change_ass.visibility = 0 new_source_id = 'sec-' + change_ass.source_id new_change_ass.source_id = new_source_id new_change_ass.obs_node = '#obs-2' new_change_ass.obs_num = 2 try: new_change_ass.save() except: pass if new_source_id not in change_source_ids: # make new source metadata ometa = ObsMetadata() ometa.source_id = new_source_id ometa.project_uuid = ass.project_uuid ometa.obs_num = 2 ometa.label = 'Non-Specialist Description' ometa.obs_type = 'oc-gen:primary' ometa.note = 'From cataloging' try: ometa.save() except: pass change_source_ids.append(new_source_id) from opencontext_py.apps.ocitems.assertions.models import Assertion pred_uuid = '59415979-72f8-4558-9e74-052fae4eed07' asses = Assertion.objects.filter(predicate_uuid=pred_uuid) for ass in asses: asses_check = Assertion.objects.filter(uuid=ass.uuid, predicate_uuid=pred_uuid) if len(asses_check) > 1: all_item_count = 0 print('Multiple counts for: ' + ass.uuid + ' source: ' + ass.source_id) for item_ass in asses_check: new_source_id = item_ass.source_id + '-fix' try: item_count = int(float(item_ass.data_num)) except: item_count = 0 print('Item count: ' + str(item_count)) all_item_count += item_count if all_item_count > 0: new_ass = asses_check[0] new_ass.hash_id = None new_source_id = new_ass.source_id + '-fix' new_ass.source_id = new_source_id new_ass.data_num = all_item_count new_ass.save() bad_ass = Assertion.objects\ .filter(uuid=ass.uuid, predicate_uuid=pred_uuid)\ .exclude(source_id=new_source_id)\ .delete() from opencontext_py.apps.ocitems.manifest.models import Manifest from opencontext_py.apps.ldata.linkentities.models import LinkEntity from opencontext_py.apps.ldata.linkannotations.models import LinkAnnotation from opencontext_py.apps.ocitems.subjects.models import Subject ca_subjects = Subject.objects.filter(context__startswith='United States/California', project_uuid='416A274C-CF88-4471-3E31-93DB825E9E4A') pred_uri = 'dc-terms:isReferencedBy' hearst_uri = 'http://hearstmuseum.berkeley.edu' for ca_subj in ca_subjects: ok_mans = Manifest.objects.filter(uuid=ca_subj.uuid, class_uri='oc-gen:cat-site')[:1] annos = LinkAnnotation.objects.filter(subject=ca_subj.uuid, predicate_uri=pred_uri, object_uri=hearst_uri)[:1] if len(ok_mans) > 0 and len(annos) < 1: # we have a site in the manifest that has no links to the hearst man_obj = ok_mans[0] print('Relate Hearst to site: ' + man_obj.label) la = LinkAnnotation() la.subject = man_obj.uuid # the subordinate is the subject la.subject_type = man_obj.item_type la.project_uuid = man_obj.project_uuid la.source_id = 'hearst-link' la.predicate_uri = pred_uri la.object_uri = hearst_uri try: la.save() except: pass import json from opencontext_py.apps.ocitems.manifest.models import Manifest from opencontext_py.apps.ocitems.subjects.models import Subject from opencontext_py.apps.ocitems.geospace.models import Geospace from opencontext_py.apps.indexer.reindex import SolrReIndex from opencontext_py.apps.imports.records.models import ImportCell from opencontext_py.apps.imports.fieldannotations.models import ImportFieldAnnotation source_id = 'ref:1990625792930' project_uuid = '416A274C-CF88-4471-3E31-93DB825E9E4A' uuids = [] man_objs = Manifest.objects.filter(project_uuid=project_uuid, class_uri='oc-gen:cat-site') for man_obj in man_objs: geos = Geospace.objects.filter(uuid=man_obj.uuid)[:1] if len(geos) < 1: # no geospatial data label_cells = ImportCell.objects.filter(source_id=source_id, field_num=1, record=man_obj.uuid) for label_cell in label_cells: lat = None lon = None row_num = label_cell.row_num lat_cells = ImportCell.objects.filter(source_id=source_id, field_num=11, row_num=row_num)[:1] lon_cells = ImportCell.objects.filter(source_id=source_id, field_num=12, row_num=row_num)[:1] if len(lat_cells) > 0 and len(lon_cells) >0: try: lat = float(lat_cells[0].record) except: lat = None try: lon = float(lon_cells[0].record) except: lon = None if isinstance(lat, float) and isinstance(lon, float): uuids.append(man_obj.uuid) geo = Geospace() geo.uuid = man_obj.uuid geo.project_uuid = man_obj.project_uuid geo.source_id = source_id + '-geofix' geo.item_type = man_obj.item_type geo.feature_id = 1 geo.meta_type = ImportFieldAnnotation.PRED_GEO_LOCATION geo.ftype = 'Point' geo.latitude = lat geo.longitude = lon geo.specificity = -11 # dump coordinates as json string in lon - lat (GeoJSON order) geo.coordinates = json.dumps([lon, lat], indent=4, ensure_ascii=False) try: geo.save() except: print('Did not like ' + man_obj.label + ' uuid: ' + str(man_obj.uuid)) sri = SolrReIndex() sri.reindex_uuids(uuids) from opencontext_py.apps.ocitems.obsmetadata.models import ObsMetadata from opencontext_py.apps.ocitems.assertions.observations import AssertionObservations ometa = ObsMetadata() ometa.source_id = 'ref:1716440680966' ometa.project_uuid = 'DF043419-F23B-41DA-7E4D-EE52AF22F92F' ometa.obs_num = 5 ometa.label = 'Grid Coordinates' ometa.obs_type = 'oc-gen:primary' ometa.note = 'X, Y, and sometimes Z spatial coordinates' ometa.save() class_uri = 'oc-gen:cat-object' aos = AssertionObservations() aos.change_obs_num_by_source_id(ometa.obs_num, ometa.source_id, class_uri) class_uris = [ 'oc-gen:cat-object', 'oc-gen:cat-arch-element', 'oc-gen:cat-glass', 'oc-gen:cat-pottery', 'oc-gen:cat-coin'] for class_uri in class_uris: aos = AssertionObservations() aos.change_obs_num_by_source_id(ometa.obs_num, ometa.source_id, class_uri) from opencontext_py.libs.general import LastUpdatedOrderedDict from opencontext_py.apps.ocitems.assertions.models import Assertion from opencontext_py.apps.ocitems.manifest.models import Manifest media_uuid = '6c89e96d-d97e-4dba-acbe-e822fc1f87e7' project_uuid = 'DF043419-F23B-41DA-7E4D-EE52AF22F92F' media_man = Manifest.objects.get(uuid=media_uuid) if not isinstance(media_man.sup_json, dict): meta = LastUpdatedOrderedDict() else: meta = media_man.sup_json meta['Leaflet'] = LastUpdatedOrderedDict() meta['Leaflet']['bounds'] = [[43.153660, 11.402448],[43.152420, 11.400873]] meta['Leaflet']['label'] = 'Orientalizing, Archaic Features' media_man.sup_json = meta media_man.save() Assertion.objects\ .filter(uuid=project_uuid, predicate_uuid=Assertion.PREDICATES_GEO_OVERLAY)\ .delete() from opencontext_py.apps.ocitems.assertions.models import Assertion from opencontext_py.apps.ocitems.manifest.models import Manifest project_uuid = '10aa84ad-c5de-4e79-89ce-d83b75ed72b5' media_uuid = 'da676164-9829-4798-bb5d-c5b1135daa27' media_man = Manifest.objects.get(uuid=media_uuid) ass = Assertion() ass.uuid = project_uuid ass.subject_type = 'projects' ass.project_uuid = project_uuid ass.source_id = 'heit-el-ghurab-geo-overlay' ass.obs_node = '#obs-' + str(1) ass.obs_num = 1 ass.sort = 1 ass.visibility = 1 ass.predicate_uuid = Assertion.PREDICATES_GEO_OVERLAY ass.object_uuid = media_man.uuid ass.object_type = media_man.item_type ass.save() from opencontext_py.apps.ocitems.identifiers.ezid.manage import EZIDmanage from opencontext_py.apps.ocitems.manifest.models import Manifest mans = Manifest.objects.filter(source_id='ref:2181193573133') ezid_m = EZIDmanage() for man in mans: ezid_m.make_save_ark_by_uuid(man.uuid) from opencontext_py.libs.general import LastUpdatedOrderedDict from opencontext_py.apps.ocitems.assertions.models import Assertion from opencontext_py.apps.ocitems.manifest.models import Manifest media_uuid = 'da676164-9829-4798-bb5d-c5b1135daa27' project_uuid = '5A6DDB94-70BE-43B4-2D5D-35D983B21515' media_man = Manifest.objects.get(uuid=media_uuid) if not isinstance(media_man.sup_json, dict): meta = LastUpdatedOrderedDict() else: meta = media_man.sup_json meta['Leaflet'] = LastUpdatedOrderedDict() meta['Leaflet']['bounds'] = [[29.9686630883, 31.1427860408999], [29.9723641789999, 31.1396409363999]] meta['Leaflet']['label'] = 'Heit el-Ghurab Areas' media_man.sup_json = meta media_man.save() Assertion.objects\ .filter(uuid=project_uuid, predicate_uuid=Assertion.PREDICATES_GEO_OVERLAY)\ .delete() ass = Assertion() ass.uuid = project_uuid ass.subject_type = 'projects' ass.project_uuid = project_uuid ass.source_id = 'test-geo-overlay' ass.obs_node = '#obs-' + str(1) ass.obs_num = 1 ass.sort = 1 ass.visibility = 1 ass.predicate_uuid = Assertion.PREDICATES_GEO_OVERLAY ass.object_uuid = media_man.uuid ass.object_type = media_man.item_type ass.save() from opencontext_py.apps.ocitems.manifest.models import Manifest from opencontext_py.apps.indexer.reindex import SolrReIndex uuids = [] items = Manifest.objects.filter(project_uuid='416A274C-CF88-4471-3E31-93DB825E9E4A') for item in items: uuids.append(item.uuid) print('Items to index: ' + str(len(uuids))) sri = SolrReIndex() sri.max_geo_zoom = 11 sri.reindex_uuids(uuids) from opencontext_py.apps.ocitems.assertions.models import Assertion from opencontext_py.apps.ocitems.mediafiles.models import Mediafile from opencontext_py.apps.indexer.reindex import SolrReIndex project_uuid = 'DF043419-F23B-41DA-7E4D-EE52AF22F92F' source_id = 'pc-iiif-backfill' meds = Mediafile.objects.filter(project_uuid=project_uuid, source_id=source_id) req_types = ['oc-gen:thumbnail', 'oc-gen:preview', 'oc-gen:fullfile'] for media in meds: for type in req_types: media_ok = Mediafile.objects.filter(uuid=media.uuid, file_type=type) if not media_ok: print('Missing {} for {}'.format(type, media.uuid)) ia_fulls = Mediafile.objects.filter(uuid=media.uuid, file_type='oc-gen:ia-fullfile')[:1] n_media = ia_fulls[0] n_media.hash_id = None n_media.source_id = ia_fulls[0].source_id n_media.file_type = 'oc-gen:fullfile' n_media.file_uri = ia_fulls[0].file_uri n_media.save() base_uri = media.file_uri.replace('/info.json', '') for type in types: n_media = media n_media.hash_id = None n_media.source_id = source_id n_media.file_type = type['file_type'] n_media.file_uri = base_uri + type['suffix'] n_media.save() ia_fulls = Mediafile.objects.filter(uuid=media.uuid, file_type='oc-gen:ia-fullfile')[:1] if ia_fulls: n_media = media n_media.hash_id = None n_media.source_id = source_id n_media.file_type = 'oc-gen:fullfile' n_media.file_uri = ia_fulls[0].file_uri n_media.save() fixed_media.append(media.uuid) from opencontext_py.apps.ocitems.assertions.models import Assertion from opencontext_py.apps.ocitems.mediafiles.models import Mediafile from opencontext_py.apps.indexer.reindex import SolrReIndex project_uuid = 'DF043419-F23B-41DA-7E4D-EE52AF22F92F' source_id = 'pc-iiif-backfill' fixed_media = [] medias = Mediafile.objects.filter(project_uuid=project_uuid, source_id=source_id) for media in medias: if media.uuid not in fixed_media: fixed_media.append(media.uuid) uuids = fixed_media ass_o = Assertion.objects.filter(uuid__in=fixed_media, object_type='subjects') for ass in ass_o: if ass.object_uuid not in uuids: uuids.append(ass.object_uuid) ass_s = Assertion.objects.filter(object_uuid__in=fixed_media, subject_type='subjects') for ass in ass_s: if ass.object_uuid not in uuids: uuids.append(ass.object_uuid) print('Items to index: ' + str(len(uuids))) sri = SolrReIndex() sri.reindex_uuids(uuids) from opencontext_py.apps.imports.geojson.geojson import GeoJSONimport gimp = GeoJSONimport() gimp.load_into_importer = False gimp.project_uuid = 'DF043419-F23B-41DA-7E4D-EE52AF22F92F' gimp.source_id = 'vesco_trenches_2017_4326' json_obj = gimp.load_json_file('pc-geo', 'vesco_trenches_2017_4326.geojson') gimp.save_no_coord_file(json_obj, 'pc-geo', 'vesco_trenches_2017_4326.geojson') from opencontext_py.apps.imports.geojson.geojson import GeoJSONimport from opencontext_py.apps.ocitems.geospace.models import Geospace print('Delete old PC geospatial data') Geospace.objects\ .filter(project_uuid='DF043419-F23B-41DA-7E4D-EE52AF22F92F', ftype__in=['Polygon', 'Multipolygon']).delete() gimp = GeoJSONimport() gimp.load_into_importer = False gimp.project_uuid = 'DF043419-F23B-41DA-7E4D-EE52AF22F92F' gimp.source_id = 'vesco_trenches_2017_4326' json_obj = gimp.load_json_file('pc-geo', 'vesco_trenches_2017_4326.geojson') vdm_props = { '1': {'uri': 'https://opencontext.org/subjects/4C242A96-3C0A-4187-48CD-6287241F09CD'}, '10': {'uri': 'https://opencontext.org/subjects/F6E97C59-EE6F-4824-863E-6596AA68BE2D'}, '11': {'uri': 'https://opencontext.org/subjects/F6E97C59-EE6F-4824-863E-6596AA68BE2D'}, '12': {'uri': 'https://opencontext.org/subjects/F6E97C59-EE6F-4824-863E-6596AA68BE2D'}, '13': {'uri': 'https://opencontext.org/subjects/F6E97C59-EE6F-4824-863E-6596AA68BE2D'}, '14': {'uri': 'https://opencontext.org/subjects/E252E83F-68D7-4671-85E3-70ED3A0A62B3'}, '15': {'uri': 'https://opencontext.org/subjects/8D6B6694-6E88-4D3F-9494-A9EE95C78B44'}, '16': {'uri': 'https://opencontext.org/subjects/8D6B6694-6E88-4D3F-9494-A9EE95C78B44'}, '17': {'uri': 'https://opencontext.org/subjects/6d37f225-f83a-4d6b-8e6a-0b138b29f236'}, '18': {'uri': 'https://opencontext.org/subjects/33e3d75f-7ba0-4d64-b36c-96daf288d06e'}, '19': {'uri': 'https://opencontext.org/subjects/ce22d11f-721a-4050-9576-f807a25ddefa'}, '2': {'uri': 'https://opencontext.org/subjects/25A27283-05AF-42E2-C839-3D8605EEC6BD'}, '20': {'uri': 'https://opencontext.org/subjects/c7049909-f2de-4b43-a9b4-d19a5c516532'}, '21': {'uri': 'https://opencontext.org/subjects/c7049909-f2de-4b43-a9b4-d19a5c516532'}, '22': {'uri': 'https://opencontext.org/subjects/608f3452-daf4-4e93-b953-3adb06c7a0cb'}, '23': {'uri': 'https://opencontext.org/subjects/5870f6a9-dbb0-425d-9c8b-2424a9fa060a'}, '24': {'uri': 'https://opencontext.org/subjects/bf9a4138-7c96-4c54-8553-004444eec143'}, '25': {'uri': 'https://opencontext.org/subjects/ad8357b1-b46c-4bfe-a221-25b403dcef0f'}, '26': {'uri': 'https://opencontext.org/subjects/244e8a86-c472-47e2-baaf-fcfe3f67a014'}, '27': {'uri': 'https://opencontext.org/subjects/7de5e185-77fb-4ff5-b73b-b47b870acae2'}, '28': {'uri': 'https://opencontext.org/subjects/d91c02df-bc3c-476a-a48e-6eb735397692'}, '3': {'uri': 'https://opencontext.org/subjects/25A27283-05AF-42E2-C839-3D8605EEC6BD'}, '4': {'uri': 'https://opencontext.org/subjects/25A27283-05AF-42E2-C839-3D8605EEC6BD'}, '5': {'uri': 'https://opencontext.org/subjects/25A27283-05AF-42E2-C839-3D8605EEC6BD'}, '6': {'uri': 'https://opencontext.org/subjects/25A27283-05AF-42E2-C839-3D8605EEC6BD'}, '7': {'uri': 'https://opencontext.org/subjects/25A27283-05AF-42E2-C839-3D8605EEC6BD'}, '8': {'uri': 'https://opencontext.org/subjects/F6E97C59-EE6F-4824-863E-6596AA68BE2D'}, '9': {'uri': 'https://opencontext.org/subjects/F6E97C59-EE6F-4824-863E-6596AA68BE2D'}, } id_prop = 'PolygonID' gimp.save_partial_clean_file(json_obj, 'pc-geo', 'vesco_trenches_2017_4326.geojson', id_prop, ok_ids=False, add_props=vdm_props, combine_json_obj=None) gimp.load_into_importer = False gimp.process_features_in_file('pc-geo', 'id-clean-coord-vesco_trenches_2017_4326.geojson') from opencontext_py.apps.imports.geojson.geojson import GeoJSONimport gimp = GeoJSONimport() gimp.load_into_importer = False gimp.project_uuid = 'DF043419-F23B-41DA-7E4D-EE52AF22F92F' gimp.source_id = 'pc_trenches_2017_4326' pc_json_obj = gimp.load_json_file('pc-geo', 'pc_trenches_2017_4326.geojson') pc_props = { '1': {'uri': 'https://opencontext.org/subjects/17085BC0-4FA1-4236-6426-4861AD48B584'}, '10': {'uri': 'https://opencontext.org/subjects/87E9B5C3-0828-4F60-5F9A-DB48CCAB3CCA'}, '100': {'uri': 'https://opencontext.org/subjects/A386907E-C61D-4AC4-068D-77F3D2ADFA3E'}, '101': {'uri': 'https://opencontext.org/subjects/7E17DFBB-8F0F-4A19-3F74-F9268FBD6813'}, '102': {'uri': 'https://opencontext.org/subjects/EF628D6D-2A2D-4E6B-F86A-834A451F8296'}, '103': {'uri': 'https://opencontext.org/subjects/4B45D8C9-AF08-4518-1E80-321D2DBDB074'}, '104': {'uri': 'https://opencontext.org/subjects/6B8C2C81-B703-4D15-F23E-50A38DD4A387'}, '105': {'uri': 'https://opencontext.org/subjects/4BC62D10-69D8-49DB-2CA9-7C3DFD74E0C8'}, '106': {'uri': 'https://opencontext.org/subjects/8D224FCC-D368-4993-BC69-A4EDCBCA60D4'}, '107': {'uri': 'https://opencontext.org/subjects/AC6DFAF1-8E69-480D-A687-AFDA354FCFF5'}, '108': {'uri': 'https://opencontext.org/subjects/11E97C36-9CC5-4616-3C82-771E1EF62BD9'}, '109': {'uri': 'https://opencontext.org/subjects/AAB28E39-CEBE-455C-F495-CF7B408971FE'}, '11': {'uri': 'https://opencontext.org/subjects/500EC0EE-1078-4BE4-762D-3C66FCF853C2'}, '110': {'uri': 'https://opencontext.org/subjects/AAB28E39-CEBE-455C-F495-CF7B408971FE'}, '111': {'uri': 'https://opencontext.org/subjects/D68CE259-7E7B-4AE4-590A-4E5EA96265FC'}, '112': {'uri': 'https://opencontext.org/subjects/67905CDA-1882-4B23-F0D5-68C45FD0B862'}, '113': {'uri': 'https://opencontext.org/subjects/2F24BD3F-2E57-4645-E593-7BA1DB674321'}, '114': {'uri': 'https://opencontext.org/subjects/C334AB97-3C6F-4D01-BA1D-C245A73EDE34'}, '115': {'uri': 'https://opencontext.org/subjects/658B0F2F-0B65-4013-75E5-0056683D0AC8'}, '116': {'uri': 'https://opencontext.org/subjects/5376A5D0-B805-4CEE-490F-78A659777449'}, '117': {'uri': 'https://opencontext.org/subjects/C7EAC347-78B3-4FC2-16E2-561ACBA7D836'}, '118': {'uri': 'https://opencontext.org/subjects/A63E424C-A2AF-469B-A85D-AC1CC690B2A9'}, '119': {'uri': 'https://opencontext.org/subjects/6B98F59B-D05F-4B47-0761-E13EE798C019'}, '12': {'uri': 'https://opencontext.org/subjects/A5049327-BCCE-43B2-AA50-2FBEBD620BDF'}, '120': {'uri': 'https://opencontext.org/subjects/BF820055-F9BB-4C0B-F214-9495E60B7161'}, '121': {'uri': 'https://opencontext.org/subjects/0AC6B338-54BA-41FB-D5D8-59D8227AC31C'}, '122': {'uri': 'https://opencontext.org/subjects/30114327-F531-4D7D-2906-A91B80C2A595'}, '123': {'uri': 'https://opencontext.org/subjects/E89A8B35-2975-4E7A-4B07-5DC7E17F29E9'}, '124': {'uri': 'https://opencontext.org/subjects/DB8A88C9-CA9E-44DD-9E67-ACA26D5AE831'}, '125': {'uri': 'https://opencontext.org/subjects/38EB7FE3-D403-4515-D17D-ECCEE1472E3A'}, '126': {'uri': 'https://opencontext.org/subjects/14BE93AE-020D-42E2-24AD-604BE3C60F89'}, '127': {'uri': 'https://opencontext.org/subjects/9259D8F1-C05C-497F-07C4-E5803BA00709'}, '128': {'uri': 'https://opencontext.org/subjects/136A7CDF-13D8-4BAD-4E71-01CB93C4056F'}, '129': {'uri': 'https://opencontext.org/subjects/3B24EA00-CA9E-4762-52A2-5A170BCE1402'}, '13': {'uri': 'https://opencontext.org/subjects/60F9B8C2-7279-4BF5-9BD1-A0A1C3747017'}, '130': {'uri': 'https://opencontext.org/subjects/77830F25-F564-4094-19B9-7DB8ABA08945'}, '131': {'uri': 'https://opencontext.org/subjects/3427ED52-FEA9-4E28-E250-4ECF923A116A'}, '132': {'uri': 'https://opencontext.org/subjects/3E90BC2C-C826-4A12-6382-131B825BFA27'}, '133': {'uri': 'https://opencontext.org/subjects/B0F889B2-6D71-4022-F311-CAA9919A9ECC'}, '134': {'uri': 'https://opencontext.org/subjects/BCDC5D9E-BB8B-4159-F6B0-2A9474C123BD'}, '135': {'uri': 'https://opencontext.org/subjects/039766CC-521F-46B6-2B98-40210F7DA8F1'}, '136': {'uri': 'https://opencontext.org/subjects/56201674-F881-47CC-7000-B2C52FFE9E3A'}, '137': {'uri': 'https://opencontext.org/subjects/54252D07-A291-4B75-6C6E-AD4E831F564C'}, '138': {'uri': 'https://opencontext.org/subjects/54252D07-A291-4B75-6C6E-AD4E831F564C'}, '139': {'uri': 'https://opencontext.org/subjects/6621600B-3B5D-4B99-71F9-E42C18656E59'}, '14': {'uri': 'https://opencontext.org/subjects/3C36CD47-17FE-4390-AA8B-0BA9AF8C0A79'}, '140': {'uri': 'https://opencontext.org/subjects/4454F19D-C295-4E35-7124-98A6661CFF51'}, '141': {'uri': 'https://opencontext.org/subjects/646F3438-9BBF-46F1-71E9-0BEC2E095EA4'}, '142': {'uri': 'https://opencontext.org/subjects/847268D2-B10F-4CBB-FFEC-577630572C9C'}, '143': {'uri': 'https://opencontext.org/subjects/847268D2-B10F-4CBB-FFEC-577630572C9C'}, '144': {'uri': 'https://opencontext.org/subjects/847268D2-B10F-4CBB-FFEC-577630572C9C'}, '145': {'uri': 'https://opencontext.org/subjects/99CB9EB0-1EDA-412D-7FBD-04BCD5E44DCF'}, '146': {'uri': 'https://opencontext.org/subjects/C7823AAC-4E80-48B0-A6E6-B772C58873A4'}, '147': {'uri': 'https://opencontext.org/subjects/7C56C14F-9336-443D-4D1F-602299831244'}, '148': {'uri': 'https://opencontext.org/subjects/7C56C14F-9336-443D-4D1F-602299831244'}, '149': {'uri': 'https://opencontext.org/subjects/8A9B8A77-37BB-4BF8-DC57-D30EDB73C629'}, '15': {'uri': 'https://opencontext.org/subjects/A08A8F9B-DFAC-436C-6D6E-F08EDE4C40DB'}, '150': {'uri': 'https://opencontext.org/subjects/2FED46FB-BCF6-439B-B15E-307881DF5011'}, '151': {'uri': 'https://opencontext.org/subjects/4C9DE9EB-687B-41CD-E5DC-90CD3B55ADFA'}, '152': {'uri': 'https://opencontext.org/subjects/444151E3-24F0-421F-9BD9-6E29DE9F62C7'}, '153': {'uri': 'https://opencontext.org/subjects/444151E3-24F0-421F-9BD9-6E29DE9F62C7'}, '154': {'uri': 'https://opencontext.org/subjects/4AC3D7E6-8B05-480A-320E-B2AA1266759A'}, '155': {'uri': 'https://opencontext.org/subjects/78BB679E-20F6-499C-C274-16BB6A3CD53D'}, '156': {'uri': 'https://opencontext.org/subjects/B98E614B-DA64-41BE-1CE8-9E5D3496C96D'}, '157': {'uri': 'https://opencontext.org/subjects/A13A7840-04F0-492A-C8E3-C1EA488B006C'}, '158': {'uri': 'https://opencontext.org/subjects/F05B2B91-CCD4-4ED0-F2BF-F1E2DBEA354B'}, '159': {'uri': 'https://opencontext.org/subjects/F05B2B91-CCD4-4ED0-F2BF-F1E2DBEA354B'}, '16': {'uri': 'https://opencontext.org/subjects/BBEF5707-C16F-4BFD-932E-5D9B83F6D9C4'}, '160': {'uri': 'https://opencontext.org/subjects/E2E20765-3196-4443-E62C-8C7799708399'}, '161': {'uri': 'https://opencontext.org/subjects/04D907B0-A850-4129-03FB-CBABA554171F'}, '162': {'uri': 'https://opencontext.org/subjects/BE445D1C-6756-4B3B-4691-5D749A93F7FB'}, '163': {'uri': 'https://opencontext.org/subjects/81EDC6F0-153D-4881-3AE7-25E4A8E20806'}, '164': {'uri': 'https://opencontext.org/subjects/A3CDCB91-5B30-4305-EFF7-1014AB258A0E'}, '165': {'uri': 'https://opencontext.org/subjects/09E36D34-E5DA-432E-9367-057D3ECF26F6'}, '166': {'uri': 'https://opencontext.org/subjects/1486CEF9-FB7E-48A5-1468-306C069785BD'}, '167': {'uri': 'https://opencontext.org/subjects/4500CA4A-4B5A-41E8-5337-1C77990375AF'}, '168': {'uri': 'https://opencontext.org/subjects/A5E7AF56-BB36-4490-2EEB-9F9EA2AE1368'}, '169': {'uri': 'https://opencontext.org/subjects/0BD521E1-A442-48DC-C45F-4CA748597550'}, '17': {'uri': 'https://opencontext.org/subjects/476CA37D-D70D-443E-45AD-D58B57F9CCEF'}, '170': {'uri': 'https://opencontext.org/subjects/E25F27C3-CDFC-4D39-9B9A-A749A8A80F64'}, '171': {'uri': 'https://opencontext.org/subjects/E9298DF1-5F47-4BC6-7086-75B9B5E0E880'}, '172': {'uri': 'https://opencontext.org/subjects/8EF7AA6F-6CE3-4B45-B488-302E52BB9615'}, '173': {'uri': 'https://opencontext.org/subjects/36AA7F2A-F090-43A2-B5C8-A18B16276E6B'}, '174': {'uri': 'https://opencontext.org/subjects/9D983826-70DE-48F2-A145-B33A171E8928'}, '175': {'uri': 'https://opencontext.org/subjects/5C8BA00A-FD53-4D68-8BA8-8A4A17F4CBD6'}, '176': {'uri': 'https://opencontext.org/subjects/66EBB4F3-2E71-49D9-002D-EE6079231F29'}, '177': {'uri': 'https://opencontext.org/subjects/6EC9E1CA-1595-4B39-DE94-07669E96D51B'}, '178': {'uri': 'https://opencontext.org/subjects/5879C9ED-5FCF-4062-4477-FA5B44250143'}, '179': {'uri': 'https://opencontext.org/subjects/373B16B4-8E0F-4008-8D24-43685AA72064'}, '18': {'uri': 'https://opencontext.org/subjects/3D84308C-A4D6-4F47-263F-243596729D25'}, '180': {'uri': 'https://opencontext.org/subjects/905A30A8-A71D-44DF-3181-437816B64864'}, '181': {'uri': 'https://opencontext.org/subjects/09AE421A-F835-4C9B-F74E-45DD9F270E9D'}, '182': {'uri': 'https://opencontext.org/subjects/905A30A8-A71D-44DF-3181-437816B64864'}, '183': {'uri': 'https://opencontext.org/subjects/F143FA0B-93C8-435F-D34A-BBF4725708AF'}, '184': {'uri': 'https://opencontext.org/subjects/8E75346E-ECCB-4BF0-77C1-C33BCB95D18D'}, '185': {'uri': 'https://opencontext.org/subjects/CEFDF473-5B63-4B3F-B16F-C4E77E03F2BE'}, '186': {'uri': 'https://opencontext.org/subjects/1B0D3E3D-14BE-4951-990B-76835166281C'}, '187': {'uri': 'https://opencontext.org/subjects/A0E5EDD4-7388-450B-DF1C-68203EDE247A'}, '188': {'uri': 'https://opencontext.org/subjects/AC085185-FEDB-4A4B-D077-FCEAC65730D0'}, '189': {'uri': 'https://opencontext.org/subjects/5A9DE9D3-9A86-494F-04C9-487D17FA9D2C'}, '19': {'uri': 'https://opencontext.org/subjects/8FAC8645-1EA7-4C7B-60AD-5ECEEB808DC2'}, '190': {'uri': 'https://opencontext.org/subjects/E8BDB401-722D-45D4-DC6D-52A041BB1C35'}, '191': {'uri': 'https://opencontext.org/subjects/7251FBF7-631D-44C3-C0B6-5753A0E24659'}, '192': {'uri': 'https://opencontext.org/subjects/3AA9E720-0371-4443-5A40-5FE6A5E1DCAE'}, '193': {'uri': 'https://opencontext.org/subjects/E5E80BD3-81E5-4215-29E8-602D59A2B8D8'}, '194': {'uri': 'https://opencontext.org/subjects/51CA7A3E-5D5A-43F6-9B15-937DEC71AB63'}, '195': {'uri': 'https://opencontext.org/subjects/BA2D283E-9EC4-47AE-4B5E-3C933662B0FF'}, '196': {'uri': 'https://opencontext.org/subjects/041BC004-3A2B-4821-CC1A-F5FFC283E537'}, '197': {'uri': 'https://opencontext.org/subjects/6CA4122D-0AF2-4F2B-D8BF-C77584AD386D'}, '198': {'uri': 'https://opencontext.org/subjects/9FF8641D-C19B-4DFB-4DE9-65300B0AF24F'}, '199': {'uri': 'https://opencontext.org/subjects/EB236367-CCE3-4A53-EB80-351E2E598E90'}, '2': {'uri': 'https://opencontext.org/subjects/855F361E-68D8-4BBE-5895-B351F48E8233'}, '20': {'uri': 'https://opencontext.org/subjects/DFA0AB59-9398-46B7-3955-5DA0439DFED9'}, '200': {'uri': 'https://opencontext.org/subjects/3D75850B-7ECD-4675-B297-3FF2F5106D97'}, '201': {'uri': 'https://opencontext.org/subjects/3ECF9E3D-995B-4156-6AB7-87A8BA5BCA99'}, '202': {'uri': 'https://opencontext.org/subjects/3ECF9E3D-995B-4156-6AB7-87A8BA5BCA99'}, '203': {'uri': 'https://opencontext.org/subjects/AB508F4F-DF85-45D9-C8B1-3147603347E5'}, '204': {'uri': 'https://opencontext.org/subjects/AB508F4F-DF85-45D9-C8B1-3147603347E5'}, '205': {'uri': 'https://opencontext.org/subjects/171AA8D2-BC5F-4D17-F3B0-5A49DD4E3DB2'}, '206': {'uri': 'https://opencontext.org/subjects/0888EE5A-F13A-4E8B-F5FF-959DA485F55B'}, '207': {'uri': 'https://opencontext.org/subjects/DE5EFA76-4851-4AFC-DF09-467D249AB1B9'}, '208': {'uri': 'https://opencontext.org/subjects/41EC3704-2F60-4CA1-07C3-FBB954170F67'}, '209': {'uri': 'https://opencontext.org/subjects/E31ABF39-8A5C-4AC3-C0DE-ACCD8E741502'}, '21': {'uri': 'https://opencontext.org/subjects/EC80D676-F07E-4174-E781-8795D4BF599A'}, '210': {'uri': 'https://opencontext.org/subjects/42A76947-22B6-4AC1-C96B-46A543A98DFC'}, '211': {'uri': 'https://opencontext.org/subjects/8AC933DF-D0C3-479A-9D7F-1BD5854AC9C6'}, '212': {'uri': 'https://opencontext.org/subjects/8AC933DF-D0C3-479A-9D7F-1BD5854AC9C6'}, '213': {'uri': 'https://opencontext.org/subjects/BFA79728-C24A-431D-94A4-EA96FBCD266A'}, '214': {'uri': 'https://opencontext.org/subjects/1F718097-88C2-4292-3396-CDF0C832CDF8'}, '215': {'uri': 'https://opencontext.org/subjects/D5F8DC06-7FFD-4309-54BD-A690E1CEC570'}, '216': {'uri': 'https://opencontext.org/subjects/B9276437-4E36-4E08-2D09-7FAA0AE7B7D2'}, '217': {'uri': 'https://opencontext.org/subjects/B91809DA-A28D-438B-F735-636D941825E1'}, '218': {'uri': 'https://opencontext.org/subjects/53EB84D5-7033-4C0A-3473-1703AC111198'}, '219': {'uri': 'https://opencontext.org/subjects/F81F3432-2A5C-40E4-CE78-B40E4BE7A3F7'}, '22': {'uri': 'https://opencontext.org/subjects/7251FBF7-631D-44C3-C0B6-5753A0E24659'}, '220': {'uri': 'https://opencontext.org/subjects/97712850-B663-425C-54BD-914A6AD5AC95'}, '221': {'uri': 'https://opencontext.org/subjects/8A817258-0759-47E8-0B1E-FFAC21AD9D3E'}, '222': {'uri': 'https://opencontext.org/subjects/1427AB95-F567-4A47-630B-094E82651A49'}, '223': {'uri': 'https://opencontext.org/subjects/5E978F37-6FF0-4E05-7D7E-62B5AB2C918F'}, '224': {'uri': 'https://opencontext.org/subjects/D0825B7B-9B4F-49F4-A455-88D951C8FADE'}, '225': {'uri': 'https://opencontext.org/subjects/E56EEAAE-AE6D-49A5-B2AE-6ED1E4D38655'}, '226': {'uri': 'https://opencontext.org/subjects/32B61533-BE8C-481D-CFD9-31C7AA2DB5B0'}, '227': {'uri': 'https://opencontext.org/subjects/85401603-A817-48C1-E331-9C63BA143CC9'}, '228': {'uri': 'https://opencontext.org/subjects/A7F2CCBF-3A83-4AA0-2BD0-0E2E99900624'}, '229': {'uri': 'https://opencontext.org/subjects/19CFB9F3-77F7-4EDF-0B90-E9D6E76BCD77'}, '23': {'uri': 'https://opencontext.org/subjects/0F4B79C5-D28E-466D-1B6D-F16B9DDE4F1E'}, '230': {'uri': 'https://opencontext.org/subjects/7F063C00-F507-4EB3-A384-B487190459E4'}, '231': {'uri': 'https://opencontext.org/subjects/7F063C00-F507-4EB3-A384-B487190459E4'}, '232': {'uri': 'https://opencontext.org/subjects/302EA385-93D1-441E-617E-9B5D172EB9EA'}, '233': {'uri': 'https://opencontext.org/subjects/E06C5503-D300-4E11-9001-BA93C6F8FDAF'}, '234': {'uri': 'https://opencontext.org/subjects/93AB3DC0-E669-45E2-678F-4E41BF0664C4'}, '235': {'uri': 'https://opencontext.org/subjects/9736FA6A-3373-4429-50A3-1FB235E00649'}, '236': {'uri': 'https://opencontext.org/subjects/C004D54D-C176-4792-BE08-792D9195317A'}, '237': {'uri': 'https://opencontext.org/subjects/C004D54D-C176-4792-BE08-792D9195317A'}, '238': {'uri': 'https://opencontext.org/subjects/C004D54D-C176-4792-BE08-792D9195317A'}, '239': {'uri': 'https://opencontext.org/subjects/B663BA3E-CEF9-40FC-3546-4C5AC7122EFB'}, '24': {'uri': 'https://opencontext.org/subjects/6D6DA14B-CDE3-4A36-650D-A80A611C0689'}, '240': {'uri': 'https://opencontext.org/subjects/2B395B34-F1D9-4C59-EE39-97E3CE1831A2'}, '241': {'uri': 'https://opencontext.org/subjects/0AC6B338-54BA-41FB-D5D8-59D8227AC31C'}, '242': {'uri': 'https://opencontext.org/subjects/8161DF34-30A4-4B36-977F-ED68EA59CA5A'}, '243': {'uri': 'https://opencontext.org/subjects/6AE46285-0A75-4C91-0C8A-693540D22612'}, '244': {'uri': 'https://opencontext.org/subjects/6AE46285-0A75-4C91-0C8A-693540D22612'}, '245': {'uri': 'https://opencontext.org/subjects/6AE46285-0A75-4C91-0C8A-693540D22612'}, '246': {'uri': 'https://opencontext.org/subjects/1C8A3854-31C8-42DC-D4BB-254ECCE95B62'}, '247': {'uri': 'https://opencontext.org/subjects/1C8A3854-31C8-42DC-D4BB-254ECCE95B62'}, '248': {'uri': 'https://opencontext.org/subjects/17A80550-E9DA-4D5B-F69B-21A32B3C1458'}, '249': {'uri': 'https://opencontext.org/subjects/EF7C1C1F-7CDA-4D22-06D8-E0B6B1C6D9D8'}, '25': {'uri': 'https://opencontext.org/subjects/A6B061FA-C808-4282-D03E-8D80A26FF325'}, '250': {'uri': 'https://opencontext.org/subjects/E82D1F24-BFAD-49D7-7E19-007759D2E2C8'}, '251': {'uri': 'https://opencontext.org/subjects/E82D1F24-BFAD-49D7-7E19-007759D2E2C8'}, '252': {'uri': 'https://opencontext.org/subjects/4114E192-9D65-4123-2079-11BD3DD647E3'}, '253': {'uri': 'https://opencontext.org/subjects/5C7C5703-C751-4458-9611-3994A62AC974'}, '254': {'uri': 'https://opencontext.org/subjects/CCD880A0-1197-4B38-B82F-222C02D10C41'}, '255': {'uri': 'https://opencontext.org/subjects/211173B4-BA77-42E7-7A84-AFACA458D082'}, '256': {'uri': 'https://opencontext.org/subjects/F1DC6BC7-F794-4429-13FA-65D4D52475C5'}, '257': {'uri': 'https://opencontext.org/subjects/1B0D3E3D-14BE-4951-990B-76835166281C'}, '258': {'uri': 'https://opencontext.org/subjects/381CAEAA-235F-469D-160E-A03BB9B334F7'}, '259': {'uri': 'https://opencontext.org/subjects/18DD4EDD-CF3F-4829-A003-87AFA4ED6742'}, '26': {'uri': 'https://opencontext.org/subjects/3F1E1F75-3A5E-4105-1DD2-94C776DE493F'}, '260': {'uri': 'https://opencontext.org/subjects/97B3FB48-CF5E-4D97-6FC7-E6213BAE2CE7'}, '261': {'uri': 'https://opencontext.org/subjects/02E6EEFA-F1CE-4584-752D-44175C50626C'}, '262': {'uri': 'https://opencontext.org/subjects/9B6EB7FC-0506-4F28-22A5-D8C725E7C8A7'}, '263': {'uri': 'https://opencontext.org/subjects/4DAF1629-9562-4894-53BE-76AAA63E2BB3'}, '264': {'uri': 'https://opencontext.org/subjects/038DC277-D83A-492B-F5CE-AE13DCE3D50B'}, '265': {'uri': 'https://opencontext.org/subjects/403CDCF6-C5CF-4FC2-C66C-075F99EA91AD'}, '266': {'uri': 'https://opencontext.org/subjects/85BCD16C-705B-4CC5-C88A-52C280711A7B'}, '267': {'uri': 'https://opencontext.org/subjects/E651CBEF-B83D-4ED4-21FD-A8A9AE2C18BD'}, '268': {'uri': 'https://opencontext.org/subjects/8FD93D1C-264C-40B6-9A72-1F3EAB44C8B6'}, '269': {'uri': 'https://opencontext.org/subjects/2A1A12F4-F920-4A59-35C5-70D8D7FEC492'}, '27': {'uri': 'https://opencontext.org/subjects/644BB446-6A25-46E8-64C9-E8735E227E72'}, '270': {'uri': 'https://opencontext.org/subjects/9673D2A7-4426-412B-CDCB-1D74FAC4BD20'}, '271': {'uri': 'https://opencontext.org/subjects/3CD9CA1D-069B-4A65-3DFD-3D170AE8023C'}, '272': {'uri': 'https://opencontext.org/subjects/BE44A1B2-774B-4BB0-AFDF-4617996CFF76'}, '273': {'uri': 'https://opencontext.org/subjects/05CAB086-0E36-478C-F72C-22A15ABCFB19'}, '274': {'uri': 'https://opencontext.org/subjects/321D5BD9-70EE-4095-FD3E-C80B00CDEC78'}, '275': {'uri': 'https://opencontext.org/subjects/66213B47-0DE6-450B-10DF-D9143C5C8BC2'}, '276': {'uri': 'https://opencontext.org/subjects/034AA229-42A6-4B45-287E-E5C409981CF9'}, '277': {'uri': 'https://opencontext.org/subjects/83304A03-52E2-411F-4E36-DBEAC7A441D1'}, '278': {'uri': 'https://opencontext.org/subjects/F1360278-6001-43DF-F344-B11A536AF061'}, '279': {'uri': 'https://opencontext.org/subjects/E947308A-5F9A-41DD-E98A-D63BEA1CE1D9'}, '28': {'uri': 'https://opencontext.org/subjects/3F761187-D0A8-40CD-358E-2F7DB01DBA47'}, '280': {'uri': 'https://opencontext.org/subjects/EEB08529-F0BE-4311-53E7-1A4C8BCC200D'}, '281': {'uri': 'https://opencontext.org/subjects/938BCA2C-161D-4DC5-130B-C54C98EC8F82'}, '282': {'uri': 'https://opencontext.org/subjects/AFCE6C74-53DE-46B2-EF24-F4E1C5DAE3D6'}, '283': {'uri': 'https://opencontext.org/subjects/769885E1-C279-470D-5F7C-18AE42CB00AC'}, '284': {'uri': 'https://opencontext.org/subjects/C03933DF-64F7-4C78-75A3-980B41CB53D8'}, '285': {'uri': 'https://opencontext.org/subjects/7A31B205-C6D1-4D24-EBA4-D93D5732E28A'}, '286': {'uri': 'https://opencontext.org/subjects/10BFDD6B-7BD6-4714-F81F-2D7E52D243D6'}, '287': {'uri': 'https://opencontext.org/subjects/2042B811-D07C-4665-2CAB-6C9673E54127'}, '288': {'uri': 'https://opencontext.org/subjects/BA3576D9-DF16-4AE9-532A-841CCF20DF84'}, '289': {'uri': 'https://opencontext.org/subjects/00FABCF8-A821-4934-9A17-0C23DC2106B4'}, '29': {'uri': 'https://opencontext.org/subjects/03C05DB2-62DF-43B2-605B-56AEFA277051'}, '290': {'uri': 'https://opencontext.org/subjects/1107E1D5-DFAD-4D63-3DD2-1096AE61587D'}, '291': {'uri': 'https://opencontext.org/subjects/B19C4F26-ED8C-46BF-0A9A-2565484C9ED6'}, '292': {'uri': 'https://opencontext.org/subjects/8C7F1700-D3B1-408F-0BB7-D10B775F2B2E'}, '293': {'uri': 'https://opencontext.org/subjects/E84623B7-E3D6-4BC1-C5F7-4AD36E4D6E81'}, '294': {'uri': 'https://opencontext.org/subjects/F8D0AFB5-CC02-4756-E6A9-474692BE78C3'}, '295': {'uri': 'https://opencontext.org/subjects/F2E38A8D-1156-43CC-8EFC-875820D95FD4'}, '296': {'uri': 'https://opencontext.org/subjects/4D825459-8568-47A5-9A85-8510957AABB8'}, '297': {'uri': 'https://opencontext.org/subjects/9020295D-29DE-4709-1657-F077C4C2057E'}, '298': {'uri': 'https://opencontext.org/subjects/0D9788F5-D6FB-425C-D87E-252D6A1D2F55'}, '299': {'uri': 'https://opencontext.org/subjects/8FEC1F08-B91F-4F02-3065-42C80DFA828C'}, '3': {'uri': 'https://opencontext.org/subjects/BBDC297E-7AC1-4925-E775-6D1B75CC280C'}, '30': {'uri': 'https://opencontext.org/subjects/E2E20765-3196-4443-E62C-8C7799708399'}, '300': {'uri': 'https://opencontext.org/subjects/59109ADC-4DDB-4223-0BA1-E0C5593A20F7'}, '301': {'uri': 'https://opencontext.org/subjects/FD2FA15C-22AC-4585-360F-8FF50C98791F'}, '302': {'uri': 'https://opencontext.org/subjects/865868E6-B3F9-43D4-1EAF-B2FA1008C3A7'}, '303': {'uri': 'https://opencontext.org/subjects/FE6761C0-9514-48E9-CEAB-D8D7CD0A44F8'}, '304': {'uri': 'https://opencontext.org/subjects/4595251B-B67A-4132-443B-0000E2044C85'}, '305': {'uri': 'https://opencontext.org/subjects/FF55F04E-E14E-4230-7155-6DBCDAAFAB19'}, '306': {'uri': 'https://opencontext.org/subjects/21EE7A84-703B-49DA-60FB-D7FAFA83FD6E'}, '307': {'uri': 'https://opencontext.org/subjects/1F380C32-EDA5-4F74-59CF-05BC44055468'}, '308': {'uri': 'https://opencontext.org/subjects/A03E5EA3-CC6F-4BAE-3FA0-D7E8931ADCF5'}, '309': {'uri': 'https://opencontext.org/subjects/1E07D087-DE44-4B52-0C69-21481B1E6816'}, '31': {'uri': 'https://opencontext.org/subjects/5B5550EC-78D2-4766-2E71-D54E3A4AAC6A'}, '310': {'uri': 'https://opencontext.org/subjects/F17D401C-A890-49B3-972F-C516DA9DFC8D'}, '311': {'uri': 'https://opencontext.org/subjects/E5E80BD3-81E5-4215-29E8-602D59A2B8D8'}, '312': {'uri': 'https://opencontext.org/subjects/6F340337-95B3-48E1-D09B-D5D7FF9700E0'}, '313': {'uri': 'https://opencontext.org/subjects/24878B9F-E641-49A6-E7BE-F536303A96BD'}, '314': {'uri': 'https://opencontext.org/subjects/BAC52ED6-040A-4E6B-95CF-3FE40592A951'}, '315': {'uri': 'https://opencontext.org/subjects/E72D3E97-C3FD-4C21-8B4D-6F153221E59F'}, '316': {'uri': 'https://opencontext.org/subjects/9879A755-C08A-498B-3DA2-283E5D8A4346'}, '317': {'uri': 'https://opencontext.org/subjects/FDD41CEF-BCE8-4EF1-53AA-A702F71D081E'}, '318': {'uri': 'https://opencontext.org/subjects/8B1452F5-ABF0-4F10-9196-9964B1E10C8F'}, '319': {'uri': 'https://opencontext.org/subjects/13781DFA-0D2C-41FC-8D12-EF779F960074'}, '32': {'uri': 'https://opencontext.org/subjects/7A2631C5-ABBD-46F6-6A6B-0C23EA819370'}, '320': {'uri': 'https://opencontext.org/subjects/BA4DD0AC-D9FC-43AE-B343-7A100244FCE0'}, '321': {'uri': 'https://opencontext.org/subjects/BA4DD0AC-D9FC-43AE-B343-7A100244FCE0'}, '322': {'uri': 'https://opencontext.org/subjects/BA4DD0AC-D9FC-43AE-B343-7A100244FCE0'}, '323': {'uri': 'https://opencontext.org/subjects/C1EFFCC9-3FBD-46C0-2160-38A6273DFDEB'}, '324': {'uri': 'https://opencontext.org/subjects/D1385646-A2B3-4A24-35A8-E7FE4D2B9E8E'}, '325': {'uri': 'https://opencontext.org/subjects/C1769D8F-A55C-4E1A-4398-8CDC1524A589'}, '326': {'uri': 'https://opencontext.org/subjects/F1C8EDE7-B1AB-41FE-998F-820C5F85074C'}, '327': {'uri': 'https://opencontext.org/subjects/DDF93AE8-2CB7-4FC8-0D49-A204D6D19451'}, '328': {'uri': 'https://opencontext.org/subjects/C4E13506-CCFB-4538-8307-412EAB609CAB'}, '329': {'uri': 'https://opencontext.org/subjects/AC23FDFA-A661-4EAF-5B68-64409F2DEE3C'}, '33': {'uri': 'https://opencontext.org/subjects/3A6C5062-5C6A-4886-87CD-DD15B4636809'}, '330': {'uri': 'https://opencontext.org/subjects/1715F935-44F4-46B0-458A-CA73117B66F7'}, '331': {'uri': 'https://opencontext.org/subjects/3B1B5BDC-9CEA-4F21-46CF-A1698373CEDE'}, '332': {'uri': 'https://opencontext.org/subjects/C6841408-C4D0-4F1F-B163-0F093BD2EC6F'}, '333': {'uri': 'https://opencontext.org/subjects/44D03EAE-759A-4C90-0B20-CAB6BC8E010F'}, '334': {'uri': 'https://opencontext.org/subjects/44D03EAE-759A-4C90-0B20-CAB6BC8E010F'}, '335': {'uri': 'https://opencontext.org/subjects/88085F60-2240-4894-166D-11233971C5CA'}, '336': {'uri': 'https://opencontext.org/subjects/88085F60-2240-4894-166D-11233971C5CA'}, '337': {'uri': 'https://opencontext.org/subjects/9F5548EF-C05A-471A-2531-99D056C0392E'}, '338': {'uri': 'https://opencontext.org/subjects/9F5548EF-C05A-471A-2531-99D056C0392E'}, '339': {'uri': 'https://opencontext.org/subjects/8C6D0960-E44D-4C77-EB65-B1BF15B23C1C'}, '34': {'uri': 'https://opencontext.org/subjects/E7750CB4-79E0-423C-6F71-4B991EB487DD'}, '340': {'uri': 'https://opencontext.org/subjects/CF45634D-C744-4FBE-CB30-DE94362392F5'}, '341': {'uri': 'https://opencontext.org/subjects/BB5078E0-E3D7-4876-7115-AB3C1730E483'}, '342': {'uri': 'https://opencontext.org/subjects/B79DEFA4-EB3A-4E9D-DB25-711792610C21'}, '343': {'uri': 'https://opencontext.org/subjects/1F515D40-4915-4B7C-A644-07ADDD89ACD4'}, '344': {'uri': 'https://opencontext.org/subjects/9F5D7919-2266-4617-40B9-45CAFA9B178E'}, '345': {'uri': 'https://opencontext.org/subjects/82001ECC-766E-4B9F-2FB0-AF5F30722583'}, '346': {'uri': 'https://opencontext.org/subjects/368588E0-9A4F-4E00-2CF8-C4DA561557BF'}, '347': {'uri': 'https://opencontext.org/subjects/7C536C68-D9B1-4B34-01E9-B8187E757580'}, '348': {'uri': 'https://opencontext.org/subjects/B07D574D-336E-4FC5-B9BE-59136145193D'}, '349': {'uri': 'https://opencontext.org/subjects/7DD8061F-FCC1-4E69-C8D6-50FCB1CBF2A0'}, '35': {'uri': 'https://opencontext.org/subjects/DA41F536-AD71-413E-048C-C572046069B4'}, '350': {'uri': 'https://opencontext.org/subjects/A9F9AD0A-3A54-49D5-21B1-2CB331F82966'}, '351': {'uri': 'https://opencontext.org/subjects/BF12F33F-C18C-4F84-0470-B64F86679044'}, '352': {'uri': 'https://opencontext.org/subjects/BF12F33F-C18C-4F84-0470-B64F86679044'}, '353': {'uri': 'https://opencontext.org/subjects/51EE0E7F-DC67-4911-2E53-57AF8F5068B9'}, '354': {'uri': 'https://opencontext.org/subjects/49F45331-EB08-4E19-FA31-4C9AC639C388'}, '355': {'uri': 'https://opencontext.org/subjects/8DC1810D-17C9-4064-D1AC-526CE4FB1B69'}, '356': {'uri': 'https://opencontext.org/subjects/51811248-1469-45CE-EA1C-33B61A244055'}, '357': {'uri': 'https://opencontext.org/subjects/E9425F5E-9AEC-43F0-E0A9-2D64F97F5D2A'}, '358': {'uri': 'https://opencontext.org/subjects/122F81BF-29C7-4B62-0E43-E68059D21B8C'}, '359': {'uri': 'https://opencontext.org/subjects/171AA8D2-BC5F-4D17-F3B0-5A49DD4E3DB2'}, '36': {'uri': 'https://opencontext.org/subjects/0D1E2474-6E46-4348-AD85-800AB9F3D80D'}, '360': {'uri': 'https://opencontext.org/subjects/83E9F7D3-4B39-4734-476B-F64E3AB4D584'}, '361': {'uri': 'https://opencontext.org/subjects/ED527E93-E63F-4FA6-A9A1-407F9EC2F3C1'}, '362': {'uri': 'https://opencontext.org/subjects/68F088F1-A2C1-4072-A9AB-EE6001F30CF8'}, '363': {'uri': 'https://opencontext.org/subjects/388BB97A-C9B0-4EBB-FA5D-2A7B57460547'}, '364': {'uri': 'https://opencontext.org/subjects/905B4EA0-91A8-4B10-0020-7841C86953B0'}, '365': {'uri': 'https://opencontext.org/subjects/4B93CE0F-AD3C-45E2-A260-C52F71792F3A'}, '366': {'uri': 'https://opencontext.org/subjects/CA2126B2-51B5-43A6-FBE2-CEAF068934A7'}, '367': {'uri': 'https://opencontext.org/subjects/3AFAAAB3-24C6-4F5D-D993-DA4006935924'}, '368': {'uri': 'https://opencontext.org/subjects/BA2D283E-9EC4-47AE-4B5E-3C933662B0FF'}, '369': {'uri': 'https://opencontext.org/subjects/B1AAE78E-ACD4-4B1F-CA46-EF64F7310195'}, '37': {'uri': 'https://opencontext.org/subjects/10AEE2E8-FFB6-4CD7-A7E4-8434BD2A7287'}, '370': {'uri': 'https://opencontext.org/subjects/6E9A747F-A5CA-40B6-2E21-61EB5CF4E6CA'}, '371': {'uri': 'https://opencontext.org/subjects/f9d2cc31-9892-49d5-a0f8-4e6fb084833e'}, '372': {'uri': 'https://opencontext.org/subjects/00E9665A-780D-4390-CFBF-B48A970759CB'}, '373': {'uri': 'https://opencontext.org/subjects/2196C174-D15B-428D-BB25-B375B2CE1AA6'}, '374': {'uri': 'https://opencontext.org/subjects/0C5F1A52-D6F4-456B-6041-4604F7C54855'}, '375': {'uri': 'https://opencontext.org/subjects/cd3e05e0-cd2d-42f4-936b-4399af5c66d2'}, '376': {'uri': 'https://opencontext.org/subjects/525E6271-B403-495D-0956-A316F186DC65'}, '377': {'uri': 'https://opencontext.org/subjects/ecba8803-74d2-40ac-a63a-54ee3dce5d2c'}, '378': {'uri': 'https://opencontext.org/subjects/cf217633-6fba-4002-8dec-472a8416f1dd'}, '379': {'uri': 'https://opencontext.org/subjects/45C6D049-10DD-4FFF-78F4-08D6D32642FC'}, '38': {'uri': 'https://opencontext.org/subjects/282A6231-1FDA-4DD2-9E9B-BA5F25BC7E37'}, '380': {'uri': 'https://opencontext.org/subjects/0C5F1A52-D6F4-456B-6041-4604F7C54855'}, '381': {'uri': 'https://opencontext.org/subjects/254dc26d-0431-4e75-8c50-ab6016c0df7e'}, '382': {'uri': 'https://opencontext.org/subjects/78ca532e-d943-482a-bb88-3fc43862bdda'}, '383': {'uri': 'https://opencontext.org/subjects/5071035d-3771-48d5-89fd-f59c01f96e74'}, '384': {'uri': 'https://opencontext.org/subjects/5AD193FF-803A-4D25-273B-F874B29AF6EC'}, '385': {'uri': 'https://opencontext.org/subjects/1a6306d7-a0f3-4b45-9667-6854f9e21100'}, '386': {'uri': 'https://opencontext.org/subjects/23e7aafa-37d8-4e72-b92e-5e94fedfd207'}, '387': {'uri': 'https://opencontext.org/subjects/2f2d6d6e-a85e-4876-af9d-01e83668f5e9'}, '388': {'uri': 'https://opencontext.org/subjects/80c59cb5-d6ca-4b88-8e93-cab9c1e3798f'}, '389': {'uri': 'https://opencontext.org/subjects/4ba347eb-5401-407a-a65b-7206754259ad'}, '39': {'uri': 'https://opencontext.org/subjects/ECCC7A10-11C7-43DA-74E6-726210980A54'}, '390': {'uri': 'https://opencontext.org/subjects/4acaaff3-cab7-4391-940b-6f6cb9946186'}, '391': {'uri': 'https://opencontext.org/subjects/e7100971-7904-4848-9215-47d12309f089'}, '392': {'uri': 'https://opencontext.org/subjects/eccf1e45-88e2-4072-98a5-d04eaa7c3b70'}, '393': {'uri': 'https://opencontext.org/subjects/2189b8ab-a4a5-490a-83dd-3b9c2e2385d2'}, '394': {'uri': 'https://opencontext.org/subjects/254dc26d-0431-4e75-8c50-ab6016c0df7e'}, '395': {'uri': 'https://opencontext.org/subjects/2ab489e7-014b-4437-aeca-c243e019695a'}, '396': {'uri': 'https://opencontext.org/subjects/cc79062b-1b2c-417b-9295-299e89d26c97'}, '397': {'uri': 'https://opencontext.org/subjects/5071035d-3771-48d5-89fd-f59c01f96e74'}, '398': {'uri': 'https://opencontext.org/subjects/17924BE4-6A53-47C1-0E6A-D9C8F840F2D9'}, '399': {'uri': 'https://opencontext.org/subjects/61bd5ada-45dd-4cf3-b620-8ba839f85753'}, '4': {'uri': 'https://opencontext.org/subjects/D5464A7B-A7B0-4D11-368C-ECF47D1B9389'}, '40': {'uri': 'https://opencontext.org/subjects/736422CB-0786-43EC-C243-85E7CB2C7315'}, '400': {'uri': 'https://opencontext.org/subjects/61bd5ada-45dd-4cf3-b620-8ba839f85753'}, '401': {'uri': 'https://opencontext.org/subjects/61bd5ada-45dd-4cf3-b620-8ba839f85753'}, '402': {'uri': 'https://opencontext.org/subjects/9420190e-3d76-44cf-ae0f-279900c4a56c'}, '403': {'uri': 'https://opencontext.org/subjects/70a10d8f-5bec-46ab-aa02-6453e66e167e'}, '404': {'uri': 'https://opencontext.org/subjects/9420190e-3d76-44cf-ae0f-279900c4a56c'}, '405': {'uri': 'https://opencontext.org/subjects/f675c9ad-e4b3-4125-937e-21d64ed8fd30'}, '406': {'uri': 'https://opencontext.org/subjects/f675c9ad-e4b3-4125-937e-21d64ed8fd30'}, '407': {'uri': 'https://opencontext.org/subjects/bfc2ff8b-1d8a-49ba-bb5e-e64ae799a642'}, '408': {'uri': 'https://opencontext.org/subjects/bfc2ff8b-1d8a-49ba-bb5e-e64ae799a642'}, '409': {'uri': 'https://opencontext.org/subjects/bfc2ff8b-1d8a-49ba-bb5e-e64ae799a642'}, '41': {'uri': 'https://opencontext.org/subjects/67B642B7-C0AC-4ED7-FD60-4DC7E54861C5'}, '410': {'uri': 'https://opencontext.org/subjects/1f5549bf-2d1e-4eab-aa1c-a23e76cff1d4'}, '411': {'uri': 'https://opencontext.org/subjects/1f5549bf-2d1e-4eab-aa1c-a23e76cff1d4'}, '412': {'uri': 'https://opencontext.org/subjects/753ff890-7e5c-4854-93e8-0c1d40e1683a'}, '413': {'uri': 'https://opencontext.org/subjects/311c66b1-75d5-49c1-9593-481228048c07'}, '414': {'uri': 'https://opencontext.org/subjects/311c66b1-75d5-49c1-9593-481228048c07'}, '415': {'uri': 'https://opencontext.org/subjects/6ffcb588-d41e-4749-86db-351bcfba50c4'}, '417': {'uri': 'https://opencontext.org/subjects/7b01d4eb-7821-419e-9df4-d72d06513a6d'}, '418': {'uri': 'https://opencontext.org/subjects/7b01d4eb-7821-419e-9df4-d72d06513a6d'}, '419': {'uri': 'https://opencontext.org/subjects/503bb312-f0cc-4ecf-9443-66a81f9dc683'}, '42': {'uri': 'https://opencontext.org/subjects/03C2F519-5258-4880-C762-42673862AD9E'}, '420': {'uri': 'https://opencontext.org/subjects/dc245337-3117-4551-837e-42c02d297a2e'}, '421': {'uri': 'https://opencontext.org/subjects/dc245337-3117-4551-837e-42c02d297a2e'}, '422': {'uri': 'https://opencontext.org/subjects/dc245337-3117-4551-837e-42c02d297a2e'}, '423': {'uri': 'https://opencontext.org/subjects/28a6cc00-fbab-40f1-90e6-01c66376926b'}, '424': {'uri': 'https://opencontext.org/subjects/28a6cc00-fbab-40f1-90e6-01c66376926b'}, '425': {'uri': 'https://opencontext.org/subjects/284a39ef-3e9f-4dac-8dc9-87b94095f382'}, '426': {'uri': 'https://opencontext.org/subjects/284a39ef-3e9f-4dac-8dc9-87b94095f382'}, '427': {'uri': 'https://opencontext.org/subjects/284a39ef-3e9f-4dac-8dc9-87b94095f382'}, '428': {'uri': 'https://opencontext.org/subjects/d0ec09bd-399d-46f0-8ec9-8f5936044f1c'}, '429': {'uri': 'https://opencontext.org/subjects/db6cca7f-78cb-4043-adb4-c3de5d791910'}, '43': {'uri': 'https://opencontext.org/subjects/751B3F35-088B-46B2-71E7-A555D058491D'}, '430': {'uri': 'https://opencontext.org/subjects/a236e90a-f7b6-44b9-af1b-dc259071ab4f'}, '431': {'uri': 'https://opencontext.org/subjects/0a00d502-984f-4449-8bdc-8245093690f8'}, '432': {'uri': 'https://opencontext.org/subjects/5ccfc2a2-4139-41fd-9961-fdc03420e0bf'}, '433': {'uri': 'https://opencontext.org/subjects/3bd49b02-b954-46ad-8cc6-a0fa4ca48906'}, '434': {'uri': 'https://opencontext.org/subjects/3bd49b02-b954-46ad-8cc6-a0fa4ca48906'}, '435': {'uri': 'https://opencontext.org/subjects/991fd662-e8c0-4dfd-9b1f-d7233429ca3a'}, '436': {'uri': 'https://opencontext.org/subjects/ea552ea2-e2aa-4db3-9372-2377958369c4'}, '437': {'uri': 'https://opencontext.org/subjects/c8f7fff7-4681-4a40-a049-0f15e1a3602e'}, '438': {'uri': 'https://opencontext.org/subjects/7d0c9b3e-1d2a-4c6a-978a-edfa6e40fd2b'}, '439': {'uri': 'https://opencontext.org/subjects/7d0c9b3e-1d2a-4c6a-978a-edfa6e40fd2b'}, '44': {'uri': 'https://opencontext.org/subjects/5E429FD0-C205-4EB7-7E05-32D4B588E5E1'}, '440': {'uri': 'https://opencontext.org/subjects/b8233443-f716-4cfe-9b52-fe46a81eb610'}, '441': {'uri': 'https://opencontext.org/subjects/b8233443-f716-4cfe-9b52-fe46a81eb610'}, '442': {'uri': 'https://opencontext.org/subjects/ea552ea2-e2aa-4db3-9372-2377958369c4'}, '443': {'uri': 'https://opencontext.org/subjects/991fd662-e8c0-4dfd-9b1f-d7233429ca3a'}, '444': {'uri': 'https://opencontext.org/subjects/5ccfc2a2-4139-41fd-9961-fdc03420e0bf'}, '445': {'uri': 'https://opencontext.org/subjects/5ccfc2a2-4139-41fd-9961-fdc03420e0bf'}, '446': {'uri': 'https://opencontext.org/subjects/9420190e-3d76-44cf-ae0f-279900c4a56c'}, '447': {'uri': 'https://opencontext.org/subjects/7a32b56f-a7e0-4f0b-87cb-2126ccdee127'}, '448': {'uri': 'https://opencontext.org/subjects/910004b2-e13c-4084-9f66-04960123d1fe'}, '449': {'uri': 'https://opencontext.org/subjects/45760b29-e1ac-4a1e-9c11-71d071edea48'}, '45': {'uri': 'https://opencontext.org/subjects/85C5376B-08B0-429A-F106-D9386FA457B3'}, '450': {'uri': 'https://opencontext.org/subjects/45760b29-e1ac-4a1e-9c11-71d071edea48'}, '451': {'uri': 'https://opencontext.org/subjects/672bd5a3-ea71-4555-aa78-a7ce17bf51f8'}, '452': {'uri': 'https://opencontext.org/subjects/672bd5a3-ea71-4555-aa78-a7ce17bf51f8'}, '453': {'uri': 'https://opencontext.org/subjects/c766cfd8-e1b4-4a66-b6b2-08b2030bdcb8'}, '454': {'uri': 'https://opencontext.org/subjects/c766cfd8-e1b4-4a66-b6b2-08b2030bdcb8'}, '455': {'uri': 'https://opencontext.org/subjects/70a10d8f-5bec-46ab-aa02-6453e66e167e'}, '456': {'uri': 'https://opencontext.org/subjects/2d29ce46-1637-4f2e-9841-264d6eb14f9e'}, '457': {'uri': 'https://opencontext.org/subjects/511415d9-622c-4958-9445-44d509dacd04'}, '458': {'uri': 'https://opencontext.org/subjects/6f59d5c0-fa4f-4adc-a98b-6dca8ccb8d8e'}, '459': {'uri': 'https://opencontext.org/subjects/6ec338a9-36a4-4643-9d16-e01fc33c585f'}, '46': {'uri': 'https://opencontext.org/subjects/FEB576A3-12DE-4AE2-495D-87E662F23FF5'}, '460': {'uri': 'https://opencontext.org/subjects/f2661425-9eb5-45a2-ae01-d7bc63683db6'}, '461': {'uri': 'https://opencontext.org/subjects/1341c275-af80-4e8c-a9f4-1682efe5f022'}, '462': {'uri': 'https://opencontext.org/subjects/f7b150a8-7650-4d2b-a9b3-91168537a75d'}, '463': {'uri': 'https://opencontext.org/subjects/1b6f73ed-6173-4f3f-938e-a5e5b3402fd4'}, '464': {'uri': 'https://opencontext.org/subjects/ed8d8636-fd23-408a-86dc-b72ac2da068a'}, '465': {'uri': 'https://opencontext.org/subjects/4b503ad5-d1fd-486b-89d0-2b5c0d37e5ff'}, '466': {'uri': 'https://opencontext.org/subjects/03C2F519-5258-4880-C762-42673862AD9E'}, '467': {'uri': 'https://opencontext.org/subjects/8605e112-6af4-4b29-a50e-4ce4bb45801b'}, '468': {'uri': 'https://opencontext.org/subjects/2d73d4bc-bc05-4242-9896-b8cf3ca96346'}, '469': {'uri': 'https://opencontext.org/subjects/3f7dc67b-9640-4e09-8c63-42640b4b23c2'}, '47': {'uri': 'https://opencontext.org/subjects/5D60BE1B-57A7-4F37-7CA1-11E57A73FB31'}, '470': {'uri': 'https://opencontext.org/subjects/e6b4620a-c575-411a-b136-b4110755ac6d'}, '471': {'uri': 'https://opencontext.org/subjects/3689eb5d-e9a2-49e4-9be5-c9676080ec2b'}, '472': {'uri': 'https://opencontext.org/subjects/221f94cc-1031-400e-a583-2e9b2bb18104'}, '473': {'uri': 'https://opencontext.org/subjects/85b795fd-d5ef-406e-bce7-0a695b656fd6'}, '48': {'uri': 'https://opencontext.org/subjects/C0C7B0E4-6135-4A2D-5E6B-1285190F271F'}, '49': {'uri': 'https://opencontext.org/subjects/78DC8FFD-D170-4FF7-1D02-EA0C85A4539C'}, '5': {'uri': 'https://opencontext.org/subjects/9950174E-E880-4BEF-B797-358A82F4A372'}, '50': {'uri': 'https://opencontext.org/subjects/D5FF94F3-1D3C-4107-30D5-697C86409234'}, '51': {'uri': 'https://opencontext.org/subjects/D5FF94F3-1D3C-4107-30D5-697C86409234'}, '52': {'uri': 'https://opencontext.org/subjects/18DD4EDD-CF3F-4829-A003-87AFA4ED6742'}, '53': {'uri': 'https://opencontext.org/subjects/692CF461-0052-4019-BB8A-BB26D84E5F24'}, '54': {'uri': 'https://opencontext.org/subjects/3AA9E720-0371-4443-5A40-5FE6A5E1DCAE'}, '55': {'uri': 'https://opencontext.org/subjects/F5332A70-73BE-4E87-AD91-08F0ABF7BFB1'}, '56': {'uri': 'https://opencontext.org/subjects/3E140B66-8309-4931-FEF4-AD2FDF8D6291'}, '57': {'uri': 'https://opencontext.org/subjects/E94E6618-A7FC-4AFF-D004-69EEB3E8089A'}, '58': {'uri': 'https://opencontext.org/subjects/58FCC816-FF23-4890-06F6-DB80719BFF31'}, '59': {'uri': 'https://opencontext.org/subjects/9D2FD065-FA0F-4DA3-21FE-A2D3CA02E320'}, '6': {'uri': 'https://opencontext.org/subjects/CFE33CD1-B119-4D65-E2FF-8DAFABEAC941'}, '60': {'uri': 'https://opencontext.org/subjects/E405152C-1036-49AE-0A8B-A621B66EC7AB'}, '61': {'uri': 'https://opencontext.org/subjects/98BC67D5-770B-4C37-3950-A33170EB3A4F'}, '62': {'uri': 'https://opencontext.org/subjects/7CF7D7EB-D71C-45DC-82EA-921CDE5640B1'}, '63': {'uri': 'https://opencontext.org/subjects/8EA5B6D8-EC94-4B56-4D7B-440C67EFAFA3'}, '64': {'uri': 'https://opencontext.org/subjects/8EA5B6D8-EC94-4B56-4D7B-440C67EFAFA3'}, '65': {'uri': 'https://opencontext.org/subjects/8EA5B6D8-EC94-4B56-4D7B-440C67EFAFA3'}, '66': {'uri': 'https://opencontext.org/subjects/8EA5B6D8-EC94-4B56-4D7B-440C67EFAFA3'}, '67': {'uri': 'https://opencontext.org/subjects/8EA5B6D8-EC94-4B56-4D7B-440C67EFAFA3'}, '68': {'uri': 'https://opencontext.org/subjects/8EA5B6D8-EC94-4B56-4D7B-440C67EFAFA3'}, '69': {'uri': 'https://opencontext.org/subjects/9B688358-00F8-4091-E5D2-B2E0AB25ADBC'}, '7': {'uri': 'https://opencontext.org/subjects/CCAA1707-E736-4CC6-D2F7-F6DE62998FD4'}, '70': {'uri': 'https://opencontext.org/subjects/F6B4B592-664A-47A0-A5B8-F77EF4A48149'}, '71': {'uri': 'https://opencontext.org/subjects/4B85886B-03E4-48FE-41AB-D55457C5E3A9'}, '72': {'uri': 'https://opencontext.org/subjects/4B85886B-03E4-48FE-41AB-D55457C5E3A9'}, '73': {'uri': 'https://opencontext.org/subjects/4B85886B-03E4-48FE-41AB-D55457C5E3A9'}, '74': {'uri': 'https://opencontext.org/subjects/8F23631E-6201-4092-E5BE-5E7D536E2B35'}, '75': {'uri': 'https://opencontext.org/subjects/234F8218-4D67-4887-659E-D14785BC0A20'}, '76': {'uri': 'https://opencontext.org/subjects/1CD4609F-F5E5-4C2C-3DF7-CDCB87CB019E'}, '77': {'uri': 'https://opencontext.org/subjects/D1359970-4965-4819-DC03-61A7A7E4A850'}, '78': {'uri': 'https://opencontext.org/subjects/2680D449-6312-48AE-EF0F-DB25B67F7BFC'}, '79': {'uri': 'https://opencontext.org/subjects/C7E131A3-8BE2-40E3-0EF2-C3AB65823B63'}, '8': {'uri': 'https://opencontext.org/subjects/7940B16C-1C48-457D-937B-98EBB5CF4980'}, '80': {'uri': 'https://opencontext.org/subjects/7655E594-69C9-4438-1BED-5987F671D933'}, '81': {'uri': 'https://opencontext.org/subjects/6A9CF999-C6FA-42AA-8F2B-B07442FE2D44'}, '82': {'uri': 'https://opencontext.org/subjects/337FE71E-94CD-4FB5-872F-B1678343B812'}, '83': {'uri': 'https://opencontext.org/subjects/AB14B22E-C5AC-42E1-2BD3-0D7362D6DC59'}, '84': {'uri': 'https://opencontext.org/subjects/04734348-D45B-4957-BA5A-4BB8D9690140'}, '85': {'uri': 'https://opencontext.org/subjects/99F94829-B4F3-44CE-8A9B-A8236BECFBB4'}, '86': {'uri': 'https://opencontext.org/subjects/34A37E52-6950-4AE8-FCA8-3DE56973B33E'}, '87': {'uri': 'https://opencontext.org/subjects/8188FFAA-CFAD-47D6-2A12-23E4FF5DDBFB'}, '88': {'uri': 'https://opencontext.org/subjects/A66D8905-2236-4D2A-3151-F0C49F59B660'}, '89': {'uri': 'https://opencontext.org/subjects/150BD521-2E06-48C2-DB8A-B4F53AC3D321'}, '9': {'uri': 'https://opencontext.org/subjects/C26457DA-4B00-484E-F27E-85F2A2E88314'}, '90': {'uri': 'https://opencontext.org/subjects/8E1306DF-0CF7-409F-403A-A7B74C3B6BDE'}, '91': {'uri': 'https://opencontext.org/subjects/7BB80569-AEBF-4C8A-6F9F-581BAF999DE0'}, '92': {'uri': 'https://opencontext.org/subjects/7FC5291E-A036-4100-981B-3EE7DECCE097'}, '93': {'uri': 'https://opencontext.org/subjects/2D8BB7CF-18F6-464B-213A-ADA01818C70D'}, '94': {'uri': 'https://opencontext.org/subjects/E7C6B89A-0258-4A50-1487-C55AE8C4ED69'}, '95': {'uri': 'https://opencontext.org/subjects/B229A46D-ED3D-41A0-D64F-2E5855703E0B'}, '96': {'uri': 'https://opencontext.org/subjects/A35A67AA-2832-415E-F7BE-3B051444E665'}, '97': {'uri': 'https://opencontext.org/subjects/9D0D7D58-A751-4CC7-EF3D-5318D9D16E47'}, '98': {'uri': 'https://opencontext.org/subjects/20BEF152-BA8B-4A08-57D7-BAADD30A7248'}, '99': {'uri': 'https://opencontext.org/subjects/00F368CE-AFF2-43CA-489A-84A0EC2DFF8C'}, } id_prop = 'PolygonID' gimp.save_partial_clean_file(pc_json_obj, 'pc-geo', 'pc_trenches_2017_4326.geojson', id_prop, ok_ids=False, add_props=pc_props, combine_json_obj=None) gimp.load_into_importer = False gimp.process_features_in_file('pc-geo', 'labeled-pc-trenches-2017-4326.geojson') from opencontext_py.apps.ocitems.geospace.models import Geospace uuid = '59CA9A4E-3D63-4596-0F53-383F286E59FF' g = Geospace.objects.get(uuid=uuid) g.latitude = 43.1524182334655 g.longitude = 11.401899321827992 g.coordinates = '[11.401899321827992,43.1524182334655]' g.save() from opencontext_py.apps.imports.geojson.geojson import GeoJSONimport gimp = GeoJSONimport() gimp.load_into_importer = False gimp.project_uuid = 'DF043419-F23B-41DA-7E4D-EE52AF22F92F' gimp.process_features_in_file('pc-geo', 'pc_artifacts_2017_4326.geojson') from opencontext_py.apps.imports.geojson.geojson import GeoJSONimport gimp = GeoJSONimport() gimp.load_into_importer = False gimp.project_uuid = 'DF043419-F23B-41DA-7E4D-EE52AF22F92F' gimp.process_features_in_file('pc-geo', 'vesco_artifacts_2017_4326.geojson') from opencontext_py.apps.imports.geojson.geojson import GeoJSONimport gimp = GeoJSONimport() gimp.load_into_importer = False gimp.project_uuid = 'DF043419-F23B-41DA-7E4D-EE52AF22F92F' gimp.source_id = 'pc_trenches_2017_4326' id_prop = 'PolygonID' ok_ids = False json_obj = gimp.load_json_file('pc-geo', 'pc_trenches_2017_4326.geojson') points = gimp.load_json_file('pc-geo', 'pc_artifacts_2017_4326.geojson') gimp.save_partial_clean_file(json_obj, 'pc-geo', 'pc_trenches_2017_4326.geojson', id_prop, ok_ids, add_props, points) json_obj = gimp.load_json_file('pc-geo', 'id-clean-coord-pc_trenches_2017_4326.geojson') gimp.save_no_coord_file(json_obj, 'pc-geo', 'id-clean-coord-pc_trenches_2017_4326.geojson') from opencontext_py.libs.general import LastUpdatedOrderedDict from opencontext_py.apps.ocitems.manifest.models import Manifest from opencontext_py.apps.imports.geojson.geojson import GeoJSONimport from opencontext_py.apps.ocitems.geospace.models import Geospace print('Delete old botany-areas geospatial data') Geospace.objects\ .filter(source_id='botany-areas', project_uuid='10aa84ad-c5de-4e79-89ce-d83b75ed72b5', ftype__in=['Polygon', 'Multipolygon']).delete() gimp = GeoJSONimport() gimp.load_into_importer = False gimp.project_uuid = '10aa84ad-c5de-4e79-89ce-d83b75ed72b5' gimp.source_id = 'botany-areas' id_prop = 'LocalArea' ok_ids = False projects=['10aa84ad-c5de-4e79-89ce-d83b75ed72b5', '5A6DDB94-70BE-43B4-2D5D-35D983B21515'] json_obj = gimp.load_json_file('giza-areas', 'botany-areas-revised.geojson') rev_json = LastUpdatedOrderedDict() rev_json['features'] = [] for