repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
henrykironde/scikit-learn
examples/model_selection/plot_underfitting_overfitting.py
230
2649
""" ============================ Underfitting vs. Overfitting ============================ This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees. We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called **underfitting**. A polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model will **overfit** the training data, i.e. it learns the noise of the training data. We evaluate quantitatively **overfitting** / **underfitting** by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher, the less likely the model generalizes correctly from the training data. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn import cross_validation np.random.seed(0) n_samples = 30 degrees = [1, 4, 15] true_fun = lambda X: np.cos(1.5 * np.pi * X) X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 5)) for i in range(len(degrees)): ax = plt.subplot(1, len(degrees), i + 1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) # Evaluate the models using crossvalidation scores = cross_validation.cross_val_score(pipeline, X[:, np.newaxis], y, scoring="mean_squared_error", cv=10) X_test = np.linspace(0, 1, 100) plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format( degrees[i], -scores.mean(), scores.std())) plt.show()
bsd-3-clause
mhvk/astropy
astropy/wcs/wcsapi/low_level_api.py
5
15733
import os import abc import numpy as np __all__ = ['BaseLowLevelWCS', 'validate_physical_types'] class BaseLowLevelWCS(metaclass=abc.ABCMeta): """ Abstract base class for the low-level WCS interface. This is described in `APE 14: A shared Python interface for World Coordinate Systems <https://doi.org/10.5281/zenodo.1188875>`_. """ @property @abc.abstractmethod def pixel_n_dim(self): """ The number of axes in the pixel coordinate system. """ @property @abc.abstractmethod def world_n_dim(self): """ The number of axes in the world coordinate system. """ @property @abc.abstractmethod def world_axis_physical_types(self): """ An iterable of strings describing the physical type for each world axis. These should be names from the VO UCD1+ controlled Vocabulary (http://www.ivoa.net/documents/latest/UCDlist.html). If no matching UCD type exists, this can instead be ``"custom:xxx"``, where ``xxx`` is an arbitrary string. Alternatively, if the physical type is unknown/undefined, an element can be `None`. """ @property @abc.abstractmethod def world_axis_units(self): """ An iterable of strings given the units of the world coordinates for each axis. The strings should follow the `IVOA VOUnit standard <http://ivoa.net/documents/VOUnits/>`_ (though as noted in the VOUnit specification document, units that do not follow this standard are still allowed, but just not recommended). """ @abc.abstractmethod def pixel_to_world_values(self, *pixel_arrays): """ Convert pixel coordinates to world coordinates. This method takes `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` scalars or arrays as input, and pixel coordinates should be zero-based. Returns `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_n_dim` scalars or arrays in units given by `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_units`. Note that pixel coordinates are assumed to be 0 at the center of the first pixel in each dimension. If a pixel is in a region where the WCS is not defined, NaN can be returned. The coordinates should be specified in the ``(x, y)`` order, where for an image, ``x`` is the horizontal coordinate and ``y`` is the vertical coordinate. If `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_n_dim` is ``1``, this method returns a single scalar or array, otherwise a tuple of scalars or arrays is returned. """ def array_index_to_world_values(self, *index_arrays): """ Convert array indices to world coordinates. This is the same as `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_to_world_values` except that the indices should be given in ``(i, j)`` order, where for an image ``i`` is the row and ``j`` is the column (i.e. the opposite order to `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_to_world_values`). If `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_n_dim` is ``1``, this method returns a single scalar or array, otherwise a tuple of scalars or arrays is returned. """ return self.pixel_to_world_values(*index_arrays[::-1]) @abc.abstractmethod def world_to_pixel_values(self, *world_arrays): """ Convert world coordinates to pixel coordinates. This method takes `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_n_dim` scalars or arrays as input in units given by `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_units`. Returns `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` scalars or arrays. Note that pixel coordinates are assumed to be 0 at the center of the first pixel in each dimension. If a world coordinate does not have a matching pixel coordinate, NaN can be returned. The coordinates should be returned in the ``(x, y)`` order, where for an image, ``x`` is the horizontal coordinate and ``y`` is the vertical coordinate. If `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` is ``1``, this method returns a single scalar or array, otherwise a tuple of scalars or arrays is returned. """ def world_to_array_index_values(self, *world_arrays): """ Convert world coordinates to array indices. This is the same as `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_to_pixel_values` except that the indices should be returned in ``(i, j)`` order, where for an image ``i`` is the row and ``j`` is the column (i.e. the opposite order to `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_to_world_values`). The indices should be returned as rounded integers. If `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` is ``1``, this method returns a single scalar or array, otherwise a tuple of scalars or arrays is returned. """ pixel_arrays = self.world_to_pixel_values(*world_arrays) if self.pixel_n_dim == 1: pixel_arrays = (pixel_arrays,) else: pixel_arrays = pixel_arrays[::-1] array_indices = tuple(np.asarray(np.floor(pixel + 0.5), dtype=np.int_) for pixel in pixel_arrays) return array_indices[0] if self.pixel_n_dim == 1 else array_indices @property @abc.abstractmethod def world_axis_object_components(self): """ A list with `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_n_dim` elements giving information on constructing high-level objects for the world coordinates. Each element of the list is a tuple with three items: * The first is a name for the world object this world array corresponds to, which *must* match the string names used in `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_object_classes`. Note that names might appear twice because two world arrays might correspond to a single world object (e.g. a celestial coordinate might have both “ra” and “dec” arrays, which correspond to a single sky coordinate object). * The second element is either a string keyword argument name or a positional index for the corresponding class from `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_object_classes`. * The third argument is a string giving the name of the property to access on the corresponding class from `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_object_classes` in order to get numerical values. Alternatively, this argument can be a callable Python object that taks a high-level coordinate object and returns the numerical values suitable for passing to the low-level WCS transformation methods. See the document `APE 14: A shared Python interface for World Coordinate Systems <https://doi.org/10.5281/zenodo.1188875>`_ for examples. """ @property @abc.abstractmethod def world_axis_object_classes(self): """ A dictionary giving information on constructing high-level objects for the world coordinates. Each key of the dictionary is a string key from `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_object_components`, and each value is a tuple with three elements or four elements: * The first element of the tuple must be a class or a string specifying the fully-qualified name of a class, which will specify the actual Python object to be created. * The second element, should be a tuple specifying the positional arguments required to initialize the class. If `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_object_components` specifies that the world coordinates should be passed as a positional argument, this this tuple should include `None` placeholders for the world coordinates. * The third tuple element must be a dictionary with the keyword arguments required to initialize the class. * Optionally, for advanced use cases, the fourth element (if present) should be a callable Python object that gets called instead of the class and gets passed the positional and keyword arguments. It should return an object of the type of the first element in the tuple. Note that we don't require the classes to be Astropy classes since there is no guarantee that Astropy will have all the classes to represent all kinds of world coordinates. Furthermore, we recommend that the output be kept as human-readable as possible. The classes used here should have the ability to do conversions by passing an instance as the first argument to the same class with different arguments (e.g. ``Time(Time(...), scale='tai')``). This is a requirement for the implementation of the high-level interface. The second and third tuple elements for each value of this dictionary can in turn contain either instances of classes, or if necessary can contain serialized versions that should take the same form as the main classes described above (a tuple with three elements with the fully qualified name of the class, then the positional arguments and the keyword arguments). For low-level API objects implemented in Python, we recommend simply returning the actual objects (not the serialized form) for optimal performance. Implementations should either always or never use serialized classes to represent Python objects, and should indicate which of these they follow using the `~astropy.wcs.wcsapi.BaseLowLevelWCS.serialized_classes` attribute. See the document `APE 14: A shared Python interface for World Coordinate Systems <https://doi.org/10.5281/zenodo.1188875>`_ for examples . """ # The following three properties have default fallback implementations, so # they are not abstract. @property def array_shape(self): """ The shape of the data that the WCS applies to as a tuple of length `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` in ``(row, column)`` order (the convention for arrays in Python). If the WCS is valid in the context of a dataset with a particular shape, then this property can be used to store the shape of the data. This can be used for example if implementing slicing of WCS objects. This is an optional property, and it should return `None` if a shape is not known or relevant. """ if self.pixel_shape is None: return None else: return self.pixel_shape[::-1] @property def pixel_shape(self): """ The shape of the data that the WCS applies to as a tuple of length `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` in ``(x, y)`` order (where for an image, ``x`` is the horizontal coordinate and ``y`` is the vertical coordinate). If the WCS is valid in the context of a dataset with a particular shape, then this property can be used to store the shape of the data. This can be used for example if implementing slicing of WCS objects. This is an optional property, and it should return `None` if a shape is not known or relevant. If you are interested in getting a shape that is comparable to that of a Numpy array, you should use `~astropy.wcs.wcsapi.BaseLowLevelWCS.array_shape` instead. """ return None @property def pixel_bounds(self): """ The bounds (in pixel coordinates) inside which the WCS is defined, as a list with `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim` ``(min, max)`` tuples. The bounds should be given in ``[(xmin, xmax), (ymin, ymax)]`` order. WCS solutions are sometimes only guaranteed to be accurate within a certain range of pixel values, for example when defining a WCS that includes fitted distortions. This is an optional property, and it should return `None` if a shape is not known or relevant. """ return None @property def pixel_axis_names(self): """ An iterable of strings describing the name for each pixel axis. If an axis does not have a name, an empty string should be returned (this is the default behavior for all axes if a subclass does not override this property). Note that these names are just for display purposes and are not standardized. """ return [''] * self.pixel_n_dim @property def world_axis_names(self): """ An iterable of strings describing the name for each world axis. If an axis does not have a name, an empty string should be returned (this is the default behavior for all axes if a subclass does not override this property). Note that these names are just for display purposes and are not standardized. For standardized axis types, see `~astropy.wcs.wcsapi.BaseLowLevelWCS.world_axis_physical_types`. """ return [''] * self.world_n_dim @property def axis_correlation_matrix(self): """ Returns an (`~astropy.wcs.wcsapi.BaseLowLevelWCS.world_n_dim`, `~astropy.wcs.wcsapi.BaseLowLevelWCS.pixel_n_dim`) matrix that indicates using booleans whether a given world coordinate depends on a given pixel coordinate. This defaults to a matrix where all elements are `True` in the absence of any further information. For completely independent axes, the diagonal would be `True` and all other entries `False`. """ return np.ones((self.world_n_dim, self.pixel_n_dim), dtype=bool) @property def serialized_classes(self): """ Indicates whether Python objects are given in serialized form or as actual Python objects. """ return False def _as_mpl_axes(self): """ Compatibility hook for Matplotlib and WCSAxes. With this method, one can do:: from astropy.wcs import WCS import matplotlib.pyplot as plt wcs = WCS('filename.fits') fig = plt.figure() ax = fig.add_axes([0.15, 0.1, 0.8, 0.8], projection=wcs) ... and this will generate a plot with the correct WCS coordinates on the axes. """ from astropy.visualization.wcsaxes import WCSAxes return WCSAxes, {'wcs': self} UCDS_FILE = os.path.join(os.path.dirname(__file__), 'data', 'ucds.txt') with open(UCDS_FILE) as f: VALID_UCDS = set([x.strip() for x in f.read().splitlines()[1:]]) def validate_physical_types(physical_types): """ Validate a list of physical types against the UCD1+ standard """ for physical_type in physical_types: if (physical_type is not None and physical_type not in VALID_UCDS and not physical_type.startswith('custom:')): raise ValueError( f"'{physical_type}' is not a valid IOVA UCD1+ physical type. " "It must be a string specified in the list (http://www.ivoa.net/documents/latest/UCDlist.html) " "or if no matching type exists it can be any string prepended with 'custom:'." )
bsd-3-clause
tapomayukh/projects_in_python
classification/Classification_with_HMM/Multiple_Contact_Classification/continuous_hmm_prediction_two_objects_force_20_states.py
1
11013
# Hidden Markov Model Implementation import pylab as pyl import numpy as np import matplotlib.pyplot as pp #from enthought.mayavi import mlab import scipy as scp import scipy.ndimage as ni import roslib; roslib.load_manifest('sandbox_tapo_darpa_m3') import rospy #import hrl_lib.mayavi2_util as mu import hrl_lib.viz as hv import hrl_lib.util as ut import hrl_lib.matplotlib_util as mpu import pickle import ghmm import sys sys.path.insert(0, '/home/tapo/svn/robot1_data/usr/tapo/data_code/Classification/Data/Single_Contact_HMM/384') from data_384 import Fmat_original # Define features def feature_vector_diff_2_objs(Zt1,Zt2,i): data_matrix = np.array([0,0,0]) n = i+121 while (i < n): data_instant = np.array([Zt1[i,3],Zt1[i,4],Zt2[i,1]]) data_matrix = np.row_stack([data_matrix, data_instant]) i = i+1 Fvec_a = np.matrix(data_matrix[1:,0]).T Fvec_b = np.matrix(data_matrix[1:,1]).T Fvec_c = np.matrix(data_matrix[1:,2]).T Fvec = np.row_stack([Fvec_a,Fvec_b,Fvec_c]) n_Fvec, m_Fvec = np.shape(Fvec) #print 'Feature_Vector_Shape:',n_Fvec, m_Fvec return Fvec # Returns mu,sigma for 10 hidden-states from feature-vectors(123,35) for RF,SF,RM,SM models def feature_to_mu_sigma(fvec): index = 0 m,n = np.shape(fvec) #print m,n mu = np.matrix(np.zeros((20,1))) sigma = np.matrix(np.zeros((20,1))) DIVS = m/20 while (index < 20): m_init = index*DIVS temp_fvec = fvec[(m_init):(m_init+DIVS),0:] #if index == 1: #print temp_fvec mu[index] = scp.mean(temp_fvec) sigma[index] = scp.std(temp_fvec) index = index+1 return mu,sigma # Returns sequence given raw data def create_seq(fvec): m,n = np.shape(fvec) #print m,n seq = np.matrix(np.zeros((20,n))) DIVS = m/20 for i in range(n): index = 0 while (index < 20): m_init = index*DIVS temp_fvec = fvec[(m_init):(m_init+DIVS),i] #if index == 1: #print temp_fvec seq[index,i] = scp.mean(temp_fvec) index = index+1 return seq if __name__ == '__main__': Fmat = Fmat_original # First_Object ta_no_fo_t1 = ut.load_pickle('/home/tapo/svn/robot1_data/usr/tapo/data/New_Experiments_Qi/Two_Objects/black_foam_blue_cup/reverse/new4/time_varying_data_black_foam_blue_cup_fixed_first_object_trial_5.pkl') fa_no_fo_t1 = ut.load_pickle('/home/tapo/svn/robot1_data/usr/tapo/data/New_Experiments_Qi/Two_Objects/black_foam_blue_cup/reverse/new4/time_varying_tracking_data_black_foam_blue_cup_fixed_first_object_trial_5.pkl') # Second_Object ta_no_so_t1 = ut.load_pickle('/home/tapo/svn/robot1_data/usr/tapo/data/New_Experiments_Qi/Two_Objects/black_foam_blue_cup/reverse/new4/time_varying_data_black_foam_blue_cup_fixed_second_object_trial_5.pkl') fa_no_so_t1 = ut.load_pickle('/home/tapo/svn/robot1_data/usr/tapo/data/New_Experiments_Qi/Two_Objects/black_foam_blue_cup/reverse/new4/time_varying_tracking_data_black_foam_blue_cup_fixed_second_object_trial_5.pkl') # Creating Feature Vector Fmat2 = np.matrix(np.zeros((363,2))) Fmat2[:,0] = feature_vector_diff_2_objs(ta_no_fo_t1,fa_no_fo_t1,0) Fmat2[:,1] = feature_vector_diff_2_objs(ta_no_so_t1,fa_no_so_t1,0) # Checking the Data-Matrix m_tot, n_tot = np.shape(Fmat) #print " " print 'Total_Matrix_Shape:',m_tot,n_tot mu_rf,sigma_rf = feature_to_mu_sigma(Fmat[0:121,0:35]) mu_rm,sigma_rm = feature_to_mu_sigma(Fmat[0:121,35:70]) mu_sf,sigma_sf = feature_to_mu_sigma(Fmat[0:121,70:105]) mu_sm,sigma_sm = feature_to_mu_sigma(Fmat[0:121,105:140]) #print [mu_rf, sigma_rf] # HMM - Implementation: # 10 Hidden States # Max. Force(For now), Contact Area(Not now), and Contact Motion(Not Now) as Continuous Gaussian Observations from each hidden state # Four HMM-Models for Rigid-Fixed, Soft-Fixed, Rigid-Movable, Soft-Movable # Transition probabilities obtained as upper diagonal matrix (to be trained using Baum_Welch) # For new objects, it is classified according to which model it represenst the closest.. F = ghmm.Float() # emission domain of this model # A - Transition Matrix A = [[0.1, 0.25, 0.15, 0.15, 0.1, 0.05, 0.05, 0.03, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01], [0.0, 0.1, 0.25, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01], [0.0, 0.0, 0.1, 0.25, 0.25, 0.2, 0.05, 0.03, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01], [0.0, 0.0, 0.0, 0.1, 0.3, 0.30, 0.20, 0.09, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01], [0.0, 0.0, 0.0, 0.0, 0.1, 0.30, 0.30, 0.15, 0.04, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01], [0.0, 0.0, 0.0, 0.0, 0.00, 0.1, 0.35, 0.30, 0.10, 0.05, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.1, 0.30, 0.20, 0.10, 0.05, 0.05, 0.05, 0.03, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.1, 0.30, 0.20, 0.10, 0.05, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.1, 0.30, 0.20, 0.15, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.00, 0.1, 0.30, 0.20, 0.15, 0.10, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.00, 0.0, 0.1, 0.30, 0.30, 0.10, 0.10, 0.02, 0.02, 0.02, 0.02, 0.02], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.00, 0.0, 0.0, 0.1, 0.40, 0.30, 0.10, 0.02, 0.02, 0.02, 0.02, 0.02], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.00, 0.0, 0.0, 0.0, 0.20, 0.40, 0.20, 0.10, 0.04, 0.02, 0.02, 0.02], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.00, 0.0, 0.0, 0.0, 0.00, 0.20, 0.40, 0.20, 0.10, 0.05, 0.03, 0.02], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.0, 0.0, 0.0, 0.00, 0.20, 0.40, 0.20, 0.10, 0.05, 0.05], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.0, 0.0, 0.0, 0.00, 0.00, 0.20, 0.40, 0.20, 0.10, 0.10], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.20, 0.40, 0.20, 0.20], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.30, 0.50, 0.20], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.00, 0.40, 0.60], [0.0, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.0, 0.0, 0.0, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00]] # B - Emission Matrix, parameters of emission distributions in pairs of (mu, sigma) B_rf = np.zeros((20,2)) B_rm = np.zeros((20,2)) B_sf = np.zeros((20,2)) B_sm = np.zeros((20,2)) for num_states in range(20): B_rf[num_states,0] = mu_rf[num_states] B_rf[num_states,1] = sigma_rf[num_states] B_rm[num_states,0] = mu_rm[num_states] B_rm[num_states,1] = sigma_rm[num_states] B_sf[num_states,0] = mu_sf[num_states] B_sf[num_states,1] = sigma_sf[num_states] B_sm[num_states,0] = mu_sm[num_states] B_sm[num_states,1] = sigma_sm[num_states] B_rf = B_rf.tolist() B_rm = B_rm.tolist() B_sf = B_sf.tolist() B_sm = B_sm.tolist() # pi - initial probabilities per state pi = [0.05] * 20 # generate RF, RM, SF, SM models from parameters model_rf = ghmm.HMMFromMatrices(F,ghmm.GaussianDistribution(F), A, B_rf, pi) # Will be Trained model_rm = ghmm.HMMFromMatrices(F,ghmm.GaussianDistribution(F), A, B_rm, pi) # Will be Trained model_sf = ghmm.HMMFromMatrices(F,ghmm.GaussianDistribution(F), A, B_sf, pi) # Will be Trained model_sm = ghmm.HMMFromMatrices(F,ghmm.GaussianDistribution(F), A, B_sm, pi) # Will be Trained # For Training total_seq = Fmat[0:121,:] total_seq2 = Fmat2[0:121,:] m_total, n_total = np.shape(total_seq) #print 'Total_Sequence_Shape:', m_total, n_total train_seq_rf = (np.array(total_seq[:,0:35]).T).tolist() train_seq_rm = (np.array(total_seq[:,35:70]).T).tolist() train_seq_sf = (np.array(total_seq[:,70:105]).T).tolist() train_seq_sm = (np.array(total_seq[:,105:140]).T).tolist() #print train_seq_rf final_ts_rf = ghmm.SequenceSet(F,train_seq_rf) final_ts_rm = ghmm.SequenceSet(F,train_seq_rm) final_ts_sf = ghmm.SequenceSet(F,train_seq_sf) final_ts_sm = ghmm.SequenceSet(F,train_seq_sm) model_rf.baumWelch(final_ts_rf) model_rm.baumWelch(final_ts_rm) model_sf.baumWelch(final_ts_sf) model_sm.baumWelch(final_ts_sm) print " " print "TRAINED RIGID-FIXED MODEL" print model_rf print " " print " " print "TRAINED RIGID-MOVABLE MODEL" print model_rm print " " print " " print "TRAINED SOFT-FIXED MODEL" print model_sf print " " print " " print "TRAINED SOFT-MOVABLE MODEL" print model_sm print " " print " " # Test New Objects test_seq_obj1 = (np.array(total_seq2[:,0]).T).tolist() #print test_seq_obj1 test_seq_obj2 = (np.array(total_seq2[:,1]).T).tolist() new_test_seq_obj1 = np.array(sum(test_seq_obj1,[])) #print new_test_seq_obj1 new_test_seq_obj2 = np.array(sum(test_seq_obj2,[])) ts_obj1 = new_test_seq_obj1 ts_obj2 = new_test_seq_obj2 final_ts_obj1 = ghmm.EmissionSequence(F,ts_obj1.tolist()) final_ts_obj2 = ghmm.EmissionSequence(F,ts_obj2.tolist()) #print final_ts_obj2 # Find Viterbi Path path_rf_obj1 = model_rf.viterbi(final_ts_obj1) path_rm_obj1 = model_rm.viterbi(final_ts_obj1) path_sf_obj1 = model_sf.viterbi(final_ts_obj1) path_sm_obj1 = model_sm.viterbi(final_ts_obj1) path_rf_obj2 = model_rf.viterbi(final_ts_obj2) path_rm_obj2 = model_rm.viterbi(final_ts_obj2) path_sf_obj2 = model_sf.viterbi(final_ts_obj2) path_sm_obj2 = model_sm.viterbi(final_ts_obj2) obj1 = max(path_rf_obj1[1],path_rm_obj1[1],path_sf_obj1[1],path_sm_obj1[1]) obj2 = max(path_rf_obj2[1],path_rm_obj2[1],path_sf_obj2[1],path_sm_obj2[1]) print " " if obj1 == path_rf_obj1[1]: print "ONE OBJECT IS RIGID-FIXED" elif obj1 == path_rm_obj1[1]: print "ONE OBJECT IS RIGID-MOVABLE" elif obj1 == path_sf_obj1[1]: print "ONE OBJECT IS SOFT-FIXED" else: print "ONE OBJECT IS SOFT-MOVABLE" print " " if obj2 == path_rf_obj2[1]: print "THE OTHER OBJECT IS RIGID-FIXED" elif obj2 == path_rm_obj2[1]: print "THE OTHER OBJECT IS RIGID-MOVABLE" elif obj2 == path_sf_obj2[1]: print "THE OTHER OBJECT IS SOFT-FIXED" else: print "THE OTHER OBJECT IS SOFT-MOVABLE" print " "
mit
droundy/deft
papers/thesis-kirstie/figs/plot_Gaussian.py
1
1240
#!/usr/bin/python3 #RUN this program from the directory it is listed in #with command ./plot_Gaussian.py from scipy import special import numpy as np import matplotlib.pyplot as plt import math #Plot Gaussian vs rprime_magnitude at fixed gw R=0 gw=1 x=np.linspace(-4*gw, 4*gw, 20000) #Gaussian=(1/np.sqrt(2*np.pi)*gw)*(1/np.sqrt(2*np.pi)*gw)*(1/np.sqrt(2*np.pi)*gw)*np.exp(-(rprime/np.sqrt(2)*gw)*(rprime/np.sqrt(2)*gw)) def Gaussian(x): return np.exp(-(x/(np.sqrt(2)*gw))*(x/(np.sqrt(2)*gw))) scale = 0.9 plt.figure(figsize=(4*scale,3*scale)) plt.xlabel('$x$') plt.xticks([-gw,0,gw], ['$-\sigma$', '$0$', '$\sigma$']) plt.plot([-gw, -gw], [0, Gaussian(gw)], 'k-') plt.plot([gw, gw], [0, Gaussian(gw)], 'k-') plt.ylim(0, 1.1) plt.xlim(-3*gw, 3*gw) plt.axvline(0, color='k') plt.plot(x,Gaussian(x)) plt.yticks([0, 1], ['$0$', r'$\frac{1}{\sqrt{2\pi}\sigma}$']) plt.axhline(1, linestyle=':', color='k') # plt.annotate('hello', xy=(0,1), xytext=(0.5*gw,1), # arrowprops=dict(arrowstyle="->", # connectionstyle="arc3"),) plt.text(-2.5*gw, 0.75, r"$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2\sigma^2}}$") plt.tight_layout() #plt.legend() plt.savefig("Gaussian.pdf") # plt.show()
gpl-2.0
priyanshsaxena/techmeet
backup_stuff/text_classification/market_movers.py
1
1062
import datetime import pandas as pd def make_url(ticker_symbol,start_date, end_date): base_url = "http://ichart.finance.yahoo.com/table.csv?s=" # print ticker_symbol a = start_date b = end_date dt_url = '%s&a=%d&b=%d&c=%d&d=%d&e=%d&f=%d&g=d&ignore=.csv'% (ticker_symbol, a.month-1, a.day, a.year, b.month-1, b.day,b.year) return base_url + dt_url def getMarketMovers(day): L = ["aapl","axp","ba","cat","csco","cvx","ko","dd","xom", "ge","gs","hd","ibm","intc","jnj","jpm","mcd","mmm","mrk","msft","nke","pfe","pg","trv","unh","utx","v","vz","wmt","dis"] s = datetime.date(2017,3,day) e = datetime.date(2017,3,day+1) D = {} for i in L: u = make_url(i,s,e) # print u data = pd.read_csv(u).values open_ = data[0][1] close_ = data[0][4] percent_change = (close_ - open_)/open_ # print data # print percent_change D[i] = percent_change s = [] for key, value in sorted(D.iteritems(), key=lambda (k,v): (v,k)): # print "%s: %s" % (key, value) s.append([key,value]) return s if __name__ == '__main__': getMarketMovers(21)
gpl-3.0
Castronova/EMIT
models/topmodel/test/test_topmodel.py
2
10876
__author__ = 'tonycastronova' import unittest import time import timeit import os import numpy from osgeo import ogr from models.topmodel import topmodel from utilities.gui import parse_config from transform.space import * from transform.time import * import stdlib class test_topmodel(unittest.TestCase): def setUp(self): # add models self.mdl = '../topmodel.mdl' config_params = parse_config(self.mdl) self.ti = config_params['model inputs'][0]['ti'] def test_initialize(self): config_params = parse_config(self.mdl) # load topmodel top = topmodel.topmodel(config_params) # check input exchange items in_items = top.inputs() self.assertTrue(len(in_items.keys()) == 1) self.assertTrue('precipitation' in in_items.keys()) precip = in_items['precipitation'] # check that input geometries were created precip_geoms = precip.getGeometries2() self.assertTrue(len(precip_geoms) > 0) # check input geometry type geom_type = precip_geoms[0].GetGeometryName() self.assertTrue(geom_type == stdlib.GeomType.POLYGON) # check output exchange items # out_items = top.outputs() # self.assertTrue(len(out_items.keys()) == 1) # self.assertTrue('streamflow' in out_items.keys()) # flow = out_items['streamflow'] # # check that output geoms exist # flow_geoms = flow.getGeometries2() # self.assertTrue(len(flow_geoms) > 0) # # # check output geometry type # geom_type = flow_geoms[0].geom().geometryType() # self.assertTrue(geom_type == 'LineString') def test_geometry_parsing(self): geoms = [] with open('./data/right_hand_fork_ti_trim.txt', 'r') as sr: lines = sr.readlines() nrows = int(lines[1].split(' ')[-1].strip()) lowerx = float(lines[2].split(' ')[-1].strip()) lowery = float(lines[3].split(' ')[-1].strip()) cellsize = float(lines[4].split(' ')[-1].strip()) nodata = lines[5].split(' ')[-1].strip() # set start x, y y = lowery + cellsize * nrows for line in lines[6:]: x = lowerx l = line.strip().split(' ') xy = [] for element in l: if element != nodata: xy.append((x,y)) geom = stdlib.Geometry2(ogr.wkbPoint) geom.AddPoint(x, y) geoms.append(geom) x += cellsize y -= cellsize return geoms def test_geometry_parsing_numpy(self): import numpy as np import matplotlib.pyplot as plt import utilities.geometry topo_input = './data/right_hand_fork_ti_trim.txt' # plt.ion() # plt.show() nrows = 0 ncols = 0 cellsize = 0 lowerx = 0 lowery = 0 with open(topo_input, 'r') as sr: lines = sr.readlines() ncols = int(lines[0].split(' ')[-1].strip()) nrows = int(lines[1].split(' ')[-1].strip()) lowerx = float(lines[2].split(' ')[-1].strip()) lowery = float(lines[3].split(' ')[-1].strip()) cellsize = float(lines[4].split(' ')[-1].strip()) nodata = float(lines[5].split(' ')[-1].strip()) # read ti data data = np.genfromtxt(topo_input, delimiter=' ', skip_header=6) # build X and Y coordinate arrays xi = np.linspace(lowerx, lowerx+ncols*cellsize, ncols) yi = np.linspace(lowery+nrows*cellsize, lowery, nrows) x,y = np.meshgrid(xi,yi) # generate 2d arrays from xi, yi x = x.ravel() # convert to 1-d y = y.ravel() # convert to 1-d data = data.ravel() # convert to 1-d # remove all nodata points from x, y arrays nonzero = np.where(data != nodata) x = x[nonzero] y = y[nonzero] points = utilities.geometry.build_point_geometries(x,y) # self.create_point_shapefile(points, data) # # return points # X = x[::4] # Y = y[::4] # plt.scatter(X, Y, s=.5, edgecolors='none',color='blue') # plt.draw() # plt.show() def test_execute_simulation(self): from coordinator import engine simulator = engine.Coordinator() # load randomizer component weather = simulator.add_model(id='weather', attrib={'mdl':'../../test_models/weather/weatherReader.mdl'}) # load topmodel top = simulator.add_model(id='topmodel', attrib={'mdl':self.mdl}) # add link between randomizer and topmodel link1 = simulator.add_link_by_name(from_id=weather['id'], from_item_name='Precipitation', to_id=top['id'], to_item_name='precipitation') # set link tranformations link1.spatial_interpolation(SpatialInterpolation.ExactMatch) link1.temporal_interpolation(TemporalInterpolation.NearestNeighbor) print 'Starting Simulation' st = time.time() # begin execution simulator.run_simulation() print 'Simulation Complete \n Elapsed time = %3.2f seconds'%(time.time() - st) def create_point_shapefile(self, point_list, data): # Save extent to a new Shapefile outShapefile = "/Users/tonycastronova/Documents/windows_shared/temp/check_pts.shp" outDriver = ogr.GetDriverByName("ESRI Shapefile") # Remove output shapefile if it already exists if os.path.exists(outShapefile): outDriver.DeleteDataSource(outShapefile) # Create the output shapefile datasource = outDriver.CreateDataSource(outShapefile) layer = datasource.CreateLayer("points", geom_type=ogr.wkbPoint) # Add an ID field layer.CreateField(ogr.FieldDefn("Value", ogr.OFTInteger)) i = 0 for i in range(0, len(point_list)): p = point_list[i] v = data[i] feature = ogr.Feature(layer.GetLayerDefn()) feature.SetField("Value", v) feature.SetGeometry(p) layer.CreateFeature(feature) feature.Destroy() i+= 1 datasource.Destroy() def test_read_topo_input(self): # ---- begin reading the values stored in the topo file with open(self.ti, 'r') as sr: lines = sr.readlines() cellsize = float(lines[4].split(' ')[-1].strip()) nodata = lines[5].split(' ')[-1].strip() # generate topolist by parsing cell data topoList = [item for sublist in lines[6:] for item in sublist.strip().split(' ') if item != nodata] self._watershedArea = len(topoList) * cellsize # ---- calculate frequency of each topographic index # -- consolidate topo list into unique values d = {float(i):float(topoList.count(i)) for i in set(topoList)} # -- calculate topo frequency, then return both topographic index and topo frequency arrays total = len(topoList) ti = [round(k,4) for k in d.iterkeys()] freq = [round((k/total), 10) for k in d.iterkeys()] return ti, freq def test_read_topo_input_optimized(self): # read the header values in the topo file ncols = 0 nrows = 0 lowerx = 0 lowery = 0 cellsize = 0 nodata = 0 with open(self.ti, 'r') as sr: lines = sr.readlines() ncols = int(lines[0].split(' ')[-1].strip()) nrows = int(lines[1].split(' ')[-1].strip()) lowerx = float(lines[2].split(' ')[-1].strip()) lowery = float(lines[3].split(' ')[-1].strip()) cellsize = float(lines[4].split(' ')[-1].strip()) nodata = float(lines[5].split(' ')[-1].strip()) # read ti data data = numpy.genfromtxt(self.ti, delimiter=' ', skip_header=6) topoList = data.ravel() # convert into 1-d list topoList = topoList[topoList != nodata] # remove nodata values watershedArea = topoList.shape[0]*cellsize # calculate watershed area topoList = numpy.round(topoList, 4) # round topoList items total = topoList.shape[0] # total number of element in the topoList unique, counts = numpy.unique(topoList, return_counts=True) # get bins for topoList elements ti = unique # topographic index list freq = unique/total # freq of topo indices freq = numpy.round(freq, 10) # round the frequencies return ti, freq def test_benchmark(self): benchmarks = [] # print 'Benchmarking test_geometry_parsing ...', # t = timeit.Timer(lambda: self.test_geometry_parsing()) # time = min(t.repeat(1,1)) # benchmarks.append([time, '%3.5f sec:\t\ttest_geometry_parsing' % time ]) # print 'done' # # print 'Benchmarking test_geometry_parsing_numpy ...', # t = timeit.Timer(lambda: self.test_geometry_parsing_numpy()) # time = min(t.repeat(1,1)) # benchmarks.append([time, '%3.5f sec:\t\ttest_geometry_parsing_numpy' % time ]) # print 'done' print 'Benchmarking test_read_topo_input ...', t = timeit.Timer(lambda: self.test_read_topo_input()) time = min(t.repeat(1,1)) benchmarks.append([time, '%3.5f sec:\t\ttest_read_topo_input' % time ]) print 'done' print 'Benchmarking test_read_topo_input_optimized ...', t = timeit.Timer(lambda: self.test_read_topo_input_optimized()) time = min(t.repeat(1,1)) benchmarks.append([time, '%3.5f sec:\t\ttest_read_topo_input_optimized' % time ]) print 'done' sorted_benchmarks = sorted(benchmarks,key=lambda x: x[0]) print '\n' + 36*'-' print 'Fastest Algorithms' print 36*'-' for b in sorted_benchmarks: print b[1] def test_validate_optimizations(self): # this will fail because the optimized method uses gdal geoms instead of shapely geoms # g1 = self.test_geometry_parsing() # g2 = self.test_geometry_parsing_numpy() # self.assertTrue(len(g1) == len(g2)) # self.assertItemsEqual(g1, g2) ti1, freq1 = self.test_read_topo_input() ti2, freq2 = self.test_read_topo_input_optimized() self.assertTrue(len(ti1) == len(ti2)) self.assertTrue(len(freq1) == len(freq2)) self.assertItemsEqual(ti1, ti2) self.assertItemsEqual(freq1, freq2)
gpl-2.0
dboonz/polymode
setup.py
5
1794
#!/usr/bin/env python from os.path import join #Use setuptools for egg installs, if possible import setuptools from numpy.distutils.core import setup, Command from Polymode import __version__ package_name = 'Polymode' package_version = __version__ package_description ="A package for the modal analysis of microstructured optical fibers" class generate_api_docs(Command): """Generate the api documentation using epydoc """ description = "generate the api documentation" user_options = [] target_dir = "../documentation/api" def initialize_options(self): self.all = None def finalize_options(self): pass def run(self): import os os.system("epydoc --no-frames -o %s Polymode" % self.target_dir) def configuration(parent_package='',top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration(None, parent_package, top_path) config.set_options( ignore_setup_xxx_py=True, assume_default_configuration=True, delegate_options_to_subpackages=True, quiet=False, ) #The module config.add_subpackage(package_name) #Other packages used config.add_subpackage('Nurbs', subpackage_path='other/Nurbs') return config def setup_package(): setup( name = package_name, version = package_version, description = package_description, maintainer = "Andrew Docherty", url='http://polymode.googlecode.com', license='GPL3', configuration = configuration, # install_requires = ['numpy >= 1.0.1', 'scipy>=0.5.2', 'matplotlib>=0.92',], zip_safe = True, cmdclass = {'doc' : generate_api_docs} ) return if __name__ == '__main__': setup_package()
gpl-3.0
Jozhogg/iris
docs/iris/example_code/General/lineplot_with_legend.py
18
1131
""" Multi-line temperature profile plot ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ """ import matplotlib.pyplot as plt import iris import iris.plot as iplt import iris.quickplot as qplt def main(): fname = iris.sample_data_path('air_temp.pp') # Load exactly one cube from the given file. temperature = iris.load_cube(fname) # We only want a small number of latitudes, so filter some out # using "extract". temperature = temperature.extract( iris.Constraint(latitude=lambda cell: 68 <= cell < 78)) for cube in temperature.slices('longitude'): # Create a string label to identify this cube (i.e. latitude: value). cube_label = 'latitude: %s' % cube.coord('latitude').points[0] # Plot the cube, and associate it with a label. qplt.plot(cube, label=cube_label) # Add the legend with 2 columns. plt.legend(ncol=2) # Put a grid on the plot. plt.grid(True) # Tell matplotlib not to extend the plot axes range to nicely # rounded numbers. plt.axis('tight') # Finally, show it. iplt.show() if __name__ == '__main__': main()
lgpl-3.0
sencha/chromium-spacewalk
chrome/test/nacl_test_injection/buildbot_nacl_integration.py
94
3083
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import subprocess import sys def Main(args): pwd = os.environ.get('PWD', '') is_integration_bot = 'nacl-chrome' in pwd # This environment variable check mimics what # buildbot_chrome_nacl_stage.py does. is_win64 = (sys.platform in ('win32', 'cygwin') and ('64' in os.environ.get('PROCESSOR_ARCHITECTURE', '') or '64' in os.environ.get('PROCESSOR_ARCHITEW6432', ''))) # On the main Chrome waterfall, we may need to control where the tests are # run. # If there is serious skew in the PPAPI interface that causes all of # the NaCl integration tests to fail, you can uncomment the # following block. (Make sure you comment it out when the issues # are resolved.) *However*, it is much preferred to add tests to # the 'tests_to_disable' list below. #if not is_integration_bot: # return tests_to_disable = [] # In general, you should disable tests inside this conditional. This turns # them off on the main Chrome waterfall, but not on NaCl's integration bots. # This makes it easier to see when things have been fixed NaCl side. if not is_integration_bot: # http://code.google.com/p/nativeclient/issues/detail?id=2511 tests_to_disable.append('run_ppapi_ppb_image_data_browser_test') if sys.platform == 'darwin': # TODO(mseaborn) fix # http://code.google.com/p/nativeclient/issues/detail?id=1835 tests_to_disable.append('run_ppapi_crash_browser_test') if sys.platform in ('win32', 'cygwin'): # This one is only failing for nacl_glibc on x64 Windows but it is not # clear how to disable only that limited case. # See http://crbug.com/132395 tests_to_disable.append('run_inbrowser_test_runner') # run_breakpad_browser_process_crash_test is flaky. # See http://crbug.com/317890 tests_to_disable.append('run_breakpad_browser_process_crash_test') # See http://crbug.com/332301 tests_to_disable.append('run_breakpad_crash_in_syscall_test') # It appears that crash_service.exe is not being reliably built by # default in the CQ. See: http://crbug.com/380880 tests_to_disable.append('run_breakpad_untrusted_crash_test') tests_to_disable.append('run_breakpad_trusted_crash_in_startup_test') script_dir = os.path.dirname(os.path.abspath(__file__)) nacl_integration_script = os.path.join(script_dir, 'buildbot_chrome_nacl_stage.py') cmd = [sys.executable, nacl_integration_script, # TODO(ncbray) re-enable. # https://code.google.com/p/chromium/issues/detail?id=133568 '--disable_glibc', '--disable_tests=%s' % ','.join(tests_to_disable)] cmd += args sys.stdout.write('Running %s\n' % ' '.join(cmd)) sys.stdout.flush() return subprocess.call(cmd) if __name__ == '__main__': sys.exit(Main(sys.argv[1:]))
bsd-3-clause
Adai0808/scikit-learn
benchmarks/bench_sample_without_replacement.py
397
8008
""" Benchmarks for sampling without replacement of integer. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import operator import matplotlib.pyplot as plt import numpy as np import random from sklearn.externals.six.moves import xrange from sklearn.utils.random import sample_without_replacement def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_sample(sampling, n_population, n_samples): gc.collect() # start time t_start = datetime.now() sampling(n_population, n_samples) delta = (datetime.now() - t_start) # stop time time = compute_time(t_start, delta) return time if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-population", dest="n_population", default=100000, type=int, help="Size of the population to sample from.") op.add_option("--n-step", dest="n_steps", default=5, type=int, help="Number of step interval between 0 and n_population.") default_algorithms = "custom-tracking-selection,custom-auto," \ "custom-reservoir-sampling,custom-pool,"\ "python-core-sample,numpy-permutation" op.add_option("--algorithm", dest="selected_algorithm", default=default_algorithms, type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. \nAvailable: %default") # op.add_option("--random-seed", # dest="random_seed", default=13, type=int, # help="Seed used by the random number generators.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) selected_algorithm = opts.selected_algorithm.split(',') for key in selected_algorithm: if key not in default_algorithms.split(','): raise ValueError("Unknown sampling algorithm \"%s\" not in (%s)." % (key, default_algorithms)) ########################################################################### # List sampling algorithm ########################################################################### # We assume that sampling algorithm has the following signature: # sample(n_population, n_sample) # sampling_algorithm = {} ########################################################################### # Set Python core input sampling_algorithm["python-core-sample"] = \ lambda n_population, n_sample: \ random.sample(xrange(n_population), n_sample) ########################################################################### # Set custom automatic method selection sampling_algorithm["custom-auto"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="auto", random_state=random_state) ########################################################################### # Set custom tracking based method sampling_algorithm["custom-tracking-selection"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="tracking_selection", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-reservoir-sampling"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="reservoir_sampling", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-pool"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="pool", random_state=random_state) ########################################################################### # Numpy permutation based sampling_algorithm["numpy-permutation"] = \ lambda n_population, n_sample: \ np.random.permutation(n_population)[:n_sample] ########################################################################### # Remove unspecified algorithm sampling_algorithm = dict((key, value) for key, value in sampling_algorithm.items() if key in selected_algorithm) ########################################################################### # Perform benchmark ########################################################################### time = {} n_samples = np.linspace(start=0, stop=opts.n_population, num=opts.n_steps).astype(np.int) ratio = n_samples / opts.n_population print('Benchmarks') print("===========================") for name in sorted(sampling_algorithm): print("Perform benchmarks for %s..." % name, end="") time[name] = np.zeros(shape=(opts.n_steps, opts.n_times)) for step in xrange(opts.n_steps): for it in xrange(opts.n_times): time[name][step, it] = bench_sample(sampling_algorithm[name], opts.n_population, n_samples[step]) print("done") print("Averaging results...", end="") for name in sampling_algorithm: time[name] = np.mean(time[name], axis=1) print("done\n") # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Sampling algorithm performance:") print("===============================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") fig = plt.figure('scikit-learn sample w/o replacement benchmark results') plt.title("n_population = %s, n_times = %s" % (opts.n_population, opts.n_times)) ax = fig.add_subplot(111) for name in sampling_algorithm: ax.plot(ratio, time[name], label=name) ax.set_xlabel('ratio of n_sample / n_population') ax.set_ylabel('Time (s)') ax.legend() # Sort legend labels handles, labels = ax.get_legend_handles_labels() hl = sorted(zip(handles, labels), key=operator.itemgetter(1)) handles2, labels2 = zip(*hl) ax.legend(handles2, labels2, loc=0) plt.show()
bsd-3-clause
kaiserroll14/301finalproject
main/pandas/tests/test_rplot.py
9
11560
# -*- coding: utf-8 -*- from pandas.compat import range import pandas.util.testing as tm from pandas import read_csv import os import nose with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): import pandas.tools.rplot as rplot def curpath(): pth, _ = os.path.split(os.path.abspath(__file__)) return pth def between(a, b, x): """Check if x is in the somewhere between a and b. Parameters: ----------- a: float, interval start b: float, interval end x: float, value to test for Returns: -------- True if x is between a and b, False otherwise """ if a < b: return x >= a and x <= b else: return x <= a and x >= b @tm.mplskip class TestUtilityFunctions(tm.TestCase): """ Tests for RPlot utility functions. """ def setUp(self): path = os.path.join(curpath(), 'data/iris.csv') self.data = read_csv(path, sep=',') def test_make_aes1(self): aes = rplot.make_aes() self.assertTrue(aes['x'] is None) self.assertTrue(aes['y'] is None) self.assertTrue(aes['size'] is None) self.assertTrue(aes['colour'] is None) self.assertTrue(aes['shape'] is None) self.assertTrue(aes['alpha'] is None) self.assertTrue(isinstance(aes, dict)) def test_make_aes2(self): self.assertRaises(ValueError, rplot.make_aes, size=rplot.ScaleShape('test')) self.assertRaises(ValueError, rplot.make_aes, colour=rplot.ScaleShape('test')) self.assertRaises(ValueError, rplot.make_aes, shape=rplot.ScaleSize('test')) self.assertRaises(ValueError, rplot.make_aes, alpha=rplot.ScaleShape('test')) def test_dictionary_union(self): dict1 = {1 : 1, 2 : 2, 3 : 3} dict2 = {1 : 1, 2 : 2, 4 : 4} union = rplot.dictionary_union(dict1, dict2) self.assertEqual(len(union), 4) keys = list(union.keys()) self.assertTrue(1 in keys) self.assertTrue(2 in keys) self.assertTrue(3 in keys) self.assertTrue(4 in keys) self.assertEqual(rplot.dictionary_union(dict1, {}), dict1) self.assertEqual(rplot.dictionary_union({}, dict1), dict1) self.assertEqual(rplot.dictionary_union({}, {}), {}) def test_merge_aes(self): layer1 = rplot.Layer(size=rplot.ScaleSize('test')) layer2 = rplot.Layer(shape=rplot.ScaleShape('test')) rplot.merge_aes(layer1, layer2) self.assertTrue(isinstance(layer2.aes['size'], rplot.ScaleSize)) self.assertTrue(isinstance(layer2.aes['shape'], rplot.ScaleShape)) self.assertEqual(layer2.aes['size'], layer1.aes['size']) for key in layer2.aes.keys(): if key != 'size' and key != 'shape': self.assertTrue(layer2.aes[key] is None) def test_sequence_layers(self): layer1 = rplot.Layer(self.data) layer2 = rplot.GeomPoint(x='SepalLength', y='SepalWidth', size=rplot.ScaleSize('PetalLength')) layer3 = rplot.GeomPolyFit(2) result = rplot.sequence_layers([layer1, layer2, layer3]) self.assertEqual(len(result), 3) last = result[-1] self.assertEqual(last.aes['x'], 'SepalLength') self.assertEqual(last.aes['y'], 'SepalWidth') self.assertTrue(isinstance(last.aes['size'], rplot.ScaleSize)) self.assertTrue(self.data is last.data) self.assertTrue(rplot.sequence_layers([layer1])[0] is layer1) @tm.mplskip class TestTrellis(tm.TestCase): def setUp(self): path = os.path.join(curpath(), 'data/tips.csv') self.data = read_csv(path, sep=',') layer1 = rplot.Layer(self.data) layer2 = rplot.GeomPoint(x='total_bill', y='tip') layer3 = rplot.GeomPolyFit(2) self.layers = rplot.sequence_layers([layer1, layer2, layer3]) self.trellis1 = rplot.TrellisGrid(['sex', 'smoker']) self.trellis2 = rplot.TrellisGrid(['sex', '.']) self.trellis3 = rplot.TrellisGrid(['.', 'smoker']) self.trellised1 = self.trellis1.trellis(self.layers) self.trellised2 = self.trellis2.trellis(self.layers) self.trellised3 = self.trellis3.trellis(self.layers) def test_grid_sizes(self): self.assertEqual(len(self.trellised1), 3) self.assertEqual(len(self.trellised2), 3) self.assertEqual(len(self.trellised3), 3) self.assertEqual(len(self.trellised1[0]), 2) self.assertEqual(len(self.trellised1[0][0]), 2) self.assertEqual(len(self.trellised2[0]), 2) self.assertEqual(len(self.trellised2[0][0]), 1) self.assertEqual(len(self.trellised3[0]), 1) self.assertEqual(len(self.trellised3[0][0]), 2) self.assertEqual(len(self.trellised1[1]), 2) self.assertEqual(len(self.trellised1[1][0]), 2) self.assertEqual(len(self.trellised2[1]), 2) self.assertEqual(len(self.trellised2[1][0]), 1) self.assertEqual(len(self.trellised3[1]), 1) self.assertEqual(len(self.trellised3[1][0]), 2) self.assertEqual(len(self.trellised1[2]), 2) self.assertEqual(len(self.trellised1[2][0]), 2) self.assertEqual(len(self.trellised2[2]), 2) self.assertEqual(len(self.trellised2[2][0]), 1) self.assertEqual(len(self.trellised3[2]), 1) self.assertEqual(len(self.trellised3[2][0]), 2) def test_trellis_cols_rows(self): self.assertEqual(self.trellis1.cols, 2) self.assertEqual(self.trellis1.rows, 2) self.assertEqual(self.trellis2.cols, 1) self.assertEqual(self.trellis2.rows, 2) self.assertEqual(self.trellis3.cols, 2) self.assertEqual(self.trellis3.rows, 1) @tm.mplskip class TestScaleGradient(tm.TestCase): def setUp(self): path = os.path.join(curpath(), 'data/iris.csv') self.data = read_csv(path, sep=',') self.gradient = rplot.ScaleGradient("SepalLength", colour1=(0.2, 0.3, 0.4), colour2=(0.8, 0.7, 0.6)) def test_gradient(self): for index in range(len(self.data)): row = self.data.iloc[index] r, g, b = self.gradient(self.data, index) r1, g1, b1 = self.gradient.colour1 r2, g2, b2 = self.gradient.colour2 self.assertTrue(between(r1, r2, r)) self.assertTrue(between(g1, g2, g)) self.assertTrue(between(b1, b2, b)) @tm.mplskip class TestScaleGradient2(tm.TestCase): def setUp(self): path = os.path.join(curpath(), 'data/iris.csv') self.data = read_csv(path, sep=',') self.gradient = rplot.ScaleGradient2("SepalLength", colour1=(0.2, 0.3, 0.4), colour2=(0.8, 0.7, 0.6), colour3=(0.5, 0.5, 0.5)) def test_gradient2(self): for index in range(len(self.data)): row = self.data.iloc[index] r, g, b = self.gradient(self.data, index) r1, g1, b1 = self.gradient.colour1 r2, g2, b2 = self.gradient.colour2 r3, g3, b3 = self.gradient.colour3 value = row[self.gradient.column] a_ = min(self.data[self.gradient.column]) b_ = max(self.data[self.gradient.column]) scaled = (value - a_) / (b_ - a_) if scaled < 0.5: self.assertTrue(between(r1, r2, r)) self.assertTrue(between(g1, g2, g)) self.assertTrue(between(b1, b2, b)) else: self.assertTrue(between(r2, r3, r)) self.assertTrue(between(g2, g3, g)) self.assertTrue(between(b2, b3, b)) @tm.mplskip class TestScaleRandomColour(tm.TestCase): def setUp(self): path = os.path.join(curpath(), 'data/iris.csv') self.data = read_csv(path, sep=',') self.colour = rplot.ScaleRandomColour('SepalLength') def test_random_colour(self): for index in range(len(self.data)): colour = self.colour(self.data, index) self.assertEqual(len(colour), 3) r, g, b = colour self.assertTrue(r >= 0.0) self.assertTrue(g >= 0.0) self.assertTrue(b >= 0.0) self.assertTrue(r <= 1.0) self.assertTrue(g <= 1.0) self.assertTrue(b <= 1.0) @tm.mplskip class TestScaleConstant(tm.TestCase): def test_scale_constant(self): scale = rplot.ScaleConstant(1.0) self.assertEqual(scale(None, None), 1.0) scale = rplot.ScaleConstant("test") self.assertEqual(scale(None, None), "test") class TestScaleSize(tm.TestCase): def setUp(self): path = os.path.join(curpath(), 'data/iris.csv') self.data = read_csv(path, sep=',') self.scale1 = rplot.ScaleShape('Name') self.scale2 = rplot.ScaleShape('PetalLength') def test_scale_size(self): for index in range(len(self.data)): marker = self.scale1(self.data, index) self.assertTrue(marker in ['o', '+', 's', '*', '^', '<', '>', 'v', '|', 'x']) def test_scale_overflow(self): def f(): for index in range(len(self.data)): self.scale2(self.data, index) self.assertRaises(ValueError, f) @tm.mplskip class TestRPlot(tm.TestCase): def test_rplot1(self): import matplotlib.pyplot as plt path = os.path.join(curpath(), 'data/tips.csv') plt.figure() self.data = read_csv(path, sep=',') self.plot = rplot.RPlot(self.data, x='tip', y='total_bill') self.plot.add(rplot.TrellisGrid(['sex', 'smoker'])) self.plot.add(rplot.GeomPoint(colour=rplot.ScaleRandomColour('day'), shape=rplot.ScaleShape('size'))) self.fig = plt.gcf() self.plot.render(self.fig) def test_rplot2(self): import matplotlib.pyplot as plt path = os.path.join(curpath(), 'data/tips.csv') plt.figure() self.data = read_csv(path, sep=',') self.plot = rplot.RPlot(self.data, x='tip', y='total_bill') self.plot.add(rplot.TrellisGrid(['.', 'smoker'])) self.plot.add(rplot.GeomPoint(colour=rplot.ScaleRandomColour('day'), shape=rplot.ScaleShape('size'))) self.fig = plt.gcf() self.plot.render(self.fig) def test_rplot3(self): import matplotlib.pyplot as plt path = os.path.join(curpath(), 'data/tips.csv') plt.figure() self.data = read_csv(path, sep=',') self.plot = rplot.RPlot(self.data, x='tip', y='total_bill') self.plot.add(rplot.TrellisGrid(['sex', '.'])) self.plot.add(rplot.GeomPoint(colour=rplot.ScaleRandomColour('day'), shape=rplot.ScaleShape('size'))) self.fig = plt.gcf() self.plot.render(self.fig) def test_rplot_iris(self): import matplotlib.pyplot as plt path = os.path.join(curpath(), 'data/iris.csv') plt.figure() self.data = read_csv(path, sep=',') plot = rplot.RPlot(self.data, x='SepalLength', y='SepalWidth') plot.add(rplot.GeomPoint(colour=rplot.ScaleGradient('PetalLength', colour1=(0.0, 1.0, 0.5), colour2=(1.0, 0.0, 0.5)), size=rplot.ScaleSize('PetalWidth', min_size=10.0, max_size=200.0), shape=rplot.ScaleShape('Name'))) self.fig = plt.gcf() plot.render(self.fig) if __name__ == '__main__': import unittest unittest.main()
gpl-3.0
sarahgrogan/scikit-learn
examples/exercises/plot_cv_diabetes.py
231
2527
""" =============================================== Cross-validation on diabetes Dataset Exercise =============================================== A tutorial exercise which uses cross-validation with linear models. This exercise is used in the :ref:`cv_estimators_tut` part of the :ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. """ from __future__ import print_function print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import cross_validation, datasets, linear_model diabetes = datasets.load_diabetes() X = diabetes.data[:150] y = diabetes.target[:150] lasso = linear_model.Lasso() alphas = np.logspace(-4, -.5, 30) scores = list() scores_std = list() for alpha in alphas: lasso.alpha = alpha this_scores = cross_validation.cross_val_score(lasso, X, y, n_jobs=1) scores.append(np.mean(this_scores)) scores_std.append(np.std(this_scores)) plt.figure(figsize=(4, 3)) plt.semilogx(alphas, scores) # plot error lines showing +/- std. errors of the scores plt.semilogx(alphas, np.array(scores) + np.array(scores_std) / np.sqrt(len(X)), 'b--') plt.semilogx(alphas, np.array(scores) - np.array(scores_std) / np.sqrt(len(X)), 'b--') plt.ylabel('CV score') plt.xlabel('alpha') plt.axhline(np.max(scores), linestyle='--', color='.5') ############################################################################## # Bonus: how much can you trust the selection of alpha? # To answer this question we use the LassoCV object that sets its alpha # parameter automatically from the data by internal cross-validation (i.e. it # performs cross-validation on the training data it receives). # We use external cross-validation to see how much the automatically obtained # alphas differ across different cross-validation folds. lasso_cv = linear_model.LassoCV(alphas=alphas) k_fold = cross_validation.KFold(len(X), 3) print("Answer to the bonus question:", "how much can you trust the selection of alpha?") print() print("Alpha parameters maximising the generalization score on different") print("subsets of the data:") for k, (train, test) in enumerate(k_fold): lasso_cv.fit(X[train], y[train]) print("[fold {0}] alpha: {1:.5f}, score: {2:.5f}". format(k, lasso_cv.alpha_, lasso_cv.score(X[test], y[test]))) print() print("Answer: Not very much since we obtained different alphas for different") print("subsets of the data and moreover, the scores for these alphas differ") print("quite substantially.") plt.show()
bsd-3-clause
Denvi/FlatCAM
descartes/tests.py
2
1527
from shapely.geometry import * import unittest from descartes.patch import PolygonPatch class PolygonTestCase(unittest.TestCase): polygon = Point(0, 0).buffer(10.0).difference( MultiPoint([(-5, 0), (5, 0)]).buffer(3.0)) def test_patch(self): patch = PolygonPatch(self.polygon) self.failUnlessEqual(str(type(patch)), "<class 'matplotlib.patches.PathPatch'>") path = patch.get_path() self.failUnless(len(path.vertices) == len(path.codes) == 198) class JSONPolygonTestCase(unittest.TestCase): polygon = Point(0, 0).buffer(10.0).difference( MultiPoint([(-5, 0), (5, 0)]).buffer(3.0)) def test_patch(self): geo = self.polygon.__geo_interface__ patch = PolygonPatch(geo) self.failUnlessEqual(str(type(patch)), "<class 'matplotlib.patches.PathPatch'>") path = patch.get_path() self.failUnless(len(path.vertices) == len(path.codes) == 198) class GeoInterfacePolygonTestCase(unittest.TestCase): class GeoThing: __geo_interface__ = None thing = GeoThing() thing.__geo_interface__ = Point(0, 0).buffer(10.0).difference( MultiPoint([(-5, 0), (5, 0)]).buffer(3.0)).__geo_interface__ def test_patch(self): patch = PolygonPatch(self.thing) self.failUnlessEqual(str(type(patch)), "<class 'matplotlib.patches.PathPatch'>") path = patch.get_path() self.failUnless(len(path.vertices) == len(path.codes) == 198)
mit
AnishShah/tensorflow
tensorflow/examples/learn/iris_run_config.py
76
2565
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of DNNClassifier for Iris plant dataset, with run config.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from sklearn import datasets from sklearn import metrics from sklearn import model_selection import tensorflow as tf X_FEATURE = 'x' # Name of the input feature. def main(unused_argv): # Load dataset. iris = datasets.load_iris() x_train, x_test, y_train, y_test = model_selection.train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) # You can define you configurations by providing a RunConfig object to # estimator to control session configurations, e.g. tf_random_seed. run_config = tf.estimator.RunConfig().replace(tf_random_seed=1) # Build 3 layer DNN with 10, 20, 10 units respectively. feature_columns = [ tf.feature_column.numeric_column( X_FEATURE, shape=np.array(x_train).shape[1:])] classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3, config=run_config) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_train}, y=y_train, num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=200) # Predict. test_input_fn = tf.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) predictions = classifier.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['class_ids'] for p in predictions)) y_predicted = y_predicted.reshape(np.array(y_test).shape) # Score with sklearn. score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy (sklearn): {0:f}'.format(score)) # Score with tensorflow. scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': tf.app.run()
apache-2.0
yonglehou/scikit-learn
sklearn/metrics/metrics.py
233
1262
import warnings warnings.warn("sklearn.metrics.metrics is deprecated and will be removed in " "0.18. Please import from sklearn.metrics", DeprecationWarning) from .ranking import auc from .ranking import average_precision_score from .ranking import label_ranking_average_precision_score from .ranking import precision_recall_curve from .ranking import roc_auc_score from .ranking import roc_curve from .classification import accuracy_score from .classification import classification_report from .classification import confusion_matrix from .classification import f1_score from .classification import fbeta_score from .classification import hamming_loss from .classification import hinge_loss from .classification import jaccard_similarity_score from .classification import log_loss from .classification import matthews_corrcoef from .classification import precision_recall_fscore_support from .classification import precision_score from .classification import recall_score from .classification import zero_one_loss from .regression import explained_variance_score from .regression import mean_absolute_error from .regression import mean_squared_error from .regression import median_absolute_error from .regression import r2_score
bsd-3-clause
datascopeanalytics/sensor_fusion
sensor.py
1
3722
import random import os import copy import numpy as np import seaborn as sns from matplotlib import pyplot as plt from scipy.stats import linregress from utils import gaussian def plot_linear_fit(ax, x_array, y_array, fit_function, fit_sigma, color, cmap): xlim = (min(x_array), max(x_array)) ylim = (min(y_array), max(y_array)) ax.set_xlim(*xlim) ax.set_ylim(*ylim) x_range = np.linspace(*xlim) y_range = np.linspace(*ylim) ax.scatter(x_array, y_array, lw=0, alpha=0.5, color=color) fit_line = [fit_function(x) for x in x_range] ax.plot(x_range, fit_line, color=color) xx, yy = np.meshgrid(x_range, y_range) zz = xx + yy for i in range(len(x_range)): for j in range(len(y_range)): zz[j, i] = gaussian(yy[j, i], fit_function(xx[j, i]), fit_sigma) im = ax.imshow( zz, origin='lower', interpolation='bilinear', cmap=cmap, alpha=0.5, aspect='auto', extent=(xlim[0], xlim[-1], ylim[0], ylim[-1]), vmin=0.0, vmax=gaussian(0, 0, fit_sigma) ) return ax, im class Sensor(object): def __init__(self, name, **kwargs): self.name = name for key, value in kwargs.items(): setattr(self, key, value) def read(self, variable): variable = max(0, random.gauss(variable, self.proc_sigma)) reading = variable * self.slope + self.intersect return random.gauss(reading, self.sigma) def fit(self, data): self.experiment_data = copy.deepcopy(data) n_samples = len(data) model_slope, model_intercept = np.polyfit( [o for o, r in data], [r for o, r in data], 1) def model(occupants): return occupants * model_slope + model_intercept self.model = model def predictor(sensor_reading): return (sensor_reading-model_intercept)/model_slope self.predictor = predictor error = 0.0 for occupants, reading in data: error += (predictor(reading) - occupants)**2 sigma = np.sqrt(error / (n_samples - 1)) self.predictor_sigma = sigma def plot_experiment(self, path=""): color = self.color data = self.experiment_data cmap = sns.light_palette(color, as_cmap=True) fig, ax = plt.subplots() occupants, readings = (np.array(array) for array in zip(*data)) # ax_left, im_left = plot_linear_fit( # ax_left, occupants, readings, self.model, self.model_sigma, color, # cmap) ax, im = plot_linear_fit( ax, readings, occupants, self.predictor, self.predictor_sigma, color, cmap ) ax.set_xlabel("{} sensor readout ({})".format(self.name, self.units)) ax.set_ylabel("Number of train car occupants") # cax, kw = mpl.colorbar.make_axes( # [ax_left, ax_right], location="bottom" # ) # norm = mpl.colors.Normalize(vmin=0, vmax=1) # cbar = mpl.colorbar.ColorbarBase( # ax, cmap=cmap, norm=norm, alpha=0.5) cbar = plt.colorbar(im, alpha=0.5, extend='neither', ticks=[ gaussian(3 * self.predictor_sigma, 0, self.predictor_sigma), gaussian(2 * self.predictor_sigma, 0, self.predictor_sigma), gaussian(self.predictor_sigma, 0, self.predictor_sigma), gaussian(0, 0, self.predictor_sigma), ]) # cbar.solids.set_edgecolor("face") cbar.set_ticklabels( ['$3 \sigma$', '$2 \sigma$', '$\sigma$', '{:.2%}'.format( gaussian(0, 0, self.predictor_sigma))], update_ticks=True ) fig.savefig(os.path.join(path, self.name+".svg"))
unlicense
jbloom/mapmuts
scripts/mapmuts_countparsedmuts.py
1
7559
#!python """Counts number of mutations that occur >= a set number of times. Designed to analyze how extensively a library samples all mutations, and all synonymous mutations (at the codon level). To run, type:: mapmuts_countparsedmuts.py infile.txt after creating the appropriate input file ``infile.txt``. """ import sys import os import time import mapmuts.plot import mapmuts.io def main(): """Main body of script.""" print "Beginning execution of mapmuts_countparsedmuts.py..." if not mapmuts.plot.PylabAvailable(): raise ImportError("This script requires matplotlib / pylab, which are not available.") sites = 'all' readsomecounts = False mapmuts.io.PrintVersions(sys.stdout) args = sys.argv[1 : ] if len(args) != 1: raise IOError("Script must be called with exactly one argument"\ + ' specifying the name of the input file.') infilename = sys.argv[1] if not os.path.isfile(infilename): raise IOError("Failed to find infile of %s" % infilename) lines = [line for line in open(infilename).readlines() if \ line[0] != '#' and not line.isspace()] plotfileprefix = maxn = None legendloc = 'bottom' # default writecounts = True samples = [] # tuples are (name, all_counts, syn_counts) for line in lines: entries = line.split() if entries[0].strip() == 'plotfileprefix': if plotfileprefix != None: raise ValueError("Duplicate plotfileprefix keys") plotfileprefix = entries[1].strip() elif entries[0].strip() == 'maxn': if maxn != None: raise ValueError("Duplicate maxn key") if entries[1].strip().upper() == 'NONE': maxn = None else: try: maxn = int(entries[1]) except ValueError: raise ValueError("maxn does not specify a valid integer: %s" % entries[1]) if maxn < 1: raise ValueError("max must be at least one") elif entries[0].strip() == 'sites': if readsomecounts: raise ValueError("You must put the line for sites BEFORE the codon counts files") if len(entries) == 2 and (entries[1].upper() in ['ALL', 'NONE']): pass # already set to all elif len(entries) == 3: sites = (int(entries[1]), int(entries[2])) sites = [r for r in range(sites[0], sites[1] + 1)] else: raise ValueError("Invalid line for sites:\n" % line) elif entries[0].strip() == 'legendloc': legendloc = entries[1].strip().lower() if legendloc not in ['bottom', 'right']: raise ValueError("legendloc must be either bottom or right, got: %s" % legendloc) elif entries[0].strip() == 'writecounts': if entries[1].strip().upper() == 'FALSE': writecounts = False else: if len(entries) < 2: raise ValueError("Line must contain at least two entries:\n%s" % line) name = entries[0].strip() counts = [] for codoncountfile in entries[1 : ]: codoncountfile = codoncountfile.strip() if not os.path.isfile(codoncountfile): raise IOError("Failed to find specified codon counts file of %s" % codoncountfile) print "Reading codon counts for %s from %s" % (name, codoncountfile) counts.append(mapmuts.io.ReadCodonCounts(open(codoncountfile))) (all_counts, multi_nt_all_counts, syn_counts, multi_nt_syn_counts) = mapmuts.sequtils.TallyCodonCounts(counts, sites=sites) if not all_counts: raise ValueError("No counts for %s" % name) if not (max(all_counts) >= max(syn_counts) >= 0): raise ValueError("Count minima don't make sense for %s" % name) samples.append((name, all_counts, multi_nt_all_counts, syn_counts, multi_nt_syn_counts)) readsomecounts = True samples.sort() if not plotfileprefix: raise ValueError("Failed to parse a value for plotfileprefix") if not samples: raise ValueError("Failed to find any samples.") # get max occurrences of any mutation if maxn not specified if maxn == None: maxn = max(samples[0][1]) for (name, all_counts, multi_nt_all_counts, syn_counts, multi_nt_syn_counts) in samples[1 : ]: maxn = max(maxn, max(all_counts)) # now make cumul_samples: entries are (name, cumul_all, cumul_all_tot, cumul_multi_nt_all, cumul_multi_nt_all_tot, cumul_syn, cumul_syn_tot, cumul_multi_nt_syn, cumul_multi_nt_syn_tot) # where cumul_all[n] is the fraction that have >= n occurrences # where cumul_all_tot is total number of mutations in this category cumul_samples = [] for (name, all_counts, multi_nt_all_counts, syn_counts, multi_nt_syn_counts) in samples: this_tuple = [name] for i_list in [all_counts, multi_nt_all_counts, syn_counts, multi_nt_syn_counts]: i_cumul = [] i_d = {} for x in i_list: if x in i_d: i_d[x] += 1 else: i_d[x] = 1 ntot = float(len(i_list)) nge = ntot for n in range(0, maxn): i_cumul.append(nge / ntot) if n in i_d: nge -= i_d[n] i_cumul.append(nge / ntot) this_tuple.append(i_cumul) this_tuple.append(ntot) assert len(i_cumul) == maxn + 1, "len(i_cumul) = %d, maxn = %d" % (len(i_cumul), maxn) cumul_samples.append(tuple(this_tuple)) # write the text files and make the plots cumulfracs = {} counts = {} for (tuple_index, mut_type) in [(1, 'all'), (3, 'multi-nt-all'), (5, 'syn'), (7, 'multi-nt-syn')]: # the text file fname = '%s_%scodonmutcounts.txt' % (plotfileprefix, mut_type) print "Now writing file %s..." % fname f = open(fname, 'w') f.write('# File listing the fraction of %s mutations that are found greater than or equal to n times.\n' % mut_type) f.write('# There are %d total %s mutations\n' % (cumul_samples[0][tuple_index + 1], mut_type)) f.write('#n\t%s\n' % ('\t'.join([tup[0] for tup in cumul_samples]))) for n in range(0, maxn + 1): f.write('%d' % n) for tup in cumul_samples: f.write('\t%.4f' % tup[tuple_index][n]) f.write('\n') f.close() counts[mut_type] = cumul_samples[0][tuple_index + 1] names = [tup[0] for tup in cumul_samples] cumulfracs[mut_type] = [tup[tuple_index] for tup in cumul_samples] plotfile = "%s_multi-nt-codonmutcounts.pdf" % plotfileprefix print "Now creating plot %s..." % plotfile mapmuts.plot.PlotMutCountFracs(plotfile, 'Multi-nucleotide codon mutations', names, cumulfracs['multi-nt-all'], cumulfracs['multi-nt-syn'], counts['multi-nt-all'], counts['multi-nt-syn'], legendloc, writecounts=writecounts) plotfile = "%s_codonmutcounts.pdf" % plotfileprefix print "Now creating plot %s..." % plotfile mapmuts.plot.PlotMutCountFracs(plotfile, 'Codon mutations', names, cumulfracs['all'], cumulfracs['syn'], counts['all'], counts['syn'], legendloc) print "Script complete." if __name__ == '__main__': main() # run the script
gpl-3.0
f3r/scikit-learn
sklearn/feature_selection/__init__.py
33
1159
""" The :mod:`sklearn.feature_selection` module implements feature selection algorithms. It currently includes univariate filter selection methods and the recursive feature elimination algorithm. """ from .univariate_selection import chi2 from .univariate_selection import f_classif from .univariate_selection import f_oneway from .univariate_selection import f_regression from .univariate_selection import SelectPercentile from .univariate_selection import SelectKBest from .univariate_selection import SelectFpr from .univariate_selection import SelectFdr from .univariate_selection import SelectFwe from .univariate_selection import GenericUnivariateSelect from .variance_threshold import VarianceThreshold from .rfe import RFE from .rfe import RFECV from .from_model import SelectFromModel __all__ = ['GenericUnivariateSelect', 'RFE', 'RFECV', 'SelectFdr', 'SelectFpr', 'SelectFwe', 'SelectKBest', 'SelectPercentile', 'VarianceThreshold', 'chi2', 'f_classif', 'f_oneway', 'f_regression', 'SelectFromModel']
bsd-3-clause
CitizenScienceInAstronomyWorkshop/pyIBCC
python/tutorial/popdensity.py
1
9544
''' Created on 5 May 2015 @author: edwin ''' import logging logging.basicConfig(level=logging.DEBUG) import ibcc, json import numpy as np import pandas as pd import matplotlib.pyplot as plt def load_zoo_data(zoodatafile): # format of file: # user_id,user_ip,workflow_id,created_at,gold_standard,expert,metadata,annotations,subject_data zoodata = pd.read_csv(zoodatafile, sep=',', parse_dates=False, index_col=False, usecols=[0,1,7,8], skipinitialspace=True, quotechar='"') userid = zoodata['user_id'] userip = zoodata['user_ip'] subjectdata = zoodata['subject_data'] annotations = zoodata['annotations'] Cagents = [] Cobjects = [] Cscores = [] for i, user in enumerate(userid): annotation = json.loads(annotations[i]) score = annotation[0]["value"] if score==6: continue else: Cscores.append(score) if not user or np.isnan(user): user = userip[i] if not user in agentids: agentids[user] = len(agentids.keys()) Cagents.append(agentids[user]) subjectdict = json.loads(subjectdata[i]) subject = int(subjectdict.keys()[0]) if not subject in subjectids: subjectids[subject] = len(subjectids.keys()) reverse_subjectids[subjectids[subject]] = subject Cobjects.append(subjectids[subject]) return Cagents, Cobjects, Cscores, subjectdata # LOAD CROWDSOURCED DATA ---------------------------------------------- zoodatafile = "./data/rescue_global_nepal_2015.csv" agentids = {} subjectids = {} reverse_subjectids = {} Cagents, Cobjects, Cscores, subjectdata = load_zoo_data(zoodatafile) # APPEND DATA FROM OSM to CROWDSOURCED DATASET ------------------------- osmfile = "./data/OSM_labels.csv" osmdata = pd.read_csv(osmfile, sep=',', parse_dates=False, index_col=False, skipinitialspace=True, quotechar='"', header=None, names=['subject_id','value']) osm_subjects = osmdata["subject_id"]# alpha0 = np.tile(alpha0[:,:,np.newaxis], (1,1,len(agentids))) osm_scores = osmdata["value"] - 1 agentids["OSMData"] = len(agentids.keys()) for i, subject in enumerate(osm_subjects): Cagents.append(agentids["OSMData"]) if not subject in subjectids: subjectids[subject] = len(subjectids.keys()) reverse_subjectids[subjectids[subject]] = subject Cobjects.append(subjectids[subject]) score = osm_scores[i] Cscores.append(score) # RUN IBCC -------------------------------------------------------------- Cagents = np.array(Cagents)[:,np.newaxis] Cobjects = np.array(Cobjects)[:, np.newaxis] Cscores = np.array(Cscores)[:, np.newaxis] C = np.concatenate((Cagents,Cobjects,Cscores), axis=1) alpha0 = np.ones((6,6,len(agentids))) #alpha0[:, :, 5] = 2.0 alpha0[np.arange(6),np.arange(6),:] = 1.01 # alpha0[:,:,:] = np.array([[4.0, 2.0, 1.5, 1.0, 1.0, 2.0], [2.0, 4.0, 2.0, 1.5, 1.0, 2.5], [1.5, 2.0, 4.0, 2.0, 1.5, 2.5], # [1.0, 1.5, 2.0, 4.0, 2.0, 2.5], [1.0, 1.0, 1.5, 2.0, 4.0, 3.0], [1.0, 1.0, 1.0, 1.0, 1.0, 4.0]])[:,:,np.newaxis] # alpha0 = np.tile(alpha0[:,:,np.newaxis], (1,1,len(agentids))) #alpha0[np.arange(6),np.arange(6),-1] += 20 # alpha0[:, 5, -1] += 50 nu0 = np.array([1,1,1,1,1,1], dtype=float) combiner = ibcc.IBCC(nclasses=6, nscores=6, alpha0=alpha0, nu0=nu0) preds = combiner.combine_classifications(C) # PLOT CONFUSION MATRIX ---------------------------------------------------- from scipy.stats import beta plt.figure() # for k in range(combiner.alpha.shape[2]): k = 1 # worker ID to plot alpha_k = combiner.alpha[:, :, k] pi_k = alpha_k / np.sum(alpha_k, axis=1)[:, np.newaxis] print "Confusion matrix for worker %i" % k print pi_k x = np.arange(20) / 20.0 for j in range(alpha_k.shape[0]): pdfj = beta.pdf(x, alpha_k[j, j], np.sum(alpha_k[j, :]) - alpha_k[j,j] ) plt.plot(x, pdfj, label='True class %i' % j) plt.legend(loc='best') plt.ylabel('density') plt.xlabel('p(correct annotation)') # SAVE RESULTS TO CSV FILE -------------------------------------------------- results_subjectids = [] for i in range(preds.shape[0]): results_subjectids.append(reverse_subjectids[i]) results_subjectids = np.array(results_subjectids)# skipinitialspace=True, quotechar='"', header=None, names=['subject_id','x','y'] ) # get the coordinates for the subjects and save to another file nsubjects = len(results_subjectids) minxarr = np.zeros(nsubjects) minyarr = np.zeros(nsubjects) maxxarr = np.zeros(nsubjects) maxyarr = np.zeros(nsubjects) for i, subjectstr in enumerate(subjectdata): subject = json.loads(subjectstr) sidstr = subject.keys()[0] sid = int(subject.keys()[0]) if not sid in subjectids: continue sidx = subjectids[sid] minxarr[sidx] = subject[sidstr]["minx"] minyarr[sidx] = subject[sidstr]["miny"] maxxarr[sidx] = subject[sidstr]["maxx"] maxyarr[sidx] = subject[sidstr]["maxy"] results = pd.DataFrame(data={'subject_id':results_subjectids, 'priority1': preds[:,0], 'priority2':preds[:,1], 'priority3':preds[:,2], 'priority4':preds[:,3], 'priority5':preds[:,4], 'no_priority':preds[:,5], 'minx':minxarr, 'miny':minyarr, 'maxx':maxxarr, 'maxy':maxyarr}, index=None) results.to_csv("./output/zooresults_osm.csv", sep=',', index=False, float_format='%1.4f', cols=['subject_id','priority1','priority2','priority3','priority4','priority5','no_priority','minx','miny','maxx','maxy']) # TRANSLATING RESULTS BACK TO LATITUDE/LONGITUDE COORDINATES -------------------------------- nepal_subjects = [] for subject in results_subjectids: if subject in np.array(osm_subjects): nepal_subjects.append(subjectids[subject]) preds_nepal = preds[nepal_subjects,:] print np.around(combiner.alpha[:,:,56] - alpha0[:,:,-1], 3) print np.around(np.sum(combiner.alpha[:,:,0:56], axis=2),3) idxs = (Cagents==56) objs = Cobjects[idxs] scores = Cscores[idxs] osm_top_objs = objs[scores<=2] preds_osmtop = np.around(preds[osm_top_objs,:], 2) local_conflict_ids = osm_top_objs[np.sum(preds_osmtop[:,0:3],axis=1)<0.5] print np.around(preds[local_conflict_ids,:], 2) osm_empty_objs = objs[scores>=4] preds_osmempty = np.around(preds[osm_empty_objs,:], 2) local_conflict_ids = osm_empty_objs[np.sum(preds_osmempty[:,2:],axis=1)<0.2] zoo_conflict_ids = results_subjectids[local_conflict_ids] print zoo_conflict_ids print np.around(preds[local_conflict_ids,:], 2) coordsfile = './data/transformed_subject_id_metadata_Kathmandu_ring_1.csv' coordsdata = pd.read_csv(coordsfile, sep=',', parse_dates=False, index_col=False, usecols=[0,2,3], skipinitialspace=True, quotechar='"', header=None, names=['subject_id','x','y'] ) osmresults = np.zeros(len(osm_subjects)) crowdpreds = np.zeros((len(osm_subjects), 6)) xcoords = np.zeros(len(osm_subjects)) ycoords = np.zeros(len(osm_subjects)) for i, s in enumerate(osm_subjects): sidx = subjectids[s] crowdpreds[i] = preds[sidx, :] osmresults[i] = osm_scores[i] for j, s2 in enumerate(coordsdata['subject_id']): if s2==s: xcoords[i] = coordsdata['x'][j] ycoords[i] = coordsdata['y'][j] # PLOT THE MOST PROBABLE CATEGORIES AS A HEATMAP ----------------------------- # get the chosen category from the crowd cs = np.cumsum(crowdpreds, axis=1) c = 5 crowdresults = np.zeros(len(osm_subjects)) while c>=0: crowdresults[cs[:,c]>=0.9] = c c -= 1 # chose the minimum from the two sets combinedresults = crowdresults#np.min([osmresults, crowdresults], axis=0) output = np.concatenate((osm_subjects[:, np.newaxis], combinedresults[:, np.newaxis]), axis=1) np.savetxt("./output/combined_categories.csv", output, fmt="%i", delimiter=',') combinedresults = combinedresults[3:] xcoords = xcoords[3:] ycoords = ycoords[3:] nx = len(np.unique(xcoords)) ny = len(np.unique(ycoords)) grid = np.empty((nx+1, ny+1)) grid[:] = np.nan xgrid = (xcoords-np.min(xcoords)) / float(np.max(xcoords)-np.min(xcoords)) * nx ygrid = (ycoords-np.min(ycoords)) / float(np.max(ycoords)-np.min(ycoords)) * ny xgrid = np.round(xgrid).astype(int) ygrid = np.round(ygrid).astype(int) grid[xgrid, ygrid] = combinedresults dpi = 96.0 fig = plt.figure(frameon=False)#, figsize=(float(nx)/dpi,float(ny)/dpi)) plt.autoscale(tight=True) #Can also try interpolation=nearest or none ax = fig.add_subplot(111) ax.set_axis_off() # bin the results so we get contours rather than blurred map # grid = grid.T contours = np.zeros((grid.shape[0], grid.shape[1], 4))#bcc_pred.copy() contours[grid==4, :] = [0, 1, 1, 0.7] contours[grid==3, :] = [0, 1, 0, 0.7] contours[grid==2, :] = [1, 1, 0, 0.7] contours[grid==1, :] = [1, 0.2, 0, 0.7] contours[grid==0, :] = [1, 0, 0.5, 0.7] plt.imshow(contours, aspect=None, origin='lower', interpolation='nearest') fig.tight_layout(pad=0,w_pad=0,h_pad=0) ax = plt.gca() ax.xaxis.set_major_locator(plt.NullLocator()) ax.yaxis.set_major_locator(plt.NullLocator()) plt.savefig('./output/popdensity.png', bbox_inches='tight', pad_inches=0, transparent=True, dpi=96) gridsize_lat = float(np.max(xcoords)-np.min(xcoords)) / float(nx) gridsize_lon = float(np.max(ycoords)-np.min(ycoords)) / float(ny) print np.min(xcoords) print np.max(xcoords) + gridsize_lat print np.min(ycoords) print np.max(ycoords) + gridsize_lon
mit
vineetk1/yodaqa
data/ml/fbpath/fbpath_train_logistic.py
3
2964
#!/usr/bin/python # # Train a Naive Bayes classifier to predict which Freebase # property paths would match answers given the question features. # # Usage: fbpath_train_logistic.py TRAIN.JSON MODEL.JSON import json import numpy as np from fbpathtrain import VectorizedData import random import re from sklearn.linear_model import LogisticRegression from sklearn.multiclass import OneVsRestClassifier import sys import time def dump_cfier(cfier, Xdict, Ydict): print('/// Model is %s' % (re.sub('\n\\s*', ' ', str(cfier)),)) print('{') for cls, cfr in zip(cfier.classes_, cfier.estimators_): weights = dict() for feat_i in np.nonzero(cfr.coef_[0] != 0)[0]: weights[Xdict.feature_names_[feat_i]] = cfr.coef_[0][feat_i] if not weights: continue weights['_'] = cfr.intercept_[0] print(' "%s": %s%s' % (Ydict.classes_[cls], json.dumps(weights), ',' if cls != cfier.classes_[-1] else '')) print('}') if __name__ == "__main__": trainfile, valfile = sys.argv[1:] # Seed always to the same number to get reproducible builds # TODO: Make this configurable on the command line or in the environment random.seed(17151713) print('/// The weights of individual question features for each fbpath.') print('/// Missing features have weight zero. Classifiers with no features are skipped.') print('// These weights are output by data/ml/fbpath/fbpath-train-logistic.py as this:') print('//') ## Training with open(trainfile, 'r') as f: traindata = VectorizedData(json.load(f)) print('// traindata: %d questions, %d features, %d fbpaths' % ( np.size(traindata.X, axis=0), np.size(traindata.X, axis=1), np.size(traindata.Y, axis=1))) sys.stdout.flush() # class_weight='auto' produces reduced performance, val mrr 0.574 -> 0.527 # (see the notebook) # We use L1 regularization mainly to minimize the output model size, # though it seems to yield better precision+recall too. t_start = time.clock() cfier = OneVsRestClassifier(LogisticRegression(penalty='l1'), n_jobs=4) cfier.fit(traindata.X, traindata.Y) t_end = time.clock() print('// training took %d seconds' % (t_end-t_start,)) sys.stdout.flush() ## Benchmarking with open(valfile, 'r') as f: valdata = VectorizedData(json.load(f), traindata.Xdict, traindata.Ydict) print('// valdata: %d questions' % (np.size(valdata.X, axis=0),)) sys.stdout.flush() val_score = valdata.cfier_score(cfier, lambda cfier, X: cfier.predict_proba(X)) print('// val sklScore %.3f, qRecallAny %.3f, qRecallAll %.3f, pathPrec %.3f, [qScoreMRR %.3f]' % ( val_score['sklScore'], val_score['qRecallAny'], val_score['qRecallAll'], val_score['pPrec'], val_score['qScoreMRR'])) sys.stdout.flush() ## Data Dump dump_cfier(cfier, traindata.Xdict, traindata.Ydict)
apache-2.0
annayqho/TheCannon
code/lamost/xcalib_5labels/paper_plots/feh_alpha.py
1
1305
import numpy as np import matplotlib.pyplot as plt import glob import pyfits from corner import hist2d from matplotlib.colors import LogNorm from matplotlib import rc plt.rc('text', usetex=True) #rc('text.latex', preamble = ','.join(''' # \usepackage{txfonts} # \usepackage{lmodern} # '''.split())) plt.rc('font', family='serif') direc = '/users/annaho/Data/LAMOST/Label_Transfer' f = pyfits.open("%s/table_for_paper.fits" %direc) a = f[1].data f.close() feh = a['cannon_m_h'] am = a['cannon_alpha_m'] snr = a['snrg'] choose = snr > 20 print(sum(choose)) print(len(choose)) fig, ax = plt.subplots(1,1, sharex=True, sharey=True, figsize=(8,5)) hist2d(feh[choose], am[choose], ax=ax, bins=100, range=[[-2.2,.9],[-0.2,0.5]]) ax.set_xlabel("[Fe/H] (dex)" + " from Cannon/LAMOST", fontsize=16) fig.text( 0.04, 0.5, r"$\mathrm{[\alpha/M]}$" + " (dex) from Cannon/LAMOST", fontsize=16, va = 'center', rotation='vertical') label = r"Objects with SNR \textgreater 20" props = dict(boxstyle='round', facecolor='white') ax.tick_params(axis='x', labelsize=16) ax.tick_params(axis='y', labelsize=16) ax.text(0.05, 0.85, label, horizontalalignment='left', verticalalignment='bottom', transform=ax.transAxes, fontsize=16, bbox=props) #plt.show() plt.savefig("feh_alpha.png")
mit
mne-tools/mne-tools.github.io
0.16/_downloads/plot_receptive_field_mtrf.py
8
11536
