repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
mugizico/scikit-learn
benchmarks/bench_plot_neighbors.py
287
6433
""" Plot the scaling of the nearest neighbors algorithms with k, D, and N """ from time import time import numpy as np import pylab as pl from matplotlib import ticker from sklearn import neighbors, datasets def get_data(N, D, dataset='dense'): if dataset == 'dense': np.random.seed(0) return np.random.random((N, D)) elif dataset == 'digits': X = datasets.load_digits().data i = np.argsort(X[0])[::-1] X = X[:, i] return X[:N, :D] else: raise ValueError("invalid dataset: %s" % dataset) def barplot_neighbors(Nrange=2 ** np.arange(1, 11), Drange=2 ** np.arange(7), krange=2 ** np.arange(10), N=1000, D=64, k=5, leaf_size=30, dataset='digits'): algorithms = ('kd_tree', 'brute', 'ball_tree') fiducial_values = {'N': N, 'D': D, 'k': k} #------------------------------------------------------------ # varying N N_results_build = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) N_results_query = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) for i, NN in enumerate(Nrange): print("N = %i (%i out of %i)" % (NN, i + 1, len(Nrange))) X = get_data(NN, D, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=min(NN, k), algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() N_results_build[algorithm][i] = (t1 - t0) N_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying D D_results_build = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) D_results_query = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) for i, DD in enumerate(Drange): print("D = %i (%i out of %i)" % (DD, i + 1, len(Drange))) X = get_data(N, DD, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=k, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() D_results_build[algorithm][i] = (t1 - t0) D_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying k k_results_build = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) k_results_query = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) X = get_data(N, DD, dataset) for i, kk in enumerate(krange): print("k = %i (%i out of %i)" % (kk, i + 1, len(krange))) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=kk, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() k_results_build[algorithm][i] = (t1 - t0) k_results_query[algorithm][i] = (t2 - t1) pl.figure(figsize=(8, 11)) for (sbplt, vals, quantity, build_time, query_time) in [(311, Nrange, 'N', N_results_build, N_results_query), (312, Drange, 'D', D_results_build, D_results_query), (313, krange, 'k', k_results_build, k_results_query)]: ax = pl.subplot(sbplt, yscale='log') pl.grid(True) tick_vals = [] tick_labels = [] bottom = 10 ** np.min([min(np.floor(np.log10(build_time[alg]))) for alg in algorithms]) for i, alg in enumerate(algorithms): xvals = 0.1 + i * (1 + len(vals)) + np.arange(len(vals)) width = 0.8 c_bar = pl.bar(xvals, build_time[alg] - bottom, width, bottom, color='r') q_bar = pl.bar(xvals, query_time[alg], width, build_time[alg], color='b') tick_vals += list(xvals + 0.5 * width) tick_labels += ['%i' % val for val in vals] pl.text((i + 0.02) / len(algorithms), 0.98, alg, transform=ax.transAxes, ha='left', va='top', bbox=dict(facecolor='w', edgecolor='w', alpha=0.5)) pl.ylabel('Time (s)') ax.xaxis.set_major_locator(ticker.FixedLocator(tick_vals)) ax.xaxis.set_major_formatter(ticker.FixedFormatter(tick_labels)) for label in ax.get_xticklabels(): label.set_rotation(-90) label.set_fontsize(10) title_string = 'Varying %s' % quantity descr_string = '' for s in 'NDk': if s == quantity: pass else: descr_string += '%s = %i, ' % (s, fiducial_values[s]) descr_string = descr_string[:-2] pl.text(1.01, 0.5, title_string, transform=ax.transAxes, rotation=-90, ha='left', va='center', fontsize=20) pl.text(0.99, 0.5, descr_string, transform=ax.transAxes, rotation=-90, ha='right', va='center') pl.gcf().suptitle("%s data set" % dataset.capitalize(), fontsize=16) pl.figlegend((c_bar, q_bar), ('construction', 'N-point query'), 'upper right') if __name__ == '__main__': barplot_neighbors(dataset='digits') barplot_neighbors(dataset='dense') pl.show()
bsd-3-clause
lateral/hyperplane-hasher
test_classes/test_key_value_store.py
2
21404
from nn.hh_ensemble_lookup import * from nn.dictionary_store import * from ann.hyperplane_hasher import HyperplaneHasher, NORMAL_VECTOR_ID, NUM_NORMAL_VECS_ID, CHAMBER_ID import unittest, copy, string, numpy as np, random as rd, pandas as pd RANK = 10 NAME = 'test_HHENL' METRIC = 'l2' NNV = 5 NHH = 4 NUM_VECS = 30 class TestHHEnsembleLookup(unittest.TestCase): def setUp(self): """Create a HHEnsembleLookup object whose underlying KeyValueStore object is a DictionaryStore instance populated by NUM_VECS feature vectors.""" self.letters = list(string.ascii_lowercase) self.feature_vecs = HyperplaneHasher._random_vectors(NUM_VECS, RANK) self.feature_vecs_ids = ['%i' % i for i in range(NUM_VECS)] self.hhenl = self._create_hhenl() for pair in zip(self.feature_vecs, self.feature_vecs_ids): vec, vec_id = pair self.hhenl.add_vector(vec, vec_id) def _create_hhenl(self): """Returns an empty instance of HHEnsembleNNLookup.""" kvstore = DictionaryStore(dict()) return HHEnsembleNNLookup(rank=RANK, name=NAME, metric = METRIC, num_normal_vectors=NNV, num_hyperplane_hashers=NHH, kvstore=kvstore) def _get_all_hh_labels(self, hh): """Returns the set of all labels in all chambers of hh.""" ch_ids = hh.get_chamber_ids() list_set_labels = [hh.chamber_labels(ch_id) for ch_id in ch_ids] return reduce(lambda x, y: x.union(y), list_set_labels) def _rank_error(self, function): """Throws ValueError if len(vec) != self.rank.""" vec = self.feature_vecs[0] vec_id = self.feature_vecs_ids[0] self.assertRaises(ValueError, function, *[vec[1:], vec_id]) def _bulk_rank_error(self, function): """Throws ValueError if len(vec) != self.rank for any vec in vecs.""" vec_short = HyperplaneHasher._random_vectors(1, self.hhenl.rank - 1) vecs = HyperplaneHasher._random_vectors(10, self.hhenl.rank) + vec_short vec_ids = self.letters[:11] self.hhenl._bulk_label_chamber_ensemble(vecs[:10], vec_ids[:10]) self.assertRaises(ValueError, function, *[vecs, vec_ids]) def _bulk_list_length_error(self, function): """Throws ValueError if len(vec_ids) != len(vec_ids).""" vecs = HyperplaneHasher._random_vectors(10, self.hhenl.rank) vec_ids = self.letters[:11] self.assertRaises(ValueError, function, *[vecs, vec_ids]) def test_init_1(self): """Class attributes are correctly initialised.""" self.assertEqual(RANK, self.hhenl.rank) self.assertEqual(METRIC, self.hhenl.metric) self.assertEqual(NNV, self.hhenl.num_normal_vectors) self.assertEqual(NHH, self.hhenl.num_hyperplane_hashers) def test_init_2(self): """Attribute self.hhs is a list of HyperplaneHasher objects of length = self.num_hyperplane_hashers. Each HH object has the expected value for 'num_normal_vectors'.""" hhs = self.hhenl.hhs self.assertIsInstance(hhs, list) for hh in hhs: self.assertIsInstance(hh, HyperplaneHasher) self.assertEqual(hh.num_normal_vectors, NNV) self.assertEqual(len(hhs), self.hhenl.num_hyperplane_hashers) def test_init_3(self): """Total set of labels in all chambers of any given HyperplaneHasher object equals set(self.feature_vecs_ids).""" hhs = self.hhenl.hhs for hh in hhs: chamber_ids = set([hh.get_chamber_id(vec) for vec in self.feature_vecs]) labels_set_list = [hh.chamber_labels(ch_id) for ch_id in chamber_ids] labels_set = reduce(lambda x, y: x.union(y), labels_set_list) self.assertEqual(labels_set, set(self.feature_vecs_ids)) self.assertEqual(len(labels_set), NUM_VECS) def test_label_chamber_ensemble_1(self): """For each underlying HyperplaneHasher object, a new label is added to precisely one chamber. The set of chamber ids present as keys in self.kvstore is either unchanged, or enlarged by one element.""" feature_vecs = self.feature_vecs old_chamber_ids = {hh: set([hh.get_chamber_id(vec) for vec in feature_vecs]) for hh in self.hhenl.hhs} old_chamber_labels = {hh: [hh.chamber_labels(ch_id) for ch_id in old_chamber_ids[hh]] for hh in self.hhenl.hhs} new_vec = HyperplaneHasher._random_vectors(1, self.hhenl.rank)[0] self.hhenl._label_chamber_ensemble(new_vec, 'new_vec_id') feature_vecs.append(new_vec) new_chamber_ids = {hh: set([hh.get_chamber_id(vec) for vec in feature_vecs]) for hh in self.hhenl.hhs} new_chamber_labels = {hh: [hh.chamber_labels(ch_id) for ch_id in new_chamber_ids[hh]] for hh in self.hhenl.hhs} for hh in self.hhenl.hhs: len_diff = len(new_chamber_ids[hh]) - len(old_chamber_ids[hh]) self.assertIn(len_diff, [0, 1]) if len_diff == 0: #vector 'new_vec' has landed in an existing chamber. #the set of chamber ids thus remains unchanged, but #exactly one chamber has exactly one new label, #namely 'new_vec_id' self.assertEqual(old_chamber_ids[hh], new_chamber_ids[hh]) comparison = list(np.array(old_chamber_labels[hh]) == np.array(new_chamber_labels[hh])) expected_bools = set([False] + [True] * (len(old_chamber_ids) - 1)) self.assertEqual(set(comparison), expected_bools) label_diff = new_chamber_labels[hh][comparison.index(False)].difference(old_chamber_labels[hh][comparison.index(False)]) self.assertEqual(label_diff, set(['new_vec_id'])) if len_diff == 1: #vector 'new_vec' has landed in a new chamber. #The id of the new chamber is that of the chamber to #which 'new_vec' belongs, and the new chamber #is exactly set(['new_vec_id']). id_diff = new_chamber_ids[hh].difference(old_chamber_ids[hh]) self.assertEqual(id_diff, set([hh.get_chamber_id(new_vec)])) labels_diff = [entry for entry in new_chamber_labels[hh] if entry not in old_chamber_labels[hh]][0] self.assertEqual(labels_diff, set(['new_vec_id'])) def test_label_chamber_ensemble_2(self): """Throws ValueError if len(vec) != self.rank.""" new_vec_short = HyperplaneHasher._random_vectors(1, self.hhenl.rank - 1)[0] self.assertRaises(ValueError, self.hhenl._label_chamber_ensemble, *[new_vec_short, 'new_vec_short_id']) def test_bulk_label_chamber_ensemble_1(self): """Throws ValueError if len(vec) != self.rank for any vec in vecs.""" vec_short = HyperplaneHasher._random_vectors(1, self.hhenl.rank - 1) vecs = HyperplaneHasher._random_vectors(10, self.hhenl.rank) + vec_short vec_ids = self.letters[:11] self.hhenl._bulk_label_chamber_ensemble(vecs[:10], vec_ids[:10]) self.assertRaises(ValueError, self.hhenl._bulk_label_chamber_ensemble, *[vecs, vec_ids]) def test_bulk_label_chamber_ensemble_2(self): """Throws ValueError if len(vec_ids) != len(vec_ids).""" self._bulk_list_length_error(self.hhenl._bulk_label_chamber_ensemble) def test_bulk_label_chamber_ensemble_3(self): """If vec_ids are all unknown, then for each hh in self.hhenl.hhs, the difference in the union over all chamber_ids in hh.get_chamber_ids() of hh.chamber_labels(chamber_id), before and after the bulk_label, is equal to vec_ids.""" vecs = HyperplaneHasher._random_vectors(10, self.hhenl.rank) vec_ids = self.letters[:10] labels_before = [self._get_all_hh_labels(hh) for hh in self.hhenl.hhs] self.hhenl._bulk_label_chamber_ensemble(vecs, vec_ids) labels_after = [self._get_all_hh_labels(hh) for hh in self.hhenl.hhs] for b, a in zip(labels_before, labels_after): self.assertEqual(a.difference(b), set(vec_ids)) def test_bulk_label_chamber_ensemble_4(self): """If vec_ids are partially known, then for each hh in self.hhenl.hhs, the difference in the union over all chamber_ids in hh.get_chamber_ids() of hh.chamber_labels(chamber_id), before and after the bulk_label, is equal to the unknown vec_ids.""" vecs = HyperplaneHasher._random_vectors(24, self.hhenl.rank) old_vec_ids = self.feature_vecs_ids[:11] new_vec_ids = self.letters[:13] vec_ids = old_vec_ids + new_vec_ids labels_before = [self._get_all_hh_labels(hh) for hh in self.hhenl.hhs] self.hhenl._bulk_label_chamber_ensemble(vecs, vec_ids) labels_after = [self._get_all_hh_labels(hh) for hh in self.hhenl.hhs] for b, a in zip(labels_before, labels_after): self.assertEqual(a.difference(b), set(new_vec_ids)) def test_bulk_label_chamber_ensemble_5(self): """Let first = [first_1, first_2, ..., first_n] and second = [second_1, second_2, ..., second_n] be lists of labels, and vecs = [vec_1, vec_2, ..., vec_n] a list of vectors. Then after applying the method first to (vecs, first), then to (vecs, second), all chambers C in all hh in self.hhenl.hhs have the property that first_i in C iff second_i in C.""" vecs = HyperplaneHasher._random_vectors(20, self.hhenl.rank) first_ex = re.compile(r'first_([\S]*)') second_ex = re.compile(r'second_([\S]*)') first = ['first_%i' % i for i in range(20)] second = ['second_%i' % i for i in range(20)] self.hhenl._bulk_label_chamber_ensemble(vecs, first) self.hhenl._bulk_label_chamber_ensemble(vecs, second) for hh in self.hhenl.hhs: ch_ids = hh.get_chamber_ids() for ch_id in ch_ids: labels = hh.chamber_labels(ch_id) flabels = [''.join(first_ex.findall(label)) for label in labels] first_labels = set([entry for entry in flabels if len(entry) > 0]) slabels = [''.join(second_ex.findall(label)) for label in labels] second_labels = set([entry for entry in slabels if len(entry) > 0]) self.assertEqual(first_labels, second_labels) def test_get_nn_candidates_1(self): """Returned objects is a set of strings of length at least num_neighbours.""" vec = HyperplaneHasher._random_vectors(1, self.hhenl.rank)[0] nn = 10 result = self.hhenl._get_nn_candidates(vec, nn) self.assertIsInstance(result, set) for element in result: self.assertIsInstance(element, str) self.assertGreaterEqual(len(result), nn) def test_get_nn_candidates_2(self): """Throws ValueError if len(vec_ids) != len(vec_ids).""" self._rank_error(self.hhenl._get_nn_candidates) def test_get_vector_ids_1(self): """Fetched vector ids are the expected ones.""" self.assertEqual(set(self.feature_vecs_ids), self.hhenl.get_vector_ids()) def test_get_vector_1(self): """The returned object is a numpy array of length self.rank.""" vec_id = self.feature_vecs_ids[0] vec = self.hhenl.get_vector(vec_id) self.assertIsInstance(vec, np.ndarray) self.assertEqual(len(vec), self.hhenl.rank) self.assertTrue((self.feature_vecs[0]==vec).all()) def test_get_vector_2(self): """Throws KeyError if 'vec_id' is unrecognised by underlying KeyValueStore object.""" vec_id = 'non_existent_vec' self.assertRaises(KeyError, self.hhenl.get_vector, vec_id) def test_bulk_get_vector_1(self): """The returned object is a list of numpy arrays, each of length self.rank.""" def check_vec(vec): self.assertIsInstance(vec, np.ndarray) self.assertEqual(len(vec), self.hhenl.rank) ids = self.feature_vecs_ids vecs = self.hhenl.bulk_get_vector(ids) self.assertIsInstance(vecs, list) [check_vec(vec) for vec in vecs] def test_bulk_get_vector_2(self): """Method returns a list of length equal to the number of recognised vector ids.""" vec_ids = self.feature_vecs_ids ids_1 = vec_ids + ['non_existent_vec_%i' % i for i in range(5)] ids_2 = ['non_existent_vec_%i' % i for i in range(5)] vecs_1 = self.hhenl.bulk_get_vector(ids_1) vecs_2 = self.hhenl.bulk_get_vector(ids_2) self.assertEqual(len(vecs_1), len(vec_ids)) self.assertEqual(len(vecs_2), 0) def test_bulk_get_vector_3(self): """Copies of the stored vectors are returned, rather than the vectors themselves. Thus changing any of the returned vectors does _not_ affect the stored versions.""" vec_ids = self.feature_vecs_ids original = self.hhenl.bulk_get_vector(vec_ids) first = self.hhenl.bulk_get_vector(vec_ids) for vec in first: vec[0] = 11.0 second = self.hhenl.bulk_get_vector(vec_ids) for f, s, o in zip(first, second, original): self.assertTrue((s == o).all()) self.assertTrue((f != o).any()) def test_get_rank_1(self): """Returns a positive integer agreeing with the length of a known vector, and with the underlying 'rank' attribute.""" vec_id = self.feature_vecs_ids[0] vec = self.hhenl.get_vector(vec_id) returned_rank = self.hhenl.get_rank() self.assertEqual(self.hhenl.rank, returned_rank) self.assertEqual(len(vec), returned_rank) def test_delete_vector_1(self): """Removes 'vec' both from self.hhenl.kvstore, and from all chambers of all underlying HyperplaneHasher objects.""" vec = self.feature_vecs[0] vec_id = self.feature_vecs_ids[0] self.hhenl.delete_vector(vec, vec_id) self.assertRaises(KeyError, self.hhenl.get_vector, vec_id) all_vec_ids = self.hhenl.get_vector_ids() self.assertNotIn(vec_id, all_vec_ids) for hh in self.hhenl.hhs: chamber_id = hh.get_chamber_id(vec) self.assertNotIn(vec_id, hh.chamber_labels(chamber_id)) def test_delete_vector_2(self): """Throws KeyError if 'vec_id' is not a key in the underlying KeyValueStore object, throws ValueError if len(vec) != self.rank.""" vec = self.feature_vecs[0] self._rank_error(self.hhenl.delete_vector) self.assertRaises(KeyError, self.hhenl.delete_vector, *[vec, 'non_existent_id']) def test_add_vector_1(self): """Adds 'vec' both to self.hhenl.kvstore, and to exactly one chamber of each underlying HyperplaneHasher object. Subsequently, the lists of keys of vectors in the objects self.hhenl.kvstore and self.hhenl.hhs[i].kvstore are identical, for all i.""" vec = HyperplaneHasher._random_vectors(1, self.hhenl.rank)[0] vec_id = 'new' self.hhenl.add_vector(vec, vec_id) self.assertTrue((self.hhenl.get_vector(vec_id)==vec).all()) all_vec_ids = self.hhenl.get_vector_ids() self.assertIn(vec_id, all_vec_ids) for hh in self.hhenl.hhs: chamber_id = hh.get_chamber_id(vec) self.assertIn(vec_id, hh.chamber_labels(chamber_id)) def test_add_vector_2(self): """Throws ValueError if len(vec) != self.rank.""" self._rank_error(self.hhenl.add_vector) def test_bulk_add_vector_1(self): """Throws ValueError if len(vec) != self.rank for vec in vecs.""" self._bulk_rank_error(self.hhenl.bulk_add_vector) def test_bulk_add_vector_2(self): """Throws ValueError if len(vec) != self.rank for vec in vecs.""" self._bulk_list_length_error(self.hhenl.bulk_add_vector) def _check_new_vec_ids_added(self, hhenl, vecs, vec_ids): """The set theoretic difference between hhenl.get_vector_ids_post and self.hhenl.get_vector_ids_pre is equal to the set-theoretic difference between set(vec_ids) and self.hhenl.get_vector_ids_pre.""" ids_pre = self.hhenl.get_vector_ids() expected_diff = set(vec_ids).difference(ids_pre) self.hhenl.bulk_add_vector(vecs, vec_ids) ids_post = self.hhenl.get_vector_ids() actual_diff = ids_post.difference(ids_pre) return (actual_diff, expected_diff) def test_bulk_add_vector_3(self): """The set theoretic difference between self.hhenl.get_vector_ids_post and self.hhenl.get_vector_ids_pre is equal to the set of new vector ids.""" vecs = self.feature_vecs[:10] vec_ids = self.letters[:10] new_vec_ids = self.letters[5:15] actual_diff, expected_diff = self._check_new_vec_ids_added(self.hhenl, vecs, vec_ids) self.assertEqual(actual_diff, expected_diff) actual_diff, expected_diff = self._check_new_vec_ids_added(self.hhenl, vecs, new_vec_ids) self.assertEqual(actual_diff, expected_diff) def test_bulk_add_vector_4(self): """The method is idempotent.""" vecs = self.feature_vecs[:10] vec_ids = self.letters[:10] _, _ = self._check_new_vec_ids_added(self.hhenl, vecs, vec_ids) actual_diff, expected_diff = self._check_new_vec_ids_added(self.hhenl, vecs, vec_ids) self.assertEqual(actual_diff, set()) self.assertEqual(actual_diff, set()) def _chamberwise_compare(self, hhenl_1, hhenl_2): """Check that the chambers of all hh objects attached to each of hhenl_1 and hhenl_2 contain the same labels.""" for hh_1, hh_2 in zip(hhenl_1.hhs, hhenl_2.hhs): hh_1_ids, hh_2_ids = hh_1.get_chamber_ids(), hh_2.get_chamber_ids() self.assertEqual(self._get_all_hh_labels(hh_1), self._get_all_hh_labels(hh_1)) self.assertEqual(hh_1_ids, hh_2_ids) for ch_id_1, ch_id_2 in zip(hh_1_ids, hh_2_ids): print 'Bulk labels' print hh_1.chamber_labels(ch_id_1) print 'Serial labels' print hh_2.chamber_labels(ch_id_2) self.assertEqual(hh_1.chamber_labels(ch_id_1), hh_2.chamber_labels(ch_id_2)) print '\n' def _delete_all_vectors(self, hhenl): """Calls delete_vector(vec_id) for every vec_id.""" vec_ids = hhenl.get_vector_ids() vecs = [hhenl.get_vector(vec_id) for vec_id in vec_ids] for vec, vec_id in zip(vecs, vec_ids): hhenl.delete_vector(vec, vec_id) def _create_hhs_chamber_label_list(self, hhenl): """Returns a list [ch_label_list_1, ..., chamber_label_list_n] of lists, where ch_label_list_i is the list of pairs (chamber_id, labels) associated to the i-th HyperplaneHasher object in hhenl, and labels is the set of labels in chamber chamber_id.""" hhs_ch_label_list = [] for hh in hhenl.hhs: ch_ids = list(hh.get_chamber_ids()) ch_ids.sort() ch_label_list = [(ch_id, hh.chamber_labels(ch_id)) for ch_id in ch_ids] hhs_ch_label_list.append(ch_label_list) return hhs_ch_label_list def test_bulk_add_vector_5(self): """Calling the method on (vecs, vec_ids) has the same effect as calling add_vector(vec, vec_id), for all (vec, vec_id) in zip(vecs, vec_ids).""" vecs = self.feature_vecs[:10] vec_ids = self.letters[:10] hhenl = self._create_hhenl() hhenl.bulk_add_vector(vecs, vec_ids) list_bulk = self._create_hhs_chamber_label_list(hhenl) self._delete_all_vectors(hhenl) for vec, vec_id in zip(vecs, vec_ids): hhenl.add_vector(vec, vec_id) list_serial = self._create_hhs_chamber_label_list(hhenl) self.assertEqual(list_bulk, list_serial) def test_find_neighbours_1(self): """Returns a pandas series of length 'num_neighbours', indexed by keys that can successfully be passed to the get_vector() method. The entries of 'ser' are non-negative real numbers, in ascending order. If the input vector is known to the underlying KeyValueStore object, then the first entry has value 0.0 and key == 'vec_id', where 'vec_id' is the id of the input vector.""" vec = HyperplaneHasher._random_vectors(1, self.hhenl.rank)[0] nn = 10 neighbours = self.hhenl.find_neighbours(vec, nn) self.assertIsInstance(neighbours, pd.Series) self.assertEqual(len(neighbours), nn) self.assertTrue((neighbours == neighbours.order()).all()) for i in range(len(neighbours)): self.assertGreaterEqual(neighbours[i], 0.0) def test_find_neighbours_2(self): """If input vector 'vec' is known to underlying KeyValueStore object, then first entry of output has value 0.0 and key 'vec_id', the id of 'vec'.""" vec = self.feature_vecs[0] vec_id = self.feature_vecs_ids[0] nn = 10 neighbours = self.hhenl.find_neighbours(vec, nn) self.assertEqual(neighbours.iloc[0], 0.0) self.assertEqual(neighbours.index[0], vec_id) def test_find_neighbours_3(self): """Throws ValueError if len(vec) != self.rank.""" self._rank_error(self.hhenl.find_neighbours)
mit
mattilyra/scikit-learn
sklearn/utils/tests/test_random.py
85
7349
from __future__ import division import numpy as np import scipy.sparse as sp from scipy.misc import comb as combinations from numpy.testing import assert_array_almost_equal from sklearn.utils.random import sample_without_replacement from sklearn.utils.random import random_choice_csc from sklearn.utils.testing import ( assert_raises, assert_equal, assert_true) ############################################################################### # test custom sampling without replacement algorithm ############################################################################### def test_invalid_sample_without_replacement_algorithm(): assert_raises(ValueError, sample_without_replacement, 5, 4, "unknown") def test_sample_without_replacement_algorithms(): methods = ("auto", "tracking_selection", "reservoir_sampling", "pool") for m in methods: def sample_without_replacement_method(n_population, n_samples, random_state=None): return sample_without_replacement(n_population, n_samples, method=m, random_state=random_state) check_edge_case_of_sample_int(sample_without_replacement_method) check_sample_int(sample_without_replacement_method) check_sample_int_distribution(sample_without_replacement_method) def check_edge_case_of_sample_int(sample_without_replacement): # n_population < n_sample assert_raises(ValueError, sample_without_replacement, 0, 1) assert_raises(ValueError, sample_without_replacement, 1, 2) # n_population == n_samples assert_equal(sample_without_replacement(0, 0).shape, (0, )) assert_equal(sample_without_replacement(1, 1).shape, (1, )) # n_population >= n_samples assert_equal(sample_without_replacement(5, 0).shape, (0, )) assert_equal(sample_without_replacement(5, 1).shape, (1, )) # n_population < 0 or n_samples < 0 assert_raises(ValueError, sample_without_replacement, -1, 5) assert_raises(ValueError, sample_without_replacement, 5, -1) def check_sample_int(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # the sample is of the correct length and contains only unique items n_population = 100 for n_samples in range(n_population + 1): s = sample_without_replacement(n_population, n_samples) assert_equal(len(s), n_samples) unique = np.unique(s) assert_equal(np.size(unique), n_samples) assert_true(np.all(unique < n_population)) # test edge case n_population == n_samples == 0 assert_equal(np.size(sample_without_replacement(0, 0)), 0) def check_sample_int_distribution(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # sample generates all possible permutations n_population = 10 # a large number of trials prevents false negatives without slowing normal # case n_trials = 10000 for n_samples in range(n_population): # Counting the number of combinations is not as good as counting the # the number of permutations. However, it works with sampling algorithm # that does not provide a random permutation of the subset of integer. n_expected = combinations(n_population, n_samples, exact=True) output = {} for i in range(n_trials): output[frozenset(sample_without_replacement(n_population, n_samples))] = None if len(output) == n_expected: break else: raise AssertionError( "number of combinations != number of expected (%s != %s)" % (len(output), n_expected)) def test_random_choice_csc(n_samples=10000, random_state=24): # Explicit class probabilities classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Implicit class probabilities classes = [[0, 1], [1, 2]] # test for array-like support class_probabilites = [np.array([0.5, 0.5]), np.array([0, 1/2, 1/2])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Edge case probabilities 1.0 and 0.0 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([1.0, 0.0]), np.array([0.0, 1.0, 0.0])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel(), minlength=len(class_probabilites[k])) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) # One class target data classes = [[1], [0]] # test for array-like support class_probabilites = [np.array([0.0, 1.0]), np.array([1.0])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) def test_random_choice_csc_errors(): # the length of an array in classes and class_probabilites is mismatched classes = [np.array([0, 1]), np.array([0, 1, 2, 3])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array(["a", "1"]), np.array(["z", "1", "2"])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array([4.2, 0.1]), np.array([0.1, 0.2, 9.4])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # Given probabilities don't sum to 1 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.6]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1)
bsd-3-clause
eranchetz/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_cocoaagg.py
70
8970
from __future__ import division """ backend_cocoaagg.py A native Cocoa backend via PyObjC in OSX. Author: Charles Moad ([email protected]) Notes: - Requires PyObjC (currently testing v1.3.7) - The Tk backend works nicely on OSX. This code primarily serves as an example of embedding a matplotlib rendering context into a cocoa app using a NSImageView. """ import os, sys try: import objc except: print >>sys.stderr, 'The CococaAgg backend required PyObjC to be installed!' print >>sys.stderr, ' (currently testing v1.3.7)' sys.exit() from Foundation import * from AppKit import * from PyObjCTools import NibClassBuilder, AppHelper import matplotlib from matplotlib.figure import Figure from matplotlib.backend_bases import FigureManagerBase from backend_agg import FigureCanvasAgg from matplotlib._pylab_helpers import Gcf mplBundle = NSBundle.bundleWithPath_(os.path.dirname(__file__)) def new_figure_manager(num, *args, **kwargs): FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass( *args, **kwargs ) canvas = FigureCanvasCocoaAgg(thisFig) return FigureManagerCocoaAgg(canvas, num) def show(): for manager in Gcf.get_all_fig_managers(): manager.show() def draw_if_interactive(): if matplotlib.is_interactive(): figManager = Gcf.get_active() if figManager is not None: figManager.show() class FigureCanvasCocoaAgg(FigureCanvasAgg): def draw(self): FigureCanvasAgg.draw(self) def blit(self, bbox): pass def start_event_loop(self,timeout): FigureCanvasBase.start_event_loop_default(self,timeout) start_event_loop.__doc__=FigureCanvasBase.start_event_loop_default.__doc__ def stop_event_loop(self): FigureCanvasBase.stop_event_loop_default(self) stop_event_loop.__doc__=FigureCanvasBase.stop_event_loop_default.__doc__ NibClassBuilder.extractClasses('Matplotlib.nib', mplBundle) class MatplotlibController(NibClassBuilder.AutoBaseClass): # available outlets: # NSWindow plotWindow # PlotView plotView def awakeFromNib(self): # Get a reference to the active canvas NSApp().setDelegate_(self) self.app = NSApp() self.canvas = Gcf.get_active().canvas self.plotView.canvas = self.canvas self.canvas.plotView = self.plotView self.plotWindow.setAcceptsMouseMovedEvents_(True) self.plotWindow.makeKeyAndOrderFront_(self) self.plotWindow.setDelegate_(self)#.plotView) self.plotView.setImageFrameStyle_(NSImageFrameGroove) self.plotView.image_ = NSImage.alloc().initWithSize_((0,0)) self.plotView.setImage_(self.plotView.image_) # Make imageview first responder for key events self.plotWindow.makeFirstResponder_(self.plotView) # Force the first update self.plotView.windowDidResize_(self) def windowDidResize_(self, sender): self.plotView.windowDidResize_(sender) def windowShouldClose_(self, sender): #NSApplication.sharedApplication().stop_(self) self.app.stop_(self) return objc.YES def saveFigure_(self, sender): p = NSSavePanel.savePanel() if(p.runModal() == NSFileHandlingPanelOKButton): self.canvas.print_figure(p.filename()) def printFigure_(self, sender): op = NSPrintOperation.printOperationWithView_(self.plotView) op.runOperation() class PlotWindow(NibClassBuilder.AutoBaseClass): pass class PlotView(NibClassBuilder.AutoBaseClass): def updatePlot(self): w,h = self.canvas.get_width_height() # Remove all previous images for i in xrange(self.image_.representations().count()): self.image_.removeRepresentation_(self.image_.representations().objectAtIndex_(i)) self.image_.setSize_((w,h)) brep = NSBitmapImageRep.alloc().initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bytesPerRow_bitsPerPixel_( (self.canvas.buffer_rgba(0,0),'','','',''), # Image data w, # width h, # height 8, # bits per pixel 4, # components per pixel True, # has alpha? False, # is planar? NSCalibratedRGBColorSpace, # color space w*4, # row bytes 32) # bits per pixel self.image_.addRepresentation_(brep) self.setNeedsDisplay_(True) def windowDidResize_(self, sender): w,h = self.bounds().size dpi = self.canvas.figure.dpi self.canvas.figure.set_size_inches(w / dpi, h / dpi) self.canvas.draw() self.updatePlot() def mouseDown_(self, event): loc = self.convertPoint_fromView_(event.locationInWindow(), None) type = event.type() if (type == NSLeftMouseDown): button = 1 else: print >>sys.stderr, 'Unknown mouse event type:', type button = -1 self.canvas.button_press_event(loc.x, loc.y, button) self.updatePlot() def mouseDragged_(self, event): loc = self.convertPoint_fromView_(event.locationInWindow(), None) self.canvas.motion_notify_event(loc.x, loc.y) self.updatePlot() def mouseUp_(self, event): loc = self.convertPoint_fromView_(event.locationInWindow(), None) type = event.type() if (type == NSLeftMouseUp): button = 1 else: print >>sys.stderr, 'Unknown mouse event type:', type button = -1 self.canvas.button_release_event(loc.x, loc.y, button) self.updatePlot() def keyDown_(self, event): self.canvas.key_press_event(event.characters()) self.updatePlot() def keyUp_(self, event): self.canvas.key_release_event(event.characters()) self.updatePlot() class MPLBootstrap(NSObject): # Loads the nib containing the PlotWindow and PlotView def startWithBundle_(self, bundle): #NSApplicationLoad() if not bundle.loadNibFile_externalNameTable_withZone_('Matplotlib.nib', {}, None): print >>sys.stderr, 'Unable to load Matplotlib Cocoa UI!' sys.exit() class FigureManagerCocoaAgg(FigureManagerBase): def __init__(self, canvas, num): FigureManagerBase.__init__(self, canvas, num) try: WMEnable('Matplotlib') except: # MULTIPLE FIGURES ARE BUGGY! pass # If there are multiple figures we only need to enable once #self.bootstrap = MPLBootstrap.alloc().init().performSelectorOnMainThread_withObject_waitUntilDone_( # 'startWithBundle:', # mplBundle, # False) def show(self): # Load a new PlotWindow self.bootstrap = MPLBootstrap.alloc().init().performSelectorOnMainThread_withObject_waitUntilDone_( 'startWithBundle:', mplBundle, False) NSApplication.sharedApplication().run() FigureManager = FigureManagerCocoaAgg #### Everything below taken from PyObjC examples #### This is a hack to allow python scripts to access #### the window manager without running pythonw. def S(*args): return ''.join(args) OSErr = objc._C_SHT OUTPSN = 'o^{ProcessSerialNumber=LL}' INPSN = 'n^{ProcessSerialNumber=LL}' FUNCTIONS=[ # These two are public API ( u'GetCurrentProcess', S(OSErr, OUTPSN) ), ( u'SetFrontProcess', S(OSErr, INPSN) ), # This is undocumented SPI ( u'CPSSetProcessName', S(OSErr, INPSN, objc._C_CHARPTR) ), ( u'CPSEnableForegroundOperation', S(OSErr, INPSN) ), ] def WMEnable(name='Python'): if isinstance(name, unicode): name = name.encode('utf8') mainBundle = NSBundle.mainBundle() bPath = os.path.split(os.path.split(os.path.split(sys.executable)[0])[0])[0] if mainBundle.bundlePath() == bPath: return True bndl = NSBundle.bundleWithPath_(objc.pathForFramework('/System/Library/Frameworks/ApplicationServices.framework')) if bndl is None: print >>sys.stderr, 'ApplicationServices missing' return False d = {} objc.loadBundleFunctions(bndl, d, FUNCTIONS) for (fn, sig) in FUNCTIONS: if fn not in d: print >>sys.stderr, 'Missing', fn return False err, psn = d['GetCurrentProcess']() if err: print >>sys.stderr, 'GetCurrentProcess', (err, psn) return False err = d['CPSSetProcessName'](psn, name) if err: print >>sys.stderr, 'CPSSetProcessName', (err, psn) return False err = d['CPSEnableForegroundOperation'](psn) if err: #print >>sys.stderr, 'CPSEnableForegroundOperation', (err, psn) return False err = d['SetFrontProcess'](psn) if err: print >>sys.stderr, 'SetFrontProcess', (err, psn) return False return True
agpl-3.0
herberthudson/pynance
pynance/tst/tech/test_movave.py
1
1535
""" Copyright (c) 2014 Marshall Farrier license http://opensource.org/licenses/MIT @author: Marshall Farrier @contact: [email protected] @since: 2014-11-02 @summary: Unit tests for data module """ import unittest import numpy as np import pandas as pd import pynance as pn class TestData(unittest.TestCase): def setUp(self): session_dates = [ '2014-01-06', '2014-01-07', '2014-01-08', '2014-01-09', '2014-01-10', '2014-01-13', '2014-01-14', '2014-01-15', '2014-01-16', '2014-01-17'] self.equity_data = pd.DataFrame(np.arange(1., 21.).reshape((10, 2)), index=session_dates, columns=['Volume', 'Adj Close']) self.equity_data.index.name = 'Date' def test_ema(self): _span = 4 _emadf = pn.tech.ema(self.equity_data.loc[:, 'Adj Close'], span=_span) _prev = _emadf.iloc[0, 0] # values are increasing but smaller than df values for i in range(1, len(_emadf.index)): self.assertTrue(_emadf.iloc[i, 0] < self.equity_data.iloc[i, 1]) self.assertTrue(_emadf.iloc[i, 0] > _prev) _prev = _emadf.iloc[i, 0] # values are greater than 2 datapoints back in equity_data for i in range(2, len(_emadf.index)): self.assertTrue(_emadf.iloc[i, 0] > self.equity_data.iloc[i - 2, 1]) if __name__ == '__main__': unittest.main()
mit
apbard/scipy
doc/source/tutorial/stats/plots/kde_plot3.py
132
1229
import numpy as np import matplotlib.pyplot as plt from scipy import stats np.random.seed(12456) x1 = np.random.normal(size=200) # random data, normal distribution xs = np.linspace(x1.min()-1, x1.max()+1, 200) kde1 = stats.gaussian_kde(x1) kde2 = stats.gaussian_kde(x1, bw_method='silverman') fig = plt.figure(figsize=(8, 6)) ax1 = fig.add_subplot(211) ax1.plot(x1, np.zeros(x1.shape), 'b+', ms=12) # rug plot ax1.plot(xs, kde1(xs), 'k-', label="Scott's Rule") ax1.plot(xs, kde2(xs), 'b-', label="Silverman's Rule") ax1.plot(xs, stats.norm.pdf(xs), 'r--', label="True PDF") ax1.set_xlabel('x') ax1.set_ylabel('Density') ax1.set_title("Normal (top) and Student's T$_{df=5}$ (bottom) distributions") ax1.legend(loc=1) x2 = stats.t.rvs(5, size=200) # random data, T distribution xs = np.linspace(x2.min() - 1, x2.max() + 1, 200) kde3 = stats.gaussian_kde(x2) kde4 = stats.gaussian_kde(x2, bw_method='silverman') ax2 = fig.add_subplot(212) ax2.plot(x2, np.zeros(x2.shape), 'b+', ms=12) # rug plot ax2.plot(xs, kde3(xs), 'k-', label="Scott's Rule") ax2.plot(xs, kde4(xs), 'b-', label="Silverman's Rule") ax2.plot(xs, stats.t.pdf(xs, 5), 'r--', label="True PDF") ax2.set_xlabel('x') ax2.set_ylabel('Density') plt.show()
bsd-3-clause
bloyl/mne-python
mne/externals/tqdm/_tqdm/std.py
14
55471
""" Customisable progressbar decorator for iterators. Includes a default (x)range iterator printing to stderr. Usage: >>> from tqdm import trange[, tqdm] >>> for i in trange(10): #same as: for i in tqdm(xrange(10)) ... ... """ from __future__ import absolute_import, division # compatibility functions and utilities from .utils import _supports_unicode, _environ_cols_wrapper, _range, _unich, \ _term_move_up, _unicode, WeakSet, _basestring, _OrderedDict, _text_width, \ Comparable, RE_ANSI, _is_ascii, FormatReplace, \ SimpleTextIOWrapper, CallbackIOWrapper from ._monitor import TMonitor # native libraries from contextlib import contextmanager import sys from numbers import Number from time import time # For parallelism safety import threading as th from warnings import warn __author__ = {"github.com/": ["noamraph", "obiwanus", "kmike", "hadim", "casperdcl", "lrq3000"]} __all__ = ['tqdm', 'trange', 'TqdmTypeError', 'TqdmKeyError', 'TqdmWarning', 'TqdmExperimentalWarning', 'TqdmDeprecationWarning', 'TqdmMonitorWarning'] class TqdmTypeError(TypeError): pass class TqdmKeyError(KeyError): pass class TqdmWarning(Warning): """base class for all tqdm warnings. Used for non-external-code-breaking errors, such as garbled printing. """ def __init__(self, msg, fp_write=None, *a, **k): if fp_write is not None: fp_write("\n" + self.__class__.__name__ + ": " + str(msg).rstrip() + '\n') else: super(TqdmWarning, self).__init__(msg, *a, **k) class TqdmExperimentalWarning(TqdmWarning, FutureWarning): """beta feature, unstable API and behaviour""" pass class TqdmDeprecationWarning(TqdmWarning, DeprecationWarning): # not suppressed if raised pass class TqdmMonitorWarning(TqdmWarning, RuntimeWarning): """tqdm monitor errors which do not affect external functionality""" pass class TqdmDefaultWriteLock(object): """ Provide a default write lock for thread and multiprocessing safety. Works only on platforms supporting `fork` (so Windows is excluded). You must initialise a `tqdm` or `TqdmDefaultWriteLock` instance before forking in order for the write lock to work. On Windows, you need to supply the lock from the parent to the children as an argument to joblib or the parallelism lib you use. """ def __init__(self): # Create global parallelism locks to avoid racing issues with parallel # bars works only if fork available (Linux/MacOSX, but not Windows) self.create_mp_lock() self.create_th_lock() cls = type(self) self.locks = [lk for lk in [cls.mp_lock, cls.th_lock] if lk is not None] def acquire(self, *a, **k): for lock in self.locks: lock.acquire(*a, **k) def release(self): for lock in self.locks[::-1]: # Release in inverse order of acquisition lock.release() def __enter__(self): self.acquire() def __exit__(self, *exc): self.release() @classmethod def create_mp_lock(cls): if not hasattr(cls, 'mp_lock'): try: from multiprocessing import RLock cls.mp_lock = RLock() # multiprocessing lock except ImportError: # pragma: no cover cls.mp_lock = None except OSError: # pragma: no cover cls.mp_lock = None @classmethod def create_th_lock(cls): if not hasattr(cls, 'th_lock'): try: cls.th_lock = th.RLock() # thread lock except OSError: # pragma: no cover cls.th_lock = None # Create a thread lock before instantiation so that no setup needs to be done # before running in a multithreaded environment. # Do not create the multiprocessing lock because it sets the multiprocessing # context and does not allow the user to use 'spawn' or 'forkserver' methods. TqdmDefaultWriteLock.create_th_lock() class Bar(object): """ `str.format`-able bar with format specifiers: `[width][type]` - `width` + unspecified (default): use `self.default_len` + `int >= 0`: overrides `self.default_len` + `int < 0`: subtract from `self.default_len` - `type` + `a`: ascii (`charset=self.ASCII` override) + `u`: unicode (`charset=self.UTF` override) + `b`: blank (`charset=" "` override) """ ASCII = " 123456789#" UTF = u" " + u''.join(map(_unich, range(0x258F, 0x2587, -1))) BLANK = " " def __init__(self, frac, default_len=10, charset=UTF): if not (0 <= frac <= 1): warn("clamping frac to range [0, 1]", TqdmWarning, stacklevel=2) frac = max(0, min(1, frac)) assert default_len > 0 self.frac = frac self.default_len = default_len self.charset = charset def __format__(self, format_spec): if format_spec: _type = format_spec[-1].lower() try: charset = dict(a=self.ASCII, u=self.UTF, b=self.BLANK)[_type] except KeyError: charset = self.charset else: format_spec = format_spec[:-1] if format_spec: N_BARS = int(format_spec) if N_BARS < 0: N_BARS += self.default_len else: N_BARS = self.default_len else: charset = self.charset N_BARS = self.default_len nsyms = len(charset) - 1 bar_length, frac_bar_length = divmod( int(self.frac * N_BARS * nsyms), nsyms) bar = charset[-1] * bar_length frac_bar = charset[frac_bar_length] # whitespace padding if bar_length < N_BARS: return bar + frac_bar + \ charset[0] * (N_BARS - bar_length - 1) return bar class tqdm(Comparable): """ Decorate an iterable object, returning an iterator which acts exactly like the original iterable, but prints a dynamically updating progressbar every time a value is requested. """ monitor_interval = 10 # set to 0 to disable the thread monitor = None @staticmethod def format_sizeof(num, suffix='', divisor=1000): """ Formats a number (greater than unity) with SI Order of Magnitude prefixes. Parameters ---------- num : float Number ( >= 1) to format. suffix : str, optional Post-postfix [default: '']. divisor : float, optional Divisor between prefixes [default: 1000]. Returns ------- out : str Number with Order of Magnitude SI unit postfix. """ for unit in ['', 'k', 'M', 'G', 'T', 'P', 'E', 'Z']: if abs(num) < 999.5: if abs(num) < 99.95: if abs(num) < 9.995: return '{0:1.2f}'.format(num) + unit + suffix return '{0:2.1f}'.format(num) + unit + suffix return '{0:3.0f}'.format(num) + unit + suffix num /= divisor return '{0:3.1f}Y'.format(num) + suffix @staticmethod def format_interval(t): """ Formats a number of seconds as a clock time, [H:]MM:SS Parameters ---------- t : int Number of seconds. Returns ------- out : str [H:]MM:SS """ mins, s = divmod(int(t), 60) h, m = divmod(mins, 60) if h: return '{0:d}:{1:02d}:{2:02d}'.format(h, m, s) else: return '{0:02d}:{1:02d}'.format(m, s) @staticmethod def format_num(n): """ Intelligent scientific notation (.3g). Parameters ---------- n : int or float or Numeric A Number. Returns ------- out : str Formatted number. """ f = '{0:.3g}'.format(n).replace('+0', '+').replace('-0', '-') n = str(n) return f if len(f) < len(n) else n @staticmethod def ema(x, mu=None, alpha=0.3): """ Exponential moving average: smoothing to give progressively lower weights to older values. Parameters ---------- x : float New value to include in EMA. mu : float, optional Previous EMA value. alpha : float, optional Smoothing factor in range [0, 1], [default: 0.3]. Increase to give more weight to recent values. Ranges from 0 (yields mu) to 1 (yields x). """ return x if mu is None else (alpha * x) + (1 - alpha) * mu @staticmethod def status_printer(file): """ Manage the printing and in-place updating of a line of characters. Note that if the string is longer than a line, then in-place updating may not work (it will print a new line at each refresh). """ fp = file fp_flush = getattr(fp, 'flush', lambda: None) # pragma: no cover def fp_write(s): fp.write(_unicode(s)) fp_flush() last_len = [0] def print_status(s): len_s = len(s) fp_write('\r' + s + (' ' * max(last_len[0] - len_s, 0))) last_len[0] = len_s return print_status @staticmethod def format_meter(n, total, elapsed, ncols=None, prefix='', ascii=False, unit='it', unit_scale=False, rate=None, bar_format=None, postfix=None, unit_divisor=1000, **extra_kwargs): """ Return a string-based progress bar given some parameters Parameters ---------- n : int or float Number of finished iterations. total : int or float The expected total number of iterations. If meaningless (None), only basic progress statistics are displayed (no ETA). elapsed : float Number of seconds passed since start. ncols : int, optional The width of the entire output message. If specified, dynamically resizes `{bar}` to stay within this bound [default: None]. If `0`, will not print any bar (only stats). The fallback is `{bar:10}`. prefix : str, optional Prefix message (included in total width) [default: '']. Use as {desc} in bar_format string. ascii : bool, optional or str, optional If not set, use unicode (smooth blocks) to fill the meter [default: False]. The fallback is to use ASCII characters " 123456789#". unit : str, optional The iteration unit [default: 'it']. unit_scale : bool or int or float, optional If 1 or True, the number of iterations will be printed with an appropriate SI metric prefix (k = 10^3, M = 10^6, etc.) [default: False]. If any other non-zero number, will scale `total` and `n`. rate : float, optional Manual override for iteration rate. If [default: None], uses n/elapsed. bar_format : str, optional Specify a custom bar string formatting. May impact performance. [default: '{l_bar}{bar}{r_bar}'], where l_bar='{desc}: {percentage:3.0f}%|' and r_bar='| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, ' '{rate_fmt}{postfix}]' Possible vars: l_bar, bar, r_bar, n, n_fmt, total, total_fmt, percentage, elapsed, elapsed_s, ncols, desc, unit, rate, rate_fmt, rate_noinv, rate_noinv_fmt, rate_inv, rate_inv_fmt, postfix, unit_divisor, remaining, remaining_s. Note that a trailing ": " is automatically removed after {desc} if the latter is empty. postfix : *, optional Similar to `prefix`, but placed at the end (e.g. for additional stats). Note: postfix is usually a string (not a dict) for this method, and will if possible be set to postfix = ', ' + postfix. However other types are supported (#382). unit_divisor : float, optional [default: 1000], ignored unless `unit_scale` is True. Returns ------- out : Formatted meter and stats, ready to display. """ # sanity check: total if total and n >= (total + 0.5): # allow float imprecision (#849) total = None # apply custom scale if necessary if unit_scale and unit_scale not in (True, 1): if total: total *= unit_scale n *= unit_scale if rate: rate *= unit_scale # by default rate = 1 / self.avg_time unit_scale = False elapsed_str = tqdm.format_interval(elapsed) # if unspecified, attempt to use rate = average speed # (we allow manual override since predicting time is an arcane art) if rate is None and elapsed: rate = n / elapsed inv_rate = 1 / rate if rate else None format_sizeof = tqdm.format_sizeof rate_noinv_fmt = ((format_sizeof(rate) if unit_scale else '{0:5.2f}'.format(rate)) if rate else '?') + unit + '/s' rate_inv_fmt = ((format_sizeof(inv_rate) if unit_scale else '{0:5.2f}'.format(inv_rate)) if inv_rate else '?') + 's/' + unit rate_fmt = rate_inv_fmt if inv_rate and inv_rate > 1 else rate_noinv_fmt if unit_scale: n_fmt = format_sizeof(n, divisor=unit_divisor) total_fmt = format_sizeof(total, divisor=unit_divisor) \ if total is not None else '?' else: n_fmt = str(n) total_fmt = str(total) if total is not None else '?' try: postfix = ', ' + postfix if postfix else '' except TypeError: pass remaining = (total - n) / rate if rate and total else 0 remaining_str = tqdm.format_interval(remaining) if rate else '?' # format the stats displayed to the left and right sides of the bar if prefix: # old prefix setup work around bool_prefix_colon_already = (prefix[-2:] == ": ") l_bar = prefix if bool_prefix_colon_already else prefix + ": " else: l_bar = '' r_bar = '| {0}/{1} [{2}<{3}, {4}{5}]'.format( n_fmt, total_fmt, elapsed_str, remaining_str, rate_fmt, postfix) # Custom bar formatting # Populate a dict with all available progress indicators format_dict = dict( # slight extension of self.format_dict n=n, n_fmt=n_fmt, total=total, total_fmt=total_fmt, elapsed=elapsed_str, elapsed_s=elapsed, ncols=ncols, desc=prefix or '', unit=unit, rate=inv_rate if inv_rate and inv_rate > 1 else rate, rate_fmt=rate_fmt, rate_noinv=rate, rate_noinv_fmt=rate_noinv_fmt, rate_inv=inv_rate, rate_inv_fmt=rate_inv_fmt, postfix=postfix, unit_divisor=unit_divisor, # plus more useful definitions remaining=remaining_str, remaining_s=remaining, l_bar=l_bar, r_bar=r_bar, **extra_kwargs) # total is known: we can predict some stats if total: # fractional and percentage progress frac = n / total percentage = frac * 100 l_bar += '{0:3.0f}%|'.format(percentage) if ncols == 0: return l_bar[:-1] + r_bar[1:] format_dict.update(l_bar=l_bar) if bar_format: format_dict.update(percentage=percentage) # auto-remove colon for empty `desc` if not prefix: bar_format = bar_format.replace("{desc}: ", '') else: bar_format = "{l_bar}{bar}{r_bar}" full_bar = FormatReplace() try: nobar = bar_format.format(bar=full_bar, **format_dict) except UnicodeEncodeError: bar_format = _unicode(bar_format) nobar = bar_format.format(bar=full_bar, **format_dict) if not full_bar.format_called: # no {bar}, we can just format and return return nobar # Formatting progress bar space available for bar's display full_bar = Bar( frac, max(1, ncols - _text_width(RE_ANSI.sub('', nobar))) if ncols else 10, charset=Bar.ASCII if ascii is True else ascii or Bar.UTF) if not _is_ascii(full_bar.charset) and _is_ascii(bar_format): bar_format = _unicode(bar_format) return bar_format.format(bar=full_bar, **format_dict) elif bar_format: # user-specified bar_format but no total l_bar += '|' format_dict.update(l_bar=l_bar, percentage=0) full_bar = FormatReplace() nobar = bar_format.format(bar=full_bar, **format_dict) if not full_bar.format_called: return nobar full_bar = Bar( 0, max(1, ncols - _text_width(RE_ANSI.sub('', nobar))) if ncols else 10, charset=Bar.BLANK) return bar_format.format(bar=full_bar, **format_dict) else: # no total: no progressbar, ETA, just progress stats return ((prefix + ": ") if prefix else '') + \ '{0}{1} [{2}, {3}{4}]'.format( n_fmt, unit, elapsed_str, rate_fmt, postfix) def __new__(cls, *args, **kwargs): # Create a new instance instance = object.__new__(cls) # Construct the lock if it does not exist with cls.get_lock(): # Add to the list of instances if not hasattr(cls, '_instances'): cls._instances = WeakSet() cls._instances.add(instance) # Create the monitoring thread if cls.monitor_interval and (cls.monitor is None or not cls.monitor.report()): try: cls.monitor = TMonitor(cls, cls.monitor_interval) except Exception as e: # pragma: nocover warn("tqdm:disabling monitor support" " (monitor_interval = 0) due to:\n" + str(e), TqdmMonitorWarning, stacklevel=2) cls.monitor_interval = 0 # Return the instance return instance @classmethod def _get_free_pos(cls, instance=None): """Skips specified instance.""" positions = set(abs(inst.pos) for inst in cls._instances if inst is not instance and hasattr(inst, "pos")) return min(set(range(len(positions) + 1)).difference(positions)) @classmethod def _decr_instances(cls, instance): """ Remove from list and reposition other bars so that newer bars won't overlap previous bars """ with cls._lock: try: cls._instances.remove(instance) except KeyError: # if not instance.gui: # pragma: no cover # raise pass # py2: maybe magically removed already # else: if not instance.gui: for inst in cls._instances: # negative `pos` means fixed if hasattr(inst, "pos") and inst.pos > abs(instance.pos): inst.clear(nolock=True) inst.pos -= 1 # TODO: check this doesn't overwrite another fixed bar # Kill monitor if no instances are left if not cls._instances and cls.monitor: try: cls.monitor.exit() del cls.monitor except AttributeError: # pragma: nocover pass else: cls.monitor = None @classmethod def write(cls, s, file=None, end="\n", nolock=False): """Print a message via tqdm (without overlap with bars).""" fp = file if file is not None else sys.stdout with cls.external_write_mode(file=file, nolock=nolock): # Write the message fp.write(s) fp.write(end) @classmethod @contextmanager def external_write_mode(cls, file=None, nolock=False): """ Disable tqdm within context and refresh tqdm when exits. Useful when writing to standard output stream """ fp = file if file is not None else sys.stdout if not nolock: cls.get_lock().acquire() # Clear all bars inst_cleared = [] for inst in getattr(cls, '_instances', []): # Clear instance if in the target output file # or if write output + tqdm output are both either # sys.stdout or sys.stderr (because both are mixed in terminal) if hasattr(inst, "start_t") and (inst.fp == fp or all( f in (sys.stdout, sys.stderr) for f in (fp, inst.fp))): inst.clear(nolock=True) inst_cleared.append(inst) yield # Force refresh display of bars we cleared for inst in inst_cleared: inst.refresh(nolock=True) if not nolock: cls._lock.release() @classmethod def set_lock(cls, lock): """Set the global lock.""" cls._lock = lock @classmethod def get_lock(cls): """Get the global lock. Construct it if it does not exist.""" if not hasattr(cls, '_lock'): cls._lock = TqdmDefaultWriteLock() return cls._lock @classmethod def pandas(tclass, *targs, **tkwargs): """ Registers the given `tqdm` class with pandas.core. ( frame.DataFrame | series.Series | groupby.(generic.)DataFrameGroupBy | groupby.(generic.)SeriesGroupBy ).progress_apply A new instance will be create every time `progress_apply` is called, and each instance will automatically close() upon completion. Parameters ---------- targs, tkwargs : arguments for the tqdm instance Examples -------- >>> import pandas as pd >>> import numpy as np >>> from tqdm import tqdm >>> from tqdm.gui import tqdm as tqdm_gui >>> >>> df = pd.DataFrame(np.random.randint(0, 100, (100000, 6))) >>> tqdm.pandas(ncols=50) # can use tqdm_gui, optional kwargs, etc >>> # Now you can use `progress_apply` instead of `apply` >>> df.groupby(0).progress_apply(lambda x: x**2) References ---------- https://stackoverflow.com/questions/18603270/ progress-indicator-during-pandas-operations-python """ from pandas.core.frame import DataFrame from pandas.core.series import Series try: from pandas import Panel except ImportError: # TODO: pandas>0.25.2 Panel = None try: # pandas>=0.18.0 from pandas.core.window import _Rolling_and_Expanding except ImportError: # pragma: no cover _Rolling_and_Expanding = None try: # pandas>=0.25.0 from pandas.core.groupby.generic import DataFrameGroupBy, \ SeriesGroupBy # , NDFrameGroupBy except ImportError: try: # pandas>=0.23.0 from pandas.core.groupby.groupby import DataFrameGroupBy, \ SeriesGroupBy except ImportError: from pandas.core.groupby import DataFrameGroupBy, \ SeriesGroupBy try: # pandas>=0.23.0 from pandas.core.groupby.groupby import GroupBy except ImportError: from pandas.core.groupby import GroupBy try: # pandas>=0.23.0 from pandas.core.groupby.groupby import PanelGroupBy except ImportError: try: from pandas.core.groupby import PanelGroupBy except ImportError: # pandas>=0.25.0 PanelGroupBy = None deprecated_t = [tkwargs.pop('deprecated_t', None)] def inner_generator(df_function='apply'): def inner(df, func, *args, **kwargs): """ Parameters ---------- df : (DataFrame|Series)[GroupBy] Data (may be grouped). func : function To be applied on the (grouped) data. **kwargs : optional Transmitted to `df.apply()`. """ # Precompute total iterations total = tkwargs.pop("total", getattr(df, 'ngroups', None)) if total is None: # not grouped if df_function == 'applymap': total = df.size elif isinstance(df, Series): total = len(df) elif _Rolling_and_Expanding is None or \ not isinstance(df, _Rolling_and_Expanding): # DataFrame or Panel axis = kwargs.get('axis', 0) if axis == 'index': axis = 0 elif axis == 'columns': axis = 1 # when axis=0, total is shape[axis1] total = df.size // df.shape[axis] # Init bar if deprecated_t[0] is not None: t = deprecated_t[0] deprecated_t[0] = None else: t = tclass(*targs, total=total, **tkwargs) if len(args) > 0: # *args intentionally not supported (see #244, #299) TqdmDeprecationWarning( "Except func, normal arguments are intentionally" + " not supported by" + " `(DataFrame|Series|GroupBy).progress_apply`." + " Use keyword arguments instead.", fp_write=getattr(t.fp, 'write', sys.stderr.write)) try: func = df._is_builtin_func(func) except TypeError: pass # Define bar updating wrapper def wrapper(*args, **kwargs): # update tbar correctly # it seems `pandas apply` calls `func` twice # on the first column/row to decide whether it can # take a fast or slow code path; so stop when t.total==t.n t.update(n=1 if not t.total or t.n < t.total else 0) return func(*args, **kwargs) # Apply the provided function (in **kwargs) # on the df using our wrapper (which provides bar updating) result = getattr(df, df_function)(wrapper, **kwargs) # Close bar and return pandas calculation result t.close() return result return inner # Monkeypatch pandas to provide easy methods # Enable custom tqdm progress in pandas! Series.progress_apply = inner_generator() SeriesGroupBy.progress_apply = inner_generator() Series.progress_map = inner_generator('map') SeriesGroupBy.progress_map = inner_generator('map') DataFrame.progress_apply = inner_generator() DataFrameGroupBy.progress_apply = inner_generator() DataFrame.progress_applymap = inner_generator('applymap') if Panel is not None: Panel.progress_apply = inner_generator() if PanelGroupBy is not None: PanelGroupBy.progress_apply = inner_generator() GroupBy.progress_apply = inner_generator() GroupBy.progress_aggregate = inner_generator('aggregate') GroupBy.progress_transform = inner_generator('transform') if _Rolling_and_Expanding is not None: # pragma: no cover _Rolling_and_Expanding.progress_apply = inner_generator() def __init__(self, iterable=None, desc=None, total=None, leave=True, file=None, ncols=None, mininterval=0.1, maxinterval=10.0, miniters=None, ascii=None, disable=False, unit='it', unit_scale=False, dynamic_ncols=False, smoothing=0.3, bar_format=None, initial=0, position=None, postfix=None, unit_divisor=1000, write_bytes=None, lock_args=None, gui=False, **kwargs): """ Parameters ---------- iterable : iterable, optional Iterable to decorate with a progressbar. Leave blank to manually manage the updates. desc : str, optional Prefix for the progressbar. total : int or float, optional The number of expected iterations. If unspecified, len(iterable) is used if possible. If float("inf") or as a last resort, only basic progress statistics are displayed (no ETA, no progressbar). If `gui` is True and this parameter needs subsequent updating, specify an initial arbitrary large positive number, e.g. 9e9. leave : bool, optional If [default: True], keeps all traces of the progressbar upon termination of iteration. If `None`, will leave only if `position` is `0`. file : `io.TextIOWrapper` or `io.StringIO`, optional Specifies where to output the progress messages (default: sys.stderr). Uses `file.write(str)` and `file.flush()` methods. For encoding, see `write_bytes`. ncols : int, optional The width of the entire output message. If specified, dynamically resizes the progressbar to stay within this bound. If unspecified, attempts to use environment width. The fallback is a meter width of 10 and no limit for the counter and statistics. If 0, will not print any meter (only stats). mininterval : float, optional Minimum progress display update interval [default: 0.1] seconds. maxinterval : float, optional Maximum progress display update interval [default: 10] seconds. Automatically adjusts `miniters` to correspond to `mininterval` after long display update lag. Only works if `dynamic_miniters` or monitor thread is enabled. miniters : int or float, optional Minimum progress display update interval, in iterations. If 0 and `dynamic_miniters`, will automatically adjust to equal `mininterval` (more CPU efficient, good for tight loops). If > 0, will skip display of specified number of iterations. Tweak this and `mininterval` to get very efficient loops. If your progress is erratic with both fast and slow iterations (network, skipping items, etc) you should set miniters=1. ascii : bool or str, optional If unspecified or False, use unicode (smooth blocks) to fill the meter. The fallback is to use ASCII characters " 123456789#". disable : bool, optional Whether to disable the entire progressbar wrapper [default: False]. If set to None, disable on non-TTY. unit : str, optional String that will be used to define the unit of each iteration [default: it]. unit_scale : bool or int or float, optional If 1 or True, the number of iterations will be reduced/scaled automatically and a metric prefix following the International System of Units standard will be added (kilo, mega, etc.) [default: False]. If any other non-zero number, will scale `total` and `n`. dynamic_ncols : bool, optional If set, constantly alters `ncols` to the environment (allowing for window resizes) [default: False]. smoothing : float, optional Exponential moving average smoothing factor for speed estimates (ignored in GUI mode). Ranges from 0 (average speed) to 1 (current/instantaneous speed) [default: 0.3]. bar_format : str, optional Specify a custom bar string formatting. May impact performance. [default: '{l_bar}{bar}{r_bar}'], where l_bar='{desc}: {percentage:3.0f}%|' and r_bar='| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, ' '{rate_fmt}{postfix}]' Possible vars: l_bar, bar, r_bar, n, n_fmt, total, total_fmt, percentage, elapsed, elapsed_s, ncols, desc, unit, rate, rate_fmt, rate_noinv, rate_noinv_fmt, rate_inv, rate_inv_fmt, postfix, unit_divisor, remaining, remaining_s. Note that a trailing ": " is automatically removed after {desc} if the latter is empty. initial : int or float, optional The initial counter value. Useful when restarting a progress bar [default: 0]. If using float, consider specifying `{n:.3f}` or similar in `bar_format`, or specifying `unit_scale`. position : int, optional Specify the line offset to print this bar (starting from 0) Automatic if unspecified. Useful to manage multiple bars at once (eg, from threads). postfix : dict or *, optional Specify additional stats to display at the end of the bar. Calls `set_postfix(**postfix)` if possible (dict). unit_divisor : float, optional [default: 1000], ignored unless `unit_scale` is True. write_bytes : bool, optional If (default: None) and `file` is unspecified, bytes will be written in Python 2. If `True` will also write bytes. In all other cases will default to unicode. lock_args : tuple, optional Passed to `refresh` for intermediate output (initialisation, iterating, and updating). gui : bool, optional WARNING: internal parameter - do not use. Use tqdm.gui.tqdm(...) instead. If set, will attempt to use matplotlib animations for a graphical output [default: False]. Returns ------- out : decorated iterator. """ if write_bytes is None: write_bytes = file is None and sys.version_info < (3,) if file is None: file = sys.stderr if write_bytes: # Despite coercing unicode into bytes, py2 sys.std* streams # should have bytes written to them. file = SimpleTextIOWrapper( file, encoding=getattr(file, 'encoding', None) or 'utf-8') if disable is None and hasattr(file, "isatty") and not file.isatty(): disable = True if total is None and iterable is not None: try: total = len(iterable) except (TypeError, AttributeError): total = None if total == float("inf"): # Infinite iterations, behave same as unknown total = None if disable: self.iterable = iterable self.disable = disable with self._lock: self.pos = self._get_free_pos(self) self._instances.remove(self) self.n = initial self.total = total return if kwargs: self.disable = True with self._lock: self.pos = self._get_free_pos(self) self._instances.remove(self) raise ( TqdmDeprecationWarning( "`nested` is deprecated and automated.\n" "Use `position` instead for manual control.\n", fp_write=getattr(file, 'write', sys.stderr.write)) if "nested" in kwargs else TqdmKeyError("Unknown argument(s): " + str(kwargs))) # Preprocess the arguments if ((ncols is None) and (file in (sys.stderr, sys.stdout))) or \ dynamic_ncols: # pragma: no cover if dynamic_ncols: dynamic_ncols = _environ_cols_wrapper() if dynamic_ncols: ncols = dynamic_ncols(file) else: _dynamic_ncols = _environ_cols_wrapper() if _dynamic_ncols: ncols = _dynamic_ncols(file) if miniters is None: miniters = 0 dynamic_miniters = True else: dynamic_miniters = False if mininterval is None: mininterval = 0 if maxinterval is None: maxinterval = 0 if ascii is None: ascii = not _supports_unicode(file) if bar_format and not ((ascii is True) or _is_ascii(ascii)): # Convert bar format into unicode since terminal uses unicode bar_format = _unicode(bar_format) if smoothing is None: smoothing = 0 # Store the arguments self.iterable = iterable self.desc = desc or '' self.total = total self.leave = leave self.fp = file self.ncols = ncols self.mininterval = mininterval self.maxinterval = maxinterval self.miniters = miniters self.dynamic_miniters = dynamic_miniters self.ascii = ascii self.disable = disable self.unit = unit self.unit_scale = unit_scale self.unit_divisor = unit_divisor self.lock_args = lock_args self.gui = gui self.dynamic_ncols = dynamic_ncols self.smoothing = smoothing self.avg_time = None self._time = time self.bar_format = bar_format self.postfix = None if postfix: try: self.set_postfix(refresh=False, **postfix) except TypeError: self.postfix = postfix # Init the iterations counters self.last_print_n = initial self.n = initial # if nested, at initial sp() call we replace '\r' by '\n' to # not overwrite the outer progress bar with self._lock: if position is None: self.pos = self._get_free_pos(self) else: # mark fixed positions as negative self.pos = -position if not gui: # Initialize the screen printer self.sp = self.status_printer(self.fp) self.refresh(lock_args=self.lock_args) # Init the time counter self.last_print_t = self._time() # NB: Avoid race conditions by setting start_t at the very end of init self.start_t = self.last_print_t def __bool__(self): if self.total is not None: return self.total > 0 if self.iterable is None: raise TypeError('bool() undefined when iterable == total == None') return bool(self.iterable) def __nonzero__(self): return self.__bool__() def __len__(self): return self.total if self.iterable is None else \ (self.iterable.shape[0] if hasattr(self.iterable, "shape") else len(self.iterable) if hasattr(self.iterable, "__len__") else getattr(self, "total", None)) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): try: self.close() except AttributeError: # maybe eager thread cleanup upon external error if (exc_type, exc_value, traceback) == (None, None, None): raise warn("AttributeError ignored", TqdmWarning, stacklevel=2) def __del__(self): self.close() def __repr__(self): return self.format_meter(**self.format_dict) @property def _comparable(self): return abs(getattr(self, "pos", 1 << 31)) def __hash__(self): return id(self) def __iter__(self): """Backward-compatibility to use: for x in tqdm(iterable)""" # Inlining instance variables as locals (speed optimisation) iterable = self.iterable # If the bar is disabled, then just walk the iterable # (note: keep this check outside the loop for performance) if self.disable: for obj in iterable: yield obj return mininterval = self.mininterval maxinterval = self.maxinterval miniters = self.miniters dynamic_miniters = self.dynamic_miniters last_print_t = self.last_print_t last_print_n = self.last_print_n n = self.n smoothing = self.smoothing avg_time = self.avg_time time = self._time if not hasattr(self, 'sp'): raise TqdmDeprecationWarning( "Please use `tqdm.gui.tqdm(...)` instead of" " `tqdm(..., gui=True)`\n", fp_write=getattr(self.fp, 'write', sys.stderr.write)) for obj in iterable: yield obj # Update and possibly print the progressbar. # Note: does not call self.update(1) for speed optimisation. n += 1 # check counter first to avoid calls to time() if n - last_print_n >= self.miniters: miniters = self.miniters # watch monitoring thread changes delta_t = time() - last_print_t if delta_t >= mininterval: cur_t = time() delta_it = n - last_print_n # EMA (not just overall average) if smoothing and delta_t and delta_it: rate = delta_t / delta_it avg_time = self.ema(rate, avg_time, smoothing) self.avg_time = avg_time self.n = n self.refresh(lock_args=self.lock_args) # If no `miniters` was specified, adjust automatically # to the max iteration rate seen so far between 2 prints if dynamic_miniters: if maxinterval and delta_t >= maxinterval: # Adjust miniters to time interval by rule of 3 if mininterval: # Set miniters to correspond to mininterval miniters = delta_it * mininterval / delta_t else: # Set miniters to correspond to maxinterval miniters = delta_it * maxinterval / delta_t elif smoothing: # EMA-weight miniters to converge # towards the timeframe of mininterval rate = delta_it if mininterval and delta_t: rate *= mininterval / delta_t miniters = self.ema(rate, miniters, smoothing) else: # Maximum nb of iterations between 2 prints miniters = max(miniters, delta_it) # Store old values for next call self.n = self.last_print_n = last_print_n = n self.last_print_t = last_print_t = cur_t self.miniters = miniters # Closing the progress bar. # Update some internal variables for close(). self.last_print_n = last_print_n self.n = n self.miniters = miniters self.close() def update(self, n=1): """ Manually update the progress bar, useful for streams such as reading files. E.g.: >>> t = tqdm(total=filesize) # Initialise >>> for current_buffer in stream: ... ... ... t.update(len(current_buffer)) >>> t.close() The last line is highly recommended, but possibly not necessary if `t.update()` will be called in such a way that `filesize` will be exactly reached and printed. Parameters ---------- n : int or float, optional Increment to add to the internal counter of iterations [default: 1]. If using float, consider specifying `{n:.3f}` or similar in `bar_format`, or specifying `unit_scale`. """ # N.B.: see __iter__() for more comments. if self.disable: return if n < 0: self.last_print_n += n # for auto-refresh logic to work self.n += n # check counter first to reduce calls to time() if self.n - self.last_print_n >= self.miniters: delta_t = self._time() - self.last_print_t if delta_t >= self.mininterval: cur_t = self._time() delta_it = self.n - self.last_print_n # >= n # elapsed = cur_t - self.start_t # EMA (not just overall average) if self.smoothing and delta_t and delta_it: rate = delta_t / delta_it self.avg_time = self.ema( rate, self.avg_time, self.smoothing) if not hasattr(self, "sp"): raise TqdmDeprecationWarning( "Please use `tqdm.gui.tqdm(...)`" " instead of `tqdm(..., gui=True)`\n", fp_write=getattr(self.fp, 'write', sys.stderr.write)) self.refresh(lock_args=self.lock_args) # If no `miniters` was specified, adjust automatically to the # maximum iteration rate seen so far between two prints. # e.g.: After running `tqdm.update(5)`, subsequent # calls to `tqdm.update()` will only cause an update after # at least 5 more iterations. if self.dynamic_miniters: if self.maxinterval and delta_t >= self.maxinterval: if self.mininterval: self.miniters = delta_it * self.mininterval \ / delta_t else: self.miniters = delta_it * self.maxinterval \ / delta_t elif self.smoothing: self.miniters = self.smoothing * delta_it * \ (self.mininterval / delta_t if self.mininterval and delta_t else 1) + \ (1 - self.smoothing) * self.miniters else: self.miniters = max(self.miniters, delta_it) # Store old values for next call self.last_print_n = self.n self.last_print_t = cur_t def close(self): """Cleanup and (if leave=False) close the progressbar.""" if self.disable: return # Prevent multiple closures self.disable = True # decrement instance pos and remove from internal set pos = abs(self.pos) self._decr_instances(self) # GUI mode if not hasattr(self, "sp"): return # annoyingly, _supports_unicode isn't good enough def fp_write(s): self.fp.write(_unicode(s)) try: fp_write('') except ValueError as e: if 'closed' in str(e): return raise # pragma: no cover leave = pos == 0 if self.leave is None else self.leave with self._lock: if leave: # stats for overall rate (no weighted average) self.avg_time = None self.display(pos=0) fp_write('\n') else: self.display(msg='', pos=pos) if not pos: fp_write('\r') def clear(self, nolock=False): """Clear current bar display.""" if self.disable: return if not nolock: self._lock.acquire() self.moveto(abs(self.pos)) self.sp('') self.fp.write('\r') # place cursor back at the beginning of line self.moveto(-abs(self.pos)) if not nolock: self._lock.release() def refresh(self, nolock=False, lock_args=None): """ Force refresh the display of this bar. Parameters ---------- nolock : bool, optional If `True`, does not lock. If [default: `False`]: calls `acquire()` on internal lock. lock_args : tuple, optional Passed to internal lock's `acquire()`. If specified, will only `display()` if `acquire()` returns `True`. """ if self.disable: return if not nolock: if lock_args: if not self._lock.acquire(*lock_args): return False else: self._lock.acquire() self.display() if not nolock: self._lock.release() return True def unpause(self): """Restart tqdm timer from last print time.""" cur_t = self._time() self.start_t += cur_t - self.last_print_t self.last_print_t = cur_t def reset(self, total=None): """ Resets to 0 iterations for repeated use. Consider combining with `leave=True`. Parameters ---------- total : int or float, optional. Total to use for the new bar. """ self.last_print_n = self.n = 0 self.last_print_t = self.start_t = self._time() if total is not None: self.total = total self.refresh() def set_description(self, desc=None, refresh=True): """ Set/modify description of the progress bar. Parameters ---------- desc : str, optional refresh : bool, optional Forces refresh [default: True]. """ self.desc = desc + ': ' if desc else '' if refresh: self.refresh() def set_description_str(self, desc=None, refresh=True): """Set/modify description without ': ' appended.""" self.desc = desc or '' if refresh: self.refresh() def set_postfix(self, ordered_dict=None, refresh=True, **kwargs): """ Set/modify postfix (additional stats) with automatic formatting based on datatype. Parameters ---------- ordered_dict : dict or OrderedDict, optional refresh : bool, optional Forces refresh [default: True]. kwargs : dict, optional """ # Sort in alphabetical order to be more deterministic postfix = _OrderedDict([] if ordered_dict is None else ordered_dict) for key in sorted(kwargs.keys()): postfix[key] = kwargs[key] # Preprocess stats according to datatype for key in postfix.keys(): # Number: limit the length of the string if isinstance(postfix[key], Number): postfix[key] = self.format_num(postfix[key]) # Else for any other type, try to get the string conversion elif not isinstance(postfix[key], _basestring): postfix[key] = str(postfix[key]) # Else if it's a string, don't need to preprocess anything # Stitch together to get the final postfix self.postfix = ', '.join(key + '=' + postfix[key].strip() for key in postfix.keys()) if refresh: self.refresh() def set_postfix_str(self, s='', refresh=True): """ Postfix without dictionary expansion, similar to prefix handling. """ self.postfix = str(s) if refresh: self.refresh() def moveto(self, n): # TODO: private method self.fp.write(_unicode('\n' * n + _term_move_up() * -n)) self.fp.flush() @property def format_dict(self): """Public API for read-only member access.""" return dict( n=self.n, total=self.total, elapsed=self._time() - self.start_t if hasattr(self, 'start_t') else 0, ncols=self.dynamic_ncols(self.fp) if self.dynamic_ncols else self.ncols, prefix=self.desc, ascii=self.ascii, unit=self.unit, unit_scale=self.unit_scale, rate=1 / self.avg_time if self.avg_time else None, bar_format=self.bar_format, postfix=self.postfix, unit_divisor=self.unit_divisor) def display(self, msg=None, pos=None): """ Use `self.sp` to display `msg` in the specified `pos`. Consider overloading this function when inheriting to use e.g.: `self.some_frontend(**self.format_dict)` instead of `self.sp`. Parameters ---------- msg : str, optional. What to display (default: `repr(self)`). pos : int, optional. Position to `moveto` (default: `abs(self.pos)`). """ if pos is None: pos = abs(self.pos) if pos: self.moveto(pos) self.sp(self.__repr__() if msg is None else msg) if pos: self.moveto(-pos) @classmethod @contextmanager def wrapattr(tclass, stream, method, total=None, bytes=True, **tkwargs): """ stream : file-like object. method : str, "read" or "write". The result of `read()` and the first argument of `write()` should have a `len()`. >>> with tqdm.wrapattr(file_obj, "read", total=file_obj.size) as fobj: ... while True: ... chunk = fobj.read(chunk_size) ... if not chunk: ... break """ with tclass(total=total, **tkwargs) as t: if bytes: t.unit = "B" t.unit_scale = True t.unit_divisor = 1024 yield CallbackIOWrapper(t.update, stream, method) def trange(*args, **kwargs): """ A shortcut for tqdm(xrange(*args), **kwargs). On Python3+ range is used instead of xrange. """ return tqdm(_range(*args), **kwargs)