feat in json_obj['features']: area_name = feat['properties']['LocalArea'] if area_name == 'KKT-Nohas House': area_name = "Noha's" elif area_name == 'G1': area_name = 'GI' man_objs = Manifest.objects.filter(label=area_name, project_uuid__in=projects, class_uri='oc-gen:cat-area')[:1] if len(man_objs): feat['properties']['uri'] = 'http://opencontext.org/subjects/' + man_objs[0].uuid rev_json['features'].append(feat) else: print('Cannot find: ' + area_name) gimp.save_json_file(rev_json, 'giza-areas', 'botany-areas-revised-w-uris.geojson') gimp.process_features_in_file('giza-areas', 'botany-areas-revised-w-uris.geojson') gimp.save_no_coord_file(rev_json, 'giza-areas', 'id-clean-coord-botany-areas-revised-w-uris.geojson') import json from opencontext_py.apps.ocitems.manifest.models import Manifest from opencontext_py.libs.general import LastUpdatedOrderedDict from opencontext_py.apps.ocitems.geospace.models import Geospace, GeospaceGeneration from opencontext_py.apps.imports.geojson.geojson import GeoJSONimport from opencontext_py.libs.validategeojson import ValidateGeoJson from opencontext_py.libs.globalmaptiles import GlobalMercator from opencontext_py.libs.reprojection import ReprojectUtilities import pyproj from pyproj import Proj, transform import numpy import geojson # TRAP Bulgaria project_uuid = '24e2aa20-59e6-4d66-948b-50ee245a7cfc' gimp = GeoJSONimport() gimp.load_into_importer = False gimp.project_uuid = project_uuid json_obj = gimp.load_json_file('trap-geo', 'yam-survey-units.geojson') new_geojson = LastUpdatedOrderedDict() for key, vals in json_obj.items(): if key != 'features': new_geojson[key] = vals else: new_geojson[key] = [] features = [] bad_features = [] reproj = ReprojectUtilities() reproj.set_in_out_crs('EPSG:32635', 'EPSG:4326') for feature in json_obj['features']: id = str(feature['properties']['SUID']) label = 'Survey Unit ' + id print('Find: {}'.format(label)) try: m_obj = Manifest.objects.get(project_uuid=project_uuid, label=label, item_type='subjects') uuid = m_obj.uuid except: uuid = '' print('--> {}'.format(uuid)) feature['properties']['uuid'] = uuid if not isinstance(feature['geometry'], dict): print(' ---- BAD FEATURE: {}'.format(label)) bad_features.append(feature) continue geometry_type = feature['geometry']['type'] coordinates = feature['geometry']['coordinates'] new_coordinates = reproj.reproject_multi_or_polygon(coordinates, geometry_type) feature['geometry']['coordinates'] = new_coordinates coord_str = json.dumps(new_coordinates, indent=4, ensure_ascii=False) gg = GeospaceGeneration() lon_lat = gg.get_centroid_lonlat_coordinates(coord_str, feature['geometry']['type']) longitude = float(lon_lat[0]) latitude = float(lon_lat[1]) feature['properties']['longitude'] = longitude feature['properties']['latitude'] = latitude gm = GlobalMercator() feature['properties']['geo-tile'] = gm.lat_lon_to_quadtree(latitude, longitude, 20) features.append(feature) new_geojson['features'] = features new_geojson['bad-features'] = bad_features gimp.save_json_file(new_geojson, 'trap-geo', 'yam-survey-units-reproj-w-uuids.geojson') from opencontext_py.libs.general import LastUpdatedOrderedDict from opencontext_py.apps.ocitems.assertions.models import Assertion from opencontext_py.apps.ocitems.manifest.models import Manifest media_uuid = '6d42ad2a-cbc2-46e2-a72c-907607b6fe3c' project_uuid = '10aa84ad-c5de-4e79-89ce-d83b75ed72b5' Assertion.objects\ .filter(uuid=project_uuid, predicate_uuid=Assertion.PREDICATES_GEO_OVERLAY)\ .delete() media_man = Manifest.objects.get(uuid=media_uuid) if not isinstance(media_man.sup_json, dict): meta = LastUpdatedOrderedDict() else: meta = media_man.sup_json meta['Leaflet'] = LastUpdatedOrderedDict() meta['Leaflet']['bounds'] = [[31.138088, 29.972094], [31.135083, 29.973761]] meta['Leaflet']['bounds'] = [[29.972094, 31.138088], [29.973761, 31.135083]] meta['Leaflet']['label'] = 'Menkaure Valley Temple East Plan' media_man.sup_json = meta media_man.save() Assertion.objects\ .filter(uuid=project_uuid, predicate_uuid=Assertion.PREDICATES_GEO_OVERLAY)\ .delete() ass = Assertion() ass.uuid = '5A6DDB94-70BE-43B4-2D5D-35D983B21515' ass.subject_type = 'projects' ass.project_uuid = '5A6DDB94-70BE-43B4-2D5D-35D983B21515' ass.source_id = 'test-geo-overlay' ass.obs_node = '#obs-' + str(1) ass.obs_num = 1 ass.sort = 1 ass.visibility = 1 ass.predicate_uuid = Assertion.PREDICATES_GEO_OVERLAY ass.object_uuid = media_man.uuid ass.object_type = media_man.item_type ass.save() ass = Assertion() ass.uuid = project_uuid ass.subject_type = 'projects' ass.project_uuid = project_uuid ass.source_id = 'test-geo-overlay' ass.obs_node = '#obs-' + str(1) ass.obs_num = 1 ass.sort = 1 ass.visibility = 1 ass.predicate_uuid = Assertion.PREDICATES_GEO_OVERLAY ass.object_uuid = 'da676164-9829-4798-bb5d-c5b1135daa27' ass.object_type = 'media' ass.save() from opencontext_py.apps.imports.geojson.geojson import GeoJSONimport gimp = GeoJSONimport() gimp.load_into_importer = False gimp.project_uuid = 'DF043419-F23B-41DA-7E4D-EE52AF22F92F' gimp.source_id = 'pc_trenches_2017_4326' gimp.process_features_in_file('pc-geo', 'pc_trenches_2017_4326.geojson') from opencontext_py.apps.ocitems.manifest.models import Manifest from opencontext_py.apps.archive.binaries import ArchiveBinaries arch_bin = ArchiveBinaries() project_uuid = 'b6de18c6-bba8-4b53-9d9e-3eea4b794268' arch_bin.save_project_binaries(project_uuid) from opencontext_py.apps.archive.binaries import ArchiveBinaries project_uuids = [ 'b6de18c6-bba8-4b53-9d9e-3eea4b794268' ] for project_uuid in project_uuids: arch_bin = ArchiveBinaries() arch_bin.save_project_binaries(project_uuid) arch_bin.archive_all_project_binaries(project_uuid) from opencontext_py.apps.archive.binaries import ArchiveBinaries project_uuids = [ "DF043419-F23B-41DA-7E4D-EE52AF22F92F" ] for project_uuid in project_uuids: arch_bin = ArchiveBinaries() arch_bin.temp_cache_dir = 'temp-cache' arch_bin.max_repo_file_count = 2500 arch_bin.save_project_binaries(project_uuid) arch_bin.archive_all_project_binaries(project_uuid) from opencontext_py.apps.archive.binaries import ArchiveBinaries project_uuid = 'DF043419-F23B-41DA-7E4D-EE52AF22F92F' archive_dir = 'files-1-by---DF043419-F23B-41DA-7E4D-EE52AF22F92F' deposition_id = 1251106 arch_bin.archive_dir_project_binaries(project_uuid, archive_dir, deposition_id) from opencontext_py.apps.archive.binaries import ArchiveBinaries project_uuid = "3F6DCD13-A476-488E-ED10-47D25513FCB2" archive_dir = "files-4-by---3F6DCD13-A476-488E-ED10-47D25513FCB2" deposition_id = 1242673 arch_bin = ArchiveBinaries() arch_bin.archive_dir_project_binaries(project_uuid, archive_dir, deposition_id) dirs = [ "files-5-by---3F6DCD13-A476-488E-ED10-47D25513FCB2", "files-6-by---3F6DCD13-A476-488E-ED10-47D25513FCB2" ] for archive_dir in dirs: project_uuid = "3F6DCD13-A476-488E-ED10-47D25513FCB2" arch_bin = ArchiveBinaries() arch_bin.archive_dir_project_binaries(project_uuid, archive_dir) from opencontext_py.apps.archive.binaries import ArchiveBinaries project_uuid = "141e814a-ba2d-4560-879f-80f1afb019e9" archive_dir = "files-4-by---141e814a-ba2d-4560-879f-80f1afb019e9" deposition_id = 1439449 arch_bin = ArchiveBinaries() arch_bin.archive_dir_project_binaries(project_uuid, archive_dir, deposition_id) from opencontext_py.apps.archive.binaries import ArchiveBinaries dirs = [ "files-5-by---141e814a-ba2d-4560-879f-80f1afb019e9", "files-6-by---141e814a-ba2d-4560-879f-80f1afb019e9", ] for archive_dir in dirs: project_uuid = "141e814a-ba2d-4560-879f-80f1afb019e9" arch_bin = ArchiveBinaries() arch_bin.archive_dir_project_binaries(project_uuid, archive_dir) import shutil import os from django.conf import settings path = settings.STATIC_EXPORTS_ROOT + 'aap-3d/obj-models' zip_path = settings.STATIC_EXPORTS_ROOT + 'aap-3d/obj-models-zip' for root, dirs, files in os.walk(path): for adir in dirs: zip_dir = os.path.join(path, adir) zip_file = os.path.join(zip_path, adir) print(zip_dir + ' to ' + zip_file) shutil.make_archive(zip_file, 'zip', zip_dir) import pandas as pd import shutil import os import numpy as np from django.conf import settings renames = { 'FORMDATE': 'FORM_DATE', 'TRINOMIAL': 'SITE_NUM', 'SITENUM': 'SITE_NUM', 'TYPE_SITE': 'SITE_TYPE', 'TYPESITE': 'SITE_TYPE', 'TYPE_STE': 'SITE_TYPE', 'SIZESITE': 'SITE_SIZE', 'SITESIZE': 'SITE_SIZE', 'SITENAME': 'SITE_NAME', 'Atlas_Number': 'ATLAS_NUMBER', 'MAT_COL': 'MATERIAL_COLLECTED', 'MATERIALS': 'MATERIAL_COLLECTED', 'ARTIFACTS': 'ARTIFACTS', 'CULT_DESC': 'TIME_CULTURE_DESC', 'TIME_DESC': 'TIME_CULTURE_DESC', 'TIME_OCC': 'TIME_PERIOD', 'TIME_PER': 'TIME_PERIOD', 'SING_COM': 'COMPONENT_SINGLE', 'SINGLE': 'COMPONENT_SINGLE', 'MULT_COM': 'COMPONENT_MULTI', 'MULTIPLE': 'COMPONENT_MULTI', 'COMP_DESC': 'COMPONENT_DESC', 'BASIS': 'COMPONENT_DESC', 'COUNTY': 'COUNTY' } path = settings.STATIC_EXPORTS_ROOT + 'texas' dfs = [] all_cols = [] excel_files = [] for root, dirs, files in os.walk(path): for act_file in files: if act_file.endswith('.xls'): file_num = ''.join(c for c in act_file if c.isdigit()) excel_files.append((int(file_num), act_file)) dir_file = os.path.join(path, act_file) df = pd.read_excel(dir_file, index_col=None, na_values=['NA']) df['filename'] = act_file df = df.applymap(lambda x: x.encode('unicode_escape').decode('utf-8') if isinstance(x, str) else x) col_names = df.columns.values.tolist() print('-'*40) print(act_file) print(str(col_names)) """ for bad_col, good_col in renames.items(): if bad_col in col_names: df.rename(columns={bad_col: good_col}, inplace=True) """ new_cols = df.columns.values.tolist() all_cols = list(set(all_cols + new_cols)) all_cols.sort() print('Total of {} columns for all dataframes'.format(len(all_cols))) dfs.append(df) excel_files = sorted(excel_files) print('\n'.join([f[1] for f in excel_files])) all_df = pd.concat(dfs) csv_all_dir_file = os.path.join(path, 'all-texas.csv') print('Save the CSV: ' + csv_all_dir_file) with open(csv_all_dir_file, 'a' ) as f: while True: all_df.to_csv(f) xls_all_dir_file = os.path.join(path, 'all-texas.xlsx') print('Save the Excel: ' + xls_all_dir_file) with open(xls_all_dir_file, 'a' ) as f: while True: all_df.to_excel(f, sheet_name='Sheet1') from opencontext_py.apps.imports.records.models import ImportCell from opencontext_py.apps.ocitems.assertions.models import Assertion from opencontext_py.apps.ocitems.manifest.models import Manifest from opencontext_py.apps.ocitems.subjects.models import Subject from opencontext_py.apps.ocitems.geospace.models import Geospace from opencontext_py.apps.ocitems.subjects.generation import SubjectGeneration from opencontext_py.apps.edit.items.deletemerge import DeleteMerge from opencontext_py.libs.solrconnection import SolrConnection project_uuid = '10aa84ad-c5de-4e79-89ce-d83b75ed72b5' area_proj_uuid = '5A6DDB94-70BE-43B4-2D5D-35D983B21515' source_id = 'ref:2289489501377' area_field = 9 feature_field = 10 specimen_field = 1 man_fixes = Manifest.objects.filter(item_type='subjects', class_uri='oc-gen:cat-plant-remains', project_uuid=project_uuid).order_by('sort') changed_uuids = [] p_subs = {} for man_obj in man_fixes: cont_asses = Assertion.objects.filter(predicate_uuid=Assertion.PREDICATES_CONTAINS, object_uuid=man_obj.uuid)[:1] if len(cont_asses): continue # need to fix missing context association spec_id = man_obj.label.replace('Specimen ', '') spec_cell = ImportCell.objects.get(source_id=source_id, record=spec_id, field_num=specimen_field) area_cell = ImportCell.objects.get(source_id=source_id, field_num=area_field, row_num=spec_cell.row_num) feat_cell = ImportCell.objects.get(source_id=source_id, field_num=feature_field, row_num=spec_cell.row_num) l_context = '/{}/Feat. {}'.format(area_cell.record.replace('/', '--'), feat_cell.record) if feat_cell.record in ['1031', '1089', '1188'] and 'SSGH' in area_cell.record: l_context = '/SSGH (Khentkawes)/Feat. {}'.format(feat_cell.record) if l_context == '/KKT-E+/Feat. 33821': l_context = '/KKT-E/Feat. 33821' if l_context == '/KKT-E+/Feat. 33831': l_context = '/KKT-E/Feat. 33831' print('Find Context: {} for {} import row: {}'.format(l_context, man_obj.label, spec_cell.row_num)) if l_context not in p_subs: parent_sub = Subject.objects.get(context__endswith=l_context, project_uuid__in=[project_uuid, area_proj_uuid]) p_subs[l_context] = parent_sub else: parent_sub = p_subs[l_context] new_ass = Assertion() new_ass.uuid = parent_sub.uuid new_ass.subject_type = 'subjects' new_ass.project_uuid = man_obj.project_uuid new_ass.source_id = 'ref:1967003269393-fix' new_ass.obs_node = '#contents-' + str(1) new_ass.obs_num = 1 new_ass.sort = 1 new_ass.visibility = 1 new_ass.predicate_uuid = Assertion.PREDICATES_CONTAINS new_ass.object_type = man_obj.item_type new_ass.object_uuid = man_obj.uuid new_ass.save() sg = SubjectGeneration() sg.generate_save_context_path_from_uuid(man_obj.uuid) from opencontext_py.apps.ocitems.assertions.models import Assertion Assertion.objects.filter(predicate_uuid=Assertion.PREDICATES_CONTAINS, object_uuid='2176cb88-bcb4-4ad9-b4aa-e9009b8c4a66').exclude(uuid='FEC673D2-C1F0-4B62-BF66-29127AE2AE11').delete() from opencontext_py.apps.ocitems.assertions.models import Assertion from opencontext_py.apps.ocitems.subjects.generation import SubjectGeneration from opencontext_py.apps.ocitems.subjects.models import Subject from opencontext_py.apps.ocitems.manifest.models import Manifest from django.core.cache import caches cache = caches['redis'] cache.clear() cache = caches['default'] cache.clear() cache = caches['memory'] cache.clear() bad_subs = Subject.objects.filter(context__contains='/Egypt/') bad_uuids = [bs.uuid for bs in bad_subs] bad_man_objs = Manifest.objects.filter(uuid__in=bad_uuids, class_uri__in=['oc-gen:cat-feature']) bad_feats = [bm.uuid for bm in bad_man_objs] f_subs = Subject.objects.filter(uuid__in=bad_feats) for bad_sub in bad_subs: sg = SubjectGeneration() sg.generate_save_context_path_from_uuid(bad_sub.uuid) from opencontext_py.apps.ocitems.assertions.models import Assertion keep_proj = '5A6DDB94-70BE-43B4-2D5D-35D983B21515' keep_p = 'bd0a8c74-c3fe-47bb-bb1a-be067e101069' keep_p_asses = Assertion.objects.filter(uuid=keep_p, predicate_uuid=Assertion.PREDICATES_CONTAINS) for keep_p_ch in keep_p_asses: ch_uuid = keep_p_ch.object_uuid bad_asses = Assertion.objects.filter(predicate_uuid=Assertion.PREDICATES_CONTAINS, object_uuid=ch_uuid).exclude(uuid=keep_p) if len(bad_asses): print('Remove erroneous parents for :' + ch_uuid) bad_asses.delete() good_asses = Assertion.objects.filter(uuid=keep_p, predicate_uuid=Assertion.PREDICATES_CONTAINS, object_uuid=ch_uuid) if len(good_asses) > 1: print('More than 1 parent for :' + ch_uuid) redund_ass = Assertion.objects.filter(uuid=keep_p, predicate_uuid=Assertion.PREDICATES_CONTAINS, object_uuid=ch_uuid).exclude(project_uuid=keep_proj) if len(redund_ass) < len(good_asses): print('Delete redundant for ' + ch_uuid) redund_ass.delete() bad_asses = Assertion.objects.filter(predicate_uuid=Assertion.PREDICATES_CONTAINS, object_uuid=ch_uuid).exclude(uuid=mvt) if len(bad_asses): print('delete wrong for: ' + ch_uuid ) bad_asses.delete() m_asses = Assertion.objects.filter(predicate_uuid=Assertion.PREDICATES_CONTAINS, object_uuid=ch_uuid).exclude(uuid=mvt) from opencontext_py.apps.imports.records.models import ImportCell from opencontext_py.apps.ocitems.assertions.models import Assertion from opencontext_py.apps.ocitems.manifest.models import Manifest from opencontext_py.apps.ocitems.subjects.models import Subject from opencontext_py.apps.ocitems.geospace.models import Geospace from opencontext_py.apps.ocitems.subjects.generation import SubjectGeneration from opencontext_py.apps.edit.items.deletemerge import DeleteMerge from opencontext_py.libs.solrconnection import SolrConnection project_uuid = '10aa84ad-c5de-4e79-89ce-d83b75ed72b5' area_proj_uuid = '5A6DDB94-70BE-43B4-2D5D-35D983B21515' source_id = 'ref:1967003269393' area_field = 20 feature_field = 22 specimen_field = 1 man_fixes = Manifest.objects.filter(item_type='subjects', class_uri='oc-gen:cat-feature', project_uuid=project_uuid).order_by('sort') changed_uuids = [] p_subs = {} for man_obj in man_fixes: cont_asses = Assertion.objects.filter(predicate_uuid=Assertion.PREDICATES_CONTAINS, object_uuid=man_obj.uuid)[:1] if len(cont_asses): continue # need to fix missing context association act_id = man_obj.label.replace('Feat. ', '') feat_cell = ImportCell.objects.filter(source_id=source_id, record=act_id, field_num=feature_field)[:1][0] area_cell = ImportCell.objects.get(source_id=source_id, field_num=area_field, row_num=feat_cell.row_num) l_context = area_cell.record.replace('/', '--') l_context = '/' + l_context if act_id in ['1031', '1089', '1188'] and 'SSGH' in l_context: l_context = '/SSGH (Khentkawes)' print('Find Context: {} for {} import row: {}'.format(l_context, man_obj.label, feat_cell.row_num)) if l_context not in p_subs: parent_sub = Subject.objects.get(context__endswith=l_context, project_uuid__in=[project_uuid, area_proj_uuid]) p_subs[l_context] = parent_sub else: parent_sub = p_subs[l_context] print('Adding Context: {} : {}'.format(parent_sub.uuid, parent_sub.context)) new_ass = Assertion() new_ass.uuid = parent_sub.uuid new_ass.subject_type = 'subjects' new_ass.project_uuid = man_obj.project_uuid new_ass.source_id = source_id + '-fix' new_ass.obs_node = '#contents-' + str(1) new_ass.obs_num = 1 new_ass.sort = 1 new_ass.visibility = 1 new_ass.predicate_uuid = Assertion.PREDICATES_CONTAINS new_ass.object_type = man_obj.item_type new_ass.object_uuid = man_obj.uuid new_ass.save() sg = SubjectGeneration() sg.generate_save_context_path_from_uuid(man_obj.uuid) from opencontext_py.apps.ocitems.assertions.models import Assertion from opencontext_py.apps.ocitems.manifest.models import Manifest parent_uuid = '64a12f7b-5ed3-4b1e-beb0-186d5f6c8549' project_uuid = '10aa84ad-c5de-4e79-89ce-d83b75ed72b5' area_proj_uuid = '5A6DDB94-70BE-43B4-2D5D-35D983B21515' child_uuids = [] for child in Assertion.objects.filter(predicate_uuid=Assertion.PREDICATES_CONTAINS, uuid=parent_uuid): child_uuids.append(child.object_uuid) keeps_mans = Manifest.objects.filter(uuid__in=child_uuids, project_uuid=area_proj_uuid) for keep_man in keeps_mans: rem_men = Manifest.objects.filter(label=keep_man.label, uuid__in=child_uuids, project_uuid=project_uuid)[:1] if len(rem_men): delete_uuid = rem_men[0].uuid merge_into_uuid = keep_man.uuid print('Remove {} to keep {} with label {}'.format(delete_uuid, merge_into_uuid, keep_man.label)) dm = DeleteMerge() dm.merge_by_uuid(delete_uuid, merge_into_uuid) from opencontext_py.apps.edit.items.deletemerge import DeleteMerge delete_uuid = '12b6512b-22bc-4eb7-b23d-868aff7b380a' merge_into_uuid = '9a567a71-1cc7-4e51-8e8f-79e0a46e0f40' dm = DeleteMerge() dm.merge_by_uuid(delete_uuid, merge_into_uuid) import json import random from opencontext_py.libs.general import LastUpdatedOrderedDict from opencontext_py.libs.validategeojson import ValidateGeoJson from opencontext_py.libs.clustergeojson import ClusterGeoJson from opencontext_py.libs.reprojection import ReprojectUtilities from opencontext_py.apps.imports.geojson.geojson import GeoJSONimport from opencontext_py.apps.ocitems.geospace.models import Geospace, GeospaceGeneration gimp = GeoJSONimport() gimp.load_into_importer = False gimp.project_uuid = 'DF043419-F23B-41DA-7E4D-EE52AF22F92F' gimp.source_id = 'vesco_trenches_2017_4326' geoclust = ClusterGeoJson() rpu = ReprojectUtilities() rpu.set_in_out_crs('EPSG:32636', 'EPSG:4326') geojsons = {} for file in ['observation_points', 'avkat_dbo_features', 'features_intensive_survey', 'suvey_units']: json_obj = gimp.load_json_file('avkat-geo', (file + '.json')) geojson = LastUpdatedOrderedDict() geojson['type'] = 'FeatureCollection' geojson['features'] = [] samp_geojson = LastUpdatedOrderedDict() samp_geojson['type'] = 'FeatureCollection' samp_geojson['features'] = [] i = 0 for old_f in json_obj['features']: # import pdb; pdb.set_trace() i += 1 new_f = LastUpdatedOrderedDict() new_f['type'] = 'Feature' if 'attributes' in old_f: new_f['properties'] = old_f['attributes'] elif 'properties' in old_f: new_f['properties'] = old_f['properties'] new_f['geometry'] = LastUpdatedOrderedDict() if 'rings' in old_f['geometry']: new_f['geometry']['type'] = 'Polygon' new_f['geometry']['coordinates'] = old_f['geometry']['rings'] geometry_type = new_f['geometry']['type'] coordinates = new_f['geometry']['coordinates'] v_geojson = ValidateGeoJson() c_ok = v_geojson.validate_all_geometry_coordinates(geometry_type, coordinates) if not c_ok: print('Fixing coordinates for: {}'.format(i)) coordinates = v_geojson.fix_geometry_rings_dir(geometry_type, coordinates) new_f['geometry']['coordinates'] = coordinates coord_str = json.dumps(coordinates, indent=4, ensure_ascii=False) gg = GeospaceGeneration() lon_lat = gg.get_centroid_lonlat_coordinates(coord_str, geometry_type) new_f['properties']['latitude'] = lon_lat[1] new_f['properties']['longitude'] = lon_lat[0] else: if 'x' in old_f['geometry'] and 'y' in old_f['geometry']: coords = rpu.reproject_coordinate_pair([ float(old_f['geometry']['x']), float(old_f['geometry']['y'])]) if ('type' in old_f['geometry'] and old_f['geometry']['type'] == 'Point' and 'coordinates' in old_f['geometry']): coords = old_f['geometry']['coordinates'] if coords is None: import pdb; pdb.set_trace() new_f['geometry']['type'] = 'Point' new_f['geometry']['coordinates'] = coords if 'x' in old_f['geometry'] and 'y' in old_f['geometry']: new_f['properties']['utm-x'] = old_f['geometry']['x'] new_f['properties']['utm-y'] = old_f['geometry']['y'] new_f['properties']['lat'] = coords[1] new_f['properties']['lon'] = coords[0] geojson['features'].append(new_f) r = random.randint(1,11) if r > 9: samp_geojson['features'].append(new_f) geojson = geoclust.extact_lon_lat_data_from_geojson(geojson) gimp.save_json_file(geojson, 'avkat-geo', (file + '-new.geojson')) gimp.save_json_file(samp_geojson, 'avkat-geo', (file + '-new-sampled.geojson')) geojsons[file] = geojson geoclust.cluster_lon_lats() for file, geojson in geojsons.items(): geojson = geoclust.add_cluster_property_to_geojson(geojson) gimp.save_json_file(geojson, 'avkat-geo', (file + '-new-clustered.geojson')) all_geojson = geoclust.make_clusters_geojson() gimp.save_json_file(all_geojson, 'avkat-geo', 'all-clustered-new.geojson') import json from opencontext_py.libs.general import LastUpdatedOrderedDict from opencontext_py.libs.validategeojson import ValidateGeoJson from opencontext_py.libs.clustergeojson import ClusterGeoJson from opencontext_py.apps.imports.geojson.geojson import GeoJSONimport from opencontext_py.apps.ocitems.geospace.models import Geospace, GeospaceGeneration from opencontext_py.apps.imports.fieldannotations.models import ImportFieldAnnotation gimp = GeoJSONimport() gimp.load_into_importer = False project_uuid = '02b55e8c-e9b1-49e5-8edf-0afeea10e2be' configs = [ # ('suvey_units', '', 'SU', 'oc-gen:cat-survey-unit'), # ('all', 'SU Group ', 'lon-lat-cluster', 'oc-gen:cat-region'), ('features_intensive_survey', '', 'f_no', 'oc-gen:cat-feature'), ] for file, label_prefix, label_prop, class_uri in configs: gimp.source_id = file geojson = gimp.load_json_file('avkat-geo', (file + '-clustered.geojson')) for feat in geojson['features']: label = label_prefix + str(feat['properties'][label_prop]) man_obj = Manifest.objects.get(label=label, project_uuid=project_uuid, class_uri=class_uri) props = LastUpdatedOrderedDict() props['uri'] = 'https://opencontext.org/subjects/' + man_obj.uuid old_props = feat['properties'] for key, val in old_props.items(): props[key] = val feat['properties'] = props geometry_type = feat['geometry']['type'] coordinates = feat['geometry']['coordinates'] coord_str = json.dumps(coordinates, indent=4, ensure_ascii=False) gg = GeospaceGeneration() lon_lat = gg.get_centroid_lonlat_coordinates(coord_str, geometry_type) Geospace.objects.filter(uuid=man_obj.uuid).delete() geo = Geospace() geo.uuid = man_obj.uuid geo.project_uuid = man_obj.project_uuid geo.source_id = file geo.item_type = man_obj.item_type geo.feature_id = 1 geo.meta_type = ImportFieldAnnotation.PRED_GEO_LOCATION geo.ftype = geometry_type geo.latitude = lon_lat[1] geo.longitude = lon_lat[0] geo.specificity = 0 # dump coordinates as json string geo.coordinates = coord_str try: geo.save() except: print('Problem saving: ' + str(man_obj.uuid)) quit() gimp.save_json_file(geojson, 'avkat-geo', (file + '-clustered-uris.geojson')) from opencontext_py.apps.ocitems.assertions.models import Assertion from opencontext_py.apps.ocitems.manifest.models import Manifest from opencontext_py.apps.ocitems.predicates.models import Predicate project_uuid = '02b55e8c-e9b1-49e5-8edf-0afeea10e2be' vars = [ 'GIS Feature ID', 'Survey Unit ID', 'Transect Type', 'Survey Bearing', 'Survey Unit Width', 'Linear Meters Walked', 'Shape Length', 'Shape Area', 'Weather', 'Visibility', 'Ceramics', 'Land Use', 'AgType Cereal', 'AgType Plow', 'AgType Fruit', 'AgType Forest', 'AgType Olive', 'AgType Vegetable', 'AgType Vines Grapes', 'AgType Bee Keeping', 'AgType Other', 'AgType Other Description', 'Description', ] sort = 9 for vvar in vars: sort += 1 print('Find: ' + vvar) vman = Manifest.objects.get(label=vvar, project_uuid=project_uuid, item_type='predicates') vpred = Predicate.objects.get(uuid=vman.uuid) vpred.sort = sort vpred.save() Assertion.objects.filter(predicate_uuid=vman.uuid).update(sort=sort) from opencontext_py.apps.ocitems.assertions.models import Assertion from opencontext_py.apps.ocitems.manifest.models import Manifest from opencontext_py.apps.ocitems.predicates.models import Predicate project_uuid = '02b55e8c-e9b1-49e5-8edf-0afeea10e2be' vars = [ "Team member walking the 'A' line", "Team member walking the 'B' line", "Team member walking the 'C' line", "Team member walking the 'D' line", "Team member walking the 'E' line", "Team member walking the 'F' line", "Team member walking the 'G' line", "Team member walking the 'H' line", "Team Leader", "Paper Form Completed by", ] sort = 99 for vvar in vars: sort += 1 print('Find: ' + vvar) vman = Manifest.objects.get(label=vvar, project_uuid=project_uuid, item_type='predicates') vpred = Predicate.objects.get(uuid=vman.uuid) vpred.sort = sort vpred.save() Assertion.objects.filter(predicate_uuid=vman.uuid).update(sort=sort) import os from django.conf import settings from opencontext_py.libs.binaryfiles import BinaryFiles from opencontext_py.apps.ocitems.mediafiles.models import Mediafile path = settings.STATIC_EXPORTS_ROOT + 'iiif' project_uuid = '141e814a-ba2d-4560-879f-80f1afb019e9' min_size = 104394357.0 bf = BinaryFiles() meds = Mediafile.objects.filter(project_uuid=project_uuid, filesize__gte=min_size)\ .exclude(mime_type_uri__contains='application/pdf')\ .order_by('-filesize')[:100] for med in meds: file_name = med.file_uri.split('/')[-1] print('Save ' + file_name) bf.get_cache_remote_file_content_http(file_name, med.file_uri, 'iiif') from opencontext_py.apps.ocitems.mediafiles.models import Mediafile project_uuid = '141e814a-ba2d-4560-879f-80f1afb019e9' min_size = 104394357.0 imgs = {} imgs['101-drawing-d-ss-016.tif'] = 'https://free.iiifhosting.com/iiif/291e81f8bc2847aaa5f4c532b4f59e1751aa76ce2e7a7ce8acd459ec0f9b2f30/info.json' imgs['101-drawing-d-ss-016.tif'] = 'https://free.iiifhosting.com/iiif/291e81f8bc2847aaa5f4c532b4f59e1751aa76ce2e7a7ce8acd459ec0f9b2f30/info.json' imgs['101-drawing-d-gen-027.tif'] = 'https://free.iiifhosting.com/iiif/a696615ab137c4de2a6c7212651df9467cd04505b21dcbc2602c43eaa2ecaf7a/info.json' imgs['101-drawing-d-ss-002.tif'] = 'https://free.iiifhosting.com/iiif/69317657a4540d28ce549cb082fed05e821b2a205ba3f69a51539772e94866f5/info.json' imgs['101-drawing-d-e-047.tif'] = 'https://free.iiifhosting.com/iiif/42e0b97f7b0e46a83828e521c04805e771a8e1dfe24fbada611de9b0726313c3/info.json' imgs['101-drawing-d-ss-001.tif'] = 'https://free.iiifhosting.com/iiif/840728372ee6b611c3baf631f109b79b3e5657f38e71ff2499b34532f62745fa/info.json' imgs['101-drawing-d-kvt-006.tif'] = 'https://free.iiifhosting.com/iiif/641ba83302bdb3c1b6d5e9a58a1ce948e6ba0da375ebbc5231df6a4453c5c748/info.json' imgs['101-drawing-d-gen-007.tif'] = 'https://free.iiifhosting.com/iiif/479f5a37dd2f33d959cf72528ce3978f6ff70788625ab71e028bc1eb360494ad/info.json' imgs['101-drawing-d-ss-015.tif'] = 'https://free.iiifhosting.com/iiif/9a7393c9278fe60e4ab23d4a2bfd0d7192ab048d132795f337a6b79e89c2f24/info.json' imgs['101-drawing-d-gen-005.tif'] = 'https://free.iiifhosting.com/iiif/2b85999ad86fa3200a91121912b28e9bae96d55dd554d1d45bd2ac7de003532d/info.json' imgs['101-drawing-d-ss-004.tif'] = 'https://free.iiifhosting.com/iiif/390df4778e208fd9035c822d161a718414dc56d38b02f6e1dc9c1617d9744cb7/info.json' imgs['101-drawing-d-ss-005.tif'] = 'https://free.iiifhosting.com/iiif/2851bd2a55ed85cfd1775f9b4b9689b776c1e134e488230e4871736f05972127/info.json' imgs['101-drawing-d-ss-021.tif'] = 'https://free.iiifhosting.com/iiif/7fd8f19d033a10db04a9960042911223d69468b6df9dfeee1f2c0221d3e29f58/info.json' imgs['101-drawing-d-ss-003.tif'] = 'https://free.iiifhosting.com/iiif/22443f7c36e4a60e6fb1c8eafdecedd44d55edb16d1ff5da3f7d960f46e9c9ad/info.json' imgs['101-drawing-d-ss-012.tiff'] = 'https://free.iiifhosting.com/iiif/936ba50885c56f808dd4fc4056f6dd0ae993c084379e2975c5091e6f06e5d9ce/info.json' meds = Mediafile.objects.filter(project_uuid=project_uuid, filesize__gte=min_size)\ .exclude(mime_type_uri__contains='application/pdf')\ .order_by('-filesize')[:100] for med in meds: print(med.uuid) from opencontext_py.apps.imports.records.models import ImportCell from opencontext_py.apps.ocitems.assertions.models import Assertion from opencontext_py.apps.ocitems.manifest.models import Manifest from opencontext_py.apps.ocitems.mediafiles.models import Mediafile project_uuid = '02b55e8c-e9b1-49e5-8edf-0afeea10e2be' source_id = 'ref:1669580990802' sunit_field = 12 feature_field = 11 full_field = 15 med_cells = ImportCell.objects.filter(source_id=source_id, field_num=full_field) for med_cell in med_cells: feat_man = None su_man = None feat_cell = ImportCell.objects.filter(source_id=source_id, row_num=med_cell.row_num, field_num=feature_field)[:1][0] su_cell = ImportCell.objects.filter(source_id=source_id, row_num=med_cell.row_num, field_num=sunit_field)[:1][0] try: feat_man = Manifest.objects.get(label=feat_cell.record, item_type='subjects', class_uri='oc-gen:cat-feature', project_uuid=project_uuid) except: pass try: su_man = Manifest.objects.get(label=su_cell.record, item_type='subjects', class_uri='oc-gen:cat-survey-unit', project_uuid=project_uuid) except: pass full_uri = med_cell.record media_f = Mediafile.objects.get(file_uri=full_uri, project_uuid=project_uuid) if feat_man: print('Adding Feature: {} : {}'.format(feat_man.uuid, media_f.uuid)) Assertion.objects.filter(uuid=feat_man.uuid, object_uuid=media_f.uuid).delete() Assertion.objects.filter(object_uuid=feat_man.uuid, uuid=media_f.uuid).delete() new_ass = Assertion() new_ass.uuid = feat_man.uuid new_ass.subject_type = feat_man.item_type new_ass.project_uuid = feat_man.project_uuid new_ass.source_id = source_id + '-fix' new_ass.obs_node = '#obs-' + str(1) new_ass.obs_num = 1 new_ass.sort = 1 new_ass.visibility = 1 new_ass.predicate_uuid = 'oc-3' new_ass.object_type = 'media' new_ass.object_uuid = media_f.uuid new_ass.save() new_ass = Assertion() new_ass.uuid = media_f.uuid new_ass.subject_type = 'media' new_ass.project_uuid = project_uuid new_ass.source_id = source_id + '-fix' new_ass.obs_node = '#obs-' + str(1) new_ass.obs_num = 1 new_ass.sort = 1 new_ass.visibility = 1 new_ass.predicate_uuid = 'oc-3' new_ass.object_type = feat_man.item_type new_ass.object_uuid = feat_man.uuid new_ass.save() if su_man: print('Adding Survey Unit: {} : {}'.format(su_man.uuid, media_f.uuid)) Assertion.objects.filter(uuid=su_man.uuid, object_uuid=media_f.uuid).delete() Assertion.objects.filter(object_uuid=su_man.uuid, uuid=media_f.uuid).delete() new_ass = Assertion() new_ass.uuid = su_man.uuid new_ass.subject_type = su_man.item_type new_ass.project_uuid = su_man.project_uuid new_ass.source_id = source_id + '-fix' new_ass.obs_node = '#obs-' + str(1) new_ass.obs_num = 1 new_ass.sort = 1 new_ass.visibility = 1 new_ass.predicate_uuid = 'oc-3' new_ass.object_type = 'media' new_ass.object_uuid = media_f.uuid new_ass.save() new_ass = Assertion() new_ass.uuid = media_f.uuid new_ass.subject_type = 'media' new_ass.project_uuid = project_uuid new_ass.source_id = source_id + '-fix' new_ass.obs_node = '#obs-' + str(1) new_ass.obs_num = 1 new_ass.sort = 1 new_ass.visibility = 1 new_ass.predicate_uuid = 'oc-3' new_ass.object_type = su_man.item_type new_ass.object_uuid = su_man.uuid new_ass.save() from opencontext_py.apps.ocitems.assertions.models import Assertion from opencontext_py.apps.ocitems.manifest.models import Manifest from opencontext_py.apps.ocitems.mediafiles.models import Mediafile project_uuid = '02b55e8c-e9b1-49e5-8edf-0afeea10e2be' source_id = 'ref:1669580990802' m_mans = Manifest.objects.filter(project_uuid=project_uuid, source_id=source_id, item_type='media') for m_man in m_mans: a_chk = Assertion.objects.filter(subject_type='subjects', object_uuid=m_man.uuid)[:1] if len(a_chk) > 0: continue if len(a_chk) == 0: print('Delete! {} has {} subject links'.format(m_man.uuid, len(a_chk))) Mediafile.objects.filter(uuid=m_man.uuid).delete() Assertion.objects.filter(uuid=m_man.uuid).delete() Assertion.objects.filter(object_uuid=m_man.uuid).delete() m_man.delete() sources = [ ('trap-geo-yambal', 'Survey Unit ', 'SUID', 'yam-survey-units-reproj-w-uuids-clustered.geojson', 'yam-survey-units-clustered-w-uris.geojson'), ('trap-geo-kazanlak', 'Survey Unit ', 'SUID', 'kaz-survey-units-reproj-w-uuids-best-clustered.geojson', 'kaz-survey-units-clustered-w-uris.geojson'), ('trap-geo-yambal-groups', 'S.U. Group Y', 'lon-lat-cluster', 'yam-clustered.geojson', 'yam-clustered-w-uris.geojson'), ('trap-geo-kazanlak-groups', 'S.U. Group K', 'lon-lat-cluster', 'kaz-clustered.geojson', 'kaz-clustered-w-uris.geojson') ] from opencontext_py.libs.general import LastUpdatedOrderedDict from opencontext_py.apps.ocitems.manifest.models import Manifest from opencontext_py.apps.imports.geojson.geojson import GeoJSONimport from opencontext_py.apps.ocitems.geospace.models import Geospace project_uuid = '24e2aa20-59e6-4d66-948b-50ee245a7cfc' sources = [ ('trap-geo-yambal-groups', 'S.U. Group Y', 'lon-lat-cluster', 'yam-clustered.geojson', 'yam-clustered-w-uris.geojson'), ('trap-geo-kazanlak-groups', 'S.U. Group K', 'lon-lat-cluster', 'kaz-clustered.geojson', 'kaz-clustered-w-uris.geojson') ] for source_id, prefix, id_prop, old_file, new_file in sources: Geospace.objects\ .filter(source_id=source_id, project_uuid=project_uuid, ftype__in=['Polygon', 'Multipolygon']).delete() gimp = GeoJSONimport() gimp.load_into_importer = False gimp.project_uuid = project_uuid gimp.source_id = source_id json_obj = gimp.load_json_file('trap-geo', old_file) rev_json = LastUpdatedOrderedDict() rev_json['type'] = 'FeatureCollection' rev_json['features'] = [] for feat in json_obj['features']: suid = feat['properties'][id_prop] label = prefix + str(suid) print('Find {}'.format(label)) man_obj = Manifest.objects.get(label=label, project_uuid=project_uuid, item_type='subjects') feat['properties']['uri'] = 'http://opencontext.org/subjects/' + man_obj.uuid if 'uuid' in feat['properties']: feat['properties'].pop('uuid') rev_json['features'].append(feat) print('{} is {}'.format(man_obj.label, man_obj.uuid)) gimp.save_json_file(rev_json, 'trap-geo', new_file) gimp.process_features_in_file('trap-geo', new_file) from opencontext_py.apps.ocitems.assertions.models import Assertion from opencontext_py.apps.ocitems.manifest.models import Manifest from opencontext_py.apps.ocitems.predicates.models import Predicate project_uuid = 'a52bd40a-9ac8-4160-a9b0-bd2795079203' pred = Manifest.objects.get(uuid=predicate_uuid) mans = Manifest.objects.filter(project_uuid=project_uuid, item_type='media') pers = Manifest.objects.get(uuid='0dcda4ad-812b-484f-ad70-3613d063cf52') # Kevin predicate_uuid = 'fc335a0d-42e0-42ae-bb11-0ef46ec048e8' pm = Predicate.objects.get(uuid=predicate_uuid) for man_obj in mans: Assertion.objects.filter(uuid=man_obj.uuid, object_type='persons').delete() new_ass = Assertion() new_ass.uuid = man_obj.uuid new_ass.subject_type = man_obj.item_type new_ass.project_uuid = man_obj.project_uuid new_ass.source_id = 'kevin-contributor' new_ass.obs_node = '#obs-' + str(1) new_ass.obs_num = 1 new_ass.sort = 1 new_ass.visibility = 1 new_ass.predicate_uuid = predicate_uuid new_ass.object_type = pers.item_type new_ass.object_uuid = pers.uuid new_ass.save()
gpl-3.0
hugobowne/scikit-learn
examples/gaussian_process/plot_gpc_xor.py
104
2132
""" ======================================================================== Illustration of Gaussian process classification (GPC) on the XOR dataset ======================================================================== This example illustrates GPC on XOR data. Compared are a stationary, isotropic kernel (RBF) and a non-stationary kernel (DotProduct). On this particular dataset, the DotProduct kernel obtains considerably better results because the class-boundaries are linear and coincide with the coordinate axes. In general, stationary kernels often obtain better results. """ print(__doc__) # Authors: Jan Hendrik Metzen <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF, DotProduct xx, yy = np.meshgrid(np.linspace(-3, 3, 50), np.linspace(-3, 3, 50)) rng = np.random.RandomState(0) X = rng.randn(200, 2) Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0) # fit the model plt.figure(figsize=(10, 5)) kernels = [1.0 * RBF(length_scale=1.0), 1.0 * DotProduct(sigma_0=1.0)**2] for i, kernel in enumerate(kernels): clf = GaussianProcessClassifier(kernel=kernel, warm_start=True).fit(X, Y) # plot the decision function for each datapoint on the grid Z = clf.predict_proba(np.vstack((xx.ravel(), yy.ravel())).T)[:, 1] Z = Z.reshape(xx.shape) plt.subplot(1, 2, i + 1) image = plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), aspect='auto', origin='lower', cmap=plt.cm.PuOr_r) contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2, linetypes='--') plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired) plt.xticks(()) plt.yticks(()) plt.axis([-3, 3, -3, 3]) plt.colorbar(image) plt.title("%s\n Log-Marginal-Likelihood:%.3f" % (clf.kernel_, clf.log_marginal_likelihood(clf.kernel_.theta)), fontsize=12) plt.tight_layout() plt.show()
bsd-3-clause
RTHMaK/RPGOne
Documents/sklearn-stub-master/doc/conf.py
2
9365
# -*- coding: utf-8 -*- # # sklearn-stub documentation build configuration file, created by # sphinx-quickstart on Mon Jan 18 14:44:12 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) sys.path.insert(0, os.path.abspath('sphinxext')) # -- General configuration --------------------------------------------------- # Try to override the matplotlib configuration as early as possible try: import gen_rst except: pass # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'numpydoc', 'sphinx.ext.pngmath', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'gen_rst' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # Generate the plots for the gallery plot_gallery = True # The master toctree document. master_doc = 'index' # General information about the project. project = u'sklearn-stub' copyright = u'2016, Vighnesh Birodkar' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1' # The full version, including alpha/beta/rc tags. release = '0.1.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'nature' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'sklearn-stubdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'sklearn-stub.tex', u'sklearn-stub Documentation', u'Vighnesh Birodkar', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'sklearn-stub', u'sklearn-stub Documentation', [u'Vighnesh Birodkar'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'sklearn-stub', u'sklearn-stub Documentation', u'Vighnesh Birodkar', 'sklearn-stub', 'One line description of project.', 'Miscellaneous'), ] def generate_example_rst(app, what, name, obj, options, lines): # generate empty examples files, so that we don't get # inclusion errors if there are no examples for a class / module examples_path = os.path.join(app.srcdir, "modules", "generated", "%s.examples" % name) if not os.path.exists(examples_path): # touch file open(examples_path, 'w').close() def setup(app): app.connect('autodoc-process-docstring', generate_example_rst) # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/': None}
apache-2.0
johnwu93/find_best_mall
recomendation system/recsys.py
3
4621
import numpy as np from sklearn.metrics.pairwise import pairwise_distances class recsys(object): #X is the truth def __init__(self,X): self.X = X self.X_predict = None self.X_train = None pass #get the necessary helper functions to do an analysis. may require more parameters for derived classes def get_helpers(self, feature_func = None, similarity_func = None): if ( not(feature_func is None) or (self.feature_helper is None)): self.feature_helper = feature_func; if ( not(similarity_func is None) or (self.similarity_helper is None)): self.similarity_helper = similarity_func; def similarity(self, features, similarity_helper, cluster, k): #creates an N-by-N matrix where the i, j entry tell how the ith person is related to the jth person. the column is referring to one persn # this matrix is NOT SYMMETRIC # input # feature - matrix how you are going to compare the objects where you have N peop # similarity_helper - S=pairwise_distances(features, metric=similarity_helper) #S = self.similarity_helper(W) S = S-np.diag(S.diagonal()) #modifies S for cluster information cluster_ind = np.array([cluster]*features.shape[0]) S = np.multiply(S, 1*(cluster_ind == cluster_ind.T)) #implement the neighborbased part. This is for better results. Get top K similar people for each user. np.apply_along_axis(find_top_k, 0,S , k=k) #computations can be slow for this model S_norm =np.multiply(S, 1/np.sum(S, axis=0)) #fast multiplication S_norm[np.isnan(S_norm)]=0 #deals with nan problem. (Consider the instance that you are the only user and nobody is similar to you.) return S_norm def get_parameters(self, **kwargs): pass #this varies from learner to learner. Some learners do not have this because they do not have parameters to be tuned def get_parameters_2(self, **kwargs): pass def predict_for_user(self, user_ratings, user_feat, k, feature_transform_all =None): #output: predicted indices of the stores that are most liked by a user #f transform user into a more appropiate feature #makes a prediction for the user #for matrix factorization, preprocessing must be made. Specifically, user_feat and feat must be already defined pass def transform_training(self, train_indices, test_indices): #Uses the information of the training and testing indices to transform X for training purposes #train_incides must be a |Train_Data|-by-2 matrix. #train_indices come in tuples self.X_train = np.copy(self.X); if((test_indices is None) and (train_indices is None) ): return elif(not (test_indices is None)): self.X_train[test_indices[:, 0], test_indices[:, 1]] = np.zeros((1, test_indices.shape[0])) return else: #create a binary matrix that Nitems, Nusers = self.X.shape test_indicator = np.ones((Nitems, Nusers)) test_indicator[train_indices[:, 0], train_indices[:, 1]] = np.zeros((1, train_indices.shape[0])) self.X_train[test_indicator == 1] = 0 def fit(self, train_indices = "None", test_indices = "None"): pass #the code of the actual #i #in reality, this would not be used alot def predict(self, indices): if(not isinstance(indices, np.ndarray)): raise Exception("Dawg, your indices have to be an ndarray") return self.X_predict(indices[:, 0], indices[:, 1]) def score(self, truth_index): if(not isinstance(truth_index, np.ndarray)): raise Exception("Dawg, your testing indices have to be an ndarray") return self.score_helper(self.X, self.X_predict, truth_index) def get_helper2(self, name, function): if(name == 'feature_helper'): self.feature_helper = function return if(name == 'similarity_helper'): self.similarity_helper = function return if(name == 'score_helper'): self.score_helper = function return else: raise Exception("Cannot find feature function corresponding to the input name") def find_top_k(x, k): #return an array where anything less than the top k values of an array is zero if( np.count_nonzero(x) <k): return x else: x[x < -1*np.partition(-1*x, k)[k]] = 0 return x
mit
frank-tancf/scikit-learn
sklearn/utils/tests/test_validation.py
56
18600
"""Tests for input validation functions""" import warnings from tempfile import NamedTemporaryFile from itertools import product import numpy as np from numpy.testing import assert_array_equal import scipy.sparse as sp from nose.tools import assert_raises, assert_true, assert_false, assert_equal from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils import as_float_array, check_array, check_symmetric from sklearn.utils import check_X_y from sklearn.utils.mocking import MockDataFrame from sklearn.utils.estimator_checks import NotAnArray from sklearn.random_projection import sparse_random_matrix from sklearn.linear_model import ARDRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from sklearn.datasets import make_blobs from sklearn.utils.validation import ( has_fit_parameter, check_is_fitted, check_consistent_length, ) from sklearn.exceptions import NotFittedError from sklearn.exceptions import DataConversionWarning from sklearn.utils.testing import assert_raise_message def test_as_float_array(): # Test function for as_float_array X = np.ones((3, 10), dtype=np.int32) X = X + np.arange(10, dtype=np.int32) # Checks that the return type is ok X2 = as_float_array(X, copy=False) np.testing.assert_equal(X2.dtype, np.float32) # Another test X = X.astype(np.int64) X2 = as_float_array(X, copy=True) # Checking that the array wasn't overwritten assert_true(as_float_array(X, False) is not X) # Checking that the new type is ok np.testing.assert_equal(X2.dtype, np.float64) # Here, X is of the right type, it shouldn't be modified X = np.ones((3, 2), dtype=np.float32) assert_true(as_float_array(X, copy=False) is X) # Test that if X is fortran ordered it stays X = np.asfortranarray(X) assert_true(np.isfortran(as_float_array(X, copy=True))) # Test the copy parameter with some matrices matrices = [ np.matrix(np.arange(5)), sp.csc_matrix(np.arange(5)).toarray(), sparse_random_matrix(10, 10, density=0.10).toarray() ] for M in matrices: N = as_float_array(M, copy=True) N[0, 0] = np.nan assert_false(np.isnan(M).any()) def test_np_matrix(): # Confirm that input validation code does not return np.matrix X = np.arange(12).reshape(3, 4) assert_false(isinstance(as_float_array(X), np.matrix)) assert_false(isinstance(as_float_array(np.matrix(X)), np.matrix)) assert_false(isinstance(as_float_array(sp.csc_matrix(X)), np.matrix)) def test_memmap(): # Confirm that input validation code doesn't copy memory mapped arrays asflt = lambda x: as_float_array(x, copy=False) with NamedTemporaryFile(prefix='sklearn-test') as tmp: M = np.memmap(tmp, shape=(10, 10), dtype=np.float32) M[:] = 0 for f in (check_array, np.asarray, asflt): X = f(M) X[:] = 1 assert_array_equal(X.ravel(), M.ravel()) X[:] = 0 def test_ordering(): # Check that ordering is enforced correctly by validation utilities. # We need to check each validation utility, because a 'copy' without # 'order=K' will kill the ordering. X = np.ones((10, 5)) for A in X, X.T: for copy in (True, False): B = check_array(A, order='C', copy=copy) assert_true(B.flags['C_CONTIGUOUS']) B = check_array(A, order='F', copy=copy) assert_true(B.flags['F_CONTIGUOUS']) if copy: assert_false(A is B) X = sp.csr_matrix(X) X.data = X.data[::-1] assert_false(X.data.flags['C_CONTIGUOUS']) @ignore_warnings def test_check_array(): # accept_sparse == None # raise error on sparse inputs X = [[1, 2], [3, 4]] X_csr = sp.csr_matrix(X) assert_raises(TypeError, check_array, X_csr) # ensure_2d assert_warns(DeprecationWarning, check_array, [0, 1, 2]) X_array = check_array([0, 1, 2]) assert_equal(X_array.ndim, 2) X_array = check_array([0, 1, 2], ensure_2d=False) assert_equal(X_array.ndim, 1) # don't allow ndim > 3 X_ndim = np.arange(8).reshape(2, 2, 2) assert_raises(ValueError, check_array, X_ndim) check_array(X_ndim, allow_nd=True) # doesn't raise # force_all_finite X_inf = np.arange(4).reshape(2, 2).astype(np.float) X_inf[0, 0] = np.inf assert_raises(ValueError, check_array, X_inf) check_array(X_inf, force_all_finite=False) # no raise # nan check X_nan = np.arange(4).reshape(2, 2).astype(np.float) X_nan[0, 0] = np.nan assert_raises(ValueError, check_array, X_nan) check_array(X_inf, force_all_finite=False) # no raise # dtype and order enforcement. X_C = np.arange(4).reshape(2, 2).copy("C") X_F = X_C.copy("F") X_int = X_C.astype(np.int) X_float = X_C.astype(np.float) Xs = [X_C, X_F, X_int, X_float] dtypes = [np.int32, np.int, np.float, np.float32, None, np.bool, object] orders = ['C', 'F', None] copys = [True, False] for X, dtype, order, copy in product(Xs, dtypes, orders, copys): X_checked = check_array(X, dtype=dtype, order=order, copy=copy) if dtype is not None: assert_equal(X_checked.dtype, dtype) else: assert_equal(X_checked.dtype, X.dtype) if order == 'C': assert_true(X_checked.flags['C_CONTIGUOUS']) assert_false(X_checked.flags['F_CONTIGUOUS']) elif order == 'F': assert_true(X_checked.flags['F_CONTIGUOUS']) assert_false(X_checked.flags['C_CONTIGUOUS']) if copy: assert_false(X is X_checked) else: # doesn't copy if it was already good if (X.dtype == X_checked.dtype and X_checked.flags['C_CONTIGUOUS'] == X.flags['C_CONTIGUOUS'] and X_checked.flags['F_CONTIGUOUS'] == X.flags['F_CONTIGUOUS']): assert_true(X is X_checked) # allowed sparse != None X_csc = sp.csc_matrix(X_C) X_coo = X_csc.tocoo() X_dok = X_csc.todok() X_int = X_csc.astype(np.int) X_float = X_csc.astype(np.float) Xs = [X_csc, X_coo, X_dok, X_int, X_float] accept_sparses = [['csr', 'coo'], ['coo', 'dok']] for X, dtype, accept_sparse, copy in product(Xs, dtypes, accept_sparses, copys): with warnings.catch_warnings(record=True) as w: X_checked = check_array(X, dtype=dtype, accept_sparse=accept_sparse, copy=copy) if (dtype is object or sp.isspmatrix_dok(X)) and len(w): message = str(w[0].message) messages = ["object dtype is not supported by sparse matrices", "Can't check dok sparse matrix for nan or inf."] assert_true(message in messages) else: assert_equal(len(w), 0) if dtype is not None: assert_equal(X_checked.dtype, dtype) else: assert_equal(X_checked.dtype, X.dtype) if X.format in accept_sparse: # no change if allowed assert_equal(X.format, X_checked.format) else: # got converted assert_equal(X_checked.format, accept_sparse[0]) if copy: assert_false(X is X_checked) else: # doesn't copy if it was already good if (X.dtype == X_checked.dtype and X.format == X_checked.format): assert_true(X is X_checked) # other input formats # convert lists to arrays X_dense = check_array([[1, 2], [3, 4]]) assert_true(isinstance(X_dense, np.ndarray)) # raise on too deep lists assert_raises(ValueError, check_array, X_ndim.tolist()) check_array(X_ndim.tolist(), allow_nd=True) # doesn't raise # convert weird stuff to arrays X_no_array = NotAnArray(X_dense) result = check_array(X_no_array) assert_true(isinstance(result, np.ndarray)) def test_check_array_pandas_dtype_object_conversion(): # test that data-frame like objects with dtype object # get converted X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.object) X_df = MockDataFrame(X) assert_equal(check_array(X_df).dtype.kind, "f") assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f") # smoke-test against dataframes with column named "dtype" X_df.dtype = "Hans" assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f") def test_check_array_dtype_stability(): # test that lists with ints don't get converted to floats X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] assert_equal(check_array(X).dtype.kind, "i") assert_equal(check_array(X, ensure_2d=False).dtype.kind, "i") def test_check_array_dtype_warning(): X_int_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] X_float64 = np.asarray(X_int_list, dtype=np.float64) X_float32 = np.asarray(X_int_list, dtype=np.float32) X_int64 = np.asarray(X_int_list, dtype=np.int64) X_csr_float64 = sp.csr_matrix(X_float64) X_csr_float32 = sp.csr_matrix(X_float32) X_csc_float32 = sp.csc_matrix(X_float32) X_csc_int32 = sp.csc_matrix(X_int64, dtype=np.int32) y = [0, 0, 1] integer_data = [X_int64, X_csc_int32] float64_data = [X_float64, X_csr_float64] float32_data = [X_float32, X_csr_float32, X_csc_float32] for X in integer_data: X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True) assert_equal(X_checked.dtype, np.float64) X_checked = assert_warns(DataConversionWarning, check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=True) assert_equal(X_checked.dtype, np.float64) # Check that the warning message includes the name of the Estimator X_checked = assert_warns_message(DataConversionWarning, 'SomeEstimator', check_array, X, dtype=[np.float64, np.float32], accept_sparse=True, warn_on_dtype=True, estimator='SomeEstimator') assert_equal(X_checked.dtype, np.float64) X_checked, y_checked = assert_warns_message( DataConversionWarning, 'KNeighborsClassifier', check_X_y, X, y, dtype=np.float64, accept_sparse=True, warn_on_dtype=True, estimator=KNeighborsClassifier()) assert_equal(X_checked.dtype, np.float64) for X in float64_data: X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=True) assert_equal(X_checked.dtype, np.float64) X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=False) assert_equal(X_checked.dtype, np.float64) for X in float32_data: X_checked = assert_no_warnings(check_array, X, dtype=[np.float64, np.float32], accept_sparse=True) assert_equal(X_checked.dtype, np.float32) assert_true(X_checked is X) X_checked = assert_no_warnings(check_array, X, dtype=[np.float64, np.float32], accept_sparse=['csr', 'dok'], copy=True) assert_equal(X_checked.dtype, np.float32) assert_false(X_checked is X) X_checked = assert_no_warnings(check_array, X_csc_float32, dtype=[np.float64, np.float32], accept_sparse=['csr', 'dok'], copy=False) assert_equal(X_checked.dtype, np.float32) assert_false(X_checked is X_csc_float32) assert_equal(X_checked.format, 'csr') def test_check_array_min_samples_and_features_messages(): # empty list is considered 2D by default: msg = "0 feature(s) (shape=(1, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_array, [[]]) # If considered a 1D collection when ensure_2d=False, then the minimum # number of samples will break: msg = "0 sample(s) (shape=(0,)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_array, [], ensure_2d=False) # Invalid edge case when checking the default minimum sample of a scalar msg = "Singleton array array(42) cannot be considered a valid collection." assert_raise_message(TypeError, msg, check_array, 42, ensure_2d=False) # But this works if the input data is forced to look like a 2 array with # one sample and one feature: X_checked = assert_warns(DeprecationWarning, check_array, [42], ensure_2d=True) assert_array_equal(np.array([[42]]), X_checked) # Simulate a model that would need at least 2 samples to be well defined X = np.ones((1, 10)) y = np.ones(1) msg = "1 sample(s) (shape=(1, 10)) while a minimum of 2 is required." assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2) # The same message is raised if the data has 2 dimensions even if this is # not mandatory assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2, ensure_2d=False) # Simulate a model that would require at least 3 features (e.g. SelectKBest # with k=3) X = np.ones((10, 2)) y = np.ones(2) msg = "2 feature(s) (shape=(10, 2)) while a minimum of 3 is required." assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3) # Only the feature check is enabled whenever the number of dimensions is 2 # even if allow_nd is enabled: assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3, allow_nd=True) # Simulate a case where a pipeline stage as trimmed all the features of a # 2D dataset. X = np.empty(0).reshape(10, 0) y = np.ones(10) msg = "0 feature(s) (shape=(10, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_X_y, X, y) # nd-data is not checked for any minimum number of features by default: X = np.ones((10, 0, 28, 28)) y = np.ones(10) X_checked, y_checked = check_X_y(X, y, allow_nd=True) assert_array_equal(X, X_checked) assert_array_equal(y, y_checked) def test_has_fit_parameter(): assert_false(has_fit_parameter(KNeighborsClassifier, "sample_weight")) assert_true(has_fit_parameter(RandomForestRegressor, "sample_weight")) assert_true(has_fit_parameter(SVR, "sample_weight")) assert_true(has_fit_parameter(SVR(), "sample_weight")) def test_check_symmetric(): arr_sym = np.array([[0, 1], [1, 2]]) arr_bad = np.ones(2) arr_asym = np.array([[0, 2], [0, 2]]) test_arrays = {'dense': arr_asym, 'dok': sp.dok_matrix(arr_asym), 'csr': sp.csr_matrix(arr_asym), 'csc': sp.csc_matrix(arr_asym), 'coo': sp.coo_matrix(arr_asym), 'lil': sp.lil_matrix(arr_asym), 'bsr': sp.bsr_matrix(arr_asym)} # check error for bad inputs assert_raises(ValueError, check_symmetric, arr_bad) # check that asymmetric arrays are properly symmetrized for arr_format, arr in test_arrays.items(): # Check for warnings and errors assert_warns(UserWarning, check_symmetric, arr) assert_raises(ValueError, check_symmetric, arr, raise_exception=True) output = check_symmetric(arr, raise_warning=False) if sp.issparse(output): assert_equal(output.format, arr_format) assert_array_equal(output.toarray(), arr_sym) else: assert_array_equal(output, arr_sym) def test_check_is_fitted(): # Check is ValueError raised when non estimator instance passed assert_raises(ValueError, check_is_fitted, ARDRegression, "coef_") assert_raises(TypeError, check_is_fitted, "SVR", "support_") ard = ARDRegression() svr = SVR() try: assert_raises(NotFittedError, check_is_fitted, ard, "coef_") assert_raises(NotFittedError, check_is_fitted, svr, "support_") except ValueError: assert False, "check_is_fitted failed with ValueError" # NotFittedError is a subclass of both ValueError and AttributeError try: check_is_fitted(ard, "coef_", "Random message %(name)s, %(name)s") except ValueError as e: assert_equal(str(e), "Random message ARDRegression, ARDRegression") try: check_is_fitted(svr, "support_", "Another message %(name)s, %(name)s") except AttributeError as e: assert_equal(str(e), "Another message SVR, SVR") ard.fit(*make_blobs()) svr.fit(*make_blobs()) assert_equal(None, check_is_fitted(ard, "coef_")) assert_equal(None, check_is_fitted(svr, "support_")) def test_check_consistent_length(): check_consistent_length([1], [2], [3], [4], [5]) check_consistent_length([[1, 2], [[1, 2]]], [1, 2], ['a', 'b']) check_consistent_length([1], (2,), np.array([3]), sp.csr_matrix((1, 2))) assert_raises_regexp(ValueError, 'inconsistent numbers of samples', check_consistent_length, [1, 2], [1]) assert_raises_regexp(TypeError, 'got <\w+ \'int\'>', check_consistent_length, [1, 2], 1) assert_raises_regexp(TypeError, 'got <\w+ \'object\'>', check_consistent_length, [1, 2], object()) assert_raises(TypeError, check_consistent_length, [1, 2], np.array(1)) # Despite ensembles having __len__ they must raise TypeError assert_raises_regexp(TypeError, 'estimator', check_consistent_length, [1, 2], RandomForestRegressor()) # XXX: We should have a test with a string, but what is correct behaviour?