""" ========================================= Receptive Field Estimation and Prediction ========================================= This example reproduces figures from Lalor et al's mTRF toolbox in matlab [1]_. We will show how the :class:`mne.decoding.ReceptiveField` class can perform a similar function along with scikit-learn. We will first fit a linear encoding model using the continuously-varying speech envelope to predict activity of a 128 channel EEG system. Then, we will take the reverse approach and try to predict the speech envelope from the EEG (known in the litterature as a decoding model, or simply stimulus reconstruction). References ---------- .. [1] Crosse, M. J., Di Liberto, G. M., Bednar, A. & Lalor, E. C. (2016). The Multivariate Temporal Response Function (mTRF) Toolbox: A MATLAB Toolbox for Relating Neural Signals to Continuous Stimuli. Frontiers in Human Neuroscience 10, 604. doi:10.3389/fnhum.2016.00604 .. [2] Haufe, S., Meinecke, F., Goergen, K., Daehne, S., Haynes, J.-D., Blankertz, B., & Biessmann, F. (2014). On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage, 87, 96-110. doi:10.1016/j.neuroimage.2013.10.067 .. _figure 1: http://journal.frontiersin.org/article/10.3389/fnhum.2016.00604/full#F1 .. _figure 2: http://journal.frontiersin.org/article/10.3389/fnhum.2016.00604/full#F2 .. _figure 5: http://journal.frontiersin.org/article/10.3389/fnhum.2016.00604/full#F5 """ # noqa: E501 # Authors: Chris Holdgraf <[email protected]> # Eric Larson <[email protected]> # Nicolas Barascud <[email protected]> # # License: BSD (3-clause) # sphinx_gallery_thumbnail_number = 3 import numpy as np import matplotlib.pyplot as plt from scipy.io import loadmat from os.path import join import mne from mne.decoding import ReceptiveField from sklearn.model_selection import KFold from sklearn.preprocessing import scale ############################################################################### # Load the data from the publication # ---------------------------------- # # First we will load the data collected in [1]_. In this experiment subjects # listened to natural speech. Raw EEG and the speech stimulus are provided. # We will load these below, downsampling the data in order to speed up # computation since we know that our features are primarily low-frequency in # nature. Then we'll visualize both the EEG and speech envelope. path = mne.datasets.mtrf.data_path() decim = 2 data = loadmat(join(path, 'speech_data.mat')) raw = data['EEG'].T speech = data['envelope'].T sfreq = float(data['Fs']) sfreq /= decim speech = mne.filter.resample(speech, down=decim, npad='auto') raw = mne.filter.resample(raw, down=decim, npad='auto') # Read in channel positions and create our MNE objects from the raw data montage = mne.channels.read_montage('biosemi128') montage.selection = montage.selection[:128] info = mne.create_info(montage.ch_names[:128], sfreq, 'eeg', montage=montage) raw = mne.io.RawArray(raw, info) n_channels = len(raw.ch_names) # Plot a sample of brain and stimulus activity fig, ax = plt.subplots() lns = ax.plot(scale(raw[:, :800][0].T), color='k', alpha=.1) ln1 = ax.plot(scale(speech[0, :800]), color='r', lw=2) ax.legend([lns[0], ln1[0]], ['EEG', 'Speech Envelope'], frameon=False) ax.set(title="Sample activity", xlabel="Time (s)") mne.viz.tight_layout() ############################################################################### # Create and fit a receptive field model # -------------------------------------- # # We will construct an encoding model to find the linear relationship between # a time-delayed version of the speech envelope and the EEG signal. This allows # us to make predictions about the response to new stimuli. # Define the delays that we will use in the receptive field tmin, tmax = -.2, .4 # Initialize the model rf = ReceptiveField(tmin, tmax, sfreq, feature_names=['envelope'], estimator=1., scoring='corrcoef') # We'll have (tmax - tmin) * sfreq delays # and an extra 2 delays since we are inclusive on the beginning / end index n_delays = int((tmax - tmin) * sfreq) + 2 n_splits = 3 cv = KFold(n_splits) # Prepare model data (make time the first dimension) speech = speech.T Y, _ = raw[:] # Outputs for the model Y = Y.T # Iterate through splits, fit the model, and predict/test on held-out data coefs = np.zeros((n_splits, n_channels, n_delays)) scores = np.zeros((n_splits, n_channels)) for ii, (train, test) in enumerate(cv.split(speech)): print('split %s / %s' % (ii + 1, n_splits)) rf.fit(speech[train], Y[train]) scores[ii] = rf.score(speech[test], Y[test]) # coef_ is shape (n_outputs, n_features, n_delays). we only have 1 feature coefs[ii] = rf.coef_[:, 0, :] times = rf.delays_ / float(rf.sfreq) # Average scores and coefficients across CV splits mean_coefs = coefs.mean(axis=0) mean_scores = scores.mean(axis=0) # Plot mean prediction scores across all channels fig, ax = plt.subplots() ix_chs = np.arange(n_channels) ax.plot(ix_chs, mean_scores) ax.axhline(0, ls='--', color='r') ax.set(title="Mean prediction score", xlabel="Channel", ylabel="Score ($r$)") mne.viz.tight_layout() ############################################################################### # Investigate model coefficients # ============================== # Finally, we will look at how the linear coefficients (sometimes # referred to as beta values) are distributed across time delays as well as # across the scalp. We will recreate `figure 1`_ and `figure 2`_ from [1]_. # Print mean coefficients across all time delays / channels (see Fig 1 in [1]) time_plot = 0.180 # For highlighting a specific time. fig, ax = plt.subplots(figsize=(4, 8)) max_coef = mean_coefs.max() ax.pcolormesh(times, ix_chs, mean_coefs, cmap='RdBu_r', vmin=-max_coef, vmax=max_coef, shading='gouraud') ax.axvline(time_plot, ls='--', color='k', lw=2) ax.set(xlabel='Delay (s)', ylabel='Channel', title="Mean Model\nCoefficients", xlim=times[[0, -1]], ylim=[len(ix_chs) - 1, 0], xticks=np.arange(tmin, tmax + .2, .2)) plt.setp(ax.get_xticklabels(), rotation=45) mne.viz.tight_layout() # Make a topographic map of coefficients for a given delay (see Fig 2C in [1]) ix_plot = np.argmin(np.abs(time_plot - times)) fig, ax = plt.subplots() mne.viz.plot_topomap(mean_coefs[:, ix_plot], pos=info, axes=ax, show=False, vmin=-max_coef, vmax=max_coef) ax.set(title="Topomap of model coefficients\nfor delay %s" % time_plot) mne.viz.tight_layout() ############################################################################### # Create and fit a stimulus reconstruction model # ---------------------------------------------- # # We will now demonstrate another use case for the for the # :class:`mne.decoding.ReceptiveField` class as we try to predict the stimulus # activity from the EEG data. This is known in the literature as a decoding, or # stimulus reconstruction model [1]_. A decoding model aims to find the # relationship between the speech signal and a time-delayed version of the EEG. # This can be useful as we exploit all of the available neural data in a # multivariate context, compared to the encoding case which treats each M/EEG # channel as an independent feature. Therefore, decoding models might provide a # better quality of fit (at the expense of not controlling for stimulus # covariance), especially for low SNR stimuli such as speech. # We use the same lags as in [1]. Negative lags now index the relationship # between the neural response and the speech envelope earlier in time, whereas # positive lags would index how a unit change in the amplitude of the EEG would # affect later stimulus activity (obviously this should have an amplitude of # zero). tmin, tmax = -.2, 0. # Initialize the model. Here the features are the EEG data. We also specify # ``patterns=True`` to compute inverse-transformed coefficients during model # fitting (cf. next section). We'll use a ridge regression estimator with an # alpha value similar to [1]. sr = ReceptiveField(tmin, tmax, sfreq, feature_names=raw.ch_names, estimator=1e4, scoring='corrcoef', patterns=True) # We'll have (tmax - tmin) * sfreq delays # and an extra 2 delays since we are inclusive on the beginning / end index n_delays = int((tmax - tmin) * sfreq) + 2 n_splits = 3 cv = KFold(n_splits) # Iterate through splits, fit the model, and predict/test on held-out data coefs = np.zeros((n_splits, n_channels, n_delays)) patterns = coefs.copy() scores = np.zeros((n_splits,)) for ii, (train, test) in enumerate(cv.split(speech)): print('split %s / %s' % (ii + 1, n_splits)) sr.fit(Y[train], speech[train]) scores[ii] = sr.score(Y[test], speech[test])[0] # coef_ is shape (n_outputs, n_features, n_delays). We have 128 features coefs[ii] = sr.coef_[0, :, :] patterns[ii] = sr.patterns_[0, :, :] times = sr.delays_ / float(sr.sfreq) # Average scores and coefficients across CV splits mean_coefs = coefs.mean(axis=0) mean_patterns = patterns.mean(axis=0) mean_scores = scores.mean(axis=0) max_coef = np.abs(mean_coefs).max() max_patterns = np.abs(mean_patterns).max() ############################################################################### # Visualize stimulus reconstruction # ================================= # # To get a sense of our model performance, we can plot the actual and predicted # stimulus envelopes side by side. y_pred = sr.predict(Y[test]) time = np.linspace(0, 2., 5 * int(sfreq)) fig, ax = plt.subplots(figsize=(8, 4)) ax.plot(time, speech[test][sr.valid_samples_][:int(5 * sfreq)], color='grey', lw=2, ls='--') ax.plot(time, y_pred[sr.valid_samples_][:int(5 * sfreq)], color='r', lw=2) ax.legend([lns[0], ln1[0]], ['Envelope', 'Reconstruction'], frameon=False) ax.set(title="Stimulus reconstruction") ax.set_xlabel('Time (s)') mne.viz.tight_layout() ############################################################################### # Investigate model coefficients # ============================== # # Finally, we will look at how the decoding model coefficients are distributed # across the scalp. We will attempt to recreate `figure 5`_ from [1]_. The # decoding model weights reflect the channels that contribute most toward # reconstructing the stimulus signal, but are not directly interpretable in a # neurophysiological sense. Here we also look at the coefficients obtained # via an inversion procedure [2]_, which have a more straightforward # interpretation as their value (and sign) directly relates to the stimulus # signal's strength (and effect direction). time_plot = (-.140, -.125) # To average between two timepoints. ix_plot = np.arange(np.argmin(np.abs(time_plot[0] - times)), np.argmin(np.abs(time_plot[1] - times))) fig, ax = plt.subplots(1, 2) mne.viz.plot_topomap(np.mean(mean_coefs[:, ix_plot], axis=1), pos=info, axes=ax[0], show=False, vmin=-max_coef, vmax=max_coef) ax[0].set(title="Model coefficients\nbetween delays %s and %s" % (time_plot[0], time_plot[1])) mne.viz.plot_topomap(np.mean(mean_patterns[:, ix_plot], axis=1), pos=info, axes=ax[1], show=False, vmin=-max_patterns, vmax=max_patterns) ax[1].set(title="Inverse-transformed coefficients\nbetween delays %s and %s" % (time_plot[0], time_plot[1])) mne.viz.tight_layout() plt.show()
bsd-3-clause
vincentltz/ns-3-dev-git
src/core/examples/sample-rng-plot.py
188
1246
# -*- Mode:Python; -*- # /* # * This program is free software; you can redistribute it and/or modify # * it under the terms of the GNU General Public License version 2 as # * published by the Free Software Foundation # * # * This program is distributed in the hope that it will be useful, # * but WITHOUT ANY WARRANTY; without even the implied warranty of # * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # * GNU General Public License for more details. # * # * You should have received a copy of the GNU General Public License # * along with this program; if not, write to the Free Software # * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # */ # Demonstrate use of ns-3 as a random number generator integrated with # plotting tools; adapted from Gustavo Carneiro's ns-3 tutorial import numpy as np import matplotlib.pyplot as plt import ns.core # mu, var = 100, 225 rng = ns.core.NormalVariable(100.0, 225.0) x = [rng.GetValue() for t in range(10000)] # the histogram of the data n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75) plt.title('ns-3 histogram') plt.text(60, .025, r'$\mu=100,\ \sigma=15$') plt.axis([40, 160, 0, 0.03]) plt.grid(True) plt.show()
gpl-2.0
daviddesancho/mdtraj
mdtraj/utils/validation.py
11
8147
############################################################################## # MDTraj: A Python Library for Loading, Saving, and Manipulating # Molecular Dynamics Trajectories. # Copyright 2012-2013 Stanford University and the Authors # # Authors: Robert McGibbon # Contributors: # # MDTraj is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation, either version 2.1 # of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with MDTraj. If not, see <http://www.gnu.org/licenses/>. ############################################################################## ############################################################################## # imports ############################################################################## from __future__ import print_function, division import warnings import numbers import numpy as np import collections from mdtraj.utils.six.moves import zip_longest ############################################################################## # functions / classes ############################################################################## class TypeCastPerformanceWarning(RuntimeWarning): pass def ensure_type(val, dtype, ndim, name, length=None, can_be_none=False, shape=None, warn_on_cast=True, add_newaxis_on_deficient_ndim=False): """Typecheck the size, shape and dtype of a numpy array, with optional casting. Parameters ---------- val : {np.ndaraay, None} The array to check dtype : {nd.dtype, str} The dtype you'd like the array to have ndim : int The number of dimensions you'd like the array to have name : str name of the array. This is used when throwing exceptions, so that we can describe to the user which array is messed up. length : int, optional How long should the array be? can_be_none : bool Is ``val == None`` acceptable? shape : tuple, optional What should be shape of the array be? If the provided tuple has Nones in it, those will be semantically interpreted as matching any length in that dimension. So, for example, using the shape spec ``(None, None, 3)`` will ensure that the last dimension is of length three without constraining the first two dimensions warn_on_cast : bool, default=True Raise a warning when the dtypes don't match and a cast is done. add_newaxis_on_deficient_ndim : bool, default=True Add a new axis to the beginining of the array if the number of dimensions is deficient by one compared to your specification. For instance, if you're trying to get out an array of ``ndim == 3``, but the user provides an array of ``shape == (10, 10)``, a new axis will be created with length 1 in front, so that the return value is of shape ``(1, 10, 10)``. Notes ----- The returned value will always be C-contiguous. Returns ------- typechecked_val : np.ndarray, None If `val=None` and `can_be_none=True`, then this will return None. Otherwise, it will return val (or a copy of val). If the dtype wasn't right, it'll be casted to the right shape. If the array was not C-contiguous, it'll be copied as well. """ if can_be_none and val is None: return None if not isinstance(val, np.ndarray): if isinstance(val, collections.Iterable): # If they give us an iterator, let's try... if isinstance(val, collections.Sequence): # sequences are easy. these are like lists and stuff val = np.array(val, dtype=dtype) else: # this is a generator... val = np.array(list(val), dtype=dtype) elif np.isscalar(val) and add_newaxis_on_deficient_ndim and ndim == 1: # special case: if the user is looking for a 1d array, and # they request newaxis upconversion, and provided a scalar # then we should reshape the scalar to be a 1d length-1 array val = np.array([val]) else: raise TypeError(("%s must be numpy array. " " You supplied type %s" % (name, type(val)))) if warn_on_cast and val.dtype != dtype: warnings.warn("Casting %s dtype=%s to %s " % (name, val.dtype, dtype), TypeCastPerformanceWarning) if not val.ndim == ndim: if add_newaxis_on_deficient_ndim and val.ndim + 1 == ndim: val = val[np.newaxis, ...] else: raise ValueError(("%s must be ndim %s. " "You supplied %s" % (name, ndim, val.ndim))) val = np.ascontiguousarray(val, dtype=dtype) if length is not None and len(val) != length: raise ValueError(("%s must be length %s. " "You supplied %s" % (name, length, len(val)))) if shape is not None: # the shape specified given by the user can look like (None, None 3) # which indicates that ANY length is accepted in dimension 0 or # dimension 1 sentenel = object() error = ValueError(("%s must be shape %s. You supplied " "%s" % (name, str(shape).replace('None', 'Any'), val.shape))) for a, b in zip_longest(val.shape, shape, fillvalue=sentenel): if a is sentenel or b is sentenel: # if the sentenel was reached, it means that the ndim didn't # match or something. this really shouldn't happen raise error if b is None: # if the user's shape spec has a None in it, it matches anything continue if a != b: # check for equality raise error return val def cast_indices(indices): """Check that ``indices`` are appropriate for indexing an array Parameters ---------- indices : {None, array_like, slice} If indices is None or slice, it'll just pass through. Otherwise, it'll be converted to a numpy array and checked to make sure it contains unique integers. Returns ------- value : {slice, np.ndarray} Either a slice or an array of integers, depending on the input type """ if indices is None or isinstance(indices, slice): return indices if not len(indices) == len(set(indices)): raise ValueError("indices must be unique.") out = np.asarray(indices) if not issubclass(out.dtype.type, np.integer): raise ValueError('indices must be of an integer type. %s is not an integer type' % out.dtype) return out def check_random_state(seed): """Turn seed into a np.random.RandomState instance Parameters ---------- seed : {None, int, RandomState} Seed for a random number generator Returns ------- randomstate : RandomState If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError. """ # This code is direcly from the scikit-learn project (sklearn/utils/validation.py) # Authors: Olivier Grisel and Gael Varoquaux and others (please update me) # License: BSD 3 clause if seed is None or seed is np.random: return np.random.mtrand._rand if isinstance(seed, (numbers.Integral, np.integer)): return np.random.RandomState(seed) if isinstance(seed, np.random.RandomState): return seed raise ValueError('%r cannot be used to seed a numpy.random.RandomState' ' instance' % seed)
lgpl-2.1
luo66/scikit-learn
sklearn/metrics/tests/test_regression.py
272
6066
from __future__ import division, print_function import numpy as np from itertools import product from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.metrics import explained_variance_score from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import median_absolute_error from sklearn.metrics import r2_score from sklearn.metrics.regression import _check_reg_targets def test_regression_metrics(n_samples=50): y_true = np.arange(n_samples) y_pred = y_true + 1 assert_almost_equal(mean_squared_error(y_true, y_pred), 1.) assert_almost_equal(mean_absolute_error(y_true, y_pred), 1.) assert_almost_equal(median_absolute_error(y_true, y_pred), 1.) assert_almost_equal(r2_score(y_true, y_pred), 0.995, 2) assert_almost_equal(explained_variance_score(y_true, y_pred), 1.) def test_multioutput_regression(): y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]]) y_pred = np.array([[0, 0, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]) error = mean_squared_error(y_true, y_pred) assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.) # mean_absolute_error and mean_squared_error are equal because # it is a binary problem. error = mean_absolute_error(y_true, y_pred) assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.) error = r2_score(y_true, y_pred, multioutput='variance_weighted') assert_almost_equal(error, 1. - 5. / 2) error = r2_score(y_true, y_pred, multioutput='uniform_average') assert_almost_equal(error, -.875) def test_regression_metrics_at_limits(): assert_almost_equal(mean_squared_error([0.], [0.]), 0.00, 2) assert_almost_equal(mean_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(median_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(explained_variance_score([0.], [0.]), 1.00, 2) assert_almost_equal(r2_score([0., 1], [0., 1]), 1.00, 2) def test__check_reg_targets(): # All of length 3 EXAMPLES = [ ("continuous", [1, 2, 3], 1), ("continuous", [[1], [2], [3]], 1), ("continuous-multioutput", [[1, 1], [2, 2], [3, 1]], 2), ("continuous-multioutput", [[5, 1], [4, 2], [3, 1]], 2), ("continuous-multioutput", [[1, 3, 4], [2, 2, 2], [3, 1, 1]], 3), ] for (type1, y1, n_out1), (type2, y2, n_out2) in product(EXAMPLES, repeat=2): if type1 == type2 and n_out1 == n_out2: y_type, y_check1, y_check2, multioutput = _check_reg_targets( y1, y2, None) assert_equal(type1, y_type) if type1 == 'continuous': assert_array_equal(y_check1, np.reshape(y1, (-1, 1))) assert_array_equal(y_check2, np.reshape(y2, (-1, 1))) else: assert_array_equal(y_check1, y1) assert_array_equal(y_check2, y2) else: assert_raises(ValueError, _check_reg_targets, y1, y2, None) def test_regression_multioutput_array(): y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]] y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]] mse = mean_squared_error(y_true, y_pred, multioutput='raw_values') mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values') r = r2_score(y_true, y_pred, multioutput='raw_values') evs = explained_variance_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(mse, [0.125, 0.5625], decimal=2) assert_array_almost_equal(mae, [0.25, 0.625], decimal=2) assert_array_almost_equal(r, [0.95, 0.93], decimal=2) assert_array_almost_equal(evs, [0.95, 0.93], decimal=2) # mean_absolute_error and mean_squared_error are equal because # it is a binary problem. y_true = [[0, 0]]*4 y_pred = [[1, 1]]*4 mse = mean_squared_error(y_true, y_pred, multioutput='raw_values') mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values') r = r2_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(mse, [1., 1.], decimal=2) assert_array_almost_equal(mae, [1., 1.], decimal=2) assert_array_almost_equal(r, [0., 0.], decimal=2) r = r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='raw_values') assert_array_almost_equal(r, [0, -3.5], decimal=2) assert_equal(np.mean(r), r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='uniform_average')) evs = explained_variance_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='raw_values') assert_array_almost_equal(evs, [0, -1.25], decimal=2) # Checking for the condition in which both numerator and denominator is # zero. y_true = [[1, 3], [-1, 2]] y_pred = [[1, 4], [-1, 1]] r2 = r2_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(r2, [1., -3.], decimal=2) assert_equal(np.mean(r2), r2_score(y_true, y_pred, multioutput='uniform_average')) evs = explained_variance_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(evs, [1., -3.], decimal=2) assert_equal(np.mean(evs), explained_variance_score(y_true, y_pred)) def test_regression_custom_weights(): y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]] y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]] msew = mean_squared_error(y_true, y_pred, multioutput=[0.4, 0.6]) maew = mean_absolute_error(y_true, y_pred, multioutput=[0.4, 0.6]) rw = r2_score(y_true, y_pred, multioutput=[0.4, 0.6]) evsw = explained_variance_score(y_true, y_pred, multioutput=[0.4, 0.6]) assert_almost_equal(msew, 0.39, decimal=2) assert_almost_equal(maew, 0.475, decimal=3) assert_almost_equal(rw, 0.94, decimal=2) assert_almost_equal(evsw, 0.94, decimal=2)
bsd-3-clause
thuml/HashNet
caffe/examples/finetune_flickr_style/assemble_data.py
38
3636
#!/usr/bin/env python """ Form a subset of the Flickr Style data, download images to dirname, and write Caffe ImagesDataLayer training file. """ import os import urllib import hashlib import argparse import numpy as np import pandas as pd from skimage import io import multiprocessing # Flickr returns a special image if the request is unavailable. MISSING_IMAGE_SHA1 = '6a92790b1c2a301c6e7ddef645dca1f53ea97ac2' example_dirname = os.path.abspath(os.path.dirname(__file__)) caffe_dirname = os.path.abspath(os.path.join(example_dirname, '../..')) training_dirname = os.path.join(caffe_dirname, 'data/flickr_style') def download_image(args_tuple): "For use with multiprocessing map. Returns filename on fail." try: url, filename = args_tuple if not os.path.exists(filename): urllib.urlretrieve(url, filename) with open(filename) as f: assert hashlib.sha1(f.read()).hexdigest() != MISSING_IMAGE_SHA1 test_read_image = io.imread(filename) return True except KeyboardInterrupt: raise Exception() # multiprocessing doesn't catch keyboard exceptions except: return False if __name__ == '__main__': parser = argparse.ArgumentParser( description='Download a subset of Flickr Style to a directory') parser.add_argument( '-s', '--seed', type=int, default=0, help="random seed") parser.add_argument( '-i', '--images', type=int, default=-1, help="number of images to use (-1 for all [default])", ) parser.add_argument( '-w', '--workers', type=int, default=-1, help="num workers used to download images. -x uses (all - x) cores [-1 default]." ) parser.add_argument( '-l', '--labels', type=int, default=0, help="if set to a positive value, only sample images from the first number of labels." ) args = parser.parse_args() np.random.seed(args.seed) # Read data, shuffle order, and subsample. csv_filename = os.path.join(example_dirname, 'flickr_style.csv.gz') df = pd.read_csv(csv_filename, index_col=0, compression='gzip') df = df.iloc[np.random.permutation(df.shape[0])] if args.labels > 0: df = df.loc[df['label'] < args.labels] if args.images > 0 and args.images < df.shape[0]: df = df.iloc[:args.images] # Make directory for images and get local filenames. if training_dirname is None: training_dirname = os.path.join(caffe_dirname, 'data/flickr_style') images_dirname = os.path.join(training_dirname, 'images') if not os.path.exists(images_dirname): os.makedirs(images_dirname) df['image_filename'] = [ os.path.join(images_dirname, _.split('/')[-1]) for _ in df['image_url'] ] # Download images. num_workers = args.workers if num_workers <= 0: num_workers = multiprocessing.cpu_count() + num_workers print('Downloading {} images with {} workers...'.format( df.shape[0], num_workers)) pool = multiprocessing.Pool(processes=num_workers) map_args = zip(df['image_url'], df['image_filename']) results = pool.map(download_image, map_args) # Only keep rows with valid images, and write out training file lists. df = df[results] for split in ['train', 'test']: split_df = df[df['_split'] == split] filename = os.path.join(training_dirname, '{}.txt'.format(split)) split_df[['image_filename', 'label']].to_csv( filename, sep=' ', header=None, index=None) print('Writing train/val for {} successfully downloaded images.'.format( df.shape[0]))
mit
jaidevd/scikit-learn
sklearn/feature_selection/rfe.py
33
16667
# Authors: Alexandre Gramfort <[email protected]> # Vincent Michel <[email protected]> # Gilles Louppe <[email protected]> # # License: BSD 3 clause """Recursive feature elimination for feature ranking""" import numpy as np from ..utils import check_X_y, safe_sqr from ..utils.metaestimators import if_delegate_has_method from ..base import BaseEstimator from ..base import MetaEstimatorMixin from ..base import clone from ..base import is_classifier from ..externals.joblib import Parallel, delayed from ..model_selection import check_cv from ..model_selection._validation import _safe_split, _score from ..metrics.scorer import check_scoring from .base import SelectorMixin def _rfe_single_fit(rfe, estimator, X, y, train, test, scorer): """ Return the score for a fit across one fold. """ X_train, y_train = _safe_split(estimator, X, y, train) X_test, y_test = _safe_split(estimator, X, y, test, train) return rfe._fit( X_train, y_train, lambda estimator, features: _score(estimator, X_test[:, features], y_test, scorer)).scores_ class RFE(BaseEstimator, MetaEstimatorMixin, SelectorMixin): """Feature ranking with recursive feature elimination. Given an external estimator that assigns weights to features (e.g., the coefficients of a linear model), the goal of recursive feature elimination (RFE) is to select features by recursively considering smaller and smaller sets of features. First, the estimator is trained on the initial set of features and weights are assigned to each one of them. Then, features whose absolute weights are the smallest are pruned from the current set features. That procedure is recursively repeated on the pruned set until the desired number of features to select is eventually reached. Read more in the :ref:`User Guide <rfe>`. Parameters ---------- estimator : object A supervised learning estimator with a `fit` method that updates a `coef_` attribute that holds the fitted parameters. Important features must correspond to high absolute values in the `coef_` array. For instance, this is the case for most supervised learning algorithms such as Support Vector Classifiers and Generalized Linear Models from the `svm` and `linear_model` modules. n_features_to_select : int or None (default=None) The number of features to select. If `None`, half of the features are selected. step : int or float, optional (default=1) If greater than or equal to 1, then `step` corresponds to the (integer) number of features to remove at each iteration. If within (0.0, 1.0), then `step` corresponds to the percentage (rounded down) of features to remove at each iteration. verbose : int, default=0 Controls verbosity of output. Attributes ---------- n_features_ : int The number of selected features. support_ : array of shape [n_features] The mask of selected features. ranking_ : array of shape [n_features] The feature ranking, such that ``ranking_[i]`` corresponds to the ranking position of the i-th feature. Selected (i.e., estimated best) features are assigned rank 1. estimator_ : object The external estimator fit on the reduced dataset. Examples -------- The following example shows how to retrieve the 5 right informative features in the Friedman #1 dataset. >>> from sklearn.datasets import make_friedman1 >>> from sklearn.feature_selection import RFE >>> from sklearn.svm import SVR >>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0) >>> estimator = SVR(kernel="linear") >>> selector = RFE(estimator, 5, step=1) >>> selector = selector.fit(X, y) >>> selector.support_ # doctest: +NORMALIZE_WHITESPACE array([ True, True, True, True, True, False, False, False, False, False], dtype=bool) >>> selector.ranking_ array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5]) References ---------- .. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection for cancer classification using support vector machines", Mach. Learn., 46(1-3), 389--422, 2002. """ def __init__(self, estimator, n_features_to_select=None, step=1, verbose=0): self.estimator = estimator self.n_features_to_select = n_features_to_select self.step = step self.verbose = verbose @property def _estimator_type(self): return self.estimator._estimator_type def fit(self, X, y): """Fit the RFE model and then the underlying estimator on the selected features. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] The training input samples. y : array-like, shape = [n_samples] The target values. """ return self._fit(X, y) def _fit(self, X, y, step_score=None): X, y = check_X_y(X, y, "csc") # Initialization n_features = X.shape[1] if self.n_features_to_select is None: n_features_to_select = n_features // 2 else: n_features_to_select = self.n_features_to_select if 0.0 < self.step < 1.0: step = int(max(1, self.step * n_features)) else: step = int(self.step) if step <= 0: raise ValueError("Step must be >0") support_ = np.ones(n_features, dtype=np.bool) ranking_ = np.ones(n_features, dtype=np.int) if step_score: self.scores_ = [] # Elimination while np.sum(support_) > n_features_to_select: # Remaining features features = np.arange(n_features)[support_] # Rank the remaining features estimator = clone(self.estimator) if self.verbose > 0: print("Fitting estimator with %d features." % np.sum(support_)) estimator.fit(X[:, features], y) # Get coefs if hasattr(estimator, 'coef_'): coefs = estimator.coef_ else: coefs = getattr(estimator, 'feature_importances_', None) if coefs is None: raise RuntimeError('The classifier does not expose ' '"coef_" or "feature_importances_" ' 'attributes') # Get ranks if coefs.ndim > 1: ranks = np.argsort(safe_sqr(coefs).sum(axis=0)) else: ranks = np.argsort(safe_sqr(coefs)) # for sparse case ranks is matrix ranks = np.ravel(ranks) # Eliminate the worse features threshold = min(step, np.sum(support_) - n_features_to_select) # Compute step score on the previous selection iteration # because 'estimator' must use features # that have not been eliminated yet if step_score: self.scores_.append(step_score(estimator, features)) support_[features[ranks][:threshold]] = False ranking_[np.logical_not(support_)] += 1 # Set final attributes features = np.arange(n_features)[support_] self.estimator_ = clone(self.estimator) self.estimator_.fit(X[:, features], y) # Compute step score when only n_features_to_select features left if step_score: self.scores_.append(step_score(self.estimator_, features)) self.n_features_ = support_.sum() self.support_ = support_ self.ranking_ = ranking_ return self @if_delegate_has_method(delegate='estimator') def predict(self, X): """Reduce X to the selected features and then predict using the underlying estimator. Parameters ---------- X : array of shape [n_samples, n_features] The input samples. Returns ------- y : array of shape [n_samples] The predicted target values. """ return self.estimator_.predict(self.transform(X)) @if_delegate_has_method(delegate='estimator') def score(self, X, y): """Reduce X to the selected features and then return the score of the underlying estimator. Parameters ---------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The target values. """ return self.estimator_.score(self.transform(X), y) def _get_support_mask(self): return self.support_ @if_delegate_has_method(delegate='estimator') def decision_function(self, X): return self.estimator_.decision_function(self.transform(X)) @if_delegate_has_method(delegate='estimator') def predict_proba(self, X): return self.estimator_.predict_proba(self.transform(X)) @if_delegate_has_method(delegate='estimator') def predict_log_proba(self, X): return self.estimator_.predict_log_proba(self.transform(X)) class RFECV(RFE, MetaEstimatorMixin): """Feature ranking with recursive feature elimination and cross-validated selection of the best number of features. Read more in the :ref:`User Guide <rfe>`. Parameters ---------- estimator : object A supervised learning estimator with a `fit` method that updates a `coef_` attribute that holds the fitted parameters. Important features must correspond to high absolute values in the `coef_` array. For instance, this is the case for most supervised learning algorithms such as Support Vector Classifiers and Generalized Linear Models from the `svm` and `linear_model` modules. step : int or float, optional (default=1) If greater than or equal to 1, then `step` corresponds to the (integer) number of features to remove at each iteration. If within (0.0, 1.0), then `step` corresponds to the percentage (rounded down) of features to remove at each iteration. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used. If the estimator is a classifier or if ``y`` is neither binary nor multiclass, :class:`sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. verbose : int, default=0 Controls verbosity of output. n_jobs : int, default 1 Number of cores to run in parallel while fitting across folds. Defaults to 1 core. If `n_jobs=-1`, then number of jobs is set to number of cores. Attributes ---------- n_features_ : int The number of selected features with cross-validation. support_ : array of shape [n_features] The mask of selected features. ranking_ : array of shape [n_features] The feature ranking, such that `ranking_[i]` corresponds to the ranking position of the i-th feature. Selected (i.e., estimated best) features are assigned rank 1. grid_scores_ : array of shape [n_subsets_of_features] The cross-validation scores such that ``grid_scores_[i]`` corresponds to the CV score of the i-th subset of features. estimator_ : object The external estimator fit on the reduced dataset. Notes ----- The size of ``grid_scores_`` is equal to ceil((n_features - 1) / step) + 1, where step is the number of features removed at each iteration. Examples -------- The following example shows how to retrieve the a-priori not known 5 informative features in the Friedman #1 dataset. >>> from sklearn.datasets import make_friedman1 >>> from sklearn.feature_selection import RFECV >>> from sklearn.svm import SVR >>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0) >>> estimator = SVR(kernel="linear") >>> selector = RFECV(estimator, step=1, cv=5) >>> selector = selector.fit(X, y) >>> selector.support_ # doctest: +NORMALIZE_WHITESPACE array([ True, True, True, True, True, False, False, False, False, False], dtype=bool) >>> selector.ranking_ array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5]) References ---------- .. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection for cancer classification using support vector machines", Mach. Learn., 46(1-3), 389--422, 2002. """ def __init__(self, estimator, step=1, cv=None, scoring=None, verbose=0, n_jobs=1): self.estimator = estimator self.step = step self.cv = cv self.scoring = scoring self.verbose = verbose self.n_jobs = n_jobs def fit(self, X, y): """Fit the RFE model and automatically tune the number of selected features. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where `n_samples` is the number of samples and `n_features` is the total number of features. y : array-like, shape = [n_samples] Target values (integers for classification, real numbers for regression). """ X, y = check_X_y(X, y, "csr") # Initialization cv = check_cv(self.cv, y, is_classifier(self.estimator)) scorer = check_scoring(self.estimator, scoring=self.scoring) n_features = X.shape[1] n_features_to_select = 1 if 0.0 < self.step < 1.0: step = int(max(1, self.step * n_features)) else: step = int(self.step) if step <= 0: raise ValueError("Step must be >0") rfe = RFE(estimator=self.estimator, n_features_to_select=n_features_to_select, step=self.step, verbose=self.verbose) # Determine the number of subsets of features by fitting across # the train folds and choosing the "features_to_select" parameter # that gives the least averaged error across all folds. # Note that joblib raises a non-picklable error for bound methods # even if n_jobs is set to 1 with the default multiprocessing # backend. # This branching is done so that to # make sure that user code that sets n_jobs to 1 # and provides bound methods as scorers is not broken with the # addition of n_jobs parameter in version 0.18. if self.n_jobs == 1: parallel, func = list, _rfe_single_fit else: parallel, func, = Parallel(n_jobs=self.n_jobs), delayed(_rfe_single_fit) scores = parallel( func(rfe, self.estimator, X, y, train, test, scorer) for train, test in cv.split(X, y)) scores = np.sum(scores, axis=0) n_features_to_select = max( n_features - (np.argmax(scores) * step), n_features_to_select) # Re-execute an elimination with best_k over the whole set rfe = RFE(estimator=self.estimator, n_features_to_select=n_features_to_select, step=self.step) rfe.fit(X, y) # Set final attributes self.support_ = rfe.support_ self.n_features_ = rfe.n_features_ self.ranking_ = rfe.ranking_ self.estimator_ = clone(self.estimator) self.estimator_.fit(self.transform(X), y) # Fixing a normalization error, n is equal to get_n_splits(X, y) - 1 # here, the scores are normalized by get_n_splits(X, y) self.grid_scores_ = scores[::-1] / cv.get_n_splits(X, y) return self
bsd-3-clause
filipkilibarda/Ants-on-a-Polygon
simulation.py
1
3153
import matplotlib.pyplot as plt import matplotlib.animation as animation from math import pi,cos,sin,sqrt import numpy as np import ants def calcAnalyticalSolution(): ngon = ants.Ngon(NUMBER_OF_ANTS) phi = ngon.getInteriorAngle() intialDistanceAnts = 2*INITIAL_DISTANCE_ORIGIN*sin(2*pi/NUMBER_OF_ANTS/2) return intialDistanceAnts/(SPEED*(1-sin(phi-pi/2))) NUMBER_OF_ANTS = 16 SPEED = 1 INITIAL_DISTANCE_ORIGIN = 1 if __name__ == "__main__": kwargs = { "antGroup": ants.AntGroup(NUMBER_OF_ANTS), "maxFrames": 2**20, "frameReductionFactor": 2**7, "alpha": 1/1000, } simulationManager = ants.SimulationManager(**kwargs) simulationManager.runSimulation() def init(): """initialize animation""" analy_text.set_text('Expected time = %.10f' % calcAnalyticalSolution()) return (time_text,) def animate(i): """perform animation step""" if i >= simulationManager.getNumFramesUsedAfterReduction(): i = simulationManager.getNumFramesUsedAfterReduction() dots.set_data( simulationManager.getIthXPositions(i), simulationManager.getIthYPositions(i) ) time_text.set_text('Elapsed time = %.10f' % simulationManager.getIthTimeElapsed(i)) distance_text.set_text('Distance between ants = %.10f' % simulationManager.getIthDistanceBetweenAnts(i)) return (dots, time_text, distance_text,) ########################################################### # Setup plot ########################################################### # set up figure and animation fig = plt.figure() ax = fig.add_subplot(111, aspect='equal', autoscale_on=False, xlim=(-INITIAL_DISTANCE_ORIGIN, INITIAL_DISTANCE_ORIGIN), ylim=(-INITIAL_DISTANCE_ORIGIN, INITIAL_DISTANCE_ORIGIN)) # dots to go on the plot dots, = ax.plot([], 'bo', ms=.3) # declare the text that indicates elapsed time time_text = ax.text(0.02, 0.90, '', transform=ax.transAxes) # text that idicates the analytical solution analy_text = ax.text(0.02, 0.95, '', transform=ax.transAxes) # text that indicates the distance between each ant distance_text = ax.text(0.02, 0.85, '', transform=ax.transAxes) """ Interval is the length of time that the animation should pause in between each frame. The amount of time it takes to calculate each frame depends on how complicated the calcualation is, but there's this extra `interval` length of time where the animation pauses before calculating the next frame. """ interval = 20 # number of frame steps to rest on the last frame pause = 100 ani = animation.FuncAnimation(fig, animate, frames=simulationManager.getNumFramesUsedAfterReduction()+pause, interval=interval, blit=True, init_func=init, repeat=False) ani.save('imgs/ani.gif', writer='imagemagick', fps=50) # plt.show()
mit
ozak/geopandas
geopandas/io/tests/test_io.py
1
6230
from __future__ import absolute_import from collections import OrderedDict import fiona import pytest from shapely.geometry import box import geopandas from geopandas import read_postgis, read_file from geopandas.tests.util import connect, create_postgis, validate_boro_df @pytest.fixture def nybb_df(): nybb_path = geopandas.datasets.get_path('nybb') df = read_file(nybb_path) return df class TestIO: def setup_method(self): nybb_zip_path = geopandas.datasets.get_path('nybb') self.df = read_file(nybb_zip_path) with fiona.open(nybb_zip_path) as f: self.crs = f.crs self.columns = list(f.meta["schema"]["properties"].keys()) def test_read_postgis_default(self): con = connect('test_geopandas') if con is None or not create_postgis(self.df): raise pytest.skip() try: sql = "SELECT * FROM nybb;" df = read_postgis(sql, con) finally: con.close() validate_boro_df(df) # no crs defined on the created geodatabase, and none specified # by user; should not be set to 0, as from get_srid failure assert df.crs is None def test_read_postgis_custom_geom_col(self): con = connect('test_geopandas') geom_col = "the_geom" if con is None or not create_postgis(self.df, geom_col=geom_col): raise pytest.skip() try: sql = "SELECT * FROM nybb;" df = read_postgis(sql, con, geom_col=geom_col) finally: con.close() validate_boro_df(df) def test_read_postgis_select_geom_as(self): """Tests that a SELECT {geom} AS {some_other_geom} works.""" con = connect('test_geopandas') orig_geom = "geom" out_geom = "the_geom" if con is None or not create_postgis(self.df, geom_col=orig_geom): raise pytest.skip() try: sql = """SELECT borocode, boroname, shape_leng, shape_area, {} as {} FROM nybb;""".format(orig_geom, out_geom) df = read_postgis(sql, con, geom_col=out_geom) finally: con.close() validate_boro_df(df) def test_read_postgis_get_srid(self): """Tests that an SRID can be read from a geodatabase (GH #451).""" crs = {"init": "epsg:4269"} df_reproj = self.df.to_crs(crs) created = create_postgis(df_reproj, srid=4269) con = connect('test_geopandas') if con is None or not created: raise pytest.skip() try: sql = "SELECT * FROM nybb;" df = read_postgis(sql, con) finally: con.close() validate_boro_df(df) assert(df.crs == crs) def test_read_postgis_override_srid(self): """Tests that a user specified CRS overrides the geodatabase SRID.""" orig_crs = self.df.crs created = create_postgis(self.df, srid=4269) con = connect('test_geopandas') if con is None or not created: raise pytest.skip() try: sql = "SELECT * FROM nybb;" df = read_postgis(sql, con, crs=orig_crs) finally: con.close() validate_boro_df(df) assert(df.crs == orig_crs) def test_read_file(self): df = self.df.rename(columns=lambda x: x.lower()) validate_boro_df(df) assert df.crs == self.crs # get lower case columns, and exclude geometry column from comparison lower_columns = [c.lower() for c in self.columns] assert (df.columns[:-1] == lower_columns).all() @pytest.mark.web def test_remote_geojson_url(self): url = ("https://raw.githubusercontent.com/geopandas/geopandas/" "master/examples/null_geom.geojson") gdf = read_file(url) assert isinstance(gdf, geopandas.GeoDataFrame) def test_filtered_read_file(self): full_df_shape = self.df.shape nybb_filename = geopandas.datasets.get_path('nybb') bbox = (1031051.7879884212, 224272.49231459625, 1047224.3104931959, 244317.30894023244) filtered_df = read_file(nybb_filename, bbox=bbox) filtered_df_shape = filtered_df.shape assert full_df_shape != filtered_df_shape assert filtered_df_shape == (2, 5) def test_filtered_read_file_with_gdf_boundary(self): full_df_shape = self.df.shape nybb_filename = geopandas.datasets.get_path('nybb') bbox = geopandas.GeoDataFrame( geometry=[box(1031051.7879884212, 224272.49231459625, 1047224.3104931959, 244317.30894023244)], crs=self.crs) filtered_df = read_file(nybb_filename, bbox=bbox) filtered_df_shape = filtered_df.shape assert full_df_shape != filtered_df_shape assert filtered_df_shape == (2, 5) def test_filtered_read_file_with_gdf_boundary_mismatched_crs(self): full_df_shape = self.df.shape nybb_filename = geopandas.datasets.get_path('nybb') bbox = geopandas.GeoDataFrame( geometry=[box(1031051.7879884212, 224272.49231459625, 1047224.3104931959, 244317.30894023244)], crs=self.crs) bbox.to_crs(epsg=4326, inplace=True) filtered_df = read_file(nybb_filename, bbox=bbox) filtered_df_shape = filtered_df.shape assert full_df_shape != filtered_df_shape assert filtered_df_shape == (2, 5) def test_empty_shapefile(self, tmpdir): # create empty shapefile meta = {'crs': {}, 'crs_wkt': '', 'driver': 'ESRI Shapefile', 'schema': {'geometry': 'Point', 'properties': OrderedDict([('A', 'int:9'), ('Z', 'float:24.15')])}} fname = str(tmpdir.join("test_empty.shp")) with fiona.drivers(): with fiona.open(fname, 'w', **meta) as _: pass empty = read_file(fname) assert isinstance(empty, geopandas.GeoDataFrame) assert all(empty.columns == ['A', 'Z', 'geometry'])
bsd-3-clause
yonglehou/scikit-learn
sklearn/linear_model/tests/test_perceptron.py
378
1815
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils import check_random_state from sklearn.datasets import load_iris from sklearn.linear_model import Perceptron iris = load_iris() random_state = check_random_state(12) indices = np.arange(iris.data.shape[0]) random_state.shuffle(indices) X = iris.data[indices] y = iris.target[indices] X_csr = sp.csr_matrix(X) X_csr.sort_indices() class MyPerceptron(object): def __init__(self, n_iter=1): self.n_iter = n_iter def fit(self, X, y): n_samples, n_features = X.shape self.w = np.zeros(n_features, dtype=np.float64) self.b = 0.0 for t in range(self.n_iter): for i in range(n_samples): if self.predict(X[i])[0] != y[i]: self.w += y[i] * X[i] self.b += y[i] def project(self, X): return np.dot(X, self.w) + self.b def predict(self, X): X = np.atleast_2d(X) return np.sign(self.project(X)) def test_perceptron_accuracy(): for data in (X, X_csr): clf = Perceptron(n_iter=30, shuffle=False) clf.fit(data, y) score = clf.score(data, y) assert_true(score >= 0.7) def test_perceptron_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 clf1 = MyPerceptron(n_iter=2) clf1.fit(X, y_bin) clf2 = Perceptron(n_iter=2, shuffle=False) clf2.fit(X, y_bin) assert_array_almost_equal(clf1.w, clf2.coef_.ravel()) def test_undefined_methods(): clf = Perceptron() for meth in ("predict_proba", "predict_log_proba"): assert_raises(AttributeError, lambda x: getattr(clf, x), meth)
bsd-3-clause
ryan413/gotem
html_to_databases/reuters_feed.py
1
3081
import os, sys from time import sleep from selenium import webdriver import redis import time import configparser config = configparser.ConfigParser() config.read(r'C:\Projects\@Scripts\CONFIG\urls_r.cfg') URL_WEBSITE = config['Settings']['URL_WEBSITE'] URL_REST = config['Settings']['URL_REST'] file_ = 'r.xlsx' r1 = redis.StrictRedis(host='localhost', port=6379, db=13) import codecs rfilename = codecs.open(file_, "r", encoding="utf-8").read() burl=r'' feed = OrderedDict() dfxls = pd.read_excel(file_) turl = URL_WEBSITE+URL_REST+r'&firstRow={}'.format(row) row = 1 df.from_csv('r.csv') feed_pages = [] last = df.iloc[0] from bs4 import BeautifulSoup import lxml.html import pandas as pd from gotem import Gotem from collections import OrderedDict class r(object): def __init__(self): self.r_news_urls = {} self.url_start = URL_WEBSITE def generate_urls(self): for x in range(0,10): self.r_news_urls[x]=URL_WEBSITE+URL_REST+r"&firstRow={0}".format(x*20) ifeed_pages = grab_page() for page in feed_pages: soup = BeautifulSoup(page.decode('utf-8'),'lxml') html = lxml.html.fromstring(soup.prettify()) for row in range(1,18): hl = OrderedDict() xpath_time = r'//*[@id="headlinesToday"]/div[{}]/div[{}]'.format(row, 1) xpath_content = r'//*[@id="headlinesToday"]/div[{}]/div[{}]'.format(row, 2) html.xpath(xpath_content)[0].make_links_absolute(URL_WEBSITE) item=len(feed)+1 hl['headline_time'] = str(html.xpath(xpath_time)[0].text).strip() hl['headline_text'] = str(html.xpath(xpath_content)[0][0].text).strip() hl['headline_source'] = str(html.xpath(xpath_content)[0][1].text).strip() hl['headline_link'] = html.xpath(xpath_content)[0][0].attrib['href'] hl['headline_content']= "" feed[item]=hl def check_r_times(feed): time = list(list(list(feed.items())[0])[1].values())[0] for x in range(0,5): urls[x]=URL_WEBSITE+r"&firstRow={0}".format(x*20) import time import datetime time_current_headline = list(list(list(feed.items())[0])[1].values())[0] time_current_headline = datetime.datetime.strptime(list(list(list(feed.items())[0])[1].values())[0].replace(' EST',""),'%H:%M%p') time_last_headline_saved = datetime.datetime.strptime(dfxls.iloc[0].headline_time.replace(' EST',""),'%H:%M%p') last_saved_headline < latest_headline_time last = dfxls.iloc[0] lhour = last_headling_time.split(" ")[0][:2] lmin = last_headling_time.split(" ")[0][:-2][-2:] lAMPM = last_headling_time.split(" ")[0][-2:] last_saved_headline > latest_headline_time headline_content = lambda url:get_headline_content(url) df['headline_content']=df['headline_link'].apply(headline_content) df = pd.DataFrame(feed,index=['headline_time', 'headline_text', 'headline_source', 'headline_content','headline_link']).transpose() def get_headline_content(url): headline_xpath = r'//*[@id="newsStory"]' req = Request_Url(url) print(url) content, response = req.GET() return headline_article df.to_csv('r.csv')
mit
jzt5132/scikit-learn
examples/cluster/plot_cluster_comparison.py
246
4684
""" ========================================================= Comparing different clustering algorithms on toy datasets ========================================================= This example aims at showing characteristics of different clustering algorithms on datasets that are "interesting" but still in 2D. The last dataset is an example of a 'null' situation for clustering: the data is homogeneous, and there is no good clustering. While these examples give some intuition about the algorithms, this intuition might not apply to very high dimensional data. The results could be improved by tweaking the parameters for each clustering strategy, for instance setting the number of clusters for the methods that needs this parameter specified. Note that affinity propagation has a tendency to create many clusters. Thus in this example its two parameters (damping and per-point preference) were set to to mitigate this behavior. """ print(__doc__) import time import numpy as np import matplotlib.pyplot as plt from sklearn import cluster, datasets from sklearn.neighbors import kneighbors_graph from sklearn.preprocessing import StandardScaler np.random.seed(0) # Generate datasets. We choose the size big enough to see the scalability # of the algorithms, but not too big to avoid too long running times n_samples = 1500 noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5, noise=.05) noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05) blobs = datasets.make_blobs(n_samples=n_samples, random_state=8) no_structure = np.random.rand(n_samples, 2), None colors = np.array([x for x in 'bgrcmykbgrcmykbgrcmykbgrcmyk']) colors = np.hstack([colors] * 20) clustering_names = [ 'MiniBatchKMeans', 'AffinityPropagation', 'MeanShift', 'SpectralClustering', 'Ward', 'AgglomerativeClustering', 'DBSCAN', 'Birch'] plt.figure(figsize=(len(clustering_names) * 2 + 3, 9.5)) plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) plot_num = 1 datasets = [noisy_circles, noisy_moons, blobs, no_structure] for i_dataset, dataset in enumerate(datasets): X, y = dataset # normalize dataset for easier parameter selection X = StandardScaler().fit_transform(X) # estimate bandwidth for mean shift bandwidth = cluster.estimate_bandwidth(X, quantile=0.3) # connectivity matrix for structured Ward connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False) # make connectivity symmetric connectivity = 0.5 * (connectivity + connectivity.T) # create clustering estimators ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True) two_means = cluster.MiniBatchKMeans(n_clusters=2) ward = cluster.AgglomerativeClustering(n_clusters=2, linkage='ward', connectivity=connectivity) spectral = cluster.SpectralClustering(n_clusters=2, eigen_solver='arpack', affinity="nearest_neighbors") dbscan = cluster.DBSCAN(eps=.2) affinity_propagation = cluster.AffinityPropagation(damping=.9, preference=-200) average_linkage = cluster.AgglomerativeClustering( linkage="average", affinity="cityblock", n_clusters=2, connectivity=connectivity) birch = cluster.Birch(n_clusters=2) clustering_algorithms = [ two_means, affinity_propagation, ms, spectral, ward, average_linkage, dbscan, birch] for name, algorithm in zip(clustering_names, clustering_algorithms): # predict cluster memberships t0 = time.time() algorithm.fit(X) t1 = time.time() if hasattr(algorithm, 'labels_'): y_pred = algorithm.labels_.astype(np.int) else: y_pred = algorithm.predict(X) # plot plt.subplot(4, len(clustering_algorithms), plot_num) if i_dataset == 0: plt.title(name, size=18) plt.scatter(X[:, 0], X[:, 1], color=colors[y_pred].tolist(), s=10) if hasattr(algorithm, 'cluster_centers_'): centers = algorithm.cluster_centers_ center_colors = colors[:len(centers)] plt.scatter(centers[:, 0], centers[:, 1], s=100, c=center_colors) plt.xlim(-2, 2) plt.ylim(-2, 2) plt.xticks(()) plt.yticks(()) plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'), transform=plt.gca().transAxes, size=15, horizontalalignment='right') plot_num += 1 plt.show()
bsd-3-clause
ubaumgar/OKR
gui/run.py
1
5364
#!/usr/bin/env python import datetime import sys import wx import wx.lib.inspection import wx.lib.mixins.inspection from okr.config import Config from okr.exporter import export_excel_for_klipfolio from okr.importer import import_excel_sheet import matplotlib matplotlib.use('WXAgg') from okr.visualize import visualize # stuff for debugging print("Python %s" % sys.version) print("wx.version: %s" % wx.version()) assertMode = wx.APP_ASSERT_DIALOG class Log: @staticmethod def write_text(text): if text[-1:] == '\n': text = text[:-1] wx.LogMessage(text) write = write_text class ConverterFrame(wx.Frame): def __init__(self, parent, id_val, title): wx.Frame.__init__(self, parent, id_val, title, wx.DefaultPosition, wx.Size(640, 480)) path_to_source_file = Config.PATH_INPUT_FILE path_to_output_files = Config.PATH_OUTPUT_FILES self.SetSizeHints(640, 480, 640, 480) panel = wx.Panel(self, -1) self.static_text_input = wx.StaticText(panel, -1, 'Input Excel file:', (20, 20), style=wx.ALIGN_LEFT) self.text_input = wx.TextCtrl(panel, -1, path_to_source_file, (20, 40), size=(500, -1), style=wx.TE_LEFT) self.button_input = wx.Button(panel, -1, '...', (530, 40)) self.Bind(wx.EVT_BUTTON, self.on_input, id=self.button_input.GetId()) self.static_text_output = wx.StaticText(panel, -1, 'Output directory:', (20, 80), style=wx.ALIGN_LEFT) self.text_output = wx.TextCtrl(panel, -1, path_to_output_files, (20, 100), size=(500, -1), style=wx.TE_LEFT) self.button_output = wx.Button(panel, -1, '...', (530, 100)) self.Bind(wx.EVT_BUTTON, self.on_output, id=self.button_output.GetId()) self.button_convert = wx.Button(panel, -1, "Convert", (20, 160)) self.Bind(wx.EVT_BUTTON, self.on_convert, id=self.button_convert.GetId()) self.status_bar = self.CreateStatusBar(1) self.status_bar.SetStatusText('', 0) def on_convert(self, event): del event self.status_bar.SetStatusText('', 0) max_objectives = Config.MAX_OBJECTIVES max_key_results = Config.MAX_KEY_RESULTS max_check_ins = Config.MAX_CHECK_INS start_date = Config.START_DATE path_to_source_file = self.text_input.GetValue() try: all_okr_teams = import_excel_sheet(max_check_ins, max_key_results, max_objectives, path_to_source_file, start_date) except Exception as e: self.status_bar.SetStatusText('An error occurred during import: {}'.format(str(e)), 0) return today = datetime.datetime.now() path_to_output_files = self.text_output.GetValue() filename = '{}/OKR_{:04d}{:02d}{:02d}'.format(path_to_output_files, today.year, today.month, today.day) try: export_excel_for_klipfolio(all_okr_teams, filename + '.xlsx', today) except Exception as e: self.status_bar.SetStatusText('An error occurred during the Excel export: {}'.format(str(e))) try: # CAUTION the visualization does not work due to false settings # see https://stackoverflow.com/questions/7906365/matplotlib-savefig-plots-different-from-show # http://matplotlib.org/users/customizing.html visualize(all_okr_teams, filename + '.png', Config.TITLE_STRING, True) except Exception as e: self.status_bar.SetStatusText('An error occurred during the visualization: {}'.format(str(e))) def on_input(self, event): del event open_file_dialog = wx.FileDialog(self, "Open input Excel file", "", "", "Excel files (*.xlsx)|*.xlsx", wx.FD_OPEN | wx.FD_FILE_MUST_EXIST) if open_file_dialog.ShowModal() == wx.ID_CANCEL: return # the user changed idea... input_path = open_file_dialog.GetPath() self.text_input.SetValue(input_path) def on_output(self, event): del event open_directory_dialog = wx.DirDialog(self, "Select output directory", "", wx.DD_DEFAULT_STYLE | wx.DD_DIR_MUST_EXIST) if open_directory_dialog.ShowModal() == wx.ID_CANCEL: return # the user changed idea... output_path = open_directory_dialog.GetPath() self.text_output.SetValue(output_path) class RunConverterApp(wx.App): def __init__(self): wx.App.__init__(self, redirect=False) def OnInit(self): wx.Log.SetActiveTarget(wx.LogStderr()) cframe = ConverterFrame(None, -1, 'OKR Converter') menu_bar = wx.MenuBar() menu = wx.Menu() item = menu.Append(-1, "E&xit", "Exit") self.Bind(wx.EVT_MENU, self.on_exit_app, item) menu_bar.Append(menu, "&File") cframe.SetSize((640, 480)) cframe.SetMenuBar(menu_bar) cframe.Show(True) cframe.Bind(wx.EVT_CLOSE, self.on_close_frame) self.SetTopWindow(cframe) self.frame = cframe return True def on_exit_app(self, event): del event self.frame.Close(True) def on_close_frame(self, event): event.Skip() def main(): app = RunConverterApp() app.MainLoop() if __name__ == "__main__": main()
bsd-2-clause
jjs0sbw/CSPLN
apps/scaffolding/mac/web2py/web2py.app/Contents/Resources/lib/python2.7/matplotlib/projections/polar.py
2
26693
import math import warnings import numpy as np import matplotlib rcParams = matplotlib.rcParams from matplotlib.axes import Axes import matplotlib.axis as maxis from matplotlib import cbook from matplotlib import docstring from matplotlib.patches import Circle from matplotlib.path import Path from matplotlib.ticker import Formatter, Locator, FormatStrFormatter from matplotlib.transforms import Affine2D, Affine2DBase, Bbox, \ BboxTransformTo, IdentityTransform, Transform, TransformWrapper, \ ScaledTranslation, blended_transform_factory, BboxTransformToMaxOnly import matplotlib.spines as mspines class PolarAxes(Axes): """ A polar graph projection, where the input dimensions are *theta*, *r*. Theta starts pointing east and goes anti-clockwise. """ name = 'polar' class PolarTransform(Transform): """ The base polar transform. This handles projection *theta* and *r* into Cartesian coordinate space *x* and *y*, but does not perform the ultimate affine transformation into the correct position. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, axis=None, use_rmin=True): Transform.__init__(self) self._axis = axis self._use_rmin = use_rmin def transform(self, tr): xy = np.empty(tr.shape, np.float_) if self._axis is not None: if self._use_rmin: rmin = self._axis.viewLim.ymin else: rmin = 0 theta_offset = self._axis.get_theta_offset() theta_direction = self._axis.get_theta_direction() else: rmin = 0 theta_offset = 0 theta_direction = 1 t = tr[:, 0:1] r = tr[:, 1:2] x = xy[:, 0:1] y = xy[:, 1:2] t *= theta_direction t += theta_offset if rmin != 0: r = r - rmin mask = r < 0 x[:] = np.where(mask, np.nan, r * np.cos(t)) y[:] = np.where(mask, np.nan, r * np.sin(t)) else: x[:] = r * np.cos(t) y[:] = r * np.sin(t) return xy transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices if len(vertices) == 2 and vertices[0, 0] == vertices[1, 0]: return Path(self.transform(vertices), path.codes) ipath = path.interpolated(path._interpolation_steps) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return PolarAxes.InvertedPolarTransform(self._axis, self._use_rmin) inverted.__doc__ = Transform.inverted.__doc__ class PolarAffine(Affine2DBase): """ The affine part of the polar projection. Scales the output so that maximum radius rests on the edge of the axes circle. """ def __init__(self, scale_transform, limits): """ *limits* is the view limit of the data. The only part of its bounds that is used is ymax (for the radius maximum). The theta range is always fixed to (0, 2pi). """ Affine2DBase.__init__(self) self._scale_transform = scale_transform self._limits = limits self.set_children(scale_transform, limits) self._mtx = None def get_matrix(self): if self._invalid: limits_scaled = self._limits.transformed(self._scale_transform) yscale = limits_scaled.ymax - limits_scaled.ymin affine = Affine2D() \ .scale(0.5 / yscale) \ .translate(0.5, 0.5) self._mtx = affine.get_matrix() self._inverted = None self._invalid = 0 return self._mtx get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ class InvertedPolarTransform(Transform): """ The inverse of the polar transform, mapping Cartesian coordinate space *x* and *y* back to *theta* and *r*. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, axis=None, use_rmin=True): Transform.__init__(self) self._axis = axis self._use_rmin = use_rmin def transform(self, xy): if self._axis is not None: if self._use_rmin: rmin = self._axis.viewLim.ymin else: rmin = 0 theta_offset = self._axis.get_theta_offset() theta_direction = self._axis.get_theta_direction() else: rmin = 0 theta_offset = 0 theta_direction = 1 x = xy[:, 0:1] y = xy[:, 1:] r = np.sqrt(x*x + y*y) theta = np.arccos(x / r) theta = np.where(y < 0, 2 * np.pi - theta, theta) theta -= theta_offset theta *= theta_direction r += rmin return np.concatenate((theta, r), 1) transform.__doc__ = Transform.transform.__doc__ def inverted(self): return PolarAxes.PolarTransform(self._axis, self._use_rmin) inverted.__doc__ = Transform.inverted.__doc__ class ThetaFormatter(Formatter): """ Used to format the *theta* tick labels. Converts the native unit of radians into degrees and adds a degree symbol. """ def __call__(self, x, pos=None): # \u00b0 : degree symbol if rcParams['text.usetex'] and not rcParams['text.latex.unicode']: return r"$%0.0f^\circ$" % ((x / np.pi) * 180.0) else: # we use unicode, rather than mathtext with \circ, so # that it will work correctly with any arbitrary font # (assuming it has a degree sign), whereas $5\circ$ # will only work correctly with one of the supported # math fonts (Computer Modern and STIX) return u"%0.0f\u00b0" % ((x / np.pi) * 180.0) class RadialLocator(Locator): """ Used to locate radius ticks. Ensures that all ticks are strictly positive. For all other tasks, it delegates to the base :class:`~matplotlib.ticker.Locator` (which may be different depending on the scale of the *r*-axis. """ def __init__(self, base): self.base = base def __call__(self): ticks = self.base() return [x for x in ticks if x > 0] def autoscale(self): return self.base.autoscale() def pan(self, numsteps): return self.base.pan(numsteps) def zoom(self, direction): return self.base.zoom(direction) def refresh(self): return self.base.refresh() def view_limits(self, vmin, vmax): vmin, vmax = self.base.view_limits(vmin, vmax) return 0, vmax def __init__(self, *args, **kwargs): """ Create a new Polar Axes for a polar plot. The following optional kwargs are supported: - *resolution*: The number of points of interpolation between each pair of data points. Set to 1 to disable interpolation. """ self.resolution = kwargs.pop('resolution', None) if self.resolution not in (None, 1): warnings.warn( """The resolution kwarg to Polar plots is now ignored. If you need to interpolate data points, consider running cbook.simple_linear_interpolation on the data before passing to matplotlib.""") Axes.__init__(self, *args, **kwargs) self.set_aspect('equal', adjustable='box', anchor='C') self.cla() __init__.__doc__ = Axes.__init__.__doc__ def cla(self): Axes.cla(self) self.title.set_y(1.05) self.xaxis.set_major_formatter(self.ThetaFormatter()) self.xaxis.isDefault_majfmt = True angles = np.arange(0.0, 360.0, 45.0) self.set_thetagrids(angles) self.yaxis.set_major_locator(self.RadialLocator(self.yaxis.get_major_locator())) self.grid(rcParams['polaraxes.grid']) self.xaxis.set_ticks_position('none') self.yaxis.set_ticks_position('none') self.yaxis.set_tick_params(label1On=True) # Why do we need to turn on yaxis tick labels, but # xaxis tick labels are already on? self.set_theta_offset(0) self.set_theta_direction(1) def _init_axis(self): "move this out of __init__ because non-separable axes don't use it" self.xaxis = maxis.XAxis(self) self.yaxis = maxis.YAxis(self) # Calling polar_axes.xaxis.cla() or polar_axes.xaxis.cla() # results in weird artifacts. Therefore we disable this for # now. # self.spines['polar'].register_axis(self.yaxis) self._update_transScale() def _set_lim_and_transforms(self): self.transAxes = BboxTransformTo(self.bbox) # Transforms the x and y axis separately by a scale factor # It is assumed that this part will have non-linear components self.transScale = TransformWrapper(IdentityTransform()) # A (possibly non-linear) projection on the (already scaled) # data. This one is aware of rmin self.transProjection = self.PolarTransform(self) # This one is not aware of rmin self.transPureProjection = self.PolarTransform(self, use_rmin=False) # An affine transformation on the data, generally to limit the # range of the axes self.transProjectionAffine = self.PolarAffine(self.transScale, self.viewLim) # The complete data transformation stack -- from data all the # way to display coordinates self.transData = self.transScale + self.transProjection + \ (self.transProjectionAffine + self.transAxes) # This is the transform for theta-axis ticks. It is # equivalent to transData, except it always puts r == 1.0 at # the edge of the axis circle. self._xaxis_transform = ( self.transPureProjection + self.PolarAffine(IdentityTransform(), Bbox.unit()) + self.transAxes) # The theta labels are moved from radius == 0.0 to radius == 1.1 self._theta_label1_position = Affine2D().translate(0.0, 1.1) self._xaxis_text1_transform = ( self._theta_label1_position + self._xaxis_transform) self._theta_label2_position = Affine2D().translate(0.0, 1.0 / 1.1) self._xaxis_text2_transform = ( self._theta_label2_position + self._xaxis_transform) # This is the transform for r-axis ticks. It scales the theta # axis so the gridlines from 0.0 to 1.0, now go from 0.0 to # 2pi. self._yaxis_transform = ( Affine2D().scale(np.pi * 2.0, 1.0) + self.transData) # The r-axis labels are put at an angle and padded in the r-direction self._r_label_position = ScaledTranslation( 22.5, 0.0, Affine2D()) self._yaxis_text_transform = ( self._r_label_position + Affine2D().scale(1.0 / 360.0, 1.0) + self._yaxis_transform ) def get_xaxis_transform(self,which='grid'): assert which in ['tick1','tick2','grid'] return self._xaxis_transform def get_xaxis_text1_transform(self, pad): return self._xaxis_text1_transform, 'center', 'center' def get_xaxis_text2_transform(self, pad): return self._xaxis_text2_transform, 'center', 'center' def get_yaxis_transform(self,which='grid'): assert which in ['tick1','tick2','grid'] return self._yaxis_transform def get_yaxis_text1_transform(self, pad): angle = self._r_label_position.to_values()[4] if angle < 90.: return self._yaxis_text_transform, 'bottom', 'left' elif angle < 180.: return self._yaxis_text_transform, 'bottom', 'right' elif angle < 270.: return self._yaxis_text_transform, 'top', 'right' else: return self._yaxis_text_transform, 'top', 'left' def get_yaxis_text2_transform(self, pad): angle = self._r_label_position.to_values()[4] if angle < 90.: return self._yaxis_text_transform, 'top', 'right' elif angle < 180.: return self._yaxis_text_transform, 'top', 'left' elif angle < 270.: return self._yaxis_text_transform, 'bottom', 'left' else: return self._yaxis_text_transform, 'bottom', 'right' def _gen_axes_patch(self): return Circle((0.5, 0.5), 0.5) def _gen_axes_spines(self): return {'polar':mspines.Spine.circular_spine(self, (0.5, 0.5), 0.5)} def set_rmax(self, rmax): self.viewLim.y1 = rmax def get_rmax(self): return self.viewLim.ymax def set_rmin(self, rmin): self.viewLim.y0 = rmin def get_rmin(self): return self.viewLim.ymin def set_theta_offset(self, offset): """ Set the offset for the location of 0 in radians. """ self._theta_offset = offset def get_theta_offset(self): """ Get the offset for the location of 0 in radians. """ return self._theta_offset def set_theta_zero_location(self, loc): """ Sets the location of theta's zero. (Calls set_theta_offset with the correct value in radians under the hood.) May be one of "N", "NW", "W", "SW", "S", "SE", "E", or "NE". """ mapping = { 'N': np.pi * 0.5, 'NW': np.pi * 0.75, 'W': np.pi, 'SW': np.pi * 1.25, 'S': np.pi * 1.5, 'SE': np.pi * 1.75, 'E': 0, 'NE': np.pi * 0.25 } return self.set_theta_offset(mapping[loc]) def set_theta_direction(self, direction): """ Set the direction in which theta increases. clockwise, -1: Theta increases in the clockwise direction counterclockwise, anticlockwise, 1: Theta increases in the counterclockwise direction """ if direction in ('clockwise',): self._direction = -1 elif direction in ('counterclockwise', 'anticlockwise'): self._direction = 1 elif direction in (1, -1): self._direction = direction else: raise ValueError("direction must be 1, -1, clockwise or counterclockwise") def get_theta_direction(self): """ Get the direction in which theta increases. -1: Theta increases in the clockwise direction 1: Theta increases in the counterclockwise direction """ return self._direction def set_rlim(self, *args, **kwargs): if 'rmin' in kwargs: kwargs['ymin'] = kwargs.pop('rmin') if 'rmax' in kwargs: kwargs['ymax'] = kwargs.pop('rmax') return self.set_ylim(*args, **kwargs) def set_yscale(self, *args, **kwargs): Axes.set_yscale(self, *args, **kwargs) self.yaxis.set_major_locator( self.RadialLocator(self.yaxis.get_major_locator())) set_rscale = Axes.set_yscale set_rticks = Axes.set_yticks @docstring.dedent_interpd def set_thetagrids(self, angles, labels=None, frac=None, fmt=None, **kwargs): """ Set the angles at which to place the theta grids (these gridlines are equal along the theta dimension). *angles* is in degrees. *labels*, if not None, is a ``len(angles)`` list of strings of the labels to use at each angle. If *labels* is None, the labels will be ``fmt %% angle`` *frac* is the fraction of the polar axes radius at which to place the label (1 is the edge). Eg. 1.05 is outside the axes and 0.95 is inside the axes. Return value is a list of tuples (*line*, *label*), where *line* is :class:`~matplotlib.lines.Line2D` instances and the *label* is :class:`~matplotlib.text.Text` instances. kwargs are optional text properties for the labels: %(Text)s ACCEPTS: sequence of floats """ angles = np.asarray(angles, np.float_) self.set_xticks(angles * (np.pi / 180.0)) if labels is not None: self.set_xticklabels(labels) elif fmt is not None: self.xaxis.set_major_formatter(FormatStrFormatter(fmt)) if frac is not None: self._theta_label1_position.clear().translate(0.0, frac) self._theta_label2_position.clear().translate(0.0, 1.0 / frac) for t in self.xaxis.get_ticklabels(): t.update(kwargs) return self.xaxis.get_ticklines(), self.xaxis.get_ticklabels() @docstring.dedent_interpd def set_rgrids(self, radii, labels=None, angle=None, fmt=None, **kwargs): """ Set the radial locations and labels of the *r* grids. The labels will appear at radial distances *radii* at the given *angle* in degrees. *labels*, if not None, is a ``len(radii)`` list of strings of the labels to use at each radius. If *labels* is None, the built-in formatter will be used. Return value is a list of tuples (*line*, *label*), where *line* is :class:`~matplotlib.lines.Line2D` instances and the *label* is :class:`~matplotlib.text.Text` instances. kwargs are optional text properties for the labels: %(Text)s ACCEPTS: sequence of floats """ radii = np.asarray(radii) rmin = radii.min() if rmin <= 0: raise ValueError('radial grids must be strictly positive') self.set_yticks(radii) if labels is not None: self.set_yticklabels(labels) elif fmt is not None: self.yaxis.set_major_formatter(FormatStrFormatter(fmt)) if angle is None: angle = self._r_label_position.to_values()[4] self._r_label_position._t = (angle, 0.0) self._r_label_position.invalidate() for t in self.yaxis.get_ticklabels(): t.update(kwargs) return self.yaxis.get_gridlines(), self.yaxis.get_ticklabels() def set_xscale(self, scale, *args, **kwargs): if scale != 'linear': raise NotImplementedError("You can not set the xscale on a polar plot.") def set_xlim(self, *args, **kargs): # The xlim is fixed, no matter what you do self.viewLim.intervalx = (0.0, np.pi * 2.0) def format_coord(self, theta, r): """ Return a format string formatting the coordinate using Unicode characters. """ theta /= math.pi # \u03b8: lower-case theta # \u03c0: lower-case pi # \u00b0: degree symbol return u'\u03b8=%0.3f\u03c0 (%0.3f\u00b0), r=%0.3f' % (theta, theta * 180.0, r) def get_data_ratio(self): ''' Return the aspect ratio of the data itself. For a polar plot, this should always be 1.0 ''' return 1.0 ### Interactive panning def can_zoom(self): """ Return *True* if this axes supports the zoom box button functionality. Polar axes do not support zoom boxes. """ return False def can_pan(self) : """ Return *True* if this axes supports the pan/zoom button functionality. For polar axes, this is slightly misleading. Both panning and zooming are performed by the same button. Panning is performed in azimuth while zooming is done along the radial. """ return True def start_pan(self, x, y, button): angle = np.deg2rad(self._r_label_position.to_values()[4]) mode = '' if button == 1: epsilon = np.pi / 45.0 t, r = self.transData.inverted().transform_point((x, y)) if t >= angle - epsilon and t <= angle + epsilon: mode = 'drag_r_labels' elif button == 3: mode = 'zoom' self._pan_start = cbook.Bunch( rmax = self.get_rmax(), trans = self.transData.frozen(), trans_inverse = self.transData.inverted().frozen(), r_label_angle = self._r_label_position.to_values()[4], x = x, y = y, mode = mode ) def end_pan(self): del self._pan_start def drag_pan(self, button, key, x, y): p = self._pan_start if p.mode == 'drag_r_labels': startt, startr = p.trans_inverse.transform_point((p.x, p.y)) t, r = p.trans_inverse.transform_point((x, y)) # Deal with theta dt0 = t - startt dt1 = startt - t if abs(dt1) < abs(dt0): dt = abs(dt1) * sign(dt0) * -1.0 else: dt = dt0 * -1.0 dt = (dt / np.pi) * 180.0 self._r_label_position._t = (p.r_label_angle - dt, 0.0) self._r_label_position.invalidate() trans, vert1, horiz1 = self.get_yaxis_text1_transform(0.0) trans, vert2, horiz2 = self.get_yaxis_text2_transform(0.0) for t in self.yaxis.majorTicks + self.yaxis.minorTicks: t.label1.set_va(vert1) t.label1.set_ha(horiz1) t.label2.set_va(vert2) t.label2.set_ha(horiz2) elif p.mode == 'zoom': startt, startr = p.trans_inverse.transform_point((p.x, p.y)) t, r = p.trans_inverse.transform_point((x, y)) dr = r - startr # Deal with r scale = r / startr self.set_rmax(p.rmax / scale) # These are a couple of aborted attempts to project a polar plot using # cubic bezier curves. # def transform_path(self, path): # twopi = 2.0 * np.pi # halfpi = 0.5 * np.pi # vertices = path.vertices # t0 = vertices[0:-1, 0] # t1 = vertices[1: , 0] # td = np.where(t1 > t0, t1 - t0, twopi - (t0 - t1)) # maxtd = td.max() # interpolate = np.ceil(maxtd / halfpi) # if interpolate > 1.0: # vertices = self.interpolate(vertices, interpolate) # vertices = self.transform(vertices) # result = np.zeros((len(vertices) * 3 - 2, 2), np.float_) # codes = mpath.Path.CURVE4 * np.ones((len(vertices) * 3 - 2, ), mpath.Path.code_type) # result[0] = vertices[0] # codes[0] = mpath.Path.MOVETO # kappa = 4.0 * ((np.sqrt(2.0) - 1.0) / 3.0) # kappa = 0.5 # p0 = vertices[0:-1] # p1 = vertices[1: ] # x0 = p0[:, 0:1] # y0 = p0[:, 1: ] # b0 = ((y0 - x0) - y0) / ((x0 + y0) - x0) # a0 = y0 - b0*x0 # x1 = p1[:, 0:1] # y1 = p1[:, 1: ] # b1 = ((y1 - x1) - y1) / ((x1 + y1) - x1) # a1 = y1 - b1*x1 # x = -(a0-a1) / (b0-b1) # y = a0 + b0*x # xk = (x - x0) * kappa + x0 # yk = (y - y0) * kappa + y0 # result[1::3, 0:1] = xk # result[1::3, 1: ] = yk # xk = (x - x1) * kappa + x1 # yk = (y - y1) * kappa + y1 # result[2::3, 0:1] = xk # result[2::3, 1: ] = yk # result[3::3] = p1 # print vertices[-2:] # print result[-2:] # return mpath.Path(result, codes) # twopi = 2.0 * np.pi # halfpi = 0.5 * np.pi # vertices = path.vertices # t0 = vertices[0:-1, 0] # t1 = vertices[1: , 0] # td = np.where(t1 > t0, t1 - t0, twopi - (t0 - t1)) # maxtd = td.max() # interpolate = np.ceil(maxtd / halfpi) # print "interpolate", interpolate # if interpolate > 1.0: # vertices = self.interpolate(vertices, interpolate) # result = np.zeros((len(vertices) * 3 - 2, 2), np.float_) # codes = mpath.Path.CURVE4 * np.ones((len(vertices) * 3 - 2, ), mpath.Path.code_type) # result[0] = vertices[0] # codes[0] = mpath.Path.MOVETO # kappa = 4.0 * ((np.sqrt(2.0) - 1.0) / 3.0) # tkappa = np.arctan(kappa) # hyp_kappa = np.sqrt(kappa*kappa + 1.0) # t0 = vertices[0:-1, 0] # t1 = vertices[1: , 0] # r0 = vertices[0:-1, 1] # r1 = vertices[1: , 1] # td = np.where(t1 > t0, t1 - t0, twopi - (t0 - t1)) # td_scaled = td / (np.pi * 0.5) # rd = r1 - r0 # r0kappa = r0 * kappa * td_scaled # r1kappa = r1 * kappa * td_scaled # ravg_kappa = ((r1 + r0) / 2.0) * kappa * td_scaled # result[1::3, 0] = t0 + (tkappa * td_scaled) # result[1::3, 1] = r0*hyp_kappa # # result[1::3, 1] = r0 / np.cos(tkappa * td_scaled) # np.sqrt(r0*r0 + ravg_kappa*ravg_kappa) # result[2::3, 0] = t1 - (tkappa * td_scaled) # result[2::3, 1] = r1*hyp_kappa # # result[2::3, 1] = r1 / np.cos(tkappa * td_scaled) # np.sqrt(r1*r1 + ravg_kappa*ravg_kappa) # result[3::3, 0] = t1 # result[3::3, 1] = r1 # print vertices[:6], result[:6], t0[:6], t1[:6], td[:6], td_scaled[:6], tkappa # result = self.transform(result) # return mpath.Path(result, codes) # transform_path_non_affine = transform_path
gpl-3.0
chapmanbe/pymitools
pymitools/ipython/imgs.py
1
1092
""" Functions for interacting with volumetric images in the IPython notebook """ import numpy as np from ipywidgets import interact import ipywidgets as widgets import matplotlib.pyplot as plt def win_lev(img, w, l, maxc=255): """ Window (w) and level (l) data in img img: numpy array representing an image w: the window for the transformation l: the level for the transformation maxc: the maximum display color """ m = maxc/(2.0*w) o = m*(l-w) return np.clip((m*img-o),0,maxc).astype(np.uint8) def display_img(img, cmap="gray"): f, ax1 = plt.subplots(1) ax1.imshow(img, cmap=cmap) ax1.grid(False) ax1.yaxis.set_visible(False) ax1.xaxis.set_visible(False) return f, ax1 def view_volume(img): @interact(sl=widgets.IntSlider(min=0, max=img.shape[0]-1, value=int(img.shape[0]/2)), win=widgets.IntSlider(min=1, max=2000, value=1000), level=widgets.IntSlider(min=-1024, max=2000, value=0)) def _view_slice(sl=0,win=1000,level=0): display_img(win_lev(img[sl,:,:],win,level))
apache-2.0
nelson-liu/scikit-learn
examples/covariance/plot_sparse_cov.py
300
5078
""" ====================================== Sparse inverse covariance estimation ====================================== Using the GraphLasso estimator to learn a covariance and sparse precision from a small number of samples. To estimate a probabilistic model (e.g. a Gaussian model), estimating the precision matrix, that is the inverse covariance matrix, is as important as estimating the covariance matrix. Indeed a Gaussian model is parametrized by the precision matrix. To be in favorable recovery conditions, we sample the data from a model with a sparse inverse covariance matrix. In addition, we ensure that the data is not too much correlated (limiting the largest coefficient of the precision matrix) and that there a no small coefficients in the precision matrix that cannot be recovered. In addition, with a small number of observations, it is easier to recover a correlation matrix rather than a covariance, thus we scale the time series. Here, the number of samples is slightly larger than the number of dimensions, thus the empirical covariance is still invertible. However, as the observations are strongly correlated, the empirical covariance matrix is ill-conditioned and as a result its inverse --the empirical precision matrix-- is very far from the ground truth. If we use l2 shrinkage, as with the Ledoit-Wolf estimator, as the number of samples is small, we need to shrink a lot. As a result, the Ledoit-Wolf precision is fairly close to the ground truth precision, that is not far from being diagonal, but the off-diagonal structure is lost. The l1-penalized estimator can recover part of this off-diagonal structure. It learns a sparse precision. It is not able to recover the exact sparsity pattern: it detects too many non-zero coefficients. However, the highest non-zero coefficients of the l1 estimated correspond to the non-zero coefficients in the ground truth. Finally, the coefficients of the l1 precision estimate are biased toward zero: because of the penalty, they are all smaller than the corresponding ground truth value, as can be seen on the figure. Note that, the color range of the precision matrices is tweaked to improve readability of the figure. The full range of values of the empirical precision is not displayed. The alpha parameter of the GraphLasso setting the sparsity of the model is set by internal cross-validation in the GraphLassoCV. As can be seen on figure 2, the grid to compute the cross-validation score is iteratively refined in the neighborhood of the maximum. """ print(__doc__) # author: Gael Varoquaux <[email protected]> # License: BSD 3 clause # Copyright: INRIA import numpy as np from scipy import linalg from sklearn.datasets import make_sparse_spd_matrix from sklearn.covariance import GraphLassoCV, ledoit_wolf import matplotlib.pyplot as plt ############################################################################## # Generate the data n_samples = 60 n_features = 20 prng = np.random.RandomState(1) prec = make_sparse_spd_matrix(n_features, alpha=.98, smallest_coef=.4, largest_coef=.7, random_state=prng) cov = linalg.inv(prec) d = np.sqrt(np.diag(cov)) cov /= d cov /= d[:, np.newaxis] prec *= d prec *= d[:, np.newaxis] X = prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples) X -= X.mean(axis=0) X /= X.std(axis=0) ############################################################################## # Estimate the covariance emp_cov = np.dot(X.T, X) / n_samples model = GraphLassoCV() model.fit(X) cov_ = model.covariance_ prec_ = model.precision_ lw_cov_, _ = ledoit_wolf(X) lw_prec_ = linalg.inv(lw_cov_) ############################################################################## # Plot the results plt.figure(figsize=(10, 6)) plt.subplots_adjust(left=0.02, right=0.98) # plot the covariances covs = [('Empirical', emp_cov), ('Ledoit-Wolf', lw_cov_), ('GraphLasso', cov_), ('True', cov)] vmax = cov_.max() for i, (name, this_cov) in enumerate(covs): plt.subplot(2, 4, i + 1) plt.imshow(this_cov, interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s covariance' % name) # plot the precisions precs = [('Empirical', linalg.inv(emp_cov)), ('Ledoit-Wolf', lw_prec_), ('GraphLasso', prec_), ('True', prec)] vmax = .9 * prec_.max() for i, (name, this_prec) in enumerate(precs): ax = plt.subplot(2, 4, i + 5) plt.imshow(np.ma.masked_equal(this_prec, 0), interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s precision' % name) ax.set_axis_bgcolor('.7') # plot the model selection metric plt.figure(figsize=(4, 3)) plt.axes([.2, .15, .75, .7]) plt.plot(model.cv_alphas_, np.mean(model.grid_scores, axis=1), 'o-') plt.axvline(model.alpha_, color='.5') plt.title('Model selection') plt.ylabel('Cross-validation score') plt.xlabel('alpha') plt.show()
bsd-3-clause
Djabbz/scikit-learn
examples/cluster/plot_mini_batch_kmeans.py
265
4081
""" ==================================================================== Comparison of the K-Means and MiniBatchKMeans clustering algorithms ==================================================================== We want to compare the performance of the MiniBatchKMeans and KMeans: the MiniBatchKMeans is faster, but gives slightly different results (see :ref:`mini_batch_kmeans`). We will cluster a set of data, first with KMeans and then with MiniBatchKMeans, and plot the results. We will also plot the points that are labelled differently between the two algorithms. """ print(__doc__) import time import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import MiniBatchKMeans, KMeans from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.datasets.samples_generator import make_blobs ############################################################################## # Generate sample data np.random.seed(0) batch_size = 45 centers = [[1, 1], [-1, -1], [1, -1]] n_clusters = len(centers) X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7) ############################################################################## # Compute clustering with Means k_means = KMeans(init='k-means++', n_clusters=3, n_init=10) t0 = time.time() k_means.fit(X) t_batch = time.time() - t0 k_means_labels = k_means.labels_ k_means_cluster_centers = k_means.cluster_centers_ k_means_labels_unique = np.unique(k_means_labels) ############################################################################## # Compute clustering with MiniBatchKMeans mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size, n_init=10, max_no_improvement=10, verbose=0) t0 = time.time() mbk.fit(X) t_mini_batch = time.time() - t0 mbk_means_labels = mbk.labels_ mbk_means_cluster_centers = mbk.cluster_centers_ mbk_means_labels_unique = np.unique(mbk_means_labels) ############################################################################## # Plot result fig = plt.figure(figsize=(8, 3)) fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9) colors = ['#4EACC5', '#FF9C34', '#4E9A06'] # We want to have the same colors for the same cluster from the # MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per # closest one. order = pairwise_distances_argmin(k_means_cluster_centers, mbk_means_cluster_centers) # KMeans ax = fig.add_subplot(1, 3, 1) for k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('KMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % ( t_batch, k_means.inertia_)) # MiniBatchKMeans ax = fig.add_subplot(1, 3, 2) for k, col in zip(range(n_clusters), colors): my_members = mbk_means_labels == order[k] cluster_center = mbk_means_cluster_centers[order[k]] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('MiniBatchKMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % (t_mini_batch, mbk.inertia_)) # Initialise the different array to all False different = (mbk_means_labels == 4) ax = fig.add_subplot(1, 3, 3) for l in range(n_clusters): different += ((k_means_labels == k) != (mbk_means_labels == order[k])) identic = np.logical_not(different) ax.plot(X[identic, 0], X[identic, 1], 'w', markerfacecolor='#bbbbbb', marker='.') ax.plot(X[different, 0], X[different, 1], 'w', markerfacecolor='m', marker='.') ax.set_title('Difference') ax.set_xticks(()) ax.set_yticks(()) plt.show()
bsd-3-clause
B3AU/waveTree
sklearn/metrics/cluster/__init__.py
312
1322
""" The :mod:`sklearn.metrics.cluster` submodule contains evaluation metrics for cluster analysis results. There are two forms of evaluation: - supervised, which uses a ground truth class values for each sample. - unsupervised, which does not and measures the 'quality' of the model itself. """ from .supervised import adjusted_mutual_info_score from .supervised import normalized_mutual_info_score from .supervised import adjusted_rand_score from .supervised import completeness_score from .supervised import contingency_matrix from .supervised import expected_mutual_information from .supervised import homogeneity_completeness_v_measure from .supervised import homogeneity_score from .supervised import mutual_info_score from .supervised import v_measure_score from .supervised import entropy from .unsupervised import silhouette_samples from .unsupervised import silhouette_score from .bicluster import consensus_score __all__ = ["adjusted_mutual_info_score", "normalized_mutual_info_score", "adjusted_rand_score", "completeness_score", "contingency_matrix", "expected_mutual_information", "homogeneity_completeness_v_measure", "homogeneity_score", "mutual_info_score", "v_measure_score", "entropy", "silhouette_samples", "silhouette_score", "consensus_score"]
bsd-3-clause
jtryan/camera-calibration
Undistort.py
1
1858
import pickle import cv2 import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg # Read in the saved camera matrix and distortion coefficients # These are the arrays you calculated using cv2.calibrateCamera() dist_pickle = pickle.load(open("calibration_wide/wide_dist_pickle.p", "rb")) mtx = dist_pickle["mtx"] dist = dist_pickle["dist"] # Read in an image img = cv2.imread('calibration_wide/test_image2.jpg') nx = 8 # the number of inside corners in x ny = 6 # the number of inside corners in y def corners_unwarp(img, nx, ny, mtx, dist): # 1) Undistort using mtx and dist undist = cv2.undistort(img, mtx, dist, None, mtx) # 2) Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 3) Find the chessboard corners ret, corners = cv2.findChessboardCorners(gray, (nx, ny), None) # 4) If corners found: if ret == True: cv2.drawChessboardCorners(img, (nx, ny), corners, ret) offset = 100 img_size = (img.shape[1], img.shape[0]) # For source points I'm grabbing the outer four detected corners src = np.float32([corners[0], corners[nx - 1], corners[-1], corners[-nx]]) dst = np.float32([[offset, offset], [img_size[0] - offset, offset], [img_size[0] - offset, img_size[1] - offset], [offset, img_size[1] - offset]]) M = cv2.getPerspectiveTransform(src, dst) warped = cv2.warpPerspective(img, M, img_size) return warped, M top_down, perspective_M = corners_unwarp(img, nx, ny, mtx, dist) f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9)) f.tight_layout() ax1.imshow(img) ax1.set_title('Original Image', fontsize=50) ax2.imshow(top_down) ax2.set_title('Undistorted and Warped Image', fontsize=50) plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.)