bsd-3-clause
MoonRaker/cons2-python
cons2/cu.py
1
19734
# crop.py # Derek Groenendyk # 5/3/2016 # Crop classes for xcons program """ """ from datetime import datetime as dt from datetime import date from itertools import islice import logging import numpy as np import os import pandas as pd import pickle as pkl logger_fn = logging.getLogger('crop_functions') logger_fn.setLevel(logging.DEBUG) logger_cu = logging.getLogger('crop_cu') class CONSUMPTIVE_USE(object): """docstring for CONSUMPTIVE_USE""" def __init__(self, sp, cp): self.sp = sp self.cp = cp if self.sp.et_method == 'scs': self.ckc = self.cp.ckc self.nckc = self.cp.nckc if self.cp.crop_type == 'ANNUAL': self.mmnum = self.cp.mmnum self.ngrwpts = 21 elif self.cp.crop_type == 'PERENNIAL': self.mmnum = 7 self.ngrwpts = 25 self.grow_dates = {} self.nyrs = len(self.sp.yrs) wx_years = list(set(self.sp.wx.data.index.year)) # if (not np.all(wx_years == self.sp.yrs)) or \ if (len(wx_years) < self.nyrs): logger_cu.warn('Missing years of weather data.') logger_cu.info('completed init: ' + self.cp.sname) def calc_temp(self): self.temps, self.days = self.mmtemp(self.nbegmo, self.midpts, self.npart, self.mmnum) # might create an issues when they are equal, should probably # set tempf and dayf to zero. DGG 5/10/2016 if self.nbegmo != self.nendmo: self.tempf, self.dayf = self.mmtemp(self.nendmo, self.midptf, self.nendda, 12) def set_dates(self): if self.sp.et_method == 'scs': atemps = self.sp.wx.data['temp_avg'] self.get_dates(atemps) elif self.sp.et_method == 'fao': self.beg = self.cp.beg self.end = self.cp.end # self.beg = [self.jln(self.cp.mbegmo, self.cp.mbegda)] * len(self.sp.yrs) # self.end = [self.jln(self.cp.mendmo, self.cp.mendda)] * len(self.sp.yrs) def calc_dates(self): self.nbeg = self.beg[self.yr] self.nend = self.end[self.yr] # print(self.nbeg, self.nend, self.cp.sname) # if self.nend - self.nbeg + 1 > self.cp.ngrows: # self.nend = self.nbeg + self.cp.ngrows - 1 dates = {} dates['nbegmo'], dates['nbegda'] = self.clndr(self.nbeg) dates['nendmo'], dates['nendda'] = self.clndr(self.nend) # print(dates,self.cp.sname) self.nbegmo = dates['nbegmo'] self.nbegda = dates['nbegda'] self.nendmo = dates['nendmo'] self.nendda = dates['nendda'] self.grow_dates[self.sp.yrs[self.yr]] = dates if self.nbeg > self.nend: logger_cu.warning('Beginning date is after ending' + \ 'day for crop: ' + self.cp.sname) self.calc_midpts() if self.cp.crop_type == 'ANNUAL': # winter wheat if self.nbegmo == self.nendmo: self.midpts = ((self.nendda - self.nbegda + 1) / 2.) + self.nbegda elif self.cp.crop_type == 'PERENNIAL': # Julian spring midpoint of part month self.midspr = self.nbeg - self.nbegda + self.midpts self.midfal = self.nend - self.midptf def calc_kc(self): if self.cp.crop_type == 'ANNUAL': self.fake = self.nend - self.nbeg self.naccum[self.nbegmo-1] = self.jln(self.nbegmo, self.midpts) - self.nbeg self.nperct[self.nbegmo-1] = (self.naccum[self.nbegmo-1] / \ self.fake) * 100.0 self.midspr = self.nperct[self.nbegmo-1] self.midfal = self.nperct[self.nendmo-1] # Interpolate KC for part Spring month xkc, xf, xkt = self.interp_kc(self.midspr, self.temps, self.days) self.xkc[self.nbegmo - 1] = xkc self.xf[self.nbegmo - 1] = xf self.xkt[self.nbegmo - 1] = xkt # KC computation for all months if self.cp.crop_type == 'ANNUAL': # not winter wheat if self.nbegmo != self.nendmo: # not winter wheat if self.nbegmo != self.nendmo - 1: self.kc_ann() self.naccum[self.nendmo-1] = self.nend - self.nbeg - \ (self.nendda + 1)/2. self.nperct[self.nendmo-1] = (self.naccum[self.nendmo-1] / \ self.fake) * 100.0 elif self.cp.crop_type == 'PERENNIAL': self.kc_per() # Interpolate KC for part Fall month xkc, xf, xkt = self.interp_kc(self.midfal, self.tempf, self.dayf) self.xkc[self.nendmo - 1] = xkc self.xf[self.nendmo - 1] = xf self.xkt[self.nendmo - 1] = xkt def kc_ann(self): for k in range(self.nbegmo, self.nendmo-1): self.naccum[k] = self.jln(k+1, 15) - self.nbeg self.nperct[k] = (self.naccum[k] / self.fake) * 100.0 flag = True for j in range(self.ngrwpts): if self.nckc[j] > self.nperct[k]: self.xkc[k] = self.ckc[j-1] + (self.ckc[j] - \ self.ckc[j-1]) * ((self.nperct[k] - \ self.nckc[j-1]) / (self.nckc[j] - \ self.nckc[j-1])) flag = False break elif self.nckc[j] == self.nperct[k]: self.xkc[k] = self.ckc[j] flag = False break if flag: self.xkc[k] = self.ckc[j-1] + (self.ckc[j] - \ self.ckc[j-1]) * ((self.nperct[k] - \ self.nckc[j-1]) / (self.nckc[j] - \ self.nckc[j-1])) self.xf[k] = self.atemps[k] * self.sp.pclite[k] / 100. if self.atemps[k] < 36.0: self.xkt[k] = 0.3 else: self.xkt[k] = 0.0173 * self.atemps[k] - 0.314 def kc_per(self): mid = 15 for k in range(self.nbegmo, self.nendmo-1): flag = True for j in range(self.ngrwpts): if self.nckc[j] == self.jln(k+1, mid): self.xkc[k] = self.ckc[j] flag = False break if flag: logger_cu.warning('kc not found') self.xf[k] = self.atemps[k] * self.sp.pclite[k] \ / 100. if self.atemps[k] < 36.0: self.xkt[k] = 0.3 else: self.xkt[k] = 0.0173 * self.atemps[k] - 0.314 def calc_cu(self): self.set_dates() self.pcu = np.zeros((self.nyrs, 13)) self.pre = np.zeros((self.nyrs, 13)) self.pcuirr = np.zeros((self.nyrs, 13)) self.ppcu = np.zeros((self.nyrs, 13)) self.ppre = np.zeros((self.nyrs, 13)) self.pcuir = np.zeros((self.nyrs, 13)) self.adjureq = np.zeros((self.nyrs)) self.winprep = np.zeros((self.nyrs)) for yr in range(self.nyrs): self.yr = yr year = self.sp.wx.data.index.year self.atemps = self.sp.wx.data[year == \ self.sp.yrs[self.yr]].temp_avg.values precip = self.sp.wx.data[year == self.sp.yrs[yr]].precipitation.values self.calc_dates() self.cu = np.zeros(13) self.nperct = np.zeros(12, dtype=np.int32) self.naccum = np.zeros(12, dtype=np.int32) if self.sp.et_method == 'scs': self.calc_temp() self.xf = np.zeros(12) self.xkt = np.zeros(12) self.xkc = np.zeros(12) self.calc_kc() self.cu[:12] = self.xf * self.xkt * self.xkc elif self.sp.et_method == 'fao': self.cu[:12] = self.calc_fao(yr) re, cuirr = self.calc_effprecip(precip) self.ppcu[yr] = self.cu self.ppre[yr] = re self.pcuir[yr] = cuirr logger_cu.info('finished cu calculation') def spring(self, atemp, mean): """ Find beginning of growing season day of year. Parameters ---------- atemp: float Temperature mean: float Critical spring growing season temperature Returns ------- jdays: integer Julian day """ if atemp[6] >= mean: for j in range(0, 7): i = 6 - j if atemp[i] <= mean: break try: idiff = 30 * (mean - atemp[i]) / (atemp[i+1] - atemp[i]) except ZeroDivisionError: idiff = 0 if idiff > 15 and idiff < 31: month = i + 2 kdays = idiff - 15 elif idiff <= 15 and idiff > 0: month = i + 1 kdays = idiff + 15 elif idiff >= 31: month = i + 2 kdays = 15 elif idiff <= 0: month = i + 1 kdays = 15 else: month = 7 kdays = 15 kdays = int(round(kdays)) # try: # kdays = int(round(kdays)) # except OverflowError: # logger_fn.critical('Invalid kdays value') # logger_fn.critical('', mean, atemp[i], atemp[i]+1) # raise if kdays < 1: kdays = 1 if month == 2 and kdays > 28: kdays = 28 # yday = d.toordinal() - date(d.year, 1, 1).toordinal() + 1 jdays = dt(2015, int(month), round(kdays)).timetuple().tm_yday return jdays def fall(self, atemp, mean): """ Find end of growing season day of year. Parameters ---------- atemp: float Temperature mean: float Critical spring growing season temperature Returns ------- jdays: integer Julian day """ flag = True for i in range(6, 11): if atemp[i + 1] < mean: try: idiff = 30 * (atemp[i] - mean) / (atemp[i] - atemp[i+1]) except ZeroDivisionError: idiff = 0 if idiff > 15 and idiff < 31: month = i + 2 kdays = idiff - 15 elif idiff <= 15 and idiff > 0: month = i + 1 kdays = idiff + 15 elif idiff >= 31: month = i + 2 kdays = 15 elif idiff <= 0: month = i + 1 kdays = 15 flag = False break if flag: month = 12 kdays = 15 kdays = int(round(kdays)) if kdays < 1: kdays = 1 if month == 2 and kdays > 28: kdays = 28 jdays = dt(2015, month, kdays).timetuple().tm_yday return jdays def clndr(self, doy): """ Convert day of year in month and day. Parameters ---------- doy: integer Julian day of the year Returns ------- month: integer Month of the year day: integer Day of the month """ ordinal = date.toordinal(date(2015, 1, 1)) + int(doy) - 1 adate = date.fromordinal(ordinal).timetuple() month = int(adate[1]) day = int(adate[2]) return month, day def jln(self, m, d): return dt(2015, m, d).timetuple().tm_yday def get_dates(self, temps): """ Find the start and end of the crop growth season in julian days Parameters ---------- temps: float Monthly mean Spring temperature years: list List of integer years nbtemp: float Temperature when the growing season begins netemp: float Temperature when the growing season ends mbegmo: integer Earliest month season can begin mbegda: integer Earliest day season can begin mendmo: integer Latest month season can end mendda: integer Latest day season can end Returns ------- nbeg: integer Julian day nend: integer Julian day """ nyrs = len(self.sp.yrs) self.beg = np.zeros((nyrs), dtype=np.int32) self.end = np.zeros((nyrs), dtype=np.int32) # mbeg = self.jln(self.cp.mbegmo, self.cp.mbegda) # mend = self.jln(self.cp.mendmo, self.cp.mendda) for yr in range(nyrs): mbeg = self.jln(self.cp.mbegmo[yr], self.cp.mbegda[yr]) mend = self.jln(self.cp.mendmo[yr], self.cp.mendda[yr]) if mend <= mbeg: # print(mbeg, mend) mbeg = mbeg - mend + 1 mend = 365 - mend + 1 atemp = temps[temps.index.year == self.sp.yrs[yr]].values nstart = self.spring(atemp, self.cp.nbtemp) self.beg[yr] = nstart # winter wheat spring if (nstart - mbeg) <= 0.: self.beg[yr] = mbeg mend = self.beg[yr] + self.cp.ngrows # if 'wheat' in self.cp.sname: # print(mend) if mend > 365: if self.beg[yr] > (mend - 365) - 1: self.beg[yr] -= (mend - 365) - 1 mend = 365 - (mend - 365) else: mend = 365 kend = self.fall(atemp, self.cp.netemp) self.end[yr] = kend # winter wheat fall if (kend - mend) >= 0.: self.end[yr] = mend # self.end[yr] = self.beg[yr] + self.cp.ngrows # if 'wheat' in self.cp.sname.lower():\ # print(self.beg[yr], self.end[yr], mbeg, mend, kend) if self.beg[yr] > self.end[yr]: logger_fn.critical('beginning date is after ending date for crop ' + self.cp.sname) raise def calc_midpts(self): """ Find midpoints of seasons Parameters ---------- nbegmo: integer Month growing season begins nbegda: integer Day of the month for the beginning of the growing season nendda: Day of the month for the end of the growing season Returns ------- npart: integer First part of first month of the season midpts: integer Midpoint of the Spring month of the season midptf: integer Midpoint of the Fall month of the season """ month = [31,28,31,30,31,30,31,31,30,31,30,31] self.npart = month[self.nbegmo-1] - self.nbegda + 1 self.midpts = int(self.npart / 2. + self.nbegda) self.midptf = int((self.nendda + 1) / 2.) def mmtemp(self, nmo, midpt, day2, num): """ Caclulates Spring part month mean temperature Parameters ---------- nmo: integer Month number midpt: integer Midpoint day of the month day2: integer Day of month num: integer Number of months to use atemps: list List of temperatures for the year pclite: list List of fraction light for each month middle: list Middle day for each month Returns ------- temp: float Mean montly temperature day: integer Day of the month """ middle = [16, 45, 75, 105, 136, 166, 197, 228, 258, 289, 319, 350] for k in range(num): # logger_fn.info(str(self.jln(nmo, midpt)) + ', ' + str(middle[k])) if self.jln(nmo, midpt) < middle[k]: temp = self.midtemp(nmo, midpt, k, self.atemps, middle) day = self.midday(nmo, midpt, day2, k, self.sp.pclite, middle) return temp, day elif self.jln(nmo, midpt) == middle[k]: temp = self.atemps[k] day = self.sp.pclite[k] return temp, day logger_fn.warn("mean monthly temperature not found, month can't be found.") def midtemp(self, nmo, midpt, k, temp, middle): """ Calculates mean monthly temperature Parameters ---------- """ day1 = self.jln(nmo, midpt) return temp[k-1] + ((day1 - middle[k-1]) / (middle[k] - \ middle[k-1])) * (temp[k] - temp[k-1]) def midday(self, nmo, midpt, day2, k, pclite, middle): month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] day1 = self.jln(nmo, midpt) return (pclite[k-1] + ((day1 - middle[k-1]) / (middle[k] \ - middle[k-1])) * (pclite[k] - pclite[k-1])) * (day2 / month[nmo-1]) def interp_kc(self, mid, temp, day): flag = True for k in range(self.ngrwpts): if self.nckc[k] > mid: xkc = self.ckc[k-1] + (self.ckc[k] - self.ckc[k-1]) * ((mid - self.nckc[k-1]) \ / (self.nckc[k] - self.nckc[k-1])) flag = False break elif self.nckc[k] == mid: xkc= self.ckc[k] flag = False break if flag: xkc = self.ckc[k-1] + (self.ckc[k] - self.ckc[k-1]) * ((mid - self.nckc[k-1]) \ / (self.nckc[k] - self.nckc[k-1])) xf = temp * day / 100. if temp < 36.: xkt = 0.3 else: xkt = 0.0173 * temp - 0.314 return xkc, xf, xkt def calc_effprecip(self, precip): month = [31,28,31,30,31,30,31,31,30,31,30,31] if self.sp.apdep == 0.: f = 1.0 elif self.sp.apdep > 0.: f = 0.531747 + 0.295164 * self.sp.apdep - 0.057697 * self.sp.apdep**2 + 0.003804 * \ self.sp.apdep**3 re = np.zeros((13)) cuirr = np.zeros((13)) for k in range(12): cu_temp = self.cu[k] if self.sp.npre != 2: # verify this calculation - DGG 2/13/2017 if k == self.nbegmo-1: cu_temp *= month[self.nbegmo-1] / self.npart if k == self.nendmo-1: cu_temp *= month[self.nendmo-1] / self.nendda re[k] = (0.70917 * precip[k]**0.82416 - 0.11556) * f * \ 10**(0.02426 * cu_temp) if k == self.nbegmo-1: cu_temp *= self.npart / month[self.nbegmo-1] if k == self.nendmo-1: cu_temp *= self.nendda / month[self.nendmo-1] else: if precip[k] <= 1.0: re[k] = precip[k] * 0.95 elif precip[k] <= 2.0: re[k] = ((precip[k] - 1.0) * 0.9) + 0.95 elif precip[k] <= 3.0: re[k] = ((precip[k] - 2.0) * 0.82) + 1.85 elif precip[k] <= 4.0: re[k] = ((precip[k] - 3.0) * 0.65) + 2.67 elif precip[k] <= 5.0: re[k] = ((precip[k] - 4.0) * 0.45) + 3.32 elif precip[k] <= 6.0: re[k] = ((precip[k] - 1.0) * 0.05) + 4.02 if re[k] < 0.0: re[k] = 0.0 if re[k] > precip[k]: re[k] = precip[k] x = month[k] if k == self.nbegmo-1: re[k] = ((x - self.nbegda + 1.0) / x) * re[k] if k == self.nendmo-1: re[k] = (self.nendda / x) * re[k] # winter wheat, double check DGG 4/3/2017 if self.nbegmo-1 == k and self.nendmo-1 == k: re[k] = ((self.nendda - self.nbegmo + 1) / x) *re[k] if re[k] > cu_temp: re[k] = cu_temp cuirr[k] = cu_temp - re[k] self.cu[12] += cu_temp re[12] += re[k] cuirr[12] += cuirr[k] return re, cuirr def calc_adj(self, cuirr, pccrop, precip, nbegmo, day3): month = [31,28,31,30,31,30,31,31,30,31,30,31] smosadj = 0.0 for i in range(nbegmo - 1): smosadj += precip[i] smosadj += precip[nbegmo] * (month[nbegmo-1] - day3) / month[nbegmo - 1] if smosadj > 3.0: smosadj = 3.0 if (cuirr[-1] - smosadj) < 0.0: smosadj = cuirr[-1] adjureq = (cuirr[-1] - smosadj) * pccrop / 100.0 # winprep = smosadj * precip / 100.0 # why? what is the purpose? winprep = 0.0 return adjureq, winprep def fiveyr_avg(self, yr, fivc, fivcr, pcu, pcuirr): fivcu = fivc[yr-4] + fivc[yr-3] + fivc[yr-2] + fivc[yr-1] + fivc[yr] fivci = fivcr[yr-4] + fivcr[yr-3] + fivcr[yr-2] + fivcr[yr-1] + fivcr[yr] fvcup = pcu[yr-4, -1] + pcu[yr-3, -1] + pcu[yr-2, -1] + pcu[yr-1, -1] + \ pcu[yr, -1] fvcip = pcuirr[yr - 4, -1] + pcuirr[yr - 3, -1] + pcuirr[yr - 2, -1] + \ pcuirr[yr - 1, -1] + pcuirr[yr, -1] return fivc, fivci, fvcup, fvcip def calc_fao(self, yr, repeat=1): lfrac = self.cp.stages[self.cp.stype] kc_vals = self.cp.kc[self.cp.kcnum] start_date = dt(self.sp.yrs[yr], self.nbegmo, self.nbegda) ETo = np.zeros((12)) Kc = np.zeros((12)) pclite = self.calc_pclite(self.sp.latitude) for k in range(repeat): date_rng = pd.date_range(start_date, periods=self.cp.ngrows, freq='D') months = sorted(list(set(date_rng.month))) total_days = 1.0 for i in range(len(months)): num_modays = len(np.nonzero(date_rng.month == months[i])[0]) ind = str(self.sp.yrs[yr]) + '-' + str(months[i]) kc_total = 0 for aday in range(num_modays): nday = total_days + float(aday) kc_total += self.calc_faokc(nday/float(self.cp.ngrows), lfrac, kc_vals) temp_Kc = kc_total/num_modays p = pclite[months[i]-1] temp_ETo = self.fao_cu(p, self.atemps[months[i]-1]) temp_ETo *= num_modays total_days += num_modays ETo[months[i]-1] += temp_ETo if Kc[months[i]-1] != 0.: Kc[months[i]-1] = (Kc[months[i]-1] + temp_Kc)/2 else: Kc[months[i]-1] = temp_Kc start_date = date_rng[-1]+1 ETc = ETo*Kc/25.4 return ETc def calc_pclite(self, lat): pclite_dict = {} pclite_dict[30] = np.array([.24, .25, .27, .29, .31, .32, .31, .30, .28, .26, .24, .23]) pclite_dict[35] = np.array([.23, .25, .27, .29, .31, .32, .32, .30, .28, .25, .23, .22]) if lat > 35 or lat < 30: logger_fn.critical("Latitude out of bounds for pclite. 30* <= lat <= 35* ") raise if lat in pclite_dict.keys(): return pclite_dict[lat] else: dx = (35. - lat)/(35.-30.) return pclite_dict[35] + dx*(pclite_dict[30] - pclite_dict[35]) def fao_cu(self, p, tavg): tavg = (tavg - 32.0) / 1.8 # conversion to Celsius f = p * (0.46 * tavg + 8.13) # low humidity, high n/N, medium wind # a = -2.30 # b = 1.82 # low humidity, high n/N, low wind a = -2.60 b = 1.55 ETO = a + b * f return ETO def calc_faokc(self, frac, lfrac, kc): if frac < lfrac[0]: kc_aday = kc[0] elif frac < np.sum(lfrac[:2]): dx = np.sum(lfrac[:2]) - lfrac[0] kc_aday = ((frac-lfrac[0]))*((kc[1] - kc[0])/dx) + kc[0] elif frac < np.sum(lfrac[:3]): kc_aday = kc[1] elif frac <= np.sum(lfrac): dx = np.sum(lfrac) - np.sum(lfrac[:3]) kc_aday = kc[1] - (frac-np.sum(lfrac[:3]))*((kc[1] - kc[2])/dx) else: # accounts for inaccuracy in np.sum(), essentially kc_aday = kc[2] dx = np.sum(lfrac) - np.sum(lfrac[:3]) kc_aday = kc[1] - (frac-np.sum(lfrac[:3]))*((kc[1] - kc[2])/dx) return kc_aday
gpl-3.0
JEB12345/Advancement_UCSC
Dissertation/tex/ASME-journal/results/testing/logs/script-python-analyzelogs.py
6
5096
import numpy as np import matplotlib.pyplot as plt import matplotlib import prettyplotlib as ppl data = np.loadtxt("muscleRestLengths.csv", delimiter=",")[200:,1:] #discard first 2 seconds and time column data_normalized = data-data.mean(0) data_normalized /= data_normalized.std(0) #plot box data plt.figure() plt.boxplot(data,0,'') #from matplotlib.mlab import PCA #r = PCA(data_normalized) #plt.plot(r.fracs,'+-') #only four "principal" components! #because there are only four steps in the signal! #plt.figure() #plt.title("PCA first 4 principal components") #plt.plot(r.project(data_normalized)[:,:4]+8*np.arange(4)) #now do something useful #signal periodicity is 400 BTW #plt.figure() #plt.plot(data_normalized+np.arange(24)*4,'blue') #plt.plot(data_normalized[:,11]+11*4,'red',linewidth=4) #plt.title('Actuator 11 is different!') #plt.ylabel("muscleRestLengths") #slow ncc = np.zeros((data_normalized.shape[1],data_normalized.shape[1])) for i in xrange(data_normalized.shape[1]): for j in xrange(data_normalized.shape[1]): ncc[i,j] = np.abs(np.correlate(data_normalized[:,i],data_normalized[:,j],mode='full')/(data_normalized.shape[0]-1)).max() #most signals are highly correlated!!! #let's look at the delays ncc_delay = np.zeros((data_normalized.shape[1],data_normalized.shape[1])) for i in xrange(data_normalized.shape[1]): for j in xrange(data_normalized.shape[1]): ncc_delay[i,j] = (np.correlate(data_normalized[:,i],data_normalized[:,j],mode='full')).argmax()-5800+1 #time for something simple: the average equilibrium length of each motor #plt.figure() #plt.plot(np.sort(data.mean(0)),'+-') #they all seem different, so the algorithm hasn't learned a symmetric gait #combine results #plt.figure() #plt.subplot(1,2,1) #plt.imshow(ncc,interpolation='nearest',cmap=plt.cm.gray_r) #plt.title("Normalized Cross-Correlation") #plt.colorbar() #plt.subplot(1,2,2) #plt.imshow(np.where(np.abs(ncc_delay)%400>=200,400-np.abs(ncc_delay)%400,np.abs(ncc_delay)%400),interpolation='nearest',cmap=plt.cm.gray_r) #plt.title("Optimal time delay") #plt.colorbar() #Let's time shift all the signals to align with signal 0 data_normalized_aligned = np.zeros(data.shape) for i in xrange(24): data_normalized_aligned[:,i] = (np.roll(data_normalized[:,i],int(ncc_delay[0,i]))) #THIS LOOKS FUNNY #plt.figure() #plt.plot(data_normalized_aligned) #plt.title("time aligned normalized signals") #plt.figure() #for i in xrange(24): # plt.plot(data_normalized[:,np.argsort(ncc_delay[0])[i]]+2*i) #plt.title("signals ordered by time diff wrt signal 0, black = delay") #for i in xrange(10): # plt.plot(-np.sort(ncc_delay[0])+400*i,np.arange(24)*2,'black',linewidth=4) #if we look at the PCA of this, then 98% of the variance is explained by the first 2 components! #plt.figure() #r2 = PCA(data_normalized_aligned) #plt.plot(r2.project(data_normalized_aligned)[:,:2]+8*np.arange(2)) #you need a sign wave and a double frequency sign wave #td = np.zeros(ncc.shape) #for i in xrange(24): # td[i,:] = np.sort((ncc_delay[i]+400+int(ncc_delay[0,i]))%800) #plt.figure() #plt.title("sequential activation of motors") #plt.plot(td.T) ##Atil import scipy.cluster.hierarchy as hclus #do clustering using the correlation matrix # (1-ncc) or ncc doesn't matter plt.figure() linkage_matrix=hclus.linkage(1-ncc,method='ward'); dend = hclus.dendrogram(linkage_matrix, color_threshold=0.3, show_leaf_counts=True) #order the correlation matrix according to the clustering ncc_ordered = np.zeros((data_normalized.shape[1],data_normalized.shape[1])) for i in xrange(data_normalized.shape[1]): for j in xrange(data_normalized.shape[1]): ncc_ordered[i,j]=ncc[dend['leaves'][i],j] #show normalized cross correlation coeff f, axarr = plt.subplots(1,2) im1 = axarr[0].imshow(ncc,interpolation='nearest',cmap=plt.cm.gray_r) im2 = axarr[1].imshow(ncc_ordered,interpolation='nearest',cmap=plt.cm.gray_r) f.colorbar(im2) #order signals according to the clustering data_normalized_aligned_ordered = np.zeros(data.shape) for i in xrange(24): ii=dend['leaves'][i]; data_normalized_aligned_ordered[:,i] = data_normalized_aligned[:,ii] f, axarr = plt.subplots(2,1) im2 = axarr[0].plot(data_normalized+np.arange(24)*4,'blue') im1 = axarr[1].plot(data_normalized_aligned_ordered+np.arange(24)*4,'blue') f.axes[0].get_xaxis().set_visible(False) f.axes[0].get_yaxis().set_visible(False) f.axes[1].get_yaxis().set_visible(False) #f.axes[1].text(0.3,0.3,'s\nd\nf\ng',fontsize=10) for i in xrange(24): axarr[0].annotate(i,xy=(5800,4*i),xytext=(0,0),textcoords='offset points',fontsize=10) rect1 = matplotlib.patches.Rectangle((2350-ncc_delay[0,i],4*i-2), 1200, 4, color='red',alpha=0.2) axarr[0].add_patch(rect1) rect1 = matplotlib.patches.Rectangle((2750-ncc_delay[0,i],4*i-2), 400, 4, color='yellow') axarr[0].add_patch(rect1) axarr[1].annotate(dend['leaves'][i],xy=(5800,4*i),xytext=((i%1),0),textcoords='offset points',fontsize=10) axarr[1].axvspan(2350,3550,color='red',alpha=0.2) axarr[1].axvspan(2750,3150,color='yellow')
mit
theoryno3/scikit-learn
sklearn/decomposition/nmf.py
24
19057
""" Non-negative matrix factorization """ # Author: Vlad Niculae # Lars Buitinck <[email protected]> # Author: Chih-Jen Lin, National Taiwan University (original projected gradient # NMF implementation) # Author: Anthony Di Franco (original Python and NumPy port) # License: BSD 3 clause from __future__ import division from math import sqrt import warnings import numpy as np import scipy.sparse as sp from scipy.optimize import nnls from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, check_array from ..utils.extmath import randomized_svd, safe_sparse_dot, squared_norm from ..utils.validation import check_is_fitted def safe_vstack(Xs): if any(sp.issparse(X) for X in Xs): return sp.vstack(Xs) else: return np.vstack(Xs) def norm(x): """Dot product-based Euclidean norm implementation See: http://fseoane.net/blog/2011/computing-the-vector-norm/ """ return sqrt(squared_norm(x)) def trace_dot(X, Y): """Trace of np.dot(X, Y.T).""" return np.dot(X.ravel(), Y.ravel()) def _sparseness(x): """Hoyer's measure of sparsity for a vector""" sqrt_n = np.sqrt(len(x)) return (sqrt_n - np.linalg.norm(x, 1) / norm(x)) / (sqrt_n - 1) def check_non_negative(X, whom): X = X.data if sp.issparse(X) else X if (X < 0).any(): raise ValueError("Negative values in data passed to %s" % whom) def _initialize_nmf(X, n_components, variant=None, eps=1e-6, random_state=None): """NNDSVD algorithm for NMF initialization. Computes a good initial guess for the non-negative rank k matrix approximation for X: X = WH Parameters ---------- X : array, [n_samples, n_features] The data matrix to be decomposed. n_components : array, [n_components, n_features] The number of components desired in the approximation. variant : None | 'a' | 'ar' The variant of the NNDSVD algorithm. Accepts None, 'a', 'ar' None: leaves the zero entries as zero 'a': Fills the zero entries with the average of X 'ar': Fills the zero entries with standard normal random variates. Default: None eps: float Truncate all values less then this in output to zero. random_state : numpy.RandomState | int, optional The generator used to fill in the zeros, when using variant='ar' Default: numpy.random Returns ------- (W, H) : Initial guesses for solving X ~= WH such that the number of columns in W is n_components. References ---------- C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://tinyurl.com/nndsvd """ check_non_negative(X, "NMF initialization") if variant not in (None, 'a', 'ar'): raise ValueError("Invalid variant name") U, S, V = randomized_svd(X, n_components) W, H = np.zeros(U.shape), np.zeros(V.shape) # The leading singular triplet is non-negative # so it can be used as is for initialization. W[:, 0] = np.sqrt(S[0]) * np.abs(U[:, 0]) H[0, :] = np.sqrt(S[0]) * np.abs(V[0, :]) for j in range(1, n_components): x, y = U[:, j], V[j, :] # extract positive and negative parts of column vectors x_p, y_p = np.maximum(x, 0), np.maximum(y, 0) x_n, y_n = np.abs(np.minimum(x, 0)), np.abs(np.minimum(y, 0)) # and their norms x_p_nrm, y_p_nrm = norm(x_p), norm(y_p) x_n_nrm, y_n_nrm = norm(x_n), norm(y_n) m_p, m_n = x_p_nrm * y_p_nrm, x_n_nrm * y_n_nrm # choose update if m_p > m_n: u = x_p / x_p_nrm v = y_p / y_p_nrm sigma = m_p else: u = x_n / x_n_nrm v = y_n / y_n_nrm sigma = m_n lbd = np.sqrt(S[j] * sigma) W[:, j] = lbd * u H[j, :] = lbd * v W[W < eps] = 0 H[H < eps] = 0 if variant == "a": avg = X.mean() W[W == 0] = avg H[H == 0] = avg elif variant == "ar": random_state = check_random_state(random_state) avg = X.mean() W[W == 0] = abs(avg * random_state.randn(len(W[W == 0])) / 100) H[H == 0] = abs(avg * random_state.randn(len(H[H == 0])) / 100) return W, H def _nls_subproblem(V, W, H, tol, max_iter, sigma=0.01, beta=0.1): """Non-negative least square solver Solves a non-negative least squares subproblem using the projected gradient descent algorithm. min || WH - V ||_2 Parameters ---------- V, W : array-like Constant matrices. H : array-like Initial guess for the solution. tol : float Tolerance of the stopping condition. max_iter : int Maximum number of iterations before timing out. sigma : float Constant used in the sufficient decrease condition checked by the line search. Smaller values lead to a looser sufficient decrease condition, thus reducing the time taken by the line search, but potentially increasing the number of iterations of the projected gradient procedure. 0.01 is a commonly used value in the optimization literature. beta : float Factor by which the step size is decreased (resp. increased) until (resp. as long as) the sufficient decrease condition is satisfied. Larger values allow to find a better step size but lead to longer line search. 0.1 is a commonly used value in the optimization literature. Returns ------- H : array-like Solution to the non-negative least squares problem. grad : array-like The gradient. n_iter : int The number of iterations done by the algorithm. References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ """ WtV = safe_sparse_dot(W.T, V) WtW = np.dot(W.T, W) # values justified in the paper alpha = 1 for n_iter in range(1, max_iter + 1): grad = np.dot(WtW, H) - WtV # The following multiplication with a boolean array is more than twice # as fast as indexing into grad. if norm(grad * np.logical_or(grad < 0, H > 0)) < tol: break Hp = H for inner_iter in range(19): # Gradient step. Hn = H - alpha * grad # Projection step. Hn *= Hn > 0 d = Hn - H gradd = np.dot(grad.ravel(), d.ravel()) dQd = np.dot(np.dot(WtW, d).ravel(), d.ravel()) suff_decr = (1 - sigma) * gradd + 0.5 * dQd < 0 if inner_iter == 0: decr_alpha = not suff_decr if decr_alpha: if suff_decr: H = Hn break else: alpha *= beta elif not suff_decr or (Hp == Hn).all(): H = Hp break else: alpha /= beta Hp = Hn if n_iter == max_iter: warnings.warn("Iteration limit reached in nls subproblem.") return H, grad, n_iter class ProjectedGradientNMF(BaseEstimator, TransformerMixin): """Non-Negative matrix factorization by Projected Gradient (NMF) Parameters ---------- n_components : int or None Number of components, if n_components is not set all components are kept init : 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'random' Method used to initialize the procedure. Default: 'nndsvdar' if n_components < n_features, otherwise random. Valid options:: 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness) 'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired) 'nndsvdar': NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) 'random': non-negative random matrices sparseness : 'data' | 'components' | None, default: None Where to enforce sparsity in the model. beta : double, default: 1 Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. eta : double, default: 0.1 Degree of correctness to maintain, if sparsity is not None. Smaller values mean larger error. tol : double, default: 1e-4 Tolerance value used in stopping conditions. max_iter : int, default: 200 Number of iterations to compute. nls_max_iter : int, default: 2000 Number of iterations in NLS subproblem. random_state : int or RandomState Random number generator seed control. Attributes ---------- components_ : array, [n_components, n_features] Non-negative components of the data. reconstruction_err_ : number Frobenius norm of the matrix difference between the training data and the reconstructed data from the fit produced by the model. ``|| X - WH ||_2`` n_iter_ : int Number of iterations run. Examples -------- >>> import numpy as np >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>> from sklearn.decomposition import ProjectedGradientNMF >>> model = ProjectedGradientNMF(n_components=2, init='random', ... random_state=0) >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE ProjectedGradientNMF(beta=1, eta=0.1, init='random', max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, sparseness=None, tol=0.0001) >>> model.components_ array([[ 0.77032744, 0.11118662], [ 0.38526873, 0.38228063]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.00746... >>> model = ProjectedGradientNMF(n_components=2, ... sparseness='components', init='random', random_state=0) >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE ProjectedGradientNMF(beta=1, eta=0.1, init='random', max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, sparseness='components', tol=0.0001) >>> model.components_ array([[ 1.67481991, 0.29614922], [ 0. , 0.4681982 ]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.513... References ---------- This implements C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ P. Hoyer. Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Research 2004. NNDSVD is introduced in C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://tinyurl.com/nndsvd """ def __init__(self, n_components=None, init=None, sparseness=None, beta=1, eta=0.1, tol=1e-4, max_iter=200, nls_max_iter=2000, random_state=None): self.n_components = n_components self.init = init self.tol = tol if sparseness not in (None, 'data', 'components'): raise ValueError( 'Invalid sparseness parameter: got %r instead of one of %r' % (sparseness, (None, 'data', 'components'))) self.sparseness = sparseness self.beta = beta self.eta = eta self.max_iter = max_iter self.nls_max_iter = nls_max_iter self.random_state = random_state def _init(self, X): n_samples, n_features = X.shape init = self.init if init is None: if self.n_components_ < n_features: init = 'nndsvd' else: init = 'random' random_state = self.random_state if init == 'nndsvd': W, H = _initialize_nmf(X, self.n_components_) elif init == 'nndsvda': W, H = _initialize_nmf(X, self.n_components_, variant='a') elif init == 'nndsvdar': W, H = _initialize_nmf(X, self.n_components_, variant='ar') elif init == "random": rng = check_random_state(random_state) W = rng.randn(n_samples, self.n_components_) # we do not write np.abs(W, out=W) to stay compatible with # numpy 1.5 and earlier where the 'out' keyword is not # supported as a kwarg on ufuncs np.abs(W, W) H = rng.randn(self.n_components_, n_features) np.abs(H, H) else: raise ValueError( 'Invalid init parameter: got %r instead of one of %r' % (init, (None, 'nndsvd', 'nndsvda', 'nndsvdar', 'random'))) return W, H def _update_W(self, X, H, W, tolW): n_samples, n_features = X.shape if self.sparseness is None: W, gradW, iterW = _nls_subproblem(X.T, H.T, W.T, tolW, self.nls_max_iter) elif self.sparseness == 'data': W, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((1, n_samples))]), safe_vstack([H.T, np.sqrt(self.beta) * np.ones((1, self.n_components_))]), W.T, tolW, self.nls_max_iter) elif self.sparseness == 'components': W, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((self.n_components_, n_samples))]), safe_vstack([H.T, np.sqrt(self.eta) * np.eye(self.n_components_)]), W.T, tolW, self.nls_max_iter) return W.T, gradW.T, iterW def _update_H(self, X, H, W, tolH): n_samples, n_features = X.shape if self.sparseness is None: H, gradH, iterH = _nls_subproblem(X, W, H, tolH, self.nls_max_iter) elif self.sparseness == 'data': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((self.n_components_, n_features))]), safe_vstack([W, np.sqrt(self.eta) * np.eye(self.n_components_)]), H, tolH, self.nls_max_iter) elif self.sparseness == 'components': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((1, n_features))]), safe_vstack([W, np.sqrt(self.beta) * np.ones((1, self.n_components_))]), H, tolH, self.nls_max_iter) return H, gradH, iterH def fit_transform(self, X, y=None): """Learn a NMF model for the data X and returns the transformed data. This is more efficient than calling fit followed by transform. Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be decomposed Returns ------- data: array, [n_samples, n_components] Transformed data """ X = check_array(X, accept_sparse='csr') check_non_negative(X, "NMF.fit") n_samples, n_features = X.shape if not self.n_components: self.n_components_ = n_features else: self.n_components_ = self.n_components W, H = self._init(X) gradW = (np.dot(W, np.dot(H, H.T)) - safe_sparse_dot(X, H.T, dense_output=True)) gradH = (np.dot(np.dot(W.T, W), H) - safe_sparse_dot(W.T, X, dense_output=True)) init_grad = norm(np.r_[gradW, gradH.T]) tolW = max(0.001, self.tol) * init_grad # why max? tolH = tolW tol = self.tol * init_grad for n_iter in range(1, self.max_iter + 1): # stopping condition # as discussed in paper proj_norm = norm(np.r_[gradW[np.logical_or(gradW < 0, W > 0)], gradH[np.logical_or(gradH < 0, H > 0)]]) if proj_norm < tol: break # update W W, gradW, iterW = self._update_W(X, H, W, tolW) if iterW == 1: tolW = 0.1 * tolW # update H H, gradH, iterH = self._update_H(X, H, W, tolH) if iterH == 1: tolH = 0.1 * tolH if not sp.issparse(X): error = norm(X - np.dot(W, H)) else: sqnorm_X = np.dot(X.data, X.data) norm_WHT = trace_dot(np.dot(np.dot(W.T, W), H), H) cross_prod = trace_dot((X * H.T), W) error = sqrt(sqnorm_X + norm_WHT - 2. * cross_prod) self.reconstruction_err_ = error self.comp_sparseness_ = _sparseness(H.ravel()) self.data_sparseness_ = _sparseness(W.ravel()) H[H == 0] = 0 # fix up negative zeros self.components_ = H if n_iter == self.max_iter: warnings.warn("Iteration limit reached during fit. Solving for W exactly.") return self.transform(X) self.n_iter_ = n_iter return W def fit(self, X, y=None, **params): """Learn a NMF model for the data X. Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be decomposed Returns ------- self """ self.fit_transform(X, **params) return self def transform(self, X): """Transform the data X according to the fitted NMF model Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be transformed by the model Returns ------- data: array, [n_samples, n_components] Transformed data """ check_is_fitted(self, 'n_components_') X = check_array(X, accept_sparse='csc') Wt = np.zeros((self.n_components_, X.shape[0])) check_non_negative(X, "ProjectedGradientNMF.transform") if sp.issparse(X): Wt, _, _ = _nls_subproblem(X.T, self.components_.T, Wt, tol=self.tol, max_iter=self.nls_max_iter) else: for j in range(0, X.shape[0]): Wt[:, j], _ = nnls(self.components_.T, X[j, :]) return Wt.T class NMF(ProjectedGradientNMF): __doc__ = ProjectedGradientNMF.__doc__ pass
bsd-3-clause
Git3251/trading-with-python
cookbook/reconstructVXX/downloadVixFutures.py
77
3012
#------------------------------------------------------------------------------- # Name: download CBOE futures # Purpose: get VIX futures data from CBOE, process data to a single file # # # Created: 15-10-2011 # Copyright: (c) Jev Kuznetsov 2011 # Licence: BSD #------------------------------------------------------------------------------- #!/usr/bin/env python from urllib import urlretrieve import os from pandas import * import datetime import numpy as np m_codes = ['F','G','H','J','K','M','N','Q','U','V','X','Z'] #month codes of the futures codes = dict(zip(m_codes,range(1,len(m_codes)+1))) #dataDir = os.path.dirname(__file__)+'/data' dataDir = os.path.expanduser('~')+'/twpData/vixFutures' print 'Data directory: ', dataDir def saveVixFutureData(year,month, path, forceDownload=False): ''' Get future from CBOE and save to file ''' fName = "CFE_{0}{1}_VX.csv".format(m_codes[month],str(year)[-2:]) if os.path.exists(path+'\\'+fName) or forceDownload: print 'File already downloaded, skipping' return urlStr = "http://cfe.cboe.com/Publish/ScheduledTask/MktData/datahouse/{0}".format(fName) print 'Getting: %s' % urlStr try: urlretrieve(urlStr,path+'\\'+fName) except Exception as e: print e def buildDataTable(dataDir): """ create single data sheet """ files = os.listdir(dataDir) data = {} for fName in files: print 'Processing: ', fName try: df = DataFrame.from_csv(dataDir+'/'+fName) code = fName.split('.')[0].split('_')[1] month = '%02d' % codes[code[0]] year = '20'+code[1:] newCode = year+'_'+month data[newCode] = df except Exception as e: print 'Could not process:', e full = DataFrame() for k,df in data.iteritems(): s = df['Settle'] s.name = k s[s<5] = np.nan if len(s.dropna())>0: full = full.join(s,how='outer') else: print s.name, ': Empty dataset.' full[full<5]=np.nan full = full[sorted(full.columns)] # use only data after this date startDate = datetime.datetime(2008,1,1) idx = full.index >= startDate full = full.ix[idx,:] #full.plot(ax=gca()) fName = os.path.expanduser('~')+'/twpData/vix_futures.csv' print 'Saving to ', fName full.to_csv(fName) if __name__ == '__main__': if not os.path.exists(dataDir): print 'creating data directory %s' % dataDir os.makedirs(dataDir) for year in range(2008,2013): for month in range(12): print 'Getting data for {0}/{1}'.format(year,month+1) saveVixFutureData(year,month,dataDir) print 'Raw wata was saved to {0}'.format(dataDir) buildDataTable(dataDir)
bsd-3-clause
dricciardelli/vae2vec
capt_gen_o2e.py
1
29294
# -*- coding: utf-8 -*- import math import os import tensorflow as tf import numpy as np import pandas as pd import pickle import pickle as pkl import cv2 import skimage import tensorflow.python.platform from tensorflow.python.ops import rnn from keras.preprocessing import sequence from collections import Counter from collections import defaultdict import itertools test_image_path='./data/acoustic-guitar-player.jpg' vgg_path='./data/vgg16-20160129.tfmodel' n=2**19-3 def map_lambda(): return n+1 def rev_map_lambda(): return "<UNK>" def load_text(n,capts,num_samples=None): # fname = 'Oxford_English_Dictionary.txt' # txt = [] # with open(fname,'rb') as f: # txt = f.readlines() # txt = [x.decode('utf-8').strip() for x in txt] # txt = [re.sub(r'[^a-zA-Z ]+', '', x) for x in txt if len(x) > 1] # List of words # word_list = [x.split(' ', 1)[0].strip() for x in txt] # # List of definitions # def_list = [x.split(' ', 1)[1].strip()for x in txt] with open('./training_data/training_data.pkl','rb') as raw: word_list,dl=pkl.load(raw) def_list=[] # def_list=[' '.join(defi) for defi in def_list] i=0 while i<len( dl): defi=dl[i] if len(defi)>0: def_list+=[' '.join(defi)] i+=1 else: dl.pop(i) word_list.pop(i) maxlen=0 minlen=100 for defi in def_list: minlen=min(minlen,len(defi.split())) maxlen=max(maxlen,len(defi.split())) print(minlen) print(maxlen) maxlen=30 # # Initialize the "CountVectorizer" object, which is scikit-learn's # # bag of words tool. # vectorizer = CountVectorizer(analyzer = "word", \ # tokenizer = None, \ # preprocessor = None, \ # stop_words = None, \ # max_features = None, \ # token_pattern='\\b\\w+\\b') # Keep single character words # _map,rev_map=get_one_hot_map(word_list,def_list,n) _map=pkl.load(open('maps.pkl','rb')) rev_map=pkl.load(open('rev_maps.pkl','rb')) if num_samples is not None: num_samples=len(capts) # X = map_one_hot(word_list[:num_samples],_map,1,n) # y = (36665, 56210) # print _map # y,mask = map_one_hot(def_list[:num_samples],_map,maxlen,n) # np.save('X',X) # np.save('y',y) # np.save('mask',mask) X=np.load('Xs.npy','r') y=np.load('yc.npy','r') mask=np.load('maskc.npy','r') print (np.max(y)) return X, y, mask,rev_map def get_one_hot_map(to_def,corpus,n): # words={} # for line in to_def: # if line: # words[line.split()[0]]=1 # counts=defaultdict(int) # uniq=defaultdict(int) # for line in corpus: # for word in line.split(): # if word not in words: # counts[word]+=1 # words=list(words.keys()) words=[] counts=defaultdict(int) uniq=defaultdict(int) for line in to_def+corpus: for word in line.split(): if word not in words: counts[word]+=1 _map=defaultdict(lambda :n+1) rev_map=defaultdict(lambda:"<UNK>") # words=words[:25000] for i in counts.values(): uniq[i]+=1 print (len(words)) # random.shuffle(words) words+=list(map(lambda z:z[0],reversed(sorted(counts.items(),key=lambda x:x[1]))))[:n-len(words)] print (len(words)) i=0 # random.shuffle(words) for num_bits in range(binary_dim): for bit_config in itertools.combinations_with_replacement(range(binary_dim),num_bits+1): bitmap=np.zeros(binary_dim) bitmap[np.array(bit_config)]=1 num=bitmap*(2** np.arange(binary_dim )) num=np.sum(num).astype(np.uint32) word=words[i] _map[word]=num rev_map[num]=word i+=1 if i>=len(words): break if i>=len(words): break # for word in words: # i+=1 # _map[word]=i # rev_map[i]=word rev_map[n+1]='<UNK>' if zero_end_tok: rev_map[0]='.' else: rev_map[0]='Start' rev_map[n+2]='End' print (list(reversed(sorted(uniq.items())))) print (len(list(uniq.items()))) # print rev_map return _map,rev_map def map_word_emb(corpus,_map): ### NOTE: ONLY WORKS ON TARGET WORD (DOES NOT HANDLE UNK PROPERLY) rtn=[] rtn2=[] for word in corpus: mapped=_map[word] rtn.append(mapped) if get_rand_vec: mapped_rand=random.choice(list(_map.keys())) while mapped_rand==word: mapped_rand=random.choice(list(_map.keys())) mapped_rand=_map[mapped_rand] rtn2.append(mapped_rand) if get_rand_vec: return np.array(rtn),np.array(rtn2) return np.array(rtn) def map_one_hot(corpus,_map,maxlen,n): if maxlen==1: if not form2: total_not=0 rtn=np.zeros([len(corpus),n+3],dtype=np.float32) for l,line in enumerate(corpus): if len(line)==0: rtn[l,-1]=1 else: mapped=_map[line] if mapped==75001: total_not+=1 rtn[l,mapped]=1 print (total_not,len(corpus)) return rtn else: total_not=0 if not onehot: rtn=np.zeros([len(corpus),binary_dim],dtype=np.float32) else: rtn=np.zeros([len(corpus),2**binary_dim],dtype=np.float32) for l,line in enumerate(corpus): # if len(line)==0: # rtn[l]=n+2 # else: # if line not in _map: # total_not+=1 mapped=_map[line] if mapped==75001: total_not+=1 if onehot: binrep=np.zeros(2**binary_dim) print line binrep[mapped]=1 else: binrep=(1&(mapped/(2**np.arange(binary_dim))).astype(np.uint32)).astype(np.float32) rtn[l]=binrep print (total_not,len(corpus)) return rtn else: if form2: rtn=np.zeros([len(corpus),maxlen+2,binary_dim],dtype=np.float32) else: rtn=np.zeros([len(corpus),maxlen+2],dtype=np.int32) print (rtn.shape) mask=np.zeros([len(corpus),maxlen+2],dtype=np.float32) print (mask.shape) mask[:,1]=1.0 totes=0 nopes=0 wtf=0 for l,_line in enumerate(corpus): x=0 line=_line.split() for i in range(min(len(line),maxlen)): # if line[i] not in _map: # nopes+=1 mapped=_map[line[i]] if form2: binrep=(1&(mapped/(2**np.arange(binary_dim))).astype(np.uint32)).astype(np.float32) rtn[l,i+1,:]=binrep else: rtn[l,i+1]=mapped if mapped==75001: wtf+=1 mask[l,i+1]=1.0 totes+=1 x=i+1 to_app=n+2 if zero_end_tok: to_app=0 if form2: rtn[l,x+1,:]=(1&(to_app/(2**np.arange(binary_dim))).astype(np.uint32)).astype(np.float32) else: rtn[l,x+1]=to_app mask[l,x+1]=1.0 print (nopes,totes,wtf) return rtn,mask def xavier_init(fan_in, fan_out, constant=1e-4): """ Xavier initialization of network weights""" # https://stackoverflow.com/questions/33640581/how-to-do-xavier-initialization-on-tensorflow low = -constant*np.sqrt(6.0/(fan_in + fan_out)) high = constant*np.sqrt(6.0/(fan_in + fan_out)) return tf.random_uniform((fan_in, fan_out), minval=low, maxval=high, dtype=tf.float32) class Caption_Generator(): def __init__(self, dim_in, dim_embed, dim_hidden, batch_size, n_lstm_steps, n_words, init_b=None,from_image=False,n_input=None,n_lstm_input=None,n_z=None): self.dim_in = dim_in self.dim_embed = dim_embed self.dim_hidden = dim_hidden self.batch_size = batch_size self.n_lstm_steps = n_lstm_steps self.n_words = n_words self.n_input = n_input self.n_lstm_input=n_lstm_input self.n_z=n_z if from_image: with open(vgg_path,'rb') as f: fileContent = f.read() graph_def = tf.GraphDef() graph_def.ParseFromString(fileContent) self.images = tf.placeholder("float32", [1, 224, 224, 3]) tf.import_graph_def(graph_def, input_map={"images":self.images}) graph = tf.get_default_graph() self.sess = tf.InteractiveSession(graph=graph) self.from_image=from_image # declare the variables to be used for our word embeddings with tf.device('/cpu:0'): self.word_embedding = tf.Variable(tf.random_uniform([self.n_words, self.dim_embed], -0.1, 0.1), name='word_embedding') self.embedding_bias = tf.Variable(tf.zeros([dim_embed]), name='embedding_bias') # declare the LSTM itself self.lstm = tf.contrib.rnn.BasicLSTMCell(dim_hidden) # declare the variables to be used to embed the image feature embedding to the word embedding space self.img_embedding = tf.Variable(tf.random_uniform([dim_in, dim_hidden], -0.1, 0.1), name='img_embedding') self.img_embedding_bias = tf.Variable(tf.zeros([dim_hidden]), name='img_embedding_bias') # declare the variables to go from an LSTM output to a word encoding output self.word_encoding = tf.Variable(tf.random_uniform([dim_hidden, self.n_lstm_input], -0.1, 0.1), name='word_encoding') # initialize this bias variable from the preProBuildWordVocab output # optional initialization setter for encoding bias variable if init_b is not None: self.word_encoding_bias = tf.Variable(init_b, name='word_encoding_bias') else: self.word_encoding_bias = tf.Variable(tf.zeros([self.n_lstm_input]), name='word_encoding_bias') self.embw=tf.Variable(xavier_init(self.n_input,self.n_z),name='embw') self.embb=tf.Variable(tf.zeros([self.n_z]),name='embb') self.all_encoding_weights=[self.embw,self.embb] def build_model(self): # declaring the placeholders for our extracted image feature vectors, our caption, and our mask # (describes how long our caption is with an array of 0/1 values of length `maxlen` img = tf.placeholder(tf.float32, [self.batch_size, self.dim_in]) caption_placeholder = tf.placeholder(tf.float32, [self.batch_size, self.n_lstm_steps, self.n_input]) mask = tf.placeholder(tf.float32, [self.batch_size, self.n_lstm_steps]) self.output_placeholder = tf.placeholder(tf.int32, [self.batch_size, self.n_lstm_steps]) network_weights = self._initialize_weights() # getting an initial LSTM embedding from our image_imbedding image_embedding = tf.matmul(img, self.img_embedding) + self.img_embedding_bias flat_caption_placeholder=tf.reshape(caption_placeholder,[self.batch_size*self.n_lstm_steps,-1]) #leverage one-hot sparsity to lookup embeddings fast embedded_input,KLD_loss=self._get_word_embedding([network_weights['variational_encoding'],network_weights['biases_variational_encoding']],network_weights['input_meaning'],flat_caption_placeholder,logit=True) KLD_loss=tf.multiply(KLD_loss,tf.reshape(mask,[-1,1])) KLD_loss=tf.reduce_sum(KLD_loss)*0 with tf.device('/cpu:0'): word_embeddings=tf.nn.embedding_lookup(self.word_embedding,tf.reshape(self.output_placeholder,[self.batch_size*self.n_lstm_steps,-1])) word_embeddings+=self.embedding_bias word_embeddings=tf.reshape(word_embeddings,[self.batch_size,self.n_lstm_steps,-1]) #initialize lstm state state = self.lstm.zero_state(self.batch_size, dtype=tf.float32) rnn_output=[] with tf.variable_scope("RNN"): # unroll lstm for i in range(self.n_lstm_steps): if i > 0: # if this isn’t the first iteration of our LSTM we need to get the word_embedding corresponding # to the (i-1)th word in our caption current_embedding = word_embeddings[:,i-1,:] else: #if this is the first iteration of our LSTM we utilize the embedded image as our input current_embedding = image_embedding if i > 0: # allows us to reuse the LSTM tensor variable on each iteration tf.get_variable_scope().reuse_variables() out, state = self.lstm(current_embedding, state) rnn_output.append(tf.expand_dims(out,1)) #perform classification of output rnn_output=tf.concat(rnn_output,axis=1) rnn_output=tf.reshape(rnn_output,[self.batch_size*(self.n_lstm_steps),-1]) encoded_output=tf.matmul(rnn_output,self.word_encoding)+self.word_encoding_bias #get loss normed_embedding= tf.nn.l2_normalize(encoded_output, dim=-1) normed_target=tf.nn.l2_normalize(embedded_input,dim=-1) cos_sim=tf.multiply(normed_embedding,normed_target)[:,1:] cos_sim=(tf.reduce_sum(cos_sim,axis=-1)) cos_sim=tf.reshape(cos_sim,[self.batch_size,-1]) cos_sim=tf.reduce_sum(cos_sim[:,1:]*mask[:,1:]) cos_sim=cos_sim/tf.reduce_sum(mask[:,1:]) self.exp_loss=tf.reduce_sum((-cos_sim)) # self.exp_loss=tf.reduce_sum(xentropy)/float(self.batch_size) total_loss = tf.reduce_sum(-(cos_sim)) #average over timeseries length # total_loss=tf.reduce_sum(masked_xentropy)/tf.reduce_sum(mask[:,1:]) self.print_loss=total_loss total_loss+=KLD_loss/tf.reduce_sum(mask) return total_loss, img, caption_placeholder, mask def build_generator(self, maxlen, batchsize=1,from_image=False): #same setup as `build_model` function img = tf.placeholder(tf.float32, [self.batch_size, self.dim_in]) image_embedding = tf.matmul(img, self.img_embedding) + self.img_embedding_bias state = self.lstm.zero_state(batchsize,dtype=tf.float32) #declare list to hold the words of our generated captions all_words = [] with tf.variable_scope("RNN"): # in the first iteration we have no previous word, so we directly pass in the image embedding # and set the `previous_word` to the embedding of the start token ([0]) for the future iterations output, state = self.lstm(image_embedding, state) previous_word = tf.nn.embedding_lookup(self.word_embedding, [0]) + self.embedding_bias for i in range(maxlen): tf.get_variable_scope().reuse_variables() out, state = self.lstm(previous_word, state) # get a get maximum probability word and it's encoding from the output of the LSTM logit = tf.matmul(out, self.word_encoding) + self.word_encoding_bias best_word = tf.argmax(logit, 1) with tf.device("/cpu:0"): # get the embedding of the best_word to use as input to the next iteration of our LSTM previous_word = tf.nn.embedding_lookup(self.word_embedding, best_word) previous_word += self.embedding_bias all_words.append(best_word) self.img=img self.all_words=all_words return img, all_words def _initialize_weights(self): all_weights = dict() trainability=False if not same_embedding: all_weights['input_meaning'] = { 'affine_weight': tf.Variable(xavier_init(self.n_z, self.n_lstm_input),name='affine_weight',trainable=trainability), 'affine_bias': tf.Variable(tf.zeros(self.n_lstm_input),name='affine_bias',trainable=trainability)} if not vanilla: all_weights['biases_variational_encoding'] = { 'out_mean': tf.Variable(tf.zeros([self.n_z], dtype=tf.float32),name='out_meanb',trainable=trainability), 'out_log_sigma': tf.Variable(tf.zeros([self.n_z], dtype=tf.float32),name='out_log_sigmab',trainable=trainability)} all_weights['variational_encoding'] = { 'out_mean': tf.Variable(xavier_init(self.n_z, self.n_z),name='out_mean',trainable=trainability), 'out_log_sigma': tf.Variable(xavier_init(self.n_z, self.n_z),name='out_log_sigma',trainable=trainability)} else: all_weights['biases_variational_encoding'] = { 'out_mean': tf.Variable(tf.zeros([self.n_z], dtype=tf.float32),name='out_meanb',trainable=trainability)} all_weights['variational_encoding'] = { 'out_mean': tf.Variable(xavier_init(self.n_z, self.n_z),name='out_mean',trainable=trainability)} # self.no_reload+=all_weights['input_meaning'].values() # self.var_embs=[] # if transfertype2: # self.var_embs=all_weights['biases_variational_encoding'].values()+all_weights['variational_encoding'].values() # self.lstm=tf.contrib.rnn.BasicLSTMCell(n_lstm_input) # if lstm_stack>1: # self.lstm=tf.contrib.rnn.MultiRNNCell([self.lstm]*lstm_stack) # all_weights['LSTM'] = { # 'affine_weight': tf.Variable(xavier_init(n_z, n_lstm_input),name='affine_weight2'), # 'affine_bias': tf.Variable(tf.zeros(n_lstm_input),name='affine_bias2'), # 'encoding_weight': tf.Variable(xavier_init(n_lstm_input,n_input),name='encoding_weight'), # 'encoding_bias': tf.Variable(tf.zeros(n_input),name='encoding_bias'), # 'lstm': self.lstm} all_encoding_weights=[all_weights[x].values() for x in all_weights] for w in all_encoding_weights: self.all_encoding_weights+=w return all_weights def _get_word_embedding(self, ve_weights, lstm_weights, x,logit=False): x=tf.matmul(x,self.embw)+self.embb if logit: z,vae_loss=self._vae_sample(ve_weights[0],ve_weights[1],x) else: if not form2: z,vae_loss=self._vae_sample(ve_weights[0],ve_weights[1],x, True) else: z,vae_loss=self._vae_sample(ve_weights[0],ve_weights[1],tf.one_hot(x,depth=self.n_input)) all_the_f_one_h.append(tf.one_hot(x,depth=self.n_input)) embedding=tf.matmul(z,lstm_weights['affine_weight'])+lstm_weights['affine_bias'] # embedding=z return embedding,vae_loss def _vae_sample(self, weights, biases, x, lookup=False): #TODO: consider adding a linear transform layer+relu or softplus here first if not lookup: mu=tf.matmul(x,weights['out_mean'])+biases['out_mean'] if not vanilla: logvar=tf.matmul(x,weights['out_log_sigma'])+biases['out_log_sigma'] else: mu=tf.nn.embedding_lookup(weights['out_mean'],x)+biases['out_mean'] if not vanilla: logvar=tf.nn.embedding_lookup(weights['out_log_sigma'],x)+biases['out_log_sigma'] if not vanilla: epsilon=tf.random_normal(tf.shape(logvar),name='epsilon') std=tf.exp(.5*logvar) z=mu+tf.multiply(std,epsilon) else: z=mu KLD=0.0 if not vanilla: KLD = -0.5 * tf.reduce_sum(1 + logvar - tf.pow(mu, 2) - tf.exp(logvar),axis=-1) print logvar.shape,epsilon.shape,std.shape,z.shape,KLD.shape return z,KLD def crop_image(self,x, target_height=227, target_width=227, as_float=True,from_path=True): #image preprocessing to crop and resize image image = (x) if from_path==True: image=cv2.imread(image) if as_float: image = image.astype(np.float32) if len(image.shape) == 2: image = np.tile(image[:,:,None], 3) elif len(image.shape) == 4: image = image[:,:,:,0] height, width, rgb = image.shape if width == height: resized_image = cv2.resize(image, (target_height,target_width)) elif height < width: resized_image = cv2.resize(image, (int(width * float(target_height)/height), target_width)) cropping_length = int((resized_image.shape[1] - target_height) / 2) resized_image = resized_image[:,cropping_length:resized_image.shape[1] - cropping_length] else: resized_image = cv2.resize(image, (target_height, int(height * float(target_width) / width))) cropping_length = int((resized_image.shape[0] - target_width) / 2) resized_image = resized_image[cropping_length:resized_image.shape[0] - cropping_length,:] return cv2.resize(resized_image, (target_height, target_width)) def read_image(self,path=None): # parses image from file path and crops/resizes if path is None: path=test_image_path img = crop_image(path, target_height=224, target_width=224) if img.shape[2] == 4: img = img[:,:,:3] img = img[None, ...] return img def get_caption(self,x=None): #gets caption from an image by feeding it through imported VGG16 graph if self.from_image: feat = read_image(x) fc7 = self.sess.run(graph.get_tensor_by_name("import/Relu_1:0"), feed_dict={self.images:feat}) else: fc7=np.load(x,'r') generated_word_index= self.sess.run(self.generated_words, feed_dict={self.img:fc7}) generated_word_index = np.hstack(generated_word_index) generated_words = [ixtoword[x] for x in generated_word_index] punctuation = np.argmax(np.array(generated_words) == '.')+1 generated_words = generated_words[:punctuation] generated_sentence = ' '.join(generated_words) return (generated_sentence) def get_data(annotation_path, feature_path): #load training/validation data annotations = pd.read_table(annotation_path, sep='\t', header=None, names=['image', 'caption']) return np.load(feature_path,'r'), annotations['caption'].values def preProBuildWordVocab(sentence_iterator, word_count_threshold=30): # function from Andre Karpathy's NeuralTalk #process and vectorize training/validation captions print('preprocessing %d word vocab' % (word_count_threshold, )) word_counts = {} nsents = 0 for sent in sentence_iterator: nsents += 1 for w in sent.lower().split(' '): word_counts[w] = word_counts.get(w, 0) + 1 vocab = [w for w in word_counts if word_counts[w] >= word_count_threshold] print('preprocessed words %d -> %d' % (len(word_counts), len(vocab))) ixtoword = {} ixtoword[0] = '.' wordtoix = {} wordtoix['#START#'] = 0 ix = 1 for w in vocab: wordtoix[w] = ix ixtoword[ix] = w ix += 1 word_counts['.'] = nsents bias_init_vector = np.array([1.0*word_counts[ixtoword[i]] for i in ixtoword]) bias_init_vector /= np.sum(bias_init_vector) bias_init_vector = np.log(bias_init_vector) bias_init_vector -= np.max(bias_init_vector) return wordtoix, ixtoword, bias_init_vector.astype(np.float32) dim_embed = 256 dim_hidden = 256 dim_in = 4096 batch_size = 128 momentum = 0.9 n_epochs = 25 def train(learning_rate=0.001, continue_training=False): tf.reset_default_graph() feats, captions = get_data(annotation_path, feature_path) wordtoix, ixtoword, init_b = preProBuildWordVocab(captions) np.save('data/ixtoword', ixtoword) print ('num words:',len(ixtoword)) sess = tf.InteractiveSession() n_words = len(wordtoix) maxlen = 30 X, final_captions, mask, _map = load_text(2**19-3,captions) running_decay=1 decay_rate=0.9999302192204246 with tf.device('/gpu:0'): caption_generator = Caption_Generator(dim_in, dim_hidden, dim_embed, batch_size, maxlen+2, n_words, np.zeros(n_lstm_input).astype(np.float32),n_input=n_input,n_lstm_input=n_lstm_input,n_z=n_z) loss, image, sentence, mask = caption_generator.build_model() saver = tf.train.Saver(max_to_keep=100) train_op = tf.train.AdamOptimizer(learning_rate).minimize(loss) tf.global_variables_initializer().run() tf.train.Saver(var_list=caption_generator.all_encoding_weights,max_to_keep=100).restore(sess,tf.train.latest_checkpoint('modelsvardefdefsingle')) if continue_training: saver.restore(sess,tf.train.latest_checkpoint(model_path)) losses=[] for epoch in range(n_epochs): if epoch==1: for w in caption_generator.all_encoding_weights: w.trainable=True index = (np.arange(len(feats)).astype(int)) np.random.shuffle(index) index=index[:] i=0 for start, end in zip( range(0, len(index), batch_size), range(batch_size, len(index), batch_size)): #format data batch current_feats = feats[index[start:end]] current_captions = captions[index[start:end]] current_caption_ind = [x for x in map(lambda cap: [wordtoix[word] for word in cap.lower().split(' ')[:-1] if word in wordtoix], current_captions)] current_caption_matrix = sequence.pad_sequences(current_caption_ind, padding='post', maxlen=maxlen+1) current_caption_matrix = np.hstack( [np.full( (len(current_caption_matrix),1), 0), current_caption_matrix] ) current_mask_matrix = np.zeros((current_caption_matrix.shape[0], current_caption_matrix.shape[1])) nonzeros = np.array([x for x in map(lambda x: (x != 0).sum()+2, current_caption_matrix )]) current_capts=final_captions[index[start:end]] for ind, row in enumerate(current_mask_matrix): row[:nonzeros[ind]] = 1 _, loss_value,total_loss = sess.run([train_op, caption_generator.print_loss,loss], feed_dict={ image: current_feats.astype(np.float32), caption_generator.output_placeholder : current_caption_matrix.astype(np.int32), mask : current_mask_matrix.astype(np.float32), sentence : current_capts.astype(np.float32) }) print("Current Cost: ", loss_value, "\t Epoch {}/{}".format(epoch, n_epochs), "\t Iter {}/{}".format(start,len(feats))) losses.append(loss_value*running_decay) if epoch<9: if i%3==0: running_decay*=decay_rate else: if i%8==0: running_decay*=decay_rate i+=1 print losses[-1] print("Saving the model from epoch: ", epoch) pkl.dump(losses,open('losses/loss_o2e.pkl','wb')) saver.save(sess, os.path.join(model_path, 'model'), global_step=epoch) learning_rate *= 0.95 def test(sess,image,generated_words,ixtoword,idx=0): # Naive greedy search feats, captions = get_data(annotation_path, feature_path) feat = np.array([feats[idx]]) saver = tf.train.Saver() sanity_check= False # sanity_check=True if not sanity_check: saved_path=tf.train.latest_checkpoint(model_path) saver.restore(sess, saved_path) else: tf.global_variables_initializer().run() generated_word_index= sess.run(generated_words, feed_dict={image:feat}) generated_word_index = np.hstack(generated_word_index) generated_sentence = [ixtoword[x] for x in generated_word_index] print(generated_sentence) if __name__=='__main__': model_path = './models/tensorflow_o2e' feature_path = './data/feats.npy' annotation_path = './data/results_20130124.token' import sys feats, captions = get_data(annotation_path, feature_path) n_input=19 binary_dim=n_input n_lstm_input=1024 n_z=512 zero_end_tok=True form2=True vanilla=True onehot=False same_embedding=False if sys.argv[1]=='train': train() elif sys.argv[1]=='test': ixtoword = np.load('data/ixtoword.npy').tolist() n_words = len(ixtoword) maxlen=15 sess = tf.InteractiveSession() batch_size=1 caption_generator = Caption_Generator(dim_in, dim_hidden, dim_embed, 1, maxlen+2, n_words,n_input=n_input,n_lstm_input=n_lstm_input,n_z=n_z) image, generated_words = caption_generator.build_generator(maxlen=maxlen) test(sess,image,generated_words,ixtoword,1)
mit
huongttlan/statsmodels
statsmodels/datasets/heart/data.py
25
1858
"""Heart Transplant Data, Miller 1976""" __docformat__ = 'restructuredtext' COPYRIGHT = """???""" TITLE = """Transplant Survival Data""" SOURCE = """ Miller, R. (1976). Least squares regression with censored dara. Biometrica, 63 (3). 449-464. """ DESCRSHORT = """Survival times after receiving a heart transplant""" DESCRLONG = """This data contains the survival time after receiving a heart transplant, the age of the patient and whether or not the survival time was censored. """ NOTE = """:: Number of Observations - 69 Number of Variables - 3 Variable name definitions:: death - Days after surgery until death age - age at the time of surgery censored - indicates if an observation is censored. 1 is uncensored """ import numpy as np from statsmodels.datasets import utils as du from os.path import dirname, abspath def load(): """ Load the data and return a Dataset class instance. Returns ------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() ##### SET THE INDICES ##### #NOTE: None for exog_idx is the complement of endog_idx dset = du.process_recarray(data, endog_idx=0, exog_idx=None, dtype=float) dset.censors = dset.exog[:,0] dset.exog = dset.exog[:,1] return dset def load_pandas(): data = _get_data() ##### SET THE INDICES ##### #NOTE: None for exog_idx is the complement of endog_idx return du.process_recarray_pandas(data, endog_idx=0, exog_idx=None, dtype=float) def _get_data(): filepath = dirname(abspath(__file__)) ##### EDIT THE FOLLOWING TO POINT TO DatasetName.csv ##### data = np.recfromtxt(open(filepath + '/heart.csv', 'rb'), delimiter=",", names = True, dtype=float) return data
bsd-3-clause
zack3241/incubator-airflow
airflow/hooks/hive_hooks.py
1
29065