bsd-3-clause
zymsys/sms-tools
lectures/05-Sinusoidal-model/plots-code/spectral-peaks-interpolation.py
22
1234
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, triang, blackmanharris from scipy.fftpack import fft, ifft import math import sys, os, functools, time sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DFT import utilFunctions as UF (fs, x) = UF.wavread('../../../sounds/oboe-A4.wav') N = 512*2 M = 511 t = -60 w = np.hamming(M) start = .8*fs hN = N/2 hM = (M+1)/2 x1 = x[start:start+M] mX, pX = DFT.dftAnal(x1, w, N) ploc = UF.peakDetection(mX, t) iploc, ipmag, ipphase = UF.peakInterp(mX, pX, ploc) pmag = mX[ploc] freqaxis = fs*np.arange(mX.size)/float(N) plt.figure(1, figsize=(9.5, 5.5)) plt.subplot (2,1,1) plt.plot(freqaxis,mX,'r', lw=1.5) plt.axis([300,2500,-70,max(mX)]) plt.plot(fs * iploc / N, ipmag, marker='x', color='b', linestyle='', markeredgewidth=1.5) plt.title('mX + spectral peaks (oboe-A4.wav)') plt.subplot (2,1,2) plt.plot(freqaxis,pX,'c', lw=1.5) plt.axis([300,2500,min(pX),-1]) plt.plot(fs * iploc / N, ipphase, marker='x', color='b', linestyle='', markeredgewidth=1.5) plt.title('pX + spectral peaks') plt.tight_layout() plt.savefig('spectral-peaks-interpolation.png') plt.show()
agpl-3.0
cainiaocome/scikit-learn
examples/classification/plot_classifier_comparison.py
181
4699
#!/usr/bin/python # -*- coding: utf-8 -*- """ ===================== Classifier comparison ===================== A comparison of a several classifiers in scikit-learn on synthetic datasets. The point of this example is to illustrate the nature of decision boundaries of different classifiers. This should be taken with a grain of salt, as the intuition conveyed by these examples does not necessarily carry over to real datasets. Particularly in high-dimensional spaces, data can more easily be separated linearly and the simplicity of classifiers such as naive Bayes and linear SVMs might lead to better generalization than is achieved by other classifiers. The plots show training points in solid colors and testing points semi-transparent. The lower right shows the classification accuracy on the test set. """ print(__doc__) # Code source: Gaël Varoquaux # Andreas Müller # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.lda import LDA from sklearn.qda import QDA h = .02 # step size in the mesh names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree", "Random Forest", "AdaBoost", "Naive Bayes", "LDA", "QDA"] classifiers = [ KNeighborsClassifier(3), SVC(kernel="linear", C=0.025), SVC(gamma=2, C=1), DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), AdaBoostClassifier(), GaussianNB(), LDA(), QDA()] X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [make_moons(noise=0.3, random_state=0), make_circles(noise=0.2, factor=0.5, random_state=1), linearly_separable ] figure = plt.figure(figsize=(27, 9)) i = 1 # iterate over datasets for ds in datasets: # preprocess dataset, split into training and test part X, y = ds X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4) x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # just plot the dataset first cm = plt.cm.RdBu cm_bright = ListedColormap(['#FF0000', '#0000FF']) ax = plt.subplot(len(datasets), len(classifiers) + 1, i) # Plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) i += 1 # iterate over classifiers for name, clf in zip(names, classifiers): ax = plt.subplot(len(datasets), len(classifiers) + 1, i) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. if hasattr(clf, "decision_function"): Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] # Put the result into a color plot Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm, alpha=.8) # Plot also the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) ax.set_title(name) ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right') i += 1 figure.subplots_adjust(left=.02, right=.98) plt.show()
bsd-3-clause
e-q/scipy
scipy/ndimage/filters.py
5
52471
# Copyright (C) 2003-2005 Peter J. Verveer # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # 3. The name of the author may not be used to endorse or promote # products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from collections.abc import Iterable import warnings import numpy import operator from numpy.core.multiarray import normalize_axis_index from . import _ni_support from . import _nd_image from . import _ni_docstrings __all__ = ['correlate1d', 'convolve1d', 'gaussian_filter1d', 'gaussian_filter', 'prewitt', 'sobel', 'generic_laplace', 'laplace', 'gaussian_laplace', 'generic_gradient_magnitude', 'gaussian_gradient_magnitude', 'correlate', 'convolve', 'uniform_filter1d', 'uniform_filter', 'minimum_filter1d', 'maximum_filter1d', 'minimum_filter', 'maximum_filter', 'rank_filter', 'median_filter', 'percentile_filter', 'generic_filter1d', 'generic_filter'] def _invalid_origin(origin, lenw): return (origin < -(lenw // 2)) or (origin > (lenw - 1) // 2) @_ni_docstrings.docfiller def correlate1d(input, weights, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a 1-D correlation along the given axis. The lines of the array along the given axis are correlated with the given weights. Parameters ---------- %(input)s weights : array 1-D sequence of numbers. %(axis)s %(output)s %(mode_reflect)s %(cval)s %(origin)s Examples -------- >>> from scipy.ndimage import correlate1d >>> correlate1d([2, 8, 0, 4, 1, 9, 9, 0], weights=[1, 3]) array([ 8, 26, 8, 12, 7, 28, 36, 9]) """ input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') output = _ni_support._get_output(output, input) weights = numpy.asarray(weights, dtype=numpy.float64) if weights.ndim != 1 or weights.shape[0] < 1: raise RuntimeError('no filter weights given') if not weights.flags.contiguous: weights = weights.copy() axis = normalize_axis_index(axis, input.ndim) if _invalid_origin(origin, len(weights)): raise ValueError('Invalid origin; origin must satisfy ' '-(len(weights) // 2) <= origin <= ' '(len(weights)-1) // 2') mode = _ni_support._extend_mode_to_code(mode) _nd_image.correlate1d(input, weights, axis, output, mode, cval, origin) return output @_ni_docstrings.docfiller def convolve1d(input, weights, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a 1-D convolution along the given axis. The lines of the array along the given axis are convolved with the given weights. Parameters ---------- %(input)s weights : ndarray 1-D sequence of numbers. %(axis)s %(output)s %(mode_reflect)s %(cval)s %(origin)s Returns ------- convolve1d : ndarray Convolved array with same shape as input Examples -------- >>> from scipy.ndimage import convolve1d >>> convolve1d([2, 8, 0, 4, 1, 9, 9, 0], weights=[1, 3]) array([14, 24, 4, 13, 12, 36, 27, 0]) """ weights = weights[::-1] origin = -origin if not len(weights) & 1: origin -= 1 return correlate1d(input, weights, axis, output, mode, cval, origin) def _gaussian_kernel1d(sigma, order, radius): """ Computes a 1-D Gaussian convolution kernel. """ if order < 0: raise ValueError('order must be non-negative') exponent_range = numpy.arange(order + 1) sigma2 = sigma * sigma x = numpy.arange(-radius, radius+1) phi_x = numpy.exp(-0.5 / sigma2 * x ** 2) phi_x = phi_x / phi_x.sum() if order == 0: return phi_x else: # f(x) = q(x) * phi(x) = q(x) * exp(p(x)) # f'(x) = (q'(x) + q(x) * p'(x)) * phi(x) # p'(x) = -1 / sigma ** 2 # Implement q'(x) + q(x) * p'(x) as a matrix operator and apply to the # coefficients of q(x) q = numpy.zeros(order + 1) q[0] = 1 D = numpy.diag(exponent_range[1:], 1) # D @ q(x) = q'(x) P = numpy.diag(numpy.ones(order)/-sigma2, -1) # P @ q(x) = q(x) * p'(x) Q_deriv = D + P for _ in range(order): q = Q_deriv.dot(q) q = (x[:, None] ** exponent_range).dot(q) return q * phi_x @_ni_docstrings.docfiller def gaussian_filter1d(input, sigma, axis=-1, order=0, output=None, mode="reflect", cval=0.0, truncate=4.0): """1-D Gaussian filter. Parameters ---------- %(input)s sigma : scalar standard deviation for Gaussian kernel %(axis)s order : int, optional An order of 0 corresponds to convolution with a Gaussian kernel. A positive order corresponds to convolution with that derivative of a Gaussian. %(output)s %(mode_reflect)s %(cval)s truncate : float, optional Truncate the filter at this many standard deviations. Default is 4.0. Returns ------- gaussian_filter1d : ndarray Examples -------- >>> from scipy.ndimage import gaussian_filter1d >>> gaussian_filter1d([1.0, 2.0, 3.0, 4.0, 5.0], 1) array([ 1.42704095, 2.06782203, 3. , 3.93217797, 4.57295905]) >>> gaussian_filter1d([1.0, 2.0, 3.0, 4.0, 5.0], 4) array([ 2.91948343, 2.95023502, 3. , 3.04976498, 3.08051657]) >>> import matplotlib.pyplot as plt >>> np.random.seed(280490) >>> x = np.random.randn(101).cumsum() >>> y3 = gaussian_filter1d(x, 3) >>> y6 = gaussian_filter1d(x, 6) >>> plt.plot(x, 'k', label='original data') >>> plt.plot(y3, '--', label='filtered, sigma=3') >>> plt.plot(y6, ':', label='filtered, sigma=6') >>> plt.legend() >>> plt.grid() >>> plt.show() """ sd = float(sigma) # make the radius of the filter equal to truncate standard deviations lw = int(truncate * sd + 0.5) # Since we are calling correlate, not convolve, revert the kernel weights = _gaussian_kernel1d(sigma, order, lw)[::-1] return correlate1d(input, weights, axis, output, mode, cval, 0) @_ni_docstrings.docfiller def gaussian_filter(input, sigma, order=0, output=None, mode="reflect", cval=0.0, truncate=4.0): """Multidimensional Gaussian filter. Parameters ---------- %(input)s sigma : scalar or sequence of scalars Standard deviation for Gaussian kernel. The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes. order : int or sequence of ints, optional The order of the filter along each axis is given as a sequence of integers, or as a single number. An order of 0 corresponds to convolution with a Gaussian kernel. A positive order corresponds to convolution with that derivative of a Gaussian. %(output)s %(mode_multiple)s %(cval)s truncate : float Truncate the filter at this many standard deviations. Default is 4.0. Returns ------- gaussian_filter : ndarray Returned array of same shape as `input`. Notes ----- The multidimensional filter is implemented as a sequence of 1-D convolution filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the results may be imprecise because intermediate results may be stored with insufficient precision. Examples -------- >>> from scipy.ndimage import gaussian_filter >>> a = np.arange(50, step=2).reshape((5,5)) >>> a array([[ 0, 2, 4, 6, 8], [10, 12, 14, 16, 18], [20, 22, 24, 26, 28], [30, 32, 34, 36, 38], [40, 42, 44, 46, 48]]) >>> gaussian_filter(a, sigma=1) array([[ 4, 6, 8, 9, 11], [10, 12, 14, 15, 17], [20, 22, 24, 25, 27], [29, 31, 33, 34, 36], [35, 37, 39, 40, 42]]) >>> from scipy import misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = gaussian_filter(ascent, sigma=5) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ input = numpy.asarray(input) output = _ni_support._get_output(output, input) orders = _ni_support._normalize_sequence(order, input.ndim) sigmas = _ni_support._normalize_sequence(sigma, input.ndim) modes = _ni_support._normalize_sequence(mode, input.ndim) axes = list(range(input.ndim)) axes = [(axes[ii], sigmas[ii], orders[ii], modes[ii]) for ii in range(len(axes)) if sigmas[ii] > 1e-15] if len(axes) > 0: for axis, sigma, order, mode in axes: gaussian_filter1d(input, sigma, axis, order, output, mode, cval, truncate) input = output else: output[...] = input[...] return output @_ni_docstrings.docfiller def prewitt(input, axis=-1, output=None, mode="reflect", cval=0.0): """Calculate a Prewitt filter. Parameters ---------- %(input)s %(axis)s %(output)s %(mode_multiple)s %(cval)s Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.prewitt(ascent) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ input = numpy.asarray(input) axis = normalize_axis_index(axis, input.ndim) output = _ni_support._get_output(output, input) modes = _ni_support._normalize_sequence(mode, input.ndim) correlate1d(input, [-1, 0, 1], axis, output, modes[axis], cval, 0) axes = [ii for ii in range(input.ndim) if ii != axis] for ii in axes: correlate1d(output, [1, 1, 1], ii, output, modes[ii], cval, 0,) return output @_ni_docstrings.docfiller def sobel(input, axis=-1, output=None, mode="reflect", cval=0.0): """Calculate a Sobel filter. Parameters ---------- %(input)s %(axis)s %(output)s %(mode_multiple)s %(cval)s Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.sobel(ascent) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ input = numpy.asarray(input) axis = normalize_axis_index(axis, input.ndim) output = _ni_support._get_output(output, input) modes = _ni_support._normalize_sequence(mode, input.ndim) correlate1d(input, [-1, 0, 1], axis, output, modes[axis], cval, 0) axes = [ii for ii in range(input.ndim) if ii != axis] for ii in axes: correlate1d(output, [1, 2, 1], ii, output, modes[ii], cval, 0) return output @_ni_docstrings.docfiller def generic_laplace(input, derivative2, output=None, mode="reflect", cval=0.0, extra_arguments=(), extra_keywords=None): """ N-D Laplace filter using a provided second derivative function. Parameters ---------- %(input)s derivative2 : callable Callable with the following signature:: derivative2(input, axis, output, mode, cval, *extra_arguments, **extra_keywords) See `extra_arguments`, `extra_keywords` below. %(output)s %(mode_multiple)s %(cval)s %(extra_keywords)s %(extra_arguments)s """ if extra_keywords is None: extra_keywords = {} input = numpy.asarray(input) output = _ni_support._get_output(output, input) axes = list(range(input.ndim)) if len(axes) > 0: modes = _ni_support._normalize_sequence(mode, len(axes)) derivative2(input, axes[0], output, modes[0], cval, *extra_arguments, **extra_keywords) for ii in range(1, len(axes)): tmp = derivative2(input, axes[ii], output.dtype, modes[ii], cval, *extra_arguments, **extra_keywords) output += tmp else: output[...] = input[...] return output @_ni_docstrings.docfiller def laplace(input, output=None, mode="reflect", cval=0.0): """N-D Laplace filter based on approximate second derivatives. Parameters ---------- %(input)s %(output)s %(mode_multiple)s %(cval)s Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.laplace(ascent) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ def derivative2(input, axis, output, mode, cval): return correlate1d(input, [1, -2, 1], axis, output, mode, cval, 0) return generic_laplace(input, derivative2, output, mode, cval) @_ni_docstrings.docfiller def gaussian_laplace(input, sigma, output=None, mode="reflect", cval=0.0, **kwargs): """Multidimensional Laplace filter using Gaussian second derivatives. Parameters ---------- %(input)s sigma : scalar or sequence of scalars The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes. %(output)s %(mode_multiple)s %(cval)s Extra keyword arguments will be passed to gaussian_filter(). Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> ascent = misc.ascent() >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> result = ndimage.gaussian_laplace(ascent, sigma=1) >>> ax1.imshow(result) >>> result = ndimage.gaussian_laplace(ascent, sigma=3) >>> ax2.imshow(result) >>> plt.show() """ input = numpy.asarray(input) def derivative2(input, axis, output, mode, cval, sigma, **kwargs): order = [0] * input.ndim order[axis] = 2 return gaussian_filter(input, sigma, order, output, mode, cval, **kwargs) return generic_laplace(input, derivative2, output, mode, cval, extra_arguments=(sigma,), extra_keywords=kwargs) @_ni_docstrings.docfiller def generic_gradient_magnitude(input, derivative, output=None, mode="reflect", cval=0.0, extra_arguments=(), extra_keywords=None): """Gradient magnitude using a provided gradient function. Parameters ---------- %(input)s derivative : callable Callable with the following signature:: derivative(input, axis, output, mode, cval, *extra_arguments, **extra_keywords) See `extra_arguments`, `extra_keywords` below. `derivative` can assume that `input` and `output` are ndarrays. Note that the output from `derivative` is modified inplace; be careful to copy important inputs before returning them. %(output)s %(mode_multiple)s %(cval)s %(extra_keywords)s %(extra_arguments)s """ if extra_keywords is None: extra_keywords = {} input = numpy.asarray(input) output = _ni_support._get_output(output, input) axes = list(range(input.ndim)) if len(axes) > 0: modes = _ni_support._normalize_sequence(mode, len(axes)) derivative(input, axes[0], output, modes[0], cval, *extra_arguments, **extra_keywords) numpy.multiply(output, output, output) for ii in range(1, len(axes)): tmp = derivative(input, axes[ii], output.dtype, modes[ii], cval, *extra_arguments, **extra_keywords) numpy.multiply(tmp, tmp, tmp) output += tmp # This allows the sqrt to work with a different default casting numpy.sqrt(output, output, casting='unsafe') else: output[...] = input[...] return output @_ni_docstrings.docfiller def gaussian_gradient_magnitude(input, sigma, output=None, mode="reflect", cval=0.0, **kwargs): """Multidimensional gradient magnitude using Gaussian derivatives. Parameters ---------- %(input)s sigma : scalar or sequence of scalars The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes. %(output)s %(mode_multiple)s %(cval)s Extra keyword arguments will be passed to gaussian_filter(). Returns ------- gaussian_gradient_magnitude : ndarray Filtered array. Has the same shape as `input`. Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.gaussian_gradient_magnitude(ascent, sigma=5) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ input = numpy.asarray(input) def derivative(input, axis, output, mode, cval, sigma, **kwargs): order = [0] * input.ndim order[axis] = 1 return gaussian_filter(input, sigma, order, output, mode, cval, **kwargs) return generic_gradient_magnitude(input, derivative, output, mode, cval, extra_arguments=(sigma,), extra_keywords=kwargs) def _correlate_or_convolve(input, weights, output, mode, cval, origin, convolution): input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') origins = _ni_support._normalize_sequence(origin, input.ndim) weights = numpy.asarray(weights, dtype=numpy.float64) wshape = [ii for ii in weights.shape if ii > 0] if len(wshape) != input.ndim: raise RuntimeError('filter weights array has incorrect shape.') if convolution: weights = weights[tuple([slice(None, None, -1)] * weights.ndim)] for ii in range(len(origins)): origins[ii] = -origins[ii] if not weights.shape[ii] & 1: origins[ii] -= 1 for origin, lenw in zip(origins, wshape): if _invalid_origin(origin, lenw): raise ValueError('Invalid origin; origin must satisfy ' '-(weights.shape[k] // 2) <= origin[k] <= ' '(weights.shape[k]-1) // 2') if not weights.flags.contiguous: weights = weights.copy() output = _ni_support._get_output(output, input) temp_needed = numpy.may_share_memory(input, output) if temp_needed: # input and output arrays cannot share memory temp = output output = _ni_support._get_output(output.dtype, input) if not isinstance(mode, str) and isinstance(mode, Iterable): raise RuntimeError("A sequence of modes is not supported") mode = _ni_support._extend_mode_to_code(mode) _nd_image.correlate(input, weights, output, mode, cval, origins) if temp_needed: temp[...] = output output = temp return output @_ni_docstrings.docfiller def correlate(input, weights, output=None, mode='reflect', cval=0.0, origin=0): """ Multidimensional correlation. The array is correlated with the given kernel. Parameters ---------- %(input)s weights : ndarray array of weights, same number of dimensions as input %(output)s %(mode_reflect)s %(cval)s %(origin_multiple)s Returns ------- result : ndarray The result of correlation of `input` with `weights`. See Also -------- convolve : Convolve an image with a kernel. Examples -------- Correlation is the process of moving a filter mask often referred to as kernel over the image and computing the sum of products at each location. >>> from scipy.ndimage import correlate >>> input_img = np.arange(25).reshape(5,5) >>> print(input_img) [[ 0 1 2 3 4] [ 5 6 7 8 9] [10 11 12 13 14] [15 16 17 18 19] [20 21 22 23 24]] Define a kernel (weights) for correlation. In this example, it is for sum of center and up, down, left and right next elements. >>> weights = [[0, 1, 0], ... [1, 1, 1], ... [0, 1, 0]] We can calculate a correlation result: For example, element ``[2,2]`` is ``7 + 11 + 12 + 13 + 17 = 60``. >>> correlate(input_img, weights) array([[ 6, 10, 15, 20, 24], [ 26, 30, 35, 40, 44], [ 51, 55, 60, 65, 69], [ 76, 80, 85, 90, 94], [ 96, 100, 105, 110, 114]]) """ return _correlate_or_convolve(input, weights, output, mode, cval, origin, False) @_ni_docstrings.docfiller def convolve(input, weights, output=None, mode='reflect', cval=0.0, origin=0): """ Multidimensional convolution. The array is convolved with the given kernel. Parameters ---------- %(input)s weights : array_like Array of weights, same number of dimensions as input %(output)s %(mode_reflect)s cval : scalar, optional Value to fill past edges of input if `mode` is 'constant'. Default is 0.0 %(origin_multiple)s Returns ------- result : ndarray The result of convolution of `input` with `weights`. See Also -------- correlate : Correlate an image with a kernel. Notes ----- Each value in result is :math:`C_i = \\sum_j{I_{i+k-j} W_j}`, where W is the `weights` kernel, j is the N-D spatial index over :math:`W`, I is the `input` and k is the coordinate of the center of W, specified by `origin` in the input parameters. Examples -------- Perhaps the simplest case to understand is ``mode='constant', cval=0.0``, because in this case borders (i.e., where the `weights` kernel, centered on any one value, extends beyond an edge of `input`) are treated as zeros. >>> a = np.array([[1, 2, 0, 0], ... [5, 3, 0, 4], ... [0, 0, 0, 7], ... [9, 3, 0, 0]]) >>> k = np.array([[1,1,1],[1,1,0],[1,0,0]]) >>> from scipy import ndimage >>> ndimage.convolve(a, k, mode='constant', cval=0.0) array([[11, 10, 7, 4], [10, 3, 11, 11], [15, 12, 14, 7], [12, 3, 7, 0]]) Setting ``cval=1.0`` is equivalent to padding the outer edge of `input` with 1.0's (and then extracting only the original region of the result). >>> ndimage.convolve(a, k, mode='constant', cval=1.0) array([[13, 11, 8, 7], [11, 3, 11, 14], [16, 12, 14, 10], [15, 6, 10, 5]]) With ``mode='reflect'`` (the default), outer values are reflected at the edge of `input` to fill in missing values. >>> b = np.array([[2, 0, 0], ... [1, 0, 0], ... [0, 0, 0]]) >>> k = np.array([[0,1,0], [0,1,0], [0,1,0]]) >>> ndimage.convolve(b, k, mode='reflect') array([[5, 0, 0], [3, 0, 0], [1, 0, 0]]) This includes diagonally at the corners. >>> k = np.array([[1,0,0],[0,1,0],[0,0,1]]) >>> ndimage.convolve(b, k) array([[4, 2, 0], [3, 2, 0], [1, 1, 0]]) With ``mode='nearest'``, the single nearest value in to an edge in `input` is repeated as many times as needed to match the overlapping `weights`. >>> c = np.array([[2, 0, 1], ... [1, 0, 0], ... [0, 0, 0]]) >>> k = np.array([[0, 1, 0], ... [0, 1, 0], ... [0, 1, 0], ... [0, 1, 0], ... [0, 1, 0]]) >>> ndimage.convolve(c, k, mode='nearest') array([[7, 0, 3], [5, 0, 2], [3, 0, 1]]) """ return _correlate_or_convolve(input, weights, output, mode, cval, origin, True) @_ni_docstrings.docfiller def uniform_filter1d(input, size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a 1-D uniform filter along the given axis. The lines of the array along the given axis are filtered with a uniform filter of given size. Parameters ---------- %(input)s size : int length of uniform filter %(axis)s %(output)s %(mode_reflect)s %(cval)s %(origin)s Examples -------- >>> from scipy.ndimage import uniform_filter1d >>> uniform_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3) array([4, 3, 4, 1, 4, 6, 6, 3]) """ input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') axis = normalize_axis_index(axis, input.ndim) if size < 1: raise RuntimeError('incorrect filter size') output = _ni_support._get_output(output, input) if (size // 2 + origin < 0) or (size // 2 + origin >= size): raise ValueError('invalid origin') mode = _ni_support._extend_mode_to_code(mode) _nd_image.uniform_filter1d(input, size, axis, output, mode, cval, origin) return output @_ni_docstrings.docfiller def uniform_filter(input, size=3, output=None, mode="reflect", cval=0.0, origin=0): """Multidimensional uniform filter. Parameters ---------- %(input)s size : int or sequence of ints, optional The sizes of the uniform filter are given for each axis as a sequence, or as a single number, in which case the size is equal for all axes. %(output)s %(mode_multiple)s %(cval)s %(origin_multiple)s Returns ------- uniform_filter : ndarray Filtered array. Has the same shape as `input`. Notes ----- The multidimensional filter is implemented as a sequence of 1-D uniform filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the results may be imprecise because intermediate results may be stored with insufficient precision. Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.uniform_filter(ascent, size=20) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ input = numpy.asarray(input) output = _ni_support._get_output(output, input) sizes = _ni_support._normalize_sequence(size, input.ndim) origins = _ni_support._normalize_sequence(origin, input.ndim) modes = _ni_support._normalize_sequence(mode, input.ndim) axes = list(range(input.ndim)) axes = [(axes[ii], sizes[ii], origins[ii], modes[ii]) for ii in range(len(axes)) if sizes[ii] > 1] if len(axes) > 0: for axis, size, origin, mode in axes: uniform_filter1d(input, int(size), axis, output, mode, cval, origin) input = output else: output[...] = input[...] return output @_ni_docstrings.docfiller def minimum_filter1d(input, size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a 1-D minimum filter along the given axis. The lines of the array along the given axis are filtered with a minimum filter of given size. Parameters ---------- %(input)s size : int length along which to calculate 1D minimum %(axis)s %(output)s %(mode_reflect)s %(cval)s %(origin)s Notes ----- This function implements the MINLIST algorithm [1]_, as described by Richard Harter [2]_, and has a guaranteed O(n) performance, `n` being the `input` length, regardless of filter size. References ---------- .. [1] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777 .. [2] http://www.richardhartersworld.com/cri/2001/slidingmin.html Examples -------- >>> from scipy.ndimage import minimum_filter1d >>> minimum_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3) array([2, 0, 0, 0, 1, 1, 0, 0]) """ input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') axis = normalize_axis_index(axis, input.ndim) if size < 1: raise RuntimeError('incorrect filter size') output = _ni_support._get_output(output, input) if (size // 2 + origin < 0) or (size // 2 + origin >= size): raise ValueError('invalid origin') mode = _ni_support._extend_mode_to_code(mode) _nd_image.min_or_max_filter1d(input, size, axis, output, mode, cval, origin, 1) return output @_ni_docstrings.docfiller def maximum_filter1d(input, size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a 1-D maximum filter along the given axis. The lines of the array along the given axis are filtered with a maximum filter of given size. Parameters ---------- %(input)s size : int Length along which to calculate the 1-D maximum. %(axis)s %(output)s %(mode_reflect)s %(cval)s %(origin)s Returns ------- maximum1d : ndarray, None Maximum-filtered array with same shape as input. None if `output` is not None Notes ----- This function implements the MAXLIST algorithm [1]_, as described by Richard Harter [2]_, and has a guaranteed O(n) performance, `n` being the `input` length, regardless of filter size. References ---------- .. [1] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777 .. [2] http://www.richardhartersworld.com/cri/2001/slidingmin.html Examples -------- >>> from scipy.ndimage import maximum_filter1d >>> maximum_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3) array([8, 8, 8, 4, 9, 9, 9, 9]) """ input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') axis = normalize_axis_index(axis, input.ndim) if size < 1: raise RuntimeError('incorrect filter size') output = _ni_support._get_output(output, input) if (size // 2 + origin < 0) or (size // 2 + origin >= size): raise ValueError('invalid origin') mode = _ni_support._extend_mode_to_code(mode) _nd_image.min_or_max_filter1d(input, size, axis, output, mode, cval, origin, 0) return output def _min_or_max_filter(input, size, footprint, structure, output, mode, cval, origin, minimum): if (size is not None) and (footprint is not None): warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=3) if structure is None: if footprint is None: if size is None: raise RuntimeError("no footprint provided") separable = True else: footprint = numpy.asarray(footprint, dtype=bool) if not footprint.any(): raise ValueError("All-zero footprint is not supported.") if footprint.all(): size = footprint.shape footprint = None separable = True else: separable = False else: structure = numpy.asarray(structure, dtype=numpy.float64) separable = False if footprint is None: footprint = numpy.ones(structure.shape, bool) else: footprint = numpy.asarray(footprint, dtype=bool) input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') output = _ni_support._get_output(output, input) temp_needed = numpy.may_share_memory(input, output) if temp_needed: # input and output arrays cannot share memory temp = output output = _ni_support._get_output(output.dtype, input) origins = _ni_support._normalize_sequence(origin, input.ndim) if separable: sizes = _ni_support._normalize_sequence(size, input.ndim) modes = _ni_support._normalize_sequence(mode, input.ndim) axes = list(range(input.ndim)) axes = [(axes[ii], sizes[ii], origins[ii], modes[ii]) for ii in range(len(axes)) if sizes[ii] > 1] if minimum: filter_ = minimum_filter1d else: filter_ = maximum_filter1d if len(axes) > 0: for axis, size, origin, mode in axes: filter_(input, int(size), axis, output, mode, cval, origin) input = output else: output[...] = input[...] else: fshape = [ii for ii in footprint.shape if ii > 0] if len(fshape) != input.ndim: raise RuntimeError('footprint array has incorrect shape.') for origin, lenf in zip(origins, fshape): if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf): raise ValueError('invalid origin') if not footprint.flags.contiguous: footprint = footprint.copy() if structure is not None: if len(structure.shape) != input.ndim: raise RuntimeError('structure array has incorrect shape') if not structure.flags.contiguous: structure = structure.copy() if not isinstance(mode, str) and isinstance(mode, Iterable): raise RuntimeError( "A sequence of modes is not supported for non-separable " "footprints") mode = _ni_support._extend_mode_to_code(mode) _nd_image.min_or_max_filter(input, footprint, structure, output, mode, cval, origins, minimum) if temp_needed: temp[...] = output output = temp return output @_ni_docstrings.docfiller def minimum_filter(input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a multidimensional minimum filter. Parameters ---------- %(input)s %(size_foot)s %(output)s %(mode_multiple)s %(cval)s %(origin_multiple)s Returns ------- minimum_filter : ndarray Filtered array. Has the same shape as `input`. Notes ----- A sequence of modes (one per axis) is only supported when the footprint is separable. Otherwise, a single mode string must be provided. Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.minimum_filter(ascent, size=20) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ return _min_or_max_filter(input, size, footprint, None, output, mode, cval, origin, 1) @_ni_docstrings.docfiller def maximum_filter(input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a multidimensional maximum filter. Parameters ---------- %(input)s %(size_foot)s %(output)s %(mode_multiple)s %(cval)s %(origin_multiple)s Returns ------- maximum_filter : ndarray Filtered array. Has the same shape as `input`. Notes ----- A sequence of modes (one per axis) is only supported when the footprint is separable. Otherwise, a single mode string must be provided. Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.maximum_filter(ascent, size=20) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ return _min_or_max_filter(input, size, footprint, None, output, mode, cval, origin, 0) @_ni_docstrings.docfiller def _rank_filter(input, rank, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0, operation='rank'): if (size is not None) and (footprint is not None): warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=3) input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') origins = _ni_support._normalize_sequence(origin, input.ndim) if footprint is None: if size is None: raise RuntimeError("no footprint or filter size provided") sizes = _ni_support._normalize_sequence(size, input.ndim) footprint = numpy.ones(sizes, dtype=bool) else: footprint = numpy.asarray(footprint, dtype=bool) fshape = [ii for ii in footprint.shape if ii > 0] if len(fshape) != input.ndim: raise RuntimeError('filter footprint array has incorrect shape.') for origin, lenf in zip(origins, fshape): if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf): raise ValueError('invalid origin') if not footprint.flags.contiguous: footprint = footprint.copy() filter_size = numpy.where(footprint, 1, 0).sum() if operation == 'median': rank = filter_size // 2 elif operation == 'percentile': percentile = rank if percentile < 0.0: percentile += 100.0 if percentile < 0 or percentile > 100: raise RuntimeError('invalid percentile') if percentile == 100.0: rank = filter_size - 1 else: rank = int(float(filter_size) * percentile / 100.0) if rank < 0: rank += filter_size if rank < 0 or rank >= filter_size: raise RuntimeError('rank not within filter footprint size') if rank == 0: return minimum_filter(input, None, footprint, output, mode, cval, origins) elif rank == filter_size - 1: return maximum_filter(input, None, footprint, output, mode, cval, origins) else: output = _ni_support._get_output(output, input) temp_needed = numpy.may_share_memory(input, output) if temp_needed: # input and output arrays cannot share memory temp = output output = _ni_support._get_output(output.dtype, input) if not isinstance(mode, str) and isinstance(mode, Iterable): raise RuntimeError( "A sequence of modes is not supported by non-separable rank " "filters") mode = _ni_support._extend_mode_to_code(mode) _nd_image.rank_filter(input, rank, footprint, output, mode, cval, origins) if temp_needed: temp[...] = output output = temp return output @_ni_docstrings.docfiller def rank_filter(input, rank, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a multidimensional rank filter. Parameters ---------- %(input)s rank : int The rank parameter may be less then zero, i.e., rank = -1 indicates the largest element. %(size_foot)s %(output)s %(mode_reflect)s %(cval)s %(origin_multiple)s Returns ------- rank_filter : ndarray Filtered array. Has the same shape as `input`. Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.rank_filter(ascent, rank=42, size=20) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ rank = operator.index(rank) return _rank_filter(input, rank, size, footprint, output, mode, cval, origin, 'rank') @_ni_docstrings.docfiller def median_filter(input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """ Calculate a multidimensional median filter. Parameters ---------- %(input)s %(size_foot)s %(output)s %(mode_reflect)s %(cval)s %(origin_multiple)s Returns ------- median_filter : ndarray Filtered array. Has the same shape as `input`. Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.median_filter(ascent, size=20) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ return _rank_filter(input, 0, size, footprint, output, mode, cval, origin, 'median') @_ni_docstrings.docfiller def percentile_filter(input, percentile, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a multidimensional percentile filter. Parameters ---------- %(input)s percentile : scalar The percentile parameter may be less then zero, i.e., percentile = -20 equals percentile = 80 %(size_foot)s %(output)s %(mode_reflect)s %(cval)s %(origin_multiple)s Returns ------- percentile_filter : ndarray Filtered array. Has the same shape as `input`. Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.percentile_filter(ascent, percentile=20, size=20) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ return _rank_filter(input, percentile, size, footprint, output, mode, cval, origin, 'percentile') @_ni_docstrings.docfiller def generic_filter1d(input, function, filter_size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0, extra_arguments=(), extra_keywords=None): """Calculate a 1-D filter along the given axis. `generic_filter1d` iterates over the lines of the array, calling the given function at each line. The arguments of the line are the input line, and the output line. The input and output lines are 1-D double arrays. The input line is extended appropriately according to the filter size and origin. The output line must be modified in-place with the result. Parameters ---------- %(input)s function : {callable, scipy.LowLevelCallable} Function to apply along given axis. filter_size : scalar Length of the filter. %(axis)s %(output)s %(mode_reflect)s %(cval)s %(origin)s %(extra_arguments)s %(extra_keywords)s Notes ----- This function also accepts low-level callback functions with one of the following signatures and wrapped in `scipy.LowLevelCallable`: .. code:: c int function(double *input_line, npy_intp input_length, double *output_line, npy_intp output_length, void *user_data) int function(double *input_line, intptr_t input_length, double *output_line, intptr_t output_length, void *user_data) The calling function iterates over the lines of the input and output arrays, calling the callback function at each line. The current line is extended according to the border conditions set by the calling function, and the result is copied into the array that is passed through ``input_line``. The length of the input line (after extension) is passed through ``input_length``. The callback function should apply the filter and store the result in the array passed through ``output_line``. The length of the output line is passed through ``output_length``. ``user_data`` is the data pointer provided to `scipy.LowLevelCallable` as-is. The callback function must return an integer error status that is zero if something went wrong and one otherwise. If an error occurs, you should normally set the python error status with an informative message before returning, otherwise a default error message is set by the calling function. In addition, some other low-level function pointer specifications are accepted, but these are for backward compatibility only and should not be used in new code. """ if extra_keywords is None: extra_keywords = {} input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') output = _ni_support._get_output(output, input) if filter_size < 1: raise RuntimeError('invalid filter size') axis = normalize_axis_index(axis, input.ndim) if (filter_size // 2 + origin < 0) or (filter_size // 2 + origin >= filter_size): raise ValueError('invalid origin') mode = _ni_support._extend_mode_to_code(mode) _nd_image.generic_filter1d(input, function, filter_size, axis, output, mode, cval, origin, extra_arguments, extra_keywords) return output @_ni_docstrings.docfiller def generic_filter(input, function, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0, extra_arguments=(), extra_keywords=None): """Calculate a multidimensional filter using the given function. At each element the provided function is called. The input values within the filter footprint at that element are passed to the function as a 1-D array of double values. Parameters ---------- %(input)s function : {callable, scipy.LowLevelCallable} Function to apply at each element. %(size_foot)s %(output)s %(mode_reflect)s %(cval)s %(origin_multiple)s %(extra_arguments)s %(extra_keywords)s Notes ----- This function also accepts low-level callback functions with one of the following signatures and wrapped in `scipy.LowLevelCallable`: .. code:: c int callback(double *buffer, npy_intp filter_size, double *return_value, void *user_data) int callback(double *buffer, intptr_t filter_size, double *return_value, void *user_data) The calling function iterates over the elements of the input and output arrays, calling the callback function at each element. The elements within the footprint of the filter at the current element are passed through the ``buffer`` parameter, and the number of elements within the footprint through ``filter_size``. The calculated value is returned in ``return_value``. ``user_data`` is the data pointer provided to `scipy.LowLevelCallable` as-is. The callback function must return an integer error status that is zero if something went wrong and one otherwise. If an error occurs, you should normally set the python error status with an informative message before returning, otherwise a default error message is set by the calling function. In addition, some other low-level function pointer specifications are accepted, but these are for backward compatibility only and should not be used in new code. """ if (size is not None) and (footprint is not None): warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=2) if extra_keywords is None: extra_keywords = {} input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') origins = _ni_support._normalize_sequence(origin, input.ndim) if footprint is None: if size is None: raise RuntimeError("no footprint or filter size provided") sizes = _ni_support._normalize_sequence(size, input.ndim) footprint = numpy.ones(sizes, dtype=bool) else: footprint = numpy.asarray(footprint, dtype=bool) fshape = [ii for ii in footprint.shape if ii > 0] if len(fshape) != input.ndim: raise RuntimeError('filter footprint array has incorrect shape.') for origin, lenf in zip(origins, fshape): if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf): raise ValueError('invalid origin') if not footprint.flags.contiguous: footprint = footprint.copy() output = _ni_support._get_output(output, input) mode = _ni_support._extend_mode_to_code(mode) _nd_image.generic_filter(input, function, footprint, output, mode, cval, origins, extra_arguments, extra_keywords) return output
bsd-3-clause
clingsz/GAE
immuAnalysis/clustering.py
1
2611
# -*- coding: utf-8 -*- """ Created on Fri Jun 30 14:19:29 2017 @author: cling """ from sklearn.cluster import AgglomerativeClustering as ag import numpy import matplotlib.pyplot as plt import misc.gap as gap ########################### # Clustering main methods ########################### def gap_cluster(x): best_k = gap.fit_gap_stats(x,bootstraps=100,kMin=1,kMax=100) cids,counts,mses = ag_clust(x,best_k) return (cids,counts,mses) def ag_clust(x,k): a = ag(n_clusters=k) a.fit(x) lbs = a.labels_ cids = [] for i in range(k): lst = numpy.where(lbs==i)[0] cids.append(lst) counts,mses = analyze_cluster(x,cids) lst = get_order(mses) mses = reorder(mses,lst) cids = reorder(cids,lst) counts = reorder(counts,lst) show_cluster(x,cids,mses) return cids,counts,mses def analyze_cluster(x,cids): counts = [] mses = [] for i in range(len(cids)): y = x[cids[i],:] ym = numpy.mean(y,axis=0) ym = numpy.reshape(ym,[1,len(ym)]) ya = numpy.repeat(ym,y.shape[0],axis=0) m = numpy.mean((y - ya)**2) print i,y.shape[0],m counts.append(y.shape[0]) mses.append(m) return counts,mses def reorder(A,lst): B = [] for i in range(len(A)): B.append(A[lst[i]]) return B def get_order(metric): ke = metric lst = sorted(range(len(ke)),key=lambda x:ke[x]) return lst #################################### # Clustering visualization methods #################################### def draw_bound(bounds,x): nb = -0.5 pos = [] for b in bounds: pos.append((nb+nb+b)/2) nb += b plt.plot([nb,nb],[-1,x.shape[0]],'k--',markerSize=10) plt.xlim([0-0.5,x.shape[1]-0.5]) plt.ylim([0-0.5,x.shape[0]-0.5]) return pos def show_cluster(x,cids=None,mses=None,obNames=None): if cids is None: cids = [[i for i in range(x.shape[0])]] K = len(cids) x = x.transpose() bounds = [] for i in range(K): bounds.append(len(cids[i])) plt.figure(figsize=[15,15]) plt.imshow(x,aspect='auto',interpolation='none',vmax=3,vmin=-3,cmap='PRGn') plt.colorbar() if obNames is not None: plt.yticks(range(len(obNames)),obNames) pos = draw_bound(bounds,x) if mses is not None: mses = numpy.round(mses,decimals=2) plt.xticks(pos,mses,rotation='vertical') plt.xlabel('MSEs') ############## test ################# def test(): # x = numpy.random.randn(100,8) x = gap.init_board_gauss(200,5) gap_cluster(x)
gpl-3.0
Gorbagzog/StageIAP
Plot_results.py
1
1139
#!/usr/bin/env python3 # -*-coding:Utf-8 -* """Load and plot best fit parameters estimated from MCMC output""" import numpy as np import matplotlib.pyplot as plt def load_results(directory): results = np.loadtxt(directory + '/Results.txt', skiprows=2).astype('float') results = results[results[:, 0].argsort()] # sort the array by redshift return results def plot_one(directory, results, idx_result, result_label): redshiftsbinTrue = np.array([0.37, 0.668, 0.938, 1.286, 1.735, 2.220, 2.683, 3.271, 3.926, 4.803]) errm = results[:, idx_result+1] - results[:, idx_result+2] errp = results[:, idx_result+3] - results[:, idx_result+1] plt.figure() plt.errorbar(redshiftsbinTrue[:], results[:, idx_result+1], yerr=[errm, errp]) plt.ylabel(result_label, size=20) plt.xlabel('Redshift') plt.savefig(directory + "/Plots/Result_" + result_label + '.pdf') plt.close() def plot_all(directory): labels = ['$M_{1}$', '$M_{*,0}$', '$\\beta$', '$\delta$', '$\gamma$', r'$\xi$'] results = load_results(directory) for i in range(6): plot_one(directory, results, 3*i, labels[i])
gpl-3.0
igolan/word2vec
show_tsne.py
1
5963
#!/usr/bin/env python from struct import calcsize, pack, unpack import numpy as np import sys import matplotlib.pyplot as plt def _read_unpack(fmt, fh): return unpack(fmt, fh.read(calcsize(fmt))) def get_bh_tsne_res(): # Read and pass on the results res = [] with open(result_filename + '.tsne.dat', 'rb') as output_file: # The first two integers are just the number of samples and the # dimensionality result_samples, result_dims = _read_unpack('ii', output_file) # Collect the results, but they may be out of order results = [_read_unpack('{}d'.format(result_dims), output_file) for _ in range(result_samples)] # Now collect the landmark data so that we can return the data in # the order it arrived results = [(_read_unpack('i', output_file), e) for e in results] # Put the results in order and yield it results.sort() for _, result in results: sample_res = [] for r in result: sample_res.append(r) res.append(sample_res) #yield result # The last piece of data is the cost for each sample, we ignore it #read_unpack('{}d'.format(sample_count), output_file) return (result_samples, result_dims, np.asarray(res, dtype='float64')) def parse_tsne_res(): res = [] for result in get_bh_tsne_res(): sample_res = [] for r in result: sample_res.append(r) res.append(sample_res) return np.asarray(res, dtype='float64') def get_words_dict(): words_to_line_dict = {} line_to_word_dict = {} with open(result_filename + '.vec.txt','r') as f: line_num = 0 for line in f: words_to_line_dict[line.split(None, 1)[0]] = line_num line_to_word_dict[line_num] = line.split(None, 1)[0] line_num += 1 return (words_to_line_dict,line_to_word_dict) def get_tsne_matrix(): (result_samples, result_dims, tsne_res) = get_bh_tsne_res() tsne_matrix = np.zeros([result_samples,result_dims]) for samp_id in range(0,len(tsne_res)): for dim in range(0,result_dims): tsne_matrix[samp_id][dim] = tsne_res[samp_id][dim] # Print warning if we have point at (0,0) - something might went wrong with the TSNE or its' parsing for row in range(0,tsne_matrix.shape[0]): if tsne_matrix[row][0] == 0 and tsne_matrix[row][1] == 0: print("Note! the point in row " + str(row) + " is (0,0), make sure no points are missing! (result_samples=" + str(result_samples) + ", result_dims=" + str(result_dims) + ")") # Normalize to 1 for dim in range(0,result_dims): tsne_matrix[:,dim] -= tsne_matrix[:,dim].min() tsne_matrix[:,dim] /= tsne_matrix[:,dim].max() print("Loaded " + str(tsne_matrix.shape[0]) + " words") return tsne_matrix # def drawAnnote(self, ax, x, y, annote): # """ # Draw the annotation on the plot # """ # if (x, y) in self.drawnAnnotations: # markers = self.drawnAnnotations[(x, y)] # for m in markers: # m.set_visible(not m.get_visible()) # self.ax.figure.canvas.draw_idle() # else: # t = ax.text(x, y, " - %s" % (annote),) # m = ax.scatter([x], [y], marker='d', c='r', zorder=100) # self.drawnAnnotations[(x, y)] = (t, m) # self.ax.figure.canvas.draw_idle() def onpick3(event): ind = event.ind x = np.take(tsne_matrix[:,0], ind) y = np.take(tsne_matrix[:,1], ind) #ax.annotate('annoaaatate', xy=(x, y), xytext=(x+0.1, y+0.1), arrowprops=dict(facecolor='black', shrink=0.05)) #t = plt.text(np.take(tsne_matrix[:,0], ind), np.take(tsne_matrix[:,1], " - %s" % "hey")) print("--------") for indx in ind: print("Clicked on word " + line_to_word_dict[indx] + " (index=" + str(indx) + ") , location=(" + str(pretty_float(tsne_matrix[indx][0])) + "," + str(pretty_float(tsne_matrix[ indx][1])) + ")") def pretty_float(flt): return "%0.2f" % flt # ax1 = fig.add_subplot(111) # col = ax1.scatter(x, y, 100*s, c, picker=True) # #fig.savefig('pscoll.eps') # fig.canvas.mpl_connect('pick_event', onpick3) fig = plt.figure() ax = fig.add_subplot(111) def show_tsne_matrix(tsne_matrix,words_to_line_dict): colors_options="brcgmyk" pnts_colors = [colors_options[0] for i in range(0,tsne_matrix[:,0].__len__())] with open('tsne_group1.txt','r') as f: for line in f: word=line.split(None, 1)[0] if word in words_to_line_dict.keys(): pnts_colors[words_to_line_dict[word]] = colors_options[1] print("Detected " + str(word) + " on index " + str(words_to_line_dict[word]) + " , location=(" + str(pretty_float(tsne_matrix[words_to_line_dict[word]][0])) + "," + str(pretty_float(tsne_matrix[words_to_line_dict[word]][1])) + ")") ax.scatter(tsne_matrix[:,0], tsne_matrix[:,1], c=pnts_colors, picker=True) #, s=area, c=colors, alpha=0.5) plt.xlim(0, 1) plt.ylim(0, 1) #ax.annotate('annotate', xy=(0.5, 0.5), xytext=(0.5+0.2, 0.5+0.2), arrowprops=dict(facecolor='black', shrink=0.05)) fig.canvas.mpl_connect('pick_event', onpick3) plt.show() if __name__ == '__main__': if sys.argv.__len__() < 2: print("Usage: ./show_tsne <result_file_name> , for example: ./show_tsne results_amazon ** Without .vec extension!") print("Marked words are saved at tsne_group1.txt") exit() result_filename = sys.argv[1] (words_to_line_dict,line_to_word_dict) = get_words_dict() tsne_matrix = get_tsne_matrix() show_tsne_matrix(tsne_matrix,words_to_line_dict) #exit()
apache-2.0
fyffyt/scikit-learn
sklearn/cluster/spectral.py
233
18153
# -*- coding: utf-8 -*- """Algorithms for spectral clustering""" # Author: Gael Varoquaux [email protected] # Brian Cheung # Wei LI <[email protected]> # License: BSD 3 clause import warnings import numpy as np from ..base import BaseEstimator, ClusterMixin from ..utils import check_random_state, as_float_array from ..utils.validation import check_array from ..utils.extmath import norm from ..metrics.pairwise import pairwise_kernels from ..neighbors import kneighbors_graph from ..manifold import spectral_embedding from .k_means_ import k_means def discretize(vectors, copy=True, max_svd_restarts=30, n_iter_max=20, random_state=None): """Search for a partition matrix (clustering) which is closest to the eigenvector embedding. Parameters ---------- vectors : array-like, shape: (n_samples, n_clusters) The embedding space of the samples. copy : boolean, optional, default: True Whether to copy vectors, or perform in-place normalization. max_svd_restarts : int, optional, default: 30 Maximum number of attempts to restart SVD if convergence fails n_iter_max : int, optional, default: 30 Maximum number of iterations to attempt in rotation and partition matrix search if machine precision convergence is not reached random_state: int seed, RandomState instance, or None (default) A pseudo random number generator used for the initialization of the of the rotation matrix Returns ------- labels : array of integers, shape: n_samples The labels of the clusters. References ---------- - Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf Notes ----- The eigenvector embedding is used to iteratively search for the closest discrete partition. First, the eigenvector embedding is normalized to the space of partition matrices. An optimal discrete partition matrix closest to this normalized embedding multiplied by an initial rotation is calculated. Fixing this discrete partition matrix, an optimal rotation matrix is calculated. These two calculations are performed until convergence. The discrete partition matrix is returned as the clustering solution. Used in spectral clustering, this method tends to be faster and more robust to random initialization than k-means. """ from scipy.sparse import csc_matrix from scipy.linalg import LinAlgError random_state = check_random_state(random_state) vectors = as_float_array(vectors, copy=copy) eps = np.finfo(float).eps n_samples, n_components = vectors.shape # Normalize the eigenvectors to an equal length of a vector of ones. # Reorient the eigenvectors to point in the negative direction with respect # to the first element. This may have to do with constraining the # eigenvectors to lie in a specific quadrant to make the discretization # search easier. norm_ones = np.sqrt(n_samples) for i in range(vectors.shape[1]): vectors[:, i] = (vectors[:, i] / norm(vectors[:, i])) \ * norm_ones if vectors[0, i] != 0: vectors[:, i] = -1 * vectors[:, i] * np.sign(vectors[0, i]) # Normalize the rows of the eigenvectors. Samples should lie on the unit # hypersphere centered at the origin. This transforms the samples in the # embedding space to the space of partition matrices. vectors = vectors / np.sqrt((vectors ** 2).sum(axis=1))[:, np.newaxis] svd_restarts = 0 has_converged = False # If there is an exception we try to randomize and rerun SVD again # do this max_svd_restarts times. while (svd_restarts < max_svd_restarts) and not has_converged: # Initialize first column of rotation matrix with a row of the # eigenvectors rotation = np.zeros((n_components, n_components)) rotation[:, 0] = vectors[random_state.randint(n_samples), :].T # To initialize the rest of the rotation matrix, find the rows # of the eigenvectors that are as orthogonal to each other as # possible c = np.zeros(n_samples) for j in range(1, n_components): # Accumulate c to ensure row is as orthogonal as possible to # previous picks as well as current one c += np.abs(np.dot(vectors, rotation[:, j - 1])) rotation[:, j] = vectors[c.argmin(), :].T last_objective_value = 0.0 n_iter = 0 while not has_converged: n_iter += 1 t_discrete = np.dot(vectors, rotation) labels = t_discrete.argmax(axis=1) vectors_discrete = csc_matrix( (np.ones(len(labels)), (np.arange(0, n_samples), labels)), shape=(n_samples, n_components)) t_svd = vectors_discrete.T * vectors try: U, S, Vh = np.linalg.svd(t_svd) svd_restarts += 1 except LinAlgError: print("SVD did not converge, randomizing and trying again") break ncut_value = 2.0 * (n_samples - S.sum()) if ((abs(ncut_value - last_objective_value) < eps) or (n_iter > n_iter_max)): has_converged = True else: # otherwise calculate rotation and continue last_objective_value = ncut_value rotation = np.dot(Vh.T, U.T) if not has_converged: raise LinAlgError('SVD did not converge') return labels def spectral_clustering(affinity, n_clusters=8, n_components=None, eigen_solver=None, random_state=None, n_init=10, eigen_tol=0.0, assign_labels='kmeans'): """Apply clustering to a projection to the normalized laplacian. In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex or more generally when a measure of the center and spread of the cluster is not a suitable description of the complete cluster. For instance when clusters are nested circles on the 2D plan. If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts. Read more in the :ref:`User Guide <spectral_clustering>`. Parameters ----------- affinity : array-like or sparse matrix, shape: (n_samples, n_samples) The affinity matrix describing the relationship of the samples to embed. **Must be symmetric**. Possible examples: - adjacency matrix of a graph, - heat kernel of the pairwise distance matrix of the samples, - symmetric k-nearest neighbours connectivity matrix of the samples. n_clusters : integer, optional Number of clusters to extract. n_components : integer, optional, default is n_clusters Number of eigen vectors to use for the spectral embedding eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'} The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used for the initialization of the lobpcg eigen vectors decomposition when eigen_solver == 'amg' and by the K-Means initialization. n_init : int, optional, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. eigen_tol : float, optional, default: 0.0 Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack eigen_solver. assign_labels : {'kmeans', 'discretize'}, default: 'kmeans' The strategy to use to assign labels in the embedding space. There are two ways to assign labels after the laplacian embedding. k-means can be applied and is a popular choice. But it can also be sensitive to initialization. Discretization is another approach which is less sensitive to random initialization. See the 'Multiclass spectral clustering' paper referenced below for more details on the discretization approach. Returns ------- labels : array of integers, shape: n_samples The labels of the clusters. References ---------- - Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324 - A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323 - Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf Notes ------ The graph should contain only one connect component, elsewhere the results make little sense. This algorithm solves the normalized cut for k=2: it is a normalized spectral clustering. """ if assign_labels not in ('kmeans', 'discretize'): raise ValueError("The 'assign_labels' parameter should be " "'kmeans' or 'discretize', but '%s' was given" % assign_labels) random_state = check_random_state(random_state) n_components = n_clusters if n_components is None else n_components maps = spectral_embedding(affinity, n_components=n_components, eigen_solver=eigen_solver, random_state=random_state, eigen_tol=eigen_tol, drop_first=False) if assign_labels == 'kmeans': _, labels, _ = k_means(maps, n_clusters, random_state=random_state, n_init=n_init) else: labels = discretize(maps, random_state=random_state) return labels class SpectralClustering(BaseEstimator, ClusterMixin): """Apply clustering to a projection to the normalized laplacian. In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex or more generally when a measure of the center and spread of the cluster is not a suitable description of the complete cluster. For instance when clusters are nested circles on the 2D plan. If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts. When calling ``fit``, an affinity matrix is constructed using either kernel function such the Gaussian (aka RBF) kernel of the euclidean distanced ``d(X, X)``:: np.exp(-gamma * d(X,X) ** 2) or a k-nearest neighbors connectivity matrix. Alternatively, using ``precomputed``, a user-provided affinity matrix can be used. Read more in the :ref:`User Guide <spectral_clustering>`. Parameters ----------- n_clusters : integer, optional The dimension of the projection subspace. affinity : string, array-like or callable, default 'rbf' If a string, this may be one of 'nearest_neighbors', 'precomputed', 'rbf' or one of the kernels supported by `sklearn.metrics.pairwise_kernels`. Only kernels that produce similarity scores (non-negative values that increase with similarity) should be used. This property is not checked by the clustering algorithm. gamma : float Scaling factor of RBF, polynomial, exponential chi^2 and sigmoid affinity kernel. Ignored for ``affinity='nearest_neighbors'``. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. n_neighbors : integer Number of neighbors to use when constructing the affinity matrix using the nearest neighbors method. Ignored for ``affinity='rbf'``. eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'} The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used for the initialization of the lobpcg eigen vectors decomposition when eigen_solver == 'amg' and by the K-Means initialization. n_init : int, optional, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. eigen_tol : float, optional, default: 0.0 Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack eigen_solver. assign_labels : {'kmeans', 'discretize'}, default: 'kmeans' The strategy to use to assign labels in the embedding space. There are two ways to assign labels after the laplacian embedding. k-means can be applied and is a popular choice. But it can also be sensitive to initialization. Discretization is another approach which is less sensitive to random initialization. kernel_params : dictionary of string to any, optional Parameters (keyword arguments) and values for kernel passed as callable object. Ignored by other kernels. Attributes ---------- affinity_matrix_ : array-like, shape (n_samples, n_samples) Affinity matrix used for clustering. Available only if after calling ``fit``. labels_ : Labels of each point Notes ----- If you have an affinity matrix, such as a distance matrix, for which 0 means identical elements, and high values means very dissimilar elements, it can be transformed in a similarity matrix that is well suited for the algorithm by applying the Gaussian (RBF, heat) kernel:: np.exp(- X ** 2 / (2. * delta ** 2)) Another alternative is to take a symmetric version of the k nearest neighbors connectivity matrix of the points. If the pyamg package is installed, it is used: this greatly speeds up computation. References ---------- - Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324 - A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323 - Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf """ def __init__(self, n_clusters=8, eigen_solver=None, random_state=None, n_init=10, gamma=1., affinity='rbf', n_neighbors=10, eigen_tol=0.0, assign_labels='kmeans', degree=3, coef0=1, kernel_params=None): self.n_clusters = n_clusters self.eigen_solver = eigen_solver self.random_state = random_state self.n_init = n_init self.gamma = gamma self.affinity = affinity self.n_neighbors = n_neighbors self.eigen_tol = eigen_tol self.assign_labels = assign_labels self.degree = degree self.coef0 = coef0 self.kernel_params = kernel_params def fit(self, X, y=None): """Creates an affinity matrix for X using the selected affinity, then applies spectral clustering to this affinity matrix. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) OR, if affinity==`precomputed`, a precomputed affinity matrix of shape (n_samples, n_samples) """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) if X.shape[0] == X.shape[1] and self.affinity != "precomputed": warnings.warn("The spectral clustering API has changed. ``fit``" "now constructs an affinity matrix from data. To use" " a custom affinity matrix, " "set ``affinity=precomputed``.") if self.affinity == 'nearest_neighbors': connectivity = kneighbors_graph(X, n_neighbors=self.n_neighbors, include_self=True) self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T) elif self.affinity == 'precomputed': self.affinity_matrix_ = X else: params = self.kernel_params if params is None: params = {} if not callable(self.affinity): params['gamma'] = self.gamma params['degree'] = self.degree params['coef0'] = self.coef0 self.affinity_matrix_ = pairwise_kernels(X, metric=self.affinity, filter_params=True, **params) random_state = check_random_state(self.random_state) self.labels_ = spectral_clustering(self.affinity_matrix_, n_clusters=self.n_clusters, eigen_solver=self.eigen_solver, random_state=random_state, n_init=self.n_init, eigen_tol=self.eigen_tol, assign_labels=self.assign_labels) return self @property def _pairwise(self): return self.affinity == "precomputed"
bsd-3-clause