mit
wazeerzulfikar/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
110
3768
# Authors: Lars Buitinck # Dan Blanchard <[email protected]> # License: BSD 3 clause from random import Random import numpy as np import scipy.sparse as sp from numpy.testing import assert_array_equal from sklearn.utils.testing import (assert_equal, assert_in, assert_false, assert_true) from sklearn.feature_extraction import DictVectorizer from sklearn.feature_selection import SelectKBest, chi2 def test_dictvectorizer(): D = [{"foo": 1, "bar": 3}, {"bar": 4, "baz": 2}, {"bar": 1, "quux": 1, "quuux": 2}] for sparse in (True, False): for dtype in (int, np.float32, np.int16): for sort in (True, False): for iterable in (True, False): v = DictVectorizer(sparse=sparse, dtype=dtype, sort=sort) X = v.fit_transform(iter(D) if iterable else D) assert_equal(sp.issparse(X), sparse) assert_equal(X.shape, (3, 5)) assert_equal(X.sum(), 14) assert_equal(v.inverse_transform(X), D) if sparse: # CSR matrices can't be compared for equality assert_array_equal(X.A, v.transform(iter(D) if iterable else D).A) else: assert_array_equal(X, v.transform(iter(D) if iterable else D)) if sort: assert_equal(v.feature_names_, sorted(v.feature_names_)) def test_feature_selection(): # make two feature dicts with two useful features and a bunch of useless # ones, in terms of chi2 d1 = dict([("useless%d" % i, 10) for i in range(20)], useful1=1, useful2=20) d2 = dict([("useless%d" % i, 10) for i in range(20)], useful1=20, useful2=1) for indices in (True, False): v = DictVectorizer().fit([d1, d2]) X = v.transform([d1, d2]) sel = SelectKBest(chi2, k=2).fit(X, [0, 1]) v.restrict(sel.get_support(indices=indices), indices=indices) assert_equal(v.get_feature_names(), ["useful1", "useful2"]) def test_one_of_k(): D_in = [{"version": "1", "ham": 2}, {"version": "2", "spam": .3}, {"version=3": True, "spam": -1}] v = DictVectorizer() X = v.fit_transform(D_in) assert_equal(X.shape, (3, 5)) D_out = v.inverse_transform(X) assert_equal(D_out[0], {"version=1": 1, "ham": 2}) names = v.get_feature_names() assert_true("version=2" in names) assert_false("version" in names) def test_unseen_or_no_features(): D = [{"camelot": 0, "spamalot": 1}] for sparse in [True, False]: v = DictVectorizer(sparse=sparse).fit(D) X = v.transform({"push the pram a lot": 2}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) X = v.transform({}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) try: v.transform([]) except ValueError as e: assert_in("empty", str(e)) def test_deterministic_vocabulary(): # Generate equal dictionaries with different memory layouts items = [("%03d" % i, i) for i in range(1000)] rng = Random(42) d_sorted = dict(items) rng.shuffle(items) d_shuffled = dict(items) # check that the memory layout does not impact the resulting vocabulary v_1 = DictVectorizer().fit([d_sorted]) v_2 = DictVectorizer().fit([d_shuffled]) assert_equal(v_1.vocabulary_, v_2.vocabulary_)
bsd-3-clause
jmetzen/scikit-learn
sklearn/manifold/tests/test_spectral_embedding.py
26
9488
from nose.tools import assert_true from nose.tools import assert_equal from scipy.sparse import csr_matrix from scipy.sparse import csc_matrix from scipy.linalg import eigh import numpy as np from numpy.testing import assert_array_almost_equal from nose.tools import assert_raises from nose.plugins.skip import SkipTest from sklearn.manifold.spectral_embedding_ import SpectralEmbedding from sklearn.manifold.spectral_embedding_ import _graph_is_connected from sklearn.manifold.spectral_embedding_ import _graph_connected_component from sklearn.manifold import spectral_embedding from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics import normalized_mutual_info_score from sklearn.cluster import KMeans from sklearn.datasets.samples_generator import make_blobs from sklearn.utils.graph import graph_laplacian from sklearn.utils.extmath import _deterministic_vector_sign_flip # non centered, sparse centers to check the centers = np.array([ [0.0, 5.0, 0.0, 0.0, 0.0], [0.0, 0.0, 4.0, 0.0, 0.0], [1.0, 0.0, 0.0, 5.0, 1.0], ]) n_samples = 1000 n_clusters, n_features = centers.shape S, true_labels = make_blobs(n_samples=n_samples, centers=centers, cluster_std=1., random_state=42) def _check_with_col_sign_flipping(A, B, tol=0.0): """ Check array A and B are equal with possible sign flipping on each columns""" sign = True for column_idx in range(A.shape[1]): sign = sign and ((((A[:, column_idx] - B[:, column_idx]) ** 2).mean() <= tol ** 2) or (((A[:, column_idx] + B[:, column_idx]) ** 2).mean() <= tol ** 2)) if not sign: return False return True def test_spectral_embedding_two_components(seed=36): # Test spectral embedding with two components random_state = np.random.RandomState(seed) n_sample = 100 affinity = np.zeros(shape=[n_sample * 2, n_sample * 2]) # first component affinity[0:n_sample, 0:n_sample] = np.abs(random_state.randn(n_sample, n_sample)) + 2 # second component affinity[n_sample::, n_sample::] = np.abs(random_state.randn(n_sample, n_sample)) + 2 # Test of internal _graph_connected_component before connection component = _graph_connected_component(affinity, 0) assert_true(component[:n_sample].all()) assert_true(not component[n_sample:].any()) component = _graph_connected_component(affinity, -1) assert_true(not component[:n_sample].any()) assert_true(component[n_sample:].all()) # connection affinity[0, n_sample + 1] = 1 affinity[n_sample + 1, 0] = 1 affinity.flat[::2 * n_sample + 1] = 0 affinity = 0.5 * (affinity + affinity.T) true_label = np.zeros(shape=2 * n_sample) true_label[0:n_sample] = 1 se_precomp = SpectralEmbedding(n_components=1, affinity="precomputed", random_state=np.random.RandomState(seed)) embedded_coordinate = se_precomp.fit_transform(affinity) # Some numpy versions are touchy with types embedded_coordinate = \ se_precomp.fit_transform(affinity.astype(np.float32)) # thresholding on the first components using 0. label_ = np.array(embedded_coordinate.ravel() < 0, dtype="float") assert_equal(normalized_mutual_info_score(true_label, label_), 1.0) def test_spectral_embedding_precomputed_affinity(seed=36): # Test spectral embedding with precomputed kernel gamma = 1.0 se_precomp = SpectralEmbedding(n_components=2, affinity="precomputed", random_state=np.random.RandomState(seed)) se_rbf = SpectralEmbedding(n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed)) embed_precomp = se_precomp.fit_transform(rbf_kernel(S, gamma=gamma)) embed_rbf = se_rbf.fit_transform(S) assert_array_almost_equal( se_precomp.affinity_matrix_, se_rbf.affinity_matrix_) assert_true(_check_with_col_sign_flipping(embed_precomp, embed_rbf, 0.05)) def test_spectral_embedding_callable_affinity(seed=36): # Test spectral embedding with callable affinity gamma = 0.9 kern = rbf_kernel(S, gamma=gamma) se_callable = SpectralEmbedding(n_components=2, affinity=( lambda x: rbf_kernel(x, gamma=gamma)), gamma=gamma, random_state=np.random.RandomState(seed)) se_rbf = SpectralEmbedding(n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed)) embed_rbf = se_rbf.fit_transform(S) embed_callable = se_callable.fit_transform(S) assert_array_almost_equal( se_callable.affinity_matrix_, se_rbf.affinity_matrix_) assert_array_almost_equal(kern, se_rbf.affinity_matrix_) assert_true( _check_with_col_sign_flipping(embed_rbf, embed_callable, 0.05)) def test_spectral_embedding_amg_solver(seed=36): # Test spectral embedding with amg solver try: from pyamg import smoothed_aggregation_solver except ImportError: raise SkipTest("pyamg not available.") se_amg = SpectralEmbedding(n_components=2, affinity="nearest_neighbors", eigen_solver="amg", n_neighbors=5, random_state=np.random.RandomState(seed)) se_arpack = SpectralEmbedding(n_components=2, affinity="nearest_neighbors", eigen_solver="arpack", n_neighbors=5, random_state=np.random.RandomState(seed)) embed_amg = se_amg.fit_transform(S) embed_arpack = se_arpack.fit_transform(S) assert_true(_check_with_col_sign_flipping(embed_amg, embed_arpack, 0.05)) def test_pipeline_spectral_clustering(seed=36): # Test using pipeline to do spectral clustering random_state = np.random.RandomState(seed) se_rbf = SpectralEmbedding(n_components=n_clusters, affinity="rbf", random_state=random_state) se_knn = SpectralEmbedding(n_components=n_clusters, affinity="nearest_neighbors", n_neighbors=5, random_state=random_state) for se in [se_rbf, se_knn]: km = KMeans(n_clusters=n_clusters, random_state=random_state) km.fit(se.fit_transform(S)) assert_array_almost_equal( normalized_mutual_info_score( km.labels_, true_labels), 1.0, 2) def test_spectral_embedding_unknown_eigensolver(seed=36): # Test that SpectralClustering fails with an unknown eigensolver se = SpectralEmbedding(n_components=1, affinity="precomputed", random_state=np.random.RandomState(seed), eigen_solver="<unknown>") assert_raises(ValueError, se.fit, S) def test_spectral_embedding_unknown_affinity(seed=36): # Test that SpectralClustering fails with an unknown affinity type se = SpectralEmbedding(n_components=1, affinity="<unknown>", random_state=np.random.RandomState(seed)) assert_raises(ValueError, se.fit, S) def test_connectivity(seed=36): # Test that graph connectivity test works as expected graph = np.array([[1, 0, 0, 0, 0], [0, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 0, 1, 1]]) assert_equal(_graph_is_connected(graph), False) assert_equal(_graph_is_connected(csr_matrix(graph)), False) assert_equal(_graph_is_connected(csc_matrix(graph)), False) graph = np.array([[1, 1, 0, 0, 0], [1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 0, 1, 1]]) assert_equal(_graph_is_connected(graph), True) assert_equal(_graph_is_connected(csr_matrix(graph)), True) assert_equal(_graph_is_connected(csc_matrix(graph)), True) def test_spectral_embedding_deterministic(): # Test that Spectral Embedding is deterministic random_state = np.random.RandomState(36) data = random_state.randn(10, 30) sims = rbf_kernel(data) embedding_1 = spectral_embedding(sims) embedding_2 = spectral_embedding(sims) assert_array_almost_equal(embedding_1, embedding_2) def test_spectral_embedding_unnormalized(): # Test that spectral_embedding is also processing unnormalized laplacian correctly random_state = np.random.RandomState(36) data = random_state.randn(10, 30) sims = rbf_kernel(data) n_components = 8 embedding_1 = spectral_embedding(sims, norm_laplacian=False, n_components=n_components, drop_first=False) # Verify using manual computation with dense eigh laplacian, dd = graph_laplacian(sims, normed=False, return_diag=True) _, diffusion_map = eigh(laplacian) embedding_2 = diffusion_map.T[:n_components] * dd embedding_2 = _deterministic_vector_sign_flip(embedding_2).T assert_array_almost_equal(embedding_1, embedding_2)
bsd-3-clause
jklenzing/pysat
pysat/tests/test_meta.py
2
48081
""" tests the pysat meta object and code """ import pysat import pandas as pds from nose.tools import raises import pysat.instruments.pysat_testing import numpy as np class TestBasics(): def setup(self): """Runs before every method to create a clean testing setup.""" self.meta = pysat.Meta() self.testInst = pysat.Instrument('pysat', 'testing', clean_level='clean') def teardown(self): """Runs after every method to clean up previous testing.""" del self.testInst del self.meta @raises(ValueError) def test_setting_nonpandas_metadata(self): self.meta = pysat.Meta(metadata='Not a Panda') def test_inst_data_assign_meta_default(self): self.testInst.load(2009, 1) self.testInst['help'] = self.testInst['mlt'] assert self.testInst.meta['help', 'long_name'] == 'help' assert self.testInst.meta['help', 'axis'] == 'help' assert self.testInst.meta['help', 'label'] == 'help' assert self.testInst.meta['help', 'notes'] == '' assert np.isnan(self.testInst.meta['help', 'fill']) assert np.isnan(self.testInst.meta['help', 'value_min']) assert np.isnan(self.testInst.meta['help', 'value_max']) assert self.testInst.meta['help', 'units'] == '' assert self.testInst.meta['help', 'desc'] == '' assert self.testInst.meta['help', 'scale'] == 'linear' def test_inst_data_assign_meta(self): self.testInst.load(2009, 1) self.testInst['help'] = {'data': self.testInst['mlt'], 'units': 'V', 'long_name': 'The Doors'} assert self.testInst.meta['help', 'long_name'] == 'The Doors' assert self.testInst.meta['help', 'axis'] == 'help' assert self.testInst.meta['help', 'label'] == 'help' assert self.testInst.meta['help', 'notes'] == '' assert np.isnan(self.testInst.meta['help', 'fill']) assert np.isnan(self.testInst.meta['help', 'value_min']) assert np.isnan(self.testInst.meta['help', 'value_max']) assert self.testInst.meta['help', 'units'] == 'V' assert self.testInst.meta['help', 'desc'] == '' assert self.testInst.meta['help', 'scale'] == 'linear' def test_inst_data_assign_meta_then_data(self): self.testInst.load(2009, 1) self.testInst['help'] = {'data': self.testInst['mlt'], 'units': 'V', 'long_name': 'The Doors'} self.testInst['help'] = self.testInst['mlt'] assert self.testInst.meta['help', 'long_name'] == 'The Doors' assert self.testInst.meta['help', 'axis'] == 'help' assert self.testInst.meta['help', 'label'] == 'help' assert self.testInst.meta['help', 'notes'] == '' assert np.isnan(self.testInst.meta['help', 'fill']) assert np.isnan(self.testInst.meta['help', 'value_min']) assert np.isnan(self.testInst.meta['help', 'value_max']) assert self.testInst.meta['help', 'units'] == 'V' assert self.testInst.meta['help', 'desc'] == '' assert self.testInst.meta['help', 'scale'] == 'linear' def test_inst_ho_data_assign_no_meta_default(self): self.testInst.load(2009, 1) frame = pds.DataFrame({'dummy_frame1': np.arange(10), 'dummy_frame2': np.arange(10)}, columns=['dummy_frame1', 'dummy_frame2']) self.testInst['help'] = [frame]*len(self.testInst.data.index) assert 'dummy_frame1' in self.testInst.meta.ho_data['help'] assert 'dummy_frame2' in self.testInst.meta.ho_data['help'] assert 'dummy_frame1' in self.testInst.meta['help']['children'] assert 'dummy_frame2' in self.testInst.meta['help']['children'] assert self.testInst.meta['help']['children'].has_attr('units') assert self.testInst.meta['help']['children'].has_attr('desc') def test_inst_ho_data_assign_meta_default(self): self.testInst.load(2009, 1) frame = pds.DataFrame({'dummy_frame1': np.arange(10), 'dummy_frame2': np.arange(10)}, columns=['dummy_frame1', 'dummy_frame2']) self.testInst['help'] = {'data': [frame]*len(self.testInst.data.index), 'units': 'V', 'long_name': 'The Doors'} assert self.testInst.meta['help', 'long_name'] == 'The Doors' assert 'dummy_frame1' in self.testInst.meta.ho_data['help'] assert 'dummy_frame2' in self.testInst.meta.ho_data['help'] assert 'dummy_frame1' in self.testInst.meta['help']['children'] assert 'dummy_frame2' in self.testInst.meta['help']['children'] assert self.testInst.meta['help']['children'].has_attr('units') assert self.testInst.meta['help']['children'].has_attr('desc') def test_inst_ho_data_assign_meta(self): self.testInst.load(2009, 1) frame = pds.DataFrame({'dummy_frame1': np.arange(10), 'dummy_frame2': np.arange(10)}, columns=['dummy_frame1', 'dummy_frame2']) meta = pysat.Meta() meta['dummy_frame1'] = {'units': 'A'} meta['dummy_frame2'] = {'desc': 'nothing'} self.testInst['help'] = {'data': [frame]*len(self.testInst.data.index), 'units': 'V', 'long_name': 'The Doors', 'meta': meta} assert self.testInst.meta['help', 'long_name'] == 'The Doors' assert 'dummy_frame1' in self.testInst.meta.ho_data['help'] assert 'dummy_frame2' in self.testInst.meta.ho_data['help'] assert 'dummy_frame1' in self.testInst.meta['help']['children'] assert 'dummy_frame2' in self.testInst.meta['help']['children'] assert self.testInst.meta['help']['children'].has_attr('units') assert self.testInst.meta['help']['children'].has_attr('desc') assert self.testInst.meta['help']['children']['dummy_frame1', 'units'] == 'A' assert self.testInst.meta['help']['children']['dummy_frame1', 'desc'] == '' assert self.testInst.meta['help']['children']['dummy_frame2', 'desc'] == 'nothing' def test_inst_ho_data_assign_meta_then_data(self): self.testInst.load(2009, 1) frame = pds.DataFrame({'dummy_frame1': np.arange(10), 'dummy_frame2': np.arange(10)}, columns=['dummy_frame1', 'dummy_frame2']) meta = pysat.Meta() meta['dummy_frame1'] = {'units': 'A'} meta['dummy_frame2'] = {'desc': 'nothing'} print('Setting original data') self.testInst['help'] = {'data': [frame]*len(self.testInst.data.index), 'units': 'V', 'long_name': 'The Doors', 'meta': meta} self.testInst['help'] = [frame]*len(self.testInst.data.index) assert self.testInst.meta['help', 'long_name'] == 'The Doors' assert 'dummy_frame1' in self.testInst.meta.ho_data['help'] assert 'dummy_frame2' in self.testInst.meta.ho_data['help'] assert 'dummy_frame1' in self.testInst.meta['help']['children'] assert 'dummy_frame2' in self.testInst.meta['help']['children'] assert self.testInst.meta['help']['children'].has_attr('units') assert self.testInst.meta['help']['children'].has_attr('desc') assert self.testInst.meta['help']['children']['dummy_frame1', 'units'] == 'A' assert self.testInst.meta['help']['children']['dummy_frame1', 'desc'] == '' assert self.testInst.meta['help']['children']['dummy_frame2', 'desc'] == 'nothing' def test_inst_ho_data_assign_meta_different_labels(self): self.testInst.load(2009, 1) frame = pds.DataFrame({'dummy_frame1': np.arange(10), 'dummy_frame2': np.arange(10)}, columns=['dummy_frame1', 'dummy_frame2']) meta = pysat.Meta(units_label='blah', desc_label='whoknew') meta['dummy_frame1'] = {'blah': 'A'} meta['dummy_frame2'] = {'whoknew': 'nothing'} self.testInst['help'] = {'data': [frame]*len(self.testInst.data.index), 'units': 'V', 'long_name': 'The Doors', 'meta': meta} assert self.testInst.meta['help', 'long_name'] == 'The Doors' assert 'dummy_frame1' in self.testInst.meta.ho_data['help'] assert 'dummy_frame2' in self.testInst.meta.ho_data['help'] assert 'dummy_frame1' in self.testInst.meta['help']['children'] assert 'dummy_frame2' in self.testInst.meta['help']['children'] assert self.testInst.meta['help']['children'].has_attr('units') assert self.testInst.meta['help']['children'].has_attr('desc') assert self.testInst.meta['help']['children']['dummy_frame1', 'units'] == 'A' assert self.testInst.meta['help']['children']['dummy_frame1', 'desc'] == '' assert self.testInst.meta['help']['children']['dummy_frame2', 'desc'] == 'nothing' def test_inst_assign_from_meta(self): self.testInst.load(2009, 1) self.testInst['help'] = self.testInst['mlt'] self.testInst['help2'] = self.testInst['mlt'] self.testInst.meta['help2'] = self.testInst.meta['help'] assert self.testInst.meta['help2', 'long_name'] == 'help' assert self.testInst.meta['help2', 'axis'] == 'help' assert self.testInst.meta['help2', 'label'] == 'help' assert self.testInst.meta['help2', 'notes'] == '' assert np.isnan(self.testInst.meta['help2', 'fill']) assert np.isnan(self.testInst.meta['help2', 'value_min']) assert np.isnan(self.testInst.meta['help2', 'value_max']) assert self.testInst.meta['help2', 'units'] == '' assert self.testInst.meta['help2', 'desc'] == '' assert self.testInst.meta['help2', 'scale'] == 'linear' assert 'children' not in self.testInst.meta.data.columns assert 'help2' not in self.testInst.meta.keys_nD() def test_inst_assign_from_meta_w_ho(self): self.testInst.load(2009, 1) frame = pds.DataFrame({'dummy_frame1': np.arange(10), 'dummy_frame2': np.arange(10)}, columns=['dummy_frame1', 'dummy_frame2']) meta = pysat.Meta() meta['dummy_frame1'] = {'units': 'A'} meta['dummy_frame2'] = {'desc': 'nothing'} self.testInst['help'] = {'data': [frame]*len(self.testInst.data.index), 'units': 'V', 'long_name': 'The Doors', 'meta': meta} self.testInst['help2'] = self.testInst['help'] self.testInst.meta['help2'] = self.testInst.meta['help'] assert self.testInst.meta['help'].children['dummy_frame1', 'units'] == 'A' assert self.testInst.meta['help2', 'long_name'] == 'The Doors' assert 'dummy_frame1' in self.testInst.meta.ho_data['help2'] assert 'dummy_frame2' in self.testInst.meta.ho_data['help2'] assert 'dummy_frame1' in self.testInst.meta['help2']['children'] assert 'dummy_frame2' in self.testInst.meta['help2']['children'] assert self.testInst.meta['help2']['children'].has_attr('units') assert self.testInst.meta['help2']['children'].has_attr('desc') assert self.testInst.meta['help2']['children']['dummy_frame1', 'desc'] == '' assert self.testInst.meta['help2']['children']['dummy_frame2', 'desc'] == 'nothing' assert 'children' not in self.testInst.meta.data.columns def test_inst_assign_from_meta_w_ho_then_update(self): self.testInst.load(2009, 1) frame = pds.DataFrame({'dummy_frame1': np.arange(10), 'dummy_frame2': np.arange(10)}, columns=['dummy_frame1', 'dummy_frame2']) meta = pysat.Meta() meta['dummy_frame1'] = {'units': 'A'} meta['dummy_frame2'] = {'desc': 'nothing'} self.testInst['help'] = {'data': [frame]*len(self.testInst.data.index), 'units': 'V', 'name': 'The Doors', 'meta': meta} self.testInst['help2'] = self.testInst['help'] self.testInst.meta['help2'] = self.testInst.meta['help'] new_meta = self.testInst.meta['help2'].children new_meta['dummy_frame1'] = {'units': 'Amps', 'desc': 'something', 'label': 'John Wick', 'axis': 'Reeves', } self.testInst.meta['help2'] = new_meta self.testInst.meta['help2'] = {'label': 'The Doors Return'} # print('yoyo: ', self.testInst.meta['help']['children'] # ['dummy_frame1', 'units']) assert self.testInst.meta['help']['children']['dummy_frame1', 'units'] == 'A' assert self.testInst.meta['help2', 'name'] == 'The Doors' assert self.testInst.meta['help2', 'label'] == 'The Doors Return' assert 'dummy_frame1' in self.testInst.meta.ho_data['help2'] assert 'dummy_frame2' in self.testInst.meta.ho_data['help2'] assert 'dummy_frame1' in self.testInst.meta['help2']['children'] assert 'dummy_frame2' in self.testInst.meta['help2']['children'] assert self.testInst.meta['help2']['children'].has_attr('units') assert self.testInst.meta['help2']['children'].has_attr('desc') assert self.testInst.meta['help2']['children']['dummy_frame1', 'desc'] == 'something' assert self.testInst.meta['help2']['children']['dummy_frame2', 'desc'] == 'nothing' assert self.testInst.meta['help2']['children']['dummy_frame1', 'units'] == 'Amps' assert self.testInst.meta['help2']['children']['dummy_frame1', 'label'] == 'John Wick' assert self.testInst.meta['help2']['children']['dummy_frame1', 'axis'] == 'Reeves' assert 'children' not in self.testInst.meta.data.columns def test_repr_call_runs(self): self.testInst.meta['hi'] = {'units': 'yoyo', 'long_name': 'hello'} print(self.testInst.meta) assert True def test_repr_call_runs_with_higher_order_data(self): self.meta['param1'] = {'units': 'blank', 'long_name': u'parameter1', 'custom1': 14, 'custom2': np.NaN, 'custom3': 14.5, 'custom4': u'hello'} self.testInst.meta['param0'] = {'units': 'basic', 'long_name': 'parameter0', self.testInst.meta.fill_label: '10', 'CUSTOM4': 143} self.testInst.meta['kiwi'] = self.meta print(self.testInst.meta) assert True def test_basic_pops(self): self.meta['new1'] = {'units': 'hey1', 'long_name': 'crew', 'value_min': 0, 'value_max': 1} self.meta['new2'] = {'units': 'hey', 'long_name': 'boo', 'description': 'boohoo', 'fill': 1, 'value_min': 0, 'value_max': 1} # create then assign higher order meta data meta2 = pysat.Meta(name_label='long_name') meta2['new31'] = {'units': 'hey3', 'long_name': 'crew_brew', 'fill': 1, 'value_min': 0, 'value_max': 1} self.meta['new3'] = meta2 aa = self.meta.pop('new3') assert np.all(aa['children'] == meta2) # ensure lower metadata created when ho data assigned assert aa['units'] == '' assert aa['long_name'] == 'new3' m1 = self.meta['new2'] m2 = self.meta.pop('new2') assert m1['children'] is None assert m2['children'] is None for key in m1.index: if key not in ['children']: assert m1[key] == m2[key] # make sure both have the same indexes assert np.all(m1.index == m2.index) @raises(KeyError) def test_basic_pops_w_bad_key(self): self.meta['new1'] = {'units': 'hey1', 'long_name': 'crew', 'value_min': 0, 'value_max': 1} self.meta['new2'] = {'units': 'hey', 'long_name': 'boo', 'description': 'boohoo', 'fill': 1, 'value_min': 0, 'value_max': 1} _ = self.meta.pop('new4') @raises(KeyError) def test_basic_getitem_w_bad_key_string(self): self.meta['new4'] @raises(NotImplementedError) def test_basic_getitem_w_integer(self): self.meta[1] def test_basic_equality(self): self.meta['new1'] = {'units': 'hey1', 'long_name': 'crew'} self.meta['new2'] = {'units': 'hey', 'long_name': 'boo', 'description': 'boohoo', 'fill': np.NaN} # ensure things are the same meta2 = self.meta.copy() assert (meta2 == self.meta) # different way to create meta object meta3 = pysat.Meta() meta3['new1'] = self.meta['new1'] meta3['new2'] = self.meta['new2'] assert (meta3 == self.meta) # make sure differences matter self.meta['new2'] = {'fill': 1} assert not (meta2 == self.meta) def test_basic_concat(self): self.meta['new1'] = {'units': 'hey1', 'long_name': 'crew'} self.meta['new2'] = {'units': 'hey', 'long_name': 'boo', 'description': 'boohoo'} meta2 = pysat.Meta() meta2['new3'] = {'units': 'hey3', 'long_name': 'crew_brew'} self.meta = self.meta.concat(meta2) assert (self.meta['new3'].units == 'hey3') @raises(RuntimeError) def test_concat_w_name_collision_strict(self): self.meta['new1'] = {'units': 'hey1', 'long_name': 'crew'} self.meta['new2'] = {'units': 'hey', 'long_name': 'boo', 'description': 'boohoo'} meta2 = pysat.Meta() meta2['new2'] = {'units': 'hey2', 'long_name': 'crew_brew'} meta2['new3'] = {'units': 'hey3', 'long_name': 'crew_brew'} self.meta = self.meta.concat(meta2, strict=True) def test_basic_concat_w_ho(self): self.meta['new1'] = {'units': 'hey1', 'long_name': 'crew'} self.meta['new2'] = {'units': 'hey', 'long_name': 'boo', 'description': 'boohoo'} meta2 = pysat.Meta() meta2['new3'] = {'units': 'hey3', 'long_name': 'crew_brew'} meta3 = pysat.Meta() meta3['new41'] = {'units': 'hey4', 'long_name': 'crew_brew', 'bob_level': 'max'} meta2['new4'] = meta3 self.meta = self.meta.concat(meta2) assert (self.meta['new3'].units == 'hey3') assert (self.meta['new4'].children['new41'].units == 'hey4') @raises(RuntimeError) def test_basic_concat_w_ho_collision_strict(self): self.meta['new1'] = {'units': 'hey1', 'long_name': 'crew'} self.meta['new2'] = {'units': 'hey', 'long_name': 'boo', 'description': 'boohoo'} meta2 = pysat.Meta() meta2['new31'] = {'units': 'hey3', 'long_name': 'crew_brew'} self.meta['new3'] = meta2 meta3 = pysat.Meta() meta3['new31'] = {'units': 'hey4', 'long_name': 'crew_brew', 'bob_level': 'max'} meta2['new3'] = meta3 self.meta = self.meta.concat(meta2, strict=True) def test_basic_concat_w_ho_collision_not_strict(self): self.meta['new1'] = {'units': 'hey1', 'long_name': 'crew'} self.meta['new2'] = {'units': 'hey', 'long_name': 'boo', 'description': 'boohoo'} meta2 = pysat.Meta() meta2['new3'] = {'units': 'hey3', 'long_name': 'crew_brew'} meta3 = pysat.Meta() meta3['new41'] = {'units': 'hey4', 'long_name': 'crew_brew', 'bob_level': 'max'} meta2['new3'] = meta3 self.meta = self.meta.concat(meta2, strict=False) assert self.meta['new3'].children['new41'].units == 'hey4' assert self.meta['new3'].children['new41'].bob_level == 'max' assert self.meta['new2'].units == 'hey' def test_basic_concat_w_ho_collisions_not_strict(self): self.meta['new1'] = {'units': 'hey1', 'long_name': 'crew'} self.meta['new2'] = {'units': 'hey', 'long_name': 'boo', 'description': 'boohoo'} meta2 = pysat.Meta() meta2['new31'] = {'units': 'hey3', 'long_name': 'crew_brew'} self.meta['new3'] = meta2 meta3 = pysat.Meta() meta3['new31'] = {'units': 'hey4', 'long_name': 'crew_brew', 'bob_level': 'max'} meta2['new3'] = meta3 self.meta = self.meta.concat(meta2, strict=False) assert self.meta['new3'].children['new31'].units == 'hey4' assert self.meta['new3'].children['new31'].bob_level == 'max' assert self.meta['new2'].units == 'hey' def test_basic_meta_assignment(self): self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} assert (self.meta['new'].units == 'hey') assert (self.meta['new'].long_name == 'boo') def test_basic_meta_assignment_w_Series(self): self.meta['new'] = pds.Series({'units': 'hey', 'long_name': 'boo'}) assert (self.meta['new'].units == 'hey') assert (self.meta['new'].long_name == 'boo') def test_multiple_meta_assignment(self): self.meta[['new', 'new2']] = {'units': ['hey', 'hey2'], 'long_name': ['boo', 'boo2']} assert self.meta['new'].units == 'hey' assert self.meta['new'].long_name == 'boo' assert self.meta['new2'].units == 'hey2' assert self.meta['new2'].long_name == 'boo2' def test_multiple_meta_retrieval(self): self.meta[['new', 'new2']] = {'units': ['hey', 'hey2'], 'long_name': ['boo', 'boo2']} self.meta[['new', 'new2']] self.meta[['new', 'new2'],:] self.meta[:, 'units'] self.meta['new',('units','long_name')] def test_multiple_meta_ho_data_retrieval(self): meta = pysat.Meta() meta['dm'] = {'units': 'hey', 'long_name': 'boo'} meta['rpa'] = {'units': 'crazy', 'long_name': 'boo_whoo'} self.meta[['higher', 'lower']] = {'meta': [meta, None], 'units': [None, 'boo'], 'long_name': [None, 'boohoo']} assert self.meta['lower'].units == 'boo' assert self.meta['lower'].long_name == 'boohoo' assert self.meta['higher'].children == meta self.meta['higher',('axis','scale')] @raises(ValueError) def test_multiple_meta_assignment_error(self): self.meta[['new', 'new2']] = {'units': ['hey', 'hey2'], 'long_name': ['boo']} def test_replace_meta_units(self): self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} self.meta['new'] = {'units': 'yep'} assert (self.meta['new'].units == 'yep') assert (self.meta['new'].long_name == 'boo') def test_replace_meta_long_name(self): self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} self.meta['new'] = {'long_name': 'yep'} assert (self.meta['new'].units == 'hey') assert (self.meta['new'].long_name == 'yep') def test_add_additional_metadata_types(self): self.meta['new'] = {'units': 'hey', 'long_name': 'boo', 'description': 'boohoo'} assert (self.meta['new'].units == 'hey') assert (self.meta['new'].long_name == 'boo') assert (self.meta['new'].description == 'boohoo') def test_add_meta_then_add_additional_metadata_types(self): self.meta['new'] = {'units': 'hey', 'long_name': 'crew'} self.meta['new'] = {'units': 'hey', 'long_name': 'boo', 'description': 'boohoo'} assert self.meta['new'].units == 'hey' assert self.meta['new'].long_name == 'boo' assert self.meta['new'].description == 'boohoo' def test_add_meta_with_custom_then_add_additional_metadata_types(self): self.meta['new'] = {'units': 'hey', 'long_name': 'crew', 'description': 'boohoo'} self.meta['new'] = {'units': 'hey2', 'long_name': 'boo'} self.meta['new2'] = {'units': 'heyy', 'long_name': 'hoo'} self.meta['new3'] = {'units': 'hey3', 'long_name': 'crew3', 'description': 'boohoo3'} assert self.meta['new'].units == 'hey2' assert self.meta['new'].long_name == 'boo' assert self.meta['new'].description == 'boohoo' assert self.meta['new3'].description == 'boohoo3' assert self.meta['new2'].long_name == 'hoo' def test_add_meta_then_add_different_additional_metadata_types(self): self.meta['new1'] = {'units': 'hey1', 'long_name': 'crew'} self.meta['new2'] = {'units': 'hey', 'long_name': 'boo', 'description': 'boohoo'} assert self.meta['new2'].units == 'hey' assert self.meta['new2'].long_name == 'boo' assert self.meta['new2'].description == 'boohoo' assert self.meta['new1'].units == 'hey1' assert self.meta['new1'].long_name == 'crew' assert np.isnan(self.meta['new1'].description) def test_add_meta_then_partially_add_additional_metadata_types(self): self.meta['new'] = {'units': 'hey', 'long_name': 'crew'} self.meta['new'] = {'long_name': 'boo', 'description': 'boohoo'} assert self.meta['new'].units == 'hey' assert self.meta['new'].long_name == 'boo' assert self.meta['new'].description == 'boohoo' def test_meta_equality(self): assert self.testInst.meta == self.testInst.meta def test_false_meta_equality(self): assert not (self.testInst.meta == self.testInst) def test_equality_with_higher_order_meta(self): self.meta = pysat.Meta() meta = pysat.Meta() meta['dm'] = {'units': 'hey', 'long_name': 'boo'} meta['rpa'] = {'units': 'crazy', 'long_name': 'boo_whoo'} self.meta['higher'] = meta meta2 = pysat.Meta() meta2['dm'] = {'units': 'hey', 'long_name': 'boo'} meta2['rpa'] = {'units': 'crazy', 'long_name': 'boo_whoo'} meta3 = pysat.Meta() meta3['higher'] = meta2 assert meta3 == self.meta assert self.meta == meta3 def test_inequality_with_higher_order_meta(self): self.meta = pysat.Meta() meta = pysat.Meta() meta['dm'] = {'units': 'hey', 'long_name': 'boo', 'radn': 'raiden'} meta['rpa'] = {'units': 'crazy', 'long_name': 'boo_whoo'} self.meta['higher'] = meta meta2 = pysat.Meta() meta2['dm'] = {'units': 'hey', 'long_name': 'boo'} meta2['rpa'] = {'units': 'crazy', 'long_name': 'boo_whoo'} meta3 = pysat.Meta() meta3['higher'] = meta2 assert not (meta3 == self.meta) assert not (self.meta == meta3) def test_inequality_with_higher_order_meta2(self): self.meta = pysat.Meta() meta = pysat.Meta() meta['dm'] = {'units': 'hey2', 'long_name': 'boo'} meta['rpa'] = {'units': 'crazy', 'long_name': 'boo_whoo'} self.meta['higher'] = meta meta2 = pysat.Meta() meta2['dm'] = {'units': 'hey', 'long_name': 'boo'} meta2['rpa'] = {'units': 'crazy', 'long_name': 'boo_whoo'} meta3 = pysat.Meta() meta3['higher'] = meta2 assert not (meta3 == self.meta) assert not (self.meta == meta3) def test_inequality_with_higher_order_meta3(self): self.meta = pysat.Meta() meta = pysat.Meta() meta['dm'] = {'units': 'hey', 'long_name': 'boo'} meta['rpa'] = {'units': 'crazy', 'long_name': 'boo_whoo'} self.meta['higher'] = meta self.meta['lower'] = {'units': 'yoyooy'} meta2 = pysat.Meta() meta2['dm'] = {'units': 'hey', 'long_name': 'boo'} meta2['rpa'] = {'units': 'crazy', 'long_name': 'boo_whoo'} meta3 = pysat.Meta() meta3['higher'] = meta2 assert not (meta3 == self.meta) assert not (self.meta == meta3) def test_assign_higher_order_meta(self): meta = pysat.Meta() meta['dm'] = {'units': 'hey', 'long_name': 'boo'} meta['rpa'] = {'units': 'crazy', 'long_name': 'boo_whoo'} self.meta['higher'] = meta def test_assign_higher_order_meta_from_dict(self): meta = pysat.Meta() meta['dm'] = {'units': 'hey', 'long_name': 'boo'} meta['rpa'] = {'units': 'crazy', 'long_name': 'boo_whoo'} self.meta['higher'] = {'meta': meta} def test_assign_higher_order_meta_from_dict_correct(self): meta = pysat.Meta() meta['dm'] = {'units': 'hey', 'long_name': 'boo'} meta['rpa'] = {'units': 'crazy', 'long_name': 'boo_whoo'} self.meta['higher'] = {'meta': meta} assert self.meta['higher'].children == meta def test_assign_higher_order_meta_from_dict_w_multiple(self): meta = pysat.Meta() meta['dm'] = {'units': 'hey', 'long_name': 'boo'} meta['rpa'] = {'units': 'crazy', 'long_name': 'boo_whoo'} self.meta[['higher', 'lower']] = {'meta': [meta, None], 'units': [None, 'boo'], 'long_name': [None, 'boohoo']} assert self.meta['lower'].units == 'boo' assert self.meta['lower'].long_name == 'boohoo' assert self.meta['higher'].children == meta def test_assign_higher_order_meta_from_dict_w_multiple_2(self): meta = pysat.Meta() meta['dm'] = {'units': 'hey', 'long_name': 'boo'} meta['rpa'] = {'units': 'crazy', 'long_name': 'boo_whoo'} self.meta[['higher', 'lower', 'lower2']] = \ {'meta': [meta, None, meta], 'units': [None, 'boo', None], 'long_name': [None, 'boohoo', None]} assert self.meta['lower'].units == 'boo' assert self.meta['lower'].long_name == 'boohoo' assert self.meta['higher'].children == meta def test_create_new_metadata_from_old(self): meta = pysat.Meta() meta['dm'] = {'units': 'hey', 'long_name': 'boo'} meta['rpa'] = {'units': 'crazy', 'long_name': 'boo_whoo'} self.meta[['higher', 'lower', 'lower2']] = \ {'meta': [meta, None, meta], 'units': [None, 'boo', None], 'long_name': [None, 'boohoo', None], 'fill': [1, 1, 1], 'value_min': [0, 0, 0], 'value_max': [1, 1, 1]} meta2 = pysat.Meta(metadata=self.meta.data) m1 = meta2['lower'] m2 = self.meta['lower'] assert m1['children'] is None assert m2['children'] is None for key in m1.index: if key not in ['children']: assert m1[key] == m2[key] # make sure both have the same indexes assert np.all(m1.index == m2.index) # command below doesn't work because 'children' is None # assert np.all(meta2['lower'] == self.meta['lower']) def test_replace_meta_units_list(self): self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} self.meta['new2'] = {'units': 'hey2', 'long_name': 'boo2'} self.meta[['new2', 'new']] = {'units': ['yeppers', 'yep']} assert self.meta['new'].units == 'yep' assert self.meta['new'].long_name == 'boo' assert self.meta['new2'].units == 'yeppers' assert self.meta['new2'].long_name == 'boo2' def test_meta_repr_functions(self): self.testInst.meta['new'] = {'units': 'hey', 'long_name': 'boo'} self.testInst.meta['new2'] = {'units': 'hey2', 'long_name': 'boo2'} print(self.testInst.meta) # if it doesn't produce an error, we presume it works # how do you test a print?? assert True def test_meta_csv_load(self): import os name = os.path.join(pysat.__path__[0], 'tests', 'cindi_ivm_meta.txt') mdata = pysat.Meta.from_csv(name=name, na_values=[], # index_col=2, keep_default_na=False, col_names=['name', 'long_name', 'idx', 'units', 'description']) check = [] # print(mdata['yrdoy']) check.append(mdata['yrdoy'].long_name == 'Date') check.append(mdata['unit_mer_z'].long_name == 'Unit Vector - Meridional Dir - S/C z') check.append(mdata['iv_mer'].description == 'Constructed using IGRF mag field.') assert np.all(check) # assign multiple values to default def test_multiple_input_names_null_value(self): self.meta[['test1', 'test2']] = {} check1 = self.meta['test1', 'units'] == '' check2 = self.meta['test2', 'long_name'] == 'test2' assert check1 & check2 def test_multiple_input_names_null_value_preexisting_values(self): self.meta[['test1', 'test2']] = {'units': ['degrees', 'hams'], 'long_name': ['testing', 'further']} self.meta[['test1', 'test2']] = {} check1 = self.meta['test1', 'units'] == 'degrees' check2 = self.meta['test2', 'long_name'] == 'further' assert check1 & check2 # test behaviors related to case changes, 'units' vs 'Units' def test_assign_Units(self): self.meta = pysat.Meta(units_label='Units', name_label='Long_Name') self.meta['new'] = {'Units': 'hey', 'Long_Name': 'boo'} self.meta['new2'] = {'Units': 'hey2', 'Long_Name': 'boo2'} assert ((self.meta['new'].Units == 'hey') & (self.meta['new'].Long_Name == 'boo') & (self.meta['new2'].Units == 'hey2') & (self.meta['new2'].Long_Name == 'boo2')) @raises(AttributeError) def test_assign_Units_no_units(self): self.meta = pysat.Meta(units_label='Units', name_label='Long_Name') self.meta['new'] = {'Units': 'hey', 'Long_Name': 'boo'} self.meta['new2'] = {'Units': 'hey2', 'Long_Name': 'boo2'} self.meta['new'].units def test_get_Units_wrong_case(self): self.meta = pysat.Meta(units_label='Units', name_label='Long_Name') self.meta['new'] = {'Units': 'hey', 'Long_Name': 'boo'} self.meta['new2'] = {'Units': 'hey2', 'Long_Name': 'boo2'} assert ((self.meta['new', 'units'] == 'hey') & (self.meta['new', 'long_name'] == 'boo') & (self.meta['new2', 'units'] == 'hey2') & (self.meta['new2', 'long_name'] == 'boo2')) def test_set_Units_wrong_case(self): self.meta = pysat.Meta(units_label='Units', name_label='Long_Name') self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} self.meta['new2'] = {'units': 'hey2', 'long_name': 'boo2'} assert self.meta['new'].Units == 'hey' assert self.meta['new'].Long_Name == 'boo' assert self.meta['new2'].Units == 'hey2' assert self.meta['new2'].Long_Name == 'boo2' def test_repeated_set_Units_wrong_case(self): self.meta = pysat.Meta(units_label='Units', name_label='Long_Name') for i in np.arange(10): self.meta['new'] = {'units': 'hey%d' % i, 'long_name': 'boo%d' % i} self.meta['new_%d' % i] = {'units': 'hey%d' % i, 'long_name': 'boo%d' % i} for i in np.arange(10): self.meta['new_5'] = {'units': 'hey%d' % i, 'long_name': 'boo%d' % i} self.meta['new_%d' % i] = {'units': 'heyhey%d' % i, 'long_name': 'booboo%d' % i} assert self.meta['new'].Units == 'hey9' assert self.meta['new'].Long_Name == 'boo9' assert self.meta['new_9'].Units == 'heyhey9' assert self.meta['new_9'].Long_Name == 'booboo9' assert self.meta['new_5'].Units == 'hey9' assert self.meta['new_5'].Long_Name == 'boo9' def test_change_Units_and_Name_case(self): self.meta = pysat.Meta(units_label='units', name_label='long_name') self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} self.meta['new2'] = {'units': 'hey2', 'long_name': 'boo2'} self.meta.units_label = 'Units' self.meta.name_label = 'Long_Name' assert ((self.meta['new'].Units == 'hey') & (self.meta['new'].Long_Name == 'boo') & (self.meta['new2'].Units == 'hey2') & (self.meta['new2'].Long_Name == 'boo2')) def test_change_Units_and_Name_case_w_ho(self): self.meta = pysat.Meta(units_label='units', name_label='long_Name') meta2 = pysat.Meta(units_label='units', name_label='long_Name') meta2['new21'] = {'units': 'hey2', 'long_name': 'boo2'} self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} self.meta['new2'] = meta2 self.meta.units_label = 'Units' self.meta.name_label = 'Long_Name' assert ((self.meta['new'].Units == 'hey') & (self.meta['new'].Long_Name == 'boo') & (self.meta['new2'].children['new21'].Units == 'hey2') & (self.meta['new2'].children['new21'].Long_Name == 'boo2')) @raises(AttributeError) def test_change_Units_and_Name_case_w_ho_wrong_case(self): self.meta = pysat.Meta(units_label='units', name_label='long_Name') meta2 = pysat.Meta(units_label='units', name_label='long_Name') meta2['new21'] = {'units': 'hey2', 'long_name': 'boo2'} self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} self.meta['new2'] = meta2 self.meta.units_label = 'Units' self.meta.name_label = 'Long_Name' assert ((self.meta['new'].units == 'hey') & (self.meta['new'].long_name == 'boo') & (self.meta['new2'].children['new21'].units == 'hey2') & (self.meta['new2'].children['new21'].long_name == 'boo2')) def test_contains_case_insensitive(self): self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} self.meta['new2'] = {'units': 'hey2', 'long_name': 'boo2'} assert ('new2' in self.meta) assert ('NEW2' in self.meta) def test_contains_case_insensitive_w_ho(self): self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} meta2 = pysat.Meta() meta2['new21'] = {'units': 'hey2', 'long_name': 'boo2'} self.meta['new2'] = meta2 assert ('new2' in self.meta) assert ('NEW2' in self.meta) assert not ('new21' in self.meta) assert not ('NEW21' in self.meta) def test_get_variable_name_case_preservation(self): self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} self.meta['NEW2'] = {'units': 'hey2', 'long_name': 'boo2'} assert ('NEW2' == self.meta.var_case_name('new2')) assert ('NEW2' == self.meta.var_case_name('nEw2')) assert ('NEW2' == self.meta.var_case_name('neW2')) assert ('NEW2' == self.meta.var_case_name('NEW2')) def test_get_attribute_name_case_preservation(self): self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} self.meta['NEW2'] = {'units': 'hey2', 'long_name': 'boo2', 'YoYoYO': 'yolo'} self.meta['new'] = {'yoyoyo': 'YOLO'} assert (self.meta['new', 'yoyoyo'] == 'YOLO') assert (self.meta['new', 'YoYoYO'] == 'YOLO') assert (self.meta['new2', 'yoyoyo'] == 'yolo') assert (self.meta['new2', 'YoYoYO'] == 'yolo') def test_get_attribute_name_case_preservation_w_higher_order(self): self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} meta2 = pysat.Meta() meta2['NEW21'] = {'units': 'hey2', 'long_name': 'boo2', 'YoYoYO': 'yolo'} self.meta['NEW2'] = meta2 self.meta['new'] = {'yoyoyo': 'YOLO'} assert (self.meta.attr_case_name('YoYoYo') == 'YoYoYO') assert (self.meta['new', 'yoyoyo'] == 'YOLO') assert (self.meta['new', 'YoYoYO'] == 'YOLO') assert (self.meta['new2'].children['new21', 'yoyoyo'] == 'yolo') assert (self.meta['new2'].children['new21', 'YoYoYO'] == 'yolo') assert (self.meta['new2'].children.attr_case_name('YoYoYo') == 'YoYoYO') def test_get_attribute_name_case_preservation_w_higher_order_2(self): self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} meta2 = pysat.Meta() meta2['NEW21'] = {'units': 'hey2', 'long_name': 'boo2', 'YoYoYO': 'yolo'} self.meta['NEW2'] = meta2 self.meta['NEW'] = {'yoyoyo': 'YOLO'} assert (self.meta.attr_case_name('YoYoYo') == 'YoYoYO') assert (self.meta['new', 'yoyoyo'] == 'YOLO') assert (self.meta['NEW', 'YoYoYO'] == 'YOLO') assert (self.meta['new2'].children['new21', 'yoyoyo'] == 'yolo') assert (self.meta['new2'].children['new21', 'YoYoYO'] == 'yolo') assert (self.meta['new2'].children.attr_case_name('YoYoYo') == 'YoYoYO') def test_get_attribute_name_case_preservation_w_higher_order_reverse_order(self): self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} meta2 = pysat.Meta() meta2['NEW21'] = {'units': 'hey2', 'long_name': 'boo2', 'YoYoYO': 'yolo'} self.meta['new'] = {'yoyoyo': 'YOLO'} self.meta['NEW2'] = meta2 assert (self.meta.attr_case_name('YoYoYo') == 'yoyoyo') assert (self.meta['new', 'yoyoyo'] == 'YOLO') assert (self.meta['new', 'YoYoYO'] == 'YOLO') assert (self.meta['new2'].children['new21', 'yoyoyo'] == 'yolo') assert (self.meta['new2'].children['new21', 'YoYoYO'] == 'yolo') assert (self.meta['new2'].children.attr_case_name('YoYoYo') == 'yoyoyo') def test_has_attr_name_case_preservation_w_higher_order_reverse_order(self): self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} meta2 = pysat.Meta() meta2['NEW21'] = {'units': 'hey2', 'long_name': 'boo2', 'YoYoYO': 'yolo'} self.meta['new'] = {'yoyoyo': 'YOLO'} self.meta['NEW2'] = meta2 assert (self.meta.has_attr('YoYoYo')) assert (self.meta.has_attr('yoyoyo')) assert not (self.meta.has_attr('YoYoYyo')) def test_has_attr_name_case_preservation_w_higher_order(self): self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} meta2 = pysat.Meta() meta2['NEW21'] = {'units': 'hey2', 'long_name': 'boo2', 'YoYoYO': 'yolo'} self.meta['NEW2'] = meta2 assert not (self.meta.has_attr('YoYoYo')) assert not (self.meta.has_attr('yoyoyo')) assert not (self.meta.has_attr('YoYoYyo')) # check support on case preservation, but case insensitive def test_replace_meta_units_list_weird_case(self): self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} self.meta['new2'] = {'units': 'hey2', 'long_name': 'boo2'} self.meta[['NEW2', 'new']] = {'units': ['yeppers', 'yep']} assert (self.meta['new'].units == 'yep') assert (self.meta['new'].long_name == 'boo') assert (self.meta['new2'].units == 'yeppers') assert (self.meta['new2'].long_name == 'boo2') # Test the attribute transfer function def test_transfer_attributes_to_instrument(self): self.meta.new_attribute = 'hello' self.meta._yo_yo = 'yo yo' self.meta.date = None self.meta.transfer_attributes_to_instrument(self.testInst) assert self.testInst.new_attribute == 'hello' # ensure leading hyphens are dropped @raises(AttributeError) def test_transfer_attributes_to_instrument_leading_(self): self.meta.new_attribute = 'hello' self.meta._yo_yo = 'yo yo' self.meta.date = None self.meta.transfer_attributes_to_instrument(self.testInst) self.testInst._yo_yo == 'yo yo' # ensure leading hyphens are dropped @raises(AttributeError) def test_transfer_attributes_to_instrument_leading__(self): self.meta.new_attribute = 'hello' self.meta.__yo_yo = 'yo yo' self.meta.date = None self.meta.transfer_attributes_to_instrument(self.testInst) self.testInst.__yo_yo == 'yo yo' @raises(RuntimeError) def test_transfer_attributes_to_instrument_strict_names(self): self.meta.new_attribute = 'hello' self.meta._yo_yo = 'yo yo' self.meta.jojo_beans = 'yep!' self.meta.name = 'Failure!' self.meta.date = 'yo yo2' self.testInst.load(2009, 1) self.testInst.jojo_beans = 'nope!' self.meta.transfer_attributes_to_instrument(self.testInst, strict_names=True) def test_merge_meta(self): self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} meta2 = pysat.Meta() meta2['NEW21'] = {'units': 'hey2', 'long_name': 'boo2', 'YoYoYO': 'yolo'} self.meta.merge(meta2) assert (self.meta['new'].units == 'hey') assert (self.meta['new'].long_name == 'boo') assert (self.meta['NEW21'].units == 'hey2') assert (self.meta['NEW21'].long_name == 'boo2') assert (self.meta['NEW21'].YoYoYO == 'yolo') def test_drop_meta(self): self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} self.meta['NEW21'] = {'units': 'hey2', 'long_name': 'boo2', 'YoYoYO': 'yolo'} self.meta.drop(['new']) assert not ('new' in self.meta.data.index) assert (self.meta['NEW21'].units == 'hey2') assert (self.meta['NEW21'].long_name == 'boo2') assert (self.meta['NEW21'].YoYoYO == 'yolo') def test_keep_meta(self): self.meta['new'] = {'units': 'hey', 'long_name': 'boo'} self.meta['NEW21'] = {'units': 'hey2', 'long_name': 'boo2', 'YoYoYO': 'yolo'} self.meta.keep(['new21']) assert not ('new' in self.meta.data.index) assert (self.meta['NEW21'].units == 'hey2') assert (self.meta['NEW21'].long_name == 'boo2') assert (self.meta['NEW21'].YoYoYO == 'yolo')
bsd-3-clause
Canas/kaftools
examples/klms_bicycle.py
1
2703
from scipy.io import loadmat import matplotlib.pyplot as plt from kaftools.filters import KlmsFilter from kaftools.kernels import GaussianKernel if __name__ == "__main__": # Cargar datos mat = loadmat("data/bicycle_data.mat") y_noise = mat['y_noise'][0] # voltage signal # Configurar KLMS klms_params = { 'kernel': GaussianKernel(sigma=10), 'learning_rate': 5e-4, 'delay': 5, } klms = KlmsFilter(y_noise, y_noise) klms.fit(**klms_params) # Graficar resultados # Transient fsize = 26 fig = plt.figure(101, figsize=(16, 4)) ax = plt.gca() plt.plot(klms.estimate, 'b', label='KLMS-X predictions', linewidth=4) plt.plot(y_noise, color='red', marker='.', linestyle='None', ms=8, label='true voltage measurements') leg = plt.legend(ncol=4, frameon=False, shadow=True, loc=9, prop={'size': fsize}) frame = leg.get_frame() frame.set_facecolor('0.9') plt.xlabel('time [sample]', size=fsize) plt.ylabel('voltage', size=fsize) plt.axis('tight') plt.rc('xtick', labelsize=fsize) plt.rc('ytick', labelsize=fsize) plt.title('One-step-ahead prediction of voltage signal (KLMS-X)', size=fsize) # ,weight='bold') plt.show() # Steady-Transient fsize = 26 fig = plt.figure(101, figsize=(16, 4)) ax = plt.gca() plt.plot(klms.estimate, 'b', label='KLMS-X predictions', linewidth=4) plt.plot(y_noise, color='red', marker='.', linestyle='None', ms=8, label='true voltage measurements') leg = plt.legend(ncol=4, frameon=False, shadow=True, loc=9, prop={'size': fsize}) frame = leg.get_frame() frame.set_facecolor('0.9') plt.xlabel('time [sample]', size=fsize) plt.ylabel('voltage', size=fsize) plt.rc('xtick', labelsize=fsize) plt.rc('ytick', labelsize=fsize) plt.title('KLMS-X prediction: transition to steady-state region', size=fsize) # ,weight='bold') plt.axis([750, 1250, 0, 1.6]) plt.show() # Steady fsize = 26 fig = plt.figure(101, figsize=(16, 4)) ax = plt.gca() plt.plot(klms.estimate, 'b', label='KLMS-X predictions', linewidth=4) plt.plot(y_noise, color='red', marker='.', linestyle='None', ms=8, label='true voltage measurements') leg = plt.legend(ncol=4, frameon=False, shadow=True, loc=9, prop={'size': fsize}) frame = leg.get_frame() frame.set_facecolor('0.9') plt.xlabel('time [sample]', size=fsize) plt.ylabel('voltage', size=fsize) plt.axis('tight') plt.rc('xtick', labelsize=fsize) plt.rc('ytick', labelsize=fsize) plt.title('KLMS-X prediction: steady-state region', size=fsize) # ,weight='bold') plt.axis([2000, 2500, -0.9, 0.2]) plt.show()
mit
rahuldhote/scikit-learn
sklearn/metrics/tests/test_pairwise.py
105
22788
import numpy as np from numpy import linalg from scipy.sparse import dok_matrix, csr_matrix, issparse from scipy.spatial.distance import cosine, cityblock, minkowski, wminkowski from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.externals.six import iteritems from sklearn.metrics.pairwise import euclidean_distances from sklearn.metrics.pairwise import manhattan_distances from sklearn.metrics.pairwise import linear_kernel from sklearn.metrics.pairwise import chi2_kernel, additive_chi2_kernel from sklearn.metrics.pairwise import polynomial_kernel from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics.pairwise import sigmoid_kernel from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import cosine_distances from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_distances_argmin_min from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.metrics.pairwise import pairwise_kernels from sklearn.metrics.pairwise import PAIRWISE_KERNEL_FUNCTIONS from sklearn.metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from sklearn.metrics.pairwise import PAIRED_DISTANCES from sklearn.metrics.pairwise import check_pairwise_arrays from sklearn.metrics.pairwise import check_paired_arrays from sklearn.metrics.pairwise import _parallel_pairwise from sklearn.metrics.pairwise import paired_distances from sklearn.metrics.pairwise import paired_euclidean_distances from sklearn.metrics.pairwise import paired_manhattan_distances from sklearn.preprocessing import normalize def test_pairwise_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) S = pairwise_distances(X, metric="euclidean") S2 = euclidean_distances(X) assert_array_almost_equal(S, S2) # Euclidean distance, with Y != X. Y = rng.random_sample((2, 4)) S = pairwise_distances(X, Y, metric="euclidean") S2 = euclidean_distances(X, Y) assert_array_almost_equal(S, S2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) S2 = pairwise_distances(X_tuples, Y_tuples, metric="euclidean") assert_array_almost_equal(S, S2) # "cityblock" uses sklearn metric, cityblock (function) is scipy.spatial. S = pairwise_distances(X, metric="cityblock") S2 = pairwise_distances(X, metric=cityblock) assert_equal(S.shape[0], S.shape[1]) assert_equal(S.shape[0], X.shape[0]) assert_array_almost_equal(S, S2) # The manhattan metric should be equivalent to cityblock. S = pairwise_distances(X, Y, metric="manhattan") S2 = pairwise_distances(X, Y, metric=cityblock) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Low-level function for manhattan can divide in blocks to avoid # using too much memory during the broadcasting S3 = manhattan_distances(X, Y, size_threshold=10) assert_array_almost_equal(S, S3) # Test cosine as a string metric versus cosine callable # "cosine" uses sklearn metric, cosine (function) is scipy.spatial S = pairwise_distances(X, Y, metric="cosine") S2 = pairwise_distances(X, Y, metric=cosine) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Tests that precomputed metric returns pointer to, and not copy of, X. S = np.dot(X, X.T) S2 = pairwise_distances(S, metric="precomputed") assert_true(S is S2) # Test with sparse X and Y, # currently only supported for Euclidean, L1 and cosine. X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) S = pairwise_distances(X_sparse, Y_sparse, metric="euclidean") S2 = euclidean_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse, metric="cosine") S2 = cosine_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse.tocsc(), metric="manhattan") S2 = manhattan_distances(X_sparse.tobsr(), Y_sparse.tocoo()) assert_array_almost_equal(S, S2) S2 = manhattan_distances(X, Y) assert_array_almost_equal(S, S2) # Test with scipy.spatial.distance metric, with a kwd kwds = {"p": 2.0} S = pairwise_distances(X, Y, metric="minkowski", **kwds) S2 = pairwise_distances(X, Y, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # same with Y = None kwds = {"p": 2.0} S = pairwise_distances(X, metric="minkowski", **kwds) S2 = pairwise_distances(X, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # Test that scipy distance metrics throw an error if sparse matrix given assert_raises(TypeError, pairwise_distances, X_sparse, metric="minkowski") assert_raises(TypeError, pairwise_distances, X, Y_sparse, metric="minkowski") # Test that a value error is raised if the metric is unkown assert_raises(ValueError, pairwise_distances, X, Y, metric="blah") def check_pairwise_parallel(func, metric, kwds): rng = np.random.RandomState(0) for make_data in (np.array, csr_matrix): X = make_data(rng.random_sample((5, 4))) Y = make_data(rng.random_sample((3, 4))) try: S = func(X, metric=metric, n_jobs=1, **kwds) except (TypeError, ValueError) as exc: # Not all metrics support sparse input # ValueError may be triggered by bad callable if make_data is csr_matrix: assert_raises(type(exc), func, X, metric=metric, n_jobs=2, **kwds) continue else: raise S2 = func(X, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) S = func(X, Y, metric=metric, n_jobs=1, **kwds) S2 = func(X, Y, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) def test_pairwise_parallel(): wminkowski_kwds = {'w': np.arange(1, 5).astype('double'), 'p': 1} metrics = [(pairwise_distances, 'euclidean', {}), (pairwise_distances, wminkowski, wminkowski_kwds), (pairwise_distances, 'wminkowski', wminkowski_kwds), (pairwise_kernels, 'polynomial', {'degree': 1}), (pairwise_kernels, callable_rbf_kernel, {'gamma': .1}), ] for func, metric, kwds in metrics: yield check_pairwise_parallel, func, metric, kwds def test_pairwise_callable_nonstrict_metric(): # paired_distances should allow callable metric where metric(x, x) != 0 # Knowing that the callable is a strict metric would allow the diagonal to # be left uncalculated and set to 0. assert_equal(pairwise_distances([[1]], metric=lambda x, y: 5)[0, 0], 5) def callable_rbf_kernel(x, y, **kwds): # Callable version of pairwise.rbf_kernel. K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds) return K def test_pairwise_kernels(): # Test the pairwise_kernels helper function. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) # Test with all metrics that should be in PAIRWISE_KERNEL_FUNCTIONS. test_metrics = ["rbf", "sigmoid", "polynomial", "linear", "chi2", "additive_chi2"] for metric in test_metrics: function = PAIRWISE_KERNEL_FUNCTIONS[metric] # Test with Y=None K1 = pairwise_kernels(X, metric=metric) K2 = function(X) assert_array_almost_equal(K1, K2) # Test with Y=Y K1 = pairwise_kernels(X, Y=Y, metric=metric) K2 = function(X, Y=Y) assert_array_almost_equal(K1, K2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric) assert_array_almost_equal(K1, K2) # Test with sparse X and Y X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) if metric in ["chi2", "additive_chi2"]: # these don't support sparse matrices yet assert_raises(ValueError, pairwise_kernels, X_sparse, Y=Y_sparse, metric=metric) continue K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric) assert_array_almost_equal(K1, K2) # Test with a callable function, with given keywords. metric = callable_rbf_kernel kwds = {} kwds['gamma'] = 0.1 K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds) K2 = rbf_kernel(X, Y=Y, **kwds) assert_array_almost_equal(K1, K2) # callable function, X=Y K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds) K2 = rbf_kernel(X, Y=X, **kwds) assert_array_almost_equal(K1, K2) def test_pairwise_kernels_filter_param(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) K = rbf_kernel(X, Y, gamma=0.1) params = {"gamma": 0.1, "blabla": ":)"} K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params) assert_array_almost_equal(K, K2) assert_raises(TypeError, pairwise_kernels, X, Y, "rbf", **params) def test_paired_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) # Euclidean distance, with Y != X. Y = rng.random_sample((5, 4)) for metric, func in iteritems(PAIRED_DISTANCES): S = paired_distances(X, Y, metric=metric) S2 = func(X, Y) assert_array_almost_equal(S, S2) S3 = func(csr_matrix(X), csr_matrix(Y)) assert_array_almost_equal(S, S3) if metric in PAIRWISE_DISTANCE_FUNCTIONS: # Check the the pairwise_distances implementation # gives the same value distances = PAIRWISE_DISTANCE_FUNCTIONS[metric](X, Y) distances = np.diag(distances) assert_array_almost_equal(distances, S) # Check the callable implementation S = paired_distances(X, Y, metric='manhattan') S2 = paired_distances(X, Y, metric=lambda x, y: np.abs(x - y).sum(axis=0)) assert_array_almost_equal(S, S2) # Test that a value error is raised when the lengths of X and Y should not # differ Y = rng.random_sample((3, 4)) assert_raises(ValueError, paired_distances, X, Y) def test_pairwise_distances_argmin_min(): # Check pairwise minimum distances computation for any metric X = [[0], [1]] Y = [[-1], [2]] Xsp = dok_matrix(X) Ysp = csr_matrix(Y, dtype=np.float32) # euclidean metric D, E = pairwise_distances_argmin_min(X, Y, metric="euclidean") D2 = pairwise_distances_argmin(X, Y, metric="euclidean") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # sparse matrix case Dsp, Esp = pairwise_distances_argmin_min(Xsp, Ysp, metric="euclidean") assert_array_equal(Dsp, D) assert_array_equal(Esp, E) # We don't want np.matrix here assert_equal(type(Dsp), np.ndarray) assert_equal(type(Esp), np.ndarray) # Non-euclidean sklearn metric D, E = pairwise_distances_argmin_min(X, Y, metric="manhattan") D2 = pairwise_distances_argmin(X, Y, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(E, [1., 1.]) D, E = pairwise_distances_argmin_min(Xsp, Ysp, metric="manhattan") D2 = pairwise_distances_argmin(Xsp, Ysp, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (callable) D, E = pairwise_distances_argmin_min(X, Y, metric=minkowski, metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (string) D, E = pairwise_distances_argmin_min(X, Y, metric="minkowski", metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Compare with naive implementation rng = np.random.RandomState(0) X = rng.randn(97, 149) Y = rng.randn(111, 149) dist = pairwise_distances(X, Y, metric="manhattan") dist_orig_ind = dist.argmin(axis=0) dist_orig_val = dist[dist_orig_ind, range(len(dist_orig_ind))] dist_chunked_ind, dist_chunked_val = pairwise_distances_argmin_min( X, Y, axis=0, metric="manhattan", batch_size=50) np.testing.assert_almost_equal(dist_orig_ind, dist_chunked_ind, decimal=7) np.testing.assert_almost_equal(dist_orig_val, dist_chunked_val, decimal=7) def test_euclidean_distances(): # Check the pairwise Euclidean distances computation X = [[0]] Y = [[1], [2]] D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) X = csr_matrix(X) Y = csr_matrix(Y) D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) # Paired distances def test_paired_euclidean_distances(): # Check the paired Euclidean distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_euclidean_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_paired_manhattan_distances(): # Check the paired manhattan distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_manhattan_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_chi_square_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((10, 4)) K_add = additive_chi2_kernel(X, Y) gamma = 0.1 K = chi2_kernel(X, Y, gamma=gamma) assert_equal(K.dtype, np.float) for i, x in enumerate(X): for j, y in enumerate(Y): chi2 = -np.sum((x - y) ** 2 / (x + y)) chi2_exp = np.exp(gamma * chi2) assert_almost_equal(K_add[i, j], chi2) assert_almost_equal(K[i, j], chi2_exp) # check diagonal is ones for data with itself K = chi2_kernel(Y) assert_array_equal(np.diag(K), 1) # check off-diagonal is < 1 but > 0: assert_true(np.all(K > 0)) assert_true(np.all(K - np.diag(np.diag(K)) < 1)) # check that float32 is preserved X = rng.random_sample((5, 4)).astype(np.float32) Y = rng.random_sample((10, 4)).astype(np.float32) K = chi2_kernel(X, Y) assert_equal(K.dtype, np.float32) # check integer type gets converted, # check that zeros are handled X = rng.random_sample((10, 4)).astype(np.int32) K = chi2_kernel(X, X) assert_true(np.isfinite(K).all()) assert_equal(K.dtype, np.float) # check that kernel of similar things is greater than dissimilar ones X = [[.3, .7], [1., 0]] Y = [[0, 1], [.9, .1]] K = chi2_kernel(X, Y) assert_greater(K[0, 0], K[0, 1]) assert_greater(K[1, 1], K[1, 0]) # test negative input assert_raises(ValueError, chi2_kernel, [[0, -1]]) assert_raises(ValueError, chi2_kernel, [[0, -1]], [[-1, -1]]) assert_raises(ValueError, chi2_kernel, [[0, 1]], [[-1, -1]]) # different n_features in X and Y assert_raises(ValueError, chi2_kernel, [[0, 1]], [[.2, .2, .6]]) # sparse matrices assert_raises(ValueError, chi2_kernel, csr_matrix(X), csr_matrix(Y)) assert_raises(ValueError, additive_chi2_kernel, csr_matrix(X), csr_matrix(Y)) def test_kernel_symmetry(): # Valid kernels should be symmetric rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) assert_array_almost_equal(K, K.T, 15) def test_kernel_sparse(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) X_sparse = csr_matrix(X) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) K2 = kernel(X_sparse, X_sparse) assert_array_almost_equal(K, K2) def test_linear_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = linear_kernel(X, X) # the diagonal elements of a linear kernel are their squared norm assert_array_almost_equal(K.flat[::6], [linalg.norm(x) ** 2 for x in X]) def test_rbf_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = rbf_kernel(X, X) # the diagonal elements of a rbf kernel are 1 assert_array_almost_equal(K.flat[::6], np.ones(5)) def test_cosine_similarity_sparse_output(): # Test if cosine_similarity correctly produces sparse output. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) K1 = cosine_similarity(Xcsr, Ycsr, dense_output=False) assert_true(issparse(K1)) K2 = pairwise_kernels(Xcsr, Y=Ycsr, metric="cosine") assert_array_almost_equal(K1.todense(), K2) def test_cosine_similarity(): # Test the cosine_similarity. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) for X_, Y_ in ((X, None), (X, Y), (Xcsr, None), (Xcsr, Ycsr)): # Test that the cosine is kernel is equal to a linear kernel when data # has been previously normalized by L2-norm. K1 = pairwise_kernels(X_, Y=Y_, metric="cosine") X_ = normalize(X_) if Y_ is not None: Y_ = normalize(Y_) K2 = pairwise_kernels(X_, Y=Y_, metric="linear") assert_array_almost_equal(K1, K2) def test_check_dense_matrices(): # Ensure that pairwise array check works for dense matrices. # Check that if XB is None, XB is returned as reference to XA XA = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_true(XA_checked is XB_checked) assert_array_equal(XA, XA_checked) def test_check_XB_returned(): # Ensure that if XA and XB are given correctly, they return as equal. # Check that if XB is not None, it is returned equal. # Note that the second dimension of XB is the same as XA. XA = np.resize(np.arange(40), (5, 8)) XB = np.resize(np.arange(32), (4, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) XB = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_paired_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) def test_check_different_dimensions(): # Ensure an error is raised if the dimensions are different. XA = np.resize(np.arange(45), (5, 9)) XB = np.resize(np.arange(32), (4, 8)) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XB = np.resize(np.arange(4 * 9), (4, 9)) assert_raises(ValueError, check_paired_arrays, XA, XB) def test_check_invalid_dimensions(): # Ensure an error is raised on 1D input arrays. XA = np.arange(45) XB = np.resize(np.arange(32), (4, 8)) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XA = np.resize(np.arange(45), (5, 9)) XB = np.arange(32) assert_raises(ValueError, check_pairwise_arrays, XA, XB) def test_check_sparse_arrays(): # Ensures that checks return valid sparse matrices. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_sparse = csr_matrix(XA) XB = rng.random_sample((5, 4)) XB_sparse = csr_matrix(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse) # compare their difference because testing csr matrices for # equality with '==' does not work as expected. assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XB_checked)) assert_equal(abs(XB_sparse - XB_checked).sum(), 0) XA_checked, XA_2_checked = check_pairwise_arrays(XA_sparse, XA_sparse) assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XA_2_checked)) assert_equal(abs(XA_2_checked - XA_checked).sum(), 0) def tuplify(X): # Turns a numpy matrix (any n-dimensional array) into tuples. s = X.shape if len(s) > 1: # Tuplify each sub-array in the input. return tuple(tuplify(row) for row in X) else: # Single dimension input, just return tuple of contents. return tuple(r for r in X) def test_check_tuple_input(): # Ensures that checks return valid tuples. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_tuples = tuplify(XA) XB = rng.random_sample((5, 4)) XB_tuples = tuplify(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples) assert_array_equal(XA_tuples, XA_checked) assert_array_equal(XB_tuples, XB_checked) def test_check_preserve_type(): # Ensures that type float32 is preserved. XA = np.resize(np.arange(40), (5, 8)).astype(np.float32) XB = np.resize(np.arange(40), (5, 8)).astype(np.float32) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_equal(XA_checked.dtype, np.float32) # both float32 XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_equal(XA_checked.dtype, np.float32) assert_equal(XB_checked.dtype, np.float32) # mismatched A XA_checked, XB_checked = check_pairwise_arrays(XA.astype(np.float), XB) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float) # mismatched B XA_checked, XB_checked = check_pairwise_arrays(XA, XB.astype(np.float)) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float)
bsd-3-clause
mikemoorester/ESM
esm.py
1
65733
#!/usr/bin/env python from __future__ import division, print_function, absolute_import import matplotlib.pyplot as plt from matplotlib import cm import numpy as np import re import gzip import calendar import os, sys import datetime as dt from scipy import interpolate from scipy.stats.stats import nanmean, nanmedian, nanstd #from scipy import sparse from scipy import stats import antenna as ant import residuals as res import gpsTime as gt import GamitStationFile as gsf import svnav def loglikelihood(meas,model): #def loglikelihood(meas,model,sd): # Calculate negative log likelihood #LL = -np.sum( stats.norm.logpdf(meas, loc=model, scale=sd ) ) n2 = np.size(meas)/2. tmp = np.subtract(meas,model) SSR = np.dot(tmp.T,tmp) LL = -np.log(SSR)*n2 LL -= (1+np.log(np.pi/n2) )*n2 return LL def calcAIC(llh,dof): aic = -2.*llh + 2.*(dof) return aic # small number of observations def calcAICC(llh,dof,numObs): return -2. * llh + 2. * dof * numObs / (numObs - dof - 1.) def calcBIC(llh,dof,numObs): bic = -2.*llh + np.log(numObs) * dof return bic def reject_outliers(data, m=5): return data[abs(data - np.mean(data)) < m * np.std(data)] def reject_abs(data, val): return data[abs(data) < val] def reject_outliers_arg(data,nSigma): """ Do a simple outlier removal at 3 sigma, with two passes over the data """ criterion = ( (data[:] < (data[:].mean() + data[:].std() * nSigma)) & (data[:] > (data[:].mean() - data[:].std() * nSigma)) ) ind = np.array(np.where(criterion))[0] return ind def reject_outliers_byelevation_arg(data,nSigma,zenSpacing=0.5): zen = np.linspace(0,90,int(90./zenSpacing)+1) tmp = [] for z in zen: criterion = ( (data[:,2] < (z + zenSpacing/2.)) & (data[:,2] > (z - zenSpacing/2.)) ) ind = np.array(np.where(criterion))[0] rout = reject_outliers_arg(data[ind,3],nSigma) tmp.append(rout.tolist()) return tmp def reject_outliers_elevation(data,nSigma,zenSpacing=0.5): zen = np.linspace(0,90,int(90./zenSpacing)+1) for z in zen: criterion = ( (data[:,0] < (z + zenSpacing/2.)) & (data[:,0] > (z - zenSpacing/2.)) ) ind = np.array(np.where(criterion)) ind = ind.reshape((np.size(ind),)) tdata = np.zeros((np.size(ind),3)) tdata = data[ind,:] din = data[ind,2].reshape((np.size(ind),)) rout = reject_outliers_arg(din,5) # if its the first interation initialise tmp if z < zenSpacing: tmp = tdata[rout,:] else: tmp = np.vstack((tmp,tdata[rout,:])) return tmp def blockMedian(data, azSpacing=0.5,zenSpacing=0.5): """ bMedian = blockMedian(residuals,args, idSpacing) where, residuals => f gridSpacing => float ie every 0.5 degrees output: bType 1 => bMedian is a 2d matrix of shape [nAz,nZd] bMedian = blockMedian('./MOBS_DPH_2012_001_143.all',0.5) bMedian.shape => 721,181 """ az = np.linspace(0,360.,int(360./azSpacing)+1) zz = np.linspace(0,90,int(90./zenSpacing)+1) azCtr = 0 iCtr = 0 bMedian = np.zeros((az.size,zz.size)) bMedianStd = np.zeros((az.size,zz.size)) for i in az: if(i - azSpacing/2. < 0) : criterion = (data[:,0] < (i + azSpacing/2.)) | (data[:,0] > (360. - azSpacing/2.) ) else: criterion = (data[:,0] < (i + azSpacing/2.)) & (data[:,0] > (i - azSpacing/2.) ) ind = np.array(np.where(criterion))[0] #print("Azimuth,ind:",np.shape(ind),ind) jCtr = 0 if ind.size == 0: for j in zz : bMedian[iCtr,jCtr] = float('NaN') jCtr += 1 else: tmp = data[ind,:] for j in zz: # disregard any observation above 80 in zenith, too noisy if j >= 80: bMedian[iCtr,jCtr] = float('NaN') else: criterion = (tmp[:,1] < (j + zenSpacing/2.)) & (tmp[:,1] > (j - zenSpacing/2.) ) indZ = np.array(np.where(criterion))[0] if indZ.size > 3 : bMedian[iCtr,jCtr] = nanmedian( reject_outliers(reject_abs( tmp[indZ,2],70. ),5.)) bMedianStd[iCtr,jCtr] = nanstd(reject_outliers(reject_abs( tmp[indZ,2],70. ),5.)) else: bMedian[iCtr,jCtr] = float('NaN') jCtr += 1 iCtr += 1 return bMedian, bMedianStd def interpolate_eleMean(model): """ Salim --- When the residuals are NaN, replace them with the mean of # the all the data at the same elevation """ # Get mean of columns (data at the same elevation) without taking int account NaNs el_mean = nanmean(model,axis=0) #print(el_mean) # Find indices for NaNs, and replace them by the column mean ind_nan = np.where(np.isnan(model)) model[ind_nan] = np.take(el_mean,ind_nan[1]) return model def modelStats(model,data, azSpacing=0.5,zenSpacing=0.5): """ bMedian = blockMedian(residuals,gridSpacing) where, residuals => f gridSpacing => float ie every 0.5 degrees output: bType 1 => bMedian is a 2d matrix of shape [nAz,nZd] Example: bMedian = blockMedian('./MOBS_DPH_2012_001_143.all',0.5) bMedian.shape => 721,181 """ az = np.linspace(0,360.,int(360./azSpacing)+1) zz = np.linspace(0,90,int(90./zenSpacing)+1) azCtr = 0 iCtr = 0 chi = 0 SS_tot = 0 SS_res = 0 SS_reg = 0 test_ctr = 0 reg_ctr = 0 for i in az: if(i - azSpacing/2. < 0) : criterion = (data[:,0] < (i + azSpacing/2.)) | (data[:,0] > (360. - azSpacing/2.) ) else: criterion = (data[:,0] < (i + azSpacing/2.)) & (data[:,0] > (i - azSpacing/2.) ) ind = np.array(np.where(criterion)) if ind.size > 0: tmp = data[ind,:] tmp = tmp.reshape(tmp.shape[1],tmp.shape[2]) jCtr = 0 for j in zz: # disregard any observation above 80 in zenith, too noisy if j < 80. + zenSpacing: criterion = (tmp[:,1] < (j + zenSpacing/2.)) & (tmp[:,1] > (j - zenSpacing/2.) ) tmpZ = np.array( tmp[indZ[:],2] ) if indZ.size > 3 and not np.isnan(model[iCtr,jCtr]): # and (model[iCtr,jCtr] > 0.00001 or model[iCtr,jCtr] < -0.00001): test_data = reject_outliers(reject_abs( tmp[indZ,2],70. ),5.) #print(i,j,test_data,model[iCtr,jCtr]) if test_data.size > 0: y_mean = np.mean(test_data) SS_reg += (model[iCtr,jCtr] - y_mean)**2 reg_ctr += 1 for obs in test_data: #chi += (obs - model[iCtr,jCtr]) ** 2 / model[iCtr,jCtr] SS_tot += (obs - y_mean) ** 2 SS_res += (obs - model[iCtr,jCtr])**2 test_ctr += 1 jCtr += 1 iCtr += 1 rr = 1. - SS_res/SS_tot rms = np.sqrt(SS_res) * 1./test_ctr # gives an indication of how different the models would be between the test and training data set rms2 = np.sqrt(SS_reg) * 1./reg_ctr # Used in matlab instead of rr norm_res = np.sqrt(SS_res) mse = 1./(2.*test_ctr) * SS_res return mse,rr,rms,rms2 # calculate the cost function, that is the Mean Square Error def calcMSE(model,data,azGridSpacing=0.5,zenGridSpacing=0.5): mse = 0 az = np.linspace(0,360, int(360./azGridSpacing) ) zen = np.linspace(0,90, int(90./zenGridSpacing)+1 ) model = np.nan_to_num(model) model_test = interpolate.interp2d(az, zen, model.reshape(az.size * zen.size,), kind='linear') for i in range(0,np.shape(data)[0]): mse += (data[i,3] - model_test(data[i,1],data[i,2]))[0]**2 mse = 1./(2.*np.shape(data)[0]) * mse return mse def setPlotFontSize(ax,fsize): for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(fsize) return ax def plotModel(model,figname): az = np.linspace(0, 360, np.shape(model)[0]) zz = np.linspace(0, 90, np.shape(model)[1]) plt.ioff() # fig = plt.figure(figsize=(3.62, 2.76)) #ax = fig.add_subplot(111,polar=True) ax = plt.subplot(111,polar=True) ax.set_theta_direction(-1) ax.set_theta_offset(np.radians(90.)) ax.set_ylim([0,1]) ax.set_rgrids((0.00001, np.radians(20)/np.pi*2, np.radians(40)/np.pi*2,np.radians(60)/np.pi*2,np.radians(80)/np.pi*2),labels=('0', '20', '40', '60', '80'),angle=180) ma,mz = np.meshgrid(az,zz,indexing='ij') ma = ma.reshape(ma.size,) mz = mz.reshape(mz.size,) polar = ax.scatter(np.radians(ma), np.radians(mz)/np.pi*2., c=model[:,:], s=50, alpha=1., cmap=cm.RdBu,vmin=-15,vmax=15, lw=0) cbar = plt.colorbar(polar,shrink=0.75,pad=.10) cbar.ax.tick_params(labelsize=8) cbar.set_label('ESM (mm)',size=8) ax = setPlotFontSize(ax,8) plt.tight_layout() plt.savefig(figname) plt.close() #plt.show() return def plotModelElevationSlices(model,figname): zz = np.linspace(0, 90, np.shape(model)[1]) ele = 90. - zz[::-1] zenRes = model[0,:] eleRes = zenRes[::-1] plt.ioff() ax = plt.subplot(111) for i in range(0,np.shape(model)[0]): #print("Plotting Slice:",i) zenRes = model[i,:] eleRes = zenRes[::-1] ax.plot(ele,eleRes) #ax.set_ylim([0,1]) ax = setPlotFontSize(ax,8) plt.tight_layout() plt.savefig(figname) plt.close() return def plotModelsElevationSlices(models,figname): zz = np.linspace(0, 90, np.shape(models)[2]) ele = 90. - zz[::-1] plt.ioff() ax = plt.subplot(111) for i in range(0,np.shape(models)[1]): #print("Plotting Slice:",i) for j in range(0,np.shape(models)[0]): print("From Model segment:",j) zenRes = models[j,i,:] eleRes = zenRes[::-1] ax.plot(ele,eleRes) ax = setPlotFontSize(ax,8) plt.tight_layout() plt.savefig(figname) plt.close() return def plotModelsElevationSlices3D(models,figname): az = np.linspace(0, 360, np.shape(models)[1]) zz = np.linspace(0, 90, np.shape(models)[2]) ele = 90. - zz[::-1] dd = range(0,np.shape(models)[1]) mz,md = np.meshgrid(zz,dd,indexing='ij') md = md.reshape(md.size,) mz = mz.reshape(mz.size,) ax = plt.subplot(111,projection='3d') for i in range(0,np.shape(models)[1]): for j in range(0,np.shape(models)[0]): zenRes = models[j,i,:] eleRes = zenRes[::-1] blah = np.ones(np.size(zenRes))*j ax.plot(ele,blah,eleRes) ax = setPlotFontSize(ax,8) plt.tight_layout() plt.savefig(figname) plt.close() return def print_antex_file_header(f): print(' 1.4 M ANTEX VERSION / SYST',file=f) print('A PCV TYPE / REFANT',file=f) print(' END OF HEADER',file=f) return # TODO fix gridspacing to be dynamc def print_antex_header(antType,valid_from,valid_to,f): """ print_antex_header antenna name grid_spacing """ f.write(" START OF ANTENNA\n") f.write("{:<20s} TYPE / SERIAL NO\n".format(antType)) f.write("CALCULATED ANU 0 25-MAR-11 METH / BY / # / DATE\n") f.write(" 0.5 DAZI\n") f.write(" 0.0 90.0 0.5 ZEN1 / ZEN2 / DZEN\n") f.write(" 2 # OF FREQUENCIES\n") # valid_from is a dto (datetime object yyyy, MM, dd, hh, mm, ss, ms = gt.dt2validFrom(valid_from) # force seconds to 0.00 for valid from f.write("{:>6s} {:>5s} {:>5s} {:>5s} {:>5s} 0.0000000 VALID FROM\n".format(yyyy,MM,dd,hh,mm)) yyyy, MM, dd, hh, mm, ss, ms = gt.dt2validFrom(valid_to) hh = str(23) mm = str(59) f.write("{:>6s} {:>5s} {:>5s} {:>5s} {:>5s} 59.9999999 VALID UNTIL\n".format(yyyy,MM,dd,hh,mm)) # # Change the numbers after ANU to the same code as the previous antenna # f.write("ANU08_1648 SINEX CODE\n") f.write("CALCULATED From MIT repro2 COMMENT\n") return 1 def print_start_frequency(freq,pco,f): f.write(" {:3s} START OF FREQUENCY\n".format(freq)) pco_n = "{:0.2f}".format(pco[0]) pco_n = "{:>10s}".format(pco_n) pco_e = "{:0.2f}".format(pco[1]) pco_e = "{:>10s}".format(pco_e) pco_u = "{:0.2f}".format(pco[2]) pco_u = "{:>10s}".format(pco_u) f.write(pco_n+pco_e+pco_u+" NORTH / EAST / UP\n") def print_antex_noazi(data,f): noazi = "{:>8s}".format('NOAZI') for d in data: d = "{:>8.2f}".format(d) noazi = noazi + d f.write(noazi) f.write("\n") def print_antex_line(az,data,f): az = "{:>8.1f}".format(az) for d in data: d = "{:>8.2f}".format(d) az = az+d f.write(az) f.write("\n") def print_end_frequency(freq,f): f.write(" {:3s} END OF FREQUENCY\n".format(freq)) def print_end_antenna(f): f.write(" END OF ANTENNA\n") def create_esm(med,azGrid,zenGrid,antennas,antType): # add the block median residuals to an interpolate PCV file... # args.grid should come from the antenna data based on the grid spacing of the antex file antenna = ant.antennaType(antType,antennas) dzen = antenna['dzen'][2] x = np.linspace(0,360, int(360./dzen)+1 ) y = np.linspace(0,90, int(90./dzen)+1 ) L1_data = np.array(antenna['data'][0]) L2_data = np.array(antenna['data'][1]) # check to see if it is an elevation only model.. # if it is then copy the elevation fields to all of the azimuth fields if np.shape(L1_data)[0] == 1: L1_tmp = np.zeros((np.size(x),np.size(y))) L2_tmp = np.zeros((np.size(x),np.size(y))) # often elevation only models only go down to 80 degrees in zenith for j in range(0,np.size(y)): if j >= np.shape(L1_data)[1] : L1_tmp[:,j] = 0. L2_tmp[:,j] = 0. else: L1_tmp[:,j] = L1_data[0,j] L2_tmp[:,j] = L2_data[0,j] del L1_data, L2_data L1_data = L1_tmp L2_data = L2_tmp tmp = L1_data.reshape(x.size * y.size,) L1 = interpolate.interp2d(x, y, tmp, kind='linear') L2 = interpolate.interp2d(x, y, L2_data.reshape(x.size * y.size,), kind='linear') x_esm = np.linspace(0,360, int(360./azGrid)+1 ) y_esm = np.linspace(0,90, int(90./zenGrid)+1 ) esm = np.zeros((x_esm.size,y_esm.size,2)) i = 0 for az in x_esm : j = 0 #========================================== # med is in elevation angle order # need to reverse the med array around so that it is in zenith order #========================================== for zen in y_esm : if med[i,j] > 0.00001 or med[i,j] < -0.00001 : esm[i,j,0] = med[i,j] + L1(az,zen)[0] esm[i,j,1] = med[i,j] + L2(az,zen)[0] else: esm[i,j,0] = L1(az,zen)[0] esm[i,j,1] = L2(az,zen)[0] j += 1 i += 1 # catch the case where the residuals have not been averaged twice at az = 0 # PWL vs block median if i > np.shape(med)[0]-1: i = 0 #================================================================ #print("test interpolation for az=>360 zenith =>90 => 13.67:") #az = 360. #zen = 90. #print(L1(az,zen),L1(zen,az),L1(az,90.-zen),L1(90.-zen,az)) #print("test interpolation for az=>355 zenith =>85 => 8.65:") #az = 355. #zen = 85. #print(L1(az,zen),L1(zen,az),L1(az,90.-zen),L1(90.-zen,az)) #print(L1(355,80),L1(355,82.5),L1(355,85),L1(355,86),L1(355,87),L1(355,88),L1(355,89),L1(355,90)) return esm def traverse_directory(args) : """ traverse_directory(args) Search through a specified GAMIT project to look for DPH residuals files consolidate them into a compressed L3 format (.CL3), for analysis later. """ siteRGX = re.compile('DPH.'+args.site.upper()) s = [] # report non-unique residuals for root, dirs, files in os.walk(args.traverse): path = root.split('/') for gamitFile in files: if siteRGX.search(gamitFile): gamitFile = root+'/'+gamitFile #check for potential duplicates in the same path, only want to use one of the DOH files if len(path[-1]) > 4: regex = re.compile(root[:-2]) else: regex = re.compile(root) # only check for duplicates when there is more than one network # being processed... if args.network == 'yyyy_dddnN': if len(s) == 0: s.append(gamitFile) else: # for each element in s, check to see if the root path does not match # any of the files already stored in the list m = 0 for item in s: if regex.search(item) : m = 1 if not m : s.append(gamitFile) else: s.append(gamitFile) s.sort() lines = '' # Now loop through each file and consolidate the residuals for dfile in s : dphs = res.parseDPH(dfile) # check if the dph files are being searched are from #a GAMIT network of type yyyy/dddn?/ root, filename = os.path.split(dfile) if args.network == 'yyyy_dddnN': ddd = root[-5:-2] year = int(root[-10:-6]) startDT = dt.datetime(year,01,01) startDT = startDT + dt.timedelta(days=(int(ddd) -1)) elif args.network == 'ddd': ddd = root[-3:] year = root[-8:-4] startDT = dt.datetime(int(year),01,01) startDT = startDT + dt.timedelta(days=(int(ddd) -1)) line = res.consolidate(dphs,startDT) lines = lines + line # if its larger than 1GB dump it to a file # this is designed to keep the load n the file system lighter if sys.getsizeof(lines) > 1073741824 : f = gzip.open(args.save_file,'a',9) f.write(lines) f.close() lines = '' #print(lines) # dump any remaining memory to file f = gzip.open(args.save_file,'a',9) f.write(lines) f.close() lines = '' return def satelliteModel(antenna,nadirData): #assuming a 14 model at 1 deg intervals ctr = 0 newNoAzi = [] # from the Nadir model force the value at 13.8 to be equal to 14.0 for val in antenna['noazi'] : if ctr == 13: antenna['noazi'][ctr] = (val + nadirData[ctr*5 -1]) elif ctr > 13: antenna['noazi'][ctr] = val else: antenna['noazi'][ctr] = val + nadirData[ctr*5] ctr +=1 return antenna def calcNadirAngle(ele): """ Calculate the NADIR angle based on the station's elevation angle """ nadeg = np.arcsin(6378.0/26378.0 * np.cos(ele/180.*np.pi)) * 180./np.pi return nadeg def applyNadirCorrection(svdat,nadirData,site_residuals): """ sr = applyNadirCorrection(nadirData,site_residuals) Apply the nadir residual model to the carrier phase residuals. nadirData is a dictionary of satellite corrections nadirData['1'] = <array 70 elements> 0 to 13.8 degrees """ #print("Attempting to apply the corrections") # form up a linear interpolater for each nadir model.. nadirAngles = np.linspace(0,13.8,70) linearInt = {} for svn in nadirData: linearInt[svn] = interpolate.interp1d(nadirAngles ,nadirData[svn]) # slow method, can;t assume the PRN will be the same SV over time.. # can break residuals in daily chunks and then apply correction for i in range(0,np.shape(site_residuals)[0]): nadeg = calcNadirAngle(site_residuals[i,2]) if nadeg > 13.8: nadeg = 13.8 dto = gt.unix2dt(site_residuals[i,0]) svn = svnav.findSV_DTO(svdat,int(site_residuals[i,4]),dto) #print("Looking for svn:",svn, int(site_residuals[i,4]),nadeg) site_residuals[i,3] = site_residuals[i,3] + linearInt[str(svn)](nadeg) return site_residuals #def krig(site_residuals): def pwlFly(site_residuals, azSpacing=0.5,zenSpacing=0.5): """ PWL piece-wise-linear interpolation fit of phase residuals -construct a PWL fit for each azimuth bin, and then paste them all together to get the full model -inversion is doen within each bin cdata -> compressed data """ tdata = res.reject_absVal(site_residuals,100.) del site_residuals data = res.reject_outliers_elevation(tdata,5,0.5) del tdata numd = np.shape(data)[0] numZD = int(90.0/zenSpacing) + 1 numAZ = int(360./zenSpacing) pwl_All = np.zeros((numAZ,numZD)) pwlSig_All = np.zeros((numAZ,numZD)) Bvec_complete = [] Sol_complete = [] meas_complete = [] model_complete = [] postchis = [] prechis = [] aics = [] bics = [] #w = 1; for j in range(0,numAZ): # Find only those value within this azimuth bin: if(j - azSpacing/2. < 0) : criterion = (data[:,1] < (j + azSpacing/2.)) | (data[:,1] > (360. - azSpacing/2.) ) else: criterion = (data[:,1] < (j + azSpacing/2.)) & (data[:,1] > (j - azSpacing/2.) ) ind = np.array(np.where(criterion))[0] azData =data[ind,:] numd = np.shape(azData)[0] #print("NUMD:",numd) if numd < 2: continue # # Neq is acting like a constrain on the model a small value 0.001 # let the model vary by 1000 mm # will let it vary more. a large value -> 1 will force the model to be closer to 0 # This gets too large for lots of observations, s best to doit on the fly.. # Neq = np.eye(numZD,dtype=float)# * 0.001 Apart = np.zeros((numd,numZD)) for i in range(0,numd): iz = int(np.floor(azData[i,2]/zenSpacing)) Apart[i,iz] = (1.-(azData[i,2]-iz*zenSpacing)/zenSpacing) Apart[i,iz+1] = (azData[i,2]-iz*zenSpacing)/zenSpacing w = np.sin(data[i,2]/180.*np.pi) for k in range(iz,iz+2): for l in range(iz,iz+2): Neq[k,l] = Neq[k,l] + (Apart[i,l]*Apart[i,k]) * 1./w**2 prechi = np.dot(azData[:,3].T,azData[:,3]) Bvec = np.dot(Apart.T,azData[:,3]) for val in Bvec: Bvec_complete.append(val) Cov = np.linalg.pinv(Neq) Sol = np.dot(Cov,Bvec) for val in Sol: Sol_complete.append(val) #Qxx = np.dot(Apart.T,Apart) #Qvv = np.subtract( np.eye(numd) , np.dot(np.dot(Apart,Qxx),Apart.T)) #sd = np.squeeze(np.diag(Qvv)) #dx = np.dot(np.linalg.pinv(Qxx),Bvec) #dl = np.dot(Apart,dx) postchi = prechi - np.dot(Bvec.T,Sol) postchis.append(np.sqrt(postchi/numd)) prechis.append(np.sqrt(prechi/numd)) pwlsig = np.sqrt(np.diag(Cov) *postchi/numd) # calculate the model values for each obs model = np.dot(Apart,Sol) #np.zeros(numd) for d in range(0,numd): model_complete.append(model[d]) meas_complete.append(azData[d,3]) # zen = azData[d,2] # iz = int(np.floor(azData[d,2]/zenSpacing)) # #model[d] = Sol[iz] #print("STATS:",numd,np.sqrt(prechi/numd),np.sqrt(postchi/numd),np.sqrt((prechi-postchi)/numd),gls_results.rsquared,gls_results.aic,gls_results.bic) # loglikelihood(meas,model,sd) #sd = np.squeeze(np.diag(Qvv)) #print("meas, model, sd:",np.shape(azData),np.shape(model),np.shape(sd)) f = loglikelihood(azData[:,3],model) dof = numd - np.shape(Sol)[0] aic = calcAIC(f,dof) bic = calcBIC(f,dof,numd) aics.append(aic) bics.append(bic) #print("=========================") pwl_All[j,:] = Sol pwlSig_All[j,:] = pwlsig del Sol,pwlsig,Cov,Bvec,Neq,Apart,azData,ind #A_complete = np.squeeze(np.asarray(A_complete.todense())) #print("A shape",np.shape(A_complete)) print("Doing a fit to the data") f = loglikelihood(np.array(meas_complete),np.array(model_complete)) numd = np.size(meas_complete) dof = numd - np.shape(Sol_complete)[0] aic = calcAIC(f,dof) bic = calcBIC(f,dof,numd) #prechi = np.dot(data[:,3].T,data[:,3]) prechi = np.dot(np.array(meas_complete).T,np.array(meas_complete)) postchi = prechi - np.dot(np.array(Bvec_complete).T,np.array(Sol_complete)) #print("My loglikelihood:",f,aic,bic,dof,numd) print("STATS:",numd,np.sqrt(prechi/numd),np.sqrt(postchi/numd),np.sqrt((prechi-postchi)/numd),aic,bic) return pwl_All, pwlSig_All def pwl(site_residuals, azSpacing=0.5,zenSpacing=0.5): """ PWL piece-wise-linear interpolation fit of phase residuals -construct a PWL fit for each azimuth bin, and then paste them all together to get the full model -inversion is doen within each bin cdata -> compressed data """ tdata = res.reject_absVal(site_residuals,100.) del site_residuals data = res.reject_outliers_elevation(tdata,5,0.5) del tdata Bvec_complete = [] Sol_complete = [] model_complete = [] meas_complete = [] numd = np.shape(data)[0] numZD = int(90.0/zenSpacing) + 1 numAZ = int(360./azSpacing) print("numAZ",numAZ) pwl_All = np.zeros((numAZ,numZD)) pwlSig_All = np.zeros((numAZ,numZD)) #pwl_All = np.zeros((numZD,numAZ)) #pwlSig_All = np.zeros((numZD,numAZ)) for j in range(0,numAZ): # Find only those value within this azimuth bin: if(j - azSpacing/2. < 0) : criterion = (data[:,1] < (j + azSpacing/2.)) | (data[:,1] > (360. - azSpacing/2.) ) else: criterion = (data[:,1] < (j + azSpacing/2.)) & (data[:,1] > (j - azSpacing/2.) ) ind = np.array(np.where(criterion))[0] azData =data[ind,:] numd = np.shape(azData)[0] if numd < 2: continue # Neq is acting like a constrain on the model a small value 0.001 # let the model vary by 1000 mm # will let it vary more. a large value -> 1 will force the model to be closer to 0 Neq = np.eye(numZD,dtype=float) * 0.001 Apart = np.zeros((numd,numZD)) #aiz = j* int(np.floor(360./zenSpacing)) for i in range(0,numd): iz = int(np.floor(azData[i,2]/zenSpacing)) #+ aiz Apart[i,iz] = (1.-(azData[i,2]-float(iz)*zenSpacing)/zenSpacing) Apart[i,iz+1] = (azData[i,2]-float(iz)*zenSpacing)/zenSpacing #Apart_1 = (1.-(azData[i,2]-float(iz)*zenSpacing)/zenSpacing) #Apart_2 = (azData[i,2]-float(iz)*zenSpacing)/zenSpacing prechi = np.dot(azData[:,3].T,azData[:,3]) Neq = np.add(Neq, np.dot(Apart.T,Apart) ) Bvec = np.dot(Apart.T,azData[:,3]) for val in Bvec: Bvec_complete.append(val) Cov = np.linalg.pinv(Neq) Sol = np.dot(Cov,Bvec) for val in Sol: Sol_complete.append(val) postchi = prechi - np.dot(Bvec.T,Sol) pwlsig = np.sqrt(np.diag(Cov) *postchi/numd) model = np.dot(Apart,Sol) for d in range(0,numd): meas_complete.append(azData[d,3]) model_complete.append(model[d]) pwl_All[j,:] = Sol pwlSig_All[j,:] = pwlsig #print("Sol:",Sol) #print("PWL:",pwl_All[j,:]) #pwl_All[:,j] = Sol #print("Sol:",np.shape(Sol),np.shape(pwl_All)) #pwlSig_All[:,j] = pwlsig del Sol,pwlsig,Cov,Bvec,Neq,Apart,azData,ind # Calculate the AIC and BIC values... f = loglikelihood(np.array(meas_complete),np.array(model_complete)) numd = np.size(meas_complete) dof = numd - np.shape(Sol_complete)[0] aic = calcAIC(f,dof) bic = calcBIC(f,dof,numd) prechi = np.dot(np.array(meas_complete).T,np.array(meas_complete)) postchi = prechi - np.dot(np.array(Bvec_complete).T,np.array(Sol_complete)) #print("My loglikelihood:",f,aic,bic,dof,numd) #print("STATS:",numd,np.sqrt(prechi/numd),np.sqrt(postchi/numd),np.sqrt((prechi-postchi)/numd),aic,bic) stats = {} stats['prechi'] = np.sqrt(prechi/numd) stats['postchi'] = np.sqrt(postchi/numd) stats['chi_inc'] = np.sqrt((prechi-postchi)/numd) stats['aic'] = aic stats['bic'] = bic return pwl_All, pwlSig_All, stats def pwlELE(site_residuals, azSpacing=0.5,zenSpacing=0.5,store=False,site="site"): """ PWL piece-wise-linear interpolation fit of phase residuals cdata -> compressed data """ tdata = res.reject_absVal(site_residuals,100.) del site_residuals data = res.reject_outliers_elevation(tdata,5,0.5) del tdata numd = np.shape(data)[0] numZD = int(90.0/zenSpacing) + 1 Neq = np.eye(numZD,dtype=float) * 0.01 #print("Neq",np.shape(Neq)) Apart = np.zeros((numd,numZD)) #print("Apart:",np.shape(Apart)) sd = np.zeros(numd) for i in range(0,numd): iz = np.floor(data[i,2]/zenSpacing) sd[i] = np.sin(data[i,2]/180.*np.pi) Apart[i,iz] = (1.-(data[i,2]-iz*zenSpacing)/zenSpacing) Apart[i,iz+1] = (data[i,2]-iz*zenSpacing)/zenSpacing prechi = np.dot(data[:,3].T,data[:,3]) #print("prechi:",prechi,numd,np.sqrt(prechi/numd)) Neq = np.add(Neq, np.dot(Apart.T,Apart) ) #print("Neq:",np.shape(Neq)) Bvec = np.dot(Apart.T,data[:,3]) #print("Bvec:",np.shape(Bvec)) Cov = np.linalg.pinv(Neq) #print("Cov",np.shape(Cov)) Sol = np.dot(Cov,Bvec) #print("Sol",np.shape(Sol)) postchi = prechi - np.dot(Bvec.T,Sol) #print("postchi:",postchi) pwl = Sol #print("pwl:",np.shape(pwl)) pwlsig = np.sqrt(np.diag(Cov) *postchi/numd) #print("pwlsig",np.shape(pwlsig)) model = np.dot(Apart,Sol) f = loglikelihood(data[:,3],model) dof = numd - np.shape(Sol)[0] aic = calcAIC(f,dof) bic = calcBIC(f,dof,numd) #print("My loglikelihood:",f,aic,bic,dof,numd) #print("STATS:",numd,np.sqrt(prechi/numd),np.sqrt(postchi/numd),np.sqrt((prechi-postchi)/numd),aic,bic) stats = {} stats['prechi'] = np.sqrt(prechi/numd) stats['postchi'] = np.sqrt(postchi/numd) stats['chi_inc'] = np.sqrt((prechi-postchi)/numd) stats['aic'] = aic stats['bic'] = bic # Check to see if wee store the partials as a numpy array if store: np.savez(site+'_pwlELE.npz',neq=Neq,atwb=Bvec) return pwl,pwlsig,stats def meanAdjust(site_residuals, azSpacing=0.5,zenSpacing=0.5): """ PWL piece-wise-linear interpolation fit of phase residuals -construct a PWL fit for each azimuth bin, and then paste them all together to get the full model -inversion is doen within each bin cdata -> compressed data """ tdata = res.reject_absVal(site_residuals,100.) del site_residuals data = res.reject_outliers_elevation(tdata,5,0.5) del tdata numd = np.shape(data)[0] numZD = int(90.0/zenSpacing) + 1 numAZ = int(360./zenSpacing) pwl_All = np.zeros((numAZ,numZD)) pwlSig_All = np.zeros((numAZ,numZD)) postchis = [] prechis = [] model_complete = [] meas_complete = [] Bvec_complete = [] Sol_complete = [] for j in range(0,numAZ): # Find only those value within this azimuth bin: if(j - azSpacing/2. < 0) : criterion = (data[:,1] < (j + azSpacing/2.)) | (data[:,1] > (360. - azSpacing/2.) ) else: criterion = (data[:,1] < (j + azSpacing/2.)) & (data[:,1] > (j - azSpacing/2.) ) ind = np.array(np.where(criterion))[0] azData =data[ind,:] numd = np.shape(azData)[0] if numd < 2: continue Neq = np.eye(numZD,dtype=float) * 0.001 Apart = np.zeros((numd,numZD)) for i in range(0,numd): iz = int(np.floor(azData[i,2]/zenSpacing)) Apart[i,iz] = 1. prechi = np.dot(azData[:,3].T,azData[:,3]) Neq = np.add(Neq, np.dot(Apart.T,Apart) ) Bvec = np.dot(Apart.T,azData[:,3]) for val in Bvec: Bvec_complete.append(val) Cov = np.linalg.pinv(Neq) Sol = np.dot(Cov,Bvec) for val in Sol: Sol_complete.append(val) postchi = prechi - np.dot(Bvec.T,Sol) pwlsig = np.sqrt(np.diag(Cov) *postchi/numd) prechis.append(np.sqrt(prechi/numd)) postchis.append(np.sqrt(postchi/numd)) #print("STATS:",numd,np.sqrt(prechi/numd),np.sqrt(postchi/numd),np.sqrt((prechi-postchi)/numd)) model = np.dot(Apart,Sol) for d in range(0,numd): model_complete.append(model[d]) meas_complete.append(azData[d,3]) pwl_All[j,:] = Sol pwlSig_All[j,:] = pwlsig del Sol,pwlsig,Cov,Bvec,Neq,Apart,azData,ind #overallPrechi = np.dot(data[:,3].T,data[:,3]) numd = np.size(meas_complete) #print("OVERALL STATS:", np.mean(prechis),np.mean(postchis),np.sqrt(overallPrechi/numD)) #prechi = np.dot(data[:,3].T,data[:,3]) prechi = np.dot(np.array(meas_complete).T,np.array(meas_complete)) postchi = prechi - np.dot(np.array(Bvec_complete).T,np.array(Sol_complete)) f = loglikelihood(meas_complete,model_complete) dof = numd - np.shape(Sol_complete)[0] aic = calcAIC(f,dof) bic = calcBIC(f,dof,numd) #print("My loglikelihood:",f,aic,bic,dof,numd) #print("STATS:",numd,np.sqrt(prechi/numd),np.sqrt(postchi/numd),np.sqrt((prechi-postchi)/numd),aic,bic) stats = {} stats['prechi'] = np.sqrt(prechi/numd) stats['postchi'] = np.sqrt(postchi/numd) stats['chi_inc'] = np.sqrt((prechi-postchi)/numd) stats['aic'] = aic stats['bic'] = bic return pwl_All, pwlSig_All,stats def meanAdjustELE(site_residuals, azSpacing=0.5,zenSpacing=0.5): """ PWL piece-wise-linear interpolation fit of phase residuals cdata -> compressed data """ tdata = res.reject_absVal(site_residuals,100.) del site_residuals data = res.reject_outliers_elevation(tdata,5,0.5) del tdata numd = np.shape(data)[0] numZD = int(90.0/zenSpacing) + 1 Neq = np.eye(numZD,dtype=float) * 0.01 Apart = np.zeros((numd,numZD)) sd = np.zeros(numd) for i in range(0,numd): iz = np.floor(data[i,2]/zenSpacing) sd[i] = np.sin(data[i,2]/180.*np.pi) Apart[i,iz] = 1.