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function, unicode_literals from six.moves import zip from past.builtins import basestring import unicodecsv as csv import itertools import re import subprocess import time from tempfile import NamedTemporaryFile import hive_metastore from airflow import configuration as conf from airflow.exceptions import AirflowException from airflow.hooks.base_hook import BaseHook from airflow.utils.helpers import as_flattened_list from airflow.utils.file import TemporaryDirectory from airflow import configuration import airflow.security.utils as utils HIVE_QUEUE_PRIORITIES = ['VERY_HIGH', 'HIGH', 'NORMAL', 'LOW', 'VERY_LOW'] class HiveCliHook(BaseHook): """Simple wrapper around the hive CLI. It also supports the ``beeline`` a lighter CLI that runs JDBC and is replacing the heavier traditional CLI. To enable ``beeline``, set the use_beeline param in the extra field of your connection as in ``{ "use_beeline": true }`` Note that you can also set default hive CLI parameters using the ``hive_cli_params`` to be used in your connection as in ``{"hive_cli_params": "-hiveconf mapred.job.tracker=some.jobtracker:444"}`` Parameters passed here can be overridden by run_cli's hive_conf param The extra connection parameter ``auth`` gets passed as in the ``jdbc`` connection string as is. :param mapred_queue: queue used by the Hadoop Scheduler (Capacity or Fair) :type mapred_queue: string :param mapred_queue_priority: priority within the job queue. Possible settings include: VERY_HIGH, HIGH, NORMAL, LOW, VERY_LOW :type mapred_queue_priority: string :param mapred_job_name: This name will appear in the jobtracker. This can make monitoring easier. :type mapred_job_name: string """ def __init__( self, hive_cli_conn_id="hive_cli_default", run_as=None, mapred_queue=None, mapred_queue_priority=None, mapred_job_name=None): conn = self.get_connection(hive_cli_conn_id) self.hive_cli_params = conn.extra_dejson.get('hive_cli_params', '') self.use_beeline = conn.extra_dejson.get('use_beeline', False) self.auth = conn.extra_dejson.get('auth', 'noSasl') self.conn = conn self.run_as = run_as if mapred_queue_priority: mapred_queue_priority = mapred_queue_priority.upper() if mapred_queue_priority not in HIVE_QUEUE_PRIORITIES: raise AirflowException( "Invalid Mapred Queue Priority. Valid values are: " "{}".format(', '.join(HIVE_QUEUE_PRIORITIES))) self.mapred_queue = mapred_queue or conf.get('hive', 'default_hive_mapred_queue') self.mapred_queue_priority = mapred_queue_priority self.mapred_job_name = mapred_job_name def _prepare_cli_cmd(self): """ This function creates the command list from available information """ conn = self.conn hive_bin = 'hive' cmd_extra = [] if self.use_beeline: hive_bin = 'beeline' jdbc_url = "jdbc:hive2://{conn.host}:{conn.port}/{conn.schema}" if configuration.get('core', 'security') == 'kerberos': template = conn.extra_dejson.get( 'principal', "hive/[email protected]") if "_HOST" in template: template = utils.replace_hostname_pattern( utils.get_components(template)) proxy_user = "" # noqa if conn.extra_dejson.get('proxy_user') == "login" and conn.login: proxy_user = "hive.server2.proxy.user={0}".format(conn.login) elif conn.extra_dejson.get('proxy_user') == "owner" and self.run_as: proxy_user = "hive.server2.proxy.user={0}".format(self.run_as) jdbc_url += ";principal={template};{proxy_user}" elif self.auth: jdbc_url += ";auth=" + self.auth jdbc_url = jdbc_url.format(**locals()) cmd_extra += ['-u', jdbc_url] if conn.login: cmd_extra += ['-n', conn.login] if conn.password: cmd_extra += ['-p', conn.password] hive_params_list = self.hive_cli_params.split() return [hive_bin] + cmd_extra + hive_params_list def _prepare_hiveconf(self, d): """ This function prepares a list of hiveconf params from a dictionary of key value pairs. :param d: :type d: dict >>> hh = HiveCliHook() >>> hive_conf = {"hive.exec.dynamic.partition": "true", ... "hive.exec.dynamic.partition.mode": "nonstrict"} >>> hh._prepare_hiveconf(hive_conf) ["-hiveconf", "hive.exec.dynamic.partition=true",\ "-hiveconf", "hive.exec.dynamic.partition.mode=nonstrict"] """ if not d: return [] return as_flattened_list( zip(["-hiveconf"] * len(d), ["{}={}".format(k, v) for k, v in d.items()]) ) def run_cli(self, hql, schema=None, verbose=True, hive_conf=None): """ Run an hql statement using the hive cli. If hive_conf is specified it should be a dict and the entries will be set as key/value pairs in HiveConf :param hive_conf: if specified these key value pairs will be passed to hive as ``-hiveconf "key"="value"``. Note that they will be passed after the ``hive_cli_params`` and thus will override whatever values are specified in the database. :type hive_conf: dict >>> hh = HiveCliHook() >>> result = hh.run_cli("USE airflow;") >>> ("OK" in result) True """ conn = self.conn schema = schema or conn.schema if schema: hql = "USE {schema};\n{hql}".format(**locals()) with TemporaryDirectory(prefix='airflow_hiveop_') as tmp_dir: with NamedTemporaryFile(dir=tmp_dir) as f: f.write(hql.encode('UTF-8')) f.flush() hive_cmd = self._prepare_cli_cmd() hive_conf_params = self._prepare_hiveconf(hive_conf) if self.mapred_queue: hive_conf_params.extend( ['-hiveconf', 'mapreduce.job.queuename={}' .format(self.mapred_queue), '-hiveconf', 'mapred.job.queue.name={}' .format(self.mapred_queue), '-hiveconf', 'tez.job.queue.name={}' .format(self.mapred_queue) ]) if self.mapred_queue_priority: hive_conf_params.extend( ['-hiveconf', 'mapreduce.job.priority={}' .format(self.mapred_queue_priority)]) if self.mapred_job_name: hive_conf_params.extend( ['-hiveconf', 'mapred.job.name={}' .format(self.mapred_job_name)]) hive_cmd.extend(hive_conf_params) hive_cmd.extend(['-f', f.name]) if verbose: self.log.info(" ".join(hive_cmd)) sp = subprocess.Popen( hive_cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=tmp_dir, close_fds=True) self.sp = sp stdout = '' while True: line = sp.stdout.readline() if not line: break stdout += line.decode('UTF-8') if verbose: self.log.info(line.decode('UTF-8').strip()) sp.wait() if sp.returncode: raise AirflowException(stdout) return stdout def test_hql(self, hql): """ Test an hql statement using the hive cli and EXPLAIN """ create, insert, other = [], [], [] for query in hql.split(';'): # naive query_original = query query = query.lower().strip() if query.startswith('create table'): create.append(query_original) elif query.startswith(('set ', 'add jar ', 'create temporary function')): other.append(query_original) elif query.startswith('insert'): insert.append(query_original) other = ';'.join(other) for query_set in [create, insert]: for query in query_set: query_preview = ' '.join(query.split())[:50] self.log.info("Testing HQL [%s (...)]", query_preview) if query_set == insert: query = other + '; explain ' + query else: query = 'explain ' + query try: self.run_cli(query, verbose=False) except AirflowException as e: message = e.args[0].split('\n')[-2] self.log.info(message) error_loc = re.search('(\d+):(\d+)', message) if error_loc and error_loc.group(1).isdigit(): l = int(error_loc.group(1)) begin = max(l-2, 0) end = min(l+3, len(query.split('\n'))) context = '\n'.join(query.split('\n')[begin:end]) self.log.info("Context :\n %s", context) else: self.log.info("SUCCESS") def load_df( self, df, table, create=True, recreate=False, field_dict=None, delimiter=',', encoding='utf8', pandas_kwargs=None, **kwargs): """ Loads a pandas DataFrame into hive. Hive data types will be inferred if not passed but column names will not be sanitized. :param table: target Hive table, use dot notation to target a specific database :type table: str :param create: whether to create the table if it doesn't exist :type create: bool :param recreate: whether to drop and recreate the table at every execution :type recreate: bool :param field_dict: mapping from column name to hive data type :type field_dict: dict :param encoding: string encoding to use when writing DataFrame to file :type encoding: str :param pandas_kwargs: passed to DataFrame.to_csv :type pandas_kwargs: dict :param kwargs: passed to self.load_file """ def _infer_field_types_from_df(df): DTYPE_KIND_HIVE_TYPE = { 'b': 'BOOLEAN', # boolean 'i': 'BIGINT', # signed integer 'u': 'BIGINT', # unsigned integer 'f': 'DOUBLE', # floating-point 'c': 'STRING', # complex floating-point 'O': 'STRING', # object 'S': 'STRING', # (byte-)string 'U': 'STRING', # Unicode 'V': 'STRING' # void } return dict((col, DTYPE_KIND_HIVE_TYPE[dtype.kind]) for col, dtype in df.dtypes.iteritems()) if pandas_kwargs is None: pandas_kwargs = {} with TemporaryDirectory(prefix='airflow_hiveop_') as tmp_dir: with NamedTemporaryFile(dir=tmp_dir) as f: if field_dict is None and (create or recreate): field_dict = _infer_field_types_from_df(df) df.to_csv(f, sep=delimiter, **pandas_kwargs) return self.load_file(filepath=f.name, table=table, delimiter=delimiter, field_dict=field_dict, **kwargs) def load_file( self, filepath, table, delimiter=",", field_dict=None, create=True, overwrite=True, partition=None, recreate=False, tblproperties=None): """ Loads a local file into Hive Note that the table generated in Hive uses ``STORED AS textfile`` which isn't the most efficient serialization format. If a large amount of data is loaded and/or if the tables gets queried considerably, you may want to use this operator only to stage the data into a temporary table before loading it into its final destination using a ``HiveOperator``. :param filepath: local filepath of the file to load :type filepath: str :param table: target Hive table, use dot notation to target a specific database :type table: str :param delimiter: field delimiter in the file :type delimiter: str :param field_dict: A dictionary of the fields name in the file as keys and their Hive types as values :type field_dict: dict :param create: whether to create the table if it doesn't exist :type create: bool :param overwrite: whether to overwrite the data in table or partition :type overwrite: bool :param partition: target partition as a dict of partition columns and values :type partition: dict :param recreate: whether to drop and recreate the table at every execution :type recreate: bool :param tblproperties: TBLPROPERTIES of the hive table being created :type tblproperties: dict """ hql = '' if recreate: hql += "DROP TABLE IF EXISTS {table};\n" if create or recreate: if field_dict is None: raise ValueError("Must provide a field dict when creating a table") fields = ",\n ".join( [k + ' ' + v for k, v in field_dict.items()]) hql += "CREATE TABLE IF NOT EXISTS {table} (\n{fields})\n" if partition: pfields = ",\n ".join( [p + " STRING" for p in partition]) hql += "PARTITIONED BY ({pfields})\n" hql += "ROW FORMAT DELIMITED\n" hql += "FIELDS TERMINATED BY '{delimiter}'\n" hql += "STORED AS textfile\n" if tblproperties is not None: tprops = ", ".join( ["'{0}'='{1}'".format(k, v) for k, v in tblproperties.items()]) hql += "TBLPROPERTIES({tprops})\n" hql += ";" hql = hql.format(**locals()) self.log.info(hql) self.run_cli(hql) hql = "LOAD DATA LOCAL INPATH '{filepath}' " if overwrite: hql += "OVERWRITE " hql += "INTO TABLE {table} " if partition: pvals = ", ".join( ["{0}='{1}'".format(k, v) for k, v in partition.items()]) hql += "PARTITION ({pvals});" hql = hql.format(**locals()) self.log.info(hql) self.run_cli(hql) def kill(self): if hasattr(self, 'sp'): if self.sp.poll() is None: print("Killing the Hive job") self.sp.terminate() time.sleep(60) self.sp.kill() class HiveMetastoreHook(BaseHook): """ Wrapper to interact with the Hive Metastore""" def __init__(self, metastore_conn_id='metastore_default'): self.metastore_conn = self.get_connection(metastore_conn_id) self.metastore = self.get_metastore_client() def __getstate__(self): # This is for pickling to work despite the thirft hive client not # being pickable d = dict(self.__dict__) del d['metastore'] return d def __setstate__(self, d): self.__dict__.update(d) self.__dict__['metastore'] = self.get_metastore_client() def get_metastore_client(self): """ Returns a Hive thrift client. """ from thrift.transport import TSocket, TTransport from thrift.protocol import TBinaryProtocol from hive_service import ThriftHive ms = self.metastore_conn auth_mechanism = ms.extra_dejson.get('authMechanism', 'NOSASL') if configuration.get('core', 'security') == 'kerberos': auth_mechanism = ms.extra_dejson.get('authMechanism', 'GSSAPI') kerberos_service_name = ms.extra_dejson.get('kerberos_service_name', 'hive') socket = TSocket.TSocket(ms.host, ms.port) if configuration.get('core', 'security') == 'kerberos' and auth_mechanism == 'GSSAPI': try: import saslwrapper as sasl except ImportError: import sasl def sasl_factory(): sasl_client = sasl.Client() sasl_client.setAttr("host", ms.host) sasl_client.setAttr("service", kerberos_service_name) sasl_client.init() return sasl_client from thrift_sasl import TSaslClientTransport transport = TSaslClientTransport(sasl_factory, "GSSAPI", socket) else: transport = TTransport.TBufferedTransport(socket) protocol = TBinaryProtocol.TBinaryProtocol(transport) return ThriftHive.Client(protocol) def get_conn(self): return self.metastore def check_for_partition(self, schema, table, partition): """ Checks whether a partition exists :param schema: Name of hive schema (database) @table belongs to :type schema: string :param table: Name of hive table @partition belongs to :type schema: string :partition: Expression that matches the partitions to check for (eg `a = 'b' AND c = 'd'`) :type schema: string :rtype: boolean >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.check_for_partition('airflow', t, "ds='2015-01-01'") True """ self.metastore._oprot.trans.open() partitions = self.metastore.get_partitions_by_filter( schema, table, partition, 1) self.metastore._oprot.trans.close() if partitions: return True else: return False def check_for_named_partition(self, schema, table, partition_name): """ Checks whether a partition with a given name exists :param schema: Name of hive schema (database) @table belongs to :type schema: string :param table: Name of hive table @partition belongs to :type schema: string :partition: Name of the partitions to check for (eg `a=b/c=d`) :type schema: string :rtype: boolean >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.check_for_named_partition('airflow', t, "ds=2015-01-01") True >>> hh.check_for_named_partition('airflow', t, "ds=xxx") False """ self.metastore._oprot.trans.open() try: self.metastore.get_partition_by_name( schema, table, partition_name) return True except hive_metastore.ttypes.NoSuchObjectException: return False finally: self.metastore._oprot.trans.close() def get_table(self, table_name, db='default'): """Get a metastore table object >>> hh = HiveMetastoreHook() >>> t = hh.get_table(db='airflow', table_name='static_babynames') >>> t.tableName 'static_babynames' >>> [col.name for col in t.sd.cols] ['state', 'year', 'name', 'gender', 'num'] """ self.metastore._oprot.trans.open() if db == 'default' and '.' in table_name: db, table_name = table_name.split('.')[:2] table = self.metastore.get_table(dbname=db, tbl_name=table_name) self.metastore._oprot.trans.close() return table def get_tables(self, db, pattern='*'): """ Get a metastore table object """ self.metastore._oprot.trans.open() tables = self.metastore.get_tables(db_name=db, pattern=pattern) objs = self.metastore.get_table_objects_by_name(db, tables) self.metastore._oprot.trans.close() return objs def get_databases(self, pattern='*'): """ Get a metastore table object """ self.metastore._oprot.trans.open() dbs = self.metastore.get_databases(pattern) self.metastore._oprot.trans.close() return dbs def get_partitions( self, schema, table_name, filter=None): """ Returns a list of all partitions in a table. Works only for tables with less than 32767 (java short max val). For subpartitioned table, the number might easily exceed this. >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> parts = hh.get_partitions(schema='airflow', table_name=t) >>> len(parts) 1 >>> parts [{'ds': '2015-01-01'}] """ self.metastore._oprot.trans.open() table = self.metastore.get_table(dbname=schema, tbl_name=table_name) if len(table.partitionKeys) == 0: raise AirflowException("The table isn't partitioned") else: if filter: parts = self.metastore.get_partitions_by_filter( db_name=schema, tbl_name=table_name, filter=filter, max_parts=32767) else: parts = self.metastore.get_partitions( db_name=schema, tbl_name=table_name, max_parts=32767) self.metastore._oprot.trans.close() pnames = [p.name for p in table.partitionKeys] return [dict(zip(pnames, p.values)) for p in parts] def max_partition(self, schema, table_name, field=None, filter=None): """ Returns the maximum value for all partitions in a table. Works only for tables that have a single partition key. For subpartitioned table, we recommend using signal tables. >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.max_partition(schema='airflow', table_name=t) '2015-01-01' """ parts = self.get_partitions(schema, table_name, filter) if not parts: return None elif len(parts[0]) == 1: field = list(parts[0].keys())[0] elif not field: raise AirflowException( "Please specify the field you want the max " "value for") return max([p[field] for p in parts]) def table_exists(self, table_name, db='default'): """ Check if table exists >>> hh = HiveMetastoreHook() >>> hh.table_exists(db='airflow', table_name='static_babynames') True >>> hh.table_exists(db='airflow', table_name='does_not_exist') False """ try: t = self.get_table(table_name, db) return True except Exception as e: return False class HiveServer2Hook(BaseHook): """ Wrapper around the impyla library Note that the default authMechanism is PLAIN, to override it you can specify it in the ``extra`` of your connection in the UI as in """ def __init__(self, hiveserver2_conn_id='hiveserver2_default'): self.hiveserver2_conn_id = hiveserver2_conn_id def get_conn(self, schema=None): db = self.get_connection(self.hiveserver2_conn_id) auth_mechanism = db.extra_dejson.get('authMechanism', 'PLAIN') kerberos_service_name = None if configuration.get('core', 'security') == 'kerberos': auth_mechanism = db.extra_dejson.get('authMechanism', 'GSSAPI') kerberos_service_name = db.extra_dejson.get('kerberos_service_name', 'hive') # impyla uses GSSAPI instead of KERBEROS as a auth_mechanism identifier if auth_mechanism == 'KERBEROS': self.log.warning( "Detected deprecated 'KERBEROS' for authMechanism for %s. Please use 'GSSAPI' instead", self.hiveserver2_conn_id ) auth_mechanism = 'GSSAPI' from impala.dbapi import connect return connect( host=db.host, port=db.port, auth_mechanism=auth_mechanism, kerberos_service_name=kerberos_service_name, user=db.login, database=schema or db.schema or 'default') def get_results(self, hql, schema='default', arraysize=1000): from impala.error import ProgrammingError with self.get_conn(schema) as conn: if isinstance(hql, basestring): hql = [hql] results = { 'data': [], 'header': [], } cur = conn.cursor() for statement in hql: cur.execute(statement) records = [] try: # impala Lib raises when no results are returned # we're silencing here as some statements in the list # may be `SET` or DDL records = cur.fetchall() except ProgrammingError: self.log.debug("get_results returned no records") if records: results = { 'data': records, 'header': cur.description, } return results def to_csv( self, hql, csv_filepath, schema='default', delimiter=',', lineterminator='\r\n', output_header=True, fetch_size=1000): schema = schema or 'default' with self.get_conn(schema) as conn: with conn.cursor() as cur: self.log.info("Running query: %s", hql) cur.execute(hql) schema = cur.description with open(csv_filepath, 'wb') as f: writer = csv.writer(f, delimiter=delimiter, lineterminator=lineterminator, encoding='utf-8') if output_header: writer.writerow([c[0] for c in cur.description]) i = 0 while True: rows = [row for row in cur.fetchmany(fetch_size) if row] if not rows: break writer.writerows(rows) i += len(rows) self.log.info("Written %s rows so far.", i) self.log.info("Done. Loaded a total of %s rows.", i) def get_records(self, hql, schema='default'): """ Get a set of records from a Hive query. >>> hh = HiveServer2Hook() >>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100" >>> len(hh.get_records(sql)) 100 """ return self.get_results(hql, schema=schema)['data'] def get_pandas_df(self, hql, schema='default'): """ Get a pandas dataframe from a Hive query >>> hh = HiveServer2Hook() >>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100" >>> df = hh.get_pandas_df(sql) >>> len(df.index) 100 """ import pandas as pd res = self.get_results(hql, schema=schema) df = pd.DataFrame(res['data']) df.columns = [c[0] for c in res['header']] return df
apache-2.0
mcdaniel67/sympy
sympy/external/tests/test_importtools.py
91
1215
from sympy.external import import_module # fixes issue that arose in addressing issue 6533 def test_no_stdlib_collections(): ''' make sure we get the right collections when it is not part of a larger list ''' import collections matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['cm', 'collections']}, min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: assert collections != matplotlib.collections def test_no_stdlib_collections2(): ''' make sure we get the right collections when it is not part of a larger list ''' import collections matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['collections']}, min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: assert collections != matplotlib.collections def test_no_stdlib_collections3(): '''make sure we get the right collections with no catch''' import collections matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['cm', 'collections']}, min_module_version='1.1.0') if matplotlib: assert collections != matplotlib.collections
bsd-3-clause
ldirer/scikit-learn
examples/bicluster/plot_bicluster_newsgroups.py
14
5895
""" ================================================================ Biclustering documents with the Spectral Co-clustering algorithm ================================================================ This example demonstrates the Spectral Co-clustering algorithm on the twenty newsgroups dataset. The 'comp.os.ms-windows.misc' category is excluded because it contains many posts containing nothing but data. The TF-IDF vectorized posts form a word frequency matrix, which is then biclustered using Dhillon's Spectral Co-Clustering algorithm. The resulting document-word biclusters indicate subsets words used more often in those subsets documents. For a few of the best biclusters, its most common document categories and its ten most important words get printed. The best biclusters are determined by their normalized cut. The best words are determined by comparing their sums inside and outside the bicluster. For comparison, the documents are also clustered using MiniBatchKMeans. The document clusters derived from the biclusters achieve a better V-measure than clusters found by MiniBatchKMeans. """ from __future__ import print_function from collections import defaultdict import operator import re from time import time import numpy as np from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.cluster import MiniBatchKMeans from sklearn.externals.six import iteritems from sklearn.datasets.twenty_newsgroups import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.cluster import v_measure_score print(__doc__) def number_aware_tokenizer(doc): """ Tokenizer that maps all numeric tokens to a placeholder. For many applications, tokens that begin with a number are not directly useful, but the fact that such a token exists can be relevant. By applying this form of dimensionality reduction, some methods may perform better. """ token_pattern = re.compile(u'(?u)\\b\\w\\w+\\b') tokens = token_pattern.findall(doc) tokens = ["#NUMBER" if token[0] in "0123456789_" else token for token in tokens] return tokens # exclude 'comp.os.ms-windows.misc' categories = ['alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc'] newsgroups = fetch_20newsgroups(categories=categories) y_true = newsgroups.target vectorizer = TfidfVectorizer(stop_words='english', min_df=5, tokenizer=number_aware_tokenizer) cocluster = SpectralCoclustering(n_clusters=len(categories), svd_method='arpack', random_state=0) kmeans = MiniBatchKMeans(n_clusters=len(categories), batch_size=20000, random_state=0) print("Vectorizing...") X = vectorizer.fit_transform(newsgroups.data) print("Coclustering...") start_time = time() cocluster.fit(X) y_cocluster = cocluster.row_labels_ print("Done in {:.2f}s. V-measure: {:.4f}".format( time() - start_time, v_measure_score(y_cocluster, y_true))) print("MiniBatchKMeans...") start_time = time() y_kmeans = kmeans.fit_predict(X) print("Done in {:.2f}s. V-measure: {:.4f}".format( time() - start_time, v_measure_score(y_kmeans, y_true))) feature_names = vectorizer.get_feature_names() document_names = list(newsgroups.target_names[i] for i in newsgroups.target) def bicluster_ncut(i): rows, cols = cocluster.get_indices(i) if not (np.any(rows) and np.any(cols)): import sys return sys.float_info.max row_complement = np.nonzero(np.logical_not(cocluster.rows_[i]))[0] col_complement = np.nonzero(np.logical_not(cocluster.columns_[i]))[0] # Note: the following is identical to X[rows[:, np.newaxis], # cols].sum() but much faster in scipy <= 0.16 weight = X[rows][:, cols].sum() cut = (X[row_complement][:, cols].sum() + X[rows][:, col_complement].sum()) return cut / weight def most_common(d): """Items of a defaultdict(int) with the highest values. Like Counter.most_common in Python >=2.7. """ return sorted(iteritems(d), key=operator.itemgetter(1), reverse=True) bicluster_ncuts = list(bicluster_ncut(i) for i in range(len(newsgroups.target_names))) best_idx = np.argsort(bicluster_ncuts)[:5] print() print("Best biclusters:") print("----------------") for idx, cluster in enumerate(best_idx): n_rows, n_cols = cocluster.get_shape(cluster) cluster_docs, cluster_words = cocluster.get_indices(cluster) if not len(cluster_docs) or not len(cluster_words): continue # categories counter = defaultdict(int) for i in cluster_docs: counter[document_names[i]] += 1 cat_string = ", ".join("{:.0f}% {}".format(float(c) / n_rows * 100, name) for name, c in most_common(counter)[:3]) # words out_of_cluster_docs = cocluster.row_labels_ != cluster out_of_cluster_docs = np.where(out_of_cluster_docs)[0] word_col = X[:, cluster_words] word_scores = np.array(word_col[cluster_docs, :].sum(axis=0) - word_col[out_of_cluster_docs, :].sum(axis=0)) word_scores = word_scores.ravel() important_words = list(feature_names[cluster_words[i]] for i in word_scores.argsort()[:-11:-1]) print("bicluster {} : {} documents, {} words".format( idx, n_rows, n_cols)) print("categories : {}".format(cat_string)) print("words : {}\n".format(', '.join(important_words)))
bsd-3-clause
amoshyc/tthl-code
grad_cam.py
1
1546
import argparse import random from pathlib import Path import numpy as np import matplotlib.cm as cm import matplotlib.colors as colors from scipy.misc import imsave, imread, imresize from keras.models import load_model, Sequential from keras import activations from vis.utils import utils from vis.visualization import visualize_cam, overlay from tqdm import tqdm parser = argparse.ArgumentParser() parser.add_argument('model', help='model', type=str) parser.add_argument('image_dir', help='image_dir', type=str) parser.add_argument('output_dir', help='output_dir', type=str) parser.add_argument('label', help='label', type=int) args = parser.parse_args() model = load_model(args.model) paths = list(Path(args.image_dir).glob('*.jpg')) paths = random.sample(paths, k=500) output_dir = Path(args.output_dir) (output_dir / '0').mkdir(parents=True, exist_ok=True) (output_dir / '1').mkdir(parents=True, exist_ok=True) layer_idx = utils.find_layer_idx(model, 'dense_2') for path in tqdm(paths, ascii=True): img = imread(str(path)) img = imresize(img, (224, 224)) pred = np.argmax(model.predict(np.expand_dims(img, axis=0))) grads = visualize_cam(model, layer_idx, filter_indices=args.label, seed_input=img, backprop_modifier=None) target_path = output_dir / str(pred) / f'{path.stem}_gcam.jpg' imsave(str(target_path), overlay(grads, img, 0.4)) # python grad_cam.py .\log\gc_2017-09-24_20-17-12\0.836_08.h5 .\tmp\hl\ .\cam\hl\ 1 # python grad_cam.py .\log\gc_2017-09-24_20-17-12\0.836_08.h5 .\tmp\non\ .\cam\non\ 0
apache-2.0
xiaohan2012/capitalization-restoration-train
single_classifier.py
1
6656
# Logistic regression is used for this task, instead of sequence model import codecs import numpy as np import pickle from itertools import (chain, izip) import pandas as pds from sklearn.feature_extraction import DictVectorizer from sklearn.preprocessing import LabelEncoder from sklearn.linear_model import LogisticRegression from sklearn.metrics import (classification_report, accuracy_score, precision_recall_fscore_support, confusion_matrix) from sklearn import cross_validation from sklearn.externals import joblib from sklearn.grid_search import GridSearchCV from scipy_util import (load_sparse_csr, save_sparse_csr) from util import load_crfsuite_format_data from unigram import UnigramLabeler from error_display import print_label_error # turn this ON when you want to rebuild the data matrices LOAD_FROM_CACHE = 1 RETRAIN_MODEL = 1 ERROR_REPORT = 0 # Data preparation train_path = "/cs/taatto/home/hxiao/capitalization-recovery/result/puls-100k/train.crfsuite.txt" test_path = "/cs/taatto/home/hxiao/capitalization-recovery/result/puls-100k/test.crfsuite.txt" if not LOAD_FROM_CACHE: train_x, train_y = load_crfsuite_format_data( codecs.open(train_path, 'r', 'utf8')) test_x, test_y = load_crfsuite_format_data( codecs.open(test_path, 'r', 'utf8')) train_x, train_y = (chain.from_iterable(train_x), chain.from_iterable(train_y)) # Debugging Purpose # n = 100 # train_x = list(train_x)[:n] # train_y = list(train_y)[:n] test_x, test_y = chain.from_iterable(test_x), chain.from_iterable(test_y) print "hashing the features" dict_vect = DictVectorizer() train_x = dict_vect.fit_transform(train_x) test_x = dict_vect.transform(test_x) print "encoding the labels" label_encoder = LabelEncoder() # import pdb # pdb.set_trace() train_y = label_encoder.fit_transform(list(train_y)) test_y = label_encoder.transform(list(test_y)) labels = label_encoder.classes_ for fname, obj in zip( ['cached_data/train_x.npz', 'cached_data/test_x.npz'], (train_x, test_x)): save_sparse_csr(fname, obj) for fname, obj in zip(['cached_data/train_y.npy', 'cached_data/test_y.npy'], (train_y, test_y)): np.save(fname, obj) pickle.dump(labels, open('cached_data/labels.pkl', 'w')) # Dump DictVectorizer and LabelEncoder pickle.dump(dict_vect, open('cached_data/dict_vect.pkl', 'w')) pickle.dump(label_encoder, open('cached_data/label_encoder.pkl', 'w')) else: print "loading data" train_x, test_x \ = map(load_sparse_csr, ('cached_data/train_x.npz', 'cached_data/test_x.npz')) train_y = np.load('cached_data/train_y.npy') test_y = np.load('cached_data/test_y.npy') labels = pickle.load(open('cached_data/labels.pkl', 'r')) dict_vect = pickle.load(open('cached_data/dict_vect.pkl', 'r')) label_encoder = pickle.load(open('cached_data/label_encoder.pkl', 'r')) # print(train_x.shape) # # print(train_x[0]) if RETRAIN_MODEL: # Train train_x, test_x, train_y, test_y = cross_validation.train_test_split( train_x, train_y, test_size=0.1, random_state=0) print(train_x.shape) print(train_y.shape) print(test_x.shape) print(test_y.shape) print "training model" model = LogisticRegression(penalty='l2', C=1.0, verbose=2) # Uncomment when you want grid search # param_grid = {'penalty': ['l1', 'l2'], # 'C': [0.1, 1, 10]} # model = GridSearchCV(LogisticRegression(verbose=2), param_grid=param_grid, # verbose=2, n_jobs=6) model.fit(train_x, train_y) print model pred_y = model.predict(test_x) # Evaluation print "Evaluation summary:" print "Subset accuracy: %.2f\n" % \ (accuracy_score(test_y, pred_y) * 100) # print "Accuracy(Jaccard): %.2f\n" % (jaccard_similarity_score(test_y, pred_y)) # p_ex, r_ex, f_ex, _ = precision_recall_fscore_support(test_y, pred_y, # average="samples") print classification_report(test_y, pred_y, target_names=labels, digits=4) p_mac, r_mac, f_mac, _\ = precision_recall_fscore_support(test_y, pred_y, average="macro") print "Precision/Recall/F1(macro) : %.4f %.4f %.4f\n" \ % (p_mac, r_mac, f_mac) p_mic, r_mic, f_mic, _\ = precision_recall_fscore_support(test_y, pred_y, average="micro") print "Precision/Recall/F1(micro) : %.4f %.4f %.4f\n" \ % (p_mic, r_mic, f_mic) joblib.dump(model, 'cached_data/model.pkl') else: model = joblib.load('cached_data/model.pkl') if ERROR_REPORT: print "Error examples" test_x_features, test_y = load_crfsuite_format_data( codecs.open(test_path, 'r', 'utf8')) labeler = UnigramLabeler(dict_vect, label_encoder, model) flat_pred_y = labeler.predict(chain.from_iterable(test_x_features)) # unflatten the predicted labels pred_y = [] current_index = 0 for sent_y in test_y: pred_y.append(flat_pred_y[current_index: current_index+len(sent_y)]) current_index += len(sent_y) assert len(pred_y) == len(test_x_features) sents = [[word['word[0]'] for word in words] for words in test_x_features] for words, features,\ true_labels, pred_labels in izip(sents, test_x_features, test_y, pred_y): print_label_error(words, features, true_labels, pred_labels, target_true_label='IC', target_pred_label='AL', print_features=True, model=model, dict_vect=dict_vect, label_encoder=label_encoder) print "Confusion matrix:" table = pds.DataFrame(confusion_matrix(list(chain.from_iterable(test_y)), list(chain.from_iterable(pred_y)), labels=labels), index=map(lambda s: '{}_true'.format(s), labels), columns=map(lambda s: '{}_pred'.format(s), labels)) print table
mit
rahlk/RAAT
src/tools/misc.py
2
1959
from pandas import DataFrame, read_csv, concat from os import walk import numpy as np from pdb import set_trace import sys def say(text): sys.stdout.write(str(text)) def shuffle(df, n=1, axis=0): df = df.copy() for _ in range(n): df.apply(np.random.shuffle, axis=axis) return df def csv2DF(dir, as_mtx=False, toBin=False): files=[] for f in dir: df=read_csv(f) headers = [h for h in df.columns if '?' not in h] # set_trace() if isinstance(df[df.columns[-1]][0], str): df[df.columns[-1]] = DataFrame([0 if 'N' in d or 'n' in d else 1 for d in df[df.columns[-1]]]) if toBin: df[df.columns[-1]]=DataFrame([1 if d > 0 else 0 for d in df[df.columns[-1]]]) files.append(df[headers]) "For N files in a project, use 1 to N-1 as train." data_DF = concat(files) if as_mtx: return data_DF.as_matrix() else: return data_DF def explore(dir='../Data/Jureczko/', name=None): datasets = [] for (dirpath, dirnames, filenames) in walk(dir): datasets.append(dirpath) training = [] testing = [] if name: for k in datasets[1:]: if name in k: if 'Jureczko' or 'mccabe' in dir: train = [[dirPath, fname] for dirPath, _, fname in walk(k)] test = [train[0][0] + '/' + train[0][1].pop(-1)] # set_trace() training = [train[0][0] + '/' + p for p in train[0][1] if not p == '.DS_Store' and '.csv' in p] testing = test return training, testing elif 'Seigmund' in dir: train = [dir+name+'/'+fname[0] for dirPath, _, fname in walk(k)] return train else: for k in datasets[1:]: train = [[dirPath, fname] for dirPath, _, fname in walk(k)] test = [train[0][0] + '/' + train[0][1].pop(-1)] training.append( [train[0][0] + '/' + p for p in train[0][1] if not p == '.DS_Store']) testing.append(test) return training, testing
mit
msbeta/apollo
modules/tools/record_analyzer/main.py
1
5886
#!/usr/bin/env python ############################################################################### # Copyright 2018 The Apollo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### import sys import argparse import matplotlib.pyplot as plt from cyber_py.record import RecordReader from modules.control.proto import control_cmd_pb2 from modules.planning.proto import planning_pb2 from modules.canbus.proto import chassis_pb2 from modules.drivers.proto import pointcloud_pb2 from module_control_analyzer import ControlAnalyzer from module_planning_analyzer import PlannigAnalyzer from modules.perception.proto import perception_obstacle_pb2 from modules.prediction.proto import prediction_obstacle_pb2 from lidar_endtoend_analyzer import LidarEndToEndAnalyzer def process(control_analyzer, planning_analyzer, lidar_endtoend_analyzer, is_simulation, plot_planning_path, plot_planning_refpath, all_data): is_auto_drive = False for msg in reader.read_messages(): if msg.topic == "/apollo/canbus/chassis": chassis = chassis_pb2.Chassis() chassis.ParseFromString(msg.message) if chassis.driving_mode == \ chassis_pb2.Chassis.COMPLETE_AUTO_DRIVE: is_auto_drive = True else: is_auto_drive = False if msg.topic == "/apollo/control": if (not is_auto_drive and not all_data) or \ is_simulation or plot_planning_path or plot_planning_refpath: continue control_cmd = control_cmd_pb2.ControlCommand() control_cmd.ParseFromString(msg.message) control_analyzer.put(control_cmd) lidar_endtoend_analyzer.put_control(control_cmd) if msg.topic == "/apollo/planning": if (not is_auto_drive) and (not all_data): continue adc_trajectory = planning_pb2.ADCTrajectory() adc_trajectory.ParseFromString(msg.message) planning_analyzer.put(adc_trajectory) lidar_endtoend_analyzer.put_planning(adc_trajectory) if plot_planning_path: planning_analyzer.plot_path(plt, adc_trajectory) if plot_planning_refpath: planning_analyzer.plot_refpath(plt, adc_trajectory) if msg.topic == "/apollo/sensor/velodyne64/compensator/PointCloud2" or \ msg.topic == "/apollo/sensor/lidar128/compensator/PointCloud2": if ((not is_auto_drive) and (not all_data)) or is_simulation or \ plot_planning_path or plot_planning_refpath: continue point_cloud = pointcloud_pb2.PointCloud() point_cloud.ParseFromString(msg.message) lidar_endtoend_analyzer.put_lidar(point_cloud) if msg.topic == "/apollo/perception/obstacles": if ((not is_auto_drive) and (not all_data)) or is_simulation or \ plot_planning_path or plot_planning_refpath: continue perception = perception_obstacle_pb2.PerceptionObstacles() perception.ParseFromString(msg.message) if msg.topic == "/apollo/prediction": if ((not is_auto_drive) and (not all_data)) or is_simulation or \ plot_planning_path or plot_planning_refpath: continue prediction = prediction_obstacle_pb2.PredictionObstacles() prediction.ParseFromString(msg.message) if __name__ == "__main__": if len(sys.argv) < 2: print "usage: python main.py record_file" parser = argparse.ArgumentParser( description="Recode Analyzer is a tool to analyze record files.", prog="main.py") parser.add_argument( "-f", "--file", action="store", type=str, required=True, help="Specify the record file for analysis.") parser.add_argument( "-s", "--simulation", action="store_const", const=True, help="For simulation API call") parser.add_argument( "-path", "--planningpath", action="store_const", const=True, help="plot planing paths in cartesian coordinate.") parser.add_argument( "-refpath", "--planningrefpath", action="store_const", const=True, help="plot planing reference paths in cartesian coordinate.") parser.add_argument( "-a", "--alldata", action="store_const", const=True, help="Analyze all data (both auto and manual), otherwise auto data only without this option.") args = parser.parse_args() record_file = args.file reader = RecordReader(record_file) control_analyzer = ControlAnalyzer() planning_analyzer = PlannigAnalyzer(args.simulation) lidar_endtoend_analyzer = LidarEndToEndAnalyzer() process(control_analyzer, planning_analyzer, lidar_endtoend_analyzer, args.simulation, args.planningpath, args.planningrefpath, args.alldata) if args.simulation: planning_analyzer.print_simulation_results() elif args.planningpath or args.planningrefpath: plt.axis('equal') plt.show() else: control_analyzer.print_latency_statistics() planning_analyzer.print_latency_statistics() lidar_endtoend_analyzer.print_endtoend_latency()
apache-2.0
yala/introdeeplearning
draft/rnn.py
1
3591
import tensorflow as tf import cPickle as pickle from collections import defaultdict import re, random import numpy as np from sklearn.feature_extraction.text import CountVectorizer #Read data and do preprocessing def read_data(fn): with open(fn) as f: data = pickle.load(f) #Clean the text new_data = [] pattern = re.compile('[\W_]+') for text,label in data: text = text.strip("\r\n ").split() x = [] for word in text: word = pattern.sub('', word) word = word.lower() if 0 < len(word) < 20: x.append(word) new_data.append((' '.join(x),label)) return new_data train = read_data("data/train.p") print train[0:10] train_x, train_y = zip(*train) vectorizer = CountVectorizer(train_x, min_df=0.001) vectorizer.fit(train_x) vocab = vectorizer.vocabulary_ UNK_ID = len(vocab) PAD_ID = len(vocab) + 1 word2id = lambda w:vocab[w] if w in vocab else UNK_ID train_x = [[word2id(w) for w in x.split()] for x in train_x] train_data = zip(train_x, train_y) import math #build RNN model batch_size = 20 hidden_size = 100 vocab_size = len(vocab) + 2 def lookup_table(input_, vocab_size, output_size, name): with tf.variable_scope(name): embedding = tf.get_variable("embedding", [vocab_size, output_size], tf.float32, tf.random_normal_initializer(stddev=1.0 / math.sqrt(output_size))) return tf.nn.embedding_lookup(embedding, input_) def linear(input_, output_size, name, init_bias=0.0): shape = input_.get_shape().as_list() with tf.variable_scope(name): W = tf.get_variable("Matrix", [shape[-1], output_size], tf.float32, tf.random_normal_initializer(stddev=1.0 / math.sqrt(shape[-1]))) if init_bias is None: return tf.matmul(input_, W) with tf.variable_scope(name): b = tf.get_variable("bias", [output_size], initializer=tf.constant_initializer(init_bias)) return tf.matmul(input_, W) + b session = tf.Session() tweets = tf.placeholder(tf.int32, [batch_size, None]) labels = tf.placeholder(tf.float32, [batch_size]) embedding = lookup_table(tweets, vocab_size, hidden_size, name="word_embedding") lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(hidden_size) init_state = lstm_cell.zero_state(batch_size, tf.float32) _, final_state = tf.nn.dynamic_rnn(lstm_cell, embedding, initial_state=init_state) sentiment = linear(final_state[1], 1, name="output") sentiment = tf.squeeze(sentiment, [1]) loss = tf.nn.sigmoid_cross_entropy_with_logits(sentiment, labels) loss = tf.reduce_mean(loss) prediction = tf.to_float(tf.greater_equal(sentiment, 0.5)) pred_err = tf.to_float(tf.not_equal(prediction, labels)) pred_err = tf.reduce_sum(pred_err) optimizer = tf.train.AdamOptimizer().minimize(loss) tf.global_variables_initializer().run(session=session) saver = tf.train.Saver() random.shuffle(train_data) err_rate = 0.0 for step in xrange(0, len(train_data), batch_size): batch = train_data[step:step+batch_size] batch_x, batch_y = zip(*batch) batch_x = list(batch_x) if len(batch_x) != batch_size: continue max_len = max([len(x) for x in batch_x]) for i in xrange(batch_size): len_x = len(batch_x[i]) batch_x[i] = [PAD_ID] * (max_len - len_x) + batch_x[i] batch_x = np.array(batch_x, dtype=np.int32) batch_y = np.array(batch_y, dtype=np.float32) feed_map = {tweets:batch_x, labels:batch_y} _, batch_err = session.run([optimizer, pred_err], feed_dict=feed_map) err_rate += batch_err if step % 100 == 0 and step > 0: print err_rate / step
mit
hwangjt/SMT
setup.py
1
2022
''' Author: Dr. John T. Hwang <[email protected]> Dr. Mohamed A. Bouhlel <mbouhlel@umich> This package is distributed under New BSD license. ''' from setuptools import setup, Extension import os import sys from subprocess import call import numpy as np try: import Cython except ImportError: import pip pip.main(['install', 'Cython']) from Cython.Build import cythonize extra_compile_args=[] if not sys.platform.startswith('win'): extra_compile_args.append('-std=c++11') ext = cythonize( Extension("smt.surrogate_models.rbfclib", sources=[ 'smt/src/rbf/rbf.cpp', 'smt/src/rbf/rbfclib.pyx', ], language="c++", extra_compile_args=extra_compile_args, include_dirs=[np.get_include(), ])) + cythonize( Extension("smt.surrogate_models.idwclib", sources=[ 'smt/src/idw/idw.cpp', 'smt/src/idw/idwclib.pyx', ], language="c++", extra_compile_args=extra_compile_args, include_dirs=[np.get_include(), ])) + cythonize( Extension("smt.surrogate_models.rmtsclib", sources=[ 'smt/src/rmts/rmtsclib.pyx', 'smt/src/rmts/utils.cpp', 'smt/src/rmts/rmts.cpp', 'smt/src/rmts/rmtb.cpp', 'smt/src/rmts/rmtc.cpp', ], language="c++", extra_compile_args=extra_compile_args, include_dirs=[np.get_include(), ])) setup(name='smt', version='0.1', description='The Surrogate Modeling Toolbox (SMT)', author='Mohamed Amine Bouhlel', author_email='[email protected]', license='BSD-3', packages=[ 'smt', 'smt/surrogate_models', 'smt/problems', 'smt/sampling_methods', 'smt/utils', ], install_requires=[ 'scikit-learn', 'pyDOE', 'matplotlib', 'numpydoc', 'six>=1.10', 'scipy' ], zip_safe=False, ext_modules=ext, url = 'https://github.com/SMTorg/smt', # use the URL to the github repo download_url = 'https://github.com/SMTorg/smt/archive/v0.1.tar.gz', )
bsd-3-clause
colincsl/pyKinectTools
pyKinectTools/scripts/PoseInitAndTracking.py
1
17374
""" Main file for training multi-camera pose """ #import os #import time import itertools as it from joblib import Parallel, delayed import cPickle as pickle import optparse from copy import deepcopy import numpy as np import scipy.misc as sm import scipy.ndimage as nd import Image import cv2 import skimage from skimage import color from skimage.draw import line, circle from skimage.color import rgb2gray,gray2rgb, rgb2lab from skimage.feature import local_binary_pattern, match_template, peak_local_max from pyKinectTools.dataset_readers.KinectPlayer import KinectPlayer, display_help from pyKinectTools.utils.DepthUtils import * from pyKinectTools.utils.SkeletonUtils import display_skeletons, transform_skels, kinect_to_msr_skel, msr_to_kinect_skel from pyKinectTools.dataset_readers.MHADPlayer import MHADPlayer from pyKinectTools.algs.GeodesicSkeleton import * from pyKinectTools.algs.PoseTracking import * from pyKinectTools.algs.LocalOccupancyPattern import * from pyKinectTools.algs.IterativeClosestPoint import IterativeClosestPoint from sklearn.linear_model import SGDClassifier from sklearn.kernel_approximation import AdditiveChi2Sampler from IPython import embed np.seterr(all='ignore') # -------------------------MAIN------------------------------------------ def main(visualize=False, learn=False, actions=None, subjects=None, n_frames=220): # learn = True # learn = False if actions is []: actions = [2] if subjects is []: subjects = [2] # actions = [1] # actions = [1, 2, 3, 4, 5] # subjects = [1] if 1: MHAD = True cam = MHADPlayer(base_dir='/Users/colin/Data/BerkeleyMHAD/', kinect=1, actions=actions, subjects=subjects, reps=[1], get_depth=True, get_color=True, get_skeleton=True, fill_images=False) else: MHAD = False cam = KinectPlayer(base_dir='./', device=1, bg_subtraction=True, get_depth=True, get_color=True, get_skeleton=True, fill_images=False) bg = Image.open('/Users/colin/Data/JHU_RGBD_Pose/CIRL_Background_A.tif') # cam = KinectPlayer(base_dir='./', device=2, bg_subtraction=True, get_depth=True, get_color=True, get_skeleton=True, fill_images=False) # bg = Image.open('/Users/colin/Data/JHU_RGBD_Pose/CIRL_Background_B.tif') cam.bgSubtraction.backgroundModel = np.array(bg.getdata()).reshape([240,320]).clip(0, 4500) height, width = cam.depthIm.shape skel_previous = None face_detector = FaceDetector() hand_detector = HandDetector(cam.depthIm.shape) # curve_detector = CurveDetector(cam.depthIm.shape) # Video writer # video_writer = cv2.VideoWriter("/Users/colin/Desktop/test.avi", cv2.cv.CV_FOURCC('M','J','P','G'), 15, (320,240)) # Save Background model # im = Image.fromarray(cam.depthIm.astype(np.int32), 'I') # im.save("/Users/Colin/Desktop/k2.png") # Setup pose database append = True append = False # pose_database = PoseDatabase("PoseDatabase.pkl", learn=learn, search_joints=[0,4,7,10,13], append=append) pose_database = PoseDatabase("PoseDatabase.pkl", learn=learn, search_joints=[0,2,4,5,7,10,13], append=append) # Setup Tracking skel_init, joint_size, constraint_links, features_joints,skel_parts, convert_to_kinect = get_14_joint_properties() constraint_values = [] for c in constraint_links: constraint_values += [np.linalg.norm(skel_init[c[0]]-skel_init[c[1]], 2)] constraint_values = np.array(constraint_values) skel_current = None#skel_init.copy() skel_previous = None#skel_current.copy() # Evaluation accuracy_all_db = [] accuracy_all_track = [] joint_accuracy_db = [] joint_accuracy_track = [] # geo_accuracy = [] # color_accuracy = [] # lbp_accuracy = [] frame_count = 0 frame_rate = 1 if not MHAD: cam.next(350) frame_prev = 0 # try: if 1: while cam.next(frame_rate):# and frame_count < n_frames: if frame_count - frame_prev > 100: print "" print "Frame #{0:d}".format(frame_count) frame_prev = frame_count if not MHAD: if len(cam.users) == 0: continue else: # cam.users = [np.array(cam.users[0]['jointPositions'].values())] if np.any(cam.users[0][0] == -1): continue cam.users[0][:,1] *= -1 cam.users_uv_msr = [cam.camera_model.world2im(cam.users[0], [240,320])] # Apply mask to image if MHAD: mask = cam.get_person(2) > 0 else: mask = cam.get_person() > 0 if np.all(mask==False): continue im_depth = cam.depthIm cam.depthIm[cam.depthIm>3000] = 0 im_color = cam.colorIm*mask[:,:,None] cam.colorIm *= mask[:,:,None] pose_truth = cam.users[0] pose_truth_uv = cam.users_uv_msr[0] # Get bounding box around person box = nd.find_objects(mask)[0] d = 20 # Widen box box = (slice(np.maximum(box[0].start-d, 0), \ np.minimum(box[0].stop+d, height-1)), \ slice(np.maximum(box[1].start-d, 0), \ np.minimum(box[1].stop+d, width-1))) box_corner = [box[0].start,box[1].start] ''' ---------- ----------------------------------- --------''' ''' ----------- Feature Detector centric approach ---------''' ''' ---------- ----------------------------------- --------''' ''' ---- Calculate Detectors ---- ''' # Face detection face_detector.run(im_color[box]) # Skin detection hand_markers = hand_detector.run(im_color[box], n_peaks=3) # Calculate Geodesic Extrema im_pos = cam.camera_model.im2PosIm(cam.depthIm*mask)[box] * mask[box][:,:,None] geodesic_markers = geodesic_extrema_MPI(im_pos, iterations=5, visualize=False) _, geo_map = geodesic_extrema_MPI(im_pos, iterations=1, visualize=True) geodesic_markers_pos = im_pos[geodesic_markers[:,0], geodesic_markers[:,1]] markers = list(geodesic_markers) + list(hand_markers) #+ list(lop_markers) + curve_markers markers = np.array([list(x) for x in markers]) ''' ---- Database lookup ---- ''' if 1: pts_mean = im_pos[(im_pos!=0)[:,:,2]].mean(0) if learn: # Normalize pose pose_uv = cam.users_uv[0] if np.any(pose_uv==0): print "skip" frame_count += frame_rate continue pose_database.update(pose_truth - pts_mean) else: # Concatenate markers markers = list(geodesic_markers) + hand_markers markers = np.array([list(x) for x in markers]) # Normalize pose pts = im_pos[markers[:,0], markers[:,1]] pts = np.array([x for x in pts if x[0] != 0]) pts -= pts_mean # Get closest pose pose = pose_database.query(pts, knn=5) # embed() for i in range(5): pose_tmp = cam.camera_model.world2im(pose[i]+pts_mean, cam.depthIm.shape) cam.colorIm = display_skeletons(cam.colorIm, pose_tmp, skel_type='Kinect', color=(0,i*40+50,0)) pose = pose[0] # im_pos -= pts_mean # R,t = IterativeClosestPoint(pose, im_pos.reshape([-1,3])-pts_mean, max_iters=5, min_change=.001, pt_tolerance=10000) # pose = np.dot(R.T, pose.T).T - t # pose = np.dot(R, pose.T).T + t pose += pts_mean pose_uv = cam.camera_model.world2im(pose, cam.depthIm.shape) # print pose surface_map = nd.distance_transform_edt(-nd.binary_erosion(mask[box]), return_distances=False, return_indices=True) try: pose_uv[:,:2] = surface_map[:, pose_uv[:,0]-box_corner[0], pose_uv[:,1]-box_corner[1]].T + [box_corner[0], box_corner[1]] except: pass pose = cam.camera_model.im2world(pose_uv, cam.depthIm.shape) # print pose ''' ---- Tracker ---- ''' # surface_map = nd.distance_transform_edt(-mask[box], return_distances=False, return_indices=True) # surface_map = nd.distance_transform_edt(im_pos[:,:,2]==0, return_distances=False, return_indices=True) if skel_previous is None: # if 1: skel_previous = pose.copy() skel_current = pose.copy() skel_previous_uv = pose_uv.copy() skel_current_uv = pose_uv.copy() for _ in range(1): # ---- (Step 1A) Find feature coordespondences ---- try: skel_previous_uv[:,:2] = surface_map[:, skel_previous_uv[:,0]-box_corner[0], skel_previous_uv[:,1]-box_corner[1]].T + [box_corner[0], box_corner[1]] except: pass skel_current = cam.camera_model.im2world(skel_previous_uv, cam.depthIm.shape) # Alternative method: use kdtree ## Calc euclidian distance between each pixel and all joints px_corr = np.zeros([im_pos.shape[0], im_pos.shape[1], len(skel_current)]) # for i,s in enumerate(pose): # for i,s in enumerate(skel_current): # px_corr[:,:,i] = np.sqrt(np.sum((im_pos - s)**2, -1))# / joint_size[i]**2 # for i,s in enumerate(pose_uv): # Geodesics for i,s in enumerate(skel_previous_uv): ''' Problem: need to constrain pose_uv to mask ''' _, geo_map = geodesic_extrema_MPI(im_pos, [s[0]-box_corner[0],s[1]-box_corner[1]], iterations=1, visualize=True) px_corr[:,:,i] = geo_map subplot(2,7,i+1) # imshow(geo_map, vmin=0, vmax=2000) # axis('off') px_corr[geo_map==0,i] = 9999 cv2.imshow('gMap', (px_corr.argmin(-1)+1)/15.*mask[box]) ## Handle occlusions by argmax'ing over set of skel parts # visible_configurations = list(it.product([0,1], repeat=5))[1:] visible_configurations = [ # [0,1,1,1,1], # [1,0,0,0,0], [1,1,1,1,1] ] px_visibility_label = np.zeros([im_pos.shape[0], im_pos.shape[1], len(visible_configurations)], dtype=np.uint8) visible_scores = np.ones(len(visible_configurations))*np.inf # Try each occlusion configuration set for i,v in enumerate(visible_configurations): visible_joints = list(it.chain.from_iterable(skel_parts[np.array(v)>0])) px_visibility_label[:,:,i] = np.argmin(px_corr[:,:,visible_joints], -1)#.reshape([im_pos.shape[0], im_pos.shape[1]]) visible_scores[i] = np.min(px_corr[:,:,visible_joints], -1).sum() # Choose best occlusion configuration occlusion_index = np.argmin(visible_scores) occlusion_configuration = visible_configurations[occlusion_index] occlusion_set = list(it.chain.from_iterable(skel_parts[np.array(visible_configurations[occlusion_index])>0])) # Choose label for pixels based on occlusion configuration px_label = px_visibility_label[:,:,occlusion_index]*mask[box] px_label_flat = px_visibility_label[:,:,occlusion_index][mask[box]].flatten() visible_joints = [1 if x in occlusion_set else 0 for x in range(len(pose))] # print visible_joints # Project distance to joint's radius px_joint_displacement = im_pos[mask[box]] - skel_current[px_label_flat] px_joint_magnitude = np.sqrt(np.sum(px_joint_displacement**2,-1)) joint_mesh_pos = skel_current[px_label_flat] + px_joint_displacement*(joint_size[px_label_flat]/px_joint_magnitude)[:,None] px_joint_displacement = joint_mesh_pos - im_pos[mask[box]] # Ensure pts aren't too far away px_joint_displacement[np.abs(px_joint_displacement) > 500] = 0 # embed() if 0: x = im_pos.copy()*0 x[mask[box]] = joint_mesh_pos for i in range(3): subplot(1,4,i+1) imshow(x[:,:,i]) axis('off') subplot(1,4,4) imshow((px_label+1)*mask[box]) # Calc the correspondance change in position for each joint correspondence_displacement = np.zeros([len(skel_current), 3]) ii = 0 for i,_ in enumerate(skel_current): if i in occlusion_set: labels = px_label_flat==i correspondence_displacement[i] = np.sum(px_joint_displacement[px_label_flat==ii], 0) / np.sum(px_joint_displacement[px_label_flat==ii]!=0) ii+=1 correspondence_displacement = np.nan_to_num(correspondence_displacement) # print correspondence_displacement # Viz correspondences if 0: x = im_pos.copy()*0 x[mask[box]] = px_joint_displacement for i in range(3): subplot(1,4,i+1) imshow(x[:,:,i]) axis('off') subplot(1,4,4) imshow((px_label+1)*mask[box]) # embed() # for j in range(3): # for i in range(14): # subplot(3,14,j*14+i+1) # imshow(x[:,:,j]*((px_label==i)*mask[box])) # axis('off') show() # ---- (Step 2) Update pose state, x ---- lambda_p = .0 lambda_c = 1. skel_prev_difference = (skel_current - skel_previous) # print skel_prev_difference skel_current = skel_previous \ + lambda_p * skel_prev_difference \ - lambda_c * correspondence_displacement#\ # ---- (Step 3) Add constraints ---- if 1: # A: Link lengths / geometry # skel_current = link_length_constraints(skel_current, constraint_links, constraint_values, alpha=.5) skel_current = geometry_constraints(skel_current, joint_size, alpha=0.5) skel_current = collision_constraints(skel_current, constraint_links) skel_img_box = (cam.camera_model.world2im(skel_current, cam.depthIm.shape) - [box[0].start, box[1].start, 0])#/mask_interval skel_img_box = skel_img_box.clip([0,0,0], [box[0].stop-box[0].start-1, box[1].stop-box[1].start-1, 9999]) # skel_img_box = skel_img_box.clip([0,0,0], [cam.depthIm.shape[0]-1, cam.depthIm.shape[1]-1, 9999]) # B: Ray-cast constraints # embed() skel_current, skel_current_uv = ray_cast_constraints(skel_current, skel_img_box, im_pos, surface_map, joint_size) # skel_img_box -= [box[0].start, box[1].start, 0] # # Map back from mask to image # try: # skel_current_uv[:,:2] = surface_map[:, skel_img_box[:,0], skel_img_box[:,1]].T# + [box_corner[0], box_corner[1]] # except: # pass prob = link_length_probability(skel_current, constraint_links, constraint_values, 100) # print "Prob:", np.mean(prob), np.min(prob), prob print frame_count thresh = .05 if np.min(prob) < thresh:# and frame_count > 1: print 'Resetting pose' for c in constraint_links[prob<thresh]: for cc in c: skel_current_uv[c] = pose_uv[c] - [box[0].start, box[1].start, 0] skel_current[c] = pose[c] # skel_current_uv = pose_uv.copy() - [box[0].start, box[1].start, 0] # skel_current = pose.copy() skel_current_uv = skel_current_uv + [box[0].start, box[1].start, 0] skel_current = cam.camera_model.im2world(skel_current_uv, cam.depthIm.shape) else: skel_current_uv = (cam.camera_model.world2im(skel_current, cam.depthIm.shape)) # skel_img_box = skel_img_box.clip([0,0,0], [cam.depthIm.shape[0]-1, cam.depthIm.shape[1]-1, 9999]) # Update for next round skel_previous = skel_current.copy() skel_previous_uv = skel_current_uv.copy() ''' ---- Accuracy ---- ''' # embed() if 1 and not learn: # pose_truth = cam.users[0] error_db = pose_truth - pose error_track = pose_truth - skel_current # print "Error", error error_l2_db = np.sqrt(np.sum(error_db**2, 1)) error_l2_track = np.sqrt(np.sum(error_track**2, 1)) joint_accuracy_db += [error_l2_db] joint_accuracy_track += [error_l2_track] accuracy_db = np.sum(error_l2_db < 150) / 14. accuracy_track = np.sum(error_l2_track < 150) / 14. print "Current db:", accuracy_db, error_l2_db.mean() print "Current track:", accuracy_track, error_l2_track.mean() print "" accuracy_all_db += [accuracy_db] accuracy_all_track += [accuracy_track] # print "Running avg:", np.mean(accuracy_all) # print "Joint avg (per-joint):", np.mean(joint_accuracy_all, -1) # print "Joint avg (overall):", np.mean(joint_accuracy_all) ''' --- Visualization --- ''' display_markers(cam.colorIm, hand_markers[:2], box, color=(0,250,0)) if len(hand_markers) > 2: display_markers(cam.colorIm, [hand_markers[2]], box, color=(0,200,0)) display_markers(cam.colorIm, geodesic_markers, box, color=(200,0,0)) # display_markers(cam.colorIm, curve_markers, box, color=(0,100,100)) # display_markers(cam.colorIm, lop_markers, box, color=(0,0,200)) cam.colorIm = display_skeletons(cam.colorIm, pose_truth_uv, skel_type='Kinect', color=(0,255,0)) cam.colorIm = display_skeletons(cam.colorIm, pose_uv, skel_type='Kinect') cam.colorIm = display_skeletons(cam.colorIm, skel_current_uv, skel_type='Kinect', color=(0,0,255)) # cam.visualize(color=True, depth=False) cam.visualize(color=True, depth=True) # embed() # ------------------------------------------------------------ # video_writer.write((geo_clf_map/float(geo_clf_map.max())*255.).astype(np.uint8)) # video_writer.write(cam.colorIm[:,:,[2,1,0]]) frame_count += frame_rate # except: # pass print "-- Results for subject {:d} action {:d}".format(subjects[0],actions[0]) print "Running avg (db):", np.mean(accuracy_all_db) print "Running avg (track):", np.mean(accuracy_all_track) print "Joint avg (overall db):", np.mean(joint_accuracy_db) print "Joint avg (overall track):", np.mean(joint_accuracy_track) # print 'Done' embed() return if __name__=="__main__": parser = optparse.OptionParser() parser.add_option('-v', '--visualize', dest='viz', action="store_true", default=False, help='Enable visualization') parser.add_option('-l', '--learn', dest='learn', action="store_true", default=False, help='Training phase') parser.add_option('-a', '--actions', dest='actions', type='int', action='append', default=[], help='Training phase') parser.add_option('-s', '--subjects', dest='subjects', type='int', action='append', default=[], help='Training phase') (opt, args) = parser.parse_args() main(visualize=opt.viz, learn=opt.learn, actions=opt.actions, subjects=opt.subjects)
bsd-2-clause
mehdidc/scikit-learn
examples/linear_model/plot_ols_ridge_variance.py
387
2060
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Ordinary Least Squares and Ridge Regression Variance ========================================================= Due to the few points in each dimension and the straight line that linear regression uses to follow these points as well as it can, noise on the observations will cause great variance as shown in the first plot. Every line's slope can vary quite a bit for each prediction due to the noise induced in the observations. Ridge regression is basically minimizing a penalised version of the least-squared function. The penalising `shrinks` the value of the regression coefficients. Despite the few data points in each dimension, the slope of the prediction is much more stable and the variance in the line itself is greatly reduced, in comparison to that of the standard linear regression """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model X_train = np.c_[.5, 1].T y_train = [.5, 1] X_test = np.c_[0, 2].T np.random.seed(0) classifiers = dict(ols=linear_model.LinearRegression(), ridge=linear_model.Ridge(alpha=.1)) fignum = 1 for name, clf in classifiers.items(): fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.title(name) ax = plt.axes([.12, .12, .8, .8]) for _ in range(6): this_X = .1 * np.random.normal(size=(2, 1)) + X_train clf.fit(this_X, y_train) ax.plot(X_test, clf.predict(X_test), color='.5') ax.scatter(this_X, y_train, s=3, c='.5', marker='o', zorder=10) clf.fit(X_train, y_train) ax.plot(X_test, clf.predict(X_test), linewidth=2, color='blue') ax.scatter(X_train, y_train, s=30, c='r', marker='+', zorder=10) ax.set_xticks(()) ax.set_yticks(()) ax.set_ylim((0, 1.6)) ax.set_xlabel('X') ax.set_ylabel('y') ax.set_xlim(0, 2) fignum += 1 plt.show()
bsd-3-clause
PabloPiaggi/plumed2
user-doc/tutorials/others/ves-lugano2017-kinetics/TRAJECTORIES-1700K/cdf-analysis.py
6
1134
#!/usr/bin/env python import numpy as np from scipy.stats import ks_2samp from scipy.optimize import curve_fit from statsmodels.distributions.empirical_distribution import ECDF import matplotlib.pyplot as plt f=open('fpt.dat','r') # define theoretical CDF def func(x,tau): return 1-np.exp(-x/tau) x = [] count=0 for line in f: line=line.strip() columns=line.split() x.append(float(columns[0])) count=count+1 x = np.array(x) # for numerical stability we divide by the mean mu=x.mean() x=x/mu # now compute emirical CDF ecdf = ECDF(x) # plot ECDF x1 = np.linspace(min(x), max(x)) y1 = ecdf(x1) plt.step(x1*mu, y1,'k-',lw=3.) # fit to theoretical CDF to obtain tau popt,pcov = curve_fit(func,x1,y1) tau=popt[0] print 'mean of data',mu print 'best fit tau',tau*mu yfit=func(x1,tau) # plot fit plt.plot(x1*mu,yfit,'b-',lw=3.) # for p-value # now generate some random data with the same exponential distribution np.random.seed(12345678); x2 = np.random.exponential(1/tau,1000) st,p = ks_2samp(x2,x) print 'p-value',p plt.xscale('log') plt.xlabel('time [s]') plt.ylabel('Cumulative Probability') plt.show()
lgpl-3.0
parklab/PaSDqc
setup.py
1
1758
# from distutils.core import setup from setuptools import setup def check_dependencies(): install_requires = [] # Assuming the python standard library is installed... try: import pathlib except ImportError: install_requires.append('pathlib') try: import numpy except ImportError: install_requires.append('numpy') try: import scipy except ImportError: install_requires.append('scipy') try: import matplotlib except ImportError: install_requires.append('matplotlib') try: import seaborn except ImportError: install_requires.append('seaborn') try: import pandas except ImportError: install_requires.append('pandas') try: import statsmodels except ImportError: install_requires.append('statsmodels') try: import astropy except ImportError: install_requires.append('astropy') try: import plotly except ImportError: install_requires.append('plotly') return install_requires if __name__ == "__main__": install_requires = check_dependencies() setup( name = 'PaSDqc', description = "Quality control for single cell whole genome sequencing", version = '1.1.0', packages = ['PaSDqc'], scripts = ['scripts/PaSDqc'], install_requires = install_requires, author = "Maxwell A. Sherman", author_email = "[email protected]", url = "https://github.com/parklab/PaSDqc", license = 'MIT', include_package_data = True, package_data = { 'PaSDqc': ['db/*'], } # include_package_data=True, )
mit
RayMick/scikit-learn
examples/applications/face_recognition.py
191
5513
""" =================================================== Faces recognition example using eigenfaces and SVMs =================================================== The dataset used in this example is a preprocessed excerpt of the "Labeled Faces in the Wild", aka LFW_: http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB) .. _LFW: http://vis-www.cs.umass.edu/lfw/ Expected results for the top 5 most represented people in the dataset:: precision recall f1-score support Ariel Sharon 0.67 0.92 0.77 13 Colin Powell 0.75 0.78 0.76 60 Donald Rumsfeld 0.78 0.67 0.72 27 George W Bush 0.86 0.86 0.86 146 Gerhard Schroeder 0.76 0.76 0.76 25 Hugo Chavez 0.67 0.67 0.67 15 Tony Blair 0.81 0.69 0.75 36 avg / total 0.80 0.80 0.80 322 """ from __future__ import print_function from time import time import logging import matplotlib.pyplot as plt from sklearn.cross_validation import train_test_split from sklearn.datasets import fetch_lfw_people from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.decomposition import RandomizedPCA from sklearn.svm import SVC print(__doc__) # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') ############################################################################### # Download the data, if not already on disk and load it as numpy arrays lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) # introspect the images arrays to find the shapes (for plotting) n_samples, h, w = lfw_people.images.shape # for machine learning we use the 2 data directly (as relative pixel # positions info is ignored by this model) X = lfw_people.data n_features = X.shape[1] # the label to predict is the id of the person y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape[0] print("Total dataset size:") print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) print("n_classes: %d" % n_classes) ############################################################################### # Split into a training set and a test set using a stratified k fold # split into a training and testing set X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, random_state=42) ############################################################################### # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled # dataset): unsupervised feature extraction / dimensionality reduction n_components = 150 print("Extracting the top %d eigenfaces from %d faces" % (n_components, X_train.shape[0])) t0 = time() pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train) print("done in %0.3fs" % (time() - t0)) eigenfaces = pca.components_.reshape((n_components, h, w)) print("Projecting the input data on the eigenfaces orthonormal basis") t0 = time() X_train_pca = pca.transform(X_train) X_test_pca = pca.transform(X_test) print("done in %0.3fs" % (time() - t0)) ############################################################################### # Train a SVM classification model print("Fitting the classifier to the training set") t0 = time() param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], } clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid) clf = clf.fit(X_train_pca, y_train) print("done in %0.3fs" % (time() - t0)) print("Best estimator found by grid search:") print(clf.best_estimator_) ############################################################################### # Quantitative evaluation of the model quality on the test set print("Predicting people's names on the test set") t0 = time() y_pred = clf.predict(X_test_pca) print("done in %0.3fs" % (time() - t0)) print(classification_report(y_test, y_pred, target_names=target_names)) print(confusion_matrix(y_test, y_pred, labels=range(n_classes))) ############################################################################### # Qualitative evaluation of the predictions using matplotlib def plot_gallery(images, titles, h, w, n_row=3, n_col=4): """Helper function to plot a gallery of portraits""" plt.figure(figsize=(1.8 * n_col, 2.4 * n_row)) plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35) for i in range(n_row * n_col): plt.subplot(n_row, n_col, i + 1) plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray) plt.title(titles[i], size=12) plt.xticks(()) plt.yticks(()) # plot the result of the prediction on a portion of the test set def title(y_pred, y_test, target_names, i): pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1] true_name = target_names[y_test[i]].rsplit(' ', 1)[-1] return 'predicted: %s\ntrue: %s' % (pred_name, true_name) prediction_titles = [title(y_pred, y_test, target_names, i) for i in range(y_pred.shape[0])] plot_gallery(X_test, prediction_titles, h, w) # plot the gallery of the most significative eigenfaces eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])] plot_gallery(eigenfaces, eigenface_titles, h, w) plt.show()
bsd-3-clause
thp44/delphin_6_automation
delphin_6_automation/sampling/archive/sampling.py
1
4460
# -*- coding: utf-8 -*- """ Created on Wed Nov 22 16:14:23 2017 @author: Astrid """ import os import scipy.io as sio import numpy as np import pandas as pd import sys from scipy.stats import norm from scipy.stats import randint from scipy.stats import uniform from delphin_6_automation.sampling import sobol_lib def sobol(m, dim, sets=1): # WP6 - What is m? # WP6 - What is dim - dimensions? # WP6 - sets of what? design = np.empty([0, dim]) for i in range(sets): d = sobol_lib.scrambled_sobol_generate(k=dim, N=m, skip=2, leap=0) design = np.vstack((design, d)) return design def main(scenario, dist, runs, sets, strat, path, seq=None): # WP6 - scenario - Is it a dataframe? # WP6 - dist - distribution? # WP6 - runs - number of runs # WP6 - sets - sets of samplings? # WP6 - strat - strategy? # WP6 - path - path to sampling scheme? if not os.path.exists(path): os.mkdir(path) # WP6 - Load an existing Matlab file? # WP6 - Is that needed for WP6? if strat == 'load': # load file file = os.path.join(path, 'samples_raw.mat') samples_mat = sio.loadmat(file)['design'] samples_raw = np.empty((0, dist.shape[0])) for i in range(samples_mat.shape[1]): samples_raw = np.vstack((samples_raw, samples_mat[:, i].tolist()[0])) else: # WP6 - What is the difference between the two? Wouldn't WP6 always want sobol convergence? # create raw sampling scheme if strat == 'sobol': samples_raw = sobol(m=runs, dim=dist.shape[0], sets=sets) elif strat == 'sobol convergence': try: samples_raw = np.load(os.path.join(path, 'samples_raw_' + str(seq) + '.npy')) samples = pd.read_pickle(os.path.join(path, 'samples_' + str(seq))) except FileNotFoundError: samples_raw = sobol(m=2 ** 12, dim=dist.shape[0], sets=1) np.save(os.path.join(path, 'samples_raw_' + str(seq)), samples_raw) samples_raw = samples_raw[sets:sets + runs, :] else: print("Error: This sampling strategy is not supperted. Currently only 'sobol' and 'load' are implemented.") try: # WP6 - What is the purpose? samples = samples except NameError: # WP6 - We are moving data from one dict to another? samples = pd.DataFrame({}) samples[scenario['parameter']] = [] for p in dist['parameter']: samples[p] = [] # Add samples to dictionary for s in scenario['value']: # WP6 - What is SDF? sdf = pd.DataFrame({}) sdf[scenario['parameter']] = [s] * samples_raw.shape[0] for i in range(dist.shape[0]): dist_type = dist.at[i, 'type'] x = samples_raw[:, i] if dist_type == 'discrete': # WP6 - What is pl? p1 = dist.at[i, 'value'] if isinstance(p1, int): high = p1 + 1 values = randint.ppf(x, low=1, high=high).tolist() else: high = len(p1) values = randint.ppf(x, low=0, high=high).tolist() # WP6 - What is the point of this loop? Data copying? values = [p1[int(x)] for x in values] sdf[dist.at[i, 'parameter']] = values elif dist_type == 'uniform': p1 = dist.at[i, 'value'][0] p2 = dist.at[i, 'value'][1] values = uniform.ppf(x, loc=p1, scale=p2 - p1).tolist() sdf[dist.at[i, 'parameter']] = values elif dist_type == 'normal': p1 = dist.at[i, 'value'][0] p2 = dist.at[i, 'value'][1] values = norm.ppf(x, loc=p1, scale=p2).tolist() sdf[dist.at[i, 'parameter']] = values else: print('ERROR: distribution type not supported') sys.exit() samples = samples.append(sdf, ignore_index=True) # Save samples # WP6 - Didn't we already load the file? Why are we checking if the name exists? if seq == None: name = 'samples' else: name = 'samples_' + str(seq) # WP6 - Why save it twice? samples.to_excel(os.path.join(path, name + '.xlsx')) samples.to_pickle(os.path.join(path, name)) return samples
mit