curiousguy13/shogun
examples/undocumented/python_modular/graphical/regression_gaussian_process_demo.py
10
9249
########################################################################### # Mean prediction from Gaussian Processes based on # classifier_libsvm_minimal_modular.py # plotting functions have been adapted from the pyGP library # https://github.com/jameshensman/pyGP ########################################################################### from numpy import * from numpy.random import randn from modshogun import * import pylab as PL import matplotlib import logging as LG import scipy as SP from modshogun import GradientModelSelection from modshogun import ModelSelectionParameters, R_EXP, R_LINEAR from modshogun import ParameterCombination def plot_training_data(x, y, shift=None, replicate_indices=None, format_data={'alpha':.5, 'marker':'.', 'linestyle':'--', 'lw':1, 'markersize':9}, draw_arrows=0, plot_old=False): """ Plot training data input x and output y into the active figure (See http://matplotlib.sourceforge.net/ for details of figure). Instance plot without replicate groups: .. image:: ../images/plotTraining.png :height: 8cm Instance plot with two replicate groups and a shift in x-koords: .. image:: ../images/plotTrainingShiftX.png :height: 8cm **Parameters:** x : [double] Input x (e.g. time). y : [double] Output y (e.g. expression). shift : [double] The shift of each replicate group. replicate_indices : [int] Indices of replicates for each x, rexpectively format_data : {format} Format of the data points. See http://matplotlib.sourceforge.net/ for details. draw_arrows : int draw given number of arrows (if greator than len(replicate) draw all arrows. Arrows will show the time shift for time points, respectively. """ x_shift = SP.array(x.copy()) if shift is not None and replicate_indices is not None: assert len(shift) == len(SP.unique(replicate_indices)), 'Need one shift per replicate to plot properly' _format_data = format_data.copy() if(format_data.has_key('alpha')): _format_data['alpha'] = .2*format_data['alpha'] else: _format_data['alpha'] = .2 number_of_groups = len(SP.unique(replicate_indices)) for i in SP.unique(replicate_indices): x_shift[replicate_indices == i] -= shift[i] for i in SP.unique(replicate_indices): col = matplotlib.cm.jet(i / (2. * number_of_groups)) _format_data['color'] = col if(plot_old): PL.plot(x[replicate_indices == i], y[replicate_indices == i], **_format_data) if(draw_arrows): range = SP.where(replicate_indices == i)[0] for n in SP.arange(range[0], range[-1], max(1, round(len(range) / draw_arrows))): offset = round((len(range)-1) / draw_arrows) n += max(int((i+1)*offset/number_of_groups),1) PL.text((x_shift[n]+x[n])/2., y[n], "%.2f"%(-shift[i]), ha='center',va='center', fontsize=10) PL.annotate('', xy=(x_shift[n], y[n]), xytext=(x[n], y[n]),va='center', arrowprops=dict(facecolor=col, alpha=.2, shrink=.01, frac=.2, headwidth=11, width=11)) #PL.plot(x,y,**_format_data) if(replicate_indices is not None): number_of_groups = len(SP.unique(replicate_indices)) #format_data['markersize'] = 13 #format_data['alpha'] = .5 for i in SP.unique(replicate_indices): col = matplotlib.cm.jet(i / (2. * number_of_groups)) format_data['color'] = col PL.plot(x_shift[replicate_indices == i], y[replicate_indices == i], **format_data) else: print(x_shift.shape) number_of_groups = x_shift.shape[0] for i in xrange(number_of_groups): col = matplotlib.cm.jet(i / (2. * number_of_groups)) format_data['color'] = col PL.plot(x[i], y[i], **format_data) # return PL.plot(x_shift,y,**format_data) def plot_sausage(X, mean, std, alpha=None, format_fill={'alpha':0.3, 'facecolor':'k'}, format_line=dict(alpha=1, color='g', lw=3, ls='dashed')): """ plot saussage plot of GP. I.e: .. image:: ../images/sausage.png :height: 8cm **returns:** : [fill_plot, line_plot] The fill and the line of the sausage plot. (i.e. green line and gray fill of the example above) **Parameters:** X : [double] Interval X for which the saussage shall be plottet. mean : [double] The mean of to be plottet. std : [double] Pointwise standard deviation. format_fill : {format} The format of the fill. See http://matplotlib.sourceforge.net/ for details. format_line : {format} The format of the mean line. See http://matplotlib.sourceforge.net/ for details. """ X = X.squeeze() Y1 = (mean + 2 * std) Y2 = (mean - 2 * std) if(alpha is not None): old_alpha_fill = min(1, format_fill['alpha'] * 2) for i, a in enumerate(alpha[:-2]): format_fill['alpha'] = a * old_alpha_fill hf = PL.fill_between(X[i:i + 2], Y1[i:i + 2], Y2[i:i + 2], lw=0, **format_fill) i += 1 hf = PL.fill_between(X[i:], Y1[i:], Y2[i:], lw=0, **format_fill) else: hf = PL.fill_between(X, Y1, Y2, **format_fill) hp = PL.plot(X, mean, **format_line) return [hf, hp] class CrossRect(matplotlib.patches.Rectangle): def __init__(self, *args, **kwargs): matplotlib.patches.Rectangle.__init__(self, *args, **kwargs) #self.ax = ax # def get_verts(self): # rectverts = matplotlib.patches.Rectangle.get_verts(self) # return verts def get_path(self, *args, **kwargs): old_path = matplotlib.patches.Rectangle.get_path(self) verts = [] codes = [] for vert, code in old_path.iter_segments(): verts.append(vert) codes.append(code) verts.append([1, 1]) codes.append(old_path.LINETO) new_path = matplotlib.artist.Path(verts, codes) return new_path def create_toy_data(): #0. generate Toy-Data; just samples from a superposition of a sin + linear trend xmin = 1 xmax = 2.5*SP.pi x = SP.arange(xmin,xmax,(xmax-xmin)/100.0) C = 2 #offset sigma = 0.5 b = 0 y = b*x + C + 1*SP.sin(x) # dy = b + 1*SP.cos(x) y += sigma*random.randn(y.shape[0]) y-= y.mean() x = x[:,SP.newaxis] return [x,y] def run_demo(): LG.basicConfig(level=LG.INFO) random.seed(572) #1. create toy data [x,y] = create_toy_data() feat_train = RealFeatures(transpose(x)); labels = RegressionLabels(y); n_dimensions = 1 #2. location of unispaced predictions X = SP.linspace(0,10,10)[:,SP.newaxis] #new interface with likelihood parametres being decoupled from the covaraince function likelihood = GaussianLikelihood() covar_parms = SP.log([2]) hyperparams = {'covar':covar_parms,'lik':SP.log([1])} #construct covariance function SECF = GaussianKernel(feat_train, feat_train,2) covar = SECF zmean = ZeroMean(); inf = ExactInferenceMethod(SECF, feat_train, zmean, labels, likelihood); gp = GaussianProcessRegression(inf, feat_train, labels); root=ModelSelectionParameters(); c1=ModelSelectionParameters("inference_method", inf); root.append_child(c1); c2 = ModelSelectionParameters("scale"); c1.append_child(c2); c2.build_values(0.01, 4.0, R_LINEAR); c3 = ModelSelectionParameters("likelihood_model", likelihood); c1.append_child(c3); c4=ModelSelectionParameters("sigma"); c3.append_child(c4); c4.build_values(0.001, 4.0, R_LINEAR); c5 =ModelSelectionParameters("kernel", SECF); c1.append_child(c5); c6 =ModelSelectionParameters("width"); c5.append_child(c6); c6.build_values(0.001, 4.0, R_LINEAR); crit = GradientCriterion(); grad=GradientEvaluation(gp, feat_train, labels, crit); grad.set_function(inf); gp.print_modsel_params(); root.print_tree(); grad_search=GradientModelSelection( root, grad); grad.set_autolock(0); best_combination=grad_search.select_model(1); gp.set_return_type(GaussianProcessRegression.GP_RETURN_COV); St = gp.apply_regression(feat_train); St = St.get_labels(); gp.set_return_type(GaussianProcessRegression.GP_RETURN_MEANS); M = gp.apply_regression(); M = M.get_labels(); #create plots plot_sausage(transpose(x),transpose(M),transpose(SP.sqrt(St))); plot_training_data(x,y); PL.show(); if __name__ == '__main__': run_demo()
gpl-3.0
kelle/astropy
astropy/visualization/lupton_rgb.py
4
12745
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Combine 3 images to produce a properly-scaled RGB image following Lupton et al. (2004). The three images must be aligned and have the same pixel scale and size. For details, see : http://adsabs.harvard.edu/abs/2004PASP..116..133L """ from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np from . import ZScaleInterval __all__ = ['make_lupton_rgb'] def compute_intensity(image_r, image_g=None, image_b=None): """ Return a naive total intensity from the red, blue, and green intensities. Parameters ---------- image_r : `~numpy.ndarray` Intensity of image to be mapped to red; or total intensity if ``image_g`` and ``image_b`` are None. image_g : `~numpy.ndarray`, optional Intensity of image to be mapped to green. image_b : `~numpy.ndarray`, optional Intensity of image to be mapped to blue. Returns ------- intensity : `~numpy.ndarray` Total intensity from the red, blue and green intensities, or ``image_r`` if green and blue images are not provided. """ if image_g is None or image_b is None: if not (image_g is None and image_b is None): raise ValueError("please specify either a single image " "or red, green, and blue images.") return image_r intensity = (image_r + image_g + image_b)/3.0 # Repack into whatever type was passed to us return np.asarray(intensity, dtype=image_r.dtype) class Mapping(object): """ Baseclass to map red, blue, green intensities into uint8 values. Parameters ---------- minimum : float or sequence(3) Intensity that should be mapped to black (a scalar or array for R, G, B). image : `~numpy.ndarray`, optional An image used to calculate some parameters of some mappings. """ def __init__(self, minimum=None, image=None): self._uint8Max = float(np.iinfo(np.uint8).max) try: len(minimum) except TypeError: minimum = 3*[minimum] if len(minimum) != 3: raise ValueError("please provide 1 or 3 values for minimum.") self.minimum = minimum self._image = np.asarray(image) def make_rgb_image(self, image_r, image_g, image_b): """ Convert 3 arrays, image_r, image_g, and image_b into an 8-bit RGB image. Parameters ---------- image_r : `~numpy.ndarray` Image to map to red. image_g : `~numpy.ndarray` Image to map to green. image_b : `~numpy.ndarray` Image to map to blue. Returns ------- RGBimage : `~numpy.ndarray` RGB (integer, 8-bits per channel) color image as an NxNx3 numpy array. """ image_r = np.asarray(image_r) image_g = np.asarray(image_g) image_b = np.asarray(image_b) if (image_r.shape != image_g.shape) or (image_g.shape != image_b.shape): msg = "The image shapes must match. r: {}, g: {} b: {}" raise ValueError(msg.format(image_r.shape, image_g.shape, image_b.shape)) return np.dstack(self._convert_images_to_uint8(image_r, image_g, image_b)).astype(np.uint8) def intensity(self, image_r, image_g, image_b): """ Return the total intensity from the red, blue, and green intensities. This is a naive computation, and may be overridden by subclasses. Parameters ---------- image_r : `~numpy.ndarray` Intensity of image to be mapped to red; or total intensity if ``image_g`` and ``image_b`` are None. image_g : `~numpy.ndarray`, optional Intensity of image to be mapped to green. image_b : `~numpy.ndarray`, optional Intensity of image to be mapped to blue. Returns ------- intensity : `~numpy.ndarray` Total intensity from the red, blue and green intensities, or ``image_r`` if green and blue images are not provided. """ return compute_intensity(image_r, image_g, image_b) def map_intensity_to_uint8(self, I): """ Return an array which, when multiplied by an image, returns that image mapped to the range of a uint8, [0, 255] (but not converted to uint8). The intensity is assumed to have had minimum subtracted (as that can be done per-band). Parameters ---------- I : `~numpy.ndarray` Intensity to be mapped. Returns ------- mapped_I : `~numpy.ndarray` ``I`` mapped to uint8 """ with np.errstate(invalid='ignore', divide='ignore'): return np.clip(I, 0, self._uint8Max) def _convert_images_to_uint8(self, image_r, image_g, image_b): """Use the mapping to convert images image_r, image_g, and image_b to a triplet of uint8 images""" image_r = image_r - self.minimum[0] # n.b. makes copy image_g = image_g - self.minimum[1] image_b = image_b - self.minimum[2] fac = self.map_intensity_to_uint8(self.intensity(image_r, image_g, image_b)) image_rgb = [image_r, image_g, image_b] for c in image_rgb: c *= fac c[c < 0] = 0 # individual bands can still be < 0, even if fac isn't pixmax = self._uint8Max r0, g0, b0 = image_rgb # copies -- could work row by row to minimise memory usage with np.errstate(invalid='ignore', divide='ignore'): # n.b. np.where can't and doesn't short-circuit for i, c in enumerate(image_rgb): c = np.where(r0 > g0, np.where(r0 > b0, np.where(r0 >= pixmax, c*pixmax/r0, c), np.where(b0 >= pixmax, c*pixmax/b0, c)), np.where(g0 > b0, np.where(g0 >= pixmax, c*pixmax/g0, c), np.where(b0 >= pixmax, c*pixmax/b0, c))).astype(np.uint8) c[c > pixmax] = pixmax image_rgb[i] = c return image_rgb class LinearMapping(Mapping): """ A linear map map of red, blue, green intensities into uint8 values. A linear stretch from [minimum, maximum]. If one or both are omitted use image min and/or max to set them. Parameters ---------- minimum : float Intensity that should be mapped to black (a scalar or array for R, G, B). maximum : float Intensity that should be mapped to white (a scalar). """ def __init__(self, minimum=None, maximum=None, image=None): if minimum is None or maximum is None: if image is None: raise ValueError("you must provide an image if you don't " "set both minimum and maximum") if minimum is None: minimum = image.min() if maximum is None: maximum = image.max() Mapping.__init__(self, minimum=minimum, image=image) self.maximum = maximum if maximum is None: self._range = None else: if maximum == minimum: raise ValueError("minimum and maximum values must not be equal") self._range = float(maximum - minimum) def map_intensity_to_uint8(self, I): with np.errstate(invalid='ignore', divide='ignore'): # n.b. np.where can't and doesn't short-circuit return np.where(I <= 0, 0, np.where(I >= self._range, self._uint8Max/I, self._uint8Max/self._range)) class AsinhMapping(Mapping): """ A mapping for an asinh stretch (preserving colours independent of brightness) x = asinh(Q (I - minimum)/stretch)/Q This reduces to a linear stretch if Q == 0 See http://adsabs.harvard.edu/abs/2004PASP..116..133L Parameters ---------- minimum : float Intensity that should be mapped to black (a scalar or array for R, G, B). stretch : float The linear stretch of the image. Q : float The asinh softening parameter. """ def __init__(self, minimum, stretch, Q=8): Mapping.__init__(self, minimum) epsilon = 1.0/2**23 # 32bit floating point machine epsilon; sys.float_info.epsilon is 64bit if abs(Q) < epsilon: Q = 0.1 else: Qmax = 1e10 if Q > Qmax: Q = Qmax frac = 0.1 # gradient estimated using frac*stretch is _slope self._slope = frac*self._uint8Max/np.arcsinh(frac*Q) self._soften = Q/float(stretch) def map_intensity_to_uint8(self, I): with np.errstate(invalid='ignore', divide='ignore'): # n.b. np.where can't and doesn't short-circuit return np.where(I <= 0, 0, np.arcsinh(I*self._soften)*self._slope/I) class AsinhZScaleMapping(AsinhMapping): """ A mapping for an asinh stretch, estimating the linear stretch by zscale. x = asinh(Q (I - z1)/(z2 - z1))/Q Parameters ---------- image1 : `~numpy.ndarray` or a list of arrays The image to analyse, or a list of 3 images to be converted to an intensity image. image2 : `~numpy.ndarray`, optional the second image to analyse (must be specified with image3). image3 : `~numpy.ndarray`, optional the third image to analyse (must be specified with image2). Q : float, optional The asinh softening parameter. Default is 8. pedestal : float or sequence(3), optional The value, or array of 3 values, to subtract from the images; or None. Notes ----- pedestal, if not None, is removed from the images when calculating the zscale stretch, and added back into Mapping.minimum[] """ def __init__(self, image1, image2=None, image3=None, Q=8, pedestal=None): """ """ if image2 is None or image3 is None: if not (image2 is None and image3 is None): raise ValueError("please specify either a single image " "or three images.") image = [image1] else: image = [image1, image2, image3] if pedestal is not None: try: len(pedestal) except TypeError: pedestal = 3*[pedestal] if len(pedestal) != 3: raise ValueError("please provide 1 or 3 pedestals.") image = list(image) # needs to be mutable for i, im in enumerate(image): if pedestal[i] != 0.0: image[i] = im - pedestal[i] # n.b. a copy else: pedestal = len(image)*[0.0] image = compute_intensity(*image) zscale_limits = ZScaleInterval().get_limits(image) zscale = LinearMapping(*zscale_limits, image=image) stretch = zscale.maximum - zscale.minimum[0] # zscale.minimum is always a triple minimum = zscale.minimum for i, level in enumerate(pedestal): minimum[i] += level AsinhMapping.__init__(self, minimum, stretch, Q) self._image = image def make_lupton_rgb(image_r, image_g, image_b, minimum=0, stretch=5, Q=8, filename=None): """ Return a Red/Green/Blue color image from up to 3 images using an asinh stretch. The input images can be int or float, and in any range or bit-depth. For a more detailed look at the use of this method, see the document :ref:`astropy-visualization-rgb`. Parameters ---------- image_r : `~numpy.ndarray` Image to map to red. image_g : `~numpy.ndarray` Image to map to green. image_b : `~numpy.ndarray` Image to map to blue. minimum : float Intensity that should be mapped to black (a scalar or array for R, G, B). stretch : float The linear stretch of the image. Q : float The asinh softening parameter. filename: str Write the resulting RGB image to a file (file type determined from extension). Returns ------- rgb : `~numpy.ndarray` RGB (integer, 8-bits per channel) color image as an NxNx3 numpy array. """ asinhMap = AsinhMapping(minimum, stretch, Q) rgb = asinhMap.make_rgb_image(image_r, image_g, image_b) if filename: import matplotlib.image matplotlib.image.imsave(filename, rgb, origin='lower') return rgb
bsd-3-clause
flightgong/scikit-learn
sklearn/tests/test_random_projection.py
5
13190
from __future__ import division import warnings import numpy as np import scipy.sparse as sp from sklearn.metrics import euclidean_distances from sklearn.random_projection import ( johnson_lindenstrauss_min_dim, gaussian_random_matrix, sparse_random_matrix, SparseRandomProjection, GaussianRandomProjection) from sklearn.utils.testing import ( assert_less, assert_raises, assert_raise_message, assert_array_equal, assert_equal, assert_almost_equal, assert_in, assert_array_almost_equal) all_sparse_random_matrix = [sparse_random_matrix] all_dense_random_matrix = [gaussian_random_matrix] all_random_matrix = set(all_sparse_random_matrix + all_dense_random_matrix) all_SparseRandomProjection = [SparseRandomProjection] all_DenseRandomProjection = [GaussianRandomProjection] all_RandomProjection = set(all_SparseRandomProjection + all_DenseRandomProjection) # Make some random data with uniformly located non zero entries with # Gaussian distributed values def make_sparse_random_data(n_samples, n_features, n_nonzeros): rng = np.random.RandomState(0) data_coo = sp.coo_matrix( (rng.randn(n_nonzeros), (rng.randint(n_samples, size=n_nonzeros), rng.randint(n_features, size=n_nonzeros))), shape=(n_samples, n_features)) return data_coo.toarray(), data_coo.tocsr() def densify(matrix): if not sp.issparse(matrix): return matrix else: return matrix.toarray() n_samples, n_features = (10, 1000) n_nonzeros = int(n_samples * n_features / 100.) data, data_csr = make_sparse_random_data(n_samples, n_features, n_nonzeros) ############################################################################### # test on JL lemma ############################################################################### def test_invalid_jl_domain(): assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, 1.1) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, 0.0) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, -0.1) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 0, 0.5) def test_input_size_jl_min_dim(): assert_raises(ValueError, johnson_lindenstrauss_min_dim, 3 * [100], 2 * [0.9]) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 3 * [100], 2 * [0.9]) johnson_lindenstrauss_min_dim(np.random.randint(1, 10, size=(10, 10)), 0.5 * np.ones((10, 10))) ############################################################################### # tests random matrix generation ############################################################################### def check_input_size_random_matrix(random_matrix): assert_raises(ValueError, random_matrix, 0, 0) assert_raises(ValueError, random_matrix, -1, 1) assert_raises(ValueError, random_matrix, 1, -1) assert_raises(ValueError, random_matrix, 1, 0) assert_raises(ValueError, random_matrix, -1, 0) def check_size_generated(random_matrix): assert_equal(random_matrix(1, 5).shape, (1, 5)) assert_equal(random_matrix(5, 1).shape, (5, 1)) assert_equal(random_matrix(5, 5).shape, (5, 5)) assert_equal(random_matrix(1, 1).shape, (1, 1)) def check_zero_mean_and_unit_norm(random_matrix): # All random matrix should produce a transformation matrix # with zero mean and unit norm for each columns A = densify(random_matrix(10000, 1, random_state=0)) assert_array_almost_equal(0, np.mean(A), 3) assert_array_almost_equal(1.0, np.linalg.norm(A), 1) def check_input_with_sparse_random_matrix(random_matrix): n_components, n_features = 5, 10 for density in [-1., 0.0, 1.1]: assert_raises(ValueError, random_matrix, n_components, n_features, density=density) def test_basic_property_of_random_matrix(): """Check basic properties of random matrix generation""" for random_matrix in all_random_matrix: check_input_size_random_matrix(random_matrix) check_size_generated(random_matrix) check_zero_mean_and_unit_norm(random_matrix) for random_matrix in all_sparse_random_matrix: check_input_with_sparse_random_matrix(random_matrix) random_matrix_dense = \ lambda n_components, n_features, random_state: random_matrix( n_components, n_features, random_state=random_state, density=1.0) check_zero_mean_and_unit_norm(random_matrix_dense) def test_gaussian_random_matrix(): """Check some statical properties of Gaussian random matrix""" # Check that the random matrix follow the proper distribution. # Let's say that each element of a_{ij} of A is taken from # a_ij ~ N(0.0, 1 / n_components). # n_components = 100 n_features = 1000 A = gaussian_random_matrix(n_components, n_features, random_state=0) assert_array_almost_equal(0.0, np.mean(A), 2) assert_array_almost_equal(np.var(A, ddof=1), 1 / n_components, 1) def test_sparse_random_matrix(): """Check some statical properties of sparse random matrix""" n_components = 100 n_features = 500 for density in [0.3, 1.]: s = 1 / density A = sparse_random_matrix(n_components, n_features, density=density, random_state=0) A = densify(A) # Check possible values values = np.unique(A) assert_in(np.sqrt(s) / np.sqrt(n_components), values) assert_in(- np.sqrt(s) / np.sqrt(n_components), values) if density == 1.0: assert_equal(np.size(values), 2) else: assert_in(0., values) assert_equal(np.size(values), 3) # Check that the random matrix follow the proper distribution. # Let's say that each element of a_{ij} of A is taken from # # - -sqrt(s) / sqrt(n_components) with probability 1 / 2s # - 0 with probability 1 - 1 / s # - +sqrt(s) / sqrt(n_components) with probability 1 / 2s # assert_almost_equal(np.mean(A == 0.0), 1 - 1 / s, decimal=2) assert_almost_equal(np.mean(A == np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2) assert_almost_equal(np.mean(A == - np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2) assert_almost_equal(np.var(A == 0.0, ddof=1), (1 - 1 / s) * 1 / s, decimal=2) assert_almost_equal(np.var(A == np.sqrt(s) / np.sqrt(n_components), ddof=1), (1 - 1 / (2 * s)) * 1 / (2 * s), decimal=2) assert_almost_equal(np.var(A == - np.sqrt(s) / np.sqrt(n_components), ddof=1), (1 - 1 / (2 * s)) * 1 / (2 * s), decimal=2) ############################################################################### # tests on random projection transformer ############################################################################### def test_sparse_random_projection_transformer_invalid_density(): for RandomProjection in all_SparseRandomProjection: assert_raises(ValueError, RandomProjection(density=1.1).fit, data) assert_raises(ValueError, RandomProjection(density=0).fit, data) assert_raises(ValueError, RandomProjection(density=-0.1).fit, data) def test_random_projection_transformer_invalid_input(): for RandomProjection in all_RandomProjection: assert_raises(ValueError, RandomProjection(n_components='auto').fit, [0, 1, 2]) assert_raises(ValueError, RandomProjection(n_components=-10).fit, data) def test_try_to_transform_before_fit(): for RandomProjection in all_RandomProjection: assert_raises(ValueError, RandomProjection(n_components='auto').transform, data) def test_too_many_samples_to_find_a_safe_embedding(): data, _ = make_sparse_random_data(1000, 100, 1000) for RandomProjection in all_RandomProjection: rp = RandomProjection(n_components='auto', eps=0.1) expected_msg = ( 'eps=0.100000 and n_samples=1000 lead to a target dimension' ' of 5920 which is larger than the original space with' ' n_features=100') assert_raise_message(ValueError, expected_msg, rp.fit, data) def test_random_projection_embedding_quality(): data, _ = make_sparse_random_data(8, 5000, 15000) eps = 0.2 original_distances = euclidean_distances(data, squared=True) original_distances = original_distances.ravel() non_identical = original_distances != 0.0 # remove 0 distances to avoid division by 0 original_distances = original_distances[non_identical] for RandomProjection in all_RandomProjection: rp = RandomProjection(n_components='auto', eps=eps, random_state=0) projected = rp.fit_transform(data) projected_distances = euclidean_distances(projected, squared=True) projected_distances = projected_distances.ravel() # remove 0 distances to avoid division by 0 projected_distances = projected_distances[non_identical] distances_ratio = projected_distances / original_distances # check that the automatically tuned values for the density respect the # contract for eps: pairwise distances are preserved according to the # Johnson-Lindenstrauss lemma assert_less(distances_ratio.max(), 1 + eps) assert_less(1 - eps, distances_ratio.min()) def test_SparseRandomProjection_output_representation(): for SparseRandomProjection in all_SparseRandomProjection: # when using sparse input, the projected data can be forced to be a # dense numpy array rp = SparseRandomProjection(n_components=10, dense_output=True, random_state=0) rp.fit(data) assert isinstance(rp.transform(data), np.ndarray) sparse_data = sp.csr_matrix(data) assert isinstance(rp.transform(sparse_data), np.ndarray) # the output can be left to a sparse matrix instead rp = SparseRandomProjection(n_components=10, dense_output=False, random_state=0) rp = rp.fit(data) # output for dense input will stay dense: assert isinstance(rp.transform(data), np.ndarray) # output for sparse output will be sparse: assert sp.issparse(rp.transform(sparse_data)) def test_correct_RandomProjection_dimensions_embedding(): for RandomProjection in all_RandomProjection: rp = RandomProjection(n_components='auto', random_state=0, eps=0.5).fit(data) # the number of components is adjusted from the shape of the training # set assert_equal(rp.n_components, 'auto') assert_equal(rp.n_components_, 110) if RandomProjection in all_SparseRandomProjection: assert_equal(rp.density, 'auto') assert_almost_equal(rp.density_, 0.03, 2) assert_equal(rp.components_.shape, (110, n_features)) projected_1 = rp.transform(data) assert_equal(projected_1.shape, (n_samples, 110)) # once the RP is 'fitted' the projection is always the same projected_2 = rp.transform(data) assert_array_equal(projected_1, projected_2) # fit transform with same random seed will lead to the same results rp2 = RandomProjection(random_state=0, eps=0.5) projected_3 = rp2.fit_transform(data) assert_array_equal(projected_1, projected_3) # Try to transform with an input X of size different from fitted. assert_raises(ValueError, rp.transform, data[:, 1:5]) # it is also possible to fix the number of components and the density # level if RandomProjection in all_SparseRandomProjection: rp = RandomProjection(n_components=100, density=0.001, random_state=0) projected = rp.fit_transform(data) assert_equal(projected.shape, (n_samples, 100)) assert_equal(rp.components_.shape, (100, n_features)) assert_less(rp.components_.nnz, 115) # close to 1% density assert_less(85, rp.components_.nnz) # close to 1% density def test_warning_n_components_greater_than_n_features(): n_features = 20 data, _ = make_sparse_random_data(5, n_features, int(n_features / 4)) for RandomProjection in all_RandomProjection: with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") RandomProjection(n_components=n_features + 1).fit(data) assert_equal(len(w), 1) assert issubclass(w[-1].category, UserWarning)
bsd-3-clause
timestocome/Test-stock-prediction-algorithms
Curves, Markov and Bayes/LevelData.py
2
3693
# http://github.com/timestocome # Level data so series is stationary in time # take log of data # save it to use in deconstructing signal to find anomolies # Using finance.yahoo.com Nasdaq, S&P, DJI 1985 - date (Nov 29 2017) # # https://blog.statsbot.co/time-series-anomaly-detection-algorithms-1cef5519aef2 import numpy as np import pandas as pd import matplotlib.pyplot as plt # pandas display options pd.options.display.max_rows = 10000 pd.options.display.max_columns = 25 pd.options.display.width = 1000 ###################################################################### # plot dataframe ######################################################################## def plot_dataframe(d, t): plt.figure(figsize=(18,18)) plt.plot(d['NASDAQ'], label='NASDAQ') plt.plot(d['S&P'], label='S&P') plt.plot(d['DJIA'], label='DJIA') plt.plot(d['BTC'], label='BTC') plt.plot(d['Russell'], label='Russell') plt.title(t) plt.legend(loc='best') plt.show() ###################################################################### # data ######################################################################## # read in datafile created in LoadAndMatchDates.py data = pd.read_csv('StockDataWithVolume.csv', index_col='Date', parse_dates=True) features = ['DJIA', 'S&P', 'NASDAQ', 'Russell', 'BTC'] # fill in a couple NaN #data.dropna() data = data.fillna(method='ffill') ######################################################################################### # level the series out, time series calculations all assume signal is stationary in time ######################################################################################## # pandas removed ols package !#&^*@$ # need y intercept, b # and slope, m # y = mx + b # using simplest case possible # # how to get x, y just in case you want to put this into an ordinary least squares package # for better slope/intercept numbers # This is close enough for proof of concept # # x = list(range(1, len(data))) # y = data # not really ols, but close enough def ols(data): m = (data[-1] - data[0]) / len(data) b = data[0] print(data[-1], data[0], (data[-1] - data[0])) print(m, b) print('-----------------------') return m, b # add a time step steps = np.asarray(range(1, len(data)+1)) steps.reshape(1, -1) data['step'] = steps # NASDAQ data['log NASDAQ'] = np.log(data['NASDAQ']) m, b = ols(data['log NASDAQ']) data['leveled log Nasdaq'] = data['log NASDAQ'] - (b + data['step'] * m) # S&P data['log S&P'] = np.log(data['S&P']) m, b = ols(data['log S&P']) data['leveled log S&P'] = data['log S&P'] - (b + data['step'] * m) # DJIA data['log DJIA'] = np.log(data['DJIA']) m, b = ols(data['log DJIA']) data['leveled log DJIA'] = data['log DJIA'] - (b + data['step'] * m) # BTC data['log BTC'] = np.log(data['BTC']) m, b = ols(data['log BTC']) data['leveled log BTC'] = data['log BTC'] - (b + data['step'] * m) # Russell data['log Russell'] = np.log(data['Russell']) m, b = ols(data['log Russell']) data['leveled log Russell'] = data['log Russell'] - (b + data['step'] * m) #print(data.columns.values) data = data[['leveled log Nasdaq','leveled log S&P', 'leveled log DJIA', 'leveled log Russell', 'leveled log BTC']] # save data data.to_csv('LeveledLogStockData.csv') # plot to make sure things look ok plt.figure(figsize=(12,12)) plt.plot(data['leveled log Nasdaq'], label='NASDAQ') plt.plot(data['leveled log S&P'], label='S&P') plt.plot(data['leveled log DJIA'], label='DJIA') plt.plot(data['leveled log BTC'], label='BTC') plt.plot(data['leveled log Russell'], label='Russell') plt.legend(loc='best') plt.show()
mit
ThomasSweijen/TPF
examples/simple-scene/simple-scene-plot.py
8
2026
#!/usr/bin/python # -*- coding: utf-8 -*- import matplotlib matplotlib.use('TkAgg') O.engines=[ ForceResetter(), InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Box_Aabb()]), InteractionLoop( [Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()], [Ip2_FrictMat_FrictMat_FrictPhys()], [Law2_ScGeom_FrictPhys_CundallStrack()] ), NewtonIntegrator(damping=.2,gravity=(0,0,-9.81)), ### ### NOTE this extra engine: ### ### You want snapshot to be taken every 1 sec (realTimeLim) or every 50 iterations (iterLim), ### whichever comes soones. virtTimeLim attribute is unset, hence virtual time period is not taken into account. PyRunner(iterPeriod=20,command='myAddPlotData()') ] O.bodies.append(box(center=[0,0,0],extents=[.5,.5,.5],fixed=True,color=[1,0,0])) O.bodies.append(sphere([0,0,2],1,color=[0,1,0])) O.dt=.002*PWaveTimeStep() ############################################ ##### now the part pertaining to plots ##### ############################################ from yade import plot ## we will have 2 plots: ## 1. t as function of i (joke test function) ## 2. i as function of t on left y-axis ('|||' makes the separation) and z_sph, v_sph (as green circles connected with line) and z_sph_half again as function of t plot.plots={'i':('t'),'t':('z_sph',None,('v_sph','go-'),'z_sph_half')} ## this function is called by plotDataCollector ## it should add data with the labels that we will plot ## if a datum is not specified (but exists), it will be NaN and will not be plotted def myAddPlotData(): sph=O.bodies[1] ## store some numbers under some labels plot.addData(t=O.time,i=O.iter,z_sph=sph.state.pos[2],z_sph_half=.5*sph.state.pos[2],v_sph=sph.state.vel.norm()) print "Now calling plot.plot() to show the figures. The timestep is artificially low so that you can watch graphs being updated live." plot.liveInterval=.2 plot.plot(subPlots=False) O.run(int(2./O.dt)); #plot.saveGnuplot('/tmp/a') ## you can also access the data in plot.data['i'], plot.data['t'] etc, under the labels they were saved.
gpl-2.0
fberanizo/author-profiling
classifiers/evaluation.py
1
3924
# -*- coding: utf-8 -*- import numpy as np from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report, accuracy_score, precision_recall_fscore_support from sklearn.model_selection import train_test_split from imblearn.under_sampling import RandomUnderSampler from imblearn.over_sampling import RandomOverSampler, SMOTE from imblearn.combine import SMOTEENN, SMOTETomek class Evaluation: """Classifier evaluator.""" def __init__(self, sampler="random_under_sampler"): self.sampler = sampler def run(self, classifier, param_grid, X, y): """Performs classifier evaluation.""" print('Evaluating ' + type(classifier).__name__) # Split the dataset in train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25) sampler = self.get_sampler() X_train, y_train = sampler.fit_sample(X_train, y_train) scores = ['f1'] if len(set(y_test)) <= 2 else ['f1_weighted'] for score in scores: print("# Tuning hyper-parameters for %s" % score) print("") skf = StratifiedKFold(n_splits=5) clf = GridSearchCV(estimator=classifier, param_grid=param_grid, scoring=score, cv=skf, verbose=0, n_jobs=2) clf.fit(X_train, y_train) print("Grid scores on validation set:") print("") results = dict(filter(lambda i:i[0] in ["params", "test_mean_score", "test_std_score", "test_rank_score"], clf.cv_results_.items())) table = dict() for key, val in results.items(): table[key] = val print(table) print("Best parameters set found on validation set:") print("") print(clf.best_params_) print("") print("") print("Scores on test set (using best parameters):") print("") y_true, y_pred = y_test, clf.predict(X_test) target_names = list(map(str, np.unique(y_true).tolist())) print(classification_report(y_true, y_pred)) avg_accuracy = accuracy_score(y_true, y_pred) print("") print("Average accuracy on test set (using best parameters): %.2f" % avg_accuracy) print("") (precision, recall, f1_score, support) = precision_recall_fscore_support(y_true, y_pred) print("===================================================================") print(precision) print("===================================================================") average = 'binary' if len(set(y)) <= 2 else 'weighted' (avg_precision, avg_recall, avg_f1_score, avg_support) = precision_recall_fscore_support(y_true, y_pred, average=average) accuracy = [] for target in target_names: accuracy.append(accuracy_score(y_true[np.where(y_true == np.int_(target))[0]], y_pred[np.where(y_true == np.int_(target))[0]])) target_names.append('avg') accuracy = np.append(accuracy, avg_accuracy) precision = np.append(precision, avg_precision) recall = np.append(recall, avg_recall) f1_score = np.append(f1_score, avg_f1_score) return target_names, accuracy, precision, recall, f1_score def get_sampler(self): """Returns sampler method.""" if self.sampler == "random_under_sampler": return RandomUnderSampler() if self.sampler == "random_over_sampler": return RandomOverSampler() elif self.sampler == "SMOTE": return SMOTE() elif self.sampler == "SMOTEENN": return SMOTEENN elif self.sampler == "SMOTETomek": return SMOTETomek return None
bsd-2-clause
warmspringwinds/scikit-image
skimage/viewer/plugins/color_histogram.py
5
3279
import numpy as np import matplotlib.pyplot as plt from ... import color, exposure from .plotplugin import PlotPlugin from ..canvastools import RectangleTool class ColorHistogram(PlotPlugin): name = 'Color Histogram' def __init__(self, max_pct=0.99, **kwargs): super(ColorHistogram, self).__init__(height=400, **kwargs) self.max_pct = max_pct print(self.help()) def attach(self, image_viewer): super(ColorHistogram, self).attach(image_viewer) self.rect_tool = RectangleTool(image_viewer, on_release=self.ab_selected) self._on_new_image(image_viewer.image) def _on_new_image(self, image): self.lab_image = color.rgb2lab(image) # Calculate color histogram in the Lab colorspace: L, a, b = self.lab_image.T left, right = -100, 100 ab_extents = [left, right, right, left] self.mask = np.ones(L.shape, bool) bins = np.arange(left, right) hist, x_edges, y_edges = np.histogram2d(a.flatten(), b.flatten(), bins, normed=True) self.data = {'bins': bins, 'hist': hist, 'edges': (x_edges, y_edges), 'extents': (left, right, left, right)} # Clip bin heights that dominate a-b histogram max_val = pct_total_area(hist, percentile=self.max_pct) hist = exposure.rescale_intensity(hist, in_range=(0, max_val)) self.ax.imshow(hist, extent=ab_extents, cmap=plt.cm.gray) self.ax.set_title('Color Histogram') self.ax.set_xlabel('b') self.ax.set_ylabel('a') def help(self): helpstr = ("Color Histogram tool:", "Select region of a-b colorspace to highlight on image.") return '\n'.join(helpstr) def ab_selected(self, extents): x0, x1, y0, y1 = extents self.data['extents'] = extents lab_masked = self.lab_image.copy() L, a, b = lab_masked.T self.mask = ((a > y0) & (a < y1)) & ((b > x0) & (b < x1)) lab_masked[..., 1:][~self.mask.T] = 0 self.image_viewer.image = color.lab2rgb(lab_masked) def output(self): """Return the image mask and the histogram data. Returns ------- mask : array of bool, same shape as image The selected pixels. data : dict The data describing the histogram and the selected region. The dictionary contains: - 'bins' : array of float The bin boundaries for both `a` and `b` channels. - 'hist' : 2D array of float The normalized histogram. - 'edges' : tuple of array of float The bin edges along each dimension - 'extents' : tuple of float The left and right and top and bottom of the selected region. """ return (self.mask, self.data) def pct_total_area(image, percentile=0.80): """Return threshold value based on percentage of total area. The specified percent of pixels less than the given intensity threshold. """ idx = int((image.size - 1) * percentile) sorted_pixels = np.sort(image.flat) return sorted_pixels[idx]
bsd-3-clause
ryfeus/lambda-packs
Shapely_numpy/source/numpy/core/tests/test_multiarray.py
11
246923
from __future__ import division, absolute_import, print_function import collections import tempfile import sys import shutil import warnings import operator import io import itertools import ctypes import os import gc if sys.version_info[0] >= 3: import builtins else: import __builtin__ as builtins from decimal import Decimal import numpy as np from numpy.compat import asbytes, getexception, strchar, unicode, sixu from test_print import in_foreign_locale from numpy.core.multiarray_tests import ( test_neighborhood_iterator, test_neighborhood_iterator_oob, test_pydatamem_seteventhook_start, test_pydatamem_seteventhook_end, test_inplace_increment, get_buffer_info, test_as_c_array, ) from numpy.testing import ( TestCase, run_module_suite, assert_, assert_raises, assert_warns, assert_equal, assert_almost_equal, assert_array_equal, assert_array_almost_equal, assert_allclose, IS_PYPY, HAS_REFCOUNT, assert_array_less, runstring, dec, SkipTest, temppath, suppress_warnings ) # Need to test an object that does not fully implement math interface from datetime import timedelta if sys.version_info[:2] > (3, 2): # In Python 3.3 the representation of empty shape, strides and sub-offsets # is an empty tuple instead of None. # http://docs.python.org/dev/whatsnew/3.3.html#api-changes EMPTY = () else: EMPTY = None class TestFlags(TestCase): def setUp(self): self.a = np.arange(10) def test_writeable(self): mydict = locals() self.a.flags.writeable = False self.assertRaises(ValueError, runstring, 'self.a[0] = 3', mydict) self.assertRaises(ValueError, runstring, 'self.a[0:1].itemset(3)', mydict) self.a.flags.writeable = True self.a[0] = 5 self.a[0] = 0 def test_otherflags(self): assert_equal(self.a.flags.carray, True) assert_equal(self.a.flags.farray, False) assert_equal(self.a.flags.behaved, True) assert_equal(self.a.flags.fnc, False) assert_equal(self.a.flags.forc, True) assert_equal(self.a.flags.owndata, True) assert_equal(self.a.flags.writeable, True) assert_equal(self.a.flags.aligned, True) assert_equal(self.a.flags.updateifcopy, False) def test_string_align(self): a = np.zeros(4, dtype=np.dtype('|S4')) assert_(a.flags.aligned) # not power of two are accessed byte-wise and thus considered aligned a = np.zeros(5, dtype=np.dtype('|S4')) assert_(a.flags.aligned) def test_void_align(self): a = np.zeros(4, dtype=np.dtype([("a", "i4"), ("b", "i4")])) assert_(a.flags.aligned) class TestHash(TestCase): # see #3793 def test_int(self): for st, ut, s in [(np.int8, np.uint8, 8), (np.int16, np.uint16, 16), (np.int32, np.uint32, 32), (np.int64, np.uint64, 64)]: for i in range(1, s): assert_equal(hash(st(-2**i)), hash(-2**i), err_msg="%r: -2**%d" % (st, i)) assert_equal(hash(st(2**(i - 1))), hash(2**(i - 1)), err_msg="%r: 2**%d" % (st, i - 1)) assert_equal(hash(st(2**i - 1)), hash(2**i - 1), err_msg="%r: 2**%d - 1" % (st, i)) i = max(i - 1, 1) assert_equal(hash(ut(2**(i - 1))), hash(2**(i - 1)), err_msg="%r: 2**%d" % (ut, i - 1)) assert_equal(hash(ut(2**i - 1)), hash(2**i - 1), err_msg="%r: 2**%d - 1" % (ut, i)) class TestAttributes(TestCase): def setUp(self): self.one = np.arange(10) self.two = np.arange(20).reshape(4, 5) self.three = np.arange(60, dtype=np.float64).reshape(2, 5, 6) def test_attributes(self): assert_equal(self.one.shape, (10,)) assert_equal(self.two.shape, (4, 5)) assert_equal(self.three.shape, (2, 5, 6)) self.three.shape = (10, 3, 2) assert_equal(self.three.shape, (10, 3, 2)) self.three.shape = (2, 5, 6) assert_equal(self.one.strides, (self.one.itemsize,)) num = self.two.itemsize assert_equal(self.two.strides, (5*num, num)) num = self.three.itemsize assert_equal(self.three.strides, (30*num, 6*num, num)) assert_equal(self.one.ndim, 1) assert_equal(self.two.ndim, 2) assert_equal(self.three.ndim, 3) num = self.two.itemsize assert_equal(self.two.size, 20) assert_equal(self.two.nbytes, 20*num) assert_equal(self.two.itemsize, self.two.dtype.itemsize) assert_equal(self.two.base, np.arange(20)) def test_dtypeattr(self): assert_equal(self.one.dtype, np.dtype(np.int_)) assert_equal(self.three.dtype, np.dtype(np.float_)) assert_equal(self.one.dtype.char, 'l') assert_equal(self.three.dtype.char, 'd') self.assertTrue(self.three.dtype.str[0] in '<>') assert_equal(self.one.dtype.str[1], 'i') assert_equal(self.three.dtype.str[1], 'f') def test_int_subclassing(self): # Regression test for https://github.com/numpy/numpy/pull/3526 numpy_int = np.int_(0) if sys.version_info[0] >= 3: # On Py3k int_ should not inherit from int, because it's not # fixed-width anymore assert_equal(isinstance(numpy_int, int), False) else: # Otherwise, it should inherit from int... assert_equal(isinstance(numpy_int, int), True) # ... and fast-path checks on C-API level should also work from numpy.core.multiarray_tests import test_int_subclass assert_equal(test_int_subclass(numpy_int), True) def test_stridesattr(self): x = self.one def make_array(size, offset, strides): return np.ndarray(size, buffer=x, dtype=int, offset=offset*x.itemsize, strides=strides*x.itemsize) assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1])) self.assertRaises(ValueError, make_array, 4, 4, -2) self.assertRaises(ValueError, make_array, 4, 2, -1) self.assertRaises(ValueError, make_array, 8, 3, 1) assert_equal(make_array(8, 3, 0), np.array([3]*8)) # Check behavior reported in gh-2503: self.assertRaises(ValueError, make_array, (2, 3), 5, np.array([-2, -3])) make_array(0, 0, 10) def test_set_stridesattr(self): x = self.one def make_array(size, offset, strides): try: r = np.ndarray([size], dtype=int, buffer=x, offset=offset*x.itemsize) except: raise RuntimeError(getexception()) r.strides = strides = strides*x.itemsize return r assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1])) assert_equal(make_array(7, 3, 1), np.array([3, 4, 5, 6, 7, 8, 9])) self.assertRaises(ValueError, make_array, 4, 4, -2) self.assertRaises(ValueError, make_array, 4, 2, -1) self.assertRaises(RuntimeError, make_array, 8, 3, 1) # Check that the true extent of the array is used. # Test relies on as_strided base not exposing a buffer. x = np.lib.stride_tricks.as_strided(np.arange(1), (10, 10), (0, 0)) def set_strides(arr, strides): arr.strides = strides self.assertRaises(ValueError, set_strides, x, (10*x.itemsize, x.itemsize)) # Test for offset calculations: x = np.lib.stride_tricks.as_strided(np.arange(10, dtype=np.int8)[-1], shape=(10,), strides=(-1,)) self.assertRaises(ValueError, set_strides, x[::-1], -1) a = x[::-1] a.strides = 1 a[::2].strides = 2 def test_fill(self): for t in "?bhilqpBHILQPfdgFDGO": x = np.empty((3, 2, 1), t) y = np.empty((3, 2, 1), t) x.fill(1) y[...] = 1 assert_equal(x, y) def test_fill_max_uint64(self): x = np.empty((3, 2, 1), dtype=np.uint64) y = np.empty((3, 2, 1), dtype=np.uint64) value = 2**64 - 1 y[...] = value x.fill(value) assert_array_equal(x, y) def test_fill_struct_array(self): # Filling from a scalar x = np.array([(0, 0.0), (1, 1.0)], dtype='i4,f8') x.fill(x[0]) assert_equal(x['f1'][1], x['f1'][0]) # Filling from a tuple that can be converted # to a scalar x = np.zeros(2, dtype=[('a', 'f8'), ('b', 'i4')]) x.fill((3.5, -2)) assert_array_equal(x['a'], [3.5, 3.5]) assert_array_equal(x['b'], [-2, -2]) class TestArrayConstruction(TestCase): def test_array(self): d = np.ones(6) r = np.array([d, d]) assert_equal(r, np.ones((2, 6))) d = np.ones(6) tgt = np.ones((2, 6)) r = np.array([d, d]) assert_equal(r, tgt) tgt[1] = 2 r = np.array([d, d + 1]) assert_equal(r, tgt) d = np.ones(6) r = np.array([[d, d]]) assert_equal(r, np.ones((1, 2, 6))) d = np.ones(6) r = np.array([[d, d], [d, d]]) assert_equal(r, np.ones((2, 2, 6))) d = np.ones((6, 6)) r = np.array([d, d]) assert_equal(r, np.ones((2, 6, 6))) d = np.ones((6, )) r = np.array([[d, d + 1], d + 2]) assert_equal(len(r), 2) assert_equal(r[0], [d, d + 1]) assert_equal(r[1], d + 2) tgt = np.ones((2, 3), dtype=np.bool) tgt[0, 2] = False tgt[1, 0:2] = False r = np.array([[True, True, False], [False, False, True]]) assert_equal(r, tgt) r = np.array([[True, False], [True, False], [False, True]]) assert_equal(r, tgt.T) def test_array_empty(self): assert_raises(TypeError, np.array) def test_array_copy_false(self): d = np.array([1, 2, 3]) e = np.array(d, copy=False) d[1] = 3 assert_array_equal(e, [1, 3, 3]) e = np.array(d, copy=False, order='F') d[1] = 4 assert_array_equal(e, [1, 4, 3]) e[2] = 7 assert_array_equal(d, [1, 4, 7]) def test_array_copy_true(self): d = np.array([[1,2,3], [1, 2, 3]]) e = np.array(d, copy=True) d[0, 1] = 3 e[0, 2] = -7 assert_array_equal(e, [[1, 2, -7], [1, 2, 3]]) assert_array_equal(d, [[1, 3, 3], [1, 2, 3]]) e = np.array(d, copy=True, order='F') d[0, 1] = 5 e[0, 2] = 7 assert_array_equal(e, [[1, 3, 7], [1, 2, 3]]) assert_array_equal(d, [[1, 5, 3], [1,2,3]]) def test_array_cont(self): d = np.ones(10)[::2] assert_(np.ascontiguousarray(d).flags.c_contiguous) assert_(np.ascontiguousarray(d).flags.f_contiguous) assert_(np.asfortranarray(d).flags.c_contiguous) assert_(np.asfortranarray(d).flags.f_contiguous) d = np.ones((10, 10))[::2,::2] assert_(np.ascontiguousarray(d).flags.c_contiguous) assert_(np.asfortranarray(d).flags.f_contiguous) class TestAssignment(TestCase): def test_assignment_broadcasting(self): a = np.arange(6).reshape(2, 3) # Broadcasting the input to the output a[...] = np.arange(3) assert_equal(a, [[0, 1, 2], [0, 1, 2]]) a[...] = np.arange(2).reshape(2, 1) assert_equal(a, [[0, 0, 0], [1, 1, 1]]) # For compatibility with <= 1.5, a limited version of broadcasting # the output to the input. # # This behavior is inconsistent with NumPy broadcasting # in general, because it only uses one of the two broadcasting # rules (adding a new "1" dimension to the left of the shape), # applied to the output instead of an input. In NumPy 2.0, this kind # of broadcasting assignment will likely be disallowed. a[...] = np.arange(6)[::-1].reshape(1, 2, 3) assert_equal(a, [[5, 4, 3], [2, 1, 0]]) # The other type of broadcasting would require a reduction operation. def assign(a, b): a[...] = b assert_raises(ValueError, assign, a, np.arange(12).reshape(2, 2, 3)) def test_assignment_errors(self): # Address issue #2276 class C: pass a = np.zeros(1) def assign(v): a[0] = v assert_raises((AttributeError, TypeError), assign, C()) assert_raises(ValueError, assign, [1]) class TestDtypedescr(TestCase): def test_construction(self): d1 = np.dtype('i4') assert_equal(d1, np.dtype(np.int32)) d2 = np.dtype('f8') assert_equal(d2, np.dtype(np.float64)) def test_byteorders(self): self.assertNotEqual(np.dtype('<i4'), np.dtype('>i4')) self.assertNotEqual(np.dtype([('a', '<i4')]), np.dtype([('a', '>i4')])) class TestZeroRank(TestCase): def setUp(self): self.d = np.array(0), np.array('x', object) def test_ellipsis_subscript(self): a, b = self.d self.assertEqual(a[...], 0) self.assertEqual(b[...], 'x') self.assertTrue(a[...].base is a) # `a[...] is a` in numpy <1.9. self.assertTrue(b[...].base is b) # `b[...] is b` in numpy <1.9. def test_empty_subscript(self): a, b = self.d self.assertEqual(a[()], 0) self.assertEqual(b[()], 'x') self.assertTrue(type(a[()]) is a.dtype.type) self.assertTrue(type(b[()]) is str) def test_invalid_subscript(self): a, b = self.d self.assertRaises(IndexError, lambda x: x[0], a) self.assertRaises(IndexError, lambda x: x[0], b) self.assertRaises(IndexError, lambda x: x[np.array([], int)], a) self.assertRaises(IndexError, lambda x: x[np.array([], int)], b) def test_ellipsis_subscript_assignment(self): a, b = self.d a[...] = 42 self.assertEqual(a, 42) b[...] = '' self.assertEqual(b.item(), '') def test_empty_subscript_assignment(self): a, b = self.d a[()] = 42 self.assertEqual(a, 42) b[()] = '' self.assertEqual(b.item(), '') def test_invalid_subscript_assignment(self): a, b = self.d def assign(x, i, v): x[i] = v self.assertRaises(IndexError, assign, a, 0, 42) self.assertRaises(IndexError, assign, b, 0, '') self.assertRaises(ValueError, assign, a, (), '') def test_newaxis(self): a, b = self.d self.assertEqual(a[np.newaxis].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ...].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ..., np.newaxis].shape, (1, 1)) self.assertEqual(a[..., np.newaxis, np.newaxis].shape, (1, 1)) self.assertEqual(a[np.newaxis, np.newaxis, ...].shape, (1, 1)) self.assertEqual(a[(np.newaxis,)*10].shape, (1,)*10) def test_invalid_newaxis(self): a, b = self.d def subscript(x, i): x[i] self.assertRaises(IndexError, subscript, a, (np.newaxis, 0)) self.assertRaises(IndexError, subscript, a, (np.newaxis,)*50) def test_constructor(self): x = np.ndarray(()) x[()] = 5 self.assertEqual(x[()], 5) y = np.ndarray((), buffer=x) y[()] = 6 self.assertEqual(x[()], 6) def test_output(self): x = np.array(2) self.assertRaises(ValueError, np.add, x, [1], x) class TestScalarIndexing(TestCase): def setUp(self): self.d = np.array([0, 1])[0] def test_ellipsis_subscript(self): a = self.d self.assertEqual(a[...], 0) self.assertEqual(a[...].shape, ()) def test_empty_subscript(self): a = self.d self.assertEqual(a[()], 0) self.assertEqual(a[()].shape, ()) def test_invalid_subscript(self): a = self.d self.assertRaises(IndexError, lambda x: x[0], a) self.assertRaises(IndexError, lambda x: x[np.array([], int)], a) def test_invalid_subscript_assignment(self): a = self.d def assign(x, i, v): x[i] = v self.assertRaises(TypeError, assign, a, 0, 42) def test_newaxis(self): a = self.d self.assertEqual(a[np.newaxis].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ...].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ..., np.newaxis].shape, (1, 1)) self.assertEqual(a[..., np.newaxis, np.newaxis].shape, (1, 1)) self.assertEqual(a[np.newaxis, np.newaxis, ...].shape, (1, 1)) self.assertEqual(a[(np.newaxis,)*10].shape, (1,)*10) def test_invalid_newaxis(self): a = self.d def subscript(x, i): x[i] self.assertRaises(IndexError, subscript, a, (np.newaxis, 0)) self.assertRaises(IndexError, subscript, a, (np.newaxis,)*50) def test_overlapping_assignment(self): # With positive strides a = np.arange(4) a[:-1] = a[1:] assert_equal(a, [1, 2, 3, 3]) a = np.arange(4) a[1:] = a[:-1] assert_equal(a, [0, 0, 1, 2]) # With positive and negative strides a = np.arange(4) a[:] = a[::-1] assert_equal(a, [3, 2, 1, 0]) a = np.arange(6).reshape(2, 3) a[::-1,:] = a[:, ::-1] assert_equal(a, [[5, 4, 3], [2, 1, 0]]) a = np.arange(6).reshape(2, 3) a[::-1, ::-1] = a[:, ::-1] assert_equal(a, [[3, 4, 5], [0, 1, 2]]) # With just one element overlapping a = np.arange(5) a[:3] = a[2:] assert_equal(a, [2, 3, 4, 3, 4]) a = np.arange(5) a[2:] = a[:3] assert_equal(a, [0, 1, 0, 1, 2]) a = np.arange(5) a[2::-1] = a[2:] assert_equal(a, [4, 3, 2, 3, 4]) a = np.arange(5) a[2:] = a[2::-1] assert_equal(a, [0, 1, 2, 1, 0]) a = np.arange(5) a[2::-1] = a[:1:-1] assert_equal(a, [2, 3, 4, 3, 4]) a = np.arange(5) a[:1:-1] = a[2::-1] assert_equal(a, [0, 1, 0, 1, 2]) class TestCreation(TestCase): def test_from_attribute(self): class x(object): def __array__(self, dtype=None): pass self.assertRaises(ValueError, np.array, x()) def test_from_string(self): types = np.typecodes['AllInteger'] + np.typecodes['Float'] nstr = ['123', '123'] result = np.array([123, 123], dtype=int) for type in types: msg = 'String conversion for %s' % type assert_equal(np.array(nstr, dtype=type), result, err_msg=msg) def test_void(self): arr = np.array([], dtype='V') assert_equal(arr.dtype.kind, 'V') def test_too_big_error(self): # 45341 is the smallest integer greater than sqrt(2**31 - 1). # 3037000500 is the smallest integer greater than sqrt(2**63 - 1). # We want to make sure that the square byte array with those dimensions # is too big on 32 or 64 bit systems respectively. if np.iinfo('intp').max == 2**31 - 1: shape = (46341, 46341) elif np.iinfo('intp').max == 2**63 - 1: shape = (3037000500, 3037000500) else: return assert_raises(ValueError, np.empty, shape, dtype=np.int8) assert_raises(ValueError, np.zeros, shape, dtype=np.int8) assert_raises(ValueError, np.ones, shape, dtype=np.int8) def test_zeros(self): types = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] for dt in types: d = np.zeros((13,), dtype=dt) assert_equal(np.count_nonzero(d), 0) # true for ieee floats assert_equal(d.sum(), 0) assert_(not d.any()) d = np.zeros(2, dtype='(2,4)i4') assert_equal(np.count_nonzero(d), 0) assert_equal(d.sum(), 0) assert_(not d.any()) d = np.zeros(2, dtype='4i4') assert_equal(np.count_nonzero(d), 0) assert_equal(d.sum(), 0) assert_(not d.any()) d = np.zeros(2, dtype='(2,4)i4, (2,4)i4') assert_equal(np.count_nonzero(d), 0) @dec.slow def test_zeros_big(self): # test big array as they might be allocated different by the system types = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] for dt in types: d = np.zeros((30 * 1024**2,), dtype=dt) assert_(not d.any()) # This test can fail on 32-bit systems due to insufficient # contiguous memory. Deallocating the previous array increases the # chance of success. del(d) def test_zeros_obj(self): # test initialization from PyLong(0) d = np.zeros((13,), dtype=object) assert_array_equal(d, [0] * 13) assert_equal(np.count_nonzero(d), 0) def test_zeros_obj_obj(self): d = np.zeros(10, dtype=[('k', object, 2)]) assert_array_equal(d['k'], 0) def test_zeros_like_like_zeros(self): # test zeros_like returns the same as zeros for c in np.typecodes['All']: if c == 'V': continue d = np.zeros((3,3), dtype=c) assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) # explicitly check some special cases d = np.zeros((3,3), dtype='S5') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='U5') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='<i4') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='>i4') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='<M8[s]') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='>M8[s]') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='f4,f4') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) def test_empty_unicode(self): # don't throw decode errors on garbage memory for i in range(5, 100, 5): d = np.empty(i, dtype='U') str(d) def test_sequence_non_homogenous(self): assert_equal(np.array([4, 2**80]).dtype, np.object) assert_equal(np.array([4, 2**80, 4]).dtype, np.object) assert_equal(np.array([2**80, 4]).dtype, np.object) assert_equal(np.array([2**80] * 3).dtype, np.object) assert_equal(np.array([[1, 1],[1j, 1j]]).dtype, np.complex) assert_equal(np.array([[1j, 1j],[1, 1]]).dtype, np.complex) assert_equal(np.array([[1, 1, 1],[1, 1j, 1.], [1, 1, 1]]).dtype, np.complex) @dec.skipif(sys.version_info[0] >= 3) def test_sequence_long(self): assert_equal(np.array([long(4), long(4)]).dtype, np.long) assert_equal(np.array([long(4), 2**80]).dtype, np.object) assert_equal(np.array([long(4), 2**80, long(4)]).dtype, np.object) assert_equal(np.array([2**80, long(4)]).dtype, np.object) def test_non_sequence_sequence(self): """Should not segfault. Class Fail breaks the sequence protocol for new style classes, i.e., those derived from object. Class Map is a mapping type indicated by raising a ValueError. At some point we may raise a warning instead of an error in the Fail case. """ class Fail(object): def __len__(self): return 1 def __getitem__(self, index): raise ValueError() class Map(object): def __len__(self): return 1 def __getitem__(self, index): raise KeyError() a = np.array([Map()]) assert_(a.shape == (1,)) assert_(a.dtype == np.dtype(object)) assert_raises(ValueError, np.array, [Fail()]) def test_no_len_object_type(self): # gh-5100, want object array from iterable object without len() class Point2: def __init__(self): pass def __getitem__(self, ind): if ind in [0, 1]: return ind else: raise IndexError() d = np.array([Point2(), Point2(), Point2()]) assert_equal(d.dtype, np.dtype(object)) def test_false_len_sequence(self): # gh-7264, segfault for this example class C: def __getitem__(self, i): raise IndexError def __len__(self): return 42 assert_raises(ValueError, np.array, C()) # segfault? def test_failed_len_sequence(self): # gh-7393 class A(object): def __init__(self, data): self._data = data def __getitem__(self, item): return type(self)(self._data[item]) def __len__(self): return len(self._data) # len(d) should give 3, but len(d[0]) will fail d = A([1,2,3]) assert_equal(len(np.array(d)), 3) def test_array_too_big(self): # Test that array creation succeeds for arrays addressable by intp # on the byte level and fails for too large arrays. buf = np.zeros(100) max_bytes = np.iinfo(np.intp).max for dtype in ["intp", "S20", "b"]: dtype = np.dtype(dtype) itemsize = dtype.itemsize np.ndarray(buffer=buf, strides=(0,), shape=(max_bytes//itemsize,), dtype=dtype) assert_raises(ValueError, np.ndarray, buffer=buf, strides=(0,), shape=(max_bytes//itemsize + 1,), dtype=dtype) class TestStructured(TestCase): def test_subarray_field_access(self): a = np.zeros((3, 5), dtype=[('a', ('i4', (2, 2)))]) a['a'] = np.arange(60).reshape(3, 5, 2, 2) # Since the subarray is always in C-order, a transpose # does not swap the subarray: assert_array_equal(a.T['a'], a['a'].transpose(1, 0, 2, 3)) # In Fortran order, the subarray gets appended # like in all other cases, not prepended as a special case b = a.copy(order='F') assert_equal(a['a'].shape, b['a'].shape) assert_equal(a.T['a'].shape, a.T.copy()['a'].shape) def test_subarray_comparison(self): # Check that comparisons between record arrays with # multi-dimensional field types work properly a = np.rec.fromrecords( [([1, 2, 3], 'a', [[1, 2], [3, 4]]), ([3, 3, 3], 'b', [[0, 0], [0, 0]])], dtype=[('a', ('f4', 3)), ('b', np.object), ('c', ('i4', (2, 2)))]) b = a.copy() assert_equal(a == b, [True, True]) assert_equal(a != b, [False, False]) b[1].b = 'c' assert_equal(a == b, [True, False]) assert_equal(a != b, [False, True]) for i in range(3): b[0].a = a[0].a b[0].a[i] = 5 assert_equal(a == b, [False, False]) assert_equal(a != b, [True, True]) for i in range(2): for j in range(2): b = a.copy() b[0].c[i, j] = 10 assert_equal(a == b, [False, True]) assert_equal(a != b, [True, False]) # Check that broadcasting with a subarray works a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8')]) b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8')]) assert_equal(a == b, [[True, True, False], [False, False, True]]) assert_equal(b == a, [[True, True, False], [False, False, True]]) a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8', (1,))]) b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8', (1,))]) assert_equal(a == b, [[True, True, False], [False, False, True]]) assert_equal(b == a, [[True, True, False], [False, False, True]]) a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))]) b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))]) assert_equal(a == b, [[True, False, False], [False, False, True]]) assert_equal(b == a, [[True, False, False], [False, False, True]]) # Check that broadcasting Fortran-style arrays with a subarray work a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))], order='F') b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))]) assert_equal(a == b, [[True, False, False], [False, False, True]]) assert_equal(b == a, [[True, False, False], [False, False, True]]) # Check that incompatible sub-array shapes don't result to broadcasting x = np.zeros((1,), dtype=[('a', ('f4', (1, 2))), ('b', 'i1')]) y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')]) # This comparison invokes deprecated behaviour, and will probably # start raising an error eventually. What we really care about in this # test is just that it doesn't return True. with suppress_warnings() as sup: sup.filter(FutureWarning, "elementwise == comparison failed") assert_equal(x == y, False) x = np.zeros((1,), dtype=[('a', ('f4', (2, 1))), ('b', 'i1')]) y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')]) # This