#-(data[i,2]-iz*zenSpacing)/zenSpacing) prechi = np.dot(data[:,3].T,data[:,3]) Neq = np.add(Neq, np.dot(Apart.T,Apart) ) Bvec = np.dot(Apart.T,data[:,3]) Cov = np.linalg.pinv(Neq) Sol = np.dot(Cov,Bvec) postchi = prechi - np.dot(Bvec.T,Sol) pwl = Sol pwlsig = np.sqrt(np.diag(Cov) *postchi/numd) model = np.dot(Apart,Sol) f = loglikelihood(data[:,3],model) dof = numd - np.shape(Sol)[0] aic = calcAIC(f,dof) bic = calcBIC(f,dof,numd) #print("My loglikelihood:",f,aic,bic,dof,numd) #print("STATS:",numd,np.sqrt(prechi/numd),np.sqrt(postchi/numd),np.sqrt((prechi-postchi)/numd),aic,bic) stats = {} stats['prechi'] = np.sqrt(prechi/numd) stats['postchi'] = np.sqrt(postchi/numd) stats['chi_inc'] = np.sqrt((prechi-postchi)/numd) stats['aic'] = aic stats['bic'] = bic return pwl,pwlsig,stats def nadirPlot(svnav,nadirData,i): fig = plt.figure(figsize=(3.62, 2.76)) ax = fig.add_subplot(111) for sv in nadirData: blk = int(svnav.findBLK_SV(svdat,sv)) if blk == i: ax.plot(nadir,nadirData[sv],'-',alpha=0.7,linewidth=1,label="SV "+str(sv)) ax.set_xlabel('Nadir Angle (degrees)',fontsize=8) ax.set_ylabel('Residual (mm)',fontsize=8) ax.set_xlim([0, 14]) ax.set_ylim([-5,5]) ax.legend(fontsize=8,ncol=3) title = svnav.blockType(i) ax.set_title(title,fontsize=8) for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(8) return fig #============================================================================== # # TODO: # test plots # error bars on elevation plot? #===================================== if __name__ == "__main__": import warnings warnings.filterwarnings("ignore") import argparse parser = argparse.ArgumentParser(prog='esm',description='Create an Empirical Site Model from one-way GAMIT phase residuals', formatter_class=argparse.RawTextHelpFormatter, epilog='''\ Example: To create a consolidated phase residual file: > python ~/gg/com/esm.py --trav /short/dk5/repro2/2012/ --site YAR2 --network yyyy_dddnN --save_file YAR2.2012.CL3.gz To create a model: > python ~/gg/com/esm.py --model --site yar2 -f ./t/YAR2.2012.CL3 ''') #=================================================================== # Meta data information required to create an ESM #=================================================================== parser.add_argument('-a', '--antex', dest='antex', default="~/gg/tables/antmod.dat",help="Location of ANTEX file (default = ~/gg/tables/antmod.dat)") parser.add_argument('--sf','--station_file', dest='station_file', default="~/gg/tables/station.info",help="GAMIT station file with metadata (default= ~/gg/tables/station.info)") parser.add_argument('--sv','--svnav', dest="svnavFile",default="~/gg/tables/svnav.dat", help="Location of GAMIT svnav.dat") parser.add_argument('-s', '--site', dest='site', required=True, help="SITE 4 character id") #=================================================================== # Inputting the phase residuals options: #=================================================================== parser.add_argument('-f', dest='resfile', default='',help="Consolidated one-way LC phase residuals") #=================================================================== # Consolidate DPH file options: #=================================================================== parser.add_argument('--save_file',dest='save_file',default='./', help="Location to save the consolidated phase files") parser.add_argument('--traverse',dest='traverse', help="Location to search for DPH files from") # only support yyyy_dddn? and ddd parser.add_argument('--network',dest='network',default='yyyy_dddnN',choices=['yyyy_dddnN','ddd'], help="Format of gps subnetworks") #=================================================================== # Modelling options #=================================================================== parser.add_argument('--model', dest='model', choices=['blkm','pwl','blkmadj'],help="Create an ESM\n (blkm = block median, pwl = piece wise linear)") parser.add_argument('-g', '--grid', dest='grid', default=5.,type=float,help="ANTEX grid spacing (default = 5 degrees)") parser.add_argument('--esm_grid', dest='esm_grid', default=0.5, type=float,help="Grid spacing to use when creating an ESM (default = 0.5 degrees)") # Interpolation/extrapolation options # TODO: nearneighbour, polynomial, surface fit, etc.. parser.add_argument('-i','--interpolate',dest='interpolate',choices=['ele_mean'], help="ele_mean use the elevation mean to fill any missing values in the model") #=================================================================== # Plot options #=================================================================== parser.add_argument('--polar',dest='polar', default=False, action='store_true', help="Produce a polar plot of the ESM phase residuals (not working in development") parser.add_argument('--elevation',dest='elevation', default=False, action='store_true', help="Produce an elevation dependent plot of ESM phase residuals") #=================================================================== # Start from a consolidated CPH file of the DPH residuals #parser.add_argument('--dph',dest='dphFile') parser.add_argument('-o','--outfile',help='filename for ESM model (default = antmod.ssss)') #=================================================================== # Satellite options #=================================================================== parser.add_argument('--nadir',dest='nadir',help="location of satellite nadir residuals SV_RESIDUALS.ND3") parser.add_argument('--nm','--nadirModel',dest='nadirModel',default=False,action='store_true', help="Create an ESM model for the satellites") parser.add_argument('--nadirPlot',dest='nadirPlot',default=False,action='store_true',help="Plot nadir residuals") parser.add_argument('--nadirCorrection',dest='nadirCorrection',default=False,action='store_true',help="Apply the satellite Nadir correction to the phase residuals") parser.add_argument('--store',dest='store',default=False,action='store_true', help='Store the partials Neq and AtWl as a numpy binary file') #=================================================================== args = parser.parse_args() #=================================================================== # expand any home directory paths (~) to the full path, otherwise python won't find the file if args.resfile : args.resfile = os.path.expanduser(args.resfile) args.antex = os.path.expanduser(args.antex) args.station_file = os.path.expanduser(args.station_file) args.svnavFile = os.path.expanduser(args.svnavFile) svdat = [] nadirData = {} #=================================================================== # Look through the GAMIT processing subdirectories for DPH files # belonging to a particular site. #=================================================================== if args.traverse : traverse_directory(args) if args.model: args.resfile = args.save_file if args.nadir: nadir = np.genfromtxt(args.nadir) sv_nums = np.unique(nadir[:,2]) nadirDataStd = {} for sv in sv_nums: criterion = nadir[:,2] == sv ind = np.array(np.where(criterion))[0] nadir_medians = nanmean(nadir[ind,3:73],axis=0) nadir_stdev = nanstd(nadir[ind,3:73],axis=0) nadirData[str(int(sv))] = nadir_medians #nadirDataStd[str(int(sv))] = nadir_stdev if args.nadirPlot: nadir = np.linspace(0,13.8, int(14.0/0.2) ) svdat = svnav.parseSVNAV(args.svnavFile) # prepare a plot for each satellite block figBLK = [] axBLK = [] fig1 = nadirPlot(svnav,nadirData,1) plt.tight_layout() title = svnav.blockType(1) plt.savefig(title+".eps") fig2 = nadirPlot(svnav,nadirData,2) plt.tight_layout() title = svnav.blockType(2) plt.savefig(title+".eps") fig3 = nadirPlot(svnav,nadirData,3) plt.tight_layout() title = svnav.blockType(3) plt.savefig(title+".eps") fig4 = nadirPlot(svnav,nadirData,4) plt.tight_layout() title = svnav.blockType(4) plt.savefig(title+".eps") fig5 = nadirPlot(svnav,nadirData,5) plt.tight_layout() title = svnav.blockType(5) plt.savefig(title+".eps") fig6 = nadirPlot(svnav,nadirData,6) plt.tight_layout() title = svnav.blockType(6) plt.savefig(title+".eps") fig7 = nadirPlot(svnav,nadirData,7) plt.tight_layout() title = svnav.blockType(7) plt.savefig(title+".eps") # Do a plot of all the satellites now.. fig = plt.figure(figsize=(3.62, 2.76)) ax = fig.add_subplot(111) for sv in nadirData: ax.plot(nadir,nadirData[sv],'-',alpha=0.7,linewidth=1) ax.set_xlabel('Nadir Angle (degrees)',fontsize=8) ax.set_ylabel('Residual (mm)',fontsize=8) ax.set_xlim([0, 14]) ax.set_ylim([-5,5]) for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(8) plt.tight_layout() plt.savefig("NadirResiduals_All.eps") # Plot the satellites by block blocks = np.unique(nadir[:,]) plt.show() if args.nadirModel: # read in the antenna satellite model antennas = ant.parseANTEX(args.antex) with open('satmod.dat','w') as f: ant.printAntexHeader(f) for sv in nadirData: svn = "{:03d}".format(int(sv)) scode = 'G' + str(svn) antenna = ant.antennaScode(scode,antennas) for a in antenna: adjustedAnt = satelliteModel(a, nadirData[sv]) ant.printSatelliteModel(adjustedAnt,f) if args.model or args.elevation or args.polar: #=================================================================== # get the antenna information from an antex file antennas = ant.parseANTEX(args.antex) # read in the consolidated LC residuals print("") print("Reading in the consolidated phase residuals from:",args.resfile) print("") site_residuals = res.parseConsolidatedNumpy(args.resfile) dt_start = gt.unix2dt(site_residuals[0,0]) res_start = int(dt_start.strftime("%Y") + dt_start.strftime("%j")) dt_stop = gt.unix2dt(site_residuals[-1,0]) res_stop = int(dt_stop.strftime("%Y") + dt_stop.strftime("%j")) print("\tResiduals run from:",res_start,"to:",res_stop) if args.nadirCorrection: svdat = svnav.parseSVNAV(args.svnavFile) print("\n\t** Applying the Satellite dependent Nadir angle correction to the phase residuals") print("svdat:",np.shape(svdat)) site_residuals = applyNadirCorrection(svdat,nadirData,site_residuals) # work out how many models need to be created for the time period the residuals cover # check the station file, and looks for change in antenna type or radome type print("") print("Working out how many models need to be generated for",args.site.upper(),"using metadata obtained from:",args.station_file) print("") print("\t A new model will be formed whenever there is a change in:") print("\t\t1) Antenna type") print("\t\t2) Antenna serial number") print("\t\t3) Antenna height") print("\t\t4) Change of radome") print("") sdata = gsf.parseSite(args.station_file,args.site.upper()) change = gsf.determineESMChanges(dt_start,dt_stop,sdata) # find the indices where the change occurs due to an antenna type / radome change ind = gsf.antennaChange(sdata) models = np.zeros((np.size(change['ind'])+1,int(360./args.esm_grid)+1,int(90/args.esm_grid)+1,2)) num_models = np.size(change['ind'])+1 print("\nNumber of models which need to be formed:", num_models) ctr = 0 for i in range(0,num_models): print("\t\tCreating model",i+1,"of",num_models) minVal_dt = gt.ydhms2dt(change['start_yyyy'][i],change['start_ddd'][i],0,0,0) maxVal_dt = gt.ydhms2dt(change['stop_yyyy'][i],change['stop_ddd'][i],0,0,0) criterion = ( ( site_residuals[:,0] >= calendar.timegm(minVal_dt.utctimetuple()) ) & ( site_residuals[:,0] < calendar.timegm(maxVal_dt.utctimetuple()) ) ) mind = np.array(np.where(criterion)) change['valid_from'].append(minVal_dt) change['valid_to'].append(maxVal_dt) # get the correct antenna type for this station at this time antType = gsf.antennaType(sdata,minVal_dt.strftime("%Y"),minVal_dt.strftime("%j")) print("get station info:",antType,minVal_dt.strftime("%Y"),minVal_dt.strftime("%j")) # do a block median with 5 sigma outlier detection at 0.5 degree grid if args.model == 'blkm': data = np.zeros((np.size(mind),3)) data[:,0] = site_residuals[mind,1] data[:,1] = site_residuals[mind,2] data[:,2] = site_residuals[mind,3] med, medStd = blockMedian(data) print("BLKM:",np.shape(med)) elif args.model == 'pwl': med,pwl_sig,stats = pwl(site_residuals,args.esm_grid,args.esm_grid) print("PWL ","prechi:{:.2f} postchi:{:.2f} AIC:{:.1f}".format(stats['prechi'],stats['postchi'],stats['chi_inc'],stats['aic'])) #med,pwl_sig = pwlFly(site_residuals,args.esm_grid,args.esm_grid) # Compute the elevation depenedent model med_ele, pwl_sig,stats_ele = pwlELE(site_residuals,args.esm_grid,args.esm_grid,args.store,args.site) print("PWL_ELE ","prechi:{:.2f} postchi:{:.2f} AIC:{:.1f}".format(stats_ele['prechi'],stats_ele['postchi'],stats_ele['chi_inc'],stats_ele['aic'])) elif args.model == 'blkmadj': med, medStd,stats = meanAdjust(site_residuals,args.esm_grid,args.esm_grid) print("PWL ","prechi:{:.2f} postchi:{:.2f} AIC:{:.1f}".format(stats['prechi'],stats['postchi'],stats['chi_inc'],stats['aic'])) # Compute the elevation depenedent model med_ele, pwl_sig,stats = meanAdjustELE(site_residuals,args.esm_grid,args.esm_grid) print("med:",np.shape(med),"med_ele:",np.shape(med_ele))#,med_ele[93,:]) print("PWL_ELE ","prechi:{:.2f} postchi:{:.2f} AIC:{:.1f}".format(stats['prechi'],stats['postchi'],stats['chi_inc'],stats['aic'])) # check to see if any interpolation needs to be applied if args.interpolate == 'ele_mean': med = interpolate_eleMean(med) print("BLKM:",np.shape(med)) # Take the block median residuals and add them to the ANTEX file esm = create_esm(med, 0.5, 0.5, antennas,antType) models[ctr,:,:,:] = esm ctr +=1 # Now sort out any plotting requests #=========================================================== # Do an elevation only plot of the residuals #=========================================================== if args.elevation: fig = plt.figure(figsize=(3.62, 2.76)) fig.canvas.set_window_title(args.site+"_elevationDependentResiduals_"+str(1)+".png") ax = fig.add_subplot(111) ele = np.linspace(0,90, int(90./0.5)+1 ) ele_model = [] nzen = int(90./args.esm_grid) + 1 naz = int(360./args.esm_grid) + 1 for i in range(0,720): #ax.scatter(90.-ele,med[i,:],s=1,alpha=0.5,c='k') ax.scatter(ele,med[i,:],s=1,alpha=0.5,c='k') elevation = [] for j in range(0,nzen): elevation.append(90.- j * 0.5) ele_model.append(nanmean(med[:,j])) #if args.model == 'pwl': ax.plot(elevation,med_ele[::-1],'r-',linewidth=2) ax.set_xlabel('Elevation Angle (degrees)',fontsize=8) ax.set_ylabel('Phase Residuals (mm)',fontsize=8) ax.set_xlim([0, 90]) ax.set_ylim([-15,15]) for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(8) plt.tight_layout() if args.polar: az = np.linspace(0, 360.-0.5, int(360./0.5)) zz = np.linspace(0, 90, int(90./0.5)+1) # Plot the ESM... (antenna PCV + residuals) fig2 = plt.figure(figsize=(3.62, 2.76)) ax = fig2.add_subplot(111,polar=True) ax.set_theta_offset(np.radians(90.)) ax.set_theta_direction(-1) ax.set_ylim([0,1]) ax.set_rgrids((0.00001, np.radians(20)/np.pi*2, np.radians(40)/np.pi*2, np.radians(60)/np.pi*2, np.radians(80)/np.pi*2), labels=('0', '20', '40', '60', '80'),angle=180) ma,mz = np.meshgrid(az,zz,indexing='ij') ma = ma.reshape(ma.size,) mz = mz.reshape(mz.size,) print("MED:",np.shape(med),np.shape(ma),np.shape(mz)) print("ma:",ma[0:181]) print("mz:",mz[0:181]) print("ma:",ma[-181:]) print("mz:",mz[-181:]) #polar = ax.scatter(np.radians(ma),np.radians(mz)/np.pi*2., c=models[ctr-1,:,:,0], s=5, alpha=1., cmap=cm.RdBu,vmin=-15,vmax=15, lw=0) #polar = ax.scatter(np.radians(ma), np.radians(mz)/np.pi*2., c=med[:,:], s=5, alpha=1.,cmap=cm.RdBu,vmin=-15,vmax=15, lw=0) #polar = ax.scatter(np.radians(ma), np.radians(mz)/np.pi*2., c=med, s=15, cmap=cm.RdBu,vmin=-15,vmax=15, lw=0) #polar = ax.scatter(np.radians(mz)/np.pi*2., np.radians(ma), c=med, s=15, cmap=cm.RdBu,vmin=-15,vmax=15, lw=0) #polar.set_alpha(0.75) #az = np.linspace(0, 360.-0.5, int(360./0.5)) #zz = np.linspace(0, 90, int(90./0.5)+1) #ictr = 0 #for zz in np.linspace(0, 90, int(90./0.5)+1): # jctr = 0 # for az in np.linspace(0, 360.-0.5, int(360./0.5)): # ax.scatter(np.radians(az), np.radians(zz)/np.pi*2., c=med[ictr,jctr], s=5, cmap=cm.RdBu,vmin=-15,vmax=15, lw=0) # ictr += 1 # polar = ax2.scatter(np.radians(ma), np.radians(mz)/np.pi*2., c=med, s=5, alpha=1., cmap=cm.RdBu,vmin=-15,vmax=15, lw=0) #cbar = fig.colorbar(polar,shrink=0.75,pad=.10) #cbar.ax.tick_params(labelsize=8) #cbar.set_label(args.site+' ESM (mm)',size=8) for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(8) plt.tight_layout() if args.polar or args.elevation: plt.show() #=========================================================================================== # If we want an elevation or polar plot.... #=========================================================================================== # if args.elevation or args.polar : # import matplotlib.pyplot as plt # from matplotlib import cm # if args.polar : # az = np.linspace(0, 360, int(360./0.5)+1) # zz = np.linspace(0, 90, int(90./0.5)+1) # # Plot the ESM... (antenna PCV + residuals) # fig = plt.figure(figsize=(3.62, 2.76)) # ax = fig.add_subplot(111,polar=True) # ax.set_theta_direction(-1) # ax.set_theta_offset(np.radians(90.)) # ax.set_ylim([0,1]) # ax.set_rgrids((0.00001, np.radians(20)/np.pi*2, # np.radians(40)/np.pi*2, # np.radians(60)/np.pi*2, # np.radians(80)/np.pi*2), # labels=('0', '20', '40', '60', '80'),angle=180) # ma,mz = np.meshgrid(az,zz,indexing='ij') # ma = ma.reshape(ma.size,) # mz = mz.reshape(mz.size,) # polar = ax.scatter(np.radians(ma), np.radians(mz)/np.pi*2., c=models[0,:,:,0], s=5, alpha=1., cmap=cm.RdBu,vmin=-15,vmax=15, lw=0) # cbar = fig.colorbar(polar,shrink=0.75,pad=.10) # cbar.ax.tick_params(labelsize=8) # cbar.set_label(args.site+' ESM (mm)',size=8) # for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + # ax.get_xticklabels() + ax.get_yticklabels()): # item.set_fontsize(8) # plt.tight_layout() # # Plot the blkm of the residuals # fig2 = plt.figure(figsize=(3.62, 2.76)) # ax2 = fig2.add_subplot(111,polar=True) # ax2.set_theta_direction(-1) # ax2.set_theta_offset(np.radians(90.)) # ax2.set_ylim([0,1]) # ax2.set_rgrids((0.00001, np.radians(20)/np.pi*2, # np.radians(40)/np.pi*2, # np.radians(60)/np.pi*2, # np.radians(80)/np.pi*2), # labels=('0', '20', '40', '60', '80'),angle=180) # ma,mz = np.meshgrid(az,zz,indexing='ij') # ma = ma.reshape(ma.size,) # mz = mz.reshape(mz.size,) # polar = ax2.scatter(np.radians(ma), np.radians(mz)/np.pi*2., c=med, s=5, alpha=1., cmap=cm.RdBu,vmin=-15,vmax=15, lw=0) # cbar = fig2.colorbar(polar,shrink=0.75,pad=.10) # cbar.ax.tick_params(labelsize=8) # cbar.set_label(args.site+' L3 Residuals (mm)',size=8) # for item in ([ax2.title, ax2.xaxis.label, ax2.yaxis.label] + # ax2.get_xticklabels() + ax2.get_yticklabels()): # item.set_fontsize(8) # plt.tight_layout() # if args.elevation : #=========================================================== # TODO: loop over changes in equipment... #=========================================================== # Plot the residuals # the antenna model # then the ESM # #=========================================================== # Do an elevation only plot of the residuals #=========================================================== # fig = plt.figure(figsize=(3.62, 2.76)) # ax = fig.add_subplot(111) # ele = np.linspace(0,90, int(90./0.5)+1 ) # ele_model = [] # for i in range(0,720): # ax.scatter(90.-ele,med[i,:],s=1,alpha=0.5,c='k') # elevation = [] # for j in range(0,181): # elevation.append(90.- j * 0.5) # ele_model.append(nanmean(med[:,j])) # ax.plot(elevation,ele_model[:],'r-',linewidth=2) # ax.set_xlabel('Elevation Angle (degrees)',fontsize=8) # ax.set_ylabel('ESM (mm)',fontsize=8) # ax.set_xlim([0, 90]) # ax.set_ylim([-15,15]) # for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + # ax.get_xticklabels() + ax.get_yticklabels()): # item.set_fontsize(8) # plt.tight_layout() #=========================================================== # Plot the antenna model before the residuals are added # on L1 #=========================================================== #ax2 = fig.add_subplot(312) #ele = np.linspace(0,90, int(90./5)+1 ) #minVal_dt = gt.ydhms2dt(change['start_yyyy'][0],change['start_ddd'][0],0,0,0) #maxVal_dt = gt.ydhms2dt(change['stop_yyyy'][0],change['stop_ddd'][0],0,0,0) #antType = gsf.antennaType(sdata,minVal_dt.strftime("%Y"),minVal_dt.strftime("%j")) #antenna = ant.antennaType(antType,antennas) #L1_data = np.array(antenna['data'][0]) #L1_mean = np.mean(L1_data,axis=0) #f = interpolate.interp1d(ele,L1_mean) #L1_int = [] #ele_i = [] #for j in range(0,181): # ele_i.append(j*0.5) # L1_int.append(f(j*0.5)) #L1_int = np.array(L1_int) #ax2.plot(ele,L1_mean[::-1],'b-',alpha=0.5,linewidth=2) #ax2.plot(ele_i,L1_int[::-1],'k--') #ax2.set_xlabel('Elevation Angle (degrees)',fontsize=8) #ax2.set_ylabel('L1 PCV (mm)',fontsize=8) #ax2.set_xlim([0, 90]) #for item in ([ax2.title, ax2.xaxis.label, ax2.yaxis.label] + # ax2.get_xticklabels() + ax2.get_yticklabels()): # item.set_fontsize(8) #plt.tight_layout() #=========================================================== # Do an elevation only plot of the ESM #=========================================================== #fig = plt.figure(figsize=(3.62, 2.76)) #ax3 = fig.add_subplot(313) #ele = np.linspace(0,90, int(90./0.5)+1 ) #ele_esm = [] #esm = create_esm(med, 0.5, 0.5, antennas,antType) #for j in range(0,181): # ele_esm.append(np.mean(esm[:,j,0])) # plot the ele only esm model #ax3.plot(ele, ele_esm[::-1], 'g-',alpha=0.5,linewidth=2) # plot the interpolated ant ele PCV #ax3.plot(ele_i,L1_int[::-1],'b--',alpha=0.5,linewidth=2) # plot the esm - antenna model => should get the residuals #ax3.plot(ele, ele_esm - L1_int, 'b--',alpha=0.5,linewidth=2) # plot the ele only residuals #ax3.plot(ele, ele_model[::-1] , 'r-',alpha=0.3,linewidth=2) #ax3.legend(['esm','pcv','esm-pcv','residuals'],loc='best') # Try a crude attempt at an esm #fix = L1_int[::-1] + ele_model[::-1] #ax3.plot(ele, fix,'k--',alpha=0.5,linewidth=2) #ax3.plot(ele, fix - L1_int[::-1],'r--') #ax3.set_xlabel('Elevation Angle (degrees)',fontsize=8) #ax3.set_ylabel('ESM (mm)',fontsize=8) #ax3.set_xlim([0, 90]) #for item in ([ax3.title, ax3.xaxis.label, ax3.yaxis.label] + # ax3.get_xticklabels() + ax3.get_yticklabels()): # item.set_fontsize(8) #plt.tight_layout() #plt.show() #=================================================== # print the esm model residuals + antenna to an ANTEX file #=================================================== if args.model: if not args.outfile: args.outfile = "antmod."+args.site.lower() print("") print("Adding the ESM to the antenna PCV model to be saved to:",args.outfile) print("") with open(args.outfile,'w') as f: print_antex_file_header(f) for m in range(0,num_models): antType = gsf.antennaType( sdata, change['start_yyyy'][m], change['start_ddd'][m] ) antenna = ant.antennaType(antType,antennas) print("Model",m+1," is being added to the antenna PCV for:",antType) print_antex_header(antType, change['valid_from'][m],change['valid_to'][m],f) freq_ctr = 0 for freq in ['G01','G02'] : pco = antenna['PCO_'+freq] print_start_frequency(freq,pco,f) noazi = np.mean(models[m,:,:,freq_ctr],axis=0) print_antex_noazi(noazi,f) for i in range(0,int(360./args.esm_grid)+1): print_antex_line(float(i*args.esm_grid),models[m,i,:,freq_ctr],f) print_end_frequency(freq,f) freq_ctr +=1 print_end_antenna(f) f.close() #print("FINISHED")
mit
cdegroc/scikit-learn
sklearn/__init__.py
1
1863
""" Machine Learning module in python ================================= sklearn is a Python module integrating classical machine learning algorithms in the tightly-knit world of scientific Python packages (numpy, scipy, matplotlib). It aims to provide simple and efficient solutions to learning problems that are accessible to everybody and reusable in various contexts: machine-learning as a versatile tool for science and engineering. See http://scikit-learn.sourceforge.net for complete documentation. """ from . import check_build from .base import clone try: from numpy.testing import nosetester class NoseTester(nosetester.NoseTester): """ Subclass numpy's NoseTester to add doctests by default """ def test(self, label='fast', verbose=1, extra_argv=['--exe'], doctests=True, coverage=False): """Run the full test suite Examples -------- This will run the test suite and stop at the first failing example >>> from sklearn import test >>> test(extra_argv=['--exe', '-sx']) #doctest: +SKIP """ return super(NoseTester, self).test(label=label, verbose=verbose, extra_argv=extra_argv, doctests=doctests, coverage=coverage) test = NoseTester().test del nosetester except: pass __all__ = ['check_build', 'cross_validation', 'cluster', 'covariance', 'datasets', 'decomposition', 'feature_extraction', 'feature_selection', 'semi_supervised', 'gaussian_process', 'grid_search', 'hmm', 'lda', 'linear_model', 'metrics', 'mixture', 'naive_bayes', 'neighbors', 'pipeline', 'preprocessing', 'qda', 'svm', 'test', 'clone', 'pls'] __version__ = '0.11-git'
bsd-3-clause
lthurlow/Boolean-Constrained-Routing
working_dir/runs/.per_file.py
1
1163
import numpy as np import matplotlib.pyplot as plt import os, sys import pdb files_to_read = [] for l in os.listdir('.'): if l.split('.')[-1] == 'txt': files_to_read.append(l) for k in files_to_read: f = open(k, 'r') counter = 0 temp_d = {} temp_e = {} for line in f: if '[' in line: counter = 0 continue lp = line.split(',') if counter not in temp_d: temp_d[counter] = [float(lp[0].strip())] temp_e[counter] = [float(lp[1].strip())] else: temp_d[counter].append(float(lp[0].strip())) temp_e[counter].append(float(lp[1].strip())) counter += 1 # example data #x = np.arange(0.1, 4, 0.5) y1 = temp_d[1] x = [10,20,30,40,50] y2 = temp_d[2] # First illustrate basic pyplot interface, using defaults where possible. plt.subplot(2, 1, 1) plt.plot(x, y1, '.-') plt.errorbar(x,y1,yerr=temp_e[1]) plt.title('Time Comparision for Shortest Path') plt.ylabel('Boolean Time (s)') plt.subplot(2, 1, 2) plt.plot(x, y2, '.-') plt.errorbar(x,y2, yerr=temp_e[2]) plt.xlabel('Nodes') plt.ylabel('Networkx Time (s)') plt.savefig(str(k).split('.')[0]+'.png') plt.clf()
mit
arokem/scipy
scipy/optimize/minpack.py
1
34231
from __future__ import division, print_function, absolute_import import warnings from . import _minpack import numpy as np from numpy import (atleast_1d, dot, take, triu, shape, eye, transpose, zeros, prod, greater, asarray, inf, finfo, inexact, issubdtype, dtype) from scipy.linalg import svd, cholesky, solve_triangular, LinAlgError from scipy._lib._util import _asarray_validated, _lazywhere from scipy._lib._util import getfullargspec_no_self as _getfullargspec from .optimize import OptimizeResult, _check_unknown_options, OptimizeWarning from ._lsq import least_squares # from ._lsq.common import make_strictly_feasible from ._lsq.least_squares import prepare_bounds error = _minpack.error __all__ = ['fsolve', 'leastsq', 'fixed_point', 'curve_fit'] def _check_func(checker, argname, thefunc, x0, args, numinputs, output_shape=None): res = atleast_1d(thefunc(*((x0[:numinputs],) + args))) if (output_shape is not None) and (shape(res) != output_shape): if (output_shape[0] != 1): if len(output_shape) > 1: if output_shape[1] == 1: return shape(res) msg = "%s: there is a mismatch between the input and output " \ "shape of the '%s' argument" % (checker, argname) func_name = getattr(thefunc, '__name__', None) if func_name: msg += " '%s'." % func_name else: msg += "." msg += 'Shape should be %s but it is %s.' % (output_shape, shape(res)) raise TypeError(msg) if issubdtype(res.dtype, inexact): dt = res.dtype else: dt = dtype(float) return shape(res), dt def fsolve(func, x0, args=(), fprime=None, full_output=0, col_deriv=0, xtol=1.49012e-8, maxfev=0, band=None, epsfcn=None, factor=100, diag=None): """ Find the roots of a function. Return the roots of the (non-linear) equations defined by ``func(x) = 0`` given a starting estimate. Parameters ---------- func : callable ``f(x, *args)`` A function that takes at least one (possibly vector) argument, and returns a value of the same length. x0 : ndarray The starting estimate for the roots of ``func(x) = 0``. args : tuple, optional Any extra arguments to `func`. fprime : callable ``f(x, *args)``, optional A function to compute the Jacobian of `func` with derivatives across the rows. By default, the Jacobian will be estimated. full_output : bool, optional If True, return optional outputs. col_deriv : bool, optional Specify whether the Jacobian function computes derivatives down the columns (faster, because there is no transpose operation). xtol : float, optional The calculation will terminate if the relative error between two consecutive iterates is at most `xtol`. maxfev : int, optional The maximum number of calls to the function. If zero, then ``100*(N+1)`` is the maximum where N is the number of elements in `x0`. band : tuple, optional If set to a two-sequence containing the number of sub- and super-diagonals within the band of the Jacobi matrix, the Jacobi matrix is considered banded (only for ``fprime=None``). epsfcn : float, optional A suitable step length for the forward-difference approximation of the Jacobian (for ``fprime=None``). If `epsfcn` is less than the machine precision, it is assumed that the relative errors in the functions are of the order of the machine precision. factor : float, optional A parameter determining the initial step bound (``factor * || diag * x||``). Should be in the interval ``(0.1, 100)``. diag : sequence, optional N positive entries that serve as a scale factors for the variables. Returns ------- x : ndarray The solution (or the result of the last iteration for an unsuccessful call). infodict : dict A dictionary of optional outputs with the keys: ``nfev`` number of function calls ``njev`` number of Jacobian calls ``fvec`` function evaluated at the output ``fjac`` the orthogonal matrix, q, produced by the QR factorization of the final approximate Jacobian matrix, stored column wise ``r`` upper triangular matrix produced by QR factorization of the same matrix ``qtf`` the vector ``(transpose(q) * fvec)`` ier : int An integer flag. Set to 1 if a solution was found, otherwise refer to `mesg` for more information. mesg : str If no solution is found, `mesg` details the cause of failure. See Also -------- root : Interface to root finding algorithms for multivariate functions. See the ``method=='hybr'`` in particular. Notes ----- ``fsolve`` is a wrapper around MINPACK's hybrd and hybrj algorithms. """ options = {'col_deriv': col_deriv, 'xtol': xtol, 'maxfev': maxfev, 'band': band, 'eps': epsfcn, 'factor': factor, 'diag': diag} res = _root_hybr(func, x0, args, jac=fprime, **options) if full_output: x = res['x'] info = dict((k, res.get(k)) for k in ('nfev', 'njev', 'fjac', 'r', 'qtf') if k in res) info['fvec'] = res['fun'] return x, info, res['status'], res['message'] else: status = res['status'] msg = res['message'] if status == 0: raise TypeError(msg) elif status == 1: pass elif status in [2, 3, 4, 5]: warnings.warn(msg, RuntimeWarning) else: raise TypeError(msg) return res['x'] def _root_hybr(func, x0, args=(), jac=None, col_deriv=0, xtol=1.49012e-08, maxfev=0, band=None, eps=None, factor=100, diag=None, **unknown_options): """ Find the roots of a multivariate function using MINPACK's hybrd and hybrj routines (modified Powell method). Options ------- col_deriv : bool Specify whether the Jacobian function computes derivatives down the columns (faster, because there is no transpose operation). xtol : float The calculation will terminate if the relative error between two consecutive iterates is at most `xtol`. maxfev : int The maximum number of calls to the function. If zero, then ``100*(N+1)`` is the maximum where N is the number of elements in `x0`. band : tuple If set to a two-sequence containing the number of sub- and super-diagonals within the band of the Jacobi matrix, the Jacobi matrix is considered banded (only for ``fprime=None``). eps : float A suitable step length for the forward-difference approximation of the Jacobian (for ``fprime=None``). If `eps` is less than the machine precision, it is assumed that the relative errors in the functions are of the order of the machine precision. factor : float A parameter determining the initial step bound (``factor * || diag * x||``). Should be in the interval ``(0.1, 100)``. diag : sequence N positive entries that serve as a scale factors for the variables. """ _check_unknown_options(unknown_options) epsfcn = eps x0 = asarray(x0).flatten() n = len(x0) if not isinstance(args, tuple): args = (args,) shape, dtype = _check_func('fsolve', 'func', func, x0, args, n, (n,)) if epsfcn is None: epsfcn = finfo(dtype).eps Dfun = jac if Dfun is None: if band is None: ml, mu = -10, -10 else: ml, mu = band[:2] if maxfev == 0: maxfev = 200 * (n + 1) retval = _minpack._hybrd(func, x0, args, 1, xtol, maxfev, ml, mu, epsfcn, factor, diag) else: _check_func('fsolve', 'fprime', Dfun, x0, args, n, (n, n)) if (maxfev == 0): maxfev = 100 * (n + 1) retval = _minpack._hybrj(func, Dfun, x0, args, 1, col_deriv, xtol, maxfev, factor, diag) x, status = retval[0], retval[-1] errors = {0: "Improper input parameters were entered.", 1: "The solution converged.", 2: "The number of calls to function has " "reached maxfev = %d." % maxfev, 3: "xtol=%f is too small, no further improvement " "in the approximate\n solution " "is possible." % xtol, 4: "The iteration is not making good progress, as measured " "by the \n improvement from the last five " "Jacobian evaluations.", 5: "The iteration is not making good progress, " "as measured by the \n improvement from the last " "ten iterations.", 'unknown': "An error occurred."} info = retval[1] info['fun'] = info.pop('fvec') sol = OptimizeResult(x=x, success=(status == 1), status=status) sol.update(info) try: sol['message'] = errors[status] except KeyError: sol['message'] = errors['unknown'] return sol LEASTSQ_SUCCESS = [1, 2, 3, 4] LEASTSQ_FAILURE = [5, 6, 7, 8] def leastsq(func, x0, args=(), Dfun=None, full_output=0, col_deriv=0, ftol=1.49012e-8, xtol=1.49012e-8, gtol=0.0, maxfev=0, epsfcn=None, factor=100, diag=None): """ Minimize the sum of squares of a set of equations. :: x = arg min(sum(func(y)**2,axis=0)) y Parameters ---------- func : callable Should take at least one (possibly length N vector) argument and returns M floating point numbers. It must not return NaNs or fitting might fail. x0 : ndarray The starting estimate for the minimization. args : tuple, optional Any extra arguments to func are placed in this tuple. Dfun : callable, optional A function or method to compute the Jacobian of func with derivatives across the rows. If this is None, the Jacobian will be estimated. full_output : bool, optional non-zero to return all optional outputs. col_deriv : bool, optional non-zero to specify that the Jacobian function computes derivatives down the columns (faster, because there is no transpose operation). ftol : float, optional Relative error desired in the sum of squares. xtol : float, optional Relative error desired in the approximate solution. gtol : float, optional Orthogonality desired between the function vector and the columns of the Jacobian. maxfev : int, optional The maximum number of calls to the function. If `Dfun` is provided, then the default `maxfev` is 100*(N+1) where N is the number of elements in x0, otherwise the default `maxfev` is 200*(N+1). epsfcn : float, optional A variable used in determining a suitable step length for the forward- difference approximation of the Jacobian (for Dfun=None). Normally the actual step length will be sqrt(epsfcn)*x If epsfcn is less than the machine precision, it is assumed that the relative errors are of the order of the machine precision. factor : float, optional A parameter determining the initial step bound (``factor * || diag * x||``). Should be in interval ``(0.1, 100)``. diag : sequence, optional N positive entries that serve as a scale factors for the variables. Returns ------- x : ndarray The solution (or the result of the last iteration for an unsuccessful call). cov_x : ndarray The inverse of the Hessian. `fjac` and `ipvt` are used to construct an estimate of the Hessian. A value of None indicates a singular matrix, which means the curvature in parameters `x` is numerically flat. To obtain the covariance matrix of the parameters `x`, `cov_x` must be multiplied by the variance of the residuals -- see curve_fit. infodict : dict a dictionary of optional outputs with the keys: ``nfev`` The number of function calls ``fvec`` The function evaluated at the output ``fjac`` A permutation of the R matrix of a QR factorization of the final approximate Jacobian matrix, stored column wise. Together with ipvt, the covariance of the estimate can be approximated. ``ipvt`` An integer array of length N which defines a permutation matrix, p, such that fjac*p = q*r, where r is upper triangular with diagonal elements of nonincreasing magnitude. Column j of p is column ipvt(j) of the identity matrix. ``qtf`` The vector (transpose(q) * fvec). mesg : str A string message giving information about the cause of failure. ier : int An integer flag. If it is equal to 1, 2, 3 or 4, the solution was found. Otherwise, the solution was not found. In either case, the optional output variable 'mesg' gives more information. See Also -------- least_squares : Newer interface to solve nonlinear least-squares problems with bounds on the variables. See ``method=='lm'`` in particular. Notes ----- "leastsq" is a wrapper around MINPACK's lmdif and lmder algorithms. cov_x is a Jacobian approximation to the Hessian of the least squares objective function. This approximation assumes that the objective function is based on the difference between some observed target data (ydata) and a (non-linear) function of the parameters `f(xdata, params)` :: func(params) = ydata - f(xdata, params) so that the objective function is :: min sum((ydata - f(xdata, params))**2, axis=0) params The solution, `x`, is always a 1-D array, regardless of the shape of `x0`, or whether `x0` is a scalar. """ x0 = asarray(x0).flatten() n = len(x0) if not isinstance(args, tuple): args = (args,) shape, dtype = _check_func('leastsq', 'func', func, x0, args, n) m = shape[0] if n > m: raise TypeError('Improper input: N=%s must not exceed M=%s' % (n, m)) if epsfcn is None: epsfcn = finfo(dtype).eps if Dfun is None: if maxfev == 0: maxfev = 200*(n + 1) retval = _minpack._lmdif(func, x0, args, full_output, ftol, xtol, gtol, maxfev, epsfcn, factor, diag) else: if col_deriv: _check_func('leastsq', 'Dfun', Dfun, x0, args, n, (n, m)) else: _check_func('leastsq', 'Dfun', Dfun, x0, args, n, (m, n)) if maxfev == 0: maxfev = 100 * (n + 1) retval = _minpack._lmder(func, Dfun, x0, args, full_output, col_deriv, ftol, xtol, gtol, maxfev, factor, diag) errors = {0: ["Improper input parameters.", TypeError], 1: ["Both actual and predicted relative reductions " "in the sum of squares\n are at most %f" % ftol, None], 2: ["The relative error between two consecutive " "iterates is at most %f" % xtol, None], 3: ["Both actual and predicted relative reductions in " "the sum of squares\n are at most %f and the " "relative error between two consecutive " "iterates is at \n most %f" % (ftol, xtol), None], 4: ["The cosine of the angle between func(x) and any " "column of the\n Jacobian is at most %f in " "absolute value" % gtol, None], 5: ["Number of calls to function has reached " "maxfev = %d." % maxfev, ValueError], 6: ["ftol=%f is too small, no further reduction " "in the sum of squares\n is possible." % ftol, ValueError], 7: ["xtol=%f is too small, no further improvement in " "the approximate\n solution is possible." % xtol, ValueError], 8: ["gtol=%f is too small, func(x) is orthogonal to the " "columns of\n the Jacobian to machine " "precision." % gtol, ValueError]} # The FORTRAN return value (possible return values are >= 0 and <= 8) info = retval[-1] if full_output: cov_x = None if info in LEASTSQ_SUCCESS: from numpy.dual import inv perm = take(eye(n), retval[1]['ipvt'] - 1, 0) r = triu(transpose(retval[1]['fjac'])[:n, :]) R = dot(r, perm) try: cov_x = inv(dot(transpose(R), R)) except (LinAlgError, ValueError): pass return (retval[0], cov_x) + retval[1:-1] + (errors[info][0], info) else: if info in LEASTSQ_FAILURE: warnings.warn(errors[info][0], RuntimeWarning) elif info == 0: raise errors[info][1](errors[info][0]) return retval[0], info def _wrap_func(func, xdata, ydata, transform): if transform is None: def func_wrapped(params): return func(xdata, *params) - ydata elif transform.ndim == 1: def func_wrapped(params): return transform * (func(xdata, *params) - ydata) else: # Chisq = (y - yd)^T C^{-1} (y-yd) # transform = L such that C = L L^T # C^{-1} = L^{-T} L^{-1} # Chisq = (y - yd)^T L^{-T} L^{-1} (y-yd) # Define (y-yd)' = L^{-1} (y-yd) # by solving # L (y-yd)' = (y-yd) # and minimize (y-yd)'^T (y-yd)' def func_wrapped(params): return solve_triangular(transform, func(xdata, *params) - ydata, lower=True) return func_wrapped def _wrap_jac(jac, xdata, transform): if transform is None: def jac_wrapped(params): return jac(xdata, *params) elif transform.ndim == 1: def jac_wrapped(params): return transform[:, np.newaxis] * np.asarray(jac(xdata, *params)) else: def jac_wrapped(params): return solve_triangular(transform, np.asarray(jac(xdata, *params)), lower=True) return jac_wrapped def _initialize_feasible(lb, ub): p0 = np.ones_like(lb) lb_finite = np.isfinite(lb) ub_finite = np.isfinite(ub) mask = lb_finite & ub_finite p0[mask] = 0.5 * (lb[mask] + ub[mask]) mask = lb_finite & ~ub_finite p0[mask] = lb[mask] + 1 mask = ~lb_finite & ub_finite p0[mask] = ub[mask] - 1 return p0 def curve_fit(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False, check_finite=True, bounds=(-np.inf, np.inf), method=None, jac=None, **kwargs): """ Use non-linear least squares to fit a function, f, to data. Assumes ``ydata = f(xdata, *params) + eps``. Parameters ---------- f : callable The model function, f(x, ...). It must take the independent variable as the first argument and the parameters to fit as separate remaining arguments. xdata : array_like or object The independent variable where the data is measured. Should usually be an M-length sequence or an (k,M)-shaped array for functions with k predictors, but can actually be any object. ydata : array_like The dependent data, a length M array - nominally ``f(xdata, ...)``. p0 : array_like, optional Initial guess for the parameters (length N). If None, then the initial values will all be 1 (if the number of parameters for the function can be determined using introspection, otherwise a ValueError is raised). sigma : None or M-length sequence or MxM array, optional Determines the uncertainty in `ydata`. If we define residuals as ``r = ydata - f(xdata, *popt)``, then the interpretation of `sigma` depends on its number of dimensions: - A 1-D `sigma` should contain values of standard deviations of errors in `ydata`. In this case, the optimized function is ``chisq = sum((r / sigma) ** 2)``. - A 2-D `sigma` should contain the covariance matrix of errors in `ydata`. In this case, the optimized function is ``chisq = r.T @ inv(sigma) @ r``. .. versionadded:: 0.19 None (default) is equivalent of 1-D `sigma` filled with ones. absolute_sigma : bool, optional If True, `sigma` is used in an absolute sense and the estimated parameter covariance `pcov` reflects these absolute values. If False, only the relative magnitudes of the `sigma` values matter. The returned parameter covariance matrix `pcov` is based on scaling `sigma` by a constant factor. This constant is set by demanding that the reduced `chisq` for the optimal parameters `popt` when using the *scaled* `sigma` equals unity. In other words, `sigma` is scaled to match the sample variance of the residuals after the fit. Mathematically, ``pcov(absolute_sigma=False) = pcov(absolute_sigma=True) * chisq(popt)/(M-N)`` check_finite : bool, optional If True, check that the input arrays do not contain nans of infs, and raise a ValueError if they do. Setting this parameter to False may silently produce nonsensical results if the input arrays do contain nans. Default is True. bounds : 2-tuple of array_like, optional Lower and upper bounds on parameters. Defaults to no bounds. Each element of the tuple must be either an array with the length equal to the number of parameters, or a scalar (in which case the bound is taken to be the same for all parameters). Use ``np.inf`` with an appropriate sign to disable bounds on all or some parameters. .. versionadded:: 0.17 method : {'lm', 'trf', 'dogbox'}, optional Method to use for optimization. See `least_squares` for more details. Default is 'lm' for unconstrained problems and 'trf' if `bounds` are provided. The method 'lm' won't work when the number of observations is less than the number of variables, use 'trf' or 'dogbox' in this case. .. versionadded:: 0.17 jac : callable, string or None, optional Function with signature ``jac(x, ...)`` which computes the Jacobian matrix of the model function with respect to parameters as a dense array_like structure. It will be scaled according to provided `sigma`. If None (default), the Jacobian will be estimated numerically. String keywords for 'trf' and 'dogbox' methods can be used to select a finite difference scheme, see `least_squares`. .. versionadded:: 0.18 kwargs Keyword arguments passed to `leastsq` for ``method='lm'`` or `least_squares` otherwise. Returns ------- popt : array Optimal values for the parameters so that the sum of the squared residuals of ``f(xdata, *popt) - ydata`` is minimized. pcov : 2-D array The estimated covariance of popt. The diagonals provide the variance of the parameter estimate. To compute one standard deviation errors on the parameters use ``perr = np.sqrt(np.diag(pcov))``. How the `sigma` parameter affects the estimated covariance depends on `absolute_sigma` argument, as described above. If the Jacobian matrix at the solution doesn't have a full rank, then 'lm' method returns a matrix filled with ``np.inf``, on the other hand 'trf' and 'dogbox' methods use Moore-Penrose pseudoinverse to compute the covariance matrix. Raises ------ ValueError if either `ydata` or `xdata` contain NaNs, or if incompatible options are used. RuntimeError if the least-squares minimization fails. OptimizeWarning if covariance of the parameters can not be estimated. See Also -------- least_squares : Minimize the sum of squares of nonlinear functions. scipy.stats.linregress : Calculate a linear least squares regression for two sets of measurements. Notes ----- With ``method='lm'``, the algorithm uses the Levenberg-Marquardt algorithm through `leastsq`. Note that this algorithm can only deal with unconstrained problems. Box constraints can be handled by methods 'trf' and 'dogbox'. Refer to the docstring of `least_squares` for more information. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.optimize import curve_fit >>> def func(x, a, b, c): ... return a * np.exp(-b * x) + c Define the data to be fit with some noise: >>> xdata = np.linspace(0, 4, 50) >>> y = func(xdata, 2.5, 1.3, 0.5) >>> np.random.seed(1729) >>> y_noise = 0.2 * np.random.normal(size=xdata.size) >>> ydata = y + y_noise >>> plt.plot(xdata, ydata, 'b-', label='data') Fit for the parameters a, b, c of the function `func`: >>> popt, pcov = curve_fit(func, xdata, ydata) >>> popt array([ 2.55423706, 1.35190947, 0.47450618]) >>> plt.plot(xdata, func(xdata, *popt), 'r-', ... label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt)) Constrain the optimization to the region of ``0 <= a <= 3``, ``0 <= b <= 1`` and ``0 <= c <= 0.5``: >>> popt, pcov = curve_fit(func, xdata, ydata, bounds=(0, [3., 1., 0.5])) >>> popt array([ 2.43708906, 1. , 0.35015434]) >>> plt.plot(xdata, func(xdata, *popt), 'g--', ... label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt)) >>> plt.xlabel('x') >>> plt.ylabel('y') >>> plt.legend() >>> plt.show() """ if p0 is None: # determine number of parameters by inspecting the function sig = _getfullargspec(f) args = sig.args if len(args) < 2: raise ValueError("Unable to determine number of fit parameters.") n = len(args) - 1 else: p0 = np.atleast_1d(p0) n = p0.size lb, ub = prepare_bounds(bounds, n) if p0 is None: p0 = _initialize_feasible(lb, ub) bounded_problem = np.any((lb > -np.inf) | (ub < np.inf)) if method is None: if bounded_problem: method = 'trf' else: method = 'lm' if method == 'lm' and bounded_problem: raise ValueError("Method 'lm' only works for unconstrained problems. " "Use 'trf' or 'dogbox' instead.") # optimization may produce garbage for float32 inputs, cast them to float64 # NaNs cannot be handled if check_finite: ydata = np.asarray_chkfinite(ydata, float) else: ydata = np.asarray(ydata, float) if isinstance(xdata, (list, tuple, np.ndarray)): # `xdata` is passed straight to the user-defined `f`, so allow # non-array_like `xdata`. if check_finite: xdata = np.asarray_chkfinite(xdata, float) else: xdata = np.asarray(xdata, float) if ydata.size == 0: raise ValueError("`ydata` must not be empty!") # Determine type of sigma if sigma is not None: sigma = np.asarray(sigma) # if 1-D, sigma are errors, define transform = 1/sigma if sigma.shape == (ydata.size, ): transform = 1.0 / sigma # if 2-D, sigma is the covariance matrix, # define transform = L such that L L^T = C elif sigma.shape == (ydata.size, ydata.size): try: # scipy.linalg.cholesky requires lower=True to return L L^T = A transform = cholesky(sigma, lower=True) except LinAlgError: raise ValueError("`sigma` must be positive definite.") else: raise ValueError("`sigma` has incorrect shape.") else: transform = None func = _wrap_func(f, xdata, ydata, transform) if callable(jac): jac = _wrap_jac(jac, xdata, transform) elif jac is None and method != 'lm': jac = '2-point' if 'args' in kwargs: # The specification for the model function `f` does not support # additional arguments. Refer to the `curve_fit` docstring for # acceptable call signatures of `f`. raise ValueError("'args' is not a supported keyword argument.") if method == 'lm': # Remove full_output from kwargs, otherwise we're passing it in twice. return_full = kwargs.pop('full_output', False) res = leastsq(func, p0, Dfun=jac, full_output=1, **kwargs) popt, pcov, infodict, errmsg, ier = res ysize = len(infodict['fvec']) cost = np.sum(infodict['fvec'] ** 2) if ier not in [1, 2, 3, 4]: raise RuntimeError("Optimal parameters not found: " + errmsg) else: # Rename maxfev (leastsq) to max_nfev (least_squares), if specified. if 'max_nfev' not in kwargs: kwargs['max_nfev'] = kwargs.pop('maxfev', None) res = least_squares(func, p0, jac=jac, bounds=bounds, method=method, **kwargs) if not res.success: raise RuntimeError("Optimal parameters not found: " + res.message) ysize = len(res.fun) cost = 2 * res.cost # res.cost is half sum of squares! popt = res.x # Do Moore-Penrose inverse discarding zero singular values. _, s, VT = svd(res.jac, full_matrices=False) threshold = np.finfo(float).eps * max(res.jac.shape) * s[0] s = s[s > threshold] VT = VT[:s.size] pcov = np.dot(VT.T / s**2, VT) return_full = False warn_cov = False if pcov is None: # indeterminate covariance pcov = zeros((len(popt), len(popt)), dtype=float) pcov.fill(inf) warn_cov = True elif not absolute_sigma: if ysize > p0.size: s_sq = cost / (ysize - p0.size) pcov = pcov * s_sq else: pcov.fill(inf) warn_cov = True if warn_cov: warnings.warn('Covariance of the parameters could not be estimated', category=OptimizeWarning) if return_full: return popt, pcov, infodict, errmsg, ier else: return popt, pcov def check_gradient(fcn, Dfcn, x0, args=(), col_deriv=0): """Perform a simple check on the gradient for correctness. """ x = atleast_1d(x0) n = len(x) x = x.reshape((n,)) fvec = atleast_1d(fcn(x, *args)) m = len(fvec) fvec = fvec.reshape((m,)) ldfjac = m fjac = atleast_1d(Dfcn(x, *args)) fjac = fjac.reshape((m, n)) if col_deriv == 0: fjac = transpose(fjac) xp = zeros((n,), float) err = zeros((m,), float) fvecp = None _minpack._chkder(m, n, x, fvec, fjac, ldfjac, xp, fvecp, 1, err) fvecp = atleast_1d(fcn(xp, *args)) fvecp = fvecp.reshape((m,)) _minpack._chkder(m, n, x, fvec, fjac, ldfjac, xp, fvecp, 2, err) good = (prod(greater(err, 0.5), axis=0)) return (good, err) def _del2(p0, p1, d): return p0 - np.square(p1 - p0) / d def _relerr(actual, desired): return (actual - desired) / desired def _fixed_point_helper(func, x0, args, xtol, maxiter, use_accel): p0 = x0 for i in range(maxiter): p1 = func(p0, *args) if use_accel: p2 = func(p1, *args) d = p2 - 2.0 * p1 + p0 p = _lazywhere(d != 0, (p0, p1, d), f=_del2, fillvalue=p2) else: p = p1 relerr = _lazywhere(p0 != 0, (p, p0), f=_relerr, fillvalue=p) if np.all(np.abs(relerr) < xtol): return p p0 = p msg = "Failed to converge after %d iterations, value is %s" % (maxiter, p) raise RuntimeError(msg) def fixed_point(func, x0, args=(), xtol=1e-8, maxiter=500, method='del2'): """ Find a fixed point of the function. Given a function of one or more variables and a starting point, find a fixed point of the function: i.e., where ``func(x0) == x0``. Parameters ---------- func : function Function to evaluate. x0 : array_like Fixed point of function. args : tuple, optional Extra arguments to `func`. xtol : float, optional Convergence tolerance, defaults to 1e-08. maxiter : int, optional Maximum number of iterations, defaults to 500. method : {"del2", "iteration"}, optional Method of finding the fixed-point, defaults to "del2", which uses Steffensen's Method with Aitken's ``Del^2`` convergence acceleration [1]_. The "iteration" method simply iterates the function until convergence is detected, without attempting to accelerate the convergence. References ---------- .. [1] Burden, Faires, "Numerical Analysis", 5th edition, pg. 80 Examples -------- >>> from scipy import optimize >>> def func(x, c1, c2): ... return np.sqrt(c1/(x+c2)) >>> c1 = np.array([10,12.]) >>> c2 = np.array([3, 5.]) >>> optimize.fixed_point(func, [1.2, 1.3], args=(c1,c2)) array([ 1.4920333 , 1.37228132]) """ use_accel = {'del2': True, 'iteration': False}[method] x0 = _asarray_validated(x0, as_inexact=True) return _fixed_point_helper(func, x0, args, xtol, maxiter, use_accel)
bsd-3-clause
SylvainCorlay/bqplot
setup.py
2
4343
# Copyright 2015 Bloomberg Finance L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from setuptools import setup, find_packages from jupyter_packaging import ( create_cmdclass, install_npm, ensure_targets, combine_commands, get_version, skip_if_exists, ) import os from os.path import join as pjoin from distutils import log here = os.path.dirname(os.path.abspath(__file__)) # due to https://github.com/jupyterlab/jupyterlab/blob/136d2ec216ebfc429a696e6ee75fee5f8ead73e2/jupyterlab/federated_labextensions.py#L347 # we should not print out anything, otherwise setup.py --name gives noise # log.set_verbosity(log.ERROR) # log.info('setup.py entered') # log.info('$PATH=%s' % os.environ['PATH']) name = 'bqplot' LONG_DESCRIPTION = """ BQPlot ====== Plotting system for the Jupyter notebook based on the interactive Jupyter widgets. Installation ============ .. code-block:: bash pip install bqplot jupyter nbextension enable --py bqplot Usage ===== .. code-block:: python from bqplot import pyplot as plt import numpy as np plt.figure(1) n = 200 x = np.linspace(0.0, 10.0, n) y = np.cumsum(np.random.randn(n)) plt.plot(x,y, axes_options={'y': {'grid_lines': 'dashed'}}) plt.show() """ # Get bqplot version version = get_version(pjoin(name, '_version.py')) js_dir = pjoin(here, 'js') # Representative files that should exist after a successful build jstargets = [ pjoin('share', 'jupyter', 'nbextensions', 'bqplot', 'index.js'), pjoin('share', 'jupyter', 'labextensions', 'bqplot', 'package.json'), ] data_files_spec = [ ('share/jupyter/nbextensions/bqplot', 'share/jupyter/nbextensions/bqplot', '*.js'), ('share/jupyter/labextensions/bqplot/', 'share/jupyter/labextensions/bqplot/', '**'), ('etc/jupyter/nbconfig/notebook.d', 'etc/jupyter/nbconfig/notebook.d', 'bqplot.json'), ] js_command = combine_commands( install_npm(js_dir, build_dir='share/jupyter/', source_dir='js/src', build_cmd='build'), ensure_targets(jstargets), ) # Adding "map_data" as package_data manually, this should not be needed because it's already # specified in MANIFEST and include_package_data=True. This might be a bug in jupyter-packaging? cmdclass = create_cmdclass('jsdeps', data_files_spec=data_files_spec, package_data_spec={"bqplot": ["map_data/*.json"]}) is_repo = os.path.exists(os.path.join(here, '.git')) if is_repo: cmdclass['jsdeps'] = js_command else: cmdclass['jsdeps'] = skip_if_exists(jstargets, js_command) setup_args = dict( name=name, version=version, description='Interactive plotting for the Jupyter notebook, using d3.js and ipywidgets.', long_description=LONG_DESCRIPTION, license='Apache', author='The BQplot Development Team', url='https://github.com/bloomberg/bqplot', include_package_data=True, cmdclass=cmdclass, install_requires=[ 'ipywidgets>=7.5.0', 'traitlets>=4.3.0', 'traittypes>=0.0.6', 'numpy>=1.10.4', 'pandas'], packages=find_packages(exclude=["tests"]), zip_safe=False, keywords=[ 'ipython', 'jupyter', 'widgets', 'graphics', 'plotting', 'd3', ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'Topic :: Multimedia :: Graphics', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', ], ) setup(**setup_args)
apache-2.0
arokem/pyAFQ
examples/plot_afq_api.py
2
6320
""" ========================== AFQ API ========================== An example using the AFQ API """ import os.path as op import matplotlib.pyplot as plt import nibabel as nib import plotly from AFQ import api import AFQ.data as afd ########################################################################## # Get some example data # --------------------- # # Retrieves High angular resolution diffusion imaging (HARDI) dataset from # Stanford's Vista Lab # # see https://purl.stanford.edu/ng782rw8378 for details on dataset. # # The data for the first subject and first session are downloaded locally # (by default into the users home directory) under: # # ``.dipy/stanford_hardi/`` # # Anatomical data (``anat``) and Diffusion-weighted imaging data (``dwi``) are # then extracted, formatted to be BIDS compliant, and placed in the AFQ # data directory (by default in the users home directory) under: # # ``AFQ_data/stanford_hardi/`` # # This data represents the required preprocessed diffusion data necessary for # intializing the AFQ object (which we will do next) # # The clear_previous_afq is used to remove any previous runs of the afq object # stored in the AFQ_data/stanford_hardi/ BIDS directory. Set it to false if # you want to use the results of previous runs. afd.organize_stanford_data(clear_previous_afq=True) ########################################################################## # Initialize an AFQ object: # ------------------------- # # Creates an AFQ object, that encapsulates tractometry. This object can be # used to manage the entire AFQ pipeline, including: # # - Tractography # - Registration # - Segmentation # - Cleaning # - Profiling # - Visualization # # In this example we will load the subjects session data from the previous step # using the default AFQ parameters. # # .. note:: # # The first time intializing the AFQ object will download necessary # waypoint regions of interest (ROIs) templates into AFQ data directory: # # - Human corpus callosum templates: ``AFQ_data/callosum_templates/`` # # see https://digital.lib.washington.edu/researchworks/handle/1773/34926 # # - Tract probability maps: ``AFQ_data/templates/`` # # see https://figshare.com/articles/Tract_probability_maps_for_automated_fiber_quantification/6270434 # # These waypoints ROIs will used to identify the desired white matter tracts. # # This will also create an output folder for the corresponding AFQ derivatives # in the AFQ data directory: ``AFQ_data/stanford_hardi/derivatives/afq/`` # # To initialize this object we will pass in the path location to our BIDS # compliant data. # # .. note:: # # As noted above, the Stanford HARDI data contains anatomical and # diffusion weighted imaging (dwi) data. In this example, we are interested # in the vistasoft dwi. For our dataset the `dmriprep` is optional, but # we have included it to make the initialization more explicit. # # .. note:: # # We will also be using plotly to generate an interactive visualization. # So we will specify plotly_no_gif as the visualization backend. myafq = api.AFQ(bids_path=op.join(afd.afq_home, 'stanford_hardi'), dmriprep='vistasoft', viz_backend='plotly_no_gif') ########################################################################## # Reading in DTI FA (Diffusion Tensor Imaging Fractional Anisotropy) # ------------------------------------------------------------------ # The AFQ object holds a table with file names to various data derivatives. # # For example, the file where the FA computed from DTI is stored can be # retrieved by inspecting the ``dti_fa`` property. The measures are stored # in a series, and since we only have one subject and one session we will # access the first (and only) file name from the example data. # # .. note:: # # The AFQ API computes quantities lazily. This means that DTI parameters # are not computed until they are required. This means that the first # line below is the one that requires time. # # We will then use `nibabel` to load the deriviative file and retrieve the # data array. FA_fname = myafq.dti_fa["01"] FA_img = nib.load(FA_fname) FA = FA_img.get_fdata() ########################################################################## # Visualize the result with Matplotlib # ------------------------------------- # At this point `FA` is an array, and we can use standard Python tools to # visualize it or perform additional computations with it. # # In this case we are going to take an axial slice halfway through the # FA data array and plot using a sequential color map. # # .. note:: # # The data array is structured as a xyz coordinate system. fig, ax = plt.subplots(1) ax.matshow(FA[:, :, FA.shape[-1] // 2], cmap='viridis') ax.axis("off") ########################################################################## # Visualizing bundles and tract profiles: # --------------------------------------- # The pyAFQ API provides several ways to visualize bundles and profiles. # # First, we will run a function that exports an html file that contains # an interactive visualization of the bundles that are segmented. # # .. note:: # By default we resample a 100 points within a bundle, however to reduce # processing time we will only resample 50 points. # # Once it is done running, it should pop a browser window open and let you # interact with the bundles. # # .. note:: # Running the code below triggers the full pipeline of operations # leading to the computation of the tract profiles. Therefore, it # takes a little while to run (about 40 minutes, typically). # # .. note:: # You can hide or show a bundle by clicking the legend, or select a # single bundle by double clicking the legend. The interactive # visualization will also all you to pan, zoom, and rotate. bundle_html = myafq.all_bundles_figure plotly.io.show(bundle_html["01"]) ########################################################################## # We can also visualize the tract profiles in all of the bundles. These # plots show both FA (left) and MD (right) layed out anatomically. # fig_files = myafq.tract_profile_plots["01"] ########################################################################## # .. figure:: {{ fig_files[0] }} #
bsd-2-clause
tspr/pycgats
stats_play.py
1
4714
#!/usr/bin/python # coding=UTF-8 ### create 3D-Plot of color patches. ### Assumes: List of Patches for measured values of Inking curve. ### ### To do the plot correctly: ### 0. set up tval: use one of CMYK_C...CMYK_K ### 1. get list of Points ### 2. convert Lab colors to sRGB ### 3. Plot small- sized Points ### 4. Plot Uncertainty-sized spheres (Rings of dE) ### 5. Generate Spline Fit (enumerate SampleID as time variable in spline fit) ### 6. Plot Spline #### SETUP HERE cdwpath= '/Users/tspr/Desktop/LabPlot' h5filename = "./Farben.h5" tvals_in = "CMYK_M" import locale locale.setlocale(locale.LC_ALL, 'de_DE') from tables import * from colormath.color_objects import LabColor from mpl_toolkits.mplot3d import * import matplotlib.pyplot as plt import matplotlib.mlab as mlab import numpy as np from scipy import interpolate from scipy.stats import lognorm # import seaborn as sns # sns.set(style="whitegrid") def abL_2_sRGB(a_val,b_val,L_val): intermediatecolor = LabColor(lab_l=L_val,lab_a=a_val,lab_b=b_val).convert_to('rgb') normtuple = (float(intermediatecolor.rgb_r)/256,float(intermediatecolor.rgb_g)/256,float(intermediatecolor.rgb_b)/256) return normtuple class CGATScolors(IsDescription): SAMPLE_ID = StringCol(32) SAMPLE_NAME = StringCol(32) CMYK_C = FloatCol() CMYK_M = FloatCol() CMYK_Y = FloatCol() CMYK_K = FloatCol() LAB_L = FloatCol() LAB_A = FloatCol() LAB_B = FloatCol() h5file = openFile(h5filename, mode = "r") table=h5file.getNode('/Tabellen/Patches') # Convert Lab to rgb for plotting and append to data points # make sure, your installation of matplotlib is patched according to: # https://github.com/login?return_to=%2Fmatplotlib%2Fmatplotlib%2Fissues%2F1692 colours=[] tvals=[] avals=[] bvals=[] Lvals=[] for row in table[:]: colours.append(abL_2_sRGB(a_val=row['LAB_A'],b_val=row['LAB_B'],L_val=row['LAB_L'])) tvals.append(row[tvals_in]/100) avals.append(row['LAB_A']) bvals.append(row['LAB_B']) Lvals.append(row['LAB_L']) h5file.close() # Create Interpolation functions for a,b,L a_pchip=interpolate.pchip(tvals,avals) b_pchip=interpolate.pchip(tvals,bvals) L_pchip=interpolate.pchip(tvals,Lvals) pch_Inter=[a_pchip,b_pchip,L_pchip] # Start plotting # Disable depth shading plt.ion() art3d.zalpha = lambda *args:args[0] # Setup canvas fig = plt.figure() ax = fig.gca(projection='3d') ax.set_xlabel('a') ax.set_ylabel('b') ax.set_zlabel('L') ax.set_xlim(-100,100) ax.set_ylim(-100,100) ax.set_zlim(0,100) # plot the grey axis gx=np.linspace(0,0,101) gy=np.linspace(0,0,101) gz=np.linspace(0,100,101) gaxis=ax.plot(gx,gy,gz,c=(0,0,0)) # plot the points #pointsplot=ax.scatter3D(table.cols.LAB_A[:],table.cols.LAB_B[:],table.cols.LAB_L[:],s=20,c=colours,linewidth=0)# pointsplot=ax.scatter3D(avals,bvals,Lvals,s=20,c=colours,linewidth=0) # maybe plot some cross marks as well #q=ax.scatter3D(table.cols.LAB_A[:],table.cols.LAB_B[:],table.cols.LAB_L[:], s=100,c=(0,0,0), norm=None, marker='+', linewidth=1,alpha=0.5) # plot the Interpolated Path linerange = np.arange(np.amin(tvals),np.amax(tvals),0.01) interline=ax.plot(a_pchip(linerange),b_pchip(linerange),L_pchip(linerange),c=(0,0,0),linewidth=1) cmpos=0.80 crossmark=ax.scatter3D(a_pchip(cmpos),b_pchip(cmpos),L_pchip(cmpos),marker='+',c=abL_2_sRGB(a_pchip(cmpos),b_pchip(cmpos),L_pchip(cmpos)),s=200, linewidth=1) # show the thing fig.show() # create 100 nomrally distributed points along the line around cmpos. # range should be 95% within +-5% of range of t-values (2 sigma) # scale= sigma. so sigma = 5 (percent) * range / 2(sides)*2(sigma)*100(percent) scale=(5*(linerange.max()-linerange.min())/400) zufallspositionen = np.random.normal(loc=cmpos,scale=scale,size=1000) rnd_a = a_pchip(zufallspositionen) rnd_b = b_pchip(zufallspositionen) rnd_L = L_pchip(zufallspositionen) # add some noise (size: Lab units) noise_size = 0.1 rnd_a += np.random.normal(0,noise_size,1000) rnd_b += np.random.normal(0,noise_size,1000) rnd_L += np.random.normal(0,noise_size,1000) cntr_a = a_pchip(cmpos) cntr_b = b_pchip(cmpos) cntr_L = L_pchip(cmpos) delta_a = cntr_a - rnd_a delta_b = cntr_b - rnd_b delta_L = cntr_L - rnd_L delta_E = sqrt(square(delta_a) +square(delta_b) + square(delta_L)) # plot them green rndplt=ax.scatter3D(rnd_a,rnd_b,rnd_L,marker='*',c='green',s=50,linewidth=1) # histogramm delta E plt.figure() n, bins, patches = plt.hist(delta_E,bins=50,color='blue',normed=True,histtype='bar') lnrm_shape, lnrm_loc, lnrm_scale = lognorm.fit(delta_E) x= np.linspace(0, delta_E.max(), num=400) y = lognorm.pdf(x,lnrm_shape,loc=lnrm_loc,scale=lnrm_scale) pdflne=plt.plot(x,y,'r--',linewidth=2)
mit
bgroveben/python3_machine_learning_projects
oreilly_GANs_for_beginners/introduction_to_ml_with_python/mglearn/mglearn/plot_scaling.py
4
1505
import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_blobs from sklearn.preprocessing import (StandardScaler, MinMaxScaler, Normalizer, RobustScaler) from .plot_helpers import cm2 def plot_scaling(): X, y = make_blobs(n_samples=50, centers=2, random_state=4, cluster_std=1) X += 3 plt.figure(figsize=(15, 8)) main_ax = plt.subplot2grid((2, 4), (0, 0), rowspan=2, colspan=2) main_ax.scatter(X[:, 0], X[:, 1], c=y, cmap=cm2, s=60) maxx = np.abs(X[:, 0]).max() maxy = np.abs(X[:, 1]).max() main_ax.set_xlim(-maxx + 1, maxx + 1) main_ax.set_ylim(-maxy + 1, maxy + 1) main_ax.set_title("Original Data") other_axes = [plt.subplot2grid((2, 4), (i, j)) for j in range(2, 4) for i in range(2)] for ax, scaler in zip(other_axes, [StandardScaler(), RobustScaler(), MinMaxScaler(), Normalizer(norm='l2')]): X_ = scaler.fit_transform(X) ax.scatter(X_[:, 0], X_[:, 1], c=y, cmap=cm2, s=60) ax.set_xlim(-2, 2) ax.set_ylim(-2, 2) ax.set_title(type(scaler).__name__) other_axes.append(main_ax) for ax in other_axes: ax.spines['left'].set_position('center') ax.spines['right'].set_color('none') ax.spines['bottom'].set_position('center') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left')
mit
jubatus/jubakit
example/classifier_parameter.py
2
2430
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals """ Finding Best Hyper Parameter for Classifier ======================================================= In this example, we try to find the best hyper parameter of Classifier (`method` and `regularization_weight`) by calculating precision for possible hyper parameter values. Datasets are randomly generated by using scikit-learn data generator. """ import sklearn.datasets import sklearn.metrics from jubakit.classifier import Classifier, Dataset, Config # Generate a dummy dataset using scikit-learn. (X, y) = sklearn.datasets.make_classification( n_samples=512, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=0, # fixed seed ) # Convert arrays into jubakit Dataset. dataset = Dataset.from_array(X, y) # Try finding the best classifier parameter. param2metrics = {} for method in ['AROW', 'NHERD', 'CW']: for rw in [0.0001, 0.001, 0.01, 0.1, 1.0, 10.0]: print('Running ({0} / regularization_weight = {1})...'.format(method, rw)) # Create a config data structure. jubatus_config = Config(method=method, parameter={'regularization_weight': rw}) # It is equivalent to: #jubatus_config = Config.default() #jubatus_config['method'] = method #jubatus_config['parameter']['regularization_weight'] = rw # Launch Jubatus server using the specified configuration. classifier = Classifier.run(jubatus_config) # Train with the dataset. for _ in classifier.train(dataset): pass # Classify with the same dataset. y_true = [] y_pred = [] for (idx, label, result) in classifier.classify(dataset): y_true.append(label) y_pred.append(result[0][0]) classifier.stop() # Store the metrics for current configuration. param2metrics['{0} ({1})'.format(method, rw)] = sklearn.metrics.accuracy_score(y_true, y_pred) # Show results for each hyper parameter. best_C = sorted(param2metrics.keys(), key=lambda x: param2metrics[x], reverse=True)[0] print('--------------------') print('Configuration\tAccuracy') for C in sorted(param2metrics.keys()): print('{0}\t{1}\t{2}'.format(C, param2metrics[C], '*' if C == best_C else ''))
mit
harrisonpim/bookworm
bookworm/analyse.py
1
5688
import networkx as nx import pandas as pd import numpy as np import networkx as nx from nltk.tokenize import word_tokenize from .build_network import * def character_density(book_path): ''' number of central characters divided by the total number of words in a novel Parameters ---------- book_path : string (required) path to txt file containing full text of book to be analysed Returns ------- density : float number of characters in book / number of words in book ''' book = load_book(book_path) book_length = len(word_tokenize(book)) book_graph = nx.from_pandas_dataframe(bookworm(book_path), source='source', target='target') n_characters = len(book_graph.nodes()) return n_characters / book_length def split_book(book, n_sections=10, cumulative=True): ''' Split a book into n equal parts, with optional cumulative aggregation Parameters ---------- book : string (required) the book to be split n_sections : (optional) the number of sections which we want to split our book into cumulative : bool (optional) If true, the returned sections will be cumulative, ie all will start at the book's beginning and end at evenly distributed points throughout the book Returns ------- split_book : list the given book split into the specified number of even (or, if cumulative is set to True, uneven) sections ''' book_sequences = get_sentence_sequences(book) split_book = np.array_split(np.array(book_sequences), n_sections) if cumulative is True: split_book = [np.concatenate(split_book[:pos + 1]) for pos, section in enumerate(split_book)] return split_book def chronological_network(book_path, n_sections=10, cumulative=True): ''' Split a book into n equal parts, with optional cumulative aggregation, and return a dictionary of assembled character graphs Parameters ---------- book_path : string (required) path to the .txt file containing the book to be split n_sections : (optional) the number of sections which we want to split our book into cumulative : bool (optional) If true, the returned sections will be cumulative, ie all will start at the book's beginning and end at evenly distributed points throughout the book Returns ------- graph_dict : dict a dictionary containing the graphs of each split book section keys = section index values = nx.Graph describing the character graph in the specified book section ''' book = load_book(book_path) sections = split_book(book, n_sections, cumulative) graph_dict = {} for i, section in enumerate(sections): characters = extract_character_names(' '.join(section)) df = find_connections(sequences=section, characters=characters) cooccurence = calculate_cooccurence(df) interaction_df = get_interaction_df(cooccurence, threshold=2) graph_dict[i] = nx.from_pandas_dataframe(interaction_df, source='source', target='target') return graph_dict def select_k(spectrum): ''' Returns k, where the top k eigenvalues of the graph's laplacian describe 90 percent of the graph's complexiities. Parameters ---------- spectrum : type (required optional) the laplacian spectrum of the graph in question Returns ------- k : int denotes the top k eigenvalues of the graph's laplacian spectrum, explaining 90 percent of its complexity (or containing 90 percent of its energy) ''' if sum(spectrum) == 0: return len(spectrum) running_total = 0 for i in range(len(spectrum)): running_total += spectrum[i] if (running_total / sum(spectrum)) >= 0.9: return i + 1 return len(spectrum) def graph_similarity(graph_1, graph_2): ''' Computes the similarity of two graphs based on their laplacian spectra, returning a value between 0 and inf where a score closer to 0 is indicative of a more similar network Parameters ---------- graph_1 : networkx.Graph (required) graph_2 : networkx.Graph (required) Returns ------- similarity : float the similarity score of the two graphs where a value closer to 0 is indicative of a more similar pair of networks ''' laplacian_1 = nx.spectrum.laplacian_spectrum(graph_1) laplacian_2 = nx.spectrum.laplacian_spectrum(graph_2) k_1 = select_k(laplacian_1) k_2 = select_k(laplacian_2) k = min(k_1, k_2) return sum((laplacian_1[:k] - laplacian_2[:k])**2) def comparison_df(graph_dict): ''' takes an assortment of novels and computes their simlarity, based on their laplacian spectra Parameters ---------- graph_dict : dict (required) keys = book title values = character graph Returns ------- comparison : pandas.DataFrame columns = book titles indexes = book titles values = measure of the character graph similarity of books ''' books = list(graph_dict.keys()) comparison = {book_1: {book_2: graph_similarity(graph_dict[book_1], graph_dict[book_2]) for book_2 in books} for book_1 in books} return pd.DataFrame(comparison)
mit
facom/AstrodynTools
tides/tides-variable.py
1
1202
#!/usr/bin/env python #-*-coding:utf-8-*- from constants import * from numpy import * from matplotlib.pyplot import * from sys import exit ################################################### #UTILITIES ################################################### DEG=pi/180 RAD=180/pi def P2(psi): p=0.5*(3*cos(psi)**2-1) return p ################################################### #SCRIPT ################################################### #""" mp=Mearth Rp=Rearth a=rmoon ms=Mmoon #""" """SUN-EARTH mp=Mearth Rp=Rearth a=rsun ms=Msun #""" #EQUILIBRIUM csi=ms/mp*(Rp/a)**3*Rp g=Gconst*mp/Rp**2 #FREQUENCIES Omega=2*pi/Day n=2*pi/(Month*Day) #MOON ORBIT INCLINATION i=5*DEG #CALCULATE ANGLES AS A FUNCTION OF TIME t=linspace(0,Month*Day,1000) fp=Omega*t tp=90.0*DEG #COLATITUDE (SPHERICAL TRIGONOMETRY) fm=n*t B=1/sin(i)**2 A=cos(fm)**2 tm=arcsin(sqrt((B-1)/(B-A))) #ARTIFICIAL ENHACEMENT FACTORS A=1.0E0 B=1.0E0 C=1.0E17 #""" phase=\ A*0.50*(3*cos(tp)**2-1)*0.5*(3*cos(tm)**2-1)+\ B*0.75*sin(tp)**2*sin(tm)**2*cos(2*(fp-fm))+\ C*0.75*sin(2*tp)*sin(2*tm)*cos(fp-fm) #""" #TIDE heq=csi*phase figure() plot(t/Day,heq) xlabel("$t$ (Day)") ylabel("Tide (m)") savefig("tides-oscillation.png")
gpl-2.0
dagar/Firmware
Tools/ecl_ekf/plotting/data_plots.py
5
13860
#! /usr/bin/env python3 """ function collection for plotting """ from typing import Optional, List, Tuple, Dict import numpy as np import matplotlib.pyplot as plt from matplotlib.pyplot import Figure, Axes from matplotlib.backends.backend_pdf import PdfPages def get_min_arg_time_value( time_series_data: np.ndarray, data_time: np.ndarray) -> Tuple[int, float, float]: """ :param time_series_data: :param data_time: :return: """ min_arg = np.argmin(time_series_data) min_time = data_time[min_arg] min_value = np.amin(time_series_data) return (min_arg, min_value, min_time) def get_max_arg_time_value( time_series_data: np.ndarray, data_time: np.ndarray) -> Tuple[int, float, float]: """ :param time_series_data: :param data_time: :return: """ max_arg = np.argmax(time_series_data) max_time = data_time[max_arg] max_value = np.amax(time_series_data) return max_arg, max_value, max_time class DataPlot(object): """ A plotting class interface. Provides functions such as saving the figure. """ def __init__( self, plot_data: Dict[str, np.ndarray], variable_names: List[List[str]], plot_title: str = '', sub_titles: Optional[List[str]] = None, x_labels: Optional[List[str]] = None, y_labels: Optional[List[str]] = None, y_lim: Optional[Tuple[int, int]] = None, legend: Optional[List[str]] = None, pdf_handle: Optional[PdfPages] = None) -> None: """ Initializes the data plot class interface. :param plot_title: :param pdf_handle: """ self._plot_data = plot_data self._variable_names = variable_names self._plot_title = plot_title self._sub_titles = sub_titles self._x_labels = x_labels self._y_labels = y_labels self._y_lim = y_lim self._legend = legend self._pdf_handle = pdf_handle self._fig = None self._ax = None self._fig_size = (20, 13) @property def fig(self) -> Figure: """ :return: the figure handle """ if self._fig is None: self._create_figure() return self._fig @property def ax(self) -> Axes: """ :return: the axes handle """ if self._ax is None: self._create_figure() return self._ax @property def plot_data(self) -> dict: """ returns the plot data. calls _generate_plot_data if necessary. :return: """ if self._plot_data is None: self._generate_plot_data() return self._plot_data def plot(self) -> None: """ placeholder for the plotting function. A child class should implement this function. :return: """ def _create_figure(self) -> None: """ creates the figure handle. :return: """ self._fig, self._ax = plt.subplots(frameon=True, figsize=self._fig_size) self._fig.suptitle(self._plot_title) def _generate_plot_data(self) -> None: """ placeholder for a function that generates a data table necessary for plotting :return: """ def show(self) -> None: """ displays the figure on the screen. :return: None """ self.fig.show() def save(self) -> None: """ saves the figure if a pdf_handle was initialized. :return: """ if self._pdf_handle is not None and self.fig is not None: self.plot() self._pdf_handle.savefig(figure=self.fig) else: print('skipping saving to pdf: handle was not initialized.') def close(self) -> None: """ closes the figure. :return: """ plt.close(self._fig) class TimeSeriesPlot(DataPlot): """ class for creating multiple time series plot. """ def __init__( self, plot_data: dict, variable_names: List[List[str]], x_labels: List[str], y_labels: List[str], plot_title: str = '', sub_titles: Optional[List[str]] = None, pdf_handle: Optional[PdfPages] = None) -> None: """ initializes a timeseries plot :param plot_data: :param variable_names: :param xlabels: :param ylabels: :param plot_title: :param pdf_handle: """ super().__init__( plot_data, variable_names, plot_title=plot_title, sub_titles=sub_titles, x_labels=x_labels, y_labels=y_labels, pdf_handle=pdf_handle) def plot(self): """ plots the time series data. :return: """ if self.fig is None: return for i in range(len(self._variable_names)): plt.subplot(len(self._variable_names), 1, i + 1) for v in self._variable_names[i]: plt.plot(self.plot_data[v], 'b') plt.xlabel(self._x_labels[i]) plt.ylabel(self._y_labels[i]) self.fig.tight_layout(rect=[0, 0.03, 1, 0.95]) class InnovationPlot(DataPlot): """ class for creating an innovation plot. """ def __init__( self, plot_data: dict, variable_names: List[Tuple[str, str]], x_labels: List[str], y_labels: List[str], plot_title: str = '', sub_titles: Optional[List[str]] = None, pdf_handle: Optional[PdfPages] = None) -> None: """ initializes a timeseries plot :param plot_data: :param variable_names: :param xlabels: :param ylabels: :param plot_title: :param sub_titles: :param pdf_handle: """ super().__init__( plot_data, variable_names, plot_title=plot_title, sub_titles=sub_titles, x_labels=x_labels, y_labels=y_labels, pdf_handle=pdf_handle) def plot(self): """ plots the Innovation data. :return: """ if self.fig is None: return for i in range(len(self._variable_names)): # create a subplot for every variable plt.subplot(len(self._variable_names), 1, i + 1) if self._sub_titles is not None: plt.title(self._sub_titles[i]) # plot the value and the standard deviation plt.plot( 1e-6 * self.plot_data['timestamp'], self.plot_data[self._variable_names[i][0]], 'b') plt.plot( 1e-6 * self.plot_data['timestamp'], np.sqrt(self.plot_data[self._variable_names[i][1]]), 'r') plt.plot( 1e-6 * self.plot_data['timestamp'], -np.sqrt(self.plot_data[self._variable_names[i][1]]), 'r') plt.xlabel(self._x_labels[i]) plt.ylabel(self._y_labels[i]) plt.grid() # add the maximum and minimum value as an annotation _, max_value, max_time = get_max_arg_time_value( self.plot_data[self._variable_names[i][0]], 1e-6 * self.plot_data['timestamp']) _, min_value, min_time = get_min_arg_time_value( self.plot_data[self._variable_names[i][0]], 1e-6 * self.plot_data['timestamp']) plt.text( max_time, max_value, 'max={:.2f}'.format(max_value), fontsize=12, horizontalalignment='left', verticalalignment='bottom') plt.text( min_time, min_value, 'min={:.2f}'.format(min_value), fontsize=12, horizontalalignment='left', verticalalignment='top') self.fig.tight_layout(rect=[0, 0.03, 1, 0.95]) class ControlModeSummaryPlot(DataPlot): """ class for creating a control mode summary plot. """ def __init__( self, data_time: np.ndarray, plot_data: dict, variable_names: List[List[str]], x_label: str, y_labels: List[str], annotation_text: List[str], additional_annotation: Optional[List[str]] = None, plot_title: str = '', sub_titles: Optional[List[str]] = None, pdf_handle: Optional[PdfPages] = None) -> None: """ initializes a timeseries plot :param plot_data: :param variable_names: :param xlabels: :param ylabels: :param plot_title: :param sub_titles: :param pdf_handle: """ super().__init__( plot_data, variable_names, plot_title=plot_title, sub_titles=sub_titles, x_labels=[x_label]*len(y_labels), y_labels=y_labels, pdf_handle=pdf_handle) self._data_time = data_time self._annotation_text = annotation_text self._additional_annotation = additional_annotation def plot(self): """ plots the control mode data. :return: """ if self.fig is None: return colors = ['b', 'r', 'g', 'c'] for i in range(len(self._variable_names)): # create a subplot for every variable plt.subplot(len(self._variable_names), 1, i + 1) if self._sub_titles is not None: plt.title(self._sub_titles[i]) for col, var in zip(colors[:len(self._variable_names[i])], self._variable_names[i]): plt.plot(self._data_time, self.plot_data[var], col) plt.xlabel(self._x_labels[i]) plt.ylabel(self._y_labels[i]) plt.grid() plt.ylim(-0.1, 1.1) for t in range(len(self._annotation_text[i])): _, _, align_time = get_max_arg_time_value( np.diff(self.plot_data[self._variable_names[i][t]]), self._data_time) v_annot_pos = (t+1.0)/(len(self._variable_names[i])+1) # vert annotation position if np.amin(self.plot_data[self._variable_names[i][t]]) > 0: plt.text( align_time, v_annot_pos, 'no pre-arm data - cannot calculate {:s} start time'.format( self._annotation_text[i][t]), fontsize=12, horizontalalignment='left', verticalalignment='center', color=colors[t]) elif np.amax(self.plot_data[self._variable_names[i][t]]) > 0: plt.text( align_time, v_annot_pos, '{:s} at {:.1f} sec'.format( self._annotation_text[i][t], align_time), fontsize=12, horizontalalignment='left', verticalalignment='center', color=colors[t]) if self._additional_annotation is not None: for a in range(len(self._additional_annotation[i])): v_annot_pos = (a + 1.0) / (len(self._additional_annotation[i]) + 1) plt.text( self._additional_annotation[i][a][0], v_annot_pos, self._additional_annotation[i][a][1], fontsize=12, horizontalalignment='left', verticalalignment='center', color='b') self.fig.tight_layout(rect=[0, 0.03, 1, 0.95]) class CheckFlagsPlot(DataPlot): """ class for creating a control mode summary plot. """ def __init__( self, data_time: np.ndarray, plot_data: dict, variable_names: List[List[str]], x_label: str, y_labels: List[str], y_lim: Optional[Tuple[int, int]] = None, plot_title: str = '', legend: Optional[List[str]] = None, sub_titles: Optional[List[str]] = None, pdf_handle: Optional[PdfPages] = None, annotate: bool = False) -> None: """ initializes a timeseries plot :param plot_data: :param variable_names: :param xlabels: :param ylabels: :param plot_title: :param sub_titles: :param pdf_handle: """ super().__init__( plot_data, variable_names, plot_title=plot_title, sub_titles=sub_titles, x_labels=[x_label]*len(y_labels), y_labels=y_labels, y_lim=y_lim, legend=legend, pdf_handle=pdf_handle) self._data_time = data_time self._b_annotate = annotate def plot(self): """ plots the control mode data. :return: """ if self.fig is None: return colors = ['b', 'r', 'g', 'c', 'k', 'm'] for i in range(len(self._variable_names)): # create a subplot for every variable plt.subplot(len(self._variable_names), 1, i + 1) if self._sub_titles is not None: plt.title(self._sub_titles[i]) for col, var in zip(colors[:len(self._variable_names[i])], self._variable_names[i]): plt.plot(self._data_time, self.plot_data[var], col) plt.xlabel(self._x_labels[i]) plt.ylabel(self._y_labels[i]) plt.grid() if self._y_lim is not None: plt.ylim(self._y_lim) if self._legend is not None: plt.legend(self._legend[i], loc='upper left') if self._b_annotate: for col, var in zip(colors[:len(self._variable_names[i])], self._variable_names[i]): # add the maximum and minimum value as an annotation _, max_value, max_time = get_max_arg_time_value( self.plot_data[var], self._data_time) mean_value = np.mean(self.plot_data[var]) plt.text( max_time, max_value, 'max={:.4f}, mean={:.4f}'.format(max_value, mean_value), color=col, fontsize=12, horizontalalignment='left', verticalalignment='bottom') self.fig.tight_layout(rect=[0, 0.03, 1, 0.95])
bsd-3-clause
dongjoon-hyun/spark
python/pyspark/sql/tests/test_dataframe.py
9
42005