TIm097/Bachelorarbeit
Hubb_Strom.py
1
4021
# Stromoperator Erwartungswert im Zeitmittel import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm # Zustände des 36 D Hilbertraums: Z = np.genfromtxt('Stationäre_Systeme/Hubb_Ham/Hubb_Zust.txt', unpack = 'True') # Orte: u = np.genfromtxt('Hubb_Ham_Zeit_Lösungen/U0_E01_v0.txt', unpack = 'True').T # Lösung der SG, real und imaginär untereinander N = np.round(np.shape(u)[1]/2).astype(int) # Anzahl Iterationsschritte pro Lösung W = np.round(np.shape(u)[0]/36).astype(int) print(W) x = u[:,0:N] + 1j*u[:,N:N*2] u1 = np.genfromtxt('Hubb_Ham_Zeit_Lösungen/U0_E01_v1.txt', unpack = 'True').T # Lösung der SG, real und imaginär untereinander x1 = u1[:,0:N] + 1j*u1[:,N:N*2] u2 = np.genfromtxt('Hubb_Ham_Zeit_Lösungen/U0_E01_v2.txt', unpack = 'True').T # Lösung der SG, real und imaginär untereinander x2 = u2[:,0:N] + 1j*u2[:,N:N*2] u3 = np.genfromtxt('Hubb_Ham_Zeit_Lösungen/U0_E01_v3.txt', unpack = 'True').T # Lösung der SG, real und imaginär untereinander x3 = u3[:,0:N] + 1j*u3[:,N:N*2] #u_lambda = np.genfromtxt('Hubb_Ham_Zeit_txt/Hubb_Ham_Zeit_Lsg_lambda.txt', unpack = 'True').T # Lösung der SG mit Diagohüpfen, real und imaginär untereinander #x_lambda = u_lambda[:,0:N] + 1j*u_lambda[:,N:N*2] # Zeit: t = np.genfromtxt('Hubb_Ham_Zeit_Lösungen/Linspace.txt', unpack = 'True') t0 = t[0] t1 = t[np.shape(t)[0]-1] # Stromoperatormatrix: J = np.genfromtxt('Hubb_Ham_Zeit_Lösungen/Hubb_Strom_Matrix.txt', unpack = 'True').T J = 1j*J #Erwartungswert des Stromoperators in Abhängigkeit von der Zeit t: def StromErwartungswert(z): global J EJ = np.zeros((N,1))*1j for n in range(0,N): # alle Zeiten EJ[n] = np.conj(z[:,n]).dot(J.dot(z[:,n])) q = 1 EJ = q * EJ return EJ #EJ_lambda = np.zeros((N,1))*1j #for n in range(0,N): # alle Zeiten # EJ_lambda[n] = np.conj(x_lambda[:,n]).dot(J.dot(x_lambda[:,n])) #EJ_lambda = q * EJ_lambda SE1 = 0.25*(StromErwartungswert(x[0*36:(0+1)*36,0:N])+StromErwartungswert(x1[0*36:(0+1)*36,0:N])+StromErwartungswert(x2[0*36:(0+1)*36,0:N])+StromErwartungswert(x3[0*36:(0+1)*36,0:N])) SE2 = 0.25*(StromErwartungswert(x[1*36:(1+1)*36,0:N])+StromErwartungswert(x1[1*36:(1+1)*36,0:N])+StromErwartungswert(x2[1*36:(1+1)*36,0:N])+StromErwartungswert(x3[1*36:(1+1)*36,0:N])) # Mittelwert: def StromMittelwert(z): J_t = StromErwartungswert(z) M = 0.25*np.sum(J_t)/N return M #J_w = np.zeros((W,1)) # Strommittelwerte in Abhängigkeit von W #w_lin = np.zeros((W,1)) #for w in range(0,W): # J_w[w] = StromMittelwert(x[w*36:(w+1)*36,0:N]) # w_lin[w] = 1.5*w/(W-1) + 0.5 # w_lin[w] = w +1 # #print('Strommittelwerte (omega aufsteigend):', J_w) #M_lambda = np.sum(EJ_lambda)/N #print('Mittelwert:', M, #'Mittelwert(lambda):', M_lambda) plt.plot(t, SE1.real, label= r'$\omega = 1.0 \, J/\hbar$', linewidth = 1) plt.plot(t, SE2.real, label= r'$\omega = 2.0 \, J/\hbar$', linewidth = 0.75) #plt.plot((76,76),(-0.03,0.03),'k-.', label= r'$t_\text{max}$', linewidth = 0.85) #plt.plot(t, StromErwartungswert(x[0*36:(0+1)*36,0:N]).real, label= r'$\omega = 1.0$') #plt.plot(t, StromErwartungswert(x[1*36:(1+1)*36,0:N]).real, label= r'$\omega = 2.0$') #plt.plot(t, StromErwartungswert(x[8*36:(8+1)*36,0:N]).real, label= r'$\omega = 1.4$') #plt.plot(t, StromErwartungswert(x[10*36:(10+1)*36,0:N]).real, label= r'$\omega = 1.6$') #plt.plot(t, StromErwartungswert(x[12*36:(12+1)*36,0:N]).real, label= r'$\omega = 1.8$') #plt.plot(t, StromErwartungswert(x[14*36:(14+1)*36,0:N]).real, label= r'$\omega = 2.0$') #plt.plot(w_lin, J_w, 'rx') #, label=r'$\bra{\psi_0(t)} \hat{J} \ket{\psi_0(t)}$') plt.legend(loc='best') plt.xlim(t0,t1) plt.ylim(-0.0075, 0.01) plt.xlabel(r'$t/\tfrac{\hbar}{J}$') plt.ylabel(r'$I/\tfrac{J \symup{e}}{\hbar}$') plt.grid() plt.tight_layout() plt.savefig('Plots/U0_E01_schoen.pdf') plt.savefig('build/Hubb_Strom.pdf') #plt.close() #plt.plot(w_lin, J_w, 'rx') #plt.xlabel(r'$\omega/\frac{J}{\hbar}$') #plt.ylabel(r'$I/J \cdot x$') #plt.savefig('Plots/U0_E01_omega_schoen.pdf')
mit
nmayorov/scikit-learn
sklearn/base.py
18
17981
"""Base classes for all estimators.""" # Author: Gael Varoquaux <[email protected]> # License: BSD 3 clause import copy import warnings import numpy as np from scipy import sparse from .externals import six from .utils.fixes import signature from .utils.deprecation import deprecated from .exceptions import ChangedBehaviorWarning as _ChangedBehaviorWarning @deprecated("ChangedBehaviorWarning has been moved into the sklearn.exceptions" " module. It will not be available here from version 0.19") class ChangedBehaviorWarning(_ChangedBehaviorWarning): pass ############################################################################## def clone(estimator, safe=True): """Constructs a new estimator with the same parameters. Clone does a deep copy of the model in an estimator without actually copying attached data. It yields a new estimator with the same parameters that has not been fit on any data. Parameters ---------- estimator: estimator object, or list, tuple or set of objects The estimator or group of estimators to be cloned safe: boolean, optional If safe is false, clone will fall back to a deepcopy on objects that are not estimators. """ estimator_type = type(estimator) # XXX: not handling dictionaries if estimator_type in (list, tuple, set, frozenset): return estimator_type([clone(e, safe=safe) for e in estimator]) elif not hasattr(estimator, 'get_params'): if not safe: return copy.deepcopy(estimator) else: raise TypeError("Cannot clone object '%s' (type %s): " "it does not seem to be a scikit-learn estimator " "as it does not implement a 'get_params' methods." % (repr(estimator), type(estimator))) klass = estimator.__class__ new_object_params = estimator.get_params(deep=False) for name, param in six.iteritems(new_object_params): new_object_params[name] = clone(param, safe=False) new_object = klass(**new_object_params) params_set = new_object.get_params(deep=False) # quick sanity check of the parameters of the clone for name in new_object_params: param1 = new_object_params[name] param2 = params_set[name] if isinstance(param1, np.ndarray): # For most ndarrays, we do not test for complete equality if not isinstance(param2, type(param1)): equality_test = False elif (param1.ndim > 0 and param1.shape[0] > 0 and isinstance(param2, np.ndarray) and param2.ndim > 0 and param2.shape[0] > 0): equality_test = ( param1.shape == param2.shape and param1.dtype == param2.dtype # We have to use '.flat' for 2D arrays and param1.flat[0] == param2.flat[0] and param1.flat[-1] == param2.flat[-1] ) else: equality_test = np.all(param1 == param2) elif sparse.issparse(param1): # For sparse matrices equality doesn't work if not sparse.issparse(param2): equality_test = False elif param1.size == 0 or param2.size == 0: equality_test = ( param1.__class__ == param2.__class__ and param1.size == 0 and param2.size == 0 ) else: equality_test = ( param1.__class__ == param2.__class__ and param1.data[0] == param2.data[0] and param1.data[-1] == param2.data[-1] and param1.nnz == param2.nnz and param1.shape == param2.shape ) else: new_obj_val = new_object_params[name] params_set_val = params_set[name] # The following construct is required to check equality on special # singletons such as np.nan that are not equal to them-selves: equality_test = (new_obj_val == params_set_val or new_obj_val is params_set_val) if not equality_test: raise RuntimeError('Cannot clone object %s, as the constructor ' 'does not seem to set parameter %s' % (estimator, name)) return new_object ############################################################################### def _pprint(params, offset=0, printer=repr): """Pretty print the dictionary 'params' Parameters ---------- params: dict The dictionary to pretty print offset: int The offset in characters to add at the begin of each line. printer: The function to convert entries to strings, typically the builtin str or repr """ # Do a multi-line justified repr: options = np.get_printoptions() np.set_printoptions(precision=5, threshold=64, edgeitems=2) params_list = list() this_line_length = offset line_sep = ',\n' + (1 + offset // 2) * ' ' for i, (k, v) in enumerate(sorted(six.iteritems(params))): if type(v) is float: # use str for representing floating point numbers # this way we get consistent representation across # architectures and versions. this_repr = '%s=%s' % (k, str(v)) else: # use repr of the rest this_repr = '%s=%s' % (k, printer(v)) if len(this_repr) > 500: this_repr = this_repr[:300] + '...' + this_repr[-100:] if i > 0: if (this_line_length + len(this_repr) >= 75 or '\n' in this_repr): params_list.append(line_sep) this_line_length = len(line_sep) else: params_list.append(', ') this_line_length += 2 params_list.append(this_repr) this_line_length += len(this_repr) np.set_printoptions(**options) lines = ''.join(params_list) # Strip trailing space to avoid nightmare in doctests lines = '\n'.join(l.rstrip(' ') for l in lines.split('\n')) return lines ############################################################################### class BaseEstimator(object): """Base class for all estimators in scikit-learn Notes ----- All estimators should specify all the parameters that can be set at the class level in their ``__init__`` as explicit keyword arguments (no ``*args`` or ``**kwargs``). """ @classmethod def _get_param_names(cls): """Get parameter names for the estimator""" # fetch the constructor or the original constructor before # deprecation wrapping if any init = getattr(cls.__init__, 'deprecated_original', cls.__init__) if init is object.__init__: # No explicit constructor to introspect return [] # introspect the constructor arguments to find the model parameters # to represent init_signature = signature(init) # Consider the constructor parameters excluding 'self' parameters = [p for p in init_signature.parameters.values() if p.name != 'self' and p.kind != p.VAR_KEYWORD] for p in parameters: if p.kind == p.VAR_POSITIONAL: raise RuntimeError("scikit-learn estimators should always " "specify their parameters in the signature" " of their __init__ (no varargs)." " %s with constructor %s doesn't " " follow this convention." % (cls, init_signature)) # Extract and sort argument names excluding 'self' return sorted([p.name for p in parameters]) def get_params(self, deep=True): """Get parameters for this estimator. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ out = dict() for key in self._get_param_names(): # We need deprecation warnings to always be on in order to # catch deprecated param values. # This is set in utils/__init__.py but it gets overwritten # when running under python3 somehow. warnings.simplefilter("always", DeprecationWarning) try: with warnings.catch_warnings(record=True) as w: value = getattr(self, key, None) if len(w) and w[0].category == DeprecationWarning: # if the parameter is deprecated, don't show it continue finally: warnings.filters.pop(0) # XXX: should we rather test if instance of estimator? if deep and hasattr(value, 'get_params'): deep_items = value.get_params().items() out.update((key + '__' + k, val) for k, val in deep_items) out[key] = value return out def set_params(self, **params): """Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object. Returns ------- self """ if not params: # Simple optimisation to gain speed (inspect is slow) return self valid_params = self.get_params(deep=True) for key, value in six.iteritems(params): split = key.split('__', 1) if len(split) > 1: # nested objects case name, sub_name = split if name not in valid_params: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (name, self)) sub_object = valid_params[name] sub_object.set_params(**{sub_name: value}) else: # simple objects case if key not in valid_params: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (key, self.__class__.__name__)) setattr(self, key, value) return self def __repr__(self): class_name = self.__class__.__name__ return '%s(%s)' % (class_name, _pprint(self.get_params(deep=False), offset=len(class_name),),) ############################################################################### class ClassifierMixin(object): """Mixin class for all classifiers in scikit-learn.""" _estimator_type = "classifier" def score(self, X, y, sample_weight=None): """Returns the mean accuracy on the given test data and labels. In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted. Parameters ---------- X : array-like, shape = (n_samples, n_features) Test samples. y : array-like, shape = (n_samples) or (n_samples, n_outputs) True labels for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. Returns ------- score : float Mean accuracy of self.predict(X) wrt. y. """ from .metrics import accuracy_score return accuracy_score(y, self.predict(X), sample_weight=sample_weight) ############################################################################### class RegressorMixin(object): """Mixin class for all regression estimators in scikit-learn.""" _estimator_type = "regressor" def score(self, X, y, sample_weight=None): """Returns the coefficient of determination R^2 of the prediction. The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. Parameters ---------- X : array-like, shape = (n_samples, n_features) Test samples. y : array-like, shape = (n_samples) or (n_samples, n_outputs) True values for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. Returns ------- score : float R^2 of self.predict(X) wrt. y. """ from .metrics import r2_score return r2_score(y, self.predict(X), sample_weight=sample_weight, multioutput='variance_weighted') ############################################################################### class ClusterMixin(object): """Mixin class for all cluster estimators in scikit-learn.""" _estimator_type = "clusterer" def fit_predict(self, X, y=None): """Performs clustering on X and returns cluster labels. Parameters ---------- X : ndarray, shape (n_samples, n_features) Input data. Returns ------- y : ndarray, shape (n_samples,) cluster labels """ # non-optimized default implementation; override when a better # method is possible for a given clustering algorithm self.fit(X) return self.labels_ class BiclusterMixin(object): """Mixin class for all bicluster estimators in scikit-learn""" @property def biclusters_(self): """Convenient way to get row and column indicators together. Returns the ``rows_`` and ``columns_`` members. """ return self.rows_, self.columns_ def get_indices(self, i): """Row and column indices of the i'th bicluster. Only works if ``rows_`` and ``columns_`` attributes exist. Returns ------- row_ind : np.array, dtype=np.intp Indices of rows in the dataset that belong to the bicluster. col_ind : np.array, dtype=np.intp Indices of columns in the dataset that belong to the bicluster. """ rows = self.rows_[i] columns = self.columns_[i] return np.nonzero(rows)[0], np.nonzero(columns)[0] def get_shape(self, i): """Shape of the i'th bicluster. Returns ------- shape : (int, int) Number of rows and columns (resp.) in the bicluster. """ indices = self.get_indices(i) return tuple(len(i) for i in indices) def get_submatrix(self, i, data): """Returns the submatrix corresponding to bicluster `i`. Works with sparse matrices. Only works if ``rows_`` and ``columns_`` attributes exist. """ from .utils.validation import check_array data = check_array(data, accept_sparse='csr') row_ind, col_ind = self.get_indices(i) return data[row_ind[:, np.newaxis], col_ind] ############################################################################### class TransformerMixin(object): """Mixin class for all transformers in scikit-learn.""" def fit_transform(self, X, y=None, **fit_params): """Fit to data, then transform it. Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. Parameters ---------- X : numpy array of shape [n_samples, n_features] Training set. y : numpy array of shape [n_samples] Target values. Returns ------- X_new : numpy array of shape [n_samples, n_features_new] Transformed array. """ # non-optimized default implementation; override when a better # method is possible for a given clustering algorithm if y is None: # fit method of arity 1 (unsupervised transformation) return self.fit(X, **fit_params).transform(X) else: # fit method of arity 2 (supervised transformation) return self.fit(X, y, **fit_params).transform(X) ############################################################################### class MetaEstimatorMixin(object): """Mixin class for all meta estimators in scikit-learn.""" # this is just a tag for the moment ############################################################################### def is_classifier(estimator): """Returns True if the given estimator is (probably) a classifier.""" return getattr(estimator, "_estimator_type", None) == "classifier" def is_regressor(estimator): """Returns True if the given estimator is (probably) a regressor.""" return getattr(estimator, "_estimator_type", None) == "regressor"
bsd-3-clause
anomam/pvlib-python
pvlib/irradiance.py
1
106789
""" The ``irradiance`` module contains functions for modeling global horizontal irradiance, direct normal irradiance, diffuse horizontal irradiance, and total irradiance under various conditions. """ import datetime from collections import OrderedDict from functools import partial import numpy as np import pandas as pd from pvlib import atmosphere, solarposition, tools # see References section of grounddiffuse function SURFACE_ALBEDOS = {'urban': 0.18, 'grass': 0.20, 'fresh grass': 0.26, 'soil': 0.17, 'sand': 0.40, 'snow': 0.65, 'fresh snow': 0.75, 'asphalt': 0.12, 'concrete': 0.30, 'aluminum': 0.85, 'copper': 0.74, 'fresh steel': 0.35, 'dirty steel': 0.08, 'sea': 0.06} def get_extra_radiation(datetime_or_doy, solar_constant=1366.1, method='spencer', epoch_year=2014, **kwargs): """ Determine extraterrestrial radiation from day of year. Parameters ---------- datetime_or_doy : numeric, array, date, datetime, Timestamp, DatetimeIndex Day of year, array of days of year, or datetime-like object solar_constant : float, default 1366.1 The solar constant. method : string, default 'spencer' The method by which the ET radiation should be calculated. Options include ``'pyephem', 'spencer', 'asce', 'nrel'``. epoch_year : int, default 2014 The year in which a day of year input will be calculated. Only applies to day of year input used with the pyephem or nrel methods. kwargs : Passed to solarposition.nrel_earthsun_distance Returns ------- dni_extra : float, array, or Series The extraterrestrial radiation present in watts per square meter on a surface which is normal to the sun. Pandas Timestamp and DatetimeIndex inputs will yield a Pandas TimeSeries. All other inputs will yield a float or an array of floats. References ---------- .. [1] M. Reno, C. Hansen, and J. Stein, "Global Horizontal Irradiance Clear Sky Models: Implementation and Analysis", Sandia National Laboratories, SAND2012-2389, 2012. .. [2] <http://solardat.uoregon.edu/SolarRadiationBasics.html>, Eqs. SR1 and SR2 .. [3] Partridge, G. W. and Platt, C. M. R. 1976. Radiative Processes in Meteorology and Climatology. .. [4] Duffie, J. A. and Beckman, W. A. 1991. Solar Engineering of Thermal Processes, 2nd edn. J. Wiley and Sons, New York. .. [5] ASCE, 2005. The ASCE Standardized Reference Evapotranspiration Equation, Environmental and Water Resources Institute of the American Civil Engineers, Ed. R. G. Allen et al. """ to_doy, to_datetimeindex, to_output = \ _handle_extra_radiation_types(datetime_or_doy, epoch_year) # consider putting asce and spencer methods in their own functions method = method.lower() if method == 'asce': B = solarposition._calculate_simple_day_angle(to_doy(datetime_or_doy), offset=0) RoverR0sqrd = 1 + 0.033 * np.cos(B) elif method == 'spencer': B = solarposition._calculate_simple_day_angle(to_doy(datetime_or_doy)) RoverR0sqrd = (1.00011 + 0.034221 * np.cos(B) + 0.00128 * np.sin(B) + 0.000719 * np.cos(2 * B) + 7.7e-05 * np.sin(2 * B)) elif method == 'pyephem': times = to_datetimeindex(datetime_or_doy) RoverR0sqrd = solarposition.pyephem_earthsun_distance(times) ** (-2) elif method == 'nrel': times = to_datetimeindex(datetime_or_doy) RoverR0sqrd = \ solarposition.nrel_earthsun_distance(times, **kwargs) ** (-2) else: raise ValueError('Invalid method: %s', method) Ea = solar_constant * RoverR0sqrd Ea = to_output(Ea) return Ea def _handle_extra_radiation_types(datetime_or_doy, epoch_year): # This block will set the functions that can be used to convert the # inputs to either day of year or pandas DatetimeIndex, and the # functions that will yield the appropriate output type. It's # complicated because there are many day-of-year-like input types, # and the different algorithms need different types. Maybe you have # a better way to do it. if isinstance(datetime_or_doy, pd.DatetimeIndex): to_doy = tools._pandas_to_doy # won't be evaluated unless necessary def to_datetimeindex(x): return x # noqa: E306 to_output = partial(pd.Series, index=datetime_or_doy) elif isinstance(datetime_or_doy, pd.Timestamp): to_doy = tools._pandas_to_doy to_datetimeindex = \ tools._datetimelike_scalar_to_datetimeindex to_output = tools._scalar_out elif isinstance(datetime_or_doy, (datetime.date, datetime.datetime, np.datetime64)): to_doy = tools._datetimelike_scalar_to_doy to_datetimeindex = \ tools._datetimelike_scalar_to_datetimeindex to_output = tools._scalar_out elif np.isscalar(datetime_or_doy): # ints and floats of various types def to_doy(x): return x # noqa: E306 to_datetimeindex = partial(tools._doy_to_datetimeindex, epoch_year=epoch_year) to_output = tools._scalar_out else: # assume that we have an array-like object of doy def to_doy(x): return x # noqa: E306 to_datetimeindex = partial(tools._doy_to_datetimeindex, epoch_year=epoch_year) to_output = tools._array_out return to_doy, to_datetimeindex, to_output def aoi_projection(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth): """ Calculates the dot product of the sun position unit vector and the surface normal unit vector; in other words, the cosine of the angle of incidence. Usage note: When the sun is behind the surface the value returned is negative. For many uses negative values must be set to zero. Input all angles in degrees. Parameters ---------- surface_tilt : numeric Panel tilt from horizontal. surface_azimuth : numeric Panel azimuth from north. solar_zenith : numeric Solar zenith angle. solar_azimuth : numeric Solar azimuth angle. Returns ------- projection : numeric Dot product of panel normal and solar angle. """ projection = ( tools.cosd(surface_tilt) * tools.cosd(solar_zenith) + tools.sind(surface_tilt) * tools.sind(solar_zenith) * tools.cosd(solar_azimuth - surface_azimuth)) try: projection.name = 'aoi_projection' except AttributeError: pass return projection def aoi(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth): """ Calculates the angle of incidence of the solar vector on a surface. This is the angle between the solar vector and the surface normal. Input all angles in degrees. Parameters ---------- surface_tilt : numeric Panel tilt from horizontal. surface_azimuth : numeric Panel azimuth from north. solar_zenith : numeric Solar zenith angle. solar_azimuth : numeric Solar azimuth angle. Returns ------- aoi : numeric Angle of incidence in degrees. """ projection = aoi_projection(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth) aoi_value = np.rad2deg(np.arccos(projection)) try: aoi_value.name = 'aoi' except AttributeError: pass return aoi_value def poa_horizontal_ratio(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth): """ Calculates the ratio of the beam components of the plane of array irradiance and the horizontal irradiance. Input all angles in degrees. Parameters ---------- surface_tilt : numeric Panel tilt from horizontal. surface_azimuth : numeric Panel azimuth from north. solar_zenith : numeric Solar zenith angle. solar_azimuth : numeric Solar azimuth angle. Returns ------- ratio : numeric Ratio of the plane of array irradiance to the horizontal plane irradiance """ cos_poa_zen = aoi_projection(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth) cos_solar_zenith = tools.cosd(solar_zenith) # ratio of tilted and horizontal beam irradiance ratio = cos_poa_zen / cos_solar_zenith try: ratio.name = 'poa_ratio' except AttributeError: pass return ratio def beam_component(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth, dni): """ Calculates the beam component of the plane of array irradiance. Parameters ---------- surface_tilt : numeric Panel tilt from horizontal. surface_azimuth : numeric Panel azimuth from north. solar_zenith : numeric Solar zenith angle. solar_azimuth : numeric Solar azimuth angle. dni : numeric Direct Normal Irradiance Returns ------- beam : numeric Beam component """ beam = dni * aoi_projection(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth) beam = np.maximum(beam, 0) return beam def get_total_irradiance(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth, dni, ghi, dhi, dni_extra=None, airmass=None, albedo=.25, surface_type=None, model='isotropic', model_perez='allsitescomposite1990', **kwargs): r""" Determine total in-plane irradiance and its beam, sky diffuse and ground reflected components, using the specified sky diffuse irradiance model. .. math:: I_{tot} = I_{beam} + I_{sky diffuse} + I_{ground} Sky diffuse models include: * isotropic (default) * klucher * haydavies * reindl * king * perez Parameters ---------- surface_tilt : numeric Panel tilt from horizontal. surface_azimuth : numeric Panel azimuth from north. solar_zenith : numeric Solar zenith angle. solar_azimuth : numeric Solar azimuth angle. dni : numeric Direct Normal Irradiance ghi : numeric Global horizontal irradiance dhi : numeric Diffuse horizontal irradiance dni_extra : None or numeric, default None Extraterrestrial direct normal irradiance airmass : None or numeric, default None Airmass albedo : numeric, default 0.25 Surface albedo surface_type : None or String, default None Surface type. See grounddiffuse. model : String, default 'isotropic' Irradiance model. model_perez : String, default 'allsitescomposite1990' Used only if model='perez'. See :py:func:`perez`. Returns ------- total_irrad : OrderedDict or DataFrame Contains keys/columns ``'poa_global', 'poa_direct', 'poa_diffuse', 'poa_sky_diffuse', 'poa_ground_diffuse'``. """ poa_sky_diffuse = get_sky_diffuse( surface_tilt, surface_azimuth, solar_zenith, solar_azimuth, dni, ghi, dhi, dni_extra=dni_extra, airmass=airmass, model=model, model_perez=model_perez) poa_ground_diffuse = get_ground_diffuse(surface_tilt, ghi, albedo, surface_type) aoi_ = aoi(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth) irrads = poa_components(aoi_, dni, poa_sky_diffuse, poa_ground_diffuse) return irrads def get_sky_diffuse(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth, dni, ghi, dhi, dni_extra=None, airmass=None, model='isotropic', model_perez='allsitescomposite1990'): r""" Determine in-plane sky diffuse irradiance component using the specified sky diffuse irradiance model. Sky diffuse models include: * isotropic (default) * klucher * haydavies * reindl * king * perez Parameters ---------- surface_tilt : numeric Panel tilt from horizontal. surface_azimuth : numeric Panel azimuth from north. solar_zenith : numeric Solar zenith angle. solar_azimuth : numeric Solar azimuth angle. dni : numeric Direct Normal Irradiance ghi : numeric Global horizontal irradiance dhi : numeric Diffuse horizontal irradiance dni_extra : None or numeric, default None Extraterrestrial direct normal irradiance airmass : None or numeric, default None Airmass model : String, default 'isotropic' Irradiance model. model_perez : String, default 'allsitescomposite1990' See perez. Returns ------- poa_sky_diffuse : numeric """ model = model.lower() if model == 'isotropic': sky = isotropic(surface_tilt, dhi) elif model == 'klucher': sky = klucher(surface_tilt, surface_azimuth, dhi, ghi, solar_zenith, solar_azimuth) elif model == 'haydavies': sky = haydavies(surface_tilt, surface_azimuth, dhi, dni, dni_extra, solar_zenith, solar_azimuth) elif model == 'reindl': sky = reindl(surface_tilt, surface_azimuth, dhi, dni, ghi, dni_extra, solar_zenith, solar_azimuth) elif model == 'king': sky = king(surface_tilt, dhi, ghi, solar_zenith) elif model == 'perez': sky = perez(surface_tilt, surface_azimuth, dhi, dni, dni_extra, solar_zenith, solar_azimuth, airmass, model=model_perez) else: raise ValueError('invalid model selection {}'.format(model)) return sky def poa_components(aoi, dni, poa_sky_diffuse, poa_ground_diffuse): r''' Determine in-plane irradiance components. Combines DNI with sky diffuse and ground-reflected irradiance to calculate total, direct and diffuse irradiance components in the plane of array. Parameters ---------- aoi : numeric Angle of incidence of solar rays with respect to the module surface, from :func:`aoi`. dni : numeric Direct normal irradiance (W/m^2), as measured from a TMY file or calculated with a clearsky model. poa_sky_diffuse : numeric Diffuse irradiance (W/m^2) in the plane of the modules, as calculated by a diffuse irradiance translation function poa_ground_diffuse : numeric Ground reflected irradiance (W/m^2) in the plane of the modules, as calculated by an albedo model (eg. :func:`grounddiffuse`) Returns ------- irrads : OrderedDict or DataFrame Contains the following keys: * ``poa_global`` : Total in-plane irradiance (W/m^2) * ``poa_direct`` : Total in-plane beam irradiance (W/m^2) * ``poa_diffuse`` : Total in-plane diffuse irradiance (W/m^2) * ``poa_sky_diffuse`` : In-plane diffuse irradiance from sky (W/m^2) * ``poa_ground_diffuse`` : In-plane diffuse irradiance from ground (W/m^2) Notes ------ Negative beam irradiation due to aoi :math:`> 90^{\circ}` or AOI :math:`< 0^{\circ}` is set to zero. ''' poa_direct = np.maximum(dni * np.cos(np.radians(aoi)), 0) poa_diffuse = poa_sky_diffuse + poa_ground_diffuse poa_global = poa_direct + poa_diffuse irrads = OrderedDict() irrads['poa_global'] = poa_global irrads['poa_direct'] = poa_direct irrads['poa_diffuse'] = poa_diffuse irrads['poa_sky_diffuse'] = poa_sky_diffuse irrads['poa_ground_diffuse'] = poa_ground_diffuse if isinstance(poa_direct, pd.Series): irrads = pd.DataFrame(irrads) return irrads def get_ground_diffuse(surface_tilt, ghi, albedo=.25, surface_type=None): ''' Estimate diffuse irradiance from ground reflections given irradiance, albedo, and surface tilt Function to determine the portion of irradiance on a tilted surface due to ground reflections. Any of the inputs may be DataFrames or scalars. Parameters ---------- surface_tilt : numeric Surface tilt angles in decimal degrees. Tilt must be >=0 and <=180. The tilt angle is defined as degrees from horizontal (e.g. surface facing up = 0, surface facing horizon = 90). ghi : numeric Global horizontal irradiance in W/m^2. albedo : numeric, default 0.25 Ground reflectance, typically 0.1-0.4 for surfaces on Earth (land), may increase over snow, ice, etc. May also be known as the reflection coefficient. Must be >=0 and <=1. Will be overridden if surface_type is supplied. surface_type: None or string, default None If not None, overrides albedo. String can be one of 'urban', 'grass', 'fresh grass', 'snow', 'fresh snow', 'asphalt', 'concrete', 'aluminum', 'copper', 'fresh steel', 'dirty steel', 'sea'. Returns ------- grounddiffuse : numeric Ground reflected irradiances in W/m^2. References ---------- .. [1] Loutzenhiser P.G. et. al. "Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation" 2007, Solar Energy vol. 81. pp. 254-267. The calculation is the last term of equations 3, 4, 7, 8, 10, 11, and 12. .. [2] albedos from: http://files.pvsyst.com/help/albedo.htm and http://en.wikipedia.org/wiki/Albedo and https://doi.org/10.1175/1520-0469(1972)029<0959:AOTSS>2.0.CO;2 ''' if surface_type is not None: albedo = SURFACE_ALBEDOS[surface_type] diffuse_irrad = ghi * albedo * (1 - np.cos(np.radians(surface_tilt))) * 0.5 try: diffuse_irrad.name = 'diffuse_ground' except AttributeError: pass return diffuse_irrad def isotropic(surface_tilt, dhi): r''' Determine diffuse irradiance from the sky on a tilted surface using the isotropic sky model. .. math:: I_{d} = DHI \frac{1 + \cos\beta}{2} Hottel and Woertz's model treats the sky as a uniform source of diffuse irradiance. Thus the diffuse irradiance from the sky (ground reflected irradiance is not included in this algorithm) on a tilted surface can be found from the diffuse horizontal irradiance and the tilt angle of the surface. Parameters ---------- surface_tilt : numeric Surface tilt angle in decimal degrees. Tilt must be >=0 and <=180. The tilt angle is defined as degrees from horizontal (e.g. surface facing up = 0, surface facing horizon = 90) dhi : numeric Diffuse horizontal irradiance in W/m^2. DHI must be >=0. Returns ------- diffuse : numeric The sky diffuse component of the solar radiation. References ---------- .. [1] Loutzenhiser P.G. et. al. "Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation" 2007, Solar Energy vol. 81. pp. 254-267 .. [2] Hottel, H.C., Woertz, B.B., 1942. Evaluation of flat-plate solar heat collector. Trans. ASME 64, 91. ''' sky_diffuse = dhi * (1 + tools.cosd(surface_tilt)) * 0.5 return sky_diffuse def klucher(surface_tilt, surface_azimuth, dhi, ghi, solar_zenith, solar_azimuth): r''' Determine diffuse irradiance from the sky on a tilted surface using Klucher's 1979 model .. math:: I_{d} = DHI \frac{1 + \cos\beta}{2} (1 + F' \sin^3(\beta/2)) (1 + F' \cos^2\theta\sin^3\theta_z) where .. math:: F' = 1 - (I_{d0} / GHI)^2 Klucher's 1979 model determines the diffuse irradiance from the sky (ground reflected irradiance is not included in this algorithm) on a tilted surface using the surface tilt angle, surface azimuth angle, diffuse horizontal irradiance, direct normal irradiance, global horizontal irradiance, extraterrestrial irradiance, sun zenith angle, and sun azimuth angle. Parameters ---------- surface_tilt : numeric Surface tilt angles in decimal degrees. surface_tilt must be >=0 and <=180. The tilt angle is defined as degrees from horizontal (e.g. surface facing up = 0, surface facing horizon = 90) surface_azimuth : numeric Surface azimuth angles in decimal degrees. surface_azimuth must be >=0 and <=360. The Azimuth convention is defined as degrees east of north (e.g. North = 0, South=180 East = 90, West = 270). dhi : numeric Diffuse horizontal irradiance in W/m^2. DHI must be >=0. ghi : numeric Global irradiance in W/m^2. DNI must be >=0. solar_zenith : numeric Apparent (refraction-corrected) zenith angles in decimal degrees. solar_zenith must be >=0 and <=180. solar_azimuth : numeric Sun azimuth angles in decimal degrees. solar_azimuth must be >=0 and <=360. The Azimuth convention is defined as degrees east of north (e.g. North = 0, East = 90, West = 270). Returns ------- diffuse : numeric The sky diffuse component of the solar radiation. References ---------- .. [1] Loutzenhiser P.G. et. al. "Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation" 2007, Solar Energy vol. 81. pp. 254-267 .. [2] Klucher, T.M., 1979. Evaluation of models to predict insolation on tilted surfaces. Solar Energy 23 (2), 111-114. ''' # zenith angle with respect to panel normal. cos_tt = aoi_projection(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth) cos_tt = np.maximum(cos_tt, 0) # GH 526 # silence warning from 0 / 0 with np.errstate(invalid='ignore'): F = 1 - ((dhi / ghi) ** 2) try: # fails with single point input F.fillna(0, inplace=True) except AttributeError: F = np.where(np.isnan(F), 0, F) term1 = 0.5 * (1 + tools.cosd(surface_tilt)) term2 = 1 + F * (tools.sind(0.5 * surface_tilt) ** 3) term3 = 1 + F * (cos_tt ** 2) * (tools.sind(solar_zenith) ** 3) sky_diffuse = dhi * term1 * term2 * term3 return sky_diffuse def haydavies(surface_tilt, surface_azimuth, dhi, dni, dni_extra, solar_zenith=None, solar_azimuth=None, projection_ratio=None): r''' Determine diffuse irradiance from the sky on a tilted surface using Hay & Davies' 1980 model .. math:: I_{d} = DHI ( A R_b + (1 - A) (\frac{1 + \cos\beta}{2}) ) Hay and Davies' 1980 model determines the diffuse irradiance from the sky (ground reflected irradiance is not included in this algorithm) on a tilted surface using the surface tilt angle, surface azimuth angle, diffuse horizontal irradiance, direct normal irradiance, extraterrestrial irradiance, sun zenith angle, and sun azimuth angle. Parameters ---------- surface_tilt : numeric Surface tilt angles in decimal degrees. The tilt angle is defined as degrees from horizontal (e.g. surface facing up = 0, surface facing horizon = 90) surface_azimuth : numeric Surface azimuth angles in decimal degrees. The azimuth convention is defined as degrees east of north (e.g. North=0, South=180, East=90, West=270). dhi : numeric Diffuse horizontal irradiance in W/m^2. dni : numeric Direct normal irradiance in W/m^2. dni_extra : numeric Extraterrestrial normal irradiance in W/m^2. solar_zenith : None or numeric, default None Solar apparent (refraction-corrected) zenith angles in decimal degrees. Must supply ``solar_zenith`` and ``solar_azimuth`` or supply ``projection_ratio``. solar_azimuth : None or numeric, default None Solar azimuth angles in decimal degrees. Must supply ``solar_zenith`` and ``solar_azimuth`` or supply ``projection_ratio``. projection_ratio : None or numeric, default None Ratio of angle of incidence projection to solar zenith angle projection. Must supply ``solar_zenith`` and ``solar_azimuth`` or supply ``projection_ratio``. Returns -------- sky_diffuse : numeric The sky diffuse component of the solar radiation. References ----------- .. [1] Loutzenhiser P.G. et. al. "Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation" 2007, Solar Energy vol. 81. pp. 254-267 .. [2] Hay, J.E., Davies, J.A., 1980. Calculations of the solar radiation incident on an inclined surface. In: Hay, J.E., Won, T.K. (Eds.), Proc. of First Canadian Solar Radiation Data Workshop, 59. Ministry of Supply and Services, Canada. ''' # if necessary, calculate ratio of titled and horizontal beam irradiance if projection_ratio is None: cos_tt = aoi_projection(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth) cos_tt = np.maximum(cos_tt, 0) # GH 526 cos_solar_zenith = tools.cosd(solar_zenith) Rb = cos_tt / np.maximum(cos_solar_zenith, 0.01745) # GH 432 else: Rb = projection_ratio # Anisotropy Index AI = dni / dni_extra # these are the () and [] sub-terms of the second term of eqn 7 term1 = 1 - AI term2 = 0.5 * (1 + tools.cosd(surface_tilt)) sky_diffuse = dhi * (AI * Rb + term1 * term2) sky_diffuse = np.maximum(sky_diffuse, 0) return sky_diffuse def reindl(surface_tilt, surface_azimuth, dhi, dni, ghi, dni_extra, solar_zenith, solar_azimuth): r''' Determine diffuse irradiance from the sky on a tilted surface using Reindl's 1990 model .. math:: I_{d} = DHI (A R_b + (1 - A) (\frac{1 + \cos\beta}{2}) (1 + \sqrt{\frac{I_{hb}}{I_h}} \sin^3(\beta/2)) ) Reindl's 1990 model determines the diffuse irradiance from the sky (ground reflected irradiance is not included in this algorithm) on a tilted surface using the surface tilt angle, surface azimuth angle, diffuse horizontal irradiance, direct normal irradiance, global horizontal irradiance, extraterrestrial irradiance, sun zenith angle, and sun azimuth angle. Parameters ---------- surface_tilt : numeric Surface tilt angles in decimal degrees. The tilt angle is defined as degrees from horizontal (e.g. surface facing up = 0, surface facing horizon = 90) surface_azimuth : numeric Surface azimuth angles in decimal degrees. The azimuth convention is defined as degrees east of north (e.g. North = 0, South=180 East = 90, West = 270). dhi : numeric diffuse horizontal irradiance in W/m^2. dni : numeric direct normal irradiance in W/m^2. ghi: numeric Global irradiance in W/m^2. dni_extra : numeric Extraterrestrial normal irradiance in W/m^2. solar_zenith : numeric Apparent (refraction-corrected) zenith angles in decimal degrees. solar_azimuth : numeric Sun azimuth angles in decimal degrees. The azimuth convention is defined as degrees east of north (e.g. North = 0, East = 90, West = 270). Returns ------- poa_sky_diffuse : numeric The sky diffuse component of the solar radiation. Notes ----- The poa_sky_diffuse calculation is generated from the Loutzenhiser et al. (2007) paper, equation 8. Note that I have removed the beam and ground reflectance portion of the equation and this generates ONLY the diffuse radiation from the sky and circumsolar, so the form of the equation varies slightly from equation 8. References ---------- .. [1] Loutzenhiser P.G. et. al. "Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation" 2007, Solar Energy vol. 81. pp. 254-267 .. [2] Reindl, D.T., Beckmann, W.A., Duffie, J.A., 1990a. Diffuse fraction correlations. Solar Energy 45(1), 1-7. .. [3] Reindl, D.T., Beckmann, W.A., Duffie, J.A., 1990b. Evaluation of hourly tilted surface radiation models. Solar Energy 45(1), 9-17. ''' cos_tt = aoi_projection(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth) cos_tt = np.maximum(cos_tt, 0) # GH 526 # do not apply cos(zen) limit here (needed for HB below) cos_solar_zenith = tools.cosd(solar_zenith) # ratio of titled and horizontal beam irradiance Rb = cos_tt / np.maximum(cos_solar_zenith, 0.01745) # GH 432 # Anisotropy Index AI = dni / dni_extra # DNI projected onto horizontal HB = dni * cos_solar_zenith HB = np.maximum(HB, 0) # these are the () and [] sub-terms of the second term of eqn 8 term1 = 1 - AI term2 = 0.5 * (1 + tools.cosd(surface_tilt)) term3 = 1 + np.sqrt(HB / ghi) * (tools.sind(0.5 * surface_tilt) ** 3) sky_diffuse = dhi * (AI * Rb + term1 * term2 * term3) sky_diffuse = np.maximum(sky_diffuse, 0) return sky_diffuse def king(surface_tilt, dhi, ghi, solar_zenith): ''' Determine diffuse irradiance from the sky on a tilted surface using the King model. King's model determines the diffuse irradiance from the sky (ground reflected irradiance is not included in this algorithm) on a tilted surface using the surface tilt angle, diffuse horizontal irradiance, global horizontal irradiance, and sun zenith angle. Note that this model is not well documented and has not been published in any fashion (as of January 2012). Parameters ---------- surface_tilt : numeric Surface tilt angles in decimal degrees. The tilt angle is defined as degrees from horizontal (e.g. surface facing up = 0, surface facing horizon = 90) dhi : numeric Diffuse horizontal irradiance in W/m^2. ghi : numeric Global horizontal irradiance in W/m^2. solar_zenith : numeric Apparent (refraction-corrected) zenith angles in decimal degrees. Returns -------- poa_sky_diffuse : numeric The diffuse component of the solar radiation. ''' sky_diffuse = (dhi * ((1 + tools.cosd(surface_tilt))) / 2 + ghi * ((0.012 * solar_zenith - 0.04)) * ((1 - tools.cosd(surface_tilt))) / 2) sky_diffuse = np.maximum(sky_diffuse, 0) return sky_diffuse def perez(surface_tilt, surface_azimuth, dhi, dni, dni_extra, solar_zenith, solar_azimuth, airmass, model='allsitescomposite1990', return_components=False): ''' Determine diffuse irradiance from the sky on a tilted surface using one of the Perez models. Perez models determine the diffuse irradiance from the sky (ground reflected irradiance is not included in this algorithm) on a tilted surface using the surface tilt angle, surface azimuth angle, diffuse horizontal irradiance, direct normal irradiance, extraterrestrial irradiance, sun zenith angle, sun azimuth angle, and relative (not pressure-corrected) airmass. Optionally a selector may be used to use any of Perez's model coefficient sets. Parameters ---------- surface_tilt : numeric Surface tilt angles in decimal degrees. surface_tilt must be >=0 and <=180. The tilt angle is defined as degrees from horizontal (e.g. surface facing up = 0, surface facing horizon = 90) surface_azimuth : numeric Surface azimuth angles in decimal degrees. surface_azimuth must be >=0 and <=360. The azimuth convention is defined as degrees east of north (e.g. North = 0, South=180 East = 90, West = 270). dhi : numeric Diffuse horizontal irradiance in W/m^2. DHI must be >=0. dni : numeric Direct normal irradiance in W/m^2. DNI must be >=0. dni_extra : numeric Extraterrestrial normal irradiance in W/m^2. solar_zenith : numeric apparent (refraction-corrected) zenith angles in decimal degrees. solar_zenith must be >=0 and <=180. solar_azimuth : numeric Sun azimuth angles in decimal degrees. solar_azimuth must be >=0 and <=360. The azimuth convention is defined as degrees east of north (e.g. North = 0, East = 90, West = 270). airmass : numeric Relative (not pressure-corrected) airmass values. If AM is a DataFrame it must be of the same size as all other DataFrame inputs. AM must be >=0 (careful using the 1/sec(z) model of AM generation) model : string (optional, default='allsitescomposite1990') A string which selects the desired set of Perez coefficients. If model is not provided as an input, the default, '1990' will be used. All possible model selections are: * '1990' * 'allsitescomposite1990' (same as '1990') * 'allsitescomposite1988' * 'sandiacomposite1988' * 'usacomposite1988' * 'france1988' * 'phoenix1988' * 'elmonte1988' * 'osage1988' * 'albuquerque1988' * 'capecanaveral1988' * 'albany1988' return_components: bool (optional, default=False) Flag used to decide whether to return the calculated diffuse components or not. Returns -------- numeric, OrderedDict, or DataFrame Return type controlled by `return_components` argument. If ``return_components=False``, `sky_diffuse` is returned. If ``return_components=True``, `diffuse_components` is returned. sky_diffuse : numeric The sky diffuse component of the solar radiation on a tilted surface. diffuse_components : OrderedDict (array input) or DataFrame (Series input) Keys/columns are: * sky_diffuse: Total sky diffuse * isotropic * circumsolar * horizon References ---------- .. [1] Loutzenhiser P.G. et. al. "Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation" 2007, Solar Energy vol. 81. pp. 254-267 .. [2] Perez, R., Seals, R., Ineichen, P., Stewart, R., Menicucci, D., 1987. A new simplified version of the Perez diffuse irradiance model for tilted surfaces. Solar Energy 39(3), 221-232. .. [3] Perez, R., Ineichen, P., Seals, R., Michalsky, J., Stewart, R., 1990. Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy 44 (5), 271-289. .. [4] Perez, R. et. al 1988. "The Development and Verification of the Perez Diffuse Radiation Model". SAND88-7030 ''' kappa = 1.041 # for solar_zenith in radians z = np.radians(solar_zenith) # convert to radians # delta is the sky's "brightness" delta = dhi * airmass / dni_extra # epsilon is the sky's "clearness" with np.errstate(invalid='ignore'): eps = ((dhi + dni) / dhi + kappa * (z ** 3)) / (1 + kappa * (z ** 3)) # numpy indexing below will not work with a Series if isinstance(eps, pd.Series): eps = eps.values # Perez et al define clearness bins according to the following # rules. 1 = overcast ... 8 = clear (these names really only make # sense for small zenith angles, but...) these values will # eventually be used as indicies for coeffecient look ups ebin = np.digitize(eps, (0., 1.065, 1.23, 1.5, 1.95, 2.8, 4.5, 6.2)) ebin = np.array(ebin) # GH 642 ebin[np.isnan(eps)] = 0 # correct for 0 indexing in coeffecient lookup # later, ebin = -1 will yield nan coefficients ebin -= 1 # The various possible sets of Perez coefficients are contained # in a subfunction to clean up the code. F1c, F2c = _get_perez_coefficients(model) # results in invalid eps (ebin = -1) being mapped to nans nans = np.array([np.nan, np.nan, np.nan]) F1c = np.vstack((F1c, nans)) F2c = np.vstack((F2c, nans)) F1 = (F1c[ebin, 0] + F1c[ebin, 1] * delta + F1c[ebin, 2] * z) F1 = np.maximum(F1, 0) F2 = (F2c[ebin, 0] + F2c[ebin, 1] * delta + F2c[ebin, 2] * z) F2 = np.maximum(F2, 0) A = aoi_projection(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth) A = np.maximum(A, 0) B = tools.cosd(solar_zenith) B = np.maximum(B, tools.cosd(85)) # Calculate Diffuse POA from sky dome term1 = 0.5 * (1 - F1) * (1 + tools.cosd(surface_tilt)) term2 = F1 * A / B term3 = F2 * tools.sind(surface_tilt) sky_diffuse = np.maximum(dhi * (term1 + term2 + term3), 0) # we've preserved the input type until now, so don't ruin it! if isinstance(sky_diffuse, pd.Series): sky_diffuse[np.isnan(airmass)] = 0 else: sky_diffuse = np.where(np.isnan(airmass), 0, sky_diffuse) if return_components: diffuse_components = OrderedDict() diffuse_components['sky_diffuse'] = sky_diffuse # Calculate the different components diffuse_components['isotropic'] = dhi * term1 diffuse_components['circumsolar'] = dhi * term2 diffuse_components['horizon'] = dhi * term3 # Set values of components to 0 when sky_diffuse is 0 mask = sky_diffuse == 0 if isinstance(sky_diffuse, pd.Series): diffuse_components = pd.DataFrame(diffuse_components) diffuse_components.loc[mask] = 0 else: diffuse_components = {k: np.where(mask, 0, v) for k, v in diffuse_components.items()} return diffuse_components else: return sky_diffuse def clearsky_index(ghi, clearsky_ghi, max_clearsky_index=2.0): """ Calculate the clearsky index. The clearsky index is the ratio of global to clearsky global irradiance. Negative and non-finite clearsky index values will be truncated to zero. Parameters ---------- ghi : numeric Global horizontal irradiance in W/m^2. clearsky_ghi : numeric Modeled clearsky GHI max_clearsky_index : numeric, default 2.0 Maximum value of the clearsky index. The default, 2.0, allows for over-irradiance events typically seen in sub-hourly data. Returns ------- clearsky_index : numeric Clearsky index """ clearsky_index = ghi / clearsky_ghi # set +inf, -inf, and nans to zero clearsky_index = np.where(~np.isfinite(clearsky_index), 0, clearsky_index) # but preserve nans in the input arrays input_is_nan = ~np.isfinite(ghi) | ~np.isfinite(clearsky_ghi) clearsky_index = np.where(input_is_nan, np.nan, clearsky_index) clearsky_index = np.maximum(clearsky_index, 0) clearsky_index = np.minimum(clearsky_index, max_clearsky_index) # preserve input type if isinstance(ghi, pd.Series): clearsky_index = pd.Series(clearsky_index, index=ghi.index) return clearsky_index def clearness_index(ghi, solar_zenith, extra_radiation, min_cos_zenith=0.065, max_clearness_index=2.0): """ Calculate the clearness index. The clearness index is the ratio of global to extraterrestrial irradiance on a horizontal plane [1]_. Parameters ---------- ghi : numeric Global horizontal irradiance in W/m^2. solar_zenith : numeric True (not refraction-corrected) solar zenith angle in decimal degrees. extra_radiation : numeric Irradiance incident at the top of the atmosphere min_cos_zenith : numeric, default 0.065 Minimum value of cos(zenith) to allow when calculating global clearness index `kt`. Equivalent to zenith = 86.273 degrees. max_clearness_index : numeric, default 2.0 Maximum value of the clearness index. The default, 2.0, allows for over-irradiance events typically seen in sub-hourly data. NREL's SRRL Fortran code used 0.82 for hourly data. Returns ------- kt : numeric Clearness index References ---------- .. [1] Maxwell, E. L., "A Quasi-Physical Model for Converting Hourly Global Horizontal to Direct Normal Insolation", Technical Report No. SERI/TR-215-3087, Golden, CO: Solar Energy Research Institute, 1987. """ cos_zenith = tools.cosd(solar_zenith) I0h = extra_radiation * np.maximum(cos_zenith, min_cos_zenith) # consider adding # with np.errstate(invalid='ignore', divide='ignore'): # to kt calculation, but perhaps it's good to allow these # warnings to the users that override min_cos_zenith kt = ghi / I0h kt = np.maximum(kt, 0) kt = np.minimum(kt, max_clearness_index) return kt def clearness_index_zenith_independent(clearness_index, airmass, max_clearness_index=2.0): """ Calculate the zenith angle independent clearness index. See [1]_ for details. Parameters ---------- clearness_index : numeric Ratio of global to extraterrestrial irradiance on a horizontal plane airmass : numeric Airmass max_clearness_index : numeric, default 2.0 Maximum value of the clearness index. The default, 2.0, allows for over-irradiance events typically seen in sub-hourly data. NREL's SRRL Fortran code used 0.82 for hourly data. Returns ------- kt_prime : numeric Zenith independent clearness index References ---------- .. [1] Perez, R., P. Ineichen, E. Maxwell, R. Seals and A. Zelenka, (1992). "Dynamic Global-to-Direct Irradiance Conversion Models". ASHRAE Transactions-Research Series, pp. 354-369 """ # Perez eqn 1 kt_prime = clearness_index / _kt_kt_prime_factor(airmass) kt_prime = np.maximum(kt_prime, 0) kt_prime = np.minimum(kt_prime, max_clearness_index) return kt_prime def _kt_kt_prime_factor(airmass): """ Calculate the conversion factor between kt and kt prime. Function is useful because DIRINT and GTI-DIRINT both use this. """ # consider adding # airmass = np.maximum(airmass, 12) # GH 450 return 1.031 * np.exp(-1.4 / (0.9 + 9.4 / airmass)) + 0.1 def disc(ghi, solar_zenith, datetime_or_doy, pressure=101325, min_cos_zenith=0.065, max_zenith=87, max_airmass=12): """ Estimate Direct Normal Irradiance from Global Horizontal Irradiance using the DISC model. The DISC algorithm converts global horizontal irradiance to direct normal irradiance through empirical relationships between the global and direct clearness indices. The pvlib implementation limits the clearness index to 1. The original report describing the DISC model [1]_ uses the relative airmass rather than the absolute (pressure-corrected) airmass. However, the NREL implementation of the DISC model [2]_ uses absolute airmass. PVLib Matlab also uses the absolute airmass. pvlib python defaults to absolute airmass, but the relative airmass can be used by supplying `pressure=None`. Parameters ---------- ghi : numeric Global horizontal irradiance in W/m^2. solar_zenith : numeric True (not refraction-corrected) solar zenith angles in decimal degrees. datetime_or_doy : int, float, array, pd.DatetimeIndex Day of year or array of days of year e.g. pd.DatetimeIndex.dayofyear, or pd.DatetimeIndex. pressure : None or numeric, default 101325 Site pressure in Pascal. If None, relative airmass is used instead of absolute (pressure-corrected) airmass. min_cos_zenith : numeric, default 0.065 Minimum value of cos(zenith) to allow when calculating global clearness index `kt`. Equivalent to zenith = 86.273 degrees. max_zenith : numeric, default 87 Maximum value of zenith to allow in DNI calculation. DNI will be set to 0 for times with zenith values greater than `max_zenith`. max_airmass : numeric, default 12 Maximum value of the airmass to allow in Kn calculation. Default value (12) comes from range over which Kn was fit to airmass in the original paper. Returns ------- output : OrderedDict or DataFrame Contains the following keys: * ``dni``: The modeled direct normal irradiance in W/m^2 provided by the Direct Insolation Simulation Code (DISC) model. * ``kt``: Ratio of global to extraterrestrial irradiance on a horizontal plane. * ``airmass``: Airmass References ---------- .. [1] Maxwell, E. L., "A Quasi-Physical Model for Converting Hourly Global Horizontal to Direct Normal Insolation", Technical Report No. SERI/TR-215-3087, Golden, CO: Solar Energy Research Institute, 1987. .. [2] Maxwell, E. "DISC Model", Excel Worksheet. https://www.nrel.gov/grid/solar-resource/disc.html See Also -------- dirint """ # this is the I0 calculation from the reference # SSC uses solar constant = 1367.0 (checked 2018 08 15) I0 = get_extra_radiation(datetime_or_doy, 1370., 'spencer') kt = clearness_index(ghi, solar_zenith, I0, min_cos_zenith=min_cos_zenith, max_clearness_index=1) am = atmosphere.get_relative_airmass(solar_zenith, model='kasten1966') if pressure is not None: am = atmosphere.get_absolute_airmass(am, pressure) Kn, am = _disc_kn(kt, am, max_airmass=max_airmass) dni = Kn * I0 bad_values = (solar_zenith > max_zenith) | (ghi < 0) | (dni < 0) dni = np.where(bad_values, 0, dni) output = OrderedDict() output['dni'] = dni output['kt'] = kt output['airmass'] = am if isinstance(datetime_or_doy, pd.DatetimeIndex): output = pd.DataFrame(output, index=datetime_or_doy) return output def _disc_kn(clearness_index, airmass, max_airmass=12): """ Calculate Kn for `disc` Parameters ---------- clearness_index : numeric airmass : numeric max_airmass : float airmass > max_airmass is set to max_airmass before being used in calculating Kn. Returns ------- Kn : numeric am : numeric airmass used in the calculation of Kn. am <= max_airmass. """ # short names for equations kt = clearness_index am = airmass am = np.minimum(am, max_airmass) # GH 450 # powers of kt will be used repeatedly, so compute only once kt2 = kt * kt # about the same as kt ** 2 kt3 = kt2 * kt # 5-10x faster than kt ** 3 bools = (kt <= 0.6) a = np.where(bools, 0.512 - 1.56*kt + 2.286*kt2 - 2.222*kt3, -5.743 + 21.77*kt - 27.49*kt2 + 11.56*kt3) b = np.where(bools, 0.37 + 0.962*kt, 41.4 - 118.5*kt + 66.05*kt2 + 31.9*kt3) c = np.where(bools, -0.28 + 0.932*kt - 2.048*kt2, -47.01 + 184.2*kt - 222.0*kt2 + 73.81*kt3) delta_kn = a + b * np.exp(c*am) Knc = 0.866 - 0.122*am + 0.0121*am**2 - 0.000653*am**3 + 1.4e-05*am**4 Kn = Knc - delta_kn return Kn, am def dirint(ghi, solar_zenith, times, pressure=101325., use_delta_kt_prime=True, temp_dew=None, min_cos_zenith=0.065, max_zenith=87): """ Determine DNI from GHI using the DIRINT modification of the DISC model. Implements the modified DISC model known as "DIRINT" introduced in [1]. DIRINT predicts direct normal irradiance (DNI) from measured global horizontal irradiance (GHI). DIRINT improves upon the DISC model by using time-series GHI data and dew point temperature information. The effectiveness of the DIRINT model improves with each piece of information provided. The pvlib implementation limits the clearness index to 1. Parameters ---------- ghi : array-like Global horizontal irradiance in W/m^2. solar_zenith : array-like True (not refraction-corrected) solar_zenith angles in decimal degrees. times : DatetimeIndex pressure : float or array-like, default 101325.0 The site pressure in Pascal. Pressure may be measured or an average pressure may be calculated from site altitude. use_delta_kt_prime : bool, default True If True, indicates that the stability index delta_kt_prime is included in the model. The stability index adjusts the estimated DNI in response to dynamics in the time series of GHI. It is recommended that delta_kt_prime is not used if the time between GHI points is 1.5 hours or greater. If use_delta_kt_prime=True, input data must be Series. temp_dew : None, float, or array-like, default None Surface dew point temperatures, in degrees C. Values of temp_dew may be numeric or NaN. Any single time period point with a temp_dew=NaN does not have dew point improvements applied. If temp_dew is not provided, then dew point improvements are not applied. min_cos_zenith : numeric, default 0.065 Minimum value of cos(zenith) to allow when calculating global clearness index `kt`. Equivalent to zenith = 86.273 degrees. max_zenith : numeric, default 87 Maximum value of zenith to allow in DNI calculation. DNI will be set to 0 for times with zenith values greater than `max_zenith`. Returns ------- dni : array-like The modeled direct normal irradiance in W/m^2 provided by the DIRINT model. Notes ----- DIRINT model requires time series data (ie. one of the inputs must be a vector of length > 2). References ---------- .. [1] Perez, R., P. Ineichen, E. Maxwell, R. Seals and A. Zelenka, (1992). "Dynamic Global-to-Direct Irradiance Conversion Models". ASHRAE Transactions-Research Series, pp. 354-369 .. [2] Maxwell, E. L., "A Quasi-Physical Model for Converting Hourly Global Horizontal to Direct Normal Insolation", Technical Report No. SERI/TR-215-3087, Golden, CO: Solar Energy Research Institute, 1987. """ disc_out = disc(ghi, solar_zenith, times, pressure=pressure, min_cos_zenith=min_cos_zenith, max_zenith=max_zenith) airmass = disc_out['airmass'] kt = disc_out['kt'] kt_prime = clearness_index_zenith_independent( kt, airmass, max_clearness_index=1) delta_kt_prime = _delta_kt_prime_dirint(kt_prime, use_delta_kt_prime, times) w = _temp_dew_dirint(temp_dew, times) dirint_coeffs = _dirint_coeffs(times, kt_prime, solar_zenith, w, delta_kt_prime) # Perez eqn 5 dni = disc_out['dni'] * dirint_coeffs return dni def _dirint_from_dni_ktprime(dni, kt_prime, solar_zenith, use_delta_kt_prime, temp_dew): """ Calculate DIRINT DNI from supplied DISC DNI and Kt'. Supports :py:func:`gti_dirint` """ times = dni.index delta_kt_prime = _delta_kt_prime_dirint(kt_prime, use_delta_kt_prime, times) w = _temp_dew_dirint(temp_dew, times) dirint_coeffs = _dirint_coeffs(times, kt_prime, solar_zenith, w, delta_kt_prime) dni_dirint = dni * dirint_coeffs return dni_dirint def _delta_kt_prime_dirint(kt_prime, use_delta_kt_prime, times): """ Calculate delta_kt_prime (Perez eqn 2 and eqn 3), or return a default value for use with :py:func:`_dirint_bins`. """ if use_delta_kt_prime: # Perez eqn 2 kt_next = kt_prime.shift(-1) kt_previous = kt_prime.shift(1) # replace nan with values that implement Perez Eq 3 for first and last # positions. Use kt_previous and kt_next to handle series of length 1 kt_next.iloc[-1] = kt_previous.iloc[-1] kt_previous.iloc[0] = kt_next.iloc[0] delta_kt_prime = 0.5 * ((kt_prime - kt_next).abs().add( (kt_prime - kt_previous).abs(), fill_value=0)) else: # do not change unless also modifying _dirint_bins delta_kt_prime = pd.Series(-1, index=times) return delta_kt_prime def _temp_dew_dirint(temp_dew, times): """ Calculate precipitable water from surface dew point temp (Perez eqn 4), or return a default value for use with :py:func:`_dirint_bins`. """ if temp_dew is not None: # Perez eqn 4 w = pd.Series(np.exp(0.07 * temp_dew - 0.075), index=times) else: # do not change unless also modifying _dirint_bins w = pd.Series(-1, index=times) return w def _dirint_coeffs(times, kt_prime, solar_zenith, w, delta_kt_prime): """ Determine the DISC to DIRINT multiplier `dirint_coeffs`. dni = disc_out['dni'] * dirint_coeffs Parameters ---------- times : pd.DatetimeIndex kt_prime : Zenith-independent clearness index solar_zenith : Solar zenith angle w : precipitable water estimated from surface dew-point temperature delta_kt_prime : stability index Returns ------- dirint_coeffs : array-like """ kt_prime_bin, zenith_bin, w_bin, delta_kt_prime_bin = \ _dirint_bins(times, kt_prime, solar_zenith, w, delta_kt_prime) # get the coefficients coeffs = _get_dirint_coeffs() # subtract 1 to account for difference between MATLAB-style bin # assignment and Python-style array lookup. dirint_coeffs = coeffs[kt_prime_bin-1, zenith_bin-1, delta_kt_prime_bin-1, w_bin-1] # convert unassigned bins to nan dirint_coeffs = np.where((kt_prime_bin == 0) | (zenith_bin == 0) | (w_bin == 0) | (delta_kt_prime_bin == 0), np.nan, dirint_coeffs) return dirint_coeffs def _dirint_bins(times, kt_prime, zenith, w, delta_kt_prime): """ Determine the bins for the DIRINT coefficients. Parameters ---------- times : pd.DatetimeIndex kt_prime : Zenith-independent clearness index zenith : Solar zenith angle w : precipitable water estimated from surface dew-point temperature delta_kt_prime : stability index Returns ------- tuple of kt_prime_bin, zenith_bin, w_bin, delta_kt_prime_bin """ # @wholmgren: the following bin assignments use MATLAB's 1-indexing. # Later, we'll subtract 1 to conform to Python's 0-indexing. # Create kt_prime bins kt_prime_bin = pd.Series(0, index=times, dtype=np.int64) kt_prime_bin[(kt_prime >= 0) & (kt_prime < 0.24)] = 1 kt_prime_bin[(kt_prime >= 0.24) & (kt_prime < 0.4)] = 2 kt_prime_bin[(kt_prime >= 0.4) & (kt_prime < 0.56)] = 3 kt_prime_bin[(kt_prime >= 0.56) & (kt_prime < 0.7)] = 4 kt_prime_bin[(kt_prime >= 0.7) & (kt_prime < 0.8)] = 5 kt_prime_bin[(kt_prime >= 0.8) & (kt_prime <= 1)] = 6 # Create zenith angle bins zenith_bin = pd.Series(0, index=times, dtype=np.int64) zenith_bin[(zenith >= 0) & (zenith < 25)] = 1 zenith_bin[(zenith >= 25) & (zenith < 40)] = 2 zenith_bin[(zenith >= 40) & (zenith < 55)] = 3 zenith_bin[(zenith >= 55) & (zenith < 70)] = 4 zenith_bin[(zenith >= 70) & (zenith < 80)] = 5 zenith_bin[(zenith >= 80)] = 6 # Create the bins for w based on dew point temperature w_bin = pd.Series(0, index=times, dtype=np.int64) w_bin[(w >= 0) & (w < 1)] = 1 w_bin[(w >= 1) & (w < 2)] = 2 w_bin[(w >= 2) & (w < 3)] = 3 w_bin[(w >= 3)] = 4 w_bin[(w == -1)] = 5 # Create delta_kt_prime binning. delta_kt_prime_bin = pd.Series(0, index=times, dtype=np.int64) delta_kt_prime_bin[(delta_kt_prime >= 0) & (delta_kt_prime < 0.015)] = 1 delta_kt_prime_bin[(delta_kt_prime >= 0.015) & (delta_kt_prime < 0.035)] = 2 delta_kt_prime_bin[(delta_kt_prime >= 0.035) & (delta_kt_prime < 0.07)] = 3 delta_kt_prime_bin[(delta_kt_prime >= 0.07) & (delta_kt_prime < 0.15)] = 4 delta_kt_prime_bin[(delta_kt_prime >= 0.15) & (delta_kt_prime < 0.3)] = 5 delta_kt_prime_bin[(delta_kt_prime >= 0.3) & (delta_kt_prime <= 1)] = 6 delta_kt_prime_bin[delta_kt_prime == -1] = 7 return kt_prime_bin, zenith_bin, w_bin, delta_kt_prime_bin def dirindex(ghi, ghi_clearsky, dni_clearsky, zenith, times, pressure=101325., use_delta_kt_prime=True, temp_dew=None, min_cos_zenith=0.065, max_zenith=87): """ Determine DNI from GHI using the DIRINDEX model. The DIRINDEX model [1] modifies the DIRINT model implemented in :py:func:``pvlib.irradiance.dirint`` by taking into account information from a clear sky model. It is recommended that ``ghi_clearsky`` be calculated using the Ineichen clear sky model :py:func:``pvlib.clearsky.ineichen`` with ``perez_enhancement=True``. The pvlib implementation limits the clearness index to 1. Parameters ---------- ghi : array-like Global horizontal irradiance in W/m^2. ghi_clearsky : array-like Global horizontal irradiance from clear sky model, in W/m^2. dni_clearsky : array-like Direct normal irradiance from clear sky model, in W/m^2. zenith : array-like True (not refraction-corrected) zenith angles in decimal degrees. If Z is a vector it must be of the same size as all other vector inputs. Z must be >=0 and <=180. times : DatetimeIndex pressure : float or array-like, default 101325.0 The site pressure in Pascal. Pressure may be measured or an average pressure may be calculated from site altitude. use_delta_kt_prime : bool, default True If True, indicates that the stability index delta_kt_prime is included in the model. The stability index adjusts the estimated DNI in response to dynamics in the time series of GHI. It is recommended that delta_kt_prime is not used if the time between GHI points is 1.5 hours or greater. If use_delta_kt_prime=True, input data must be Series. temp_dew : None, float, or array-like, default None Surface dew point temperatures, in degrees C. Values of temp_dew may be numeric or NaN. Any single time period point with a temp_dew=NaN does not have dew point improvements applied. If temp_dew is not provided, then dew point improvements are not applied. min_cos_zenith : numeric, default 0.065 Minimum value of cos(zenith) to allow when calculating global clearness index `kt`. Equivalent to zenith = 86.273 degrees. max_zenith : numeric, default 87 Maximum value of zenith to allow in DNI calculation. DNI will be set to 0 for times with zenith values greater than `max_zenith`. Returns ------- dni : array-like The modeled direct normal irradiance in W/m^2. Notes ----- DIRINDEX model requires time series data (ie. one of the inputs must be a vector of length > 2). References ---------- .. [1] Perez, R., Ineichen, P., Moore, K., Kmiecik, M., Chain, C., George, R., & Vignola, F. (2002). A new operational model for satellite-derived irradiances: description and validation. Solar Energy, 73(5), 307-317. """ dni_dirint = dirint(ghi, zenith, times, pressure=pressure, use_delta_kt_prime=use_delta_kt_prime, temp_dew=temp_dew, min_cos_zenith=min_cos_zenith, max_zenith=max_zenith) dni_dirint_clearsky = dirint(ghi_clearsky, zenith, times, pressure=pressure, use_delta_kt_prime=use_delta_kt_prime, temp_dew=temp_dew, min_cos_zenith=min_cos_zenith, max_zenith=max_zenith) dni_dirindex = dni_clearsky * dni_dirint / dni_dirint_clearsky dni_dirindex[dni_dirindex < 0] = 0. return dni_dirindex def gti_dirint(poa_global, aoi, solar_zenith, solar_azimuth, times, surface_tilt, surface_azimuth, pressure=101325., use_delta_kt_prime=True, temp_dew=None, albedo=.25, model='perez', model_perez='allsitescomposite1990', calculate_gt_90=True, max_iterations=30): """ Determine GHI, DNI, DHI from POA global using the GTI DIRINT model. The GTI DIRINT model is described in [1]_. .. warning:: Model performance is poor for AOI greater than approximately 80 degrees `and` plane of array irradiance greater than approximately 200 W/m^2. Parameters ---------- poa_global : array-like Plane of array global irradiance in W/m^2. aoi : array-like Angle of incidence of solar rays with respect to the module surface normal. solar_zenith : array-like True (not refraction-corrected) solar zenith angles in decimal degrees. solar_azimuth : array-like Solar azimuth angles in decimal degrees. times : DatetimeIndex Time indices for the input array-like data. surface_tilt : numeric Surface tilt angles in decimal degrees. Tilt must be >=0 and <=180. The tilt angle is defined as degrees from horizontal (e.g. surface facing up = 0, surface facing horizon = 90). surface_azimuth : numeric Surface azimuth angles in decimal degrees. surface_azimuth must be >=0 and <=360. The Azimuth convention is defined as degrees east of north (e.g. North = 0, South=180 East = 90, West = 270). pressure : numeric, default 101325.0 The site pressure in Pascal. Pressure may be measured or an average pressure may be calculated from site altitude. use_delta_kt_prime : bool, default True If True, indicates that the stability index delta_kt_prime is included in the model. The stability index adjusts the estimated DNI in response to dynamics in the time series of GHI. It is recommended that delta_kt_prime is not used if the time between GHI points is 1.5 hours or greater. If use_delta_kt_prime=True, input data must be Series. temp_dew : None, float, or array-like, default None Surface dew point temperatures, in degrees C. Values of temp_dew may be numeric or NaN. Any single time period point with a temp_dew=NaN does not have dew point improvements applied. If temp_dew is not provided, then dew point improvements are not applied. albedo : numeric, default 0.25 Surface albedo model : String, default 'isotropic' Irradiance model. model_perez : String, default 'allsitescomposite1990' Used only if model='perez'. See :py:func:`perez`. calculate_gt_90 : bool, default True Controls if the algorithm evaluates inputs with AOI >= 90 degrees. If False, returns nan for AOI >= 90 degrees. Significant speed ups can be achieved by setting this parameter to False. max_iterations : int, default 30 Maximum number of iterations for the aoi < 90 deg algorithm. Returns ------- data : OrderedDict or DataFrame Contains the following keys/columns: * ``ghi``: the modeled global horizontal irradiance in W/m^2. * ``dni``: the modeled direct normal irradiance in W/m^2. * ``dhi``: the modeled diffuse horizontal irradiance in W/m^2. References ---------- .. [1] B. Marion, A model for deriving the direct normal and diffuse horizontal irradiance from the global tilted irradiance, Solar Energy 122, 1037-1046. :doi:`10.1016/j.solener.2015.10.024` """ aoi_lt_90 = aoi < 90 # for AOI less than 90 degrees ghi, dni, dhi, kt_prime = _gti_dirint_lt_90( poa_global, aoi, aoi_lt_90, solar_zenith, solar_azimuth, times, surface_tilt, surface_azimuth, pressure=pressure, use_delta_kt_prime=use_delta_kt_prime, temp_dew=temp_dew, albedo=albedo, model=model, model_perez=model_perez, max_iterations=max_iterations) # for AOI greater than or equal to 90 degrees if calculate_gt_90: ghi_gte_90, dni_gte_90, dhi_gte_90 = _gti_dirint_gte_90( poa_global, aoi, solar_zenith, solar_azimuth, surface_tilt, times, kt_prime, pressure=pressure, temp_dew=temp_dew, albedo=albedo) else: ghi_gte_90, dni_gte_90, dhi_gte_90 = np.nan, np.nan, np.nan # put the AOI < 90 and AOI >= 90 conditions together output = OrderedDict() output['ghi'] = ghi.where(aoi_lt_90, ghi_gte_90) output['dni'] = dni.where(aoi_lt_90, dni_gte_90) output['dhi'] = dhi.where(aoi_lt_90, dhi_gte_90) output = pd.DataFrame(output, index=times) return output def _gti_dirint_lt_90(poa_global, aoi, aoi_lt_90, solar_zenith, solar_azimuth, times, surface_tilt, surface_azimuth, pressure=101325., use_delta_kt_prime=True, temp_dew=None, albedo=.25, model='perez', model_perez='allsitescomposite1990', max_iterations=30): """ GTI-DIRINT model for AOI < 90 degrees. See Marion 2015 Section 2.1. See gti_dirint signature for parameter details. """ I0 = get_extra_radiation(times, 1370, 'spencer') cos_zenith = tools.cosd(solar_zenith) # I0h as in Marion 2015 eqns 1, 3 I0h = I0 * np.maximum(0.065, cos_zenith) airmass = atmosphere.get_relative_airmass(solar_zenith, model='kasten1966') airmass = atmosphere.get_absolute_airmass(airmass, pressure) # these coeffs and diff variables and the loop below # implement figure 1 of Marion 2015 # make coeffs that is at least 30 elements long so that all # coeffs can be assigned as specified in Marion 2015. # slice below will limit iterations if necessary coeffs = np.empty(max(30, max_iterations)) coeffs[0:3] = 1 coeffs[3:10] = 0.5 coeffs[10:20] = 0.25 coeffs[20:] = 0.125 coeffs = coeffs[:max_iterations] # covers case where max_iterations < 30 # initialize diff diff = pd.Series(9999, index=times) best_diff = diff # initialize poa_global_i poa_global_i = poa_global for iteration, coeff in enumerate(coeffs): # test if difference between modeled GTI and # measured GTI (poa_global) is less than 1 W/m^2 # only test for aoi less than 90 deg best_diff_lte_1 = best_diff <= 1 best_diff_lte_1_lt_90 = best_diff_lte_1[aoi_lt_90] if best_diff_lte_1_lt_90.all(): # all aoi < 90 points have a difference <= 1, so break loop break # calculate kt and DNI from GTI kt = clearness_index(poa_global_i, aoi, I0) # kt from Marion eqn 2 disc_dni = np.maximum(_disc_kn(kt, airmass)[0] * I0, 0) kt_prime = clearness_index_zenith_independent(kt, airmass) # dirint DNI in Marion eqn 3 dni = _dirint_from_dni_ktprime(disc_dni, kt_prime, solar_zenith, use_delta_kt_prime, temp_dew) # calculate DHI using Marion eqn 3 (identify 1st term on RHS as GHI) # I0h has a minimum zenith projection, but multiplier of DNI does not ghi = kt * I0h # Kt * I0 * max(0.065, cos(zen)) dhi = ghi - dni * cos_zenith # no cos(zen) restriction here # following SSC code dni = np.maximum(dni, 0) ghi = np.maximum(ghi, 0) dhi = np.maximum(dhi, 0) # use DNI and DHI to model GTI # GTI-DIRINT uses perez transposition model, but we allow for # any model here all_irrad = get_total_irradiance( surface_tilt, surface_azimuth, solar_zenith, solar_azimuth, dni, ghi, dhi, dni_extra=I0, airmass=airmass, albedo=albedo, model=model, model_perez=model_perez) gti_model = all_irrad['poa_global'] # calculate new diff diff = gti_model - poa_global # determine if the new diff is smaller in magnitude # than the old diff diff_abs = diff.abs() smallest_diff = diff_abs < best_diff # save the best differences best_diff = diff_abs.where(smallest_diff, best_diff) # on first iteration, the best values are the only values if iteration == 0: best_ghi = ghi best_dni = dni best_dhi = dhi best_kt_prime = kt_prime else: # save new DNI, DHI, DHI if they provide the best consistency # otherwise use the older values. best_ghi = ghi.where(smallest_diff, best_ghi) best_dni = dni.where(smallest_diff, best_dni) best_dhi = dhi.where(smallest_diff, best_dhi) best_kt_prime = kt_prime.where(smallest_diff, best_kt_prime) # calculate adjusted inputs for next iteration. Marion eqn 4 poa_global_i = np.maximum(1.0, poa_global_i - coeff * diff) else: # we are here because we ran out of coeffs to loop over and # therefore we have exceeded max_iterations import warnings failed_points = best_diff[aoi_lt_90][~best_diff_lte_1_lt_90] warnings.warn( ('%s points failed to converge after %s iterations. best_diff:\n%s' % (len(failed_points), max_iterations, failed_points)), RuntimeWarning) # return the best data, whether or not the solution converged return best_ghi, best_dni, best_dhi, best_kt_prime def _gti_dirint_gte_90(poa_global, aoi, solar_zenith, solar_azimuth, surface_tilt, times, kt_prime, pressure=101325., temp_dew=None, albedo=.25): """ GTI-DIRINT model for AOI >= 90 degrees. See Marion 2015 Section 2.2. See gti_dirint signature for parameter details. """ kt_prime_gte_90 = _gti_dirint_gte_90_kt_prime(aoi, solar_zenith, solar_azimuth, times, kt_prime) I0 = get_extra_radiation(times, 1370, 'spencer') airmass = atmosphere.get_relative_airmass(solar_zenith, model='kasten1966') airmass = atmosphere.get_absolute_airmass(airmass, pressure) kt = kt_prime_gte_90 * _kt_kt_prime_factor(airmass) disc_dni = np.maximum(_disc_kn(kt, airmass)[0] * I0, 0) dni_gte_90 = _dirint_from_dni_ktprime(disc_dni, kt_prime, solar_zenith, False, temp_dew) dni_gte_90_proj = dni_gte_90 * tools.cosd(solar_zenith) cos_surface_tilt = tools.cosd(surface_tilt) # isotropic sky plus ground diffuse dhi_gte_90 = ( (2 * poa_global - dni_gte_90_proj * albedo * (1 - cos_surface_tilt)) / (1 + cos_surface_tilt + albedo * (1 - cos_surface_tilt))) ghi_gte_90 = dni_gte_90_proj + dhi_gte_90 return ghi_gte_90, dni_gte_90, dhi_gte_90 def _gti_dirint_gte_90_kt_prime(aoi, solar_zenith, solar_azimuth, times, kt_prime): """ Determine kt' values to be used in GTI-DIRINT AOI >= 90 deg case. See Marion 2015 Section 2.2. For AOI >= 90 deg: average of the kt_prime values for 65 < AOI < 80 in each day's morning and afternoon. Morning and afternoon are treated separately. For AOI < 90 deg: NaN. See gti_dirint signature for parameter details. Returns ------- kt_prime_gte_90 : Series Index is `times`. """ # kt_prime values from DIRINT calculation for AOI < 90 case # set the kt_prime from sunrise to AOI=90 to be equal to # the kt_prime for 65 < AOI < 80 during the morning. # similar for the afternoon. repeat for every day. aoi_gte_90 = aoi >= 90 aoi_65_80 = (aoi > 65) & (aoi < 80) zenith_lt_90 = solar_zenith < 90 morning = solar_azimuth < 180 afternoon = solar_azimuth > 180 aoi_65_80_morning = aoi_65_80 & morning aoi_65_80_afternoon = aoi_65_80 & afternoon zenith_lt_90_aoi_gte_90_morning = zenith_lt_90 & aoi_gte_90 & morning zenith_lt_90_aoi_gte_90_afternoon = zenith_lt_90 & aoi_gte_90 & afternoon kt_prime_gte_90 = [] for date, data in kt_prime.groupby(times.date): kt_prime_am_avg = data[aoi_65_80_morning].mean() kt_prime_pm_avg = data[aoi_65_80_afternoon].mean() kt_prime_by_date = pd.Series(np.nan, index=data.index) kt_prime_by_date[zenith_lt_90_aoi_gte_90_morning] = kt_prime_am_avg kt_prime_by_date[zenith_lt_90_aoi_gte_90_afternoon] = kt_prime_pm_avg kt_prime_gte_90.append(kt_prime_by_date) kt_prime_gte_90 = pd.concat(kt_prime_gte_90) return kt_prime_gte_90 def erbs(ghi, zenith, datetime_or_doy, min_cos_zenith=0.065, max_zenith=87): r""" Estimate DNI and DHI from GHI using the Erbs model. The Erbs model [1]_ estimates the diffuse fraction DF from global horizontal irradiance through an empirical relationship between DF and the ratio of GHI to extraterrestrial irradiance, Kt. The function uses the diffuse fraction to compute DHI as .. math:: DHI = DF \times GHI DNI is then estimated as .. math:: DNI = (GHI - DHI)/\cos(Z) where Z is the zenith angle. Parameters ---------- ghi: numeric Global horizontal irradiance in W/m^2. zenith: numeric True (not refraction-corrected) zenith angles in decimal degrees. datetime_or_doy : int, float, array, pd.DatetimeIndex Day of year or array of days of year e.g. pd.DatetimeIndex.dayofyear, or pd.DatetimeIndex. min_cos_zenith : numeric, default 0.065 Minimum value of cos(zenith) to allow when calculating global clearness index `kt`. Equivalent to zenith = 86.273 degrees. max_zenith : numeric, default 87 Maximum value of zenith to allow in DNI calculation. DNI will be set to 0 for times with zenith values greater than `max_zenith`. Returns ------- data : OrderedDict or DataFrame Contains the following keys/columns: * ``dni``: the modeled direct normal irradiance in W/m^2. * ``dhi``: the modeled diffuse horizontal irradiance in W/m^2. * ``kt``: Ratio of global to extraterrestrial irradiance on a horizontal plane. References ---------- .. [1] D. G. Erbs, S. A. Klein and J. A. Duffie, Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation, Solar Energy 28(4), pp 293-302, 1982. Eq. 1 See also -------- dirint disc """ dni_extra = get_extra_radiation(datetime_or_doy) kt = clearness_index(ghi, zenith, dni_extra, min_cos_zenith=min_cos_zenith, max_clearness_index=1) # For Kt <= 0.22, set the diffuse fraction df = 1 - 0.09*kt # For Kt > 0.22 and Kt <= 0.8, set the diffuse fraction df = np.where((kt > 0.22) & (kt <= 0.8), 0.9511 - 0.1604*kt + 4.388*kt**2 - 16.638*kt**3 + 12.336*kt**4, df) # For Kt > 0.8, set the diffuse fraction df = np.where(kt > 0.8, 0.165, df) dhi = df * ghi dni = (ghi - dhi) / tools.cosd(zenith) bad_values = (zenith > max_zenith) | (ghi < 0) | (dni < 0) dni = np.where(bad_values, 0, dni) # ensure that closure relationship remains valid dhi = np.where(bad_values, ghi, dhi) data = OrderedDict() data['dni'] = dni data['dhi'] = dhi data['kt'] = kt if isinstance(datetime_or_doy, pd.DatetimeIndex): data = pd.DataFrame(data, index=datetime_or_doy) return data def liujordan(zenith, transmittance, airmass, dni_extra=1367.0): ''' Determine DNI, DHI, GHI from extraterrestrial flux, transmittance, and optical air mass number. Liu and Jordan, 1960, developed a simplified direct radiation model. DHI is from an empirical equation for diffuse radiation from Liu and Jordan, 1960. Parameters ---------- zenith: pd.Series True (not refraction-corrected) zenith angles in decimal degrees. If Z is a vector it must be of the same size as all other vector inputs. Z must be >=0 and <=180. transmittance: float Atmospheric transmittance between 0 and 1. pressure: float, default 101325.0 Air pressure dni_extra: float, default 1367.0 Direct irradiance incident at the top of the atmosphere. Returns ------- irradiance: DataFrame Modeled direct normal irradiance, direct horizontal irradiance, and global horizontal irradiance in W/m^2 References ---------- .. [1] Campbell, G. S., J. M. Norman (1998) An Introduction to Environmental Biophysics. 