comparison invokes deprecated behaviour, and will probably # start raising an error eventually. What we really care about in this # test is just that it doesn't return True. with suppress_warnings() as sup: sup.filter(FutureWarning, "elementwise == comparison failed") assert_equal(x == y, False) # Check that structured arrays that are different only in # byte-order work a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i8'), ('b', '<f8')]) b = np.array([(5, 43), (10, 1)], dtype=[('a', '<i8'), ('b', '>f8')]) assert_equal(a == b, [False, True]) def test_casting(self): # Check that casting a structured array to change its byte order # works a = np.array([(1,)], dtype=[('a', '<i4')]) assert_(np.can_cast(a.dtype, [('a', '>i4')], casting='unsafe')) b = a.astype([('a', '>i4')]) assert_equal(b, a.byteswap().newbyteorder()) assert_equal(a['a'][0], b['a'][0]) # Check that equality comparison works on structured arrays if # they are 'equiv'-castable a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i4'), ('b', '<f8')]) b = np.array([(42, 5), (1, 10)], dtype=[('b', '>f8'), ('a', '<i4')]) assert_(np.can_cast(a.dtype, b.dtype, casting='equiv')) assert_equal(a == b, [True, True]) # Check that 'equiv' casting can reorder fields and change byte # order # New in 1.12: This behavior changes in 1.13, test for dep warning assert_(np.can_cast(a.dtype, b.dtype, casting='equiv')) with assert_warns(FutureWarning): c = a.astype(b.dtype, casting='equiv') assert_equal(a == c, [True, True]) # Check that 'safe' casting can change byte order and up-cast # fields t = [('a', '<i8'), ('b', '>f8')] assert_(np.can_cast(a.dtype, t, casting='safe')) c = a.astype(t, casting='safe') assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)), [True, True]) # Check that 'same_kind' casting can change byte order and # change field widths within a "kind" t = [('a', '<i4'), ('b', '>f4')] assert_(np.can_cast(a.dtype, t, casting='same_kind')) c = a.astype(t, casting='same_kind') assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)), [True, True]) # Check that casting fails if the casting rule should fail on # any of the fields t = [('a', '>i8'), ('b', '<f4')] assert_(not np.can_cast(a.dtype, t, casting='safe')) assert_raises(TypeError, a.astype, t, casting='safe') t = [('a', '>i2'), ('b', '<f8')] assert_(not np.can_cast(a.dtype, t, casting='equiv')) assert_raises(TypeError, a.astype, t, casting='equiv') t = [('a', '>i8'), ('b', '<i2')] assert_(not np.can_cast(a.dtype, t, casting='same_kind')) assert_raises(TypeError, a.astype, t, casting='same_kind') assert_(not np.can_cast(a.dtype, b.dtype, casting='no')) assert_raises(TypeError, a.astype, b.dtype, casting='no') # Check that non-'unsafe' casting can't change the set of field names for casting in ['no', 'safe', 'equiv', 'same_kind']: t = [('a', '>i4')] assert_(not np.can_cast(a.dtype, t, casting=casting)) t = [('a', '>i4'), ('b', '<f8'), ('c', 'i4')] assert_(not np.can_cast(a.dtype, t, casting=casting)) def test_objview(self): # https://github.com/numpy/numpy/issues/3286 a = np.array([], dtype=[('a', 'f'), ('b', 'f'), ('c', 'O')]) a[['a', 'b']] # TypeError? # https://github.com/numpy/numpy/issues/3253 dat2 = np.zeros(3, [('A', 'i'), ('B', '|O')]) dat2[['B', 'A']] # TypeError? def test_setfield(self): # https://github.com/numpy/numpy/issues/3126 struct_dt = np.dtype([('elem', 'i4', 5),]) dt = np.dtype([('field', 'i4', 10),('struct', struct_dt)]) x = np.zeros(1, dt) x[0]['field'] = np.ones(10, dtype='i4') x[0]['struct'] = np.ones(1, dtype=struct_dt) assert_equal(x[0]['field'], np.ones(10, dtype='i4')) def test_setfield_object(self): # make sure object field assignment with ndarray value # on void scalar mimics setitem behavior b = np.zeros(1, dtype=[('x', 'O')]) # next line should work identically to b['x'][0] = np.arange(3) b[0]['x'] = np.arange(3) assert_equal(b[0]['x'], np.arange(3)) # check that broadcasting check still works c = np.zeros(1, dtype=[('x', 'O', 5)]) def testassign(): c[0]['x'] = np.arange(3) assert_raises(ValueError, testassign) def test_zero_width_string(self): # Test for PR #6430 / issues #473, #4955, #2585 dt = np.dtype([('I', int), ('S', 'S0')]) x = np.zeros(4, dtype=dt) assert_equal(x['S'], [b'', b'', b'', b'']) assert_equal(x['S'].itemsize, 0) x['S'] = ['a', 'b', 'c', 'd'] assert_equal(x['S'], [b'', b'', b'', b'']) assert_equal(x['I'], [0, 0, 0, 0]) # Variation on test case from #4955 x['S'][x['I'] == 0] = 'hello' assert_equal(x['S'], [b'', b'', b'', b'']) assert_equal(x['I'], [0, 0, 0, 0]) # Variation on test case from #2585 x['S'] = 'A' assert_equal(x['S'], [b'', b'', b'', b'']) assert_equal(x['I'], [0, 0, 0, 0]) # Allow zero-width dtypes in ndarray constructor y = np.ndarray(4, dtype=x['S'].dtype) assert_equal(y.itemsize, 0) assert_equal(x['S'], y) # More tests for indexing an array with zero-width fields assert_equal(np.zeros(4, dtype=[('a', 'S0,S0'), ('b', 'u1')])['a'].itemsize, 0) assert_equal(np.empty(3, dtype='S0,S0').itemsize, 0) assert_equal(np.zeros(4, dtype='S0,u1')['f0'].itemsize, 0) xx = x['S'].reshape((2, 2)) assert_equal(xx.itemsize, 0) assert_equal(xx, [[b'', b''], [b'', b'']]) b = io.BytesIO() np.save(b, xx) b.seek(0) yy = np.load(b) assert_equal(yy.itemsize, 0) assert_equal(xx, yy) with temppath(suffix='.npy') as tmp: np.save(tmp, xx) yy = np.load(tmp) assert_equal(yy.itemsize, 0) assert_equal(xx, yy) def test_base_attr(self): a = np.zeros(3, dtype='i4,f4') b = a[0] assert_(b.base is a) class TestBool(TestCase): def test_test_interning(self): a0 = np.bool_(0) b0 = np.bool_(False) self.assertTrue(a0 is b0) a1 = np.bool_(1) b1 = np.bool_(True) self.assertTrue(a1 is b1) self.assertTrue(np.array([True])[0] is a1) self.assertTrue(np.array(True)[()] is a1) def test_sum(self): d = np.ones(101, dtype=np.bool) assert_equal(d.sum(), d.size) assert_equal(d[::2].sum(), d[::2].size) assert_equal(d[::-2].sum(), d[::-2].size) d = np.frombuffer(b'\xff\xff' * 100, dtype=bool) assert_equal(d.sum(), d.size) assert_equal(d[::2].sum(), d[::2].size) assert_equal(d[::-2].sum(), d[::-2].size) def check_count_nonzero(self, power, length): powers = [2 ** i for i in range(length)] for i in range(2**power): l = [(i & x) != 0 for x in powers] a = np.array(l, dtype=np.bool) c = builtins.sum(l) self.assertEqual(np.count_nonzero(a), c) av = a.view(np.uint8) av *= 3 self.assertEqual(np.count_nonzero(a), c) av *= 4 self.assertEqual(np.count_nonzero(a), c) av[av != 0] = 0xFF self.assertEqual(np.count_nonzero(a), c) def test_count_nonzero(self): # check all 12 bit combinations in a length 17 array # covers most cases of the 16 byte unrolled code self.check_count_nonzero(12, 17) @dec.slow def test_count_nonzero_all(self): # check all combinations in a length 17 array # covers all cases of the 16 byte unrolled code self.check_count_nonzero(17, 17) def test_count_nonzero_unaligned(self): # prevent mistakes as e.g. gh-4060 for o in range(7): a = np.zeros((18,), dtype=np.bool)[o+1:] a[:o] = True self.assertEqual(np.count_nonzero(a), builtins.sum(a.tolist())) a = np.ones((18,), dtype=np.bool)[o+1:] a[:o] = False self.assertEqual(np.count_nonzero(a), builtins.sum(a.tolist())) class TestMethods(TestCase): def test_compress(self): tgt = [[5, 6, 7, 8, 9]] arr = np.arange(10).reshape(2, 5) out = arr.compress([0, 1], axis=0) assert_equal(out, tgt) tgt = [[1, 3], [6, 8]] out = arr.compress([0, 1, 0, 1, 0], axis=1) assert_equal(out, tgt) tgt = [[1], [6]] arr = np.arange(10).reshape(2, 5) out = arr.compress([0, 1], axis=1) assert_equal(out, tgt) arr = np.arange(10).reshape(2, 5) out = arr.compress([0, 1]) assert_equal(out, 1) def test_choose(self): x = 2*np.ones((3,), dtype=int) y = 3*np.ones((3,), dtype=int) x2 = 2*np.ones((2, 3), dtype=int) y2 = 3*np.ones((2, 3), dtype=int) ind = np.array([0, 0, 1]) A = ind.choose((x, y)) assert_equal(A, [2, 2, 3]) A = ind.choose((x2, y2)) assert_equal(A, [[2, 2, 3], [2, 2, 3]]) A = ind.choose((x, y2)) assert_equal(A, [[2, 2, 3], [2, 2, 3]]) def test_prod(self): ba = [1, 2, 10, 11, 6, 5, 4] ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] for ctype in [np.int16, np.uint16, np.int32, np.uint32, np.float32, np.float64, np.complex64, np.complex128]: a = np.array(ba, ctype) a2 = np.array(ba2, ctype) if ctype in ['1', 'b']: self.assertRaises(ArithmeticError, a.prod) self.assertRaises(ArithmeticError, a2.prod, axis=1) else: assert_equal(a.prod(axis=0), 26400) assert_array_equal(a2.prod(axis=0), np.array([50, 36, 84, 180], ctype)) assert_array_equal(a2.prod(axis=-1), np.array([24, 1890, 600], ctype)) def test_repeat(self): m = np.array([1, 2, 3, 4, 5, 6]) m_rect = m.reshape((2, 3)) A = m.repeat([1, 3, 2, 1, 1, 2]) assert_equal(A, [1, 2, 2, 2, 3, 3, 4, 5, 6, 6]) A = m.repeat(2) assert_equal(A, [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]) A = m_rect.repeat([2, 1], axis=0) assert_equal(A, [[1, 2, 3], [1, 2, 3], [4, 5, 6]]) A = m_rect.repeat([1, 3, 2], axis=1) assert_equal(A, [[1, 2, 2, 2, 3, 3], [4, 5, 5, 5, 6, 6]]) A = m_rect.repeat(2, axis=0) assert_equal(A, [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]) A = m_rect.repeat(2, axis=1) assert_equal(A, [[1, 1, 2, 2, 3, 3], [4, 4, 5, 5, 6, 6]]) def test_reshape(self): arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) tgt = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]] assert_equal(arr.reshape(2, 6), tgt) tgt = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] assert_equal(arr.reshape(3, 4), tgt) tgt = [[1, 10, 8, 6], [4, 2, 11, 9], [7, 5, 3, 12]] assert_equal(arr.reshape((3, 4), order='F'), tgt) tgt = [[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]] assert_equal(arr.T.reshape((3, 4), order='C'), tgt) def test_round(self): def check_round(arr, expected, *round_args): assert_equal(arr.round(*round_args), expected) # With output array out = np.zeros_like(arr) res = arr.round(*round_args, out=out) assert_equal(out, expected) assert_equal(out, res) check_round(np.array([1.2, 1.5]), [1, 2]) check_round(np.array(1.5), 2) check_round(np.array([12.2, 15.5]), [10, 20], -1) check_round(np.array([12.15, 15.51]), [12.2, 15.5], 1) # Complex rounding check_round(np.array([4.5 + 1.5j]), [4 + 2j]) check_round(np.array([12.5 + 15.5j]), [10 + 20j], -1) def test_squeeze(self): a = np.array([[[1], [2], [3]]]) assert_equal(a.squeeze(), [1, 2, 3]) assert_equal(a.squeeze(axis=(0,)), [[1], [2], [3]]) assert_raises(ValueError, a.squeeze, axis=(1,)) assert_equal(a.squeeze(axis=(2,)), [[1, 2, 3]]) def test_transpose(self): a = np.array([[1, 2], [3, 4]]) assert_equal(a.transpose(), [[1, 3], [2, 4]]) self.assertRaises(ValueError, lambda: a.transpose(0)) self.assertRaises(ValueError, lambda: a.transpose(0, 0)) self.assertRaises(ValueError, lambda: a.transpose(0, 1, 2)) def test_sort(self): # test ordering for floats and complex containing nans. It is only # necessary to check the less-than comparison, so sorts that # only follow the insertion sort path are sufficient. We only # test doubles and complex doubles as the logic is the same. # check doubles msg = "Test real sort order with nans" a = np.array([np.nan, 1, 0]) b = np.sort(a) assert_equal(b, a[::-1], msg) # check complex msg = "Test complex sort order with nans" a = np.zeros(9, dtype=np.complex128) a.real += [np.nan, np.nan, np.nan, 1, 0, 1, 1, 0, 0] a.imag += [np.nan, 1, 0, np.nan, np.nan, 1, 0, 1, 0] b = np.sort(a) assert_equal(b, a[::-1], msg) # all c scalar sorts use the same code with different types # so it suffices to run a quick check with one type. The number # of sorted items must be greater than ~50 to check the actual # algorithm because quick and merge sort fall over to insertion # sort for small arrays. a = np.arange(101) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "scalar sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test complex sorts. These use the same code as the scalars # but the compare function differs. ai = a*1j + 1 bi = b*1j + 1 for kind in ['q', 'm', 'h']: msg = "complex sort, real part == 1, kind=%s" % kind c = ai.copy() c.sort(kind=kind) assert_equal(c, ai, msg) c = bi.copy() c.sort(kind=kind) assert_equal(c, ai, msg) ai = a + 1j bi = b + 1j for kind in ['q', 'm', 'h']: msg = "complex sort, imag part == 1, kind=%s" % kind c = ai.copy() c.sort(kind=kind) assert_equal(c, ai, msg) c = bi.copy() c.sort(kind=kind) assert_equal(c, ai, msg) # test sorting of complex arrays requiring byte-swapping, gh-5441 for endianess in '<>': for dt in np.typecodes['Complex']: arr = np.array([1+3.j, 2+2.j, 3+1.j], dtype=endianess + dt) c = arr.copy() c.sort() msg = 'byte-swapped complex sort, dtype={0}'.format(dt) assert_equal(c, arr, msg) # test string sorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)]) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "string sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test unicode sorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)], dtype=np.unicode) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "unicode sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test object array sorts. a = np.empty((101,), dtype=np.object) a[:] = list(range(101)) b = a[::-1] for kind in ['q', 'h', 'm']: msg = "object sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test record array sorts. dt = np.dtype([('f', float), ('i', int)]) a = np.array([(i, i) for i in range(101)], dtype=dt) b = a[::-1] for kind in ['q', 'h', 'm']: msg = "object sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test datetime64 sorts. a = np.arange(0, 101, dtype='datetime64[D]') b = a[::-1] for kind in ['q', 'h', 'm']: msg = "datetime64 sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test timedelta64 sorts. a = np.arange(0, 101, dtype='timedelta64[D]') b = a[::-1] for kind in ['q', 'h', 'm']: msg = "timedelta64 sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # check axis handling. This should be the same for all type # specific sorts, so we only check it for one type and one kind a = np.array([[3, 2], [1, 0]]) b = np.array([[1, 0], [3, 2]]) c = np.array([[2, 3], [0, 1]]) d = a.copy() d.sort(axis=0) assert_equal(d, b, "test sort with axis=0") d = a.copy() d.sort(axis=1) assert_equal(d, c, "test sort with axis=1") d = a.copy() d.sort() assert_equal(d, c, "test sort with default axis") # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array sort with axis={0}'.format(axis) assert_equal(np.sort(a, axis=axis), a, msg) msg = 'test empty array sort with axis=None' assert_equal(np.sort(a, axis=None), a.ravel(), msg) # test generic class with bogus ordering, # should not segfault. class Boom(object): def __lt__(self, other): return True a = np.array([Boom()]*100, dtype=object) for kind in ['q', 'm', 'h']: msg = "bogus comparison object sort, kind=%s" % kind c.sort(kind=kind) def test_sort_degraded(self): # test degraded dataset would take minutes to run with normal qsort d = np.arange(1000000) do = d.copy() x = d # create a median of 3 killer where each median is the sorted second # last element of the quicksort partition while x.size > 3: mid = x.size // 2 x[mid], x[-2] = x[-2], x[mid] x = x[:-2] assert_equal(np.sort(d), do) assert_equal(d[np.argsort(d)], do) def test_copy(self): def assert_fortran(arr): assert_(arr.flags.fortran) assert_(arr.flags.f_contiguous) assert_(not arr.flags.c_contiguous) def assert_c(arr): assert_(not arr.flags.fortran) assert_(not arr.flags.f_contiguous) assert_(arr.flags.c_contiguous) a = np.empty((2, 2), order='F') # Test copying a Fortran array assert_c(a.copy()) assert_c(a.copy('C')) assert_fortran(a.copy('F')) assert_fortran(a.copy('A')) # Now test starting with a C array. a = np.empty((2, 2), order='C') assert_c(a.copy()) assert_c(a.copy('C')) assert_fortran(a.copy('F')) assert_c(a.copy('A')) def test_sort_order(self): # Test sorting an array with fields x1 = np.array([21, 32, 14]) x2 = np.array(['my', 'first', 'name']) x3 = np.array([3.1, 4.5, 6.2]) r = np.rec.fromarrays([x1, x2, x3], names='id,word,number') r.sort(order=['id']) assert_equal(r.id, np.array([14, 21, 32])) assert_equal(r.word, np.array(['name', 'my', 'first'])) assert_equal(r.number, np.array([6.2, 3.1, 4.5])) r.sort(order=['word']) assert_equal(r.id, np.array([32, 21, 14])) assert_equal(r.word, np.array(['first', 'my', 'name'])) assert_equal(r.number, np.array([4.5, 3.1, 6.2])) r.sort(order=['number']) assert_equal(r.id, np.array([21, 32, 14])) assert_equal(r.word, np.array(['my', 'first', 'name'])) assert_equal(r.number, np.array([3.1, 4.5, 6.2])) if sys.byteorder == 'little': strtype = '>i2' else: strtype = '<i2' mydtype = [('name', strchar + '5'), ('col2', strtype)] r = np.array([('a', 1), ('b', 255), ('c', 3), ('d', 258)], dtype=mydtype) r.sort(order='col2') assert_equal(r['col2'], [1, 3, 255, 258]) assert_equal(r, np.array([('a', 1), ('c', 3), ('b', 255), ('d', 258)], dtype=mydtype)) def test_argsort(self): # all c scalar argsorts use the same code with different types # so it suffices to run a quick check with one type. The number # of sorted items must be greater than ~50 to check the actual # algorithm because quick and merge sort fall over to insertion # sort for small arrays. a = np.arange(101) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "scalar argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), a, msg) assert_equal(b.copy().argsort(kind=kind), b, msg) # test complex argsorts. These use the same code as the scalars # but the compare function differs. ai = a*1j + 1 bi = b*1j + 1 for kind in ['q', 'm', 'h']: msg = "complex argsort, kind=%s" % kind assert_equal(ai.copy().argsort(kind=kind), a, msg) assert_equal(bi.copy().argsort(kind=kind), b, msg) ai = a + 1j bi = b + 1j for kind in ['q', 'm', 'h']: msg = "complex argsort, kind=%s" % kind assert_equal(ai.copy().argsort(kind=kind), a, msg) assert_equal(bi.copy().argsort(kind=kind), b, msg) # test argsort of complex arrays requiring byte-swapping, gh-5441 for endianess in '<>': for dt in np.typecodes['Complex']: arr = np.array([1+3.j, 2+2.j, 3+1.j], dtype=endianess + dt) msg = 'byte-swapped complex argsort, dtype={0}'.format(dt) assert_equal(arr.argsort(), np.arange(len(arr), dtype=np.intp), msg) # test string argsorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)]) b = a[::-1].copy() r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "string argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test unicode argsorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)], dtype=np.unicode) b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "unicode argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test object array argsorts. a = np.empty((101,), dtype=np.object) a[:] = list(range(101)) b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "object argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test structured array argsorts. dt = np.dtype([('f', float), ('i', int)]) a = np.array([(i, i) for i in range(101)], dtype=dt) b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "structured array argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test datetime64 argsorts. a = np.arange(0, 101, dtype='datetime64[D]') b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'h', 'm']: msg = "datetime64 argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test timedelta64 argsorts. a = np.arange(0, 101, dtype='timedelta64[D]') b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'h', 'm']: msg = "timedelta64 argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # check axis handling. This should be the same for all type # specific argsorts, so we only check it for one type and one kind a = np.array([[3, 2], [1, 0]]) b = np.array([[1, 1], [0, 0]]) c = np.array([[1, 0], [1, 0]]) assert_equal(a.copy().argsort(axis=0), b) assert_equal(a.copy().argsort(axis=1), c) assert_equal(a.copy().argsort(), c) # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array argsort with axis={0}'.format(axis) assert_equal(np.argsort(a, axis=axis), np.zeros_like(a, dtype=np.intp), msg) msg = 'test empty array argsort with axis=None' assert_equal(np.argsort(a, axis=None), np.zeros_like(a.ravel(), dtype=np.intp), msg) # check that stable argsorts are stable r = np.arange(100) # scalars a = np.zeros(100) assert_equal(a.argsort(kind='m'), r) # complex a = np.zeros(100, dtype=np.complex) assert_equal(a.argsort(kind='m'), r) # string a = np.array(['aaaaaaaaa' for i in range(100)]) assert_equal(a.argsort(kind='m'), r) # unicode a = np.array(['aaaaaaaaa' for i in range(100)], dtype=np.unicode) assert_equal(a.argsort(kind='m'), r) def test_sort_unicode_kind(self): d = np.arange(10) k = b'\xc3\xa4'.decode("UTF8") assert_raises(ValueError, d.sort, kind=k) assert_raises(ValueError, d.argsort, kind=k) def test_searchsorted(self): # test for floats and complex containing nans. The logic is the # same for all float types so only test double types for now. # The search sorted routines use the compare functions for the # array type, so this checks if that is consistent with the sort # order. # check double a = np.array([0, 1, np.nan]) msg = "Test real searchsorted with nans, side='l'" b = a.searchsorted(a, side='l') assert_equal(b, np.arange(3), msg) msg = "Test real searchsorted with nans, side='r'" b = a.searchsorted(a, side='r') assert_equal(b, np.arange(1, 4), msg) # check double complex a = np.zeros(9, dtype=np.complex128) a.real += [0, 0, 1, 1, 0, 1, np.nan, np.nan, np.nan] a.imag += [0, 1, 0, 1, np.nan, np.nan, 0, 1, np.nan] msg = "Test complex searchsorted with nans, side='l'" b = a.searchsorted(a, side='l') assert_equal(b, np.arange(9), msg) msg = "Test complex searchsorted with nans, side='r'" b = a.searchsorted(a, side='r') assert_equal(b, np.arange(1, 10), msg) msg = "Test searchsorted with little endian, side='l'" a = np.array([0, 128], dtype='<i4') b = a.searchsorted(np.array(128, dtype='<i4')) assert_equal(b, 1, msg) msg = "Test searchsorted with big endian, side='l'" a = np.array([0, 128], dtype='>i4') b = a.searchsorted(np.array(128, dtype='>i4')) assert_equal(b, 1, msg) # Check 0 elements a = np.ones(0) b = a.searchsorted([0, 1, 2], 'l') assert_equal(b, [0, 0, 0]) b = a.searchsorted([0, 1, 2], 'r') assert_equal(b, [0, 0, 0]) a = np.ones(1) # Check 1 element b = a.searchsorted([0, 1, 2], 'l') assert_equal(b, [0, 0, 1]) b = a.searchsorted([0, 1, 2], 'r') assert_equal(b, [0, 1, 1]) # Check all elements equal a = np.ones(2) b = a.searchsorted([0, 1, 2], 'l') assert_equal(b, [0, 0, 2]) b = a.searchsorted([0, 1, 2], 'r') assert_equal(b, [0, 2, 2]) # Test searching unaligned array a = np.arange(10) aligned = np.empty(a.itemsize * a.size + 1, 'uint8') unaligned = aligned[1:].view(a.dtype) unaligned[:] = a # Test searching unaligned array b = unaligned.searchsorted(a, 'l') assert_equal(b, a) b = unaligned.searchsorted(a, 'r') assert_equal(b, a + 1) # Test searching for unaligned keys b = a.searchsorted(unaligned, 'l') assert_equal(b, a) b = a.searchsorted(unaligned, 'r') assert_equal(b, a + 1) # Test smart resetting of binsearch indices a = np.arange(5) b = a.searchsorted([6, 5, 4], 'l') assert_equal(b, [5, 5, 4]) b = a.searchsorted([6, 5, 4], 'r') assert_equal(b, [5, 5, 5]) # Test all type specific binary search functions types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'], np.typecodes['Datetime'], '?O')) for dt in types: if dt == 'M': dt = 'M8[D]' if dt == '?': a = np.arange(2, dtype=dt) out = np.arange(2) else: a = np.arange(0, 5, dtype=dt) out = np.arange(5) b = a.searchsorted(a, 'l') assert_equal(b, out) b = a.searchsorted(a, 'r') assert_equal(b, out + 1) def test_searchsorted_unicode(self): # Test searchsorted on unicode strings. # 1.6.1 contained a string length miscalculation in # arraytypes.c.src:UNICODE_compare() which manifested as # incorrect/inconsistent results from searchsorted. a = np.array(['P:\\20x_dapi_cy3\\20x_dapi_cy3_20100185_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100186_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100187_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100189_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100190_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100191_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100192_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100193_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100194_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100195_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100196_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100197_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100198_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100199_1'], dtype=np.unicode) ind = np.arange(len(a)) assert_equal([a.searchsorted(v, 'left') for v in a], ind) assert_equal([a.searchsorted(v, 'right') for v in a], ind + 1) assert_equal([a.searchsorted(a[i], 'left') for i in ind], ind) assert_equal([a.searchsorted(a[i], 'right') for i in ind], ind + 1) def test_searchsorted_with_sorter(self): a = np.array([5, 2, 1, 3, 4]) s = np.argsort(a) assert_raises(TypeError, np.searchsorted, a, 0, sorter=(1, (2, 3))) assert_raises(TypeError, np.searchsorted, a, 0, sorter=[1.1]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4, 5, 6]) # bounds check assert_raises(ValueError, np.searchsorted, a, 4, sorter=[0, 1, 2, 3, 5]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[-1, 0, 1, 2, 3]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[4, 0, -1, 2, 3]) a = np.random.rand(300) s = a.argsort() b = np.sort(a) k = np.linspace(0, 1, 20) assert_equal(b.searchsorted(k), a.searchsorted(k, sorter=s)) a = np.array([0, 1, 2, 3, 5]*20) s = a.argsort() k = [0, 1, 2, 3, 5] expected = [0, 20, 40, 60, 80] assert_equal(a.searchsorted(k, side='l', sorter=s), expected) expected = [20, 40, 60, 80, 100] assert_equal(a.searchsorted(k, side='r', sorter=s), expected) # Test searching unaligned array keys = np.arange(10) a = keys.copy() np.random.shuffle(s) s = a.argsort() aligned = np.empty(a.itemsize * a.size + 1, 'uint8') unaligned = aligned[1:].view(a.dtype) # Test searching unaligned array unaligned[:] = a b = unaligned.searchsorted(keys, 'l', s) assert_equal(b, keys) b = unaligned.searchsorted(keys, 'r', s) assert_equal(b, keys + 1) # Test searching for unaligned keys unaligned[:] = keys b = a.searchsorted(unaligned, 'l', s) assert_equal(b, keys) b = a.searchsorted(unaligned, 'r', s) assert_equal(b, keys + 1) # Test all type specific indirect binary search functions types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'], np.typecodes['Datetime'], '?O')) for dt in types: if dt == 'M': dt = 'M8[D]' if dt == '?': a = np.array([1, 0], dtype=dt) # We want the sorter array to be of a type that is different # from np.intp in all platforms, to check for #4698 s = np.array([1, 0], dtype=np.int16) out = np.array([1, 0]) else: a = np.array([3, 4, 1, 2, 0], dtype=dt) # We want the sorter array to be of a type that is different # from np.intp in all platforms, to check for #4698 s = np.array([4, 2, 3, 0, 1], dtype=np.int16) out = np.array([3, 4, 1, 2, 0], dtype=np.intp) b = a.searchsorted(a, 'l', s) assert_equal(b, out) b = a.searchsorted(a, 'r', s) assert_equal(b, out + 1) # Test non-contiguous sorter array a = np.array([3, 4, 1, 2, 0]) srt = np.empty((10,), dtype=np.intp) srt[1::2] = -1 srt[::2] = [4, 2, 3, 0, 1] s = srt[::2] out = np.array([3, 4, 1, 2, 0], dtype=np.intp) b = a.searchsorted(a, 'l', s) assert_equal(b, out) b = a.searchsorted(a, 'r', s) assert_equal(b, out + 1) def test_searchsorted_return_type(self): # Functions returning indices should always return base ndarrays class A(np.ndarray): pass a = np.arange(5).view(A) b = np.arange(1, 3).view(A) s = np.arange(5).view(A) assert_(not isinstance(a.searchsorted(b, 'l'), A)) assert_(not isinstance(a.searchsorted(b, 'r'), A)) assert_(not isinstance(a.searchsorted(b, 'l', s), A)) assert_(not isinstance(a.searchsorted(b, 'r', s), A)) def test_argpartition_out_of_range(self): # Test out of range values in kth raise an error, gh-5469 d = np.arange(10) assert_raises(ValueError, d.argpartition, 10) assert_raises(ValueError, d.argpartition, -11) # Test also for generic type argpartition, which uses sorting # and used to not bound check kth d_obj = np.arange(10, dtype=object) assert_raises(ValueError, d_obj.argpartition, 10) assert_raises(ValueError, d_obj.argpartition, -11) def test_partition_out_of_range(self): # Test out of range values in kth raise an error, gh-5469 d = np.arange(10) assert_raises(ValueError, d.partition, 10) assert_raises(ValueError, d.partition, -11) # Test also for generic type partition, which uses sorting # and used to not bound check kth d_obj = np.arange(10, dtype=object) assert_raises(ValueError, d_obj.partition, 10) assert_raises(ValueError, d_obj.partition, -11) def test_partition_empty_array(self): # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array partition with axis={0}'.format(axis) assert_equal(np.partition(a, 0, axis=axis), a, msg) msg = 'test empty array partition with axis=None' assert_equal(np.partition(a, 0, axis=None), a.ravel(), msg) def test_argpartition_empty_array(self): # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array argpartition with axis={0}'.format(axis) assert_equal(np.partition(a, 0, axis=axis), np.zeros_like(a, dtype=np.intp), msg) msg = 'test empty array argpartition with axis=None' assert_equal(np.partition(a, 0, axis=None), np.zeros_like(a.ravel(), dtype=np.intp), msg) def test_partition(self): d = np.arange(10) assert_raises(TypeError, np.partition, d, 2, kind=1) assert_raises(ValueError, np.partition, d, 2, kind="nonsense") assert_raises(ValueError, np.argpartition, d, 2, kind="nonsense") assert_raises(ValueError, d.partition, 2, axis=0, kind="nonsense") assert_raises(ValueError, d.argpartition, 2, axis=0, kind="nonsense") for k in ("introselect",): d = np.array([]) assert_array_equal(np.partition(d, 0, kind=k), d) assert_array_equal(np.argpartition(d, 0, kind=k), d) d = np.ones(1) assert_array_equal(np.partition(d, 0, kind=k)[0], d) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) # kth not modified kth = np.array([30, 15, 5]) okth = kth.copy() np.partition(np.arange(40), kth) assert_array_equal(kth, okth) for r in ([2, 1], [1, 2], [1, 1]): d = np.array(r) tgt = np.sort(d) assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0]) assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1]) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) assert_array_equal(d[np.argpartition(d, 1, kind=k)], np.partition(d, 1, kind=k)) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) for r in ([3, 2, 1], [1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 1, 1], [1, 2, 2], [2, 2, 1], [1, 2, 1]): d = np.array(r) tgt = np.sort(d) assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0]) assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1]) assert_array_equal(np.partition(d, 2, kind=k)[2], tgt[2]) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) assert_array_equal(d[np.argpartition(d, 1, kind=k)], np.partition(d, 1, kind=k)) assert_array_equal(d[np.argpartition(d, 2, kind=k)], np.partition(d, 2, kind=k)) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) d = np.ones(50) assert_array_equal(np.partition(d, 0, kind=k), d) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) # sorted d = np.arange(49) self.assertEqual(np.partition(d, 5, kind=k)[5], 5) self.assertEqual(np.partition(d, 15, kind=k)[15], 15) assert_array_equal(d[np.argpartition(d, 5, kind=k)], np.partition(d, 5, kind=k)) assert_array_equal(d[np.argpartition(d, 15, kind=k)], np.partition(d, 15, kind=k)) # rsorted d = np.arange(47)[::-1] self.assertEqual(np.partition(d, 6, kind=k)[6], 6) self.assertEqual(np.partition(d, 16, kind=k)[16], 16) assert_array_equal(d[np.argpartition(d, 6, kind=k)], np.partition(d, 6, kind=k)) assert_array_equal(d[np.argpartition(d, 16, kind=k)], np.partition(d, 16, kind=k)) assert_array_equal(np.partition(d, -6, kind=k), np.partition(d, 41, kind=k)) assert_array_equal(np.partition(d, -16, kind=k), np.partition(d, 31, kind=k)) assert_array_equal(d[np.argpartition(d, -6, kind=k)], np.partition(d, 41, kind=k)) # median of 3 killer, O(n^2) on pure median 3 pivot quickselect # exercises the median of median of 5 code used to keep O(n) d = np.arange(1000000) x = np.roll(d, d.size // 2) mid = x.size // 2 + 1 assert_equal(np.partition(x, mid)[mid], mid) d = np.arange(1000001) x = np.roll(d, d.size // 2 + 1) mid = x.size // 2 + 1 assert_equal(np.partition(x, mid)[mid], mid) # max d = np.ones(10) d[1] = 4 assert_equal(np.partition(d, (2, -1))[-1], 4) assert_equal(np.partition(d, (2, -1))[2], 1) assert_equal(d[np.argpartition(d, (2, -1))][-1], 4) assert_equal(d[np.argpartition(d, (2, -1))][2], 1) d[1] = np.nan assert_(np.isnan(d[np.argpartition(d, (2, -1))][-1])) assert_(np.isnan(np.partition(d, (2, -1))[-1])) # equal elements d = np.arange(47) % 7 tgt = np.sort(np.arange(47) % 7) np.random.shuffle(d) for i in range(d.size): self.assertEqual(np.partition(d, i, kind=k)[i], tgt[i]) assert_array_equal(d[np.argpartition(d, 6, kind=k)], np.partition(d, 6, kind=k)) assert_array_equal(d[np.argpartition(d, 16, kind=k)], np.partition(d, 16, kind=k)) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) d = np.array([0, 1, 2, 3, 4, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 9]) kth = [0, 3, 19, 20] assert_equal(np.partition(d, kth, kind=k)[kth], (0, 3, 7, 7)) assert_equal(d[np.argpartition(d, kth, kind=k)][kth], (0, 3, 7, 7)) d = np.array([2, 1]) d.partition(0, kind=k) assert_raises(ValueError, d.partition, 2) assert_raises(ValueError, d.partition, 3, axis=1) assert_raises(ValueError, np.partition, d, 2) assert_raises(ValueError, np.partition, d, 2, axis=1) assert_raises(ValueError, d.argpartition, 2) assert_raises(ValueError, d.argpartition, 3, axis=1) assert_raises(ValueError, np.argpartition, d, 2) assert_raises(ValueError, np.argpartition, d, 2, axis=1) d = np.arange(10).reshape((2, 5)) d.partition(1, axis=0, kind=k) d.partition(4, axis=1, kind=k) np.partition(d, 1, axis=0, kind=k) np.partition(d, 4, axis=1, kind=k) np.partition(d, 1, axis=None, kind=k) np.partition(d, 9, axis=None, kind=k) d.argpartition(1, axis=0, kind=k) d.argpartition(4, axis=1, kind=k) np.argpartition(d, 1, axis=0, kind=k) np.argpartition(d, 4, axis=1, kind=k) np.argpartition(d, 1, axis=None, kind=k) np.argpartition(d, 9, axis=None, kind=k) assert_raises(ValueError, d.partition, 2, axis=0) assert_raises(ValueError, d.partition, 11, axis=1) assert_raises(TypeError, d.partition, 2, axis=None) assert_raises(ValueError, np.partition, d, 9, axis=1) assert_raises(ValueError, np.partition, d, 11, axis=None) assert_raises(ValueError, d.argpartition, 2, axis=0) assert_raises(ValueError, d.argpartition, 11, axis=1) assert_raises(ValueError, np.argpartition, d, 9, axis=1) assert_raises(ValueError, np.argpartition, d, 11, axis=None) td = [(dt, s) for dt in [np.int32, np.float32, np.complex64] for s in (9, 16)] for dt, s in td: aae = assert_array_equal at = self.assertTrue d = np.arange(s, dtype=dt) np.random.shuffle(d) d1 = np.tile(np.arange(s, dtype=dt), (4, 1)) map(np.random.shuffle, d1) d0 = np.transpose(d1) for i in range(d.size): p = np.partition(d, i, kind=k) self.assertEqual(p[i], i) # all before are smaller assert_array_less(p[:i], p[i]) # all after are larger assert_array_less(p[i], p[i + 1:]) aae(p, d[np.argpartition(d, i, kind=k)]) p = np.partition(d1, i, axis=1, kind=k) aae(p[:, i], np.array([i] * d1.shape[0], dtype=dt)) # array_less does not seem to work right at((p[:, :i].T <= p[:, i]).all(), msg="%d: %r <= %r" % (i, p[:, i], p[:, :i].T)) at((p[:, i + 1:].T > p[:, i]).all(), msg="%d: %r < %r" % (i, p[:, i], p[:, i + 1:].T)) aae(p, d1[np.arange(d1.shape[0])[:, None], np.argpartition(d1, i, axis=1, kind=k)]) p = np.partition(d0, i, axis=0, kind=k) aae(p[i, :], np.array([i] * d1.shape[0], dtype=dt)) # array_less does not seem to work right at((p[:i, :] <= p[i, :]).all(), msg="%d: %r <= %r" % (i, p[i, :], p[:i, :])) at((p[i + 1:, :] > p[i, :]).all(), msg="%d: %r < %r" % (i, p[i, :], p[:, i + 1:])) aae(p, d0[np.argpartition(d0, i, axis=0, kind=k), np.arange(d0.shape[1])[None, :]]) # check inplace dc = d.copy() dc.partition(i, kind=k) assert_equal(dc, np.partition(d, i, kind=k)) dc = d0.copy() dc.partition(i, axis=0, kind=k) assert_equal(dc, np.partition(d0, i, axis=0, kind=k)) dc = d1.copy() dc.partition(i, axis=1, kind=k) assert_equal(dc, np.partition(d1, i, axis=1, kind=k)) def assert_partitioned(self, d, kth): prev = 0 for k in np.sort(kth): assert_array_less(d[prev:k], d[k], err_msg='kth %d' % k) assert_((d[k:] >= d[k]).all(), msg="kth %d, %r not greater equal %d" % (k, d[k:], d[k])) prev = k + 1 def test_partition_iterative(self): d = np.arange(17) kth = (0, 1, 2, 429, 231) assert_raises(ValueError, d.partition, kth) assert_raises(ValueError, d.argpartition, kth) d = np.arange(10).reshape((2, 5)) assert_raises(ValueError, d.partition, kth, axis=0) assert_raises(ValueError, d.partition, kth, axis=1) assert_raises(ValueError, np.partition, d, kth, axis=1) assert_raises(ValueError, np.partition, d, kth, axis=None) d = np.array([3, 4, 2, 1]) p = np.partition(d, (0, 3)) self.assert_partitioned(p, (0, 3)) self.assert_partitioned(d[np.argpartition(d, (0, 3))], (0, 3)) assert_array_equal(p, np.partition(d, (-3, -1))) assert_array_equal(p, d[np.argpartition(d, (-3, -1))]) d = np.arange(17) np.random.shuffle(d) d.partition(range(d.size)) assert_array_equal(np.arange(17), d) np.random.shuffle(d) assert_array_equal(np.arange(17), d[d.argpartition(range(d.size))]) # test unsorted kth d = np.arange(17) np.random.shuffle(d) keys = np.array([1, 3, 8, -2]) np.random.shuffle(d) p = np.partition(d, keys) self.assert_partitioned(p, keys) p = d[np.argpartition(d, keys)] self.assert_partitioned(p, keys) np.random.shuffle(keys) assert_array_equal(np.partition(d, keys), p) assert_array_equal(d[np.argpartition(d, keys)], p) # equal kth d = np.arange(20)[::-1] self.assert_partitioned(np.partition(d, [5]*4), [5]) self.assert_partitioned(np.partition(d, [5]*4 + [6, 13]), [5]*4 + [6, 13]) self.assert_partitioned(d[np.argpartition(d, [5]*4)], [5]) self.assert_partitioned(d[np.argpartition(d, [5]*4 + [6, 13])], [5]*4 + [6, 13]) d = np.arange(12) np.random.shuffle(d) d1 = np.tile(np.arange(12), (4, 1)) map(np.random.shuffle, d1) d0 = np.transpose(d1) kth = (1, 6, 7, -1) p = np.partition(d1, kth, axis=1) pa = d1[np.arange(d1.shape[0])[:, None], d1.argpartition(kth, axis=1)] assert_array_equal(p, pa) for i in range(d1.shape[0]): self.assert_partitioned(p[i,:], kth) p = np.partition(d0, kth, axis=0) pa = d0[np.argpartition(d0, kth, axis=0), np.arange(d0.shape[1])[None,:]] assert_array_equal(p, pa) for i in range(d0.shape[1]): self.assert_partitioned(p[:, i], kth) def test_partition_cdtype(self): d = np.array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41), ('Lancelot', 1.9, 38)], dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')]) tgt = np.sort(d, order=['age', 'height']) assert_array_equal(np.partition(d, range(d.size), order=['age', 'height']), tgt) assert_array_equal(d[np.argpartition(d, range(d.size), order=['age', 'height'])], tgt) for k in range(d.size): assert_equal(np.partition(d, k, order=['age', 'height'])[k], tgt[k]) assert_equal(d[np.argpartition(d, k, order=['age', 'height'])][k], tgt[k]) d = np.array(['Galahad', 'Arthur', 'zebra', 'Lancelot']) tgt = np.sort(d) assert_array_equal(np.partition(d, range(d.size)), tgt) for k in range(d.size): assert_equal(np.partition(d, k)[k], tgt[k]) assert_equal(d[np.argpartition(d, k)][k], tgt[k]) def test_partition_unicode_kind(self): d = np.arange(10) k = b'\xc3\xa4'.decode("UTF8") assert_raises(ValueError, d.partition, 2, kind=k) assert_raises(ValueError, d.argpartition, 2, kind=k) def test_partition_fuzz(self): # a few rounds of random data testing for j in range(10, 30): for i in range(1, j - 2): d = np.arange(j) np.random.shuffle(d) d = d % np.random.randint(2, 30) idx = np.random.randint(d.size) kth = [0, idx, i, i + 1] tgt = np.sort(d)[kth] assert_array_equal(np.partition(d, kth)[kth], tgt, err_msg="data: %r\n kth: %r" % (d, kth)) def test_argpartition_gh5524(self): # A test for functionality of argpartition on lists. d = [6,7,3,2,9,0] p = np.argpartition(d,1) self.assert_partitioned(np.array(d)[p],[1]) def test_flatten(self): x0 = np.array([[1, 2, 3], [4, 5, 6]], np.int32) x1 = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], np.int32) y0 = np.array([1, 2, 3, 4, 5, 6], np.int32) y0f = np.array([1, 4, 2, 5, 3, 6], np.int32) y1 = np.array([1, 2, 3, 4, 5, 6, 7, 8], np.int32) y1f = np.array([1, 5, 3, 7, 2, 6, 4, 8], np.int32) assert_equal(x0.flatten(), y0) assert_equal(x0.flatten('F'), y0f) assert_equal(x0.flatten('F'), x0.T.flatten()) assert_equal(x1.flatten(), y1) assert_equal(x1.flatten('F'), y1f) assert_equal(x1.flatten('F'), x1.T.flatten()) def test_dot(self): a = np.array([[1, 0], [0, 1]]) b = np.array([[0, 1], [1, 0]]) c = np.array([[9, 1], [1, -9]]) d = np.arange(24).reshape(4, 6) ddt = np.array( [[ 55, 145, 235, 325], [ 145, 451, 757, 1063], [ 235, 757, 1279, 1801], [ 325, 1063, 1801, 2539]] ) dtd = np.array( [[504, 540, 576, 612, 648, 684], [540, 580, 620, 660, 700, 740], [576, 620, 664, 708, 752, 796], [612, 660, 708, 756, 804, 852], [648, 700, 752, 804, 856, 908], [684, 740, 796, 852, 908, 964]] ) # gemm vs syrk optimizations for et in [np.float32, np.float64, np.complex64, np.complex128]: eaf = a.astype(et) assert_equal(np.dot(eaf, eaf), eaf) assert_equal(np.dot(eaf.T, eaf), eaf) assert_equal(np.dot(eaf, eaf.T), eaf) assert_equal(np.dot(eaf.T, eaf.T), eaf) assert_equal(np.dot(eaf.T.copy(), eaf), eaf) assert_equal(np.dot(eaf, eaf.T.copy()), eaf) assert_equal(np.dot(eaf.T.copy(), eaf.T.copy()), eaf) # syrk validations for et in [np.float32, np.float64, np.complex64, np.complex128]: eaf = a.astype(et) ebf = b.astype(et) assert_equal(np.dot(ebf, ebf), eaf) assert_equal(np.dot(ebf.T, ebf), eaf) assert_equal(np.dot(ebf, ebf.T), eaf) assert_equal(np.dot(ebf.T, ebf.T), eaf) # syrk - different shape, stride, and view validations for et in [np.float32, np.float64, np.complex64, np.complex128]: edf = d.astype(et) assert_equal( np.dot(edf[::-1, :], edf.T), np.dot(edf[::-1, :].copy(), edf.T.copy()) ) assert_equal( np.dot(edf[:, ::-1], edf.T), np.dot(edf[:, ::-1].copy(), edf.T.copy()) ) assert_equal( np.dot(edf, edf[::-1, :].T), np.dot(edf, edf[::-1, :].T.copy()) ) assert_equal( np.dot(edf, edf[:, ::-1].T), np.dot(edf, edf[:, ::-1].T.copy()) ) assert_equal( np.dot(edf[:edf.shape[0] // 2, :], edf[::2, :].T), np.dot(edf[:edf.shape[0] // 2, :].copy(), edf[::2, :].T.copy()) ) assert_equal( np.dot(edf[::2, :], edf[:edf.shape[0] // 2, :].T), np.dot(edf[::2, :].copy(), edf[:edf.shape[0] // 2, :].T.copy()) ) # syrk - different shape for et in [np.float32, np.float64, np.complex64, np.complex128]: edf = d.astype(et) eddtf = ddt.astype(et) edtdf = dtd.astype(et) assert_equal(np.dot(edf, edf.T), eddtf) assert_equal(np.dot(edf.T, edf), edtdf) # function versus methods assert_equal(np.dot(a, b), a.dot(b)) assert_equal(np.dot(np.dot(a, b), c), a.dot(b).dot(c)) # test passing in an output array c = np.zeros_like(a) a.dot(b, c) assert_equal(c, np.dot(a, b)) # test keyword args c = np.zeros_like(a) a.dot(b=b, out=c) assert_equal(c, np.dot(a, b)) def test_dot_override(self): # 2016-01-29: NUMPY_UFUNC_DISABLED return class A(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return "A" class B(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return NotImplemented a = A() b = B() c = np.array([[1]]) assert_equal(np.dot(a, b), "A") assert_equal(c.dot(a), "A") assert_raises(TypeError, np.dot, b, c) assert_raises(TypeError, c.dot, b) def test_dot_type_mismatch(self): c = 1. A = np.array((1,1), dtype='i,i') assert_raises(TypeError, np.dot, c, A) assert_raises(TypeError, np.dot, A, c) def test_diagonal(self): a = np.arange(12).reshape((3, 4)) assert_equal(a.diagonal(), [0, 5, 10]) assert_equal(a.diagonal(0), [0, 5, 10]) assert_equal(a.diagonal(1), [1, 6, 11]) assert_equal(a.diagonal(-1), [4, 9]) b = np.arange(8).reshape((2, 2, 2)) assert_equal(b.diagonal(), [[0, 6], [1, 7]]) assert_equal(b.diagonal(0), [[0, 6], [1, 7]]) assert_equal(b.diagonal(1), [[2], [3]]) assert_equal(b.diagonal(-1), [[4], [5]]) assert_raises(ValueError, b.diagonal, axis1=0, axis2=0) assert_equal(b.diagonal(0, 1, 2), [[0, 3], [4, 7]]) assert_equal(b.diagonal(0, 0, 1), [[0, 6], [1, 7]]) assert_equal(b.diagonal(offset=1, axis1=0, axis2=2), [[1], [3]]) # Order of axis argument doesn't matter: assert_equal(b.diagonal(0, 2, 1), [[0, 3], [4, 7]]) def test_diagonal_view_notwriteable(self): # this test is only for 1.9, the diagonal view will be # writeable in 1.10. a = np.eye(3).diagonal() assert_(not a.flags.writeable) assert_(not a.flags.owndata) a = np.diagonal(np.eye(3)) assert_(not a.flags.writeable) assert_(not a.flags.owndata) a = np.diag(np.eye(3)) assert_(not a.flags.writeable) assert_(not a.flags.owndata) def test_diagonal_memleak(self): # Regression test for a bug that crept in at one point a = np.zeros((100, 100)) if HAS_REFCOUNT: assert_(sys.getrefcount(a) < 50) for i in range(100): a.diagonal() if HAS_REFCOUNT: assert_(sys.getrefcount(a) < 50) def test_trace(self): a = np.arange(12).reshape((3, 4)) assert_equal(a.trace(), 15) assert_equal(a.trace(0), 15) assert_equal(a.trace(1), 18) assert_equal(a.trace(-1), 13) b = np.arange(8).reshape((2, 2, 2)) assert_equal(b.trace(), [6, 8]) assert_equal(b.trace(0), [6, 8]) assert_equal(b.trace(1), [2, 3]) assert_equal(b.trace(-1), [4, 5]) assert_equal(b.trace(0, 0, 1), [6, 8]) assert_equal(b.trace(0, 0, 2), [5, 9]) assert_equal(b.trace(0, 1, 2), [3, 11]) assert_equal(b.trace(offset=1, axis1=0, axis2=2), [1, 3]) def test_trace_subclass(self): # The class would need to overwrite trace to ensure single-element # output also has the right subclass. class MyArray(np.ndarray): pass b = np.arange(8).reshape((2, 2, 2)).view(MyArray) t = b.trace() assert isinstance(t, MyArray) def test_put(self): icodes = np.typecodes['AllInteger'] fcodes = np.typecodes['AllFloat'] for dt in icodes + fcodes + 'O': tgt = np.array([0, 1, 0, 3, 0, 5], dtype=dt) # test 1-d a = np.zeros(6, dtype=dt) a.put([1, 3, 5], [1, 3, 5]) assert_equal(a, tgt) # test 2-d a = np.zeros((2, 3), dtype=dt) a.put([1, 3, 5], [1, 3, 5]) assert_equal(a, tgt.reshape(2, 3)) for dt in '?': tgt = np.array([False, True, False, True, False, True], dtype=dt) # test 1-d a = np.zeros(6, dtype=dt) a.put([1, 3, 5], [True]*3) assert_equal(a, tgt) # test 2-d a = np.zeros((2, 3), dtype=dt) a.put([1, 3, 5], [True]*3) assert_equal(a, tgt.reshape(2, 3)) # check must be writeable a = np.zeros(6) a.flags.writeable = False assert_raises(ValueError, a.put, [1, 3, 5], [1, 3, 5]) # when calling np.put, make sure a # TypeError is raised if the object # isn't an ndarray bad_array = [1, 2, 3] assert_raises(TypeError, np.put, bad_array, [0, 2], 5) def test_ravel(self): a = np.array([[0, 1], [2, 3]]) assert_equal(a.ravel(), [0, 1, 2, 3]) assert_(not a.ravel().flags.owndata) assert_equal(a.ravel('F'), [0, 2, 1, 3]) assert_equal(a.ravel(order='C'), [0, 1, 2, 3]) assert_equal(a.ravel(order='F'), [0, 2, 1, 3]) assert_equal(a.ravel(order='A'), [0, 1, 2, 3]) assert_(not a.ravel(order='A').flags.owndata) assert_equal(a.ravel(order='K'), [0, 1, 2, 3]) assert_(not a.ravel(order='K').flags.owndata) assert_equal(a.ravel(), a.reshape(-1)) a = np.array([[0, 1], [2, 3]], order='F') assert_equal(a.ravel(), [0, 1, 2, 3]) assert_equal(a.ravel(order='A'), [0, 2, 1, 3]) assert_equal(a.ravel(order='K'), [0, 2, 1, 3]) assert_(not a.ravel(order='A').flags.owndata) assert_(not a.ravel(order='K').flags.owndata) assert_equal(a.ravel(), a.reshape(-1)) assert_equal(a.ravel(order='A'), a.reshape(-1, order='A')) a = np.array([[0, 1], [2, 3]])[::-1, :] assert_equal(a.ravel(), [2, 3, 0, 1]) assert_equal(a.ravel(order='C'), [2, 3, 0, 1]) assert_equal(a.ravel(order='F'), [2, 0, 3, 1]) assert_equal(a.ravel(order='A'), [2, 3, 0, 1]) # 'K' doesn't reverse the axes of negative strides assert_equal(a.ravel(order='K'), [2, 3, 0, 1]) assert_(a.ravel(order='K').flags.owndata) # Test simple 1-d copy behaviour: a = np.arange(10)[::2] assert_(a.ravel('K').flags.owndata) assert_(a.ravel('C').flags.owndata) assert_(a.ravel('F').flags.owndata) # Not contiguous and 1-sized axis with non matching stride a = np.arange(2**3 * 2)[::2] a = a.reshape(2, 1, 2, 2).swapaxes(-1, -2) strides = list(a.strides) strides[1] = 123 a.strides = strides assert_(a.ravel(order='K').flags.owndata) assert_equal(a.ravel('K'), np.arange(0, 15, 2)) # contiguous and 1-sized axis with non matching stride works: a = np.arange(2**3) a = a.reshape(2, 1, 2, 2).swapaxes(-1, -2) strides = list(a.strides) strides[1] = 123 a.strides = strides assert_(np.may_share_memory(a.ravel(order='K'), a)) assert_equal(a.ravel(order='K'), np.arange(2**3)) # Test negative strides (not very interesting since non-contiguous): a = np.arange(4)[::-1].reshape(2, 2) assert_(a.ravel(order='C').flags.owndata) assert_(a.ravel(order='K').flags.owndata) assert_equal(a.ravel('C'), [3, 2, 1, 0]) assert_equal(a.ravel('K'), [3, 2, 1, 0]) # 1-element tidy strides test (NPY_RELAXED_STRIDES_CHECKING): a = np.array([[1]]) a.strides = (123, 432) # If the stride is not 8, NPY_RELAXED_STRIDES_CHECKING is messing # them up on purpose: if np.ones(1).strides == (8,): assert_(np.may_share_memory(a.ravel('K'), a)) assert_equal(a.ravel('K').strides, (a.dtype.itemsize,)) for order in ('C', 'F', 'A', 'K'): # 0-d corner case: a = np.array(0) assert_equal(a.ravel(order), [0]) assert_(np.may_share_memory(a.ravel(order), a)) # Test that certain non-inplace ravels work right (mostly) for 'K': b = np.arange(2**4 * 2)[::2].reshape(2, 2, 2, 2) a = b[..., ::2] assert_equal(a.ravel('K'), [0, 4, 8, 12, 16, 20, 24, 28]) assert_equal(a.ravel('C'), [0, 4, 8, 12, 16, 20, 24, 28]) assert_equal(a.ravel('A'), [0, 4, 8, 12, 16, 20, 24, 28]) assert_equal(a.ravel('F'), [0, 16, 8, 24, 4, 20, 12, 28]) a = b[::2, ...] assert_equal(a.ravel('K'), [0, 2, 4, 6, 8, 10, 12, 14]) assert_equal(a.ravel('C'), [0, 2, 4, 6, 8, 10, 12, 14]) assert_equal(a.ravel('A'), [0, 2, 4, 6, 8, 10, 12, 14]) assert_equal(a.ravel('F'), [0, 8, 4, 12, 2, 10, 6, 14]) def test_ravel_subclass(self): class ArraySubclass(np.ndarray): pass a = np.arange(10).view(ArraySubclass) assert_(isinstance(a.ravel('C'), ArraySubclass)) assert_(isinstance(a.ravel('F'), ArraySubclass)) assert_(isinstance(a.ravel('A'), ArraySubclass)) assert_(isinstance(a.ravel('K'), ArraySubclass)) a = np.arange(10)[::2].view(ArraySubclass) assert_(isinstance(a.ravel('C'), ArraySubclass)) assert_(isinstance(a.ravel('F'), ArraySubclass)) assert_(isinstance(a.ravel('A'), ArraySubclass)) assert_(isinstance(a.ravel('K'), ArraySubclass)) def test_swapaxes(self): a = np.arange(1*2*3*4).reshape(1, 2, 3, 4).copy() idx = np.indices(a.shape) assert_(a.flags['OWNDATA']) b = a.copy() # check exceptions assert_raises(ValueError, a.swapaxes, -5, 0) assert_raises(ValueError, a.swapaxes, 4, 0) assert_raises(ValueError, a.swapaxes, 0, -5) assert_raises(ValueError, a.swapaxes, 0, 4) for i in range(-4, 4): for j in range(-4, 4): for k, src in enumerate((a, b)): c = src.swapaxes(i, j) # check shape shape = list(src.shape) shape[i] = src.shape[j] shape[j] = src.shape[i] assert_equal(c.shape, shape, str((i, j, k))) # check array contents i0, i1, i2, i3 = [dim-1 for dim in c.shape] j0, j1, j2, j3 = [dim-1 for dim in src.shape] assert_equal(src[idx[j0], idx[j1], idx[j2], idx[j3]], c[idx[i0], idx[i1], idx[i2], idx[i3]], str((i, j, k))) # check a view is always returned, gh-5260 assert_(not c.flags['OWNDATA'], str((i, j, k))) # check on non-contiguous input array if k == 1: b = c def test_conjugate(self): a = np.array([1-1j, 1+1j, 23+23.0j]) ac = a.conj() assert_equal(a.real, ac.real) assert_equal(a.imag, -ac.imag) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1-1j, 1+1j, 23+23.0j], 'F') ac = a.conj() assert_equal(a.real, ac.real) assert_equal(a.imag, -ac.imag) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1, 2, 3]) ac = a.conj() assert_equal(a, ac) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1.0, 2.0, 3.0]) ac = a.conj() assert_equal(a, ac) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1-1j, 1+1j, 1, 2.0], object) ac = a.conj() assert_equal(ac, [k.conjugate() for k in a]) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1-1j, 1, 2.0, 'f'], object) assert_raises(AttributeError, lambda: a.conj()) assert_raises(AttributeError, lambda: a.conjugate()) def test__complex__(self): dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8', 'f', 'd', 'g', 'F', 'D', 'G', '?', 'O'] for dt in dtypes: a = np.array(7, dtype=dt) b = np.array([7], dtype=dt) c = np.array([[[[[7]]]]], dtype=dt) msg = 'dtype: {0}'.format(dt) ap = complex(a) assert_equal(ap, a, msg) bp = complex(b) assert_equal(bp, b, msg) cp = complex(c) assert_equal(cp, c, msg) def test__complex__should_not_work(self): dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8', 'f', 'd', 'g', 'F', 'D', 'G', '?', 'O'] for dt in dtypes: a = np.array([1, 2, 3], dtype=dt) assert_raises(TypeError, complex, a) dt = np.dtype([('a', 'f8'), ('b', 'i1')]) b = np.array((1.0, 3), dtype=dt) assert_raises(TypeError, complex, b) c = np.array([(1.0, 3), (2e-3, 7)], dtype=dt) assert_raises(TypeError, complex, c) d = np.array('1+1j') assert_raises(TypeError, complex, d) e = np.array(['1+1j'], 'U') assert_raises(TypeError, complex, e) class TestBinop(object): def test_inplace(self): # test refcount 1 inplace conversion assert_array_almost_equal(np.array([0.5]) * np.array([1.0, 2.0]), [0.5, 1.0]) d = np.array([0.5, 0.5])[::2] assert_array_almost_equal(d * (d * np.array([1.0, 2.0])), [0.25, 0.5]) a = np.array([0.5]) b = np.array([0.5]) c = a + b c = a - b c = a * b c = a / b assert_equal(a, b) assert_almost_equal(c, 1.) c = a + b * 2. / b * a - a / b assert_equal(a, b) assert_equal(c, 0.5) # true divide a = np.array([5]) b = np.array([3]) c = (a * a) / b assert_almost_equal(c, 25 / 3) assert_equal(a, 5) assert_equal(b, 3) def test_extension_incref_elide(self): # test extension (e.g. cython) calling PyNumber_* slots without # increasing the reference counts # # def incref_elide(a): # d = input.copy() # refcount 1 # return d, d + d # PyNumber_Add without increasing refcount from numpy.core.multiarray_tests import incref_elide d = np.ones(5) orig, res = incref_elide(d) # the return original should not be changed to an inplace operation assert_array_equal(orig, d) assert_array_equal(res, d + d) def test_extension_incref_elide_stack(self): # scanning if the refcount == 1 object is on the python stack to check # that we are called directly from python is flawed as object may still # be above the stack pointer and we have no access to the top of it # # def incref_elide_l(d): # return l[4] + l[4] # PyNumber_Add without increasing refcount from numpy.core.multiarray_tests import incref_elide_l # padding with 1 makes sure the object on the stack is not overwriten l = [1, 1, 1, 1, np.ones(5)] res = incref_elide_l(l) # the return original should not be changed to an inplace operation assert_array_equal(l[4], np.ones(5)) assert_array_equal(res, l[4] + l[4]) def test_ufunc_override_rop_precedence(self): # 2016-01-29: NUMPY_UFUNC_DISABLED return # Check that __rmul__ and other right-hand operations have # precedence over __numpy_ufunc__ ops = { '__add__': ('__radd__', np.add, True), '__sub__': ('__rsub__', np.subtract, True), '__mul__': ('__rmul__', np.multiply, True), '__truediv__': ('__rtruediv__', np.true_divide, True), '__floordiv__': ('__rfloordiv__', np.floor_divide, True), '__mod__': ('__rmod__', np.remainder, True), '__divmod__': ('__rdivmod__', None, False), '__pow__': ('__rpow__', np.power, True), '__lshift__': ('__rlshift__', np.left_shift, True), '__rshift__': ('__rrshift__', np.right_shift, True), '__and__': ('__rand__', np.bitwise_and, True), '__xor__': ('__rxor__', np.bitwise_xor, True), '__or__': ('__ror__', np.bitwise_or, True), '__ge__': ('__le__', np.less_equal, False), '__gt__': ('__lt__', np.less, False), '__le__': ('__ge__', np.greater_equal, False), '__lt__': ('__gt__', np.greater, False), '__eq__': ('__eq__', np.equal, False), '__ne__': ('__ne__', np.not_equal, False), } class OtherNdarraySubclass(np.ndarray): pass class OtherNdarraySubclassWithOverride(np.ndarray): def __numpy_ufunc__(self, *a, **kw): raise AssertionError(("__numpy_ufunc__ %r %r shouldn't have " "been called!") % (a, kw)) def check(op_name, ndsubclass): rop_name, np_op, has_iop = ops[op_name] if has_iop: iop_name = '__i' + op_name[2:] iop = getattr(operator, iop_name) if op_name == "__divmod__": op = divmod else: op = getattr(operator, op_name) # Dummy class def __init__(self, *a, **kw): pass def __numpy_ufunc__(self, *a, **kw): raise AssertionError(("__numpy_ufunc__ %r %r shouldn't have " "been called!") % (a, kw)) def __op__(self, *other): return "op" def __rop__(self, *other): return "rop" if ndsubclass: bases = (np.ndarray,) else: bases = (object,) dct = {'__init__': __init__, '__numpy_ufunc__': __numpy_ufunc__, op_name: __op__} if op_name != rop_name: dct[rop_name] = __rop__ cls = type("Rop" + rop_name, bases, dct) # Check behavior against both bare ndarray objects and a # ndarray subclasses with and without their own override obj = cls((1,), buffer=np.ones(1,)) arr_objs = [np.array([1]), np.array([2]).view(OtherNdarraySubclass), np.array([3]).view(OtherNdarraySubclassWithOverride), ] for arr in arr_objs: err_msg = "%r %r" % (op_name, arr,) # Check that ndarray op gives up if it sees a non-subclass if not isinstance(obj, arr.__class__): assert_equal(getattr(arr, op_name)(obj), NotImplemented, err_msg=err_msg) # Check that the Python binops have priority assert_equal(op(obj, arr), "op", err_msg=err_msg) if op_name == rop_name: assert_equal(op(arr, obj), "op", err_msg=err_msg) else: assert_equal(op(arr, obj), "rop", err_msg=err_msg) # Check that Python binops have priority also for in-place ops if has_iop: assert_equal(getattr(arr, iop_name)(obj), NotImplemented, err_msg=err_msg) if op_name != "__pow__": # inplace pow requires the other object to be # integer-like? assert_equal(iop(arr, obj), "rop", err_msg=err_msg) # Check that ufunc call __numpy_ufunc__ normally if np_op is not None: assert_raises(AssertionError, np_op, arr, obj, err_msg=err_msg) assert_raises(AssertionError, np_op, obj, arr, err_msg=err_msg) # Check all binary operations for op_name in sorted(ops.keys()): yield check, op_name, True yield check, op_name, False def test_ufunc_override_rop_simple(self): # 2016-01-29: NUMPY_UFUNC_DISABLED return # Check parts of the binary op overriding behavior in an # explicit test case that is easier to understand. class SomeClass(object): def __numpy_ufunc__(self, *a, **kw): return "ufunc" def __mul__(self, other): return 123 def __rmul__(self, other): return 321 def __rsub__(self, other): return "no subs for me" def __gt__(self, other): return "yep" def __lt__(self, other): return "nope" class SomeClass2(SomeClass, np.ndarray): def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw): if ufunc is np.multiply or ufunc is np.bitwise_and: return "ufunc" else: inputs = list(inputs) if i < len(inputs): inputs[i] = np.asarray(self) func = getattr(ufunc, method) if ('out' in kw) and (kw['out'] is not None): kw['out'] = np.asarray(kw['out']) r = func(*inputs, **kw) x = self.__class__(r.shape, dtype=r.dtype) x[...] = r return x class SomeClass3(SomeClass2): def __rsub__(self, other): return "sub for me" arr = np.array([0]) obj = SomeClass() obj2 = SomeClass2((1,), dtype=np.int_) obj2[0] = 9 obj3 = SomeClass3((1,), dtype=np.int_) obj3[0] = 4 # obj is first, so should get to define outcome. assert_equal(obj * arr, 123) # obj is second, but has __numpy_ufunc__ and defines __rmul__. assert_equal(arr * obj, 321) # obj is second, but has __numpy_ufunc__ and defines __rsub__. assert_equal(arr - obj, "no subs for me") # obj is second, but has __numpy_ufunc__ and defines __lt__. assert_equal(arr > obj, "nope") # obj is second, but has __numpy_ufunc__ and defines __gt__. assert_equal(arr < obj, "yep") # Called as a ufunc, obj.__numpy_ufunc__ is used. assert_equal(np.multiply(arr, obj), "ufunc") # obj is second, but has __numpy_ufunc__ and defines __rmul__. arr *= obj assert_equal(arr, 321) # obj2 is an ndarray subclass, so CPython takes care of the same rules. assert_equal(obj2 * arr, 123) assert_equal(arr * obj2, 321) assert_equal(arr - obj2, "no subs for me") assert_equal(arr > obj2, "nope") assert_equal(arr < obj2, "yep") # Called as a ufunc, obj2.__numpy_ufunc__ is called. assert_equal(np.multiply(arr, obj2), "ufunc") # Also when the method is not overridden. assert_equal(arr & obj2, "ufunc") arr *= obj2 assert_equal(arr, 321) obj2 += 33 assert_equal(obj2[0], 42) assert_equal(obj2.sum(), 42) assert_(isinstance(obj2, SomeClass2)) # Obj3 is subclass that defines __rsub__. CPython calls it. assert_equal(arr - obj3, "sub for me") assert_equal(obj2 - obj3, "sub for me") # obj3 is a subclass that defines __rmul__. CPython calls it. assert_equal(arr * obj3, 321) # But not here, since obj3.__rmul__ is obj2.__rmul__. assert_equal(obj2 * obj3, 123) # And of course, here obj3.__mul__ should be called. assert_equal(obj3 * obj2, 123) # obj3 defines __numpy_ufunc__ but obj3.__radd__ is obj2.__radd__. # (and both are just ndarray.