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import pydoc import shutil import tempfile import time import unittest from pyspark.sql import SparkSession, Row from pyspark.sql.types import StringType, IntegerType, DoubleType, StructType, StructField, \ BooleanType, DateType, TimestampType, FloatType from pyspark.sql.utils import AnalysisException, IllegalArgumentException from pyspark.testing.sqlutils import ReusedSQLTestCase, SQLTestUtils, have_pyarrow, have_pandas, \ pandas_requirement_message, pyarrow_requirement_message from pyspark.testing.utils import QuietTest class DataFrameTests(ReusedSQLTestCase): def test_range(self): self.assertEqual(self.spark.range(1, 1).count(), 0) self.assertEqual(self.spark.range(1, 0, -1).count(), 1) self.assertEqual(self.spark.range(0, 1 << 40, 1 << 39).count(), 2) self.assertEqual(self.spark.range(-2).count(), 0) self.assertEqual(self.spark.range(3).count(), 3) def test_duplicated_column_names(self): df = self.spark.createDataFrame([(1, 2)], ["c", "c"]) row = df.select('*').first() self.assertEqual(1, row[0]) self.assertEqual(2, row[1]) self.assertEqual("Row(c=1, c=2)", str(row)) # Cannot access columns self.assertRaises(AnalysisException, lambda: df.select(df[0]).first()) self.assertRaises(AnalysisException, lambda: df.select(df.c).first()) self.assertRaises(AnalysisException, lambda: df.select(df["c"]).first()) def test_freqItems(self): vals = [Row(a=1, b=-2.0) if i % 2 == 0 else Row(a=i, b=i * 1.0) for i in range(100)] df = self.sc.parallelize(vals).toDF() items = df.stat.freqItems(("a", "b"), 0.4).collect()[0] self.assertTrue(1 in items[0]) self.assertTrue(-2.0 in items[1]) def test_help_command(self): # Regression test for SPARK-5464 rdd = self.sc.parallelize(['{"foo":"bar"}', '{"foo":"baz"}']) df = self.spark.read.json(rdd) # render_doc() reproduces the help() exception without printing output pydoc.render_doc(df) pydoc.render_doc(df.foo) pydoc.render_doc(df.take(1)) def test_dropna(self): schema = StructType([ StructField("name", StringType(), True), StructField("age", IntegerType(), True), StructField("height", DoubleType(), True)]) # shouldn't drop a non-null row self.assertEqual(self.spark.createDataFrame( [(u'Alice', 50, 80.1)], schema).dropna().count(), 1) # dropping rows with a single null value self.assertEqual(self.spark.createDataFrame( [(u'Alice', None, 80.1)], schema).dropna().count(), 0) self.assertEqual(self.spark.createDataFrame( [(u'Alice', None, 80.1)], schema).dropna(how='any').count(), 0) # if how = 'all', only drop rows if all values are null self.assertEqual(self.spark.createDataFrame( [(u'Alice', None, 80.1)], schema).dropna(how='all').count(), 1) self.assertEqual(self.spark.createDataFrame( [(None, None, None)], schema).dropna(how='all').count(), 0) # how and subset self.assertEqual(self.spark.createDataFrame( [(u'Alice', 50, None)], schema).dropna(how='any', subset=['name', 'age']).count(), 1) self.assertEqual(self.spark.createDataFrame( [(u'Alice', None, None)], schema).dropna(how='any', subset=['name', 'age']).count(), 0) # threshold self.assertEqual(self.spark.createDataFrame( [(u'Alice', None, 80.1)], schema).dropna(thresh=2).count(), 1) self.assertEqual(self.spark.createDataFrame( [(u'Alice', None, None)], schema).dropna(thresh=2).count(), 0) # threshold and subset self.assertEqual(self.spark.createDataFrame( [(u'Alice', 50, None)], schema).dropna(thresh=2, subset=['name', 'age']).count(), 1) self.assertEqual(self.spark.createDataFrame( [(u'Alice', None, 180.9)], schema).dropna(thresh=2, subset=['name', 'age']).count(), 0) # thresh should take precedence over how self.assertEqual(self.spark.createDataFrame( [(u'Alice', 50, None)], schema).dropna( how='any', thresh=2, subset=['name', 'age']).count(), 1) def test_fillna(self): schema = StructType([ StructField("name", StringType(), True), StructField("age", IntegerType(), True), StructField("height", DoubleType(), True), StructField("spy", BooleanType(), True)]) # fillna shouldn't change non-null values row = self.spark.createDataFrame([(u'Alice', 10, 80.1, True)], schema).fillna(50).first() self.assertEqual(row.age, 10) # fillna with int row = self.spark.createDataFrame([(u'Alice', None, None, None)], schema).fillna(50).first() self.assertEqual(row.age, 50) self.assertEqual(row.height, 50.0) # fillna with double row = self.spark.createDataFrame( [(u'Alice', None, None, None)], schema).fillna(50.1).first() self.assertEqual(row.age, 50) self.assertEqual(row.height, 50.1) # fillna with bool row = self.spark.createDataFrame( [(u'Alice', None, None, None)], schema).fillna(True).first() self.assertEqual(row.age, None) self.assertEqual(row.spy, True) # fillna with string row = self.spark.createDataFrame([(None, None, None, None)], schema).fillna("hello").first() self.assertEqual(row.name, u"hello") self.assertEqual(row.age, None) # fillna with subset specified for numeric cols row = self.spark.createDataFrame( [(None, None, None, None)], schema).fillna(50, subset=['name', 'age']).first() self.assertEqual(row.name, None) self.assertEqual(row.age, 50) self.assertEqual(row.height, None) self.assertEqual(row.spy, None) # fillna with subset specified for string cols row = self.spark.createDataFrame( [(None, None, None, None)], schema).fillna("haha", subset=['name', 'age']).first() self.assertEqual(row.name, "haha") self.assertEqual(row.age, None) self.assertEqual(row.height, None) self.assertEqual(row.spy, None) # fillna with subset specified for bool cols row = self.spark.createDataFrame( [(None, None, None, None)], schema).fillna(True, subset=['name', 'spy']).first() self.assertEqual(row.name, None) self.assertEqual(row.age, None) self.assertEqual(row.height, None) self.assertEqual(row.spy, True) # fillna with dictionary for boolean types row = self.spark.createDataFrame([Row(a=None), Row(a=True)]).fillna({"a": True}).first() self.assertEqual(row.a, True) def test_repartitionByRange_dataframe(self): schema = StructType([ StructField("name", StringType(), True), StructField("age", IntegerType(), True), StructField("height", DoubleType(), True)]) df1 = self.spark.createDataFrame( [(u'Bob', 27, 66.0), (u'Alice', 10, 10.0), (u'Bob', 10, 66.0)], schema) df2 = self.spark.createDataFrame( [(u'Alice', 10, 10.0), (u'Bob', 10, 66.0), (u'Bob', 27, 66.0)], schema) # test repartitionByRange(numPartitions, *cols) df3 = df1.repartitionByRange(2, "name", "age") self.assertEqual(df3.rdd.getNumPartitions(), 2) self.assertEqual(df3.rdd.first(), df2.rdd.first()) self.assertEqual(df3.rdd.take(3), df2.rdd.take(3)) # test repartitionByRange(numPartitions, *cols) df4 = df1.repartitionByRange(3, "name", "age") self.assertEqual(df4.rdd.getNumPartitions(), 3) self.assertEqual(df4.rdd.first(), df2.rdd.first()) self.assertEqual(df4.rdd.take(3), df2.rdd.take(3)) # test repartitionByRange(*cols) df5 = df1.repartitionByRange(5, "name", "age") self.assertEqual(df5.rdd.first(), df2.rdd.first()) self.assertEqual(df5.rdd.take(3), df2.rdd.take(3)) def test_replace(self): schema = StructType([ StructField("name", StringType(), True), StructField("age", IntegerType(), True), StructField("height", DoubleType(), True)]) # replace with int row = self.spark.createDataFrame([(u'Alice', 10, 10.0)], schema).replace(10, 20).first() self.assertEqual(row.age, 20) self.assertEqual(row.height, 20.0) # replace with double row = self.spark.createDataFrame( [(u'Alice', 80, 80.0)], schema).replace(80.0, 82.1).first() self.assertEqual(row.age, 82) self.assertEqual(row.height, 82.1) # replace with string row = self.spark.createDataFrame( [(u'Alice', 10, 80.1)], schema).replace(u'Alice', u'Ann').first() self.assertEqual(row.name, u"Ann") self.assertEqual(row.age, 10) # replace with subset specified by a string of a column name w/ actual change row = self.spark.createDataFrame( [(u'Alice', 10, 80.1)], schema).replace(10, 20, subset='age').first() self.assertEqual(row.age, 20) # replace with subset specified by a string of a column name w/o actual change row = self.spark.createDataFrame( [(u'Alice', 10, 80.1)], schema).replace(10, 20, subset='height').first() self.assertEqual(row.age, 10) # replace with subset specified with one column replaced, another column not in subset # stays unchanged. row = self.spark.createDataFrame( [(u'Alice', 10, 10.0)], schema).replace(10, 20, subset=['name', 'age']).first() self.assertEqual(row.name, u'Alice') self.assertEqual(row.age, 20) self.assertEqual(row.height, 10.0) # replace with subset specified but no column will be replaced row = self.spark.createDataFrame( [(u'Alice', 10, None)], schema).replace(10, 20, subset=['name', 'height']).first() self.assertEqual(row.name, u'Alice') self.assertEqual(row.age, 10) self.assertEqual(row.height, None) # replace with lists row = self.spark.createDataFrame( [(u'Alice', 10, 80.1)], schema).replace([u'Alice'], [u'Ann']).first() self.assertTupleEqual(row, (u'Ann', 10, 80.1)) # replace with dict row = self.spark.createDataFrame( [(u'Alice', 10, 80.1)], schema).replace({10: 11}).first() self.assertTupleEqual(row, (u'Alice', 11, 80.1)) # test backward compatibility with dummy value dummy_value = 1 row = self.spark.createDataFrame( [(u'Alice', 10, 80.1)], schema).replace({'Alice': 'Bob'}, dummy_value).first() self.assertTupleEqual(row, (u'Bob', 10, 80.1)) # test dict with mixed numerics row = self.spark.createDataFrame( [(u'Alice', 10, 80.1)], schema).replace({10: -10, 80.1: 90.5}).first() self.assertTupleEqual(row, (u'Alice', -10, 90.5)) # replace with tuples row = self.spark.createDataFrame( [(u'Alice', 10, 80.1)], schema).replace((u'Alice', ), (u'Bob', )).first() self.assertTupleEqual(row, (u'Bob', 10, 80.1)) # replace multiple columns row = self.spark.createDataFrame( [(u'Alice', 10, 80.0)], schema).replace((10, 80.0), (20, 90)).first() self.assertTupleEqual(row, (u'Alice', 20, 90.0)) # test for mixed numerics row = self.spark.createDataFrame( [(u'Alice', 10, 80.0)], schema).replace((10, 80), (20, 90.5)).first() self.assertTupleEqual(row, (u'Alice', 20, 90.5)) row = self.spark.createDataFrame( [(u'Alice', 10, 80.0)], schema).replace({10: 20, 80: 90.5}).first() self.assertTupleEqual(row, (u'Alice', 20, 90.5)) # replace with boolean row = (self .spark.createDataFrame([(u'Alice', 10, 80.0)], schema) .selectExpr("name = 'Bob'", 'age <= 15') .replace(False, True).first()) self.assertTupleEqual(row, (True, True)) # replace string with None and then drop None rows row = self.spark.createDataFrame( [(u'Alice', 10, 80.0)], schema).replace(u'Alice', None).dropna() self.assertEqual(row.count(), 0) # replace with number and None row = self.spark.createDataFrame( [(u'Alice', 10, 80.0)], schema).replace([10, 80], [20, None]).first() self.assertTupleEqual(row, (u'Alice', 20, None)) # should fail if subset is not list, tuple or None with self.assertRaises(TypeError): self.spark.createDataFrame( [(u'Alice', 10, 80.1)], schema).replace({10: 11}, subset=1).first() # should fail if to_replace and value have different length with self.assertRaises(ValueError): self.spark.createDataFrame( [(u'Alice', 10, 80.1)], schema).replace(["Alice", "Bob"], ["Eve"]).first() # should fail if when received unexpected type with self.assertRaises(TypeError): from datetime import datetime self.spark.createDataFrame( [(u'Alice', 10, 80.1)], schema).replace(datetime.now(), datetime.now()).first() # should fail if provided mixed type replacements with self.assertRaises(ValueError): self.spark.createDataFrame( [(u'Alice', 10, 80.1)], schema).replace(["Alice", 10], ["Eve", 20]).first() with self.assertRaises(ValueError): self.spark.createDataFrame( [(u'Alice', 10, 80.1)], schema).replace({u"Alice": u"Bob", 10: 20}).first() with self.assertRaisesRegex( TypeError, 'value argument is required when to_replace is not a dictionary.'): self.spark.createDataFrame( [(u'Alice', 10, 80.0)], schema).replace(["Alice", "Bob"]).first() def test_with_column_with_existing_name(self): keys = self.df.withColumn("key", self.df.key).select("key").collect() self.assertEqual([r.key for r in keys], list(range(100))) # regression test for SPARK-10417 def test_column_iterator(self): def foo(): for x in self.df.key: break self.assertRaises(TypeError, foo) def test_generic_hints(self): from pyspark.sql import DataFrame df1 = self.spark.range(10e10).toDF("id") df2 = self.spark.range(10e10).toDF("id") self.assertIsInstance(df1.hint("broadcast"), DataFrame) self.assertIsInstance(df1.hint("broadcast", []), DataFrame) # Dummy rules self.assertIsInstance(df1.hint("broadcast", "foo", "bar"), DataFrame) self.assertIsInstance(df1.hint("broadcast", ["foo", "bar"]), DataFrame) plan = df1.join(df2.hint("broadcast"), "id")._jdf.queryExecution().executedPlan() self.assertEqual(1, plan.toString().count("BroadcastHashJoin")) # add tests for SPARK-23647 (test more types for hint) def test_extended_hint_types(self): df = self.spark.range(10e10).toDF("id") such_a_nice_list = ["itworks1", "itworks2", "itworks3"] hinted_df = df.hint("my awesome hint", 1.2345, "what", such_a_nice_list) logical_plan = hinted_df._jdf.queryExecution().logical() self.assertEqual(1, logical_plan.toString().count("1.2345")) self.assertEqual(1, logical_plan.toString().count("what")) self.assertEqual(3, logical_plan.toString().count("itworks")) def test_sample(self): self.assertRaisesRegex( TypeError, "should be a bool, float and number", lambda: self.spark.range(1).sample()) self.assertRaises( TypeError, lambda: self.spark.range(1).sample("a")) self.assertRaises( TypeError, lambda: self.spark.range(1).sample(seed="abc")) self.assertRaises( IllegalArgumentException, lambda: self.spark.range(1).sample(-1.0)) def test_toDF_with_schema_string(self): data = [Row(key=i, value=str(i)) for i in range(100)] rdd = self.sc.parallelize(data, 5) df = rdd.toDF("key: int, value: string") self.assertEqual(df.schema.simpleString(), "struct<key:int,value:string>") self.assertEqual(df.collect(), data) # different but compatible field types can be used. df = rdd.toDF("key: string, value: string") self.assertEqual(df.schema.simpleString(), "struct<key:string,value:string>") self.assertEqual(df.collect(), [Row(key=str(i), value=str(i)) for i in range(100)]) # field names can differ. df = rdd.toDF(" a: int, b: string ") self.assertEqual(df.schema.simpleString(), "struct<a:int,b:string>") self.assertEqual(df.collect(), data) # number of fields must match. self.assertRaisesRegex(Exception, "Length of object", lambda: rdd.toDF("key: int").collect()) # field types mismatch will cause exception at runtime. self.assertRaisesRegex(Exception, "FloatType can not accept", lambda: rdd.toDF("key: float, value: string").collect()) # flat schema values will be wrapped into row. df = rdd.map(lambda row: row.key).toDF("int") self.assertEqual(df.schema.simpleString(), "struct<value:int>") self.assertEqual(df.collect(), [Row(key=i) for i in range(100)]) # users can use DataType directly instead of data type string. df = rdd.map(lambda row: row.key).toDF(IntegerType()) self.assertEqual(df.schema.simpleString(), "struct<value:int>") self.assertEqual(df.collect(), [Row(key=i) for i in range(100)]) def test_join_without_on(self): df1 = self.spark.range(1).toDF("a") df2 = self.spark.range(1).toDF("b") with self.sql_conf({"spark.sql.crossJoin.enabled": False}): self.assertRaises(AnalysisException, lambda: df1.join(df2, how="inner").collect()) with self.sql_conf({"spark.sql.crossJoin.enabled": True}): actual = df1.join(df2, how="inner").collect() expected = [Row(a=0, b=0)] self.assertEqual(actual, expected) # Regression test for invalid join methods when on is None, Spark-14761 def test_invalid_join_method(self): df1 = self.spark.createDataFrame([("Alice", 5), ("Bob", 8)], ["name", "age"]) df2 = self.spark.createDataFrame([("Alice", 80), ("Bob", 90)], ["name", "height"]) self.assertRaises(IllegalArgumentException, lambda: df1.join(df2, how="invalid-join-type")) # Cartesian products require cross join syntax def test_require_cross(self): df1 = self.spark.createDataFrame([(1, "1")], ("key", "value")) df2 = self.spark.createDataFrame([(1, "1")], ("key", "value")) with self.sql_conf({"spark.sql.crossJoin.enabled": False}): # joins without conditions require cross join syntax self.assertRaises(AnalysisException, lambda: df1.join(df2).collect()) # works with crossJoin self.assertEqual(1, df1.crossJoin(df2).count()) def test_cache(self): spark = self.spark with self.tempView("tab1", "tab2"): spark.createDataFrame([(2, 2), (3, 3)]).createOrReplaceTempView("tab1") spark.createDataFrame([(2, 2), (3, 3)]).createOrReplaceTempView("tab2") self.assertFalse(spark.catalog.isCached("tab1")) self.assertFalse(spark.catalog.isCached("tab2")) spark.catalog.cacheTable("tab1") self.assertTrue(spark.catalog.isCached("tab1")) self.assertFalse(spark.catalog.isCached("tab2")) spark.catalog.cacheTable("tab2") spark.catalog.uncacheTable("tab1") self.assertFalse(spark.catalog.isCached("tab1")) self.assertTrue(spark.catalog.isCached("tab2")) spark.catalog.clearCache() self.assertFalse(spark.catalog.isCached("tab1")) self.assertFalse(spark.catalog.isCached("tab2")) self.assertRaisesRegex( AnalysisException, "does_not_exist", lambda: spark.catalog.isCached("does_not_exist")) self.assertRaisesRegex( AnalysisException, "does_not_exist", lambda: spark.catalog.cacheTable("does_not_exist")) self.assertRaisesRegex( AnalysisException, "does_not_exist", lambda: spark.catalog.uncacheTable("does_not_exist")) def _to_pandas(self): from datetime import datetime, date schema = StructType().add("a", IntegerType()).add("b", StringType())\ .add("c", BooleanType()).add("d", FloatType())\ .add("dt", DateType()).add("ts", TimestampType()) data = [ (1, "foo", True, 3.0, date(1969, 1, 1), datetime(1969, 1, 1, 1, 1, 1)), (2, "foo", True, 5.0, None, None), (3, "bar", False, -1.0, date(2012, 3, 3), datetime(2012, 3, 3, 3, 3, 3)), (4, "bar", False, 6.0, date(2100, 4, 4), datetime(2100, 4, 4, 4, 4, 4)), ] df = self.spark.createDataFrame(data, schema) return df.toPandas() @unittest.skipIf(not have_pandas, pandas_requirement_message) # type: ignore def test_to_pandas(self): import numpy as np pdf = self._to_pandas() types = pdf.dtypes self.assertEqual(types[0], np.int32) self.assertEqual(types[1], np.object) self.assertEqual(types[2], np.bool) self.assertEqual(types[3], np.float32) self.assertEqual(types[4], np.object) # datetime.date self.assertEqual(types[5], 'datetime64[ns]') @unittest.skipIf(not have_pandas, pandas_requirement_message) # type: ignore def test_to_pandas_with_duplicated_column_names(self): import numpy as np sql = "select 1 v, 1 v" for arrowEnabled in [False, True]: with self.sql_conf({"spark.sql.execution.arrow.pyspark.enabled": arrowEnabled}): df = self.spark.sql(sql) pdf = df.toPandas() types = pdf.dtypes self.assertEqual(types.iloc[0], np.int32) self.assertEqual(types.iloc[1], np.int32) @unittest.skipIf(not have_pandas, pandas_requirement_message) # type: ignore def test_to_pandas_on_cross_join(self): import numpy as np sql = """ select t1.*, t2.* from ( select explode(sequence(1, 3)) v ) t1 left join ( select explode(sequence(1, 3)) v ) t2 """ for arrowEnabled in [False, True]: with self.sql_conf({"spark.sql.crossJoin.enabled": True, "spark.sql.execution.arrow.pyspark.enabled": arrowEnabled}): df = self.spark.sql(sql) pdf = df.toPandas() types = pdf.dtypes self.assertEqual(types.iloc[0], np.int32) self.assertEqual(types.iloc[1], np.int32) @unittest.skipIf(have_pandas, "Required Pandas was found.") def test_to_pandas_required_pandas_not_found(self): with QuietTest(self.sc): with self.assertRaisesRegex(ImportError, 'Pandas >= .* must be installed'): self._to_pandas() @unittest.skipIf(not have_pandas, pandas_requirement_message) # type: ignore def test_to_pandas_avoid_astype(self): import numpy as np schema = StructType().add("a", IntegerType()).add("b", StringType())\ .add("c", IntegerType()) data = [(1, "foo", 16777220), (None, "bar", None)] df = self.spark.createDataFrame(data, schema) types = df.toPandas().dtypes self.assertEqual(types[0], np.float64) # doesn't convert to np.int32 due to NaN value. self.assertEqual(types[1], np.object) self.assertEqual(types[2], np.float64) @unittest.skipIf(not have_pandas, pandas_requirement_message) # type: ignore def test_to_pandas_from_empty_dataframe(self): with self.sql_conf({"spark.sql.execution.arrow.pyspark.enabled": False}): # SPARK-29188 test that toPandas() on an empty dataframe has the correct dtypes import numpy as np sql = """ SELECT CAST(1 AS TINYINT) AS tinyint, CAST(1 AS SMALLINT) AS smallint, CAST(1 AS INT) AS int, CAST(1 AS BIGINT) AS bigint, CAST(0 AS FLOAT) AS float, CAST(0 AS DOUBLE) AS double, CAST(1 AS BOOLEAN) AS boolean, CAST('foo' AS STRING) AS string, CAST('2019-01-01' AS TIMESTAMP) AS timestamp """ dtypes_when_nonempty_df = self.spark.sql(sql).toPandas().dtypes dtypes_when_empty_df = self.spark.sql(sql).filter("False").toPandas().dtypes self.assertTrue(np.all(dtypes_when_empty_df == dtypes_when_nonempty_df)) @unittest.skipIf(not have_pandas, pandas_requirement_message) # type: ignore def test_to_pandas_from_null_dataframe(self): with self.sql_conf({"spark.sql.execution.arrow.pyspark.enabled": False}): # SPARK-29188 test that toPandas() on a dataframe with only nulls has correct dtypes import numpy as np sql = """ SELECT CAST(NULL AS TINYINT) AS tinyint, CAST(NULL AS SMALLINT) AS smallint, CAST(NULL AS INT) AS int, CAST(NULL AS BIGINT) AS bigint, CAST(NULL AS FLOAT) AS float, CAST(NULL AS DOUBLE) AS double, CAST(NULL AS BOOLEAN) AS boolean, CAST(NULL AS STRING) AS string, CAST(NULL AS TIMESTAMP) AS timestamp """ pdf = self.spark.sql(sql).toPandas() types = pdf.dtypes self.assertEqual(types[0], np.float64) self.assertEqual(types[1], np.float64) self.assertEqual(types[2], np.float64) self.assertEqual(types[3], np.float64) self.assertEqual(types[4], np.float32) self.assertEqual(types[5], np.float64) self.assertEqual(types[6], np.object) self.assertEqual(types[7], np.object) self.assertTrue(np.can_cast(np.datetime64, types[8])) @unittest.skipIf(not have_pandas, pandas_requirement_message) # type: ignore def test_to_pandas_from_mixed_dataframe(self): with self.sql_conf({"spark.sql.execution.arrow.pyspark.enabled": False}): # SPARK-29188 test that toPandas() on a dataframe with some nulls has correct dtypes import numpy as np sql = """ SELECT CAST(col1 AS TINYINT) AS tinyint, CAST(col2 AS SMALLINT) AS smallint, CAST(col3 AS INT) AS int, CAST(col4 AS BIGINT) AS bigint, CAST(col5 AS FLOAT) AS float, CAST(col6 AS DOUBLE) AS double, CAST(col7 AS BOOLEAN) AS boolean, CAST(col8 AS STRING) AS string, timestamp_seconds(col9) AS timestamp FROM VALUES (1, 1, 1, 1, 1, 1, 1, 1, 1), (NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL) """ pdf_with_some_nulls = self.spark.sql(sql).toPandas() pdf_with_only_nulls = self.spark.sql(sql).filter('tinyint is null').toPandas() self.assertTrue(np.all(pdf_with_only_nulls.dtypes == pdf_with_some_nulls.dtypes)) def test_create_dataframe_from_array_of_long(self): import array data = [Row(longarray=array.array('l', [-9223372036854775808, 0, 9223372036854775807]))] df = self.spark.createDataFrame(data) self.assertEqual(df.first(), Row(longarray=[-9223372036854775808, 0, 9223372036854775807])) @unittest.skipIf(not have_pandas, pandas_requirement_message) # type: ignore def test_create_dataframe_from_pandas_with_timestamp(self): import pandas as pd from datetime import datetime pdf = pd.DataFrame({"ts": [datetime(2017, 10, 31, 1, 1, 1)], "d": [pd.Timestamp.now().date()]}, columns=["d", "ts"]) # test types are inferred correctly without specifying schema df = self.spark.createDataFrame(pdf) self.assertTrue(isinstance(df.schema['ts'].dataType, TimestampType)) self.assertTrue(isinstance(df.schema['d'].dataType, DateType)) # test with schema will accept pdf as input df = self.spark.createDataFrame(pdf, schema="d date, ts timestamp") self.assertTrue(isinstance(df.schema['ts'].dataType, TimestampType)) self.assertTrue(isinstance(df.schema['d'].dataType, DateType)) @unittest.skipIf(have_pandas, "Required Pandas was found.") def test_create_dataframe_required_pandas_not_found(self): with QuietTest(self.sc): with self.assertRaisesRegex( ImportError, "(Pandas >= .* must be installed|No module named '?pandas'?)"): import pandas as pd from datetime import datetime pdf = pd.DataFrame({"ts": [datetime(2017, 10, 31, 1, 1, 1)], "d": [pd.Timestamp.now().date()]}) self.spark.createDataFrame(pdf) # Regression test for SPARK-23360 @unittest.skipIf(not have_pandas, pandas_requirement_message) # type: ignore def test_create_dataframe_from_pandas_with_dst(self): import pandas as pd from pandas.testing import assert_frame_equal from datetime import datetime pdf = pd.DataFrame({'time': [datetime(2015, 10, 31, 22, 30)]}) df = self.spark.createDataFrame(pdf) assert_frame_equal(pdf, df.toPandas()) orig_env_tz = os.environ.get('TZ', None) try: tz = 'America/Los_Angeles' os.environ['TZ'] = tz time.tzset() with self.sql_conf({'spark.sql.session.timeZone': tz}): df = self.spark.createDataFrame(pdf) assert_frame_equal(pdf, df.toPandas()) finally: del os.environ['TZ'] if orig_env_tz is not None: os.environ['TZ'] = orig_env_tz time.tzset() def test_repr_behaviors(self): import re pattern = re.compile(r'^ *\|', re.MULTILINE) df = self.spark.createDataFrame([(1, "1"), (22222, "22222")], ("key", "value")) # test when eager evaluation is enabled and _repr_html_ will not be called with self.sql_conf({"spark.sql.repl.eagerEval.enabled": True}): expected1 = """+-----+-----+ || key|value| |+-----+-----+ || 1| 1| ||22222|22222| |+-----+-----+ |""" self.assertEqual(re.sub(pattern, '', expected1), df.__repr__()) with self.sql_conf({"spark.sql.repl.eagerEval.truncate": 3}): expected2 = """+---+-----+ ||key|value| |+---+-----+ || 1| 1| ||222| 222| |+---+-----+ |""" self.assertEqual(re.sub(pattern, '', expected2), df.__repr__()) with self.sql_conf({"spark.sql.repl.eagerEval.maxNumRows": 1}): expected3 = """+---+-----+ ||key|value| |+---+-----+ || 1| 1| |+---+-----+ |only showing top 1 row |""" self.assertEqual(re.sub(pattern, '', expected3), df.__repr__()) # test when eager evaluation is enabled and _repr_html_ will be called with self.sql_conf({"spark.sql.repl.eagerEval.enabled": True}): expected1 = """<table border='1'> |<tr><th>key</th><th>value</th></tr> |<tr><td>1</td><td>1</td></tr> |<tr><td>22222</td><td>22222</td></tr> |</table> |""" self.assertEqual(re.sub(pattern, '', expected1), df._repr_html_()) with self.sql_conf({"spark.sql.repl.eagerEval.truncate": 3}): expected2 = """<table border='1'> |<tr><th>key</th><th>value</th></tr> |<tr><td>1</td><td>1</td></tr> |<tr><td>222</td><td>222</td></tr> |</table> |""" self.assertEqual(re.sub(pattern, '', expected2), df._repr_html_()) with self.sql_conf({"spark.sql.repl.eagerEval.maxNumRows": 1}): expected3 = """<table border='1'> |<tr><th>key</th><th>value</th></tr> |<tr><td>1</td><td>1</td></tr> |</table> |only showing top 1 row |""" self.assertEqual(re.sub(pattern, '', expected3), df._repr_html_()) # test when eager evaluation is disabled and _repr_html_ will be called with self.sql_conf({"spark.sql.repl.eagerEval.enabled": False}): expected = "DataFrame[key: bigint, value: string]" self.assertEqual(None, df._repr_html_()) self.assertEqual(expected, df.__repr__()) with self.sql_conf({"spark.sql.repl.eagerEval.truncate": 3}): self.assertEqual(None, df._repr_html_()) self.assertEqual(expected, df.__repr__()) with self.sql_conf({"spark.sql.repl.eagerEval.maxNumRows": 1}): self.assertEqual(None, df._repr_html_()) self.assertEqual(expected, df.__repr__()) def test_to_local_iterator(self): df = self.spark.range(8, numPartitions=4) expected = df.collect() it = df.toLocalIterator() self.assertEqual(expected, list(it)) # Test DataFrame with empty partition df = self.spark.range(3, numPartitions=4) it = df.toLocalIterator() expected = df.collect() self.assertEqual(expected, list(it)) def test_to_local_iterator_prefetch(self): df = self.spark.range(8, numPartitions=4) expected = df.collect() it = df.toLocalIterator(prefetchPartitions=True) self.assertEqual(expected, list(it)) def test_to_local_iterator_not_fully_consumed(self): # SPARK-23961: toLocalIterator throws exception when not fully consumed # Create a DataFrame large enough so that write to socket will eventually block df = self.spark.range(1 << 20, numPartitions=2) it = df.toLocalIterator() self.assertEqual(df.take(1)[0], next(it)) with QuietTest(self.sc): it = None # remove iterator from scope, socket is closed when cleaned up # Make sure normal df operations still work result = [] for i, row in enumerate(df.toLocalIterator()): result.append(row) if i == 7: break self.assertEqual(df.take(8), result) def test_same_semantics_error(self): with QuietTest(self.sc): with self.assertRaisesRegex(TypeError, "should be of DataFrame.*int"): self.spark.range(10).sameSemantics(1) def test_input_files(self): tpath = tempfile.mkdtemp() shutil.rmtree(tpath) try: self.spark.range(1, 100, 1, 10).write.parquet(tpath) # read parquet file and get the input files list input_files_list = self.spark.read.parquet(tpath).inputFiles() # input files list should contain 10 entries self.assertEqual(len(input_files_list), 10) # all file paths in list must contain tpath for file_path in input_files_list: self.assertTrue(tpath in file_path) finally: shutil.rmtree(tpath) def test_df_show(self): # SPARK-35408: ensure better diagnostics if incorrect parameters are passed # to DataFrame.show df = self.spark.createDataFrame([('foo',)]) df.show(5) df.show(5, True) df.show(5, 1, True) df.show(n=5, truncate='1', vertical=False) df.show(n=5, truncate=1.5, vertical=False) with self.assertRaisesRegex(TypeError, "Parameter 'n'"): df.show(True) with self.assertRaisesRegex(TypeError, "Parameter 'vertical'"): df.show(vertical='foo') with self.assertRaisesRegex(TypeError, "Parameter 'truncate=foo'"): df.show(truncate='foo') @unittest.skipIf( not have_pandas or not have_pyarrow, pandas_requirement_message or pyarrow_requirement_message) # type: ignore def test_to_pandas_on_spark(self): import pandas as pd from pandas.testing import assert_frame_equal sdf = self.spark.createDataFrame([("a", 1), ("b", 2), ("c", 3)], ["Col1", "Col2"]) psdf_from_sdf = sdf.to_pandas_on_spark() psdf_from_sdf_with_index = sdf.to_pandas_on_spark(index_col="Col1") pdf = pd.DataFrame({"Col1": ["a", "b", "c"], "Col2": [1, 2, 3]}) pdf_with_index = pdf.set_index("Col1") assert_frame_equal(pdf, psdf_from_sdf.to_pandas()) assert_frame_equal(pdf_with_index, psdf_from_sdf_with_index.to_pandas()) class QueryExecutionListenerTests(unittest.TestCase, SQLTestUtils): # These tests are separate because it uses 'spark.sql.queryExecutionListeners' which is # static and immutable. This can't be set or unset, for example, via `spark.conf`. @classmethod def setUpClass(cls): import glob from pyspark.find_spark_home import _find_spark_home SPARK_HOME = _find_spark_home() filename_pattern = ( "sql/core/target/scala-*/test-classes/org/apache/spark/sql/" "TestQueryExecutionListener.class") cls.has_listener = bool(glob.glob(os.path.join(SPARK_HOME, filename_pattern))) if cls.has_listener: # Note that 'spark.sql.queryExecutionListeners' is a static immutable configuration. cls.spark = SparkSession.builder \ .master("local[4]") \ .appName(cls.__name__) \ .config( "spark.sql.queryExecutionListeners", "org.apache.spark.sql.TestQueryExecutionListener") \ .getOrCreate() def setUp(self): if not self.has_listener: raise self.skipTest( "'org.apache.spark.sql.TestQueryExecutionListener' is not " "available. Will skip the related tests.") @classmethod def tearDownClass(cls): if hasattr(cls, "spark"): cls.spark.stop() def tearDown(self): self.spark._jvm.OnSuccessCall.clear() def test_query_execution_listener_on_collect(self): self.assertFalse( self.spark._jvm.OnSuccessCall.isCalled(), "The callback from the query execution listener should not be called before 'collect'") self.spark.sql("SELECT * FROM range(1)").collect() self.spark.sparkContext._jsc.sc().listenerBus().waitUntilEmpty(10000) self.assertTrue( self.spark._jvm.OnSuccessCall.isCalled(), "The callback from the query execution listener should be called after 'collect'") @unittest.skipIf( not have_pandas or not have_pyarrow, pandas_requirement_message or pyarrow_requirement_message) # type: ignore def test_query_execution_listener_on_collect_with_arrow(self): with self.sql_conf({"spark.sql.execution.arrow.pyspark.enabled": True}): self.assertFalse( self.spark._jvm.OnSuccessCall.isCalled(), "The callback from the query execution listener should not be " "called before 'toPandas'") self.spark.sql("SELECT * FROM range(1)").toPandas() self.spark.sparkContext._jsc.sc().listenerBus().waitUntilEmpty(10000) self.assertTrue( self.spark._jvm.OnSuccessCall.isCalled(), "The callback from the query execution listener should be called after 'toPandas'") if __name__ == "__main__": from pyspark.sql.tests.test_dataframe import * # noqa: F401 try: import xmlrunner # type: ignore testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
jorge2703/scikit-learn
sklearn/decomposition/tests/test_online_lda.py
48
12645
import numpy as np from scipy.linalg import block_diag from scipy.sparse import csr_matrix from scipy.special import psi from sklearn.decomposition import LatentDirichletAllocation from sklearn.decomposition._online_lda import (_dirichlet_expectation_1d, _dirichlet_expectation_2d) from sklearn.utils.testing import assert_allclose from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import if_not_mac_os from sklearn.utils.validation import NotFittedError from sklearn.externals.six.moves import xrange def _build_sparse_mtx(): # Create 3 topics and each topic has 3 disticnt words. # (Each word only belongs to a single topic.) n_topics = 3 block = n_topics * np.ones((3, 3)) blocks = [block] * n_topics X = block_diag(*blocks) X = csr_matrix(X) return (n_topics, X) def test_lda_default_prior_params(): # default prior parameter should be `1 / topics` # and verbose params should not affect result n_topics, X = _build_sparse_mtx() prior = 1. / n_topics lda_1 = LatentDirichletAllocation(n_topics=n_topics, doc_topic_prior=prior, topic_word_prior=prior, random_state=0) lda_2 = LatentDirichletAllocation(n_topics=n_topics, random_state=0) topic_distr_1 = lda_1.fit_transform(X) topic_distr_2 = lda_2.fit_transform(X) assert_almost_equal(topic_distr_1, topic_distr_2) def test_lda_fit_batch(): # Test LDA batch learning_offset (`fit` method with 'batch' learning) rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, evaluate_every=1, learning_method='batch', random_state=rng) lda.fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for component in lda.components_: # Find top 3 words in each LDA component top_idx = set(component.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_fit_online(): # Test LDA online learning (`fit` method with 'online' learning) rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=10., evaluate_every=1, learning_method='online', random_state=rng) lda.fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for component in lda.components_: # Find top 3 words in each LDA component top_idx = set(component.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_partial_fit(): # Test LDA online learning (`partial_fit` method) # (same as test_lda_batch) rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=10., total_samples=100, random_state=rng) for i in xrange(3): lda.partial_fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for c in lda.components_: top_idx = set(c.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_dense_input(): # Test LDA with dense input. rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, learning_method='batch', random_state=rng) lda.fit(X.toarray()) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for component in lda.components_: # Find top 3 words in each LDA component top_idx = set(component.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_transform(): # Test LDA transform. # Transform result cannot be negative rng = np.random.RandomState(0) X = rng.randint(5, size=(20, 10)) n_topics = 3 lda = LatentDirichletAllocation(n_topics=n_topics, random_state=rng) X_trans = lda.fit_transform(X) assert_true((X_trans > 0.0).any()) def test_lda_fit_transform(): # Test LDA fit_transform & transform # fit_transform and transform result should be the same for method in ('online', 'batch'): rng = np.random.RandomState(0) X = rng.randint(10, size=(50, 20)) lda = LatentDirichletAllocation(n_topics=5, learning_method=method, random_state=rng) X_fit = lda.fit_transform(X) X_trans = lda.transform(X) assert_array_almost_equal(X_fit, X_trans, 4) def test_lda_partial_fit_dim_mismatch(): # test `n_features` mismatch in `partial_fit` rng = np.random.RandomState(0) n_topics = rng.randint(3, 6) n_col = rng.randint(6, 10) X_1 = np.random.randint(4, size=(10, n_col)) X_2 = np.random.randint(4, size=(10, n_col + 1)) lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=5., total_samples=20, random_state=rng) lda.partial_fit(X_1) assert_raises_regexp(ValueError, r"^The provided data has", lda.partial_fit, X_2) def test_invalid_params(): # test `_check_params` method X = np.ones((5, 10)) invalid_models = ( ('n_topics', LatentDirichletAllocation(n_topics=0)), ('learning_method', LatentDirichletAllocation(learning_method='unknown')), ('total_samples', LatentDirichletAllocation(total_samples=0)), ('learning_offset', LatentDirichletAllocation(learning_offset=-1)), ) for param, model in invalid_models: regex = r"^Invalid %r parameter" % param assert_raises_regexp(ValueError, regex, model.fit, X) def test_lda_negative_input(): # test pass dense matrix with sparse negative input. X = -np.ones((5, 10)) lda = LatentDirichletAllocation() regex = r"^Negative values in data passed" assert_raises_regexp(ValueError, regex, lda.fit, X) def test_lda_no_component_error(): # test `transform` and `perplexity` before `fit` rng = np.random.RandomState(0) X = rng.randint(4, size=(20, 10)) lda = LatentDirichletAllocation() regex = r"^no 'components_' attribute" assert_raises_regexp(NotFittedError, regex, lda.transform, X) assert_raises_regexp(NotFittedError, regex, lda.perplexity, X) def test_lda_transform_mismatch(): # test `n_features` mismatch in partial_fit and transform rng = np.random.RandomState(0) X = rng.randint(4, size=(20, 10)) X_2 = rng.randint(4, size=(10, 8)) n_topics = rng.randint(3, 6) lda = LatentDirichletAllocation(n_topics=n_topics, random_state=rng) lda.partial_fit(X) assert_raises_regexp(ValueError, r"^The provided data has", lda.partial_fit, X_2) @if_not_mac_os() def test_lda_multi_jobs(): # Test LDA batch training with multi CPU for method in ('online', 'batch'): rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, n_jobs=3, learning_method=method, random_state=rng) lda.fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for c in lda.components_: top_idx = set(c.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) @if_not_mac_os() def test_lda_partial_fit_multi_jobs(): # Test LDA online training with multi CPU rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, n_jobs=-1, learning_offset=5., total_samples=30, random_state=rng) for i in xrange(3): lda.partial_fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for c in lda.components_: top_idx = set(c.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_preplexity_mismatch(): # test dimension mismatch in `perplexity` method rng = np.random.RandomState(0) n_topics = rng.randint(3, 6) n_samples = rng.randint(6, 10) X = np.random.randint(4, size=(n_samples, 10)) lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=5., total_samples=20, random_state=rng) lda.fit(X) # invalid samples invalid_n_samples = rng.randint(4, size=(n_samples + 1, n_topics)) assert_raises_regexp(ValueError, r'Number of samples', lda.perplexity, X, invalid_n_samples) # invalid topic number invalid_n_topics = rng.randint(4, size=(n_samples, n_topics + 1)) assert_raises_regexp(ValueError, r'Number of topics', lda.perplexity, X, invalid_n_topics) def test_lda_perplexity(): # Test LDA perplexity for batch training # perplexity should be lower after each iteration n_topics, X = _build_sparse_mtx() for method in ('online', 'batch'): lda_1 = LatentDirichletAllocation(n_topics=n_topics, max_iter=1, learning_method=method, total_samples=100, random_state=0) lda_2 = LatentDirichletAllocation(n_topics=n_topics, max_iter=10, learning_method=method, total_samples=100, random_state=0) distr_1 = lda_1.fit_transform(X) perp_1 = lda_1.perplexity(X, distr_1, sub_sampling=False) distr_2 = lda_2.fit_transform(X) perp_2 = lda_2.perplexity(X, distr_2, sub_sampling=False) assert_greater_equal(perp_1, perp_2) perp_1_subsampling = lda_1.perplexity(X, distr_1, sub_sampling=True) perp_2_subsampling = lda_2.perplexity(X, distr_2, sub_sampling=True) assert_greater_equal(perp_1_subsampling, perp_2_subsampling) def test_lda_score(): # Test LDA score for batch training # score should be higher after each iteration n_topics, X = _build_sparse_mtx() for method in ('online', 'batch'): lda_1 = LatentDirichletAllocation(n_topics=n_topics, max_iter=1, learning_method=method, total_samples=100, random_state=0) lda_2 = LatentDirichletAllocation(n_topics=n_topics, max_iter=10, learning_method=method, total_samples=100, random_state=0) lda_1.fit_transform(X) score_1 = lda_1.score(X) lda_2.fit_transform(X) score_2 = lda_2.score(X) assert_greater_equal(score_2, score_1) def test_perplexity_input_format(): # Test LDA perplexity for sparse and dense input # score should be the same for both dense and sparse input n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=1, learning_method='batch', total_samples=100, random_state=0) distr = lda.fit_transform(X) perp_1 = lda.perplexity(X) perp_2 = lda.perplexity(X, distr) perp_3 = lda.perplexity(X.toarray(), distr) assert_almost_equal(perp_1, perp_2) assert_almost_equal(perp_1, perp_3) def test_lda_score_perplexity(): # Test the relationship between LDA score and perplexity n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=10, random_state=0) distr = lda.fit_transform(X) perplexity_1 = lda.perplexity(X, distr, sub_sampling=False) score = lda.score(X) perplexity_2 = np.exp(-1. * (score / np.sum(X.data))) assert_almost_equal(perplexity_1, perplexity_2) def test_lda_empty_docs(): """Test LDA on empty document (all-zero rows).""" Z = np.zeros((5, 4)) for X in [Z, csr_matrix(Z)]: lda = LatentDirichletAllocation(max_iter=750).fit(X) assert_almost_equal(lda.components_.sum(axis=0), np.ones(lda.components_.shape[1])) def test_dirichlet_expectation(): """Test Cython version of Dirichlet expectation calculation.""" x = np.logspace(-100, 10, 10000) assert_allclose(_dirichlet_expectation_1d(x), np.exp(psi(x) - psi(np.sum(x))), atol=1e-19) x = x.reshape(100, 100) assert_allclose(_dirichlet_expectation_2d(x), psi(x) - psi(np.sum(x, axis=1)[:, np.newaxis]), rtol=1e-11, atol=3e-9)
bsd-3-clause
mikaem/spectralDNS
tests/TG2D.py
4
2087
import warnings from numpy import sin, cos, exp, zeros, sum, float64 from spectralDNS import config, get_solver, solve try: import matplotlib.pyplot as plt except ImportError: warnings.warn("matplotlib not installed") plt = None def initialize(sol, U, U_hat, X, **context): U[0] = sin(X[0])*cos(X[1]) U[1] = -sin(X[1])*cos(X[0]) sol.set_velocity(U, U_hat, **context) #U_hat = U.forward(U_hat) config.params.t = 0.0 config.params.tstep = 0 im = None def update(context): global im params = config.params solver = config.solver if not plt is None: # initialize plot if params.tstep == 1: im = plt.imshow(zeros((params.N[0], params.N[1]))) plt.colorbar(im) plt.draw() if params.tstep % params.plot_result == 0 and params.plot_result > 0: curl = solver.get_curl(**context) im.set_data(curl[:, :]) im.autoscale() plt.pause(1e-6) def regression_test(context): params = config.params solver = config.solver dx, L = params.dx, params.L U = solver.get_velocity(**context) k = solver.comm.reduce(sum(U.astype(float64)*U.astype(float64))*dx[0]*dx[1]/L[0]/L[1]/2) U[0] = -sin(context.X[1])*cos(context.X[0])*exp(-2*params.nu*params.t) U[1] = sin(context.X[0])*cos(context.X[1])*exp(-2*params.nu*params.t) ke = solver.comm.reduce(sum(U.astype(float64)*U.astype(float64))*dx[0]*dx[1]/L[0]/L[1]/2) if solver.rank == 0: print("Error {}".format(k-ke)) assert round(float(k - ke), params.ntol) == 0 if __name__ == '__main__': config.update( {'nu': 0.01, 'dt': 0.05, 'T': 10, 'write_result': 100, 'M': [6, 6]}, 'doublyperiodic') config.doublyperiodic.add_argument("--plot_result", type=int, default=10) # required to allow overloading through commandline sol = get_solver(update=update, regression_test=regression_test, mesh="doublyperiodic") context = sol.get_context() initialize(sol, **context) solve(sol, context)
gpl-3.0
Equitable/trump
trump/datadef.py
3
2137
import inspect import sys import pandas as pd import datetime as dt from sqlalchemy import DateTime, Integer, String, Float class SkipDataDef(object): """ The SkipDataDef object implements a float column, but makes an assumption that the data is already floats (or float-like), so it can skip any check and conversion. It's just faster. """ sqlatyp = Float astyp = float def __init__(self, data): self.data = data @property def converted(self): return self.data class ConvertedDataDef(object): """ Implements a basic functionality for a DataDef object. The defaults, are floats. """ sqlatyp = Float pythontyp = float def __init__(self, data): self.data = data @property def converted(self): return self.data.astype(self.pythontyp) class IntDataDef(ConvertedDataDef): """Implements a basic integer data definition.""" sqlatyp = Integer pythontyp = int class FloatDataDef(ConvertedDataDef): """Implements a basic float data definition.""" # redefined, just to avoid confusion. Floats are used by # default in ConvertedDataDef sqlatyp = Float pythontyp = float class StrDataDef(ConvertedDataDef): """Implements a basic string data definition.""" sqlatyp = String pythontyp = str def __init__(self, data): self.data = data #raise Warning("""Using this DataDef, on a feed with NaN, will convert #the NaN to a string. The Aggregation functions will treat this as a #value.""") class DateTimeDataDef(ConvertedDataDef): """Implements a basic string data definition.""" sqlatyp = DateTime pythontyp = dt.datetime @property def converted(self): return pd.to_datetime(self.data) def _pred(aclass): """ :param aclass :return: boolean """ isaclass = inspect.isclass(aclass) return isaclass and aclass.__module__ == _pred.__module__ classes = inspect.getmembers(sys.modules[__name__], _pred) datadefs = {cls[0]: cls[1] for cls in classes}
bsd-3-clause
userdw/RaspberryPi_3_Starter_Kit
08_Image_Processing/Histogram/histogram/histogram.py
1
1293
import os, cv2 import numpy as np import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec _intensityBGR = 256 _projectDirectory = os.path.dirname(__file__) _imagesDirectory = os.path.join(_projectDirectory, "images") _images = [] for _root, _dirs, _files in os.walk(_imagesDirectory): for _file in _files: if _file.endswith(".jpg"): _images.append(os.path.join(_imagesDirectory, _file)) _imageIndex = 0 _imageTotal = len(_images) _img = cv2.imread(_images[_imageIndex], cv2.IMREAD_UNCHANGED) _img = cv2.cvtColor(_img, cv2.COLOR_BGR2RGB) _fig = plt.figure("Histogram") _gs = GridSpec(15, 2) _fig1 = plt.subplot(_gs[0:15, 0]) _fig1.set_title("Image") plt.tight_layout() _fig1ShowIt = plt.imshow(_img) _fig2 = plt.subplot(_gs[0:15, 1]) _fig2.set_title("Histogram") _histB = cv2.calcHist([_img], [0], None, [256], [0, 256]) / _img.size _histG = cv2.calcHist([_img], [1], None, [256], [0, 256]) / _img.size _histR = cv2.calcHist([_img], [2], None, [256], [0, 256]) / _img.size plt.xlabel("Intensity") plt.ylabel("PMF") _intensityPlotBGR = np.arange(_intensityBGR) plt.tight_layout() _fig2ShowIt = plt.plot(_intensityPlotBGR, _histB, "b", _intensityPlotBGR, _histG, "g", _intensityPlotBGR, _histR, "r", alpha = 0.8) plt.show()
mit
gfyoung/pandas
pandas/tests/frame/methods/test_dropna.py
3
7549
import datetime import dateutil import numpy as np import pytest import pandas as pd from pandas import DataFrame, Series import pandas._testing as tm class TestDataFrameMissingData: def test_dropEmptyRows(self, float_frame): N = len(float_frame.index) mat = np.random.randn(N) mat[:5] = np.nan frame = DataFrame({"foo": mat}, index=float_frame.index) original = Series(mat, index=float_frame.index, name="foo") expected = original.dropna() inplace_frame1, inplace_frame2 = frame.copy(), frame.copy() smaller_frame = frame.dropna(how="all") # check that original was preserved tm.assert_series_equal(frame["foo"], original) return_value = inplace_frame1.dropna(how="all", inplace=True) tm.assert_series_equal(smaller_frame["foo"], expected) tm.assert_series_equal(inplace_frame1["foo"], expected) assert return_value is None smaller_frame = frame.dropna(how="all", subset=["foo"]) return_value = inplace_frame2.dropna(how="all", subset=["foo"], inplace=True) tm.assert_series_equal(smaller_frame["foo"], expected) tm.assert_series_equal(inplace_frame2["foo"], expected) assert return_value is None def test_dropIncompleteRows(self, float_frame): N = len(float_frame.index) mat = np.random.randn(N) mat[:5] = np.nan frame = DataFrame({"foo": mat}, index=float_frame.index) frame["bar"] = 5 original = Series(mat, index=float_frame.index, name="foo") inp_frame1, inp_frame2 = frame.copy(), frame.copy() smaller_frame = frame.dropna() tm.assert_series_equal(frame["foo"], original) return_value = inp_frame1.dropna(inplace=True) exp = Series(mat[5:], index=float_frame.index[5:], name="foo") tm.assert_series_equal(smaller_frame["foo"], exp) tm.assert_series_equal(inp_frame1["foo"], exp) assert return_value is None samesize_frame = frame.dropna(subset=["bar"]) tm.assert_series_equal(frame["foo"], original) assert (frame["bar"] == 5).all() return_value = inp_frame2.dropna(subset=["bar"], inplace=True) tm.assert_index_equal(samesize_frame.index, float_frame.index) tm.assert_index_equal(inp_frame2.index, float_frame.index) assert return_value is None def test_dropna(self): df = DataFrame(np.random.randn(6, 4)) df[2][:2] = np.nan dropped = df.dropna(axis=1) expected = df.loc[:, [0, 1, 3]] inp = df.copy() return_value = inp.dropna(axis=1, inplace=True) tm.assert_frame_equal(dropped, expected) tm.assert_frame_equal(inp, expected) assert return_value is None dropped = df.dropna(axis=0) expected = df.loc[list(range(2, 6))] inp = df.copy() return_value = inp.dropna(axis=0, inplace=True) tm.assert_frame_equal(dropped, expected) tm.assert_frame_equal(inp, expected) assert return_value is None # threshold dropped = df.dropna(axis=1, thresh=5) expected = df.loc[:, [0, 1, 3]] inp = df.copy() return_value = inp.dropna(axis=1, thresh=5, inplace=True) tm.assert_frame_equal(dropped, expected) tm.assert_frame_equal(inp, expected) assert return_value is None dropped = df.dropna(axis=0, thresh=4) expected = df.loc[range(2, 6)] inp = df.copy() return_value = inp.dropna(axis=0, thresh=4, inplace=True) tm.assert_frame_equal(dropped, expected) tm.assert_frame_equal(inp, expected) assert return_value is None dropped = df.dropna(axis=1, thresh=4) tm.assert_frame_equal(dropped, df) dropped = df.dropna(axis=1, thresh=3) tm.assert_frame_equal(dropped, df) # subset dropped = df.dropna(axis=0, subset=[0, 1, 3]) inp = df.copy() return_value = inp.dropna(axis=0, subset=[0, 1, 3], inplace=True) tm.assert_frame_equal(dropped, df) tm.assert_frame_equal(inp, df) assert return_value is None # all dropped = df.dropna(axis=1, how="all") tm.assert_frame_equal(dropped, df) df[2] = np.nan dropped = df.dropna(axis=1, how="all") expected = df.loc[:, [0, 1, 3]] tm.assert_frame_equal(dropped, expected) # bad input msg = "No axis named 3 for object type DataFrame" with pytest.raises(ValueError, match=msg): df.dropna(axis=3) def test_drop_and_dropna_caching(self): # tst that cacher updates original = Series([1, 2, np.nan], name="A") expected = Series([1, 2], dtype=original.dtype, name="A") df = DataFrame({"A": original.values.copy()}) df2 = df.copy() df["A"].dropna() tm.assert_series_equal(df["A"], original) ser = df["A"] return_value = ser.dropna(inplace=True) tm.assert_series_equal(ser, expected) tm.assert_series_equal(df["A"], original) assert return_value is None df2["A"].drop([1]) tm.assert_series_equal(df2["A"], original) ser = df2["A"] return_value = ser.drop([1], inplace=True) tm.assert_series_equal(ser, original.drop([1])) tm.assert_series_equal(df2["A"], original) assert return_value is None def test_dropna_corner(self, float_frame): # bad input msg = "invalid how option: foo" with pytest.raises(ValueError, match=msg): float_frame.dropna(how="foo") msg = "must specify how or thresh" with pytest.raises(TypeError, match=msg): float_frame.dropna(how=None) # non-existent column - 8303 with pytest.raises(KeyError, match=r"^\['X'\]$"): float_frame.dropna(subset=["A", "X"]) def test_dropna_multiple_axes(self): df = DataFrame( [ [1, np.nan, 2, 3], [4, np.nan, 5, 6], [np.nan, np.nan, np.nan, np.nan], [7, np.nan, 8, 9], ] ) # GH20987 with pytest.raises(TypeError, match="supplying multiple axes"): df.dropna(how="all", axis=[0, 1]) with pytest.raises(TypeError, match="supplying multiple axes"): df.dropna(how="all", axis=(0, 1)) inp = df.copy() with pytest.raises(TypeError, match="supplying multiple axes"): inp.dropna(how="all", axis=(0, 1), inplace=True) def test_dropna_tz_aware_datetime(self): # GH13407 df = DataFrame() dt1 = datetime.datetime(2015, 1, 1, tzinfo=dateutil.tz.tzutc()) dt2 = datetime.datetime(2015, 2, 2, tzinfo=dateutil.tz.tzutc()) df["Time"] = [dt1] result = df.dropna(axis=0) expected = DataFrame({"Time": [dt1]}) tm.assert_frame_equal(result, expected) # Ex2 df = DataFrame({"Time": [dt1, None, np.nan, dt2]}) result = df.dropna(axis=0) expected = DataFrame([dt1, dt2], columns=["Time"], index=[0, 3]) tm.assert_frame_equal(result, expected) def test_dropna_categorical_interval_index(self): # GH 25087 ii = pd.IntervalIndex.from_breaks([0, 2.78, 3.14, 6.28]) ci = pd.CategoricalIndex(ii) df = DataFrame({"A": list("abc")}, index=ci) expected = df result = df.dropna() tm.assert_frame_equal(result, expected)
bsd-3-clause
eickenberg/scikit-learn
examples/covariance/plot_sparse_cov.py
14
5078
""" ====================================== Sparse inverse covariance estimation ====================================== Using the GraphLasso estimator to learn a covariance and sparse precision from a small number of samples. To estimate a probabilistic model (e.g. a Gaussian model), estimating the precision matrix, that is the inverse covariance matrix, is as important as estimating the covariance matrix. Indeed a Gaussian model is parametrized by the precision matrix. To be in favorable recovery conditions, we sample the data from a model with a sparse inverse covariance matrix. In addition, we ensure that the data is not too much correlated (limiting the largest coefficient of the precision matrix) and that there a no small coefficients in the precision matrix that cannot be recovered. In addition, with a small number of observations, it is easier to recover a correlation matrix rather than a covariance, thus we scale the time series. Here, the number of samples is slightly larger than the number of dimensions, thus the empirical covariance is still invertible. However, as the observations are strongly correlated, the empirical covariance matrix is ill-conditioned and as a result its inverse --the empirical precision matrix-- is very far from the ground truth. If we use l2 shrinkage, as with the Ledoit-Wolf estimator, as the number of samples is small, we need to shrink a lot. As a result, the Ledoit-Wolf precision is fairly close to the ground truth precision, that is not far from being diagonal, but the off-diagonal structure is lost. The l1-penalized estimator can recover part of this off-diagonal structure. It learns a sparse precision. It is not able to recover the exact sparsity pattern: it detects too many non-zero coefficients. However, the highest non-zero coefficients of the l1 estimated correspond to the non-zero coefficients in the ground truth. Finally, the coefficients of the l1 precision estimate are biased toward zero: because of the penalty, they are all smaller than the corresponding ground truth value, as can be seen on the figure. Note that, the color range of the precision matrices is tweeked to improve readibility of the figure. The full range of values of the empirical precision is not displayed. The alpha parameter of the GraphLasso setting the sparsity of the model is set by internal cross-validation in the GraphLassoCV. As can be seen on figure 2, the grid to compute the cross-validation score is iteratively refined in the neighborhood of the maximum. """ print(__doc__) # author: Gael Varoquaux <[email protected]> # License: BSD 3 clause # Copyright: INRIA import numpy as np from scipy import linalg from sklearn.datasets import make_sparse_spd_matrix from sklearn.covariance import GraphLassoCV, ledoit_wolf import matplotlib.pyplot as plt ############################################################################## # Generate the data n_samples = 60 n_features = 20 prng = np.random.RandomState(1) prec = make_sparse_spd_matrix(n_features, alpha=.98, smallest_coef=.4, largest_coef=.7, random_state=prng) cov = linalg.inv(prec) d = np.sqrt(np.diag(cov)) cov /= d cov /= d[:, np.newaxis] prec *= d prec *= d[:, np.newaxis] X = prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples) X -= X.mean(axis=0) X /= X.std(axis=0) ############################################################################## # Estimate the covariance emp_cov = np.dot(X.T, X) / n_samples model = GraphLassoCV() model.fit(X) cov_ = model.covariance_ prec_ = model.precision_ lw_cov_, _ = ledoit_wolf(X) lw_prec_ = linalg.inv(lw_cov_) ############################################################################## # Plot the results plt.figure(figsize=(10, 6)) plt.subplots_adjust(left=0.02, right=0.98) # plot the covariances covs = [('Empirical', emp_cov), ('Ledoit-Wolf', lw_cov_), ('GraphLasso', cov_), ('True', cov)] vmax = cov_.max() for i, (name, this_cov) in enumerate(covs): plt.subplot(2, 4, i + 1) plt.imshow(this_cov, interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s covariance' % name) # plot the precisions precs = [('Empirical', linalg.inv(emp_cov)), ('Ledoit-Wolf', lw_prec_), ('GraphLasso', prec_), ('True', prec)] vmax = .9 * prec_.max() for i, (name, this_prec) in enumerate(precs): ax = plt.subplot(2, 4, i + 5) plt.imshow(np.ma.masked_equal(this_prec, 0), interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s precision' % name) ax.set_axis_bgcolor('.7') # plot the model selection metric plt.figure(figsize=(4, 3)) plt.axes([.2, .15, .75, .7]) plt.plot(model.cv_alphas_, np.mean(model.grid_scores, axis=1), 'o-') plt.axvline(model.alpha_, color='.5') plt.title('Model selection') plt.ylabel('Cross-validation score') plt.xlabel('alpha') plt.show()
bsd-3-clause
shangwuhencc/scikit-learn
sklearn/utils/tests/test_multiclass.py
128
12853
from __future__ import division import numpy as np import scipy.sparse as sp from itertools import product from sklearn.externals.six.moves import xrange from sklearn.externals.six import iteritems from scipy.sparse import issparse from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.multiclass import unique_labels from sklearn.utils.multiclass import is_multilabel from sklearn.utils.multiclass import type_of_target from sklearn.utils.multiclass import class_distribution class NotAnArray(object): """An object that is convertable to an array. This is useful to simulate a Pandas timeseries.""" def __init__(self, data): self.data = data def __array__(self): return self.data EXAMPLES = { 'multilabel-indicator': [ # valid when the data is formated as sparse or dense, identified # by CSR format when the testing takes place csr_matrix(np.random.RandomState(42).randint(2, size=(10, 10))), csr_matrix(np.array([[0, 1], [1, 0]])), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.bool)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.int8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.uint8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float32)), csr_matrix(np.array([[0, 0], [0, 0]])), csr_matrix(np.array([[0, 1]])), # Only valid when data is dense np.array([[-1, 1], [1, -1]]), np.array([[-3, 3], [3, -3]]), NotAnArray(np.array([[-3, 3], [3, -3]])), ], 'multiclass': [ [1, 0, 2, 2, 1, 4, 2, 4, 4, 4], np.array([1, 0, 2]), np.array([1, 0, 2], dtype=np.int8), np.array([1, 0, 2], dtype=np.uint8), np.array([1, 0, 2], dtype=np.float), np.array([1, 0, 2], dtype=np.float32), np.array([[1], [0], [2]]), NotAnArray(np.array([1, 0, 2])), [0, 1, 2], ['a', 'b', 'c'], np.array([u'a', u'b', u'c']), np.array([u'a', u'b', u'c'], dtype=object), np.array(['a', 'b', 'c'], dtype=object), ], 'multiclass-multioutput': [ np.array([[1, 0, 2, 2], [1, 4, 2, 4]]), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.int8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.uint8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float32), np.array([['a', 'b'], ['c', 'd']]), np.array([[u'a', u'b'], [u'c', u'd']]), np.array([[u'a', u'b'], [u'c', u'd']], dtype=object), np.array([[1, 0, 2]]), NotAnArray(np.array([[1, 0, 2]])), ], 'binary': [ [0, 1], [1, 1], [], [0], np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1]), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.bool), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.int8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.uint8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float32), np.array([[0], [1]]), NotAnArray(np.array([[0], [1]])), [1, -1], [3, 5], ['a'], ['a', 'b'], ['abc', 'def'], np.array(['abc', 'def']), [u'a', u'b'], np.array(['abc', 'def'], dtype=object), ], 'continuous': [ [1e-5], [0, .5], np.array([[0], [.5]]), np.array([[0], [.5]], dtype=np.float32), ], 'continuous-multioutput': [ np.array([[0, .5], [.5, 0]]), np.array([[0, .5], [.5, 0]], dtype=np.float32), np.array([[0, .5]]), ], 'unknown': [ [[]], [()], # sequence of sequences that were'nt supported even before deprecation np.array([np.array([]), np.array([1, 2, 3])], dtype=object), [np.array([]), np.array([1, 2, 3])], [set([1, 2, 3]), set([1, 2])], [frozenset([1, 2, 3]), frozenset([1, 2])], # and also confusable as sequences of sequences [{0: 'a', 1: 'b'}, {0: 'a'}], # empty second dimension np.array([[], []]), # 3d np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), ] } NON_ARRAY_LIKE_EXAMPLES = [ set([1, 2, 3]), {0: 'a', 1: 'b'}, {0: [5], 1: [5]}, 'abc', frozenset([1, 2, 3]), None, ] MULTILABEL_SEQUENCES = [ [[1], [2], [0, 1]], [(), (2), (0, 1)], np.array([[], [1, 2]], dtype='object'), NotAnArray(np.array([[], [1, 2]], dtype='object')) ] def test_unique_labels(): # Empty iterable assert_raises(ValueError, unique_labels) # Multiclass problem assert_array_equal(unique_labels(xrange(10)), np.arange(10)) assert_array_equal(unique_labels(np.arange(10)), np.arange(10)) assert_array_equal(unique_labels([4, 0, 2]), np.array([0, 2, 4])) # Multilabel indicator assert_array_equal(unique_labels(np.array([[0, 0, 1], [1, 0, 1], [0, 0, 0]])), np.arange(3)) assert_array_equal(unique_labels(np.array([[0, 0, 1], [0, 0, 0]])), np.arange(3)) # Several arrays passed assert_array_equal(unique_labels([4, 0, 2], xrange(5)), np.arange(5)) assert_array_equal(unique_labels((0, 1, 2), (0,), (2, 1)), np.arange(3)) # Border line case with binary indicator matrix assert_raises(ValueError, unique_labels, [4, 0, 2], np.ones((5, 5))) assert_raises(ValueError, unique_labels, np.ones((5, 4)), np.ones((5, 5))) assert_array_equal(unique_labels(np.ones((4, 5)), np.ones((5, 5))), np.arange(5)) def test_unique_labels_non_specific(): # Test unique_labels with a variety of collected examples # Smoke test for all supported format for format in ["binary", "multiclass", "multilabel-indicator"]: for y in EXAMPLES[format]: unique_labels(y) # We don't support those format at the moment for example in NON_ARRAY_LIKE_EXAMPLES: assert_raises(ValueError, unique_labels, example) for y_type in ["unknown", "continuous", 'continuous-multioutput', 'multiclass-multioutput']: for example in EXAMPLES[y_type]: assert_raises(ValueError, unique_labels, example) def test_unique_labels_mixed_types(): # Mix with binary or multiclass and multilabel mix_clf_format = product(EXAMPLES["multilabel-indicator"], EXAMPLES["multiclass"] + EXAMPLES["binary"]) for y_multilabel, y_multiclass in mix_clf_format: assert_raises(ValueError, unique_labels, y_multiclass, y_multilabel) assert_raises(ValueError, unique_labels, y_multilabel, y_multiclass) assert_raises(ValueError, unique_labels, [[1, 2]], [["a", "d"]]) assert_raises(ValueError, unique_labels, ["1", 2]) assert_raises(ValueError, unique_labels, [["1", 2], [1, 3]]) assert_raises(ValueError, unique_labels, [["1", "2"], [2, 3]]) def test_is_multilabel(): for group, group_examples in iteritems(EXAMPLES): if group in ['multilabel-indicator']: dense_assert_, dense_exp = assert_true, 'True' else: dense_assert_, dense_exp = assert_false, 'False' for example in group_examples: # Only mark explicitly defined sparse examples as valid sparse # multilabel-indicators if group == 'multilabel-indicator' and issparse(example): sparse_assert_, sparse_exp = assert_true, 'True' else: sparse_assert_, sparse_exp = assert_false, 'False' if (issparse(example) or (hasattr(example, '__array__') and np.asarray(example).ndim == 2 and np.asarray(example).dtype.kind in 'biuf' and np.asarray(example).shape[1] > 0)): examples_sparse = [sparse_matrix(example) for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix]] for exmpl_sparse in examples_sparse: sparse_assert_(is_multilabel(exmpl_sparse), msg=('is_multilabel(%r)' ' should be %s') % (exmpl_sparse, sparse_exp)) # Densify sparse examples before testing if issparse(example): example = example.toarray() dense_assert_(is_multilabel(example), msg='is_multilabel(%r) should be %s' % (example, dense_exp)) def test_type_of_target(): for group, group_examples in iteritems(EXAMPLES): for example in group_examples: assert_equal(type_of_target(example), group, msg=('type_of_target(%r) should be %r, got %r' % (example, group, type_of_target(example)))) for example in NON_ARRAY_LIKE_EXAMPLES: msg_regex = 'Expected array-like \(array or non-string sequence\).*' assert_raises_regex(ValueError, msg_regex, type_of_target, example) for example in MULTILABEL_SEQUENCES: msg = ('You appear to be using a legacy multi-label data ' 'representation. Sequence of sequences are no longer supported;' ' use a binary array or sparse matrix instead.') assert_raises_regex(ValueError, msg, type_of_target, example) def test_class_distribution(): y = np.array([[1, 0, 0, 1], [2, 2, 0, 1], [1, 3, 0, 1], [4, 2, 0, 1], [2, 0, 0, 1], [1, 3, 0, 1]]) # Define the sparse matrix with a mix of implicit and explicit zeros data = np.array([1, 2, 1, 4, 2, 1, 0, 2, 3, 2, 3, 1, 1, 1, 1, 1, 1]) indices = np.array([0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 5, 0, 1, 2, 3, 4, 5]) indptr = np.array([0, 6, 11, 11, 17]) y_sp = sp.csc_matrix((data, indices, indptr), shape=(6, 4)) classes, n_classes, class_prior = class_distribution(y) classes_sp, n_classes_sp, class_prior_sp = class_distribution(y_sp) classes_expected = [[1, 2, 4], [0, 2, 3], [0], [1]] n_classes_expected = [3, 3, 1, 1] class_prior_expected = [[3/6, 2/6, 1/6], [1/3, 1/3, 1/3], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k]) # Test again with explicit sample weights (classes, n_classes, class_prior) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) (classes_sp, n_classes_sp, class_prior_sp) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) class_prior_expected = [[4/9, 3/9, 2/9], [2/9, 4/9, 3/9], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k])
bsd-3-clause
abhishekgahlot/pybrain
examples/rl/valuebased/nfq.py
4
1841
#!/usr/bin/env python __author__ = 'Thomas Rueckstiess, [email protected]' from pybrain.rl.environments.cartpole import CartPoleEnvironment, DiscreteBalanceTask, CartPoleRenderer from pybrain.rl.agents import LearningAgent from pybrain.rl.experiments import EpisodicExperiment from pybrain.rl.learners.valuebased import NFQ, ActionValueNetwork from pybrain.rl.explorers import BoltzmannExplorer from numpy import array, arange, meshgrid, pi, zeros, mean from matplotlib import pyplot as plt # switch this to True if you want to see the cart balancing the pole (slower) render = False plt.ion() env = CartPoleEnvironment() if render: renderer = CartPoleRenderer() env.setRenderer(renderer) renderer.start() module = ActionValueNetwork(4, 3) task = DiscreteBalanceTask(env, 100) learner = NFQ() learner.explorer.epsilon = 0.4 agent = LearningAgent(module, learner) testagent = LearningAgent(module, None) experiment = EpisodicExperiment(task, agent) def plotPerformance(values, fig): plt.figure(fig.number) plt.clf() plt.plot(values, 'o-') plt.gcf().canvas.draw() performance = [] if not render: pf_fig = plt.figure() while(True): # one learning step after one episode of world-interaction experiment.doEpisodes(1) agent.learn(1) # test performance (these real-world experiences are not used for training) if render: env.delay = True experiment.agent = testagent r = mean([sum(x) for x in experiment.doEpisodes(5)]) env.delay = False testagent.reset() experiment.agent = agent performance.append(r) if not render: plotPerformance(performance, pf_fig) print "reward avg", r print "explorer epsilon", learner.explorer.epsilon print "num episodes", agent.history.getNumSequences() print "update step", len(performance)
bsd-3-clause
rseubert/scikit-learn
examples/plot_multilabel.py
25
4261
# Authors: Vlad Niculae, Mathieu Blondel # License: BSD 3 clause """ ========================= Multilabel classification ========================= This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both classes are plotted surrounded by two colored circles. The classification is performed by projecting to the first two principal components found by PCA and CCA for visualisation purposes, followed by using the :class:`sklearn.multiclass.OneVsRestClassifier` metaclassifier using two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an unsupervised dimensionality reduction, while CCA is used to perform a supervised one. Note: in the plot, "unlabeled samples" does not mean that we don't know the labels (as in semi-supervised learning) but that the samples simply do *not* have a label. """ print(__doc__) import numpy as np import matplotlib.pylab as pl from sklearn.datasets import make_multilabel_classification from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.preprocessing import LabelBinarizer from sklearn.decomposition import PCA from sklearn.cross_decomposition import CCA def plot_hyperplane(clf, min_x, max_x, linestyle, label): # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough yy = a * xx - (clf.intercept_[0]) / w[1] pl.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": X = CCA(n_components=2).fit(X, Y).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x = np.max(X[:, 0]) min_y = np.min(X[:, 1]) max_y = np.max(X[:, 1]) classif = OneVsRestClassifier(SVC(kernel='linear')) classif.fit(X, Y) pl.subplot(2, 2, subplot) pl.title(title) zero_class = np.where(Y[:, 0]) one_class = np.where(Y[:, 1]) pl.scatter(X[:, 0], X[:, 1], s=40, c='gray') pl.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b', facecolors='none', linewidths=2, label='Class 1') pl.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange', facecolors='none', linewidths=2, label='Class 2') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--', 'Boundary\nfor class 1') plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.', 'Boundary\nfor class 2') pl.xticks(()) pl.yticks(()) pl.xlim(min_x - .5 * max_x, max_x + .5 * max_x) pl.ylim(min_y - .5 * max_y, max_y + .5 * max_y) if subplot == 2: pl.xlabel('First principal component') pl.ylabel('Second principal component') pl.legend(loc="upper left") pl.figure(figsize=(8, 6)) X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=True, return_indicator=True, random_state=1) plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca") X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, return_indicator=True, random_state=1) plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca") pl.subplots_adjust(.04, .02, .97, .94, .09, .2) pl.show()
bsd-3-clause
annayqho/TheCannon
code/aaomega/aaomega_run_cannon.py
1
11861
""" Apply The Cannon to the AAOmega Spectra! """ import numpy as np import matplotlib.pyplot as plt import sys from TheCannon import dataset from TheCannon import model DATA_DIR = '/Users/annaho/Data/AAOmega/Run_13_July' SMALL = 1.0 / 1000000000.0 def test_step_iteration(ds, md, starting_guess): errs, chisq = md.infer_labels(ds, starting_guess) return ds.test_label_vals, chisq, errs def choose_reference_set(): wl = np.load("%s/wl.npz" %DATA_DIR)['arr_0'] all_id = np.load("%s/ref_id_all.npz" %DATA_DIR)['arr_0'] all_flux = np.load("%s/ref_flux_all.npz" %DATA_DIR)['arr_0'] all_scat = np.load("%s/ref_spec_scat_all.npz" %DATA_DIR)['arr_0'] all_label = np.load("%s/ref_label_all.npz" %DATA_DIR)['arr_0'] all_ivar = np.load("%s/ref_ivar_corr.npz" %DATA_DIR)['arr_0'] # choose reference objects good_teff = np.logical_and( all_label[:,0] > 4000, all_label[:,0] < 6000) good_feh = np.logical_and( all_label[:,2] > -2, all_label[:,2] < 0.3) good_logg = np.logical_and( all_label[:,1] > 1, all_label[:,1] < 3) good_vrot = all_label[:,4] < 20.0 good_scat = all_scat < 0.1 good1 = np.logical_and(good_teff, good_feh) good2 = np.logical_and(good_logg, good_vrot) good12 = np.logical_and(good1, good2) good = np.logical_and(good12, good_scat) ref_id = all_id[good] print("%s objects chosen for reference set" %len(ref_id)) ref_flux = all_flux[good] ref_ivar = all_ivar[good] ref_label = all_label[good] np.savez("%s/ref_id.npz" %DATA_DIR, ref_id) np.savez("%s/ref_flux.npz" %DATA_DIR, ref_flux) np.savez("%s/ref_ivar.npz" %DATA_DIR, ref_ivar) np.savez("%s/ref_label.npz" %DATA_DIR, ref_label) def update_cont(): contpix = np.load("wl_contpix_old.npz")['arr_0'] # this array is a bit too long, clip it off contpix_new = contpix[np.logical_and(contpix>8420, contpix<8700)] inds = np.zeros(contpix_new.shape, dtype=int) for i,val in enumerate(contpix_new): # find the nearest pixel inds[i] = int(np.argmin(np.abs(wl-val))) contmask = np.zeros(len(wl), dtype=bool) contmask[inds] = 1 np.savez("wl_contmask.npz", contmask) print("SAVED") def normalize_ref_set(): wl = np.load("%s/wl.npz" %DATA_DIR)['arr_0'] ref_id = np.load("%s/ref_id.npz" %DATA_DIR)['arr_0'] ref_flux = np.load("%s/ref_flux.npz" %DATA_DIR)['arr_0'] ref_ivar = np.load("%s/ref_ivar.npz" %DATA_DIR)['arr_0'] ref_label = np.load("%s/ref_label.npz" %DATA_DIR)['arr_0'] ds = dataset.Dataset( wl, ref_id, ref_flux, ref_ivar, ref_label, ref_id, ref_flux, ref_ivar) contmask = np.load("%s/wl_contmask.npz" %DATA_DIR)['arr_0'] ds.set_continuum(contmask) cont = ds.fit_continuum(3, "sinusoid") np.savez("%s/ref_cont.npz" %DATA_DIR, cont) norm_tr_flux, norm_tr_ivar, norm_test_flux, norm_test_ivar = \ ds.continuum_normalize(cont) bad = np.logical_or(ref_flux <= 0, ref_flux > 1.1) norm_tr_ivar[bad] = 0.0 np.savez("%s/ref_flux_norm.npz" %DATA_DIR, norm_tr_flux) np.savez("%s/ref_ivar_norm.npz" %DATA_DIR, norm_tr_ivar) def normalize_test_set(): wl = np.load("%s/wl.npz" %DATA_DIR)['arr_0'] test_id = np.load("%s/test_id.npz" %DATA_DIR)['arr_0'] test_flux = np.load("%s/test_flux.npz" %DATA_DIR)['arr_0'] test_ivar = np.load("%s/test_ivar_corr.npz" %DATA_DIR)['arr_0'] test_scat = np.load("%s/test_spec_scat.npz" %DATA_DIR)['arr_0'] contmask = np.load("%s/wl_contmask.npz" %DATA_DIR)['arr_0'] ds = dataset.Dataset( wl, test_id[0:2], test_flux[0:2], test_ivar[0:2], wl, test_id, test_flux, test_ivar) ds.set_continuum(contmask) # For the sake of the normalization, no pixel with flux >= 3 sigma # should be continuum. for ii,spec in enumerate(ds.test_flux): err = test_scat[ii] bad = np.logical_and( ds.contmask == True, np.abs(1-spec) >= 3*err) ds.test_ivar[ii][bad] = SMALL cont = ds.fit_continuum(3, "sinusoid") np.savez("%s/test_cont.npz" %DATA_DIR, cont) norm_tr_flux, norm_tr_ivar, norm_test_flux, norm_test_ivar = \ ds.continuum_normalize(cont) bad = np.logical_or(test_flux <= 0, test_flux > 1.1) norm_test_ivar[bad] = 0.0 np.savez("%s/test_flux_norm.npz" %DATA_DIR, norm_test_flux) np.savez("%s/test_ivar_norm.npz" %DATA_DIR, norm_test_ivar) def choose_training_set(): ref_id = np.load("%s/ref_id.npz" %DATA_DIR)['arr_0'] ref_flux = np.load("%s/ref_flux_norm.npz" %DATA_DIR)['arr_0'] ref_ivar = np.load("%s/ref_ivar_norm.npz" %DATA_DIR)['arr_0'] ref_label = np.load("%s/ref_label.npz" %DATA_DIR)['arr_0'] # randomly pick 80% of the objects to be the training set nobj = len(ref_id) assignments = np.random.randint(10, size=nobj) # if you're < 8, you're training choose = assignments < 8 tr_id = ref_id[choose] tr_flux = ref_flux[choose] tr_ivar = ref_ivar[choose] tr_label = ref_label[choose] np.savez("%s/tr_id.npz" %DATA_DIR, tr_id) np.savez("%s/tr_flux_norm.npz" %DATA_DIR, tr_flux) np.savez("%s/tr_ivar_norm.npz" %DATA_DIR, tr_ivar) np.savez("%s/tr_label.npz" %DATA_DIR, tr_label) val_id = ref_id[~choose] val_flux = ref_flux[~choose] val_ivar = ref_ivar[~choose] val_label = ref_label[~choose] np.savez("%s/val_id.npz" %DATA_DIR, val_id) np.savez("%s/val_flux_norm.npz" %DATA_DIR, val_flux) np.savez("%s/val_ivar_norm.npz" %DATA_DIR, val_ivar) np.savez("%s/val_label.npz" %DATA_DIR, val_label) def train(): wl = np.load("%s/wl.npz" %DATA_DIR)['arr_0'] tr_id = np.load("%s/tr_id.npz" %DATA_DIR)['arr_0'] tr_flux = np.load("%s/tr_flux_norm.npz" %DATA_DIR)['arr_0'] tr_ivar = np.load("%s/tr_ivar_norm.npz" %DATA_DIR)['arr_0'] tr_label = np.load("%s/tr_label.npz" %DATA_DIR)['arr_0'] val_id = np.load("%s/val_id.npz" %DATA_DIR)['arr_0'] val_flux = np.load("%s/val_flux_norm.npz" %DATA_DIR)['arr_0'] val_ivar = np.load("%s/val_ivar_norm.npz" %DATA_DIR)['arr_0'] ds = dataset.Dataset( wl, tr_id, tr_flux, tr_ivar, tr_label[:,0:4], val_id, val_flux, val_ivar) ds.set_label_names(["Teff", "logg", "FeH", 'aFe']) np.savez("%s/tr_SNR.npz" %DATA_DIR, ds.tr_SNR) fig = ds.diagnostics_SNR() plt.savefig("%s/SNR_dist.png" %DATA_DIR) plt.close() fig = ds.diagnostics_ref_labels() plt.savefig("%s/ref_label_triangle.png" %DATA_DIR) plt.close() md = model.CannonModel(2) md.fit(ds) fig = md.diagnostics_leading_coeffs(ds) plt.savefig("%s/leading_coeffs.png" %DATA_DIR) plt.close() np.savez("%s/coeffs.npz" %DATA_DIR, md.coeffs) np.savez("%s/scatters.npz" %DATA_DIR, md.scatters) np.savez("%s/chisqs.npz" %DATA_DIR, md.chisqs) np.savez("%s/pivots.npz" %DATA_DIR, md.pivots) def validate(): wl = np.load("%s/wl.npz" %DATA_DIR)['arr_0'] tr_id = np.load("%s/tr_id.npz" %DATA_DIR)['arr_0'] tr_flux = np.load("%s/tr_flux_norm.npz" %DATA_DIR)['arr_0'] tr_ivar = np.load("%s/tr_ivar_norm.npz" %DATA_DIR)['arr_0'] val_id = np.load("%s/val_id.npz" %DATA_DIR)['arr_0'] val_flux = np.load("%s/val_flux_norm.npz" %DATA_DIR)['arr_0'] val_ivar = np.load("%s/val_ivar_norm.npz" %DATA_DIR)['arr_0'] val_label = np.load("%s/val_label.npz" %DATA_DIR)['arr_0'] coeffs = np.load("%s/coeffs.npz" %DATA_DIR)['arr_0'] scatters = np.load("%s/scatters.npz" %DATA_DIR)['arr_0'] chisqs = np.load("%s/chisqs.npz" %DATA_DIR)['arr_0'] pivots = np.load("%s/pivots.npz" %DATA_DIR)['arr_0'] ds = dataset.Dataset( wl, tr_id, tr_flux, tr_ivar, val_label[:,0:4], val_id, val_flux, val_ivar) np.savez("%s/val_SNR.npz" %DATA_DIR, ds.test_SNR) ds.set_label_names(["Teff", "logg", "FeH", "aFe"]) md = model.CannonModel(2) md.coeffs = coeffs md.scatters = scatters md.chisqs = chisqs md.pivots = pivots md.diagnostics_leading_coeffs(ds) nguesses = 7 nobj = len(ds.test_ID) nlabels = ds.tr_label.shape[1] choose = np.random.randint(0,nobj,size=nguesses) starting_guesses = ds.tr_label[choose]-md.pivots labels = np.zeros((nguesses, nobj, nlabels)) chisq = np.zeros((nguesses, nobj)) errs = np.zeros(labels.shape) for ii,guess in enumerate(starting_guesses): a,b,c = test_step_iteration(ds,md,starting_guesses[ii]) labels[ii,:] = a chisq[ii,:] = b errs[ii,:] = c np.savez("%s/val_labels_all_starting_vals.npz" %DATA_DIR, labels) np.savez("%s/val_chisq_all_starting_vals.npz" %DATA_DIR, chisq) np.savez("%s/val_errs_all_starting_vals.npz" %DATA_DIR, errs) choose = np.argmin(chisq, axis=0) best_chisq = np.min(chisq, axis=0) best_labels = np.zeros((nobj, nlabels)) best_errs = np.zeros(best_labels.shape) for jj,val in enumerate(choose): best_labels[jj,:] = labels[:,jj,:][val] best_errs[jj,:] = errs[:,jj,:][val] np.savez("%s/val_cannon_labels.npz" %DATA_DIR, best_labels) np.savez("%s/val_errs.npz" %DATA_DIR, best_errs) np.savez("%s/val_chisq.npz" %DATA_DIR, best_chisq) ds.test_label_vals = best_labels ds.diagnostics_1to1() def test(): wl = np.load("%s/wl.npz" %DATA_DIR)['arr_0'] tr_id = np.load("%s/tr_id.npz" %DATA_DIR)['arr_0'] tr_flux = np.load("%s/tr_flux_norm.npz" %DATA_DIR)['arr_0'] tr_ivar = np.load("%s/tr_ivar_norm.npz" %DATA_DIR)['arr_0'] test_id = np.load("%s/test_id.npz" %DATA_DIR)['arr_0'] test_flux = np.load("%s/test_flux_norm.npz" %DATA_DIR)['arr_0'] test_ivar = np.load("%s/test_ivar_norm.npz" %DATA_DIR)['arr_0'] tr_label = np.load("%s/tr_label.npz" %DATA_DIR)['arr_0'] coeffs = np.load("%s/coeffs.npz" %DATA_DIR)['arr_0'] scatters = np.load("%s/scatters.npz" %DATA_DIR)['arr_0'] chisqs = np.load("%s/chisqs.npz" %DATA_DIR)['arr_0'] pivots = np.load("%s/pivots.npz" %DATA_DIR)['arr_0'] ds = dataset.Dataset( wl, tr_id, tr_flux, tr_ivar, tr_label[:,0:4], test_id, test_flux, test_ivar) np.savez("%s/test_SNR.npz" %DATA_DIR, ds.test_SNR) ds.set_label_names(["Teff", "logg", "FeH", "aFe"]) md = model.CannonModel(2) md.coeffs = coeffs md.scatters = scatters md.chisqs = chisqs md.pivots = pivots md.diagnostics_leading_coeffs(ds) nguesses = 7 nobj = len(ds.test_ID) nlabels = ds.tr_label.shape[1] choose = np.random.randint(0,nobj,size=nguesses) starting_guesses = ds.tr_label[choose]-md.pivots labels = np.zeros((nguesses, nobj, nlabels)) chisq = np.zeros((nguesses, nobj)) errs = np.zeros(labels.shape) ds.tr_label = np.zeros((nobj, nlabels)) for ii,guess in enumerate(starting_guesses): a,b,c = test_step_iteration(ds,md,starting_guesses[ii]) labels[ii,:] = a chisq[ii,:] = b errs[ii,:] = c np.savez("%s/labels_all_starting_vals.npz" %DATA_DIR, labels) np.savez("%s/chisq_all_starting_vals.npz" %DATA_DIR, chisq) np.savez("%s/errs_all_starting_vals.npz" %DATA_DIR, errs) choose = np.argmin(chisq, axis=0) best_chisq = np.min(chisq, axis=0) best_labels = np.zeros((nobj, nlabels)) best_errs = np.zeros(best_labels.shape) for jj,val in enumerate(choose): best_labels[jj,:] = labels[:,jj,:][val] best_errs[jj,:] = errs[:,jj,:][val] np.savez("%s/test_cannon_labels.npz" %DATA_DIR, best_labels) np.savez("%s/test_errs.npz" %DATA_DIR, best_errs) np.savez("%s/test_chisq.npz" %DATA_DIR, best_chisq) ds.test_label_vals = best_labels if __name__=="__main__": #choose_reference_set() #normalize_ref_set() #normalize_test_set() #choose_training_set() #train() #validate() test()
mit
mortada/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/data_feeder_test.py
71
12923
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `DataFeeder`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin # pylint: disable=wildcard-import from tensorflow.contrib.learn.python.learn.learn_io import * from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.platform import test # pylint: enable=wildcard-import class DataFeederTest(test.TestCase): # pylint: disable=undefined-variable """Tests for `DataFeeder`.""" def _wrap_dict(self, data, prepend=''): return {prepend + '1': data, prepend + '2': data} def _assert_raises(self, input_data): with self.assertRaisesRegexp(TypeError, 'annot convert'): data_feeder.DataFeeder(input_data, None, n_classes=0, batch_size=1) def test_input_uint32(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.uint32) self._assert_raises(data) self._assert_raises(self._wrap_dict(data)) def test_input_uint64(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.uint64) self._assert_raises(data) self._assert_raises(self._wrap_dict(data)) def _assert_dtype(self, expected_np_dtype, expected_tf_dtype, input_data): feeder = data_feeder.DataFeeder(input_data, None, n_classes=0, batch_size=1) if isinstance(input_data, dict): for k, v in list(feeder.input_dtype.items()): self.assertEqual(expected_np_dtype, v) else: self.assertEqual(expected_np_dtype, feeder.input_dtype) with ops.Graph().as_default() as g, self.test_session(g): inp, _ = feeder.input_builder() if isinstance(inp, dict): for k, v in list(inp.items()): self.assertEqual(expected_tf_dtype, v.dtype) else: self.assertEqual(expected_tf_dtype, inp.dtype) def test_input_int8(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.int8) self._assert_dtype(np.int8, dtypes.int8, data) self._assert_dtype(np.int8, dtypes.int8, self._wrap_dict(data)) def test_input_int16(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.int16) self._assert_dtype(np.int16, dtypes.int16, data) self._assert_dtype(np.int16, dtypes.int16, self._wrap_dict(data)) def test_input_int32(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.int32) self._assert_dtype(np.int32, dtypes.int32, data) self._assert_dtype(np.int32, dtypes.int32, self._wrap_dict(data)) def test_input_int64(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.int64) self._assert_dtype(np.int64, dtypes.int64, data) self._assert_dtype(np.int64, dtypes.int64, self._wrap_dict(data)) def test_input_uint8(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.uint8) self._assert_dtype(np.uint8, dtypes.uint8, data) self._assert_dtype(np.uint8, dtypes.uint8, self._wrap_dict(data)) def test_input_uint16(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.uint16) self._assert_dtype(np.uint16, dtypes.uint16, data) self._assert_dtype(np.uint16, dtypes.uint16, self._wrap_dict(data)) def test_input_float16(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.float16) self._assert_dtype(np.float16, dtypes.float16, data) self._assert_dtype(np.float16, dtypes.float16, self._wrap_dict(data)) def test_input_float32(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.float32) self._assert_dtype(np.float32, dtypes.float32, data) self._assert_dtype(np.float32, dtypes.float32, self._wrap_dict(data)) def test_input_float64(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.float64) self._assert_dtype(np.float64, dtypes.float64, data) self._assert_dtype(np.float64, dtypes.float64, self._wrap_dict(data)) def test_input_bool(self): data = np.array([[False for _ in xrange(2)] for _ in xrange(2)]) self._assert_dtype(np.bool, dtypes.bool, data) self._assert_dtype(np.bool, dtypes.bool, self._wrap_dict(data)) def test_input_string(self): input_data = np.array([['str%d' % i for i in xrange(2)] for _ in xrange(2)]) self._assert_dtype(input_data.dtype, dtypes.string, input_data) self._assert_dtype(input_data.dtype, dtypes.string, self._wrap_dict(input_data)) def _assertAllClose(self, src, dest, src_key_of=None, src_prop=None): def func(x): val = getattr(x, src_prop) if src_prop else x return val if src_key_of is None else src_key_of[val] if isinstance(src, dict): for k in list(src.keys()): self.assertAllClose(func(src[k]), dest) else: self.assertAllClose(func(src), dest) def test_unsupervised(self): def func(feeder): with self.test_session(): inp, _ = feeder.input_builder() feed_dict_fn = feeder.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[1, 2]], feed_dict, 'name') data = np.matrix([[1, 2], [2, 3], [3, 4]]) func(data_feeder.DataFeeder(data, None, n_classes=0, batch_size=1)) func( data_feeder.DataFeeder( self._wrap_dict(data), None, n_classes=0, batch_size=1)) def test_data_feeder_regression(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name') self._assertAllClose(out, [2, 1], feed_dict, 'name') x = np.matrix([[1, 2], [3, 4]]) y = np.array([1, 2]) func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=3)) func( data_feeder.DataFeeder( self._wrap_dict(x, 'in'), self._wrap_dict(y, 'out'), n_classes=self._wrap_dict(0, 'out'), batch_size=3)) def test_epoch(self): def func(feeder): with self.test_session(): feeder.input_builder() epoch = feeder.make_epoch_variable() feed_dict_fn = feeder.get_feed_dict_fn() # First input feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[epoch.name], [0]) # Second input feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[epoch.name], [0]) # Third input feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[epoch.name], [0]) # Back to the first input again, so new epoch. feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[epoch.name], [1]) data = np.matrix([[1, 2], [2, 3], [3, 4]]) labels = np.array([0, 0, 1]) func(data_feeder.DataFeeder(data, labels, n_classes=0, batch_size=1)) func( data_feeder.DataFeeder( self._wrap_dict(data, 'in'), self._wrap_dict(labels, 'out'), n_classes=self._wrap_dict(0, 'out'), batch_size=1)) def test_data_feeder_multioutput_regression(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name') self._assertAllClose(out, [[3, 4], [1, 2]], feed_dict, 'name') x = np.matrix([[1, 2], [3, 4]]) y = np.array([[1, 2], [3, 4]]) func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=2)) func( data_feeder.DataFeeder( self._wrap_dict(x, 'in'), self._wrap_dict(y, 'out'), n_classes=self._wrap_dict(0, 'out'), batch_size=2)) def test_data_feeder_multioutput_classification(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name') self._assertAllClose( out, [[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], [[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]], feed_dict, 'name') x = np.matrix([[1, 2], [3, 4]]) y = np.array([[0, 1, 2], [2, 3, 4]]) func(data_feeder.DataFeeder(x, y, n_classes=5, batch_size=2)) func( data_feeder.DataFeeder( self._wrap_dict(x, 'in'), self._wrap_dict(y, 'out'), n_classes=self._wrap_dict(5, 'out'), batch_size=2)) def test_streaming_data_feeder(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[[1, 2]], [[3, 4]]], feed_dict, 'name') self._assertAllClose(out, [[[1], [2]], [[2], [2]]], feed_dict, 'name') def x_iter(wrap_dict=False): yield np.array([[1, 2]]) if not wrap_dict else self._wrap_dict( np.array([[1, 2]]), 'in') yield np.array([[3, 4]]) if not wrap_dict else self._wrap_dict( np.array([[3, 4]]), 'in') def y_iter(wrap_dict=False): yield np.array([[1], [2]]) if not wrap_dict else self._wrap_dict( np.array([[1], [2]]), 'out') yield np.array([[2], [2]]) if not wrap_dict else self._wrap_dict( np.array([[2], [2]]), 'out') func( data_feeder.StreamingDataFeeder( x_iter(), y_iter(), n_classes=0, batch_size=2)) func( data_feeder.StreamingDataFeeder( x_iter(True), y_iter(True), n_classes=self._wrap_dict(0, 'out'), batch_size=2)) # Test non-full batches. func( data_feeder.StreamingDataFeeder( x_iter(), y_iter(), n_classes=0, batch_size=10)) func( data_feeder.StreamingDataFeeder( x_iter(True), y_iter(True), n_classes=self._wrap_dict(0, 'out'), batch_size=10)) def test_dask_data_feeder(self): if HAS_PANDAS and HAS_DASK: x = pd.DataFrame( dict( a=np.array([.1, .3, .4, .6, .2, .1, .6]), b=np.array([.7, .8, .1, .2, .5, .3, .9]))) x = dd.from_pandas(x, npartitions=2) y = pd.DataFrame(dict(labels=np.array([1, 0, 2, 1, 0, 1, 2]))) y = dd.from_pandas(y, npartitions=2) # TODO(ipolosukhin): Remove or restore this. # x = extract_dask_data(x) # y = extract_dask_labels(y) df = data_feeder.DaskDataFeeder(x, y, n_classes=2, batch_size=2) inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[inp.name], [[0.40000001, 0.1], [0.60000002, 0.2]]) self.assertAllClose(feed_dict[out.name], [[0., 0., 1.], [0., 1., 0.]]) def test_hdf5_data_feeder(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name') self.assertAllClose(out, [2, 1], feed_dict, 'name') try: import h5py # pylint: disable=g-import-not-at-top x = np.matrix([[1, 2], [3, 4]]) y = np.array([1, 2]) h5f = h5py.File('test_hdf5.h5', 'w') h5f.create_dataset('x', data=x) h5f.create_dataset('y', data=y) h5f.close() h5f = h5py.File('test_hdf5.h5', 'r') x = h5f['x'] y = h5f['y'] func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=3)) func( data_feeder.DataFeeder( self._wrap_dict(x, 'in'), self._wrap_dict(y, 'out'), n_classes=self._wrap_dict(0, 'out'), batch_size=3)) except ImportError: print("Skipped test for hdf5 since it's not installed.") class SetupPredictDataFeederTest(DataFeederTest): """Tests for `DataFeeder.setup_predict_data_feeder`.""" def test_iterable_data(self): # pylint: disable=undefined-variable def func(df): self._assertAllClose(six.next(df), [[1, 2], [3, 4]]) self._assertAllClose(six.next(df), [[5, 6]]) data = [[1, 2], [3, 4], [5, 6]] x = iter(data) x_dict = iter([self._wrap_dict(v) for v in iter(data)]) func(data_feeder.setup_predict_data_feeder(x, batch_size=2)) func(data_feeder.setup_predict_data_feeder(x_dict, batch_size=2)) if __name__ == '__main__': test.main()
apache-2.0
belavenir/rpg_svo
svo_analysis/scripts/compare_results.py
17
6127
#!/usr/bin/python import os import sys import time import rospkg import numpy as np import matplotlib.pyplot as plt import yaml import argparse from matplotlib import rc # tell matplotlib to use latex font rc('font',**{'family':'serif','serif':['Cardo']}) rc('text', usetex=True) from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes from mpl_toolkits.axes_grid1.inset_locator import mark_inset def plot_trajectory(ax, filename, label, color, linewidth): file = open(filename) data = file.read() lines = data.replace(","," ").replace("\t"," ").split("\n") trajectory = np.array([[v.strip() for v in line.split(" ") if v.strip()!=""] for line in lines if len(line)>0 and line[0]!="#"], dtype=np.float64) ax.plot(trajectory[:,1], trajectory[:,2], label=label, color=color, linewidth=linewidth) def compare_results(experiments, results_dir, comparison_dir, plot_scale_drift = False): # ------------------------------------------------------------------------------ # position error fig_poserr = plt.figure(figsize=(8,6)) ax_poserr_x = fig_poserr.add_subplot(311, ylabel='x-error [m]') ax_poserr_y = fig_poserr.add_subplot(312, ylabel='y-error [m]') ax_poserr_z = fig_poserr.add_subplot(313, ylabel='z-error [m]', xlabel='time [s]') for exp in experiments: # load dataset parameters params_stream = open(os.path.join(results_dir, exp, 'params.yaml')) params = yaml.load(params_stream) # plot translation error trans_error = np.loadtxt(os.path.join(results_dir, exp, 'translation_error.txt')) trans_error[:,0] = trans_error[:,0]-trans_error[0,0] ax_poserr_x.plot(trans_error[:,0], trans_error[:,1], label=params['experiment_label']) ax_poserr_y.plot(trans_error[:,0], trans_error[:,2]) ax_poserr_z.plot(trans_error[:,0], trans_error[:,3]) ax_poserr_x.set_xlim([0, trans_error[-1,0]+4]) ax_poserr_y.set_xlim([0, trans_error[-1,0]+4]) ax_poserr_z.set_xlim([0, trans_error[-1,0]+4]) ax_poserr_x.legend(bbox_to_anchor=[0, 0], loc='lower left', ncol=3) ax_poserr_x.grid() ax_poserr_y.grid() ax_poserr_z.grid() fig_poserr.tight_layout() fig_poserr.savefig(os.path.join(comparison_dir, 'translation_error.pdf')) # ------------------------------------------------------------------------------ # orientation error fig_roterr = plt.figure(figsize=(8,6)) ax_roterr_r = fig_roterr.add_subplot(311, ylabel='roll-error [rad]') ax_roterr_p = fig_roterr.add_subplot(312, ylabel='pitch-error [rad]') ax_roterr_y = fig_roterr.add_subplot(313, ylabel='yaw-error [rad]', xlabel='time [s]') for exp in experiments: # load dataset parameters params_stream = open(os.path.join(results_dir, exp, 'params.yaml')) params = yaml.load(params_stream) # plot translation error rot_error = np.loadtxt(os.path.join(results_dir, exp, 'orientation_error.txt')) rot_error[:,0] = rot_error[:,0]-rot_error[0,0] ax_roterr_r.plot(rot_error[:,0], rot_error[:,3], label=params['experiment_label']) ax_roterr_p.plot(rot_error[:,0], rot_error[:,2]) ax_roterr_y.plot(rot_error[:,0], rot_error[:,1]) ax_roterr_r.set_xlim([0, rot_error[-1,0]+4]) ax_roterr_p.set_xlim([0, rot_error[-1,0]+4]) ax_roterr_y.set_xlim([0, rot_error[-1,0]+4]) ax_roterr_r.legend(bbox_to_anchor=[0, 1], loc='upper left', ncol=3) ax_roterr_r.grid() ax_roterr_p.grid() ax_roterr_y.grid() fig_roterr.tight_layout() fig_roterr.savefig(os.path.join(comparison_dir, 'orientation_error.pdf')) # ------------------------------------------------------------------------------ # scale error if plot_scale_drift: fig_scale = plt.figure(figsize=(8,2.5)) ax_scale = fig_scale.add_subplot(111, xlabel='time [s]', ylabel='scale change [\%]') for exp in experiments: # load dataset parameters params = yaml.load(open(os.path.join(results_dir, exp, 'params.yaml'))) # plot translation error scale_drift = open(os.path.join(results_dir, exp, 'scale_drift.txt')) scale_drift[:,0] = scale_drift[:,0]-scale_drift[0,0] ax_scale.plot(scale_drift[:,0], scale_drift[:,1], label=params['experiment_label']) ax_scale.set_xlim([0, rot_error[-1,0]+4]) ax_scale.legend(bbox_to_anchor=[0, 1], loc='upper left', ncol=3) ax_scale.grid() fig_scale.tight_layout() fig_scale.savefig(os.path.join(comparison_dir, 'scale_drift.pdf')) # ------------------------------------------------------------------------------ # trajectory # fig_traj = plt.figure(figsize=(8,4.8)) # ax_traj = fig_traj.add_subplot(111, xlabel='x [m]', ylabel='y [m]', aspect='equal', xlim=[-3.1, 4], ylim=[-1.5, 2.6]) # # plotTrajectory(ax_traj, '/home/cforster/Datasets/asl_vicon_d2/groundtruth_filtered.txt', 'Groundtruth', 'k', 1.5) # plotTrajectory(ax_traj, results_dir+'/20130911_2229_nslam_i7_asl2_fast/traj_estimate_rotated.txt', 'Fast', 'g', 1) # plotTrajectory(ax_traj, results_dir+'/20130906_2149_ptam_i7_asl2/traj_estimate_rotated.txt', 'PTAM', 'r', 1) # # mark_inset(ax_traj, axins, loc1=2, loc2=4, fc="none", ec='b') # plt.draw() # plt.show() # ax_traj.legend(bbox_to_anchor=[1, 0], loc='lower right', ncol=3) # ax_traj.grid() # fig_traj.tight_layout() # fig_traj.savefig('../results/trajectory_asl.pdf') if __name__ == '__main__': default_name = time.strftime("%Y%m%d_%H%M", time.localtime())+'_comparison' parser = argparse.ArgumentParser(description='Compare results.') parser.add_argument('result_directories', nargs='+', help='list of result directories to compare') parser.add_argument('--name', help='name of the comparison', default=default_name) args = parser.parse_args() # create folder for comparison results results_dir = os.path.join(rospkg.RosPack().get_path('svo_analysis'), 'results') comparison_dir = os.path.join(results_dir, args.name) if not os.path.exists(comparison_dir): os.makedirs(comparison_dir) # run comparison compare_results(args.result_directories, results_dir, comparison_dir)
gpl-3.0
WillisXChen/django-oscar
oscar/lib/python2.7/site-packages/IPython/testing/decorators.py
12
13377
# -*- coding: utf-8 -*- """Decorators for labeling test objects. Decorators that merely return a modified version of the original function object are straightforward. Decorators that return a new function object need to use nose.tools.make_decorator(original_function)(decorator) in returning the decorator, in order to preserve metadata such as function name, setup and teardown functions and so on - see nose.tools for more information. This module provides a set of useful decorators meant to be ready to use in your own tests. See the bottom of the file for the ready-made ones, and if you find yourself writing a new one that may be of generic use, add it here. Included decorators: Lightweight testing that remains unittest-compatible. - An @as_unittest decorator can be used to tag any normal parameter-less function as a unittest TestCase. Then, both nose and normal unittest will recognize it as such. This will make it easier to migrate away from Nose if we ever need/want to while maintaining very lightweight tests. NOTE: This file contains IPython-specific decorators. Using the machinery in IPython.external.decorators, we import either numpy.testing.decorators if numpy is available, OR use equivalent code in IPython.external._decorators, which we've copied verbatim from numpy. Authors ------- - Fernando Perez <[email protected]> """ #----------------------------------------------------------------------------- # Copyright (C) 2009-2011 The IPython Development Team # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Stdlib imports import sys import os import tempfile import unittest # Third-party imports # This is Michele Simionato's decorator module, kept verbatim. from IPython.external.decorator import decorator # Expose the unittest-driven decorators from .ipunittest import ipdoctest, ipdocstring # Grab the numpy-specific decorators which we keep in a file that we # occasionally update from upstream: decorators.py is a copy of # numpy.testing.decorators, we expose all of it here. from IPython.external.decorators import * # For onlyif_cmd_exists decorator from IPython.utils.process import is_cmd_found from IPython.utils.py3compat import string_types #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- # Simple example of the basic idea def as_unittest(func): """Decorator to make a simple function into a normal test via unittest.""" class Tester(unittest.TestCase): def test(self): func() Tester.__name__ = func.__name__ return Tester # Utility functions def apply_wrapper(wrapper,func): """Apply a wrapper to a function for decoration. This mixes Michele Simionato's decorator tool with nose's make_decorator, to apply a wrapper in a decorator so that all nose attributes, as well as function signature and other properties, survive the decoration cleanly. This will ensure that wrapped functions can still be well introspected via IPython, for example. """ import nose.tools return decorator(wrapper,nose.tools.make_decorator(func)(wrapper)) def make_label_dec(label,ds=None): """Factory function to create a decorator that applies one or more labels. Parameters ---------- label : string or sequence One or more labels that will be applied by the decorator to the functions it decorates. Labels are attributes of the decorated function with their value set to True. ds : string An optional docstring for the resulting decorator. If not given, a default docstring is auto-generated. Returns ------- A decorator. Examples -------- A simple labeling decorator: >>> slow = make_label_dec('slow') >>> slow.__doc__ "Labels a test as 'slow'." And one that uses multiple labels and a custom docstring: >>> rare = make_label_dec(['slow','hard'], ... "Mix labels 'slow' and 'hard' for rare tests.") >>> rare.__doc__ "Mix labels 'slow' and 'hard' for rare tests." Now, let's test using this one: >>> @rare ... def f(): pass ... >>> >>> f.slow True >>> f.hard True """ if isinstance(label, string_types): labels = [label] else: labels = label # Validate that the given label(s) are OK for use in setattr() by doing a # dry run on a dummy function. tmp = lambda : None for label in labels: setattr(tmp,label,True) # This is the actual decorator we'll return def decor(f): for label in labels: setattr(f,label,True) return f # Apply the user's docstring, or autogenerate a basic one if ds is None: ds = "Labels a test as %r." % label decor.__doc__ = ds return decor # Inspired by numpy's skipif, but uses the full apply_wrapper utility to # preserve function metadata better and allows the skip condition to be a # callable. def skipif(skip_condition, msg=None): ''' Make function raise SkipTest exception if skip_condition is true Parameters ---------- skip_condition : bool or callable Flag to determine whether to skip test. If the condition is a callable, it is used at runtime to dynamically make the decision. This is useful for tests that may require costly imports, to delay the cost until the test suite is actually executed. msg : string Message to give on raising a SkipTest exception. Returns ------- decorator : function Decorator, which, when applied to a function, causes SkipTest to be raised when the skip_condition was True, and the function to be called normally otherwise. Notes ----- You will see from the code that we had to further decorate the decorator with the nose.tools.make_decorator function in order to transmit function name, and various other metadata. ''' def skip_decorator(f): # Local import to avoid a hard nose dependency and only incur the # import time overhead at actual test-time. import nose # Allow for both boolean or callable skip conditions. if callable(skip_condition): skip_val = skip_condition else: skip_val = lambda : skip_condition def get_msg(func,msg=None): """Skip message with information about function being skipped.""" if msg is None: out = 'Test skipped due to test condition.' else: out = msg return "Skipping test: %s. %s" % (func.__name__,out) # We need to define *two* skippers because Python doesn't allow both # return with value and yield inside the same function. def skipper_func(*args, **kwargs): """Skipper for normal test functions.""" if skip_val(): raise nose.SkipTest(get_msg(f,msg)) else: return f(*args, **kwargs) def skipper_gen(*args, **kwargs): """Skipper for test generators.""" if skip_val(): raise nose.SkipTest(get_msg(f,msg)) else: for x in f(*args, **kwargs): yield x # Choose the right skipper to use when building the actual generator. if nose.util.isgenerator(f): skipper = skipper_gen else: skipper = skipper_func return nose.tools.make_decorator(f)(skipper) return skip_decorator # A version with the condition set to true, common case just to attach a message # to a skip decorator def skip(msg=None): """Decorator factory - mark a test function for skipping from test suite. Parameters ---------- msg : string Optional message to be added. Returns ------- decorator : function Decorator, which, when applied to a function, causes SkipTest to be raised, with the optional message added. """ return skipif(True,msg) def onlyif(condition, msg): """The reverse from skipif, see skipif for details.""" if callable(condition): skip_condition = lambda : not condition() else: skip_condition = lambda : not condition return skipif(skip_condition, msg) #----------------------------------------------------------------------------- # Utility functions for decorators def module_not_available(module): """Can module be imported? Returns true if module does NOT import. This is used to make a decorator to skip tests that require module to be available, but delay the 'import numpy' to test execution time. """ try: mod = __import__(module) mod_not_avail = False except ImportError: mod_not_avail = True return mod_not_avail def decorated_dummy(dec, name): """Return a dummy function decorated with dec, with the given name. Examples -------- import IPython.testing.decorators as dec setup = dec.decorated_dummy(dec.skip_if_no_x11, __name__) """ dummy = lambda: None dummy.__name__ = name return dec(dummy) #----------------------------------------------------------------------------- # Decorators for public use # Decorators to skip certain tests on specific platforms. skip_win32 = skipif(sys.platform == 'win32', "This test does not run under Windows") skip_linux = skipif(sys.platform.startswith('linux'), "This test does not run under Linux") skip_osx = skipif(sys.platform == 'darwin',"This test does not run under OS X") # Decorators to skip tests if not on specific platforms. skip_if_not_win32 = skipif(sys.platform != 'win32', "This test only runs under Windows") skip_if_not_linux = skipif(not sys.platform.startswith('linux'), "This test only runs under Linux") skip_if_not_osx = skipif(sys.platform != 'darwin', "This test only runs under OSX") _x11_skip_cond = (sys.platform not in ('darwin', 'win32') and os.environ.get('DISPLAY', '') == '') _x11_skip_msg = "Skipped under *nix when X11/XOrg not available" skip_if_no_x11 = skipif(_x11_skip_cond, _x11_skip_msg) # not a decorator itself, returns a dummy function to be used as setup def skip_file_no_x11(name): return decorated_dummy(skip_if_no_x11, name) if _x11_skip_cond else None # Other skip decorators # generic skip without module skip_without = lambda mod: skipif(module_not_available(mod), "This test requires %s" % mod) skipif_not_numpy = skip_without('numpy') skipif_not_matplotlib = skip_without('matplotlib') skipif_not_sympy = skip_without('sympy') skip_known_failure = knownfailureif(True,'This test is known to fail') known_failure_py3 = knownfailureif(sys.version_info[0] >= 3, 'This test is known to fail on Python 3.') # A null 'decorator', useful to make more readable code that needs to pick # between different decorators based on OS or other conditions null_deco = lambda f: f # Some tests only run where we can use unicode paths. Note that we can't just # check os.path.supports_unicode_filenames, which is always False on Linux. try: f = tempfile.NamedTemporaryFile(prefix=u"tmp€") except UnicodeEncodeError: unicode_paths = False else: unicode_paths = True f.close() onlyif_unicode_paths = onlyif(unicode_paths, ("This test is only applicable " "where we can use unicode in filenames.")) def onlyif_cmds_exist(*commands): """ Decorator to skip test when at least one of `commands` is not found. """ for cmd in commands: try: if not is_cmd_found(cmd): return skip("This test runs only if command '{0}' " "is installed".format(cmd)) except ImportError as e: # is_cmd_found uses pywin32 on windows, which might not be available if sys.platform == 'win32' and 'pywin32' in str(e): return skip("This test runs only if pywin32 and command '{0}' " "is installed".format(cmd)) raise e return null_deco def onlyif_any_cmd_exists(*commands): """ Decorator to skip test unless at least one of `commands` is found. """ for cmd in commands: try: if is_cmd_found(cmd): return null_deco except ImportError as e: # is_cmd_found uses pywin32 on windows, which might not be available if sys.platform == 'win32' and 'pywin32' in str(e): return skip("This test runs only if pywin32 and commands '{0}' " "are installed".format(commands)) raise e return skip("This test runs only if one of the commands {0} " "is installed".format(commands))
bsd-3-clause
vab9/mosyco
mosyco/helpers.py
1
1495
# -*- coding: utf-8 -*- """This module contains various helper functions.""" import os import sys import contextlib import logging import pandas as pd def load_dataframe(): """Load the dataset into memory.""" df = pd.read_csv(os.path.join('data/sample_data.csv'), index_col=1, parse_dates=True, infer_datetime_format=True) # sanitize dataframe df = df.drop(['Unnamed: 0'], axis=1) return df def setup_logging(args): """Setup logging for the application""" log = logging.getLogger(__package__) log.setLevel(args.loglevel) # disable root logger handlers root_logger = logging.getLogger() root_logger.handlers = [] # set log output destination if args.logfile: handler = logging.FileHandler('mosyco.log', mode='w') else: handler = logging.StreamHandler() handler.setFormatter(logging.Formatter('{name}: {message}', style='{')) root_logger.addHandler(handler) # set prophet loglevel logging.getLogger('fbprophet').setLevel(logging.WARNING) return log @contextlib.contextmanager def silence(): """Silence all output in block used with this context manager. This is done by redirecting stdout to /dev/null while block is executing. """ devnull = open(os.devnull, 'w') oldstdout_fno = os.dup(sys.stdout.fileno()) os.dup2(devnull.fileno(), 1) yield os.dup2(oldstdout_fno, 1) devnull.close()
mit
akrherz/iem
htdocs/plotting/auto/scripts/p82.py
1
5972