2nd Ed. New York: Springer. .. [2] Liu, B. Y., R. C. Jordan, (1960). "The interrelationship and characteristic distribution of direct, diffuse, and total solar radiation". Solar Energy 4:1-19 ''' tau = transmittance dni = dni_extra*tau**airmass dhi = 0.3 * (1.0 - tau**airmass) * dni_extra * np.cos(np.radians(zenith)) ghi = dhi + dni * np.cos(np.radians(zenith)) irrads = OrderedDict() irrads['ghi'] = ghi irrads['dni'] = dni irrads['dhi'] = dhi if isinstance(ghi, pd.Series): irrads = pd.DataFrame(irrads) return irrads def _get_perez_coefficients(perezmodel): ''' Find coefficients for the Perez model Parameters ---------- perezmodel : string (optional, default='allsitescomposite1990') a character string which selects the desired set of Perez coefficients. If model is not provided as an input, the default, '1990' will be used. All possible model selections are: * '1990' * 'allsitescomposite1990' (same as '1990') * 'allsitescomposite1988' * 'sandiacomposite1988' * 'usacomposite1988' * 'france1988' * 'phoenix1988' * 'elmonte1988' * 'osage1988' * 'albuquerque1988' * 'capecanaveral1988' * 'albany1988' Returns -------- F1coeffs, F2coeffs : (array, array) F1 and F2 coefficients for the Perez model References ---------- .. [1] Loutzenhiser P.G. et. al. "Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation" 2007, Solar Energy vol. 81. pp. 254-267 .. [2] Perez, R., Seals, R., Ineichen, P., Stewart, R., Menicucci, D., 1987. A new simplified version of the Perez diffuse irradiance model for tilted surfaces. Solar Energy 39(3), 221-232. .. [3] Perez, R., Ineichen, P., Seals, R., Michalsky, J., Stewart, R., 1990. Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy 44 (5), 271-289. .. [4] Perez, R. et. al 1988. "The Development and Verification of the Perez Diffuse Radiation Model". SAND88-7030 ''' coeffdict = { 'allsitescomposite1990': [ [-0.0080, 0.5880, -0.0620, -0.0600, 0.0720, -0.0220], [0.1300, 0.6830, -0.1510, -0.0190, 0.0660, -0.0290], [0.3300, 0.4870, -0.2210, 0.0550, -0.0640, -0.0260], [0.5680, 0.1870, -0.2950, 0.1090, -0.1520, -0.0140], [0.8730, -0.3920, -0.3620, 0.2260, -0.4620, 0.0010], [1.1320, -1.2370, -0.4120, 0.2880, -0.8230, 0.0560], [1.0600, -1.6000, -0.3590, 0.2640, -1.1270, 0.1310], [0.6780, -0.3270, -0.2500, 0.1560, -1.3770, 0.2510]], 'allsitescomposite1988': [ [-0.0180, 0.7050, -0.071, -0.0580, 0.1020, -0.0260], [0.1910, 0.6450, -0.1710, 0.0120, 0.0090, -0.0270], [0.4400, 0.3780, -0.2560, 0.0870, -0.1040, -0.0250], [0.7560, -0.1210, -0.3460, 0.1790, -0.3210, -0.0080], [0.9960, -0.6450, -0.4050, 0.2600, -0.5900, 0.0170], [1.0980, -1.2900, -0.3930, 0.2690, -0.8320, 0.0750], [0.9730, -1.1350, -0.3780, 0.1240, -0.2580, 0.1490], [0.6890, -0.4120, -0.2730, 0.1990, -1.6750, 0.2370]], 'sandiacomposite1988': [ [-0.1960, 1.0840, -0.0060, -0.1140, 0.1800, -0.0190], [0.2360, 0.5190, -0.1800, -0.0110, 0.0200, -0.0380], [0.4540, 0.3210, -0.2550, 0.0720, -0.0980, -0.0460], [0.8660, -0.3810, -0.3750, 0.2030, -0.4030, -0.0490], [1.0260, -0.7110, -0.4260, 0.2730, -0.6020, -0.0610], [0.9780, -0.9860, -0.3500, 0.2800, -0.9150, -0.0240], [0.7480, -0.9130, -0.2360, 0.1730, -1.0450, 0.0650], [0.3180, -0.7570, 0.1030, 0.0620, -1.6980, 0.2360]], 'usacomposite1988': [ [-0.0340, 0.6710, -0.0590, -0.0590, 0.0860, -0.0280], [0.2550, 0.4740, -0.1910, 0.0180, -0.0140, -0.0330], [0.4270, 0.3490, -0.2450, 0.0930, -0.1210, -0.0390], [0.7560, -0.2130, -0.3280, 0.1750, -0.3040, -0.0270], [1.0200, -0.8570, -0.3850, 0.2800, -0.6380, -0.0190], [1.0500, -1.3440, -0.3480, 0.2800, -0.8930, 0.0370], [0.9740, -1.5070, -0.3700, 0.1540, -0.5680, 0.1090], [0.7440, -1.8170, -0.2560, 0.2460, -2.6180, 0.2300]], 'france1988': [ [0.0130, 0.7640, -0.1000, -0.0580, 0.1270, -0.0230], [0.0950, 0.9200, -0.1520, 0, 0.0510, -0.0200], [0.4640, 0.4210, -0.2800, 0.0640, -0.0510, -0.0020], [0.7590, -0.0090, -0.3730, 0.2010, -0.3820, 0.0100], [0.9760, -0.4000, -0.4360, 0.2710, -0.6380, 0.0510], [1.1760, -1.2540, -0.4620, 0.2950, -0.9750, 0.1290], [1.1060, -1.5630, -0.3980, 0.3010, -1.4420, 0.2120], [0.9340, -1.5010, -0.2710, 0.4200, -2.9170, 0.2490]], 'phoenix1988': [ [-0.0030, 0.7280, -0.0970, -0.0750, 0.1420, -0.0430], [0.2790, 0.3540, -0.1760, 0.0300, -0.0550, -0.0540], [0.4690, 0.1680, -0.2460, 0.0480, -0.0420, -0.0570], [0.8560, -0.5190, -0.3400, 0.1760, -0.3800, -0.0310], [0.9410, -0.6250, -0.3910, 0.1880, -0.3600, -0.0490], [1.0560, -1.1340, -0.4100, 0.2810, -0.7940, -0.0650], [0.9010, -2.1390, -0.2690, 0.1180, -0.6650, 0.0460], [0.1070, 0.4810, 0.1430, -0.1110, -0.1370, 0.2340]], 'elmonte1988': [ [0.0270, 0.7010, -0.1190, -0.0580, 0.1070, -0.0600], [0.1810, 0.6710, -0.1780, -0.0790, 0.1940, -0.0350], [0.4760, 0.4070, -0.2880, 0.0540, -0.0320, -0.0550], [0.8750, -0.2180, -0.4030, 0.1870, -0.3090, -0.0610], [1.1660, -1.0140, -0.4540, 0.2110, -0.4100, -0.0440], [1.1430, -2.0640, -0.2910, 0.0970, -0.3190, 0.0530], [1.0940, -2.6320, -0.2590, 0.0290, -0.4220, 0.1470], [0.1550, 1.7230, 0.1630, -0.1310, -0.0190, 0.2770]], 'osage1988': [ [-0.3530, 1.4740, 0.0570, -0.1750, 0.3120, 0.0090], [0.3630, 0.2180, -0.2120, 0.0190, -0.0340, -0.0590], [-0.0310, 1.2620, -0.0840, -0.0820, 0.2310, -0.0170], [0.6910, 0.0390, -0.2950, 0.0910, -0.1310, -0.0350], [1.1820, -1.3500, -0.3210, 0.4080, -0.9850, -0.0880], [0.7640, 0.0190, -0.2030, 0.2170, -0.2940, -0.1030], [0.2190, 1.4120, 0.2440, 0.4710, -2.9880, 0.0340], [3.5780, 22.2310, -10.7450, 2.4260, 4.8920, -5.6870]], 'albuquerque1988': [ [0.0340, 0.5010, -0.0940, -0.0630, 0.1060, -0.0440], [0.2290, 0.4670, -0.1560, -0.0050, -0.0190, -0.0230], [0.4860, 0.2410, -0.2530, 0.0530, -0.0640, -0.0220], [0.8740, -0.3930, -0.3970, 0.1810, -0.3270, -0.0370], [1.1930, -1.2960, -0.5010, 0.2810, -0.6560, -0.0450], [1.0560, -1.7580, -0.3740, 0.2260, -0.7590, 0.0340], [0.9010, -4.7830, -0.1090, 0.0630, -0.9700, 0.1960], [0.8510, -7.0550, -0.0530, 0.0600, -2.8330, 0.3300]], 'capecanaveral1988': [ [0.0750, 0.5330, -0.1240, -0.0670, 0.0420, -0.0200], [0.2950, 0.4970, -0.2180, -0.0080, 0.0030, -0.0290], [0.5140, 0.0810, -0.2610, 0.0750, -0.1600, -0.0290], [0.7470, -0.3290, -0.3250, 0.1810, -0.4160, -0.0300], [0.9010, -0.8830, -0.2970, 0.1780, -0.4890, 0.0080], [0.5910, -0.0440, -0.1160, 0.2350, -0.9990, 0.0980], [0.5370, -2.4020, 0.3200, 0.1690, -1.9710, 0.3100], [-0.8050, 4.5460, 1.0720, -0.2580, -0.9500, 0.7530]], 'albany1988': [ [0.0120, 0.5540, -0.0760, -0.0520, 0.0840, -0.0290], [0.2670, 0.4370, -0.1940, 0.0160, 0.0220, -0.0360], [0.4200, 0.3360, -0.2370, 0.0740, -0.0520, -0.0320], [0.6380, -0.0010, -0.2810, 0.1380, -0.1890, -0.0120], [1.0190, -1.0270, -0.3420, 0.2710, -0.6280, 0.0140], [1.1490, -1.9400, -0.3310, 0.3220, -1.0970, 0.0800], [1.4340, -3.9940, -0.4920, 0.4530, -2.3760, 0.1170], [1.0070, -2.2920, -0.4820, 0.3900, -3.3680, 0.2290]], } array = np.array(coeffdict[perezmodel]) F1coeffs = array[:, 0:3] F2coeffs = array[:, 3:7] return F1coeffs, F2coeffs def _get_dirint_coeffs(): """ A place to stash the dirint coefficients. Returns ------- np.array with shape ``(6, 6, 7, 5)``. Ordering is ``[kt_prime_bin, zenith_bin, delta_kt_prime_bin, w_bin]`` """ # To allow for maximum copy/paste from the MATLAB 1-indexed code, # we create and assign values to an oversized array. # Then, we return the [1:, 1:, :, :] slice. coeffs = np.zeros((7, 7, 7, 5)) coeffs[1, 1, :, :] = [ [0.385230, 0.385230, 0.385230, 0.462880, 0.317440], [0.338390, 0.338390, 0.221270, 0.316730, 0.503650], [0.235680, 0.235680, 0.241280, 0.157830, 0.269440], [0.830130, 0.830130, 0.171970, 0.841070, 0.457370], [0.548010, 0.548010, 0.478000, 0.966880, 1.036370], [0.548010, 0.548010, 1.000000, 3.012370, 1.976540], [0.582690, 0.582690, 0.229720, 0.892710, 0.569950]] coeffs[1, 2, :, :] = [ [0.131280, 0.131280, 0.385460, 0.511070, 0.127940], [0.223710, 0.223710, 0.193560, 0.304560, 0.193940], [0.229970, 0.229970, 0.275020, 0.312730, 0.244610], [0.090100, 0.184580, 0.260500, 0.687480, 0.579440], [0.131530, 0.131530, 0.370190, 1.380350, 1.052270], [1.116250, 1.116250, 0.928030, 3.525490, 2.316920], [0.090100, 0.237000, 0.300040, 0.812470, 0.664970]] coeffs[1, 3, :, :] = [ [0.587510, 0.130000, 0.400000, 0.537210, 0.832490], [0.306210, 0.129830, 0.204460, 0.500000, 0.681640], [0.224020, 0.260620, 0.334080, 0.501040, 0.350470], [0.421540, 0.753970, 0.750660, 3.706840, 0.983790], [0.706680, 0.373530, 1.245670, 0.864860, 1.992630], [4.864400, 0.117390, 0.265180, 0.359180, 3.310820], [0.392080, 0.493290, 0.651560, 1.932780, 0.898730]] coeffs[1, 4, :, :] = [ [0.126970, 0.126970, 0.126970, 0.126970, 0.126970], [0.810820, 0.810820, 0.810820, 0.810820, 0.810820], [3.241680, 2.500000, 2.291440, 2.291440, 2.291440], [4.000000, 3.000000, 2.000000, 0.975430, 1.965570], [12.494170, 12.494170, 8.000000, 5.083520, 8.792390], [21.744240, 21.744240, 21.744240, 21.744240, 21.744240], [3.241680, 12.494170, 1.620760, 1.375250, 2.331620]] coeffs[1, 5, :, :] = [ [0.126970, 0.126970, 0.126970, 0.126970, 0.126970], [0.810820, 0.810820, 0.810820, 0.810820, 0.810820], [3.241680, 2.500000, 2.291440, 2.291440, 2.291440], [4.000000, 3.000000, 2.000000, 0.975430, 1.965570], [12.494170, 12.494170, 8.000000, 5.083520, 8.792390], [21.744240, 21.744240, 21.744240, 21.744240, 21.744240], [3.241680, 12.494170, 1.620760, 1.375250, 2.331620]] coeffs[1, 6, :, :] = [ [0.126970, 0.126970, 0.126970, 0.126970, 0.126970], [0.810820, 0.810820, 0.810820, 0.810820, 0.810820], [3.241680, 2.500000, 2.291440, 2.291440, 2.291440], [4.000000, 3.000000, 2.000000, 0.975430, 1.965570], [12.494170, 12.494170, 8.000000, 5.083520, 8.792390], [21.744240, 21.744240, 21.744240, 21.744240, 21.744240], [3.241680, 12.494170, 1.620760, 1.375250, 2.331620]] coeffs[2, 1, :, :] = [ [0.337440, 0.337440, 0.969110, 1.097190, 1.116080], [0.337440, 0.337440, 0.969110, 1.116030, 0.623900], [0.337440, 0.337440, 1.530590, 1.024420, 0.908480], [0.584040, 0.584040, 0.847250, 0.914940, 1.289300], [0.337440, 0.337440, 0.310240, 1.435020, 1.852830], [0.337440, 0.337440, 1.015010, 1.097190, 2.117230], [0.337440, 0.337440, 0.969110, 1.145730, 1.476400]] coeffs[2, 2, :, :] = [ [0.300000, 0.300000, 0.700000, 1.100000, 0.796940], [0.219870, 0.219870, 0.526530, 0.809610, 0.649300], [0.386650, 0.386650, 0.119320, 0.576120, 0.685460], [0.746730, 0.399830, 0.470970, 0.986530, 0.785370], [0.575420, 0.936700, 1.649200, 1.495840, 1.335590], [1.319670, 4.002570, 1.276390, 2.644550, 2.518670], [0.665190, 0.678910, 1.012360, 1.199940, 0.986580]] coeffs[2, 3, :, :] = [ [0.378870, 0.974060, 0.500000, 0.491880, 0.665290], [0.105210, 0.263470, 0.407040, 0.553460, 0.582590], [0.312900, 0.345240, 1.144180, 0.854790, 0.612280], [0.119070, 0.365120, 0.560520, 0.793720, 0.802600], [0.781610, 0.837390, 1.270420, 1.537980, 1.292950], [1.152290, 1.152290, 1.492080, 1.245370, 2.177100], [0.424660, 0.529550, 0.966910, 1.033460, 0.958730]] coeffs[2, 4, :, :] = [ [0.310590, 0.714410, 0.252450, 0.500000, 0.607600], [0.975190, 0.363420, 0.500000, 0.400000, 0.502800], [0.175580, 0.196250, 0.476360, 1.072470, 0.490510], [0.719280, 0.698620, 0.657770, 1.190840, 0.681110], [0.426240, 1.464840, 0.678550, 1.157730, 0.978430], [2.501120, 1.789130, 1.387090, 2.394180, 2.394180], [0.491640, 0.677610, 0.685610, 1.082400, 0.735410]] coeffs[2, 5, :, :] = [ [0.597000, 0.500000, 0.300000, 0.310050, 0.413510], [0.314790, 0.336310, 0.400000, 0.400000, 0.442460], [0.166510, 0.460440, 0.552570, 1.000000, 0.461610], [0.401020, 0.559110, 0.403630, 1.016710, 0.671490], [0.400360, 0.750830, 0.842640, 1.802600, 1.023830], [3.315300, 1.510380, 2.443650, 1.638820, 2.133990], [0.530790, 0.745850, 0.693050, 1.458040, 0.804500]] coeffs[2, 6, :, :] = [ [0.597000, 0.500000, 0.300000, 0.310050, 0.800920], [0.314790, 0.336310, 0.400000, 0.400000, 0.237040], [0.166510, 0.460440, 0.552570, 1.000000, 0.581990], [0.401020, 0.559110, 0.403630, 1.016710, 0.898570], [0.400360, 0.750830, 0.842640, 1.802600, 3.400390], [3.315300, 1.510380, 2.443650, 1.638820, 2.508780], [0.204340, 1.157740, 2.003080, 2.622080, 1.409380]] coeffs[3, 1, :, :] = [ [1.242210, 1.242210, 1.242210, 1.242210, 1.242210], [0.056980, 0.056980, 0.656990, 0.656990, 0.925160], [0.089090, 0.089090, 1.040430, 1.232480, 1.205300], [1.053850, 1.053850, 1.399690, 1.084640, 1.233340], [1.151540, 1.151540, 1.118290, 1.531640, 1.411840], [1.494980, 1.494980, 1.700000, 1.800810, 1.671600], [1.018450, 1.018450, 1.153600, 1.321890, 1.294670]] coeffs[3, 2, :, :] = [ [0.700000, 0.700000, 1.023460, 0.700000, 0.945830], [0.886300, 0.886300, 1.333620, 0.800000, 1.066620], [0.902180, 0.902180, 0.954330, 1.126690, 1.097310], [1.095300, 1.075060, 1.176490, 1.139470, 1.096110], [1.201660, 1.201660, 1.438200, 1.256280, 1.198060], [1.525850, 1.525850, 1.869160, 1.985410, 1.911590], [1.288220, 1.082810, 1.286370, 1.166170, 1.119330]] coeffs[3, 3, :, :] = [ [0.600000, 1.029910, 0.859890, 0.550000, 0.813600], [0.604450, 1.029910, 0.859890, 0.656700, 0.928840], [0.455850, 0.750580, 0.804930, 0.823000, 0.911000], [0.526580, 0.932310, 0.908620, 0.983520, 0.988090], [1.036110, 1.100690, 0.848380, 1.035270, 1.042380], [1.048440, 1.652720, 0.900000, 2.350410, 1.082950], [0.817410, 0.976160, 0.861300, 0.974780, 1.004580]] coeffs[3, 4, :, :] = [ [0.782110, 0.564280, 0.600000, 0.600000, 0.665740], [0.894480, 0.680730, 0.541990, 0.800000, 0.669140], [0.487460, 0.818950, 0.841830, 0.872540, 0.709040], [0.709310, 0.872780, 0.908480, 0.953290, 0.844350], [0.863920, 0.947770, 0.876220, 1.078750, 0.936910], [1.280350, 0.866720, 0.769790, 1.078750, 0.975130], [0.725420, 0.869970, 0.868810, 0.951190, 0.829220]] coeffs[3, 5, :, :] = [ [0.791750, 0.654040, 0.483170, 0.409000, 0.597180], [0.566140, 0.948990, 0.971820, 0.653570, 0.718550], [0.648710, 0.637730, 0.870510, 0.860600, 0.694300], [0.637630, 0.767610, 0.925670, 0.990310, 0.847670], [0.736380, 0.946060, 1.117590, 1.029340, 0.947020], [1.180970, 0.850000, 1.050000, 0.950000, 0.888580], [0.700560, 0.801440, 0.961970, 0.906140, 0.823880]] coeffs[3, 6, :, :] = [ [0.500000, 0.500000, 0.586770, 0.470550, 0.629790], [0.500000, 0.500000, 1.056220, 1.260140, 0.658140], [0.500000, 0.500000, 0.631830, 0.842620, 0.582780], [0.554710, 0.734730, 0.985820, 0.915640, 0.898260], [0.712510, 1.205990, 0.909510, 1.078260, 0.885610], [1.899260, 1.559710, 1.000000, 1.150000, 1.120390], [0.653880, 0.793120, 0.903320, 0.944070, 0.796130]] coeffs[4, 1, :, :] = [ [1.000000, 1.000000, 1.050000, 1.170380, 1.178090], [0.960580, 0.960580, 1.059530, 1.179030, 1.131690], [0.871470, 0.871470, 0.995860, 1.141910, 1.114600], [1.201590, 1.201590, 0.993610, 1.109380, 1.126320], [1.065010, 1.065010, 0.828660, 0.939970, 1.017930], [1.065010, 1.065010, 0.623690, 1.119620, 1.132260], [1.071570, 1.071570, 0.958070, 1.114130, 1.127110]] coeffs[4, 2, :, :] = [ [0.950000, 0.973390, 0.852520, 1.092200, 1.096590], [0.804120, 0.913870, 0.980990, 1.094580, 1.042420], [0.737540, 0.935970, 0.999940, 1.056490, 1.050060], [1.032980, 1.034540, 0.968460, 1.032080, 1.015780], [0.900000, 0.977210, 0.945960, 1.008840, 0.969960], [0.600000, 0.750000, 0.750000, 0.844710, 0.899100], [0.926800, 0.965030, 0.968520, 1.044910, 1.032310]] coeffs[4, 3, :, :] = [ [0.850000, 1.029710, 0.961100, 1.055670, 1.009700], [0.818530, 0.960010, 0.996450, 1.081970, 1.036470], [0.765380, 0.953500, 0.948260, 1.052110, 1.000140], [0.775610, 0.909610, 0.927800, 0.987800, 0.952100], [1.000990, 0.881880, 0.875950, 0.949100, 0.893690], [0.902370, 0.875960, 0.807990, 0.942410, 0.917920], [0.856580, 0.928270, 0.946820, 1.032260, 0.972990]] coeffs[4, 4, :, :] = [ [0.750000, 0.857930, 0.983800, 1.056540, 0.980240], [0.750000, 0.987010, 1.013730, 1.133780, 1.038250], [0.800000, 0.947380, 1.012380, 1.091270, 0.999840], [0.800000, 0.914550, 0.908570, 0.999190, 0.915230], [0.778540, 0.800590, 0.799070, 0.902180, 0.851560], [0.680190, 0.317410, 0.507680, 0.388910, 0.646710], [0.794920, 0.912780, 0.960830, 1.057110, 0.947950]] coeffs[4, 5, :, :] = [ [0.750000, 0.833890, 0.867530, 1.059890, 0.932840], [0.979700, 0.971470, 0.995510, 1.068490, 1.030150], [0.858850, 0.987920, 1.043220, 1.108700, 1.044900], [0.802400, 0.955110, 0.911660, 1.045070, 0.944470], [0.884890, 0.766210, 0.885390, 0.859070, 0.818190], [0.615680, 0.700000, 0.850000, 0.624620, 0.669300], [0.835570, 0.946150, 0.977090, 1.049350, 0.979970]] coeffs[4, 6, :, :] = [ [0.689220, 0.809600, 0.900000, 0.789500, 0.853990], [0.854660, 0.852840, 0.938200, 0.923110, 0.955010], [0.938600, 0.932980, 1.010390, 1.043950, 1.041640], [0.843620, 0.981300, 0.951590, 0.946100, 0.966330], [0.694740, 0.814690, 0.572650, 0.400000, 0.726830], [0.211370, 0.671780, 0.416340, 0.297290, 0.498050], [0.843540, 0.882330, 0.911760, 0.898420, 0.960210]] coeffs[5, 1, :, :] = [ [1.054880, 1.075210, 1.068460, 1.153370, 1.069220], [1.000000, 1.062220, 1.013470, 1.088170, 1.046200], [0.885090, 0.993530, 0.942590, 1.054990, 1.012740], [0.920000, 0.950000, 0.978720, 1.020280, 0.984440], [0.850000, 0.908500, 0.839940, 0.985570, 0.962180], [0.800000, 0.800000, 0.810080, 0.950000, 0.961550], [1.038590, 1.063200, 1.034440, 1.112780, 1.037800]] coeffs[5, 2, :, :] = [ [1.017610, 1.028360, 1.058960, 1.133180, 1.045620], [0.920000, 0.998970, 1.033590, 1.089030, 1.022060], [0.912370, 0.949930, 0.979770, 1.020420, 0.981770], [0.847160, 0.935300, 0.930540, 0.955050, 0.946560], [0.880260, 0.867110, 0.874130, 0.972650, 0.883420], [0.627150, 0.627150, 0.700000, 0.774070, 0.845130], [0.973700, 1.006240, 1.026190, 1.071960, 1.017240]] coeffs[5, 3, :, :] = [ [1.028710, 1.017570, 1.025900, 1.081790, 1.024240], [0.924980, 0.985500, 1.014100, 1.092210, 0.999610], [0.828570, 0.934920, 0.994950, 1.024590, 0.949710], [0.900810, 0.901330, 0.928830, 0.979570, 0.913100], [0.761030, 0.845150, 0.805360, 0.936790, 0.853460], [0.626400, 0.546750, 0.730500, 0.850000, 0.689050], [0.957630, 0.985480, 0.991790, 1.050220, 0.987900]] coeffs[5, 4, :, :] = [ [0.992730, 0.993880, 1.017150, 1.059120, 1.017450], [0.975610, 0.987160, 1.026820, 1.075440, 1.007250], [0.871090, 0.933190, 0.974690, 0.979840, 0.952730], [0.828750, 0.868090, 0.834920, 0.905510, 0.871530], [0.781540, 0.782470, 0.767910, 0.764140, 0.795890], [0.743460, 0.693390, 0.514870, 0.630150, 0.715660], [0.934760, 0.957870, 0.959640, 0.972510, 0.981640]] coeffs[5, 5, :, :] = [ [0.965840, 0.941240, 0.987100, 1.022540, 1.011160], [0.988630, 0.994770, 0.976590, 0.950000, 1.034840], [0.958200, 1.018080, 0.974480, 0.920000, 0.989870], [0.811720, 0.869090, 0.812020, 0.850000, 0.821050], [0.682030, 0.679480, 0.632450, 0.746580, 0.738550], [0.668290, 0.445860, 0.500000, 0.678920, 0.696510], [0.926940, 0.953350, 0.959050, 0.876210, 0.991490]] coeffs[5, 6, :, :] = [ [0.948940, 0.997760, 0.850000, 0.826520, 0.998470], [1.017860, 0.970000, 0.850000, 0.700000, 0.988560], [1.000000, 0.950000, 0.850000, 0.606240, 0.947260], [1.000000, 0.746140, 0.751740, 0.598390, 0.725230], [0.922210, 0.500000, 0.376800, 0.517110, 0.548630], [0.500000, 0.450000, 0.429970, 0.404490, 0.539940], [0.960430, 0.881630, 0.775640, 0.596350, 0.937680]] coeffs[6, 1, :, :] = [ [1.030000, 1.040000, 1.000000, 1.000000, 1.049510], [1.050000, 0.990000, 0.990000, 0.950000, 0.996530], [1.050000, 0.990000, 0.990000, 0.820000, 0.971940], [1.050000, 0.790000, 0.880000, 0.820000, 0.951840], [1.000000, 0.530000, 0.440000, 0.710000, 0.928730], [0.540000, 0.470000, 0.500000, 0.550000, 0.773950], [1.038270, 0.920180, 0.910930, 0.821140, 1.034560]] coeffs[6, 2, :, :] = [ [1.041020, 0.997520, 0.961600, 1.000000, 1.035780], [0.948030, 0.980000, 0.900000, 0.950360, 0.977460], [0.950000, 0.977250, 0.869270, 0.800000, 0.951680], [0.951870, 0.850000, 0.748770, 0.700000, 0.883850], [0.900000, 0.823190, 0.727450, 0.600000, 0.839870], [0.850000, 0.805020, 0.692310, 0.500000, 0.788410], [1.010090, 0.895270, 0.773030, 0.816280, 1.011680]] coeffs[6, 3, :, :] = [ [1.022450, 1.004600, 0.983650, 1.000000, 1.032940], [0.943960, 0.999240, 0.983920, 0.905990, 0.978150], [0.936240, 0.946480, 0.850000, 0.850000, 0.930320], [0.816420, 0.885000, 0.644950, 0.817650, 0.865310], [0.742960, 0.765690, 0.561520, 0.700000, 0.827140], [0.643870, 0.596710, 0.474460, 0.600000, 0.651200], [0.971740, 0.940560, 0.714880, 0.864380, 1.001650]] coeffs[6, 4, :, :] = [ [0.995260, 0.977010, 1.000000, 1.000000, 1.035250], [0.939810, 0.975250, 0.939980, 0.950000, 0.982550], [0.876870, 0.879440, 0.850000, 0.900000, 0.917810], [0.873480, 0.873450, 0.751470, 0.850000, 0.863040], [0.761470, 0.702360, 0.638770, 0.750000, 0.783120], [0.734080, 0.650000, 0.600000, 0.650000, 0.715660], [0.942160, 0.919100, 0.770340, 0.731170, 0.995180]] coeffs[6, 5, :, :] = [ [0.952560, 0.916780, 0.920000, 0.900000, 1.005880], [0.928620, 0.994420, 0.900000, 0.900000, 0.983720], [0.913070, 0.850000, 0.850000, 0.800000, 0.924280], [0.868090, 0.807170, 0.823550, 0.600000, 0.844520], [0.769570, 0.719870, 0.650000, 0.550000, 0.733500], [0.580250, 0.650000, 0.600000, 0.500000, 0.628850], [0.904770, 0.852650, 0.708370, 0.493730, 0.949030]] coeffs[6, 6, :, :] = [ [0.911970, 0.800000, 0.800000, 0.800000, 0.956320], [0.912620, 0.682610, 0.750000, 0.700000, 0.950110], [0.653450, 0.659330, 0.700000, 0.600000, 0.856110], [0.648440, 0.600000, 0.641120, 0.500000, 0.695780], [0.570000, 0.550000, 0.598800, 0.400000, 0.560150], [0.475230, 0.500000, 0.518640, 0.339970, 0.520230], [0.743440, 0.592190, 0.603060, 0.316930, 0.794390]] return coeffs[1:, 1:, :, :] def dni(ghi, dhi, zenith, clearsky_dni=None, clearsky_tolerance=1.1, zenith_threshold_for_zero_dni=88.0, zenith_threshold_for_clearsky_limit=80.0): """ Determine DNI from GHI and DHI. When calculating the DNI from GHI and DHI the calculated DNI may be unreasonably high or negative for zenith angles close to 90 degrees (sunrise/sunset transitions). This function identifies unreasonable DNI values and sets them to NaN. If the clearsky DNI is given unreasonably high values are cut off. Parameters ---------- ghi : Series Global horizontal irradiance. dhi : Series Diffuse horizontal irradiance. zenith : Series True (not refraction-corrected) zenith angles in decimal degrees. Angles must be >=0 and <=180. clearsky_dni : None or Series, default None Clearsky direct normal irradiance. clearsky_tolerance : float, default 1.1 If 'clearsky_dni' is given this parameter can be used to allow a tolerance by how much the calculated DNI value can be greater than the clearsky value before it is identified as an unreasonable value. zenith_threshold_for_zero_dni : float, default 88.0 Non-zero DNI values for zenith angles greater than or equal to 'zenith_threshold_for_zero_dni' will be set to NaN. zenith_threshold_for_clearsky_limit : float, default 80.0 DNI values for zenith angles greater than or equal to 'zenith_threshold_for_clearsky_limit' and smaller the 'zenith_threshold_for_zero_dni' that are greater than the clearsky DNI (times allowed tolerance) will be corrected. Only applies if 'clearsky_dni' is not None. Returns ------- dni : Series The modeled direct normal irradiance. """ # calculate DNI dni = (ghi - dhi) / tools.cosd(zenith) # cutoff negative values dni[dni < 0] = float('nan') # set non-zero DNI values for zenith angles >= # zenith_threshold_for_zero_dni to NaN dni[(zenith >= zenith_threshold_for_zero_dni) & (dni != 0)] = float('nan') # correct DNI values for zenith angles greater or equal to the # zenith_threshold_for_clearsky_limit and smaller than the # upper_cutoff_zenith that are greater than the clearsky DNI (times # clearsky_tolerance) if clearsky_dni is not None: max_dni = clearsky_dni * clearsky_tolerance dni[(zenith >= zenith_threshold_for_clearsky_limit) & (zenith < zenith_threshold_for_zero_dni) & (dni > max_dni)] = max_dni return dni
bsd-3-clause
rahul-c1/scikit-learn
examples/svm/plot_oneclass.py
249
2302
""" ========================================== One-class SVM with non-linear kernel (RBF) ========================================== An example using a one-class SVM for novelty detection. :ref:`One-class SVM <svm_outlier_detection>` is an unsupervised algorithm that learns a decision function for novelty detection: classifying new data as similar or different to the training set. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn import svm xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500)) # Generate train data X = 0.3 * np.random.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * np.random.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) y_pred_train = clf.predict(X_train) y_pred_test = clf.predict(X_test) y_pred_outliers = clf.predict(X_outliers) n_error_train = y_pred_train[y_pred_train == -1].size n_error_test = y_pred_test[y_pred_test == -1].size n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size # plot the line, the points, and the nearest vectors to the plane Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.title("Novelty Detection") plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.Blues_r) a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='red') plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='orange') b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white') b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green') c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red') plt.axis('tight') plt.xlim((-5, 5)) plt.ylim((-5, 5)) plt.legend([a.collections[0], b1, b2, c], ["learned frontier", "training observations", "new regular observations", "new abnormal observations"], loc="upper left", prop=matplotlib.font_manager.FontProperties(size=11)) plt.xlabel( "error train: %d/200 ; errors novel regular: %d/40 ; " "errors novel abnormal: %d/40" % (n_error_train, n_error_test, n_error_outliers)) plt.show()
bsd-3-clause
dwhswenson/contact_map
contact_map/contact_map.py
1
36427
""" Contact map analysis. """ # Maintainer: David W.H. Swenson ([email protected]) # Licensed under LGPL, version 2.1 or greater import collections import itertools import pickle import json import warnings import numpy as np import pandas as pd import mdtraj as md from .contact_count import ContactCount from .atom_indexer import AtomSlicedIndexer, IdentityIndexer from .py_2_3 import inspect_method_arguments from .fix_parameters import ParameterFixer # TODO: # * switch to something where you can define the haystack -- the trick is to # replace the current mdtraj._compute_neighbors with something that # build a voxel list for the haystack, and then checks the voxel for each # query atom. Doesn't look like anything is doing that now: neighbors # doesn't use voxels, neighborlist doesn't limit the haystack def _residue_and_index(residue, topology): res = residue try: res_idx = res.index except AttributeError: res_idx = residue res = topology.residue(res_idx) return (res, res_idx) def residue_neighborhood(residue, n=1): """Find n nearest neighbor residues Parameters ---------- residue : mdtraj.Residue this residue n : positive int number of neighbors to find Returns ------- list of int neighbor residue numbers """ neighborhood = set([residue.index+i for i in range(-n, n+1)]) chain = set([res.index for res in residue.chain.residues]) # we could probably choose an faster approach here, but this is pretty # good, and it only gets run once per residue return [idx for idx in neighborhood if idx in chain] def _residue_for_atom(topology, atom_list): return set([topology.atom(a).residue for a in atom_list]) def _residue_idx_for_atom(topology, atom_list): return set([topology.atom(a).residue.index for a in atom_list]) def _range_from_iterable(iterable): sort = sorted(iterable) return (sort[0], sort[-1]+1) class ContactsDict(object): """Dict-like object giving access to atom or residue contacts. In some algorithmic situations, either the atom_contacts or the residue_contacts might be used. Rather than use lots of if-statements, or build an actual dictionary with the associated time cost of generating both, this class provides an object that allows dict-like access to either the atom or residue contacts. Atom-based contacts (``contact.atom_contacts``) can be accessed with as ``contact_dict['atom']`` or ``contact_dict['atoms']``. Residue-based contacts can be accessed with the keys ``'residue'``, ``'residues'``, or ``'res'``. Parameters ---------- contacts : :class:`.ContactObject` contact object with fundamental data """ def __init__(self, contacts): self.contacts = contacts def __getitem__(self, atom_or_res): if atom_or_res in ["atom", "atoms"]: contacts = self.contacts.atom_contacts elif atom_or_res in ["residue", "residues", "res"]: contacts = self.contacts.residue_contacts else: raise RuntimeError("Bad value for atom_or_res: " + str(atom_or_res)) return contacts class ContactObject(object): """ Generic object for contact map related analysis. Effectively abstract. Much of what we need to do the contact map analysis is the same for all analyses. It's in here. """ # Class default for use atom slice, None tries to be smart _class_use_atom_slice = None def __init__(self, topology, query, haystack, cutoff, n_neighbors_ignored): # all inits required: no defaults for abstract class! self._topology = topology if query is None: query = topology.select("not water and symbol != 'H'") if haystack is None: haystack = topology.select("not water and symbol != 'H'") # make things private and accessible through read-only properties so # they don't get accidentally changed after analysis self._cutoff = cutoff self._query = set(query) self._haystack = set(haystack) self._query_res_idx = set(_residue_idx_for_atom(topology, query)) self._haystack_res_idx = set(_residue_idx_for_atom(topology, haystack)) # Make tuple for efficient lookupt all_atoms_set = set(query).union(set(haystack)) self._all_atoms = tuple(sorted(list(all_atoms_set))) self._all_residues = _residue_idx_for_atom(self._topology, all_atoms_set) self._use_atom_slice = self._set_atom_slice(self._all_atoms) has_indexer = getattr(self, 'indexer', None) is not None if not has_indexer: Indexer = {True: AtomSlicedIndexer, False: IdentityIndexer}[self.use_atom_slice] self.indexer = Indexer(topology, self._query, self._haystack, self._all_atoms) self._n_neighbors_ignored = n_neighbors_ignored @classmethod def from_contacts(cls, atom_contacts, residue_contacts, topology, query=None, haystack=None, cutoff=0.45, n_neighbors_ignored=2, indexer=None): obj = cls.__new__(cls) obj.indexer = indexer super(cls, obj).__init__(topology, query, haystack, cutoff, n_neighbors_ignored) def get_contact_counter(contact): if isinstance(contact, ContactCount): return contact.counter else: return contact obj._atom_contacts = get_contact_counter(atom_contacts) obj._residue_contacts = get_contact_counter(residue_contacts) return obj def _set_atom_slice(self, all_atoms): """ Set atom slice logic """ if (self._class_use_atom_slice is None and not len(all_atoms) < self._topology.n_atoms): # Don't use if there are no atoms to be sliced return False elif self._class_use_atom_slice is None: # Use if there are atms to be sliced return True else: # Use class default return self._class_use_atom_slice @property def contacts(self): """:class:`.ContactsDict` : contact dict for these contacts""" return ContactsDict(self) def __hash__(self): return hash((self.cutoff, self.n_neighbors_ignored, frozenset(self._query), frozenset(self._haystack), self.topology)) def __eq__(self, other): is_equal = (self.cutoff == other.cutoff and self.n_neighbors_ignored == other.n_neighbors_ignored and self.query == other.query and self.haystack == other.haystack and self.topology == other.topology) return is_equal def to_dict(self): """Convert object to a dict. Keys should be strings; values should be (JSON-) serializable. See also -------- from_dict """ # need to explicitly convert possible np.int64 to int in several dct = { 'topology': self._serialize_topology(self.topology), 'cutoff': self._cutoff, 'query': list([int(val) for val in self._query]), 'haystack': list([int(val) for val in self._haystack]), 'query_res_idx': list([int(val) for val in self._query_res_idx]), 'haystack_res_idx': list([int(val) for val in self._haystack_res_idx]), 'all_atoms': tuple( [int(val) for val in self._all_atoms]), 'all_residues': tuple( [int(val) for val in self._all_residues]), 'n_neighbors_ignored': self._n_neighbors_ignored, 'atom_contacts': self._serialize_contact_counter(self._atom_contacts), 'residue_contacts': self._serialize_contact_counter(self._residue_contacts), 'use_atom_slice': self._use_atom_slice} return dct @classmethod def from_dict(cls, dct): """Create object from dict. Parameters ---------- dct : dict dict-formatted serialization (see to_dict for details) See also -------- to_dict """ deserialize_set = set deserialize_atom_to_residue_dct = lambda d: {int(k): d[k] for k in d} deserialization_helpers = { 'topology': cls._deserialize_topology, 'atom_contacts': cls._deserialize_contact_counter, 'residue_contacts': cls._deserialize_contact_counter, 'query': deserialize_set, 'haystack': deserialize_set, 'query_res_idx': deserialize_set, 'haystack_res_idx': deserialize_set, 'all_atoms': deserialize_set, 'all_residues': deserialize_set, 'atom_idx_to_residue_idx': deserialize_atom_to_residue_dct } for key in deserialization_helpers: if key in dct: dct[key] = deserialization_helpers[key](dct[key]) kwarg_keys = inspect_method_arguments(cls.__init__) set_keys = set(dct.keys()) missing = set(kwarg_keys) - set_keys dct.update({k: None for k in missing}) instance = cls.__new__(cls) for k in dct: setattr(instance, "_" + k, dct[k]) return instance @staticmethod def _deserialize_topology(topology_json): """Create MDTraj topology from JSON-serialized version""" table, bonds = json.loads(topology_json) topology_df = pd.read_json(table) topology = md.Topology.from_dataframe(topology_df, np.array(bonds)) return topology @staticmethod def _serialize_topology(topology): """Serialize MDTraj topology (to JSON)""" table, bonds = topology.to_dataframe() json_tuples = (table.to_json(), bonds.tolist()) return json.dumps(json_tuples) # TODO: adding a separate object for these frozenset counters will be # useful for many things, and this serialization should be moved there @staticmethod def _serialize_contact_counter(counter): """JSON string from contact counter""" # have to explicitly convert to int because json doesn't know how to # serialize np.int64 objects, which we get in Python 3 serializable = {json.dumps([int(val) for val in key]): counter[key] for key in counter} return json.dumps(serializable) @staticmethod def _deserialize_contact_counter(json_string): """Contact counted from JSON string""" dct = json.loads(json_string) counter = collections.Counter({ frozenset(json.loads(key)): dct[key] for key in dct }) return counter def to_json(self): """JSON-serialized version of this object. See also -------- from_json """ dct = self.to_dict() return json.dumps(dct) @classmethod def from_json(cls, json_string): """Create object from JSON string Parameters ---------- json_string : str JSON-serialized version of the object See also -------- to_json """ dct = json.loads(json_string) return cls.from_dict(dct) def _check_compatibility(self, other, err=AssertionError): compatibility_attrs = ['cutoff', 'topology', 'query', 'haystack', 'n_neighbors_ignored'] failed_attr = {} err_msg = "" for attr in compatibility_attrs: self_val = getattr(self, attr) other_val = getattr(other, attr) if self_val != other_val: failed_attr[attr] = (self_val, other_val) err_msg += " {attr}: {self} != {other}\n".format( attr=attr, self=str(self_val), other=str(other_val) ) msg = "Incompatible ContactObjects:\n" msg += err_msg if failed_attr and err is not None: raise err(msg) else: return failed_attr def save_to_file(self, filename, mode="w"): """Save this object to the given file. Parameters ---------- filename : string the file to write to mode : 'w' or 'a' file writing mode. Use 'w' to overwrite, 'a' to append. Note that writing by bytes ('b' flag) is automatically added. See also -------- from_file : load from generated file """ with open(filename, mode+"b") as f: pickle.dump(self, f) @classmethod def from_file(cls, filename): """Load this object from a given file Parameters ---------- filename : string the file to read from Returns ------- :class:`.ContactObject`: the reloaded object See also -------- save_to_file : save to a file """ with open(filename, "rb") as f: reloaded = pickle.load(f) return reloaded def __sub__(self, other): return ContactDifference(positive=self, negative=other) @property def cutoff(self): """float : cutoff distance for contacts, in nanometers""" return self._cutoff @property def n_neighbors_ignored(self): """int : number of neighbor residues (in same chain) to ignore""" return self._n_neighbors_ignored @property def query(self): """list of int : indices of atoms to include as query""" return list(self._query) @property def haystack(self): """list of int : indices of atoms to include as haystack""" return list(self._haystack) @property def all_atoms(self): """list of int: all atom indices used in the contact map""" return list(self._all_atoms) @property def topology(self): """ :class:`mdtraj.Topology` : topology object for this system The topology includes information about the atoms, how they are grouped into residues, and how the residues are grouped into chains. """ return self._topology @property def use_atom_slice(self): """bool : Indicates if `mdtraj.atom_slice()` is used before calculating the contact map""" return self._use_atom_slice @property def _residue_ignore_atom_idxs(self): """dict : maps query residue index to atom indices to ignore""" all_atoms_set = set(self._all_atoms) result = {} for residue_idx in self.indexer.residue_query_atom_idxs.keys(): residue = self.topology.residue(residue_idx) # Several steps to go residue indices -> atom indices ignore_residue_idxs = residue_neighborhood( residue, self._n_neighbors_ignored ) ignore_residues = [self.topology.residue(idx) for idx in ignore_residue_idxs] ignore_atoms = sum([list(res.atoms) for res in ignore_residues], []) ignore_atom_idxs = self.indexer.ignore_atom_idx(ignore_atoms, all_atoms_set) result[residue_idx] = ignore_atom_idxs return result @property def haystack_residues(self): """list : residues for atoms in the haystack""" return _residue_for_atom(self.topology, self.haystack) @property def query_residues(self): """list : residues for atoms in the query""" return _residue_for_atom(self.topology, self.query) @property def query_range(self): """return an tuple with the (min, max+1) of query""" return _range_from_iterable(self.query) @property def haystack_range(self): """return an tuple with the (min, max+1) of haystack""" return _range_from_iterable(self.haystack) @property def haystack_residue_range(self): """(int, int): min and (max + 1) of haystack residue indices""" return _range_from_iterable(self._haystack_res_idx) @property def query_residue_range(self): """(int, int): min and (max + 1) of query residue indices""" return _range_from_iterable(self._query_res_idx) def most_common_atoms_for_residue(self, residue): """ Most common atom contact pairs for contacts with the given residue Parameters ---------- residue : Residue or int the Residue object or index representing the residue for which the most common atom contact pairs will be calculated Returns ------- list : Atom contact pairs involving given residue, order of frequency. Referring to the list as ``l``, each element of the list ``l[e]`` consists of two parts: ``l[e][0]`` is a list containing the two MDTraj Atom objects that make up the contact, and ``l[e][1]`` is the measure of how often the contact occurs. """ residue = _residue_and_index(residue, self.topology)[0] residue_atoms = set(atom.index for atom in residue.atoms) results = [] for atoms, number in self.atom_contacts.most_common_idx(): atoms_in_residue = atoms & residue_atoms if atoms_in_residue: as_atoms = [self.topology.atom(a) for a in atoms] results += [(as_atoms, number)] return results def most_common_atoms_for_contact(self, contact_pair): """ Most common atom contacts for a given residue contact pair Parameters ---------- contact_pair : length 2 list of Residue or int the residue contact pair for which the most common atom contact pairs will be calculated Returns ------- list : Atom contact pairs for the residue contact pair, in order of frequency. Referring to the list as ``l``, each element of the list ``l[e]`` consists of two parts: ``l[e][0]`` is a list containing the two MDTraj Atom objects that make up the contact, and ``l[e][1]`` is the measure of how often the contact occurs. """ contact_pair = list(contact_pair) res_1 = _residue_and_index(contact_pair[0], self.topology)[0] res_2 = _residue_and_index(contact_pair[1], self.topology)[0] atom_idxs_1 = set(atom.index for atom in res_1.atoms) atom_idxs_2 = set(atom.index for atom in res_2.atoms) all_atom_pairs = [ frozenset(pair) for pair in itertools.product(atom_idxs_1, atom_idxs_2) ] result = [([self.topology.atom(idx) for idx in contact[0]], contact[1]) for contact in self.atom_contacts.most_common_idx() if frozenset(contact[0]) in all_atom_pairs] return result def _contact_map(self, trajectory, frame_number, residue_query_atom_idxs, residue_ignore_atom_idxs): """ Returns atom and residue contact maps for the given frame. Parameters ---------- frame : mdtraj.Trajectory the desired frame (uses the first frame in this trajectory) residue_query_atom_idxs : dict residue_ignore_atom_idxs : dict Returns ------- atom_contacts : collections.Counter residue_contact : collections.Counter """ used_trajectory = self.indexer.slice_trajectory(trajectory) neighborlist = md.compute_neighborlist(used_trajectory, self.cutoff, frame_number) contact_pairs = set([]) residue_pairs = set([]) haystack = self.indexer.haystack atom_idx_to_residue_idx = self.indexer.atom_idx_to_residue_idx for residue_idx in residue_query_atom_idxs: ignore_atom_idxs = set(residue_ignore_atom_idxs[residue_idx]) query_idxs = residue_query_atom_idxs[residue_idx] for atom_idx in query_idxs: # sets should make this fast, esp since neighbor_idxs # should be small and s-t is avg cost len(s) neighbor_idxs = set(neighborlist[atom_idx]) contact_neighbors = neighbor_idxs - ignore_atom_idxs contact_neighbors = contact_neighbors & haystack # frozenset is unique key independent of order # local_pairs = set(frozenset((atom_idx, neighb)) # for neighb in contact_neighbors) local_pairs = set(map( frozenset, itertools.product([atom_idx], contact_neighbors) )) contact_pairs |= local_pairs # contact_pairs |= set(frozenset((atom_idx, neighb)) # for neighb in contact_neighbors) local_residue_partners = set(atom_idx_to_residue_idx[a] for a in contact_neighbors) local_res_pairs = set(map( frozenset, itertools.product([residue_idx], local_residue_partners) )) residue_pairs |= local_res_pairs atom_contacts = collections.Counter(contact_pairs) # residue_pairs = set( # frozenset(self._atom_idx_to_residue_idx[aa] for aa in pair) # for pair in contact_pairs # ) residue_contacts = collections.Counter(residue_pairs) return (atom_contacts, residue_contacts) @property def atom_contacts(self): raise NotImplementedError() @property def residue_contacts(self): raise NotImplementedError() CONTACT_MAP_ERROR = ( "The ContactMap class has been removed. Please use ContactFrequency." " For more, see: https://github.com/dwhswenson/contact_map/issues/82" ) def ContactMap(*args, **kwargs): # -no-cov- raise RuntimeError(CONTACT_MAP_ERROR) class ContactFrequency(ContactObject): """ Contact frequency (atomic and residue) for a trajectory. The contact frequency is defined as fraction of the trajectory that a certain contact is made. This object calculates this quantity for all contacts with atoms in the `query` residue, with "contact" defined as being within a certain cutoff distance. Parameters ---------- trajectory : mdtraj.Trajectory Trajectory (segment) to analyze query : list of int Indices of the atoms to be included as query. Default ``None`` means all atoms. haystack : list of int Indices of the atoms to be included as haystack. Default ``None`` means all atoms. cutoff : float Cutoff distance for contacts, in nanometers. Default 0.45. n_neighbors_ignored : int Number of neighboring residues (in the same chain) to ignore. Default 2. """ # Default for use_atom_slice, None tries to be smart _class_use_atom_slice = None _pending_dep_msg = ( "ContactFrequency will be renamed to ContactMap in version 0.8. " "Invoking it as ContactFrequency will be deprecated in 0.8. For " "more, see https://github.com/dwhswenson/contact_map/issues/82" ) def __init__(self, trajectory, query=None, haystack=None, cutoff=0.45, n_neighbors_ignored=2): warnings.warn(self._pending_dep_msg, PendingDeprecationWarning) self._n_frames = len(trajectory) super(ContactFrequency, self).__init__(trajectory.topology, query, haystack, cutoff, n_neighbors_ignored) contacts = self._build_contact_map(trajectory) (self._atom_contacts, self._residue_contacts) = contacts @classmethod def from_contacts(cls, atom_contacts, residue_contacts, n_frames, topology, query=None, haystack=None, cutoff=0.45, n_neighbors_ignored=2, indexer=None): warnings.warn(cls._pending_dep_msg, PendingDeprecationWarning) obj = super(ContactFrequency, cls).from_contacts( atom_contacts, residue_contacts, topology, query, haystack, cutoff, n_neighbors_ignored, indexer ) obj._n_frames = n_frames return obj @classmethod def from_dict(cls, dct): warnings.warn(cls._pending_dep_msg, PendingDeprecationWarning) return super(ContactFrequency, cls).from_dict(dct) @classmethod def from_file(cls, filename): warnings.warn(cls._pending_dep_msg, PendingDeprecationWarning) return super(ContactFrequency, cls).from_file(filename) def __hash__(self): return hash((super(ContactFrequency, self).__hash__(), tuple(self._atom_contacts.items()), tuple(self._residue_contacts.items()), self.n_frames)) def __eq__(self, other): is_equal = (super(ContactFrequency, self).__eq__(other) and self._atom_contacts == other._atom_contacts and self._residue_contacts == other._residue_contacts and self.n_frames == other.n_frames) return is_equal def to_dict(self): dct = super(ContactFrequency, self).to_dict() dct.update({'n_frames': self.n_frames}) return dct def _build_contact_map(self, trajectory): # We actually build the contact map on a per-residue basis, although # we save it on a per-atom basis. This allows us ignore # n_nearest_neighbor residues. # TODO: this whole thing should be cleaned up and should replace # MDTraj's really slow old compute_contacts by using MDTraj's new # neighborlists (unless the MDTraj people do that first). atom_contacts_count = collections.Counter([]) residue_contacts_count = collections.Counter([]) # cache things that can be calculated once based on the topology # (namely, which atom indices matter for each residue) residue_ignore_atom_idxs = self._residue_ignore_atom_idxs residue_query_atom_idxs = self.indexer.residue_query_atom_idxs used_trajectory = self.indexer.slice_trajectory(trajectory) for frame_num in range(len(trajectory)): frame_contacts = self._contact_map(used_trajectory, frame_num, residue_query_atom_idxs, residue_ignore_atom_idxs) frame_atom_contacts = frame_contacts[0] frame_residue_contacts = frame_contacts[1] atom_contacts_count.update(frame_atom_contacts) residue_contacts_count += frame_residue_contacts atom_contacts_count = \ self.indexer.convert_atom_contacts(atom_contacts_count) return (atom_contacts_count, residue_contacts_count) @property def n_frames(self): """Number of frames in the mapped trajectory""" return self._n_frames def add_contact_frequency(self, other): """Add results from `other` to the internal counter. Parameters ---------- other : :class:`.ContactFrequency` contact frequency made from the frames to remove from this contact frequency """ self._check_compatibility(other) self._atom_contacts += other._atom_contacts self._residue_contacts += other._residue_contacts self._n_frames += other._n_frames def subtract_contact_frequency(self, other): """Subtracts results from `other` from internal counter. Note that this is intended for the case that you're removing a subtrajectory of the already-calculated trajectory. If you want to compare two different contact frequency maps, use :class:`.ContactDifference`. Parameters ---------- other : :class:`.ContactFrequency` contact frequency made from the frames to remove from this contact frequency """ self._check_compatibility(other) self._atom_contacts -= other._atom_contacts self._residue_contacts -= other._residue_contacts self._n_frames -= other._n_frames @property def atom_contacts(self): """Atoms pairs mapped to fraction of trajectory with that contact""" return ContactCount(collections.Counter({ item[0]: float(item[1])/self.n_frames for item in self._atom_contacts.items() }), self.topology.atom, self.query_range, self.haystack_range, self.topology.n_atoms) @property def residue_contacts(self): """Residue pairs mapped to fraction of trajectory with that contact""" return ContactCount(collections.Counter({ item[0]: float(item[1])/self.n_frames for item in self._residue_contacts.items() }), self.topology.residue, self.query_residue_range, self.haystack_residue_range, self.topology.n_residues) class ContactDifference(ContactObject): """ Contact map comparison (atomic and residue). This can compare single frames or entire trajectories (or even mix the two!) While this can be directly instantiated by the user, the more common way to make this object is by using the ``-`` operator, i.e., ``diff = map_1 - map_2``. """ # Some class variables on how we handle mismatches, mainly for subclassing. _allow_mismatched_atoms = False _allow_mismatched_residues = False _override_topology = True def __init__(self, positive, negative): self.positive = positive self.negative = negative fix_parameters = ParameterFixer( allow_mismatched_atoms=self._allow_mismatched_atoms, allow_mismatched_residues=self._allow_mismatched_residues, override_topology=self._override_topology) (topology, query, haystack, cutoff, n_neighbors_ignored) = fix_parameters.get_parameters(positive, negative) self._all_atoms_intersect = set( positive._all_atoms).intersection(negative._all_atoms) self._all_residues_intersect = set( positive._all_residues).intersection(negative._all_residues) super(ContactDifference, self).__init__(topology, query, haystack, cutoff, n_neighbors_ignored) def to_dict(self): """Convert object to a dict. Keys should be strings; values should be (JSON-) serializable. See also -------- from_dict """ return { 'positive': self.positive.to_json(), 'negative': self.negative.to_json(), 'positive_cls': self.positive.__class__.__name__, 'negative_cls': self.negative.__class__.__name__ } @classmethod def from_dict(cls, dct): """Create object from dict. Parameters ---------- dct : dict dict-formatted serialization (see to_dict for details) See also -------- to_dict """ # TODO: add searching for subclasses (http://code.activestate.com/recipes/576949-find-all-subclasses-of-a-given-class/) supported_classes = [ContactMap, ContactFrequency] supported_classes_dict = {class_.__name__: class_ for class_ in supported_classes} def rebuild(pos_neg): class_name = dct[pos_neg + "_cls"] try: cls_ = supported_classes_dict[class_name] except KeyError: # pragma: no cover raise RuntimeError("Can't rebuild class " + class_name) obj = cls_.from_json(dct[pos_neg]) return obj positive = rebuild('positive') negative = rebuild('negative') return cls(positive, negative) def __sub__(self, other): raise NotImplementedError def contact_map(self, *args, **kwargs): #pylint: disable=W0221 raise NotImplementedError @classmethod def from_contacts(self, *args, **kwargs): #pylint: disable=W0221 raise NotImplementedError @property def atom_contacts(self): return self._get_filtered_sub(pos_count=self.positive.atom_contacts, neg_count=self.negative.atom_contacts, selection=self._all_atoms_intersect, object_f=self.topology.atom, max_size=self.topology.n_atoms) @property def residue_contacts(self): return self._get_filtered_sub(pos_count=self.positive.residue_contacts, neg_count=self.negative.residue_contacts, selection=self._all_residues_intersect, object_f=self.topology.residue, max_size=self.topology.n_residues) def _get_filtered_sub(self, pos_count, neg_count, selection, *args, **kwargs): """Get a filtered subtraction between two ContactCounts""" filtered_pos = pos_count.filter(selection) filtered_neg = neg_count.filter(selection) diff = collections.Counter(filtered_pos.counter) diff.subtract(filtered_neg.counter) return ContactCount(diff, *args, **kwargs) class AtomMismatchedContactDifference(ContactDifference): """ Contact map comparison (only residues). """ _allow_mismatched_atoms = True def most_common_atoms_for_contact(self, *args, **kwargs): self._missing_atom_contacts() def most_common_atoms_for_residue(self, *args, **kwargs): self._missing_atom_contacts() @property def atom_contacts(self): self._missing_atom_contacts() @property def haystack_residues(self): self._missing_atom_contacts() @property def query_residues(self): self._missing_atom_contacts() def _missing_atom_contacts(self): raise RuntimeError("Different atom indices involved between the two" " maps, so this does not make sense.") class ResidueMismatchedContactDifference(ContactDifference): """ Contact map comparison (only atoms). """ _allow_mismatched_residues = True @property def residue_contacts(self): self._missing_residue_contacts() @property def _residue_ignore_atom_idxs(self): self._missing_residue_contacts() def most_common_atoms_for_contact(self, *args, **kwargs): self._missing_residue_contacts() def most_common_atoms_for_residue(self, *args, **kwargs): self._missing_residue_contacts() @property def haystack_residues(self): self._missing_residue_contacts() @property def query_residues(self): self._missing_residue_contacts() def _missing_residue_contacts(self): raise RuntimeError("Different residue indices involved between the two" " maps, so this does not make sense.") class OverrideTopologyContactDifference(ContactDifference): """ Contact map comparison with a user provided Topology. """ def __init__(self, positive, negative, topology): self._override_topology = topology super().__init__(positive, negative)
lgpl-2.1
brianlorenz/COSMOS_IMACS_Redshifts
Emission_Fitting/FindAvMedian.py
1
2183
#Creates a BPT diagram for all objects, and a second figure that shows objects for which single lines are low import numpy as np import matplotlib.pyplot as plt from astropy.io import ascii import sys, os, string import pandas as pd from astropy.io import fits import collections #Folder to save the figures figout = '/Users/blorenz/COSMOS/Reports/2018/Images/' #The location with the file for all of our data fluxdatapath = '/Users/blorenz/COSMOS/COSMOSData/lineflux.txt' #Location of the equivalent width data ewdata = '/Users/blorenz/COSMOS/COSMOSData/lineew.txt' #Read in the ew of the lines ew_df = ascii.read(ewdata).to_pandas() #The location to store the scale and its stddev of each line qualdatapath = '/Users/blorenz/COSMOS/COSMOSData/dataqual.txt' #Read in the scale of the lines dataqual = ascii.read(qualdatapath).to_pandas() #File with the error array errdatapath = '/Users/blorenz/COSMOS/COSMOSData/errs.txt' #Read in the scale of the lines err_df = ascii.read(errdatapath,data_start=1,header_start=0,format='csv').to_pandas() #Read the datafile: fluxdata = ascii.read(fluxdatapath).to_pandas() #Division function def divz(X,Y): return X/np.where(Y,Y,Y+1)*np.not_equal(Y,0) #The location of the muzzin et al data: mdatapath = '/Users/blorenz/COSMOS/muzzin_data/UVISTA_final_colors_sfrs_v4.1.dat' #Read in the muzzin data mdata = ascii.read(mdatapath).to_pandas() mdata = mdata.rename(columns={'ID':'OBJID'}) fluxdata = pd.merge(fluxdata,mdata) #Location of the reddening data reddata = '/Users/blorenz/COSMOS/COSMOSData/reddenings.txt' #Read in the ew of the lines red_df = ascii.read(reddata).to_pandas() fluxdata = pd.merge(fluxdata,red_df,on='fluxfile') fluxdata = fluxdata[fluxdata.av>0] av_med_df = pd.DataFrame() av_med_df.at[0,'mr1'] = np.median(fluxdata[fluxdata.LMASS<9.25].av) av_med_df.at[0,'mr2'] = np.median(fluxdata[np.logical_and(fluxdata.LMASS>9.25,fluxdata.LMASS<9.5)].av) av_med_df.at[0,'mr3'] = np.median(fluxdata[np.logical_and(fluxdata.LMASS>9.5,fluxdata.LMASS<9.75)].av) av_med_df.at[0,'mr4'] = np.median(fluxdata[fluxdata.LMASS>9.75].av) av_med_df.to_csv('/Users/blorenz/COSMOS/COSMOSData/av_med_df.txt',index=False)
mit
lol/BCI-BO-old
BCI_Framework/Learner_Manager.py
1
8285
from sklearn.metrics import zero_one_loss, mean_squared_error import logging from sklearn.preprocessing import StandardScaler import numpy as np import cPickle import Learner_Factory import Classifier_Parameter_Grid_Generator from sklearn.utils import shuffle from sklearn.cross_validation import StratifiedKFold, cross_val_score import json class Learner_Manager: def __init__(self, config, learner_name, feature_name): """ """ self.feature_name = feature_name self.learner_name = learner_name self.logging = logging if config.configuration['logging_level_str'] == 'INFO': self.logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO) else: self.logging.basicConfig(level=logging.NOTSET) self.logging.info('started building a learner!') self.config = config self.my_learner_factory = Learner_Factory.Learner_Factory(config) def train_learner(self, Xs, Y, X_test = [], Y_test = [], learner_params = [] ,optimal = False): """ """ if optimal: self.fit_opt_learner(Xs, Y, X_test, Y_test, learner_params) else: self.train_learner_cv(Xs, Y) def scale_training_data(self, Xs): scaled_Xs = [] for X in Xs: X = np.asarray( X, dtype=np.float32, order='F') scaler = StandardScaler() X = scaler.fit_transform(X) scaled_Xs.append(X) return scaled_Xs def scale_all_data(self, X, Y, X_test, Y_test): ''' ''' self.logging.info('Standardizing data!') Y_test = np.array(Y_test) scaler = StandardScaler() X = scaler.fit_transform(X) X_test = scaler.transform(X_test) self.logging.info('X size is: %s and Y size is: %s and X_test size is: %s and Y_test size is: %s', '_'.join(map(str,X.shape)), str(len(Y)), '_'.join(map(str,X_test.shape)), str(len(Y_test))) return X, Y, X_test, Y_test def fit_opt_learner(self, X, Y, X_test, Y_test, learner_params): ''' ''' # clf.fit(X, Y) X, Y, X_test, Y_test = self.scale_all_data(X[0], Y, X_test[0], Y_test) learner = self.my_learner_factory.create_learner(self.learner_name) learner.set_params_dict(learner_params) learner.fit(X, Y) Y_pred_train = learner.predict(X) Y_pred = learner.predict(X_test) nonnan_indices = ~np.isnan(Y_test) error = learner.test_phase_loss(Y_test[nonnan_indices], Y_pred[nonnan_indices]) if type(error) == list: for err in error: self.logging.info('error is %s\n', str(err)) else: self.logging.info('error is %s', str(error)) probs_train = learner.learner.predict_proba(X) probs_test = learner.learner.predict_proba(X_test) self.logging.info('Writing final results to file ') np.savez(self.result_opt_path, error=error, Y_pred=Y_pred, Y_pred_train=Y_pred_train, probs_train=probs_train, probs_test = probs_test) self.logging.info('Writing optimal classifier to file ') # save the classifier # with open(self.result_opt_classifier_path + '.pkl', 'wb') as fid: # cPickle.dump(learner.learner, fid) @staticmethod def find_cv_error(res_file_name): """ """ params = {} final_results_dict = json.load(open(res_file_name)) error = final_results_dict['error'] params = final_results_dict['error_params'] return error, params # with open(res_file_name, 'r') as res_file: # error = float(res_file.readline()) # params = eval(res_file.readline()) # return error, params @staticmethod def find_opt_error(opt_res_file_name): """ """ # params = {} with open(opt_res_file_name, 'r') as res_file: error = float(res_file.readline()) # params = eval(res_file.readline()) return error def train_learner_cv(self, Xs, Y, optimal = False): assert self.result_path != '' my_learner = self.my_learner_factory.create_learner(self.learner_name) Y = np.asarray( Y, dtype=np.short, order='F') scaled_Xs = self.scale_training_data(Xs) if self.feature_name in (self.config.configuration['fe_params_dict']).keys(): feature_param_values = (self.config.configuration['fe_params_dict'])[self.feature_name] feature_param_val_indices = dict(zip( feature_param_values, range(len(feature_param_values)))) param_grid, scores = my_learner.generate_param_grid(feature_param_values, self.learner_name) else: feature_param_values = None param_grid, scores = my_learner.generate_param_grid(None, self.learner_name) precision_scores, recall_scores = np.zeros(shape = scores.shape), np.zeros(shape = scores.shape) for i in range(self.config.configuration["number_of_cvs_dict"][self.learner_name]): for param_ind in range(len(scores)): print param_grid[param_ind] my_learner.set_params_list(param_grid[param_ind], i) if feature_param_values is None: X = scaled_Xs[0] else: X = scaled_Xs[feature_param_val_indices[param_grid[param_ind][-1]]] X_new, Y_new = shuffle(X, Y, random_state = i) cv = StratifiedKFold(y = Y_new, n_folds = self.config.configuration["number_of_cv_folds"]) if len(scores.shape) == 3: #this is for ensemble learning methods # Only RF cv_errors_sum = np.zeros(scores.shape[2]) precision_sum = np.zeros(scores.shape[2]) recall_sum = np.zeros(scores.shape[2]) elif len(scores.shape) == 2: cv_errors_sum, precision_sum, recall_sum = 0, 0, 0 for train_index, test_index in cv: # print("TRAIN:", train_index, "TEST:", test_index) X_train, X_test = X[train_index], X[test_index] y_train, y_test = Y[train_index], Y[test_index] cv_error_temp, precision_temp, recall_temp = my_learner.fit_calc_cv_scores(X_train, y_train, X_test, y_test) cv_errors_sum += cv_error_temp precision_sum += precision_temp recall_sum += recall_temp # my_learner.fit(X_train, y_train) # test_predictions = my_learner.predict(X_test) # cv_errors_sum += self.predict_forall_estimators(X_test, y_test) crossval_error = cv_errors_sum/self.config.configuration["number_of_cv_folds"] precision = precision_sum/self.config.configuration["number_of_cv_folds"] recall = recall_sum/self.config.configuration["number_of_cv_folds"] print 'error = ', crossval_error if len(scores.shape) == 3: scores[param_ind, i, :] = crossval_error precision_scores[param_ind, i, :] = precision recall_scores[param_ind, i, :] = recall else: scores[param_ind, i] = crossval_error precision_scores[param_ind, i] = precision recall_scores[param_ind, i] = recall my_learner.write_cv_results_toFile(scores, precision_scores, recall_scores, param_grid, self.result_path) def set_output_file_path(self, res_path): self.result_path = res_path def set_output_file_opt_path(self, res_path): self.result_opt_path = res_path def set_output_file_opt_classifier(self, res_path): self.result_opt_classifier_path = res_path