__radd__); see #4815. res = obj2 + obj3 assert_equal(res, 46) assert_(isinstance(res, SomeClass2)) # Since obj3 is a subclass, it should have precedence, like CPython # would give, even though obj2 has __numpy_ufunc__ and __radd__. # See gh-4815 and gh-5747. res = obj3 + obj2 assert_equal(res, 46) assert_(isinstance(res, SomeClass3)) def test_ufunc_override_normalize_signature(self): # 2016-01-29: NUMPY_UFUNC_DISABLED return # gh-5674 class SomeClass(object): def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw): return kw a = SomeClass() kw = np.add(a, [1]) assert_('sig' not in kw and 'signature' not in kw) kw = np.add(a, [1], sig='ii->i') assert_('sig' not in kw and 'signature' in kw) assert_equal(kw['signature'], 'ii->i') kw = np.add(a, [1], signature='ii->i') assert_('sig' not in kw and 'signature' in kw) assert_equal(kw['signature'], 'ii->i') def test_numpy_ufunc_index(self): # 2016-01-29: NUMPY_UFUNC_DISABLED return # Check that index is set appropriately, also if only an output # is passed on (latter is another regression tests for github bug 4753) class CheckIndex(object): def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw): return i a = CheckIndex() dummy = np.arange(2.) # 1 input, 1 output assert_equal(np.sin(a), 0) assert_equal(np.sin(dummy, a), 1) assert_equal(np.sin(dummy, out=a), 1) assert_equal(np.sin(dummy, out=(a,)), 1) assert_equal(np.sin(a, a), 0) assert_equal(np.sin(a, out=a), 0) assert_equal(np.sin(a, out=(a,)), 0) # 1 input, 2 outputs assert_equal(np.modf(dummy, a), 1) assert_equal(np.modf(dummy, None, a), 2) assert_equal(np.modf(dummy, dummy, a), 2) assert_equal(np.modf(dummy, out=a), 1) assert_equal(np.modf(dummy, out=(a,)), 1) assert_equal(np.modf(dummy, out=(a, None)), 1) assert_equal(np.modf(dummy, out=(a, dummy)), 1) assert_equal(np.modf(dummy, out=(None, a)), 2) assert_equal(np.modf(dummy, out=(dummy, a)), 2) assert_equal(np.modf(a, out=(dummy, a)), 0) # 2 inputs, 1 output assert_equal(np.add(a, dummy), 0) assert_equal(np.add(dummy, a), 1) assert_equal(np.add(dummy, dummy, a), 2) assert_equal(np.add(dummy, a, a), 1) assert_equal(np.add(dummy, dummy, out=a), 2) assert_equal(np.add(dummy, dummy, out=(a,)), 2) assert_equal(np.add(a, dummy, out=a), 0) def test_out_override(self): # 2016-01-29: NUMPY_UFUNC_DISABLED return # regression test for github bug 4753 class OutClass(np.ndarray): def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw): if 'out' in kw: tmp_kw = kw.copy() tmp_kw.pop('out') func = getattr(ufunc, method) kw['out'][...] = func(*inputs, **tmp_kw) A = np.array([0]).view(OutClass) B = np.array([5]) C = np.array([6]) np.multiply(C, B, A) assert_equal(A[0], 30) assert_(isinstance(A, OutClass)) A[0] = 0 np.multiply(C, B, out=A) assert_equal(A[0], 30) assert_(isinstance(A, OutClass)) class TestCAPI(TestCase): def test_IsPythonScalar(self): from numpy.core.multiarray_tests import IsPythonScalar assert_(IsPythonScalar(b'foobar')) assert_(IsPythonScalar(1)) assert_(IsPythonScalar(2**80)) assert_(IsPythonScalar(2.)) assert_(IsPythonScalar("a")) class TestSubscripting(TestCase): def test_test_zero_rank(self): x = np.array([1, 2, 3]) self.assertTrue(isinstance(x[0], np.int_)) if sys.version_info[0] < 3: self.assertTrue(isinstance(x[0], int)) self.assertTrue(type(x[0, ...]) is np.ndarray) class TestPickling(TestCase): def test_roundtrip(self): import pickle carray = np.array([[2, 9], [7, 0], [3, 8]]) DATA = [ carray, np.transpose(carray), np.array([('xxx', 1, 2.0)], dtype=[('a', (str, 3)), ('b', int), ('c', float)]) ] for a in DATA: assert_equal(a, pickle.loads(a.dumps()), err_msg="%r" % a) def _loads(self, obj): if sys.version_info[0] >= 3: return np.loads(obj, encoding='latin1') else: return np.loads(obj) # version 0 pickles, using protocol=2 to pickle # version 0 doesn't have a version field def test_version0_int8(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.' a = np.array([1, 2, 3, 4], dtype=np.int8) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version0_float32(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.' a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version0_object(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.' a = np.array([{'a': 1}, {'b': 2}]) p = self._loads(asbytes(s)) assert_equal(a, p) # version 1 pickles, using protocol=2 to pickle def test_version1_int8(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.' a = np.array([1, 2, 3, 4], dtype=np.int8) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version1_float32(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(K\x01U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.' a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version1_object(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.' a = np.array([{'a': 1}, {'b': 2}]) p = self._loads(asbytes(s)) assert_equal(a, p) def test_subarray_int_shape(self): s = "cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n(S'V6'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'|'\np11\nN(S'a'\np12\ng3\ntp13\n(dp14\ng12\n(g7\n(S'V4'\np15\nI0\nI1\ntp16\nRp17\n(I3\nS'|'\np18\n(g7\n(S'i1'\np19\nI0\nI1\ntp20\nRp21\n(I3\nS'|'\np22\nNNNI-1\nI-1\nI0\ntp23\nb(I2\nI2\ntp24\ntp25\nNNI4\nI1\nI0\ntp26\nbI0\ntp27\nsg3\n(g7\n(S'V2'\np28\nI0\nI1\ntp29\nRp30\n(I3\nS'|'\np31\n(g21\nI2\ntp32\nNNI2\nI1\nI0\ntp33\nbI4\ntp34\nsI6\nI1\nI0\ntp35\nbI00\nS'\\x01\\x01\\x01\\x01\\x01\\x02'\np36\ntp37\nb." a = np.array([(1, (1, 2))], dtype=[('a', 'i1', (2, 2)), ('b', 'i1', 2)]) p = self._loads(asbytes(s)) assert_equal(a, p) class TestFancyIndexing(TestCase): def test_list(self): x = np.ones((1, 1)) x[:, [0]] = 2.0 assert_array_equal(x, np.array([[2.0]])) x = np.ones((1, 1, 1)) x[:, :, [0]] = 2.0 assert_array_equal(x, np.array([[[2.0]]])) def test_tuple(self): x = np.ones((1, 1)) x[:, (0,)] = 2.0 assert_array_equal(x, np.array([[2.0]])) x = np.ones((1, 1, 1)) x[:, :, (0,)] = 2.0 assert_array_equal(x, np.array([[[2.0]]])) def test_mask(self): x = np.array([1, 2, 3, 4]) m = np.array([0, 1, 0, 0], bool) assert_array_equal(x[m], np.array([2])) def test_mask2(self): x = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) m = np.array([0, 1], bool) m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool) m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool) assert_array_equal(x[m], np.array([[5, 6, 7, 8]])) assert_array_equal(x[m2], np.array([2, 5])) assert_array_equal(x[m3], np.array([2])) def test_assign_mask(self): x = np.array([1, 2, 3, 4]) m = np.array([0, 1, 0, 0], bool) x[m] = 5 assert_array_equal(x, np.array([1, 5, 3, 4])) def test_assign_mask2(self): xorig = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) m = np.array([0, 1], bool) m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool) m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool) x = xorig.copy() x[m] = 10 assert_array_equal(x, np.array([[1, 2, 3, 4], [10, 10, 10, 10]])) x = xorig.copy() x[m2] = 10 assert_array_equal(x, np.array([[1, 10, 3, 4], [10, 6, 7, 8]])) x = xorig.copy() x[m3] = 10 assert_array_equal(x, np.array([[1, 10, 3, 4], [5, 6, 7, 8]])) class TestStringCompare(TestCase): def test_string(self): g1 = np.array(["This", "is", "example"]) g2 = np.array(["This", "was", "example"]) assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]]) def test_mixed(self): g1 = np.array(["spam", "spa", "spammer", "and eggs"]) g2 = "spam" assert_array_equal(g1 == g2, [x == g2 for x in g1]) assert_array_equal(g1 != g2, [x != g2 for x in g1]) assert_array_equal(g1 < g2, [x < g2 for x in g1]) assert_array_equal(g1 > g2, [x > g2 for x in g1]) assert_array_equal(g1 <= g2, [x <= g2 for x in g1]) assert_array_equal(g1 >= g2, [x >= g2 for x in g1]) def test_unicode(self): g1 = np.array([sixu("This"), sixu("is"), sixu("example")]) g2 = np.array([sixu("This"), sixu("was"), sixu("example")]) assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]]) class TestArgmax(TestCase): nan_arr = [ ([0, 1, 2, 3, np.nan], 4), ([0, 1, 2, np.nan, 3], 3), ([np.nan, 0, 1, 2, 3], 0), ([np.nan, 0, np.nan, 2, 3], 0), ([0, 1, 2, 3, complex(0, np.nan)], 4), ([0, 1, 2, 3, complex(np.nan, 0)], 4), ([0, 1, 2, complex(np.nan, 0), 3], 3), ([0, 1, 2, complex(0, np.nan), 3], 3), ([complex(0, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0), ([complex(0, 0), complex(0, 2), complex(0, 1)], 1), ([complex(1, 0), complex(0, 2), complex(0, 1)], 0), ([complex(1, 0), complex(0, 2), complex(1, 1)], 2), ([np.datetime64('1923-04-14T12:43:12'), np.datetime64('1994-06-21T14:43:15'), np.datetime64('2001-10-15T04:10:32'), np.datetime64('1995-11-25T16:02:16'), np.datetime64('2005-01-04T03:14:12'), np.datetime64('2041-12-03T14:05:03')], 5), ([np.datetime64('1935-09-14T04:40:11'), np.datetime64('1949-10-12T12:32:11'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('2015-11-20T12:20:59'), np.datetime64('1932-09-23T10:10:13'), np.datetime64('2014-10-10T03:50:30')], 3), # Assorted tests with NaTs ([np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('NaT'), np.datetime64('2015-09-23T10:10:13'), np.datetime64('1932-10-10T03:50:30')], 4), ([np.datetime64('2059-03-14T12:43:12'), np.datetime64('1996-09-21T14:43:15'), np.datetime64('NaT'), np.datetime64('2022-12-25T16:02:16'), np.datetime64('1963-10-04T03:14:12'), np.datetime64('2013-05-08T18:15:23')], 0), ([np.timedelta64(2, 's'), np.timedelta64(1, 's'), np.timedelta64('NaT', 's'), np.timedelta64(3, 's')], 3), ([np.timedelta64('NaT', 's')] * 3, 0), ([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35), timedelta(days=-1, seconds=23)], 0), ([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5), timedelta(days=5, seconds=14)], 1), ([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5), timedelta(days=10, seconds=43)], 2), ([False, False, False, False, True], 4), ([False, False, False, True, False], 3), ([True, False, False, False, False], 0), ([True, False, True, False, False], 0), ] def test_all(self): a = np.random.normal(0, 1, (4, 5, 6, 7, 8)) for i in range(a.ndim): amax = a.max(i) aargmax = a.argmax(i) axes = list(range(a.ndim)) axes.remove(i) assert_(np.all(amax == aargmax.choose(*a.transpose(i,*axes)))) def test_combinations(self): for arr, pos in self.nan_arr: assert_equal(np.argmax(arr), pos, err_msg="%r" % arr) assert_equal(arr[np.argmax(arr)], np.max(arr), err_msg="%r" % arr) def test_output_shape(self): # see also gh-616 a = np.ones((10, 5)) # Check some simple shape mismatches out = np.ones(11, dtype=np.int_) assert_raises(ValueError, a.argmax, -1, out) out = np.ones((2, 5), dtype=np.int_) assert_raises(ValueError, a.argmax, -1, out) # these could be relaxed possibly (used to allow even the previous) out = np.ones((1, 10), dtype=np.int_) assert_raises(ValueError, a.argmax, -1, out) out = np.ones(10, dtype=np.int_) a.argmax(-1, out=out) assert_equal(out, a.argmax(-1)) def test_argmax_unicode(self): d = np.zeros(6031, dtype='<U9') d[5942] = "as" assert_equal(d.argmax(), 5942) def test_np_vs_ndarray(self): # make sure both ndarray.argmax and numpy.argmax support out/axis args a = np.random.normal(size=(2,3)) # check positional args out1 = np.zeros(2, dtype=int) out2 = np.zeros(2, dtype=int) assert_equal(a.argmax(1, out1), np.argmax(a, 1, out2)) assert_equal(out1, out2) # check keyword args out1 = np.zeros(3, dtype=int) out2 = np.zeros(3, dtype=int) assert_equal(a.argmax(out=out1, axis=0), np.argmax(a, out=out2, axis=0)) assert_equal(out1, out2) def test_object_argmax_with_NULLs(self): # See gh-6032 a = np.empty(4, dtype='O') ctypes.memset(a.ctypes.data, 0, a.nbytes) assert_equal(a.argmax(), 0) a[3] = 10 assert_equal(a.argmax(), 3) a[1] = 30 assert_equal(a.argmax(), 1) class TestArgmin(TestCase): nan_arr = [ ([0, 1, 2, 3, np.nan], 4), ([0, 1, 2, np.nan, 3], 3), ([np.nan, 0, 1, 2, 3], 0), ([np.nan, 0, np.nan, 2, 3], 0), ([0, 1, 2, 3, complex(0, np.nan)], 4), ([0, 1, 2, 3, complex(np.nan, 0)], 4), ([0, 1, 2, complex(np.nan, 0), 3], 3), ([0, 1, 2, complex(0, np.nan), 3], 3), ([complex(0, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0), ([complex(0, 0), complex(0, 2), complex(0, 1)], 0), ([complex(1, 0), complex(0, 2), complex(0, 1)], 2), ([complex(1, 0), complex(0, 2), complex(1, 1)], 1), ([np.datetime64('1923-04-14T12:43:12'), np.datetime64('1994-06-21T14:43:15'), np.datetime64('2001-10-15T04:10:32'), np.datetime64('1995-11-25T16:02:16'), np.datetime64('2005-01-04T03:14:12'), np.datetime64('2041-12-03T14:05:03')], 0), ([np.datetime64('1935-09-14T04:40:11'), np.datetime64('1949-10-12T12:32:11'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('2014-11-20T12:20:59'), np.datetime64('2015-09-23T10:10:13'), np.datetime64('1932-10-10T03:50:30')], 5), # Assorted tests with NaTs ([np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('NaT'), np.datetime64('2015-09-23T10:10:13'), np.datetime64('1932-10-10T03:50:30')], 5), ([np.datetime64('2059-03-14T12:43:12'), np.datetime64('1996-09-21T14:43:15'), np.datetime64('NaT'), np.datetime64('2022-12-25T16:02:16'), np.datetime64('1963-10-04T03:14:12'), np.datetime64('2013-05-08T18:15:23')], 4), ([np.timedelta64(2, 's'), np.timedelta64(1, 's'), np.timedelta64('NaT', 's'), np.timedelta64(3, 's')], 1), ([np.timedelta64('NaT', 's')] * 3, 0), ([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35), timedelta(days=-1, seconds=23)], 2), ([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5), timedelta(days=5, seconds=14)], 0), ([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5), timedelta(days=10, seconds=43)], 1), ([True, True, True, True, False], 4), ([True, True, True, False, True], 3), ([False, True, True, True, True], 0), ([False, True, False, True, True], 0), ] def test_all(self): a = np.random.normal(0, 1, (4, 5, 6, 7, 8)) for i in range(a.ndim): amin = a.min(i) aargmin = a.argmin(i) axes = list(range(a.ndim)) axes.remove(i) assert_(np.all(amin == aargmin.choose(*a.transpose(i,*axes)))) def test_combinations(self): for arr, pos in self.nan_arr: assert_equal(np.argmin(arr), pos, err_msg="%r" % arr) assert_equal(arr[np.argmin(arr)], np.min(arr), err_msg="%r" % arr) def test_minimum_signed_integers(self): a = np.array([1, -2**7, -2**7 + 1], dtype=np.int8) assert_equal(np.argmin(a), 1) a = np.array([1, -2**15, -2**15 + 1], dtype=np.int16) assert_equal(np.argmin(a), 1) a = np.array([1, -2**31, -2**31 + 1], dtype=np.int32) assert_equal(np.argmin(a), 1) a = np.array([1, -2**63, -2**63 + 1], dtype=np.int64) assert_equal(np.argmin(a), 1) def test_output_shape(self): # see also gh-616 a = np.ones((10, 5)) # Check some simple shape mismatches out = np.ones(11, dtype=np.int_) assert_raises(ValueError, a.argmin, -1, out) out = np.ones((2, 5), dtype=np.int_) assert_raises(ValueError, a.argmin, -1, out) # these could be relaxed possibly (used to allow even the previous) out = np.ones((1, 10), dtype=np.int_) assert_raises(ValueError, a.argmin, -1, out) out = np.ones(10, dtype=np.int_) a.argmin(-1, out=out) assert_equal(out, a.argmin(-1)) def test_argmin_unicode(self): d = np.ones(6031, dtype='<U9') d[6001] = "0" assert_equal(d.argmin(), 6001) def test_np_vs_ndarray(self): # make sure both ndarray.argmin and numpy.argmin support out/axis args a = np.random.normal(size=(2, 3)) # check positional args out1 = np.zeros(2, dtype=int) out2 = np.ones(2, dtype=int) assert_equal(a.argmin(1, out1), np.argmin(a, 1, out2)) assert_equal(out1, out2) # check keyword args out1 = np.zeros(3, dtype=int) out2 = np.ones(3, dtype=int) assert_equal(a.argmin(out=out1, axis=0), np.argmin(a, out=out2, axis=0)) assert_equal(out1, out2) def test_object_argmin_with_NULLs(self): # See gh-6032 a = np.empty(4, dtype='O') ctypes.memset(a.ctypes.data, 0, a.nbytes) assert_equal(a.argmin(), 0) a[3] = 30 assert_equal(a.argmin(), 3) a[1] = 10 assert_equal(a.argmin(), 1) class TestMinMax(TestCase): def test_scalar(self): assert_raises(ValueError, np.amax, 1, 1) assert_raises(ValueError, np.amin, 1, 1) assert_equal(np.amax(1, axis=0), 1) assert_equal(np.amin(1, axis=0), 1) assert_equal(np.amax(1, axis=None), 1) assert_equal(np.amin(1, axis=None), 1) def test_axis(self): assert_raises(ValueError, np.amax, [1, 2, 3], 1000) assert_equal(np.amax([[1, 2, 3]], axis=1), 3) def test_datetime(self): # NaTs are ignored for dtype in ('m8[s]', 'm8[Y]'): a = np.arange(10).astype(dtype) a[3] = 'NaT' assert_equal(np.amin(a), a[0]) assert_equal(np.amax(a), a[9]) a[0] = 'NaT' assert_equal(np.amin(a), a[1]) assert_equal(np.amax(a), a[9]) a.fill('NaT') assert_equal(np.amin(a), a[0]) assert_equal(np.amax(a), a[0]) class TestNewaxis(TestCase): def test_basic(self): sk = np.array([0, -0.1, 0.1]) res = 250*sk[:, np.newaxis] assert_almost_equal(res.ravel(), 250*sk) class TestClip(TestCase): def _check_range(self, x, cmin, cmax): assert_(np.all(x >= cmin)) assert_(np.all(x <= cmax)) def _clip_type(self, type_group, array_max, clip_min, clip_max, inplace=False, expected_min=None, expected_max=None): if expected_min is None: expected_min = clip_min if expected_max is None: expected_max = clip_max for T in np.sctypes[type_group]: if sys.byteorder == 'little': byte_orders = ['=', '>'] else: byte_orders = ['<', '='] for byteorder in byte_orders: dtype = np.dtype(T).newbyteorder(byteorder) x = (np.random.random(1000) * array_max).astype(dtype) if inplace: x.clip(clip_min, clip_max, x) else: x = x.clip(clip_min, clip_max) byteorder = '=' if x.dtype.byteorder == '|': byteorder = '|' assert_equal(x.dtype.byteorder, byteorder) self._check_range(x, expected_min, expected_max) return x def test_basic(self): for inplace in [False, True]: self._clip_type( 'float', 1024, -12.8, 100.2, inplace=inplace) self._clip_type( 'float', 1024, 0, 0, inplace=inplace) self._clip_type( 'int', 1024, -120, 100.5, inplace=inplace) self._clip_type( 'int', 1024, 0, 0, inplace=inplace) self._clip_type( 'uint', 1024, 0, 0, inplace=inplace) self._clip_type( 'uint', 1024, -120, 100, inplace=inplace, expected_min=0) def test_record_array(self): rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8')]) y = rec['x'].clip(-0.3, 0.5) self._check_range(y, -0.3, 0.5) def test_max_or_min(self): val = np.array([0, 1, 2, 3, 4, 5, 6, 7]) x = val.clip(3) assert_(np.all(x >= 3)) x = val.clip(min=3) assert_(np.all(x >= 3)) x = val.clip(max=4) assert_(np.all(x <= 4)) def test_nan(self): input_arr = np.array([-2., np.nan, 0.5, 3., 0.25, np.nan]) result = input_arr.clip(-1, 1) expected = np.array([-1., np.nan, 0.5, 1., 0.25, np.nan]) assert_array_equal(result, expected) class TestCompress(TestCase): def test_axis(self): tgt = [[5, 6, 7, 8, 9]] arr = np.arange(10).reshape(2, 5) out = np.compress([0, 1], arr, axis=0) assert_equal(out, tgt) tgt = [[1, 3], [6, 8]] out = np.compress([0, 1, 0, 1, 0], arr, axis=1) assert_equal(out, tgt) def test_truncate(self): tgt = [[1], [6]] arr = np.arange(10).reshape(2, 5) out = np.compress([0, 1], arr, axis=1) assert_equal(out, tgt) def test_flatten(self): arr = np.arange(10).reshape(2, 5) out = np.compress([0, 1], arr) assert_equal(out, 1) class TestPutmask(object): def tst_basic(self, x, T, mask, val): np.putmask(x, mask, val) assert_equal(x[mask], T(val)) assert_equal(x.dtype, T) def test_ip_types(self): unchecked_types = [bytes, unicode, np.void, object] x = np.random.random(1000)*100 mask = x < 40 for val in [-100, 0, 15]: for types in np.sctypes.values(): for T in types: if T not in unchecked_types: yield self.tst_basic, x.copy().astype(T), T, mask, val def test_mask_size(self): assert_raises(ValueError, np.putmask, np.array([1, 2, 3]), [True], 5) def tst_byteorder(self, dtype): x = np.array([1, 2, 3], dtype) np.putmask(x, [True, False, True], -1) assert_array_equal(x, [-1, 2, -1]) def test_ip_byteorder(self): for dtype in ('>i4', '<i4'): yield self.tst_byteorder, dtype def test_record_array(self): # Note mixed byteorder. rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')]) np.putmask(rec['x'], [True, False], 10) assert_array_equal(rec['x'], [10, 5]) assert_array_equal(rec['y'], [2, 4]) assert_array_equal(rec['z'], [3, 3]) np.putmask(rec['y'], [True, False], 11) assert_array_equal(rec['x'], [10, 5]) assert_array_equal(rec['y'], [11, 4]) assert_array_equal(rec['z'], [3, 3]) class TestTake(object): def tst_basic(self, x): ind = list(range(x.shape[0])) assert_array_equal(x.take(ind, axis=0), x) def test_ip_types(self): unchecked_types = [bytes, unicode, np.void, object] x = np.random.random(24)*100 x.shape = 2, 3, 4 for types in np.sctypes.values(): for T in types: if T not in unchecked_types: yield self.tst_basic, x.copy().astype(T) def test_raise(self): x = np.random.random(24)*100 x.shape = 2, 3, 4 assert_raises(IndexError, x.take, [0, 1, 2], axis=0) assert_raises(IndexError, x.take, [-3], axis=0) assert_array_equal(x.take([-1], axis=0)[0], x[1]) def test_clip(self): x = np.random.random(24)*100 x.shape = 2, 3, 4 assert_array_equal(x.take([-1], axis=0, mode='clip')[0], x[0]) assert_array_equal(x.take([2], axis=0, mode='clip')[0], x[1]) def test_wrap(self): x = np.random.random(24)*100 x.shape = 2, 3, 4 assert_array_equal(x.take([-1], axis=0, mode='wrap')[0], x[1]) assert_array_equal(x.take([2], axis=0, mode='wrap')[0], x[0]) assert_array_equal(x.take([3], axis=0, mode='wrap')[0], x[1]) def tst_byteorder(self, dtype): x = np.array([1, 2, 3], dtype) assert_array_equal(x.take([0, 2, 1]), [1, 3, 2]) def test_ip_byteorder(self): for dtype in ('>i4', '<i4'): yield self.tst_byteorder, dtype def test_record_array(self): # Note mixed byteorder. rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')]) rec1 = rec.take([1]) assert_(rec1['x'] == 5.0 and rec1['y'] == 4.0) class TestLexsort(TestCase): def test_basic(self): a = [1, 2, 1, 3, 1, 5] b = [0, 4, 5, 6, 2, 3] idx = np.lexsort((b, a)) expected_idx = np.array([0, 4, 2, 1, 3, 5]) assert_array_equal(idx, expected_idx) x = np.vstack((b, a)) idx = np.lexsort(x) assert_array_equal(idx, expected_idx) assert_array_equal(x[1][idx], np.sort(x[1])) def test_datetime(self): a = np.array([0,0,0], dtype='datetime64[D]') b = np.array([2,1,0], dtype='datetime64[D]') idx = np.lexsort((b, a)) expected_idx = np.array([2, 1, 0]) assert_array_equal(idx, expected_idx) a = np.array([0,0,0], dtype='timedelta64[D]') b = np.array([2,1,0], dtype='timedelta64[D]') idx = np.lexsort((b, a)) expected_idx = np.array([2, 1, 0]) assert_array_equal(idx, expected_idx) def test_object(self): # gh-6312 a = np.random.choice(10, 1000) b = np.random.choice(['abc', 'xy', 'wz', 'efghi', 'qwst', 'x'], 1000) for u in a, b: left = np.lexsort((u.astype('O'),)) right = np.argsort(u, kind='mergesort') assert_array_equal(left, right) for u, v in (a, b), (b, a): idx = np.lexsort((u, v)) assert_array_equal(idx, np.lexsort((u.astype('O'), v))) assert_array_equal(idx, np.lexsort((u, v.astype('O')))) u, v = np.array(u, dtype='object'), np.array(v, dtype='object') assert_array_equal(idx, np.lexsort((u, v))) def test_invalid_axis(self): # gh-7528 x = np.linspace(0., 1., 42*3).reshape(42, 3) assert_raises(ValueError, np.lexsort, x, axis=2) class TestIO(object): """Test tofile, fromfile, tobytes, and fromstring""" def setUp(self): shape = (2, 4, 3) rand = np.random.random self.x = rand(shape) + rand(shape).astype(np.complex)*1j self.x[0,:, 1] = [np.nan, np.inf, -np.inf, np.nan] self.dtype = self.x.dtype self.tempdir = tempfile.mkdtemp() self.filename = tempfile.mktemp(dir=self.tempdir) def tearDown(self): shutil.rmtree(self.tempdir) def test_nofile(self): # this should probably be supported as a file # but for now test for proper errors b = io.BytesIO() assert_raises(IOError, np.fromfile, b, np.uint8, 80) d = np.ones(7) assert_raises(IOError, lambda x: x.tofile(b), d) def test_bool_fromstring(self): v = np.array([True, False, True, False], dtype=np.bool_) y = np.fromstring('1 0 -2.3 0.0', sep=' ', dtype=np.bool_) assert_array_equal(v, y) def test_uint64_fromstring(self): d = np.fromstring("9923372036854775807 104783749223640", dtype=np.uint64, sep=' ') e = np.array([9923372036854775807, 104783749223640], dtype=np.uint64) assert_array_equal(d, e) def test_int64_fromstring(self): d = np.fromstring("-25041670086757 104783749223640", dtype=np.int64, sep=' ') e = np.array([-25041670086757, 104783749223640], dtype=np.int64) assert_array_equal(d, e) def test_empty_files_binary(self): f = open(self.filename, 'w') f.close() y = np.fromfile(self.filename) assert_(y.size == 0, "Array not empty") def test_empty_files_text(self): f = open(self.filename, 'w') f.close() y = np.fromfile(self.filename, sep=" ") assert_(y.size == 0, "Array not empty") def test_roundtrip_file(self): f = open(self.filename, 'wb') self.x.tofile(f) f.close() # NB. doesn't work with flush+seek, due to use of C stdio f = open(self.filename, 'rb') y = np.fromfile(f, dtype=self.dtype) f.close() assert_array_equal(y, self.x.flat) def test_roundtrip_filename(self): self.x.tofile(self.filename) y = np.fromfile(self.filename, dtype=self.dtype) assert_array_equal(y, self.x.flat) def test_roundtrip_binary_str(self): s = self.x.tobytes() y = np.fromstring(s, dtype=self.dtype) assert_array_equal(y, self.x.flat) s = self.x.tobytes('F') y = np.fromstring(s, dtype=self.dtype) assert_array_equal(y, self.x.flatten('F')) def test_roundtrip_str(self): x = self.x.real.ravel() s = "@".join(map(str, x)) y = np.fromstring(s, sep="@") # NB. str imbues less precision nan_mask = ~np.isfinite(x) assert_array_equal(x[nan_mask], y[nan_mask]) assert_array_almost_equal(x[~nan_mask], y[~nan_mask], decimal=5) def test_roundtrip_repr(self): x = self.x.real.ravel() s = "@".join(map(repr, x)) y = np.fromstring(s, sep="@") assert_array_equal(x, y) def test_unbuffered_fromfile(self): # gh-6246 self.x.tofile(self.filename) def fail(*args, **kwargs): raise io.IOError('Can not tell or seek') with io.open(self.filename, 'rb', buffering=0) as f: f.seek = fail f.tell = fail y = np.fromfile(self.filename, dtype=self.dtype) assert_array_equal(y, self.x.flat) def test_largish_file(self): # check the fallocate path on files > 16MB d = np.zeros(4 * 1024 ** 2) d.tofile(self.filename) assert_equal(os.path.getsize(self.filename), d.nbytes) assert_array_equal(d, np.fromfile(self.filename)) # check offset with open(self.filename, "r+b") as f: f.seek(d.nbytes) d.tofile(f) assert_equal(os.path.getsize(self.filename), d.nbytes * 2) # check append mode (gh-8329) open(self.filename, "w").close() # delete file contents with open(self.filename, "ab") as f: d.tofile(f) assert_array_equal(d, np.fromfile(self.filename)) with open(self.filename, "ab") as f: d.tofile(f) assert_equal(os.path.getsize(self.filename), d.nbytes * 2) def test_file_position_after_fromfile(self): # gh-4118 sizes = [io.DEFAULT_BUFFER_SIZE//8, io.DEFAULT_BUFFER_SIZE, io.DEFAULT_BUFFER_SIZE*8] for size in sizes: f = open(self.filename, 'wb') f.seek(size-1) f.write(b'\0') f.close() for mode in ['rb', 'r+b']: err_msg = "%d %s" % (size, mode) f = open(self.filename, mode) f.read(2) np.fromfile(f, dtype=np.float64, count=1) pos = f.tell() f.close() assert_equal(pos, 10, err_msg=err_msg) def test_file_position_after_tofile(self): # gh-4118 sizes = [io.DEFAULT_BUFFER_SIZE//8, io.DEFAULT_BUFFER_SIZE, io.DEFAULT_BUFFER_SIZE*8] for size in sizes: err_msg = "%d" % (size,) f = open(self.filename, 'wb') f.seek(size-1) f.write(b'\0') f.seek(10) f.write(b'12') np.array([0], dtype=np.float64).tofile(f) pos = f.tell() f.close() assert_equal(pos, 10 + 2 + 8, err_msg=err_msg) f = open(self.filename, 'r+b') f.read(2) f.seek(0, 1) # seek between read&write required by ANSI C np.array([0], dtype=np.float64).tofile(f) pos = f.tell() f.close() assert_equal(pos, 10, err_msg=err_msg) def _check_from(self, s, value, **kw): y = np.fromstring(asbytes(s), **kw) assert_array_equal(y, value) f = open(self.filename, 'wb') f.write(asbytes(s)) f.close() y = np.fromfile(self.filename, **kw) assert_array_equal(y, value) def test_nan(self): self._check_from( "nan +nan -nan NaN nan(foo) +NaN(BAR) -NAN(q_u_u_x_)", [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], sep=' ') def test_inf(self): self._check_from( "inf +inf -inf infinity -Infinity iNfInItY -inF", [np.inf, np.inf, -np.inf, np.inf, -np.inf, np.inf, -np.inf], sep=' ') def test_numbers(self): self._check_from("1.234 -1.234 .3 .3e55 -123133.1231e+133", [1.234, -1.234, .3, .3e55, -123133.1231e+133], sep=' ') def test_binary(self): self._check_from('\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@', np.array([1, 2, 3, 4]), dtype='<f4') @dec.slow # takes > 1 minute on mechanical hard drive def test_big_binary(self): """Test workarounds for 32-bit limited fwrite, fseek, and ftell calls in windows. These normally would hang doing something like this. See http://projects.scipy.org/numpy/ticket/1660""" if sys.platform != 'win32': return try: # before workarounds, only up to 2**32-1 worked fourgbplus = 2**32 + 2**16 testbytes = np.arange(8, dtype=np.int8) n = len(testbytes) flike = tempfile.NamedTemporaryFile() f = flike.file np.tile(testbytes, fourgbplus // testbytes.nbytes).tofile(f) flike.seek(0) a = np.fromfile(f, dtype=np.int8) flike.close() assert_(len(a) == fourgbplus) # check only start and end for speed: assert_((a[:n] == testbytes).all()) assert_((a[-n:] == testbytes).all()) except (MemoryError, ValueError): pass def test_string(self): self._check_from('1,2,3,4', [1., 2., 3., 4.], sep=',') def test_counted_string(self): self._check_from('1,2,3,4', [1., 2., 3., 4.], count=4, sep=',') self._check_from('1,2,3,4', [1., 2., 3.], count=3, sep=',') self._check_from('1,2,3,4', [1., 2., 3., 4.], count=-1, sep=',') def test_string_with_ws(self): self._check_from('1 2 3 4 ', [1, 2, 3, 4], dtype=int, sep=' ') def test_counted_string_with_ws(self): self._check_from('1 2 3 4 ', [1, 2, 3], count=3, dtype=int, sep=' ') def test_ascii(self): self._check_from('1 , 2 , 3 , 4', [1., 2., 3., 4.], sep=',') self._check_from('1,2,3,4', [1., 2., 3., 4.], dtype=float, sep=',') def test_malformed(self): self._check_from('1.234 1,234', [1.234, 1.], sep=' ') def test_long_sep(self): self._check_from('1_x_3_x_4_x_5', [1, 3, 4, 5], sep='_x_') def test_dtype(self): v = np.array([1, 2, 3, 4], dtype=np.int_) self._check_from('1,2,3,4', v, sep=',', dtype=np.int_) def test_dtype_bool(self): # can't use _check_from because fromstring can't handle True/False v = np.array([True, False, True, False], dtype=np.bool_) s = '1,0,-2.3,0' f = open(self.filename, 'wb') f.write(asbytes(s)) f.close() y = np.fromfile(self.filename, sep=',', dtype=np.bool_) assert_(y.dtype == '?') assert_array_equal(y, v) def test_tofile_sep(self): x = np.array([1.51, 2, 3.51, 4], dtype=float) f = open(self.filename, 'w') x.tofile(f, sep=',') f.close() f = open(self.filename, 'r') s = f.read() f.close() #assert_equal(s, '1.51,2.0,3.51,4.0') y = np.array([float(p) for p in s.split(',')]) assert_array_equal(x,y) def test_tofile_format(self): x = np.array([1.51, 2, 3.51, 4], dtype=float) f = open(self.filename, 'w') x.tofile(f, sep=',', format='%.2f') f.close() f = open(self.filename, 'r') s = f.read() f.close() assert_equal(s, '1.51,2.00,3.51,4.00') def test_locale(self): in_foreign_locale(self.test_numbers)() in_foreign_locale(self.test_nan)() in_foreign_locale(self.test_inf)() in_foreign_locale(self.test_counted_string)() in_foreign_locale(self.test_ascii)() in_foreign_locale(self.test_malformed)() in_foreign_locale(self.test_tofile_sep)() in_foreign_locale(self.test_tofile_format)() class TestFromBuffer(object): def tst_basic(self, buffer, expected, kwargs): assert_array_equal(np.frombuffer(buffer,**kwargs), expected) def test_ip_basic(self): for byteorder in ['<', '>']: for dtype in [float, int, np.complex]: dt = np.dtype(dtype).newbyteorder(byteorder) x = (np.random.random((4, 7))*5).astype(dt) buf = x.tobytes() yield self.tst_basic, buf, x.flat, {'dtype':dt} def test_empty(self): yield self.tst_basic, asbytes(''), np.array([]), {} class TestFlat(TestCase): def setUp(self): a0 = np.arange(20.0) a = a0.reshape(4, 5) a0.shape = (4, 5) a.flags.writeable = False self.a = a self.b = a[::2, ::2] self.a0 = a0 self.b0 = a0[::2, ::2] def test_contiguous(self): testpassed = False try: self.a.flat[12] = 100.0 except ValueError: testpassed = True assert_(testpassed) assert_(self.a.flat[12] == 12.0) def test_discontiguous(self): testpassed = False try: self.b.flat[4] = 100.0 except ValueError: testpassed = True assert_(testpassed) assert_(self.b.flat[4] == 12.0) def test___array__(self): c = self.a.flat.__array__() d = self.b.flat.__array__() e = self.a0.flat.__array__() f = self.b0.flat.__array__() assert_(c.flags.writeable is False) assert_(d.flags.writeable is False) assert_(e.flags.writeable is True) assert_(f.flags.writeable is True) assert_(c.flags.updateifcopy is False) assert_(d.flags.updateifcopy is False) assert_(e.flags.updateifcopy is False) assert_(f.flags.updateifcopy is True) assert_(f.base is self.b0) class TestResize(TestCase): def test_basic(self): x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) if IS_PYPY: x.resize((5, 5), refcheck=False) else: x.resize((5, 5)) assert_array_equal(x.flat[:9], np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).flat) assert_array_equal(x[9:].flat, 0) def test_check_reference(self): x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) y = x self.assertRaises(ValueError, x.resize, (5, 1)) del y # avoid pyflakes unused variable warning. def test_int_shape(self): x = np.eye(3) if IS_PYPY: x.resize(3, refcheck=False) else: x.resize(3) assert_array_equal(x, np.eye(3)[0,:]) def test_none_shape(self): x = np.eye(3) x.resize(None) assert_array_equal(x, np.eye(3)) x.resize() assert_array_equal(x, np.eye(3)) def test_invalid_arguements(self): self.assertRaises(TypeError, np.eye(3).resize, 'hi') self.assertRaises(ValueError, np.eye(3).resize, -1) self.assertRaises(TypeError, np.eye(3).resize, order=1) self.assertRaises(TypeError, np.eye(3).resize, refcheck='hi') def test_freeform_shape(self): x = np.eye(3) if IS_PYPY: x.resize(3, 2, 1, refcheck=False) else: x.resize(3, 2, 1) assert_(x.shape == (3, 2, 1)) def test_zeros_appended(self): x = np.eye(3) if IS_PYPY: x.resize(2, 3, 3, refcheck=False) else: x.resize(2, 3, 3) assert_array_equal(x[0], np.eye(3)) assert_array_equal(x[1], np.zeros((3, 3))) def test_obj_obj(self): # check memory is initialized on resize, gh-4857 a = np.ones(10, dtype=[('k', object, 2)]) if IS_PYPY: a.resize(15, refcheck=False) else: a.resize(15,) assert_equal(a.shape, (15,)) assert_array_equal(a['k'][-5:], 0) assert_array_equal(a['k'][:-5], 1) class TestRecord(TestCase): def test_field_rename(self): dt = np.dtype([('f', float), ('i', int)]) dt.names = ['p', 'q'] assert_equal(dt.names, ['p', 'q']) def test_multiple_field_name_occurrence(self): def test_assign(): dtype = np.dtype([("A", "f8"), ("B", "f8"), ("A", "f8")]) # Error raised when multiple fields have the same name assert_raises(ValueError, test_assign) if sys.version_info[0] >= 3: def test_bytes_fields(self): # Bytes are not allowed in field names and not recognized in titles # on Py3 assert_raises(TypeError, np.dtype, [(asbytes('a'), int)]) assert_raises(TypeError, np.dtype, [(('b', asbytes('a')), int)]) dt = np.dtype([((asbytes('a'), 'b'), int)]) assert_raises(ValueError, dt.__getitem__, asbytes('a')) x = np.array([(1,), (2,), (3,)], dtype=dt) assert_raises(IndexError, x.__getitem__, asbytes('a')) y = x[0] assert_raises(IndexError, y.__getitem__, asbytes('a')) def test_multiple_field_name_unicode(self): def test_assign_unicode(): dt = np.dtype([("\u20B9", "f8"), ("B", "f8"), ("\u20B9", "f8")]) # Error raised when multiple fields have the same name(unicode included) assert_raises(ValueError, test_assign_unicode) else: def test_unicode_field_titles(self): # Unicode field titles are added to field dict on Py2 title = unicode('b') dt = np.dtype([((title, 'a'), int)]) dt[title] dt['a'] x = np.array([(1,), (2,), (3,)], dtype=dt) x[title] x['a'] y = x[0] y[title] y['a'] def test_unicode_field_names(self): # Unicode field names are not allowed on Py2 title = unicode('b') assert_raises(TypeError, np.dtype, [(title, int)]) assert_raises(TypeError, np.dtype, [(('a', title), int)]) def test_field_names(self): # Test unicode and 8-bit / byte strings can be used a = np.zeros((1,), dtype=[('f1', 'i4'), ('f2', 'i4'), ('f3', [('sf1', 'i4')])]) is_py3 = sys.version_info[0] >= 3 if is_py3: funcs = (str,) # byte string indexing fails gracefully assert_raises(IndexError, a.__setitem__, asbytes('f1'), 1) assert_raises(IndexError, a.__getitem__, asbytes('f1')) assert_raises(IndexError, a['f1'].__setitem__, asbytes('sf1'), 1) assert_raises(IndexError, a['f1'].__getitem__, asbytes('sf1')) else: funcs = (str, unicode) for func in funcs: b = a.copy() fn1 = func('f1') b[fn1] = 1 assert_equal(b[fn1], 1) fnn = func('not at all') assert_raises(ValueError, b.__setitem__, fnn, 1) assert_raises(ValueError, b.__getitem__, fnn) b[0][fn1] = 2 assert_equal(b[fn1], 2) # Subfield assert_raises(ValueError, b[0].__setitem__, fnn, 1) assert_raises(ValueError, b[0].__getitem__, fnn) # Subfield fn3 = func('f3') sfn1 = func('sf1') b[fn3][sfn1] = 1 assert_equal(b[fn3][sfn1], 1) assert_raises(ValueError, b[fn3].__setitem__, fnn, 1) assert_raises(ValueError, b[fn3].__getitem__, fnn) # multiple subfields fn2 = func('f2') b[fn2] = 3 with suppress_warnings() as sup: sup.filter(FutureWarning, "Assignment between structured arrays.*") sup.filter(FutureWarning, "Numpy has detected that you .*") assert_equal(b[['f1', 'f2']][0].tolist(), (2, 3)) assert_equal(b[['f2', 'f1']][0].tolist(), (3, 2)) assert_equal(b[['f1', 'f3']][0].tolist(), (2, (1,))) # view of subfield view/copy assert_equal(b[['f1', 'f2']][0].view(('i4', 2)).tolist(), (2, 3)) assert_equal(b[['f2', 'f1']][0].view(('i4', 2)).tolist(), (3, 2)) view_dtype = [('f1', 'i4'), ('f3', [('', 'i4')])] assert_equal(b[['f1', 'f3']][0].view(view_dtype).tolist(), (2, (1,))) # non-ascii unicode field indexing is well behaved if not is_py3: raise SkipTest('non ascii unicode field indexing skipped; ' 'raises segfault on python 2.x') else: assert_raises(ValueError, a.__setitem__, sixu('\u03e0'), 1) assert_raises(ValueError, a.__getitem__, sixu('\u03e0')) def test_field_names_deprecation(self): def collect_warnings(f, *args, **kwargs): with warnings.catch_warnings(record=True) as log: warnings.simplefilter("always") f(*args, **kwargs) return [w.category for w in log] a = np.zeros((1,), dtype=[('f1', 'i4'), ('f2', 'i4'), ('f3', [('sf1', 'i4')])]) a['f1'][0] = 1 a['f2'][0] = 2 a['f3'][0] = (3,) b = np.zeros((1,), dtype=[('f1', 'i4'), ('f2', 'i4'), ('f3', [('sf1', 'i4')])]) b['f1'][0] = 1 b['f2'][0] = 2 b['f3'][0] = (3,) # All the different functions raise a warning, but not an error assert_equal(collect_warnings(a[['f1', 'f2']].__setitem__, 0, (10, 20)), [FutureWarning]) # For <=1.12 a is not modified, but it will be in 1.13 assert_equal(a, b) # Views also warn subset = a[['f1', 'f2']] subset_view = subset.view() assert_equal(collect_warnings(subset_view['f1'].__setitem__, 0, 10), [FutureWarning]) # But the write goes through: assert_equal(subset['f1'][0], 10) # Only one warning per multiple field indexing, though (even if there # are multiple views involved): assert_equal(collect_warnings(subset['f1'].__setitem__, 0, 10), []) # make sure views of a multi-field index warn too c = np.zeros(3, dtype='i8,i8,i8') assert_equal(collect_warnings(c[['f0', 'f2']].view, 'i8,i8'), [FutureWarning]) # make sure assignment using a different dtype warns a = np.zeros(2, dtype=[('a', 'i4'), ('b', 'i4')]) b = np.zeros(2, dtype=[('b', 'i4'), ('a', 'i4')]) assert_equal(collect_warnings(a.__setitem__, (), b), [FutureWarning]) def test_record_hash(self): a = np.array([(1, 2), (1, 2)], dtype='i1,i2') a.flags.writeable = False b = np.array([(1, 2), (3, 4)], dtype=[('num1', 'i1'), ('num2', 'i2')]) b.flags.writeable = False c = np.array([(1, 2), (3, 4)], dtype='i1,i2') c.flags.writeable = False self.assertTrue(hash(a[0]) == hash(a[1])) self.assertTrue(hash(a[0]) == hash(b[0])) self.assertTrue(hash(a[0]) != hash(b[1])) self.assertTrue(hash(c[0]) == hash(a[0]) and c[0] == a[0]) def test_record_no_hash(self): a = np.array([(1, 2), (1, 2)], dtype='i1,i2') self.assertRaises(TypeError, hash, a[0]) def test_empty_structure_creation(self): # make sure these do not raise errors (gh-5631) np.array([()], dtype={'names': [], 'formats': [], 'offsets': [], 'itemsize': 12}) np.array([(), (), (), (), ()], dtype={'names': [], 'formats': [], 'offsets': [], 'itemsize': 12}) class TestView(TestCase): def test_basic(self): x = np.array([(1, 2, 3, 4), (5, 6, 7, 8)], dtype=[('r', np.int8), ('g', np.int8), ('b', np.int8), ('a', np.int8)]) # We must be specific about the endianness here: y = x.view(dtype='<i4') # ... and again without the keyword. z = x.view('<i4') assert_array_equal(y, z) assert_array_equal(y, [67305985, 134678021]) def _mean(a, **args): return a.mean(**args) def _var(a, **args): return a.var(**args) def _std(a, **args): return a.std(**args) class TestStats(TestCase): funcs = [_mean, _var, _std] def setUp(self): np.random.seed(range(3)) self.rmat = np.random.random((4, 5)) self.cmat = self.rmat + 1j * self.rmat self.omat = np.array([Decimal(repr(r)) for r in self.rmat.flat]) self.omat = self.omat.reshape(4, 5) def test_keepdims(self): mat = np.eye(3) for f in self.funcs: for axis in [0, 1]: res = f(mat, axis=axis, keepdims=True) assert_(res.ndim == mat.ndim) assert_(res.shape[axis] == 1) for axis in [None]: res = f(mat, axis=axis, keepdims=True) assert_(res.shape == (1, 1)) def test_out(self): mat = np.eye(3) for f in self.funcs: out = np.zeros(3) tgt = f(mat, axis=1) res = f(mat, axis=1, out=out) assert_almost_equal(res, out) assert_almost_equal(res, tgt) out = np.empty(2) assert_raises(ValueError, f, mat, axis=1, out=out) out = np.empty((2, 2)) assert_raises(ValueError, f, mat, axis=1, out=out) def test_dtype_from_input(self): icodes = np.typecodes['AllInteger'] fcodes = np.typecodes['AllFloat'] # object type for f in self.funcs: mat = np.array([[Decimal(1)]*3]*3) tgt = mat.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = type(f(mat, axis=None)) assert_(res is Decimal) # integer types for f in self.funcs: for c in icodes: mat = np.eye(3, dtype=c) tgt = np.float64 res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) # mean for float types for f in [_mean]: for c in fcodes: mat = np.eye(3, dtype=c) tgt = mat.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) # var, std for float types for f in [_var, _std]: for c in fcodes: mat = np.eye(3, dtype=c) # deal with complex types tgt = mat.real.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) def test_dtype_from_dtype(self): mat = np.eye(3) # stats for integer types # FIXME: # this needs definition as there are lots places along the line # where type casting may take place. # for f in self.funcs: # for c in np.typecodes['AllInteger']: # tgt = np.dtype(c).type # res = f(mat, axis=1, dtype=c).dtype.type # assert_(res is tgt) # # scalar case # res = f(mat, axis=None, dtype=c).dtype.type # assert_(res is tgt) # stats for float types for f in self.funcs: for c in np.typecodes['AllFloat']: tgt = np.dtype(c).type res = f(mat, axis=1, dtype=c).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None, dtype=c).dtype.type assert_(res is tgt) def test_ddof(self): for f in [_var]: for ddof in range(3): dim = self.rmat.shape[1] tgt = f(self.rmat, axis=1) * dim res = f(self.rmat, axis=1, ddof=ddof) * (dim - ddof) for f in [_std]: for ddof in range(3): dim = self.rmat.shape[1] tgt = f(self.rmat, axis=1) * np.sqrt(dim) res = f(self.rmat, axis=1, ddof=ddof) * np.sqrt(dim - ddof) assert_almost_equal(res, tgt) assert_almost_equal(res, tgt) def test_ddof_too_big(self): dim = self.rmat.shape[1] for f in [_var, _std]: for ddof in range(dim, dim + 2): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = f(self.rmat, axis=1, ddof=ddof) assert_(not (res < 0).any()) assert_(len(w) > 0) assert_(issubclass(w[0].category, RuntimeWarning)) def test_empty(self): A = np.zeros((0, 3)) for f in self.funcs: for axis in [0, None]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(f(A, axis=axis)).all()) assert_(len(w) > 0) assert_(issubclass(w[0].category, RuntimeWarning)) for axis in [1]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_equal(f(A, axis=axis), np.zeros([])) def test_mean_values(self): for mat in [self.rmat, self.cmat, self.omat]: for axis in [0, 1]: tgt = mat.sum(axis=axis) res = _mean(mat, axis=axis) * mat.shape[axis] assert_almost_equal(res, tgt) for axis in [None]: tgt = mat.sum(axis=axis) res = _mean(mat, axis=axis) * np.prod(mat.shape) assert_almost_equal(res, tgt) def test_mean_float16(self): # This fail if the sum inside mean is done in float16 instead # of float32. assert _mean(np.ones(100000, dtype='float16')) == 1 def test_var_values(self): for mat in [self.rmat, self.cmat, self.omat]: for axis in [0, 1, None]: msqr = _mean(mat * mat.conj(), axis=axis) mean = _mean(mat, axis=axis) tgt = msqr - mean * mean.conjugate() res = _var(mat, axis=axis) assert_almost_equal(res, tgt) def test_std_values(self): for mat in [self.rmat, self.cmat, self.omat]: for axis in [0, 1, None]: tgt = np.sqrt(_var(mat, axis=axis)) res = _std(mat, axis=axis) assert_almost_equal(res, tgt) def test_subclass(self): class TestArray(np.ndarray): def __new__(cls, data, info): result = np.array(data) result = result.view(cls) result.info = info return result def __array_finalize__(self, obj): self.info = getattr(obj, "info", '') dat = TestArray([[1, 2, 3, 4], [5, 6, 7, 8]], 'jubba') res = dat.mean(1) assert_(res.info == dat.info) res = dat.std(1) assert_(res.info == dat.info) res = dat.var(1) assert_(res.info == dat.info) class TestVdot(TestCase): def test_basic(self): dt_numeric = np.typecodes['AllFloat'] + np.typecodes['AllInteger'] dt_complex = np.typecodes['Complex'] # test real a = np.eye(3) for dt in dt_numeric + 'O': b = a.astype(dt) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), 3) # test complex a = np.eye(3) * 1j for dt in dt_complex + 'O': b = a.astype(dt) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), 3) # test boolean b = np.eye(3, dtype=np.bool) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), True) def test_vdot_array_order(self): a = np.array([[1, 2], [3, 4]], order='C') b = np.array([[1, 2], [3, 4]], order='F') res = np.vdot(a, a) # integer arrays are exact assert_equal(np.vdot(a, b), res) assert_equal(np.vdot(b, a), res) assert_equal(np.vdot(b, b), res) def test_vdot_uncontiguous(self): for size in [2, 1000]: # Different sizes match different branches in vdot. a = np.zeros((size, 2, 2)) b = np.zeros((size, 2, 2)) a[:, 0, 0] = np.arange(size) b[:, 0, 0] = np.arange(size) + 1 # Make a and b uncontiguous: a = a[..., 0] b = b[..., 0] assert_equal(np.vdot(a, b), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a, b.copy()), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a.copy(), b), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a.copy('F'), b), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a, b.copy('F')), np.vdot(a.flatten(), b.flatten())) class TestDot(TestCase): def setUp(self): np.random.seed(128) self.A = np.random.rand(4, 2) self.b1 = np.random.rand(2, 1) self.b2 = np.random.rand(2) self.b3 = np.random.rand(1, 2) self.b4 = np.random.rand(4) self.N = 7 def test_dotmatmat(self): A = self.A res = np.dot(A.transpose(), A) tgt = np.array([[1.45046013, 0.86323640], [0.86323640, 0.84934569]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotmatvec(self): A, b1 = self.A, self.b1 res = np.dot(A, b1) tgt = np.array([[0.32114320], [0.04889721], [0.15696029], [0.33612621]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotmatvec2(self): A, b2 = self.A, self.b2 res = np.dot(A, b2) tgt = np.array([0.29677940, 0.04518649, 0.14468333, 0.31039293]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat(self): A, b4 = self.A, self.b4 res = np.dot(b4, A) tgt = np.array([1.23495091, 1.12222648]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat2(self): b3, A = self.b3, self.A res = np.dot(b3, A.transpose()) tgt = np.array([[0.58793804, 0.08957460, 0.30605758, 0.62716383]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat3(self): A, b4 = self.A, self.b4 res = np.dot(A.transpose(), b4) tgt = np.array([1.23495091, 1.12222648]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecvecouter(self): b1, b3 = self.b1, self.b3 res = np.dot(b1, b3) tgt = np.array([[0.20128610, 0.08400440], [0.07190947, 0.03001058]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecvecinner(self): b1, b3 = self.b1, self.b3 res = np.dot(b3, b1) tgt = np.array([[ 0.23129668]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotcolumnvect1(self): b1 = np.ones((3, 1)) b2 = [5.3] res = np.dot(b1, b2) tgt = np.array([5.3, 5.3, 5.3]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotcolumnvect2(self): b1 = np.ones((3, 1)).transpose() b2 = [6.2] res = np.dot(b2, b1) tgt = np.array([6.2, 6.2, 6.2]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecscalar(self): np.random.seed(100) b1 = np.random.rand(1, 1) b2 = np.random.rand(1, 4) res = np.dot(b1, b2) tgt = np.array([[0.15126730, 0.23068496, 0.45905553, 0.00256425]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecscalar2(self): np.random.seed(100) b1 = np.random.rand(4, 1) b2 = np.random.rand(1, 1) res = np.dot(b1, b2) tgt = np.array([[0.00256425],[0.00131359],[0.00200324],[ 0.00398638]]) assert_almost_equal(res, tgt, decimal=self.N) def test_all(self): dims = [(), (1,), (1, 1)] dout = [(), (1,), (1, 1), (1,), (), (1,), (1, 1), (1,), (1, 1)] for dim, (dim1, dim2) in zip(dout, itertools.product(dims, dims)): b1 = np.zeros(dim1) b2 = np.zeros(dim2) res = np.dot(b1, b2) tgt = np.zeros(dim) assert_(res.shape == tgt.shape) assert_almost_equal(res, tgt, decimal=self.N) def test_vecobject(self): class Vec(object): def __init__(self, sequence=None): if sequence is None: sequence = [] self.array = np.array(sequence) def __add__(self, other): out = Vec() out.array = self.array + other.array return out def __sub__(self, other): out = Vec() out.array = self.array - other.array return out def __mul__(self, other): # with scalar out = Vec(self.array.copy()) out.array *= other return out def __rmul__(self, other): return self*other U_non_cont = np.transpose([[1., 1.], [1., 2.]]) U_cont = np.ascontiguousarray(U_non_cont) x = np.array([Vec([1., 0.]), Vec([0., 1.])]) zeros = np.array([Vec([0., 0.]), Vec([0., 0.])]) zeros_test = np.dot(U_cont, x) - np.dot(U_non_cont, x) assert_equal(zeros[0].array, zeros_test[0].array) assert_equal(zeros[1].array, zeros_test[1].array) def test_dot_2args(self): from numpy.core.multiarray import dot a = np.array([[1, 2], [3, 4]], dtype=float) b = np.array([[1, 0], [1, 1]], dtype=float) c = np.array([[3, 2], [7, 4]], dtype=float) d = dot(a, b) assert_allclose(c, d) def test_dot_3args(self): from numpy.core.multiarray import dot np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 32)) for i in range(12): dot(f, v, r) if HAS_REFCOUNT: assert_equal(sys.getrefcount(r), 2) r2 = dot(f, v, out=None) assert_array_equal(r2, r) assert_(r is dot(f, v, out=r)) v = v[:, 0].copy() # v.shape == (16,) r = r[:, 0].copy() # r.shape == (1024,) r2 = dot(f, v) assert_(r is dot(f, v, r)) assert_array_equal(r2, r) def test_dot_3args_errors(self): from numpy.core.multiarray import dot np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 31)) assert_raises(ValueError, dot, f, v, r) r = np.empty((1024,)) assert_raises(ValueError, dot, f, v, r) r = np.empty((32,)) assert_raises(ValueError, dot, f, v, r) r = np.empty((32, 1024)) assert_raises(ValueError, dot, f, v, r) assert_raises(ValueError, dot, f, v, r.T) r = np.empty((1024, 64)) assert_raises(ValueError, dot, f, v, r[:, ::2]) assert_raises(ValueError, dot, f, v, r[:, :32]) r = np.empty((1024, 32), dtype=np.float32) assert_raises(ValueError, dot, f, v, r) r = np.empty((1024, 32), dtype=int) assert_raises(ValueError, dot, f, v, r) def test_dot_array_order(self): a = np.array([[1, 2], [3, 4]], order='C') b = np.array([[1, 2], [3, 4]], order='F') res = np.dot(a, a) # integer arrays are exact assert_equal(np.dot(a, b), res) assert_equal(np.dot(b, a), res) assert_equal(np.dot(b, b), res) def test_dot_scalar_and_matrix_of_objects(self): # Ticket #2469 arr = np.matrix([1, 2], dtype=object) desired = np.matrix([[3, 6]], dtype=object) assert_equal(np.dot(arr, 3), desired) assert_equal(np.dot(3, arr), desired) def test_accelerate_framework_sgemv_fix(self): def aligned_array(shape, align, dtype, order='C'): d = dtype(0) N = np.prod(shape) tmp = np.zeros(N * d.nbytes + align, dtype=np.uint8) address = tmp.__array_interface__["data"][0] for offset in range(align): if (address + offset) % align == 0: break tmp = tmp[offset:offset+N*d.nbytes].view(dtype=dtype) return tmp.reshape(shape, order=order) def as_aligned(arr, align, dtype, order='C'): aligned = aligned_array(arr.shape, align, dtype, order) aligned[:] = arr[:] return aligned def assert_dot_close(A, X, desired): assert_allclose(np.dot(A, X), desired, rtol=1e-5, atol=1e-7) m = aligned_array(100, 15, np.float32) s = aligned_array((100, 100), 15, np.float32) np.dot(s, m) # this will always segfault if the bug is present testdata = itertools.product((15,32), (10000,), (200,89), ('C','F')) for align, m, n, a_order in testdata: # Calculation in double precision A_d = np.random.rand(m, n) X_d = np.random.rand(n) desired = np.dot(A_d, X_d) # Calculation with aligned single precision A_f = as_aligned(A_d, align, np.float32, order=a_order) X_f = as_aligned(X_d, align, np.float32) assert_dot_close(A_f, X_f, desired) # Strided A rows A_d_2 = A_d[::2] desired = np.dot(A_d_2, X_d) A_f_2 = A_f[::2] assert_dot_close(A_f_2, X_f, desired) # Strided A columns, strided X vector A_d_22 = A_d_2[:, ::2] X_d_2 = X_d[::2] desired = np.dot(A_d_22, X_d_2) A_f_22 = A_f_2[:, ::2] X_f_2 = X_f[::2] assert_dot_close(A_f_22, X_f_2, desired) # Check the strides are as expected if a_order == 'F': assert_equal(A_f_22.strides, (8, 8 * m)) else: assert_equal(A_f_22.strides, (8 * n, 8)) assert_equal(X_f_2.strides, (8,)) # Strides in A rows + cols only X_f_2c = as_aligned(X_f_2, align, np.float32) assert_dot_close(A_f_22, X_f_2c, desired) # Strides just in A cols A_d_12 = A_d[:, ::2] desired = np.dot(A_d_12, X_d_2) A_f_12 = A_f[:, ::2] assert_dot_close(A_f_12, X_f_2c, desired) # Strides in A cols and X assert_dot_close(A_f_12, X_f_2, desired) class MatmulCommon(): """Common tests for '@' operator and numpy.matmul. Do not derive from TestCase to avoid nose running it. """ # Should work with these types. Will want to add # "O" at some point types = "?bhilqBHILQefdgFDG" def test_exceptions(self): dims = [ ((1,), (2,)), # mismatched vector vector ((2, 1,), (2,)), # mismatched matrix vector ((2,), (1, 2)), # mismatched vector matrix ((1, 2), (3, 1)), # mismatched matrix matrix ((1,), ()), # vector scalar ((), (1)), # scalar vector ((1, 1), ()), # matrix scalar ((), (1, 1)), # scalar matrix ((2, 2, 1), (3, 1, 2)), # cannot broadcast ] for dt, (dm1, dm2) in itertools.product(self.types, dims): a = np.ones(dm1, dtype=dt) b = np.ones(dm2, dtype=dt) assert_raises(ValueError, self.matmul, a, b) def test_shapes(self): dims = [ ((1, 1), (2, 1, 1)), # broadcast first argument ((2, 1, 1), (1, 1)), # broadcast second argument ((2, 1, 1), (2, 1, 1)), # matrix stack sizes match ] for dt, (dm1, dm2) in itertools.product(self.types, dims): a = np.ones(dm1, dtype=dt) b = np.ones(dm2, dtype=dt) res = self.matmul(a, b) assert_(res.shape == (2, 1, 1)) # vector vector returns scalars. for dt in self.types: a = np.ones((2,), dtype=dt) b = np.ones((2,), dtype=dt) c = self.matmul(a, b) assert_(np.array(c).shape == ()) def test_result_types(self): mat = np.ones((1,1)) vec = np.ones((1,)) for dt in self.types: m = mat.astype(dt) v = vec.astype(dt) for arg in [(m, v), (v, m), (m, m)]: res = self.matmul(*arg) assert_(res.dtype == dt) # vector vector returns scalars res = self.matmul(v, v) assert_(type(res) is np.dtype(dt).type) def test_vector_vector_values(self): vec = np.array([1, 2]) tgt = 5 for dt in self.types[1:]: v1 = vec.astype(dt) res = self.matmul(v1, v1) assert_equal(res, tgt) # boolean type vec = np.array([True, True], dtype='?') res = self.matmul(vec, vec) assert_equal(res, True) def test_vector_matrix_values(self): vec = np.array([1, 2]) mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([7, 10]) tgt2 = np.stack([tgt1]*2, axis=0) for dt in self.types[1:]: v = vec.astype(dt) m1 = mat1.astype(dt) m2 = mat2.astype(dt) res = self.matmul(v, m1) assert_equal(res, tgt1) res = self.matmul(v, m2) assert_equal(res, tgt2) # boolean type vec = np.array([True, False]) mat1 = np.array([[True, False], [False, True]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([True, False]) tgt2 = np.stack([tgt1]*2, axis=0) res = self.matmul(vec, mat1) assert_equal(res, tgt1) res = self.matmul(vec, mat2) assert_equal(res, tgt2) def test_matrix_vector_values(self): vec = np.array([1, 2]) mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([5, 11]) tgt2 = np.stack([tgt1]*2, axis=0) for dt in self.types[1:]: v = vec.astype(dt) m1 = mat1.astype(dt) m2 = mat2.astype(dt) res = self.matmul(m1, v) assert_equal(res, tgt1) res = self.matmul(m2, v) assert_equal(res, tgt2) # boolean type vec = np.array([True, False]) mat1 = np.array([[True, False], [False, True]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([True, False]) tgt2 = np.stack([tgt1]*2, axis=0) res = self.matmul(vec, mat1) assert_equal(res, tgt1) res = self.matmul(vec, mat2) assert_equal(res, tgt2) def test_matrix_matrix_values(self): mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.array([[1, 0], [1, 1]]) mat12 = np.stack([mat1, mat2], axis=0) mat21 = np.stack([mat2, mat1], axis=0) tgt11 = np.array([[7, 10], [15, 22]]) tgt12 = np.array([[3, 2], [7, 4]]) tgt21 = np.array([[1, 2], [4, 6]]) tgt12_21 = np.stack([tgt12, tgt21], axis=0) tgt11_12 = np.stack((tgt11, tgt12), axis=0) tgt11_21 = np.stack((tgt11, tgt21), axis=0) for dt in self.types[1:]: m1 = mat1.astype(dt) m2 = mat2.astype(dt) m12 = mat12.astype(dt) m21 = mat21.astype(dt) # matrix @ matrix res = self.matmul(m1, m2) assert_equal(res, tgt12) res = self.matmul(m2, m1) assert_equal(res, tgt21) # stacked @ matrix res = self.matmul(m12, m1) assert_equal(res, tgt11_21) # matrix @ stacked res = self.matmul(m1, m12) assert_equal(res, tgt11_12) # stacked @ stacked res = self.matmul(m12, m21) assert_equal(res, tgt12_21) # boolean type m1 = np.array([[1, 1], [0, 0]], dtype=np.bool_) m2 = np.array([[1, 0], [1, 1]], dtype=np.bool_) m12 = np.stack([m1, m2], axis=0) m21 = np.stack([m2, m1], axis=0) tgt11 = m1 tgt12 = m1 tgt21 = np.array([[1, 1], [1, 1]], dtype=np.bool_) tgt12_21 = np.stack([tgt12, tgt21], axis=0) tgt11_12 = np.stack((tgt11, tgt12), axis=0) tgt11_21 = np.stack((tgt11, tgt21), axis=0) # matrix @ matrix res = self.matmul(m1, m2) assert_equal(res, tgt12) res = self.matmul(m2, m1) assert_equal(res, tgt21) # stacked @ matrix res = self.matmul(m12, m1) assert_equal(res, tgt11_21) # matrix @ stacked res = self.matmul(m1, m12) assert_equal(res, tgt11_12) # stacked @ stacked res = self.matmul(m12, m21) assert_equal(res, tgt12_21) def test_numpy_ufunc_override(self): # 2016-01-29: NUMPY_UFUNC_DISABLED return class A(np.ndarray): def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return "A" class B(np.ndarray): def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return NotImplemented a = A([1, 2]) b = B([1, 2]) c = np.ones(2) assert_equal(self.matmul(a, b), "A") assert_equal(self.matmul(b, a), "A") assert_raises(TypeError, self.matmul, b, c) class TestMatmul(MatmulCommon, TestCase): matmul = np.matmul def test_out_arg(self): a = np.ones((2, 2), dtype=np.float) b = np.ones((2, 2), dtype=np.float) tgt = np.full((2,2), 2, dtype=np.float) # test as positional argument msg = "out positional argument" out = np.zeros((2, 2), dtype=np.float) self.matmul(a, b, out) assert_array_equal(out, tgt, err_msg=msg) # test as keyword argument msg = "out keyword argument" out = np.zeros((2, 2), dtype=np.float) self.matmul(a, b, out=out) assert_array_equal(out, tgt, err_msg=msg) # test out with not allowed type cast (safe casting) # einsum and cblas raise different error types, so # use Exception. msg = "out argument with illegal cast" out = np.zeros((2, 2), dtype=np.int32) assert_raises(Exception, self.matmul, a, b, out=out) # skip following tests for now, cblas does not allow non-contiguous # outputs and consistency with dot would require same type, # dimensions, subtype, and c_contiguous. # test out with allowed type cast # msg = "out argument with allowed cast" # out = np.zeros((2, 2), dtype=np.complex128) # self.matmul(a, b, out=out) # assert_array_equal(out, tgt, err_msg=msg) # test out non-contiguous # msg = "out argument with non-contiguous layout" # c = np.zeros((2, 2, 2), dtype=np.float) # self.matmul(a, b, out=c[..., 0]) # assert_array_equal(c, tgt, err_msg=msg) if sys.version_info[:2] >= (3, 5): class TestMatmulOperator(MatmulCommon, TestCase): import operator matmul = operator.matmul def test_array_priority_override(self): class A(object): __array_priority__ = 1000 def __matmul__(self, other): return "A" def __rmatmul__(self, other): return "A" a = A() b = np.ones(2) assert_equal(self.matmul(a, b), "A") assert_equal(self.matmul(b, a), "A") def test_matmul_inplace(): # It would be nice to support in-place matmul eventually, but for now # we don't have a working implementation, so better just to error out # and nudge people to writing "a = a @ b". a = np.eye(3) b = np.eye(3) assert_raises(TypeError, a.