"""Calendar Plot of Automated Station Summaries""" import datetime import psycopg2.extras import pandas as pd from pandas.io.sql import read_sql from pyiem.util import get_autoplot_context, get_dbconn, convert_value from pyiem.reference import TRACE_VALUE from pyiem.plot import calendar_plot from pyiem.exceptions import NoDataFound PDICT = { "max_tmpf": "High Temperature", "high_departure": "High Temperature Departure", "min_tmpf": "Low Temperature", "low_departure": "Low Temperature Departure", "avg_tmpf": "Average Temperature", "avg_departure": "Average Temperature Departure", "max_dwpf": "Highest Dew Point Temperature", "min_dwpf": "Lowest Dew Point Temperature", "avg_smph": "Average Wind Speed [mph]", "max_smph": "Maximum Wind Speed/Gust [mph]", "pday": "Precipitation", } def get_description(): """Return a dict describing how to call this plotter""" desc = dict() desc["data"] = True desc[ "description" ] = """This chart presents a series of daily summary data as a calendar. The daily totals should be valid for the local day of the weather station. The climatology is based on the nearest NCEI 1981-2010 climate station, which in most cases is the same station. Climatology values are rounded to the nearest whole degree Fahrenheit and then compared against the observed value to compute a departure. """ today = datetime.date.today() m90 = today - datetime.timedelta(days=90) desc["arguments"] = [ dict( type="zstation", name="station", default="DSM", network="IA_ASOS", label="Select Station", ), dict( type="select", name="var", default="pday", label="Which Daily Variable:", options=PDICT, ), dict( type="date", name="sdate", default=m90.strftime("%Y/%m/%d"), label="Start Date:", min="1929/01/01", ), dict( type="date", name="edate", default=today.strftime("%Y/%m/%d"), label="End Date:", min="1929/01/01", ), ] return desc def safe(row, varname): """Safe conversion of value for printing as a string""" val = row[varname] if val is None: return "M" if varname == "pday": if val == TRACE_VALUE: return "T" if val == 0: return "0" return "%.2f" % (val,) # prevent -0 values return "%i" % (val,) def diff(val, climo): """Safe subtraction.""" if val is None or climo is None: return None return val - climo def plotter(fdict): """Go""" pgconn = get_dbconn("iem") cursor = pgconn.cursor(cursor_factory=psycopg2.extras.DictCursor) ctx = get_autoplot_context(fdict, get_description()) station = ctx["station"] varname = ctx["var"] sdate = ctx["sdate"] edate = ctx["edate"] # Get Climatology cdf = read_sql( "SELECT to_char(valid, 'mmdd') as sday, " "round(high::numeric, 0) as high, " "round(low::numeric, 0) as low, " "round(((high + low) / 2.)::numeric, 0) as avg, " "precip from ncei_climate91 WHERE station = %s ORDER by sday ASC", get_dbconn("coop"), params=(ctx["_nt"].sts[station]["ncei91"],), index_col="sday", ) if cdf.empty: raise NoDataFound("No Data Found.") cursor.execute( """ SELECT day, max_tmpf, min_tmpf, max_dwpf, min_dwpf, (max_tmpf + min_tmpf) / 2. as avg_tmpf, pday, avg_sknt, coalesce(max_gust, max_sknt) as peak_wind from summary s JOIN stations t on (t.iemid = s.iemid) WHERE s.day >= %s and s.day <= %s and t.id = %s and t.network = %s ORDER by day ASC """, (sdate, edate, station, ctx["network"]), ) rows = [] data = {} for row in cursor: hd = diff(row["max_tmpf"], cdf.at[row[0].strftime("%m%d"), "high"]) ld = diff(row["min_tmpf"], cdf.at[row[0].strftime("%m%d"), "low"]) ad = diff(row["avg_tmpf"], cdf.at[row[0].strftime("%m%d"), "avg"]) avg_sknt = row["avg_sknt"] if avg_sknt is None: if varname == "avg_smph": continue avg_sknt = 0 peak_wind = row["peak_wind"] if peak_wind is None: if varname == "max_smph": continue peak_wind = 0 rows.append( dict( day=row["day"], max_tmpf=row["max_tmpf"], avg_smph=convert_value(avg_sknt, "knot", "mile / hour"), max_smph=convert_value(peak_wind, "knot", "mile / hour"), min_dwpf=row["min_dwpf"], max_dwpf=row["max_dwpf"], high_departure=hd, low_departure=ld, avg_departure=ad, min_tmpf=row["min_tmpf"], pday=row["pday"], ) ) data[row[0]] = {"val": safe(rows[-1], varname)} if data[row[0]]["val"] == "0": data[row[0]]["color"] = "k" elif varname == "high_departure": data[row[0]]["color"] = "b" if hd < 0 else "r" elif varname == "low_departure": data[row[0]]["color"] = "b" if ld < 0 else "r" elif varname == "avg_departure": data[row[0]]["color"] = "b" if ad < 0 else "r" df = pd.DataFrame(rows) title = "[%s] %s Daily %s" % ( station, ctx["_nt"].sts[station]["name"], PDICT.get(varname), ) subtitle = "%s thru %s" % ( sdate.strftime("%-d %b %Y"), edate.strftime("%-d %b %Y"), ) fig = calendar_plot(sdate, edate, data, title=title, subtitle=subtitle) return fig, df if __name__ == "__main__": plotter({"var": "avg_sknt"})
mit
3324fr/spinalcordtoolbox
dev/tamag/old/test_filtering.py
1
3779
#!/usr/bin/env python #Test programm for the 2D gaussian filter # check if needed Python libraries are already installed or not import os import commands import sys import sct_utils as sct import nibabel as nib import numpy import matplotlib.pyplot as plt import sct_create_mask from msct_image import Image def filter_2Dgaussian(input_padded_file, size_filter, output_file_name='Result'): nx, ny, nz, nt, px, py, pz, pt = sct.get_dimension(input_padded_file) print nx, ny, nz, nt, px, py, pz, pt gaussian_filter=sct_create_mask.create_mask2d(center=((int(size_filter/px)-1.0)/2.0,(int(size_filter/py)-1.0)/2.0), shape='gaussian', size=size_filter, nx=int(size_filter/px),ny=int(size_filter/py)) #pb center #on a oublie le facteur multiplicatif du filtre gaussien classique (create_mask2D ne le prend pas en compte) print (int(size_filter/px)-1.0)/2.0,(int(size_filter/py)-1.0)/2.0 print int(size_filter/px), int(size_filter/py) plt.plot(gaussian_filter) plt.grid() plt.show() #center=(int(size_filter/px)/2.0,int(size_filter/py)/2.0) #Pad #gaussian_filter_pad = 'pad_' + gaussian_filter #sct.run('sct_c2d ' + gaussian_filter + ' -pad ' + pad + 'x0vox ' + pad + 'x' + pad + 'x0vox 0 -o ' + gaussian_filter_pad) #+ pad+ 'x' image_input_padded_file=Image(input_padded_file) print('1: numpy.sum(image_input_padded_file.data[:,:,:])', numpy.sum(image_input_padded_file.data[:,:,:])) #Create the output file #im_output=image_input_padded_file im_output = image_input_padded_file.data * 0 #ici, image_input_padded_file.data est lui aussi mis a zero #im_output_freq=image_input_padded_file im_output_freq = image_input_padded_file.data * 0 #Create padded filter in frequency domain gaussian_filter_freq=numpy.fft.fft2(gaussian_filter, s=(image_input_padded_file.data.shape[0], image_input_padded_file.data.shape[1])) plt.plot(gaussian_filter_freq) plt.grid() plt.show() hauteur_image=image_input_padded_file.data.shape[2] print('2: numpy.sum(image_input_padded_file.data[:,:,:])', numpy.sum(image_input_padded_file.data[:,:,:])) #Apply 2D filter to every slice of the image for i in range(hauteur_image): image_input_padded_file_frequentiel=numpy.fft.fft2(image_input_padded_file.data[:,:,i], axes=(0,1)) im_output_freq[:,:,i]=gaussian_filter_freq*image_input_padded_file_frequentiel im_output[:,:,i]=numpy.fft.ifft2(im_output_freq[:,:,i], axes=(0,1)) print('numpy.sum(im_output[:,:,:])', numpy.sum(im_output[:,:,:])) #Save the file #im_output.setFileName(output_file_name) #im_output.save('minimize') # Generate the T1, PD and MTVF maps as a NIFTI file with the right header path_spgr, file_name, ext_spgr = sct.extract_fname(input_padded_file) fname_output = path_spgr + output_file_name + ext_spgr sct.printv('Generate the NIFTI file with the right header...') # Associate the header to the MTVF and PD maps data as a NIFTI file hdr = nib.load(input_padded_file).get_header() img_with_hdr = nib.Nifti1Image(im_output, None, hdr) # Save the T1, PD and MTVF maps file nib.save(img_with_hdr, fname_output) #PB: enregistre le fichier Result dans tmp.150317111945 lors des tests return img_with_hdr #def filter_2Dmean(input_padded_file, size_kernel, output_file_name='Result'): #mean_filter=(1/9)*numpy.ones((int(9/px),int(9/py))) #filter of 9mm os.chdir('/home/tamag/data/test_straightening/20150316_allan/tmp.150317111945/') filter_2Dgaussian('tmp.centerline_pad.nii.gz', 15)
mit
petosegan/scikit-learn
sklearn/cluster/birch.py
207
22706
# Authors: Manoj Kumar <[email protected]> # Alexandre Gramfort <[email protected]> # Joel Nothman <[email protected]> # License: BSD 3 clause from __future__ import division import warnings import numpy as np from scipy import sparse from math import sqrt from ..metrics.pairwise import euclidean_distances from ..base import TransformerMixin, ClusterMixin, BaseEstimator from ..externals.six.moves import xrange from ..utils import check_array from ..utils.extmath import row_norms, safe_sparse_dot from ..utils.validation import NotFittedError, check_is_fitted from .hierarchical import AgglomerativeClustering def _iterate_sparse_X(X): """This little hack returns a densified row when iterating over a sparse matrix, insted of constructing a sparse matrix for every row that is expensive. """ n_samples = X.shape[0] X_indices = X.indices X_data = X.data X_indptr = X.indptr for i in xrange(n_samples): row = np.zeros(X.shape[1]) startptr, endptr = X_indptr[i], X_indptr[i + 1] nonzero_indices = X_indices[startptr:endptr] row[nonzero_indices] = X_data[startptr:endptr] yield row def _split_node(node, threshold, branching_factor): """The node has to be split if there is no place for a new subcluster in the node. 1. Two empty nodes and two empty subclusters are initialized. 2. The pair of distant subclusters are found. 3. The properties of the empty subclusters and nodes are updated according to the nearest distance between the subclusters to the pair of distant subclusters. 4. The two nodes are set as children to the two subclusters. """ new_subcluster1 = _CFSubcluster() new_subcluster2 = _CFSubcluster() new_node1 = _CFNode( threshold, branching_factor, is_leaf=node.is_leaf, n_features=node.n_features) new_node2 = _CFNode( threshold, branching_factor, is_leaf=node.is_leaf, n_features=node.n_features) new_subcluster1.child_ = new_node1 new_subcluster2.child_ = new_node2 if node.is_leaf: if node.prev_leaf_ is not None: node.prev_leaf_.next_leaf_ = new_node1 new_node1.prev_leaf_ = node.prev_leaf_ new_node1.next_leaf_ = new_node2 new_node2.prev_leaf_ = new_node1 new_node2.next_leaf_ = node.next_leaf_ if node.next_leaf_ is not None: node.next_leaf_.prev_leaf_ = new_node2 dist = euclidean_distances( node.centroids_, Y_norm_squared=node.squared_norm_, squared=True) n_clusters = dist.shape[0] farthest_idx = np.unravel_index( dist.argmax(), (n_clusters, n_clusters)) node1_dist, node2_dist = dist[[farthest_idx]] node1_closer = node1_dist < node2_dist for idx, subcluster in enumerate(node.subclusters_): if node1_closer[idx]: new_node1.append_subcluster(subcluster) new_subcluster1.update(subcluster) else: new_node2.append_subcluster(subcluster) new_subcluster2.update(subcluster) return new_subcluster1, new_subcluster2 class _CFNode(object): """Each node in a CFTree is called a CFNode. The CFNode can have a maximum of branching_factor number of CFSubclusters. Parameters ---------- threshold : float Threshold needed for a new subcluster to enter a CFSubcluster. branching_factor : int Maximum number of CF subclusters in each node. is_leaf : bool We need to know if the CFNode is a leaf or not, in order to retrieve the final subclusters. n_features : int The number of features. Attributes ---------- subclusters_ : array-like list of subclusters for a particular CFNode. prev_leaf_ : _CFNode prev_leaf. Useful only if is_leaf is True. next_leaf_ : _CFNode next_leaf. Useful only if is_leaf is True. the final subclusters. init_centroids_ : ndarray, shape (branching_factor + 1, n_features) manipulate ``init_centroids_`` throughout rather than centroids_ since the centroids are just a view of the ``init_centroids_`` . init_sq_norm_ : ndarray, shape (branching_factor + 1,) manipulate init_sq_norm_ throughout. similar to ``init_centroids_``. centroids_ : ndarray view of ``init_centroids_``. squared_norm_ : ndarray view of ``init_sq_norm_``. """ def __init__(self, threshold, branching_factor, is_leaf, n_features): self.threshold = threshold self.branching_factor = branching_factor self.is_leaf = is_leaf self.n_features = n_features # The list of subclusters, centroids and squared norms # to manipulate throughout. self.subclusters_ = [] self.init_centroids_ = np.zeros((branching_factor + 1, n_features)) self.init_sq_norm_ = np.zeros((branching_factor + 1)) self.squared_norm_ = [] self.prev_leaf_ = None self.next_leaf_ = None def append_subcluster(self, subcluster): n_samples = len(self.subclusters_) self.subclusters_.append(subcluster) self.init_centroids_[n_samples] = subcluster.centroid_ self.init_sq_norm_[n_samples] = subcluster.sq_norm_ # Keep centroids and squared norm as views. In this way # if we change init_centroids and init_sq_norm_, it is # sufficient, self.centroids_ = self.init_centroids_[:n_samples + 1, :] self.squared_norm_ = self.init_sq_norm_[:n_samples + 1] def update_split_subclusters(self, subcluster, new_subcluster1, new_subcluster2): """Remove a subcluster from a node and update it with the split subclusters. """ ind = self.subclusters_.index(subcluster) self.subclusters_[ind] = new_subcluster1 self.init_centroids_[ind] = new_subcluster1.centroid_ self.init_sq_norm_[ind] = new_subcluster1.sq_norm_ self.append_subcluster(new_subcluster2) def insert_cf_subcluster(self, subcluster): """Insert a new subcluster into the node.""" if not self.subclusters_: self.append_subcluster(subcluster) return False threshold = self.threshold branching_factor = self.branching_factor # We need to find the closest subcluster among all the # subclusters so that we can insert our new subcluster. dist_matrix = np.dot(self.centroids_, subcluster.centroid_) dist_matrix *= -2. dist_matrix += self.squared_norm_ closest_index = np.argmin(dist_matrix) closest_subcluster = self.subclusters_[closest_index] # If the subcluster has a child, we need a recursive strategy. if closest_subcluster.child_ is not None: split_child = closest_subcluster.child_.insert_cf_subcluster( subcluster) if not split_child: # If it is determined that the child need not be split, we # can just update the closest_subcluster closest_subcluster.update(subcluster) self.init_centroids_[closest_index] = \ self.subclusters_[closest_index].centroid_ self.init_sq_norm_[closest_index] = \ self.subclusters_[closest_index].sq_norm_ return False # things not too good. we need to redistribute the subclusters in # our child node, and add a new subcluster in the parent # subcluster to accomodate the new child. else: new_subcluster1, new_subcluster2 = _split_node( closest_subcluster.child_, threshold, branching_factor) self.update_split_subclusters( closest_subcluster, new_subcluster1, new_subcluster2) if len(self.subclusters_) > self.branching_factor: return True return False # good to go! else: merged = closest_subcluster.merge_subcluster( subcluster, self.threshold) if merged: self.init_centroids_[closest_index] = \ closest_subcluster.centroid_ self.init_sq_norm_[closest_index] = \ closest_subcluster.sq_norm_ return False # not close to any other subclusters, and we still # have space, so add. elif len(self.subclusters_) < self.branching_factor: self.append_subcluster(subcluster) return False # We do not have enough space nor is it closer to an # other subcluster. We need to split. else: self.append_subcluster(subcluster) return True class _CFSubcluster(object): """Each subcluster in a CFNode is called a CFSubcluster. A CFSubcluster can have a CFNode has its child. Parameters ---------- linear_sum : ndarray, shape (n_features,), optional Sample. This is kept optional to allow initialization of empty subclusters. Attributes ---------- n_samples_ : int Number of samples that belong to each subcluster. linear_sum_ : ndarray Linear sum of all the samples in a subcluster. Prevents holding all sample data in memory. squared_sum_ : float Sum of the squared l2 norms of all samples belonging to a subcluster. centroid_ : ndarray Centroid of the subcluster. Prevent recomputing of centroids when ``CFNode.centroids_`` is called. child_ : _CFNode Child Node of the subcluster. Once a given _CFNode is set as the child of the _CFNode, it is set to ``self.child_``. sq_norm_ : ndarray Squared norm of the subcluster. Used to prevent recomputing when pairwise minimum distances are computed. """ def __init__(self, linear_sum=None): if linear_sum is None: self.n_samples_ = 0 self.squared_sum_ = 0.0 self.linear_sum_ = 0 else: self.n_samples_ = 1 self.centroid_ = self.linear_sum_ = linear_sum self.squared_sum_ = self.sq_norm_ = np.dot( self.linear_sum_, self.linear_sum_) self.child_ = None def update(self, subcluster): self.n_samples_ += subcluster.n_samples_ self.linear_sum_ += subcluster.linear_sum_ self.squared_sum_ += subcluster.squared_sum_ self.centroid_ = self.linear_sum_ / self.n_samples_ self.sq_norm_ = np.dot(self.centroid_, self.centroid_) def merge_subcluster(self, nominee_cluster, threshold): """Check if a cluster is worthy enough to be merged. If yes then merge. """ new_ss = self.squared_sum_ + nominee_cluster.squared_sum_ new_ls = self.linear_sum_ + nominee_cluster.linear_sum_ new_n = self.n_samples_ + nominee_cluster.n_samples_ new_centroid = (1 / new_n) * new_ls new_norm = np.dot(new_centroid, new_centroid) dot_product = (-2 * new_n) * new_norm sq_radius = (new_ss + dot_product) / new_n + new_norm if sq_radius <= threshold ** 2: (self.n_samples_, self.linear_sum_, self.squared_sum_, self.centroid_, self.sq_norm_) = \ new_n, new_ls, new_ss, new_centroid, new_norm return True return False @property def radius(self): """Return radius of the subcluster""" dot_product = -2 * np.dot(self.linear_sum_, self.centroid_) return sqrt( ((self.squared_sum_ + dot_product) / self.n_samples_) + self.sq_norm_) class Birch(BaseEstimator, TransformerMixin, ClusterMixin): """Implements the Birch clustering algorithm. Every new sample is inserted into the root of the Clustering Feature Tree. It is then clubbed together with the subcluster that has the centroid closest to the new sample. This is done recursively till it ends up at the subcluster of the leaf of the tree has the closest centroid. Read more in the :ref:`User Guide <birch>`. Parameters ---------- threshold : float, default 0.5 The radius of the subcluster obtained by merging a new sample and the closest subcluster should be lesser than the threshold. Otherwise a new subcluster is started. branching_factor : int, default 50 Maximum number of CF subclusters in each node. If a new samples enters such that the number of subclusters exceed the branching_factor then the node has to be split. The corresponding parent also has to be split and if the number of subclusters in the parent is greater than the branching factor, then it has to be split recursively. n_clusters : int, instance of sklearn.cluster model, default None Number of clusters after the final clustering step, which treats the subclusters from the leaves as new samples. By default, this final clustering step is not performed and the subclusters are returned as they are. If a model is provided, the model is fit treating the subclusters as new samples and the initial data is mapped to the label of the closest subcluster. If an int is provided, the model fit is AgglomerativeClustering with n_clusters set to the int. compute_labels : bool, default True Whether or not to compute labels for each fit. copy : bool, default True Whether or not to make a copy of the given data. If set to False, the initial data will be overwritten. Attributes ---------- root_ : _CFNode Root of the CFTree. dummy_leaf_ : _CFNode Start pointer to all the leaves. subcluster_centers_ : ndarray, Centroids of all subclusters read directly from the leaves. subcluster_labels_ : ndarray, Labels assigned to the centroids of the subclusters after they are clustered globally. labels_ : ndarray, shape (n_samples,) Array of labels assigned to the input data. if partial_fit is used instead of fit, they are assigned to the last batch of data. Examples -------- >>> from sklearn.cluster import Birch >>> X = [[0, 1], [0.3, 1], [-0.3, 1], [0, -1], [0.3, -1], [-0.3, -1]] >>> brc = Birch(branching_factor=50, n_clusters=None, threshold=0.5, ... compute_labels=True) >>> brc.fit(X) Birch(branching_factor=50, compute_labels=True, copy=True, n_clusters=None, threshold=0.5) >>> brc.predict(X) array([0, 0, 0, 1, 1, 1]) References ---------- * Tian Zhang, Raghu Ramakrishnan, Maron Livny BIRCH: An efficient data clustering method for large databases. http://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf * Roberto Perdisci JBirch - Java implementation of BIRCH clustering algorithm https://code.google.com/p/jbirch/ """ def __init__(self, threshold=0.5, branching_factor=50, n_clusters=3, compute_labels=True, copy=True): self.threshold = threshold self.branching_factor = branching_factor self.n_clusters = n_clusters self.compute_labels = compute_labels self.copy = copy def fit(self, X, y=None): """ Build a CF Tree for the input data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. """ self.fit_, self.partial_fit_ = True, False return self._fit(X) def _fit(self, X): X = check_array(X, accept_sparse='csr', copy=self.copy) threshold = self.threshold branching_factor = self.branching_factor if branching_factor <= 1: raise ValueError("Branching_factor should be greater than one.") n_samples, n_features = X.shape # If partial_fit is called for the first time or fit is called, we # start a new tree. partial_fit = getattr(self, 'partial_fit_') has_root = getattr(self, 'root_', None) if getattr(self, 'fit_') or (partial_fit and not has_root): # The first root is the leaf. Manipulate this object throughout. self.root_ = _CFNode(threshold, branching_factor, is_leaf=True, n_features=n_features) # To enable getting back subclusters. self.dummy_leaf_ = _CFNode(threshold, branching_factor, is_leaf=True, n_features=n_features) self.dummy_leaf_.next_leaf_ = self.root_ self.root_.prev_leaf_ = self.dummy_leaf_ # Cannot vectorize. Enough to convince to use cython. if not sparse.issparse(X): iter_func = iter else: iter_func = _iterate_sparse_X for sample in iter_func(X): subcluster = _CFSubcluster(linear_sum=sample) split = self.root_.insert_cf_subcluster(subcluster) if split: new_subcluster1, new_subcluster2 = _split_node( self.root_, threshold, branching_factor) del self.root_ self.root_ = _CFNode(threshold, branching_factor, is_leaf=False, n_features=n_features) self.root_.append_subcluster(new_subcluster1) self.root_.append_subcluster(new_subcluster2) centroids = np.concatenate([ leaf.centroids_ for leaf in self._get_leaves()]) self.subcluster_centers_ = centroids self._global_clustering(X) return self def _get_leaves(self): """ Retrieve the leaves of the CF Node. Returns ------- leaves: array-like List of the leaf nodes. """ leaf_ptr = self.dummy_leaf_.next_leaf_ leaves = [] while leaf_ptr is not None: leaves.append(leaf_ptr) leaf_ptr = leaf_ptr.next_leaf_ return leaves def partial_fit(self, X=None, y=None): """ Online learning. Prevents rebuilding of CFTree from scratch. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features), None Input data. If X is not provided, only the global clustering step is done. """ self.partial_fit_, self.fit_ = True, False if X is None: # Perform just the final global clustering step. self._global_clustering() return self else: self._check_fit(X) return self._fit(X) def _check_fit(self, X): is_fitted = hasattr(self, 'subcluster_centers_') # Called by partial_fit, before fitting. has_partial_fit = hasattr(self, 'partial_fit_') # Should raise an error if one does not fit before predicting. if not (is_fitted or has_partial_fit): raise NotFittedError("Fit training data before predicting") if is_fitted and X.shape[1] != self.subcluster_centers_.shape[1]: raise ValueError( "Training data and predicted data do " "not have same number of features.") def predict(self, X): """ Predict data using the ``centroids_`` of subclusters. Avoid computation of the row norms of X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. Returns ------- labels: ndarray, shape(n_samples) Labelled data. """ X = check_array(X, accept_sparse='csr') self._check_fit(X) reduced_distance = safe_sparse_dot(X, self.subcluster_centers_.T) reduced_distance *= -2 reduced_distance += self._subcluster_norms return self.subcluster_labels_[np.argmin(reduced_distance, axis=1)] def transform(self, X, y=None): """ Transform X into subcluster centroids dimension. Each dimension represents the distance from the sample point to each cluster centroid. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. Returns ------- X_trans : {array-like, sparse matrix}, shape (n_samples, n_clusters) Transformed data. """ check_is_fitted(self, 'subcluster_centers_') return euclidean_distances(X, self.subcluster_centers_) def _global_clustering(self, X=None): """ Global clustering for the subclusters obtained after fitting """ clusterer = self.n_clusters centroids = self.subcluster_centers_ compute_labels = (X is not None) and self.compute_labels # Preprocessing for the global clustering. not_enough_centroids = False if isinstance(clusterer, int): clusterer = AgglomerativeClustering( n_clusters=self.n_clusters) # There is no need to perform the global clustering step. if len(centroids) < self.n_clusters: not_enough_centroids = True elif (clusterer is not None and not hasattr(clusterer, 'fit_predict')): raise ValueError("n_clusters should be an instance of " "ClusterMixin or an int") # To use in predict to avoid recalculation. self._subcluster_norms = row_norms( self.subcluster_centers_, squared=True) if clusterer is None or not_enough_centroids: self.subcluster_labels_ = np.arange(len(centroids)) if not_enough_centroids: warnings.warn( "Number of subclusters found (%d) by Birch is less " "than (%d). Decrease the threshold." % (len(centroids), self.n_clusters)) else: # The global clustering step that clusters the subclusters of # the leaves. It assumes the centroids of the subclusters as # samples and finds the final centroids. self.subcluster_labels_ = clusterer.fit_predict( self.subcluster_centers_) if compute_labels: self.labels_ = self.predict(X)
bsd-3-clause
thilbern/scikit-learn
examples/ensemble/plot_gradient_boosting_oob.py
21
4761
""" ====================================== Gradient Boosting Out-of-Bag estimates ====================================== Out-of-bag (OOB) estimates can be a useful heuristic to estimate the "optimal" number of boosting iterations. OOB estimates are almost identical to cross-validation estimates but they can be computed on-the-fly without the need for repeated model fitting. OOB estimates are only available for Stochastic Gradient Boosting (i.e. ``subsample < 1.0``), the estimates are derived from the improvement in loss based on the examples not included in the boostrap sample (the so-called out-of-bag examples). The OOB estimator is a pessimistic estimator of the true test loss, but remains a fairly good approximation for a small number of trees. The figure shows the cumulative sum of the negative OOB improvements as a function of the boosting iteration. As you can see, it tracks the test loss for the first hundred iterations but then diverges in a pessimistic way. The figure also shows the performance of 3-fold cross validation which usually gives a better estimate of the test loss but is computationally more demanding. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn.cross_validation import KFold from sklearn.cross_validation import train_test_split # Generate data (adapted from G. Ridgeway's gbm example) n_samples = 1000 random_state = np.random.RandomState(13) x1 = random_state.uniform(size=n_samples) x2 = random_state.uniform(size=n_samples) x3 = random_state.randint(0, 4, size=n_samples) p = 1 / (1.0 + np.exp(-(np.sin(3 * x1) - 4 * x2 + x3))) y = random_state.binomial(1, p, size=n_samples) X = np.c_[x1, x2, x3] X = X.astype(np.float32) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=9) # Fit classifier with out-of-bag estimates params = {'n_estimators': 1200, 'max_depth': 3, 'subsample': 0.5, 'learning_rate': 0.01, 'min_samples_leaf': 1, 'random_state': 3} clf = ensemble.GradientBoostingClassifier(**params) clf.fit(X_train, y_train) acc = clf.score(X_test, y_test) print("Accuracy: {:.4f}".format(acc)) n_estimators = params['n_estimators'] x = np.arange(n_estimators) + 1 def heldout_score(clf, X_test, y_test): """compute deviance scores on ``X_test`` and ``y_test``. """ score = np.zeros((n_estimators,), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): score[i] = clf.loss_(y_test, y_pred) return score def cv_estimate(n_folds=3): cv = KFold(n=X_train.shape[0], n_folds=n_folds) cv_clf = ensemble.GradientBoostingClassifier(**params) val_scores = np.zeros((n_estimators,), dtype=np.float64) for train, test in cv: cv_clf.fit(X_train[train], y_train[train]) val_scores += heldout_score(cv_clf, X_train[test], y_train[test]) val_scores /= n_folds return val_scores # Estimate best n_estimator using cross-validation cv_score = cv_estimate(3) # Compute best n_estimator for test data test_score = heldout_score(clf, X_test, y_test) # negative cumulative sum of oob improvements cumsum = -np.cumsum(clf.oob_improvement_) # min loss according to OOB oob_best_iter = x[np.argmin(cumsum)] # min loss according to test (normalize such that first loss is 0) test_score -= test_score[0] test_best_iter = x[np.argmin(test_score)] # min loss according to cv (normalize such that first loss is 0) cv_score -= cv_score[0] cv_best_iter = x[np.argmin(cv_score)] # color brew for the three curves oob_color = list(map(lambda x: x / 256.0, (190, 174, 212))) test_color = list(map(lambda x: x / 256.0, (127, 201, 127))) cv_color = list(map(lambda x: x / 256.0, (253, 192, 134))) # plot curves and vertical lines for best iterations plt.plot(x, cumsum, label='OOB loss', color=oob_color) plt.plot(x, test_score, label='Test loss', color=test_color) plt.plot(x, cv_score, label='CV loss', color=cv_color) plt.axvline(x=oob_best_iter, color=oob_color) plt.axvline(x=test_best_iter, color=test_color) plt.axvline(x=cv_best_iter, color=cv_color) # add three vertical lines to xticks xticks = plt.xticks() xticks_pos = np.array(xticks[0].tolist() + [oob_best_iter, cv_best_iter, test_best_iter]) xticks_label = np.array(list(map(lambda t: int(t), xticks[0])) + ['OOB', 'CV', 'Test']) ind = np.argsort(xticks_pos) xticks_pos = xticks_pos[ind] xticks_label = xticks_label[ind] plt.xticks(xticks_pos, xticks_label) plt.legend(loc='upper right') plt.ylabel('normalized loss') plt.xlabel('number of iterations') plt.show()
bsd-3-clause
tmhm/scikit-learn
doc/datasets/mldata_fixture.py
367
1183
"""Fixture module to skip the datasets loading when offline Mock urllib2 access to mldata.org and create a temporary data folder. """ from os import makedirs from os.path import join import numpy as np import tempfile import shutil from sklearn import datasets from sklearn.utils.testing import install_mldata_mock from sklearn.utils.testing import uninstall_mldata_mock def globs(globs): # Create a temporary folder for the data fetcher global custom_data_home custom_data_home = tempfile.mkdtemp() makedirs(join(custom_data_home, 'mldata')) globs['custom_data_home'] = custom_data_home return globs def setup_module(): # setup mock urllib2 module to avoid downloading from mldata.org install_mldata_mock({ 'mnist-original': { 'data': np.empty((70000, 784)), 'label': np.repeat(np.arange(10, dtype='d'), 7000), }, 'iris': { 'data': np.empty((150, 4)), }, 'datasets-uci-iris': { 'double0': np.empty((150, 4)), 'class': np.empty((150,)), }, }) def teardown_module(): uninstall_mldata_mock() shutil.rmtree(custom_data_home)
bsd-3-clause
annajur/cbp
OrbitInteg.py
1
3948
import numpy as np import matplotlib.pyplot as plt import matplotlib from astropy import units from galpy.orbit import Orbit from FerrersPotential import FerrersPotential as FP matplotlib.rcParams['figure.figsize'] = (10, 10) def rot(omega, t): temp = [[np.cos(t*omega), -np.sin(t*omega)], [np.sin(t*omega), np.cos(t*omega)]] return np.array(temp) def inrotframe(orbit, ts, potential): x, y = [], [] for item in ts: x.append(orbit.x(item)) y.append(orbit.y(item)) xy = np.zeros([len(x),2]) xy[:,0] = x xy[:,1] = y omega = potential.OmegaP() xrot, yrot = np.zeros(len(ts)), np.zeros(len(ts)) for i in range(len(ts)): xrot[i],yrot[i] = np.dot(xy[i],rot(omega, ts[i])) return xrot, yrot pmw = FP(a = 8*units.kpc, b = 0.35, c = 0.2375, normalize = True, omegab = 10.*units.km/units.s/units.kpc) initc = [] R = 1 svxvv = '[0.2,0.2,vT,0.,0.,0.]' output_file = open('/home/annaj/cbp_usrp/pretty_pictures/in_rot/6/setvT/log','w') output_file.write(svxvv+'\n'+'R = ') ''' for i in range(1,41): R = 0.025*i initc.append([R,0.01,0.01,0.,0.,np.pi/2]) output_file.write(str(R)+', ') ts = np.linspace(0,100,2000) output_file.close() ''' ''' for i in range(1,21): vR = -0.2 + 0.02*i initc.append([1.35,vR,0.1,0.,0.,np.pi/4]) output_file.write(str(vR)+', ') ts = np.linspace(0,100,800) output_file.close() ''' for i in range(1,41): vT = -0.7+0.05*i initc.append([0.2,0.2,vT,0.,0.,0.]) output_file.write(str(vT)+', ') ts = np.linspace(0,50,1500) output_file.close() orbits = [] for i in range(len(initc)): orbits.append(Orbit(vxvv = initc[i])) for i in range(len(orbits)): try: orbits[i].integrate(ts, pmw) #orbits[i].plot(d1='x',d2='y', color = 'dodgerblue', overplot = False) ts = np.linspace(0,50,1500) xr, yr = inrotframe(orbits[i],ts,pmw) plt.plot(xr,yr, c = 'crimson') plt.xlabel(r'$x/R_0$', fontsize = 17) plt.ylabel(r'$y/R_0$', fontsize = 17) xr, yr = [],[] if i<10: name = '/home/annaj/cbp_usrp/pretty_pictures/in_rot/6/setvT/r0'+str(i)+'.png' else: name = '/home/annaj/cbp_usrp/pretty_pictures/in_rot/6/setvT/r'+str(i)+'.png' plt.savefig(name) plt.close() except (RuntimeWarning,FutureWarning,RuntimeError,AttributeError,DeprecationWarning,ZeroDivisionError): print('I am sorry, but something went wrong :(') ''' --log-- out_rot: [R,-0.1,0.1,0.,0.,0.] R = 1 + 0.05*i [R,-0.1,0.1,0.,0.,np.pi/4] R = 1 + 0.05*i [R,-0.1,0.1,0.,0.,np.pi/2] R = 1 + 0.05*i [R,-0.1,0.2,0.,0.,0.] [R,-0.1,0.3,0.,0.,0.] [R,-0.2,0.3,0.,0.,0.] [1.2,vR,0.2,0.,0.,0.] vR = -1.+ 0.03*i [1.2,vR,0.1,0.,0.,0.] vR = -1.+ 0.03*i [1.35,vR,0.1,0.,0.,np.pi/4] vR = -.2 + 0.02*i [1.2,0.1,0.5,0.,vz,0.001] vz = 0.03*i [1.2,0.1,0.1,0.,vz,0.001] vz = 0.03*i [1.2,0.1,0.5,0.,0.,phi] phi = np.pi/20*i [1.2,0.1,0.1,0.,0.,phi] phi = np.pi/200*i in_rot: [R,0.,0.009,0.,0.,0.001] R = 0.1*i [R,0.1,0.009,0.,0.,0.0] R = 0.05*i [R,.1,.009,0.,0.,np.pi/4] R = 0.05*i [R,0.01,0.01,0.,0.,0.] R = 0.05*i [R,0.01,0.01,0.,0.,np.pi/2] R = 0.05*i [R,0.01,0.01,0.,0.,np.pi/4] R = 0.05*i [0.7,vR,0.1,0.,0.,0.] vR = -0.8+0.1*i [0.5,vR,0.1,0.,0.,0.] vR = -0.2+0.05*i [0.5,vR,0.1,0.,0.,np.pi/4] vR = -0.2+0.05*i [0.2,0.2,vT,0.,0.,0.] vT = -0.7+0.05*i [0.3,0.2,vT,0.,0.,0.] vT = -0.7+0.05*i [0.4,0.2,vT,0.,0.,0.] vT = -0.7+0.05*i [0.5,0.2,vT,0.,0.,0.] vT = -0.7+0.05*i [0.6,0.2,vT,0.,0.,0.] vT = -0.7+0.05*i [0.7,0.2,vT,0.,0.,0.] vT = -0.7+0.05*i [0.8,0.2,vT,0.,0.,0.] vT = -0.7+0.05*i [0.7,0.2,0.6,0.,vz,0.001] vz = 0.03*i [0.5,0.1,0.6,0.,vz,0.] vz = 0.03*i [0.5,0.1,0.6,0.,vz,np.pi/4] vz = 0.03*i [0.7,0.2,0.6,0.,0.,phi] phi = np.pi/20*i [0.5,0.2,0.4,0.,0.,phi] phi = np.pi/20*i [0.5,0.3,0.3,0.,0.,phi] phi = np.pi/20*i, '''
mit
nguyentu1602/statsmodels
statsmodels/sandbox/distributions/otherdist.py
33
10145
'''Parametric Mixture Distributions Created on Sat Jun 04 2011 Author: Josef Perktold Notes: Compound Poisson has mass point at zero http://en.wikipedia.org/wiki/Compound_Poisson_distribution and would need special treatment need a distribution that has discrete mass points and contiuous range, e.g. compound Poisson, Tweedie (for some parameter range), pdf of Tobit model (?) - truncation with clipping Question: Metaclasses and class factories for generating new distributions from existing distributions by transformation, mixing, compounding ''' from __future__ import print_function import numpy as np from scipy import stats class ParametricMixtureD(object): '''mixtures with a discrete distribution The mixing distribution is a discrete distribution like scipy.stats.poisson. All distribution in the mixture of the same type and parameterized by the outcome of the mixing distribution and have to be a continuous distribution (or have a pdf method). As an example, a mixture of normal distributed random variables with Poisson as the mixing distribution. assumes vectorized shape, loc and scale as in scipy.stats.distributions assume mixing_dist is frozen initialization looks fragile for all possible cases of lower and upper bounds of the distributions. ''' def __init__(self, mixing_dist, base_dist, bd_args_func, bd_kwds_func, cutoff=1e-3): '''create a mixture distribution Parameters ---------- mixing_dist : discrete frozen distribution mixing distribution base_dist : continuous distribution parameterized distributions in the mixture bd_args_func : callable function that builds the tuple of args for the base_dist. The function obtains as argument the values in the support of the mixing distribution and should return an empty tuple or a tuple of arrays. bd_kwds_func : callable function that builds the dictionary of kwds for the base_dist. The function obtains as argument the values in the support of the mixing distribution and should return an empty dictionary or a dictionary with arrays as values. cutoff : float If the mixing distribution has infinite support, then the distribution is truncated with approximately (subject to integer conversion) the cutoff probability in the missing tail. Random draws that are outside the truncated range are clipped, that is assigned to the highest or lowest value in the truncated support. ''' self.mixing_dist = mixing_dist self.base_dist = base_dist #self.bd_args = bd_args if not np.isneginf(mixing_dist.dist.a): lower = mixing_dist.dist.a else: lower = mixing_dist.ppf(1e-4) if not np.isposinf(mixing_dist.dist.b): upper = mixing_dist.dist.b else: upper = mixing_dist.isf(1e-4) self.ma = lower self.mb = upper mixing_support = np.arange(lower, upper+1) self.mixing_probs = mixing_dist.pmf(mixing_support) self.bd_args = bd_args_func(mixing_support) self.bd_kwds = bd_kwds_func(mixing_support) def rvs(self, size=1): mrvs = self.mixing_dist.rvs(size) #TODO: check strange cases ? this assumes continous integers mrvs_idx = (np.clip(mrvs, self.ma, self.mb) - self.ma).astype(int) bd_args = tuple(md[mrvs_idx] for md in self.bd_args) bd_kwds = dict((k, self.bd_kwds[k][mrvs_idx]) for k in self.bd_kwds) kwds = {'size':size} kwds.update(bd_kwds) rvs = self.base_dist.rvs(*self.bd_args, **kwds) return rvs, mrvs_idx def pdf(self, x): x = np.asarray(x) if np.size(x) > 1: x = x[...,None] #[None, ...] bd_probs = self.base_dist.pdf(x, *self.bd_args, **self.bd_kwds) prob = (bd_probs * self.mixing_probs).sum(-1) return prob, bd_probs def cdf(self, x): x = np.asarray(x) if np.size(x) > 1: x = x[...,None] #[None, ...] bd_probs = self.base_dist.cdf(x, *self.bd_args, **self.bd_kwds) prob = (bd_probs * self.mixing_probs).sum(-1) return prob, bd_probs #try: class ClippedContinuous(object): '''clipped continuous distribution with a masspoint at clip_lower Notes ----- first version, to try out possible designs insufficient checks for valid arguments and not clear whether it works for distributions that have compact support clip_lower is fixed and independent of the distribution parameters. The clip_lower point in the pdf has to be interpreted as a mass point, i.e. different treatment in integration and expect function, which means none of the generic methods for this can be used. maybe this will be better designed as a mixture between a degenerate or discrete and a continuous distribution Warning: uses equality to check for clip_lower values in function arguments, since these are floating points, the comparison might fail if clip_lower values are not exactly equal. We could add a check whether the values are in a small neighborhood, but it would be expensive (need to search and check all values). ''' def __init__(self, base_dist, clip_lower): self.base_dist = base_dist self.clip_lower = clip_lower def _get_clip_lower(self, kwds): '''helper method to get clip_lower from kwds or attribute ''' if not 'clip_lower' in kwds: clip_lower = self.clip_lower else: clip_lower = kwds.pop('clip_lower') return clip_lower, kwds def rvs(self, *args, **kwds): clip_lower, kwds = self._get_clip_lower(kwds) rvs_ = self.base_dist.rvs(*args, **kwds) #same as numpy.clip ? rvs_[rvs_ < clip_lower] = clip_lower return rvs_ def pdf(self, x, *args, **kwds): x = np.atleast_1d(x) if not 'clip_lower' in kwds: clip_lower = self.clip_lower else: #allow clip_lower to be a possible parameter clip_lower = kwds.pop('clip_lower') pdf_raw = np.atleast_1d(self.base_dist.pdf(x, *args, **kwds)) clip_mask = (x == self.clip_lower) if np.any(clip_mask): clip_prob = self.base_dist.cdf(clip_lower, *args, **kwds) pdf_raw[clip_mask] = clip_prob #the following will be handled by sub-classing rv_continuous pdf_raw[x < clip_lower] = 0 return pdf_raw def cdf(self, x, *args, **kwds): if not 'clip_lower' in kwds: clip_lower = self.clip_lower else: #allow clip_lower to be a possible parameter clip_lower = kwds.pop('clip_lower') cdf_raw = self.base_dist.cdf(x, *args, **kwds) #not needed if equality test is used ## clip_mask = (x == self.clip_lower) ## if np.any(clip_mask): ## clip_prob = self.base_dist.cdf(clip_lower, *args, **kwds) ## pdf_raw[clip_mask] = clip_prob #the following will be handled by sub-classing rv_continuous #if self.a is defined cdf_raw[x < clip_lower] = 0 return cdf_raw def sf(self, x, *args, **kwds): if not 'clip_lower' in kwds: clip_lower = self.clip_lower else: #allow clip_lower to be a possible parameter clip_lower = kwds.pop('clip_lower') sf_raw = self.base_dist.sf(x, *args, **kwds) sf_raw[x <= clip_lower] = 1 return sf_raw def ppf(self, x, *args, **kwds): raise NotImplementedError def plot(self, x, *args, **kwds): clip_lower, kwds = self._get_clip_lower(kwds) mass = self.pdf(clip_lower, *args, **kwds) xr = np.concatenate(([clip_lower+1e-6], x[x>clip_lower])) import matplotlib.pyplot as plt #x = np.linspace(-4, 4, 21) #plt.figure() plt.xlim(clip_lower-0.1, x.max()) #remove duplicate calculation xpdf = self.pdf(x, *args, **kwds) plt.ylim(0, max(mass, xpdf.max())*1.1) plt.plot(xr, self.pdf(xr, *args, **kwds)) #plt.vline(clip_lower, self.pdf(clip_lower, *args, **kwds)) plt.stem([clip_lower], [mass], linefmt='b-', markerfmt='bo', basefmt='r-') return if __name__ == '__main__': doplots = 1 #*********** Poisson-Normal Mixture mdist = stats.poisson(2.) bdist = stats.norm bd_args_fn = lambda x: () #bd_kwds_fn = lambda x: {'loc': np.atleast_2d(10./(1+x))} bd_kwds_fn = lambda x: {'loc': x, 'scale': 0.1*np.ones_like(x)} #10./(1+x)} pd = ParametricMixtureD(mdist, bdist, bd_args_fn, bd_kwds_fn) print(pd.pdf(1)) p, bp = pd.pdf(np.linspace(0,20,21)) pc, bpc = pd.cdf(np.linspace(0,20,21)) print(pd.rvs()) rvs, m = pd.rvs(size=1000) if doplots: import matplotlib.pyplot as plt plt.hist(rvs, bins = 100) plt.title('poisson mixture of normal distributions') #********** clipped normal distribution (Tobit) bdist = stats.norm clip_lower_ = 0. #-0.5 cnorm = ClippedContinuous(bdist, clip_lower_) x = np.linspace(1e-8, 4, 11) print(cnorm.pdf(x)) print(cnorm.cdf(x)) if doplots: #plt.figure() #cnorm.plot(x) plt.figure() cnorm.plot(x = np.linspace(-1, 4, 51), loc=0.5, scale=np.sqrt(2)) plt.title('clipped normal distribution') fig = plt.figure() for i, loc in enumerate([0., 0.5, 1.,2.]): fig.add_subplot(2,2,i+1) cnorm.plot(x = np.linspace(-1, 4, 51), loc=loc, scale=np.sqrt(2)) plt.title('clipped normal, loc = %3.2f' % loc) loc = 1.5 rvs = cnorm.rvs(loc=loc, size=2000) plt.figure() plt.hist(rvs, bins=50) plt.title('clipped normal rvs, loc = %3.2f' % loc) #plt.show()
bsd-3-clause
zuku1985/scikit-learn
benchmarks/bench_sample_without_replacement.py
397
8008
""" Benchmarks for sampling without replacement of integer. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import operator import matplotlib.pyplot as plt import numpy as np import random from sklearn.externals.six.moves import xrange from sklearn.utils.random import sample_without_replacement def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_sample(sampling, n_population, n_samples): gc.collect() # start time t_start = datetime.now() sampling(n_population, n_samples) delta = (datetime.now() - t_start) # stop time time = compute_time(t_start, delta) return time if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-population", dest="n_population", default=100000, type=int, help="Size of the population to sample from.") op.add_option("--n-step", dest="n_steps", default=5, type=int, help="Number of step interval between 0 and n_population.") default_algorithms = "custom-tracking-selection,custom-auto," \ "custom-reservoir-sampling,custom-pool,"\ "python-core-sample,numpy-permutation" op.add_option("--algorithm", dest="selected_algorithm", default=default_algorithms, type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. \nAvailable: %default") # op.add_option("--random-seed", # dest="random_seed", default=13, type=int, # help="Seed used by the random number generators.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) selected_algorithm = opts.selected_algorithm.split(',') for key in selected_algorithm: if key not in default_algorithms.split(','): raise ValueError("Unknown sampling algorithm \"%s\" not in (%s)." % (key, default_algorithms)) ########################################################################### # List sampling algorithm ########################################################################### # We assume that sampling algorithm has the following signature: # sample(n_population, n_sample) # sampling_algorithm = {} ########################################################################### # Set Python core input sampling_algorithm["python-core-sample"] = \ lambda n_population, n_sample: \ random.sample(xrange(n_population), n_sample) ########################################################################### # Set custom automatic method selection sampling_algorithm["custom-auto"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="auto", random_state=random_state) ########################################################################### # Set custom tracking based method sampling_algorithm["custom-tracking-selection"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="tracking_selection", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-reservoir-sampling"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="reservoir_sampling", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-pool"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="pool", random_state=random_state) ########################################################################### # Numpy permutation based sampling_algorithm["numpy-permutation"] = \ lambda n_population, n_sample: \ np.random.permutation(n_population)[:n_sample] ########################################################################### # Remove unspecified algorithm sampling_algorithm = dict((key, value) for key, value in sampling_algorithm.items() if key in selected_algorithm) ########################################################################### # Perform benchmark ########################################################################### time = {} n_samples = np.linspace(start=0, stop=opts.n_population, num=opts.n_steps).astype(np.int) ratio = n_samples / opts.n_population print('Benchmarks') print("===========================") for name in sorted(sampling_algorithm): print("Perform benchmarks for %s..." % name, end="") time[name] = np.zeros(shape=(opts.n_steps, opts.n_times)) for step in xrange(opts.n_steps): for it in xrange(opts.n_times): time[name][step, it] = bench_sample(sampling_algorithm[name], opts.n_population, n_samples[step]) print("done") print("Averaging results...", end="") for name in sampling_algorithm: time[name] = np.mean(time[name], axis=1) print("done\n") # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Sampling algorithm performance:") print("===============================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") fig = plt.figure('scikit-learn sample w/o replacement benchmark results') plt.title("n_population = %s, n_times = %s" % (opts.n_population, opts.n_times)) ax = fig.add_subplot(111) for name in sampling_algorithm: ax.plot(ratio, time[name], label=name) ax.set_xlabel('ratio of n_sample / n_population') ax.set_ylabel('Time (s)') ax.legend() # Sort legend labels handles, labels = ax.get_legend_handles_labels() hl = sorted(zip(handles, labels), key=operator.itemgetter(1)) handles2, labels2 = zip(*hl) ax.legend(handles2, labels2, loc=0) plt.show()
bsd-3-clause
TomAugspurger/pandas
pandas/tests/indexes/categorical/test_reindex.py
2
2400
import numpy as np from pandas import Categorical, CategoricalIndex, Index import pandas._testing as tm class TestReindex: def test_reindex_dtype(self): c = CategoricalIndex(["a", "b", "c", "a"]) res, indexer = c.reindex(["a", "c"]) tm.assert_index_equal(res, Index(["a", "a", "c"]), exact=True) tm.assert_numpy_array_equal(indexer, np.array([0, 3, 2], dtype=np.intp)) c = CategoricalIndex(["a", "b", "c", "a"]) res, indexer = c.reindex(Categorical(["a", "c"])) exp = CategoricalIndex(["a", "a", "c"], categories=["a", "c"]) tm.assert_index_equal(res, exp, exact=True) tm.assert_numpy_array_equal(indexer, np.array([0, 3, 2], dtype=np.intp)) c = CategoricalIndex(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) res, indexer = c.reindex(["a", "c"]) exp = Index(["a", "a", "c"], dtype="object") tm.assert_index_equal(res, exp, exact=True) tm.assert_numpy_array_equal(indexer, np.array([0, 3, 2], dtype=np.intp)) c = CategoricalIndex(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) res, indexer = c.reindex(Categorical(["a", "c"])) exp = CategoricalIndex(["a", "a", "c"], categories=["a", "c"]) tm.assert_index_equal(res, exp, exact=True) tm.assert_numpy_array_equal(indexer, np.array([0, 3, 2], dtype=np.intp)) def test_reindex_duplicate_target(self): # See GH25459 cat = CategoricalIndex(["a", "b", "c"], categories=["a", "b", "c", "d"]) res, indexer = cat.reindex(["a", "c", "c"]) exp = Index(["a", "c", "c"], dtype="object") tm.assert_index_equal(res, exp, exact=True) tm.assert_numpy_array_equal(indexer, np.array([0, 2, 2], dtype=np.intp)) res, indexer = cat.reindex( CategoricalIndex(["a", "c", "c"], categories=["a", "b", "c", "d"]) ) exp = CategoricalIndex(["a", "c", "c"], categories=["a", "b", "c", "d"]) tm.assert_index_equal(res, exp, exact=True) tm.assert_numpy_array_equal(indexer, np.array([0, 2, 2], dtype=np.intp)) def test_reindex_empty_index(self): # See GH16770 c = CategoricalIndex([]) res, indexer = c.reindex(["a", "b"]) tm.assert_index_equal(res, Index(["a", "b"]), exact=True) tm.assert_numpy_array_equal(indexer, np.array([-1, -1], dtype=np.intp))
bsd-3-clause
rajikaimal/emma
src/predict.py
1
3069
import pandas as pd import io import os import numpy as np import matplotlib.pyplot as plt import csv from sklearn import svm from sklearn.multiclass import OneVsRestClassifier from sklearn.preprocessing import MultiLabelBinarizer from sklearn.feature_extraction import DictVectorizer class Predict: # path to current directory PATH = os.getcwd() # train ML model with repository specific data def train(self, test_vector): """ Trains the classfier with extracted data from the repository commits using the extractor """ with open(self.PATH + '/src/data/train_emma.csv', 'rt') as f: reader = csv.reader(f) train_data = dict() train_data_labels = list() train_data_list = [] train_data_labels_list = [] next(reader, None) for row in reader: for idx in range(len(row)): if idx == 0: train_data['file'] = row[idx] if idx == 1: train_data['line'] = int(row[idx]) if idx == 2: train_data['timestamp'] = row[idx] if idx == 3: train_data_labels.append(row[idx]) if idx == 4: train_data_labels.append(row[idx]) train_data_list.append(train_data) train_data_labels_list.append(train_data_labels) train_data = dict() train_data_labels = list() C = 0.8 dict_vectorizer = DictVectorizer(sparse=False) train_data_trasformed = dict_vectorizer.fit_transform(train_data_list) test_vector_transformed = dict_vectorizer.transform(test_vector) # print(dict_vectorizer.get_feature_names()) # print(dict_vectorizer.inverse_transform(train_data_trasformed)) # print('Inverse transformation !!!') # print(test_vector) # inv_trans = dict_vectorizer.inverse_transform(test_vector_transformed) # fit LinearSVC # multi label binarizer to convert iterable of iterables into processing format mlb = MultiLabelBinarizer() y_enc = mlb.fit_transform(train_data_labels_list) train_vector = OneVsRestClassifier(svm.SVC(probability=True)) classifier_rbf = train_vector.fit(train_data_trasformed, y_enc) # test_vecc = cnt_vectorizer.fit_transform(X[:, 0]) # # todo use pickle to persist # test_vector_reshaped = np.array(test_vector.ravel()).reshape((1, -1)) prediction = classifier_rbf.predict(test_vector_transformed) print("Predicted usernames: \n") # print(prediction) # print(mlb.inverse_transform(prediction)) users = self.parse_prediction(mlb.inverse_transform(prediction)) print(users) return users def parse_prediction(self, predictions): """ Transform list of tuples to list of predicted users """ users = list() print(predictions) for prediction in predictions: for email in prediction: users.append(email) return users def visualize(self, X, y): # visualize commit with ghusernames plt.scatter(X[:, :1], X[:, 1:], c=y[:, :1], cmap=plt.cm.coolwarm) plt.xlabel('Commits') plt.ylabel('Reviewer') plt.title('GitHub PR reviewer selection') plt.show() # pr = Predict() # pr.train([{'file': 'package', 'line': 31, 'timestamp': '2017-01-16T23:57:20-0600'}])
mit
phoexer/Kelly
scripts/Maths/plotting_functions.py
1
1139
a# -*- coding: utf-8 -*- """ Created on Sat Aug 19 21:40:35 2017 @author: michael Simple script that draws the graph of a function I was figuring this out as I went along, just to see if I can do it. """ import matplotlib.pyplot as plt import numpy as np import math #Constants a = 1 b = 8 c = 5#10 d = 6 #plt.plot([2,4,6,8],[1,2,3,4],'ro') #plt.ylabel('Some Numbers') def sinFunc(x): """f(x) = sin(x)""" return math.sin(x) def quadraticFunc(x): """y = ax^2 + bx + c,""" return a*x**2 + b*x + c def powerFunc(x): """y = ax^c""" return a*x**c def polinomialFunc(x): """y = x^5 -8x^3 +10x + 6""" return a*x**5 - b*x**3 + c*x + d def someFunc(x): """y = 1/x""" return 1/x x = np.arange(-3., 3., .2) sy = [someFunc(y) for y in x] qy = [quadraticFunc(y) for y in x] py = [powerFunc(y) for y in x] ply = [polinomialFunc(y) for y in x] #T = np.matrix(t) plt.subplot(2,2,1) plt.plot(x, sy,'r-.') plt.grid(True) plt.subplot(2,2,2) plt.plot(x,qy,'b-.') plt.grid(True) plt.subplot(2,2,3) plt.plot(x,py,'g-.') plt.grid(True) plt.subplot(2,2,4) plt.plot(x,ply,'y-.') plt.grid(True) plt.show()
mit
lthurlow/Network-Grapher
proj/external/matplotlib-1.2.1/build/lib.linux-i686-2.7/matplotlib/testing/jpl_units/Duration.py
6
6600
#=========================================================================== # # Duration # #=========================================================================== """Duration module.""" #=========================================================================== # Place all imports after here. # from __future__ import print_function # # Place all imports before here. #=========================================================================== #=========================================================================== class Duration: """Class Duration in development. """ allowed = [ "ET", "UTC" ] #----------------------------------------------------------------------- def __init__( self, frame, seconds ): """Create a new Duration object. = ERROR CONDITIONS - If the input frame is not in the allowed list, an error is thrown. = INPUT VARIABLES - frame The frame of the duration. Must be 'ET' or 'UTC' - seconds The number of seconds in the Duration. """ if frame not in self.allowed: msg = "Input frame '%s' is not one of the supported frames of %s" \ % ( frame, str( self.allowed ) ) raise ValueError( msg ) self._frame = frame self._seconds = seconds #----------------------------------------------------------------------- def frame( self ): """Return the frame the duration is in.""" return self._frame #----------------------------------------------------------------------- def __abs__( self ): """Return the absolute value of the duration.""" return Duration( self._frame, abs( self._seconds ) ) #----------------------------------------------------------------------- def __neg__( self ): """Return the negative value of this Duration.""" return Duration( self._frame, -self._seconds ) #----------------------------------------------------------------------- def seconds( self ): """Return the number of seconds in the Duration.""" return self._seconds #----------------------------------------------------------------------- def __nonzero__( self ): """Compare two Durations. = INPUT VARIABLES - rhs The Duration to compare against. = RETURN VALUE - Returns -1 if self < rhs, 0 if self == rhs, +1 if self > rhs. """ return self._seconds != 0 #----------------------------------------------------------------------- def __cmp__( self, rhs ): """Compare two Durations. = ERROR CONDITIONS - If the input rhs is not in the same frame, an error is thrown. = INPUT VARIABLES - rhs The Duration to compare against. = RETURN VALUE - Returns -1 if self < rhs, 0 if self == rhs, +1 if self > rhs. """ self.checkSameFrame( rhs, "compare" ) return cmp( self._seconds, rhs._seconds ) #----------------------------------------------------------------------- def __add__( self, rhs ): """Add two Durations. = ERROR CONDITIONS - If the input rhs is not in the same frame, an error is thrown. = INPUT VARIABLES - rhs The Duration to add. = RETURN VALUE - Returns the sum of ourselves and the input Duration. """ # Delay-load due to circular dependencies. import matplotlib.testing.jpl_units as U if isinstance( rhs, U.Epoch ): return rhs + self self.checkSameFrame( rhs, "add" ) return Duration( self._frame, self._seconds + rhs._seconds ) #----------------------------------------------------------------------- def __sub__( self, rhs ): """Subtract two Durations. = ERROR CONDITIONS - If the input rhs is not in the same frame, an error is thrown. = INPUT VARIABLES - rhs The Duration to subtract. = RETURN VALUE - Returns the difference of ourselves and the input Duration. """ self.checkSameFrame( rhs, "sub" ) return Duration( self._frame, self._seconds - rhs._seconds ) #----------------------------------------------------------------------- def __mul__( self, rhs ): """Scale a UnitDbl by a value. = INPUT VARIABLES - rhs The scalar to multiply by. = RETURN VALUE - Returns the scaled Duration. """ return Duration( self._frame, self._seconds * float( rhs ) ) #----------------------------------------------------------------------- def __rmul__( self, lhs ): """Scale a Duration by a value. = INPUT VARIABLES - lhs The scalar to multiply by. = RETURN VALUE - Returns the scaled Duration. """ return Duration( self._frame, self._seconds * float( lhs ) ) #----------------------------------------------------------------------- def __div__( self, rhs ): """Divide a Duration by a value. = INPUT VARIABLES - rhs The scalar to divide by. = RETURN VALUE - Returns the scaled Duration. """ return Duration( self._frame, self._seconds / float( rhs ) ) #----------------------------------------------------------------------- def __rdiv__( self, rhs ): """Divide a Duration by a value. = INPUT VARIABLES - rhs The scalar to divide by. = RETURN VALUE - Returns the scaled Duration. """ return Duration( self._frame, float( rhs ) / self._seconds ) #----------------------------------------------------------------------- def __str__( self ): """Print the Duration.""" return "%g %s" % ( self._seconds, self._frame ) #----------------------------------------------------------------------- def __repr__( self ): """Print the Duration.""" return "Duration( '%s', %g )" % ( self._frame, self._seconds ) #----------------------------------------------------------------------- def checkSameFrame( self, rhs, func ): """Check to see if frames are the same. = ERROR CONDITIONS - If the frame of the rhs Duration is not the same as our frame, an error is thrown. = INPUT VARIABLES - rhs The Duration to check for the same frame - func The name of the function doing the check. """ if self._frame != rhs._frame: msg = "Cannot %s Duration's with different frames.\n" \ "LHS: %s\n" \ "RHS: %s" % ( func, self._frame, rhs._frame ) raise ValueError( msg ) #===========================================================================
mit
diegocavalca/Studies
phd-thesis/neuralnilm/neuralnilm/data/syntheticaggregatesource.py
4
3659
from __future__ import print_function, division import numpy as np import pandas as pd from neuralnilm.data.source import Sequence from neuralnilm.data.activationssource import ActivationsSource import logging logger = logging.getLogger(__name__) class SyntheticAggregateSource(ActivationsSource): def __init__(self, activations, target_appliance, seq_length, sample_period, distractor_inclusion_prob=0.25, target_inclusion_prob=0.5, uniform_prob_of_selecting_each_building=True, allow_incomplete_target=True, allow_incomplete_distractors=True, include_incomplete_target_in_output=True, rng_seed=None): self.activations = activations self.target_appliance = target_appliance self.seq_length = seq_length self.sample_period = sample_period self.distractor_inclusion_prob = distractor_inclusion_prob self.target_inclusion_prob = target_inclusion_prob self.uniform_prob_of_selecting_each_building = ( uniform_prob_of_selecting_each_building) self.allow_incomplete_target = allow_incomplete_target self.allow_incomplete_distractors = allow_incomplete_distractors self.include_incomplete_target_in_output = ( include_incomplete_target_in_output) super(SyntheticAggregateSource, self).__init__(rng_seed=rng_seed) def _get_sequence(self, fold='train', enable_all_appliances=False): seq = Sequence(self.seq_length) all_appliances = {} # Target appliance if self.rng.binomial(n=1, p=self.target_inclusion_prob): building_name = self._select_building(fold, self.target_appliance) activations = ( self.activations[fold][self.target_appliance][building_name]) activation_i = self._select_activation(activations) activation = activations[activation_i] positioned_activation, is_complete = self._position_activation( activation, is_target_appliance=True) positioned_activation = positioned_activation.values seq.input += positioned_activation if enable_all_appliances: all_appliances[self.target_appliance] = positioned_activation if is_complete or self.include_incomplete_target_in_output: seq.target += positioned_activation # Distractor appliances distractor_appliances = [ appliance for appliance in self._distractor_appliances(fold) if self.rng.binomial(n=1, p=self.distractor_inclusion_prob)] for appliance in distractor_appliances: building_name = self._select_building(fold, appliance) activations = self.activations[fold][appliance][building_name] activation_i = self._select_activation(activations) activation = activations[activation_i] positioned_activation, is_complete = self._position_activation( activation, is_target_appliance=False) positioned_activation = positioned_activation.values seq.input += positioned_activation if enable_all_appliances: all_appliances[appliance] = positioned_activation seq.input = seq.input[:, np.newaxis] seq.target = seq.target[:, np.newaxis] assert len(seq.input) == self.seq_length assert len(seq.target) == self.seq_length if enable_all_appliances: seq.all_appliances = pd.DataFrame(all_appliances) return seq
cc0-1.0
LucaDiStasio/thinPlyMechanics
python/reportData.py
1
257251
#!/usr/bin/env Python # -*- coding: utf-8 -*- ''' ===================================================================================== Copyright (c) 2016 - 2019 Université de Lorraine & Luleå tekniska universitet Author: Luca Di Stasio <[email protected]> <[email protected]> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ===================================================================================== DESCRIPTION Tested with Python 2.7 Anaconda 2.4.1 (64-bit) distribution in Windows 10. ''' import sys import os from os.path import isfile, join, exists from shutil import copyfile from os import listdir, stat, makedirs from datetime import datetime from time import strftime from platform import platform import matplotlib as plt import numpy as np import xlsxwriter import ast import getopt #===============================================================================# # Latex files #===============================================================================# def createLatexFile(folder,filename,documentclass,options=''): if not exists(folder): makedirs(folder) with open(join(folder,filename + '.tex'),'w') as tex: if options!='': tex.write('\\documentclass[' + options + ']{' + documentclass + '}\n') else: tex.write('\\documentclass{' + documentclass + '}\n') tex.write('\n') def writeLatexPackages(folder,filename,packages,options): with open(join(folder,filename + '.tex'),'a') as tex: tex.write('%----------------------------------------------------------------------------------------------%\n') tex.write('% Packages and basic declarations\n') tex.write('%----------------------------------------------------------------------------------------------%\n') tex.write('\n') for i,package in enumerate(packages): if options[i]!='': tex.write('\\usepackage[' + options[i] + ']{' + package + '}\n') else: tex.write('\\usepackage{' + package + '}\n') tex.write('\n') def writeLatexDocumentStarts(folder,filename): with open(join(folder,filename + '.tex'),'a') as tex: tex.write('\n') tex.write('%----------------------------------------------------------------------------------------------%\n') tex.write('%----------------------------------------------------------------------------------------------%\n') tex.write('% DOCUMENT STARTS\n') tex.write('%----------------------------------------------------------------------------------------------%\n') tex.write('%----------------------------------------------------------------------------------------------%\n') tex.write('\n') tex.write('\\begin{document}\n') tex.write('\n') def writeLatexDocumentEnds(folder,filename): with open(join(folder,filename + '.tex'),'a') as tex: tex.write('\n') tex.write('\\end{document}\n') tex.write('\n') tex.write('%----------------------------------------------------------------------------------------------%\n') tex.write('%----------------------------------------------------------------------------------------------%\n') tex.write('% DOCUMENT ENDS\n') tex.write('%----------------------------------------------------------------------------------------------%\n') tex.write('%----------------------------------------------------------------------------------------------%\n') tex.write('\n') def writeLatexTikzPicStarts(folder,filename,options=''): with open(join(folder,filename + '.tex'),'a') as tex: tex.write('\n') tex.write('%Tikz picture starts%\n') tex.write('\n') if options!='': tex.write('\\begin{tikzpicture}[' + options + ']\n') else: tex.write('\\begin{tikzpicture}\n') def writeLatexTikzPicEnds(folder,filename): with open(join(folder,filename + '.tex'),'a') as tex: tex.write('\n') tex.write('\\end{tikzpicture}\n') tex.write('%Tikz picture ends%\n') tex.write('\n') def writeLatexTikzAxisStarts(folder,filename,options): with open(join(folder,filename + '.tex'),'a') as tex: tex.write('\n') tex.write('%Tikz axis starts%\n') tex.write('\n') if options!='': tex.write('\\begin{axis}[' + options + ']\n') else: tex.write('\\begin{axis}\n') def writeLatexTikzAxisEnds(folder,filename): with open(join(folder,filename + '.tex'),'a') as tex: tex.write('\n') tex.write('\\end{axis}\n') tex.write('%Tikz axis ends%\n') tex.write('\n') def writeLatexAddPlotTable(folder,filename,data,options): with open(join(folder,filename + '.tex'),'a') as tex: tex.write('\n') tex.write('\\addplot') if options!='': tex.write('[' + options + ']\n') tex.write('table{\n') for element in data: tex.write(str(element[0]) + ' ' + str(element[1]) + '\n') tex.write('};\n') def writeLatexSinglePlot(folder,filename,data,axoptions,dataoptions): print('In function: writeLatexSinglePlot(folder,filename,data,axoptions,dataoptions,logfilepath,baselogindent,logindent)') print('Create latex file') createLatexFile(folder,filename,'standalone') print('Write latex packages') writeLatexPackages(folder,filename,['inputenc','pgfplots','tikz'],['utf8','','']) print('Document starts') writeLatexDocumentStarts(folder,filename) writeLatexTikzPicStarts(folder,filename,'') writeLatexTikzAxisStarts(folder,filename,axoptions) writeLatexAddPlotTable(folder,filename,data,dataoptions) writeLatexTikzAxisEnds(folder,filename) writeLatexTikzPicEnds(folder,filename) print('Document ends') writeLatexDocumentEnds(folder,filename) if 'Windows' in system(): print('Create Windows command file') cmdfile = join(folder,filename,'runlatex.cmd') with open(cmdfile,'w') as cmd: cmd.write('\n') cmd.write('CD ' + folder + '\n') cmd.write('\n') cmd.write('pdflatex ' + join(folder,filename + '.tex') + ' -job-name=' + filename + '\n') print('Executing Windows command file...') try: subprocess.call('cmd.exe /C ' + cmdfile) print('... done.') except Exception: print('ERROR') print(str(Exception)) print(str(error)) sys.exc_clear() elif 'Linux' in system(): print('Create Linux bash file') bashfile = join(folder,filename,'runlatex.sh') with open(bashfile,'w') as bsh: bsh.write('#!/bin/bash\n') bsh.write('\n') bsh.write('cd ' + folder + '\n') bsh.write('\n') bsh.write('pdflatex ' + join(folder,filename + '.tex') + ' -job-name=' + filename + '\n') print('Executing Linux bash file...') try: print('Change permissions to ' + bashfile) os.chmod(bashfile, 0o755) print('Run bash file') rc = call('.' + bashfile) print('... done.') except Exception: print('ERROR') print(str(Exception)) print(str(error)) sys.exc_clear() def writeLatexMultiplePlots(folder,filename,data,axoptions,dataoptions): print('In function: writeLatexMultiplePlots(folder,filename,data,axoptions,dataoptions,logfilepath,baselogindent,logindent)',True) print('Create latex file') createLatexFile(folder,filename,'standalone') print('Write latex packages') writeLatexPackages(folder,filename,['inputenc','pgfplots','tikz'],['utf8','','']) print('Document starts') writeLatexDocumentStarts(folder,filename) writeLatexTikzPicStarts(folder,filename,'') writeLatexTikzAxisStarts(folder,filename,axoptions) for k,datum in enumerate(data): writeLatexAddPlotTable(folder,filename,datum,dataoptions[k]) writeLatexTikzAxisEnds(folder,filename) writeLatexTikzPicEnds(folder,filename) print('Document ends') writeLatexDocumentEnds(folder,filename) if 'Windows' in system(): print('Create Windows command file') cmdfile = join(folder,'runlatex.cmd') with open(cmdfile,'w') as cmd: cmd.write('\n') cmd.write('CD ' + folder + '\n') cmd.write('\n') cmd.write('pdflatex ' + join(folder,filename + '.tex') + ' -job-name=' + filename + '\n') print('Executing Windows command file...') try: subprocess.call('cmd.exe /C ' + cmdfile) print('... done.') except Exception,error: print('ERROR') print(str(Exception)) print(str(error)) sys.exc_clear() elif 'Linux' in system(): print('Create Linux bash file') bashfile = join(folder,filename,'runlatex.sh') with open(bashfile,'w') as bsh: bsh.write('#!/bin/bash\n') bsh.write('\n') bsh.write('cd ' + folder + '\n') bsh.write('\n') bsh.write('pdflatex ' + join(folder,filename + '.tex') + ' -job-name=' + filename + '\n') print('Executing Linux bash file...') try: print('Change permissions to ' + bashfile) os.chmod(bashfile, 0o755) print('Run bash file') rc = call('.' + bashfile) print('... done.') except Exception: print('ERROR') print(str(Exception)) print(str(error)) sys.exc_clear() def writeLatexGenericCommand(folder,filename,command,options,arguments): with open(join(folder,filename + '.tex'),'a') as tex: if options!='' and arguments!='': tex.write('\\'+ command +'[' + options + ']{' + arguments + '}\n') elif options!='': tex.write('\\'+ command +'{' + arguments + '}\n') else: tex.write('\\'+ command + '\n') tex.write('\n') def writeLatexCustomLine(folder,filename,line): with open(join(folder,filename + '.tex'),'a') as tex: tex.write(line + '\n') def writeLatexSetLength(folder,filename,length,value): with open(join(folder,filename + '.tex'),'a') as tex: tex.write('\\setlength' +'{' + '\\' + length + '}' +'{' + value + '}\n') #===============================================================================# # Reference data #===============================================================================# def provideBEMdata(): G0 = 7.52548E-06 normGs = np.array([[10.,1.39E-01,3.76E-02,1.76E-01], [20.,1.93E-01,1.47E-01,3.40E-01], [30.,1.64E-01,3.02E-01,4.66E-01], [40.,9.80E-02,4.86E-01,5.84E-01], [50.,3.05E-02,6.16E-01,6.47E-01], [60.,1.27E-03,6.66E-01,6.67E-01], [70.,-4.79E-05,6.44E-01,6.44E-01], [80.,6.85E-05,5.79E-01,5.79E-01], [90.,1.12E-04,4.70E-01,4.70E-01], [100.,1.12E-04,3.37E-01,3.37E-01], [110.,8.95E-04,2.08E-01,2.09E-01], [120.,6.07E-03,1.05E-01,1.11E-01], [130.,2.29E-03,3.89E-02,4.12E-02], [140.,5.52E-04,7.92E-03,8.47E-03], [150.,3.06E-04,1.65E-04,4.71E-04]]) BEMdata = {} BEMdata['G0'] = G0 BEMdata['normGs'] = normGs return BEMdata def provideMatrixProperties(): props = {} props['E'] = 3500.0 props['nu'] = 0.4 props['G'] = 0.5*props['E']/(1+props['nu']) props['k-planestrain'] = 3-4*props['nu'] return props def provideGFiberProperties(): props = {} props['E'] = 70000.0 props['nu'] = 0.2 props['G'] = 0.5*props['E']/(1+props['nu']) props['k-planestrain'] = 3-4*props['nu'] return props def computePlyTransverseModulus(Vff,Ef,Em): return (Vff/Ef + (1.0-Vff)/Em) def main(argv): # Read the command line, throw error if not option is provided try: opts, args = getopt.getopt(argv,'hw:i:o:f:e:l:d:',['help','Help',"workdir", "workdirectory", "wdir","inputfile", "input","out","outdir","outputfile","xlsx","outfile","excel","latex","sql"]) except getopt.GetoptError: print('reportDataToXlsx.py -w <working directory> -i <input file> -o <output directory> -f <output filename> --excel --latex --sql') sys.exit(2) # Parse the options and create corresponding variables for opt, arg in opts: if opt in ('-h', '--help','--Help'): print(' ') print(' ') print('*****************************************************************************************************') print(' ') print(' GATHER DATA AND CREATE REPORTS\n') print(' ') print(' by') print(' ') print(' Luca Di Stasio, 2016-2018') print(' ') print(' ') print('*****************************************************************************************************') print(' ') print('Program syntax:') print('reportDataToXlsx.py -w <working directory> -i <input file> -o <output directory> -f <output filename> --excel --latex --sql') print(' ') print('Mandatory arguments:') print('-w <working directory>') print('-i <input file>') print('at least one out of: -e --excel/-l --latex/-d --sql') print(' ') print('Optional arguments:') print('-o <output directory>') print('-f <output filename>') print(' ') print('Default values:') print('-o <output directory> ===> working directory') print('-f <output filename> ===> Y-m-d_H-M-S_<input file name>.xlsx') print(' ') print(' ') print(' ') sys.exit() elif opt in ("-w", "--workdir", "--workdirectory", "--wdir"): if arg[-1] != '/': workdir = arg else: workdir = arg[:-1] elif opt in ("-i", "--inputfile", "--input"): inputfile = arg.split(".")[0] + '.csv' elif opt in ("-o", "--out","--outdir"): if arg[-1] != '/': outdir = arg else: outdir = arg[:-1] elif opt in ("-f", "--outputfile","--xlsx","--outfile"): outputfileBasename = arg.split(".")[0] elif opt in ("-e", "--excel"): toExcel = True elif opt in ("-l", "--latex"): toLatex = True elif opt in ("-d", "--sql"): toSql = True # Check the existence of variables: if a required variable is missing, an error is thrown and program is terminated; if an optional variable is missing, it is set to the default value if 'workdir' not in locals(): print('Error: working directory not provided.') sys.exit() if 'inputfile' not in locals(): print('Error: file list not provided.') sys.exit() if 'outputfileBasename' not in locals(): outputfileBasename = datetime.now().strftime('%Y-%m-%d') + '_' + datetime.now().strftime('%H-%M-%S') + '_' + inputfile.split(".")[0] if 'outdir' not in locals(): outdir = workdir if 'toExcel' not in locals() and 'toLatex' not in locals() and 'toSql' not in locals(): print('Error: no output format specified.') sys.exit() if 'toExcel' not in locals(): toExcel = False if 'toLatex' not in locals(): toLatex = False if 'toSql' not in locals(): toSql = False bemData = provideBEMdata() print('Reading file ' + join(workdir,inputfile) + ' ...') try: with open(join(workdir,inputfile),'r') as csv: lines = csv.readlines() print(' Number of lines: ' + str(len(lines))) print('...done.') except Exception,error: print('EXCEPTION ENCOUNTERED') print(str(Exception)) print(str(error)) sys.exit(2) print('Extracting names of subfolders ...') try: subfoldersList = [] for l,line in enumerate(lines[1:]): currentSubfolder = '/'.join(line.replace('\n','').split(',')[0].replace('\\','/').split('/')[:-1]) if currentSubfolder != workdir: if (len(subfoldersList)>0 and currentSubfolder != subfoldersList[-1]) or len(subfoldersList)==0: print(' ' + '-- ' + str(currentSubfolder)) subfoldersList.append(currentSubfolder) print('...done.') except Exception,error: print('EXCEPTION ENCOUNTERED') print(str(Exception)) print(str(error)) sys.exit(2) print('Check if .dat files are present ...') try: isDatPresent = False for fileName in listdir(subfoldersList[0]): if '.dat'in fileName: isDatPresent = True print(' .dat files are present,') print(' analysis of path data needs to be performed') break if not isDatPresent: print(' .dat files are not present.') print('...done.') except Exception,error: print('EXCEPTION ENCOUNTERED') print(str(Exception)) print(str(error)) sys.exit(2) if toExcel: print('Open workbook ' + join(outdir,outputfileBasename + '.xlsx')) workbook = xlsxwriter.Workbook(join(outdir,outputfileBasename + '.xlsx'),{'nan_inf_to_errors': True}) print('Set string and number format') stringFormat = workbook.add_format({'bold': 1}) numberFormat = workbook.add_format({'num_format': '0.000000'}) bemdataSheetname = 'BEM-Data' print('Create sheet for BEM data: ' + bemdataSheetname ) worksheet = workbook.add_worksheet(bemdataSheetname) print('Fill in values of BEM data...') worksheet.write(0,0,'deltatheta [deg]',stringFormat) worksheet.write(0,1,'GI/G0 [-]',stringFormat) worksheet.write(0,2,'GII/G0 [-]',stringFormat) worksheet.write(0,3,'GTOT/G0 [-]',stringFormat) for r,row in enumerate(bemData['normGs']): for c,value in enumerate(row): worksheet.write(r+1,c,value,numberFormat) print('...done.') print('Creating sheets for results ...') for line in lines[1:]: csvPath = line.replace('\n','').split(',')[0] try: with open(csvPath,'r') as csv: csvlines = csv.readlines() except Exception,error: continue sys.exc_clear() sheetName = line.replace('\n','').split(',')[1].replace('deltatheta','') print(' Create sheet ' + sheetName) toPlot = bool(line.replace('\n','').split(',')[2]) plotSettings = [] if toPlot: settingsString = ','.join(line.replace('\n','').split(',')[3:]) plotSettings = ast.literal_eval(settingsString[1:]) worksheet = workbook.add_worksheet(sheetName.decode('utf-8')) for e,element in enumerate(csvlines[0].replace('\n','').split(',')): worksheet.write(0,e,element,stringFormat) for c,csvline in enumerate(csvlines[1:]): for e,element in enumerate(csvline.replace('\n','').split(',')): try: if 'phiCZ' in csvlines[0][e]: worksheet.write(c+1,e,float(element)*180.0/np.pi,numberFormat) else: worksheet.write(c+1,e,float(element),numberFormat) except Exception,error: worksheet.write(c+1,e,str(element).decode('utf-8'),numberFormat) sys.exc_clear() for p,plot in enumerate(plotSettings): print(' Create plot ' + plot[-1] + ' in sheet ' + sheetName) chart = workbook.add_chart({'type': 'scatter', 'subtype': 'smooth_with_markers'}) isGIinplot = False isGIIinplot = False isGTOTinplot = False for curve in plot[:-3]: if 'GI' in csvlines[0][curve[1]]: isGIinplot = True elif 'GII' in csvlines[0][curve[1]]: isGIIinplot = True elif 'GTOT' in csvlines[0][curve[1]]: isGTOTinplot = True chart.add_series({ 'name': curve[2].decode('utf-8'), 'categories': [sheetName,1,curve[0],len(csvlines),curve[0]], 'values': [sheetName,1,curve[1],len(csvlines),curve[1]], }) if isGIinplot: chart.add_series({ 'name': 'GI-BEM', 'categories': [bemdataSheetname,1,0,15,0], 'values': [bemdataSheetname,1,1,15,1], }) if isGIIinplot: chart.add_series({ 'name': 'GII-BEM', 'categories': [bemdataSheetname,1,0,15,0], 'values': [bemdataSheetname,1,2,15,2], }) if isGTOTinplot: chart.add_series({ 'name': 'GTOT-BEM', 'categories': [bemdataSheetname,1,0,15,0], 'values': [bemdataSheetname,1,3,15,3], }) chart.set_title ({'name': plot[-1].decode('utf-8')}) chart.set_x_axis({'name': plot[-3].decode('utf-8')}) chart.set_y_axis({'name': plot[-2].decode('utf-8')}) worksheet.insert_chart(len(csvlines)+10,10*p, chart) print('...done.') workbook.close() print('Workbook closed.') if isDatPresent: print('Analysis of path data ...') print(' ') print('----------------->') print(' Open workbook ' + join(outdir,outputfileBasename + '-radialpathsData' + '.xlsx')) radialpathsWorkbook = xlsxwriter.Workbook(join(outdir,outputfileBasename + '-radialpathsData' + '.xlsx'),{'nan_inf_to_errors': True}) print(' Set string and number format') radialpathsstringFormat = radialpathsWorkbook.add_format({'bold': 1}) radialpathsnumberFormat = radialpathsWorkbook.add_format({'num_format': '0.000000'}) radialpathsnumberFormatReduced = radialpathsWorkbook.add_format({'num_format': '0.00'}) print(' ') print(' Open workbook ' + join(outdir,outputfileBasename + '-circumferentialpathsData' + '.xlsx')) circumferentialpathsWorkbook = xlsxwriter.Workbook(join(outdir,outputfileBasename + '-circumferentialpathsData' + '.xlsx'),{'nan_inf_to_errors': True}) print(' Set string and number format') circumferentialpathsstringFormat = circumferentialpathsWorkbook.add_format({'bold': 1}) circumferentialpathsnumberFormat = circumferentialpathsWorkbook.add_format({'num_format': '0.000000'}) circumferentialpathsnumberFormatReduced = radialpathsWorkbook.add_format({'num_format': '0.00'}) print(' ') print(' Open workbook ' + join(outdir,outputfileBasename + '-horizontalpathsData' + '.xlsx')) horizontalpathsWorkbook = xlsxwriter.Workbook(join(outdir,outputfileBasename + '-horizontalpathsData' + '.xlsx'),{'nan_inf_to_errors': True}) print(' Set string and number format') horizontalpathsstringFormat = horizontalpathsWorkbook.add_format({'bold': 1}) horizontalpathsnumberFormat = horizontalpathsWorkbook.add_format({'num_format': '0.000000'}) horizontalpathsnumberFormatReduced = radialpathsWorkbook.add_format({'num_format': '0.00'}) print(' ') print(' Open workbook ' + join(outdir,outputfileBasename + '-verticalpathsData' + '.xlsx')) verticalpathsWorkbook = xlsxwriter.Workbook(join(outdir,outputfileBasename + '-verticalpathsData' + '.xlsx'),{'nan_inf_to_errors': True}) print(' Set string and number format') verticalpathsstringFormat = verticalpathsWorkbook.add_format({'bold': 1}) verticalpathsnumberFormat = verticalpathsWorkbook.add_format({'num_format': '0.000000'}) verticalpathsnumberFormatReduced = radialpathsWorkbook.add_format({'num_format': '0.00'}) print(' Open workbook ' + join(outdir,outputfileBasename + '-radialpathsStrainData' + '.xlsx')) radialpathsStrainWorkbook = xlsxwriter.Workbook(join(outdir,outputfileBasename + '-radialpathsStrainData' + '.xlsx'),{'nan_inf_to_errors': True}) print(' Set string and number format') radialpathsStrainstringFormat = radialpathsStrainWorkbook.add_format({'bold': 1}) radialpathsStrainnumberFormat = radialpathsStrainWorkbook.add_format({'num_format': '0.000000'}) radialpathsStrainnumberFormatReduced = radialpathsStrainWorkbook.add_format({'num_format': '0.00'}) print(' ') print(' Open workbook ' + join(outdir,outputfileBasename + '-circumferentialpathsStrainData' + '.xlsx')) circumferentialpathsStrainWorkbook = xlsxwriter.Workbook(join(outdir,outputfileBasename + '-circumferentialpathsStrainData' + '.xlsx'),{'nan_inf_to_errors': True}) print(' Set string and number format') circumferentialpathsStrainstringFormat = circumferentialpathsStrainWorkbook.add_format({'bold': 1}) circumferentialpathsStrainnumberFormat = circumferentialpathsStrainWorkbook.add_format({'num_format': '0.000000'}) circumferentialpathsStrainnumberFormatReduced = radialpathsStrainWorkbook.add_format({'num_format': '0.00'}) print(' ') print(' Open workbook ' + join(outdir,outputfileBasename + '-horizontalpathsStrainData' + '.xlsx')) horizontalpathsStrainWorkbook = xlsxwriter.Workbook(join(outdir,outputfileBasename + '-horizontalpathsStrainData' + '.xlsx'),{'nan_inf_to_errors': True}) print(' Set string and number format') horizontalpathsStrainstringFormat = horizontalpathsStrainWorkbook.add_format({'bold': 1}) horizontalpathsStrainnumberFormat = horizontalpathsStrainWorkbook.add_format({'num_format': '0.000000'}) horizontalpathsStrainnumberFormatReduced = radialpathsStrainWorkbook.add_format({'num_format': '0.00'}) print(' ') print(' Open workbook ' + join(outdir,outputfileBasename + '-verticalpathsStrainData' + '.xlsx')) verticalpathsStrainWorkbook = xlsxwriter.Workbook(join(outdir,outputfileBasename + '-verticalpathsStrainData' + '.xlsx'),{'nan_inf_to_errors': True}) print(' Set string and number format') verticalpathsStrainstringFormat = verticalpathsStrainWorkbook.add_format({'bold': 1}) verticalpathsStrainnumberFormat = verticalpathsStrainWorkbook.add_format({'num_format': '0.000000'}) verticalpathsStrainnumberFormatReduced = radialpathsStrainWorkbook.add_format({'num_format': '0.00'}) print('<-----------------') print(' ') radialpathsSheetnames = [] radialpathsStrainSheetnames = [] numberOfRadialpaths = [] numberOfRadialpathsStrain = [] radialpathsDatalengths = [] radialpathsStrainDatalengths = [] circumferentialpathsSheetnames = [] circumferentialpathsStrainSheetnames = [] numberOfCircumferentialpaths = [] circumferentialpathsDatalengths = [] circumferentialpathsStrainDatalengths = [] horizontalpathsSheetnames = [] horizontalpathsStrainSheetnames = [] numberOfHorizontalpaths = [] horizontalpathsDatalengths = [] horizontalpathsStrainDatalengths = [] verticalpathsSheetnames = [] verticalpathsStrainSheetnames = [] numberOfVerticalpaths = [] verticalpathsDatalengths = [] verticalpathsStrainDatalengths = [] for subFolder in subfoldersList: radialpathsSummary = join(subFolder,subFolder.split('/')[-1] + '-stressesradialpaths' + '.csv') circumferentialpathsSummary = join(subFolder,subFolder.split('/')[-1] + '-stressescircumferentialpaths' + '.csv') horizontalpathsSummary = join(subFolder,subFolder.split('/')[-1] + '-stresseshorizontalpaths' + '.csv') verticalpathsSummary = join(subFolder,subFolder.split('/')[-1] + '-stressesverticalpaths' + '.csv') radialpathsStrainSummary = join(subFolder,subFolder.split('/')[-1] + '-strainsradialpaths' + '.csv') circumferentialpathsStrainSummary = join(subFolder,subFolder.split('/')[-1] + '-strainscircumferentialpaths' + '.csv') horizontalpathsStrainSummary = join(subFolder,subFolder.split('/')[-1] + '-strainshorizontalpaths' + '.csv') verticalpathsStrainSummary = join(subFolder,subFolder.split('/')[-1] + '-strainsverticalpaths' + '.csv') if subFolder.split('/')[-1] + '-stressesradialpaths' + '.csv' in listdir(subFolder): print('----------------->') print('----------------->') print(' Analysis of radial paths for folder ' + subFolder) print(' ') with open(radialpathsSummary,'r') as csv: lines = csv.readlines() Sxx = [] Syy = [] Szz = [] Sxy = [] Szx = [] Syz = [] Srr = [] Stt = [] Srt = [] S1D3 = [] S2D3 = [] S3D3 = [] I1D3 = [] I2D3 = [] I3D3 = [] SMisesD3 = [] SaverD3 = [] S1D2 = [] S2D2 = [] I1D2 = [] I2D2 = [] SMisesD2 = [] SaverD2 = [] pathVariables = [] pathStartVariables = [] pathEndVariables = [] pathCoords = [] pathNormCoords = [] for line in lines[1:]: stressComp = line.replace('\n','').replace(' ','').split(',')[0] pathVariable = float(line.replace('\n','').replace(' ','').split(',')[1]) pathStartVariable = float(line.replace('\n','').replace(' ','').split(',')[2]) pathEndVariable = float(line.replace('\n','').replace(' ','').split(',')[3]) datfilePath = join(subFolder,line.replace('\n','').replace(' ','').split(',')[-1]) print(' Reading component ' + stressComp) print(' ' + 'for radial path at ' + str(pathVariable) + ' deg') print(' ' + 'starting at ' + str(pathStartVariable) + ' mum') print(' ' + 'ending at ' + str(pathEndVariable)) print(' ') with open(datfilePath,'r') as dat: datLines = dat.readlines() print(' --> File read') print(' ') currentxyData = [] for datLine in datLines: if len(datLine.replace('\n','').replace(' ',''))>0 and 'X' not in datLine: lineParts = datLine.replace('\n','').split(' ') rowVec = [] for linePart in lineParts: if linePart!='': rowVec.append(float(linePart)) currentxyData.append(rowVec) print(' --> Lines parsed') print(' ') normxData = [] xData = [] yData = [] for xyPair in currentxyData: normxData.append(xyPair[0]) xData.append(pathStartVariable+(pathEndVariable-pathStartVariable)*xyPair[0]) yData.append(xyPair[1]) print(' --> Data categorized in independent and dependent variables.') print(' ') if 'S11' in stressComp: Sxx.append(yData) pathCoords.append(xData) pathNormCoords.append(normxData) pathVariables.append(pathVariable) pathStartVariables.append(pathStartVariable) pathEndVariables.append(pathEndVariable) print(' --> Stress component is S11.') print(' ') elif 'S22' in stressComp: Syy.append(yData) print(' --> Stress component is S22.') print(' ') elif 'S23' in stressComp: Syz.append(yData) print(' --> Stress component is S23.') print(' ') elif 'S12' in stressComp: Sxy.append(yData) print(' --> Stress component is S12.') print(' ') elif 'S13' in stressComp: Szx.append(yData) print(' --> Stress component is S13.') print(' ') elif 'S33' in stressComp: Szz.append(yData) Szx.append(0.0) Syz.append(0.0) print(' --> Stress component is S33.') print(' ') currentSxx = Sxx[-1] currentSyy = Syy[-1] currentSzz = yData currentSxy = Sxy[-1] currentSzx = 0.0 currentSyz = 0.0 currentSrr = [] currentStt = [] currentSrt = [] current3DS1 = [] current3DS2 = [] current3DS3 = [] current3DI1 = [] current3DI2 = [] current3DI3 = [] current3DSMises = [] current3DSaver = [] current2DS1 = [] current2DS2 = [] current2DI1 = [] current2DI2 = [] current2DSMises = [] current2DSaver = [] rotateBy = pathVariable*np.pi/180.0 cosRot = np.cos(rotateBy) sinRot = np.sin(rotateBy) nstressPoints = np.min([len(currentSxx),len(currentSyy),len(currentSzz),len(currentSxy)]) for s in range(0,nstressPoints): sxx = currentSxx[s] syy = currentSyy[s] szz = currentSzz[s] sxy = currentSxy[s] szx = 0.0 syz = 0.0 srr = sxx*cosRot*cosRot+syy*sinRot*sinRot+2*sxy*cosRot*sinRot stt = sxx*sinRot*sinRot+syy*cosRot*cosRot-2*sxy*cosRot*sinRot srt = -sxx*cosRot*sinRot+syy*cosRot*sinRot+sxy*(cosRot*cosRot-sinRot*sinRot) currentSrr.append(srr) currentStt.append(stt) currentSrt.append(srt) i1d2 = sxx + syy i1d3 = sxx + syy + szz i2d2 = sxx*syy - sxy*sxy i2d3 = sxx*syy + syy*szz + sxx*szz - sxy*sxy - syz*syz - szx*szx i3d3 = sxx*syy*szz - sxx*syz*syz - syy*szx*szx - szz*sxy*sxy + 2*sxy*syz*szx saverd2 = i1d2/2.0 saverd3 = i1d3/3.0 smises2d = np.sqrt(sxx*sxx + syy*syy - sxx*syy + 3*sxy*sxy) smises3d = np.sqrt(sxx*sxx + syy*syy + szz*szz - sxx*syy - syy*szz - sxx*szz + 3*(sxy*sxy + syz*syz + szx*szx)) s1d2 = 0.5*(sxx+syy)+np.sqrt((0.5*(sxx-syy))*(0.5*(sxx-syy))+sxy*sxy) s2d2 = 0.5*(sxx+syy)-np.sqrt((0.5*(sxx-syy))*(0.5*(sxx-syy))+sxy*sxy) try: princOrient = np.arccos((2*i1d3*i1d3*i1d3-9*i1d3*i2d3+27*i3d3)/(2*np.sqrt((i1d3*i1d3-3*i2d3)*(i1d3*i1d3-3*i2d3)*(i1d3*i1d3-3*i2d3))))/3.0 s1d3 = i1d3/3.0 + 2*np.sqrt(i1d3*i1d3-3*i2d3)*np.cos(princOrient)/3.0 s2d3 = i1d3/3.0 + 2*np.sqrt(i1d3*i1d3-3*i2d3)*np.cos(princOrient-2*np.pi/3.0)/3.0 s3d3 = i1d3/3.0 + 2*np.sqrt(i1d3*i1d3-3*i2d3)*np.cos(princOrient-4*np.pi/3.0)/3.0 except Exception: s1d3 = s1d2 s2d3 = s2d2 s3d3 = 0.0 current3DS1.append(s1d3) current3DS2.append(s2d3) current3DS3.append(s2d3) current3DI1.append(i1d3) current3DI2.append(i2d3) current3DI3.append(i3d3) current3DSMises.append(smises3d) current3DSaver.append(saverd3) current2DS1.append(s1d2) current2DS2.append(s2d2) current2DI1.append(i1d2) current2DI2.append(i2d2) current2DSMises.append(smises2d) current2DSaver.append(saverd2) Srr.append(currentSrr) Stt.append(currentStt) Srt.append(currentSrt) S1D3.append(current3DS1) S2D3.append(current3DS2) S3D3.append(current3DS3) S1D2.append(current2DS1) S2D2.append(current2DS2) I1D3.append(current3DI1) I2D3.append(current3DI2) I3D3.append(current3DI3) I1D2.append(current2DI1) I2D2.append(current2DI2) SMisesD3.append(current3DSMises) SaverD3.append(current3DSaver) SMisesD2.append(current2DSMises) SaverD2.append(current2DSaver) currentSrr = [] currentStt = [] currentSrt = [] current3DS1 = [] current3DS2 = [] current3DS3 = [] current3DI1 = [] current3DI2 = [] current3DI3 = [] current3DSMises = [] current3DSaver = [] current2DS1 = [] current2DS2 = [] current2DI1 = [] current2DI2 = [] current2DSMises = [] current2DSaver = [] pathVariableName = 'pathAngle [deg]' pathStartVariableName = 'Ri [mum]' pathEndVariableName = 'Rf [mum]' pathCoordinateName = 'R [mum]' datasheetName = 'Values, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') radialpathsSheetnames.append(datasheetName) numberOfRadialpaths.append(len(pathVariables)) worksheet = radialpathsWorkbook.add_worksheet(datasheetName.decode('utf-8')) print(' --> Writing worksheet') print(' ' + datasheetName) print(' ') for p, pathVariable in enumerate(pathVariables): print(' pathAngle = ' + str(pathVariable) + ' deg') worksheet.write(0,p*25,pathVariableName,radialpathsstringFormat) worksheet.write(1,p*25,pathVariable,radialpathsnumberFormatReduced) worksheet.write(0,p*25+1,pathStartVariableName,radialpathsstringFormat) worksheet.write(1,p*25+1,pathStartVariables[p],radialpathsnumberFormat) worksheet.write(0,p*25+2,pathEndVariableName,radialpathsstringFormat) worksheet.write(1,p*25+2,pathEndVariables[p],radialpathsnumberFormat) worksheet.write(2,p*25,pathCoordinateName,radialpathsstringFormat) worksheet.write(2,p*25+1,'Norm ' + pathCoordinateName,radialpathsstringFormat) worksheet.write(2,p*25+2,'Sxx [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+3,'Syy [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+4,'Szz [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+5,'Sxy [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+6,'Szx [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+7,'Syz [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+8,'Srr [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+9,'Stt [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+10,'Srt [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+11,'S1_3D [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+12,'S2_3D [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+13,'S3_3D [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+14,'S1_2D [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+15,'S2_2D [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+16,'Smises_3D [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+17,'Smises_2D [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+18,'Saverage_3D [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+19,'Saverage_2D [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+20,'I1_3D [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+21,'I2_3D [MPa^2]',radialpathsstringFormat) worksheet.write(2,p*25+22,'I3_3D [MPa^3]',radialpathsstringFormat) worksheet.write(2,p*25+23,'I1_2D [MPa]',radialpathsstringFormat) worksheet.write(2,p*25+24,'I2_2D [MPa^2]',radialpathsstringFormat) measureNum = np.min([len(Sxx[p]),len(Syy[p]),len(Szz[p]),len(Sxy[p])]) print(' number of path points = ' + str(measureNum)) for c in range(0,measureNum): coord = pathCoords[p][c] worksheet.write(3+c,p*25,coord,radialpathsnumberFormat) worksheet.write(3+c,p*25+1,pathNormCoords[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+2,Sxx[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+3,Syy[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+4,Szz[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+5,Sxy[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+6,0.0,radialpathsnumberFormat) worksheet.write(3+c,p*25+7,0.0,radialpathsnumberFormat) worksheet.write(3+c,p*25+8,Srr[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+9,Stt[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+10,Srt[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+11,S1D3[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+12,S2D3[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+13,S3D3[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+14,S1D2[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+15,S2D2[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+16,SMisesD3[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+17,SMisesD2[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+18,SaverD3[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+19,SaverD2[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+20,I1D3[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+21,I2D3[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+22,I3D3[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+23,I1D2[p][c],radialpathsnumberFormat) worksheet.write(3+c,p*25+24,I2D2[p][c],radialpathsnumberFormat) graphsheetName = 'Graphs, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') graphworksheet = radialpathsWorkbook.add_worksheet(graphsheetName.decode('utf-8')) print(' --> Writing worksheet') print(' ' + graphsheetName) print(' ') variableNames = ['Sxx [MPa]','Syy [MPa]','Szz [MPa]','Sxy [MPa]','Szx [MPa]','Syz [MPa]','Srr [MPa]','Stt [MPa]','Srt [MPa]','S1_3D [MPa]','S2_3D [MPa]','S3_3D [MPa]','S1_2D [MPa]','S2_2D [MPa]','Smises_3D [MPa]','Smises_2D [MPa]','Saver_3D [MPa]','Saver_2D [MPa]','I1_3D [MPa]','I2_3D [MPa^2]','I3_3D [MPa^3]','I1_2D [MPa]','I2_2D [MPa^2]'] for v,variableName in enumerate(variableNames): chartA = radialpathsWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.A') print(' ') for p, pathVariable in enumerate(pathVariables): dataLength = len(pathCoords[p]) if v==0: radialpathsDatalengths.append(dataLength) chartA.add_series({ 'name': pathVariableName + '=' + str(pathVariable), 'categories': [datasheetName,3,25*p,dataLength,25*p], 'values': [datasheetName,3,25*p+2+v,dataLength,25*p+2+v], }) print(' Series ' + str(p+1) + ': ' + pathVariableName + '=' + str(pathVariable)) print(' ') chartA.set_title ({'name': variableName + ' vs path coordinates'}) chartA.set_x_axis({'name': pathCoordinateName}) chartA.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + pathCoordinateName) print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,0,chartA) chartB = radialpathsWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.B') print(' ') for p, pathVariable in enumerate(pathVariables): dataLength = len(pathCoords[p]) chartB.add_series({ 'name': pathVariableName + '=' + str(pathVariable), 'categories': [datasheetName,3,25*p+1,dataLength,25*p+1], 'values': [datasheetName,3,25*p+2+v,dataLength,25*p+2+v], }) print(' Series ' + str(p+1) + ': ' + pathVariableName + '=' + str(pathVariable)) print(' ') chartB.set_title ({'name': variableName + ' vs normalized path coordinates'}) chartB.set_x_axis({'name': 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]'}) chartB.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]') print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,30,chartB) Sxx = [] Syy = [] Szz = [] Sxy = [] Szx = [] Syz = [] Srr = [] Stt = [] Srt = [] S1D3 = [] S2D3 = [] S3D3 = [] I1D3 = [] I2D3 = [] I3D3 = [] SMisesD3 = [] SaverD3 = [] S1D2 = [] S2D2 = [] I1D2 = [] I2D2 = [] SMisesD2 = [] SaverD2 = [] pathVariables = [] pathStartVariables = [] pathEndVariables = [] pathCoords = [] pathNormCoords = [] print('<-----------------') print('<-----------------') if subFolder.split('/')[-1] + '-stressescircumferentialpaths' + '.csv' in listdir(subFolder): print(' Analysis of circumferential paths for folder ' + subFolder) print(' ') with open(circumferentialpathsSummary,'r') as csv: lines = csv.readlines() Sxx = [] Syy = [] Szz = [] Sxy = [] Szx = [] Syz = [] Srr = [] Stt = [] Srt = [] S1D3 = [] S2D3 = [] S3D3 = [] I1D3 = [] I2D3 = [] I3D3 = [] SMisesD3 = [] SaverD3 = [] S1D2 = [] S2D2 = [] I1D2 = [] I2D2 = [] SMisesD2 = [] SaverD2 = [] pathVariables = [] pathStartVariables = [] pathEndVariables = [] pathCoords = [] pathNormCoords = [] for line in lines[1:]: stressComp = line.replace('\n','').replace(' ','').split(',')[0] pathVariable = float(line.replace('\n','').replace(' ','').split(',')[1]) pathStartVariable = float(line.replace('\n','').replace(' ','').split(',')[2]) pathEndVariable = float(line.replace('\n','').replace(' ','').split(',')[3]) datfilePath = join(subFolder,line.replace('\n','').replace(' ','').split(',')[-1]) print(' Reading component ' + stressComp) print(' ' + 'for circumferential path at ' + str(pathVariable) + ' mum') print(' ' + 'starting at ' + str(pathStartVariable) + ' deg') print(' ' + 'ending at ' + str(pathEndVariable) + ' deg') print(' ') with open(datfilePath,'r') as dat: datLines = dat.readlines() currentxyData = [] for datLine in datLines: if len(datLine.replace('\n','').replace(' ',''))>0 and 'X' not in datLine: lineParts = datLine.replace('\n','').split(' ') rowVec = [] for linePart in lineParts: if linePart!