gpl-3.0
Edu-Glez/Bank_sentiment_analysis
env/lib/python3.6/site-packages/pandas/io/tests/test_sql.py
7
99211
"""SQL io tests The SQL tests are broken down in different classes: - `PandasSQLTest`: base class with common methods for all test classes - Tests for the public API (only tests with sqlite3) - `_TestSQLApi` base class - `TestSQLApi`: test the public API with sqlalchemy engine - `TestSQLiteFallbackApi`: test the public API with a sqlite DBAPI connection - Tests for the different SQL flavors (flavor specific type conversions) - Tests for the sqlalchemy mode: `_TestSQLAlchemy` is the base class with common methods, `_TestSQLAlchemyConn` tests the API with a SQLAlchemy Connection object. The different tested flavors (sqlite3, MySQL, PostgreSQL) derive from the base class - Tests for the fallback mode (`TestSQLiteFallback`) """ from __future__ import print_function import unittest import sqlite3 import csv import os import sys import nose import warnings import numpy as np import pandas as pd from datetime import datetime, date, time from pandas.types.common import (is_object_dtype, is_datetime64_dtype, is_datetime64tz_dtype) from pandas import DataFrame, Series, Index, MultiIndex, isnull, concat from pandas import date_range, to_datetime, to_timedelta, Timestamp import pandas.compat as compat from pandas.compat import StringIO, range, lrange, string_types, PY36 from pandas.tseries.tools import format as date_format import pandas.io.sql as sql from pandas.io.sql import read_sql_table, read_sql_query import pandas.util.testing as tm try: import sqlalchemy import sqlalchemy.schema import sqlalchemy.sql.sqltypes as sqltypes from sqlalchemy.ext import declarative from sqlalchemy.orm import session as sa_session SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False SQL_STRINGS = { 'create_iris': { 'sqlite': """CREATE TABLE iris ( "SepalLength" REAL, "SepalWidth" REAL, "PetalLength" REAL, "PetalWidth" REAL, "Name" TEXT )""", 'mysql': """CREATE TABLE iris ( `SepalLength` DOUBLE, `SepalWidth` DOUBLE, `PetalLength` DOUBLE, `PetalWidth` DOUBLE, `Name` VARCHAR(200) )""", 'postgresql': """CREATE TABLE iris ( "SepalLength" DOUBLE PRECISION, "SepalWidth" DOUBLE PRECISION, "PetalLength" DOUBLE PRECISION, "PetalWidth" DOUBLE PRECISION, "Name" VARCHAR(200) )""" }, 'insert_iris': { 'sqlite': """INSERT INTO iris VALUES(?, ?, ?, ?, ?)""", 'mysql': """INSERT INTO iris VALUES(%s, %s, %s, %s, "%s");""", 'postgresql': """INSERT INTO iris VALUES(%s, %s, %s, %s, %s);""" }, 'create_test_types': { 'sqlite': """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TEXT, "IntDateCol" INTEGER, "FloatCol" REAL, "IntCol" INTEGER, "BoolCol" INTEGER, "IntColWithNull" INTEGER, "BoolColWithNull" INTEGER )""", 'mysql': """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` DATETIME, `IntDateCol` INTEGER, `FloatCol` DOUBLE, `IntCol` INTEGER, `BoolCol` BOOLEAN, `IntColWithNull` INTEGER, `BoolColWithNull` BOOLEAN )""", 'postgresql': """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TIMESTAMP, "DateColWithTz" TIMESTAMP WITH TIME ZONE, "IntDateCol" INTEGER, "FloatCol" DOUBLE PRECISION, "IntCol" INTEGER, "BoolCol" BOOLEAN, "IntColWithNull" INTEGER, "BoolColWithNull" BOOLEAN )""" }, 'insert_test_types': { 'sqlite': { 'query': """ INSERT INTO types_test_data VALUES(?, ?, ?, ?, ?, ?, ?, ?) """, 'fields': ( 'TextCol', 'DateCol', 'IntDateCol', 'FloatCol', 'IntCol', 'BoolCol', 'IntColWithNull', 'BoolColWithNull' ) }, 'mysql': { 'query': """ INSERT INTO types_test_data VALUES("%s", %s, %s, %s, %s, %s, %s, %s) """, 'fields': ( 'TextCol', 'DateCol', 'IntDateCol', 'FloatCol', 'IntCol', 'BoolCol', 'IntColWithNull', 'BoolColWithNull' ) }, 'postgresql': { 'query': """ INSERT INTO types_test_data VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s) """, 'fields': ( 'TextCol', 'DateCol', 'DateColWithTz', 'IntDateCol', 'FloatCol', 'IntCol', 'BoolCol', 'IntColWithNull', 'BoolColWithNull' ) }, }, 'read_parameters': { 'sqlite': "SELECT * FROM iris WHERE Name=? AND SepalLength=?", 'mysql': 'SELECT * FROM iris WHERE `Name`="%s" AND `SepalLength`=%s', 'postgresql': 'SELECT * FROM iris WHERE "Name"=%s AND "SepalLength"=%s' }, 'read_named_parameters': { 'sqlite': """ SELECT * FROM iris WHERE Name=:name AND SepalLength=:length """, 'mysql': """ SELECT * FROM iris WHERE `Name`="%(name)s" AND `SepalLength`=%(length)s """, 'postgresql': """ SELECT * FROM iris WHERE "Name"=%(name)s AND "SepalLength"=%(length)s """ }, 'create_view': { 'sqlite': """ CREATE VIEW iris_view AS SELECT * FROM iris """ } } class MixInBase(object): def tearDown(self): for tbl in self._get_all_tables(): self.drop_table(tbl) self._close_conn() class MySQLMixIn(MixInBase): def drop_table(self, table_name): cur = self.conn.cursor() cur.execute("DROP TABLE IF EXISTS %s" % sql._get_valid_mysql_name(table_name)) self.conn.commit() def _get_all_tables(self): cur = self.conn.cursor() cur.execute('SHOW TABLES') return [table[0] for table in cur.fetchall()] def _close_conn(self): from pymysql.err import Error try: self.conn.close() except Error: pass class SQLiteMixIn(MixInBase): def drop_table(self, table_name): self.conn.execute("DROP TABLE IF EXISTS %s" % sql._get_valid_sqlite_name(table_name)) self.conn.commit() def _get_all_tables(self): c = self.conn.execute( "SELECT name FROM sqlite_master WHERE type='table'") return [table[0] for table in c.fetchall()] def _close_conn(self): self.conn.close() class SQLAlchemyMixIn(MixInBase): def drop_table(self, table_name): sql.SQLDatabase(self.conn).drop_table(table_name) def _get_all_tables(self): meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() table_list = meta.tables.keys() return table_list def _close_conn(self): pass class PandasSQLTest(unittest.TestCase): """ Base class with common private methods for SQLAlchemy and fallback cases. """ def _get_exec(self): if hasattr(self.conn, 'execute'): return self.conn else: return self.conn.cursor() def _load_iris_data(self): import io iris_csv_file = os.path.join(tm.get_data_path(), 'iris.csv') self.drop_table('iris') self._get_exec().execute(SQL_STRINGS['create_iris'][self.flavor]) with io.open(iris_csv_file, mode='r', newline=None) as iris_csv: r = csv.reader(iris_csv) next(r) # skip header row ins = SQL_STRINGS['insert_iris'][self.flavor] for row in r: self._get_exec().execute(ins, row) def _load_iris_view(self): self.drop_table('iris_view') self._get_exec().execute(SQL_STRINGS['create_view'][self.flavor]) def _check_iris_loaded_frame(self, iris_frame): pytype = iris_frame.dtypes[0].type row = iris_frame.iloc[0] self.assertTrue( issubclass(pytype, np.floating), 'Loaded frame has incorrect type') tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def _load_test1_data(self): columns = ['index', 'A', 'B', 'C', 'D'] data = [( '2000-01-03 00:00:00', 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169), ('2000-01-04 00:00:00', 1.04791624281, - 0.0412318367011, -0.16181208307, 0.212549316967), ('2000-01-05 00:00:00', 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952), ('2000-01-06 00:00:00', 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227)] self.test_frame1 = DataFrame(data, columns=columns) def _load_test2_data(self): df = DataFrame(dict(A=[4, 1, 3, 6], B=['asd', 'gsq', 'ylt', 'jkl'], C=[1.1, 3.1, 6.9, 5.3], D=[False, True, True, False], E=['1990-11-22', '1991-10-26', '1993-11-26', '1995-12-12'])) df['E'] = to_datetime(df['E']) self.test_frame2 = df def _load_test3_data(self): columns = ['index', 'A', 'B'] data = [( '2000-01-03 00:00:00', 2 ** 31 - 1, -1.987670), ('2000-01-04 00:00:00', -29, -0.0412318367011), ('2000-01-05 00:00:00', 20000, 0.731167677815), ('2000-01-06 00:00:00', -290867, 1.56762092543)] self.test_frame3 = DataFrame(data, columns=columns) def _load_raw_sql(self): self.drop_table('types_test_data') self._get_exec().execute(SQL_STRINGS['create_test_types'][self.flavor]) ins = SQL_STRINGS['insert_test_types'][self.flavor] data = [ { 'TextCol': 'first', 'DateCol': '2000-01-03 00:00:00', 'DateColWithTz': '2000-01-01 00:00:00-08:00', 'IntDateCol': 535852800, 'FloatCol': 10.10, 'IntCol': 1, 'BoolCol': False, 'IntColWithNull': 1, 'BoolColWithNull': False, }, { 'TextCol': 'first', 'DateCol': '2000-01-04 00:00:00', 'DateColWithTz': '2000-06-01 00:00:00-07:00', 'IntDateCol': 1356998400, 'FloatCol': 10.10, 'IntCol': 1, 'BoolCol': False, 'IntColWithNull': None, 'BoolColWithNull': None, }, ] for d in data: self._get_exec().execute( ins['query'], [d[field] for field in ins['fields']] ) def _count_rows(self, table_name): result = self._get_exec().execute( "SELECT count(*) AS count_1 FROM %s" % table_name).fetchone() return result[0] def _read_sql_iris(self): iris_frame = self.pandasSQL.read_query("SELECT * FROM iris") self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_parameter(self): query = SQL_STRINGS['read_parameters'][self.flavor] params = ['Iris-setosa', 5.1] iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_named_parameter(self): query = SQL_STRINGS['read_named_parameters'][self.flavor] params = {'name': 'Iris-setosa', 'length': 5.1} iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _to_sql(self): self.drop_table('test_frame1') self.pandasSQL.to_sql(self.test_frame1, 'test_frame1') self.assertTrue(self.pandasSQL.has_table( 'test_frame1'), 'Table not written to DB') # Nuke table self.drop_table('test_frame1') def _to_sql_empty(self): self.drop_table('test_frame1') self.pandasSQL.to_sql(self.test_frame1.iloc[:0], 'test_frame1') def _to_sql_fail(self): self.drop_table('test_frame1') self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') self.assertTrue(self.pandasSQL.has_table( 'test_frame1'), 'Table not written to DB') self.assertRaises(ValueError, self.pandasSQL.to_sql, self.test_frame1, 'test_frame1', if_exists='fail') self.drop_table('test_frame1') def _to_sql_replace(self): self.drop_table('test_frame1') self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') # Add to table again self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='replace') self.assertTrue(self.pandasSQL.has_table( 'test_frame1'), 'Table not written to DB') num_entries = len(self.test_frame1) num_rows = self._count_rows('test_frame1') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") self.drop_table('test_frame1') def _to_sql_append(self): # Nuke table just in case self.drop_table('test_frame1') self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') # Add to table again self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='append') self.assertTrue(self.pandasSQL.has_table( 'test_frame1'), 'Table not written to DB') num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows('test_frame1') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") self.drop_table('test_frame1') def _roundtrip(self): self.drop_table('test_frame_roundtrip') self.pandasSQL.to_sql(self.test_frame1, 'test_frame_roundtrip') result = self.pandasSQL.read_query( 'SELECT * FROM test_frame_roundtrip') result.set_index('level_0', inplace=True) # result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def _execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.pandasSQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def _to_sql_save_index(self): df = DataFrame.from_records([(1, 2.1, 'line1'), (2, 1.5, 'line2')], columns=['A', 'B', 'C'], index=['A']) self.pandasSQL.to_sql(df, 'test_to_sql_saves_index') ix_cols = self._get_index_columns('test_to_sql_saves_index') self.assertEqual(ix_cols, [['A', ], ]) def _transaction_test(self): self.pandasSQL.execute("CREATE TABLE test_trans (A INT, B TEXT)") ins_sql = "INSERT INTO test_trans (A,B) VALUES (1, 'blah')" # Make sure when transaction is rolled back, no rows get inserted try: with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) raise Exception('error') except: # ignore raised exception pass res = self.pandasSQL.read_query('SELECT * FROM test_trans') self.assertEqual(len(res), 0) # Make sure when transaction is committed, rows do get inserted with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) res2 = self.pandasSQL.read_query('SELECT * FROM test_trans') self.assertEqual(len(res2), 1) # ----------------------------------------------------------------------------- # -- Testing the public API class _TestSQLApi(PandasSQLTest): """ Base class to test the public API. From this two classes are derived to run these tests for both the sqlalchemy mode (`TestSQLApi`) and the fallback mode (`TestSQLiteFallbackApi`). These tests are run with sqlite3. Specific tests for the different sql flavours are included in `_TestSQLAlchemy`. Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use drop_table because that isn't part of the public api """ flavor = 'sqlite' mode = None def setUp(self): self.conn = self.connect() self._load_iris_data() self._load_iris_view() self._load_test1_data() self._load_test2_data() self._load_test3_data() self._load_raw_sql() def test_read_sql_iris(self): iris_frame = sql.read_sql_query( "SELECT * FROM iris", self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_sql_view(self): iris_frame = sql.read_sql_query( "SELECT * FROM iris_view", self.conn) self._check_iris_loaded_frame(iris_frame) def test_to_sql(self): sql.to_sql(self.test_frame1, 'test_frame1', self.conn) self.assertTrue( sql.has_table('test_frame1', self.conn), 'Table not written to DB') def test_to_sql_fail(self): sql.to_sql(self.test_frame1, 'test_frame2', self.conn, if_exists='fail') self.assertTrue( sql.has_table('test_frame2', self.conn), 'Table not written to DB') self.assertRaises(ValueError, sql.to_sql, self.test_frame1, 'test_frame2', self.conn, if_exists='fail') def test_to_sql_replace(self): sql.to_sql(self.test_frame1, 'test_frame3', self.conn, if_exists='fail') # Add to table again sql.to_sql(self.test_frame1, 'test_frame3', self.conn, if_exists='replace') self.assertTrue( sql.has_table('test_frame3', self.conn), 'Table not written to DB') num_entries = len(self.test_frame1) num_rows = self._count_rows('test_frame3') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") def test_to_sql_append(self): sql.to_sql(self.test_frame1, 'test_frame4', self.conn, if_exists='fail') # Add to table again sql.to_sql(self.test_frame1, 'test_frame4', self.conn, if_exists='append') self.assertTrue( sql.has_table('test_frame4', self.conn), 'Table not written to DB') num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows('test_frame4') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") def test_to_sql_type_mapping(self): sql.to_sql(self.test_frame3, 'test_frame5', self.conn, index=False) result = sql.read_sql("SELECT * FROM test_frame5", self.conn) tm.assert_frame_equal(self.test_frame3, result) def test_to_sql_series(self): s = Series(np.arange(5, dtype='int64'), name='series') sql.to_sql(s, "test_series", self.conn, index=False) s2 = sql.read_sql_query("SELECT * FROM test_series", self.conn) tm.assert_frame_equal(s.to_frame(), s2) def test_to_sql_panel(self): panel = tm.makePanel() self.assertRaises(NotImplementedError, sql.to_sql, panel, 'test_panel', self.conn) def test_roundtrip(self): sql.to_sql(self.test_frame1, 'test_frame_roundtrip', con=self.conn) result = sql.read_sql_query( 'SELECT * FROM test_frame_roundtrip', con=self.conn) # HACK! result.index = self.test_frame1.index result.set_index('level_0', inplace=True) result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def test_roundtrip_chunksize(self): sql.to_sql(self.test_frame1, 'test_frame_roundtrip', con=self.conn, index=False, chunksize=2) result = sql.read_sql_query( 'SELECT * FROM test_frame_roundtrip', con=self.conn) tm.assert_frame_equal(result, self.test_frame1) def test_execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = sql.execute("SELECT * FROM iris", con=self.conn) row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def test_date_parsing(self): # Test date parsing in read_sq # No Parsing df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn) self.assertFalse( issubclass(df.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn, parse_dates=['DateCol']) self.assertTrue( issubclass(df.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn, parse_dates={'DateCol': '%Y-%m-%d %H:%M:%S'}) self.assertTrue( issubclass(df.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn, parse_dates=['IntDateCol']) self.assertTrue(issubclass(df.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn, parse_dates={'IntDateCol': 's'}) self.assertTrue(issubclass(df.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") def test_date_and_index(self): # Test case where same column appears in parse_date and index_col df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn, index_col='DateCol', parse_dates=['DateCol', 'IntDateCol']) self.assertTrue(issubclass(df.index.dtype.type, np.datetime64), "DateCol loaded with incorrect type") self.assertTrue(issubclass(df.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") def test_timedelta(self): # see #6921 df = to_timedelta( Series(['00:00:01', '00:00:03'], name='foo')).to_frame() with tm.assert_produces_warning(UserWarning): df.to_sql('test_timedelta', self.conn) result = sql.read_sql_query('SELECT * FROM test_timedelta', self.conn) tm.assert_series_equal(result['foo'], df['foo'].astype('int64')) def test_complex(self): df = DataFrame({'a': [1 + 1j, 2j]}) # Complex data type should raise error self.assertRaises(ValueError, df.to_sql, 'test_complex', self.conn) def test_to_sql_index_label(self): temp_frame = DataFrame({'col1': range(4)}) # no index name, defaults to 'index' sql.to_sql(temp_frame, 'test_index_label', self.conn) frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) self.assertEqual(frame.columns[0], 'index') # specifying index_label sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace', index_label='other_label') frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) self.assertEqual(frame.columns[0], 'other_label', "Specified index_label not written to database") # using the index name temp_frame.index.name = 'index_name' sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace') frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) self.assertEqual(frame.columns[0], 'index_name', "Index name not written to database") # has index name, but specifying index_label sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace', index_label='other_label') frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) self.assertEqual(frame.columns[0], 'other_label', "Specified index_label not written to database") def test_to_sql_index_label_multiindex(self): temp_frame = DataFrame({'col1': range(4)}, index=MultiIndex.from_product( [('A0', 'A1'), ('B0', 'B1')])) # no index name, defaults to 'level_0' and 'level_1' sql.to_sql(temp_frame, 'test_index_label', self.conn) frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) self.assertEqual(frame.columns[0], 'level_0') self.assertEqual(frame.columns[1], 'level_1') # specifying index_label sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace', index_label=['A', 'B']) frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) self.assertEqual(frame.columns[:2].tolist(), ['A', 'B'], "Specified index_labels not written to database") # using the index name temp_frame.index.names = ['A', 'B'] sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace') frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) self.assertEqual(frame.columns[:2].tolist(), ['A', 'B'], "Index names not written to database") # has index name, but specifying index_label sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace', index_label=['C', 'D']) frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) self.assertEqual(frame.columns[:2].tolist(), ['C', 'D'], "Specified index_labels not written to database") # wrong length of index_label self.assertRaises(ValueError, sql.to_sql, temp_frame, 'test_index_label', self.conn, if_exists='replace', index_label='C') def test_multiindex_roundtrip(self): df = DataFrame.from_records([(1, 2.1, 'line1'), (2, 1.5, 'line2')], columns=['A', 'B', 'C'], index=['A', 'B']) df.to_sql('test_multiindex_roundtrip', self.conn) result = sql.read_sql_query('SELECT * FROM test_multiindex_roundtrip', self.conn, index_col=['A', 'B']) tm.assert_frame_equal(df, result, check_index_type=True) def test_integer_col_names(self): df = DataFrame([[1, 2], [3, 4]], columns=[0, 1]) sql.to_sql(df, "test_frame_integer_col_names", self.conn, if_exists='replace') def test_get_schema(self): create_sql = sql.get_schema(self.test_frame1, 'test', con=self.conn) self.assertTrue('CREATE' in create_sql) def test_get_schema_dtypes(self): float_frame = DataFrame({'a': [1.1, 1.2], 'b': [2.1, 2.2]}) dtype = sqlalchemy.Integer if self.mode == 'sqlalchemy' else 'INTEGER' create_sql = sql.get_schema(float_frame, 'test', con=self.conn, dtype={'b': dtype}) self.assertTrue('CREATE' in create_sql) self.assertTrue('INTEGER' in create_sql) def test_get_schema_keys(self): frame = DataFrame({'Col1': [1.1, 1.2], 'Col2': [2.1, 2.2]}) create_sql = sql.get_schema(frame, 'test', con=self.conn, keys='Col1') constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("Col1")' self.assertTrue(constraint_sentence in create_sql) # multiple columns as key (GH10385) create_sql = sql.get_schema(self.test_frame1, 'test', con=self.conn, keys=['A', 'B']) constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("A", "B")' self.assertTrue(constraint_sentence in create_sql) def test_chunksize_read(self): df = DataFrame(np.random.randn(22, 5), columns=list('abcde')) df.to_sql('test_chunksize', self.conn, index=False) # reading the query in one time res1 = sql.read_sql_query("select * from test_chunksize", self.conn) # reading the query in chunks with read_sql_query res2 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_query("select * from test_chunksize", self.conn, chunksize=5): res2 = concat([res2, chunk], ignore_index=True) self.assertEqual(len(chunk), sizes[i]) i += 1 tm.assert_frame_equal(res1, res2) # reading the query in chunks with read_sql_query if self.mode == 'sqlalchemy': res3 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_table("test_chunksize", self.conn, chunksize=5): res3 = concat([res3, chunk], ignore_index=True) self.assertEqual(len(chunk), sizes[i]) i += 1 tm.assert_frame_equal(res1, res3) def test_categorical(self): # GH8624 # test that categorical gets written correctly as dense column df = DataFrame( {'person_id': [1, 2, 3], 'person_name': ['John P. Doe', 'Jane Dove', 'John P. Doe']}) df2 = df.copy() df2['person_name'] = df2['person_name'].astype('category') df2.to_sql('test_categorical', self.conn, index=False) res = sql.read_sql_query('SELECT * FROM test_categorical', self.conn) tm.assert_frame_equal(res, df) def test_unicode_column_name(self): # GH 11431 df = DataFrame([[1, 2], [3, 4]], columns=[u'\xe9', u'b']) df.to_sql('test_unicode', self.conn, index=False) class TestSQLApi(SQLAlchemyMixIn, _TestSQLApi): """ Test the public API as it would be used directly Tests for `read_sql_table` are included here, as this is specific for the sqlalchemy mode. """ flavor = 'sqlite' mode = 'sqlalchemy' def connect(self): if SQLALCHEMY_INSTALLED: return sqlalchemy.create_engine('sqlite:///:memory:') else: raise nose.SkipTest('SQLAlchemy not installed') def test_read_table_columns(self): # test columns argument in read_table sql.to_sql(self.test_frame1, 'test_frame', self.conn) cols = ['A', 'B'] result = sql.read_sql_table('test_frame', self.conn, columns=cols) self.assertEqual(result.columns.tolist(), cols, "Columns not correctly selected") def test_read_table_index_col(self): # test columns argument in read_table sql.to_sql(self.test_frame1, 'test_frame', self.conn) result = sql.read_sql_table('test_frame', self.conn, index_col="index") self.assertEqual(result.index.names, ["index"], "index_col not correctly set") result = sql.read_sql_table( 'test_frame', self.conn, index_col=["A", "B"]) self.assertEqual(result.index.names, ["A", "B"], "index_col not correctly set") result = sql.read_sql_table('test_frame', self.conn, index_col=["A", "B"], columns=["C", "D"]) self.assertEqual(result.index.names, ["A", "B"], "index_col not correctly set") self.assertEqual(result.columns.tolist(), ["C", "D"], "columns not set correctly whith index_col") def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query( "SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql( "SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) iris_frame1 = sql.read_sql_table('iris', self.conn) iris_frame2 = sql.read_sql('iris', self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) def test_not_reflect_all_tables(self): # create invalid table qry = """CREATE TABLE invalid (x INTEGER, y UNKNOWN);""" self.conn.execute(qry) qry = """CREATE TABLE other_table (x INTEGER, y INTEGER);""" self.conn.execute(qry) with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. sql.read_sql_table('other_table', self.conn) sql.read_sql_query('SELECT * FROM other_table', self.conn) # Verify some things self.assertEqual(len(w), 0, "Warning triggered for other table") def test_warning_case_insensitive_table_name(self): # see GH7815. # We can't test that this warning is triggered, a the database # configuration would have to be altered. But here we test that # the warning is certainly NOT triggered in a normal case. with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # This should not trigger a Warning self.test_frame1.to_sql('CaseSensitive', self.conn) # Verify some things self.assertEqual( len(w), 0, "Warning triggered for writing a table") def _get_index_columns(self, tbl_name): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(self.conn) ixs = insp.get_indexes('test_index_saved') ixs = [i['column_names'] for i in ixs] return ixs def test_sqlalchemy_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame({'time': to_datetime(['201412120154', '201412110254'], utc=True)}) db = sql.SQLDatabase(self.conn) table = sql.SQLTable("test_type", db, frame=df) self.assertTrue(isinstance( table.table.c['time'].type, sqltypes.DateTime)) def test_database_uri_string(self): # Test read_sql and .to_sql method with a database URI (GH10654) test_frame1 = self.test_frame1 # db_uri = 'sqlite:///:memory:' # raises # sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) near # "iris": syntax error [SQL: 'iris'] with tm.ensure_clean() as name: db_uri = 'sqlite:///' + name table = 'iris' test_frame1.to_sql(table, db_uri, if_exists='replace', index=False) test_frame2 = sql.read_sql(table, db_uri) test_frame3 = sql.read_sql_table(table, db_uri) query = 'SELECT * FROM iris' test_frame4 = sql.read_sql_query(query, db_uri) tm.assert_frame_equal(test_frame1, test_frame2) tm.assert_frame_equal(test_frame1, test_frame3) tm.assert_frame_equal(test_frame1, test_frame4) # using driver that will not be installed on Travis to trigger error # in sqlalchemy.create_engine -> test passing of this error to user db_uri = "postgresql+pg8000://user:pass@host/dbname" with tm.assertRaisesRegexp(ImportError, "pg8000"): sql.read_sql("select * from table", db_uri) def _make_iris_table_metadata(self): sa = sqlalchemy metadata = sa.MetaData() iris = sa.Table('iris', metadata, sa.Column('SepalLength', sa.REAL), sa.Column('SepalWidth', sa.REAL), sa.Column('PetalLength', sa.REAL), sa.Column('PetalWidth', sa.REAL), sa.Column('Name', sa.TEXT) ) return iris def test_query_by_text_obj(self): # WIP : GH10846 name_text = sqlalchemy.text('select * from iris where name=:name') iris_df = sql.read_sql(name_text, self.conn, params={ 'name': 'Iris-versicolor'}) all_names = set(iris_df['Name']) self.assertEqual(all_names, set(['Iris-versicolor'])) def test_query_by_select_obj(self): # WIP : GH10846 iris = self._make_iris_table_metadata() name_select = sqlalchemy.select([iris]).where( iris.c.Name == sqlalchemy.bindparam('name')) iris_df = sql.read_sql(name_select, self.conn, params={'name': 'Iris-setosa'}) all_names = set(iris_df['Name']) self.assertEqual(all_names, set(['Iris-setosa'])) class _EngineToConnMixin(object): """ A mixin that causes setup_connect to create a conn rather than an engine. """ def setUp(self): super(_EngineToConnMixin, self).setUp() engine = self.conn conn = engine.connect() self.__tx = conn.begin() self.pandasSQL = sql.SQLDatabase(conn) self.__engine = engine self.conn = conn def tearDown(self): self.__tx.rollback() self.conn.close() self.conn = self.__engine self.pandasSQL = sql.SQLDatabase(self.__engine) super(_EngineToConnMixin, self).tearDown() class TestSQLApiConn(_EngineToConnMixin, TestSQLApi): pass class TestSQLiteFallbackApi(SQLiteMixIn, _TestSQLApi): """ Test the public sqlite connection fallback API """ flavor = 'sqlite' mode = 'fallback' def connect(self, database=":memory:"): return sqlite3.connect(database) def test_sql_open_close(self): # Test if the IO in the database still work if the connection closed # between the writing and reading (as in many real situations). with tm.ensure_clean() as name: conn = self.connect(name) sql.to_sql(self.test_frame3, "test_frame3_legacy", conn, index=False) conn.close() conn = self.connect(name) result = sql.read_sql_query("SELECT * FROM test_frame3_legacy;", conn) conn.close() tm.assert_frame_equal(self.test_frame3, result) def test_con_string_import_error(self): if not SQLALCHEMY_INSTALLED: conn = 'mysql://root@localhost/pandas_nosetest' self.assertRaises(ImportError, sql.read_sql, "SELECT * FROM iris", conn) else: raise nose.SkipTest('SQLAlchemy is installed') def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) self.assertRaises(sql.DatabaseError, sql.read_sql, 'iris', self.conn) def test_safe_names_warning(self): # GH 6798 df = DataFrame([[1, 2], [3, 4]], columns=['a', 'b ']) # has a space # warns on create table with spaces in names with tm.assert_produces_warning(): sql.to_sql(df, "test_frame3_legacy", self.conn, index=False) def test_get_schema2(self): # without providing a connection object (available for backwards comp) create_sql = sql.get_schema(self.test_frame1, 'test') self.assertTrue('CREATE' in create_sql) def _get_sqlite_column_type(self, schema, column): for col in schema.split('\n'): if col.split()[0].strip('""') == column: return col.split()[1] raise ValueError('Column %s not found' % (column)) def test_sqlite_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame({'time': to_datetime(['201412120154', '201412110254'], utc=True)}) db = sql.SQLiteDatabase(self.conn) table = sql.SQLiteTable("test_type", db, frame=df) schema = table.sql_schema() self.assertEqual(self._get_sqlite_column_type(schema, 'time'), "TIMESTAMP") # ----------------------------------------------------------------------------- # -- Database flavor specific tests class _TestSQLAlchemy(SQLAlchemyMixIn, PandasSQLTest): """ Base class for testing the sqlalchemy backend. Subclasses for specific database types are created below. Tests that deviate for each flavor are overwritten there. """ flavor = None @classmethod def setUpClass(cls): cls.setup_import() cls.setup_driver() # test connection try: conn = cls.connect() conn.connect() except sqlalchemy.exc.OperationalError: msg = "{0} - can't connect to {1} server".format(cls, cls.flavor) raise nose.SkipTest(msg) def setUp(self): self.setup_connect() self._load_iris_data() self._load_raw_sql() self._load_test1_data() @classmethod def setup_import(cls): # Skip this test if SQLAlchemy not available if not SQLALCHEMY_INSTALLED: raise nose.SkipTest('SQLAlchemy not installed') @classmethod def setup_driver(cls): raise NotImplementedError() @classmethod def connect(cls): raise NotImplementedError() def setup_connect(self): try: self.conn = self.connect() self.pandasSQL = sql.SQLDatabase(self.conn) # to test if connection can be made: self.conn.connect() except sqlalchemy.exc.OperationalError: raise nose.SkipTest( "Can't connect to {0} server".format(self.flavor)) def test_aread_sql(self): self._read_sql_iris() def test_read_sql_parameter(self): self._read_sql_iris_parameter() def test_read_sql_named_parameter(self): self._read_sql_iris_named_parameter() def test_to_sql(self): self._to_sql() def test_to_sql_empty(self): self._to_sql_empty() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replace(self): self._to_sql_replace() def test_to_sql_append(self): self._to_sql_append() def test_create_table(self): temp_conn = self.connect() temp_frame = DataFrame( {'one': [1., 2., 3., 4.], 'two': [4., 3., 2., 1.]}) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, 'temp_frame') self.assertTrue( temp_conn.has_table('temp_frame'), 'Table not written to DB') def test_drop_table(self): temp_conn = self.connect() temp_frame = DataFrame( {'one': [1., 2., 3., 4.], 'two': [4., 3., 2., 1.]}) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, 'temp_frame') self.assertTrue( temp_conn.has_table('temp_frame'), 'Table not written to DB') pandasSQL.drop_table('temp_frame') self.assertFalse( temp_conn.has_table('temp_frame'), 'Table not deleted from DB') def test_roundtrip(self): self._roundtrip() def test_execute_sql(self): self._execute_sql() def test_read_table(self): iris_frame = sql.read_sql_table("iris", con=self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_table_columns(self): iris_frame = sql.read_sql_table( "iris", con=self.conn, columns=['SepalLength', 'SepalLength']) tm.equalContents( iris_frame.columns.values, ['SepalLength', 'SepalLength']) def test_read_table_absent(self): self.assertRaises( ValueError, sql.read_sql_table, "this_doesnt_exist", con=self.conn) def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) self.assertTrue(issubclass(df.FloatCol.dtype.type, np.floating), "FloatCol loaded with incorrect type") self.assertTrue(issubclass(df.IntCol.dtype.type, np.integer), "IntCol loaded with incorrect type") self.assertTrue(issubclass(df.BoolCol.dtype.type, np.bool_), "BoolCol loaded with incorrect type") # Int column with NA values stays as float self.assertTrue(issubclass(df.IntColWithNull.dtype.type, np.floating), "IntColWithNull loaded with incorrect type") # Bool column with NA values becomes object self.assertTrue(issubclass(df.BoolColWithNull.dtype.type, np.object), "BoolColWithNull loaded with incorrect type") def test_bigint(self): # int64 should be converted to BigInteger, GH7433 df = DataFrame(data={'i64': [2**62]}) df.to_sql('test_bigint', self.conn, index=False) result = sql.read_sql_table('test_bigint', self.conn) tm.assert_frame_equal(df, result) def test_default_date_load(self): df = sql.read_sql_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but # MySQL SHOULD be converted. self.assertTrue(issubclass(df.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") def test_datetime_with_timezone(self): # edge case that converts postgresql datetime with time zone types # to datetime64[ns,psycopg2.tz.FixedOffsetTimezone..], which is ok # but should be more natural, so coerce to datetime64[ns] for now def check(col): # check that a column is either datetime64[ns] # or datetime64[ns, UTC] if is_datetime64_dtype(col.dtype): # "2000-01-01 00:00:00-08:00" should convert to # "2000-01-01 08:00:00" self.assertEqual(col[0], Timestamp('2000-01-01 08:00:00')) # "2000-06-01 00:00:00-07:00" should convert to # "2000-06-01 07:00:00" self.assertEqual(col[1], Timestamp('2000-06-01 07:00:00')) elif is_datetime64tz_dtype(col.dtype): self.assertTrue(str(col.dt.tz) == 'UTC') # "2000-01-01 00:00:00-08:00" should convert to # "2000-01-01 08:00:00" self.assertEqual(col[0], Timestamp( '2000-01-01 08:00:00', tz='UTC')) # "2000-06-01 00:00:00-07:00" should convert to # "2000-06-01 07:00:00" self.assertEqual(col[1], Timestamp( '2000-06-01 07:00:00', tz='UTC')) else: raise AssertionError("DateCol loaded with incorrect type " "-> {0}".format(col.dtype)) # GH11216 df = pd.read_sql_query("select * from types_test_data", self.conn) if not hasattr(df, 'DateColWithTz'): raise nose.SkipTest("no column with datetime with time zone") # this is parsed on Travis (linux), but not on macosx for some reason # even with the same versions of psycopg2 & sqlalchemy, possibly a # Postgrsql server version difference col = df.DateColWithTz self.assertTrue(is_object_dtype(col.dtype) or is_datetime64_dtype(col.dtype) or is_datetime64tz_dtype(col.dtype), "DateCol loaded with incorrect type -> {0}" .format(col.dtype)) df = pd.read_sql_query("select * from types_test_data", self.conn, parse_dates=['DateColWithTz']) if not hasattr(df, 'DateColWithTz'): raise nose.SkipTest("no column with datetime with time zone") check(df.DateColWithTz) df = pd.concat(list(pd.read_sql_query("select * from types_test_data", self.conn, chunksize=1)), ignore_index=True) col = df.DateColWithTz self.assertTrue(is_datetime64tz_dtype(col.dtype), "DateCol loaded with incorrect type -> {0}" .format(col.dtype)) self.assertTrue(str(col.dt.tz) == 'UTC') expected = sql.read_sql_table("types_test_data", self.conn) tm.assert_series_equal(df.DateColWithTz, expected.DateColWithTz .astype('datetime64[ns, UTC]')) # xref #7139 # this might or might not be converted depending on the postgres driver df = sql.read_sql_table("types_test_data", self.conn) check(df.DateColWithTz) def test_date_parsing(self): # No Parsing df = sql.read_sql_table("types_test_data", self.conn) df = sql.read_sql_table("types_test_data", self.conn, parse_dates=['DateCol']) self.assertTrue(issubclass(df.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") df = sql.read_sql_table("types_test_data", self.conn, parse_dates={'DateCol': '%Y-%m-%d %H:%M:%S'}) self.assertTrue(issubclass(df.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") df = sql.read_sql_table("types_test_data", self.conn, parse_dates={ 'DateCol': {'format': '%Y-%m-%d %H:%M:%S'}}) self.assertTrue(issubclass(df.DateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") df = sql.read_sql_table( "types_test_data", self.conn, parse_dates=['IntDateCol']) self.assertTrue(issubclass(df.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={'IntDateCol': 's'}) self.assertTrue(issubclass(df.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") df = sql.read_sql_table("types_test_data", self.conn, parse_dates={'IntDateCol': {'unit': 's'}}) self.assertTrue(issubclass(df.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") def test_datetime(self): df = DataFrame({'A': date_range('2013-01-01 09:00:00', periods=3), 'B': np.arange(3.0)}) df.to_sql('test_datetime', self.conn) # with read_table -> type information from schema used result = sql.read_sql_table('test_datetime', self.conn) result = result.drop('index', axis=1) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query('SELECT * FROM test_datetime', self.conn) result = result.drop('index', axis=1) if self.flavor == 'sqlite': self.assertTrue(isinstance(result.loc[0, 'A'], string_types)) result['A'] = to_datetime(result['A']) tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_NaT(self): df = DataFrame({'A': date_range('2013-01-01 09:00:00', periods=3), 'B': np.arange(3.0)}) df.loc[1, 'A'] = np.nan df.to_sql('test_datetime', self.conn, index=False) # with read_table -> type information from schema used result = sql.read_sql_table('test_datetime', self.conn) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query('SELECT * FROM test_datetime', self.conn) if self.flavor == 'sqlite': self.assertTrue(isinstance(result.loc[0, 'A'], string_types)) result['A'] = to_datetime(result['A'], errors='coerce') tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_date(self): # test support for datetime.date df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) df.to_sql('test_date', self.conn, index=False) res = read_sql_table('test_date', self.conn) # comes back as datetime64 tm.assert_series_equal(res['a'], to_datetime(df['a'])) def test_datetime_time(self): # test support for datetime.time df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"]) df.to_sql('test_time', self.conn, index=False) res = read_sql_table('test_time', self.conn) tm.assert_frame_equal(res, df) # GH8341 # first, use the fallback to have the sqlite adapter put in place sqlite_conn = TestSQLiteFallback.connect() sql.to_sql(df, "test_time2", sqlite_conn, index=False) res = sql.read_sql_query("SELECT * FROM test_time2", sqlite_conn) ref = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(ref, res) # check if adapter is in place # then test if sqlalchemy is unaffected by the sqlite adapter sql.to_sql(df, "test_time3", self.conn, index=False) if self.flavor == 'sqlite': res = sql.read_sql_query("SELECT * FROM test_time3", self.conn) ref = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(ref, res) res = sql.read_sql_table("test_time3", self.conn) tm.assert_frame_equal(df, res) def test_mixed_dtype_insert(self): # see GH6509 s1 = Series(2**25 + 1, dtype=np.int32) s2 = Series(0.0, dtype=np.float32) df = DataFrame({'s1': s1, 's2': s2}) # write and read again df.to_sql("test_read_write", self.conn, index=False) df2 = sql.read_sql_table("test_read_write", self.conn) tm.assert_frame_equal(df, df2, check_dtype=False, check_exact=True) def test_nan_numeric(self): # NaNs in numeric float column df = DataFrame({'A': [0, 1, 2], 'B': [0.2, np.nan, 5.6]}) df.to_sql('test_nan', self.conn, index=False) # with read_table result = sql.read_sql_table('test_nan', self.conn) tm.assert_frame_equal(result, df) # with read_sql result = sql.read_sql_query('SELECT * FROM test_nan', self.conn) tm.assert_frame_equal(result, df) def test_nan_fullcolumn(self): # full NaN column (numeric float column) df = DataFrame({'A': [0, 1, 2], 'B': [np.nan, np.nan, np.nan]}) df.to_sql('test_nan', self.conn, index=False) # with read_table result = sql.read_sql_table('test_nan', self.conn) tm.assert_frame_equal(result, df) # with read_sql -> not type info from table -> stays None df['B'] = df['B'].astype('object') df['B'] = None result = sql.read_sql_query('SELECT * FROM test_nan', self.conn) tm.assert_frame_equal(result, df) def test_nan_string(self): # NaNs in string column df = DataFrame({'A': [0, 1, 2], 'B': ['a', 'b', np.nan]}) df.to_sql('test_nan', self.conn, index=False) # NaNs are coming back as None df.loc[2, 'B'] = None # with read_table result = sql.read_sql_table('test_nan', self.conn) tm.assert_frame_equal(result, df) # with read_sql result = sql.read_sql_query('SELECT * FROM test_nan', self.conn) tm.assert_frame_equal(result, df) def _get_index_columns(self, tbl_name): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(self.conn) ixs = insp.get_indexes(tbl_name) ixs = [i['column_names'] for i in ixs] return ixs def test_to_sql_save_index(self): self._to_sql_save_index() def test_transactions(self): self._transaction_test() def test_get_schema_create_table(self): # Use a dataframe without a bool column, since MySQL converts bool to # TINYINT (which read_sql_table returns as an int and causes a dtype # mismatch) self._load_test3_data() tbl = 'test_get_schema_create_table' create_sql = sql.get_schema(self.test_frame3, tbl, con=self.conn) blank_test_df = self.test_frame3.iloc[:0] self.drop_table(tbl) self.conn.execute(create_sql) returned_df = sql.read_sql_table(tbl, self.conn) tm.assert_frame_equal(returned_df, blank_test_df, check_index_type=False) self.drop_table(tbl) def test_dtype(self): cols = ['A', 'B'] data = [(0.8, True), (0.9, None)] df = DataFrame(data, columns=cols) df.to_sql('dtype_test', self.conn) df.to_sql('dtype_test2', self.conn, dtype={'B': sqlalchemy.TEXT}) meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() sqltype = meta.tables['dtype_test2'].columns['B'].type self.assertTrue(isinstance(sqltype, sqlalchemy.TEXT)) self.assertRaises(ValueError, df.to_sql, 'error', self.conn, dtype={'B': str}) # GH9083 df.to_sql('dtype_test3', self.conn, dtype={'B': sqlalchemy.String(10)}) meta.reflect() sqltype = meta.tables['dtype_test3'].columns['B'].type self.assertTrue(isinstance(sqltype, sqlalchemy.String)) self.assertEqual(sqltype.length, 10) # single dtype df.to_sql('single_dtype_test', self.conn, dtype=sqlalchemy.TEXT) meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() sqltypea = meta.tables['single_dtype_test'].columns['A'].type sqltypeb = meta.tables['single_dtype_test'].columns['B'].type self.assertTrue(isinstance(sqltypea, sqlalchemy.TEXT)) self.assertTrue(isinstance(sqltypeb, sqlalchemy.TEXT)) def test_notnull_dtype(self): cols = {'Bool': Series([True, None]), 'Date': Series([datetime(2012, 5, 1), None]), 'Int': Series([1, None], dtype='object'), 'Float': Series([1.1, None]) } df = DataFrame(cols) tbl = 'notnull_dtype_test' df.to_sql(tbl, self.conn) returned_df = sql.read_sql_table(tbl, self.conn) # noqa meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() if self.flavor == 'mysql': my_type = sqltypes.Integer else: my_type = sqltypes.Boolean col_dict = meta.tables[tbl].columns self.assertTrue(isinstance(col_dict['Bool'].type, my_type)) self.assertTrue(isinstance(col_dict['Date'].type, sqltypes.DateTime)) self.assertTrue(isinstance(col_dict['Int'].type, sqltypes.Integer)) self.assertTrue(isinstance(col_dict['Float'].type, sqltypes.Float)) def test_double_precision(self): V = 1.23456789101112131415 df = DataFrame({'f32': Series([V, ], dtype='float32'), 'f64': Series([V, ], dtype='float64'), 'f64_as_f32': Series([V, ], dtype='float64'), 'i32': Series([5, ], dtype='int32'), 'i64': Series([5, ], dtype='int64'), }) df.to_sql('test_dtypes', self.conn, index=False, if_exists='replace', dtype={'f64_as_f32': sqlalchemy.Float(precision=23)}) res = sql.read_sql_table('test_dtypes', self.conn) # check precision of float64 self.assertEqual(np.round(df['f64'].iloc[0], 14), np.round(res['f64'].iloc[0], 14)) # check sql types meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() col_dict = meta.tables['test_dtypes'].columns self.assertEqual(str(col_dict['f32'].type), str(col_dict['f64_as_f32'].type)) self.assertTrue(isinstance(col_dict['f32'].type, sqltypes.Float)) self.assertTrue(isinstance(col_dict['f64'].type, sqltypes.Float)) self.assertTrue(isinstance(col_dict['i32'].type, sqltypes.Integer)) self.assertTrue(isinstance(col_dict['i64'].type, sqltypes.BigInteger)) def test_connectable_issue_example(self): # This tests the example raised in issue # https://github.com/pandas-dev/pandas/issues/10104 def foo(connection): query = 'SELECT test_foo_data FROM test_foo_data' return sql.read_sql_query(query, con=connection) def bar(connection, data): data.to_sql(name='test_foo_data', con=connection, if_exists='append') def main(connectable): with connectable.connect() as conn: with conn.begin(): foo_data = conn.run_callable(foo) conn.run_callable(bar, foo_data) DataFrame({'test_foo_data': [0, 1, 2]}).to_sql( 'test_foo_data', self.conn) main(self.conn) def test_temporary_table(self): test_data = u'Hello, World!' expected = DataFrame({'spam': [test_data]}) Base = declarative.declarative_base() class Temporary(Base): __tablename__ = 'temp_test' __table_args__ = {'prefixes': ['TEMPORARY']} id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) spam = sqlalchemy.Column(sqlalchemy.Unicode(30), nullable=False) Session = sa_session.sessionmaker(bind=self.conn) session = Session() with session.transaction: conn = session.connection() Temporary.__table__.create(conn) session.add(Temporary(spam=test_data)) session.flush() df = sql.read_sql_query( sql=sqlalchemy.select([Temporary.spam]), con=conn, ) tm.assert_frame_equal(df, expected) class _TestSQLAlchemyConn(_EngineToConnMixin, _TestSQLAlchemy): def test_transactions(self): raise nose.SkipTest( "Nested transactions rollbacks don't work with Pandas") class _TestSQLiteAlchemy(object): """ Test the sqlalchemy backend against an in-memory sqlite database. """ flavor = 'sqlite' @classmethod def connect(cls): return sqlalchemy.create_engine('sqlite:///:memory:') @classmethod def setup_driver(cls): # sqlite3 is built-in cls.driver = None def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) self.assertTrue(issubclass(df.FloatCol.dtype.type, np.floating), "FloatCol loaded with incorrect type") self.assertTrue(issubclass(df.IntCol.dtype.type, np.integer), "IntCol loaded with incorrect type") # sqlite has no boolean type, so integer type is returned self.assertTrue(issubclass(df.BoolCol.dtype.type, np.integer), "BoolCol loaded with incorrect type") # Int column with NA values stays as float self.assertTrue(issubclass(df.IntColWithNull.dtype.type, np.floating), "IntColWithNull loaded with incorrect type") # Non-native Bool column with NA values stays as float self.assertTrue(issubclass(df.BoolColWithNull.dtype.type, np.floating), "BoolColWithNull loaded with incorrect type") def test_default_date_load(self): df = sql.read_sql_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but self.assertFalse(issubclass(df.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") def test_bigint_warning(self): # test no warning for BIGINT (to support int64) is raised (GH7433) df = DataFrame({'a': [1, 2]}, dtype='int64') df.to_sql('test_bigintwarning', self.conn, index=False) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") sql.read_sql_table('test_bigintwarning', self.conn) self.assertEqual(len(w), 0, "Warning triggered for other table") class _TestMySQLAlchemy(object): """ Test the sqlalchemy backend against an MySQL database. """ flavor = 'mysql' @classmethod def connect(cls): url = 'mysql+{driver}://root@localhost/pandas_nosetest' return sqlalchemy.create_engine(url.format(driver=cls.driver)) @classmethod def setup_driver(cls): try: import pymysql # noqa cls.driver = 'pymysql' except ImportError: raise nose.SkipTest('pymysql not installed') def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) self.assertTrue(issubclass(df.FloatCol.dtype.type, np.floating), "FloatCol loaded with incorrect type") self.assertTrue(issubclass(df.IntCol.dtype.type, np.integer), "IntCol loaded with incorrect type") # MySQL has no real BOOL type (it's an alias for TINYINT) self.assertTrue(issubclass(df.BoolCol.dtype.type, np.integer), "BoolCol loaded with incorrect type") # Int column with NA values stays as float self.assertTrue(issubclass(df.IntColWithNull.dtype.type, np.floating), "IntColWithNull loaded with incorrect type") # Bool column with NA = int column with NA values => becomes float self.assertTrue(issubclass(df.BoolColWithNull.dtype.type, np.floating), "BoolColWithNull loaded with incorrect type") def test_read_procedure(self): # see GH7324. Although it is more an api test, it is added to the # mysql tests as sqlite does not have stored procedures df = DataFrame({'a': [1, 2, 3], 'b': [0.1, 0.2, 0.3]}) df.to_sql('test_procedure', self.conn, index=False) proc = """DROP PROCEDURE IF EXISTS get_testdb; CREATE PROCEDURE get_testdb () BEGIN SELECT * FROM test_procedure; END""" connection = self.conn.connect() trans = connection.begin() try: r1 = connection.execute(proc) # noqa trans.commit() except: trans.rollback() raise res1 = sql.read_sql_query("CALL get_testdb();", self.conn) tm.assert_frame_equal(df, res1) # test delegation to read_sql_query res2 = sql.read_sql("CALL get_testdb();", self.conn) tm.assert_frame_equal(df, res2) class _TestPostgreSQLAlchemy(object): """ Test the sqlalchemy backend against an PostgreSQL database. """ flavor = 'postgresql' @classmethod def connect(cls): url = 'postgresql+{driver}://postgres@localhost/pandas_nosetest' return sqlalchemy.create_engine(url.format(driver=cls.driver)) @classmethod def setup_driver(cls): try: import psycopg2 # noqa cls.driver = 'psycopg2' except ImportError: raise nose.SkipTest('psycopg2 not installed') def test_schema_support(self): # only test this for postgresql (schema's not supported in # mysql/sqlite) df = DataFrame({'col1': [1, 2], 'col2': [ 0.1, 0.2], 'col3': ['a', 'n']}) # create a schema self.conn.execute("DROP SCHEMA IF EXISTS other CASCADE;") self.conn.execute("CREATE SCHEMA other;") # write dataframe to different schema's df.to_sql('test_schema_public', self.conn, index=False) df.to_sql('test_schema_public_explicit', self.conn, index=False, schema='public') df.to_sql('test_schema_other', self.conn, index=False, schema='other') # read dataframes back in res1 = sql.read_sql_table('test_schema_public', self.conn) tm.assert_frame_equal(df, res1) res2 = sql.read_sql_table('test_schema_public_explicit', self.conn) tm.assert_frame_equal(df, res2) res3 = sql.read_sql_table('test_schema_public_explicit', self.conn, schema='public') tm.assert_frame_equal(df, res3) res4 = sql.read_sql_table('test_schema_other', self.conn, schema='other') tm.assert_frame_equal(df, res4) self.assertRaises(ValueError, sql.read_sql_table, 'test_schema_other', self.conn, schema='public') # different if_exists options # create a schema self.conn.execute("DROP SCHEMA IF EXISTS other CASCADE;") self.conn.execute("CREATE SCHEMA other;") # write dataframe with different if_exists options df.to_sql('test_schema_other', self.conn, schema='other', index=False) df.to_sql('test_schema_other', self.conn, schema='other', index=False, if_exists='replace') df.to_sql('test_schema_other', self.conn, schema='other', index=False, if_exists='append') res = sql.read_sql_table( 'test_schema_other', self.conn, schema='other') tm.assert_frame_equal(concat([df, df], ignore_index=True), res) # specifying schema in user-provided meta # The schema won't be applied on another Connection # because of transactional schemas if isinstance(self.conn, sqlalchemy.engine.Engine): engine2 = self.connect() meta = sqlalchemy.MetaData(engine2, schema='other') pdsql = sql.SQLDatabase(engine2, meta=meta) pdsql.to_sql(df, 'test_schema_other2', index=False) pdsql.to_sql(df, 'test_schema_other2', index=False, if_exists='replace') pdsql.to_sql(df, 'test_schema_other2', index=False, if_exists='append') res1 = sql.read_sql_table( 'test_schema_other2', self.conn, schema='other') res2 = pdsql.read_table('test_schema_other2') tm.assert_frame_equal(res1, res2) class TestMySQLAlchemy(_TestMySQLAlchemy, _TestSQLAlchemy): pass class TestMySQLAlchemyConn(_TestMySQLAlchemy, _TestSQLAlchemyConn): pass class TestPostgreSQLAlchemy(_TestPostgreSQLAlchemy, _TestSQLAlchemy): pass class TestPostgreSQLAlchemyConn(_TestPostgreSQLAlchemy, _TestSQLAlchemyConn): pass class TestSQLiteAlchemy(_TestSQLiteAlchemy, _TestSQLAlchemy): pass class TestSQLiteAlchemyConn(_TestSQLiteAlchemy, _TestSQLAlchemyConn): pass # ----------------------------------------------------------------------------- # -- Test Sqlite / MySQL fallback class TestSQLiteFallback(SQLiteMixIn, PandasSQLTest): """ Test the fallback mode against an in-memory sqlite database. """ flavor = 'sqlite' @classmethod def connect(cls): return sqlite3.connect(':memory:') def setUp(self): self.conn = self.connect() self.pandasSQL = sql.SQLiteDatabase(self.conn) self._load_iris_data() self._load_test1_data() def test_read_sql(self): self._read_sql_iris() def test_read_sql_parameter(self): self._read_sql_iris_parameter() def test_read_sql_named_parameter(self): self._read_sql_iris_named_parameter() def test_to_sql(self): self._to_sql() def test_to_sql_empty(self): self._to_sql_empty() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replace(self): self._to_sql_replace() def test_to_sql_append(self): self._to_sql_append() def test_create_and_drop_table(self): temp_frame = DataFrame( {'one': [1., 2., 3., 4.], 'two': [4., 3., 2., 1.]}) self.pandasSQL.to_sql(temp_frame, 'drop_test_frame') self.assertTrue(self.pandasSQL.has_table('drop_test_frame'), 'Table not written to DB') self.pandasSQL.drop_table('drop_test_frame') self.assertFalse(self.pandasSQL.has_table('drop_test_frame'), 'Table not deleted from DB') def test_roundtrip(self): self._roundtrip() def test_execute_sql(self): self._execute_sql() def test_datetime_date(self): # test support for datetime.date df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) df.to_sql('test_date', self.conn, index=False) res = read_sql_query('SELECT * FROM test_date', self.conn) if self.flavor == 'sqlite': # comes back as strings tm.assert_frame_equal(res, df.astype(str)) elif self.flavor == 'mysql': tm.assert_frame_equal(res, df) def test_datetime_time(self): # test support for datetime.time, GH #8341 df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"]) df.to_sql('test_time', self.conn, index=False) res = read_sql_query('SELECT * FROM test_time', self.conn) if self.flavor == 'sqlite': # comes back as strings expected = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(res, expected) def _get_index_columns(self, tbl_name): ixs = sql.read_sql_query( "SELECT * FROM sqlite_master WHERE type = 'index' " + "AND tbl_name = '%s'" % tbl_name, self.conn) ix_cols = [] for ix_name in ixs.name: ix_info = sql.read_sql_query( "PRAGMA index_info(%s)" % ix_name, self.conn) ix_cols.append(ix_info.name.tolist()) return ix_cols def test_to_sql_save_index(self): self._to_sql_save_index() def test_transactions(self): if PY36: raise nose.SkipTest("not working on python > 3.5") self._transaction_test() def _get_sqlite_column_type(self, table, column): recs = self.conn.execute('PRAGMA table_info(%s)' % table) for cid, name, ctype, not_null, default, pk in recs: if name == column: return ctype raise ValueError('Table %s, column %s not found' % (table, column)) def test_dtype(self): if self.flavor == 'mysql': raise nose.SkipTest('Not applicable to MySQL legacy') cols = ['A', 'B'] data = [(0.8, True), (0.9, None)] df = DataFrame(data, columns=cols) df.to_sql('dtype_test', self.conn) df.to_sql('dtype_test2', self.conn, dtype={'B': 'STRING'}) # sqlite stores Boolean values as INTEGER self.assertEqual(self._get_sqlite_column_type( 'dtype_test', 'B'), 'INTEGER') self.assertEqual(self._get_sqlite_column_type( 'dtype_test2', 'B'), 'STRING') self.assertRaises(ValueError, df.to_sql, 'error', self.conn, dtype={'B': bool}) # single dtype df.to_sql('single_dtype_test', self.conn, dtype='STRING') self.assertEqual( self._get_sqlite_column_type('single_dtype_test', 'A'), 'STRING') self.assertEqual( self._get_sqlite_column_type('single_dtype_test', 'B'), 'STRING') def test_notnull_dtype(self): if self.flavor == 'mysql': raise nose.SkipTest('Not applicable to MySQL legacy') cols = {'Bool': Series([True, None]), 'Date': Series([datetime(2012, 5, 1), None]), 'Int': Series([1, None], dtype='object'), 'Float': Series([1.1, None]) } df = DataFrame(cols) tbl = 'notnull_dtype_test' df.to_sql(tbl, self.conn) self.assertEqual(self._get_sqlite_column_type(tbl, 'Bool'), 'INTEGER') self.assertEqual(self._get_sqlite_column_type( tbl, 'Date'), 'TIMESTAMP') self.assertEqual(self._get_sqlite_column_type(tbl, 'Int'), 'INTEGER') self.assertEqual(self._get_sqlite_column_type(tbl, 'Float'), 'REAL') def test_illegal_names(self): # For sqlite, these should work fine df = DataFrame([[1, 2], [3, 4]], columns=['a', 'b']) # Raise error on blank self.assertRaises(ValueError, df.to_sql, "", self.conn) for ndx, weird_name in enumerate( ['test_weird_name]', 'test_weird_name[', 'test_weird_name`', 'test_weird_name"', 'test_weird_name\'', '_b.test_weird_name_01-30', '"_b.test_weird_name_01-30"', '99beginswithnumber', '12345', u'\xe9']): df.to_sql(weird_name, self.conn) sql.table_exists(weird_name, self.conn) df2 = DataFrame([[1, 2], [3, 4]], columns=['a', weird_name]) c_tbl = 'test_weird_col_name%d' % ndx df2.to_sql(c_tbl, self.conn) sql.table_exists(c_tbl, self.conn) # ----------------------------------------------------------------------------- # -- Old tests from 0.13.1 (before refactor using sqlalchemy) _formatters = { datetime: lambda dt: "'%s'" % date_format(dt), str: lambda x: "'%s'" % x, np.str_: lambda x: "'%s'" % x, compat.text_type: lambda x: "'%s'" % x, compat.binary_type: lambda x: "'%s'" % x, float: lambda x: "%.8f" % x, int: lambda x: "%s" % x, type(None): lambda x: "NULL", np.float64: lambda x: "%.10f" % x, bool: lambda x: "'%s'" % x, } def format_query(sql, *args): """ """ processed_args = [] for arg in args: if isinstance(arg, float) and isnull(arg): arg = None formatter = _formatters[type(arg)] processed_args.append(formatter(arg)) return sql % tuple(processed_args) def tquery(query, con=None, cur=None): """Replace removed sql.tquery function""" res = sql.execute(query, con=con, cur=cur).fetchall() if res is None: return None else: return list(res) def _skip_if_no_pymysql(): try: import pymysql # noqa except ImportError: raise nose.SkipTest('pymysql not installed, skipping') class TestXSQLite(SQLiteMixIn, tm.TestCase): def setUp(self): self.conn = sqlite3.connect(':memory:') def test_basic(self): frame = tm.makeTimeDataFrame() self._check_roundtrip(frame) def test_write_row_by_row(self): frame = tm.makeTimeDataFrame() frame.ix[0, 0] = np.nan create_sql = sql.get_schema(frame, 'test') cur = self.conn.cursor() cur.execute(create_sql) cur = self.conn.cursor() ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" for idx, row in frame.iterrows(): fmt_sql = format_query(ins, *row) tquery(fmt_sql, cur=cur) self.conn.commit() result = sql.read_sql("select * from test", con=self.conn) result.index = frame.index tm.assert_frame_equal(result, frame) def test_execute(self): frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, 'test') cur = self.conn.cursor() cur.execute(create_sql) ins = "INSERT INTO test VALUES (?, ?, ?, ?)" row = frame.ix[0] sql.execute(ins, self.conn, params=tuple(row)) self.conn.commit() result = sql.read_sql("select * from test", self.conn) result.index = frame.index[:1] tm.assert_frame_equal(result, frame[:1]) def test_schema(self): frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, 'test') lines = create_sql.splitlines() for l in lines: tokens = l.split(' ') if len(tokens) == 2 and tokens[0] == 'A': self.assertTrue(tokens[1] == 'DATETIME') frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, 'test', keys=['A', 'B']) lines = create_sql.splitlines() self.assertTrue('PRIMARY KEY ("A", "B")' in create_sql) cur = self.conn.cursor() cur.execute(create_sql) def test_execute_fail(self): create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a, b) ); """ cur = self.conn.cursor() cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.conn) sql.execute('INSERT INTO test VALUES("foo", "baz", 2.567)', self.conn) try: sys.stdout = StringIO() self.assertRaises(Exception, sql.execute, 'INSERT INTO test VALUES("foo", "bar", 7)', self.conn) finally: sys.stdout = sys.__stdout__ def test_execute_closed_connection(self): create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a, b) ); """ cur = self.conn.cursor() cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.conn) self.conn.close() try: sys.stdout = StringIO() self.assertRaises(Exception, tquery, "select * from test", con=self.conn) finally: sys.stdout = sys.__stdout__ # Initialize connection again (needed for tearDown) self.setUp() def test_na_roundtrip(self): pass def _check_roundtrip(self, frame): sql.to_sql(frame, name='test_table', con=self.conn, index=False) result = sql.read_sql("select * from test_table", self.conn) # HACK! Change this once indexes are handled properly. result.index = frame.index expected = frame tm.assert_frame_equal(result, expected) frame['txt'] = ['a'] * len(frame) frame2 = frame.copy() frame2['Idx'] = Index(lrange(len(frame2))) + 10 sql.to_sql(frame2, name='test_table2', con=self.conn, index=False) result = sql.read_sql("select * from test_table2", self.conn, index_col='Idx') expected = frame.copy() expected.index = Index(lrange(len(frame2))) + 10 expected.index.name = 'Idx' tm.assert_frame_equal(expected, result) def test_keyword_as_column_names(self): df = DataFrame({'From': np.ones(5)}) sql.to_sql(df, con=self.conn, name='testkeywords', index=False) def test_onecolumn_of_integer(self): # GH 3628 # a column_of_integers dataframe should transfer well to sql mono_df = DataFrame([1, 2], columns=['c0']) sql.to_sql(mono_df, con=self.conn, name='mono_df', index=False) # computing the sum via sql con_x = self.conn the_sum = sum([my_c0[0] for my_c0 in con_x.execute("select * from mono_df")]) # it should not fail, and gives 3 ( Issue #3628 ) self.assertEqual(the_sum, 3) result = sql.read_sql("select * from mono_df", con_x) tm.assert_frame_equal(result, mono_df) def test_if_exists(self): df_if_exists_1 = DataFrame({'col1': [1, 2], 'col2': ['A', 'B']}) df_if_exists_2 = DataFrame( {'col1': [3, 4, 5], 'col2': ['C', 'D', 'E']}) table_name = 'table_if_exists' sql_select = "SELECT * FROM %s" % table_name def clean_up(test_table_to_drop): """ Drops tables created from individual tests so no dependencies arise from sequential tests """ self.drop_table(test_table_to_drop) # test if invalid value for if_exists raises appropriate error self.assertRaises(ValueError, sql.to_sql, frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='notvalidvalue') clean_up(table_name) # test if_exists='fail' sql.to_sql(frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='fail') self.assertRaises(ValueError, sql.to_sql, frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='fail') # test if_exists='replace' sql.to_sql(frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='replace', index=False) self.assertEqual(tquery(sql_select, con=self.conn), [(1, 'A'), (2, 'B')]) sql.to_sql(frame=df_if_exists_2, con=self.conn, name=table_name, if_exists='replace', index=False) self.assertEqual(tquery(sql_select, con=self.conn), [(3, 'C'), (4, 'D'), (5, 'E')]) clean_up(table_name) # test if_exists='append' sql.to_sql(frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='fail', index=False) self.assertEqual(tquery(sql_select, con=self.conn), [(1, 'A'), (2, 'B')]) sql.to_sql(frame=df_if_exists_2, con=self.conn, name=table_name, if_exists='append', index=False) self.assertEqual(tquery(sql_select, con=self.conn), [(1, 'A'), (2, 'B'), (3, 'C'), (4, 'D'), (5, 'E')]) clean_up(table_name) class TestSQLFlavorDeprecation(tm.TestCase): """ gh-13611: test that the 'flavor' parameter is appropriately deprecated by checking the functions that directly raise the warning """ con = 1234 # don't need real connection for this funcs = ['SQLiteDatabase', 'pandasSQL_builder'] def test_unsupported_flavor(self): msg = 'is not supported' for func in self.funcs: tm.assertRaisesRegexp(ValueError, msg, getattr(sql, func), self.con, flavor='mysql') def test_deprecated_flavor(self): for func in self.funcs: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): getattr(sql, func)(self.con, flavor='sqlite') @unittest.skip("gh-13611: there is no support for MySQL " "if SQLAlchemy is not installed") class TestXMySQL(MySQLMixIn, tm.TestCase): @classmethod def setUpClass(cls): _skip_if_no_pymysql() # test connection import pymysql try: # Try Travis defaults. # No real user should allow root access with a blank password. pymysql.connect(host='localhost', user='root', passwd='', db='pandas_nosetest') except: pass else: return try: pymysql.connect(read_default_group='pandas') except pymysql.ProgrammingError: raise nose.SkipTest( "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf. ") except pymysql.Error: raise nose.SkipTest( "Cannot connect to database. " "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf. ") def setUp(self): _skip_if_no_pymysql() import pymysql try: # Try Travis defaults. # No real user should allow root access with a blank password. self.conn = pymysql.connect(host='localhost', user='root', passwd='', db='pandas_nosetest') except: pass else: return try: self.conn = pymysql.connect(read_default_group='pandas') except pymysql.ProgrammingError: raise nose.SkipTest( "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf. ") except pymysql.Error: raise nose.SkipTest( "Cannot connect to database. " "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf. ") def test_basic(self): _skip_if_no_pymysql() frame = tm.makeTimeDataFrame() self._check_roundtrip(frame) def test_write_row_by_row(self): _skip_if_no_pymysql() frame = tm.makeTimeDataFrame() frame.ix[0, 0] = np.nan drop_sql = "DROP TABLE IF EXISTS test" create_sql = sql.get_schema(frame, 'test') cur = self.conn.cursor() cur.execute(drop_sql) cur.execute(create_sql) ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" for idx, row in frame.iterrows(): fmt_sql = format_query(ins, *row) tquery(fmt_sql, cur=cur) self.conn.commit() result = sql.read_sql("select * from test", con=self.conn) result.index = frame.index tm.assert_frame_equal(result, frame) def test_chunksize_read_type(self): _skip_if_no_pymysql() frame = tm.makeTimeDataFrame() frame.index.name = "index" drop_sql = "DROP TABLE IF EXISTS test" cur = self.conn.cursor() cur.execute(drop_sql) sql.to_sql(frame, name='test', con=self.conn) query = "select * from test" chunksize = 5 chunk_gen = pd.read_sql_query(sql=query, con=self.conn, chunksize=chunksize, index_col="index") chunk_df = next(chunk_gen) tm.assert_frame_equal(frame[:chunksize], chunk_df) def test_execute(self): _skip_if_no_pymysql() frame = tm.makeTimeDataFrame() drop_sql = "DROP TABLE IF EXISTS test" create_sql = sql.get_schema(frame, 'test') cur = self.conn.cursor() with warnings.catch_warnings(): warnings.filterwarnings("ignore", "Unknown table.*") cur.execute(drop_sql) cur.execute(create_sql) ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" row = frame.ix[0].values.tolist() sql.execute(ins, self.conn, params=tuple(row)) self.conn.commit() result = sql.read_sql("select * from test", self.conn) result.index = frame.index[:1] tm.assert_frame_equal(result, frame[:1]) def test_schema(self): _skip_if_no_pymysql() frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, 'test') lines = create_sql.splitlines() for l in lines: tokens = l.split(' ') if len(tokens) == 2 and tokens[0] == 'A': self.assertTrue(tokens[1] == 'DATETIME') frame = tm.makeTimeDataFrame() drop_sql = "DROP TABLE IF EXISTS test" create_sql = sql.get_schema(frame, 'test', keys=['A', 'B']) lines = create_sql.splitlines() self.assertTrue('PRIMARY KEY (`A`, `B`)' in create_sql) cur = self.conn.cursor() cur.execute(drop_sql) cur.execute(create_sql) def test_execute_fail(self): _skip_if_no_pymysql() drop_sql = "DROP TABLE IF EXISTS test" create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a(5), b(5)) ); """ cur = self.conn.cursor() cur.execute(drop_sql) cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.conn) sql.execute('INSERT INTO test VALUES("foo", "baz", 2.567)', self.conn) try: sys.stdout = StringIO() self.assertRaises(Exception, sql.execute, 'INSERT INTO test VALUES("foo", "bar", 7)', self.conn) finally: sys.stdout = sys.__stdout__ def test_execute_closed_connection(self): _skip_if_no_pymysql() drop_sql = "DROP TABLE IF EXISTS test" create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a(5), b(5)) ); """ cur = self.conn.cursor() cur.execute(drop_sql) cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.conn) self.conn.close() try: sys.stdout = StringIO() self.assertRaises(Exception, tquery, "select * from test", con=self.conn) finally: sys.stdout = sys.__stdout__ # Initialize connection again (needed for tearDown) self.setUp() def test_na_roundtrip(self): _skip_if_no_pymysql() pass def _check_roundtrip(self, frame): _skip_if_no_pymysql() drop_sql = "DROP TABLE IF EXISTS test_table" cur = self.conn.cursor() with warnings.catch_warnings(): warnings.filterwarnings("ignore", "Unknown table.*") cur.execute(drop_sql) sql.to_sql(frame, name='test_table', con=self.conn, index=False) result = sql.read_sql("select * from test_table", self.conn) # HACK! Change this once indexes are handled properly. result.index = frame.index result.index.name = frame.index.name expected = frame tm.assert_frame_equal(result, expected) frame['txt'] = ['a'] * len(frame) frame2 = frame.copy() index = Index(lrange(len(frame2))) + 10 frame2['Idx'] = index drop_sql = "DROP TABLE IF EXISTS test_table2" cur = self.conn.cursor() with warnings.catch_warnings(): warnings.filterwarnings("ignore", "Unknown table.*") cur.execute(drop_sql) sql.to_sql(frame2, name='test_table2', con=self.conn, index=False) result = sql.read_sql("select * from test_table2", self.conn, index_col='Idx') expected = frame.copy() # HACK! Change this once indexes are handled properly. expected.index = index expected.index.names = result.index.names tm.assert_frame_equal(expected, result) def test_keyword_as_column_names(self): _skip_if_no_pymysql() df = DataFrame({'From': np.ones(5)}) sql.to_sql(df, con=self.conn, name='testkeywords', if_exists='replace', index=False) def test_if_exists(self): _skip_if_no_pymysql() df_if_exists_1 = DataFrame({'col1': [1, 2], 'col2': ['A', 'B']}) df_if_exists_2 = DataFrame( {'col1': [3, 4, 5], 'col2': ['C', 'D', 'E']}) table_name = 'table_if_exists' sql_select = "SELECT * FROM %s" % table_name def clean_up(test_table_to_drop): """ Drops tables created from individual tests so no dependencies arise from sequential tests """ self.drop_table(test_table_to_drop) # test if invalid value for if_exists raises appropriate error self.assertRaises(ValueError, sql.to_sql, frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='notvalidvalue') clean_up(table_name) # test if_exists='fail' sql.to_sql(frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='fail', index=False) self.assertRaises(ValueError, sql.to_sql, frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='fail') # test if_exists='replace' sql.to_sql(frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='replace', index=False) self.assertEqual(tquery(sql_select, con=self.conn), [(1, 'A'), (2, 'B')]) sql.to_sql(frame=df_if_exists_2, con=self.conn, name=table_name, if_exists='replace', index=False) self.assertEqual(tquery(sql_select, con=self.conn), [(3, 'C'), (4, 'D'), (5, 'E')]) clean_up(table_name) # test if_exists='append' sql.to_sql(frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='fail', index=False) self.assertEqual(tquery(sql_select, con=self.conn), [(1, 'A'), (2, 'B')]) sql.to_sql(frame=df_if_exists_2, con=self.conn, name=table_name, if_exists='append', index=False) self.assertEqual(tquery(sql_select, con=self.conn), [(1, 'A'), (2, 'B'), (3, 'C'), (4, 'D'), (5, 'E')]) clean_up(table_name) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