__imatmul__, b) import operator assert_raises(TypeError, operator.imatmul, a, b) # we avoid writing the token `exec` so as not to crash python 2's # parser exec_ = getattr(builtins, "exec") assert_raises(TypeError, exec_, "a @= b", globals(), locals()) class TestInner(TestCase): def test_inner_type_mismatch(self): c = 1. A = np.array((1,1), dtype='i,i') assert_raises(TypeError, np.inner, c, A) assert_raises(TypeError, np.inner, A, c) def test_inner_scalar_and_vector(self): for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?': sca = np.array(3, dtype=dt)[()] vec = np.array([1, 2], dtype=dt) desired = np.array([3, 6], dtype=dt) assert_equal(np.inner(vec, sca), desired) assert_equal(np.inner(sca, vec), desired) def test_inner_scalar_and_matrix(self): for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?': sca = np.array(3, dtype=dt)[()] arr = np.matrix([[1, 2], [3, 4]], dtype=dt) desired = np.matrix([[3, 6], [9, 12]], dtype=dt) assert_equal(np.inner(arr, sca), desired) assert_equal(np.inner(sca, arr), desired) def test_inner_scalar_and_matrix_of_objects(self): # Ticket #4482 arr = np.matrix([1, 2], dtype=object) desired = np.matrix([[3, 6]], dtype=object) assert_equal(np.inner(arr, 3), desired) assert_equal(np.inner(3, arr), desired) def test_vecself(self): # Ticket 844. # Inner product of a vector with itself segfaults or give # meaningless result a = np.zeros(shape=(1, 80), dtype=np.float64) p = np.inner(a, a) assert_almost_equal(p, 0, decimal=14) def test_inner_product_with_various_contiguities(self): # github issue 6532 for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?': # check an inner product involving a matrix transpose A = np.array([[1, 2], [3, 4]], dtype=dt) B = np.array([[1, 3], [2, 4]], dtype=dt) C = np.array([1, 1], dtype=dt) desired = np.array([4, 6], dtype=dt) assert_equal(np.inner(A.T, C), desired) assert_equal(np.inner(C, A.T), desired) assert_equal(np.inner(B, C), desired) assert_equal(np.inner(C, B), desired) # check a matrix product desired = np.array([[7, 10], [15, 22]], dtype=dt) assert_equal(np.inner(A, B), desired) # check the syrk vs. gemm paths desired = np.array([[5, 11], [11, 25]], dtype=dt) assert_equal(np.inner(A, A), desired) assert_equal(np.inner(A, A.copy()), desired) # check an inner product involving an aliased and reversed view a = np.arange(5).astype(dt) b = a[::-1] desired = np.array(10, dtype=dt).item() assert_equal(np.inner(b, a), desired) def test_3d_tensor(self): for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?': a = np.arange(24).reshape(2,3,4).astype(dt) b = np.arange(24, 48).reshape(2,3,4).astype(dt) desired = np.array( [[[[ 158, 182, 206], [ 230, 254, 278]], [[ 566, 654, 742], [ 830, 918, 1006]], [[ 974, 1126, 1278], [1430, 1582, 1734]]], [[[1382, 1598, 1814], [2030, 2246, 2462]], [[1790, 2070, 2350], [2630, 2910, 3190]], [[2198, 2542, 2886], [3230, 3574, 3918]]]], dtype=dt ) assert_equal(np.inner(a, b), desired) assert_equal(np.inner(b, a).transpose(2,3,0,1), desired) class TestSummarization(TestCase): def test_1d(self): A = np.arange(1001) strA = '[ 0 1 2 ..., 998 999 1000]' assert_(str(A) == strA) reprA = 'array([ 0, 1, 2, ..., 998, 999, 1000])' assert_(repr(A) == reprA) def test_2d(self): A = np.arange(1002).reshape(2, 501) strA = '[[ 0 1 2 ..., 498 499 500]\n' \ ' [ 501 502 503 ..., 999 1000 1001]]' assert_(str(A) == strA) reprA = 'array([[ 0, 1, 2, ..., 498, 499, 500],\n' \ ' [ 501, 502, 503, ..., 999, 1000, 1001]])' assert_(repr(A) == reprA) class TestAlen(TestCase): def test_basic(self): m = np.array([1, 2, 3]) self.assertEqual(np.alen(m), 3) m = np.array([[1, 2, 3], [4, 5, 7]]) self.assertEqual(np.alen(m), 2) m = [1, 2, 3] self.assertEqual(np.alen(m), 3) m = [[1, 2, 3], [4, 5, 7]] self.assertEqual(np.alen(m), 2) def test_singleton(self): self.assertEqual(np.alen(5), 1) class TestChoose(TestCase): def setUp(self): self.x = 2*np.ones((3,), dtype=int) self.y = 3*np.ones((3,), dtype=int) self.x2 = 2*np.ones((2, 3), dtype=int) self.y2 = 3*np.ones((2, 3), dtype=int) self.ind = [0, 0, 1] def test_basic(self): A = np.choose(self.ind, (self.x, self.y)) assert_equal(A, [2, 2, 3]) def test_broadcast1(self): A = np.choose(self.ind, (self.x2, self.y2)) assert_equal(A, [[2, 2, 3], [2, 2, 3]]) def test_broadcast2(self): A = np.choose(self.ind, (self.x, self.y2)) assert_equal(A, [[2, 2, 3], [2, 2, 3]]) class TestRepeat(TestCase): def setUp(self): self.m = np.array([1, 2, 3, 4, 5, 6]) self.m_rect = self.m.reshape((2, 3)) def test_basic(self): A = np.repeat(self.m, [1, 3, 2, 1, 1, 2]) assert_equal(A, [1, 2, 2, 2, 3, 3, 4, 5, 6, 6]) def test_broadcast1(self): A = np.repeat(self.m, 2) assert_equal(A, [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]) def test_axis_spec(self): A = np.repeat(self.m_rect, [2, 1], axis=0) assert_equal(A, [[1, 2, 3], [1, 2, 3], [4, 5, 6]]) A = np.repeat(self.m_rect, [1, 3, 2], axis=1) assert_equal(A, [[1, 2, 2, 2, 3, 3], [4, 5, 5, 5, 6, 6]]) def test_broadcast2(self): A = np.repeat(self.m_rect, 2, axis=0) assert_equal(A, [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]) A = np.repeat(self.m_rect, 2, axis=1) assert_equal(A, [[1, 1, 2, 2, 3, 3], [4, 4, 5, 5, 6, 6]]) # TODO: test for multidimensional NEIGH_MODE = {'zero': 0, 'one': 1, 'constant': 2, 'circular': 3, 'mirror': 4} class TestNeighborhoodIter(TestCase): # Simple, 2d tests def _test_simple2d(self, dt): # Test zero and one padding for simple data type x = np.array([[0, 1], [2, 3]], dtype=dt) r = [np.array([[0, 0, 0], [0, 0, 1]], dtype=dt), np.array([[0, 0, 0], [0, 1, 0]], dtype=dt), np.array([[0, 0, 1], [0, 2, 3]], dtype=dt), np.array([[0, 1, 0], [2, 3, 0]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0], NEIGH_MODE['zero']) assert_array_equal(l, r) r = [np.array([[1, 1, 1], [1, 0, 1]], dtype=dt), np.array([[1, 1, 1], [0, 1, 1]], dtype=dt), np.array([[1, 0, 1], [1, 2, 3]], dtype=dt), np.array([[0, 1, 1], [2, 3, 1]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0], NEIGH_MODE['one']) assert_array_equal(l, r) r = [np.array([[4, 4, 4], [4, 0, 1]], dtype=dt), np.array([[4, 4, 4], [0, 1, 4]], dtype=dt), np.array([[4, 0, 1], [4, 2, 3]], dtype=dt), np.array([[0, 1, 4], [2, 3, 4]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], 4, NEIGH_MODE['constant']) assert_array_equal(l, r) def test_simple2d(self): self._test_simple2d(np.float) def test_simple2d_object(self): self._test_simple2d(Decimal) def _test_mirror2d(self, dt): x = np.array([[0, 1], [2, 3]], dtype=dt) r = [np.array([[0, 0, 1], [0, 0, 1]], dtype=dt), np.array([[0, 1, 1], [0, 1, 1]], dtype=dt), np.array([[0, 0, 1], [2, 2, 3]], dtype=dt), np.array([[0, 1, 1], [2, 3, 3]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0], NEIGH_MODE['mirror']) assert_array_equal(l, r) def test_mirror2d(self): self._test_mirror2d(np.float) def test_mirror2d_object(self): self._test_mirror2d(Decimal) # Simple, 1d tests def _test_simple(self, dt): # Test padding with constant values x = np.linspace(1, 5, 5).astype(dt) r = [[0, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 0]] l = test_neighborhood_iterator(x, [-1, 1], x[0], NEIGH_MODE['zero']) assert_array_equal(l, r) r = [[1, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 1]] l = test_neighborhood_iterator(x, [-1, 1], x[0], NEIGH_MODE['one']) assert_array_equal(l, r) r = [[x[4], 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, x[4]]] l = test_neighborhood_iterator(x, [-1, 1], x[4], NEIGH_MODE['constant']) assert_array_equal(l, r) def test_simple_float(self): self._test_simple(np.float) def test_simple_object(self): self._test_simple(Decimal) # Test mirror modes def _test_mirror(self, dt): x = np.linspace(1, 5, 5).astype(dt) r = np.array([[2, 1, 1, 2, 3], [1, 1, 2, 3, 4], [1, 2, 3, 4, 5], [2, 3, 4, 5, 5], [3, 4, 5, 5, 4]], dtype=dt) l = test_neighborhood_iterator(x, [-2, 2], x[1], NEIGH_MODE['mirror']) self.assertTrue([i.dtype == dt for i in l]) assert_array_equal(l, r) def test_mirror(self): self._test_mirror(np.float) def test_mirror_object(self): self._test_mirror(Decimal) # Circular mode def _test_circular(self, dt): x = np.linspace(1, 5, 5).astype(dt) r = np.array([[4, 5, 1, 2, 3], [5, 1, 2, 3, 4], [1, 2, 3, 4, 5], [2, 3, 4, 5, 1], [3, 4, 5, 1, 2]], dtype=dt) l = test_neighborhood_iterator(x, [-2, 2], x[0], NEIGH_MODE['circular']) assert_array_equal(l, r) def test_circular(self): self._test_circular(np.float) def test_circular_object(self): self._test_circular(Decimal) # Test stacking neighborhood iterators class TestStackedNeighborhoodIter(TestCase): # Simple, 1d test: stacking 2 constant-padded neigh iterators def test_simple_const(self): dt = np.float64 # Test zero and one padding for simple data type x = np.array([1, 2, 3], dtype=dt) r = [np.array([0], dtype=dt), np.array([0], dtype=dt), np.array([1], dtype=dt), np.array([2], dtype=dt), np.array([3], dtype=dt), np.array([0], dtype=dt), np.array([0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-2, 4], NEIGH_MODE['zero'], [0, 0], NEIGH_MODE['zero']) assert_array_equal(l, r) r = [np.array([1, 0, 1], dtype=dt), np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt), np.array([3, 0, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-1, 1], NEIGH_MODE['one']) assert_array_equal(l, r) # 2nd simple, 1d test: stacking 2 neigh iterators, mixing const padding and # mirror padding def test_simple_mirror(self): dt = np.float64 # Stacking zero on top of mirror x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 1, 1], dtype=dt), np.array([1, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 3], dtype=dt), np.array([3, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['mirror'], [-1, 1], NEIGH_MODE['zero']) assert_array_equal(l, r) # Stacking mirror on top of zero x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 0, 0], dtype=dt), np.array([0, 0, 1], dtype=dt), np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 0], NEIGH_MODE['mirror']) assert_array_equal(l, r) # Stacking mirror on top of zero: 2nd x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt), np.array([3, 0, 0], dtype=dt), np.array([0, 0, 3], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [0, 2], NEIGH_MODE['mirror']) assert_array_equal(l, r) # Stacking mirror on top of zero: 3rd x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 0, 0, 1, 2], dtype=dt), np.array([0, 0, 1, 2, 3], dtype=dt), np.array([0, 1, 2, 3, 0], dtype=dt), np.array([1, 2, 3, 0, 0], dtype=dt), np.array([2, 3, 0, 0, 3], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 2], NEIGH_MODE['mirror']) assert_array_equal(l, r) # 3rd simple, 1d test: stacking 2 neigh iterators, mixing const padding and # circular padding def test_simple_circular(self): dt = np.float64 # Stacking zero on top of mirror x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 3, 1], dtype=dt), np.array([3, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 1], dtype=dt), np.array([3, 1, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['circular'], [-1, 1], NEIGH_MODE['zero']) assert_array_equal(l, r) # Stacking mirror on top of zero x = np.array([1, 2, 3], dtype=dt) r = [np.array([3, 0, 0], dtype=dt), np.array([0, 0, 1], dtype=dt), np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 0], NEIGH_MODE['circular']) assert_array_equal(l, r) # Stacking mirror on top of zero: 2nd x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt), np.array([3, 0, 0], dtype=dt), np.array([0, 0, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [0, 2], NEIGH_MODE['circular']) assert_array_equal(l, r) # Stacking mirror on top of zero: 3rd x = np.array([1, 2, 3], dtype=dt) r = [np.array([3, 0, 0, 1, 2], dtype=dt), np.array([0, 0, 1, 2, 3], dtype=dt), np.array([0, 1, 2, 3, 0], dtype=dt), np.array([1, 2, 3, 0, 0], dtype=dt), np.array([2, 3, 0, 0, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 2], NEIGH_MODE['circular']) assert_array_equal(l, r) # 4th simple, 1d test: stacking 2 neigh iterators, but with lower iterator # being strictly within the array def test_simple_strict_within(self): dt = np.float64 # Stacking zero on top of zero, first neighborhood strictly inside the # array x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 2, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['zero']) assert_array_equal(l, r) # Stacking mirror on top of zero, first neighborhood strictly inside the # array x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 2, 3, 3], dtype=dt)] l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['mirror']) assert_array_equal(l, r) # Stacking mirror on top of zero, first neighborhood strictly inside the # array x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 2, 3, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['circular']) assert_array_equal(l, r) class TestWarnings(object): def test_complex_warning(self): x = np.array([1, 2]) y = np.array([1-2j, 1+2j]) with warnings.catch_warnings(): warnings.simplefilter("error", np.ComplexWarning) assert_raises(np.ComplexWarning, x.__setitem__, slice(None), y) assert_equal(x, [1, 2]) class TestMinScalarType(object): def test_usigned_shortshort(self): dt = np.min_scalar_type(2**8-1) wanted = np.dtype('uint8') assert_equal(wanted, dt) def test_usigned_short(self): dt = np.min_scalar_type(2**16-1) wanted = np.dtype('uint16') assert_equal(wanted, dt) def test_usigned_int(self): dt = np.min_scalar_type(2**32-1) wanted = np.dtype('uint32') assert_equal(wanted, dt) def test_usigned_longlong(self): dt = np.min_scalar_type(2**63-1) wanted = np.dtype('uint64') assert_equal(wanted, dt) def test_object(self): dt = np.min_scalar_type(2**64) wanted = np.dtype('O') assert_equal(wanted, dt) if sys.version_info[:2] == (2, 6): from numpy.core.multiarray import memorysimpleview as memoryview from numpy.core._internal import _dtype_from_pep3118 class TestPEP3118Dtype(object): def _check(self, spec, wanted): dt = np.dtype(wanted) if isinstance(wanted, list) and isinstance(wanted[-1], tuple): if wanted[-1][0] == '': names = list(dt.names) names[-1] = '' dt.names = tuple(names) assert_equal(_dtype_from_pep3118(spec), dt, err_msg="spec %r != dtype %r" % (spec, wanted)) def test_native_padding(self): align = np.dtype('i').alignment for j in range(8): if j == 0: s = 'bi' else: s = 'b%dxi' % j self._check('@'+s, {'f0': ('i1', 0), 'f1': ('i', align*(1 + j//align))}) self._check('='+s, {'f0': ('i1', 0), 'f1': ('i', 1+j)}) def test_native_padding_2(self): # Native padding should work also for structs and sub-arrays self._check('x3T{xi}', {'f0': (({'f0': ('i', 4)}, (3,)), 4)}) self._check('^x3T{xi}', {'f0': (({'f0': ('i', 1)}, (3,)), 1)}) def test_trailing_padding(self): # Trailing padding should be included, *and*, the item size # should match the alignment if in aligned mode align = np.dtype('i').alignment def VV(n): return 'V%d' % (align*(1 + (n-1)//align)) self._check('ix', [('f0', 'i'), ('', VV(1))]) self._check('ixx', [('f0', 'i'), ('', VV(2))]) self._check('ixxx', [('f0', 'i'), ('', VV(3))]) self._check('ixxxx', [('f0', 'i'), ('', VV(4))]) self._check('i7x', [('f0', 'i'), ('', VV(7))]) self._check('^ix', [('f0', 'i'), ('', 'V1')]) self._check('^ixx', [('f0', 'i'), ('', 'V2')]) self._check('^ixxx', [('f0', 'i'), ('', 'V3')]) self._check('^ixxxx', [('f0', 'i'), ('', 'V4')]) self._check('^i7x', [('f0', 'i'), ('', 'V7')]) def test_native_padding_3(self): dt = np.dtype( [('a', 'b'), ('b', 'i'), ('sub', np.dtype('b,i')), ('c', 'i')], align=True) self._check("T{b:a:xxxi:b:T{b:f0:=i:f1:}:sub:xxxi:c:}", dt) dt = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'), ('e', 'b'), ('sub', np.dtype('b,i', align=True))]) self._check("T{b:a:=i:b:b:c:b:d:b:e:T{b:f0:xxxi:f1:}:sub:}", dt) def test_padding_with_array_inside_struct(self): dt = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b', (3,)), ('d', 'i')], align=True) self._check("T{b:a:xxxi:b:3b:c:xi:d:}", dt) def test_byteorder_inside_struct(self): # The byte order after @T{=i} should be '=', not '@'. # Check this by noting the absence of native alignment. self._check('@T{^i}xi', {'f0': ({'f0': ('i', 0)}, 0), 'f1': ('i', 5)}) def test_intra_padding(self): # Natively aligned sub-arrays may require some internal padding align = np.dtype('i').alignment def VV(n): return 'V%d' % (align*(1 + (n-1)//align)) self._check('(3)T{ix}', ({'f0': ('i', 0), '': (VV(1), 4)}, (3,))) def test_char_vs_string(self): dt = np.dtype('c') self._check('c', dt) dt = np.dtype([('f0', 'S1', (4,)), ('f1', 'S4')]) self._check('4c4s', dt) class TestNewBufferProtocol(object): def _check_roundtrip(self, obj): obj = np.asarray(obj) x = memoryview(obj) y = np.asarray(x) y2 = np.array(x) assert_(not y.flags.owndata) assert_(y2.flags.owndata) assert_equal(y.dtype, obj.dtype) assert_equal(y.shape, obj.shape) assert_array_equal(obj, y) assert_equal(y2.dtype, obj.dtype) assert_equal(y2.shape, obj.shape) assert_array_equal(obj, y2) def test_roundtrip(self): x = np.array([1, 2, 3, 4, 5], dtype='i4') self._check_roundtrip(x) x = np.array([[1, 2], [3, 4]], dtype=np.float64) self._check_roundtrip(x) x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0,:] self._check_roundtrip(x) dt = [('a', 'b'), ('b', 'h'), ('c', 'i'), ('d', 'l'), ('dx', 'q'), ('e', 'B'), ('f', 'H'), ('g', 'I'), ('h', 'L'), ('hx', 'Q'), ('i', np.single), ('j', np.double), ('k', np.longdouble), ('ix', np.csingle), ('jx', np.cdouble), ('kx', np.clongdouble), ('l', 'S4'), ('m', 'U4'), ('n', 'V3'), ('o', '?'), ('p', np.half), ] x = np.array( [(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, asbytes('aaaa'), 'bbbb', asbytes('xxx'), True, 1.0)], dtype=dt) self._check_roundtrip(x) x = np.array(([[1, 2], [3, 4]],), dtype=[('a', (int, (2, 2)))]) self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='>i2') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='<i2') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='>i4') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='<i4') self._check_roundtrip(x) # check long long can be represented as non-native x = np.array([1, 2, 3], dtype='>q') self._check_roundtrip(x) # Native-only data types can be passed through the buffer interface # only in native byte order if sys.byteorder == 'little': x = np.array([1, 2, 3], dtype='>g') assert_raises(ValueError, self._check_roundtrip, x) x = np.array([1, 2, 3], dtype='<g') self._check_roundtrip(x) else: x = np.array([1, 2, 3], dtype='>g') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='<g') assert_raises(ValueError, self._check_roundtrip, x) def test_roundtrip_half(self): half_list = [ 1.0, -2.0, 6.5504 * 10**4, # (max half precision) 2**-14, # ~= 6.10352 * 10**-5 (minimum positive normal) 2**-24, # ~= 5.96046 * 10**-8 (minimum strictly positive subnormal) 0.0, -0.0, float('+inf'), float('-inf'), 0.333251953125, # ~= 1/3 ] x = np.array(half_list, dtype='>e') self._check_roundtrip(x) x = np.array(half_list, dtype='<e') self._check_roundtrip(x) def test_roundtrip_single_types(self): for typ in np.typeDict.values(): dtype = np.dtype(typ) if dtype.char in 'Mm': # datetimes cannot be used in buffers continue if dtype.char == 'V': # skip void continue x = np.zeros(4, dtype=dtype) self._check_roundtrip(x) if dtype.char not in 'qQgG': dt = dtype.newbyteorder('<') x = np.zeros(4, dtype=dt) self._check_roundtrip(x) dt = dtype.newbyteorder('>') x = np.zeros(4, dtype=dt) self._check_roundtrip(x) def test_roundtrip_scalar(self): # Issue #4015. self._check_roundtrip(0) def test_export_simple_1d(self): x = np.array([1, 2, 3, 4, 5], dtype='i') y = memoryview(x) assert_equal(y.format, 'i') assert_equal(y.shape, (5,)) assert_equal(y.ndim, 1) assert_equal(y.strides, (4,)) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 4) def test_export_simple_nd(self): x = np.array([[1, 2], [3, 4]], dtype=np.float64) y = memoryview(x) assert_equal(y.format, 'd') assert_equal(y.shape, (2, 2)) assert_equal(y.ndim, 2) assert_equal(y.strides, (16, 8)) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 8) def test_export_discontiguous(self): x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0,:] y = memoryview(x) assert_equal(y.format, 'f') assert_equal(y.shape, (3, 3)) assert_equal(y.ndim, 2) assert_equal(y.strides, (36, 4)) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 4) def test_export_record(self): dt = [('a', 'b'), ('b', 'h'), ('c', 'i'), ('d', 'l'), ('dx', 'q'), ('e', 'B'), ('f', 'H'), ('g', 'I'), ('h', 'L'), ('hx', 'Q'), ('i', np.single), ('j', np.double), ('k', np.longdouble), ('ix', np.csingle), ('jx', np.cdouble), ('kx', np.clongdouble), ('l', 'S4'), ('m', 'U4'), ('n', 'V3'), ('o', '?'), ('p', np.half), ] x = np.array( [(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, asbytes('aaaa'), 'bbbb', asbytes(' '), True, 1.0)], dtype=dt) y = memoryview(x) assert_equal(y.shape, (1,)) assert_equal(y.ndim, 1) assert_equal(y.suboffsets, EMPTY) sz = sum([np.dtype(b).itemsize for a, b in dt]) if np.dtype('l').itemsize == 4: assert_equal(y.format, 'T{b:a:=h:b:i:c:l:d:q:dx:B:e:@H:f:=I:g:L:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}') else: assert_equal(y.format, 'T{b:a:=h:b:i:c:q:d:q:dx:B:e:@H:f:=I:g:Q:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}') # Cannot test if NPY_RELAXED_STRIDES_CHECKING changes the strides if not (np.ones(1).strides[0] == np.iinfo(np.intp).max): assert_equal(y.strides, (sz,)) assert_equal(y.itemsize, sz) def test_export_subarray(self): x = np.array(([[1, 2], [3, 4]],), dtype=[('a', ('i', (2, 2)))]) y = memoryview(x) assert_equal(y.format, 'T{(2,2)i:a:}') assert_equal(y.shape, EMPTY) assert_equal(y.ndim, 0) assert_equal(y.strides, EMPTY) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 16) def test_export_endian(self): x = np.array([1, 2, 3], dtype='>i') y = memoryview(x) if sys.byteorder == 'little': assert_equal(y.format, '>i') else: assert_equal(y.format, 'i') x = np.array([1, 2, 3], dtype='<i') y = memoryview(x) if sys.byteorder == 'little': assert_equal(y.format, 'i') else: assert_equal(y.format, '<i') def test_export_flags(self): # Check SIMPLE flag, see also gh-3613 (exception should be BufferError) assert_raises(ValueError, get_buffer_info, np.arange(5)[::2], ('SIMPLE',)) def test_padding(self): for j in range(8): x = np.array([(1,), (2,)], dtype={'f0': (int, j)}) self._check_roundtrip(x) def test_reference_leak(self): if HAS_REFCOUNT: count_1 = sys.getrefcount(np.core._internal) a = np.zeros(4) b = memoryview(a) c = np.asarray(b) if HAS_REFCOUNT: count_2 = sys.getrefcount(np.core._internal) assert_equal(count_1, count_2) del c # avoid pyflakes unused variable warning. def test_padded_struct_array(self): dt1 = np.dtype( [('a', 'b'), ('b', 'i'), ('sub', np.dtype('b,i')), ('c', 'i')], align=True) x1 = np.arange(dt1.itemsize, dtype=np.int8).view(dt1) self._check_roundtrip(x1) dt2 = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b', (3,)), ('d', 'i')], align=True) x2 = np.arange(dt2.itemsize, dtype=np.int8).view(dt2) self._check_roundtrip(x2) dt3 = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'), ('e', 'b'), ('sub', np.dtype('b,i', align=True))]) x3 = np.arange(dt3.itemsize, dtype=np.int8).view(dt3) self._check_roundtrip(x3) def test_relaxed_strides(self): # Test that relaxed strides are converted to non-relaxed c = np.ones((1, 10, 10), dtype='i8') # Check for NPY_RELAXED_STRIDES_CHECKING: if np.ones((10, 1), order="C").flags.f_contiguous: c.strides = (-1, 80, 8) assert_(memoryview(c).strides == (800, 80, 8)) # Writing C-contiguous data to a BytesIO buffer should work fd = io.BytesIO() fd.write(c.data) fortran = c.T assert_(memoryview(fortran).strides == (8, 80, 800)) arr = np.ones((1, 10)) if arr.flags.f_contiguous: shape, strides = get_buffer_info(arr, ['F_CONTIGUOUS']) assert_(strides[0] == 8) arr = np.ones((10, 1), order='F') shape, strides = get_buffer_info(arr, ['C_CONTIGUOUS']) assert_(strides[-1] == 8) class TestArrayAttributeDeletion(object): def test_multiarray_writable_attributes_deletion(self): # ticket #2046, should not seqfault, raise AttributeError a = np.ones(2) attr = ['shape', 'strides', 'data', 'dtype', 'real', 'imag', 'flat'] with suppress_warnings() as sup: sup.filter(DeprecationWarning, "Assigning the 'data' attribute") for s in attr: assert_raises(AttributeError, delattr, a, s) def test_multiarray_not_writable_attributes_deletion(self): a = np.ones(2) attr = ["ndim", "flags", "itemsize", "size", "nbytes", "base", "ctypes", "T", "__array_interface__", "__array_struct__", "__array_priority__", "__array_finalize__"] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_multiarray_flags_writable_attribute_deletion(self): a = np.ones(2).flags attr = ['updateifcopy', 'aligned', 'writeable'] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_multiarray_flags_not_writable_attribute_deletion(self): a = np.ones(2).flags attr = ["contiguous", "c_contiguous", "f_contiguous", "fortran", "owndata", "fnc", "forc", "behaved", "carray", "farray", "num"] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_array_interface(): # Test scalar coercion within the array interface class Foo(object): def __init__(self, value): self.value = value self.iface = {'typestr': '=f8'} def __float__(self): return float(self.value) @property def __array_interface__(self): return self.iface f = Foo(0.5) assert_equal(np.array(f), 0.5) assert_equal(np.array([f]), [0.5]) assert_equal(np.array([f, f]), [0.5, 0.5]) assert_equal(np.array(f).dtype, np.dtype('=f8')) # Test various shape definitions f.iface['shape'] = () assert_equal(np.array(f), 0.5) f.iface['shape'] = None assert_raises(TypeError, np.array, f) f.iface['shape'] = (1, 1) assert_equal(np.array(f), [[0.5]]) f.iface['shape'] = (2,) assert_raises(ValueError, np.array, f) # test scalar with no shape class ArrayLike(object): array = np.array(1) __array_interface__ = array.__array_interface__ assert_equal(np.array(ArrayLike()), 1) def test_array_interface_itemsize(): # See gh-6361 my_dtype = np.dtype({'names': ['A', 'B'], 'formats': ['f4', 'f4'], 'offsets': [0, 8], 'itemsize': 16}) a = np.ones(10, dtype=my_dtype) descr_t = np.dtype(a.__array_interface__['descr']) typestr_t = np.dtype(a.__array_interface__['typestr']) assert_equal(descr_t.itemsize, typestr_t.itemsize) def test_flat_element_deletion(): it = np.ones(3).flat try: del it[1] del it[1:2] except TypeError: pass except: raise AssertionError def test_scalar_element_deletion(): a = np.zeros(2, dtype=[('x', 'int'), ('y', 'int')]) assert_raises(ValueError, a[0].__delitem__, 'x') class TestMemEventHook(TestCase): def test_mem_seteventhook(self): # The actual tests are within the C code in # multiarray/multiarray_tests.c.src test_pydatamem_seteventhook_start() # force an allocation and free of a numpy array # needs to be larger then limit of small memory cacher in ctors.c a = np.zeros(1000) del a gc.collect() test_pydatamem_seteventhook_end() class TestMapIter(TestCase): def test_mapiter(self): # The actual tests are within the C code in # multiarray/multiarray_tests.c.src a = np.arange(12).reshape((3, 4)).astype(float) index = ([1, 1, 2, 0], [0, 0, 2, 3]) vals = [50, 50, 30, 16] test_inplace_increment(a, index, vals) assert_equal(a, [[0.00, 1., 2.0, 19.], [104., 5., 6.0, 7.0], [8.00, 9., 40., 11.]]) b = np.arange(6).astype(float) index = (np.array([1, 2, 0]),) vals = [50, 4, 100.1] test_inplace_increment(b, index, vals) assert_equal(b, [100.1, 51., 6., 3., 4., 5.]) class TestAsCArray(TestCase): def test_1darray(self): array = np.arange(24, dtype=np.double) from_c = test_as_c_array(array, 3) assert_equal(array[3], from_c) def test_2darray(self): array = np.arange(24, dtype=np.double).reshape(3, 8) from_c = test_as_c_array(array, 2, 4) assert_equal(array[2, 4], from_c) def test_3darray(self): array = np.arange(24, dtype=np.double).reshape(2, 3, 4) from_c = test_as_c_array(array, 1, 2, 3) assert_equal(array[1, 2, 3], from_c) class TestConversion(TestCase): def test_array_scalar_relational_operation(self): # All integer for dt1 in np.typecodes['AllInteger']: assert_(1 > np.array(0, dtype=dt1), "type %s failed" % (dt1,)) assert_(not 1 < np.array(0, dtype=dt1), "type %s failed" % (dt1,)) for dt2 in np.typecodes['AllInteger']: assert_(np.array(1, dtype=dt1) > np.array(0, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(not np.array(1, dtype=dt1) < np.array(0, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) # Unsigned integers for dt1 in 'BHILQP': assert_(-1 < np.array(1, dtype=dt1), "type %s failed" % (dt1,)) assert_(not -1 > np.array(1, dtype=dt1), "type %s failed" % (dt1,)) assert_(-1 != np.array(1, dtype=dt1), "type %s failed" % (dt1,)) # Unsigned vs signed for dt2 in 'bhilqp': assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(np.array(1, dtype=dt1) != np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) # Signed integers and floats for dt1 in 'bhlqp' + np.typecodes['Float']: assert_(1 > np.array(-1, dtype=dt1), "type %s failed" % (dt1,)) assert_(not 1 < np.array(-1, dtype=dt1), "type %s failed" % (dt1,)) assert_(-1 == np.array(-1, dtype=dt1), "type %s failed" % (dt1,)) for dt2 in 'bhlqp' + np.typecodes['Float']: assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(np.array(-1, dtype=dt1) == np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) class TestWhere(TestCase): def test_basic(self): dts = [np.bool, np.int16, np.int32, np.int64, np.double, np.complex128, np.longdouble, np.clongdouble] for dt in dts: c = np.ones(53, dtype=np.bool) assert_equal(np.where( c, dt(0), dt(1)), dt(0)) assert_equal(np.where(~c, dt(0), dt(1)), dt(1)) assert_equal(np.where(True, dt(0), dt(1)), dt(0)) assert_equal(np.where(False, dt(0), dt(1)), dt(1)) d = np.ones_like(c).astype(dt) e = np.zeros_like(d) r = d.astype(dt) c[7] = False r[7] = e[7] assert_equal(np.where(c, e, e), e) assert_equal(np.where(c, d, e), r) assert_equal(np.where(c, d, e[0]), r) assert_equal(np.where(c, d[0], e), r) assert_equal(np.where(c[::2], d[::2], e[::2]), r[::2]) assert_equal(np.where(c[1::2], d[1::2], e[1::2]), r[1::2]) assert_equal(np.where(c[::3], d[::3], e[::3]), r[::3]) assert_equal(np.where(c[1::3], d[1::3], e[1::3]), r[1::3]) assert_equal(np.where(c[::-2], d[::-2], e[::-2]), r[::-2]) assert_equal(np.where(c[::-3], d[::-3], e[::-3]), r[::-3]) assert_equal(np.where(c[1::-3], d[1::-3], e[1::-3]), r[1::-3]) def test_exotic(self): # object assert_array_equal(np.where(True, None, None), np.array(None)) # zero sized m = np.array([], dtype=bool).reshape(0, 3) b = np.array([], dtype=np.float64).reshape(0, 3) assert_array_equal(np.where(m, 0, b), np.array([]).reshape(0, 3)) # object cast d = np.array([-1.34, -0.16, -0.54, -0.31, -0.08, -0.95, 0.000, 0.313, 0.547, -0.18, 0.876, 0.236, 1.969, 0.310, 0.699, 1.013, 1.267, 0.229, -1.39, 0.487]) nan = float('NaN') e = np.array(['5z', '0l', nan, 'Wz', nan, nan, 'Xq', 'cs', nan, nan, 'QN', nan, nan, 'Fd', nan, nan, 'kp', nan, '36', 'i1'], dtype=object) m = np.array([0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0], dtype=bool) r = e[:] r[np.where(m)] = d[np.where(m)] assert_array_equal(np.where(m, d, e), r) r = e[:] r[np.where(~m)] = d[np.where(~m)] assert_array_equal(np.where(m, e, d), r) assert_array_equal(np.where(m, e, e), e) # minimal dtype result with NaN scalar (e.g required by pandas) d = np.array([1., 2.], dtype=np.float32) e = float('NaN') assert_equal(np.where(True, d, e).dtype, np.float32) e = float('Infinity') assert_equal(np.where(True, d, e).dtype, np.float32) e = float('-Infinity') assert_equal(np.where(True, d, e).dtype, np.float32) # also check upcast e = float(1e150) assert_equal(np.where(True, d, e).dtype, np.float64) def test_ndim(self): c = [True, False] a = np.zeros((2, 25)) b = np.ones((2, 25)) r = np.where(np.array(c)[:,np.newaxis], a, b) assert_array_equal(r[0], a[0]) assert_array_equal(r[1], b[0]) a = a.T b = b.T r = np.where(c, a, b) assert_array_equal(r[:,0], a[:,0]) assert_array_equal(r[:,1], b[:,0]) def test_dtype_mix(self): c = np.array([False, True, False, False, False, False, True, False, False, False, True, False]) a = np.uint32(1) b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.], dtype=np.float64) r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.], dtype=np.float64) assert_equal(np.where(c, a, b), r) a = a.astype(np.float32) b = b.astype(np.int64) assert_equal(np.where(c, a, b), r) # non bool mask c = c.astype(np.int) c[c != 0] = 34242324 assert_equal(np.where(c, a, b), r) # invert tmpmask = c != 0 c[c == 0] = 41247212 c[tmpmask] = 0 assert_equal(np.where(c, b, a), r) def test_foreign(self): c = np.array([False, True, False, False, False, False, True, False, False, False, True, False]) r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.], dtype=np.float64) a = np.ones(1, dtype='>i4') b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.], dtype=np.float64) assert_equal(np.where(c, a, b), r) b = b.astype('>f8') assert_equal(np.where(c, a, b), r) a = a.astype('<i4') assert_equal(np.where(c, a, b), r) c = c.astype('>i4') assert_equal(np.where(c, a, b), r) def test_error(self): c = [True, True] a = np.ones((4, 5)) b = np.ones((5, 5)) assert_raises(ValueError, np.where, c, a, a) assert_raises(ValueError, np.where, c[0], a, b) def test_string(self): # gh-4778 check strings are properly filled with nulls a = np.array("abc") b = np.array("x" * 753) assert_equal(np.where(True, a, b), "abc") assert_equal(np.where(False, b, a), "abc") # check native datatype sized strings a = np.array("abcd") b = np.array("x" * 8) assert_equal(np.where(True, a, b), "abcd") assert_equal(np.where(False, b, a), "abcd") if not IS_PYPY: # sys.getsizeof() is not valid on PyPy class TestSizeOf(TestCase): def test_empty_array(self): x = np.array([]) assert_(sys.getsizeof(x) > 0) def check_array(self, dtype): elem_size = dtype(0).itemsize for length in [10, 50, 100, 500]: x = np.arange(length, dtype=dtype) assert_(sys.getsizeof(x) > length * elem_size) def test_array_int32(self): self.check_array(np.int32) def test_array_int64(self): self.check_array(np.int64) def test_array_float32(self): self.check_array(np.float32) def test_array_float64(self): self.check_array(np.float64) def test_view(self): d = np.ones(100) assert_(sys.getsizeof(d[...]) < sys.getsizeof(d)) def test_reshape(self): d = np.ones(100) assert_(sys.getsizeof(d) < sys.getsizeof(d.reshape(100, 1, 1).copy())) def test_resize(self): d = np.ones(100) old = sys.getsizeof(d) d.resize(50) assert_(old > sys.getsizeof(d)) d.resize(150) assert_(old < sys.getsizeof(d)) def test_error(self): d = np.ones(100) assert_raises(TypeError, d.__sizeof__, "a") class TestHashing(TestCase): def test_arrays_not_hashable(self): x = np.ones(3) assert_raises(TypeError, hash, x) def test_collections_hashable(self): x = np.array([]) self.assertFalse(isinstance(x, collections.Hashable)) class TestArrayPriority(TestCase): # This will go away when __array_priority__ is settled, meanwhile # it serves to check unintended changes. op = operator binary_ops = [ op.pow, op.add, op.sub, op.mul, op.floordiv, op.truediv, op.mod, op.and_, op.or_, op.xor, op.lshift, op.rshift, op.mod, op.gt, op.ge, op.lt, op.le, op.ne, op.eq ] # See #7949. Dont use "/" operator With -3 switch, since python reports it # as a DeprecationWarning if sys.version_info[0] < 3 and not sys.py3kwarning: binary_ops.append(op.div) class Foo(np.ndarray): __array_priority__ = 100. def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) class Bar(np.ndarray): __array_priority__ = 101. def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) class Other(object): __array_priority__ = 1000. def _all(self, other): return self.__class__() __add__ = __radd__ = _all __sub__ = __rsub__ = _all __mul__ = __rmul__ = _all __pow__ = __rpow__ = _all __div__ = __rdiv__ = _all __mod__ = __rmod__ = _all __truediv__ = __rtruediv__ = _all __floordiv__ = __rfloordiv__ = _all __and__ = __rand__ = _all __xor__ = __rxor__ = _all __or__ = __ror__ = _all __lshift__ = __rlshift__ = _all __rshift__ = __rrshift__ = _all __eq__ = _all __ne__ = _all __gt__ = _all __ge__ = _all __lt__ = _all __le__ = _all def test_ndarray_subclass(self): a = np.array([1, 2]) b = self.Bar([1, 2]) for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Bar), msg) assert_(isinstance(f(b, a), self.Bar), msg) def test_ndarray_other(self): a = np.array([1, 2]) b = self.Other() for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Other), msg) assert_(isinstance(f(b, a), self.Other), msg) def test_subclass_subclass(self): a = self.Foo([1, 2]) b = self.Bar([1, 2]) for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Bar), msg) assert_(isinstance(f(b, a), self.Bar), msg) def test_subclass_other(self): a = self.Foo([1, 2]) b = self.Other() for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Other), msg) assert_(isinstance(f(b, a), self.Other), msg) class TestBytestringArrayNonzero(TestCase): def test_empty_bstring_array_is_falsey(self): self.assertFalse(np.array([''], dtype=np.str)) def test_whitespace_bstring_array_is_falsey(self): a = np.array(['spam'], dtype=np.str) a[0] = ' \0\0' self.assertFalse(a) def test_all_null_bstring_array_is_falsey(self): a = np.array(['spam'], dtype=np.str) a[0] = '\0\0\0\0' self.assertFalse(a) def test_null_inside_bstring_array_is_truthy(self): a = np.array(['spam'], dtype=np.str) a[0] = ' \0 \0' self.assertTrue(a) class TestUnicodeArrayNonzero(TestCase): def test_empty_ustring_array_is_falsey(self): self.assertFalse(np.array([''], dtype=np.unicode)) def test_whitespace_ustring_array_is_falsey(self): a = np.array(['eggs'], dtype=np.unicode) a[0] = ' \0\0' self.assertFalse(a) def test_all_null_ustring_array_is_falsey(self): a = np.array(['eggs'], dtype=np.unicode) a[0] = '\0\0\0\0' self.assertFalse(a) def test_null_inside_ustring_array_is_truthy(self): a = np.array(['eggs'], dtype=np.unicode) a[0] = ' \0 \0' self.assertTrue(a) def test_orderconverter_with_nonASCII_unicode_ordering(): # gh-7475 a = np.arange(5) assert_raises(ValueError, a.flatten, order=u'\xe2') if __name__ == "__main__": run_module_suite()
mit
stoneflyop1/py_machine_learning
ch04/miss.py
1
1048
import pandas as pd from io import StringIO csv_data = '''A,B,C,D 1.0,2.0,3.0,4.0 5.0,6.0,,8.0 10.0,11.0,12.0,''' ## for python2 # csv_data = unicode(csv_data) df = pd.read_csv(StringIO(csv_data)) print('#'*60) print('# show data with missing values') print(df) print('# isnull: ', df.isnull().sum()) # convert to boolean false values using dataframe isnull method print(df.values) # get numpy array from dataframe values print('#'*60) print('# drop NaN row or col') print('########## drop row:\r\n', df.dropna()) # axis=0 print('########## drop col:\r\n', df.dropna(axis=1)) print('########## drop all col is NaN:\r\n', df.dropna(how='all')) print('########## drop with threshold:\r\n', df.dropna(thresh=4)) print('########## drop specific cols:\r\n', df.dropna(subset=['C'])) print('#'*60) print('# mean impute missing values') from sklearn.preprocessing import Imputer imr = Imputer(missing_values="NaN", strategy="mean", axis=0) imr = imr.fit(df) imputed_data = imr.transform(df.values) print(imputed_data)
mit
sdu-cfei/modest-py
examples/simple/simple_1param.py
1
2449
""" Copyright (c) 2017, University of Southern Denmark All rights reserved. This code is licensed under BSD 2-clause license. See LICENSE file in the project root for license terms. """ import json import os import pandas as pd from modestpy import Estimation from modestpy.utilities.sysarch import get_sys_arch if __name__ == "__main__": """ This file is supposed to be run from the root directory. Otherwise the paths have to be corrected. """ # DATA PREPARATION ============================================== # Resources platform = get_sys_arch() assert platform, 'Unsupported platform type!' fmu_file = 'Simple2R1C_ic_' + platform + '.fmu' fmu_path = os.path.join('examples', 'simple', 'resources', fmu_file) inp_path = os.path.join('examples', 'simple', 'resources', 'inputs.csv') ideal_path = os.path.join('examples', 'simple', 'resources', 'result.csv') est_path = os.path.join('examples', 'simple', 'resources', 'est.json') known_path = os.path.join('examples', 'simple', 'resources', 'known.json') # Working directory workdir = os.path.join('examples', 'simple', 'workdir') if not os.path.exists(workdir): os.mkdir(workdir) assert os.path.exists(workdir), "Work directory does not exist" # Load inputs inp = pd.read_csv(inp_path).set_index('time') # Load measurements (ideal results) ideal = pd.read_csv(ideal_path).set_index('time') # Load definition of estimated parameters (name, initial value, bounds) with open(est_path) as f: est = json.load(f) del est['R1'] # We want to estimate only C del est['R2'] # We want to estimate only C # Load definition of known parameters (name, value) with open(known_path) as f: known = json.load(f) known['R1'] = 0.1 known['R2'] = 0.25 # MODEL IDENTIFICATION ========================================== session = Estimation(workdir, fmu_path, inp, known, est, ideal, lp_n=2, lp_len=50000, lp_frame=(0, 50000), vp=(0, 50000), ic_param={'Tstart': 'T'}, methods=('MODESTGA', 'PS'), ps_opts={'maxiter': 500, 'tol': 1e-6}, scipy_opts={}, ftype='RMSE', default_log=True, logfile='simple.log') estimates = session.estimate() err, res = session.validate()
bsd-2-clause
Jorge-C/bipy
doc/sphinxext/numpydoc/numpydoc/docscrape_sphinx.py
41
9437
from __future__ import division, absolute_import, print_function import sys, re, inspect, textwrap, pydoc import sphinx import collections from .docscrape import NumpyDocString, FunctionDoc, ClassDoc if sys.version_info[0] >= 3: sixu = lambda s: s else: sixu = lambda s: unicode(s, 'unicode_escape') class SphinxDocString(NumpyDocString): def __init__(self, docstring, config={}): NumpyDocString.__init__(self, docstring, config=config) self.load_config(config) def load_config(self, config): self.use_plots = config.get('use_plots', False) self.class_members_toctree = config.get('class_members_toctree', True) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' '*indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_returns(self): out = [] if self['Returns']: out += self._str_field_list('Returns') out += [''] for param, param_type, desc in self['Returns']: if param_type: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) else: out += self._str_indent([param.strip()]) if desc: out += [''] out += self._str_indent(desc, 8) out += [''] return out def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param, param_type, desc in self[name]: if param_type: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) else: out += self._str_indent(['**%s**' % param.strip()]) if desc: out += [''] out += self._str_indent(desc, 8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() # Check if the referenced member can have a docstring or not param_obj = getattr(self._obj, param, None) if not (callable(param_obj) or isinstance(param_obj, property) or inspect.isgetsetdescriptor(param_obj)): param_obj = None if param_obj and (pydoc.getdoc(param_obj) or not desc): # Referenced object has a docstring autosum += [" %s%s" % (prefix, param)] else: others.append((param, param_type, desc)) if autosum: out += ['.. autosummary::'] if self.class_members_toctree: out += [' :toctree:'] out += [''] + autosum if others: maxlen_0 = max(3, max([len(x[0]) for x in others])) hdr = sixu("=")*maxlen_0 + sixu(" ") + sixu("=")*10 fmt = sixu('%%%ds %%s ') % (maxlen_0,) out += ['', hdr] for param, param_type, desc in others: desc = sixu(" ").join(x.strip() for x in desc).strip() if param_type: desc = "(%s) %s" % (param_type, desc) out += [fmt % (param.strip(), desc)] out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default','')] for section, references in idx.items(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it if sphinx.__version__ >= "0.6": out += ['.. only:: latex',''] else: out += ['.. latexonly::',''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() out += self._str_param_list('Parameters') out += self._str_returns() for param_list in ('Other Parameters', 'Raises', 'Warns'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for param_list in ('Attributes', 'Methods'): out += self._str_member_list(param_list) out = self._str_indent(out,indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.load_config(config) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.load_config(config) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config={}): self._f = obj self.load_config(config) SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if what is None: if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif isinstance(obj, collections.Callable): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
bsd-3-clause
mwv/scikit-learn
examples/ensemble/plot_forest_importances_faces.py
403
1519
""" ================================================= Pixel importances with a parallel forest of trees ================================================= This example shows the use of forests of trees to evaluate the importance of the pixels in an image classification task (faces). The hotter the pixel, the more important. The code below also illustrates how the construction and the computation of the predictions can be parallelized within multiple jobs. """ print(__doc__) from time import time import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.ensemble import ExtraTreesClassifier # Number of cores to use to perform parallel fitting of the forest model n_jobs = 1 # Load the faces dataset data = fetch_olivetti_faces() X = data.images.reshape((len(data.images), -1)) y = data.target mask = y < 5 # Limit to 5 classes X = X[mask] y = y[mask] # Build a forest and compute the pixel importances print("Fitting ExtraTreesClassifier on faces data with %d cores..." % n_jobs) t0 = time() forest = ExtraTreesClassifier(n_estimators=1000, max_features=128, n_jobs=n_jobs, random_state=0) forest.fit(X, y) print("done in %0.3fs" % (time() - t0)) importances = forest.feature_importances_ importances = importances.reshape(data.images[0].shape) # Plot pixel importances plt.matshow(importances, cmap=plt.cm.hot) plt.title("Pixel importances with forests of trees") plt.show()
bsd-3-clause
marcotcr/lime-experiments
explainers.py
1
8763
from abc import ABCMeta, abstractmethod import numpy as np import scipy as sp from sklearn import linear_model import sklearn.metrics.pairwise ############################### ## Random Explainer ############################### class RandomExplainer: def __init__(self): pass def reset(self): pass def explain_instance(self, instance_vector, label, classifier, num_features, dataset): nonzero = instance_vector.nonzero()[1] explanation = np.random.choice(nonzero, num_features) return [(x, 1) for x in explanation] def explain(self, train_vectors, train_labels, classifier, num_features, dataset): i = np.random.randint(0, train_vectors.shape[0]) explanation = self.explain_instance(train_vectors[i], None, None, num_features, dataset) return i, explanation ############################### ## Standalone Explainers ############################### def most_important_word(classifier, v, class_): # Returns the word w that moves P(Y) - P(Y|NOT w) the most for class Y. max_index = 0 max_change = -1 orig = classifier.predict_proba(v)[0][class_] for i in v.nonzero()[1]: val = v[0,i] v[0,i] = 0 pred = classifier.predict_proba(v)[0][class_] change = orig - pred if change > max_change: max_change = change max_index = i v[0,i] = val if max_change < 0: return -1 return max_index def explain_greedy(instance_vector, label, classifier, num_features, dataset=None): explanation = [] z = instance_vector.copy() while len(explanation) < num_features: i = most_important_word(classifier, z, label) if i == -1: break z[0,i] = 0 explanation.append(i) return [(x, 1) for x in explanation] def most_important_word_martens(predict_fn, v, class_): # Returns the word w that moves P(Y) - P(Y|NOT w) the most for class Y. max_index = 0 max_change = -1 orig = predict_fn(v)[0,class_] for i in v.nonzero()[1]: val = v[0,i] v[0,i] = 0 pred = predict_fn(v)[0,class_] change = orig - pred if change > max_change: max_change = change max_index = i v[0,i] = val if max_change < 0: return -1, max_change return max_index, max_change def explain_greedy_martens(instance_vector, label, predict_fn, num_features, dataset=None): if not hasattr(predict_fn, '__call__'): predict_fn = predict_fn.predict_proba explanation = [] z = instance_vector.copy() cur_score = predict_fn(instance_vector)[0, label] while len(explanation) < num_features: i, change = most_important_word_martens(predict_fn, z, label) cur_score -= change if i == -1: break explanation.append(i) if cur_score < .5: break z[0,i] = 0 return [(x, 1) for x in explanation] def data_labels_distances_mapping_text(x, classifier_fn, num_samples): distance_fn = lambda x : sklearn.metrics.pairwise.cosine_distances(x[0],x)[0] * 100 features = x.nonzero()[1] vals = np.array(x[x.nonzero()])[0] doc_size = len(sp.sparse.find(x)[2]) sample = np.random.randint(1, doc_size, num_samples - 1) data = np.zeros((num_samples, len(features))) inverse_data = np.zeros((num_samples, len(features))) data[0] = np.ones(doc_size) inverse_data[0] = vals features_range = range(len(features)) for i, s in enumerate(sample, start=1): active = np.random.choice(features_range, s, replace=False) data[i, active] = 1 for j in active: inverse_data[i, j] = 1 sparse_inverse = sp.sparse.lil_matrix((inverse_data.shape[0], x.shape[1])) sparse_inverse[:, features] = inverse_data sparse_inverse = sp.sparse.csr_matrix(sparse_inverse) mapping = features labels = classifier_fn(sparse_inverse) distances = distance_fn(sparse_inverse) return data, labels, distances, mapping # This is LIME class GeneralizedLocalExplainer: def __init__(self, kernel_fn, data_labels_distances_mapping_fn, num_samples=5000, lasso=True, mean=None, return_mean=False, return_mapped=False, lambda_=None, verbose=True, positive=False): # Transform_classifier, transform_explainer, # transform_explainer_to_classifier all take raw data in, whatever that is. # perturb(x, num_samples) returns data (perturbed data in f'(x) form), # inverse_data (perturbed data in x form) and mapping, where mapping is such # that mapping[i] = j, where j is an index for x form. # distance_fn takes raw data in. what we're calling raw data is just x self.lambda_ = lambda_ self.kernel_fn = kernel_fn self.data_labels_distances_mapping_fn = data_labels_distances_mapping_fn self.num_samples = num_samples self.lasso = lasso self.mean = mean self.return_mapped=return_mapped self.return_mean = return_mean self.verbose = verbose self.positive=positive; def reset(self): pass def data_labels_distances_mapping(self, raw_data, classifier_fn): data, labels, distances, mapping = self.data_labels_distances_mapping_fn(raw_data, classifier_fn, self.num_samples) return data, labels, distances, mapping def generate_lars_path(self, weighted_data, weighted_labels): X = weighted_data alphas, active, coefs = linear_model.lars_path(X, weighted_labels, method='lasso', verbose=False, positive=self.positive) return alphas, coefs def explain_instance_with_data(self, data, labels, distances, label, num_features): weights = self.kernel_fn(distances) weighted_data = data * weights[:, np.newaxis] if self.mean is None: mean = np.mean(labels[:, label]) else: mean = self.mean shifted_labels = labels[:, label] - mean if self.verbose: print 'mean', mean weighted_labels = shifted_labels * weights used_features = range(weighted_data.shape[1]) nonzero = used_features alpha = 1 if self.lambda_: classif = linear_model.Lasso(alpha=self.lambda_, fit_intercept=False, positive=self.positive) classif.fit(weighted_data, weighted_labels) used_features = classif.coef_.nonzero()[0] if used_features.shape[0] == 0: if self.return_mean: return [], mean else: return [] elif self.lasso: alphas, coefs = self.generate_lars_path(weighted_data, weighted_labels) for i in range(len(coefs.T) - 1, 0, -1): nonzero = coefs.T[i].nonzero()[0] if len(nonzero) <= num_features: chosen_coefs = coefs.T[i] alpha = alphas[i] break used_features = nonzero debiased_model = linear_model.Ridge(alpha=0, fit_intercept=False) debiased_model.fit(weighted_data[:, used_features], weighted_labels) if self.verbose: print 'Prediction_local', debiased_model.predict(data[0, used_features].reshape(1, -1)) + mean, 'Right:', labels[0, label] if self.return_mean: return sorted(zip(used_features, debiased_model.coef_), key=lambda x:np.abs(x[1]), reverse=True), mean else: return sorted(zip(used_features, debiased_model.coef_), key=lambda x:np.abs(x[1]), reverse=True) def explain_instance(self, raw_data, label, classifier_fn, num_features, dataset=None): if not hasattr(classifier_fn, '__call__'): classifier_fn = classifier_fn.predict_proba data, labels, distances, mapping = self.data_labels_distances_mapping(raw_data, classifier_fn) if self.return_mapped: if self.return_mean: exp, mean = self.explain_instance_with_data(data, labels, distances, label, num_features) else: exp = self.explain_instance_with_data(data, labels, distances, label, num_features) exp = [(mapping[x[0]], x[1]) for x in exp] if self.return_mean: return exp, mean else: return exp return self.explain_instance_with_data(data, labels, distances, label, num_features), mapping
bsd-2-clause
iproduct/course-social-robotics
11-dnn-keras/venv/Lib/site-packages/matplotlib/collections.py
1
77012
""" Classes for the efficient drawing of large collections of objects that share most properties, e.g., a large number of line segments or polygons. The classes are not meant to be as flexible as their single element counterparts (e.g., you may not be able to select all line styles) but they are meant to be fast for common use cases (e.g., a large set of solid line segments). """ import math from numbers import Number import numpy as np import matplotlib as mpl from . import (_path, artist, cbook, cm, colors as mcolors, docstring, lines as mlines, path as mpath, transforms) import warnings @cbook._define_aliases({ "antialiased": ["antialiaseds", "aa"], "edgecolor": ["edgecolors", "ec"], "facecolor": ["facecolors", "fc"], "linestyle": ["linestyles", "dashes", "ls"], "linewidth": ["linewidths", "lw"], }) class Collection(artist.Artist, cm.ScalarMappable): r""" Base class for Collections. Must be subclassed to be usable. A Collection represents a sequence of `.Patch`\es that can be drawn more efficiently together than individually. For example, when a single path is being drawn repeatedly at different offsets, the renderer can typically execute a ``draw_marker()`` call much more efficiently than a series of repeated calls to ``draw_path()`` with the offsets put in one-by-one. Most properties of a collection can be configured per-element. Therefore, Collections have "plural" versions of many of the properties of a `.Patch` (e.g. `.Collection.get_paths` instead of `.Patch.get_path`). Exceptions are the *zorder*, *hatch*, *pickradius*, *capstyle* and *joinstyle* properties, which can only be set globally for the whole collection. Besides these exceptions, all properties can be specified as single values (applying to all elements) or sequences of values. The property of the ``i``\th element of the collection is:: prop[i % len(prop)] Each Collection can optionally be used as its own `.ScalarMappable` by passing the *norm* and *cmap* parameters to its constructor. If the Collection's `.ScalarMappable` matrix ``_A`` has been set (via a call to `.Collection.set_array`), then at draw time this internal scalar mappable will be used to set the ``facecolors`` and ``edgecolors``, ignoring those that were manually passed in. """ _offsets = np.zeros((0, 2)) _transOffset = transforms.IdentityTransform() #: Either a list of 3x3 arrays or an Nx3x3 array (representing N #: transforms), suitable for the `all_transforms` argument to #: `~matplotlib.backend_bases.RendererBase.draw_path_collection`; #: each 3x3 array is used to initialize an #: `~matplotlib.transforms.Affine2D` object. #: Each kind of collection defines this based on its arguments. _transforms = np.empty((0, 3, 3)) # Whether to draw an edge by default. Set on a # subclass-by-subclass basis. _edge_default = False @cbook._delete_parameter("3.3", "offset_position") def __init__(self, edgecolors=None, facecolors=None, linewidths=None, linestyles='solid', capstyle=None, joinstyle=None, antialiaseds=None, offsets=None, transOffset=None, norm=None, # optional for ScalarMappable cmap=None, # ditto pickradius=5.0, hatch=None, urls=None, offset_position='screen', zorder=1, **kwargs ): """ Parameters ---------- edgecolors : color or list of colors, default: :rc:`patch.edgecolor` Edge color for each patch making up the collection. The special value 'face' can be passed to make the edgecolor match the facecolor. facecolors : color or list of colors, default: :rc:`patch.facecolor` Face color for each patch making up the collection. linewidths : float or list of floats, default: :rc:`patch.linewidth` Line width for each patch making up the collection. linestyles : str or tuple or list thereof, default: 'solid' Valid strings are ['solid', 'dashed', 'dashdot', 'dotted', '-', '--', '-.', ':']. Dash tuples should be of the form:: (offset, onoffseq), where *onoffseq* is an even length tuple of on and off ink lengths in points. For examples, see :doc:`/gallery/lines_bars_and_markers/linestyles`. capstyle : str, default: :rc:`patch.capstyle` Style to use for capping lines for all paths in the collection. See :doc:`/gallery/lines_bars_and_markers/joinstyle` for a demonstration of each of the allowed values. joinstyle : str, default: :rc:`patch.joinstyle` Style to use for joining lines for all paths in the collection. See :doc:`/gallery/lines_bars_and_markers/joinstyle` for a demonstration of each of the allowed values. antialiaseds : bool or list of bool, default: :rc:`patch.antialiased` Whether each pach in the collection should be drawn with antialiasing. offsets : (float, float) or list thereof, default: (0, 0) A vector by which to translate each patch after rendering (default is no translation). The translation is performed in screen (pixel) coordinates (i.e. after the Artist's transform is applied). transOffset : `~.transforms.Transform`, default: `.IdentityTransform` A single transform which will be applied to each *offsets* vector before it is used. offset_position : {'screen' (default), 'data' (deprecated)} If set to 'data' (deprecated), *offsets* will be treated as if it is in data coordinates instead of in screen coordinates. norm : `~.colors.Normalize`, optional Forwarded to `.ScalarMappable`. The default of ``None`` means that the first draw call will set ``vmin`` and ``vmax`` using the minimum and maximum values of the data. cmap : `~.colors.Colormap`, optional Forwarded to `.ScalarMappable`. The default of ``None`` will result in :rc:`image.cmap` being used. hatch : str, optional Hatching pattern to use in filled paths, if any. Valid strings are ['/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*']. See :doc:`/gallery/shapes_and_collections/hatch_demo` for the meaning of each hatch type. pickradius : float, default: 5.0 If ``pickradius <= 0``, then `.Collection.contains` will return ``True`` whenever the test point is inside of one of the polygons formed by the control points of a Path in the Collection. On the other hand, if it is greater than 0, then we instead check if the test point is contained in a stroke of width ``2*pickradius`` following any of the Paths in the Collection. urls : list of str, default: None A URL for each patch to link to once drawn. Currently only works for the SVG backend. See :doc:`/gallery/misc/hyperlinks_sgskip` for examples. zorder : float, default: 1 The drawing order, shared by all Patches in the Collection. See :doc:`/gallery/misc/zorder_demo` for all defaults and examples. """ artist.Artist.__init__(self) cm.ScalarMappable.__init__(self, norm, cmap) # list of un-scaled dash patterns # this is needed scaling the dash pattern by linewidth self._us_linestyles = [(0, None)] # list of dash patterns self._linestyles = [(0, None)] # list of unbroadcast/scaled linewidths self._us_lw = [0] self._linewidths = [0] self._is_filled = True # May be modified by set_facecolor(). self._hatch_color = mcolors.to_rgba(mpl.rcParams['hatch.color']) self.set_facecolor(facecolors) self.set_edgecolor(edgecolors) self.set_linewidth(linewidths) self.set_linestyle(linestyles) self.set_antialiased(antialiaseds) self.set_pickradius(pickradius) self.set_urls(urls) self.set_hatch(hatch) self._offset_position = "screen" if offset_position != "screen": self.set_offset_position(offset_position) # emit deprecation. self.set_zorder(zorder) if capstyle: self.set_capstyle(capstyle) else: self._capstyle = None if joinstyle: self.set_joinstyle(joinstyle) else: self._joinstyle = None self._offsets = np.zeros((1, 2)) # save if offsets passed in were none... self._offsetsNone = offsets is None self._uniform_offsets = None if offsets is not None: offsets = np.asanyarray(offsets, float) # Broadcast (2,) -> (1, 2) but nothing else. if offsets.shape == (2,): offsets = offsets[None, :] if transOffset is not None: self._offsets = offsets self._transOffset = transOffset else: self._uniform_offsets = offsets self._path_effects = None self.update(kwargs) self._paths = None def get_paths(self): return self._paths def set_paths(self): raise NotImplementedError def get_transforms(self): return self._transforms def get_offset_transform(self): t = self._transOffset if (not isinstance(t, transforms.Transform) and hasattr(t, '_as_mpl_transform')): t = t._as_mpl_transform(self.axes) return t def get_datalim(self, transData): # Calculate the data limits and return them as a `.Bbox`. # # This operation depends on the transforms for the data in the # collection and whether the collection has offsets: # # 1. offsets = None, transform child of transData: use the paths for # the automatic limits (i.e. for LineCollection in streamline). # 2. offsets != None: offset_transform is child of transData: # # a. transform is child of transData: use the path + offset for # limits (i.e for bar). # b. transform is not a child of transData: just use the offsets # for the limits (i.e. for scatter) # # 3. otherwise return a null Bbox. transform = self.get_transform() transOffset = self.get_offset_transform() if (not self._offsetsNone and not transOffset.contains_branch(transData)): # if there are offsets but in some coords other than data, # then don't use them for autoscaling. return transforms.Bbox.null() offsets = self._offsets paths = self.get_paths() if not transform.is_affine: paths = [transform.transform_path_non_affine(p) for p in paths] # Don't convert transform to transform.get_affine() here because # we may have transform.contains_branch(transData) but not # transforms.get_affine().contains_branch(transData). But later, # be careful to only apply the affine part that remains. if isinstance(offsets, np.ma.MaskedArray): offsets = offsets.filled(np.nan) # get_path_collection_extents handles nan but not masked arrays if len(paths) and len(offsets): if any(transform.contains_branch_seperately(transData)): # collections that are just in data units (like quiver) # can properly have the axes limits set by their shape + # offset. LineCollections that have no offsets can # also use this algorithm (like streamplot). result = mpath.get_path_collection_extents( transform.get_affine(), paths, self.get_transforms(), transOffset.transform_non_affine(offsets), transOffset.get_affine().frozen()) return result.transformed(transData.inverted()) if not self._offsetsNone: # this is for collections that have their paths (shapes) # in physical, axes-relative, or figure-relative units # (i.e. like scatter). We can't uniquely set limits based on # those shapes, so we just set the limits based on their # location. offsets = (transOffset - transData).transform(offsets) # note A-B means A B^{-1} offsets = np.ma.masked_invalid(offsets) if not offsets.mask.all(): points = np.row_stack((offsets.min(axis=0), offsets.max(axis=0))) return transforms.Bbox(points) return transforms.Bbox.null() def get_window_extent(self, renderer): # TODO: check to ensure that this does not fail for # cases other than scatter plot legend return self.get_datalim(transforms.IdentityTransform()) def _prepare_points(self): # Helper for drawing and hit testing. transform = self.get_transform() transOffset = self.get_offset_transform() offsets = self._offsets paths = self.get_paths() if self.have_units(): paths = [] for path in self.get_paths(): vertices = path.vertices xs, ys = vertices[:, 0], vertices[:, 1] xs = self.convert_xunits(xs) ys = self.convert_yunits(ys) paths.append(mpath.Path(np.column_stack([xs, ys]), path.codes)) if offsets.size: xs = self.convert_xunits(offsets[:, 0]) ys = self.convert_yunits(offsets[:, 1]) offsets = np.column_stack([xs, ys]) if not transform.is_affine: paths = [transform.transform_path_non_affine(path) for path in paths] transform = transform.get_affine() if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) # This might have changed an ndarray into a masked array. transOffset = transOffset.get_affine() if isinstance(offsets, np.ma.MaskedArray): offsets = offsets.filled(np.nan) # Changing from a masked array to nan-filled ndarray # is probably most efficient at this point. return transform, transOffset, offsets, paths @artist.allow_rasterization def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__class__.__name__, self.get_gid()) self.update_scalarmappable() transform, transOffset, offsets, paths = self._prepare_points() gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_snap(self.get_snap()) if self._hatch: gc.set_hatch(self._hatch) gc.set_hatch_color(self._hatch_color) if self.get_sketch_params() is not None: gc.set_sketch_params(*self.get_sketch_params()) if self.get_path_effects(): from matplotlib.patheffects import PathEffectRenderer renderer = PathEffectRenderer(self.get_path_effects(), renderer) # If the collection is made up of a single shape/color/stroke, # it can be rendered once and blitted multiple times, using # `draw_markers` rather than `draw_path_collection`. This is # *much* faster for Agg, and results in smaller file sizes in # PDF/SVG/PS. trans = self.get_transforms() facecolors = self.get_facecolor() edgecolors = self.get_edgecolor() do_single_path_optimization = False if (len(paths) == 1 and len(trans) <= 1 and len(facecolors) == 1 and len(edgecolors) == 1 and len(self._linewidths) == 1 and all(ls[1] is None for ls in self._linestyles) and len(self._antialiaseds) == 1 and len(self._urls) == 1 and self.get_hatch() is None): if len(trans): combined_transform = transforms.Affine2D(trans[0]) + transform else: combined_transform = transform extents = paths[0].get_extents(combined_transform) if (extents.width < self.figure.bbox.width and extents.height < self.figure.bbox.height): do_single_path_optimization = True if self._joinstyle: gc.set_joinstyle(self._joinstyle) if self._capstyle: gc.set_capstyle(self._capstyle) if do_single_path_optimization: gc.set_foreground(tuple(edgecolors[0])) gc.set_linewidth(self._linewidths[0]) gc.set_dashes(*self._linestyles[0]) gc.set_antialiased(self._antialiaseds[0]) gc.set_url(self._urls[0]) renderer.draw_markers( gc, paths[0], combined_transform.frozen(), mpath.Path(offsets), transOffset, tuple(facecolors[0])) else: renderer.draw_path_collection( gc, transform.frozen(), paths, self.get_transforms(), offsets, transOffset, self.get_facecolor(), self.get_edgecolor(), self._linewidths, self._linestyles, self._antialiaseds, self._urls, self._offset_position) gc.restore() renderer.close_group(self.__class__.__name__) self.stale = False def set_pickradius(self, pr): """ Set the pick radius used for containment tests. Parameters ---------- d : float Pick radius, in points. """ self._pickradius = pr def get_pickradius(self): return self._pickradius def contains(self, mouseevent): """ Test whether the mouse event occurred in the collection. Returns ``bool, dict(ind=itemlist)``, where every item in itemlist contains the event. """ inside, info = self._default_contains(mouseevent) if inside is not None: return inside, info if not self.get_visible(): return False, {} pickradius = ( float(self._picker) if isinstance(self._picker, Number) and self._picker is not True # the bool, not just nonzero or 1 else self._pickradius) if self.axes: self.axes._unstale_viewLim() transform, transOffset, offsets, paths = self._prepare_points() # Tests if the point is contained on one of the polygons formed # by the control points of each of the paths. A point is considered # "on" a path if it would lie within a stroke of width 2*pickradius # following the path. If pickradius <= 0, then we instead simply check # if the point is *inside* of the path instead. ind = _path.point_in_path_collection( mouseevent.x, mouseevent.y, pickradius, transform.frozen(), paths, self.get_transforms(), offsets, transOffset, pickradius <= 0, self._offset_position) return len(ind) > 0, dict(ind=ind) def set_urls(self, urls): """ Parameters ---------- urls : list of str or None Notes ----- URLs are currently only implemented by the SVG backend. They are ignored by all other backends. """ self._urls = urls if urls is not None else [None] self.stale = True def get_urls(self): """ Return a list of URLs, one for each element of the collection. The list contains *None* for elements without a URL. See :doc:`/gallery/misc/hyperlinks_sgskip` for an example. """ return self._urls def set_hatch(self, hatch): r""" Set the hatching pattern *hatch* can be one of:: / - diagonal hatching \ - back diagonal | - vertical - - horizontal + - crossed x - crossed diagonal o - small circle O - large circle . - dots * - stars Letters can be combined, in which case all the specified hatchings are done. If same letter repeats, it increases the density of hatching of that pattern. Hatching is supported in the PostScript, PDF, SVG and Agg backends only. Unlike other properties such as linewidth and colors, hatching can only be specified for the collection as a whole, not separately for each member. Parameters ---------- hatch : {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'} """ self._hatch = hatch self.stale = True def get_hatch(self): """Return the current hatching pattern.""" return self._hatch def set_offsets(self, offsets): """ Set the offsets for the collection. Parameters ---------- offsets : array-like (N, 2) or (2,) """ offsets = np.asanyarray(offsets, float) if offsets.shape == (2,): # Broadcast (2,) -> (1, 2) but nothing else. offsets = offsets[None, :] # This decision is based on how they are initialized above in __init__. if self._uniform_offsets is None: self._offsets = offsets else: self._uniform_offsets = offsets self.stale = True def get_offsets(self): """Return the offsets for the collection.""" # This decision is based on how they are initialized above in __init__. if self._uniform_offsets is None: return self._offsets else: return self._uniform_offsets @cbook.deprecated("3.3") def set_offset_position(self, offset_position): """ Set how offsets are applied. If *offset_position* is 'screen' (default) the offset is applied after the master transform has been applied, that is, the offsets are in screen coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in data coordinates. Parameters ---------- offset_position : {'screen', 'data'} """ cbook._check_in_list(['screen', 'data'], offset_position=offset_position) self._offset_position = offset_position self.stale = True @cbook.deprecated("3.3") def get_offset_position(self): """ Return how offsets are applied for the collection. If *offset_position* is 'screen', the offset is applied after the master transform has been applied, that is, the offsets are in screen coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in data coordinates. """ return self._offset_position def set_linewidth(self, lw): """ Set the linewidth(s) for the collection. *lw* can be a scalar or a sequence; if it is a sequence the patches will cycle through the sequence Parameters ---------- lw : float or list of floats """ if lw is None: lw = mpl.rcParams['patch.linewidth'] if lw is None: lw = mpl.rcParams['lines.linewidth'] # get the un-scaled/broadcast lw self._us_lw = np.atleast_1d(np.asarray(lw)) # scale all of the dash patterns. self._linewidths, self._linestyles = self._bcast_lwls( self._us_lw, self._us_linestyles) self.stale = True def set_linestyle(self, ls): """ Set the linestyle(s) for the collection. =========================== ================= linestyle description =========================== ================= ``'-'`` or ``'solid'`` solid line ``'--'`` or ``'dashed'`` dashed line ``'-.'