='': rowVec.append(float(linePart)) currentxyData.append(rowVec) normxData = [] xData = [] yData = [] for xyPair in currentxyData: normxData.append(xyPair[0]) xData.append(pathStartVariable+(pathEndVariable-pathStartVariable)*xyPair[0]) yData.append(xyPair[1]) if 'S11' in stressComp: Sxx.append(yData) pathCoords.append(xData) pathNormCoords.append(normxData) pathVariables.append(pathVariable) pathStartVariables.append(pathStartVariable) pathEndVariables.append(pathEndVariable) elif 'S22' in stressComp: Syy.append(yData) elif 'S23' in stressComp: Syz.append(yData) elif 'S12' in stressComp: Sxy.append(yData) elif 'S13' in stressComp: Szx.append(yData) elif 'S33' in stressComp: Szz.append(yData) Szx.append(0.0) Syz.append(0.0) currentSxx = Sxx[-1] currentSyy = Syy[-1] currentSzz = yData currentSxy = Sxy[-1] currentSzx = 0.0 currentSyz = 0.0 currentSrr = [] currentStt = [] currentSrt = [] current3DS1 = [] current3DS2 = [] current3DS3 = [] current3DI1 = [] current3DI2 = [] current3DI3 = [] current3DSMises = [] current3DSaver = [] current2DS1 = [] current2DS2 = [] current2DI1 = [] current2DI2 = [] current2DSMises = [] current2DSaver = [] nstressPoints = np.min([len(currentSxx),len(currentSyy),len(currentSzz),len(currentSxy)]) for s in range(0,nstressPoints): rotateBy = pathCoords[-1][s]*np.pi/180.0 cosRot = np.cos(rotateBy) sinRot = np.sin(rotateBy) sxx = currentSxx[s] syy = currentSyy[s] szz = currentSzz[s] sxy = currentSxy[s] szx = 0.0 syz = 0.0 srr = sxx*cosRot*cosRot+syy*sinRot*sinRot+2*sxy*cosRot*sinRot stt = sxx*sinRot*sinRot+syy*cosRot*cosRot-2*sxy*cosRot*sinRot srt = -sxx*cosRot*sinRot+syy*cosRot*sinRot+sxy*(cosRot*cosRot-sinRot*sinRot) currentSrr.append(srr) currentStt.append(stt) currentSrt.append(srt) i1d2 = sxx + syy i1d3 = sxx + syy + szz i2d2 = sxx*syy - sxy*sxy i2d3 = sxx*syy + syy*szz + sxx*szz - sxy*sxy - syz*syz - szx*szx i3d3 = sxx*syy*szz - sxx*syz*syz - syy*szx*szx - szz*sxy*sxy + 2*sxy*syz*szx saverd2 = i1d2/2.0 saverd3 = i1d3/3.0 smises2d = np.sqrt(sxx*sxx + syy*syy - sxx*syy + 3*sxy*sxy) smises3d = np.sqrt(sxx*sxx + syy*syy + szz*szz - sxx*syy - syy*szz - sxx*szz + 3*(sxy*sxy + syz*syz + szx*szx)) s1d2 = 0.5*(sxx+syy)+np.sqrt((0.5*(sxx-syy))*(0.5*(sxx-syy))+sxy*sxy) s2d2 = 0.5*(sxx+syy)-np.sqrt((0.5*(sxx-syy))*(0.5*(sxx-syy))+sxy*sxy) try: princOrient = np.arccos((2*i1d3*i1d3*i1d3-9*i1d3*i2d3+27*i3d3)/(2*np.sqrt((i1d3*i1d3-3*i2d3)*(i1d3*i1d3-3*i2d3)*(i1d3*i1d3-3*i2d3))))/3.0 s1d3 = i1d3/3.0 + 2*np.sqrt(i1d3*i1d3-3*i2d3)*np.cos(princOrient)/3.0 s2d3 = i1d3/3.0 + 2*np.sqrt(i1d3*i1d3-3*i2d3)*np.cos(princOrient-2*np.pi/3.0)/3.0 s3d3 = i1d3/3.0 + 2*np.sqrt(i1d3*i1d3-3*i2d3)*np.cos(princOrient-4*np.pi/3.0)/3.0 except Exception: s1d3 = s1d2 s2d3 = s2d2 s3d3 = 0.0 current3DS1.append(s1d3) current3DS2.append(s2d3) current3DS3.append(s2d3) current3DI1.append(i1d3) current3DI2.append(i2d3) current3DI3.append(i3d3) current3DSMises.append(smises3d) current3DSaver.append(saverd3) current2DS1.append(s1d2) current2DS2.append(s2d2) current2DI1.append(i1d2) current2DI2.append(i2d2) current2DSMises.append(smises2d) current2DSaver.append(saverd2) Srr.append(currentSrr) Stt.append(currentStt) Srt.append(currentSrt) S1D3.append(current3DS1) S2D3.append(current3DS2) S3D3.append(current3DS3) S1D2.append(current2DS1) S2D2.append(current2DS2) I1D3.append(current3DI1) I2D3.append(current3DI2) I3D3.append(current3DI3) I1D2.append(current2DI1) I2D2.append(current2DI2) SMisesD3.append(current3DSMises) SaverD3.append(current3DSaver) SMisesD2.append(current2DSMises) SaverD2.append(current2DSaver) currentSrr = [] currentStt = [] currentSrt = [] current3DS1 = [] current3DS2 = [] current3DS3 = [] current3DI1 = [] current3DI2 = [] current3DI3 = [] current3DSMises = [] current3DSaver = [] current2DS1 = [] current2DS2 = [] current2DI1 = [] current2DI2 = [] current2DSMises = [] current2DSaver = [] pathVariableName = 'pathRadius [mum]' pathStartVariableName = 'startAngle [deg]' pathEndVariableName = 'endAngle [deg]' pathCoordinateName = 'angle [deg]' datasheetName = 'Values, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') circumferentialpathsSheetnames.append(datasheetName) numberOfCircumferentialpaths.append(len(pathVariables)) worksheet = circumferentialpathsWorkbook.add_worksheet(datasheetName.decode('utf-8')) for p, pathVariable in enumerate(pathVariables): worksheet.write(0,p*25,pathVariableName,circumferentialpathsstringFormat) worksheet.write(1,p*25,pathVariable,circumferentialpathsnumberFormatReduced) worksheet.write(0,p*25+1,pathStartVariableName,circumferentialpathsstringFormat) worksheet.write(1,p*25+1,pathStartVariables[p],circumferentialpathsnumberFormat) worksheet.write(0,p*25+2,pathEndVariableName,circumferentialpathsstringFormat) worksheet.write(1,p*25+2,pathEndVariables[p],circumferentialpathsnumberFormat) worksheet.write(2,p*25,pathCoordinateName,circumferentialpathsstringFormat) worksheet.write(2,p*25+1,'Norm ' + pathCoordinateName,circumferentialpathsstringFormat) worksheet.write(2,p*25+2,'Sxx [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+3,'Syy [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+4,'Szz [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+5,'Sxy [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+6,'Szx [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+7,'Syz [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+8,'Srr [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+9,'Stt [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+10,'Srt [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+11,'S1_3D [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+12,'S2_3D [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+13,'S3_3D [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+14,'S1_2D [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+15,'S2_2D [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+16,'Smises_3D [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+17,'Smises_2D [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+18,'Saverage_3D [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+19,'Saverage_2D [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+20,'I1_3D [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+21,'I2_3D [MPa^2]',circumferentialpathsstringFormat) worksheet.write(2,p*25+22,'I3_3D [MPa^3]',circumferentialpathsstringFormat) worksheet.write(2,p*25+23,'I1_2D [MPa]',circumferentialpathsstringFormat) worksheet.write(2,p*25+24,'I2_2D [MPa^2]',circumferentialpathsstringFormat) measureNum = np.min([len(Sxx[p]),len(Syy[p]),len(Szz[p]),len(Sxy[p])]) print(' number of path points = ' + str(measureNum)) for c in range(0,measureNum): coord = pathCoords[p][c] worksheet.write(3+c,p*25,coord,circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+1,pathNormCoords[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+2,Sxx[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+3,Syy[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+4,Szz[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+5,Sxy[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+6,0.0,circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+7,0.0,circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+8,Srr[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+9,Stt[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+10,Srt[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+11,S1D3[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+12,S2D3[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+13,S3D3[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+14,S1D2[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+15,S2D2[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+16,SMisesD3[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+17,SMisesD2[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+18,SaverD3[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+19,SaverD2[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+20,I1D3[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+21,I2D3[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+22,I3D3[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+23,I1D2[p][c],circumferentialpathsnumberFormat) worksheet.write(3+c,p*25+24,I2D2[p][c],circumferentialpathsnumberFormat) graphsheetName = 'Graphs, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') graphworksheet = circumferentialpathsWorkbook.add_worksheet(graphsheetName.decode('utf-8')) print(' --> Writing worksheet') print(' ' + graphsheetName) print(' ') variableNames = ['Sxx [MPa]','Syy [MPa]','Szz [MPa]','Sxy [MPa]','Szx [MPa]','Syz [MPa]','Srr [MPa]','Stt [MPa]','Srt [MPa]','S1_3D [MPa]','S2_3D [MPa]','S3_3D [MPa]','S1_2D [MPa]','S2_2D [MPa]','Smises_3D [MPa]','Smises_2D [MPa]','Saverage_3D [MPa]','Saverage_2D [MPa]','I1_3D [MPa]','I2_3D [MPa^2]','I3_3D [MPa^3]','I1_2D [MPa]','I2_2D [MPa^2]'] circumferentialpathsDatalengths.append(len(pathCoords[p])) for v,variableName in enumerate(variableNames): chartA = circumferentialpathsWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.A') print(' ') for p, pathVariable in enumerate(pathVariables): dataLength = len(pathCoords[p]) if v==0: circumferentialpathsDatalengths.append(dataLength) chartA.add_series({ 'name': pathVariableName + '=' + str(pathVariable), 'categories': [datasheetName,3,25*p,dataLength,25*p], 'values': [datasheetName,3,25*p+2+v,dataLength,25*p+2+v], }) print(' Series ' + str(p+1) + ': ' + pathVariableName + '=' + str(pathVariable)) print(' ') chartA.set_title ({'name': variableName + ' vs path coordinates'}) chartA.set_x_axis({'name': pathCoordinateName}) chartA.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + pathCoordinateName) print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,0,chartA) chartB = circumferentialpathsWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.B') print(' ') for p, pathVariable in enumerate(pathVariables): dataLength = len(pathCoords[p]) chartB.add_series({ 'name': pathVariableName + '=' + str(pathVariable), 'categories': [datasheetName,3,25*p+1,dataLength,25*p+1], 'values': [datasheetName,3,25*p+2+v,dataLength,25*p+2+v], }) print(' Series ' + str(p+1) + ': ' + pathVariableName + '=' + str(pathVariable)) print(' ') chartB.set_title ({'name': variableName + ' vs normalized path coordinates'}) chartB.set_x_axis({'name': 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]'}) chartB.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]') print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,30,chartB) Sxx = [] Syy = [] Szz = [] Sxy = [] Szx = [] Syz = [] Srr = [] Stt = [] Srt = [] S1D3 = [] S2D3 = [] S3D3 = [] I1D3 = [] I2D3 = [] I3D3 = [] SMisesD3 = [] SaverD3 = [] S1D2 = [] S2D2 = [] I1D2 = [] I2D2 = [] SMisesD2 = [] SaverD2 = [] pathVariables = [] pathStartVariables = [] pathEndVariables = [] pathCoords = [] pathNormCoords = [] if subFolder.split('/')[-1] + '-stresseshorizontalpaths' + '.csv' in listdir(subFolder): print(' Analysis of horizontal paths for folder ' + subFolder) with open(horizontalpathsSummary,'r') as csv: lines = csv.readlines() Sxx = [] Syy = [] Szz = [] Sxy = [] Szx = [] Syz = [] Srr = [] Stt = [] Srt = [] S1D3 = [] S2D3 = [] S3D3 = [] I1D3 = [] I2D3 = [] I3D3 = [] SMisesD3 = [] SaverD3 = [] S1D2 = [] S2D2 = [] I1D2 = [] I2D2 = [] SMisesD2 = [] SaverD2 = [] pathVariables = [] pathStartVariables = [] pathEndVariables = [] pathCoords = [] pathNormCoords = [] for line in lines[1:]: stressComp = line.replace('\n','').replace(' ','').split(',')[0] pathVariable = float(line.replace('\n','').replace(' ','').split(',')[1]) pathStartVariable = float(line.replace('\n','').replace(' ','').split(',')[2]) pathEndVariable = float(line.replace('\n','').replace(' ','').split(',')[3]) datfilePath = join(subFolder,line.replace('\n','').replace(' ','').split(',')[-1]) print(' Reading component ' + stressComp) print(' ' + 'for horizontal path at ' + str(pathVariable) + ' [mum]') print(' ' + 'starting at ' + str(pathStartVariable) + ' mum') print(' ' + 'ending at ' + str(pathEndVariable) + ' mum') print(' ') with open(datfilePath,'r') as dat: datLines = dat.readlines() currentxyData = [] for datLine in datLines: if len(datLine.replace('\n','').replace(' ',''))>0 and 'X' not in datLine: lineParts = datLine.replace('\n','').split(' ') rowVec = [] for linePart in lineParts: if linePart!='': rowVec.append(float(linePart)) currentxyData.append(rowVec) normxData = [] xData = [] yData = [] for xyPair in currentxyData: normxData.append(xyPair[0]) xData.append(pathStartVariable+(pathEndVariable-pathStartVariable)*xyPair[0]) yData.append(xyPair[1]) if 'S11' in stressComp: Sxx.append(yData) pathCoords.append(xData) pathNormCoords.append(normxData) pathVariables.append(pathVariable) pathStartVariables.append(pathStartVariable) pathEndVariables.append(pathEndVariable) elif 'S22' in stressComp: Syy.append(yData) elif 'S23' in stressComp: Syz.append(yData) elif 'S12' in stressComp: Sxy.append(yData) elif 'S13' in stressComp: Szx.append(yData) elif 'S33' in stressComp: Szz.append(yData) Szx.append(0.0) Syz.append(0.0) currentSxx = Sxx[-1] currentSyy = Syy[-1] currentSzz = yData currentSxy = Sxy[-1] currentSzx = 0.0 currentSyz = 0.0 currentSrr = [] currentStt = [] currentSrt = [] current3DS1 = [] current3DS2 = [] current3DS3 = [] current3DI1 = [] current3DI2 = [] current3DI3 = [] current3DSMises = [] current3DSaver = [] current2DS1 = [] current2DS2 = [] current2DI1 = [] current2DI2 = [] current2DSMises = [] current2DSaver = [] nstressPoints = np.min([len(currentSxx),len(currentSyy),len(currentSzz),len(currentSxy)]) for s in range(0,nstressPoints): rotateBy = np.arctan2(pathVariable,pathCoords[-1][s]) cosRot = np.cos(rotateBy) sinRot = np.sin(rotateBy) sxx = currentSxx[s] syy = currentSyy[s] szz = currentSzz[s] sxy = currentSxy[s] szx = 0.0 syz = 0.0 srr = sxx*cosRot*cosRot+syy*sinRot*sinRot+2*sxy*cosRot*sinRot stt = sxx*sinRot*sinRot+syy*cosRot*cosRot-2*sxy*cosRot*sinRot srt = -sxx*cosRot*sinRot+syy*cosRot*sinRot+sxy*(cosRot*cosRot-sinRot*sinRot) currentSrr.append(srr) currentStt.append(stt) currentSrt.append(srt) i1d2 = sxx + syy i1d3 = sxx + syy + szz i2d2 = sxx*syy - sxy*sxy i2d3 = sxx*syy + syy*szz + sxx*szz - sxy*sxy - syz*syz - szx*szx i3d3 = sxx*syy*szz - sxx*syz*syz - syy*szx*szx - szz*sxy*sxy + 2*sxy*syz*szx saverd2 = i1d2/2.0 saverd3 = i1d3/3.0 smises2d = np.sqrt(sxx*sxx + syy*syy - sxx*syy + 3*sxy*sxy) smises3d = np.sqrt(sxx*sxx + syy*syy + szz*szz - sxx*syy - syy*szz - sxx*szz + 3*(sxy*sxy + syz*syz + szx*szx)) s1d2 = 0.5*(sxx+syy)+np.sqrt((0.5*(sxx-syy))*(0.5*(sxx-syy))+sxy*sxy) s2d2 = 0.5*(sxx+syy)-np.sqrt((0.5*(sxx-syy))*(0.5*(sxx-syy))+sxy*sxy) try: princOrient = np.arccos((2*i1d3*i1d3*i1d3-9*i1d3*i2d3+27*i3d3)/(2*np.sqrt((i1d3*i1d3-3*i2d3)*(i1d3*i1d3-3*i2d3)*(i1d3*i1d3-3*i2d3))))/3.0 s1d3 = i1d3/3.0 + 2*np.sqrt(i1d3*i1d3-3*i2d3)*np.cos(princOrient)/3.0 s2d3 = i1d3/3.0 + 2*np.sqrt(i1d3*i1d3-3*i2d3)*np.cos(princOrient-2*np.pi/3.0)/3.0 s3d3 = i1d3/3.0 + 2*np.sqrt(i1d3*i1d3-3*i2d3)*np.cos(princOrient-4*np.pi/3.0)/3.0 except Exception: s1d3 = s1d2 s2d3 = s2d2 s3d3 = 0.0 current3DS1.append(s1d3) current3DS2.append(s2d3) current3DS3.append(s2d3) current3DI1.append(i1d3) current3DI2.append(i2d3) current3DI3.append(i3d3) current3DSMises.append(smises3d) current3DSaver.append(saverd3) current2DS1.append(s1d2) current2DS2.append(s2d2) current2DI1.append(i1d2) current2DI2.append(i2d2) current2DSMises.append(smises2d) current2DSaver.append(saverd2) Srr.append(currentSrr) Stt.append(currentStt) Srt.append(currentSrt) S1D3.append(current3DS1) S2D3.append(current3DS2) S3D3.append(current3DS3) S1D2.append(current2DS1) S2D2.append(current2DS2) I1D3.append(current3DI1) I2D3.append(current3DI2) I3D3.append(current3DI3) I1D2.append(current2DI1) I2D2.append(current2DI2) SMisesD3.append(current3DSMises) SaverD3.append(current3DSaver) SMisesD2.append(current2DSMises) SaverD2.append(current2DSaver) currentSrr = [] currentStt = [] currentSrt = [] current3DS1 = [] current3DS2 = [] current3DS3 = [] current3DI1 = [] current3DI2 = [] current3DI3 = [] current3DSMises = [] current3DSaver = [] current2DS1 = [] current2DS2 = [] current2DI1 = [] current2DI2 = [] current2DSMises = [] current2DSaver = [] pathVariableName = 'y [mum]' pathStartVariableName = 'xi [mum]' pathEndVariableName = 'xf [mum]' pathCoordinateName = 'x [mum]' datasheetName = 'Values, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') horizontalpathsSheetnames.append(datasheetName) numberOfHorizontalpaths.append(len(pathVariables)) worksheet = horizontalpathsWorkbook.add_worksheet(datasheetName.decode('utf-8')) for p, pathVariable in enumerate(pathVariables): worksheet.write(0,p*25,pathVariableName,horizontalpathsstringFormat) worksheet.write(1,p*25,pathVariable,horizontalpathsnumberFormatReduced) worksheet.write(0,p*25+1,pathStartVariableName,horizontalpathsstringFormat) worksheet.write(1,p*25+1,pathStartVariables[p],horizontalpathsnumberFormat) worksheet.write(0,p*25+2,pathEndVariableName,horizontalpathsstringFormat) worksheet.write(1,p*25+2,pathEndVariables[p],horizontalpathsnumberFormat) worksheet.write(2,p*25,pathCoordinateName,horizontalpathsstringFormat) worksheet.write(2,p*25+1,'Norm ' + pathCoordinateName,horizontalpathsstringFormat) worksheet.write(2,p*25+2,'Sxx [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+3,'Syy [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+4,'Szz [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+5,'Sxy [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+6,'Szx [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+7,'Syz [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+8,'Srr [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+9,'Stt [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+10,'Srt [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+11,'S1_3D [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+12,'S2_3D [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+13,'S3_3D [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+14,'S1_2D [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+15,'S2_2D [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+16,'Smises_3D [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+17,'Smises_2D [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+18,'Saverage_3D [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+19,'Saverage_2D [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+20,'I1_3D [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+21,'I2_3D [MPa^2]',horizontalpathsstringFormat) worksheet.write(2,p*25+22,'I3_3D [MPa^3]',horizontalpathsstringFormat) worksheet.write(2,p*25+23,'I1_2D [MPa]',horizontalpathsstringFormat) worksheet.write(2,p*25+24,'I2_2D [MPa^2]',horizontalpathsstringFormat) measureNum = np.min([len(Sxx[p]),len(Syy[p]),len(Szz[p]),len(Sxy[p])]) print(' number of path points = ' + str(measureNum)) for c in range(0,measureNum): coord = pathCoords[p][c] worksheet.write(3+c,p*25,coord,horizontalpathsnumberFormat) worksheet.write(3+c,p*25+1,pathNormCoords[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+2,Sxx[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+3,Syy[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+4,Szz[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+5,Sxy[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+6,0.0,horizontalpathsnumberFormat) worksheet.write(3+c,p*25+7,0.0,horizontalpathsnumberFormat) worksheet.write(3+c,p*25+8,Srr[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+9,Stt[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+10,Srt[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+11,S1D3[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+12,S2D3[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+13,S3D3[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+14,S1D2[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+15,S2D2[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+16,SMisesD3[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+17,SMisesD2[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+18,SaverD3[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+19,SaverD2[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+20,I1D3[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+21,I2D3[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+22,I3D3[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+23,I1D2[p][c],horizontalpathsnumberFormat) worksheet.write(3+c,p*25+24,I2D2[p][c],horizontalpathsnumberFormat) graphsheetName = 'Graphs, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') graphworksheet = horizontalpathsWorkbook.add_worksheet(graphsheetName.decode('utf-8')) print(' --> Writing worksheet') print(' ' + graphsheetName) print(' ') variableNames = ['Sxx [MPa]','Syy [MPa]','Szz [MPa]','Sxy [MPa]','Szx [MPa]','Syz [MPa]','Srr [MPa]','Stt [MPa]','Srt [MPa]','S1_3D [MPa]','S2_3D [MPa]','S3_3D [MPa]','S1_2D [MPa]','S2_2D [MPa]','Smises_3D [MPa]','Smises_2D [MPa]','Saverage_3D [MPa]','Saverage_2D [MPa]','I1_3D [MPa]','I2_3D [MPa^2]','I3_3D [MPa^3]','I1_2D [MPa]','I2_2D [MPa^2]'] horizontalpathsDatalengths.append(len(pathCoords[p])) for v,variableName in enumerate(variableNames): chartA = horizontalpathsWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.A') print(' ') for p, pathVariable in enumerate(pathVariables): dataLength = len(pathCoords[p]) if v==0: horizontalpathsDatalengths.append(dataLength) chartA.add_series({ 'name': pathVariableName + '=' + str(pathVariable), 'categories': [datasheetName,3,25*p,dataLength,25*p], 'values': [datasheetName,3,25*p+2+v,dataLength,25*p+2+v], }) print(' Series ' + str(p+1) + ': ' + pathVariableName + '=' + str(pathVariable)) print(' ') chartA.set_title ({'name': variableName + ' vs path coordinates'}) chartA.set_x_axis({'name': pathCoordinateName}) chartA.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + pathCoordinateName) print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,0,chartA) chartB = horizontalpathsWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.A') print(' ') for p, pathVariable in enumerate(pathVariables): dataLength = len(pathCoords[p]) chartB.add_series({ 'name': pathVariableName + '=' + str(pathVariable), 'categories': [datasheetName,3,25*p+1,dataLength,25*p+1], 'values': [datasheetName,3,25*p+2+v,dataLength,25*p+2+v], }) print(' Series ' + str(p+1) + ': ' + pathVariableName + '=' + str(pathVariable)) print(' ') chartB.set_title ({'name': variableName + ' vs normalized path coordinates'}) chartB.set_x_axis({'name': 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]'}) chartB.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]') print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,30,chartB) Sxx = [] Syy = [] Szz = [] Sxy = [] Szx = [] Syz = [] Srr = [] Stt = [] Srt = [] S1D3 = [] S2D3 = [] S3D3 = [] I1D3 = [] I2D3 = [] I3D3 = [] SMisesD3 = [] SaverD3 = [] S1D2 = [] S2D2 = [] I1D2 = [] I2D2 = [] SMisesD2 = [] SaverD2 = [] pathVariables = [] pathStartVariables = [] pathEndVariables = [] pathCoords = [] pathNormCoords = [] if subFolder.split('/')[-1] + '-stressesverticalpaths' + '.csv' in listdir(subFolder): print(' Analysis of vertical paths for folder ' + subFolder) with open(verticalpathsSummary,'r') as csv: lines = csv.readlines() Sxx = [] Syy = [] Szz = [] Sxy = [] Szx = [] Syz = [] Srr = [] Stt = [] Srt = [] S1D3 = [] S2D3 = [] S3D3 = [] I1D3 = [] I2D3 = [] I3D3 = [] SMisesD3 = [] SaverD3 = [] S1D2 = [] S2D2 = [] I1D2 = [] I2D2 = [] SMisesD2 = [] SaverD2 = [] pathVariables = [] pathStartVariables = [] pathEndVariables = [] pathCoords = [] pathNormCoords = [] for line in lines[1:]: stressComp = line.replace('\n','').replace(' ','').split(',')[0] pathVariable = float(line.replace('\n','').replace(' ','').split(',')[1]) pathStartVariable = float(line.replace('\n','').replace(' ','').split(',')[2]) pathEndVariable = float(line.replace('\n','').replace(' ','').split(',')[3]) datfilePath = join(subFolder,line.replace('\n','').replace(' ','').split(',')[-1]) print(' Reading component ' + stressComp) print(' ' + 'for vertical path at ' + str(pathVariable) + ' mum') print(' ' + 'starting at ' + str(pathStartVariable) + ' mum') print(' ' + 'ending at ' + str(pathEndVariable) + ' mum') print(' ') with open(datfilePath,'r') as dat: datLines = dat.readlines() currentxyData = [] for datLine in datLines: if len(datLine.replace('\n','').replace(' ',''))>0 and 'X' not in datLine: lineParts = datLine.replace('\n','').split(' ') rowVec = [] for linePart in lineParts: if linePart!='': rowVec.append(float(linePart)) currentxyData.append(rowVec) normxData = [] xData = [] yData = [] for xyPair in currentxyData: normxData.append(xyPair[0]) xData.append(pathStartVariable+(pathEndVariable-pathStartVariable)*xyPair[0]) yData.append(xyPair[1]) if 'S11' in stressComp: Sxx.append(yData) pathCoords.append(xData) pathNormCoords.append(normxData) pathVariables.append(pathVariable) pathStartVariables.append(pathStartVariable) pathEndVariables.append(pathEndVariable) elif 'S22' in stressComp: Syy.append(yData) elif 'S23' in stressComp: Syz.append(yData) elif 'S12' in stressComp: Sxy.append(yData) elif 'S13' in stressComp: Szx.append(yData) elif 'S33' in stressComp: Szz.append(yData) Szx.append(0.0) Syz.append(0.0) currentSxx = Sxx[-1] currentSyy = Syy[-1] currentSzz = yData currentSxy = Sxy[-1] currentSzx = 0.0 currentSyz = 0.0 currentSrr = [] currentStt = [] currentSrt = [] current3DS1 = [] current3DS2 = [] current3DS3 = [] current3DI1 = [] current3DI2 = [] current3DI3 = [] current3DSMises = [] current3DSaver = [] current2DS1 = [] current2DS2 = [] current2DI1 = [] current2DI2 = [] current2DSMises = [] current2DSaver = [] nstressPoints = np.min([len(currentSxx),len(currentSyy),len(currentSzz),len(currentSxy)]) for s in range(0,nstressPoints): rotateBy = np.arctan2(xData[s],pathVariable) cosRot = np.cos(rotateBy) sinRot = np.sin(rotateBy) sxx = currentSxx[s] syy = currentSyy[s] szz = currentSzz[s] sxy = currentSxy[s] szx = 0.0 syz = 0.0 srr = sxx*cosRot*cosRot+syy*sinRot*sinRot+2*sxy*cosRot*sinRot stt = sxx*sinRot*sinRot+syy*cosRot*cosRot-2*sxy*cosRot*sinRot srt = -sxx*cosRot*sinRot+syy*cosRot*sinRot+sxy*(cosRot*cosRot-sinRot*sinRot) currentSrr.append(srr) currentStt.append(stt) currentSrt.append(srt) i1d2 = sxx + syy i1d3 = sxx + syy + szz i2d2 = sxx*syy - sxy*sxy i2d3 = sxx*syy + syy*szz + sxx*szz - sxy*sxy - syz*syz - szx*szx i3d3 = sxx*syy*szz - sxx*syz*syz - syy*szx*szx - szz*sxy*sxy + 2*sxy*syz*szx saverd2 = i1d2/2.0 saverd3 = i1d3/3.0 smises2d = np.sqrt(sxx*sxx + syy*syy - sxx*syy + 3*sxy*sxy) smises3d = np.sqrt(sxx*sxx + syy*syy + szz*szz - sxx*syy - syy*szz - sxx*szz + 3*(sxy*sxy + syz*syz + szx*szx)) s1d2 = 0.5*(sxx+syy)+np.sqrt((0.5*(sxx-syy))*(0.5*(sxx-syy))+sxy*sxy) s2d2 = 0.5*(sxx+syy)-np.sqrt((0.5*(sxx-syy))*(0.5*(sxx-syy))+sxy*sxy) try: princOrient = np.arccos((2*i1d3*i1d3*i1d3-9*i1d3*i2d3+27*i3d3)/(2*np.sqrt((i1d3*i1d3-3*i2d3)*(i1d3*i1d3-3*i2d3)*(i1d3*i1d3-3*i2d3))))/3.0 s1d3 = i1d3/3.0 + 2*np.sqrt(i1d3*i1d3-3*i2d3)*np.cos(princOrient)/3.0 s2d3 = i1d3/3.0 + 2*np.sqrt(i1d3*i1d3-3*i2d3)*np.cos(princOrient-2*np.pi/3.0)/3.0 s3d3 = i1d3/3.0 + 2*np.sqrt(i1d3*i1d3-3*i2d3)*np.cos(princOrient-4*np.pi/3.0)/3.0 except Exception: s1d3 = s1d2 s2d3 = s2d2 s3d3 = 0.0 current3DS1.append(s1d3) current3DS2.append(s2d3) current3DS3.append(s2d3) current3DI1.append(i1d3) current3DI2.append(i2d3) current3DI3.append(i3d3) current3DSMises.append(smises3d) current3DSaver.append(saverd3) current2DS1.append(s1d2) current2DS2.append(s2d2) current2DI1.append(i1d2) current2DI2.append(i2d2) current2DSMises.append(smises2d) current2DSaver.append(saverd2) Srr.append(currentSrr) Stt.append(currentStt) Srt.append(currentSrt) S1D3.append(current3DS1) S2D3.append(current3DS2) S3D3.append(current3DS3) S1D2.append(current2DS1) S2D2.append(current2DS2) I1D3.append(current3DI1) I2D3.append(current3DI2) I3D3.append(current3DI3) I1D2.append(current2DI1) I2D2.append(current2DI2) SMisesD3.append(current3DSMises) SaverD3.append(current3DSaver) SMisesD2.append(current2DSMises) SaverD2.append(current2DSaver) currentSrr = [] currentStt = [] currentSrt = [] current3DS1 = [] current3DS2 = [] current3DS3 = [] current3DI1 = [] current3DI2 = [] current3DI3 = [] current3DSMises = [] current3DSaver = [] current2DS1 = [] current2DS2 = [] current2DI1 = [] current2DI2 = [] current2DSMises = [] current2DSaver = [] pathVariableName = 'x [mum]' pathStartVariableName = 'yi [mum]' pathEndVariableName = 'yf [mum]' pathCoordinateName = 'y [mum]' datasheetName = 'Values, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') verticalpathsSheetnames.append(datasheetName) numberOfVerticalpaths.append(len(pathVariables)) worksheet = verticalpathsWorkbook.add_worksheet(datasheetName.decode('utf-8')) for p, pathVariable in enumerate(pathVariables): worksheet.write(0,p*25,pathVariableName,verticalpathsstringFormat) worksheet.write(1,p*25,pathVariable,verticalpathsnumberFormatReduced) worksheet.write(0,p*25+1,pathStartVariableName,verticalpathsstringFormat) worksheet.write(1,p*25+1,pathStartVariables[p],verticalpathsnumberFormat) worksheet.write(0,p*25+2,pathEndVariableName,verticalpathsstringFormat) worksheet.write(1,p*25+2,pathEndVariables[p],verticalpathsnumberFormat) worksheet.write(2,p*25,pathCoordinateName,verticalpathsstringFormat) worksheet.write(2,p*25+1,'Norm ' + pathCoordinateName,verticalpathsstringFormat) worksheet.write(2,p*25+2,'Sxx [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+3,'Syy [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+4,'Szz [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+5,'Sxy [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+6,'Szx [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+7,'Syz [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+8,'Srr [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+9,'Stt [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+10,'Srt [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+11,'S1_3D [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+12,'S2_3D [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+13,'S3_3D [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+14,'S1_2D [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+15,'S2_2D [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+16,'Smises_3D [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+17,'Smises_2D [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+18,'Saverage_3D [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+19,'Saverage_2D [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+20,'I1_3D [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+21,'I2_3D [MPa^2]',verticalpathsstringFormat) worksheet.write(2,p*25+22,'I3_3D [MPa^3]',verticalpathsstringFormat) worksheet.write(2,p*25+23,'I1_2D [MPa]',verticalpathsstringFormat) worksheet.write(2,p*25+24,'I2_2D [MPa^2]',verticalpathsstringFormat) measureNum = np.min([len(Sxx[p]),len(Syy[p]),len(Szz[p]),len(Sxy[p])]) print(' number of path points = ' + str(measureNum)) for c in range(0,measureNum): coord = pathCoords[p][c] worksheet.write(3+c,p*25,coord,verticalpathsnumberFormat) worksheet.write(3+c,p*25+1,pathNormCoords[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+2,Sxx[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+3,Syy[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+4,Szz[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+5,Sxy[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+6,0.0,verticalpathsnumberFormat) worksheet.write(3+c,p*25+7,0.0,verticalpathsnumberFormat) worksheet.write(3+c,p*25+8,Srr[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+9,Stt[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+10,Srt[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+11,S1D3[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+12,S2D3[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+13,S3D3[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+14,S1D2[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+15,S2D2[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+16,SMisesD3[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+17,SMisesD2[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+18,SaverD3[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+19,SaverD2[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+20,I1D3[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+21,I2D3[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+22,I3D3[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+23,I1D2[p][c],verticalpathsnumberFormat) worksheet.write(3+c,p*25+24,I2D2[p][c],verticalpathsnumberFormat) graphsheetName = 'Graphs, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') graphworksheet = verticalpathsWorkbook.add_worksheet(graphsheetName.decode('utf-8')) print(' --> Writing worksheet') print(' ' + graphsheetName) print(' ') variableNames = ['Sxx [MPa]','Syy [MPa]','Szz [MPa]','Sxy [MPa]','Szx [MPa]','Syz [MPa]','Srr [MPa]','Stt [MPa]','Srt [MPa]','S1_3D [MPa]','S2_3D [MPa]','S3_3D [MPa]','S1_2D [MPa]','S2_2D [MPa]','Smises_3D [MPa]','Smises_2D [MPa]','Saverage_3D [MPa]','Saverage_2D [MPa]','I1_3D [MPa]','I2_3D [MPa^2]','I3_3D [MPa^3]','I1_2D [MPa]','I2_2D [MPa^2]'] for v,variableName in enumerate(variableNames): chartA = verticalpathsWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.A') print(' ') for p, pathVariable in enumerate(pathVariables): dataLength = len(pathCoords[p]) if v==0: verticalpathsDatalengths.append(dataLength) chartA.add_series({ 'name': pathVariableName + '=' + str(pathVariable), 'categories': [datasheetName,3,25*p,dataLength,25*p], 'values': [datasheetName,3,25*p+2+v,dataLength,25*p+2+v], }) print(' Series ' + str(p+1) + ': ' + pathVariableName + '=' + str(pathVariable)) print(' ') chartA.set_title ({'name': variableName + ' vs path coordinates'}) chartA.set_x_axis({'name': pathCoordinateName}) chartA.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + pathCoordinateName) print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,0,chartA) chartB = verticalpathsWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.A') print(' ') for p, pathVariable in enumerate(pathVariables): dataLength = len(pathCoords[p]) chartB.add_series({ 'name': pathVariableName + '=' + str(pathVariable), 'categories': [datasheetName,3,25*p+1,dataLength,25*p+1], 'values': [datasheetName,3,2+v,dataLength,2+v], }) print(' Series ' + str(p+1) + ': ' + pathVariableName + '=' + str(pathVariable)) print(' ') chartB.set_title ({'name': variableName + ' vs normalized path coordinates'}) chartB.set_x_axis({'name': 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]'}) chartB.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]') print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,30,chartB) Sxx = [] Syy = [] Szz = [] Sxy = [] Szx = [] Syz = [] Srr = [] Stt = [] Srt = [] S1D3 = [] S2D3 = [] S3D3 = [] I1D3 = [] I2D3 = [] I3D3 = [] SMisesD3 = [] SaverD3 = [] S1D2 = [] S2D2 = [] I1D2 = [] I2D2 = [] SMisesD2 = [] SaverD2 = [] pathVariables = [] pathStartVariables = [] pathEndVariables = [] pathCoords = [] pathNormCoords = [] if subFolder.split('/')[-1] + '-strainsradialpaths' + '.csv' in listdir(subFolder): print('----------------->') print('----------------->') print(' Analysis of radial paths for folder ' + subFolder) print(' ') with open(radialpathsStrainSummary,'r') as csv: lines = csv.readlines() EExx = [] EEyy = [] EEzz = [] EExy = [] EEzx = [] EEyz = [] EErr = [] EEtt = [] EErt = [] EE1D3 = [] EE2D3 = [] EE3D3 = [] EEI1D3 = [] EEI2D3 = [] EEI3D3 = [] EEMisesD3 = [] EEaverD3 = [] EE1D2 = [] EE2D2 = [] EEI1D2 = [] EEI2D2 = [] EEMisesD2 = [] EEaverD2 = [] pathVariables = [] pathStartVariables = [] pathEndVariables = [] pathCoords = [] pathNormCoords = [] for line in lines[1:]: strainComp = line.replace('\n','').replace(' ','').split(',')[0] pathVariable = float(line.replace('\n','').replace(' ','').split(',')[1]) pathStartVariable = float(line.replace('\n','').replace(' ','').split(',')[2]) pathEndVariable = float(line.replace('\n','').replace(' ','').split(',')[3]) datfilePath = join(subFolder,line.replace('\n','').replace(' ','').split(',')[-1]) print(' Reading component ' + strainComp) print(' ' + 'for radial path at ' + str(pathVariable) + ' deg') print(' ' + 'starting at ' + str(pathStartVariable) + ' mum') print(' ' + 'ending at ' + str(pathEndVariable)) print(' ') with open(datfilePath,'r') as dat: datLines = dat.readlines() print(' --> File read') print(' ') currentxyData = [] for datLine in datLines: if len(datLine.replace('\n','').replace(' ',''))>0 and 'X' not in datLine: lineParts = datLine.replace('\n','').split(' ') rowVec = [] for linePart in lineParts: if linePart!='': rowVec.append(float(linePart)) currentxyData.append(rowVec) print(' --> Lines parsed') print(' ') normxData = [] xData = [] yData = [] for xyPair in currentxyData: normxData.append(xyPair[0]) xData.append(pathStartVariable+(pathEndVariable-pathStartVariable)*xyPair[0]) yData.append(xyPair[1]) print(' --> Data categorized in independent and dependent variables.') print(' ') if 'EE11' in strainComp: EExx.append(yData) pathCoords.append(xData) pathNormCoords.append(normxData) pathVariables.append(pathVariable) pathStartVariables.append(pathStartVariable) pathEndVariables.append(pathEndVariable) print(' --> Strain component is EE11.') print(' ') elif 'EE22' in strainComp: EEyy.append(yData) print(' --> Strain component is EE22.') print(' ') elif 'EE23' in strainComp: EEyz.append(yData) print(' --> Strain component is EE23.') print(' ') elif 'EE12' in strainComp: EExy.append(yData) print(' --> Strain component is EE12.') print(' ') elif 'EE13' in strainComp: EEzx.append(yData) print(' --> Strain component is EE13.') print(' ') elif 'EE33' in strainComp: EEzz.append(yData) EEzx.append(0.0) EEyz.append(0.0) print(' --> Strain component is EE33.') print(' ') currentEExx = EExx[-1] currentEEyy = EEyy[-1] currentEEzz = yData currentEExy = EExy[-1] currentEEzx = 0.0 currentEEyz = 0.0 currentEErr = [] currentEEtt = [] currentEErt = [] current3DEE1 = [] current3DEE2 = [] current3DEE3 = [] current3DEEI1 = [] current3DEEI2 = [] current3DEEI3 = [] current3DEEMises = [] current3DEEaver = [] current2DEE1 = [] current2DEE2 = [] current2DEEI1 = [] current2DEEI2 = [] current2DEEMises = [] current2DEEaver = [] rotateBy = pathVariable*np.pi/180.0 cosRot = np.cos(rotateBy) sinRot = np.sin(rotateBy) nstrainPoints = np.min([len(currentEExx),len(currentEEyy),len(currentEEzz),len(currentEExy)]) for s in range(0,nstrainPoints): eexx = currentEExx[s] eeyy = currentEEyy[s] eezz = currentEEzz[s] eexy = currentEExy[s] eezx = 0.0 eeyz = 0.0 eerr = eexx*cosRot*cosRot+eeyy*sinRot*sinRot+2*eexy*cosRot*sinRot eett = eexx*sinRot*sinRot+eeyy*cosRot*cosRot-2*eexy*cosRot*sinRot eert = -eexx*cosRot*sinRot+eeyy*cosRot*sinRot+eexy*(cosRot*cosRot-sinRot*sinRot) currentEErr.append(eerr) currentEEtt.append(eett) currentEErt.append(eert) eei1d2 = eexx + eeyy eei1d3 = eexx + eeyy + eezz eei2d2 = eexx*eeyy - eexy*eexy eei2d3 = eexx*eeyy + eeyy*eezz + eexx*eezz - eexy*eexy - eeyz*eeyz - eezx*eezx eei3d3 = eexx*eeyy*eezz - eexx*eeyz*eeyz - eeyy*eezx*eezx - eezz*eexy*eexy + 2*eexy*eeyz*eezx eeaverd2 = eei1d2/2.0 eeaverd3 = eei1d3/3.0 eemises2d = np.sqrt(eexx*eexx + eeyy*eeyy - eexx*eeyy + 3*eexy*eexy) eemises3d = np.sqrt(eexx*eexx + eeyy*eeyy + eezz*eezz - eexx*eeyy - eeyy*eezz - eexx*eezz + 3*(eexy*eexy + eeyz*eeyz + eezx*eezx)) ee1d2 = 0.5*(eexx+eeyy)+np.sqrt((0.5*(eexx-eeyy))*(0.5*(eexx-eeyy))+eexy*eexy) ee2d2 = 0.5*(eexx+eeyy)-np.sqrt((0.5*(eexx-eeyy))*(0.5*(eexx-eeyy))+eexy*eexy) try: princOrient = np.arccos((2*eei1d3*eei1d3*eei1d3-9*eei1d3*eei2d3+27*eei3d3)/(2*np.sqrt((eei1d3*eei1d3-3*eei2d3)*(eei1d3*eei1d3-3*eei2d3)*(eei1d3*eei1d3-3*eei2d3))))/3.0 ee1d3 = eei1d3/3.0 + 2*np.sqrt(eei1d3*eei1d3-3*eei2d3)*np.cos(princOrient)/3.0 ee2d3 = eei1d3/3.0 + 2*np.sqrt(eei1d3*eei1d3-3*eei2d3)*np.cos(princOrient-2*np.pi/3.0)/3.0 ee3d3 = eei1d3/3.0 + 2*np.sqrt(eei1d3*eei1d3-3*eei2d3)*np.cos(princOrient-4*np.pi/3.0)/3.0 except Exception: ee1d3 = ee1d2 ee2d3 = ee2d2 ee3d3 = 0.0 current3DEE1.append(ee1d3) current3DEE2.append(ee2d3) current3DEE3.append(ee2d3) current3DEEI1.append(eei1d3) current3DEEI2.append(eei2d3) current3DEEI3.append(eei3d3) current3DEEMises.append(eemises3d) current3DEEaver.append(eeaverd3) current2DEE1.append(ee1d2) current2DEE2.append(ee2d2) current2DEEI1.append(eei1d2) current2DEEI2.append(eei2d2) current2DEEMises.append(eemises2d) current2DEEaver.append(eeaverd2) EErr.append(currentEErr) EEtt.append(currentEEtt) EErt.append(currentEErt) EE1D3.append(current3DEE1) EE2D3.append(current3DEE2) EE3D3.append(current3DEE3) EE1D2.append(current2DEE1) EE2D2.append(current2DEE2) EEI1D3.append(current3DEEI1) EEI2D3.append(current3DEEI2) EEI3D3.append(current3DEEI3) EEI1D2.append(current2DEEI1) EEI2D2.append(current2DEEI2) EEMisesD3.append(current3DEEMises) EEaverD3.append(current3DEEaver) EEMisesD2.append(current2DEEMises) EEaverD2.append(current2DEEaver) currentEErr = [] currentEEtt = [] currentEErt = [] current3DEE1 = [] current3DEE2 = [] current3DEE3 = [] current3DEEI1 = [] current3DEEI2 = [] current3DEEI3 = [] current3DEEMises = [] current3DEEaver = [] current2DEE1 = [] current2DEE2 = [] current2DEEI1 = [] current2DEEI2 = [] current2DEEMises = [] current2DEEaver = [] pathVariableName = 'pathAngle [deg]' pathStartVariableName = 'Ri [mum]' pathEndVariableName = 'Rf [mum]' pathCoordinateName = 'R [mum]' datasheetName = 'Values, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') radialpathsStrainSheetnames.append(datasheetName) numberOfRadialpathsStrain.append(len(pathVariables)) worksheet = radialpathsStrainWorkbook.add_worksheet(datasheetName.decode('utf-8')) print(' --> Writing worksheet') print(' ' + datasheetName) print(' ') for p, pathVariable in enumerate(pathVariables): print(' pathAngle = ' + str(pathVariable) + ' deg') worksheet.write(0,p*25,pathVariableName,radialpathsStrainstringFormat) worksheet.write(1,p*25,pathVariable,radialpathsStrainnumberFormatReduced) worksheet.write(0,p*25+1,pathStartVariableName,radialpathsStrainstringFormat) worksheet.write(1,p*25+1,pathStartVariables[p],radialpathsStrainnumberFormat) worksheet.write(0,p*25+2,pathEndVariableName,radialpathsStrainstringFormat) worksheet.write(1,p*25+2,pathEndVariables[p],radialpathsStrainnumberFormat) worksheet.write(2,p*25,pathCoordinateName,radialpathsStrainstringFormat) worksheet.write(2,p*25+1,'Norm ' + pathCoordinateName,radialpathsStrainstringFormat) worksheet.write(2,p*25+2,'EExx [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+3,'EEyy [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+4,'EEzz [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+5,'EExy [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+6,'EEzx [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+7,'EEyz [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+8,'EErr [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+9,'EEtt [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+10,'EErt [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+11,'EE1_3D [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+12,'EE2_3D [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+13,'EE3_3D [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+14,'EE1_2D [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+15,'EE2_2D [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+16,'EEmises_3D [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+17,'EEmises_2D [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+18,'EEaverage_3D [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+19,'EEaverage_2D [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+20,'EEI1_3D [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+21,'EEI2_3D [(mum/mum)^2]',radialpathsStrainstringFormat) worksheet.write(2,p*25+22,'EEI3_3D [(mum/mum)^3]',radialpathsStrainstringFormat) worksheet.write(2,p*25+23,'EEI1_2D [mum/mum]',radialpathsStrainstringFormat) worksheet.write(2,p*25+24,'EEI2_2D [(mum/mum)^2]',radialpathsStrainstringFormat) measureNum = np.min([len(EExx[p]),len(EEyy[p]),len(EEzz[p]),len(EExy[p])]) print(' number of path points = ' + str(measureNum)) for c in range(0,measureNum): coord = pathCoords[p][c] worksheet.write(3+c,p*25,coord,radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+1,pathNormCoords[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+2,EExx[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+3,EEyy[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+4,EEzz[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+5,EExy[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+6,0.0,radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+7,0.0,radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+8,EErr[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+9,EEtt[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+10,EErt[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+11,EE1D3[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+12,EE2D3[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+13,EE3D3[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+14,EE1D2[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+15,EE2D2[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+16,EEMisesD3[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+17,EEMisesD2[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+18,EEaverD3[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+19,EEaverD2[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+20,EEI1D3[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+21,EEI2D3[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+22,EEI3D3[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+23,EEI1D2[p][c],radialpathsStrainnumberFormat) worksheet.write(3+c,p*25+24,EEI2D2[p][c],radialpathsStrainnumberFormat) graphsheetName = 'Graphs, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') graphworksheet = radialpathsStrainWorkbook.add_worksheet(graphsheetName.decode('utf-8')) print(' --> Writing worksheet') print(' ' + graphsheetName) print(' ') variableNames = ['EExx [mum/mum]','EEyy [mum/mum]','EEzz [mum/mum]','EExy [mum/mum]','EEzx [mum/mum]','EEyz [mum/mum]','EErr [mum/mum]','EEtt [mum/mum]','EErt [mum/mum]','EE1_3D [mum/mum]','EE2_3D [mum/mum]','EE3_3D [mum/mum]','EE1_2D [mum/mum]','EE2_2D [mum/mum]','EEmises_3D [mum/mum]','EEmises_2D [mum/mum]','EEaver_3D [mum/mum]','EEaver_2D [mum/mum]','EEI1_3D [mum/mum]','EEI2_3D [(mum/mum)^2]','EEI3_3D [(mum/mum)^3]','EEI1_2D [mum/mum]','EEI2_2D [(mum/mum)^2]'] for v,variableName in enumerate(variableNames): chartA = radialpathsStrainWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.A') print(' ') for p, pathVariable in enumerate(pathVariables): dataLength = len(pathCoords[p]) if v==0: radialpathsStrainDatalengths.append(dataLength) chartA.add_series({ 'name': pathVariableName + '=' + str(pathVariable), 'categories': [datasheetName,3,25*p,dataLength,25*p], 'values': [datasheetName,3,25*p+2+v,dataLength,25*p+2+v], }) print(' Series ' + str(p+1) + ': ' + pathVariableName + '=' + str(pathVariable)) print(' ') chartA.set_title ({'name': variableName + ' vs path coordinates'}) chartA.set_x_axis({'name': pathCoordinateName}) chartA.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + pathCoordinateName) print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,0,chartA) chartB = radialpathsStrainWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.B') print(' ') for p, pathVariable in enumerate(pathVariables): dataLength = len(pathCoords[p]) chartB.add_series({ 'name': pathVariableName + '=' + str(pathVariable), 'categories': [datasheetName,3,25*p+1,dataLength,25*p+1], 'values': [datasheetName,3,25*p+2+v,dataLength,25*p+2+v], }) print(' Series ' + str(p+1) + ': ' + pathVariableName + '=' + str(pathVariable)) print(' ') chartB.set_title ({'name': variableName + ' vs normalized path coordinates'}) chartB.set_x_axis({'name': 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]'}) chartB.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]') print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,30,chartB) EExx = [] EEyy = [] EEzz = [] EExy = [] EEzx = [] EEyz = [] EErr = [] EEtt = [] EErt = [] EE1D3 = [] EE2D3 = [] EE3D3 = [] EEI1D3 = [] EEI2D3 = [] EEI3D3 = [] EEMisesD3 = [] EEaverD3 = [] EE1D2 = [] EE2D2 = [] EEI1D2 = [] EEI2D2 = [] EEMisesD2 = [] EEaverD2 = [] pathVariables = [] pathStartVariables = [] pathEndVariables = [] pathCoords = [] pathNormCoords = [] print('<-----------------') print('<-----------------') if subFolder.split('/')[-1] + '-strainscircumferentialpaths' + '.csv' in listdir(subFolder): print(' Analysis of circumferential paths for folder ' + subFolder) print(' ') with open(circumferentialpathsStrainSummary,'r') as csv: lines = csv.readlines() EExx = [] EEyy = [] EEzz = [] EExy = [] EEzx = [] EEyz = [] EErr = [] EEtt = [] EErt = [] EE1D3 = [] EE2D3 = [] EE3D3 = [] EEI1D3 = [] EEI2D3 = [] EEI3D3 = [] EEMisesD3 = [] EEaverD3 = [] EE1D2 = [] EE2D2 = [] EEI1D2 = [] EEI2D2 = [] EEMisesD2 = [] EEaverD2 = [] pathVariables = [] pathStartVariables = [] pathEndVariables = [] pathCoords = [] pathNormCoords = [] for line in lines[1:]: strainComp = line.replace('\n','').replace(' ','').split(',')[0] pathVariable = float(line.replace('\n','').replace(' ','').split(',')[1]) pathStartVariable = float(line.replace('\n','').replace(' ','').split(',')[2]) pathEndVariable = float(line.replace('\n','').replace(' ','').split(',')[3]) datfilePath = join(subFolder,line.replace('\n','').replace(' ','').split(',')[-1]) print(' Reading component ' + strainComp) print(' ' + 'for circumferential path at ' + str(pathVariable) + ' mum') print(' ' + 'starting at ' + str(pathStartVariable) + ' deg') print(' ' + 'ending at ' + str(pathEndVariable) + ' deg') print(' ') with open(datfilePath,'r') as dat: datLines = dat.readlines() currentxyData = [] for datLine in datLines: if len(datLine.replace('\n','').replace(' ',''))>0 and 'X' not in datLine: lineParts = datLine.replace('\n','').split(' ') rowVec = [] for linePart in lineParts: if linePart!='': rowVec.append(float(linePart)) currentxyData.append(rowVec) normxData = [] xData = [] yData = [] for xyPair in currentxyData: normxData.append(xyPair[0]) xData.append(pathStartVariable+(pathEndVariable-pathStartVariable)*xyPair[0]) yData.append(xyPair[1]) if 'EE11' in strainComp: EExx.append(yData) pathCoords.append(xData) pathNormCoords.append(normxData) pathVariables.append(pathVariable) pathStartVariables.append(pathStartVariable) pathEndVariables.append(pathEndVariable) print(' --> Strain component is EE11.') print(' ') elif 'EE22' in strainComp: EEyy.append(yData) print(' --> Strain component is EE22.') print(' ') elif 'EE23' in strainComp: EEyz.append(yData) print(' --> Strain component is EE23.') print(' ') elif 'EE12' in strainComp: EExy.append(yData) print(' --> Strain component is EE12.') print(' ') elif 'EE13' in strainComp: EEzx.append(yData) print(' --> Strain component is EE13.') print(' ') elif 'EE33' in strainComp: EEzz.append(yData) EEzx.append(0.0) EEyz.append(0.0) print(' --> Strain component is EE33.') print(' ') currentEExx = EExx[-1] currentEEyy = EEyy[-1] currentEEzz = yData currentEExy = EExy[-1] currentEEzx = 0.0 currentEEyz = 0.0 currentEErr = [] currentEEtt = [] currentEErt = [] current3DEE1 = [] current3DEE2 = [] current3DEE3 = [] current3DEEI1 = [] current3DEEI2 = [] current3DEEI3 = [] current3DEEMises = [] current3DEEaver = [] current2DEE1 = [] current2DEE2 = [] current2DEEI1 = [] current2DEEI2 = [] current2DEEMises = [] current2DEEaver = [] nstrainPoints = np.min([len(currentEExx),len(currentEEyy),len(currentEEzz),len(currentEExy)]) for s in range(0,nstrainPoints): rotateBy = pathCoords[-1][s]*np.pi/180.0 cosRot = np.cos(rotateBy) sinRot = np.sin(rotateBy) eexx = currentEExx[s] eeyy = currentEEyy[s] eezz = currentEEzz[s] eexy = currentEExy[s] eezx = 0.0 eeyz = 0.0 eerr = eexx*cosRot*cosRot+eeyy*sinRot*sinRot+2*eexy*cosRot*sinRot eett = eexx*sinRot*sinRot+eeyy*cosRot*cosRot-2*eexy*cosRot*sinRot eert = -eexx*cosRot*sinRot+eeyy*cosRot*sinRot+eexy*(cosRot*cosRot-sinRot*sinRot) currentEErr.append(eerr) currentEEtt.append(eett) currentEErt.append(eert) eei1d2 = eexx + eeyy eei1d3 = eexx + eeyy + eezz eei2d2 = eexx*eeyy - eexy*eexy eei2d3 = eexx*eeyy + eeyy*eezz + eexx*eezz - eexy*eexy - eeyz*eeyz - eezx*eezx eei3d3 = eexx*eeyy*eezz - eexx*eeyz*eeyz - eeyy*eezx*eezx - eezz*eexy*eexy + 2*eexy*eeyz*eezx eeaverd2 = eei1d2/2.0 eeaverd3 = eei1d3/3.0 eemises2d = np.sqrt(eexx*eexx + eeyy*eeyy - eexx*eeyy + 3*eexy*eexy) eemises3d = np.sqrt(eexx*eexx + eeyy*eeyy + eezz*eezz - eexx*eeyy - eeyy*eezz - eexx*eezz + 3*(eexy*eexy + eeyz*eeyz + eezx*eezx)) ee1d2 = 0.5*(eexx+eeyy)+np.sqrt((0.5*(eexx-eeyy))*(0.5*(eexx-eeyy))+eexy*eexy) ee2d2 = 0.5*(eexx+eeyy)-np.sqrt((0.5*(eexx-eeyy))*(0.5*(eexx-eeyy))+eexy*eexy) try: princOrient = np.arccos((2*eei1d3*eei1d3*eei1d3-9*eei1d3*eei2d3+27*eei3d3)/(2*np.sqrt((eei1d3*eei1d3-3*eei2d3)*(eei1d3*eei1d3-3*eei2d3)*(eei1d3*eei1d3-3*eei2d3))))/3.0 ee1d3 = eei1d3/3.0 + 2*np.sqrt(eei1d3*eei1d3-3*eei2d3)*np.cos(princOrient)/3.0 ee2d3 = eei1d3/3.0 + 2*np.sqrt(eei1d3*eei1d3-3*eei2d3)*np.cos(princOrient-2*np.pi/3.0)/3.0 ee3d3 = eei1d3/3.0 + 2*np.sqrt(eei1d3*eei1d3-3*eei2d3)*np.cos(princOrient-4*np.pi/3.0)/3.0 except Exception: ee1d3 = ee1d2 ee2d3 = ee2d2 ee3d3 = 0.0 current3DEE1.append(ee1d3) current3DEE2.append(ee2d3) current3DEE3.append(ee2d3) current3DEEI1.append(eei1d3) current3DEEI2.append(eei2d3) current3DEEI3.append(eei3d3) current3DEEMises.append(eemises3d) current3DEEaver.append(eeaverd3) current2DEE1.append(ee1d2) current2DEE2.append(ee2d2) current2DEEI1.append(eei1d2) current2DEEI2.append(eei2d2) current2DEEMises.append(eemises2d) current2DEEaver.append(eeaverd2) EErr.append(currentEErr) EEtt.append(currentEEtt) EErt.append(currentEErt) EE1D3.append(current3DEE1) EE2D3.append(current3DEE2) EE3D3.append(current3DEE3) EE1D2.append(current2DEE1) EE2D2.append(current2DEE2) EEI1D3.append(current3DEEI1) EEI2D3.append(current3DEEI2) EEI3D3.append(current3DEEI3) EEI1D2.append(current2DEEI1) EEI2D2.append(current2DEEI2) EEMisesD3.append(current3DEEMises) EEaverD3.append(current3DEEaver) EEMisesD2.append(current2DEEMises) EEaverD2.append(current2DEEaver) currentEErr = [] currentEEtt = [] currentEErt = [] current3DEE1 = [] current3DEE2 = [] current3DEE3 = [] current3DEEI1 = [] current3DEEI2 = [] current3DEEI3 = [] current3DEEMises = [] current3DEEaver = [] current2DEE1 = [] current2DEE2 = [] current2DEEI1 = [] current2DEEI2 = [] current2DEEMises = [] current2DEEaver = [] pathVariableName = 'pathRadius [mum]' pathStartVariableName = 'startAngle [deg]' pathEndVariableName = 'endAngle [deg]' pathCoordinateName = 'angle [deg]' datasheetName = 'Values, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') circumferentialpathsStrainSheetnames.append(datasheetName) numberOfCircumferentialpaths.append(len(pathVariables)) worksheet = circumferentialpathsStrainWorkbook.add_worksheet(datasheetName.decode('utf-8')) for p, pathVariable in enumerate(pathVariables): worksheet.write(0,p*25,pathVariableName,circumferentialpathsStrainstringFormat) worksheet.write(1,p*25,pathVariable,circumferentialpathsStrainnumberFormatReduced) worksheet.write(0,p*25+1,pathStartVariableName,circumferentialpathsStrainstringFormat) worksheet.write(1,p*25+1,pathStartVariables[p],circumferentialpathsStrainnumberFormat) worksheet.write(0,p*25+2,pathEndVariableName,circumferentialpathsStrainstringFormat) worksheet.write(1,p*25+2,pathEndVariables[p],circumferentialpathsStrainnumberFormat) worksheet.write(2,p*25,pathCoordinateName,circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+1,'Norm ' + pathCoordinateName,circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+2,'EExx [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+3,'EEyy [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+4,'EEzz [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+5,'EExy [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+6,'EEzx [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+7,'EEyz [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+8,'EErr [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+9,'EEtt [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+10,'EErt [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+11,'EE1_3D [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+12,'EE2_3D [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+13,'EE3_3D [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+14,'EE1_2D [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+15,'EE2_2D [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+16,'EEmises_3D [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+17,'EEmises_2D [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+18,'EEaverage_3D [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+19,'EEaverage_2D [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+20,'EEI1_3D [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+21,'EEI2_3D [(mum/mum)^2]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+22,'EEI3_3D [(mum/mum)^3]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+23,'EEI1_2D [mum/mum]',circumferentialpathsStrainstringFormat) worksheet.write(2,p*25+24,'EEI2_2D [(mum/mum)^2]',circumferentialpathsStrainstringFormat) measureNum = np.min([len(EExx[p]),len(EEyy[p]),len(EEzz[p]),len(EExy[p])]) print(' number of path points = ' + str(measureNum)) for c in range(0,measureNum): coord = pathCoords[p][c] worksheet.write(3+c,p*25,coord,circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+1,pathNormCoords[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+2,EExx[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+3,EEyy[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+4,EEzz[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+5,EExy[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+6,0.0,circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+7,0.0,circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+8,EErr[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+9,EEtt[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+10,EErt[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+11,EE1D3[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+12,EE2D3[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+13,EE3D3[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+14,EE1D2[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+15,EE2D2[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+16,EEMisesD3[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+17,EEMisesD2[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+18,EEaverD3[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+19,EEaverD2[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+20,EEI1D3[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+21,EEI2D3[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+22,EEI3D3[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+23,EEI1D2[p][c],circumferentialpathsStrainnumberFormat) worksheet.write(3+c,p*25+24,EEI2D2[p][c],circumferentialpathsStrainnumberFormat) graphsheetName = 'Graphs, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') graphworksheet = circumferentialpathsStrainWorkbook.add_worksheet(graphsheetName.decode('utf-8')) print(' --> Writing worksheet') print(' ' + graphsheetName) print(' ') variableNames = ['EExx [mum/mum]','EEyy [mum/mum]','EEzz [mum/mum]','EExy [mum/mum]','EEzx [mum/mum]','EEyz [mum/mum]','EErr [mum/mum]','EEtt [mum/mum]','EErt [mum/mum]','EE1_3D [mum/mum]','EE2_3D [mum/mum]','EE3_3D [mum/mum]','EE1_2D [mum/mum]','EE2_2D [mum/mum]','EEmises_3D [mum/mum]','EEmises_2D [mum/mum]','EEaver_3D [mum/mum]','EEaver_2D [mum/mum]','EEI1_3D [mum/mum]','EEI2_3D [(mum/mum)^2]','EEI3_3D [(mum/mum)^3]','EEI1_2D [mum/mum]','EEI2_2D [(mum/mum)^2]'] #circumferentialpathsStrainDatalengths.append(len(pathCoords[p])) for v,variableName in enumerate(variableNames): chartA = circumferentialpathsStrainWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.A') print(' ') for p, pathVariable in enumerate(pathVariables): dataLength = len(pathCoords[p]) #if v==0: # circumferentialpathsStrainDatalengths.append(dataLength) chartA.add_series({ 'name': pathVariableName + '=' + str(pathVariable), 'categories': [datasheetName,3,25*p,dataLength,25*p], 'values': [datasheetName,3,25*p+2+v,dataLength,25*p+2+v], }) print(' Series ' + str(p+1) + ': ' + pathVariableName + '=' + str(pathVariable)) print(' ') chartA.set_title ({'name': variableName + ' vs path coordinates'}) chartA.set_x_axis({'name': pathCoordinateName}) chartA.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + pathCoordinateName) print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,0,chartA) chartB = circumferentialpathsStrainWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.B') print(' ') for p, pathVariable in enumerate(pathVariables): dataLength = len(pathCoords[p]) chartB.add_series({ 'name': pathVariableName + '=' + str(pathVariable), 'categories': [datasheetName,3,25*p+1,dataLength,25*p+1], 'values': [datasheetName,3,25*p+2+v,dataLength,25*p+2+v], }) print(' Series ' + str(p+1) + ': ' + pathVariableName + '=' + str(pathVariable)) print(' ') chartB.set_title ({'name': variableName + ' vs normalized path coordinates'}) chartB.set_x_axis({'name': 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]'}) chartB.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]') print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,30,chartB) EExx = [] EEyy = [] EEzz = [] EExy = [] EEzx = [] EEyz = [] EErr = [] EEtt = [] EErt = [] EE1D3 = [] EE2D3 = [] EE3D3 = [] EEI1D3 = [] EEI2D3 = [] EEI3D3 = [] EEMisesD3 = [] EEaverD3 = [] EE1D2 = [] EE2D2 = [] EEI1D2 = [] EEI2D2 = [] EEMisesD2 = [] EEaverD2 = [] pathVariables = [] pathStartVariables = [] pathEndVariables = [] pathCoords = [] pathNormCoords = [] print('<-----------------') print('<-----------------') if subFolder.split('/')[-1] + '-strainshorizontalpaths' + '.csv' in listdir(subFolder): print(' Analysis of horizontal paths for folder ' + subFolder) with open(horizontalpathsStrainSummary,'r') as csv: lines = csv.readlines() EExx = [] EEyy = [] EEzz = [] EExy = [] EEzx = [] EEyz = [] EErr = [] EEtt = [] EErt = [] EE1D3 = [] EE2D3 = [] EE3D3 = [] EEI1D3 = [] EEI2D3 = [] EEI3D3 = [] EEMisesD3 = [] EEaverD3 = [] EE1D2 = [] EE2D2 = [] EEI1D2 = [] EEI2D2 = [] EEMisesD2 = [] EEaverD2 = [] pathVariables = [] pathStartVariables = [] pathEndVariables = [] pathCoords = [] pathNormCoords = [] for line in lines[1:]: strainComp = line.replace('\n','').replace(' ','').split(',')[0] pathVariable = float(line.replace('\n','').replace(' ','').split(',')[1]) pathStartVariable = float(line.replace('\n','').replace(' ','').split(',')[2]) pathEndVariable = float(line.replace('\n','').replace(' ','').split(',')[3]) datfilePath = join(subFolder,line.replace('\n','').replace(' ','').split(',')[-1]) print(' Reading component ' + strainComp) print(' ' + 'for horizontal path at ' + str(pathVariable) + ' [mum]') print(' ' + 'starting at ' + str(pathStartVariable) + ' mum') print(' ' + 'ending at ' + str(pathEndVariable) + ' mum') print(' ') with open(datfilePath,'r') as dat: datLines = dat.readlines() currentxyData = [] for datLine in datLines: if len(datLine.replace('\n','').replace(' ',''))>0 and 'X' not in datLine: lineParts = datLine.replace('\n','').split(' ') rowVec = [] for linePart in lineParts: if linePart!='': rowVec.append(float(linePart)) currentxyData.append(rowVec) normxData = [] xData = [] yData = [] for xyPair in currentxyData: normxData.append(xyPair[0]) xData.append(pathStartVariable+(pathEndVariable-pathStartVariable)*xyPair[0]) yData.append(xyPair[1]) if 'EE11' in strainComp: EExx.append(yData) pathCoords.append(xData) pathNormCoords.append(normxData) pathVariables.append(pathVariable) pathStartVariables.append(pathStartVariable) pathEndVariables.append(pathEndVariable) print(' --> Strain component is EE11.') print(' ') elif 'EE22' in strainComp: EEyy.append(yData) print(' --> Strain component is EE22.') print(' ') elif 'EE23' in strainComp: EEyz.append(yData) print(' --> Strain component is EE23.') print(' ') elif 'EE12' in strainComp: EExy.append(yData) print(' --> Strain component is EE12.') print(' ') elif 'EE13' in strainComp: EEzx.append(yData) print(' --> Strain component is EE13.') print(' ') elif 'EE33' in strainComp: EEzz.append(yData) EEzx.append(0.0) EEyz.append(0.0) print(' --> Strain component is EE33.') print(' ') currentEExx = EExx[-1] currentEEyy = EEyy[-1] currentEEzz = yData currentEExy = EExy[-1] currentEEzx = 0.0 currentEEyz = 0.0 currentEErr = [] currentEEtt = [] currentEErt = [] current3DEE1 = [] current3DEE2 = [] current3DEE3 = [] current3DEEI1 = [] current3DEEI2 = [] current3DEEI3 = [] current3DEEMises = [] current3DEEaver = [] current2DEE1 = [] current2DEE2 = [] current2DEEI1 = [] current2DEEI2 = [] current2DEEMises = [] current2DEEaver = [] nstrainPoints = np.min([len(currentEExx),len(currentEEyy),len(currentEEzz),len(currentEExy)]) for s in range(0,nstrainPoints): rotateBy = np.arctan2(pathVariable,pathCoords[-1][s]) cosRot = np.cos(rotateBy) sinRot = np.sin(rotateBy) eexx = currentEExx[s] eeyy = currentEEyy[s] eezz = currentEEzz[s] eexy = currentEExy[s] eezx = 0.0 eeyz = 0.0 eerr = eexx*cosRot*cosRot+eeyy*sinRot*sinRot+2*eexy*cosRot*sinRot eett = eexx*sinRot*sinRot+eeyy*cosRot*cosRot-2*eexy*cosRot*sinRot eert = -eexx*cosRot*sinRot+eeyy*cosRot*sinRot+eexy*(cosRot*cosRot-sinRot*sinRot) currentEErr.append(eerr) currentEEtt.append(eett) currentEErt.append(eert) eei1d2 = eexx + eeyy eei1d3 = eexx + eeyy + eezz eei2d2 = eexx*eeyy - eexy*eexy eei2d3 = eexx*eeyy + eeyy*eezz + eexx*eezz - eexy*eexy - eeyz*eeyz - eezx*eezx eei3d3 = eexx*eeyy*eezz - eexx*eeyz*eeyz - eeyy*eezx*eezx - eezz*eexy*eexy + 2*eexy*eeyz*eezx eeaverd2 = eei1d2/2.0 eeaverd3 = eei1d3/3.0 eemises2d = np.sqrt(eexx*eexx + eeyy*eeyy - eexx*eeyy + 3*eexy*eexy) eemises3d = np.sqrt(eexx*eexx + eeyy*eeyy + eezz*eezz - eexx*eeyy - eeyy*eezz - eexx*eezz + 3*(eexy*eexy + eeyz*eeyz + eezx*eezx)) ee1d2 = 0.5*(eexx+eeyy)+np.sqrt((0.5*(eexx-eeyy))*(0.5*(eexx-eeyy))+eexy*eexy) ee2d2 = 0.5*(eexx+eeyy)-np.sqrt((0.5*(eexx-eeyy))*(0.5*(eexx-eeyy))+eexy*eexy) try: princOrient = np.arccos((2*eei1d3*eei1d3*eei1d3-9*eei1d3*eei2d3+27*eei3d3)/(2*np.sqrt((eei1d3*eei1d3-3*eei2d3)*(eei1d3*eei1d3-3*eei2d3)*(eei1d3*eei1d3-3*eei2d3))))/3.0 ee1d3 = eei1d3/3.0 + 2*np.sqrt(eei1d3*eei1d3-3*eei2d3)*np.cos(princOrient)/3.0 ee2d3 = eei1d3/3.0 + 2*np.sqrt(eei1d3*eei1d3-3*eei2d3)*np.cos(princOrient-2*np.pi/3.0)/3.0 ee3d3 = eei1d3/3.0 + 2*np.sqrt(eei1d3*eei1d3-3*eei2d3)*np.cos(princOrient-4*np.pi/3.0)/3.0 except Exception: ee1d3 = ee1d2 ee2d3 = ee2d2 ee3d3 = 0.0 current3DEE1.append(ee1d3) current3DEE2.append(ee2d3) current3DEE3.append(ee2d3) current3DEEI1.append(eei1d3) current3DEEI2.append(eei2d3) current3DEEI3.append(eei3d3) current3DEEMises.append(eemises3d) current3DEEaver.append(eeaverd3) current2DEE1.append(ee1d2) current2DEE2.append(ee2d2) current2DEEI1.append(eei1d2) current2DEEI2.append(eei2d2) current2DEEMises.append(eemises2d) current2DEEaver.append(eeaverd2) EErr.append(currentEErr) EEtt.append(currentEEtt) EErt.append(currentEErt) EE1D3.append(current3DEE1) EE2D3.append(current3DEE2) EE3D3.append(current3DEE3) EE1D2.append(current2DEE1) EE2D2.append(current2DEE2) EEI1D3.append(current3DEEI1) EEI2D3.append(current3DEEI2) EEI3D3.append(current3DEEI3) EEI1D2.append(current2DEEI1) EEI2D2.append(current2DEEI2) EEMisesD3.append(current3DEEMises) EEaverD3.append(current3DEEaver) EEMisesD2.append(current2DEEMises) EEaverD2.append(current2DEEaver) currentEErr = [] currentEEtt = [] currentEErt = [] current3DEE1 = [] current3DEE2 = [] current3DEE3 = [] current3DEEI1 = [] current3DEEI2 = [] current3DEEI3 = [] current3DEEMises = [] current3DEEaver = [] current2DEE1 = [] current2DEE2 = [] current2DEEI1 = [] current2DEEI2 = [] current2DEEMises = [] current2DEEaver = [] pathVariableName = 'y [mum]' pathStartVariableName = 'xi [mum]' pathEndVariableName = 'xf [mum]' pathCoordinateName = 'x [mum]' datasheetName = 'Values, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') horizontalpathsStrainSheetnames.append(datasheetName) numberOfHorizontalpaths.append(len(pathVariables)) worksheet = horizontalpathsStrainWorkbook.add_worksheet(datasheetName.decode('utf-8')) for p, pathVariable in enumerate(pathVariables): worksheet.write(0,p*25,pathVariableName,horizontalpathsStrainstringFormat) worksheet.write(1,p*25,pathVariable,horizontalpathsStrainnumberFormatReduced) worksheet.write(0,p*25+1,pathStartVariableName,horizontalpathsStrainstringFormat) worksheet.write(1,p*25+1,pathStartVariables[p],horizontalpathsStrainnumberFormat) worksheet.write(0,p*25+2,pathEndVariableName,horizontalpathsStrainstringFormat) worksheet.write(1,p*25+2,pathEndVariables[p],horizontalpathsStrainnumberFormat) worksheet.write(2,p*25,pathCoordinateName,horizontalpathsStrainstringFormat) worksheet.write(2,p*25+1,'Norm ' + pathCoordinateName,horizontalpathsStrainstringFormat) worksheet.write(2,p*25+2,'EExx [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+3,'EEyy [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+4,'EEzz [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+5,'EExy [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+6,'EEzx [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+7,'EEyz [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+8,'EErr [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+9,'EEtt [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+10,'EErt [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+11,'EE1_3D [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+12,'EE2_3D [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+13,'EE3_3D [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+14,'EE1_2D [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+15,'EE2_2D [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+16,'EEmises_3D [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+17,'EEmises_2D [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+18,'EEaverage_3D [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+19,'EEaverage_2D [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+20,'EEI1_3D [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+21,'EEI2_3D [(mum/mum)^2]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+22,'EEI3_3D [(mum/mum)^3]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+23,'EEI1_2D [mum/mum]',horizontalpathsStrainstringFormat) worksheet.write(2,p*25+24,'EEI2_2D [(mum/mum)^2]',horizontalpathsStrainstringFormat) measureNum = np.min([len(EExx[p]),len(EEyy[p]),len(EEzz[p]),len(EExy[p])]) print(' number of path points = ' + str(measureNum)) for c in range(0,measureNum): coord = pathCoords[p][c] worksheet.write(3+c,p*25,coord,horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+1,pathNormCoords[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+2,EExx[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+3,EEyy[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+4,EEzz[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+5,EExy[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+6,0.0,horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+7,0.0,horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+8,EErr[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+9,EEtt[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+10,EErt[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+11,EE1D3[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+12,EE2D3[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+13,EE3D3[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+14,EE1D2[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+15,EE2D2[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+16,EEMisesD3[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+17,EEMisesD2[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+18,EEaverD3[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+19,EEaverD2[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+20,EEI1D3[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+21,EEI2D3[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+22,EEI3D3[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+23,EEI1D2[p][c],horizontalpathsStrainnumberFormat) worksheet.write(3+c,p*25+24,EEI2D2[p][c],horizontalpathsStrainnumberFormat) graphsheetName = 'Graphs, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') graphworksheet = horizontalpathsStrainWorkbook.add_worksheet(graphsheetName.decode('utf-8')) print(' --> Writing worksheet') print(' ' + graphsheetName) print(' ') variableNames = ['EExx [mum/mum]','EEyy [mum/mum]','EEzz [mum/mum]','EExy [mum/mum]','EEzx [mum/mum]','EEyz [mum/mum]','EErr [mum/mum]','EEtt [mum/mum]','EErt [mum/mum]','EE1_3D [mum/mum]','EE2_3D [mum/mum]','EE3_3D [mum/mum]','EE1_2D [mum/mum]','EE2_2D [mum/mum]','EEmises_3D [mum/mum]','EEmises_2D [mum/mum]','EEaver_3D [mum/mum]','EEaver_2D [mum/mum]','EEI1_3D [mum/mum]','EEI2_3D [(mum/mum)^2]','EEI3_3D [(mum/mum)^3]','EEI1_2D [mum/mum]','EEI2_2D [(mum/mum)^2]'] #horizontalpathsStrainDatalengths.append(len(pathCoords[p])) for v,variableName in enumerate(variableNames): chartA = horizontalpathsStrainWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.A') print(' ') for p, pathVariable in enumerate(pathVariables): dataLength = len(pathCoords[p]) #if v==0: # horizontalpathsStrainDatalengths.append(dataLength) chartA.add_series({ 'name': pathVariableName + '=' + str(pathVariable), 'categories': [datasheetName,3,25*p,dataLength,25*p], 'values': [datasheetName,3,25*p+2+v,dataLength,25*p+2+v], }) print(' Series ' + str(p+1) + ': ' + pathVariableName + '=' + str(pathVariable)) print(' ') chartA.set_title ({'name': variableName + ' vs path coordinates'}) chartA.set_x_axis({'name': pathCoordinateName}) chartA.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + pathCoordinateName) print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,0,chartA) chartB = horizontalpathsStrainWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.A') print(' ') for p, pathVariable in enumerate(pathVariables): dataLength = len(pathCoords[p]) chartB.add_series({ 'name': pathVariableName + '=' + str(pathVariable), 'categories': [datasheetName,3,25*p+1,dataLength,25*p+1], 'values': [datasheetName,3,25*p+2+v,dataLength,25*p+2+v], }) print(' Series ' + str(p+1) + ': ' + pathVariableName + '=' + str(pathVariable)) print(' ') chartB.set_title ({'name': variableName + ' vs normalized path coordinates'}) chartB.set_x_axis({'name': 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]'}) chartB.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]') print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,30,chartB) EExx = [] EEyy = [] EEzz = [] EExy = [] EEzx = [] EEyz = [] EErr = [] EEtt = [] EErt = [] EE1D3 = [] EE2D3 = [] EE3D3 = [] EEI1D3 = [] EEI2D3 = [] EEI3D3 = [] EEMisesD3 = [] EEaverD3 = [] EE1D2 = [] EE2D2 = [] EEI1D2 = [] EEI2D2 = [] EEMisesD2 = [] EEaverD2 = [] pathVariables = [] pathStartVariables = [] pathEndVariables = [] pathCoords = [] pathNormCoords = [] print('<-----------------') print('<-----------------') if subFolder.split('/')[-1] + '-strainsverticalpaths' + '.csv' in listdir(subFolder): print(' Analysis of vertical paths for folder ' + subFolder) with open(verticalpathsStrainSummary,'r') as csv: lines = csv.readlines() EExx = [] EEyy = [] EEzz = [] EExy = [] EEzx = [] EEyz = [] EErr = [] EEtt = [] EErt = [] EE1D3 = [] EE2D3 = [] EE3D3 = [] EEI1D3 = [] EEI2D3 = [] EEI3D3 = [] EEMisesD3 = [] EEaverD3 = [] EE1D2 = [] EE2D2 = [] EEI1D2 = [] EEI2D2 = [] EEMisesD2 = [] EEaverD2 = [] pathVariables = [] pathStartVariables = [] pathEndVariables = [] pathCoords = [] pathNormCoords = [] for line in lines[1:]: strainComp = line.replace('\n','').replace(' ','').split(',')[0] pathVariable = float(line.replace('\n','').replace(' ','').split(',')[1]) pathStartVariable = float(line.replace('\n','').replace(' ','').split(',')[2]) pathEndVariable = float(line.replace('\n','').replace(' ','').split(',')[3]) datfilePath = join(subFolder,line.replace('\n','').replace(' ','').split(',')[-1]) print(' Reading component ' + strainComp) print(' ' + 'for vertical path at ' + str(pathVariable) + ' mum') print(' ' + 'starting at ' + str(pathStartVariable) + ' mum') print(' ' + 'ending at ' + str(pathEndVariable) + ' mum') print(' ') with open(datfilePath,'r') as dat: datLines = dat.readlines() currentxyData = [] for datLine in datLines: if len(datLine.replace('\n','').replace(' ',''))>0 and 'X' not in datLine: lineParts = datLine.replace('\n','').split(' ') rowVec = [] for linePart in lineParts: if linePart!='': rowVec.append(float(linePart)) currentxyData.append(rowVec) normxData = [] xData = [] yData = [] for xyPair in currentxyData: normxData.append(xyPair[0]) xData.append(pathStartVariable+(pathEndVariable-pathStartVariable)*xyPair[0]) yData.append(xyPair[1]) if 'EE11' in strainComp: EExx.append(yData) pathCoords.append(xData) pathNormCoords.append(normxData) pathVariables.append(pathVariable) pathStartVariables.append(pathStartVariable) pathEndVariables.append(pathEndVariable) print(' --> Strain component is EE11.') print(' ') elif 'EE22' in strainComp: EEyy.append(yData) print(' --> Strain component is EE22.') print(' ') elif 'EE23' in strainComp: EEyz.append(yData) print(' --> Strain component is EE23.') print(' ') elif 'EE12' in strainComp: EExy.append(yData) print(' --> Strain component is EE12.') print(' ') elif 'EE13' in strainComp: EEzx.append(yData) print(' --> Strain component is EE13.') print(' ') elif 'EE33' in strainComp: EEzz.append(yData) EEzx.append(0.0) EEyz.append(0.0) print(' --> Strain component is EE33.') print(' ') currentEExx = EExx[-1] currentEEyy = EEyy[-1] currentEEzz = yData currentEExy = EExy[-1] currentEEzx = 0.0 currentEEyz = 0.0 currentEErr = [] currentEEtt = [] currentEErt = [] current3DEE1 = [] current3DEE2 = [] current3DEE3 = [] current3DEEI1 = [] current3DEEI2 = [] current3DEEI3 = [] current3DEEMises = [] current3DEEaver = [] current2DEE1 = [] current2DEE2 = [] current2DEEI1 = [] current2DEEI2 = [] current2DEEMises = [] current2DEEaver = [] nstrainPoints = np.min([len(currentEExx),len(currentEEyy),len(currentEEzz),len(currentEExy)]) for s in range(0,nstrainPoints): rotateBy = np.arctan2(xData[s],pathVariable) cosRot = np.cos(rotateBy) sinRot = np.sin(rotateBy) eexx = currentEExx[s] eeyy = currentEEyy[s] eezz = currentEEzz[s] eexy = currentEExy[s] eezx = 0.0 eeyz = 0.0 eerr = eexx*cosRot*cosRot+eeyy*sinRot*sinRot+2*eexy*cosRot*sinRot eett = eexx*sinRot*sinRot+eeyy*cosRot*cosRot-2*eexy*cosRot*sinRot eert = -eexx*cosRot*sinRot+eeyy*cosRot*sinRot+eexy*(cosRot*cosRot-sinRot*sinRot) currentEErr.append(eerr) currentEEtt.append(eett) currentEErt.append(eert) eei1d2 = eexx + eeyy eei1d3 = eexx + eeyy + eezz eei2d2 = eexx*eeyy - eexy*eexy eei2d3 = eexx*eeyy + eeyy*eezz + eexx*eezz - eexy*eexy - eeyz*eeyz - eezx*eezx eei3d3 = eexx*eeyy*eezz - eexx*eeyz*eeyz - eeyy*eezx*eezx - eezz*eexy*eexy + 2*eexy*eeyz*eezx eeaverd2 = eei1d2/2.0 eeaverd3 = eei1d3/3.0 eemises2d = np.sqrt(eexx*eexx + eeyy*eeyy - eexx*eeyy + 3*eexy*eexy) eemises3d = np.sqrt(eexx*eexx + eeyy*eeyy + eezz*eezz - eexx*eeyy - eeyy*eezz - eexx*eezz + 3*(eexy*eexy + eeyz*eeyz + eezx*eezx)) ee1d2 = 0.5*(eexx+eeyy)+np.sqrt((0.5*(eexx-eeyy))*(0.5*(eexx-eeyy))+eexy*eexy) ee2d2 = 0.5*(eexx+eeyy)-np.sqrt((0.5*(eexx-eeyy))*(0.5*(eexx-eeyy))+eexy*eexy) try: princOrient = np.arccos((2*eei1d3*eei1d3*eei1d3-9*eei1d3*eei2d3+27*eei3d3)/(2*np.sqrt((eei1d3*eei1d3-3*eei2d3)*(eei1d3*eei1d3-3*eei2d3)*(eei1d3*eei1d3-3*eei2d3))))/3.0 ee1d3 = eei1d3/3.0 + 2*np.sqrt(eei1d3*eei1d3-3*eei2d3)*np.cos(princOrient)/3.0 ee2d3 = eei1d3/3.0 + 2*np.sqrt(eei1d3*eei1d3-3*eei2d3)*np.cos(princOrient-2*np.pi/3.0)/3.0 ee3d3 = eei1d3/3.0 + 2*np.sqrt(eei1d3*eei1d3-3*eei2d3)*np.cos(princOrient-4*np.pi/3.0)/3.0 except Exception: ee1d3 = ee1d2 ee2d3 = ee2d2 ee3d3 = 0.0 current3DEE1.append(ee1d3) current3DEE2.append(ee2d3) current3DEE3.append(ee2d3) current3DEEI1.append(eei1d3) current3DEEI2.append(eei2d3) current3DEEI3.append(eei3d3) current3DEEMises.append(eemises3d) current3DEEaver.append(eeaverd3) current2DEE1.append(ee1d2) current2DEE2.append(ee2d2) current2DEEI1.append(eei1d2) current2DEEI2.append(eei2d2) current2DEEMises.append(eemises2d) current2DEEaver.append(eeaverd2) EErr.append(currentEErr) EEtt.append(currentEEtt) EErt.append(currentEErt) EE1D3.append(current3DEE1) EE2D3.append(current3DEE2) EE3D3.append(current3DEE3) EE1D2.append(current2DEE1) EE2D2.append(current2DEE2) EEI1D3.append(current3DEEI1) EEI2D3.append(current3DEEI2) EEI3D3.append(current3DEEI3) EEI1D2.append(current2DEEI1) EEI2D2.append(current2DEEI2) EEMisesD3.append(current3DEEMises) EEaverD3.append(current3DEEaver) EEMisesD2.append(current2DEEMises) EEaverD2.append(current2DEEaver) currentEErr = [] currentEEtt = [] currentEErt = [] current3DEE1 = [] current3DEE2 = [] current3DEE3 = [] current3DEEI1 = [] current3DEEI2 = [] current3DEEI3 = [] current3DEEMises = [] current3DEEaver = [] current2DEE1 = [] current2DEE2 = [] current2DEEI1 = [] current2DEEI2 = [] current2DEEMises = [] current2DEEaver = [] pathVariableName = 'x [mum]' pathStartVariableName = 'yi [mum]' pathEndVariableName = 'yf [mum]' pathCoordinateName = 'y [mum]' datasheetName = 'Values, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') verticalpathsStrainSheetnames.append(datasheetName) numberOfVerticalpaths.append(len(pathVariables)) worksheet = verticalpathsStrainWorkbook.add_worksheet(datasheetName.decode('utf-8')) for p, pathVariable in enumerate(pathVariables): worksheet.write(0,p*25,pathVariableName,verticalpathsStrainstringFormat) worksheet.write(1,p*25,pathVariable,verticalpathsStrainnumberFormatReduced) worksheet.write(0,p*25+1,pathStartVariableName,verticalpathsStrainstringFormat) worksheet.write(1,p*25+1,pathStartVariables[p],verticalpathsStrainnumberFormat) worksheet.write(0,p*25+2,pathEndVariableName,verticalpathsStrainstringFormat) worksheet.write(1,p*25+2,pathEndVariables[p],verticalpathsStrainnumberFormat) worksheet.write(2,p*25,pathCoordinateName,verticalpathsStrainstringFormat) worksheet.write(2,p*25+1,'Norm ' + pathCoordinateName,verticalpathsStrainstringFormat) worksheet.write(2,p*25+2,'EExx [mum/mum]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+3,'EEyy [mum/mum]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+4,'EEzz [mum/mum]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+5,'EExy [mum/mum]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+6,'EEzx [mum/mum]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+7,'EEyz [mum/mum]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+8,'EErr [mum/mum]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+9,'EEtt [mum/mum]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+10,'EErt [mum/mum]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+11,'EE1_3D [mum/mum]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+12,'EE2_3D [mum/mum]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+13,'EE3_3D [mum/mum]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+14,'EE1_2D [mum/mum]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+15,'EE2_2D [mum/mum]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+16,'EEmises_3D [mum/mum]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+17,'EEmises_2D [mum/mum]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+18,'EEaverage_3D [mum/mum]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+19,'EEaverage_2D [mum/mum]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+20,'EEI1_3D [mum/mum]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+21,'EEI2_3D [(mum/mum)^2]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+22,'EEI3_3D [mum/mum^3]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+23,'EEI1_2D [(mum/mum)]',verticalpathsStrainstringFormat) worksheet.write(2,p*25+24,'EEI2_2D [(mum/mum)^2]',verticalpathsStrainstringFormat) measureNum = np.min([len(EExx[p]),len(EEyy[p]),len(EEzz[p]),len(EExy[p])]) print(' number of path points = ' + str(measureNum)) for c in range(0,measureNum): coord = pathCoords[p][c] worksheet.write(3+c,p*25,coord,verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+1,pathNormCoords[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+2,EExx[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+3,EEyy[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+4,EEzz[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+5,EExy[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+6,0.0,verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+7,0.0,verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+8,EErr[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+9,EEtt[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+10,EErt[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+11,EE1D3[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+12,EE2D3[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+13,EE3D3[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+14,EE1D2[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+15,EE2D2[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+16,EEMisesD3[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+17,EEMisesD2[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+18,EEaverD3[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+19,EEaverD2[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+20,EEI1D3[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+21,EEI2D3[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+22,EEI3D3[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+23,EEI1D2[p][c],verticalpathsStrainnumberFormat) worksheet.write(3+c,p*25+24,EEI2D2[p][c],verticalpathsStrainnumberFormat) graphsheetName = 'Graphs, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') graphworksheet = verticalpathsStrainWorkbook.add_worksheet(graphsheetName.decode('utf-8')) print(' --> Writing worksheet') print(' ' + graphsheetName) print(' ') variableNames = ['EExx [mum/mum]','EEyy [mum/mum]','EEzz [mum/mum]','EExy [mum/mum]','EEzx [mum/mum]','EEyz [mum/mum]','EErr [mum/mum]','EEtt [mum/mum]','EErt [mum/mum]','EE1_3D [mum/mum]','EE2_3D [mum/mum]','EE3_3D [mum/mum]','EE1_2D [mum/mum]','EE2_2D [mum/mum]','EEmises_3D [mum/mum]','EEmises_2D [mum/mum]','EEaver_3D [mum/mum]','EEaver_2D [mum/mum]','EEI1_3D [mum/mum]','EEI2_3D [(mum/mum)^2]','EEI3_3D [(mum/mum)^3]','EEI1_2D [mum/mum]','EEI2_2D [(mum/mum)^2]'] for v,variableName in enumerate(variableNames): chartA = verticalpathsStrainWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.A') print(' ') for p, pathVariable in enumerate(pathVariables): dataLength = len(pathCoords[p]) if v==0: verticalpathsStrainDatalengths.append(dataLength) chartA.add_series({ 'name': pathVariableName + '=' + str(pathVariable), 'categories': [datasheetName,3,25*p,dataLength,25*p], 'values': [datasheetName,3,25*p+2+v,dataLength,25*p+2+v], }) print(' Series ' + str(p+1) + ': ' + pathVariableName + '=' + str(pathVariable)) print(' ') chartA.set_title ({'name': variableName + ' vs path coordinates'}) chartA.set_x_axis({'name': pathCoordinateName}) chartA.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + pathCoordinateName) print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,0,chartA) chartB = verticalpathsStrainWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.A') print(' ') for p, pathVariable in enumerate(pathVariables): dataLength = len(pathCoords[p]) chartB.add_series({ 'name': pathVariableName + '=' + str(pathVariable), 'categories': [datasheetName,3,25*p+1,dataLength,25*p+1], 'values': [datasheetName,3,2+v,dataLength,2+v], }) print(' Series ' + str(p+1) + ': ' + pathVariableName + '=' + str(pathVariable)) print(' ') chartB.set_title ({'name': variableName + ' vs normalized path coordinates'}) chartB.set_x_axis({'name': 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]'}) chartB.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]') print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,30,chartB) EExx = [] EEyy = [] EEzz = [] EExy = [] EEzx = [] EEyz = [] EErr = [] EEtt = [] EErt = [] EE1D3 = [] EE2D3 = [] EE3D3 = [] EEI1D3 = [] EEI2D3 = [] EEI3D3 = [] EEMisesD3 = [] EEaverD3 = [] EE1D2 = [] EE2D2 = [] EEI1D2 = [] EEI2D2 = [] EEMisesD2 = [] EEaverD2 = [] pathVariables = [] pathStartVariables = [] pathEndVariables = [] pathCoords = [] pathNormCoords = [] print('<-----------------') print('<-----------------') pathVariableName = 'pathAngle [deg]' pathCoordinateName = 'R [mum]' for n in range(0,min(numberOfRadialpaths)): graphsheetName = 'Graphs, path n. ' + str(n) graphworksheet = radialpathsWorkbook.add_worksheet(graphsheetName.decode('utf-8')) print(' --> Writing worksheet') print(' ' + graphsheetName) print(' ') variableNames = ['Sxx [MPa]','Syy [MPa]','Szz [MPa]','Sxy [MPa]','Szx [MPa]','Syz [MPa]','Srr [MPa]','Stt [MPa]','Srt [MPa]','S1_3D [MPa]','S2_3D [MPa]','S3_3D [MPa]','S1_2D [MPa]','S2_2D [MPa]','Smises_3D [MPa]','Smises_2D [MPa]','Saverage_3D [MPa]','Saverage_2D [MPa]','I1_3D [MPa]','I2_3D [MPa^2]','I3_3D [MPa^3]','I1_2D [MPa]','I2_2D [MPa^2]'] for v,variableName in enumerate(variableNames): chartA = radialpathsWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.A') for s,subFolder in enumerate(subfoldersList): dataLength = radialpathsDatalengths[s] datasheetName = 'Values, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') chartA.add_series({ 'name': 'deltatheta' + '=' + subFolder.split('deltatheta')[-1].replace('_','.'), 'categories': [datasheetName,3,n*25,dataLength,n*25], 'values': [datasheetName,3,n*25+2+v,dataLength,n*25+2+v], }) print(' Series ' + str(s+1) + ': ' + 'deltatheta' + '=' + subFolder.split('deltatheta')[-1].replace('_','.')) print(' ') chartA.set_title ({'name': variableName + ' vs path coordinates'}) chartA.set_x_axis({'name': pathCoordinateName}) chartA.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + pathCoordinateName) print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,0,chartA) chartB = radialpathsWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.B') print(' ') for s,subFolder in enumerate(subfoldersList): dataLength = radialpathsDatalengths[s] datasheetName = 'Values, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') chartB.add_series({ 'name': 'deltatheta' + '=' + subFolder.split('deltatheta')[-1].replace('_','.'), 'categories': [datasheetName,3,n*25+1,dataLength,n*25+1], 'values': [datasheetName,3,n*25+2+v,dataLength,n*25+2+v], }) print(' Series ' + str(s+1) + ': ' + 'deltatheta' + '=' + subFolder.split('deltatheta')[-1].replace('_','.')) print(' ') chartB.set_title ({'name': variableName + ' vs normalized path coordinates'}) chartB.set_x_axis({'name': 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]'}) chartB.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]') print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,30,chartB) pathVariableName = 'pathRadius [mum]' pathCoordinateName = 'angle [deg]' for n in range(0,min(numberOfCircumferentialpaths)): graphsheetName = 'Graphs, path n. ' + str(n) graphworksheet = circumferentialpathsWorkbook.add_worksheet(graphsheetName.decode('utf-8')) print(' --> Writing worksheet') print(' ' + graphsheetName) print(' ') variableNames = ['Sxx [MPa]','Syy [MPa]','Szz [MPa]','Sxy [MPa]','Szx [MPa]','Syz [MPa]','Srr [MPa]','Stt [MPa]','Srt [MPa]','S1_3D [MPa]','S2_3D [MPa]','S3_3D [MPa]','S1_2D [MPa]','S2_2D [MPa]','Smises_3D [MPa]','Smises_2D [MPa]','Saverage_3D [MPa]','Saverage_2D [MPa]','I1_3D [MPa]','I2_3D [MPa^2]','I3_3D [MPa^3]','I1_2D [MPa]','I2_2D [MPa^2]'] for v,variableName in enumerate(variableNames): chartA = circumferentialpathsWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.A') print(' ') for s,subFolder in enumerate(subfoldersList): dataLength = circumferentialpathsDatalengths[s] datasheetName = 'Values, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') chartA.add_series({ 'name': 'deltatheta' + '=' + subFolder.split('deltatheta')[-1].replace('_','.'), 'categories': [datasheetName,3,n*25,dataLength,n*25], 'values': [datasheetName,3,n*25+2+v,dataLength,n*25+2+v], }) print(' Series ' + str(s+1) + ': ' + 'deltatheta' + '=' + subFolder.split('deltatheta')[-1].replace('_','.')) print(' ') chartA.set_title ({'name': variableName + ' vs path coordinates'}) chartA.set_x_axis({'name': pathCoordinateName}) chartA.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + pathCoordinateName) print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,0,chartA) chartB = circumferentialpathsWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.B') print(' ') for s,subFolder in enumerate(subfoldersList): dataLength = circumferentialpathsDatalengths[s] datasheetName = 'Values, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') chartB.add_series({ 'name': 'deltatheta' + '=' + subFolder.split('deltatheta')[-1].replace('_','.'), 'categories': [datasheetName,3,n*25+1,dataLength,n*25+1], 'values': [datasheetName,3,n*25+2+v,dataLength,n*25+2+v], }) print(' Series ' + str(s+1) + ': ' + 'deltatheta' + '=' + subFolder.split('deltatheta')[-1].replace('_','.')) print(' ') chartB.set_title ({'name': variableName + ' vs normalized path coordinates'}) chartB.set_x_axis({'name': 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]'}) chartB.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]') print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,30,chartB) pathVariableName = 'y [mum]' pathCoordinateName = 'x [mum]' for n in range(0,min(numberOfHorizontalpaths)): graphsheetName = 'Graphs, path n. ' + str(n) graphworksheet = horizontalpathsWorkbook.add_worksheet(graphsheetName.decode('utf-8')) print(' --> Writing worksheet') print(' ' + graphsheetName) print(' ') variableNames = ['Sxx [MPa]','Syy [MPa]','Szz [MPa]','Sxy [MPa]','Szx [MPa]','Syz [MPa]','Srr [MPa]','Stt [MPa]','Srt [MPa]','S1_3D [MPa]','S2_3D [MPa]','S3_3D [MPa]','S1_2D [MPa]','S2_2D [MPa]','Smises_3D [MPa]','Smises_2D [MPa]','Saverage_3D [MPa]','Saverage_2D [MPa]','I1_3D [MPa]','I2_3D [MPa^2]','I3_3D [MPa^3]','I1_2D [MPa]','I2_2D [MPa^2]'] for v,variableName in enumerate(variableNames): chartA = horizontalpathsWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.A') print(' ') for s,subFolder in enumerate(subfoldersList): dataLength = horizontalpathsDatalengths[s] datasheetName = 'Values, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') chartA.add_series({ 'name': 'deltatheta' + '=' + subFolder.split('deltatheta')[-1].replace('_','.'), 'categories': [datasheetName,3,n*25,dataLength,n*25], 'values': [datasheetName,3,n*25+2+v,dataLength,n*25+2+v], }) print(' Series ' + str(s+1) + ': ' + 'deltatheta' + '=' + subFolder.split('deltatheta')[-1].replace('_','.')) print(' ') chartA.set_title ({'name': variableName + ' vs path coordinates'}) chartA.set_x_axis({'name': pathCoordinateName}) chartA.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + pathCoordinateName) print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,0,chartA) chartB = horizontalpathsWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.B') print(' ') for s,subFolder in enumerate(subfoldersList): dataLength = horizontalpathsDatalengths[s] datasheetName = 'Values, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') chartB.add_series({ 'name': 'deltatheta' + '=' + subFolder.split('deltatheta')[-1].replace('_','.'), 'categories': [datasheetName,3,n*25+1,dataLength,n*25+1], 'values': [datasheetName,3,n*25+2+v,dataLength,n*25+2+v], }) print(' Series ' + str(s+1) + ': ' + 'deltatheta' + '=' + subFolder.split('deltatheta')[-1].replace('_','.')) print(' ') chartB.set_title ({'name': variableName + ' vs normalized path coordinates'}) chartB.set_x_axis({'name': 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]'}) chartB.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]') print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,30,chartB) pathVariableName = 'x [mum]' pathCoordinateName = 'y [mum]' for n in range(0,min(numberOfVerticalpaths)): graphsheetName = 'Graphs, path n. ' + str(n) graphworksheet = verticalpathsWorkbook.add_worksheet(graphsheetName.decode('utf-8')) print(' --> Writing worksheet') print(' ' + graphsheetName) print(' ') variableNames = ['Sxx [MPa]','Syy [MPa]','Szz [MPa]','Sxy [MPa]','Szx [MPa]','Syz [MPa]','Srr [MPa]','Stt [MPa]','Srt [MPa]','S1_3D [MPa]','S2_3D [MPa]','S3_3D [MPa]','S1_2D [MPa]','S2_2D [MPa]','Smises_3D [MPa]','Smises_2D [MPa]','Saverage_3D [MPa]','Saverage_2D [MPa]','I1_3D [MPa]','I2_3D [MPa^2]','I3_3D [MPa^3]','I1_2D [MPa]','I2_2D [MPa^2]'] for v,variableName in enumerate(variableNames): chartA = verticalpathsWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.A') print(' ') for s,subFolder in enumerate(subfoldersList): dataLength = verticalpathsDatalengths[s] datasheetName = 'Values, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') chartA.add_series({ 'name': 'deltatheta' + '=' + subFolder.split('deltatheta')[-1].replace('_','.'), 'categories': [datasheetName,3,n*25,dataLength,n*25], 'values': [datasheetName,3,n*25+2+v,dataLength,n*25+2+v], }) print(' Series ' + str(s+1) + ': ' + 'deltatheta' + '=' + subFolder.split('deltatheta')[-1].replace('_','.')) print(' ') chartA.set_title ({'name': variableName + ' vs path coordinates'}) chartA.set_x_axis({'name': pathCoordinateName}) chartA.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + pathCoordinateName) print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,0,chartA) chartB = verticalpathsWorkbook.add_chart({'type': 'scatter','subtype': 'straight_with_markers'}) print(' Chart ' + str(v+1) + '.B') print(' ') for s,subFolder in enumerate(subfoldersList): dataLength = verticalpathsDatalengths[s] datasheetName = 'Values, deltatheta=' + subFolder.split('deltatheta')[-1].replace('_','.') chartB.add_series({ 'name': 'deltatheta' + '=' + subFolder.split('deltatheta')[-1].replace('_','.'), 'categories': [datasheetName,3,n*25+1,dataLength,n*25+1], 'values': [datasheetName,3,n*25+2+v,dataLength,n*25+2+v], }) print(' Series ' + str(s+1) + ': ' + 'deltatheta' + '=' + subFolder.split('deltatheta')[-1].replace('_','.')) print(' ') chartB.set_title ({'name': variableName + ' vs normalized path coordinates'}) chartB.set_x_axis({'name': 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]'}) chartB.set_y_axis({'name': variableName}) print(' Title: ' + variableName + ' vs path coordinates') print(' x axis: ' + 'Norm ' + pathCoordinateName.split(' ')[0] + ' [-]') print(' y axis: ' + variableName) print(' ') print(' ') graphworksheet.insert_chart(v*20,30,chartB) print(' Close workbook ' + join(outdir,outputfileBasename + '-radialpathsData' + '.xlsx')) radialpathsWorkbook.close() print('Workbook closed.') print(' Close workbook ' + join(outdir,outputfileBasename + '-circumferentialpathsData' + '.xlsx')) circumferentialpathsWorkbook.close() print('Workbook closed.') print(' Close workbook ' + join(outdir,outputfileBasename + '-horizontalpathsData' + '.xlsx')) horizontalpathsWorkbook.close() print('Workbook closed.') print(' Close workbook ' + join(outdir,outputfileBasename + '-verticalpathsData' + '.xlsx')) verticalpathsWorkbook.close() print('Workbook closed.') print(' Close workbook ' + join(outdir,outputfileBasename + '-radialpathsStrainData' + '.xlsx')) radialpathsStrainWorkbook.close() print('Workbook closed.') print(' Close workbook ' + join(outdir,outputfileBasename + '-circumferentialpathsStrainData' + '.xlsx')) circumferentialpathsStrainWorkbook.close() print('Workbook closed.') print(' Close workbook ' + join(outdir,outputfileBasename + '-horizontalpathsStrainData' + '.xlsx')) horizontalpathsStrainWorkbook.close() print('Workbook closed.') print(' Close workbook ' + join(outdir,outputfileBasename + '-verticalpathsStrainData' + '.xlsx')) verticalpathsStrainWorkbook.close() print('Workbook closed.') if toLatex: # only for errts file if not os.path.exists(join(reportFolder,'pics')): os.mkdir(join(reportFolder,'pics')) copyfile(join('D:/01_Luca/06_WD/thinPlyMechanics/tex/Templates/Template_reports','Docmase_logo.jpg'),join(reportFolder,'pics','Docmase_logo.jpg')) copyfile(join('D:/01_Luca/06_WD/thinPlyMechanics/tex/Templates/Template_reports','erasmusmundus_logo.jpg'),join(reportFolder,'pics','erasmusmundus_logo.jpg')) copyfile(join('D:/01_Luca/06_WD/thinPlyMechanics/tex/Templates/Template_slides','logo-eeigm.jpg'),join(reportFolder,'pics','logo-eeigm.jpg')) copyfile(join('D:/01_Luca/06_WD/thinPlyMechanics/tex/Templates/Template_reports','lulea_logo1.jpg'),join(reportFolder,'pics','lulea_logo1.jpg')) matrixProps = provideMatrixProperties() G0meanstress = [] G0planestrainstress = [] G0planestrainstressharmonic = [] G0planestrainstressrve = [] G0meanstressharmonic = [] G0meanstressrve = [] G0strain = [] G0strainharmonic = [] G0strainrve = [] GIvcctonly = [] GIIvcctonly = [] GTOTvcctonly = [] GIvcctjint = [] GIIvcctjint = [] GTOTvcctjint = [] deltatheta = [] LoverRf = [] Vff = [] phiCZ = [] Y0atbound = [] sigmaXXatbound = [] sigmaZZatbound = [] sigmaXZatbound = [] currentG0meanstress = [] currentG0planestrainstress = [] currentG0planestrainstressharmonic = [] currentG0planestrainstressrve = [] currentG0meanstressharmonic = [] currentG0meanstressrve = [] currentG0strain = [] currentG0strainharmonic = [] currentG0strainrve = [] currentGIvcctonly = [] currentGIIvcctonly = [] currentGTOTvcctonly = [] currentGIvcctjint = [] currentGIIvcctjint = [] currentGTOTvcctjint = [] currentdeltatheta = [] currentLoverRf = [] currentVff = [] currentphiCZ = [] currentY0atbound = [] currentsigmaXXatbound = [] currentsigmaZZatbound = [] currentsigmaXZatbound = [] for line in lines[1:]: csvPath = line.replace('\n','').split(',')[1] inputdataPath = '_'.join(line.replace('\n','').split(',')[1].split('_')[:-1]) + '_InputData' + '.csv' dataType = line.replace('\n','').split(',')[0] try: with open(csvPath,'r') as csv: csvlines = csv.readlines() except Exception,error: continue sys.exc_clear() try: with open(inputdataPath,'r') as csv: inputdatalines = csv.readlines() except Exception,error: continue sys.exit(2) if 'ERRT' in dataType or 'ERRTS' in dataType or 'ERRTs' in dataType or 'errt' in dataType or 'errts' in dataType: epsxx = float(inputdatalines[1].replace('\n','').split(',')[5]) Rf = float(inputdatalines[1].replace('\n','').split(',')[0]) for c,csvline in enumerate(csvlines[1:]): values = csvline.replace('\n','').split(',') if len(currentLoverRf)>0: if float(values[3])!