apache-2.0
notmatthancock/notmatthancock.github.io
code/py/roc-3.py
1
1622
import numpy as np import matplotlib.pyplot as plt rs = np.random.RandomState(1234) p = 2 n = 1000 py1 = 0.6 mean1 = np.r_[1,1.] mean0 = -mean1 # These are the parameters learned from before w = np.r_[2.45641058, 1.55227045] b = -0.824723538369 # Generate some testing data Y = (rs.rand(n) > py1).astype(int) X = np.zeros((n,p)) X[Y==0] = rs.multivariate_normal(mean0, np.eye(p), size=(Y==0).sum()) X[Y==1] = rs.multivariate_normal(mean1, np.eye(p), size=(Y==1).sum()) # This is the model's prediction on the test data. T = 1 / (1. + np.exp(-b-np.dot(X,w))) thresholds = np.linspace(1,0,101) ROC = np.zeros((101,2)) for i in range(101): t = thresholds[i] # Classifier / label agree and disagreements for current threshold. TP_t = np.logical_and( T > t, Y==1 ).sum() TN_t = np.logical_and( T <=t, Y==0 ).sum() FP_t = np.logical_and( T > t, Y==0 ).sum() FN_t = np.logical_and( T <=t, Y==1 ).sum() # Compute false positive rate for current threshold. FPR_t = FP_t / float(FP_t + TN_t) ROC[i,0] = FPR_t # Compute true positive rate for current threshold. TPR_t = TP_t / float(TP_t + FN_t) ROC[i,1] = TPR_t # Plot the ROC curve. fig = plt.figure(figsize=(6,6)) plt.plot(ROC[:,0], ROC[:,1], lw=2) plt.xlim(-0.1,1.1) plt.ylim(-0.1,1.1) plt.xlabel('$FPR(t)$') plt.ylabel('$TPR(t)$') plt.grid() # Now let's compute the AUC score using the trapezoidal rule. AUC = 0. for i in range(100): AUC += (ROC[i+1,0]-ROC[i,0]) * (ROC[i+1,1]+ROC[i,1]) AUC *= 0.5 plt.title('ROC curve, AUC = %.4f'%AUC) plt.show() #plt.savefig('../../images/roc-3.png', bbox_inches='tight')
mit
m3wolf/xanespy
xanespy/sxstm.py
1
3383
# -*- coding: utf-8 -*- # # Copyright © 2016 Mark Wolf # # This file is part of Xanespy. # # Xanespy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Xanespy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Xanespy. If not, see <http://www.gnu.org/licenses/>. """Tools for importing Soft X-ray Scanning Tunneling Microscopy data as output from the sector 4 ID-C beamline.""" import struct import re import numpy as np import pandas as pd class SxstmDataFile(): def __init__(self, filename): self.filename = filename self.file = open(self.filename, mode="r+b") def header_lines(self): self.file.seek(0) lines = self.file.readlines()[0:34] # Convert from bytestring to unicode lines = [l.decode('utf-8') for l in lines] # Remove excess whitespace lines = [l.strip() for l in lines] assert lines[-1] == ':HEADER_END:', lines[-1] return lines[:-1] def dataframe(self): # Find the start of the data section self.file.seek(0) last_line = "" while last_line != ":HEADER_END:": last_line = self.file.readline().decode('ascii').strip() # Load list of columns self.file.read(44) # Garbage?? channels = self.file.read(259) channels = channels.split(b'\x00\x00\x00') # Clean out unhelpful bytes from the column names bad_chars = [0x0b, 0x0f, 0x12, 0x10, 0x08, 0x0c, 0x05, 0x1a] clean_first = lambda b: b[1:] if b[0] in bad_chars else b channels = list(map(clean_first, channels)) # Convert column names to unicode channels = [c.decode('latin1') for c in channels] # Read experimental data and convert to float/int/etc. lines = self.file.read() word_len = 4 fmt = ">%df" % (len(lines) / word_len) numbers = struct.unpack_from(fmt, lines) numbers = np.array(numbers) # Reshape the values to be in the correct order for pandas numbers = numbers.reshape((len(channels), -1)) numbers = numbers.swapaxes(0, 1) # Create the pandas dataframe df = pd.DataFrame(data=numbers, columns=channels) return df def channels(self): hdr = self.header_lines() reg = re.compile('^Channels="([a-zA-Z0-9 ();]+)"') for l in hdr: match = reg.match(l) if match: channels = match.group(1).split(';') return channels def num_points(self): hdr = self.header_lines() reg = re.compile('^Points=(\d+)') for l in hdr: match = reg.match(l) if match: return int(match.group(1)) def close(self, *args, **kwargs): self.file.close(*args, **kwargs) def __enter__(self): return self def __exit__(self, *args, **kwargs): self.close()
gpl-3.0
wlamond/scikit-learn
examples/decomposition/plot_image_denoising.py
1
5957
""" ========================================= Image denoising using dictionary learning ========================================= An example comparing the effect of reconstructing noisy fragments of a raccoon face image using firstly online :ref:`DictionaryLearning` and various transform methods. The dictionary is fitted on the distorted left half of the image, and subsequently used to reconstruct the right half. Note that even better performance could be achieved by fitting to an undistorted (i.e. noiseless) image, but here we start from the assumption that it is not available. A common practice for evaluating the results of image denoising is by looking at the difference between the reconstruction and the original image. If the reconstruction is perfect this will look like Gaussian noise. It can be seen from the plots that the results of :ref:`omp` with two non-zero coefficients is a bit less biased than when keeping only one (the edges look less prominent). It is in addition closer from the ground truth in Frobenius norm. The result of :ref:`least_angle_regression` is much more strongly biased: the difference is reminiscent of the local intensity value of the original image. Thresholding is clearly not useful for denoising, but it is here to show that it can produce a suggestive output with very high speed, and thus be useful for other tasks such as object classification, where performance is not necessarily related to visualisation. """ print(__doc__) from time import time import matplotlib.pyplot as plt import numpy as np import scipy as sp from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.feature_extraction.image import extract_patches_2d from sklearn.feature_extraction.image import reconstruct_from_patches_2d ############################################################################### try: # SciPy >= 0.16 have face in misc from scipy.misc import face face = face(gray=True) except ImportError: face = sp.face(gray=True) # Convert from uint8 representation with values between 0 and 255 to # a floating point representation with values between 0 and 1. face = face / 255 # downsample for higher speed face = face[::2, ::2] + face[1::2, ::2] + face[::2, 1::2] + face[1::2, 1::2] face /= 4.0 height, width = face.shape # Distort the right half of the image print('Distorting image...') distorted = face.copy() distorted[:, width // 2:] += 0.075 * np.random.randn(height, width // 2) # Extract all reference patches from the left half of the image print('Extracting reference patches...') t0 = time() patch_size = (7, 7) data = extract_patches_2d(distorted[:, :width // 2], patch_size) data = data.reshape(data.shape[0], -1) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) print('done in %.2fs.' % (time() - t0)) ############################################################################### # Learn the dictionary from reference patches print('Learning the dictionary...') t0 = time() dico = MiniBatchDictionaryLearning(n_components=100, alpha=1, n_iter=500) V = dico.fit(data).components_ dt = time() - t0 print('done in %.2fs.' % dt) plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(V[:100]): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape(patch_size), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Dictionary learned from face patches\n' + 'Train time %.1fs on %d patches' % (dt, len(data)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) ############################################################################### # Display the distorted image def show_with_diff(image, reference, title): """Helper function to display denoising""" plt.figure(figsize=(5, 3.3)) plt.subplot(1, 2, 1) plt.title('Image') plt.imshow(image, vmin=0, vmax=1, cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.subplot(1, 2, 2) difference = image - reference plt.title('Difference (norm: %.2f)' % np.sqrt(np.sum(difference ** 2))) plt.imshow(difference, vmin=-0.5, vmax=0.5, cmap=plt.cm.PuOr, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle(title, size=16) plt.subplots_adjust(0.02, 0.02, 0.98, 0.79, 0.02, 0.2) show_with_diff(distorted, face, 'Distorted image') ############################################################################### # Extract noisy patches and reconstruct them using the dictionary print('Extracting noisy patches... ') t0 = time() data = extract_patches_2d(distorted[:, width // 2:], patch_size) data = data.reshape(data.shape[0], -1) intercept = np.mean(data, axis=0) data -= intercept print('done in %.2fs.' % (time() - t0)) transform_algorithms = [ ('Orthogonal Matching Pursuit\n1 atom', 'omp', {'transform_n_nonzero_coefs': 1}), ('Orthogonal Matching Pursuit\n2 atoms', 'omp', {'transform_n_nonzero_coefs': 2}), ('Least-angle regression\n5 atoms', 'lars', {'transform_n_nonzero_coefs': 5}), ('Thresholding\n alpha=0.1', 'threshold', {'transform_alpha': .1})] reconstructions = {} for title, transform_algorithm, kwargs in transform_algorithms: print(title + '...') reconstructions[title] = face.copy() t0 = time() dico.set_params(transform_algorithm=transform_algorithm, **kwargs) code = dico.transform(data) patches = np.dot(code, V) patches += intercept patches = patches.reshape(len(data), *patch_size) if transform_algorithm == 'threshold': patches -= patches.min() patches /= patches.max() reconstructions[title][:, width // 2:] = reconstruct_from_patches_2d( patches, (height, width // 2)) dt = time() - t0 print('done in %.2fs.' % dt) show_with_diff(reconstructions[title], face, title + ' (time: %.1fs)' % dt) plt.show()
bsd-3-clause
efiring/scipy
scipy/special/c_misc/struve_convergence.py
76
3725
""" Convergence regions of the expansions used in ``struve.c`` Note that for v >> z both functions tend rapidly to 0, and for v << -z, they tend to infinity. The floating-point functions over/underflow in the lower left and right corners of the figure. Figure legend ============= Red region Power series is close (1e-12) to the mpmath result Blue region Asymptotic series is close to the mpmath result Green region Bessel series is close to the mpmath result Dotted colored lines Boundaries of the regions Solid colored lines Boundaries estimated by the routine itself. These will be used for determining which of the results to use. Black dashed line The line z = 0.7*|v| + 12 """ from __future__ import absolute_import, division, print_function import numpy as np import matplotlib.pyplot as plt try: import mpmath except: from sympy import mpmath def err_metric(a, b, atol=1e-290): m = abs(a - b) / (atol + abs(b)) m[np.isinf(b) & (a == b)] = 0 return m def do_plot(is_h=True): from scipy.special._ufuncs import \ _struve_power_series, _struve_asymp_large_z, _struve_bessel_series vs = np.linspace(-1000, 1000, 91) zs = np.sort(np.r_[1e-5, 1.0, np.linspace(0, 700, 91)[1:]]) rp = _struve_power_series(vs[:,None], zs[None,:], is_h) ra = _struve_asymp_large_z(vs[:,None], zs[None,:], is_h) rb = _struve_bessel_series(vs[:,None], zs[None,:], is_h) mpmath.mp.dps = 50 if is_h: sh = lambda v, z: float(mpmath.struveh(mpmath.mpf(v), mpmath.mpf(z))) else: sh = lambda v, z: float(mpmath.struvel(mpmath.mpf(v), mpmath.mpf(z))) ex = np.vectorize(sh, otypes='d')(vs[:,None], zs[None,:]) err_a = err_metric(ra[0], ex) + 1e-300 err_p = err_metric(rp[0], ex) + 1e-300 err_b = err_metric(rb[0], ex) + 1e-300 err_est_a = abs(ra[1]/ra[0]) err_est_p = abs(rp[1]/rp[0]) err_est_b = abs(rb[1]/rb[0]) z_cutoff = 0.7*abs(vs) + 12 levels = [-1000, -12] plt.cla() plt.hold(1) plt.contourf(vs, zs, np.log10(err_p).T, levels=levels, colors=['r', 'r'], alpha=0.1) plt.contourf(vs, zs, np.log10(err_a).T, levels=levels, colors=['b', 'b'], alpha=0.1) plt.contourf(vs, zs, np.log10(err_b).T, levels=levels, colors=['g', 'g'], alpha=0.1) plt.contour(vs, zs, np.log10(err_p).T, levels=levels, colors=['r', 'r'], linestyles=[':', ':']) plt.contour(vs, zs, np.log10(err_a).T, levels=levels, colors=['b', 'b'], linestyles=[':', ':']) plt.contour(vs, zs, np.log10(err_b).T, levels=levels, colors=['g', 'g'], linestyles=[':', ':']) lp = plt.contour(vs, zs, np.log10(err_est_p).T, levels=levels, colors=['r', 'r'], linestyles=['-', '-']) la = plt.contour(vs, zs, np.log10(err_est_a).T, levels=levels, colors=['b', 'b'], linestyles=['-', '-']) lb = plt.contour(vs, zs, np.log10(err_est_b).T, levels=levels, colors=['g', 'g'], linestyles=['-', '-']) plt.clabel(lp, fmt={-1000: 'P', -12: 'P'}) plt.clabel(la, fmt={-1000: 'A', -12: 'A'}) plt.clabel(lb, fmt={-1000: 'B', -12: 'B'}) plt.plot(vs, z_cutoff, 'k--') plt.xlim(vs.min(), vs.max()) plt.ylim(zs.min(), zs.max()) plt.xlabel('v') plt.ylabel('z') def main(): plt.clf() plt.subplot(121) do_plot(True) plt.title('Struve H') plt.subplot(122) do_plot(False) plt.title('Struve L') plt.savefig('struve_convergence.png') plt.show() if __name__ == "__main__": import os import sys if '--main' in sys.argv: main() else: import subprocess subprocess.call([sys.executable, os.path.join('..', '..', '..', 'runtests.py'), '-g', '--python', __file__, '--main'])
bsd-3-clause
bionet/ted.python
bionet/utils/video_io.py
1
10403
#!/usr/bin/env python """ Video I/O classes ================= Classes for reading and writing video files into and from numpy [1] ndarrays using OpenCV [2]_ and matplotlib [3]_. - ReadVideo - Read frames from a video into ndarrays. - WriteVideo - Write ndarrays as frames of a video. - WriteFigureVideo - Write matplotlib figures as frames of a video. - video_capture - Capture video data from a webcam. .. [1] http://numpy.scipy.org/ .. [2] http://opencv.willowgarage.com/wiki/PythonInterface/ .. [3] http://matplotlib.sf.net/ """ # Copyright (c) 2009-2015, Lev Givon # All rights reserved. # Distributed under the terms of the BSD license: # http://www.opensource.org/licenses/bsd-license __all__ = ['ReadVideo', 'WriteVideo', 'WriteFigureVideo', 'video_capture'] import numpy as np import cv from numpy import floor import matplotlib from matplotlib.figure import Figure from matplotlib.backends.backend_agg import FigureCanvasAgg import subprocess import os import tempfile from time import time from glob import glob if not os.path.exists('/usr/bin/mencoder'): raise RuntimeError('mencoder not found') # See http://opencv.willowgarage.com/wiki/PythonInterface # for more information on converting OpenCV image to ndarrays and # vice versa. class ReadVideo(object): """ Read frames from a video. This class provides an interface for reading frames from a video file using OpenCV and returning them as ndarrays. Parameters ---------- filename : string Name of input video file. Methods ------- get_frame_count() Return the number of frames in the video. get_frame_dims() Return the dimensions of a frame in the video. get_frame_height() Return the height of a frame in the video. get_frame_width() Return the width of a frame in the video. get_prop_fps() Return the frame rate of the video. read_cv_frame() Read a frame from the video as an OpenCV frame. read_np_frame() Read a frame from the video as an ndarray. """ def __init__(self, filename): self.capture = cv.CaptureFromFile(filename) def get_frame_count(self): """Return the number of frames in the file.""" return int(cv.GetCaptureProperty(self.capture, cv.CV_CAP_PROP_FRAME_COUNT)) def get_frame_width(self): """Return the width of a frame in the file in pixels.""" return int(cv.GetCaptureProperty(self.capture, cv.CV_CAP_PROP_FRAME_WIDTH)) def get_frame_height(self): """Return the height of a frame in the file in pixels.""" return int(cv.GetCaptureProperty(self.capture, cv.CV_CAP_PROP_FRAME_HEIGHT)) def get_frame_dims(self): """Return the dimensions of a frame in the file as (height, width).""" return self.get_frame_height(), self.get_frame_width() def get_prop_fps(self): """Return the frame rate of the video file.""" return cv.GetCaptureProperty(self.capture, cv.CV_CAP_PROP_FPS) def __cv2array(self, img): """Convert an OpenCV image to an ndarray of dimensions (height, width, channels).""" depth2dtype = { cv.IPL_DEPTH_8U: 'uint8', cv.IPL_DEPTH_8S: 'int8', cv.IPL_DEPTH_16U: 'uint16', cv.IPL_DEPTH_16S: 'int16', cv.IPL_DEPTH_32S: 'int32', cv.IPL_DEPTH_32F: 'float32', cv.IPL_DEPTH_64F: 'float64', } arrdtype = img.depth a = np.fromstring(img.tostring(), dtype=depth2dtype[img.depth], count=img.width*img.height*img.nChannels) # numpy assumes that the first dimension of an image is its # height, i.e., the number of rows in the image: a.shape = (img.height, img.width, img.nChannels) return a def __get_frame(self, n): """Retrieve the specified frame from the video.""" if n != None: cv.SetCaptureProperty(self.capture, cv.CV_CAP_PROP_POS_FRAMES, n) return cv.QueryFrame(self.capture) def read_np_frame(self, n=None): """Read a frame as a numpy array from the video.""" frame = self.__get_frame(n) if frame != None: return self.__cv2array(frame) else: return None def read_cv_frame(self, n=None): """Read a frame as an OpenCV image from the video.""" frame = self.__get_frame(n) return frame class WriteVideo(object): """ Write frames to a video. This class provides an interface for writing frames represented as ndarrays to a video file using OpenCV. Parameters ---------- filename : string Name of output video file. fourcc : tuple Video codec of output video; default is ('M', 'J', 'P', 'G'). fps : float Frame rate of output video; default is 30.0. frame_size : tuple Size of video frames (rows, columns); default is (256, 256). is_color : bool True of the video is color. Methods ------- write_cv_frame(a) Write an OpenCV frame `a` to the video. write_np_frame(a) Write the frame represented as ndarray `a` to the video. """ def __init__(self, filename, fourcc=('D', 'I', 'V', 'X'), fps=30.0, frame_size=(256,256), is_color=True): self.writer = cv.CreateVideoWriter(filename, cv.CV_FOURCC(*fourcc), fps, frame_size, int(is_color)) def __array2cv(self, a): """Convert an ndarray to an OpenCV image.""" dtype2depth = { 'uint8': cv.IPL_DEPTH_8U, 'int8': cv.IPL_DEPTH_8S, 'uint16': cv.IPL_DEPTH_16U, 'int16': cv.IPL_DEPTH_16S, 'int32': cv.IPL_DEPTH_32S, 'float32': cv.IPL_DEPTH_32F, 'float64': cv.IPL_DEPTH_64F, } try: nChannels = a.shape[2] except: nChannels = 1 # numpy assumes that the first dimension of an image is its # height, i.e., the number of rows in the image: img = cv.CreateImageHeader((a.shape[1], a.shape[0]), dtype2depth[str(a.dtype)], nChannels) cv.SetData(img, a.tostring(), a.dtype.itemsize*nChannels*a.shape[1]) return img def write_cv_frame(self, a): """Write an OpenCV image as a frame to the video.""" cv.WriteFrame(self.writer, a) def write_np_frame(self, a): """Write a numpy array as a frame to the video.""" img = self.__array2cv(a) cv.WriteFrame(self.writer, img) class WriteFigureVideo(object): """ Write matplotlib figures as frames to a video. This class provides an interface for writing frames represented as matplotlib figures to a video file using mencoder. Parameters ---------- filename : str Output video file name. dpi : float Resolution at which to save each frame. This defaults to the value assumed by `savefig`. width : float Frame width (in inches). height : float Frame height (in inches). fps : float Frames per second. Methods ------- write_fig(fig) Write a matplotlib figure `fig` to the output video file. create_video() Create the output video file. Notes ----- This class is based upon the file movie_demo.py ((c) 2004 by Josh Lifton) included with matplotlib. The output video file is not actually assembled until the `close` method is called. """ def __init__(self, filename, dpi=matplotlib.rcParams['savefig.dpi'], width=8.0, height=6.0, fps=25): self.filename = filename self.dpi = dpi self.width = 8.0 self.height = 6.0 self.fps = fps self.tempdir = tempfile.mkdtemp() self.frame_count = 0 def write_fig(self, fig): """Write a matplotlib figure to the output video file.""" if self.tempdir == None: raise ValueError('cannot add frames to completed video file') if not isinstance(fig, Figure): raise ValueError('can only write instances of type ' 'matplotlib.figure.Figure') if fig.get_figwidth() != self.width: raise ValueError('figure width must be %f' % self.width) if fig.get_figheight() != self.height: raise ValueError('figure height must be %f' % self.height) canvas = FigureCanvasAgg(fig) canvas.print_figure(self.tempdir + str("/%010d.png" % self.frame_count), self.dpi) self.frame_count += 1 def create_video(self): """Assemble the output video from the input frames.""" width_pix = int(floor(self.width*self.dpi)) height_pix = int(floor(self.height*self.dpi)) command = ('mencoder', 'mf://'+self.tempdir+'/*.png', '-mf', 'type=png:w=%d:h=%d:fps=%d' % (width_pix, height_pix, self.fps), '-ovc', 'lavc', '-lavcopts', 'vcodec=mpeg4', '-oac', 'copy', '-o', self.filename) subprocess.check_call(command) for f in glob(self.tempdir + '/*.png'): os.remove(f) os.rmdir(self.tempdir) self.tempdir = None def __del__(self): """Create the video before the class instance is destroyed.""" if self.tempdir: self.create_video() def video_capture(filename, t, fourcc=('D','I','V','X'), fps=30.0, frame_size=(640, 480), is_color=True): """Capture a video of time length `t` from a webcam using OpenCV and save it in `filename` using the specified format.""" camera = cv.CaptureFromCAM(0) w = WriteVideo(filename, fourcc, fps, frame_size, is_color) start = time() end = start + t while time() < end: frame = cv.QueryFrame(camera) w.write_cv_frame(frame)
bsd-3-clause
rubikloud/scikit-learn
sklearn/utils/extmath.py
2
23356
""" Extended math utilities. """ # Authors: Gael Varoquaux # Alexandre Gramfort # Alexandre T. Passos # Olivier Grisel # Lars Buitinck # Stefan van der Walt # Kyle Kastner # Giorgio Patrini # License: BSD 3 clause from __future__ import division from functools import partial import warnings import numpy as np from scipy import linalg from scipy.sparse import issparse from . import check_random_state from .fixes import np_version from ._logistic_sigmoid import _log_logistic_sigmoid from ..externals.six.moves import xrange from .sparsefuncs_fast import csr_row_norms from .validation import check_array, NonBLASDotWarning def norm(x): """Compute the Euclidean or Frobenius norm of x. Returns the Euclidean norm when x is a vector, the Frobenius norm when x is a matrix (2-d array). More precise than sqrt(squared_norm(x)). """ x = np.asarray(x) nrm2, = linalg.get_blas_funcs(['nrm2'], [x]) return nrm2(x) # Newer NumPy has a ravel that needs less copying. if np_version < (1, 7, 1): _ravel = np.ravel else: _ravel = partial(np.ravel, order='K') def squared_norm(x): """Squared Euclidean or Frobenius norm of x. Returns the Euclidean norm when x is a vector, the Frobenius norm when x is a matrix (2-d array). Faster than norm(x) ** 2. """ x = _ravel(x) return np.dot(x, x) def row_norms(X, squared=False): """Row-wise (squared) Euclidean norm of X. Equivalent to np.sqrt((X * X).sum(axis=1)), but also supports CSR sparse matrices and does not create an X.shape-sized temporary. Performs no input validation. """ if issparse(X): norms = csr_row_norms(X) else: norms = np.einsum('ij,ij->i', X, X) if not squared: np.sqrt(norms, norms) return norms def fast_logdet(A): """Compute log(det(A)) for A symmetric Equivalent to : np.log(nl.det(A)) but more robust. It returns -Inf if det(A) is non positive or is not defined. """ sign, ld = np.linalg.slogdet(A) if not sign > 0: return -np.inf return ld def _impose_f_order(X): """Helper Function""" # important to access flags instead of calling np.isfortran, # this catches corner cases. if X.flags.c_contiguous: return check_array(X.T, copy=False, order='F'), True else: return check_array(X, copy=False, order='F'), False def _fast_dot(A, B): if B.shape[0] != A.shape[A.ndim - 1]: # check adopted from '_dotblas.c' raise ValueError if A.dtype != B.dtype or any(x.dtype not in (np.float32, np.float64) for x in [A, B]): warnings.warn('Data must be of same type. Supported types ' 'are 32 and 64 bit float. ' 'Falling back to np.dot.', NonBLASDotWarning) raise ValueError if min(A.shape) == 1 or min(B.shape) == 1 or A.ndim != 2 or B.ndim != 2: raise ValueError # scipy 0.9 compliant API dot = linalg.get_blas_funcs(['gemm'], (A, B))[0] A, trans_a = _impose_f_order(A) B, trans_b = _impose_f_order(B) return dot(alpha=1.0, a=A, b=B, trans_a=trans_a, trans_b=trans_b) def _have_blas_gemm(): try: linalg.get_blas_funcs(['gemm']) return True except (AttributeError, ValueError): warnings.warn('Could not import BLAS, falling back to np.dot') return False # Only use fast_dot for older NumPy; newer ones have tackled the speed issue. if np_version < (1, 7, 2) and _have_blas_gemm(): def fast_dot(A, B): """Compute fast dot products directly calling BLAS. This function calls BLAS directly while warranting Fortran contiguity. This helps avoiding extra copies `np.dot` would have created. For details see section `Linear Algebra on large Arrays`: http://wiki.scipy.org/PerformanceTips Parameters ---------- A, B: instance of np.ndarray Input arrays. Arrays are supposed to be of the same dtype and to have exactly 2 dimensions. Currently only floats are supported. In case these requirements aren't met np.dot(A, B) is returned instead. To activate the related warning issued in this case execute the following lines of code: >> import warnings >> from sklearn.utils.validation import NonBLASDotWarning >> warnings.simplefilter('always', NonBLASDotWarning) """ try: return _fast_dot(A, B) except ValueError: # Maltyped or malformed data. return np.dot(A, B) else: fast_dot = np.dot def density(w, **kwargs): """Compute density of a sparse vector Return a value between 0 and 1 """ if hasattr(w, "toarray"): d = float(w.nnz) / (w.shape[0] * w.shape[1]) else: d = 0 if w is None else float((w != 0).sum()) / w.size return d def safe_sparse_dot(a, b, dense_output=False): """Dot product that handle the sparse matrix case correctly Uses BLAS GEMM as replacement for numpy.dot where possible to avoid unnecessary copies. """ if issparse(a) or issparse(b): ret = a * b if dense_output and hasattr(ret, "toarray"): ret = ret.toarray() return ret else: return fast_dot(a, b) def randomized_range_finder(A, size, n_iter, random_state=None): """Computes an orthonormal matrix whose range approximates the range of A. Parameters ---------- A: 2D array The input data matrix size: integer Size of the return array n_iter: integer Number of power iterations used to stabilize the result random_state: RandomState or an int seed (0 by default) A random number generator instance Returns ------- Q: 2D array A (size x size) projection matrix, the range of which approximates well the range of the input matrix A. Notes ----- Follows Algorithm 4.3 of Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061 """ random_state = check_random_state(random_state) # generating random gaussian vectors r with shape: (A.shape[1], size) R = random_state.normal(size=(A.shape[1], size)) # sampling the range of A using by linear projection of r Y = safe_sparse_dot(A, R) del R # perform power iterations with Y to further 'imprint' the top # singular vectors of A in Y for i in xrange(n_iter): Y = safe_sparse_dot(A, safe_sparse_dot(A.T, Y)) # extracting an orthonormal basis of the A range samples Q, R = linalg.qr(Y, mode='economic') return Q def randomized_svd(M, n_components, n_oversamples=10, n_iter=0, transpose='auto', flip_sign=True, random_state=0): """Computes a truncated randomized SVD Parameters ---------- M: ndarray or sparse matrix Matrix to decompose n_components: int Number of singular values and vectors to extract. n_oversamples: int (default is 10) Additional number of random vectors to sample the range of M so as to ensure proper conditioning. The total number of random vectors used to find the range of M is n_components + n_oversamples. n_iter: int (default is 0) Number of power iterations (can be used to deal with very noisy problems). transpose: True, False or 'auto' (default) Whether the algorithm should be applied to M.T instead of M. The result should approximately be the same. The 'auto' mode will trigger the transposition if M.shape[1] > M.shape[0] since this implementation of randomized SVD tend to be a little faster in that case). flip_sign: boolean, (True by default) The output of a singular value decomposition is only unique up to a permutation of the signs of the singular vectors. If `flip_sign` is set to `True`, the sign ambiguity is resolved by making the largest loadings for each component in the left singular vectors positive. random_state: RandomState or an int seed (0 by default) A random number generator instance to make behavior Notes ----- This algorithm finds a (usually very good) approximate truncated singular value decomposition using randomization to speed up the computations. It is particularly fast on large matrices on which you wish to extract only a small number of components. References ---------- * Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 http://arxiv.org/abs/arXiv:0909.4061 * A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert """ random_state = check_random_state(random_state) n_random = n_components + n_oversamples n_samples, n_features = M.shape if transpose == 'auto': transpose = n_samples < n_features if transpose: # this implementation is a bit faster with smaller shape[1] M = M.T Q = randomized_range_finder(M, n_random, n_iter, random_state) # project M to the (k + p) dimensional space using the basis vectors B = safe_sparse_dot(Q.T, M) # compute the SVD on the thin matrix: (k + p) wide Uhat, s, V = linalg.svd(B, full_matrices=False) del B U = np.dot(Q, Uhat) if flip_sign: if not transpose: U, V = svd_flip(U, V) else: # In case of transpose u_based_decision=false # to actually flip based on u and not v. U, V = svd_flip(U, V, u_based_decision=False) if transpose: # transpose back the results according to the input convention return V[:n_components, :].T, s[:n_components], U[:, :n_components].T else: return U[:, :n_components], s[:n_components], V[:n_components, :] def logsumexp(arr, axis=0): """Computes the sum of arr assuming arr is in the log domain. Returns log(sum(exp(arr))) while minimizing the possibility of over/underflow. Examples -------- >>> import numpy as np >>> from sklearn.utils.extmath import logsumexp >>> a = np.arange(10) >>> np.log(np.sum(np.exp(a))) 9.4586297444267107 >>> logsumexp(a) 9.4586297444267107 """ arr = np.rollaxis(arr, axis) # Use the max to normalize, as with the log this is what accumulates # the less errors vmax = arr.max(axis=0) out = np.log(np.sum(np.exp(arr - vmax), axis=0)) out += vmax return out def weighted_mode(a, w, axis=0): """Returns an array of the weighted modal (most common) value in a If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned. This is an extension of the algorithm in scipy.stats.mode. Parameters ---------- a : array_like n-dimensional array of which to find mode(s). w : array_like n-dimensional array of weights for each value axis : int, optional Axis along which to operate. Default is 0, i.e. the first axis. Returns ------- vals : ndarray Array of modal values. score : ndarray Array of weighted counts for each mode. Examples -------- >>> from sklearn.utils.extmath import weighted_mode >>> x = [4, 1, 4, 2, 4, 2] >>> weights = [1, 1, 1, 1, 1, 1] >>> weighted_mode(x, weights) (array([ 4.]), array([ 3.])) The value 4 appears three times: with uniform weights, the result is simply the mode of the distribution. >>> weights = [1, 3, 0.5, 1.5, 1, 2] # deweight the 4's >>> weighted_mode(x, weights) (array([ 2.]), array([ 3.5])) The value 2 has the highest score: it appears twice with weights of 1.5 and 2: the sum of these is 3. See Also -------- scipy.stats.mode """ if axis is None: a = np.ravel(a) w = np.ravel(w) axis = 0 else: a = np.asarray(a) w = np.asarray(w) axis = axis if a.shape != w.shape: w = np.zeros(a.shape, dtype=w.dtype) + w scores = np.unique(np.ravel(a)) # get ALL unique values testshape = list(a.shape) testshape[axis] = 1 oldmostfreq = np.zeros(testshape) oldcounts = np.zeros(testshape) for score in scores: template = np.zeros(a.shape) ind = (a == score) template[ind] = w[ind] counts = np.expand_dims(np.sum(template, axis), axis) mostfrequent = np.where(counts > oldcounts, score, oldmostfreq) oldcounts = np.maximum(counts, oldcounts) oldmostfreq = mostfrequent return mostfrequent, oldcounts def pinvh(a, cond=None, rcond=None, lower=True): """Compute the (Moore-Penrose) pseudo-inverse of a hermetian matrix. Calculate a generalized inverse of a symmetric matrix using its eigenvalue decomposition and including all 'large' eigenvalues. Parameters ---------- a : array, shape (N, N) Real symmetric or complex hermetian matrix to be pseudo-inverted cond : float or None, default None Cutoff for 'small' eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. rcond : float or None, default None (deprecated) Cutoff for 'small' eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. lower : boolean Whether the pertinent array data is taken from the lower or upper triangle of a. (Default: lower) Returns ------- B : array, shape (N, N) Raises ------ LinAlgError If eigenvalue does not converge Examples -------- >>> import numpy as np >>> a = np.random.randn(9, 6) >>> a = np.dot(a, a.T) >>> B = pinvh(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True """ a = np.asarray_chkfinite(a) s, u = linalg.eigh(a, lower=lower) if rcond is not None: cond = rcond if cond in [None, -1]: t = u.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps # unlike svd case, eigh can lead to negative eigenvalues above_cutoff = (abs(s) > cond * np.max(abs(s))) psigma_diag = np.zeros_like(s) psigma_diag[above_cutoff] = 1.0 / s[above_cutoff] return np.dot(u * psigma_diag, np.conjugate(u).T) def cartesian(arrays, out=None): """Generate a cartesian product of input arrays. Parameters ---------- arrays : list of array-like 1-D arrays to form the cartesian product of. out : ndarray Array to place the cartesian product in. Returns ------- out : ndarray 2-D array of shape (M, len(arrays)) containing cartesian products formed of input arrays. Examples -------- >>> cartesian(([1, 2, 3], [4, 5], [6, 7])) array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) """ arrays = [np.asarray(x) for x in arrays] shape = (len(x) for x in arrays) dtype = arrays[0].dtype ix = np.indices(shape) ix = ix.reshape(len(arrays), -1).T if out is None: out = np.empty_like(ix, dtype=dtype) for n, arr in enumerate(arrays): out[:, n] = arrays[n][ix[:, n]] return out def svd_flip(u, v, u_based_decision=True): """Sign correction to ensure deterministic output from SVD. Adjusts the columns of u and the rows of v such that the loadings in the columns in u that are largest in absolute value are always positive. Parameters ---------- u, v : ndarray u and v are the output of `linalg.svd` or `sklearn.utils.extmath.randomized_svd`, with matching inner dimensions so one can compute `np.dot(u * s, v)`. u_based_decision : boolean, (default=True) If True, use the columns of u as the basis for sign flipping. Otherwise, use the rows of v. The choice of which variable to base the decision on is generally algorithm dependent. Returns ------- u_adjusted, v_adjusted : arrays with the same dimensions as the input. """ if u_based_decision: # columns of u, rows of v max_abs_cols = np.argmax(np.abs(u), axis=0) signs = np.sign(u[max_abs_cols, xrange(u.shape[1])]) u *= signs v *= signs[:, np.newaxis] else: # rows of v, columns of u max_abs_rows = np.argmax(np.abs(v), axis=1) signs = np.sign(v[xrange(v.shape[0]), max_abs_rows]) u *= signs v *= signs[:, np.newaxis] return u, v def log_logistic(X, out=None): """Compute the log of the logistic function, ``log(1 / (1 + e ** -x))``. This implementation is numerically stable because it splits positive and negative values:: -log(1 + exp(-x_i)) if x_i > 0 x_i - log(1 + exp(x_i)) if x_i <= 0 For the ordinary logistic function, use ``sklearn.utils.fixes.expit``. Parameters ---------- X: array-like, shape (M, N) or (M, ) Argument to the logistic function out: array-like, shape: (M, N) or (M, ), optional: Preallocated output array. Returns ------- out: array, shape (M, N) or (M, ) Log of the logistic function evaluated at every point in x Notes ----- See the blog post describing this implementation: http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression/ """ is_1d = X.ndim == 1 X = np.atleast_2d(X) X = check_array(X, dtype=np.float64) n_samples, n_features = X.shape if out is None: out = np.empty_like(X) _log_logistic_sigmoid(n_samples, n_features, X, out) if is_1d: return np.squeeze(out) return out def softmax(X, copy=True): """ Calculate the softmax function. The softmax function is calculated by np.exp(X) / np.sum(np.exp(X), axis=1) This will cause overflow when large values are exponentiated. Hence the largest value in each row is subtracted from each data point to prevent this. Parameters ---------- X: array-like, shape (M, N) Argument to the logistic function copy: bool, optional Copy X or not. Returns ------- out: array, shape (M, N) Softmax function evaluated at every point in x """ if copy: X = np.copy(X) max_prob = np.max(X, axis=1).reshape((-1, 1)) X -= max_prob np.exp(X, X) sum_prob = np.sum(X, axis=1).reshape((-1, 1)) X /= sum_prob return X def safe_min(X): """Returns the minimum value of a dense or a CSR/CSC matrix. Adapated from http://stackoverflow.com/q/13426580 """ if issparse(X): if len(X.data) == 0: return 0 m = X.data.min() return m if X.getnnz() == X.size else min(m, 0) else: return X.min() def make_nonnegative(X, min_value=0): """Ensure `X.min()` >= `min_value`.""" min_ = safe_min(X) if min_ < min_value: if issparse(X): raise ValueError("Cannot make the data matrix" " nonnegative because it is sparse." " Adding a value to every entry would" " make it no longer sparse.") X = X + (min_value - min_) return X def _incremental_mean_and_var(X, last_mean=.0, last_variance=None, last_sample_count=0): """Calculate mean update and a Youngs and Cramer variance update. last_mean and last_variance are statistics computed at the last step by the function. Both must be initialized to 0.0. In case no scaling is required last_variance can be None. The mean is always required and returned because necessary for the calculation of the variance. last_n_samples_seen is the number of samples encountered until now. From the paper "Algorithms for computing the sample variance: analysis and recommendations", by Chan, Golub, and LeVeque. Parameters ---------- X : array-like, shape (n_samples, n_features) Data to use for variance update last_mean : array-like, shape: (n_features,) last_variance : array-like, shape: (n_features,) last_sample_count : int Returns ------- updated_mean : array, shape (n_features,) updated_variance : array, shape (n_features,) If None, only mean is computed updated_sample_count : int References ---------- T. Chan, G. Golub, R. LeVeque. Algorithms for computing the sample variance: recommendations, The American Statistician, Vol. 37, No. 3, pp. 242-247 Also, see the sparse implementation of this in `utils.sparsefuncs.incr_mean_variance_axis` and `utils.sparsefuncs_fast.incr_mean_variance_axis0` """ # old = stats until now # new = the current increment # updated = the aggregated stats last_sum = last_mean * last_sample_count new_sum = X.sum(axis=0) new_sample_count = X.shape[0] updated_sample_count = last_sample_count + new_sample_count updated_mean = (last_sum + new_sum) / updated_sample_count if last_variance is None: updated_variance = None else: new_unnormalized_variance = X.var(axis=0) * new_sample_count if last_sample_count == 0: # Avoid division by 0 updated_unnormalized_variance = new_unnormalized_variance else: last_over_new_count = last_sample_count / new_sample_count last_unnormalized_variance = last_variance * last_sample_count updated_unnormalized_variance = ( last_unnormalized_variance + new_unnormalized_variance + last_over_new_count / updated_sample_count * (last_sum / last_over_new_count - new_sum) ** 2) updated_variance = updated_unnormalized_variance / updated_sample_count return updated_mean, updated_variance, updated_sample_count def _deterministic_vector_sign_flip(u): """Modify the sign of vectors for reproducibility Flips the sign of elements of all the vectors (rows of u) such that the absolute maximum element of each vector is positive. Parameters ---------- u : ndarray Array with vectors as its rows. Returns ------- u_flipped : ndarray with same shape as u Array with the sign flipped vectors as its rows. """ max_abs_rows = np.argmax(np.abs(u), axis=1) signs = np.sign(u[range(u.shape[0]), max_abs_rows]) u *= signs[:, np.newaxis] return u
bsd-3-clause
decvalts/landlab
landlab/components/fire_generator/examples/fire_test_driver.py
1
1339
""" fire_test_driver.py This is a sample driver simply showing the histogram of fire recurrence values drawn from the Weibull distribution. This uses the default file in the generate_fire.py component. Because we are drawing from a stochastic, statistical distribution, the output may change after the component is reloaded. The default file is currently set using parameters from central Colorado, given by Cannon et al., (2008) and Moody and Martin (2001). This sample driver should not be applied at other sites without careful consideration. """ from landlab.components.fire_generator.generate_fire import FireGenerator from matplotlib import pyplot as plt from scipy.optimize import curve_fit # Initializing the FireGenerator() class from fire_generator.py FG = FireGenerator() FG.initialize() # Finding unknown scale parameter given the mean fire recurrence value FG.get_scale_parameter() # Finding a time series based on the Weibull distribution FG.generate_fire_time_series() # Sorting the fire series to test the distribution... FG.firelist.sort() # Plotting the histogram to show the distribution. plt.hist(FG.firelist) plt.title('Weibull Distribution of Fire Recurrence Values') plt.xlabel('Histogram of Fire Recurrence (years)', fontsize=14) plt.ylabel('Frequency of Fire Recurrece Values', fontsize=14) plt.show()
mit
tedunderwood/GenreProject
python/workshop/predictauthors.py
1
4957
import re, os import csv import random, pickle import numpy as np import pandas as pd from sklearn.linear_model import LogisticRegression from bagofwords import WordVector, StandardizingVector root = '/Users/tunder/Dropbox/GLNworkshop/USpoetry' magazines = ['Bookman', 'Century', 'ContVerse', 'Crisis', 'Fugitive', 'Harpers', 'LittleReview', 'LyricWest', 'Masses', 'Messenger', 'Midland', 'Nation', 'NewRepublic', 'Opportunity', 'Others', 'Poetry', 'Scribners', 'SmartSet'] def clean_text(raw): raw = re.sub(r'I\\.', '', raw) raw = re.sub(r'\\]', '', raw) raw = re.sub(r'[0-9]', '', raw) raw = re.sub(r'II', '', raw) raw = re.sub(r'[,.;:\"?!*()]', '', raw) raw = re.sub(r'-', ' ', raw) raw = raw.replace("\\'s", '') raw = raw.replace("\\'S", '') raw = raw.replace('\n', ' ') raw = raw.lower() words = raw.split() return words def get_magazine(pathlist): magazine = [] for path in pathlist: with open(path, encoding = 'utf-8') as f: poem = f.read() words = clean_text(poem) magazine.extend(words) return magazine def paths_to_wordbags(pathlist): wordbags = list() for path in pathlist: with open(path, encoding = 'utf-8') as f: poem = f.read() words = clean_text(poem) wordbags.append(words) return wordbags def normalized_prediction(wordbags, samplesize, iterations, model, standardizer, featurelist): ''' Repeatedly samples a set of texts, represented as wordbags. In each case it constructs a composite text from the sample, and treats it as a volume object for a model to make a prediction about. Then it averages those predictions. The prediction is 'normalized' in the sense that it's made about texts that are roughly the same size. A further refinement could randomly sample n words, so the texts are literally the same length. ''' n = samplesize if n > len(wordbags): n = len(wordbags) allpredictions = list() lengths = list() for i in range(iterations): compositetext = list() sampleofbags = random.sample(wordbags, n) for bag in sampleofbags: compositetext.extend(bag) volume = WordVector(compositetext) volume.selectfeatures(featurelist) volume.normalizefrequencies() volume.standardizefrequencies(standardizer) data = pd.concat([volume.features], axis = 1) data = data.T this_prob = model.predict_proba(data)[0][1] allpredictions.append(this_prob) lengths.append(len(compositetext)) meanprediction = sum(allpredictions) / len(allpredictions) meanlength = sum(lengths) / len(lengths) return meanprediction, meanlength with open('/Users/tunder/Dropbox/GenreProject/python/reception/model1919/standardizer.p', mode = 'rb') as f: standardizer = pickle.load(f) with open('/Users/tunder/Dropbox/GenreProject/python/reception/model1919/logisticmodel.p', mode = 'rb') as f: model = pickle.load(f) featurelist = standardizer.features pathsbyauthor = dict() # Let's create a dictionary of authors that points to # paths for all their works. for magazine in magazines: filename = magazine + 'Data.csv' metadatapath = os.path.join(root, filename) with open(metadatapath, encoding = 'latin-1') as f: reader = csv.DictReader(f) for row in reader: if 'AUTHOR' not in row: continue if 'FILENAME' not in row: continue if len(row['FILENAME']) > 1: folder = os.path.join(root, magazine) filepath = os.path.join(folder, row['FILENAME']) author = row['AUTHOR'] if author in pathsbyauthor: pathsbyauthor[author].append(filepath) else: pathsbyauthor[author] = [filepath] # Now, for each author, characterize the probability that they'll be # reviewed in one of the magazines on our list. Use ten samples # of ten randomly selected texts for each author. authortetrads = list() for author, pathlist in pathsbyauthor.items(): if len(pathlist) < 11: continue wordbags = paths_to_wordbags(pathlist) author_prob, meanlength = normalized_prediction(wordbags, 10, 10, model, standardizer, featurelist) authortetrads.append((author_prob, author, len(wordbags), meanlength)) authortetrads.sort() with open('authorprobs.csv', mode='w', encoding = 'utf-8') as f: writer = csv.writer(f) writer.writerow(['author', 'probofreview', 'poems', 'samplewords']) for tetrad in authortetrads: probability, author, numtexts, meanlength = tetrad print() avglen = round(meanlength/10) print(author + ", with " + str(numtexts) + ' texts, and ' + str(avglen) + ' average length.') print(probability) writer.writerow([author, probability, numtexts, meanlength])
mit
zaxtax/scikit-learn
examples/linear_model/plot_ols.py
104
1936
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Linear Regression Example ========================================================= This example uses the only the first feature of the `diabetes` dataset, in order to illustrate a two-dimensional plot of this regression technique. The straight line can be seen in the plot, showing how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. The coefficients, the residual sum of squares and the variance score are also calculated. """ print(__doc__) # Code source: Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model # Load the diabetes dataset diabetes = datasets.load_diabetes() # Use only one feature diabetes_X = diabetes.data[:, np.newaxis, 2] # Split the data into training/testing sets diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # The coefficients print('Coefficients: \n', regr.coef_) # The mean squared error print("Mean squared error: %.2f" % np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test)) # Plot outputs plt.scatter(diabetes_X_test, diabetes_y_test, color='black') plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue', linewidth=3) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
crichardson17/starburst_atlas
Low_resolution_sims/DustFree_LowRes/Padova_cont/padova_cont_5/peaks_reader.py
33
2761
import csv import matplotlib.pyplot as plt from numpy import * import scipy.interpolate import math from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib.patches as patches from matplotlib.path import Path import os # --------------------------------------------------- #input files for file in os.listdir('.'): if file.endswith(".grd"): inputfile = file for file in os.listdir('.'): if file.endswith(".txt"): inputfile2 = file #this is where the grid information (phi and hdens) is read in and saved to grid. grid = []; with open(inputfile, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid.append(row); grid = asarray(grid) # --------------------------------------------------- #here is where the data for each line is read in and saved to dataEmissionlines dataEmissionlines = []; with open(inputfile2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers = csvReader.next() for row in csvReader: dataEmissionlines.append(row); dataEmissionlines = asarray(dataEmissionlines) print "import files complete" # --------------------------------------------------- #for grid phi_values = grid[1:len(dataEmissionlines)+1,6] hdens_values = grid[1:len(dataEmissionlines)+1,7] #for lines headers = headers[1:] Emissionlines = dataEmissionlines[:, 1:] concatenated_data = zeros((len(Emissionlines),len(Emissionlines[0]))) max_values = zeros((len(Emissionlines[0]),4)) #select the scaling factor #for 1215 #incident = Emissionlines[1:,4] #for 4860 incident = Emissionlines[:,57] #take the ratio of incident and all the lines and put it all in an array concatenated_data for i in range(len(Emissionlines)): for j in range(len(Emissionlines[0])): if math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) > 0: concatenated_data[i,j] = math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) else: concatenated_data[i,j] == 0 # for 1215 #for i in range(len(Emissionlines)): # for j in range(len(Emissionlines[0])): # if math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) > 0: # concatenated_data[i,j] = math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) # else: # concatenated_data[i,j] == 0 #find the maxima to plot onto the contour plots for j in range(len(concatenated_data[0])): max_values[j,0] = max(concatenated_data[:,j]) max_values[j,1] = argmax(concatenated_data[:,j], axis = 0) max_values[j,2] = hdens_values[max_values[j,1]] max_values[j,3] = phi_values[max_values[j,1]] #to round off the maxima max_values[:,0] = [ '%.1f' % elem for elem in max_values[:,0] ] savetxt('peaks', max_values, delimiter='\t')
gpl-2.0
nathansilberman/models
transformer/example.py
7
2114
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from scipy import ndimage import tensorflow as tf from spatial_transformer import transformer import numpy as np import matplotlib.pyplot as plt # %% Create a batch of three images (1600 x 1200) # %% Image retrieved from: # %% https://raw.githubusercontent.com/skaae/transformer_network/master/cat.jpg im = ndimage.imread('cat.jpg') im = im / 255. im = im.reshape(1, 1200, 1600, 3) im = im.astype('float32') # %% Let the output size of the transformer be half the image size. out_size = (600, 800) # %% Simulate batch batch = np.append(im, im, axis=0) batch = np.append(batch, im, axis=0) num_batch = 3 x = tf.placeholder(tf.float32, [None, 1200, 1600, 3]) x = tf.cast(batch, 'float32') # %% Create localisation network and convolutional layer with tf.variable_scope('spatial_transformer_0'): # %% Create a fully-connected layer with 6 output nodes n_fc = 6 W_fc1 = tf.Variable(tf.zeros([1200 * 1600 * 3, n_fc]), name='W_fc1') # %% Zoom into the image initial = np.array([[0.5, 0, 0], [0, 0.5, 0]]) initial = initial.astype('float32') initial = initial.flatten() b_fc1 = tf.Variable(initial_value=initial, name='b_fc1') h_fc1 = tf.matmul(tf.zeros([num_batch, 1200 * 1600 * 3]), W_fc1) + b_fc1 h_trans = transformer(x, h_fc1, out_size) # %% Run session sess = tf.Session() sess.run(tf.initialize_all_variables()) y = sess.run(h_trans, feed_dict={x: batch}) # plt.imshow(y[0])
apache-2.0
valle212/ChartLibrary
presentations/revealpres/animlibx/src/dataprep/WriteDfToJsonVar.py
1
2138
def WriteDfToJsonVar(dff,path,orientation,varname="lineDataObject"): """ Turn pandas data frame to variable for animlib path data object. Accepts data frames with following structure: - N + 1 columns: (x1,y1,...,yN) -> orientation="comx" - N * 2 columns: (x1,y1),..., (xN,YN) -> orientation="sepx" Columns need to be in order. Index is not to be used for storing values. Writes named json object varname = {"series1": [[x,y]...,[x,y]], ..., "seriesN": [[x,y]...,[x,y]]} that can be directly used as animlib path data object. """ import pandas as pd class MyException(Exception): pass json = '{' if orientation == 'sepx': for colpairno in range(int(len(dff.columns)/2)): colloc = colpairno * 2 df_p = dff.iloc[:,colloc:colloc+2].copy() seriesname = df_p.columns[1] json_p = df_p.to_json(orient="values") if colpairno != len(dff.columns)/2-1: json = json + '"'+str(seriesname)+'":' + json_p + ', ' else: json = json + '"'+str(seriesname)+'":' + json_p + '}' if orientation == 'comx': for colloc in range(1,len(dff.columns)): df_p = dff.iloc[:,[colloc]].copy() seriesname = df_p.columns[0] df_p['x'] = dff.iloc[:,0].copy() df_p = df_p[['x',seriesname]] json_p = df_p.to_json(orient="values") if colloc != len(dff.columns)-1: json = json + '"'+str(seriesname)+'":' + json_p + ', ' else: json = json + '"'+str(seriesname)+'":' + json_p + '}' json = "let " + varname + " = " + json with open(path, 'w') as outfile: outfile.write(json)
apache-2.0
heli522/scikit-learn
sklearn/svm/setup.py
321
3157
import os from os.path import join import numpy from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('svm', parent_package, top_path) config.add_subpackage('tests') # Section LibSVM # we compile both libsvm and libsvm_sparse config.add_library('libsvm-skl', sources=[join('src', 'libsvm', 'libsvm_template.cpp')], depends=[join('src', 'libsvm', 'svm.cpp'), join('src', 'libsvm', 'svm.h')], # Force C++ linking in case gcc is picked up instead # of g++ under windows with some versions of MinGW extra_link_args=['-lstdc++'], ) libsvm_sources = ['libsvm.c'] libsvm_depends = [join('src', 'libsvm', 'libsvm_helper.c'), join('src', 'libsvm', 'libsvm_template.cpp'), join('src', 'libsvm', 'svm.cpp'), join('src', 'libsvm', 'svm.h')] config.add_extension('libsvm', sources=libsvm_sources, include_dirs=[numpy.get_include(), join('src', 'libsvm')], libraries=['libsvm-skl'], depends=libsvm_depends, ) ### liblinear module cblas_libs, blas_info = get_blas_info() if os.name == 'posix': cblas_libs.append('m') liblinear_sources = ['liblinear.c', join('src', 'liblinear', '*.cpp')] liblinear_depends = [join('src', 'liblinear', '*.h'), join('src', 'liblinear', 'liblinear_helper.c')] config.add_extension('liblinear', sources=liblinear_sources, libraries=cblas_libs, include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=blas_info.pop('extra_compile_args', []), depends=liblinear_depends, # extra_compile_args=['-O0 -fno-inline'], ** blas_info) ## end liblinear module # this should go *after* libsvm-skl libsvm_sparse_sources = ['libsvm_sparse.c'] config.add_extension('libsvm_sparse', libraries=['libsvm-skl'], sources=libsvm_sparse_sources, include_dirs=[numpy.get_include(), join("src", "libsvm")], depends=[join("src", "libsvm", "svm.h"), join("src", "libsvm", "libsvm_sparse_helper.c")]) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
joshbohde/scikit-learn
sklearn/decomposition/tests/test_sparse_pca.py
1
5976
# Author: Vlad Niculae # License: BSD import sys import numpy as np from numpy.testing import assert_array_almost_equal, assert_equal from .. import SparsePCA, MiniBatchSparsePCA, dict_learning_online from ..sparse_pca import _update_code, _update_code_parallel from ...utils import check_random_state def generate_toy_data(n_atoms, n_samples, image_size, random_state=None): n_features = image_size[0] * image_size[1] rng = check_random_state(random_state) U = rng.randn(n_samples, n_atoms) V = rng.randn(n_atoms, n_features) centers = [(3, 3), (6, 7), (8, 1)] sz = [1, 2, 1] for k in range(n_atoms): img = np.zeros(image_size) xmin, xmax = centers[k][0] - sz[k], centers[k][0] + sz[k] ymin, ymax = centers[k][1] - sz[k], centers[k][1] + sz[k] img[xmin:xmax][:, ymin:ymax] = 1.0 V[k, :] = img.ravel() # Y is defined by : Y = UV + noise Y = np.dot(U, V) Y += 0.1 * rng.randn(Y.shape[0], Y.shape[1]) # Add noise return Y, U, V # SparsePCA can be a bit slow. To avoid having test times go up, we # test different aspects of the code in the same test def test_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) spca = SparsePCA(n_components=8, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition spca = SparsePCA(n_components=13, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_fit_transform(): rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', random_state=rng) spca_lars.fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs if sys.platform == 'win32': # fake parallelism for win32 import sklearn.externals.joblib.parallel as joblib_par _mp = joblib_par.multiprocessing joblib_par.multiprocessing = None try: spca = SparsePCA(n_components=3, n_jobs=2, random_state=rng).fit(Y) U2 = spca.transform(Y) finally: joblib_par.multiprocessing = _mp else: # we can efficiently use parallelism spca = SparsePCA(n_components=3, n_jobs=2, random_state=rng).fit(Y) U2 = spca.transform(Y) assert_array_almost_equal(U1, U2) # Test that CD gives similar results spca_lasso = SparsePCA(n_components=3, method='cd', random_state=rng) spca_lasso.fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_) def test_fit_transform_tall(): rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 65, (8, 8), random_state=rng) # tall array spca_lars = SparsePCA(n_components=3, method='lars', random_state=rng) U1 = spca_lars.fit_transform(Y) spca_lasso = SparsePCA(n_components=3, method='cd', random_state=rng) U2 = spca_lasso.fit(Y).transform(Y) assert_array_almost_equal(U1, U2) def test_sparse_code(): rng = np.random.RandomState(0) dictionary = rng.randn(10, 3) real_code = np.zeros((3, 5)) real_code.ravel()[rng.randint(15, size=6)] = 1.0 Y = np.dot(dictionary, real_code) est_code_1 = _update_code(dictionary, Y, alpha=1.0) est_code_2 = _update_code_parallel(dictionary, Y, alpha=1.0) assert_equal(est_code_1.shape, real_code.shape) assert_equal(est_code_1, est_code_2) assert_equal(est_code_1.nonzero(), real_code.nonzero()) def test_initialization(): rng = np.random.RandomState(0) U_init = rng.randn(5, 3) V_init = rng.randn(3, 4) model = SparsePCA(n_components=3, U_init=U_init, V_init=V_init, max_iter=0, random_state=rng) model.fit(rng.randn(5, 4)) assert_equal(model.components_, V_init) def test_dict_learning_online_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) dictionaryT, codeT = dict_learning_online(X.T, n_atoms=8, alpha=1, random_state=rng) assert_equal(codeT.shape, (8, 12)) assert_equal(dictionaryT.shape, (10, 8)) assert_equal(np.dot(codeT.T, dictionaryT.T).shape, X.shape) def test_mini_batch_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) pca = MiniBatchSparsePCA(n_components=8, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition pca = MiniBatchSparsePCA(n_components=13, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_mini_batch_fit_transform(): rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = MiniBatchSparsePCA(n_components=3, random_state=rng).fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs if sys.platform == 'win32': # fake parallelism for win32 import sklearn.externals.joblib.parallel as joblib_par _mp = joblib_par.multiprocessing joblib_par.multiprocessing = None try: U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, random_state=rng).fit(Y).transform(Y) finally: joblib_par.multiprocessing = _mp else: # we can efficiently use parallelism U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, random_state=rng).fit(Y).transform(Y) assert_array_almost_equal(U1, U2) # Test that CD gives similar results spca_lasso = MiniBatchSparsePCA(n_components=3, method='cd', random_state=rng).fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)
bsd-3-clause
TaxIPP-Life/til-core
til_core/data/utils/misc.py
1
7173
# -*- coding:utf-8 -*- from __future__ import print_function ''' Created on 2 août 2013 @author: a.eidelman ''' import logging import numpy as np from pandas import Series, DataFrame from numpy.lib.stride_tricks import as_strided import pandas as pd import pdb log = logging.getLogger(__name__) def recode(var_in, list_el, method, dtype=None): ''' code une variable à partir d'une autre attention à la liste et à son ordre pour des méthode avec comparaison d'ordre ''' if dtype is None: dtype1 = var_in.dtype # dtype1 = var_in.max() output = Series(index=var_in.index, dtype=dtype) for el in list_el: val_in = el[0] val_out = el[1] if method is 'geq': output[var_in >= val_in] = val_out if method is 'eq': output[var_in == val_in] = val_out if method is 'leq': output[var_in <= val_in] = val_out if method is 'lth': output[var_in < val_in] = val_out if method is 'gth': output[var_in > val_in] = val_out if method is 'isin': output[var_in.isin(val_in)] = val_out return output def index_repeated(nb_rep): ''' Fonction qui permet de numeroter les réplications. Si [A,B,C] sont répliqués 3,4 et 2 fois alors la fonction retourne [0,1,2,0,1,2,3,0,1] qui permet ensuite d'avoir [[A,A,A,B,B,B,B,C,C],[0,1,2,0,1,2,3,0,1]] et d'identifier les replications ''' id_rep = np.arange(nb_rep.max()) id_rep = as_strided(id_rep, shape=nb_rep.shape + id_rep.shape, strides=(0,) + id_rep.strides) return id_rep[id_rep < nb_rep[:, None]] def replicate(table): columns_ini = table.columns dtypes_ini = table.dtypes nb_rep_table = np.asarray(table['nb_rep'], dtype=np.int64) table_exp = np.asarray(table).repeat(nb_rep_table, axis=0) table_exp = DataFrame(table_exp, columns = columns_ini, dtype = float) # change pour avoir les dtype initiaux malgré le passage par numpy for dtype in [np.int64, np.int32, np.int16, np.int8, np.float32, np.float16, np.float64]: var_type = dtypes_ini == dtype modif_types = dtypes_ini[var_type].index.tolist() table_exp[modif_types] = table_exp[modif_types].astype(dtype) table_exp['id_rep'] = index_repeated(nb_rep_table) table_exp['id_ini'] = table_exp['id'] table_exp['id'] = table_exp.index return table_exp def _MinType_col_int_pos(col): ''' retourne le type minimal d'une serie d'entier positif on notera le -2 car on a deux valeurs prises par 0 et -1 cela dit, on retire une puissance de deux pour tenir compte des négatifs je ne sais pas si on peut préciser qu'on code que des positifs. ''' if max(abs(col)) < 2 ** 7 - 2: return col.astype(np.int8) elif max(abs(col)) < 2 ** 15 - 2: return col.astype(np.int16) elif max(abs(col)) < 2 ** 31 - 2: return col.astype(np.int32) else: return col.astype(np.int64) def minimal_dtype(table): ''' Try to give columns the minimal type using -1 for NaN value Variables with only two non null value are put into boolean asserting NaN value as False Minimal type for float is not searched (only integer) When integer has positive and negative value, there is no obvious default value for NaN values so nothing is done. ''' assert isinstance(table, pd.DataFrame) modif = {'probleme': [], 'boolean': [], 'int_one_sign': [], 'other_int': [], 'float': [], 'object': []} for colname in table.columns: col = table[colname] if len(col.value_counts()) <= 1: # TODO: pour l'instant bug si la valeur de départ était -1 col = col.fillna(value=-1) modif['probleme'].append(colname) if col.dtype == 'O': # log.info(colname," is an object, with a good dictionnary, we could transform it into integer") modif['object'].append(colname) if col.dtype != 'O': if len(col.value_counts()) == 2: min = col.min() col = col.fillna(value=min) col = col - int(min) # modif['boolean'].append(colname) # table[colname] = col.astype(np.bool) table[colname] = col.astype(np.int8) else: try: if (col[col.notnull()].astype(int) == col[col.notnull()]).all(): try: col.loc[col.notnull()] = col[col.notnull()].astype(int).values except: # dans ce cas, col est déjà un int et même plus petit que int32 pass if col.min() >= 0 or col.max() <= 0: # un seul signe pour les valeurs sign = 1 - 2 * (max(col) < 0) col = col.fillna(value = -1 * sign) modif['int_one_sign'].append(colname) table[colname] = _MinType_col_int_pos(col) else: modif['other_int'].append(colname) else: if (col.isnull().any()): modif['float'].append(colname) else: # TODO modif['float'].append(colname) except: pdb.set_trace() if modif['object']: log.info('Object type columns have not been modified : \n {}'.format(modif['object'])) if modif['float']: log.info('Float type columns have not been modified : \n {}'.format(modif['float'])) if modif['other_int']: log.info('Integer type columns with positive AND negative values have not been modified : \n {}'.format( modif['other_int'])) if modif['probleme']: log.info('There is no much distinct values for following variables : \n {}'.format(modif['probleme'])) if modif['boolean']: log.info('Note that these columns are transformed into boolean : \n {}'.format(modif['boolean'])) log.info('Note also that in these cases, missing value are set to False') if modif['int_one_sign']: log.info('Dtype have been also optimized for : \n {}'.format(modif['int_one_sign'])) log.info('Missing values were set to -1 (or +1 when only negative values)') return table def count_dup(data, var): counts = data.groupby(var).size() df2 = pd.DataFrame(counts, columns = ['size']) var_rep = df2[df2.size > 1] if len(var_rep) != 0: print ("Nombre de valeurs apparaissant plusieurs fois pour : " + str(len(var_rep))) return len(var_rep) def drop_consecutive_row(data, var_dup): ''' Remove a row if it's the same than the previous one for all variables in var_dup ''' to_drop = False for var in var_dup: to_drop = to_drop | (data[var].shift(1) != data[var]) data['block'] = (to_drop).astype(int).cumsum() data = data.drop_duplicates('block') data = data.drop('block', axis = 1) return data
gpl-3.0
santosfamilyfoundation/TrafficCloud
app/traffic_cloud_utils/plotting/thinkplot.py
2
20031