`` or ``'dashdot'`` dash-dotted line ``':'`` or ``'dotted'`` dotted line =========================== ================= Alternatively a dash tuple of the following form can be provided:: (offset, onoffseq), where ``onoffseq`` is an even length tuple of on and off ink in points. Parameters ---------- ls : str or tuple or list thereof Valid values for individual linestyles include {'-', '--', '-.', ':', '', (offset, on-off-seq)}. See `.Line2D.set_linestyle` for a complete description. """ try: if isinstance(ls, str): ls = cbook.ls_mapper.get(ls, ls) dashes = [mlines._get_dash_pattern(ls)] else: try: dashes = [mlines._get_dash_pattern(ls)] except ValueError: dashes = [mlines._get_dash_pattern(x) for x in ls] except ValueError as err: raise ValueError('Do not know how to convert {!r} to ' 'dashes'.format(ls)) from err # get the list of raw 'unscaled' dash patterns self._us_linestyles = dashes # broadcast and scale the lw and dash patterns self._linewidths, self._linestyles = self._bcast_lwls( self._us_lw, self._us_linestyles) def set_capstyle(self, cs): """ Set the capstyle for the collection (for all its elements). Parameters ---------- cs : {'butt', 'round', 'projecting'} The capstyle. """ mpl.rcsetup.validate_capstyle(cs) self._capstyle = cs def get_capstyle(self): return self._capstyle def set_joinstyle(self, js): """ Set the joinstyle for the collection (for all its elements). Parameters ---------- js : {'miter', 'round', 'bevel'} The joinstyle. """ mpl.rcsetup.validate_joinstyle(js) self._joinstyle = js def get_joinstyle(self): return self._joinstyle @staticmethod def _bcast_lwls(linewidths, dashes): """ Internal helper function to broadcast + scale ls/lw In the collection drawing code, the linewidth and linestyle are cycled through as circular buffers (via ``v[i % len(v)]``). Thus, if we are going to scale the dash pattern at set time (not draw time) we need to do the broadcasting now and expand both lists to be the same length. Parameters ---------- linewidths : list line widths of collection dashes : list dash specification (offset, (dash pattern tuple)) Returns ------- linewidths, dashes : list Will be the same length, dashes are scaled by paired linewidth """ if mpl.rcParams['_internal.classic_mode']: return linewidths, dashes # make sure they are the same length so we can zip them if len(dashes) != len(linewidths): l_dashes = len(dashes) l_lw = len(linewidths) gcd = math.gcd(l_dashes, l_lw) dashes = list(dashes) * (l_lw // gcd) linewidths = list(linewidths) * (l_dashes // gcd) # scale the dash patters dashes = [mlines._scale_dashes(o, d, lw) for (o, d), lw in zip(dashes, linewidths)] return linewidths, dashes def set_antialiased(self, aa): """ Set the antialiasing state for rendering. Parameters ---------- aa : bool or list of bools """ if aa is None: aa = mpl.rcParams['patch.antialiased'] self._antialiaseds = np.atleast_1d(np.asarray(aa, bool)) self.stale = True def set_color(self, c): """ Set both the edgecolor and the facecolor. Parameters ---------- c : color or list of rgba tuples See Also -------- Collection.set_facecolor, Collection.set_edgecolor For setting the edge or face color individually. """ self.set_facecolor(c) self.set_edgecolor(c) def _set_facecolor(self, c): if c is None: c = mpl.rcParams['patch.facecolor'] self._is_filled = True try: if c.lower() == 'none': self._is_filled = False except AttributeError: pass self._facecolors = mcolors.to_rgba_array(c, self._alpha) self.stale = True def set_facecolor(self, c): """ Set the facecolor(s) of the collection. *c* can be a color (all patches have same color), or a sequence of colors; if it is a sequence the patches will cycle through the sequence. If *c* is 'none', the patch will not be filled. Parameters ---------- c : color or list of colors """ self._original_facecolor = c self._set_facecolor(c) def get_facecolor(self): return self._facecolors def get_edgecolor(self): if cbook._str_equal(self._edgecolors, 'face'): return self.get_facecolor() else: return self._edgecolors def _set_edgecolor(self, c): set_hatch_color = True if c is None: if (mpl.rcParams['patch.force_edgecolor'] or not self._is_filled or self._edge_default): c = mpl.rcParams['patch.edgecolor'] else: c = 'none' set_hatch_color = False self._is_stroked = True try: if c.lower() == 'none': self._is_stroked = False except AttributeError: pass try: if c.lower() == 'face': # Special case: lookup in "get" method. self._edgecolors = 'face' return except AttributeError: pass self._edgecolors = mcolors.to_rgba_array(c, self._alpha) if set_hatch_color and len(self._edgecolors): self._hatch_color = tuple(self._edgecolors[0]) self.stale = True def set_edgecolor(self, c): """ Set the edgecolor(s) of the collection. Parameters ---------- c : color or list of colors or 'face' The collection edgecolor(s). If a sequence, the patches cycle through it. If 'face', match the facecolor. """ self._original_edgecolor = c self._set_edgecolor(c) def set_alpha(self, alpha): # docstring inherited super().set_alpha(alpha) self._update_dict['array'] = True self._set_facecolor(self._original_facecolor) self._set_edgecolor(self._original_edgecolor) def get_linewidth(self): return self._linewidths def get_linestyle(self): return self._linestyles def update_scalarmappable(self): """Update colors from the scalar mappable array, if it is not None.""" if self._A is None: return # QuadMesh can map 2d arrays if self._A.ndim > 1 and not isinstance(self, QuadMesh): raise ValueError('Collections can only map rank 1 arrays') if not self._check_update("array"): return if self._is_filled: self._facecolors = self.to_rgba(self._A, self._alpha) elif self._is_stroked: self._edgecolors = self.to_rgba(self._A, self._alpha) self.stale = True def get_fill(self): """Return whether fill is set.""" return self._is_filled def update_from(self, other): """Copy properties from other to self.""" artist.Artist.update_from(self, other) self._antialiaseds = other._antialiaseds self._original_edgecolor = other._original_edgecolor self._edgecolors = other._edgecolors self._original_facecolor = other._original_facecolor self._facecolors = other._facecolors self._linewidths = other._linewidths self._linestyles = other._linestyles self._us_linestyles = other._us_linestyles self._pickradius = other._pickradius self._hatch = other._hatch # update_from for scalarmappable self._A = other._A self.norm = other.norm self.cmap = other.cmap # do we need to copy self._update_dict? -JJL self.stale = True class _CollectionWithSizes(Collection): """ Base class for collections that have an array of sizes. """ _factor = 1.0 def get_sizes(self): """ Return the sizes ('areas') of the elements in the collection. Returns ------- array The 'area' of each element. """ return self._sizes def set_sizes(self, sizes, dpi=72.0): """ Set the sizes of each member of the collection. Parameters ---------- sizes : ndarray or None The size to set for each element of the collection. The value is the 'area' of the element. dpi : float, default: 72 The dpi of the canvas. """ if sizes is None: self._sizes = np.array([]) self._transforms = np.empty((0, 3, 3)) else: self._sizes = np.asarray(sizes) self._transforms = np.zeros((len(self._sizes), 3, 3)) scale = np.sqrt(self._sizes) * dpi / 72.0 * self._factor self._transforms[:, 0, 0] = scale self._transforms[:, 1, 1] = scale self._transforms[:, 2, 2] = 1.0 self.stale = True @artist.allow_rasterization def draw(self, renderer): self.set_sizes(self._sizes, self.figure.dpi) Collection.draw(self, renderer) class PathCollection(_CollectionWithSizes): r""" A collection of `~.path.Path`\s, as created by e.g. `~.Axes.scatter`. """ def __init__(self, paths, sizes=None, **kwargs): """ Parameters ---------- paths : list of `.path.Path` The paths that will make up the `.Collection`. sizes : array-like The factor by which to scale each drawn `~.path.Path`. One unit squared in the Path's data space is scaled to be ``sizes**2`` points when rendered. **kwargs Forwarded to `.Collection`. """ super().__init__(**kwargs) self.set_paths(paths) self.set_sizes(sizes) self.stale = True def set_paths(self, paths): self._paths = paths self.stale = True def get_paths(self): return self._paths def legend_elements(self, prop="colors", num="auto", fmt=None, func=lambda x: x, **kwargs): """ Create legend handles and labels for a PathCollection. Each legend handle is a `.Line2D` representing the Path that was drawn, and each label is a string what each Path represents. This is useful for obtaining a legend for a `~.Axes.scatter` plot; e.g.:: scatter = plt.scatter([1, 2, 3], [4, 5, 6], c=[7, 2, 3]) plt.legend(*scatter.legend_elements()) creates three legend elements, one for each color with the numerical values passed to *c* as the labels. Also see the :ref:`automatedlegendcreation` example. Parameters ---------- prop : {"colors", "sizes"}, default: "colors" If "colors", the legend handles will show the different colors of the collection. If "sizes", the legend will show the different sizes. To set both, use *kwargs* to directly edit the `.Line2D` properties. num : int, None, "auto" (default), array-like, or `~.ticker.Locator`, Target number of elements to create. If None, use all unique elements of the mappable array. If an integer, target to use *num* elements in the normed range. If *"auto"*, try to determine which option better suits the nature of the data. The number of created elements may slightly deviate from *num* due to a `~.ticker.Locator` being used to find useful locations. If a list or array, use exactly those elements for the legend. Finally, a `~.ticker.Locator` can be provided. fmt : str, `~matplotlib.ticker.Formatter`, or None (default) The format or formatter to use for the labels. If a string must be a valid input for a `~.StrMethodFormatter`. If None (the default), use a `~.ScalarFormatter`. func : function, default *lambda x: x* Function to calculate the labels. Often the size (or color) argument to `~.Axes.scatter` will have been pre-processed by the user using a function ``s = f(x)`` to make the markers visible; e.g. ``size = np.log10(x)``. Providing the inverse of this function here allows that pre-processing to be inverted, so that the legend labels have the correct values; e.g. ``func = lambda x: 10**x``. **kwargs Allowed keyword arguments are *color* and *size*. E.g. it may be useful to set the color of the markers if *prop="sizes"* is used; similarly to set the size of the markers if *prop="colors"* is used. Any further parameters are passed onto the `.Line2D` instance. This may be useful to e.g. specify a different *markeredgecolor* or *alpha* for the legend handles. Returns ------- handles : list of `.Line2D` Visual representation of each element of the legend. labels : list of str The string labels for elements of the legend. """ handles = [] labels = [] hasarray = self.get_array() is not None if fmt is None: fmt = mpl.ticker.ScalarFormatter(useOffset=False, useMathText=True) elif isinstance(fmt, str): fmt = mpl.ticker.StrMethodFormatter(fmt) fmt.create_dummy_axis() if prop == "colors": if not hasarray: warnings.warn("Collection without array used. Make sure to " "specify the values to be colormapped via the " "`c` argument.") return handles, labels u = np.unique(self.get_array()) size = kwargs.pop("size", mpl.rcParams["lines.markersize"]) elif prop == "sizes": u = np.unique(self.get_sizes()) color = kwargs.pop("color", "k") else: raise ValueError("Valid values for `prop` are 'colors' or " f"'sizes'. You supplied '{prop}' instead.") fmt.set_bounds(func(u).min(), func(u).max()) if num == "auto": num = 9 if len(u) <= num: num = None if num is None: values = u label_values = func(values) else: if prop == "colors": arr = self.get_array() elif prop == "sizes": arr = self.get_sizes() if isinstance(num, mpl.ticker.Locator): loc = num elif np.iterable(num): loc = mpl.ticker.FixedLocator(num) else: num = int(num) loc = mpl.ticker.MaxNLocator(nbins=num, min_n_ticks=num-1, steps=[1, 2, 2.5, 3, 5, 6, 8, 10]) label_values = loc.tick_values(func(arr).min(), func(arr).max()) cond = ((label_values >= func(arr).min()) & (label_values <= func(arr).max())) label_values = label_values[cond] xarr = np.linspace(arr.min(), arr.max(), 256) values = np.interp(label_values, func(xarr), xarr) kw = dict(markeredgewidth=self.get_linewidths()[0], alpha=self.get_alpha()) kw.update(kwargs) for val, lab in zip(values, label_values): if prop == "colors": color = self.cmap(self.norm(val)) elif prop == "sizes": size = np.sqrt(val) if np.isclose(size, 0.0): continue h = mlines.Line2D([0], [0], ls="", color=color, ms=size, marker=self.get_paths()[0], **kw) handles.append(h) if hasattr(fmt, "set_locs"): fmt.set_locs(label_values) l = fmt(lab) labels.append(l) return handles, labels class PolyCollection(_CollectionWithSizes): def __init__(self, verts, sizes=None, closed=True, **kwargs): """ Parameters ---------- verts : list of array-like The sequence of polygons [*verts0*, *verts1*, ...] where each element *verts_i* defines the vertices of polygon *i* as a 2D array-like of shape (M, 2). sizes : array-like, default: None Squared scaling factors for the polygons. The coordinates of each polygon *verts_i* are multiplied by the square-root of the corresponding entry in *sizes* (i.e., *sizes* specify the scaling of areas). The scaling is applied before the Artist master transform. closed : bool, default: True Whether the polygon should be closed by adding a CLOSEPOLY connection at the end. **kwargs Forwarded to `.Collection`. """ Collection.__init__(self, **kwargs) self.set_sizes(sizes) self.set_verts(verts, closed) self.stale = True def set_verts(self, verts, closed=True): """ Set the vertices of the polygons. Parameters ---------- verts : list of array-like The sequence of polygons [*verts0*, *verts1*, ...] where each element *verts_i* defines the vertices of polygon *i* as a 2D array-like of shape (M, 2). closed : bool, default: True Whether the polygon should be closed by adding a CLOSEPOLY connection at the end. """ self.stale = True if isinstance(verts, np.ma.MaskedArray): verts = verts.astype(float).filled(np.nan) # No need to do anything fancy if the path isn't closed. if not closed: self._paths = [mpath.Path(xy) for xy in verts] return # Fast path for arrays if isinstance(verts, np.ndarray) and len(verts.shape) == 3: verts_pad = np.concatenate((verts, verts[:, :1]), axis=1) # Creating the codes once is much faster than having Path do it # separately each time by passing closed=True. codes = np.empty(verts_pad.shape[1], dtype=mpath.Path.code_type) codes[:] = mpath.Path.LINETO codes[0] = mpath.Path.MOVETO codes[-1] = mpath.Path.CLOSEPOLY self._paths = [mpath.Path(xy, codes) for xy in verts_pad] return self._paths = [] for xy in verts: if len(xy): if isinstance(xy, np.ma.MaskedArray): xy = np.ma.concatenate([xy, xy[:1]]) else: xy = np.concatenate([xy, xy[:1]]) self._paths.append(mpath.Path(xy, closed=True)) else: self._paths.append(mpath.Path(xy)) set_paths = set_verts def set_verts_and_codes(self, verts, codes): """Initialize vertices with path codes.""" if len(verts) != len(codes): raise ValueError("'codes' must be a 1D list or array " "with the same length of 'verts'") self._paths = [] for xy, cds in zip(verts, codes): if len(xy): self._paths.append(mpath.Path(xy, cds)) else: self._paths.append(mpath.Path(xy)) self.stale = True class BrokenBarHCollection(PolyCollection): """ A collection of horizontal bars spanning *yrange* with a sequence of *xranges*. """ def __init__(self, xranges, yrange, **kwargs): """ Parameters ---------- xranges : list of (float, float) The sequence of (left-edge-position, width) pairs for each bar. yrange : (float, float) The (lower-edge, height) common to all bars. **kwargs Forwarded to `.Collection`. """ ymin, ywidth = yrange ymax = ymin + ywidth verts = [[(xmin, ymin), (xmin, ymax), (xmin + xwidth, ymax), (xmin + xwidth, ymin), (xmin, ymin)] for xmin, xwidth in xranges] PolyCollection.__init__(self, verts, **kwargs) @classmethod def span_where(cls, x, ymin, ymax, where, **kwargs): """ Return a `.BrokenBarHCollection` that plots horizontal bars from over the regions in *x* where *where* is True. The bars range on the y-axis from *ymin* to *ymax* *kwargs* are passed on to the collection. """ xranges = [] for ind0, ind1 in cbook.contiguous_regions(where): xslice = x[ind0:ind1] if not len(xslice): continue xranges.append((xslice[0], xslice[-1] - xslice[0])) return cls(xranges, [ymin, ymax - ymin], **kwargs) class RegularPolyCollection(_CollectionWithSizes): """A collection of n-sided regular polygons.""" _path_generator = mpath.Path.unit_regular_polygon _factor = np.pi ** (-1/2) def __init__(self, numsides, rotation=0, sizes=(1,), **kwargs): """ Parameters ---------- numsides : int The number of sides of the polygon. rotation : float The rotation of the polygon in radians. sizes : tuple of float The area of the circle circumscribing the polygon in points^2. **kwargs Forwarded to `.Collection`. Examples -------- See :doc:`/gallery/event_handling/lasso_demo` for a complete example:: offsets = np.random.rand(20, 2) facecolors = [cm.jet(x) for x in np.random.rand(20)] collection = RegularPolyCollection( numsides=5, # a pentagon rotation=0, sizes=(50,), facecolors=facecolors, edgecolors=("black",), linewidths=(1,), offsets=offsets, transOffset=ax.transData, ) """ Collection.__init__(self, **kwargs) self.set_sizes(sizes) self._numsides = numsides self._paths = [self._path_generator(numsides)] self._rotation = rotation self.set_transform(transforms.IdentityTransform()) def get_numsides(self): return self._numsides def get_rotation(self): return self._rotation @artist.allow_rasterization def draw(self, renderer): self.set_sizes(self._sizes, self.figure.dpi) self._transforms = [ transforms.Affine2D(x).rotate(-self._rotation).get_matrix() for x in self._transforms ] Collection.draw(self, renderer) class StarPolygonCollection(RegularPolyCollection): """Draw a collection of regular stars with *numsides* points.""" _path_generator = mpath.Path.unit_regular_star class AsteriskPolygonCollection(RegularPolyCollection): """Draw a collection of regular asterisks with *numsides* points.""" _path_generator = mpath.Path.unit_regular_asterisk class LineCollection(Collection): r""" Represents a sequence of `.Line2D`\s that should be drawn together. This class extends `.Collection` to represent a sequence of `~.Line2D`\s instead of just a sequence of `~.Patch`\s. Just as in `.Collection`, each property of a *LineCollection* may be either a single value or a list of values. This list is then used cyclically for each element of the LineCollection, so the property of the ``i``\th element of the collection is:: prop[i % len(prop)] The properties of each member of a *LineCollection* default to their values in :rc:`lines.*` instead of :rc:`patch.*`, and the property *colors* is added in place of *edgecolors*. """ _edge_default = True def __init__(self, segments, # Can be None. linewidths=None, colors=None, antialiaseds=None, linestyles='solid', offsets=None, transOffset=None, norm=None, cmap=None, pickradius=5, zorder=2, facecolors='none', **kwargs ): """ Parameters ---------- segments: list of array-like A sequence of (*line0*, *line1*, *line2*), where:: linen = (x0, y0), (x1, y1), ... (xm, ym) or the equivalent numpy array with two columns. Each line can have a different number of segments. linewidths : float or list of float, default: :rc:`lines.linewidth` The width of each line in points. colors : color or list of color, default: :rc:`lines.color` A sequence of RGBA tuples (e.g., arbitrary color strings, etc, not allowed). antialiaseds : bool or list of bool, default: :rc:`lines.antialiased` Whether to use antialiasing for each line. zorder : int, default: 2 zorder of the lines once drawn. facecolors : color or list of color, default: 'none' The facecolors of the LineCollection. Setting to a value other than 'none' will lead to each line being "filled in" as if there was an implicit line segment joining the last and first points of that line back around to each other. In order to manually specify what should count as the "interior" of each line, please use `.PathCollection` instead, where the "interior" can be specified by appropriate usage of `~.path.Path.CLOSEPOLY`. **kwargs Forwareded to `.Collection`. """ if colors is None: colors = mpl.rcParams['lines.color'] if linewidths is None: linewidths = (mpl.rcParams['lines.linewidth'],) if antialiaseds is None: antialiaseds = (mpl.rcParams['lines.antialiased'],) colors = mcolors.to_rgba_array(colors) Collection.__init__( self, edgecolors=colors, facecolors=facecolors, linewidths=linewidths, linestyles=linestyles, antialiaseds=antialiaseds, offsets=offsets, transOffset=transOffset, norm=norm, cmap=cmap, zorder=zorder, **kwargs) self.set_segments(segments) def set_segments(self, segments): if segments is None: return _segments = [] for seg in segments: if not isinstance(seg, np.ma.MaskedArray): seg = np.asarray(seg, float) _segments.append(seg) if self._uniform_offsets is not None: _segments = self._add_offsets(_segments) self._paths = [mpath.Path(_seg) for _seg in _segments] self.stale = True set_verts = set_segments # for compatibility with PolyCollection set_paths = set_segments def get_segments(self): """ Returns ------- list List of segments in the LineCollection. Each list item contains an array of vertices. """ segments = [] for path in self._paths: vertices = [vertex for vertex, _ in path.iter_segments()] vertices = np.asarray(vertices) segments.append(vertices) return segments def _add_offsets(self, segs): offsets = self._uniform_offsets Nsegs = len(segs) Noffs = offsets.shape[0] if Noffs == 1: for i in range(Nsegs): segs[i] = segs[i] + i * offsets else: for i in range(Nsegs): io = i % Noffs segs[i] = segs[i] + offsets[io:io + 1] return segs def set_color(self, c): """ Set the color(s) of the LineCollection. Parameters ---------- c : color or list of colors Single color (all patches have same color), or a sequence of rgba tuples; if it is a sequence the patches will cycle through the sequence. """ self.set_edgecolor(c) self.stale = True def get_color(self): return self._edgecolors get_colors = get_color # for compatibility with old versions class EventCollection(LineCollection): """ A collection of locations along a single axis at which an "event" occured. The events are given by a 1-dimensional array. They do not have an amplitude and are displayed as parallel lines. """ _edge_default = True def __init__(self, positions, # Cannot be None. orientation='horizontal', lineoffset=0, linelength=1, linewidth=None, color=None, linestyle='solid', antialiased=None, **kwargs ): """ Parameters ---------- positions : 1D array-like Each value is an event. orientation : {'horizontal', 'vertical'}, default: 'horizontal' The sequence of events is plotted along this direction. The marker lines of the single events are along the orthogonal direction. lineoffset : float, default: 0 The offset of the center of the markers from the origin, in the direction orthogonal to *orientation*. linelength : float, default: 1 The total height of the marker (i.e. the marker stretches from ``lineoffset - linelength/2`` to ``lineoffset + linelength/2``). linewidth : float or list thereof, default: :rc:`lines.linewidth` The line width of the event lines, in points. color : color or list of colors, default: :rc:`lines.color` The color of the event lines. linestyle : str or tuple or list thereof, default: 'solid' Valid strings are ['solid', 'dashed', 'dashdot', 'dotted', '-', '--', '-.', ':']. Dash tuples should be of the form:: (offset, onoffseq), where *onoffseq* is an even length tuple of on and off ink in points. antialiased : bool or list thereof, default: :rc:`lines.antialiased` Whether to use antialiasing for drawing the lines. **kwargs Forwarded to `.LineCollection`. Examples -------- .. plot:: gallery/lines_bars_and_markers/eventcollection_demo.py """ LineCollection.__init__(self, [], linewidths=linewidth, colors=color, antialiaseds=antialiased, linestyles=linestyle, **kwargs) self._is_horizontal = True # Initial value, may be switched below. self._linelength = linelength self._lineoffset = lineoffset self.set_orientation(orientation) self.set_positions(positions) def get_positions(self): """ Return an array containing the floating-point values of the positions. """ pos = 0 if self.is_horizontal() else 1 return [segment[0, pos] for segment in self.get_segments()] def set_positions(self, positions): """Set the positions of the events.""" if positions is None: positions = [] if np.ndim(positions) != 1: raise ValueError('positions must be one-dimensional') lineoffset = self.get_lineoffset() linelength = self.get_linelength() pos_idx = 0 if self.is_horizontal() else 1 segments = np.empty((len(positions), 2, 2)) segments[:, :, pos_idx] = np.sort(positions)[:, None] segments[:, 0, 1 - pos_idx] = lineoffset + linelength / 2 segments[:, 1, 1 - pos_idx] = lineoffset - linelength / 2 self.set_segments(segments) def add_positions(self, position): """Add one or more events at the specified positions.""" if position is None or (hasattr(position, 'len') and len(position) == 0): return positions = self.get_positions() positions = np.hstack([positions, np.asanyarray(position)]) self.set_positions(positions) extend_positions = append_positions = add_positions def is_horizontal(self): """True if the eventcollection is horizontal, False if vertical.""" return self._is_horizontal def get_orientation(self): """ Return the orientation of the event line ('horizontal' or 'vertical'). """ return 'horizontal' if self.is_horizontal() else 'vertical' def switch_orientation(self): """ Switch the orientation of the event line, either from vertical to horizontal or vice versus. """ segments = self.get_segments() for i, segment in enumerate(segments): segments[i] = np.fliplr(segment) self.set_segments(segments) self._is_horizontal = not self.is_horizontal() self.stale = True def set_orientation(self, orientation=None): """ Set the orientation of the event line. Parameters ---------- orientation : {'horizontal', 'vertical'} """ try: is_horizontal = cbook._check_getitem( {"horizontal": True, "vertical": False}, orientation=orientation) except ValueError: if (orientation is None or orientation.lower() == "none" or orientation.lower() == "horizontal"): is_horizontal = True elif orientation.lower() == "vertical": is_horizontal = False else: raise normalized = "horizontal" if is_horizontal else "vertical" cbook.warn_deprecated( "3.3", message="Support for setting the orientation of " f"EventCollection to {orientation!r} is deprecated since " f"%(since)s and will be removed %(removal)s; please set it to " f"{normalized!r} instead.") if is_horizontal == self.is_horizontal(): return self.switch_orientation() def get_linelength(self): """Return the length of the lines used to mark each event.""" return self._linelength def set_linelength(self, linelength): """Set the length of the lines used to mark each event.""" if linelength == self.get_linelength(): return lineoffset = self.get_lineoffset() segments = self.get_segments() pos = 1 if self.is_horizontal() else 0 for segment in segments: segment[0, pos] = lineoffset + linelength / 2. segment[1, pos] = lineoffset - linelength / 2. self.set_segments(segments) self._linelength = linelength def get_lineoffset(self): """Return the offset of the lines used to mark each event.""" return self._lineoffset def set_lineoffset(self, lineoffset): """Set the offset of the lines used to mark each event.""" if lineoffset == self.get_lineoffset(): return linelength = self.get_linelength() segments = self.get_segments() pos = 1 if self.is_horizontal() else 0 for segment in segments: segment[0, pos] = lineoffset + linelength / 2. segment[1, pos] = lineoffset - linelength / 2. self.set_segments(segments) self._lineoffset = lineoffset def get_linewidth(self): """Get the width of the lines used to mark each event.""" return super(EventCollection, self).get_linewidth()[0] def get_linewidths(self): return super(EventCollection, self).get_linewidth() def get_color(self): """Return the color of the lines used to mark each event.""" return self.get_colors()[0] class CircleCollection(_CollectionWithSizes): """A collection of circles, drawn using splines.""" _factor = np.pi ** (-1/2) def __init__(self, sizes, **kwargs): """ Parameters ---------- sizes : float or array-like The area of each circle in points^2. **kwargs Forwarded to `.Collection`. """ Collection.__init__(self, **kwargs) self.set_sizes(sizes) self.set_transform(transforms.IdentityTransform()) self._paths = [mpath.Path.unit_circle()] class EllipseCollection(Collection): """A collection of ellipses, drawn using splines.""" def __init__(self, widths, heights, angles, units='points', **kwargs): """ Parameters ---------- widths : array-like The lengths of the first axes (e.g., major axis lengths). heights : array-like The lengths of second axes. angles : array-like The angles of the first axes, degrees CCW from the x-axis. units : {'points', 'inches', 'dots', 'width', 'height', 'x', 'y', 'xy'} The units in which majors and minors are given; 'width' and 'height' refer to the dimensions of the axes, while 'x' and 'y' refer to the *offsets* data units. 'xy' differs from all others in that the angle as plotted varies with the aspect ratio, and equals the specified angle only when the aspect ratio is unity. Hence it behaves the same as the `~.patches.Ellipse` with ``axes.transData`` as its transform. **kwargs Forwarded to `Collection`. """ Collection.__init__(self, **kwargs) self._widths = 0.5 * np.asarray(widths).ravel() self._heights = 0.5 * np.asarray(heights).ravel() self._angles = np.deg2rad(angles).ravel() self._units = units self.set_transform(transforms.IdentityTransform()) self._transforms = np.empty((0, 3, 3)) self._paths = [mpath.Path.unit_circle()] def _set_transforms(self): """Calculate transforms immediately before drawing.""" ax = self.axes fig = self.figure if self._units == 'xy': sc = 1 elif self._units == 'x': sc = ax.bbox.width / ax.viewLim.width elif self._units == 'y': sc = ax.bbox.height / ax.viewLim.height elif self._units == 'inches': sc = fig.dpi elif self._units == 'points': sc = fig.dpi / 72.0 elif self._units == 'width': sc = ax.bbox.width elif self._units == 'height': sc = ax.bbox.height elif self._units == 'dots': sc = 1.0 else: raise ValueError('unrecognized units: %s' % self._units) self._transforms = np.zeros((len(self._widths), 3, 3)) widths = self._widths * sc heights = self._heights * sc sin_angle = np.sin(self._angles) cos_angle = np.cos(self._angles) self._transforms[:, 0, 0] = widths * cos_angle self._transforms[:, 0, 1] = heights * -sin_angle self._transforms[:, 1, 0] = widths * sin_angle self._transforms[:, 1, 1] = heights * cos_angle self._transforms[:, 2, 2] = 1.0 _affine = transforms.Affine2D if self._units == 'xy': m = ax.transData.get_affine().get_matrix().copy() m[:2, 2:] = 0 self.set_transform(_affine(m)) @artist.allow_rasterization def draw(self, renderer): self._set_transforms() Collection.draw(self, renderer) class PatchCollection(Collection): """ A generic collection of patches. This makes it easier to assign a color map to a heterogeneous collection of patches. This also may improve plotting speed, since PatchCollection will draw faster than a large number of patches. """ def __init__(self, patches, match_original=False, **kwargs): """ *patches* a sequence of Patch objects. This list may include a heterogeneous assortment of different patch types. *match_original* If True, use the colors and linewidths of the original patches. If False, new colors may be assigned by providing the standard collection arguments, facecolor, edgecolor, linewidths, norm or cmap. If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their `.rcParams` patch setting, in sequence form. The use of `~matplotlib.cm.ScalarMappable` functionality is optional. If the `~matplotlib.cm.ScalarMappable` matrix ``_A`` has been set (via a call to `~.ScalarMappable.set_array`), at draw time a call to scalar mappable will be made to set the face colors. """ if match_original: def determine_facecolor(patch): if patch.get_fill(): return patch.get_facecolor() return [0, 0, 0, 0] kwargs['facecolors'] = [determine_facecolor(p) for p in patches] kwargs['edgecolors'] = [p.get_edgecolor() for p in patches] kwargs['linewidths'] = [p.get_linewidth() for p in patches] kwargs['linestyles'] = [p.get_linestyle() for p in patches] kwargs['antialiaseds'] = [p.get_antialiased() for p in patches] Collection.__init__(self, **kwargs) self.set_paths(patches) def set_paths(self, patches): paths = [p.get_transform().transform_path(p.get_path()) for p in patches] self._paths = paths class TriMesh(Collection): """ Class for the efficient drawing of a triangular mesh using Gouraud shading. A triangular mesh is a `~matplotlib.tri.Triangulation` object. """ def __init__(self, triangulation, **kwargs): Collection.__init__(self, **kwargs) self._triangulation = triangulation self._shading = 'gouraud' self._is_filled = True self._bbox = transforms.Bbox.unit() # Unfortunately this requires a copy, unless Triangulation # was rewritten. xy = np.hstack((triangulation.x.reshape(-1, 1), triangulation.y.reshape(-1, 1))) self._bbox.update_from_data_xy(xy) def get_paths(self): if self._paths is None: self.set_paths() return self._paths def set_paths(self): self._paths = self.convert_mesh_to_paths(self._triangulation) @staticmethod def convert_mesh_to_paths(tri): """ Convert a given mesh into a sequence of `~.Path` objects. This function is primarily of use to implementers of backends that do not directly support meshes. """ triangles = tri.get_masked_triangles() verts = np.stack((tri.x[triangles], tri.y[triangles]), axis=-1) return [mpath.Path(x) for x in verts] @artist.allow_rasterization def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__class__.__name__, gid=self.get_gid()) transform = self.get_transform() # Get a list of triangles and the color at each vertex. tri = self._triangulation triangles = tri.get_masked_triangles() verts = np.stack((tri.x[triangles], tri.y[triangles]), axis=-1) self.update_scalarmappable() colors = self._facecolors[triangles] gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_linewidth(self.get_linewidth()[0]) renderer.draw_gouraud_triangles(gc, verts, colors, transform.frozen()) gc.restore() renderer.close_group(self.__class__.__name__) class QuadMesh(Collection): """ Class for the efficient drawing of a quadrilateral mesh. A quadrilateral mesh consists of a grid of vertices. The dimensions of this array are (*meshWidth* + 1, *meshHeight* + 1). Each vertex in the mesh has a different set of "mesh coordinates" representing its position in the topology of the mesh. For any values (*m*, *n*) such that 0 <= *m* <= *meshWidth* and 0 <= *n* <= *meshHeight*, the vertices at mesh coordinates (*m*, *n*), (*m*, *n* + 1), (*m* + 1, *n* + 1), and (*m* + 1, *n*) form one of the quadrilaterals in the mesh. There are thus (*meshWidth* * *meshHeight*) quadrilaterals in the mesh. The mesh need not be regular and the polygons need not be convex. A quadrilateral mesh is represented by a (2 x ((*meshWidth* + 1) * (*meshHeight* + 1))) numpy array *coordinates*, where each row is the *x* and *y* coordinates of one of the vertices. To define the function that maps from a data point to its corresponding color, use the :meth:`set_cmap` method. Each of these arrays is indexed in row-major order by the mesh coordinates of the vertex (or the mesh coordinates of the lower left vertex, in the case of the colors). For example, the first entry in *coordinates* is the coordinates of the vertex at mesh coordinates (0, 0), then the one at (0, 1), then at (0, 2) .. (0, meshWidth), (1, 0), (1, 1), and so on. *shading* may be 'flat', or 'gouraud' """ def __init__(self, meshWidth, meshHeight, coordinates, antialiased=True, shading='flat', **kwargs): Collection.__init__(self, **kwargs) self._meshWidth = meshWidth self._meshHeight = meshHeight # By converting to floats now, we can avoid that on every draw. self._coordinates = np.asarray(coordinates, float).reshape( (meshHeight + 1, meshWidth + 1, 2)) self._antialiased = antialiased self._shading = shading self._bbox = transforms.Bbox.unit() self._bbox.update_from_data_xy(coordinates.reshape( ((meshWidth + 1) * (meshHeight + 1), 2))) def get_paths(self): if self._paths is None: self.set_paths() return self._paths def set_paths(self): self._paths = self.convert_mesh_to_paths( self._meshWidth, self._meshHeight, self._coordinates) self.stale = True def get_datalim(self, transData): return (self.get_transform() - transData).transform_bbox(self._bbox) @staticmethod def convert_mesh_to_paths(meshWidth, meshHeight, coordinates): """ Convert a given mesh into a sequence of `~.Path` objects. This function is primarily of use to implementers of backends that do not directly support quadmeshes. """ if isinstance(coordinates, np.ma.MaskedArray): c = coordinates.data else: c = coordinates points = np.concatenate(( c[:-1, :-1], c[:-1, 1:], c[1:, 1:], c[1:, :-1], c[:-1, :-1] ), axis=2) points = points.reshape((meshWidth * meshHeight, 5, 2)) return [mpath.Path(x) for x in points] def convert_mesh_to_triangles(self, meshWidth, meshHeight, coordinates): """ Convert a given mesh into a sequence of triangles, each point with its own color. This is useful for experiments using `~.RendererBase.draw_gouraud_triangle`. """ if isinstance(coordinates, np.ma.MaskedArray): p = coordinates.data else: p = coordinates p_a = p[:-1, :-1] p_b = p[:-1, 1:] p_c = p[1:, 1:] p_d = p[1:, :-1] p_center = (p_a + p_b + p_c + p_d) / 4.0 triangles = np.concatenate(( p_a, p_b, p_center, p_b, p_c, p_center, p_c, p_d, p_center, p_d, p_a, p_center, ), axis=2) triangles = triangles.reshape((meshWidth * meshHeight * 4, 3, 2)) c = self.get_facecolor().reshape((meshHeight + 1, meshWidth + 1, 4)) c_a = c[:-1, :-1] c_b = c[:-1, 1:] c_c = c[1:, 1:] c_d = c[1:, :-1] c_center = (c_a + c_b + c_c + c_d) / 4.0 colors = np.concatenate(( c_a, c_b, c_center, c_b, c_c, c_center, c_c, c_d, c_center, c_d, c_a, c_center, ), axis=2) colors = colors.reshape((meshWidth * meshHeight * 4, 3, 4)) return triangles, colors @artist.allow_rasterization def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__class__.__name__, self.get_gid()) transform = self.get_transform() transOffset = self.get_offset_transform() offsets = self._offsets if self.have_units(): if len(self._offsets): xs = self.convert_xunits(self._offsets[:, 0]) ys = self.convert_yunits(self._offsets[:, 1]) offsets = np.column_stack([xs, ys]) self.update_scalarmappable() if not transform.is_affine: coordinates = self._coordinates.reshape((-1, 2)) coordinates = transform.transform(coordinates) coordinates = coordinates.reshape(self._coordinates.shape) transform = transforms.IdentityTransform() else: coordinates = self._coordinates if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) transOffset = transOffset.get_affine() gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_linewidth(self.get_linewidth()[0]) if self._shading == 'gouraud': triangles, colors = self.convert_mesh_to_triangles( self._meshWidth, self._meshHeight, coordinates) renderer.draw_gouraud_triangles( gc, triangles, colors, transform.frozen()) else: renderer.draw_quad_mesh( gc, transform.frozen(), self._meshWidth, self._meshHeight, coordinates, offsets, transOffset, # Backends expect flattened rgba arrays (n*m, 4) for fc and ec self.get_facecolor().reshape((-1, 4)), self._antialiased, self.get_edgecolors().reshape((-1, 4))) gc.restore() renderer.close_group(self.__class__.__name__) self.stale = False patchstr = artist.kwdoc(Collection) for k in ('QuadMesh', 'TriMesh', 'PolyCollection', 'BrokenBarHCollection', 'RegularPolyCollection', 'PathCollection', 'StarPolygonCollection', 'PatchCollection', 'CircleCollection', 'Collection',): docstring.interpd.update({k: patchstr}) docstring.interpd.update(LineCollection=artist.kwdoc(LineCollection))
gpl-2.0
mitschabaude/nanopores
scripts/pughpore/randomwalk/create_plot_traj.py
1
4699
from matplotlib.ticker import FormatStrFormatter import matplotlib import nanopores as nano import nanopores.geometries.pughpore as pughpore from nanopores.models.pughpore import polygon from nanopores.models.pughpoints import plot_polygon from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt import sys import os import nanopores.tools.fields as f HOME = os.path.expanduser("~") PAPERDIR = os.path.join(HOME, "papers", "paper-howorka") FIGDIR = os.path.join(PAPERDIR, "figures", "") DATADIR = os.path.join(HOME,"Dropbox", "nanopores", "fields") f.set_dir_mega() up = nano.Params(pughpore.params, k=3) hpore=up.hpore l0 = up.l0 l1 = up.l1 l2 = up.l2 l3 = up.l3 l4 = up.l4 hpore = up.hpore hmem = up.hmem h2 = up.h2 h1 = up.h1 h4 = up.h4 def save_fig_traj(params,fieldsname,i,showtraj): data=f.get_fields(fieldsname,**params) b1 =data["b1"] b2 =data["b2"] if showtraj: X = data["X"][i] Y = data["Y"][i] Z = data["Z"][i] T = data["T"][i] J = data["J"][i] J=J.load() T=T.load() curr = 7.523849e-10 bind1 = np.where(T>1e6)[0] bind2 = np.intersect1d(np.where(T<=1e6)[0],np.where(T>100.)[0]) amplitude = curr-np.inner(J,T)/np.sum(T) for k in range(1,T.shape[0]): T[k]=T[k]+T[k-1] tau_off=T[-1] J=J*1e12 figname = fieldsname+'_traj_'+'%.8f'%(tau_off*1e-6)+'_%04d'%i+'_%.1e_%.1e_%.1e_%.1e'%(params["avgbind1"],params["avgbind2"],params["P_bind1"],params["P_bind2"])+str(params["z0"]) else: figname = fieldsname+'_bindzones'+'_%.1e_%.1e_%.1e_%.1e'%(params["avgbind1"],params["avgbind2"],params["P_bind1"],params["P_bind2"])+str(params["z0"]) if showtraj: fig=plt.figure(figsize=(8,5),dpi=80) else: fig=plt.figure(figsize=(3,5),dpi=80) color2='#ff0000' color1='#ff9900' color3='#00ff00' #b1 = [[[l1/2.,17.],[l1/2.,19.]],[[l3/2.,-hpore/2.],[l3/2.,hpore/2.-h2],[l2/2.,hpore/2.-h2],[l2/2.,14.]]] for seq in b1: x= [p[0] for p in seq] xm=[-p[0] for p in seq] y= [p[1] for p in seq] plt.plot(x,y,color=color1,linewidth=2.) plt.plot(xm,y,color=color1,linewidth=2.) #b2 = [[[l3/2.-.5,-3.],[l3/2.-.5,11.]]] for seq in b2: x= [p[0] for p in seq] xm=[-p[0] for p in seq] y= [p[1] for p in seq] plt.plot(x,y,color=color2,linewidth=2.) plt.plot(xm,y,color=color2,linewidth=2.) if showtraj: plt.plot(X,Z,linewidth=1.,c='#0000ff') longer = plt.scatter(X[bind1],Z[bind1],s=200,marker='h',c=color2,linewidth=0.) shorter = plt.scatter(X[bind2],Z[bind2],s=100,marker='h',c=color1,linewidth=0.) start = plt.scatter([X[0]],[Z[0]],s=200,marker='x',c=color3,linewidth=2.) patches=[start] labels=['Start'] if showtraj and len(bind1)>0: patches=patches+[longer] labels+=['Longer bindings'] if showtraj and len(bind2)>0: patches=patches+[shorter] labels+=['Shorter bindings'] if showtraj: plt.legend(patches,labels,scatterpoints=1,loc=(.42,.15)) ax=plt.gca() ax.set_aspect('equal') if showtraj: ax.set_xlim([20.,-55.]) ax.set_ylim([-25.,40.]) else: ax.set_xlim([20.,-20.]) ax.set_ylim([-25.,40.]) ax.set_xticks([]) ax.set_yticks([]) plt.axis('off') plot_polygon(ax,polygon(rmem=60.)) if showtraj: plt.axes([.55,.5,.2,.3]) plt.title('Current signal') ax=plt.gca() if tau_off<1e3: t = np.linspace(0.,tau_off,3) fac=1. ax.set_xlabel('time [$ns$]') elif tau_off<1e6 and tau_off>=1e3: t = np.linspace(0.,tau_off*1e-3,3) fac = 1e-3 ax.set_xlabel(r'time [$\mu s$]') else: t = np.linspace(0.,tau_off*1e-6,3) fac = 1e-6 ax.set_xlabel('time [$ms$]') T=T*fac plt.plot(T,J,color='#000000') yt = np.linspace(580.,760,4) ax.set_ylabel(r'A [$pA$]') ax.set_yticks(yt) ax.set_xticks(t) xfmt=FormatStrFormatter('%.1f') ax.xaxis.set_major_formatter(xfmt) ax.set_xlim([-4e-2*tau_off*fac,(1.+4e-2)*tau_off*fac]) plt.tight_layout() # nano.savefigs(name=figname,DIR='/home/bstadlbau/plots/') plt.show() print 'savefig: %s'%figname plt.close("all") fieldsname='events_onlyone_2' params=dict(avgbind1=2e7,avgbind2=3e4,P_bind1=8.e-2,P_bind2=0*3e-1,z0=hpore/2.+0.) i=15 showtraj = True save_fig_traj(params,fieldsname,i,showtraj)
mit
imaculate/scikit-learn
examples/tree/unveil_tree_structure.py
67
4824
""" ========================================= Understanding the decision tree structure ========================================= The decision tree structure can be analysed to gain further insight on the relation between the features and the target to predict. In this example, we show how to retrieve: - the binary tree structure; - the depth of each node and whether or not it's a leaf; - the nodes that were reached by a sample using the ``decision_path`` method; - the leaf that was reached by a sample using the apply method; - the rules that were used to predict a sample; - the decision path shared by a group of samples. """ import numpy as np from sklearn.model_selection import train_test_split from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier iris = load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) estimator = DecisionTreeClassifier(max_leaf_nodes=3, random_state=0) estimator.fit(X_train, y_train) # The decision estimator has an attribute called tree_ which stores the entire # tree structure and allows access to low level attributes. The binary tree # tree_ is represented as a number of parallel arrays. The i-th element of each # array holds information about the node `i`. Node 0 is the tree's root. NOTE: # Some of the arrays only apply to either leaves or split nodes, resp. In this # case the values of nodes of the other type are arbitrary! # # Among those arrays, we have: # - left_child, id of the left child of the node # - right_child, id of the right child of the node # - feature, feature used for splitting the node # - threshold, threshold value at the node # # Using those arrays, we can parse the tree structure: n_nodes = estimator.tree_.node_count children_left = estimator.tree_.children_left children_right = estimator.tree_.children_right feature = estimator.tree_.feature threshold = estimator.tree_.threshold # The tree structure can be traversed to compute various properties such # as the depth of each node and whether or not it is a leaf. node_depth = np.zeros(shape=n_nodes) is_leaves = np.zeros(shape=n_nodes, dtype=bool) stack = [(0, -1)] # seed is the root node id and its parent depth while len(stack) > 0: node_id, parent_depth = stack.pop() node_depth[node_id] = parent_depth + 1 # If we have a test node if (children_left[node_id] != children_right[node_id]): stack.append((children_left[node_id], parent_depth + 1)) stack.append((children_right[node_id], parent_depth + 1)) else: is_leaves[node_id] = True print("The binary tree structure has %s nodes and has " "the following tree structure:" % n_nodes) for i in range(n_nodes): if is_leaves[i]: print("%snode=%s leaf node." % (node_depth[i] * "\t", i)) else: print("%snode=%s test node: go to node %s if X[:, %s] <= %ss else to " "node %s." % (node_depth[i] * "\t", i, children_left[i], feature[i], threshold[i], children_right[i], )) print() # First let's retrieve the decision path of each sample. The decision_path # method allows to retrieve the node indicator functions. A non zero element of # indicator matrix at the position (i, j) indicates that the sample i goes # through the node j. node_indicator = estimator.decision_path(X_test) # Similarly, we can also have the leaves ids reached by each sample. leave_id = estimator.apply(X_test) # Now, it's possible to get the tests that were used to predict a sample or # a group of samples. First, let's make it for the sample. sample_id = 0 node_index = node_indicator.indices[node_indicator.indptr[sample_id]: node_indicator.indptr[sample_id + 1]] print('Rules used to predict sample %s: ' % sample_id) for node_id in node_index: if leave_id[sample_id] != node_id: continue if (X_test[sample_id, feature[node_id]] <= threshold[node_id]): threshold_sign = "<=" else: threshold_sign = ">" print("decision id node %s : (X[%s, %s] (= %s) %s %s)" % (node_id, sample_id, feature[node_id], X_test[i, feature[node_id]], threshold_sign, threshold[node_id])) # For a group of samples, we have the following common node. sample_ids = [0, 1] common_nodes = (node_indicator.toarray()[sample_ids].sum(axis=0) == len(sample_ids)) common_node_id = np.arange(n_nodes)[common_nodes] print("\nThe following samples %s share the node %s in the tree" % (sample_ids, common_node_id)) print("It is %s %% of all nodes." % (100 * len(common_node_id) / n_nodes,))
bsd-3-clause
numenta/htmresearch
projects/union_path_integration/plot_convergence.py
4
11807
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2018, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """Plot convergence chart.""" import collections import json import os import matplotlib.pyplot as plt import numpy as np CWD = os.path.dirname(os.path.realpath(__file__)) CHART_DIR = os.path.join(CWD, "charts") def chart(): if not os.path.exists(CHART_DIR): os.makedirs(CHART_DIR) # Convergence vs. number of objects, comparing # unique features # # Generated with: # python convergence_simulation.py --numObjects 200 400 600 800 1000 1200 1400 1600 1800 2000 --numUniqueFeatures 50 --locationModuleWidth 20 --resultName results/convergence_vs_num_objs_50_feats.json # python convergence_simulation.py --numObjects 200 400 600 800 1000 1200 1400 1600 1800 2000 --numUniqueFeatures 100 --locationModuleWidth 20 --resultName results/convergence_vs_num_objs_100_feats.json # python convergence_simulation.py --numObjects 200 400 600 800 1000 1200 1400 1600 1800 2000 --numUniqueFeatures 5000 --locationModuleWidth 20 --resultName results/convergence_vs_num_objs_5000_feats.json #plt.style.use("ggplot") markers = ("s", "o", "^") for feats, marker in zip((100, 200, 5000), markers): with open("results/convergence_vs_num_objs_{}_feats.json".format(feats), "r") as f: convVsObjects = json.load(f) yData = collections.defaultdict(list) for exp in convVsObjects: numObjects = int(str(exp[0]["numObjects"])) if "null" in exp[1]["convergence"].keys(): continue results = exp[1]["convergence"].items() total = 0 count = 0 for i, j in results: total += (int(str(i)) * j) count += j y = float(total) / float(count) yData[numObjects].append(y) x = list(sorted(yData.keys())) yData = sorted(yData.iteritems()) y = [float(sum(pair[1])) / float(len(pair[1])) if None not in pair[1] else None for pair in yData] std = [np.std(pair[1]) for pair in yData] yBelow = [yi - stdi for yi, stdi in zip(y, std)] yAbove = [yi + stdi for yi, stdi in zip(y, std)] xError = x[:len(yBelow)] plt.plot( x, y, "{}-".format(marker), label="{} unique features".format(feats), ) #plt.fill_between(xError, yBelow, yAbove, alpha=0.3) plt.xlabel("Number of Objects") plt.xticks([(i+1)*200 for i in xrange(10)]) plt.ylabel("Average Number of Sensations") plt.legend(loc="center right") plt.tight_layout() plt.savefig(os.path.join(CHART_DIR, "convergence_vs_objects_w_feats.pdf")) plt.clf() # Convergence vs. number of objects, varying module size # NOT USED in Columns Plus # # Generated with: # TODO #plt.style.use("ggplot") #for cpm in (25, 100, 400): # with open("results/convergence_vs_num_objs_{}_cpm.json".format(cpm), "r") as f: # convVsObjs = json.load(f) # yData = collections.defaultdict(list) # for exp in convVsObjs: # results = exp[1]["convergence"].items() # total = 0 # count = 0 # for i, j in results: # total += (int(str(i)) * j) # count += j # y = float(total) / float(count) # numObjects = int(str(exp[0]["numObjects"])) # yData[numObjects].append(y) # x = list(sorted(yData.keys())) # yData = sorted(yData.iteritems()) # y = [float(sum(pair[1])) / float(len(pair[1])) for pair in yData] # std = [np.std(pair[1]) for pair in yData] # yBelow = [yi - stdi for yi, stdi in zip(y, std)] # yAbove = [yi + stdi for yi, stdi in zip(y, std)] # plt.plot( # x, y, "o-", label="{} cells per module".format(cpm), # ) # plt.fill_between(x, yBelow, yAbove, alpha=0.3) #plt.xlabel("Number of Objects") #plt.ylabel("Average Number of Sensations") #plt.legend(loc="upper left") #plt.tight_layout() #plt.savefig(os.path.join(CHART_DIR, "convergence_with_modsize.pdf")) #plt.clf() # Convergence vs. number of modules # # Generated with: # python convergence_simulation.py --numObjects 100 --numUniqueFeatures 100 --locationModuleWidth 5 --numModules 1 2 3 4 5 6 7 8 9 10 --resultName results/convergence_vs_num_modules_100_feats_25_cpm.json --repeat 10 # python convergence_simulation.py --numObjects 100 --numUniqueFeatures 100 --locationModuleWidth 10 --numModules 1 2 3 4 5 6 7 8 9 10 --resultName results/convergence_vs_num_modules_100_feats_100_cpm.json --repeat 10 # python convergence_simulation.py --numObjects 100 --numUniqueFeatures 100 --locationModuleWidth 20 --numModules 1 2 3 4 5 6 7 8 9 10 --resultName results/convergence_vs_num_modules_100_feats_400_cpm.json --repeat 10 #plt.style.use("ggplot") markers = ("s", "o", "^") for cpm, marker in zip((49, 100, 400), markers): with open("results/convergence_vs_num_modules_100_feats_{}_cpm.json".format(cpm), "r") as f: convVsMods100 = json.load(f) yData = collections.defaultdict(list) for exp in convVsMods100: results = exp[1]["convergence"].items() total = 0 count = 0 for i, j in results: if str(i) == "null": total = 50 * j else: total += (int(str(i)) * j) count += j y = float(total) / float(count) numModules = int(str(exp[0]["numModules"])) yData[numModules].append(y) x = [i+1 for i in xrange(20)] #y = [float(sum(pair[1])) / float(len(pair[1])) for pair in yData] y = [float(sum(yData[step])) / float(len(yData[step])) for step in x] #yData20 = yData[19][1] #y20 = float(sum(yData20)) / float(len(yData20)) yData = sorted(yData.iteritems()) std = [np.std(pair[1]) for pair in yData] yBelow = [yi - stdi for yi, stdi in zip(y, std)] yAbove = [yi + stdi for yi, stdi in zip(y, std)] plt.plot( x, y, "{}-".format(marker), label="{} cells per module".format(cpm), ) #plt.fill_between(x, yBelow, yAbove, alpha=0.3) # TODO: Update this to ideal? plt.plot([1, 20], [2.022, 2.022], "r--", label="Ideal") plt.xlabel("Number of Modules") plt.ylabel("Average Number of Sensations") plt.legend(loc="upper right") plt.ylim((0.0, 7.0)) plt.xticks([(i+1)*2 for i in xrange(10)]) plt.tight_layout() plt.savefig(os.path.join(CHART_DIR, "convergence_vs_modules_100_feats.pdf")) plt.clf() # Cumulative convergence # # Generated with: # python convergence_simulation.py --numObjects 100 --numUniqueFeatures 10 --locationModuleWidth 20 --thresholds 18 --resultName results/cumulative_convergence_400_cpm_10_feats_100_objs.json --repeat 10 # python convergence_simulation.py --numObjects 100 --numUniqueFeatures 10 --locationModuleWidth 10 --thresholds 19 --resultName results/cumulative_convergence_100_cpm_10_feats_100_objs.json --repeat 10 # python ideal_sim.py # python bof_sim.py numSteps = 12 # 1600 CPM yData = collections.defaultdict(list) with open("results/cumulative_convergence_1600_cpm_10_feats_100_objs.json", "r") as f: experiments = json.load(f) for exp in experiments: cum = 0 for i in xrange(40): step = i + 1 count = exp[1]["convergence"].get(str(step), 0) yData[step].append(count) x = [i+1 for i in xrange(numSteps)] y = [] tot = float(sum([sum(counts) for counts in yData.values()])) cum = 0.0 for step in x: counts = yData[step] cum += float(sum(counts)) y.append(100.0 * cum / tot) std = [np.std(yData[step]) for step in x] yBelow = [yi - stdi for yi, stdi in zip(y, std)] yAbove = [yi + stdi for yi, stdi in zip(y, std)] plt.plot( x, y, "s-", label="1600 Cells Per Module", ) #plt.fill_between(x, yBelow, yAbove, alpha=0.3) # 400 CPM yData = collections.defaultdict(list) with open("results/cumulative_convergence_400_cpm_10_feats_100_objs.json", "r") as f: experiments = json.load(f) for exp in experiments: cum = 0 for i in xrange(40): step = i + 1 count = exp[1]["convergence"].get(str(step), 0) yData[step].append(count) x = [i+1 for i in xrange(numSteps)] y = [] tot = float(sum([sum(counts) for counts in yData.values()])) cum = 0.0 for step in x: counts = yData[step] cum += float(sum(counts)) y.append(100.0 * cum / tot) std = [np.std(yData[step]) for step in x] yBelow = [yi - stdi for yi, stdi in zip(y, std)] yAbove = [yi + stdi for yi, stdi in zip(y, std)] plt.plot( x, y, "o-", label="400 Cells Per Module", ) #plt.fill_between(x, yBelow, yAbove, alpha=0.3) ## 289 CPM yData = collections.defaultdict(list) with open("results/cumulative_convergence_289_cpm_10_feats_100_objs_1.json", "r") as f: experiments = json.load(f) for exp in experiments: cum = 0 for i in xrange(40): step = i + 1 count = exp[1]["convergence"].get(str(step), 0) yData[step].append(count) x = [i+1 for i in xrange(numSteps)] y = [] tot = float(sum([sum(counts) for counts in yData.values()])) cum = 0.0 for step in x: counts = yData[step] cum += float(sum(counts)) y.append(100.0 * cum / tot) std = [np.std(yData[step]) for step in x] yBelow = [yi - stdi for yi, stdi in zip(y, std)] yAbove = [yi + stdi for yi, stdi in zip(y, std)] plt.plot( x, y, "^-", label="289 Cells Per Module", ) #plt.fill_between(x, yBelow, yAbove, alpha=0.3) # Ideal with open("results/ideal.json", "r") as f: idealResults = json.load(f) x = [i+1 for i in xrange(numSteps)] y = [] std = [np.std(idealResults.get(str(steps), [0])) for steps in x] tot = float(sum([sum(counts) for counts in idealResults.values()])) cum = 0.0 for steps in x: counts = idealResults.get(str(steps), []) if len(counts) > 0: cum += float(sum(counts)) y.append(100.0 * cum / tot) yBelow = [yi - stdi for yi, stdi in zip(y, std)] yAbove = [yi + stdi for yi, stdi in zip(y, std)] plt.plot( x, y, "x--", label="Ideal Observer", ) #plt.fill_between(x, yBelow, yAbove, alpha=0.3) # BOF with open("results/bof.json", "r") as f: bofResults = json.load(f) x = [i+1 for i in xrange(numSteps)] y = [] std = [np.std(bofResults.get(str(steps), [0])) for steps in x] tot = float(sum([sum(counts) for counts in bofResults.values()])) cum = 0.0 for steps in x: counts = bofResults.get(str(steps), []) if len(counts) > 0: cum += float(sum(counts)) y.append(100.0 * cum / tot) yBelow = [yi - stdi for yi, stdi in zip(y, std)] yAbove = [yi + stdi for yi, stdi in zip(y, std)] plt.plot( x, y, "d--", label="Bag of Features", ) #plt.fill_between(x, yBelow, yAbove, alpha=0.3) # Formatting plt.xlabel("Number of Sensations") plt.ylabel("Cumulative Accuracy") plt.legend(loc="center right") plt.xticks([(i+1)*2 for i in xrange(6)]) plt.tight_layout() plt.savefig(os.path.join(CHART_DIR, "cumulative_accuracy.pdf")) plt.clf() if __name__ == "__main__": chart()
agpl-3.0
patemotter/trilinos-prediction
ml_files/preprocess_properties_data.py
1
1859
# Written using Anaconda with Python 3.5 # Pate Motter # 1-19-17 # Input; # Properties files have many columns of features computed using Anamod # Properties file used is trilinos-prediction/data/uflorida-features.csv import pandas as pd import numpy as np matrix_properties = pd.read_csv('../data/uflorida-features.csv', header=0) matrix_properties.columns = ['rows', 'cols', 'min_nnz_row', 'row_var', 'col_var', 'diag_var', 'nnz', 'frob_norm', 'symm_frob_norm', 'antisymm_frob_norm', 'one_norm', 'inf_norm', 'symm_inf_norm', 'antisymm_inf_norm', 'max_nnz_row', 'trace', 'abs_trace', 'min_nnz_row', 'avg_nnz_row', 'dummy_rows', 'dummy_rows_kind', 'num_value_symm_1', 'nnz_pattern_symm_1', 'num_value_symm_2', 'nnz_pattern_symm_2', 'row_diag_dom', 'col_diag_dom', 'diag_avg', 'diag_sign', 'diag_nnz', 'lower_bw', 'upper_bw', 'row_log_val_spread', 'col_log_val_spread', 'symm', 'matrix'] # Create hash id's for matrix names hash_dict = {} matrix_names = matrix_properties['matrix'].unique() for name in matrix_names: hash_dict[name] = hash(name) hash_list = [] matrix_name_series = matrix_properties['matrix'] for name in matrix_name_series: hash_list.append(hash_dict[name]) matrix_id_series = pd.Series(hash_list) matrix_properties = matrix_properties.assign(matrix_id=pd.Series(matrix_id_series)) # Fixes any issues with data being > float32, will break some sklearn algos :( for col in matrix_properties: if matrix_properties[col].values.dtype == np.float64: matrix_properties[col] = matrix_properties[col].astype(np.float32) matrix_properties[col] = np.nan_to_num(matrix_properties[col]) matrix_properties.to_csv('processed_properties.csv')
mit
lucidjuvenal/quis-custodiet
twitter_feed/twittest.py
1
1922
import twitter # python-twitter package from matplotlib.pyplot import pause import re ############################################ # secret data kept in separate file with open('twitdat.txt') as f: fromFile = {} for line in f: line = line.split() # to skip blank lines if len(line)==3 : # fromFile[line[0]] = line[2] f.close() #print fromFile api = twitter.Api( consumer_key = fromFile['consumer_key'], consumer_secret = fromFile['consumer_secret'], access_token_key = fromFile['access_token_key'], access_token_secret = fromFile['access_token_secret'] ) # https://twitter.com/gov/status/743263851366449152 tweetID = 743263851366449152 # https://twitter.com/BBCMOTD/status/744216695976255492 tweetID = 744216695976255492 # https://twitter.com/BBCMOTD/status/744281250924474368 tweetID = 744281250924474368 try: tweet = api.GetStatus(status_id = tweetID) except ConnectionError : print "should have a backup here" candidates = ['goodguy', 'evilguy'] tags = ['precinct','ballotbox'] tags.extend(candidates) tags = set(tags) def getVotes(tweet,tags): ''' tweet is the Status object from the python-twitter api. tags is a set of strings currently returns correct data for well-formatted tweet text need to include checks for multiple numbers/candidates per line, give error ''' data = {} lines = re.split('[,;\n]', tweet.text.lower()) for line in lines: if '#' not in line: # Ignore hashtags for tag in tags: if tag in line: data[tag] = int(re.search(r'\d+', line).group()) return data def testMsgs(tweet, msgs): for msg in msgs: tweet.text = msg def subTweet(tweet,msgID=0): t1 = "Goodguy 57 votes!\nEvilguy 100\n#Hashtest" t2 = "57 Goodguy\n100 Evilguy\n#Hashtest" t3 = "goodguy 57 evilguy 100" msgs = [ [], t1, t2, t3 ] tweet.text = msgs[msgID] return tweet tweet = subTweet(tweet, 3) print getVotes(tweet, tags)
gpl-3.0