=currentLoverRf[-1]: G0meanstress.append(currentG0meanstress) G0planestrainstress.append(currentG0planestrainstress) G0planestrainstressharmonic.append(currentG0planestrainstressharmonic) G0planestrainstressrve.append(currentG0planestrainstressrve) G0meanstressharmonic.append(currentG0meanstressharmonic) G0meanstressrve.append(currentG0meanstressrve) G0strain.append(currentG0strain) G0strainharmonic.append(currentG0strainharmonic) G0strainrve.append(currentG0strainrve) GIvcctonly.append(currentGIvcctonly) GIIvcctonly.append(currentGIIvcctonly) GTOTvcctonly.append(currentGTOTvcctonly) GIvcctjint.append(currentGIvcctjint) GIIvcctjint.append(currentGIIvcctjint) GTOTvcctjint.append(currentGTOTvcctjint) deltatheta.append(currentdeltatheta) LoverRf.append(currentLoverRf) Vff.append(currentVff) phiCZ.append(currentphiCZ) currentG0stress = [] currentG0strain = [] currentGIvcctonly = [] currentGIIvcctonly = [] currentGTOTvcctonly = [] currentGIvcctjint = [] currentGIIvcctjint = [] currentGTOTvcctjint = [] currentdeltatheta = [] currentLoverRf = [] currentVff = [] currentphiCZ = [] currentG0meanstress.append(float(values[5])) currentG0planestrainstress.append(np.pi*Rf*(matrixProps['E']*epsxx/(1-matrixProps['nu']*matrixProps['nu']))*(matrixProps['E']*epsxx/(1-matrixProps['nu']*matrixProps['nu']))*(1+matrixProps['k-planestrain'])/(8.0*matrixProps['G'])) currentG0planestrainstressharmonic.append() currentG0planestrainstressrve.append() currentG0meanstressharmonic.append() currentG0meanstressrve.append() currentG0strain.append(np.pi*Rf*(matrixProps['E']/(1-matrixProps['nu']*matrixProps['nu']))*epsxx*epsxx) currentG0strainharmonic.append() currentG0strainrve.append() currentGIvcctonly.append(float(values[13])) currentGIIvcctonly.append(float(values[14])) currentGTOTvcctonly.append(float(values[15])) currentGIvcctjint.append(float(values[16])) currentGIIvcctjint.append(float(values[17])) currentGTOTvcctjint.append(float(values[18])) currentdeltatheta.append(float(values[0])) currentLoverRf.append(float(values[3])) currentVff.append(0.25*np.pi/float(values[3])) currentphiCZ.append(float(values[4])) elif 'stressesatboundary' in dataType or 'StressesAtBoundary' in dataType or 'stresses-at-boundary' in dataType or 'Stresses-At-Boundary' in dataType: for c,csvline in enumerate(csvlines[1:]): values = csvline.replace('\n','').split(',') currentY0atbound.append(values[1]) currentsigmaXXatbound.append(values[4]) currentsigmaZZatbound.append(values[5]) currentsigmaXZatbound.append(values[7]) for s,valueSet in enumerate(GIvcctonly): currentVff = Vff[s][0] currentLoverRf = LoverRf[s][0] debondSize = np.array(deltatheta[s]) CZsize = np.array(phiCZ[s]) GI = [np.array(GIvcctonly[s]),np.array(GIvcctjint[s])] GII = [np.array(GIIvcctonly[s]),np.array(GIIvcctjint[s])] GTOT = [np.array(GTOTvcctonly[s]),np.array(GTOTvcctjint[s])] gMethod = ['VCCT only','VCCT/J-integral'] G0s = [G0meanstress[s],G0planestrainstress[s],G0strain[s]] legendEntries = '{$GI/G0-FEM$,$GII/G0-FEM$,$GTOT/G0-FEM$,$GI/G0-BEM$,$GII/G0-BEM$,$GTOT/G0-BEM$}' dataoptions = ['red,smooth,mark=square*', 'red,smooth,mark=triangle*', 'red,smooth,mark=*', 'black,smooth,mark=square*', 'black,smooth,mark=triangle*', 'black,smooth,mark=*',] bemDSize = BEMdata['normGs'][:,0] bemGI = BEMdata['normGs'][:,1] bemGII = BEMdata['normGs'][:,2] bemGTOT = BEMdata['normGs'][:,3] for m,method in enumerate(gMethod): titles = ['\\bf{Normalized Energy Release Rate, '+method+', $Vf_{f}='+str(currentVff)+'$, $\\frac{L}{R_{f}}='+str(currentLoverRf)+'$, $G_{0}=\\frac{1+k_{m}}{8G_{m}}\\pi R_{f}\\left(\\frac{1}{2L}\\int_{-L}^{+L}\\sigma_{xx}\\left(L,z\\right)dz\\right)^{2}$}', '\\bf{Normalized Energy Release Rate, '+method+', $Vf_{f}='+str(currentVff)+'$, $\\frac{L}{R_{f}}='+str(currentLoverRf)+'$, $G_{0}=\\frac{1+k_{m}}{8G_{m}}\\pi R_{f}\\left(\\frac{E_{m}}{1-\\nu^{2}}\\varepsilon_{xx}\\right)^{2}$}', '\\bf{Normalized Energy Release Rate, '+method+', $Vf_{f}='+str(currentVff)+'$, $\\frac{L}{R_{f}}='+str(currentLoverRf)+'$, $G_{0}=\\frac{E_{m}}{1-\\nu^{2}}\\pi R_{f}\\varepsilon_{xx}^{2}$}'] fileoptionName = ['G0-mean-stress', 'G0-plane-strain-stress', 'G0-strain'] for g,G0 in enumerate(G0s): normGI = GI[m]/GO normGII = GII[m]/GO normGTOT = GTOT[m]/GO xyData = [] xyData.append(np.transpose(np.array([debondSize,normGI]))) xyData.append(np.transpose(np.array([debondSize,normGII]))) xyData.append(np.transpose(np.array([debondSize,normGTOT]))) xyData.append(np.transpose(np.array([bemDSize,bemGI]))) xyData.append(np.transpose(np.array([bemDSize,bemGII]))) xyData.append(np.transpose(np.array([bemDSize,bemGTOT]))) axisoptions = 'width=30cm,\n ' \ 'title={'+titles[g]+'},\n ' \ 'title style={font=\\fontsize{40}{8}\\selectfont},\n ' \ 'xlabel style={at={(axis description cs:0.5,-0.02)},anchor=north,font=\\fontsize{44}{40}\\selectfont},\n ' \ 'ylabel style={at={(axis description cs:-0.025,.5)},anchor=south,font=\\fontsize{44}{40}\\selectfont},\n ' \ 'xlabel={$\\Delta\\theta\\left[^{\\circ}\\right]$},ylabel={$\\frac{G_{\\left(\\cdot\\cdot\\right)}}{G_{0}}\\left[-\\right]$},\n ' \ 'xmin=' + str(0.0) + ',\n ' \ 'xmax=' + str(160.0) + ',\n ' \ 'ymin=' + str(0.0) + ',\n ' \ 'ymax=' + str([np.max(normGTOT),np.max(bemGTOT)]) + ',\n ' \ 'tick align=outside,\n ' \ 'tick label style={font=\\huge},\n ' \ 'xmajorgrids,\n ' \ 'xtick={0.0,10.0,20.0,30.0,40.0,50.0,60.0,70.0,80.0,90.0,100.0,110.0,120.0,130.0,140.0,150.0,160.0,170.0,180.0},\n ' \ 'x grid style={lightgray!92.026143790849673!black},\n ' \ 'ymajorgrids,\n ' \ 'y grid style={lightgray!92.026143790849673!black},\n ' \ 'line width=0.5mm,\n ' \ 'legend style={draw=white!80.0!black,font=\\fontsize{28}{24}\\selectfont,row sep=15pt},\n ' \ 'legend entries={' + legendEntries + '},\n ' \ 'legend image post style={xscale=2},\n ' \ 'legend cell align={left}' writeLatexMultiplePlots(outDir,'Gs-SUMMARY_Vff'+str(currentVff)+'-'+method.replace(' ','-').replace('/','-')+'-'+fileoptionName[g]+'.tex',xyData,axisoptions,dataoptions) titles = ['\\bf{Normalized Mode I Energy Release Rate, $Vf_{f}='+str(currentVff)+'$, $\\frac{L}{R_{f}}='+str(currentLoverRf)+'$, $G_{0}=\\frac{1+k_{m}}{8G_{m}}\\pi R_{f}\\left(\\frac{1}{2L}\\int_{-L}^{+L}\\sigma_{xx}\\left(L,z\\right)dz\\right)^{2}$}', '\\bf{Normalized Mode I Energy Release Rate, $Vf_{f}='+str(currentVff)+'$, $\\frac{L}{R_{f}}='+str(currentLoverRf)+'$, $G_{0}=\\frac{1+k_{m}}{8G_{m}}\\pi R_{f}\\left(\\frac{E_{m}}{1-\\nu^{2}}\\varepsilon_{xx}\\right)^{2}$}', '\\bf{Normalized Mode I Energy Release Rate, $Vf_{f}='+str(currentVff)+'$, $\\frac{L}{R_{f}}='+str(currentLoverRf)+'$, $G_{0}=\\frac{E_{m}}{1-\\nu^{2}}\\pi R_{f}\\varepsilon_{xx}^{2}$}'] fileoptionName = ['G0-mean-stress', 'G0-plane-strain-stress', 'G0-strain'] legendEntries = '{$GI/G0-FEM,VCCT only$,$GI/G0-FEM,VCCT/J-integral$,$GI/G0-BEM$}' dataoptions = ['red,smooth,mark=square*', 'blue,smooth,mark=square*', 'black,smooth,mark=square*'] for g,G0 in enumerate(G0s): xyData = [] for m,method in enumerate(gMethod): normGI = GI[m]/GO xyData.append(np.transpose(np.array([debondSize,normGI]))) xyData.append(np.transpose(np.array([bemDSize,bemGI]))) axisoptions = 'width=30cm,\n ' \ 'title={'+titles[g]+'},\n ' \ 'title style={font=\\fontsize{40}{8}\\selectfont},\n ' \ 'xlabel style={at={(axis description cs:0.5,-0.02)},anchor=north,font=\\fontsize{44}{40}\\selectfont},\n ' \ 'ylabel style={at={(axis description cs:-0.025,.5)},anchor=south,font=\\fontsize{44}{40}\\selectfont},\n ' \ 'xlabel={$\\Delta\\theta\\left[^{\\circ}\\right]$},ylabel={$\\frac{G_{I}}{G_{0}}\\left[-\\right]$},\n ' \ 'xmin=' + str(0.0) + ',\n ' \ 'xmax=' + str(160.0) + ',\n ' \ 'ymin=' + str(0.0) + ',\n ' \ 'ymax=' + str(np.max([np.max(xyData[0][:,1]),np.max(xyData[1][:,1]),np.max(xyData[2][:,1])])) + ',\n ' \ 'tick align=outside,\n ' \ 'tick label style={font=\\huge},\n ' \ 'xmajorgrids,\n ' \ 'xtick={0.0,10.0,20.0,30.0,40.0,50.0,60.0,70.0,80.0,90.0,100.0,110.0,120.0,130.0,140.0,150.0,160.0,170.0,180.0},\n ' \ 'x grid style={lightgray!92.026143790849673!black},\n ' \ 'ymajorgrids,\n ' \ 'y grid style={lightgray!92.026143790849673!black},\n ' \ 'line width=0.5mm,\n ' \ 'legend style={draw=white!80.0!black,font=\\fontsize{28}{24}\\selectfont,row sep=15pt},\n ' \ 'legend entries={' + legendEntries + '},\n ' \ 'legend image post style={xscale=2},\n ' \ 'legend cell align={left}' writeLatexMultiplePlots(outDir,'GI-Method-Comparison_Vff'+str(currentVff)+'-'+fileoptionName[g]+'.tex',xyData,axisoptions,dataoptions) titles = ['\\bf{Normalized Mode II Energy Release Rate, $Vf_{f}='+str(currentVff)+'$, $\\frac{L}{R_{f}}='+str(currentLoverRf)+'$, $G_{0}=\\frac{1+k_{m}}{8G_{m}}\\pi R_{f}\\left(\\frac{1}{2L}\\int_{-L}^{+L}\\sigma_{xx}\\left(L,z\\right)dz\\right)^{2}$}', '\\bf{Normalized Mode II Energy Release Rate, $Vf_{f}='+str(currentVff)+'$, $\\frac{L}{R_{f}}='+str(currentLoverRf)+'$, $G_{0}=\\frac{1+k_{m}}{8G_{m}}\\pi R_{f}\\left(\\frac{E_{m}}{1-\\nu^{2}}\\varepsilon_{xx}\\right)^{2}$}', '\\bf{Normalized Mode II Energy Release Rate, $Vf_{f}='+str(currentVff)+'$, $\\frac{L}{R_{f}}='+str(currentLoverRf)+'$, $G_{0}=\\frac{E_{m}}{1-\\nu^{2}}\\pi R_{f}\\varepsilon_{xx}^{2}$}'] fileoptionName = ['G0-mean-stress', 'G0-plane-strain-stress', 'G0-strain'] legendEntries = '{$GII/G0-FEM,VCCT only$,$GII/G0-FEM,VCCT/J-integral$,$GII/G0-BEM$}' dataoptions = ['red,smooth,mark=triangle*', 'blue,smooth,mark=triangle*', 'black,smooth,mark=triangle*'] for g,G0 in enumerate(G0s): xyData = [] for m,method in enumerate(gMethod): normGII = GII[m]/GO xyData.append(np.transpose(np.array([debondSize,normGII]))) xyData.append(np.transpose(np.array([bemDSize,bemGII]))) axisoptions = 'width=30cm,\n ' \ 'title={'+titles[g]+'},\n ' \ 'title style={font=\\fontsize{40}{8}\\selectfont},\n ' \ 'xlabel style={at={(axis description cs:0.5,-0.02)},anchor=north,font=\\fontsize{44}{40}\\selectfont},\n ' \ 'ylabel style={at={(axis description cs:-0.025,.5)},anchor=south,font=\\fontsize{44}{40}\\selectfont},\n ' \ 'xlabel={$\\Delta\\theta\\left[^{\\circ}\\right]$},ylabel={$\\frac{G_{II}}{G_{0}}\\left[-\\right]$},\n ' \ 'xmin=' + str(0.0) + ',\n ' \ 'xmax=' + str(160.0) + ',\n ' \ 'ymin=' + str(0.0) + ',\n ' \ 'ymax=' + str(np.max([np.max(xyData[0][:,1]),np.max(xyData[1][:,1]),np.max(xyData[2][:,1])])) + ',\n ' \ 'tick align=outside,\n ' \ 'tick label style={font=\\huge},\n ' \ 'xmajorgrids,\n ' \ 'xtick={0.0,10.0,20.0,30.0,40.0,50.0,60.0,70.0,80.0,90.0,100.0,110.0,120.0,130.0,140.0,150.0,160.0,170.0,180.0},\n ' \ 'x grid style={lightgray!92.026143790849673!black},\n ' \ 'ymajorgrids,\n ' \ 'y grid style={lightgray!92.026143790849673!black},\n ' \ 'line width=0.5mm,\n ' \ 'legend style={draw=white!80.0!black,font=\\fontsize{28}{24}\\selectfont,row sep=15pt},\n ' \ 'legend entries={' + legendEntries + '},\n ' \ 'legend image post style={xscale=2},\n ' \ 'legend cell align={left}' writeLatexMultiplePlots(outDir,'GII-Method-Comparison_Vff'+str(currentVff)+'-'+fileoptionName[g]+'.tex',xyData,axisoptions,dataoptions) titles = ['\\bf{Normalized Total Energy Release Rate, $Vf_{f}='+str(currentVff)+'$, $\\frac{L}{R_{f}}='+str(currentLoverRf)+'$, $G_{0}=\\frac{1+k_{m}}{8G_{m}}\\pi R_{f}\\left(\\frac{1}{2L}\\int_{-L}^{+L}\\sigma_{xx}\\left(L,z\\right)dz\\right)^{2}$}', '\\bf{Normalized Total Energy Release Rate, $Vf_{f}='+str(currentVff)+'$, $\\frac{L}{R_{f}}='+str(currentLoverRf)+'$, $G_{0}=\\frac{1+k_{m}}{8G_{m}}\\pi R_{f}\\left(\\frac{E_{m}}{1-\\nu^{2}}\\varepsilon_{xx}\\right)^{2}$}', '\\bf{Normalized Total Energy Release Rate, $Vf_{f}='+str(currentVff)+'$, $\\frac{L}{R_{f}}='+str(currentLoverRf)+'$, $G_{0}=\\frac{E_{m}}{1-\\nu^{2}}\\pi R_{f}\\varepsilon_{xx}^{2}$}'] fileoptionName = ['G0-mean-stress', 'G0-plane-strain-stress', 'G0-strain'] legendEntries = '{$GTOT/G0-FEM,VCCT only$,$GTOT/G0-FEM,VCCT/J-integral$,$GTOT/G0-BEM$}' dataoptions = ['red,smooth,mark=*', 'blue,smooth,mark=*', 'black,smooth,mark=*'] for g,G0 in enumerate(G0s): xyData = [] for m,method in enumerate(gMethod): normGTOT = GTOT[m]/GO xyData.append(np.transpose(np.array([debondSize,normGTOT]))) xyData.append(np.transpose(np.array([bemDSize,bemGTOT]))) axisoptions = 'width=30cm,\n ' \ 'title={'+titles[g]+'},\n ' \ 'title style={font=\\fontsize{40}{8}\\selectfont},\n ' \ 'xlabel style={at={(axis description cs:0.5,-0.02)},anchor=north,font=\\fontsize{44}{40}\\selectfont},\n ' \ 'ylabel style={at={(axis description cs:-0.025,.5)},anchor=south,font=\\fontsize{44}{40}\\selectfont},\n ' \ 'xlabel={$\\Delta\\theta\\left[^{\\circ}\\right]$},ylabel={$\\frac{G_{TOT}}{G_{0}}\\left[-\\right]$},\n ' \ 'xmin=' + str(0.0) + ',\n ' \ 'xmax=' + str(160.0) + ',\n ' \ 'ymin=' + str(0.0) + ',\n ' \ 'ymax=' + str(np.max([np.max(xyData[0][:,1]),np.max(xyData[1][:,1]),np.max(xyData[2][:,1])])) + ',\n ' \ 'tick align=outside,\n ' \ 'tick label style={font=\\huge},\n ' \ 'xmajorgrids,\n ' \ 'xtick={0.0,10.0,20.0,30.0,40.0,50.0,60.0,70.0,80.0,90.0,100.0,110.0,120.0,130.0,140.0,150.0,160.0,170.0,180.0},\n ' \ 'x grid style={lightgray!92.026143790849673!black},\n ' \ 'ymajorgrids,\n ' \ 'y grid style={lightgray!92.026143790849673!black},\n ' \ 'line width=0.5mm,\n ' \ 'legend style={draw=white!80.0!black,font=\\fontsize{28}{24}\\selectfont,row sep=15pt},\n ' \ 'legend entries={' + legendEntries + '},\n ' \ 'legend image post style={xscale=2},\n ' \ 'legend cell align={left}' writeLatexMultiplePlots(outDir,'GTOT-Method-Comparison_Vff'+str(currentVff)+'-'+fileoptionName[g]+'.tex',xyData,axisoptions,dataoptions) legendEntries = '{$Contact zone size$}' dataoptions = ['blue,smooth,mark=*'] xyData = [] xyData.append(np.transpose(np.array([debondSize,CZsize]))) axisoptions = 'width=30cm,\n ' \ 'title={Contact zone size as function of debond size},\n ' \ 'title style={font=\\fontsize{40}{8}\\selectfont},\n ' \ 'xlabel style={at={(axis description cs:0.5,-0.02)},anchor=north,font=\\fontsize{44}{40}\\selectfont},\n ' \ 'ylabel style={at={(axis description cs:-0.025,.5)},anchor=south,font=\\fontsize{44}{40}\\selectfont},\n ' \ 'xlabel={$\\Delta\\theta\\left[^{\\circ}\\right]$},ylabel={$\\Delta\\varphi\\left[^{\\circ}\\right]$},\n ' \ 'xmin=' + str(0.0) + ',\n ' \ 'xmax=' + str(160.0) + ',\n ' \ 'ymin=' + str(0.0) + ',\n ' \ 'ymax=' + str(np.max(CZsize)) + ',\n ' \ 'tick align=outside,\n ' \ 'tick label style={font=\\huge},\n ' \ 'xmajorgrids,\n ' \ 'xtick={0.0,10.0,20.0,30.0,40.0,50.0,60.0,70.0,80.0,90.0,100.0,110.0,120.0,130.0,140.0,150.0,160.0,170.0,180.0},\n ' \ 'x grid style={lightgray!92.026143790849673!black},\n ' \ 'ymajorgrids,\n ' \ 'y grid style={lightgray!92.026143790849673!black},\n ' \ 'line width=0.5mm,\n ' \ 'legend style={draw=white!80.0!black,font=\\fontsize{28}{24}\\selectfont,row sep=15pt},\n ' \ 'legend entries={' + legendEntries + '},\n ' \ 'legend image post style={xscale=2},\n ' \ 'legend cell align={left}' if __name__ == "__main__": main(sys.argv[1:])
apache-2.0
interactiveaudiolab/nussl
recipes/wham/mask_inference.py
1
8175
""" This recipe trains and evaluates a mask infeerence model on the clean data from the WHAM dataset with 8k. It's divided into three big chunks: data preparation, training, and evaluation. Final output of this script: ┌────────────────────┬────────────────────┬───────────────────┐ │ │ OVERALL (N = 6000) │ │ ╞════════════════════╪════════════════════╪═══════════════════╡ │ SAR │ SDR │ SIR │ ├────────────────────┼────────────────────┼───────────────────┤ │ 11.184634122040006 │ 10.030014257966346 │ 16.82237234679051 │ └────────────────────┴────────────────────┴───────────────────┘ Last run on 3/20/20. """ import nussl from nussl import ml, datasets, utils, separation, evaluation import os import torch import multiprocessing from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor from torch import optim import logging import matplotlib.pyplot as plt import shutil import json import tqdm import glob import numpy as np import termtables # ---------------------------------------------------- # ------------------- SETTING UP --------------------- # ---------------------------------------------------- # seed this recipe for reproducibility utils.seed(0) # set up logging logging.basicConfig( format='%(asctime)s,%(msecs)d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d:%H:%M:%S', level=logging.INFO) # make sure this is set to WHAM root directory WHAM_ROOT = os.getenv("WHAM_ROOT") CACHE_ROOT = os.getenv("CACHE_ROOT") NUM_WORKERS = multiprocessing.cpu_count() // 4 OUTPUT_DIR = os.path.expanduser('~/.nussl/recipes/wham_mi/run2') RESULTS_DIR = os.path.join(OUTPUT_DIR, 'results') MODEL_PATH = os.path.join(OUTPUT_DIR, 'checkpoints', 'best.model.pth') DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' BATCH_SIZE = 25 MAX_EPOCHS = 100 CACHE_POPULATED = True LEARNING_RATE = 1e-3 PATIENCE = 5 GRAD_NORM = 2e-5 shutil.rmtree(os.path.join(RESULTS_DIR), ignore_errors=True) os.makedirs(RESULTS_DIR, exist_ok=True) shutil.rmtree(os.path.join(OUTPUT_DIR, 'tensorboard'), ignore_errors=True) def construct_transforms(cache_location): # stft will be 32ms wlen, 8ms hop, sqrt-hann, at 8khz sample rate by default tfm = datasets.transforms.Compose([ datasets.transforms.MagnitudeSpectrumApproximation(), # take stfts and get ibm datasets.transforms.MagnitudeWeights(), # get magnitude weights datasets.transforms.ToSeparationModel(), # convert to tensors datasets.transforms.Cache(cache_location), # up to here gets cached datasets.transforms.GetExcerpt(400) # get 400 frame excerpts (3.2 seconds) ]) return tfm def cache_dataset(_dataset): cache_dataloader = torch.utils.data.DataLoader( _dataset, num_workers=NUM_WORKERS, batch_size=BATCH_SIZE) ml.train.cache_dataset(cache_dataloader) _dataset.cache_populated = True tfm = construct_transforms(os.path.join(CACHE_ROOT, 'tr')) dataset = datasets.WHAM(WHAM_ROOT, split='tr', transform=tfm, cache_populated=CACHE_POPULATED) tfm = construct_transforms(os.path.join(CACHE_ROOT, 'cv')) val_dataset = datasets.WHAM(WHAM_ROOT, split='cv', transform=tfm, cache_populated=CACHE_POPULATED) if not CACHE_POPULATED: # cache datasets for speed cache_dataset(dataset) cache_dataset(val_dataset) # ---------------------------------------------------- # -------------------- TRAINING ---------------------- # ---------------------------------------------------- # reload after caching train_sampler = torch.utils.data.sampler.RandomSampler(dataset) val_sampler = torch.utils.data.sampler.RandomSampler(val_dataset) dataloader = torch.utils.data.DataLoader(dataset, num_workers=NUM_WORKERS, batch_size=BATCH_SIZE, sampler=train_sampler) val_dataloader = torch.utils.data.DataLoader(val_dataset, num_workers=NUM_WORKERS, batch_size=BATCH_SIZE, sampler=val_sampler) n_features = dataset[0]['mix_magnitude'].shape[1] # builds a baseline model with 4 recurrent layers, 600 hidden units, bidirectional # and 20 dimensional embedding config = ml.networks.builders.build_recurrent_mask_inference( n_features, 600, 4, True, 0.3, 2, ['sigmoid'], normalization_class='BatchNorm' ) model = ml.SeparationModel(config).to(DEVICE) logging.info(model) optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE) scheduler = optim.lr_scheduler.ReduceLROnPlateau( optimizer, factor=0.5, patience=PATIENCE) # set up the loss function loss_dictionary = { 'PermutationInvariantLoss': {'args': ['L1Loss'], 'weight': 1.0} } # set up closures for the forward and backward pass on one batch train_closure = ml.train.closures.TrainClosure( loss_dictionary, optimizer, model) val_closure = ml.train.closures.ValidationClosure( loss_dictionary, model) # set up engines for training and validation trainer, validator = ml.train.create_train_and_validation_engines( train_closure, val_closure, device=DEVICE) # attach handlers for visualizing output and saving the model ml.train.add_stdout_handler(trainer, validator) ml.train.add_validate_and_checkpoint( OUTPUT_DIR, model, optimizer, dataset, trainer, val_data=val_dataloader, validator=validator) ml.train.add_tensorboard_handler(OUTPUT_DIR, trainer) # add a handler to set up patience @trainer.on(ml.train.ValidationEvents.VALIDATION_COMPLETED) def step_scheduler(trainer): val_loss = trainer.state.epoch_history['validation/loss'][-1] scheduler.step(val_loss) # add a handler to set up gradient clipping @trainer.on(ml.train.BackwardsEvents.BACKWARDS_COMPLETED) def clip_gradient(trainer): torch.nn.utils.clip_grad_norm_(model.parameters(), GRAD_NORM) # train the model trainer.run(dataloader, max_epochs=MAX_EPOCHS) # ---------------------------------------------------- # ------------------- EVALUATION --------------------- # ---------------------------------------------------- test_dataset = datasets.WHAM(WHAM_ROOT, sample_rate=8000, split='tt') # make a deep clustering separator with an empty audio signal initially # this one will live on gpu and be used in a threadpool for speed dme = separation.deep.DeepMaskEstimation( nussl.AudioSignal(), model_path=MODEL_PATH, device='cuda') def forward_on_gpu(audio_signal): # set the audio signal of the object to this item's mix dme.audio_signal = audio_signal masks = dme.forward() return masks def separate_and_evaluate(item, masks): separator = separation.deep.DeepMaskEstimation(item['mix']) estimates = separator(masks) evaluator = evaluation.BSSEvalScale( list(item['sources'].values()), estimates, compute_permutation=True) scores = evaluator.evaluate() output_path = os.path.join(RESULTS_DIR, f"{item['mix'].file_name}.json") with open(output_path, 'w') as f: json.dump(scores, f) pool = ThreadPoolExecutor(max_workers=NUM_WORKERS) for i, item in enumerate(tqdm.tqdm(test_dataset)): masks = forward_on_gpu(item['mix']) if i == 0: separate_and_evaluate(item, masks) else: pool.submit(separate_and_evaluate, item, masks) pool.shutdown(wait=True) json_files = glob.glob(f"{RESULTS_DIR}/*.json") df = evaluation.aggregate_score_files(json_files) overall = df.mean() headers = ["", f"OVERALL (N = {df.shape[0]})", ""] metrics = ["SAR", "SDR", "SIR"] data = np.array(df.mean()).T data = [metrics, data] termtables.print(data, header=headers, padding=(0, 1), alignment="ccc")
mit
kcaluwae/tensegrity-el-simulator
examples/droptests/DropTestParameters.py
1
8571
''' Original Coded by: Ken Caluwaerts 2012-2013 <[email protected]> Edited by: Jonathan Bruce 2013 <[email protected]> Edited by: Kyle Morse summer 2013 <[email protected]> ''' import simulator_v2 as simulator import equilibrium_util as eu import mass_matrix import numpy as np from matplotlib import pylab as plt plt.ion() #create structure import icosahedron_payload_test import datetime from pytz import timezone rodMass = 0 ################################################################################# #################### Use these to change simulation parameters ################## ########################### All units are in Metric ############################# rod_lengthMax = 4.5 #length of strut in meters rod_lengthMin = 3.5 #length of strut in meters rod_lengthStep = .5 #length of strut in meters spring_outer_springConstantMax = 1600000 #N/m spring_inner_springConstantMax = 40000 #N/m spring_outer_springConstantMin = 1400000 #N/m spring_inner_springConstantMin = 30000 #N/m spring_outer_springConstantStep = 100000 #N/m spring_inner_springConstantStep = 10000 #N/m #drop_height = 5.0 #drop height in m/s #v_o = -np.sqrt(2*9.81*drop_height) #velocity on earth in m/s v_o = -11.4 D_o = 1.25 #outer diameter in inches D_i = 1.18 #inner diameter of strut in inches Area_b = 3.14*.25*(D_o**2-D_i**2)*0.000645 #Area of base converted to square meters densityAl = 2780 #density of Al 2014 in kg/m^3 payload_mass = 70. #mass of IMU payload kg payload_radius = .2 spring_damping = .10 default_gravity = True # The default is Earth's and will ignore user input for gravity gravity = 1.352 # Titan's Gravity, change this value for something other than default simulation_time = 150 # Simulation time in milliseconds stretch_out = .000001 #stretch for pretension in meters stretch_in = .000001 #stretch for pretension of inner springs in meters runs = 1 for rod_height in np.arange(rod_lengthMin,rod_lengthMax,rod_lengthStep): for ko in range(spring_outer_springConstantMin,spring_outer_springConstantMax,spring_outer_springConstantStep): for ki in range(spring_inner_springConstantMin,spring_inner_springConstantMax,spring_inner_springConstantStep): Volume_strut = Area_b*rod_height rod_mass = densityAl*Volume_strut N,B,C = icosahedron_payload_test.create_icosahedron(height=rod_height,payloadR=payload_radius) if B.shape[0]==7: rodMass = 1 N = N.T B = -B numInnerSprings = 12 #bar_sigma defines how to translate from generalized coordinates to Euclidean coordinates #this has to be consistent with the point of reference for the mass matrix (see below) #I always use 0 bar_sigma = np.zeros(B.shape[0]) constrained_nodes = np.zeros(N.shape[0]).astype(bool) #note: you can't constrain two ends of a bar, although you can add external fixations! #nodes 2,8,and 10 work best for constrained endpoints if more than 2 are constrained constrained_nodes[2] = 0 #fix a number of strut endpoints constrained_nodes[8] = 1 #fix a number of strut endpoints constrained_nodes[10] = 1 #fix a number of strut endpoints spring_k_1 = np.ones(C.shape[0]) #spring constants for i in range (spring_k_1.shape[0]): if i < spring_k_1.shape[0]-numInnerSprings: spring_k_1[i] = ko #Outer Springs else: spring_k_1[i] = ki #Inner Springs spring_d = np.ones(C.shape[0])*spring_damping #spring damping bar_lengths,spring_lengths = eu.compute_lengths(B,C,N.T) #spring equilibrium length spring_l0 = np.zeros(C.shape[0]) for i in range(spring_l0.shape[0]): if i<spring_l0.shape[0]-numInnerSprings: spring_l0[i]=spring_lengths[i]-stretch_out else: spring_l0[i]=spring_lengths[i]-stretch_in #compute mass matrices density_1 = lambda x:rod_mass density_2 = lambda x:payload_mass if rodMass == 1: bar_mass = np.array ([ mass_matrix.compute_mass_matrix (length = bar_lengths.ravel()[i], density = density_1, sigma=0.)[0] for i in range (B.shape[0]) ]) bar_mass[-1] = np.array([mass_matrix.compute_mass_matrix (length = bar_lengths.ravel()[i], density = density_2, sigma=0.)[0] ]) else: bar_mass = np.array ([ mass_matrix.compute_mass_matrix (length = bar_lengths.ravel()[i], density = density_1, sigma=None)[0] for i in range (B.shape[0]) ]) #compute external forces (gravity :) external_forces_1 = np.zeros(N.shape) if default_gravity == True: force_distribution_gravity = lambda x: (0,0,-9.81) # Earth's gravity else: force_distribution_gravity = lambda x: (0,0,-gravity) # Titan's Gravity for i in xrange(B.shape[0]): if i<(B.shape[0]-1): f1_1,f2_1 = mass_matrix.compute_consistent_nodal_forces_vector(length=bar_lengths.ravel()[i],density=density_1,force_distribution=force_distribution_gravity) from_ = B[i].argmin() to_ = B[i].argmax() external_forces_1[from_] = f1_1 external_forces_1[to_] = f2_1 else: f1_1,f2_1 = mass_matrix.compute_consistent_nodal_forces_vector(length=bar_lengths.ravel()[i],density=density_2,force_distribution=force_distribution_gravity) from_ = B[i].argmin() to_ = B[i].argmax() external_forces_1[from_] = f1_1 external_forces_1[to_] = f2_1 external_forces_1_func = lambda t: (1*t*external_forces_1) #gravity is applied #the second argument is the initial nodal velocity initVel = np.zeros(N.shape) initVel[:][:,2] = v_o #initialize the simulator sim = simulator.Simulator(N, initVel, constrained_nodes, B, bar_mass, bar_sigma, C, spring_k_1, spring_d, spring_l0, nodal_damping=0.05, two_way_spring=False,external_nodal_forces=external_forces_1_func) sim.initialize_ode()#rtol=1e-5,atol=1e-5)#integrator='rk4',control_dt=50000,internal_dt=2000,dt=0.002) sim.simulate() offsets = [] pos1 = [] l0 = sim.spring_l0.copy() sForce = [] simVel = [] simAccel = [] endVel = 0. posDiff = np.ones(simulation_time) numMin = 0. #FIRST SIMULATION: random forces applied along the springs. #The random forces are recorded for retesting later. for j in xrange(simulation_time): sim.simulate() pos1.append(sim.nodes_eucl.copy()) sForce.append(sim.spring_forces) simVel.append(sim.nodes_dot) simAccel.append(sim.Q_dot_dot) #run simulation until velocity is 25% of the absolute value of the original velocity #this stops the simulation just after the maximum deflection if (endVel <= -0.25*v_o): #Determine state of payload and nodes as well as forces aAccel = np.array(simAccel) payAccel = aAccel[:,6] aPos = np.array(pos1) CorrectPos = aPos[:,13]-aPos[0,13]*np.ones_like(aPos[:,13]) nodePos = aPos[:,0:11,2]-aPos[0,0:11,2] aForce = np.array(sForce) outerForce = aForce[:,0:24] innerForce = aForce[:,24:36] aVel = np.array(simVel) endVel = aVel[j,13,2] #determine if payload impacts strut below it #MUST RECALCULATE SECOND TERM IF NOT TWO POINT CONTACT posDiff[j] = aPos[j,13,2] - np.min(aPos[j,2,2])#time dependent only for 2 pt contact ie aPos[m,node,2] if posDiff[j] <= 0: num = np.abs(posDiff[j]) if num > numMin: numMin = num else: break if any(posDiff <= 0): c = open('ContactRodMass.txt','a') c.write('\r\n') c.write(str(datetime.datetime.now(timezone('US/Pacific-New')))) c.write('\nLength of rod: {}'.format(rod_height)) c.write('\nK_out: {}'.format(ko)) c.write('\nK_in: {}'.format(ki)) c.write('\nMax Force: {}'.format(np.max(sForce))) c.write('\nMax Acceleration:{}'.format(np.amax(payAccel)/9.81)) c.write('\nOvershoot: {}'.format(numMin)) c.write('\nTime: {}'.format(j)) c.close() else: gap = np.min(posDiff) n = open('No_ContactTest.txt','a') n.write('\r\n') n.write(str(datetime.datetime.now(timezone('US/Pacific-New')))) n.write('\nK_out: {}'.format(ko)) n.write('\nK_in: {}'.format(ki)) n.write('\nPayload Mass: {}'.format(payload_mass)) n.write('\nLength of rod: {}'.format(rod_height)) n.write('\nMax Force Outer: {}'.format(np.max(outerForce))) n.write('\nMax Force Inner: {}'.format(np.max(innerForce))) n.write('\nMax Acceleration: {}'.format(np.amax(payAccel)/9.81)) n.write('\nPayload Deflection: {}'.format(np.min(CorrectPos))) n.write('\nDistance from payload to strut: {}'.format(gap)) n.write('\nTime: {}'.format(j)) n.write('\r\n') n.close() print(runs) runs += 1
mit
jgrizou/explauto
explauto/models/gaussian.py
2
4081
import numpy class Gaussian(object): """ Represents a single Gaussian probability density function. WARNING: some methods of this class may accept either one vector, as a (d,) shaped array, or many, as a (n, d) shaped array. For d = 1, do NOT use (n,) shaped array instead of (n, 1). The last formulation brings an ambiguity that is NOT handled. """ def __init__(self, mu, sigma, inv_sigma=False): """ Creates the Gaussian with the given parameters. @param mu : mean, given as (d,) matrix @param sigma : covariance matrix @param inv_sigma : boolean indicating if sigma is the inverse covariance matrix or not (default: False) """ self.mu = mu if not inv_sigma: self.sigma = sigma self.inv = numpy.linalg.inv(self.sigma) else: self.sigma = numpy.linalg.inv(sigma) self.inv = self.sigma self.det = numpy.absolute(numpy.linalg.det(self.sigma)) def generate(self, number=None): """Generates vectors from the Gaussian. @param number: optional, if given, generates more than one vector. @returns: generated vector(s), either as a one dimensional array (shape (d,)) if number is not set, or as a two dimensional array (shape (n, d)) if n is given as number parameter. """ if number is None: return numpy.random.multivariate_normal(self.mu, self.sigma) else: return numpy.random.multivariate_normal(self.mu, self.sigma, number) def normal(self, x): """Returns the density of probability of x or the one dimensional array of all probabilities if many vectors are given. @param x : may be of (n,) shape. """ return numpy.exp(self.log_normal(x)) def log_normal(self, x): """ Returns the log density of probability of x or the one dimensional array of all log probabilities if many vectors are given. @param x : may be of (n,) shape """ d = self.mu.shape[0] xc = x - self.mu if len(x.shape) == 1: exp_term = numpy.sum(numpy.multiply(xc, numpy.dot(self.inv, xc))) else: exp_term = numpy.sum(numpy.multiply(xc, numpy.dot(xc, self.inv)), axis=1) return -.5 * (d * numpy.log(2 * numpy.pi) + numpy.log(self.det) + exp_term) def cond_gaussian(self, dims, v): """ Returns mean and variance of the conditional probability defined by a set of dimension and at a given vector. @param dims : set of dimension to which respect conditional probability is taken @param v : vector defining the position where the conditional probability is taken. v shape is defined by the size of the set of dims. """ (d, c, b, a) = numpy.split_matrix(self.sigma, dims) (mu2, mu1) = numpy.split_vector(self.mu, dims) d_inv = numpy.linalg.inv(d) mu = mu1 + numpy.dot(numpy.dot(b, d_inv), v - mu2) sigma = a - numpy.dot(b, numpy.dot(d_inv, c)) return Gaussian(mu, sigma) # TODO : use a representation that allows different values of v # without computing schur each time. def get_entropy(self): """Computes (analyticaly) the entropy of the Gaussian distribution. """ dim = self.mu.shape[0] entropy = 0.5 * (dim * (numpy.log(2. * numpy.pi) + 1.) + numpy.log(self.det)) return entropy def get_display_ellipse2D(self): from matplotlib.patches import Ellipse if self.mu.shape != (2,): raise ValueError('Not a 2 dimensional gaussian') (val, vect) = numpy.linalg.eig(self.sigma) el = Ellipse(self.mu, 3.5 * numpy.sqrt(val[0]), 3.5 * numpy.sqrt(val[1]), 180. * numpy.arctan2(vect[1, 0], vect[0, 0]) / numpy.pi, fill=False, linewidth=2) return el
gpl-3.0
aminert/scikit-learn
sklearn/decomposition/tests/test_kernel_pca.py
155
8058
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import (assert_array_almost_equal, assert_less, assert_equal, assert_not_equal, assert_raises) from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.metrics.pairwise import rbf_kernel def test_kernel_pca(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) def histogram(x, y, **kwargs): # Histogram kernel implemented as a callable. assert_equal(kwargs, {}) # no kernel_params that we didn't ask for return np.minimum(x, y).sum() for eigen_solver in ("auto", "dense", "arpack"): for kernel in ("linear", "rbf", "poly", histogram): # histogram kernel produces singular matrix inside linalg.solve # XXX use a least-squares approximation? inv = not callable(kernel) # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=inv) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # non-regression test: previously, gamma would be 0 by default, # forcing all eigenvalues to 0 under the poly kernel assert_not_equal(X_fit_transformed, []) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform if inv: X_pred2 = kpca.inverse_transform(X_pred_transformed) assert_equal(X_pred2.shape, X_pred.shape) def test_invalid_parameters(): assert_raises(ValueError, KernelPCA, 10, fit_inverse_transform=True, kernel='precomputed') def test_kernel_pca_sparse(): rng = np.random.RandomState(0) X_fit = sp.csr_matrix(rng.random_sample((5, 4))) X_pred = sp.csr_matrix(rng.random_sample((2, 4))) for eigen_solver in ("auto", "arpack"): for kernel in ("linear", "rbf", "poly"): # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=False) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform # X_pred2 = kpca.inverse_transform(X_pred_transformed) # assert_equal(X_pred2.shape, X_pred.shape) def test_kernel_pca_linear_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) # for a linear kernel, kernel PCA should find the same projection as PCA # modulo the sign (direction) # fit only the first four components: fifth is near zero eigenvalue, so # can be trimmed due to roundoff error assert_array_almost_equal( np.abs(KernelPCA(4).fit(X_fit).transform(X_pred)), np.abs(PCA(4).fit(X_fit).transform(X_pred))) def test_kernel_pca_n_components(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): for c in [1, 2, 4]: kpca = KernelPCA(n_components=c, eigen_solver=eigen_solver) shape = kpca.fit(X_fit).transform(X_pred).shape assert_equal(shape, (2, c)) def test_remove_zero_eig(): X = np.array([[1 - 1e-30, 1], [1, 1], [1, 1 - 1e-20]]) # n_components=None (default) => remove_zero_eig is True kpca = KernelPCA() Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) kpca = KernelPCA(n_components=2) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 2)) kpca = KernelPCA(n_components=2, remove_zero_eig=True) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) def test_kernel_pca_precomputed(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): X_kpca = KernelPCA(4, eigen_solver=eigen_solver).\ fit(X_fit).transform(X_pred) X_kpca2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_pred, X_fit.T)) X_kpca_train = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit_transform(np.dot(X_fit, X_fit.T)) X_kpca_train2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_fit, X_fit.T)) assert_array_almost_equal(np.abs(X_kpca), np.abs(X_kpca2)) assert_array_almost_equal(np.abs(X_kpca_train), np.abs(X_kpca_train2)) def test_kernel_pca_invalid_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((2, 4)) kpca = KernelPCA(kernel="tototiti") assert_raises(ValueError, kpca.fit, X_fit) def test_gridsearch_pipeline(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="rbf", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())]) param_grid = dict(kernel_pca__gamma=2. ** np.arange(-2, 2)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) grid_search.fit(X, y) assert_equal(grid_search.best_score_, 1) def test_gridsearch_pipeline_precomputed(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model using a precomputed kernel. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="precomputed", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())]) param_grid = dict(Perceptron__n_iter=np.arange(1, 5)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) X_kernel = rbf_kernel(X, gamma=2.) grid_search.fit(X_kernel, y) assert_equal(grid_search.best_score_, 1) def test_nested_circles(): # Test the linear separability of the first 2D KPCA transform X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) # 2D nested circles are not linearly separable train_score = Perceptron().fit(X, y).score(X, y) assert_less(train_score, 0.8) # Project the circles data into the first 2 components of a RBF Kernel # PCA model. # Note that the gamma value is data dependent. If this test breaks # and the gamma value has to be updated, the Kernel PCA example will # have to be updated too. kpca = KernelPCA(kernel="rbf", n_components=2, fit_inverse_transform=True, gamma=2.) X_kpca = kpca.fit_transform(X) # The data is perfectly linearly separable in that space train_score = Perceptron().fit(X_kpca, y).score(X_kpca, y) assert_equal(train_score, 1.0)
bsd-3-clause
alexandrovteam/pyImagingMSpec
docs/conf.py
2
10147
# -*- coding: utf-8 -*- # # SM_distributed documentation build configuration file, created by # sphinx-quickstart on Tue Feb 9 15:19:18 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys import sphinx_rtd_theme from recommonmark.parser import CommonMarkParser sys.path.extend(['.', '..']) import rtd_gen_docs from pyImagingMSpec import __version__ pkg_name = u'pyImagingMSpec' pkg_name_lowercase = u'pyimagingmspec' rtd_gen_docs.main() # see http://www.sphinx-doc.org/en/stable/ext/autodoc.html#confval-autodoc_mock_imports autodoc_mock_imports = ['h5py', 'matplotlib.pyplot', 'numpy', 'pyMS', 'pyMS.mass_spectrum', 'pyspark', 'scipy', 'scipy.optimize', 'scipy.stats'] # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('..')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.viewcode', ] source_parsers = { '.md': CommonMarkParser, } # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: source_suffix = ['.rst', '.md'] # source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = pkg_name copyright = u'2016, Alexandrov Team' author = u'Alexandrov Team' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = __version__ # The full version, including alpha/beta/rc tags. release = __version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' # html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value # html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. # html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = '{}doc'.format(pkg_name) # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', # Latex figure (float) alignment # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, '{}.tex'.format(pkg_name), u' Documentation'.format(pkg_name), u'Alexandrov Team', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, pkg_name_lowercase, u'{} Documentation'.format(pkg_name), [author], 1) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, pkg_name, u'{} Documentation'.format(pkg_name), author, pkg_name, 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # texinfo_no_detailmenu = False
apache-2.0
mattsmart/biomodels
agent_based_models/abm_conjugation_krone/plot_plasmids.py
1
1594
import matplotlib.pyplot as plt def plasmid_stats(lattice, dict_counts): keys = ['R', 'D', 'T'] plasmid_counts_by_type = {key: [0] * dict_counts[key] for key in keys} cell_type_iterator = {key: 0 for key in keys} # get distribution n = len(lattice) for i in xrange(n): for j in xrange(n): cell = lattice[i][j] if cell.label != '_': idx = cell_type_iterator[cell.label] plasmid_counts_by_type[cell.label][idx] = cell.plasmid_amensal cell_type_iterator[cell.label] += 1 return plasmid_counts_by_type def plasmid_plotter(plasmid_counts, plot_path): if len(plasmid_counts) > 0: total_cells = len(plasmid_counts) f = plt.figure() plt.hist(plasmid_counts) ax = plt.gca() ax.set_title('Plasmid Count Histogram (cells = %d)' % total_cells) ax.set_ylabel('Number of cells') ax.set_xlabel('Plasmid Count') f.set_size_inches(20.0, 8.0) # alternative: 20.0, 8.0 f.tight_layout() plt.savefig(plot_path) plt.clf() return def plasmid_plotter_wrapper(lattice, dict_counts, time, plot_dir): plasmid_counts_by_type = plasmid_stats(lattice, dict_counts) plasmid_plotter(plasmid_counts_by_type['R'], plot_dir + 'R_plasmid_histogram_at_time_%f' % time + '.png') plasmid_plotter(plasmid_counts_by_type['D'], plot_dir + 'D_plasmid_histogram_at_time_%f' % time + '.png') plasmid_plotter(plasmid_counts_by_type['T'], plot_dir + 'T_plasmid_histogram_at_time_%f' % time + '.png') return
mit
SMTorg/smt
doc/preprocess_test.py
3
3771
""" Author: Dr. John T. Hwang <[email protected]> This package is distributed under New BSD license. """ import os, sys import inspect import importlib import contextlib try: from StringIO import StringIO except: from io import StringIO import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt @contextlib.contextmanager def stdoutIO(stdout=None): old = sys.stdout if stdout is None: stdout = StringIO() sys.stdout = stdout yield stdout sys.stdout = old def process_test(root, file_name, iline, line): file_path = root + "/" + file_name embed_num_indent = line.find(".. embed-test") if line[:embed_num_indent] != " " * embed_num_indent: return line include_print_output = ( "embed-test-print" in line or "embed-test-print-plot" in line or "embed-test-print-plot" in line ) include_plot_output = ( "embed-test-plot" in line or "embed-test-print-plot" in line or "embed-test-print-plot" in line ) split_line = line.replace(" ", "").split(",") if len(split_line) != 3 or len(split_line[0].split("::")) != 2: raise Exception( "Invalid format for embed-test in file {} line {}".format( file_path, iline + 1 ) ) py_file_path = split_line[0].split("::")[1] class_name = split_line[1] method_name = split_line[2][:-1] index = len(py_file_path.split("/")[-1]) py_root = py_file_path[:-index] py_file_name = py_file_path[-index:] sys.path.append(os.path.dirname(os.path.realpath(__file__)) + "/" + py_root) py_module = importlib.import_module(py_file_name[:-3]) obj = getattr(py_module, class_name) method = getattr(obj, method_name) method_lines = inspect.getsource(method).split("\n") for imethod_line, method_line in enumerate(method_lines): if "def" in method_line and method_name in method_line: imethod_line += 1 break method_lines = method_lines[imethod_line:] first_line = method_lines[0] py_num_indent = first_line.find(first_line.strip()) for imethod_line, method_line in enumerate(method_lines): method_lines[imethod_line] = method_line[py_num_indent:] replacement_lines = [] replacement_lines.append(" " * embed_num_indent + ".. code-block:: python\n") replacement_lines.append("\n") replacement_lines.extend( [ " " * embed_num_indent + " " * 2 + method_line + "\n" for method_line in method_lines ] ) if include_print_output: joined_method_lines = "\n".join(method_lines) with stdoutIO() as s: exec(joined_method_lines) output_lines = s.getvalue().split("\n") if len(output_lines) > 1: replacement_lines.append(" " * embed_num_indent + "::\n") replacement_lines.append("\n") replacement_lines.extend( [ " " * embed_num_indent + " " * 2 + output_line + "\n" for output_line in output_lines ] ) if include_plot_output: joined_method_lines = "\n".join(method_lines) plt.clf() with stdoutIO() as s: exec(joined_method_lines) abs_plot_name = file_path[:-5] + ".png" plt.savefig(abs_plot_name) rel_plot_name = file_name[:-5] + ".png" replacement_lines.append( " " * embed_num_indent + ".. figure:: {}\n".format(rel_plot_name) ) replacement_lines.append(" " * embed_num_indent + " :scale: 80 %\n") replacement_lines.append(" " * embed_num_indent + " :align: center\n") return replacement_lines
bsd-3-clause
trungnt13/scikit-learn
benchmarks/bench_isotonic.py
268
3046
""" Benchmarks of isotonic regression performance. We generate a synthetic dataset of size 10^n, for n in [min, max], and examine the time taken to run isotonic regression over the dataset. The timings are then output to stdout, or visualized on a log-log scale with matplotlib. This alows the scaling of the algorithm with the problem size to be visualized and understood. """ from __future__ import print_function import numpy as np import gc from datetime import datetime from sklearn.isotonic import isotonic_regression from sklearn.utils.bench import total_seconds import matplotlib.pyplot as plt import argparse def generate_perturbed_logarithm_dataset(size): return np.random.randint(-50, 50, size=n) \ + 50. * np.log(1 + np.arange(n)) def generate_logistic_dataset(size): X = np.sort(np.random.normal(size=size)) return np.random.random(size=size) < 1.0 / (1.0 + np.exp(-X)) DATASET_GENERATORS = { 'perturbed_logarithm': generate_perturbed_logarithm_dataset, 'logistic': generate_logistic_dataset } def bench_isotonic_regression(Y): """ Runs a single iteration of isotonic regression on the input data, and reports the total time taken (in seconds). """ gc.collect() tstart = datetime.now() isotonic_regression(Y) delta = datetime.now() - tstart return total_seconds(delta) if __name__ == '__main__': parser = argparse.ArgumentParser( description="Isotonic Regression benchmark tool") parser.add_argument('--iterations', type=int, required=True, help="Number of iterations to average timings over " "for each problem size") parser.add_argument('--log_min_problem_size', type=int, required=True, help="Base 10 logarithm of the minimum problem size") parser.add_argument('--log_max_problem_size', type=int, required=True, help="Base 10 logarithm of the maximum problem size") parser.add_argument('--show_plot', action='store_true', help="Plot timing output with matplotlib") parser.add_argument('--dataset', choices=DATASET_GENERATORS.keys(), required=True) args = parser.parse_args() timings = [] for exponent in range(args.log_min_problem_size, args.log_max_problem_size): n = 10 ** exponent Y = DATASET_GENERATORS[args.dataset](n) time_per_iteration = \ [bench_isotonic_regression(Y) for i in range(args.iterations)] timing = (n, np.mean(time_per_iteration)) timings.append(timing) # If we're not plotting, dump the timing to stdout if not args.show_plot: print(n, np.mean(time_per_iteration)) if args.show_plot: plt.plot(*zip(*timings)) plt.title("Average time taken running isotonic regression") plt.xlabel('Number of observations') plt.ylabel('Time (s)') plt.axis('tight') plt.loglog() plt.show()
bsd-3-clause
marcocaccin/scikit-learn
sklearn/neighbors/approximate.py
30
22370
"""Approximate nearest neighbor search""" # Author: Maheshakya Wijewardena <[email protected]> # Joel Nothman <[email protected]> import numpy as np import warnings from scipy import sparse from .base import KNeighborsMixin, RadiusNeighborsMixin from ..base import BaseEstimator from ..utils.validation import check_array from ..utils import check_random_state from ..metrics.pairwise import pairwise_distances from ..random_projection import GaussianRandomProjection __all__ = ["LSHForest"] HASH_DTYPE = '>u4' MAX_HASH_SIZE = np.dtype(HASH_DTYPE).itemsize * 8 def _find_matching_indices(tree, bin_X, left_mask, right_mask): """Finds indices in sorted array of integers. Most significant h bits in the binary representations of the integers are matched with the items' most significant h bits. """ left_index = np.searchsorted(tree, bin_X & left_mask) right_index = np.searchsorted(tree, bin_X | right_mask, side='right') return left_index, right_index def _find_longest_prefix_match(tree, bin_X, hash_size, left_masks, right_masks): """Find the longest prefix match in tree for each query in bin_X Most significant bits are considered as the prefix. """ hi = np.empty_like(bin_X, dtype=np.intp) hi.fill(hash_size) lo = np.zeros_like(bin_X, dtype=np.intp) res = np.empty_like(bin_X, dtype=np.intp) left_idx, right_idx = _find_matching_indices(tree, bin_X, left_masks[hi], right_masks[hi]) found = right_idx > left_idx res[found] = lo[found] = hash_size r = np.arange(bin_X.shape[0]) kept = r[lo < hi] # indices remaining in bin_X mask while kept.shape[0]: mid = (lo.take(kept) + hi.take(kept)) // 2 left_idx, right_idx = _find_matching_indices(tree, bin_X.take(kept), left_masks[mid], right_masks[mid]) found = right_idx > left_idx mid_found = mid[found] lo[kept[found]] = mid_found + 1 res[kept[found]] = mid_found hi[kept[~found]] = mid[~found] kept = r[lo < hi] return res class ProjectionToHashMixin(object): """Turn a transformed real-valued array into a hash""" @staticmethod def _to_hash(projected): if projected.shape[1] % 8 != 0: raise ValueError('Require reduced dimensionality to be a multiple ' 'of 8 for hashing') # XXX: perhaps non-copying operation better out = np.packbits((projected > 0).astype(int)).view(dtype=HASH_DTYPE) return out.reshape(projected.shape[0], -1) def fit_transform(self, X, y=None): self.fit(X) return self.transform(X) def transform(self, X, y=None): return self._to_hash(super(ProjectionToHashMixin, self).transform(X)) class GaussianRandomProjectionHash(ProjectionToHashMixin, GaussianRandomProjection): """Use GaussianRandomProjection to produce a cosine LSH fingerprint""" def __init__(self, n_components=8, random_state=None): super(GaussianRandomProjectionHash, self).__init__( n_components=n_components, random_state=random_state) def _array_of_arrays(list_of_arrays): """Creates an array of array from list of arrays.""" out = np.empty(len(list_of_arrays), dtype=object) out[:] = list_of_arrays return out class LSHForest(BaseEstimator, KNeighborsMixin, RadiusNeighborsMixin): """Performs approximate nearest neighbor search using LSH forest. LSH Forest: Locality Sensitive Hashing forest [1] is an alternative method for vanilla approximate nearest neighbor search methods. LSH forest data structure has been implemented using sorted arrays and binary search and 32 bit fixed-length hashes. Random projection is used as the hash family which approximates cosine distance. The cosine distance is defined as ``1 - cosine_similarity``: the lowest value is 0 (identical point) but it is bounded above by 2 for the farthest points. Its value does not depend on the norm of the vector points but only on their relative angles. Read more in the :ref:`User Guide <approximate_nearest_neighbors>`. Parameters ---------- n_estimators : int (default = 10) Number of trees in the LSH Forest. min_hash_match : int (default = 4) lowest hash length to be searched when candidate selection is performed for nearest neighbors. n_candidates : int (default = 10) Minimum number of candidates evaluated per estimator, assuming enough items meet the `min_hash_match` constraint. n_neighbors : int (default = 5) Number of neighbors to be returned from query function when it is not provided to the :meth:`kneighbors` method. radius : float, optinal (default = 1.0) Radius from the data point to its neighbors. This is the parameter space to use by default for the :meth`radius_neighbors` queries. radius_cutoff_ratio : float, optional (default = 0.9) A value ranges from 0 to 1. Radius neighbors will be searched until the ratio between total neighbors within the radius and the total candidates becomes less than this value unless it is terminated by hash length reaching `min_hash_match`. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- hash_functions_ : list of GaussianRandomProjectionHash objects Hash function g(p,x) for a tree is an array of 32 randomly generated float arrays with the same dimenstion as the data set. This array is stored in GaussianRandomProjectionHash object and can be obtained from ``components_`` attribute. trees_ : array, shape (n_estimators, n_samples) Each tree (corresponding to a hash function) contains an array of sorted hashed values. The array representation may change in future versions. original_indices_ : array, shape (n_estimators, n_samples) Original indices of sorted hashed values in the fitted index. References ---------- .. [1] M. Bawa, T. Condie and P. Ganesan, "LSH Forest: Self-Tuning Indexes for Similarity Search", WWW '05 Proceedings of the 14th international conference on World Wide Web, 651-660, 2005. Examples -------- >>> from sklearn.neighbors import LSHForest >>> X_train = [[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]] >>> X_test = [[9, 1, 6], [3, 1, 10], [7, 10, 3]] >>> lshf = LSHForest(random_state=42) >>> lshf.fit(X_train) # doctest: +NORMALIZE_WHITESPACE LSHForest(min_hash_match=4, n_candidates=50, n_estimators=10, n_neighbors=5, radius=1.0, radius_cutoff_ratio=0.9, random_state=42) >>> distances, indices = lshf.kneighbors(X_test, n_neighbors=2) >>> distances # doctest: +ELLIPSIS array([[ 0.069..., 0.149...], [ 0.229..., 0.481...], [ 0.004..., 0.014...]]) >>> indices array([[1, 2], [2, 0], [4, 0]]) """ def __init__(self, n_estimators=10, radius=1.0, n_candidates=50, n_neighbors=5, min_hash_match=4, radius_cutoff_ratio=.9, random_state=None): self.n_estimators = n_estimators self.radius = radius self.random_state = random_state self.n_candidates = n_candidates self.n_neighbors = n_neighbors self.min_hash_match = min_hash_match self.radius_cutoff_ratio = radius_cutoff_ratio def _compute_distances(self, query, candidates): """Computes the cosine distance. Distance is from the query to points in the candidates array. Returns argsort of distances in the candidates array and sorted distances. """ if candidates.shape == (0,): # needed since _fit_X[np.array([])] doesn't work if _fit_X sparse return np.empty(0, dtype=np.int), np.empty(0, dtype=float) if sparse.issparse(self._fit_X): candidate_X = self._fit_X[candidates] else: candidate_X = self._fit_X.take(candidates, axis=0, mode='clip') distances = pairwise_distances(query, candidate_X, metric='cosine')[0] distance_positions = np.argsort(distances) distances = distances.take(distance_positions, mode='clip', axis=0) return distance_positions, distances def _generate_masks(self): """Creates left and right masks for all hash lengths.""" tri_size = MAX_HASH_SIZE + 1 # Called once on fitting, output is independent of hashes left_mask = np.tril(np.ones((tri_size, tri_size), dtype=int))[:, 1:] right_mask = left_mask[::-1, ::-1] self._left_mask = np.packbits(left_mask).view(dtype=HASH_DTYPE) self._right_mask = np.packbits(right_mask).view(dtype=HASH_DTYPE) def _get_candidates(self, query, max_depth, bin_queries, n_neighbors): """Performs the Synchronous ascending phase. Returns an array of candidates, their distance ranks and distances. """ index_size = self._fit_X.shape[0] # Number of candidates considered including duplicates # XXX: not sure whether this is being calculated correctly wrt # duplicates from different iterations through a single tree n_candidates = 0 candidate_set = set() min_candidates = self.n_candidates * self.n_estimators while (max_depth > self.min_hash_match and (n_candidates < min_candidates or len(candidate_set) < n_neighbors)): left_mask = self._left_mask[max_depth] right_mask = self._right_mask[max_depth] for i in range(self.n_estimators): start, stop = _find_matching_indices(self.trees_[i], bin_queries[i], left_mask, right_mask) n_candidates += stop - start candidate_set.update( self.original_indices_[i][start:stop].tolist()) max_depth -= 1 candidates = np.fromiter(candidate_set, count=len(candidate_set), dtype=np.intp) # For insufficient candidates, candidates are filled. # Candidates are filled from unselected indices uniformly. if candidates.shape[0] < n_neighbors: warnings.warn( "Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (n_neighbors, self.min_hash_match)) remaining = np.setdiff1d(np.arange(0, index_size), candidates) to_fill = n_neighbors - candidates.shape[0] candidates = np.concatenate((candidates, remaining[:to_fill])) ranks, distances = self._compute_distances(query, candidates.astype(int)) return (candidates[ranks[:n_neighbors]], distances[:n_neighbors]) def _get_radius_neighbors(self, query, max_depth, bin_queries, radius): """Finds radius neighbors from the candidates obtained. Their distances from query are smaller than radius. Returns radius neighbors and distances. """ ratio_within_radius = 1 threshold = 1 - self.radius_cutoff_ratio total_candidates = np.array([], dtype=int) total_neighbors = np.array([], dtype=int) total_distances = np.array([], dtype=float) while (max_depth > self.min_hash_match and ratio_within_radius > threshold): left_mask = self._left_mask[max_depth] right_mask = self._right_mask[max_depth] candidates = [] for i in range(self.n_estimators): start, stop = _find_matching_indices(self.trees_[i], bin_queries[i], left_mask, right_mask) candidates.extend( self.original_indices_[i][start:stop].tolist()) candidates = np.setdiff1d(candidates, total_candidates) total_candidates = np.append(total_candidates, candidates) ranks, distances = self._compute_distances(query, candidates) m = np.searchsorted(distances, radius, side='right') positions = np.searchsorted(total_distances, distances[:m]) total_neighbors = np.insert(total_neighbors, positions, candidates[ranks[:m]]) total_distances = np.insert(total_distances, positions, distances[:m]) ratio_within_radius = (total_neighbors.shape[0] / float(total_candidates.shape[0])) max_depth = max_depth - 1 return total_neighbors, total_distances def fit(self, X, y=None): """Fit the LSH forest on the data. This creates binary hashes of input data points by getting the dot product of input points and hash_function then transforming the projection into a binary string array based on the sign (positive/negative) of the projection. A sorted array of binary hashes is created. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- self : object Returns self. """ self._fit_X = check_array(X, accept_sparse='csr') # Creates a g(p,x) for each tree self.hash_functions_ = [] self.trees_ = [] self.original_indices_ = [] rng = check_random_state(self.random_state) int_max = np.iinfo(np.int32).max for i in range(self.n_estimators): # This is g(p,x) for a particular tree. # Builds a single tree. Hashing is done on an array of data points. # `GaussianRandomProjection` is used for hashing. # `n_components=hash size and n_features=n_dim. hasher = GaussianRandomProjectionHash(MAX_HASH_SIZE, rng.randint(0, int_max)) hashes = hasher.fit_transform(self._fit_X)[:, 0] original_index = np.argsort(hashes) bin_hashes = hashes[original_index] self.original_indices_.append(original_index) self.trees_.append(bin_hashes) self.hash_functions_.append(hasher) self._generate_masks() return self def _query(self, X): """Performs descending phase to find maximum depth.""" # Calculate hashes of shape (n_samples, n_estimators, [hash_size]) bin_queries = np.asarray([hasher.transform(X)[:, 0] for hasher in self.hash_functions_]) bin_queries = np.rollaxis(bin_queries, 1) # descend phase depths = [_find_longest_prefix_match(tree, tree_queries, MAX_HASH_SIZE, self._left_mask, self._right_mask) for tree, tree_queries in zip(self.trees_, np.rollaxis(bin_queries, 1))] return bin_queries, np.max(depths, axis=0) def kneighbors(self, X, n_neighbors=None, return_distance=True): """Returns n_neighbors of approximate nearest neighbors. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single query. n_neighbors : int, opitonal (default = None) Number of neighbors required. If not provided, this will return the number specified at the initialization. return_distance : boolean, optional (default = False) Returns the distances of neighbors if set to True. Returns ------- dist : array, shape (n_samples, n_neighbors) Array representing the cosine distances to each point, only present if return_distance=True. ind : array, shape (n_samples, n_neighbors) Indices of the approximate nearest points in the population matrix. """ if not hasattr(self, 'hash_functions_'): raise ValueError("estimator should be fitted.") if n_neighbors is None: n_neighbors = self.n_neighbors X = check_array(X, accept_sparse='csr') neighbors, distances = [], [] bin_queries, max_depth = self._query(X) for i in range(X.shape[0]): neighs, dists = self._get_candidates(X[[i]], max_depth[i], bin_queries[i], n_neighbors) neighbors.append(neighs) distances.append(dists) if return_distance: return np.array(distances), np.array(neighbors) else: return np.array(neighbors) def radius_neighbors(self, X, radius=None, return_distance=True): """Finds the neighbors within a given radius of a point or points. Return the indices and distances of some points from the dataset lying in a ball with size ``radius`` around the points of the query array. Points lying on the boundary are included in the results. The result points are *not* necessarily sorted by distance to their query point. LSH Forest being an approximate method, some true neighbors from the indexed dataset might be missing from the results. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single query. radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional (default = False) Returns the distances of neighbors if set to True. Returns ------- dist : array, shape (n_samples,) of arrays Each element is an array representing the cosine distances to some points found within ``radius`` of the respective query. Only present if ``return_distance=True``. ind : array, shape (n_samples,) of arrays Each element is an array of indices for neighbors within ``radius`` of the respective query. """ if not hasattr(self, 'hash_functions_'): raise ValueError("estimator should be fitted.") if radius is None: radius = self.radius X = check_array(X, accept_sparse='csr') neighbors, distances = [], [] bin_queries, max_depth = self._query(X) for i in range(X.shape[0]): neighs, dists = self._get_radius_neighbors(X[[i]], max_depth[i], bin_queries[i], radius) neighbors.append(neighs) distances.append(dists) if return_distance: return _array_of_arrays(distances), _array_of_arrays(neighbors) else: return _array_of_arrays(neighbors) def partial_fit(self, X, y=None): """ Inserts new data into the already fitted LSH Forest. Cost is proportional to new total size, so additions should be batched. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) New data point to be inserted into the LSH Forest. """ X = check_array(X, accept_sparse='csr') if not hasattr(self, 'hash_functions_'): return self.fit(X) if X.shape[1] != self._fit_X.shape[1]: raise ValueError("Number of features in X and" " fitted array does not match.") n_samples = X.shape[0] n_indexed = self._fit_X.shape[0] for i in range(self.n_estimators): bin_X = self.hash_functions_[i].transform(X)[:, 0] # gets the position to be added in the tree. positions = self.trees_[i].searchsorted(bin_X) # adds the hashed value into the tree. self.trees_[i] = np.insert(self.trees_[i], positions, bin_X) # add the entry into the original_indices_. self.original_indices_[i] = np.insert(self.original_indices_[i], positions, np.arange(n_indexed, n_indexed + n_samples)) # adds the entry into the input_array. if sparse.issparse(X) or sparse.issparse(self._fit_X): self._fit_X = sparse.vstack((self._fit_X, X)) else: self._fit_X = np.row_stack((self._fit_X, X)) return self
bsd-3-clause
depet/scikit-learn
sklearn/preprocessing/label.py
1
12652
# Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Andreas Mueller <[email protected]> # License: BSD 3 clause import numpy as np from ..base import BaseEstimator, TransformerMixin from ..utils.fixes import unique from ..utils import deprecated, column_or_1d from ..utils.multiclass import unique_labels from ..utils.multiclass import type_of_target from ..externals import six zip = six.moves.zip map = six.moves.map __all__ = [ 'label_binarize', 'LabelBinarizer', 'LabelEncoder', ] class LabelEncoder(BaseEstimator, TransformerMixin): """Encode labels with value between 0 and n_classes-1. Attributes ---------- `classes_` : array of shape (n_class,) Holds the label for each class. Examples -------- `LabelEncoder` can be used to normalize labels. >>> from sklearn import preprocessing >>> le = preprocessing.LabelEncoder() >>> le.fit([1, 2, 2, 6]) LabelEncoder() >>> le.classes_ array([1, 2, 6]) >>> le.transform([1, 1, 2, 6]) #doctest: +ELLIPSIS array([0, 0, 1, 2]...) >>> le.inverse_transform([0, 0, 1, 2]) array([1, 1, 2, 6]) It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical labels. >>> le = preprocessing.LabelEncoder() >>> le.fit(["paris", "paris", "tokyo", "amsterdam"]) LabelEncoder() >>> list(le.classes_) ['amsterdam', 'paris', 'tokyo'] >>> le.transform(["tokyo", "tokyo", "paris"]) #doctest: +ELLIPSIS array([2, 2, 1]...) >>> list(le.inverse_transform([2, 2, 1])) ['tokyo', 'tokyo', 'paris'] """ def _check_fitted(self): if not hasattr(self, "classes_"): raise ValueError("LabelEncoder was not fitted yet.") def fit(self, y): """Fit label encoder Parameters ---------- y : array-like of shape (n_samples,) Target values. Returns ------- self : returns an instance of self. """ y = column_or_1d(y, warn=True) self.classes_ = np.unique(y) return self def fit_transform(self, y): """Fit label encoder and return encoded labels Parameters ---------- y : array-like of shape [n_samples] Target values. Returns ------- y : array-like of shape [n_samples] """ y = column_or_1d(y, warn=True) self.classes_, y = unique(y, return_inverse=True) return y def transform(self, y): """Transform labels to normalized encoding. Parameters ---------- y : array-like of shape [n_samples] Target values. Returns ------- y : array-like of shape [n_samples] """ self._check_fitted() classes = np.unique(y) if len(np.intersect1d(classes, self.classes_)) < len(classes): diff = np.setdiff1d(classes, self.classes_) raise ValueError("y contains new labels: %s" % str(diff)) return np.searchsorted(self.classes_, y) def inverse_transform(self, y): """Transform labels back to original encoding. Parameters ---------- y : numpy array of shape [n_samples] Target values. Returns ------- y : numpy array of shape [n_samples] """ self._check_fitted() y = np.asarray(y) return self.classes_[y] class LabelBinarizer(BaseEstimator, TransformerMixin): """Binarize labels in a one-vs-all fashion Several regression and binary classification algorithms are available in the scikit. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme. At learning time, this simply consists in learning one regressor or binary classifier per class. In doing so, one needs to convert multi-class labels to binary labels (belong or does not belong to the class). LabelBinarizer makes this process easy with the transform method. At prediction time, one assigns the class for which the corresponding model gave the greatest confidence. LabelBinarizer makes this easy with the inverse_transform method. Parameters ---------- neg_label : int (default: 0) Value with which negative labels must be encoded. pos_label : int (default: 1) Value with which positive labels must be encoded. Attributes ---------- `classes_` : array of shape [n_class] Holds the label for each class. `multilabel_` : boolean True if the transformer was fitted on a multilabel rather than a multiclass set of labels. Examples -------- >>> from sklearn import preprocessing >>> lb = preprocessing.LabelBinarizer() >>> lb.fit([1, 2, 6, 4, 2]) LabelBinarizer(neg_label=0, pos_label=1) >>> lb.classes_ array([1, 2, 4, 6]) >>> lb.multilabel_ False >>> lb.transform([1, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) >>> lb.fit_transform([(1, 2), (3,)]) array([[1, 1, 0], [0, 0, 1]]) >>> lb.classes_ array([1, 2, 3]) >>> lb.multilabel_ True See also -------- label_binarize : function to perform the transform operation of LabelBinarizer with fixed classes. """ def __init__(self, neg_label=0, pos_label=1): if neg_label >= pos_label: raise ValueError("neg_label must be strictly less than pos_label.") self.neg_label = neg_label self.pos_label = pos_label @property @deprecated("Attribute `multilabel` was renamed to `multilabel_` in " "0.14 and will be removed in 0.16") def multilabel(self): return self.multilabel_ def _check_fitted(self): if not hasattr(self, "classes_"): raise ValueError("LabelBinarizer was not fitted yet.") def fit(self, y): """Fit label binarizer Parameters ---------- y : numpy array of shape (n_samples,) or sequence of sequences Target values. In the multilabel case the nested sequences can have variable lengths. Returns ------- self : returns an instance of self. """ y_type = type_of_target(y) self.multilabel_ = y_type.startswith('multilabel') if self.multilabel_: self.indicator_matrix_ = y_type == 'multilabel-indicator' self.classes_ = unique_labels(y) return self def transform(self, y): """Transform multi-class labels to binary labels The output of transform is sometimes referred to by some authors as the 1-of-K coding scheme. Parameters ---------- y : numpy array of shape [n_samples] or sequence of sequences Target values. In the multilabel case the nested sequences can have variable lengths. Returns ------- Y : numpy array of shape [n_samples, n_classes] """ self._check_fitted() y_is_multilabel = type_of_target(y).startswith('multilabel') if y_is_multilabel and not self.multilabel_: raise ValueError("The object was not fitted with multilabel" " input.") return label_binarize(y, self.classes_, multilabel=self.multilabel_, pos_label=self.pos_label, neg_label=self.neg_label) def inverse_transform(self, Y, threshold=None): """Transform binary labels back to multi-class labels Parameters ---------- Y : numpy array of shape [n_samples, n_classes] Target values. threshold : float or None Threshold used in the binary and multi-label cases. Use 0 when: - Y contains the output of decision_function (classifier) Use 0.5 when: - Y contains the output of predict_proba If None, the threshold is assumed to be half way between neg_label and pos_label. Returns ------- y : numpy array of shape [n_samples] or sequence of sequences Target values. In the multilabel case the nested sequences can have variable lengths. Notes ----- In the case when the binary labels are fractional (probabilistic), inverse_transform chooses the class with the greatest value. Typically, this allows to use the output of a linear model's decision_function method directly as the input of inverse_transform. """ self._check_fitted() if threshold is None: half = (self.pos_label - self.neg_label) / 2.0 threshold = self.neg_label + half if self.multilabel_: Y = np.array(Y > threshold, dtype=int) # Return the predictions in the same format as in fit if self.indicator_matrix_: # Label indicator matrix format return Y else: # Lists of tuples format return [tuple(self.classes_[np.flatnonzero(Y[i])]) for i in range(Y.shape[0])] if len(Y.shape) == 1 or Y.shape[1] == 1: y = np.array(Y.ravel() > threshold, dtype=int) else: y = Y.argmax(axis=1) return self.classes_[y] def label_binarize(y, classes, multilabel=False, neg_label=0, pos_label=1): """Binarize labels in a one-vs-all fashion Several regression and binary classification algorithms are available in the scikit. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme. This function makes it possible to compute this transformation for a fixed set of class labels known ahead of time. Parameters ---------- y : array-like Sequence of integer labels to encode. classes : array of shape [n_classes] Uniquely holds the label for each class. multilabel : boolean Set to true if y is encoding a multilabel tasks (with a variable number of label assignements per sample) rather than a multiclass task where one sample has one and only one label assigned. neg_label: int (default: 0) Value with which negative labels must be encoded. pos_label: int (default: 1) Value with which positive labels must be encoded. Examples -------- >>> from sklearn.preprocessing import label_binarize >>> label_binarize([1, 6], classes=[1, 2, 4, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) The class ordering is preserved: >>> label_binarize([1, 6], classes=[1, 6, 4, 2]) array([[1, 0, 0, 0], [0, 1, 0, 0]]) >>> label_binarize([(1, 2), (6,), ()], multilabel=True, ... classes=[1, 6, 4, 2]) array([[1, 0, 0, 1], [0, 1, 0, 0], [0, 0, 0, 0]]) See also -------- label_binarize : function to perform the transform operation of LabelBinarizer with fixed classes. """ y_type = type_of_target(y) if multilabel or len(classes) > 2: if y_type == 'multilabel-indicator': # nothing to do as y is already a label indicator matrix return y Y = np.zeros((len(y), len(classes)), dtype=np.int) else: Y = np.zeros((len(y), 1), dtype=np.int) Y += neg_label y_is_multilabel = y_type.startswith('multilabel') if multilabel: if not y_is_multilabel: raise ValueError("y should be a list of label lists/tuples, " "got %r" % (y,)) # inverse map: label => column index imap = dict((v, k) for k, v in enumerate(classes)) for i, label_tuple in enumerate(y): for label in label_tuple: Y[i, imap[label]] = pos_label return Y else: y = column_or_1d(y) if len(classes) == 2: Y[y == classes[1], 0] = pos_label return Y elif len(classes) >= 2: for i, k in enumerate(classes): Y[y == k, i] = pos_label return Y else: # Only one class, returns a matrix with all negative labels. return Y
bsd-3-clause
rlowrance/python_lib
applied_data_science3/summarize.py
2
1627
''' Copyright 2017 Roy E. Lowrance Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on as "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing premission and limitation under the license. ''' import pandas as pd import pdb from pprint import pprint from . import columns_contain cc = columns_contain.columns_contain def summarize(df): '''return dataframe summarizing df result.index = df.columns result.column = attributes of the columns in df ''' description = df.describe() # print description print(df.shape) print(description.shape) rows = [] for column_name in df.columns: # print column_name if column_name not in description.columns: # non-numeric columns are omitted from description print('description is missing', column_name) continue series = df[column_name] d = {} d['number_nan'] = sum(series.isnull()) d['number_distinct'] = len(series.unique()) for statistic_name in description.index: d[statistic_name] = description[column_name][statistic_name] rows.append(d) result = pd.DataFrame(data=rows, index=description.columns) return result if False: pprint() pdb.set_trace()
apache-2.0
leesavide/pythonista-docs
Documentation/matplotlib/examples/user_interfaces/embedding_in_tk.py
9
1419
#!/usr/bin/env python import matplotlib matplotlib.use('TkAgg') from numpy import arange, sin, pi from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg # implement the default mpl key bindings from matplotlib.backend_bases import key_press_handler from matplotlib.figure import Figure import sys if sys.version_info[0] < 3: import Tkinter as Tk else: import tkinter as Tk root = Tk.Tk() root.wm_title("Embedding in TK") f = Figure(figsize=(5,4), dpi=100) a = f.add_subplot(111) t = arange(0.0,3.0,0.01) s = sin(2*pi*t) a.plot(t,s) # a tk.DrawingArea canvas = FigureCanvasTkAgg(f, master=root) canvas.show() canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) toolbar = NavigationToolbar2TkAgg( canvas, root ) toolbar.update() canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) def on_key_event(event): print('you pressed %s'%event.key) key_press_handler(event, canvas, toolbar) canvas.mpl_connect('key_press_event', on_key_event) def _quit(): root.quit() # stops mainloop root.destroy() # this is necessary on Windows to prevent # Fatal Python Error: PyEval_RestoreThread: NULL tstate button = Tk.Button(master=root, text='Quit', command=_quit) button.pack(side=Tk.BOTTOM) Tk.mainloop() # If you put root.destroy() here, it will cause an error if # the window is closed with the window manager.
apache-2.0
hovren/crisp
crisp/pose.py
2
6831
# -*- coding: utf-8 -*- from __future__ import division, print_function, absolute_import """ Relative pose calibration module """ __author__ = "Hannes Ovrén" __copyright__ = "Copyright 2013, Hannes Ovrén" __license__ = "GPL" __email__ = "[email protected]" import logging logger = logging.getLogger() import numpy as np import matplotlib.pyplot as plt import cv2 from . import timesync from . import tracking from . import rotations def estimate_pose(image_sequences, imu_sequences, K): """Estimate sync between IMU and camera based on gyro readings and optical flow. The user should first create at least two sequences of corresponding image and gyroscope data. From each sequence we calculate the rotation axis (one from images, one from IMU/gyro). The final set of len(image_sequences) corresponding rotation axes are then used to calculate the relative pose between the IMU and camera. The returned rotation is such that it transfers vectors in the gyroscope coordinate frame to the camera coordinate frame: X_camera = R * X_gyro Parameters ------------ image_sequences : list of list of ndarrays List of image sequences (list of ndarrays) to use. Must have at least two sequences. imu_sequences : list of (3, N) ndarray Sequence of gyroscope measurements (angular velocities). K : (3,3) ndarray Camera calibration matrix Returns ----------- R : (3,3) ndarray The relative pose (gyro-to-camera) such that X_camera = R * X_gyro """ assert len(image_sequences) == len(imu_sequences) assert len(image_sequences) >= 2 # Note: list(image_sequence) here makes sure any generator type input is expanded to an actual list sync_correspondences = [_get_point_correspondences(list(image_sequence)) for image_sequence in image_sequences] # ) Procrustes on corresponding pairs PROCRUSTES_MAX_POINTS = 15 # Number of tracks/points to use for procrustes logger.debug("Running procrustes on track-retrack results") image_rotation_axes = [] for i, points in enumerate(sync_correspondences): if points.size < 1: logger.error('Shape of points are %s', str(points.shape)) raise Exception("Did not get enough points when tracking") num_points_to_use = min(PROCRUSTES_MAX_POINTS, points.shape[0]) logger.debug("Using %d tracks to calculate procrustes", num_points_to_use) idxs_to_use = np.random.permutation(points.shape[0])[:num_points_to_use] assert points.shape[-1] == 2 x = points[idxs_to_use,0,:].T.reshape(2,-1) y = points[idxs_to_use,-1,:].T.reshape(2,-1) x = np.vstack((x, np.ones((1, x.shape[1])))) y = np.vstack((y, np.ones((1, y.shape[1])))) K_inv = np.linalg.inv(K) X = K_inv.dot(x) Y = K_inv.dot(y) # Depth must be positive (R, t) = rotations.procrustes(X, Y, remove_mean=False) # X = R * Y + t (v, theta) = rotations.rotation_matrix_to_axis_angle(R) image_rotation_axes.append(v) # Save rotation axis # Check the quality via the mean reprojection error mean_error = np.mean(np.sqrt(np.sum((X - R.dot(Y))**2, axis=0))) MEAN_ERROR_LIMIT = 0.1 # Arbitrarily chosen limit (in meters) logger.debug('Image sequence %d: Rotation axis %s, degrees %.2f, mean error %.3f', i, v, np.rad2deg(theta), mean_error) if mean_error > MEAN_ERROR_LIMIT: logger.warning("Procrustes solution mean error %.3f > %.3f", mean_error, MEAN_ERROR_LIMIT) # ) Gyro principal rotation axis gyro_rotation_axes = [] for i, gyro_seq in enumerate(imu_sequences): assert gyro_seq.shape[0] == 3 v = principal_rotation_axis(gyro_seq) logger.debug('Gyro sequence %d: Rotation axis %s', i, v) gyro_rotation_axes.append(v) # ) Procrustes to get rotation between coordinate frames X = np.vstack(image_rotation_axes).T Y = np.vstack(gyro_rotation_axes).T (R,t) = rotations.procrustes(X, Y, remove_mean=False) return (R, t) #-------------------------------------------------------------------------- def pick_manual(image_sequence, imu_gyro, num_sequences=2): """Select N matching sequences and return data indices. Parameters --------------- image_sequence : list_like A list, or generator, of image data imu_gyro : (3, N) ndarray Gyroscope data (angular velocities) num_sequences : int The number of matching sequences to pick Returns ---------------- sync_sequences : list List of (frame_pair, gyro_pair) tuples where each pair contains (a, b) which are indices of the (inclusive) range [a, b] that was chosen """ assert num_sequences >= 2 # Create optical flow for user to select parts in logger.info("Calculating optical flow") flow = tracking.optical_flow_magnitude(image_sequence) # ) Prompt user for sync slices logger.debug("Prompting user for %d sequences" % num_sequences) imu_fake_timestamps = np.linspace(0,1,num=imu_gyro.shape[1]) sync_sequences = [timesync.manual_sync_pick(flow, imu_fake_timestamps, imu_gyro) for i in range(num_sequences)] return sync_sequences #-------------------------------------------------------------------------- def principal_rotation_axis(gyro_data): """Get the principal rotation axis of angular velocity measurements. Parameters ------------- gyro_data : (3, N) ndarray Angular velocity measurements Returns ------------- v : (3,1) ndarray The principal rotation axis for the chosen sequence """ N = np.zeros((3,3)) for x in gyro_data.T: # Transpose because samples are stored as columns y = x.reshape(3,1) N += y.dot(y.T) (eig_val, eig_vec) = np.linalg.eig(N) i = np.argmax(eig_val) v = eig_vec[:,i] # Make sure v has correct sign s = 0 for x in gyro_data.T: # Transpose because samples are stored as columns s += v.T.dot(x.reshape(3,1)) v *= np.sign(s) return v #-------------------------------------------------------------------------- def _get_point_correspondences(image_list, max_corners=200, min_distance=5, quality_level=0.07): max_retrack_distance = 0.5 initial_points = cv2.goodFeaturesToTrack(image_list[0], max_corners, quality_level, min_distance) (tracks, status) = tracking.track_retrack(image_list, initial_points=initial_points, max_retrack_distance=max_retrack_distance) # Status is ignored return tracks[:,(0,-1),:] # First and last frame only
gpl-3.0
xccui/flink
flink-python/pyflink/table/tests/test_row_based_operation.py
1
15438
################################################################################ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ from pandas.util.testing import assert_frame_equal from pyflink.common import Row from pyflink.table import expressions as expr, ListView from pyflink.table.types import DataTypes from pyflink.table.udf import udf, udtf, udaf, AggregateFunction, TableAggregateFunction, udtaf from pyflink.testing import source_sink_utils from pyflink.testing.test_case_utils import PyFlinkBlinkBatchTableTestCase, \ PyFlinkBlinkStreamTableTestCase class RowBasedOperationTests(object): def test_map(self): t = self.t_env.from_elements( [(1, 2, 3), (2, 1, 3), (1, 5, 4), (1, 8, 6), (2, 3, 4)], DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.TINYINT()), DataTypes.FIELD("b", DataTypes.SMALLINT()), DataTypes.FIELD("c", DataTypes.INT())])) table_sink = source_sink_utils.TestAppendSink( ['a', 'b'], [DataTypes.BIGINT(), DataTypes.BIGINT()]) self.t_env.register_table_sink("Results", table_sink) func = udf(lambda x: Row(x + 1, x * x), result_type=DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.BIGINT()), DataTypes.FIELD("b", DataTypes.BIGINT())])) t.map(func(t.b)).alias("a", "b") \ .map(func(t.a)).alias("a", "b") \ .execute_insert("Results") \ .wait() actual = source_sink_utils.results() self.assert_equals(actual, ["4,9", "3,4", "7,36", "10,81", "5,16"]) def test_map_with_pandas_udf(self): t = self.t_env.from_elements( [(1, Row(2, 3)), (2, Row(1, 3)), (1, Row(5, 4)), (1, Row(8, 6)), (2, Row(3, 4))], DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.TINYINT()), DataTypes.FIELD("b", DataTypes.ROW([DataTypes.FIELD("a", DataTypes.INT()), DataTypes.FIELD("b", DataTypes.INT())]))])) table_sink = source_sink_utils.TestAppendSink( ['a', 'b'], [DataTypes.BIGINT(), DataTypes.BIGINT()]) self.t_env.register_table_sink("Results", table_sink) def func(x, y): import pandas as pd a = (x * 2).rename('b') res = pd.concat([a, x], axis=1) + y return res pandas_udf = udf(func, result_type=DataTypes.ROW( [DataTypes.FIELD("c", DataTypes.BIGINT()), DataTypes.FIELD("d", DataTypes.BIGINT())]), func_type='pandas') t.map(pandas_udf(t.a, t.b)).execute_insert("Results").wait() actual = source_sink_utils.results() self.assert_equals(actual, ["3,5", "3,7", "6,6", "9,8", "5,8"]) def test_flat_map(self): t = self.t_env.from_elements( [(1, "2,3", 3), (2, "1", 3), (1, "5,6,7", 4)], DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.TINYINT()), DataTypes.FIELD("b", DataTypes.STRING()), DataTypes.FIELD("c", DataTypes.INT())])) table_sink = source_sink_utils.TestAppendSink( ['a', 'b'], [DataTypes.BIGINT(), DataTypes.STRING()]) self.t_env.register_table_sink("Results", table_sink) @udtf(result_types=[DataTypes.INT(), DataTypes.STRING()]) def split(x, string): for s in string.split(","): yield x, s t.flat_map(split(t.a, t.b)) \ .alias("a, b") \ .flat_map(split(t.a, t.b)) \ .execute_insert("Results") \ .wait() actual = source_sink_utils.results() self.assert_equals(actual, ["1,2", "1,3", "2,1", "1,5", "1,6", "1,7"]) class BatchRowBasedOperationITTests(RowBasedOperationTests, PyFlinkBlinkBatchTableTestCase): def test_aggregate_with_pandas_udaf(self): t = self.t_env.from_elements( [(1, 2, 3), (2, 1, 3), (1, 5, 4), (1, 8, 6), (2, 3, 4)], DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.TINYINT()), DataTypes.FIELD("b", DataTypes.SMALLINT()), DataTypes.FIELD("c", DataTypes.INT())])) table_sink = source_sink_utils.TestAppendSink( ['a', 'b', 'c'], [DataTypes.TINYINT(), DataTypes.FLOAT(), DataTypes.INT()]) self.t_env.register_table_sink("Results", table_sink) pandas_udaf = udaf(lambda a: (a.mean(), a.max()), result_type=DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.FLOAT()), DataTypes.FIELD("b", DataTypes.INT())]), func_type="pandas") t.group_by(t.a) \ .aggregate(pandas_udaf(t.b).alias("c", "d")) \ .select("a, c, d").execute_insert("Results") \ .wait() actual = source_sink_utils.results() self.assert_equals(actual, ["1,5.0,8", "2,2.0,3"]) def test_aggregate_with_pandas_udaf_without_keys(self): t = self.t_env.from_elements( [(1, 2, 3), (2, 1, 3), (1, 5, 4), (1, 8, 6), (2, 3, 4)], DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.TINYINT()), DataTypes.FIELD("b", DataTypes.SMALLINT()), DataTypes.FIELD("c", DataTypes.INT())])) table_sink = source_sink_utils.TestAppendSink( ['a', 'b'], [DataTypes.FLOAT(), DataTypes.INT()]) self.t_env.register_table_sink("Results", table_sink) pandas_udaf = udaf(lambda a: Row(a.mean(), a.max()), result_type=DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.FLOAT()), DataTypes.FIELD("b", DataTypes.INT())]), func_type="pandas") t.aggregate(pandas_udaf(t.b).alias("c", "d")) \ .select("c, d").execute_insert("Results") \ .wait() actual = source_sink_utils.results() self.assert_equals(actual, ["3.8,8"]) def test_window_aggregate_with_pandas_udaf(self): import datetime from pyflink.table.window import Tumble t = self.t_env.from_elements( [ (1, 2, 3, datetime.datetime(2018, 3, 11, 3, 10, 0, 0)), (3, 2, 4, datetime.datetime(2018, 3, 11, 3, 10, 0, 0)), (2, 1, 2, datetime.datetime(2018, 3, 11, 3, 10, 0, 0)), (1, 3, 1, datetime.datetime(2018, 3, 11, 3, 40, 0, 0)), (1, 8, 5, datetime.datetime(2018, 3, 11, 4, 20, 0, 0)), (2, 3, 6, datetime.datetime(2018, 3, 11, 3, 30, 0, 0)) ], DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.TINYINT()), DataTypes.FIELD("b", DataTypes.SMALLINT()), DataTypes.FIELD("c", DataTypes.INT()), DataTypes.FIELD("rowtime", DataTypes.TIMESTAMP(3))])) table_sink = source_sink_utils.TestAppendSink( ['a', 'b', 'c'], [ DataTypes.TIMESTAMP(3), DataTypes.FLOAT(), DataTypes.INT() ]) self.t_env.register_table_sink("Results", table_sink) pandas_udaf = udaf(lambda a: (a.mean(), a.max()), result_type=DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.FLOAT()), DataTypes.FIELD("b", DataTypes.INT())]), func_type="pandas") tumble_window = Tumble.over(expr.lit(1).hours) \ .on(expr.col("rowtime")) \ .alias("w") t.window(tumble_window) \ .group_by("w") \ .aggregate(pandas_udaf(t.b).alias("d", "e")) \ .select("w.rowtime, d, e") \ .execute_insert("Results") \ .wait() actual = source_sink_utils.results() self.assert_equals(actual, ["2018-03-11 03:59:59.999,2.2,3", "2018-03-11 04:59:59.999,8.0,8"]) class StreamRowBasedOperationITTests(RowBasedOperationTests, PyFlinkBlinkStreamTableTestCase): def test_aggregate(self): import pandas as pd t = self.t_env.from_elements( [(1, 2, 3), (2, 1, 3), (1, 5, 4), (1, 8, 6), (2, 3, 4)], DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.BIGINT()), DataTypes.FIELD("b", DataTypes.SMALLINT()), DataTypes.FIELD("c", DataTypes.INT())])) function = CountAndSumAggregateFunction() agg = udaf(function, result_type=function.get_result_type(), accumulator_type=function.get_accumulator_type(), name=str(function.__class__.__name__)) result = t.group_by(t.a) \ .aggregate(agg(t.b).alias("c", "d")) \ .select("a, c, d") \ .to_pandas() assert_frame_equal(result, pd.DataFrame([[1, 3, 15], [2, 2, 4]], columns=['a', 'c', 'd'])) def test_flat_aggregate(self): import pandas as pd self.t_env.register_function("mytop", Top2()) t = self.t_env.from_elements([(1, 'Hi', 'Hello'), (3, 'Hi', 'hi'), (5, 'Hi2', 'hi'), (7, 'Hi', 'Hello'), (2, 'Hi', 'Hello')], ['a', 'b', 'c']) result = t.group_by("c") \ .flat_aggregate("mytop(a)") \ .select("c, a") \ .flat_aggregate("mytop(a)") \ .select("a") \ .to_pandas() assert_frame_equal(result, pd.DataFrame([[7], [5]], columns=['a'])) def test_flat_aggregate_list_view(self): import pandas as pd my_concat = udtaf(ListViewConcatTableAggregateFunction()) self.t_env.get_config().get_configuration().set_string( "python.fn-execution.bundle.size", "2") # trigger the cache eviction in a bundle. self.t_env.get_config().get_configuration().set_string( "python.state.cache-size", "2") t = self.t_env.from_elements([(1, 'Hi', 'Hello'), (3, 'Hi', 'hi'), (3, 'Hi2', 'hi'), (3, 'Hi', 'hi'), (2, 'Hi', 'Hello'), (1, 'Hi2', 'Hello'), (3, 'Hi3', 'hi'), (3, 'Hi2', 'Hello'), (3, 'Hi3', 'hi'), (2, 'Hi3', 'Hello')], ['a', 'b', 'c']) result = t.group_by(t.c) \ .flat_aggregate(my_concat(t.b, ',').alias("b")) \ .select(t.b, t.c) \ .alias("a, c") assert_frame_equal(result.to_pandas(), pd.DataFrame([["Hi,Hi2,Hi,Hi3,Hi3", "hi"], ["Hi,Hi2,Hi,Hi3,Hi3", "hi"], ["Hi,Hi,Hi2,Hi2,Hi3", "Hello"], ["Hi,Hi,Hi2,Hi2,Hi3", "Hello"]], columns=['a', 'c'])) class CountAndSumAggregateFunction(AggregateFunction): def get_value(self, accumulator): from pyflink.common import Row return Row(accumulator[0], accumulator[1]) def create_accumulator(self): from pyflink.common import Row return Row(0, 0) def accumulate(self, accumulator, *args): accumulator[0] += 1 accumulator[1] += args[0] def retract(self, accumulator, *args): accumulator[0] -= 1 accumulator[1] -= args[0] def merge(self, accumulator, accumulators): for other_acc in accumulators: accumulator[0] += other_acc[0] accumulator[1] += other_acc[1] def get_accumulator_type(self): return DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.BIGINT()), DataTypes.FIELD("b", DataTypes.BIGINT())]) def get_result_type(self): return DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.BIGINT()), DataTypes.FIELD("b", DataTypes.BIGINT())]) class Top2(TableAggregateFunction): def emit_value(self, accumulator): yield Row(accumulator[0]) yield Row(accumulator[1]) def create_accumulator(self): return [None, None] def accumulate(self, accumulator, *args): if args[0] is not None: if accumulator[0] is None or args[0] > accumulator[0]: accumulator[1] = accumulator[0] accumulator[0] = args[0] elif accumulator[1] is None or args[0] > accumulator[1]: accumulator[1] = args[0] def retract(self, accumulator, *args): accumulator[0] = accumulator[0] - 1 def merge(self, accumulator, accumulators): for other_acc in accumulators: self.accumulate(accumulator, other_acc[0]) self.accumulate(accumulator, other_acc[1]) def get_accumulator_type(self): return DataTypes.ARRAY(DataTypes.BIGINT()) def get_result_type(self): return DataTypes.ROW( [DataTypes.FIELD("a", DataTypes.BIGINT())]) class ListViewConcatTableAggregateFunction(TableAggregateFunction): def emit_value(self, accumulator): result = accumulator[1].join(accumulator[0]) yield Row(result) yield Row(result) def create_accumulator(self): return Row(ListView(), '') def accumulate(self, accumulator, *args): accumulator[1] = args[1] accumulator[0].add(args[0]) def retract(self, accumulator, *args): raise NotImplementedError def get_accumulator_type(self): return DataTypes.ROW([ DataTypes.FIELD("f0", DataTypes.LIST_VIEW(DataTypes.STRING())), DataTypes.FIELD("f1", DataTypes.BIGINT())]) def get_result_type(self): return DataTypes.ROW([DataTypes.FIELD("a", DataTypes.STRING())]) if __name__ == '__main__': import unittest try: import xmlrunner testRunner = xmlrunner.XMLTestRunner(output='target/test-reports') except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
duthchao/kaggle-Otto
exp_XGB_RI_m_ntree.py
2
4061
""" Experiment for XGBoost + RI Aim: To find the best m and ntree(num_round) m: [100, 120, 140, 160] ntree: [140, 160, 180, 200, 220, 240, 260] Averaging 20 models Summary loss ntree m 100 0.450670 240 120 0.450491 220 140 0.449575 220 160 0.449249 220 * Time: 2:56:52 on i7-4790k 32G MEM GTX660 I got a different result before I reinstalled ubuntu 14.04 LTS. loss ntree m 100 0.450663 240 120 0.449751 220 140 0.448961 220 * 160 0.449046 220 So I chose m=140, ntree=220. """ import numpy as np import scipy as sp import pandas as pd from sklearn.cross_validation import StratifiedKFold from sklearn.metrics import log_loss from datetime import datetime import os import xgboost as xgb from utility import * path = os.getcwd() + '/' path_log = path + 'logs/' file_train = path + 'train.csv' training = pd.read_csv(file_train, index_col = 0) num_train = training.shape[0] y = training['target'].values yMat = pd.get_dummies(training['target']).values X = training.iloc[:,:93].values X1 = X / X.mean(0) kf = StratifiedKFold(y, n_folds=5, shuffle = True, random_state = 345) for train_idx, valid_idx in kf: break y_train_1 = yMat[train_idx].argmax(1) y_train = yMat[train_idx] y_valid = yMat[valid_idx] # nIter = 20 # RI k = 2 # num_round nt = 260 nt_lst = [140, 160, 180, 200, 220, 240, 260] nt_len = len(nt_lst) # max_depth tc = 15 # colsample_bytree cs = 50. / X.shape[1] # min_child_weight mb = 10 # eta sh = .1 # subsample bf = .8 scores = [] t0 = datetime.now() for m in [100, 120, 140, 160]: predAll_train = [np.zeros(y_train.shape) for i in range(nt_len)] predAll_valid = [np.zeros(y_valid.shape) for i in range(nt_len)] for i in range(nIter): seed = i + 12398 X3 = RI(X1, m, k, normalize = False, seed = seed) dtrain , dvalid= xgb.DMatrix(X3[train_idx], label = y_train_1), xgb.DMatrix(X3[valid_idx]) param = {'bst:max_depth':tc, 'bst:eta':sh, 'objective':'multi:softprob','num_class':9, 'min_child_weight':mb, 'subsample':bf, 'colsample_bytree':cs, 'nthread':8, 'seed':seed, 'silent':1} plst = param.items() bst = xgb.train(plst, dtrain, nt) for j in range(nt_len): ntree = nt_lst[j] pred_train = bst.predict(dtrain, ntree_limit = ntree).reshape(y_train.shape) pred_valid = bst.predict(dvalid, ntree_limit = ntree).reshape(y_valid.shape) predAll_train[j] += pred_train predAll_valid[j] += pred_valid scores.append({'m':m, 'ntree':ntree, 'nModels': i + 1, 'seed':seed, 'train':log_loss(y_train, pred_train), 'valid':log_loss(y_valid, pred_valid), 'train_avg':log_loss(y_train, predAll_train[j] / (i + 1)), 'valid_avg':log_loss(y_valid, predAll_valid[j] / (i + 1))}) print scores[-1], datetime.now() - t0 df = pd.DataFrame(scores) if os.path.exists(path_log) is False: print 'mkdir', path_log os.mkdir(path_log) df.to_csv(path_log + 'exp_XGB_RI_m_ntree.csv') keys = ['m', 'ntree'] grouped = df.groupby(keys) print pd.DataFrame({'ntree':grouped['valid_avg'].last().unstack().idxmin(1), 'loss':grouped['valid_avg'].last().unstack().min(1)}) # loss ntree # m # 100 0.450670 240 # 120 0.450491 220 # 140 0.449575 220 # 160 0.449249 220 # grouped = df[df['m'] == 140].groupby('ntree') g = grouped[['valid']].mean() g['valid_avg'] = grouped['valid_avg'].last() print g # valid valid_avg # ntree # 140 0.477779 0.454885 # 160 0.476271 0.452038 # 180 0.476112 0.450559 # 200 0.476564 0.449759 # 220 0.477543 0.449575 # 240 0.478995 0.449745 # 260 0.480710 0.450266 ax = g.plot() ax.set_title('XGB+RI k=2, m=140') ax.set_ylabel('Logloss') fig = ax.get_figure() fig.savefig(path_log + 'exp_XGB_RI_m_ntree.png')
mit