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import math import matplotlib import matplotlib.pyplot as pyplot import numpy as np import pandas import warnings # customize some matplotlib attributes #matplotlib.rc('figure', figsize=(4, 3)) #matplotlib.rc('font', size=14.0) #matplotlib.rc('axes', labelsize=22.0, titlesize=22.0) #matplotlib.rc('legend', fontsize=20.0) #matplotlib.rc('xtick.major', size=6.0) #matplotlib.rc('xtick.minor', size=3.0) #matplotlib.rc('ytick.major', size=6.0) #matplotlib.rc('ytick.minor', size=3.0) class _Brewer(object): """Encapsulates a nice sequence of colors. Shades of blue that look good in color and can be distinguished in grayscale (up to a point). Borrowed from http://colorbrewer2.org/ """ color_iter = None colors = ['#f7fbff', '#deebf7', '#c6dbef', '#9ecae1', '#6baed6', '#4292c6', '#2171b5','#08519c','#08306b'][::-1] # lists that indicate which colors to use depending on how many are used which_colors = [[], [1], [1, 3], [0, 2, 4], [0, 2, 4, 6], [0, 2, 3, 5, 6], [0, 2, 3, 4, 5, 6], [0, 1, 2, 3, 4, 5, 6], [0, 1, 2, 3, 4, 5, 6, 7], [0, 1, 2, 3, 4, 5, 6, 7, 8], ] current_figure = None @classmethod def Colors(cls): """Returns the list of colors. """ return cls.colors @classmethod def ColorGenerator(cls, num): """Returns an iterator of color strings. n: how many colors will be used """ for i in cls.which_colors[num]: yield cls.colors[i] raise StopIteration('Ran out of colors in _Brewer.') @classmethod def InitIter(cls, num): """Initializes the color iterator with the given number of colors.""" cls.color_iter = cls.ColorGenerator(num) @classmethod def ClearIter(cls): """Sets the color iterator to None.""" cls.color_iter = None @classmethod def GetIter(cls, num): """Gets the color iterator.""" fig = pyplot.gcf() if fig != cls.current_figure: cls.InitIter(num) cls.current_figure = fig if cls.color_iter is None: cls.InitIter(num) return cls.color_iter def _UnderrideColor(options): """If color is not in the options, chooses a color. """ if 'color' in options: return options # get the current color iterator; if there is none, init one color_iter = _Brewer.GetIter(5) try: options['color'] = next(color_iter) except StopIteration: # if you run out of colors, initialize the color iterator # and try again warnings.warn('Ran out of colors. Starting over.') _Brewer.ClearIter() _UnderrideColor(options) return options def PrePlot(num=None, rows=None, cols=None): """Takes hints about what's coming. num: number of lines that will be plotted rows: number of rows of subplots cols: number of columns of subplots """ if num: _Brewer.InitIter(num) if rows is None and cols is None: return if rows is not None and cols is None: cols = 1 if cols is not None and rows is None: rows = 1 # resize the image, depending on the number of rows and cols size_map = {(1, 1): (8, 6), (1, 2): (12, 6), (1, 3): (12, 6), (1, 4): (12, 5), (1, 5): (12, 4), (2, 2): (10, 10), (2, 3): (16, 10), (3, 1): (8, 10), (4, 1): (8, 12), } if (rows, cols) in size_map: fig = pyplot.gcf() fig.set_size_inches(*size_map[rows, cols]) # create the first subplot if rows > 1 or cols > 1: ax = pyplot.subplot(rows, cols, 1) global SUBPLOT_ROWS, SUBPLOT_COLS SUBPLOT_ROWS = rows SUBPLOT_COLS = cols else: ax = pyplot.gca() return ax def SubPlot(plot_number, rows=None, cols=None, **options): """Configures the number of subplots and changes the current plot. rows: int cols: int plot_number: int options: passed to subplot """ rows = rows or SUBPLOT_ROWS cols = cols or SUBPLOT_COLS return pyplot.subplot(rows, cols, plot_number, **options) def _Underride(d, **options): """Add key-value pairs to d only if key is not in d. If d is None, create a new dictionary. d: dictionary options: keyword args to add to d """ if d is None: d = {} for key, val in options.items(): d.setdefault(key, val) return d def Clf(): """Clears the figure and any hints that have been set.""" global LOC LOC = None _Brewer.ClearIter() pyplot.clf() fig = pyplot.gcf() fig.set_size_inches(8, 6) def Figure(**options): """Sets options for the current figure.""" _Underride(options, figsize=(6, 8)) pyplot.figure(**options) def Plot(obj, ys=None, style='', **options): """Plots a line. Args: obj: sequence of x values, or Series, or anything with Render() ys: sequence of y values style: style string passed along to pyplot.plot options: keyword args passed to pyplot.plot """ options = _UnderrideColor(options) label = getattr(obj, 'label', '_nolegend_') options = _Underride(options, linewidth=3, alpha=0.7, label=label) xs = obj if ys is None: if hasattr(obj, 'Render'): xs, ys = obj.Render() if isinstance(obj, pandas.Series): ys = obj.values xs = obj.index if ys is None: pyplot.plot(xs, style, **options) else: pyplot.plot(xs, ys, style, **options) def Vlines(xs, y1, y2, **options): """Plots a set of vertical lines. Args: xs: sequence of x values y1: sequence of y values y2: sequence of y values options: keyword args passed to pyplot.vlines """ options = _UnderrideColor(options) options = _Underride(options, linewidth=1, alpha=0.5) pyplot.vlines(xs, y1, y2, **options) def Hlines(ys, x1, x2, **options): """Plots a set of horizontal lines. Args: ys: sequence of y values x1: sequence of x values x2: sequence of x values options: keyword args passed to pyplot.vlines """ options = _UnderrideColor(options) options = _Underride(options, linewidth=1, alpha=0.5) pyplot.hlines(ys, x1, x2, **options) def FillBetween(xs, y1, y2=None, where=None, **options): """Fills the space between two lines. Args: xs: sequence of x values y1: sequence of y values y2: sequence of y values where: sequence of boolean options: keyword args passed to pyplot.fill_between """ options = _UnderrideColor(options) options = _Underride(options, linewidth=0, alpha=0.5) pyplot.fill_between(xs, y1, y2, where, **options) def Bar(xs, ys, **options): """Plots a line. Args: xs: sequence of x values ys: sequence of y values options: keyword args passed to pyplot.bar """ options = _UnderrideColor(options) options = _Underride(options, linewidth=0, alpha=0.6) pyplot.bar(xs, ys, **options) def Scatter(xs, ys=None, **options): """Makes a scatter plot. xs: x values ys: y values options: options passed to pyplot.scatter """ options = _Underride(options, color='blue', alpha=0.2, s=30, edgecolors='none') if ys is None and isinstance(xs, pandas.Series): ys = xs.values xs = xs.index pyplot.scatter(xs, ys, **options) def HexBin(xs, ys, **options): """Makes a scatter plot. xs: x values ys: y values options: options passed to pyplot.scatter """ options = _Underride(options, cmap=matplotlib.cm.Blues) pyplot.hexbin(xs, ys, **options) def Pdf(pdf, **options): """Plots a Pdf, Pmf, or Hist as a line. Args: pdf: Pdf, Pmf, or Hist object options: keyword args passed to pyplot.plot """ low, high = options.pop('low', None), options.pop('high', None) n = options.pop('n', 101) xs, ps = pdf.Render(low=low, high=high, n=n) options = _Underride(options, label=pdf.label) Plot(xs, ps, **options) def Pdfs(pdfs, **options): """Plots a sequence of PDFs. Options are passed along for all PDFs. If you want different options for each pdf, make multiple calls to Pdf. Args: pdfs: sequence of PDF objects options: keyword args passed to pyplot.plot """ for pdf in pdfs: Pdf(pdf, **options) def Hist(hist, **options): """Plots a Pmf or Hist with a bar plot. The default width of the bars is based on the minimum difference between values in the Hist. If that's too small, you can override it by providing a width keyword argument, in the same units as the values. Args: hist: Hist or Pmf object options: keyword args passed to pyplot.bar """ # find the minimum distance between adjacent values xs, ys = hist.Render() # see if the values support arithmetic try: xs[0] - xs[0] except TypeError: # if not, replace values with numbers labels = [str(x) for x in xs] xs = np.arange(len(xs)) pyplot.xticks(xs+0.5, labels) if 'width' not in options: try: options['width'] = 0.9 * np.diff(xs).min() except TypeError: warnings.warn("Hist: Can't compute bar width automatically." "Check for non-numeric types in Hist." "Or try providing width option." ) options = _Underride(options, label=hist.label) options = _Underride(options, align='center') if options['align'] == 'left': options['align'] = 'edge' elif options['align'] == 'right': options['align'] = 'edge' options['width'] *= -1 Bar(xs, ys, **options) def Hists(hists, **options): """Plots two histograms as interleaved bar plots. Options are passed along for all PMFs. If you want different options for each pmf, make multiple calls to Pmf. Args: hists: list of two Hist or Pmf objects options: keyword args passed to pyplot.plot """ for hist in hists: Hist(hist, **options) def Pmf(pmf, **options): """Plots a Pmf or Hist as a line. Args: pmf: Hist or Pmf object options: keyword args passed to pyplot.plot """ xs, ys = pmf.Render() low, high = min(xs), max(xs) width = options.pop('width', None) if width is None: try: width = np.diff(xs).min() except TypeError: warnings.warn("Pmf: Can't compute bar width automatically." "Check for non-numeric types in Pmf." "Or try providing width option.") points = [] lastx = np.nan lasty = 0 for x, y in zip(xs, ys): if (x - lastx) > 1e-5: points.append((lastx, 0)) points.append((x, 0)) points.append((x, lasty)) points.append((x, y)) points.append((x+width, y)) lastx = x + width lasty = y points.append((lastx, 0)) pxs, pys = zip(*points) align = options.pop('align', 'center') if align == 'center': pxs = np.array(pxs) - width/2.0 if align == 'right': pxs = np.array(pxs) - width options = _Underride(options, label=pmf.label) Plot(pxs, pys, **options) def Pmfs(pmfs, **options): """Plots a sequence of PMFs. Options are passed along for all PMFs. If you want different options for each pmf, make multiple calls to Pmf. Args: pmfs: sequence of PMF objects options: keyword args passed to pyplot.plot """ for pmf in pmfs: Pmf(pmf, **options) def Diff(t): """Compute the differences between adjacent elements in a sequence. Args: t: sequence of number Returns: sequence of differences (length one less than t) """ diffs = [t[i+1] - t[i] for i in range(len(t)-1)] return diffs def Cdf(cdf, complement=False, transform=None, **options): """Plots a CDF as a line. Args: cdf: Cdf object complement: boolean, whether to plot the complementary CDF transform: string, one of 'exponential', 'pareto', 'weibull', 'gumbel' options: keyword args passed to pyplot.plot Returns: dictionary with the scale options that should be passed to Config, Show or Save. """ xs, ps = cdf.Render() xs = np.asarray(xs) ps = np.asarray(ps) scale = dict(xscale='linear', yscale='linear') for s in ['xscale', 'yscale']: if s in options: scale[s] = options.pop(s) if transform == 'exponential': complement = True scale['yscale'] = 'log' if transform == 'pareto': complement = True scale['yscale'] = 'log' scale['xscale'] = 'log' if complement: ps = [1.0-p for p in ps] if transform == 'weibull': xs = np.delete(xs, -1) ps = np.delete(ps, -1) ps = [-math.log(1.0-p) for p in ps] scale['xscale'] = 'log' scale['yscale'] = 'log' if transform == 'gumbel': xs = xp.delete(xs, 0) ps = np.delete(ps, 0) ps = [-math.log(p) for p in ps] scale['yscale'] = 'log' options = _Underride(options, label=cdf.label) Plot(xs, ps, **options) return scale def Cdfs(cdfs, complement=False, transform=None, **options): """Plots a sequence of CDFs. cdfs: sequence of CDF objects complement: boolean, whether to plot the complementary CDF transform: string, one of 'exponential', 'pareto', 'weibull', 'gumbel' options: keyword args passed to pyplot.plot """ for cdf in cdfs: Cdf(cdf, complement, transform, **options) def Contour(obj, pcolor=False, contour=True, imshow=False, **options): """Makes a contour plot. d: map from (x, y) to z, or object that provides GetDict pcolor: boolean, whether to make a pseudocolor plot contour: boolean, whether to make a contour plot imshow: boolean, whether to use pyplot.imshow options: keyword args passed to pyplot.pcolor and/or pyplot.contour """ try: d = obj.GetDict() except AttributeError: d = obj _Underride(options, linewidth=3, cmap=matplotlib.cm.Blues) xs, ys = zip(*d.keys()) xs = sorted(set(xs)) ys = sorted(set(ys)) X, Y = np.meshgrid(xs, ys) func = lambda x, y: d.get((x, y), 0) func = np.vectorize(func) Z = func(X, Y) x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) axes = pyplot.gca() axes.xaxis.set_major_formatter(x_formatter) if pcolor: pyplot.pcolormesh(X, Y, Z, **options) if contour: cs = pyplot.contour(X, Y, Z, **options) pyplot.clabel(cs, inline=1, fontsize=10) if imshow: extent = xs[0], xs[-1], ys[0], ys[-1] pyplot.imshow(Z, extent=extent, **options) def Pcolor(xs, ys, zs, pcolor=True, contour=False, **options): """Makes a pseudocolor plot. xs: ys: zs: pcolor: boolean, whether to make a pseudocolor plot contour: boolean, whether to make a contour plot options: keyword args passed to pyplot.pcolor and/or pyplot.contour """ _Underride(options, linewidth=3, cmap=matplotlib.cm.Blues) X, Y = np.meshgrid(xs, ys) Z = zs x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) axes = pyplot.gca() axes.xaxis.set_major_formatter(x_formatter) if pcolor: pyplot.pcolormesh(X, Y, Z, **options) if contour: cs = pyplot.contour(X, Y, Z, **options) pyplot.clabel(cs, inline=1, fontsize=10) def Text(x, y, s, **options): """Puts text in a figure. x: number y: number s: string options: keyword args passed to pyplot.text """ options = _Underride(options, fontsize=16, verticalalignment='top', horizontalalignment='left') pyplot.text(x, y, s, **options) LEGEND = True LOC = None def Config(**options): """Configures the plot. Pulls options out of the option dictionary and passes them to the corresponding pyplot functions. """ names = ['title', 'xlabel', 'ylabel', 'xscale', 'yscale', 'xticks', 'yticks', 'axis', 'xlim', 'ylim'] for name in names: if name in options: getattr(pyplot, name)(options[name]) global LEGEND LEGEND = options.get('legend', LEGEND) if LEGEND: global LOC LOC = options.get('loc', LOC) pyplot.legend(loc=LOC) # x and y ticklabels can be made invisible val = options.get('xticklabels', None) if val is not None: if val == 'invisible': ax = pyplot.gca() labels = ax.get_xticklabels() pyplot.setp(labels, visible=False) val = options.get('yticklabels', None) if val is not None: if val == 'invisible': ax = pyplot.gca() labels = ax.get_yticklabels() pyplot.setp(labels, visible=False) def Show(**options): """Shows the plot. For options, see Config. options: keyword args used to invoke various pyplot functions """ clf = options.pop('clf', True) Config(**options) pyplot.show() if clf: Clf() def Plotly(**options): """Shows the plot. For options, see Config. options: keyword args used to invoke various pyplot functions """ clf = options.pop('clf', True) Config(**options) import plotly.plotly as plotly url = plotly.plot_mpl(pyplot.gcf()) if clf: Clf() return url def Save(root=None, formats=None, **options): """Saves the plot in the given formats and clears the figure. For options, see Config. Args: root: string filename root formats: list of string formats options: keyword args used to invoke various pyplot functions """ clf = options.pop('clf', True) save_options = {} for option in ['bbox_inches', 'pad_inches']: if option in options: save_options[option] = options.pop(option) Config(**options) if formats is None: formats = ['pdf', 'eps'] try: formats.remove('plotly') Plotly(clf=False) except ValueError: pass if root: for fmt in formats: SaveFormat(root, fmt, **save_options) if clf: Clf() def SaveFormat(root, fmt='eps', **options): """Writes the current figure to a file in the given format. Args: root: string filename root fmt: string format """ _Underride(options, dpi=300) filename = '%s.%s' % (root, fmt) print('Writing', filename) pyplot.savefig(filename, format=fmt, **options) # provide aliases for calling functions with lower-case names preplot = PrePlot subplot = SubPlot clf = Clf figure = Figure plot = Plot vlines = Vlines hlines = Hlines fill_between = FillBetween text = Text scatter = Scatter pmf = Pmf pmfs = Pmfs hist = Hist hists = Hists diff = Diff cdf = Cdf cdfs = Cdfs contour = Contour pcolor = Pcolor config = Config show = Show save = Save def main(): color_iter = _Brewer.ColorGenerator(7) for color in color_iter: print(color) if __name__ == '__main__': main()
mit
YouCantCodeWithUs/KMCIslandGrowth
2DGrowth.py
1
12728
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- import sys import random import numpy as np from multiprocessing import Pool from matplotlib import pyplot as plt import pprint import Constants as gv import Periodic import Bins import Energy pool = Pool(1) def InitSubstrate(): ''' Initialize substrate atom positions in a hexagonal grid below y = 0 w: Int - number of atoms in a horizontal row h: Int - number of rows r_s: Float - spacing between atoms returns: np.array(np.array[x, y]) - list of substrate atom positions ''' R = [] roffset = gv.r_s/2 for i in range(gv.Hs): y = -i*gv.r_s*gv.sqrt3/2 for x in range(gv.W): Ri = x*gv.r_s if i%2 == 1: Ri += roffset R.append(Ri); R.append(y) return Periodic.PutAllInBox(np.array(R)) def DepositionRate(): ''' Returns a calculated value based on estimated wafer size and flux rate. ''' return 6.0*18/gv.W*gv.deposition_rate return float(gv.W)*MLps def SurfaceAtoms(adatoms, substrate_bins): ''' Identifies surface adatoms. Surface atoms are defined as adatoms coordinated by < 5 other atoms. adatoms: np.array(np.array[x, y]) - position of adatoms substrate_bins: list(list(np.array[x, y])) - bin'd position of substrate atoms returns: List[np.array[x, y]] - list of positions of surface adatoms. ''' surfaceAtoms = [] (nearest_adatoms, nearest_substrate) = Bins.NearestNeighbors(adatoms, substrate_bins) for i in range(len(adatoms)/2): if len(nearest_adatoms[i])/2 + len(nearest_substrate[i])/2 < 6: surfaceAtoms.append(adatoms[2*i]) surfaceAtoms.append(adatoms[2*i+1]) return np.array(surfaceAtoms) def DepositAdatom(adatoms, substrate_bins): ''' Deposits new adatom onto the surface, then performs a relaxation. adatoms: np.array(np.array[x, y]) - position of adatoms substrate_bins: list(list(np.array[x, y])) - bin'd position of substrate atoms returns: np.array(np.array[x, y]) - position of adatoms with additional adatom ''' min_y = 0 if len(adatoms) > 0: min_y = min([adatoms[2*i+1] for i in range(len(adatoms)/2)]) new_x = Periodic.PutInBox(random.random()*gv.L) new_y = 2*gv.r_as + min_y adatom_bins = Bins.PutInBins(adatoms) closeby = False while not closeby: Ri = np.array([new_x, new_y]) nearby_adatoms = Bins.NearbyAtoms(new_x, new_y, adatom_bins) d = Periodic.Distances(Ri, nearby_adatoms)[0] if len(d) > 0 and min(d) < 2*gv.r_a: closeby = True nearby_substrate = Bins.NearbyAtoms(new_x, new_y, substrate_bins) d = Periodic.Distances(Ri, nearby_substrate)[0] if len(d) > 0 and min(d) < 2*gv.r_as: closeby = True if not closeby: new_y -= gv.r_a/2 adatoms = np.append(adatoms, Ri) adatoms = Relaxation(adatoms, substrate_bins) return adatoms def Relaxation(adatoms, substrate_bins, scale=16, threshold=1e-4): ''' Relaxes the deposited adatoms into the lowest energy position using a conjugate gradient algorithm. Runs recursively if the step size is too small. Uses a multiprocessing pool for extra speed. adatoms: np.array(np.array[x, y]) - position of adatoms substrate_bins: list(list(np.array[x, y])) - bin'd position of substrate atoms scale: int - How much to scale the step size down by returns: np.array(np.array[x, y]) - position of adatoms with additional adatom ''' global pool if scale > 1024: print 'scale exceeded, reducing threshold' return Relaxation(adatoms, substrate_bins, scale=16, threshold=threshold*10) # If the energy of a proposed relaxed arrangement exceeds this Ui, then halve the stepsize and start over. Ui = Energy.TotalEnergy(adatoms, substrate_bins) N = len(adatoms)/2 xn = adatoms.copy() # Initial forces on each atom dx0 = Energy.AdatomAdatomForces(xn) + Energy.AdatomSubstrateForces(xn, substrate_bins) xs = [(adatoms + a*dx0/20/scale, substrate_bins) for a in range(20)] ys = pool.map(Energy.RelaxEnergy, xs) (xnp, a) = xs[ys.index(min(ys))] sn = dx0[:] snp = dx0[:] # Force on each atom in the lowest energy position dxnp = Energy.AdatomAdatomForces(xnp) + Energy.AdatomSubstrateForces(xnp, substrate_bins) maxF = max([np.dot(dxnp[2*i:2*i+2], dxnp[2*i:2*i+2]) for i in range(len(dxnp))]) lastmaxF = maxF while maxF > threshold: # U = Energy.TotalEnergy(adatoms, substrate_bins) # if U > Ui: # print 'changing scale', scale*2, maxF # return Relaxation(adatoms, substrate_bins, scale=scale*2, threshold=threshold) max_y = min([xnp[2*i+1] for i in range(len(xnp)/2)]) if max_y > gv.Dmax: print 'atom out of bounds', scale*2 return Relaxation(adatoms, substrate_bins, scale=scale*2, threshold=threshold) # Calculate the conjugate direction step size, beta top = np.dot(xnp, (xnp - xn)) bot = np.dot(xn, xn) beta = top/bot # Update conjugate direction snp = dxnp + beta*sn xn = xnp.copy() sn = snp.copy() xs = [(xn + a*sn/20/scale, substrate_bins) for a in range(20)] ys = pool.map(Energy.RelaxEnergy, xs) # plt.plot(ys); plt.show() (xmin, a) = xs[ys.index(min(ys))] xnp = xmin.copy() # Calculate forces at new lowest energy position dxnp = Energy.AdatomAdatomForces(xmin) + Energy.AdatomSubstrateForces(xmin, substrate_bins) maxF = max([np.dot(dxnp[2*i:2*i+2], dxnp[2*i:2*i+2]) for i in range(len(dxnp))]) print maxF if abs(lastmaxF - maxF) < 1e-8: print 'relaxation stalled, changing scale', scale*2, maxF return Relaxation(adatoms, substrate_bins, scale=scale*2, threshold=threshold) lastmaxF = maxF return Periodic.PutAllInBox(xnp) def LocalRelaxation(adatoms, substrate_bins, around): ''' Relaxes the deposited adatoms into the lowest energy position using a conjugate gradient algorithm. Performs an additional global relaxation is global forces are too large. adatoms: np.array(np.array[x, y]) - position of adatoms substrate_bins: list(list(np.array[x, y])) - bin'd position of substrate atoms around: np.array[x, y] - position around which to perform the relaxation returns: np.array(np.array[x, y]) - positions of relaxed adatoms ''' nearby_indices = [] relaxing_adatoms = [] adatom_bins = Bins.PutInBins(adatoms) nearby_adatoms = Bins.NearbyAtoms(around[0], around[1], adatom_bins) nearby_indices = [list(Ds).index(0) for Ds in Periodic.Distances(nearby_adatoms, adatoms)] nearby_indices = sorted(nearby_indices, reverse=True) for i in nearby_indices: relaxing_adatoms.append(adatoms[2*i]) relaxing_adatoms.append(adatoms[2*i+1]) adatoms = np.delete(adatoms, 2*i) adatoms = np.delete(adatoms, 2*i) relaxing_adatoms = np.array(relaxing_adatoms) relaxing_adatoms = Relaxation(relaxing_adatoms, substrate_bins, scale=4) adatoms = np.append(adatoms, relaxing_adatoms) forces = Energy.AdatomAdatomForces(adatoms) + Energy.AdatomSubstrateForces(adatoms, substrate_bins) maxF = max([np.dot(forces[2*i:2*i+2], forces[2*i:2*i+2]) for i in range(len(forces))]) if maxF > 1e-3: print 'global required' adatoms = Relaxation(adatoms, substrate_bins, scale=4, threshold=1e-4) return adatoms def HoppingRates(adatoms, substrate_bins): ''' Calculates the hopping rate of each surface adatom. adatoms: np.array(np.array[x, y]) - position of adatoms substrate_bins: list(list(np.array[x, y])) - bin'd position of substrate atoms returns: list(float) - hopping rate of each surface atom ''' omega = 1.0e12 surf = SurfaceAtoms(adatoms, substrate_bins) if len(surf) < 1: return [] surf_indices = [list(Ds).index(0) for Ds in Periodic.Distances(surf, adatoms)] return [omega*np.exp(Energy.DeltaU(i, adatoms, substrate_bins)*gv.beta) for i in surf_indices] def HoppingPartialSums(Rk): ''' Cumulative sum hopping rates. Used to determine whether to hop or deposit. ''' return [0] + [sum(Rk[:i+1]) for i in range(len(Rk))] def TotalRate(Rd, Rk): ''' Addition! ''' return Rd + sum(Rk) def HopAtom(i, adatoms, substrate_bins): ''' Moves a surface adatom and to a nearby spot. Performs a local relaxation around the new position. i: int - index of adatom to hop adatoms: np.array(np.array[x, y]) - position of adatoms substrate_bins: list(list(np.array[x, y])) - bin'd position of substrate atoms returns: np.array(np.array[x, y]) - positions of relaxed adatoms after hop ''' surf = SurfaceAtoms(adatoms, substrate_bins) jumper = np.array(adatoms[2*i:2*i+2]) adatoms = np.delete(adatoms, 2*i); adatoms = np.delete(adatoms, 2*i) Ds = Periodic.Distances(jumper, surf)[0] potential_jump_to = [] for i in range(len(Ds)): if Ds[i] < 3*gv.r_a: potential_jump_to.append(surf[2*i:2*i+2]) jump_to_surf = potential_jump_to[random.randint(0, len(potential_jump_to)-1)] jump_directions = [i*np.pi/3 for i in range(6)] jump_vectors = [np.array([np.cos(t), np.sin(t)])*gv.r_a for t in jump_directions] jump_positions = [jump_to_surf + v for v in jump_vectors] jump_energies = [Energy.HoppingEnergy(p, adatoms, substrate_bins) for p in jump_positions] jump_to_pos = jump_positions[jump_energies.index(min(jump_energies))] jump_to_pos = Periodic.PutAllInBox(jump_to_pos) adatoms = np.append(adatoms, jump_to_pos) adatoms = Relaxation(adatoms, substrate_bins) return adatoms def PlotSubstrate(substrate, color='blue'): ''' Pretty plots. ''' PlotAtoms(substrate, color) for x in range(gv.nbins_x + 2): plt.plot([x*gv.bin_size - gv.L/2, x*gv.bin_size - gv.L/2], [gv.Dmin, gv.nbins_y*gv.bin_size + gv.Dmin], color='red') for y in range(gv.nbins_y + 1): plt.plot([-gv.L/2, (gv.nbins_x + 1)*gv.bin_size - gv.L/2], [y*gv.bin_size + gv.Dmin, y*gv.bin_size + gv.Dmin], color='red') # plt.show() def PlotAtoms(atoms, color='blue'): ''' Pretty plots. ''' for i in range(len(atoms)/2): plt.scatter(atoms[2*i], atoms[2*i+1], color=color) def PlotEnergy(adatoms, substrate_bins): ''' Pretty plots. ''' ymin = min(a[1] for a in adatoms) + gv.r_a xs = np.linspace(-gv.L/2, gv.L/2, 500) pos = [(np.array([x, ymin]), adatoms, substrate_bins) for x in xs] Es = pool.map(Energy.RelaxEnergy, pos) plt.plot(xs, Es) plt.axis([min(xs), max(xs), min(Es)-0.1, max(Es)+0.1]) # plt.show() plt.savefig(gv.folder + 'E%.2i.png'%t) plt.clf() def PlotStresses(adatoms, substrate, substrate_bins): PlotAtoms(substrate, 'blue') Fs = Energy.AdatomAdatomForces(adatoms) + Energy.AdatomSubstrateForces(adatoms, substrate_bins) Fs = [np.sqrt(Fs[2*i]**2 + Fs[2*i+1]**2) for i in range(len(Fs)/2)] Fs = [np.log(f*1e4) for f in Fs] Fs = ['#e7%.2x%.2x'%(max(0, min(255, f*8+79)), max(0, min(255, f*8+53))) for f in Fs] for i in range(len(Fs)): PlotAtoms(adatoms[2*i:2*i+2], Fs[i]) plt.axis([-gv.L/2, gv.L/2, gv.Dmin, gv.Dmax]) def average(l): return sum(l)/len(l) substrate = InitSubstrate() substrate_bins = Bins.PutInBins(substrate) surf_substrate = SurfaceAtoms(substrate, substrate_bins) adatoms = np.array([]) # adatoms = InitSubstrate()[:gv.W*4] # for i in range(len(adatoms)/2): # adatoms[2*i] -= gv.r_a/2 # adatoms[2*i+1] += gv.r_a*gv.sqrt3 # adatoms = Relaxation(adatoms, substrate_bins) t = 0 while True: Rk = HoppingRates(adatoms, substrate_bins) pj = HoppingPartialSums(Rk) Rd = DepositionRate() Rtot = TotalRate(Rd, Rk) r = random.random()*Rtot print t, pj[-1], Rd, r HoppingAtom = [p for p in pj if p > r] if len(HoppingAtom) > 0: print 'HOP' adatoms = HopAtom(pj.index(HoppingAtom[0])-1, adatoms, substrate_bins) else: adatoms = DepositAdatom(adatoms, substrate_bins) # if i % 5 == 0: PlotSubstrate(substrate, 'blue') PlotAtoms(adatoms, 'green') surf = SurfaceAtoms(adatoms, substrate_bins) PlotAtoms(surf, 'red') plt.axis([-gv.L/2-0.1, gv.L/2+0.1, gv.Dmin-0.1, gv.Dmax+3*gv.r_as]) plt.savefig(gv.folder + '%.2i.png'%t) # plt.show() plt.clf() PlotStresses(adatoms, substrate, substrate_bins) plt.savefig(gv.folder + 'F%.2i.png'%t) # PlotEnergy(adatoms, substrate_bins) t += 1 # minimum energy position # xs = np.linspace(0, gv.L, 500) # Es = [Energy.AdatomSurfaceEnergy(np.array([x, gv.r_as]), substrate_bins, gv.E_as, gv.r_as) for x in xs] # xmin = xs[Es.index(min(Es))] # xs = np.linspace(xmin-0.1, xmin+0.1, 500) # Es = [Energy.AdatomSurfaceEnergy(np.array([x, gv.r_as]), substrate_bins, gv.E_as, gv.r_as) for x in xs] # xmin = xs[Es.index(min(Es))] # ys = np.linspace(gv.r_as/2, gv.r_as*2, 500) # Es = [Energy.AdatomSurfaceEnergy(np.array([xmin, y]), substrate_bins, gv.E_as, gv.r_as) for y in ys] # ymin = ys[Es.index(min(Es))] # ys = np.linspace(ymin-0.1, ymin+0.1, 500) # Es = [Energy.AdatomSurfaceEnergy(np.array([xmin, y]), substrate_bins, gv.E_as, gv.r_as) for y in ys] # ymin = ys[Es.index(min(Es))] # print xmin/gv.r_as, ymin/gv.r_as # print Energy.AdatomSurfaceEnergy(np.array([xmin, ymin]), substrate_bins, gv.E_as, gv.r_as) # print Energy.AdatomSurfaceForce(np.array([xmin, ymin]), substrate_bins, gv.E_as, gv.r_as) # plt.plot(ys, Es) # plt.show()
mit
ifp-uiuc/ifp_toolbox
ifp_toolbox/general/__init__.py
1
1682
import numpy import matplotlib.pyplot as plt from matplotlib.patches import Rectangle class RectangleSelector(object): """ This is a class that allows the user to interactively select a rectangular region in an image and returns the coordinates of the upper-left corner and the bottom-right corner. Code snippet taken from: http://stackoverflow.com/questions/12052379/ matplotlib-draw-a-selection-area-in-the-shape-of-a-rectangle-with-the-mouse """ def __init__(self): self.ax = plt.gca() self.rect = Rectangle((0, 0), 1, 1) self.customize_rectangle() self.x0 = None self.y0 = None self.x1 = None self.y1 = None self.ax.add_patch(self.rect) self.ax.figure.canvas.mpl_connect('button_press_event', self.on_press) self.ax.figure.canvas.mpl_connect('button_release_event', self.on_release) def customize_rectangle(self): self.rect.set_fill(False) self.rect.set_edgecolor('blue') self.rect.set_linewidth(3.0) def on_press(self, event): print 'press' self.x0 = event.xdata self.y0 = event.ydata def on_release(self, event): print 'release' self.x1 = event.xdata self.y1 = event.ydata self.rect.set_width(self.x1 - self.x0) self.rect.set_height(self.y1 - self.y0) self.rect.set_xy((self.x0, self.y0)) self.ax.figure.canvas.draw() def get_coords(self): return [numpy.floor(self.x0), numpy.floor(self.y0), numpy.ceil(self.x1), numpy.ceil(self.y1)]
bsd-3-clause
joshwalawender/RasPiProjects
Kegerator.py
1
19736
#!/usr/env/python from __future__ import division, print_function ## Import General Tools import sys import os import argparse import logging import numpy as np import datetime import math import RPi.GPIO as GPIO import DHT22 import DS18B20 import Carriots import humidity import astropy.io.ascii as ascii import astropy.table as table temp_high = 42.0 temp_low = 38.0 ##------------------------------------------------------------------------- ## Main Program ##------------------------------------------------------------------------- def main(args): # temp_high = 42.0 # temp_low = 38.0 status = 'unknown' GPIO.setmode(GPIO.BCM) GPIO.setup(23, GPIO.OUT) ##------------------------------------------------------------------------- ## Create logger object ##------------------------------------------------------------------------- logger = logging.getLogger('MyLogger') logger.setLevel(logging.DEBUG) ## Set up console output LogConsoleHandler = logging.StreamHandler() if args.verbose: LogConsoleHandler.setLevel(logging.DEBUG) else: LogConsoleHandler.setLevel(logging.INFO) LogFormat = logging.Formatter('%(asctime)23s %(levelname)8s: %(message)s') LogConsoleHandler.setFormatter(LogFormat) logger.addHandler(LogConsoleHandler) ## Set up file output now = datetime.datetime.now() DateString = '{}'.format(now.strftime('%Y%m%d')) TimeString = '{} HST'.format(now.strftime('%H:%M:%S')) LogFileName = os.path.join('/', 'var', 'log', 'Kegerator', 'Log_{}.txt'.format(DateString)) LogFileHandler = logging.FileHandler(LogFileName) LogFileHandler.setLevel(logging.DEBUG) LogFileHandler.setFormatter(LogFormat) logger.addHandler(LogFileHandler) ##------------------------------------------------------------------------- ## Get Temperature and Humidity Values ##------------------------------------------------------------------------- logger.info('#### Reading Temperature and Humidity Sensors ####') temperatures_F = [] try: logger.debug('Reading DHT22') DHT = DHT22.DHT22(pin=18) DHT.read() logger.debug(' Temperature = {:.3f} F, Humidity = {:.1f} %'.format(DHT.temperature_F, DHT.humidity)) temperatures_F.append(DHT.temperature_F) RH = DHT.humidity AH = humidity.relative_to_absolute_humidity(DHT.temperature_C, DHT.humidity) logger.debug(' Absolute Humidity = {:.2f} g/m^3'.format(AH)) except: RH = float('nan') AH = float('nan') logger.debug('Reading DS18B20') sensor = DS18B20.DS18B20() sensor.read() for temp in sensor.temperatures_C: logger.debug(' Temperature = {:.3f} F'.format(temp*9./5.+32.)) temperatures_F.append(temp*9./5.+32.) ##------------------------------------------------------------------------- ## Record Values to Table ##------------------------------------------------------------------------- datafile = os.path.join('/', 'var', 'log', 'Kegerator', '{}.txt'.format(DateString)) logger.debug("Preparing astropy table object for data file {}".format(datafile)) if not os.path.exists(datafile): logger.info("Making new astropy table object") SummaryTable = table.Table(names=('date', 'time', 'AmbTemp', 'KegTemp', 'KegTemp1', 'KegTemp2', 'KegTemp3', 'RH', 'AH', 'status'), \ dtype=('S10', 'S12', 'f4', 'f4', 'f4', 'f4', 'f4', 'f4', 'f4', 'S8') ) else: logger.debug("Reading astropy table object from file: {0}".format(datafile)) try: SummaryTable = ascii.read(datafile, guess=False, header_start=0, data_start=1, Reader=ascii.basic.Basic, converters={ 'date': [ascii.convert_numpy('S10')], 'time': [ascii.convert_numpy('S12')], 'AmbTemp': [ascii.convert_numpy('f4')], 'KegTemp': [ascii.convert_numpy('f4')], 'KegTemp1': [ascii.convert_numpy('f4')], 'KegTemp2': [ascii.convert_numpy('f4')], 'KegTemp3': [ascii.convert_numpy('f4')], 'hum': [ascii.convert_numpy('f4')], 'AH': [ascii.convert_numpy('f4')], 'status': [ascii.convert_numpy('S11')], }) except: logger.critical("Failed to read data file: {0} {1} {2}".format(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2])) ##------------------------------------------------------------------------- ## Turn Kegerator Relay On or Off Based on Temperature ##------------------------------------------------------------------------- temperatures_F.sort() ambient_temperature = temperatures_F.pop() assert ambient_temperature > max(temperatures_F) logger.info('Ambient Temperature = {:.1f}'.format(ambient_temperature)) for temp in temperatures_F: logger.info('Kegerator Temperatures = {:.1f} F'.format(temp)) temperature = np.median(temperatures_F) logger.info('Median Temperature = {:.1f} F'.format(temperature)) if temperature > temp_high: status = 'On' logger.info('Temperature {:.1f} is greater than {:.1f}. Turning freezer {}.'.format(temperature, temp_high, status)) GPIO.output(23, True) elif temperature < temp_low: status = 'Off' logger.info('Temperature {:.1f} is less than {:.1f}. Turning freezer {}.'.format(temperature, temp_low, status)) GPIO.output(23, False) else: if len(SummaryTable) > 0: status = SummaryTable['status'][-1] else: status = 'unknown' logger.info('Temperature if {:.1f}. Taking no action. Status is {}'.format(temperature, status)) ##------------------------------------------------------------------------- ## Add row to data table ##------------------------------------------------------------------------- logger.debug("Writing new row to data table.") while len(temperatures_F) < 4: temperatures_F.append(float('nan')) SummaryTable.add_row((DateString, TimeString, ambient_temperature, temperature, \ temperatures_F[0], temperatures_F[1], temperatures_F[2], \ RH, AH, status)) ## Write Table to File logger.debug(" Writing new data file.") ascii.write(SummaryTable, datafile, Writer=ascii.basic.Basic) ##------------------------------------------------------------------------- ## Log to Carriots ##------------------------------------------------------------------------- logger.info('Sending Data to Carriots') logger.debug(' Creating Device object') Device = Carriots.Client(device_id="kegerator@joshwalawender") logger.debug(' Reading api key') Device.read_api_key_from_file(file=os.path.join(os.path.expanduser('~joshw'), '.carriots_api')) data_dict = {'Temperature': temperature, \ 'Status': status } logger.debug(' Data: {}'.format(data_dict)) Device.upload(data_dict) logger.info('Done') ##------------------------------------------------------------------------- ## PLOT ##------------------------------------------------------------------------- def plot(args): import matplotlib.pyplot as pyplot ##------------------------------------------------------------------------- ## Set date to tonight if not specified ##------------------------------------------------------------------------- now = datetime.datetime.now() DateString = now.strftime("%Y%m%d") if not args.date: args.date = DateString ##------------------------------------------------------------------------- ## Define File Names ##------------------------------------------------------------------------- LogFile = os.path.join('/', 'var', 'log', 'Kegerator', 'PlotLog_'+args.date+".txt") PlotFile = os.path.join('/', 'var', 'log', 'Kegerator', args.date+".png") DataFile = os.path.join('/', 'var', 'log', 'Kegerator', args.date+".txt") ##------------------------------------------------------------------------- ## Create logger object ##------------------------------------------------------------------------- logger = logging.getLogger('MyLogger') logger.setLevel(logging.DEBUG) ## Set up console output LogConsoleHandler = logging.StreamHandler() if args.verbose: LogConsoleHandler.setLevel(logging.DEBUG) else: LogConsoleHandler.setLevel(logging.INFO) LogFormat = logging.Formatter('%(asctime)23s %(levelname)8s: %(message)s') LogConsoleHandler.setFormatter(LogFormat) logger.addHandler(LogConsoleHandler) ## Set up file output LogFileHandler = logging.FileHandler(LogFile) LogFileHandler.setLevel(logging.DEBUG) LogFileHandler.setFormatter(LogFormat) logger.addHandler(LogFileHandler) logger.info("Kegerator.py invoked with --plot option") logger.info(" Making plot for day of {}".format(args.date)) ##------------------------------------------------------------------------- ## Read Data ##------------------------------------------------------------------------- if os.path.exists(DataFile): logger.info(" Found data file: {}".format(DataFile)) data = ascii.read(DataFile, guess=False, header_start=0, data_start=1, Reader=ascii.basic.Basic, converters={ 'date': [ascii.convert_numpy('S10')], 'time': [ascii.convert_numpy('S12')], 'AmbTemp': [ascii.convert_numpy('f4')], 'KegTemp': [ascii.convert_numpy('f4')], 'KegTemp1': [ascii.convert_numpy('f4')], 'KegTemp2': [ascii.convert_numpy('f4')], 'KegTemp3': [ascii.convert_numpy('f4')], 'RH': [ascii.convert_numpy('f4')], 'AH': [ascii.convert_numpy('f4')], 'status': [ascii.convert_numpy('S11')], }) datetime_objects = [datetime.datetime.strptime(x['time'], '%H:%M:%S HST') for x in data] time_decimal = [(x.hour + x.minute/60. + x.second/3600.) for x in datetime_objects] DecimalTime = max(time_decimal) ##------------------------------------------------------------------------- ## Make Plot ##------------------------------------------------------------------------- plot_upper_temp = 45 plot_lower_temp = 29 pyplot.ioff() plotpos = [ [0.05, 0.59, 0.65, 0.40], [0.73, 0.59, 0.21, 0.40],\ [0.05, 0.52, 0.65, 0.07], [0.73, 0.52, 0.21, 0.07],\ [0.05, 0.25, 0.65, 0.24], [0.73, 0.25, 0.21, 0.24],\ [0.05, 0.05, 0.65, 0.18], [0.73, 0.05, 0.21, 0.18],\ ] if len(data) > 1: logger.info(" Generating plot {} ... ".format(PlotFile)) dpi = 100 pyplot.figure(figsize=(14,8), dpi=dpi) ## Plot Temperature for This Day logger.debug(" Rendering Temperature Plot.") TemperatureAxes = pyplot.axes(plotpos[0], xticklabels=[]) pyplot.title("Kegerator Temperatures for "+args.date) pyplot.plot(time_decimal, data['KegTemp'], 'ko', label="Median Temp.", markersize=3, markeredgewidth=0) pyplot.plot(time_decimal, data['KegTemp1'], 'bo', label="Temp. 1", markersize=2, markeredgewidth=0, alpha=0.6) pyplot.plot(time_decimal, data['KegTemp2'], 'go', label="Temp. 2", markersize=2, markeredgewidth=0, alpha=0.6) pyplot.plot(time_decimal, data['KegTemp3'], 'yo', label="Temp. 3", markersize=2, markeredgewidth=0, alpha=0.6) pyplot.plot([DecimalTime, DecimalTime], [-100,100], 'g-', alpha=0.4) pyplot.ylabel("Kegerator Temp. (F)") pyplot.xlim(0, 24) pyplot.xticks(np.arange(0,24,2)) pyplot.ylim(plot_lower_temp, plot_upper_temp) pyplot.grid() pyplot.legend(loc='best', prop={'size': 10}) TemperatureAxes.axhline(32, color='red', lw=4) TemperatureAxes.axhline(temp_low, color='blue', lw=4) TemperatureAxes.axhline(temp_high, color='blue', lw=4) ## Plot Temperature for Last Hour logger.debug(" Rendering Recent Temperature Plot.") RecentTemperatureAxes = pyplot.axes(plotpos[1], xticklabels=[], yticklabels=[]) pyplot.title("Last Hour") pyplot.plot(time_decimal, data['KegTemp'], 'ko', label="Kegerator Temp", markersize=3, markeredgewidth=0) pyplot.plot(time_decimal, data['KegTemp1'], 'bo', label="Kegerator Temp 1", markersize=2, markeredgewidth=0, alpha=0.6) pyplot.plot(time_decimal, data['KegTemp2'], 'go', label="Kegerator Temp 2", markersize=2, markeredgewidth=0, alpha=0.6) pyplot.plot(time_decimal, data['KegTemp3'], 'yo', label="Kegerator Temp 3", markersize=2, markeredgewidth=0, alpha=0.6) pyplot.plot([DecimalTime, DecimalTime], [-100,100], 'g-', alpha=0.4) pyplot.xticks(np.arange(0,24,0.25)) if DecimalTime > 1.0: pyplot.xlim(DecimalTime-1.0, DecimalTime+0.1) else: pyplot.xlim(0,1.1) pyplot.ylim(plot_lower_temp, plot_upper_temp) pyplot.grid() RecentTemperatureAxes.axhline(32, color='red', lw=4) RecentTemperatureAxes.axhline(temp_low, color='blue', lw=4) RecentTemperatureAxes.axhline(temp_high, color='blue', lw=4) ## Plot Relay State translator = {'On': 1, 'Off': 0, 'unknown': -0.25} relay_state = [translator[val] for val in data['status']] logger.debug(" Rendering Relay Status Plot.") RelayAxes = pyplot.axes(plotpos[2], yticklabels=[]) pyplot.plot(time_decimal, relay_state, 'ko-', markersize=3, markeredgewidth=0) pyplot.plot([DecimalTime, DecimalTime], [-1,2], 'g-', alpha=0.4) pyplot.ylabel("Relay") pyplot.xlim(0, 24) pyplot.yticks([0,1]) pyplot.ylim(-0.5,1.5) pyplot.xticks(np.arange(0,24,2)) pyplot.grid() ## Plot Relay State for Last Hour logger.debug(" Rendering Recent Relay State Plot.") RecentRelayAxes = pyplot.axes(plotpos[3], yticklabels=[]) pyplot.plot(time_decimal, relay_state, 'ko-', markersize=3, markeredgewidth=0) pyplot.plot([DecimalTime, DecimalTime], [-1,2], 'g-', alpha=0.4) pyplot.xticks(np.arange(0,24,0.25)) if DecimalTime > 1.0: pyplot.xlim(DecimalTime-1.0, DecimalTime+0.1) else: pyplot.xlim(0,1.1) pyplot.yticks([0,1]) pyplot.ylim(-0.5,1.5) pyplot.grid() ## Plot Humidity for This Day HumidityAxes = pyplot.axes(plotpos[4], xticklabels=[]) logger.debug(" Rendering Humidity Plot.") pyplot.plot(time_decimal, data['RH'], 'bo', label="Humidity", markersize=3, markeredgewidth=0) pyplot.plot([DecimalTime, DecimalTime], [0,100], 'g-', alpha=0.4) pyplot.ylabel("Humidity (%)") pyplot.xlabel("Time (Hours HST)") pyplot.xlim(0, 24) pyplot.ylim(30,100) pyplot.xticks(np.arange(0,24,2)) pyplot.grid() ## Plot Humidity for Last 2 Hours logger.debug(" Rendering Recent Humidity Plot.") RecentHumidityAxes = pyplot.axes(plotpos[5], yticklabels=[], xticklabels=[]) pyplot.plot(time_decimal, data['RH'], 'bo', label="Humidity", markersize=3, markeredgewidth=0) pyplot.plot([DecimalTime, DecimalTime], [0,100], 'g-', alpha=0.4) pyplot.xticks(np.arange(0,24,0.25)) if DecimalTime > 1.0: pyplot.xlim(DecimalTime-1.0, DecimalTime+0.1) else: pyplot.xlim(0,1.1) pyplot.ylim(30,100) pyplot.grid() ## Plot Case Temperature for This Day logger.debug(" Rendering Case Temperature Plot.") AmbTemperatureAxes = pyplot.axes(plotpos[6]) pyplot.plot(time_decimal, data['AmbTemp'], 'ro', label="Ambient Temp", markersize=3, markeredgewidth=0) pyplot.plot([DecimalTime, DecimalTime], [-100,100], 'g-', alpha=0.4) pyplot.ylabel("Case Temp. (F)") pyplot.xlim(0, 24) pyplot.xticks(np.arange(0,24,2)) pyplot.yticks(np.arange(60,100,5)) pyplot.ylim(math.floor(min(data['AmbTemp'])-6), math.ceil(max(data['AmbTemp'])+6)) pyplot.grid() ## Plot Case Temperature for Last Hour logger.debug(" Rendering Recent Case Temperature Plot.") RecentAmbTemperatureAxes = pyplot.axes(plotpos[7], yticklabels=[]) pyplot.plot(time_decimal, data['AmbTemp'], 'ro', label="Ambient Temp", markersize=3, markeredgewidth=0) pyplot.plot([DecimalTime, DecimalTime], [-100,100], 'g-', alpha=0.4) pyplot.xticks(np.arange(0,24,0.25)) pyplot.yticks(np.arange(60,100,5)) pyplot.ylim(math.floor(min(data['AmbTemp'])-6), math.ceil(max(data['AmbTemp'])+6)) if DecimalTime > 1.0: pyplot.xlim(DecimalTime-1.0, DecimalTime+0.1) else: pyplot.xlim(0,1.1) pyplot.grid() logger.debug(" Saving plot to file: {}".format(PlotFile)) pyplot.savefig(PlotFile, dpi=dpi, bbox_inches='tight', pad_inches=0.05) logger.info(" done.") else: logger.info("Could not find data file: {}".format(DataFile)) ##------------------------------------------------------------------------- ## Create Daily Symlink if Not Already ##------------------------------------------------------------------------- LinkFileName = 'latest.png' LinkFile = os.path.join('/', 'var', 'log', 'Kegerator', LinkFileName) if not os.path.exists(LinkFile): logger.info('Making {} symlink to {}'.format(LinkFile, PlotFile)) os.symlink(PlotFile, LinkFile) logger.info("Done") if __name__ == '__main__': ##------------------------------------------------------------------------- ## Parse Command Line Arguments ##------------------------------------------------------------------------- parser = argparse.ArgumentParser( description="Program description.") parser.add_argument("-v", "--verbose", action="store_true", dest="verbose", default=False, help="Be verbose! (default = False)") parser.add_argument("-p", "--plot", action="store_true", dest="plot", default=False, help="Make plot.") parser.add_argument("-d", "--date", dest="date", required=False, default="", type=str, help="Date to analyze. (i.e. '20130805')") args = parser.parse_args() if not args.plot: main(args) else: plot(args)
bsd-2-clause
lanselin/pysal
pysal/esda/tabular.py
6
12714
#from ...common import requires as _requires import itertools as _it from pysal.weights import W # I would like to define it like this, so that you could make a call like: # Geary(df, 'HOVAL', 'INC', w=W), but this only works in Python3. So, I have to # use a workaround #def _statistic(df, *cols, stat=None, w=None, inplace=True, def _univariate_handler(df, cols, stat=None, w=None, inplace=True, pvalue = 'sim', outvals = None, swapname='', **kwargs): """ Compute a univariate descriptive statistic `stat` over columns `cols` in `df`. Parameters ---------- df : pandas.DataFrame the dataframe containing columns to compute the descriptive statistics cols : string or list of strings one or more names of columns in `df` to use to compute exploratory descriptive statistics. stat : callable a function that takes data as a first argument and any number of configuration keyword arguments and returns an object encapsulating the exploratory statistic results w : pysal.weights.W the spatial weights object corresponding to the dataframe inplace : bool a flag denoting whether to add the statistic to the dataframe in memory, or to construct a copy of the dataframe and append the results to the copy pvalue : string the name of the pvalue on the results object wanted outvals : list of strings names of attributes of the dataframe to attempt to flatten into a column swapname : string suffix to replace generic identifier with. Each caller of this function should set this to a unique column suffix **kwargs : optional keyword arguments options that are passed directly to the statistic """ ### Preprocess if not inplace: new_df = df.copy() _univariate_handler(new_df, cols, stat=stat, w=w, pvalue=pvalue, inplace=True, outvals=outvals, swapname=swapname, **kwargs) return new_df if w is None: for name in df._metadata: this_obj = df.__dict__.get(name) if isinstance(this_obj, W): w = this_obj if w is None: raise Exception('Weights not provided and no weights attached to frame!' ' Please provide a weight or attach a weight to the' ' dataframe') ### Prep indexes if outvals is None: outvals = [] outvals.insert(0,'_statistic') if pvalue.lower() in ['all', 'both', '*']: raise NotImplementedError("If you want more than one type of PValue,add" " the targeted pvalue type to outvals. For example:" " Geary(df, cols=['HOVAL'], w=w, outvals=['p_z_sim', " "'p_rand']") # this is nontrivial, since we # can't know which p_value types are on the object without computing it. # This is because we don't flag them with @properties, so they're just # arbitrarily assigned post-facto. One solution might be to post-process the # objects, determine which pvalue types are available, and then grab them # all if needed. if pvalue is not '': outvals.append('p_'+pvalue.lower()) if isinstance(cols, str): cols = [cols] ### Make closure around weights & apply columnwise def column_stat(column): return stat(column.values, w=w, **kwargs) stat_objs = df[cols].apply(column_stat) ### Assign into dataframe for col in cols: stat_obj = stat_objs[col] y = kwargs.get('y') if y is not None: col += '-' + y.name outcols = ['_'.join((col, val)) for val in outvals] for colname, attname in zip(outcols, outvals): df[colname] = stat_obj.__getattribute__(attname) if swapname is not '': df.columns = [_swap_ending(col, swapname) if col.endswith('_statistic') else col for col in df.columns] def _bivariate_handler(df, x, y=None, w=None, inplace=True, pvalue='sim', outvals=None, **kwargs): """ Compute a descriptive bivariate statistic over two sets of columns, `x` and `y`, contained in `df`. Parameters ---------- df : pandas.DataFrame dataframe in which columns `x` and `y` are contained x : string or list of strings one or more column names to use as variates in the bivariate statistics y : string or list of strings one or more column names to use as variates in the bivariate statistics w : pysal.weights.W spatial weights object corresponding to the dataframe `df` inplace : bool a flag denoting whether to add the statistic to the dataframe in memory, or to construct a copy of the dataframe and append the results to the copy pvalue : string the name of the pvalue on the results object wanted outvals : list of strings names of attributes of the dataframe to attempt to flatten into a column swapname : string suffix to replace generic identifier with. Each caller of this function should set this to a unique column suffix **kwargs : optional keyword arguments options that are passed directly to the statistic """ real_swapname = kwargs.pop('swapname', '') if isinstance(y, str): y = [y] if isinstance(x, str): x = [x] if not inplace: new_df = df.copy() _bivariate_handler(new_df, x, y=y, w=w, inplace=True, swapname=real_swapname, pvalue=pvalue, outvals=outvals, **kwargs) return new_df if y is None: y = x for xi,yi in _it.product(x,y): if xi == yi: continue _univariate_handler(df, cols=xi, w=w, y=df[yi], inplace=True, pvalue=pvalue, outvals=outvals, swapname='', **kwargs) if real_swapname is not '': df.columns = [_swap_ending(col, real_swapname) if col.endswith('_statistic') else col for col in df.columns] def _swap_ending(s, ending, delim='_'): """ Replace the ending of a string, delimited into an arbitrary number of chunks by `delim`, with the ending provided Parameters ---------- s : string string to replace endings ending : string string used to replace ending of `s` delim : string string that splits s into one or more parts Returns ------- new string where the final chunk of `s`, delimited by `delim`, is replaced with `ending`. """ parts = [x for x in s.split(delim)[:-1] if x != ''] parts.append(ending) return delim.join(parts) ############## # DOCSTRINGS # ############## _univ_doc_template =\ """ Function to compute a {n} statistic on a dataframe Arguments --------- df : pandas.DataFrame a pandas dataframe with a geometry column cols : string or list of string name or list of names of columns to use to compute the statistic w : pysal weights object a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata inplace : bool a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named 'column_{nl}' pvalue : string a string denoting which pvalue should be returned. Refer to the the {n} statistic's documentation for available p-values outvals : list of strings list of arbitrary attributes to return as columns from the {n} statistic **stat_kws : keyword arguments options to pass to the underlying statistic. For this, see the documentation for the {n} statistic. Returns -------- If inplace, None, and operation is conducted on dataframe in memory. Otherwise, returns a copy of the dataframe with the relevant columns attached. See Also --------- For further documentation, refer to the {n} class in pysal.esda """ _bv_doc_template =\ """ Function to compute a {n} statistic on a dataframe Arguments --------- df : pandas.DataFrame a pandas dataframe with a geometry column X : list of strings column name or list of column names to use as X values to compute the bivariate statistic. If no Y is provided, pairwise comparisons among these variates are used instead. Y : list of strings column name or list of column names to use as Y values to compute the bivariate statistic. if no Y is provided, pariwise comparisons among the X variates are used instead. w : pysal weights object a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata inplace : bool a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named 'column_{nl}' pvalue : string a string denoting which pvalue should be returned. Refer to the the {n} statistic's documentation for available p-values outvals : list of strings list of arbitrary attributes to return as columns from the {n} statistic **stat_kws : keyword arguments options to pass to the underlying statistic. For this, see the documentation for the {n} statistic. Returns -------- If inplace, None, and operation is conducted on dataframe in memory. Otherwise, returns a copy of the dataframe with the relevant columns attached. See Also --------- For further documentation, refer to the {n} class in pysal.esda """ _rate_doc_template =\ """ Function to compute a {n} statistic on a dataframe Arguments --------- df : pandas.DataFrame a pandas dataframe with a geometry column events : string or list of strings one or more names where events are stored populations : string or list of strings one or more names where the populations corresponding to the events are stored. If one population column is provided, it is used for all event columns. If more than one population column is provided but there is not a population for every event column, an exception will be raised. w : pysal weights object a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata inplace : bool a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named 'column_{nl}' pvalue : string a string denoting which pvalue should be returned. Refer to the the {n} statistic's documentation for available p-values outvals : list of strings list of arbitrary attributes to return as columns from the {n} statistic **stat_kws : keyword arguments options to pass to the underlying statistic. For this, see the documentation for the {n} statistic. Returns -------- If inplace, None, and operation is conducted on dataframe in memory. Otherwise, returns a copy of the dataframe with the relevant columns attached. See Also --------- For further documentation, refer to the {n} class in pysal.esda """
bsd-3-clause
AIML/scikit-learn
sklearn/utils/tests/test_estimator_checks.py
202
3757
import scipy.sparse as sp import numpy as np import sys from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.testing import assert_raises_regex, assert_true from sklearn.utils.estimator_checks import check_estimator from sklearn.utils.estimator_checks import check_estimators_unfitted from sklearn.linear_model import LogisticRegression from sklearn.utils.validation import check_X_y, check_array class CorrectNotFittedError(ValueError): """Exception class to raise if estimator is used before fitting. Like NotFittedError, it inherits from ValueError, but not from AttributeError. Used for testing only. """ class BaseBadClassifier(BaseEstimator, ClassifierMixin): def fit(self, X, y): return self def predict(self, X): return np.ones(X.shape[0]) class NoCheckinPredict(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) return self class NoSparseClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y, accept_sparse=['csr', 'csc']) if sp.issparse(X): raise ValueError("Nonsensical Error") return self def predict(self, X): X = check_array(X) return np.ones(X.shape[0]) class CorrectNotFittedErrorClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) self.coef_ = np.ones(X.shape[1]) return self def predict(self, X): if not hasattr(self, 'coef_'): raise CorrectNotFittedError("estimator is not fitted yet") X = check_array(X) return np.ones(X.shape[0]) def test_check_estimator(): # tests that the estimator actually fails on "bad" estimators. # not a complete test of all checks, which are very extensive. # check that we have a set_params and can clone msg = "it does not implement a 'get_params' methods" assert_raises_regex(TypeError, msg, check_estimator, object) # check that we have a fit method msg = "object has no attribute 'fit'" assert_raises_regex(AttributeError, msg, check_estimator, BaseEstimator) # check that fit does input validation msg = "TypeError not raised by fit" assert_raises_regex(AssertionError, msg, check_estimator, BaseBadClassifier) # check that predict does input validation (doesn't accept dicts in input) msg = "Estimator doesn't check for NaN and inf in predict" assert_raises_regex(AssertionError, msg, check_estimator, NoCheckinPredict) # check for sparse matrix input handling msg = "Estimator type doesn't seem to fail gracefully on sparse data" # the check for sparse input handling prints to the stdout, # instead of raising an error, so as not to remove the original traceback. # that means we need to jump through some hoops to catch it. old_stdout = sys.stdout string_buffer = StringIO() sys.stdout = string_buffer try: check_estimator(NoSparseClassifier) except: pass finally: sys.stdout = old_stdout assert_true(msg in string_buffer.getvalue()) # doesn't error on actual estimator check_estimator(LogisticRegression) def test_check_estimators_unfitted(): # check that a ValueError/AttributeError is raised when calling predict # on an unfitted estimator msg = "AttributeError or ValueError not raised by predict" assert_raises_regex(AssertionError, msg, check_estimators_unfitted, "estimator", NoSparseClassifier) # check that CorrectNotFittedError inherit from either ValueError # or AttributeError check_estimators_unfitted("estimator", CorrectNotFittedErrorClassifier)
bsd-3-clause
HappyFaceGoettingen/HappyFaceCore
modules/CMSPhedexDataExtract.py
1
15003
# -*- coding: utf-8 -*- import hf, lxml, logging, datetime from sqlalchemy import * import json from string import strip import time class CMSPhedexDataExtract(hf.module.ModuleBase): config_keys = { 'link_direction': ("transfers 'from' or 'to' you", 'to'), 'time_range': ('set timerange in hours', '24'), 'base_url': ('use --no-check-certificate, end base url with starttime=', ''), 'report_base':("insert base url for reports don't forget fromfilter or tofilter with your name! finish your link with starttime=, the starttime is inserted by the module ",'https://cmsweb.cern.ch/phedex/prod/Activity::ErrorInfo?tofilter=T1_DE_KIT&starttime='), 'blacklist': ('ignore links from or to those sites, csv', ''), 'your_name': ('Name of your site', 'T1_DE_KIT_Buffer'), 'category': ('use prod or debug, its used to build links to the cern info sites','prod'), 'button_pic_path_in': ('path to your in-button picture', '/HappyFace/gridka/static/themes/armin_box_arrows/trans_in.png'), 'button_pic_path_out': ('path to your out-button picture', '/HappyFace/gridka/static/themes/armin_box_arrows/trans_out.png'), 'qualitiy_broken_value': ('a timebin with a qualitiy equal or less than this will be considered as broken', '0.4'), 't0_critical_failures': ('failure threshold for status critical', '10'), 't0_warning_failures': ('failure threshold for status warning', '10'), 't1_critical_failures': ('failure threshold for status critical', '15'), 't1_warning_failures': ('failure threshold for status warning', '10'), 't2_critical_failures': ('failure threshold for status critical', '15'), 't2_warning_failures': ('failure threshold for status warning', '10'), 't3_critical_failures': ('failure threshold for status critical', '15'), 't3_warning_failures': ('failure threshold for status warning', '10'), 't0_critical_quality': ('quality threshold for status critical', '0.5'), 't0_warning_quality': ('quality threshold for status warning', '0.6'), 't1_critical_quality': ('quality threshold for status critical', '0.5'), 't1_warning_quality': ('quality threshold for status warning', '0.6'), 't2_critical_quality': ('quality threshold for status critical', '0.3'), 't2_warning_quality': ('quality threshold for status warning', '0.5'), 't3_critical_quality': ('quality threshold for status critical', '0.3'), 't3_warning_quality': ('quality threshold for status warning', '0.5'), 't1_critical_ratio': ('ratio of (2*broken_links+warning_links)/all_links threshold', '0.5'), 't1_warning_ratio': ('ratio of (2*broken_links+warning_links)/all_links threshold', '0.3'), 't2_critical_ratio': ('ratio of (2*broken_links+warning_links)/all_links threshold', '0.4'), 't2_warning_ratio': ('ratio of (2*broken_links+warning_links)/all_links threshold', '0.3'), 't3_warning_ratio': ('ratio of (2*broken_links+warning_links)/all_links threshold', '0.3'), 't3_critical_ratio': ('ratio of (2*broken_links+warning_links)/all_links threshold', '0.5'), 'eval_time': ('links within the last eval_time hours will be considered valuable status evaluation', '3'), 't0_eval_amount': ('minimum amount of links to eval status for this link group', 0), 't1_eval_amount': ('minimum amount of links to eval status for this link group', 0), 't2_eval_amount': ('minimum amount of links to eval status for this link group', 5), 't3_eval_amount': ('minimum amount of links to eval status for this link group', 5) } config_hint = 'If you have problems downloading your source file, use: "source_url = both|--no-check-certificate|url"' table_columns = [ Column('direction', TEXT), Column('request_timestamp', INT), Column('time_range', INT), ], [] subtable_columns = { 'details': ([ Column('done_files', INT), Column('fail_files', INT), Column('timebin', INT), Column('rate', INT), Column('name', TEXT), Column('color', TEXT), Column('quality', FLOAT) ], []) } def prepareAcquisition(self): self.url = self.config['base_url'] self.link_direction = self.config['link_direction'] self.your_name = self.config['your_name'] self.eval_time = int(self.config['eval_time']) if self.link_direction == 'from': self.parse_direction = 'to' else: self.parse_direction = 'from' self.time_range = int(self.config['time_range']) try: self.blacklist = self.config['blacklist'] except AttributeError: self.blacklist = [] self.time = int(time.time())/3600*3600 self.url += str(self.time-self.time_range*3600) self.source = hf.downloadService.addDownload(self.url) self.details_db_value_list = [] self.category = self.config['category'] self.button_pic_in = self.config['button_pic_path_in'] self.button_pic_out = self.config['button_pic_path_out'] self.qualitiy_broken_value = float(self.config['qualitiy_broken_value']) self.critical_failures = {} self.warning_failures = {} self.critical_quality = {} self.warning_quality = {} self.critical_ratio = {} self.warning_ratio = {} self.eval_amount = {} for tier in ['t0', 't1', 't2', 't3']: self.critical_failures[tier] = int(self.config[tier + '_critical_failures']) self.warning_failures[tier] = int(self.config[tier + '_warning_failures']) self.critical_quality[tier] = float(self.config[tier + '_critical_quality']) self.warning_quality[tier] = float(self.config[tier + '_warning_quality']) self.eval_amount[tier] = int(self.config[tier + '_eval_amount']) if tier != 't0': self.critical_ratio[tier] = float(self.config[tier + '_critical_ratio']) self.warning_ratio[tier] = float(self.config[tier + '_warning_ratio']) def extractData(self): #due to portability reasons this colormap is hardcoded produce a new colormap with: color_map = map(lambda i: matplotlib.colors.rgb2hex(matplotlib.pyplot.get_cmap('RdYlGn')(float(i)/100)), range(101)) color_map = ['#a50026', '#a90426', '#af0926', '#b30d26', '#b91326', '#bd1726', '#c21c27', '#c62027', '#cc2627', '#d22b27', '#d62f27', '#da362a', '#dc3b2c', '#e0422f', '#e24731', '#e54e35', '#e75337', '#eb5a3a', '#ee613e', '#f16640', '#f46d43', '#f57245', '#f67a49', '#f67f4b', '#f8864f', '#f98e52', '#f99355', '#fa9b58', '#fba05b', '#fca85e', '#fdad60', '#fdb365', '#fdb768', '#fdbd6d', '#fdc372', '#fdc776', '#fecc7b', '#fed07e', '#fed683', '#feda86', '#fee08b', '#fee28f', '#fee695', '#feea9b', '#feec9f', '#fff0a6', '#fff2aa', '#fff6b0', '#fff8b4', '#fffcba', '#feffbe', '#fbfdba', '#f7fcb4',\ '#f4fab0', '#eff8aa', '#ecf7a6', '#e8f59f', '#e5f49b', '#e0f295', '#dcf08f', '#d9ef8b', '#d3ec87', '#cfeb85', '#c9e881', '#c5e67e', '#bfe47a', '#bbe278', '#b5df74', '#afdd70', '#abdb6d', '#a5d86a', '#a0d669', '#98d368', '#93d168', '#8ccd67', '#84ca66', '#7fc866', '#78c565', '#73c264', '#6bbf64', '#66bd63', '#5db961', '#57b65f', '#4eb15d', '#45ad5b', '#3faa59', '#36a657', '#30a356', '#279f53', '#219c52', '#199750', '#17934e', '#148e4b', '#118848', '#0f8446', '#0c7f43', '#0a7b41', '#07753e', '#05713c', '#026c39', '#006837'] data = {'direction' : self.link_direction, 'source_url' : self.source.getSourceUrl(), 'time_range' : self.time_range, 'request_timestamp' : self.time} x_line = self.time - self.eval_time * 3600 #data with a timestamp greater than this one will be used for status evaluation #store the last N qualities of the Tx links within those dictionaries, {TX_xxx : (q1,q2,q3...)} link_list = {} # link_list['t1']['t1_de_kit'] == [{time1}, {time2}, ] fobj = json.load(open(self.source.getTmpPath(), 'r'))['phedex']['link'] for links in fobj: if links[self.link_direction] == self.your_name and links[self.parse_direction] not in self.blacklist: link_name = links[self.parse_direction] tier = 't' + link_name[1] for transfer in links['transfer']: help_append = {} help_append['timebin'] = int(transfer['timebin']) help_append['done_files'] = done = int(transfer['done_files']) help_append['fail_files'] = fail = int(transfer['fail_files']) help_append['rate'] = int(transfer['rate']) help_append['name'] = link_name #quality = done_files/(done_files + fail_files), if else to catch ZeroDivisionError if done != 0: help_append['quality'] = float(done)/float(done + fail) help_append['color'] = color_map[int(help_append['quality']*100)] self.details_db_value_list.append(help_append) if help_append['timebin'] >= x_line: link_list.setdefault(tier, {}).setdefault(link_name, []).append(help_append) elif fail != 0: help_append['quality'] = 0.0 help_append['color'] = color_map[int(help_append['quality']*100)] self.details_db_value_list.append(help_append) if help_append['timebin'] >= x_line: link_list.setdefault(tier, {}).setdefault(link_name, []).append(help_append) # code for status evaluation TODO: find a way to evaluate trend, change of quality between two bins etc. data['status'] = 1.0 for tier,links in link_list.iteritems(): good_link = 0 bad_link = 0 warn_link = 0 for link_name, time_bins in links.iteritems(): try: done_files = 0 fail_files = 0 for single_bin in time_bins: done_files += int(single_bin['done_files']) fail_files += int(single_bin['fail_files']) if fail_files != 0 and (float(done_files) / (done_files + fail_files) <= self.critical_quality[tier] or fail_files >= self.critical_failures[tier]): bad_link += 1 elif fail_files != 0 and (float(done_files) / (done_files + fail_files) <= self.warning_quality[tier] or fail_files >= self.warning_failures[tier]): warn_link += 1 elif done_files != 0: good_link += 1 except IndexError: pass if tier == 't0' and bad_link > 0: #here you could use a config parameter data['status'] = 0.0 break elif tier != 't0': if ((2.0 * bad_link + warn_link) / (2.0 * bad_link + warn_link + good_link) >= self.critical_ratio[tier]) and self.eval_amount[tier] <= (bad_link + warn_link + good_link): data['status'] = 0.0 break elif ((2.0 * bad_link + warn_link) / (2.0 * bad_link + warn_link + good_link) >= self.warning_ratio[tier]) and self.eval_amount[tier] <= (bad_link + warn_link + good_link): data['status'] = 0.5 return data def fillSubtables(self, parent_id): self.subtables['details'].insert().execute([dict(parent_id=parent_id, **row) for row in self.details_db_value_list]) def getTemplateData(self): report_base = strip(self.config['report_base']) + '&' your_direction = strip(self.config['link_direction']) if your_direction == 'from': their_direction = 'tofilter=' your_direction = 'fromfilter=' else: their_direction = 'fromfilter=' your_direction = 'tofilter=' data = hf.module.ModuleBase.getTemplateData(self) details_list = self.subtables['details'].select().where(self.subtables['details'].c.parent_id==self.dataset['id']).order_by(self.subtables['details'].c.name.asc()).execute().fetchall() raw_data_list = [] #contains dicts {x,y,weight,fails,done,rate,time,color,link} where the weight determines the the color x0 = self.dataset['request_timestamp'] / 3600 * 3600 - self.dataset['time_range'] * 3600 #normalize the timestamps to the requested timerange y_value_map = {} # maps the name of a link to a y-value for values in details_list: if values['name'] not in y_value_map: #add a new entry if the link name is not in the value_map y_value_map[values['name']] = len(y_value_map) t_number = values['name'].split('_')[0].lower() marking_color = values['color'] if int(self.config['%s_critical_failures'%t_number]) <= int(values['fail_files']): marking_color = '#ff0000' elif int(self.config['%s_warning_failures'%t_number]) <= int(values['fail_files']): marking_color = '#af00af' help_dict = {'x':int(values['timebin']-x0)/3600, 'y':int(y_value_map[values['name']]), 'w':str('%.2f' %values['quality']), 'fails':int(values['fail_files']), 'done':int(values['done_files']), 'rate':str('%.3f' %(float(values['rate'])/1024/1024)), 'time':datetime.datetime.fromtimestamp(values['timebin']), 'color':values['color'], 'link':report_base + their_direction + values['name'], 'marking':marking_color} raw_data_list.append(help_dict) name_mapper = [] for i in range(len(y_value_map)): name_mapper.append('-') for key in y_value_map.iterkeys(): name_mapper[y_value_map[key]] = key for i,name in enumerate(name_mapper): name_mapper[i] = {'name':name, 'link':report_base + their_direction + name} data['link_list'] = raw_data_list data['titles'] = name_mapper data['height'] = len(y_value_map) * 15 + 100 data['width'] = int(660/(self.dataset['time_range']+1)) data['button_pic_in'] = self.config['button_pic_path_in'] data['button_pic_out'] = self.config['button_pic_path_out'] data['info_link_1'] = 'https://cmsweb.cern.ch/phedex/' + self.config['category'] + '/Activity::QualityPlots?graph=quality_all&entity=dest&src_filter=' data['info_link_2'] = 'https://cmsweb.cern.ch/phedex/' + self.config['category'] + '/Activity::QualityPlots?graph=quality_all&entity=src&dest_filter=' return data
apache-2.0
xhochy/arrow
python/pyarrow/tests/test_dataset.py
1
86386
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import contextlib import os import pathlib import pickle import textwrap import numpy as np import pytest import pyarrow as pa import pyarrow.csv import pyarrow.fs as fs from pyarrow.tests.util import change_cwd try: import pandas as pd except ImportError: pd = None try: import pyarrow.dataset as ds except ImportError: ds = None # Marks all of the tests in this module # Ignore these with pytest ... -m 'not dataset' pytestmark = pytest.mark.dataset def _generate_data(n): import datetime import itertools day = datetime.datetime(2000, 1, 1) interval = datetime.timedelta(days=5) colors = itertools.cycle(['green', 'blue', 'yellow', 'red', 'orange']) data = [] for i in range(n): data.append((day, i, float(i), next(colors))) day += interval return pd.DataFrame(data, columns=['date', 'index', 'value', 'color']) def _table_from_pandas(df): schema = pa.schema([ pa.field('date', pa.date32()), pa.field('index', pa.int64()), pa.field('value', pa.float64()), pa.field('color', pa.string()), ]) table = pa.Table.from_pandas(df, schema=schema, preserve_index=False) return table.replace_schema_metadata() def _filesystem_uri(path): # URIs on Windows must follow 'file:///C:...' or 'file:/C:...' patterns. if os.name == 'nt': uri = 'file:///{}'.format(path) else: uri = 'file://{}'.format(path) return uri @pytest.fixture @pytest.mark.parquet def mockfs(): import pyarrow.parquet as pq mockfs = fs._MockFileSystem() directories = [ 'subdir/1/xxx', 'subdir/2/yyy', ] for i, directory in enumerate(directories): path = '{}/file{}.parquet'.format(directory, i) mockfs.create_dir(directory) with mockfs.open_output_stream(path) as out: data = [ list(range(5)), list(map(float, range(5))), list(map(str, range(5))), [i] * 5 ] schema = pa.schema([ pa.field('i64', pa.int64()), pa.field('f64', pa.float64()), pa.field('str', pa.string()), pa.field('const', pa.int64()), ]) batch = pa.record_batch(data, schema=schema) table = pa.Table.from_batches([batch]) pq.write_table(table, out) return mockfs @pytest.fixture def open_logging_fs(monkeypatch): from pyarrow.fs import PyFileSystem, LocalFileSystem from .test_fs import ProxyHandler localfs = LocalFileSystem() def normalized(paths): return {localfs.normalize_path(str(p)) for p in paths} opened = set() def open_input_file(self, path): path = localfs.normalize_path(str(path)) opened.add(path) return self._fs.open_input_file(path) # patch proxyhandler to log calls to open_input_file monkeypatch.setattr(ProxyHandler, "open_input_file", open_input_file) fs = PyFileSystem(ProxyHandler(localfs)) @contextlib.contextmanager def assert_opens(expected_opened): opened.clear() try: yield finally: assert normalized(opened) == normalized(expected_opened) return fs, assert_opens @pytest.fixture(scope='module') def multisourcefs(request): request.config.pyarrow.requires('pandas') request.config.pyarrow.requires('parquet') import pyarrow.parquet as pq df = _generate_data(1000) mockfs = fs._MockFileSystem() # simply split the dataframe into three chunks to construct a data source # from each chunk into its own directory df_a, df_b, df_c, df_d = np.array_split(df, 4) # create a directory containing a flat sequence of parquet files without # any partitioning involved mockfs.create_dir('plain') for i, chunk in enumerate(np.array_split(df_a, 10)): path = 'plain/chunk-{}.parquet'.format(i) with mockfs.open_output_stream(path) as out: pq.write_table(_table_from_pandas(chunk), out) # create one with schema partitioning by weekday and color mockfs.create_dir('schema') for part, chunk in df_b.groupby([df_b.date.dt.dayofweek, df_b.color]): folder = 'schema/{}/{}'.format(*part) path = '{}/chunk.parquet'.format(folder) mockfs.create_dir(folder) with mockfs.open_output_stream(path) as out: pq.write_table(_table_from_pandas(chunk), out) # create one with hive partitioning by year and month mockfs.create_dir('hive') for part, chunk in df_c.groupby([df_c.date.dt.year, df_c.date.dt.month]): folder = 'hive/year={}/month={}'.format(*part) path = '{}/chunk.parquet'.format(folder) mockfs.create_dir(folder) with mockfs.open_output_stream(path) as out: pq.write_table(_table_from_pandas(chunk), out) # create one with hive partitioning by color mockfs.create_dir('hive_color') for part, chunk in df_d.groupby(["color"]): folder = 'hive_color/color={}'.format(*part) path = '{}/chunk.parquet'.format(folder) mockfs.create_dir(folder) with mockfs.open_output_stream(path) as out: pq.write_table(_table_from_pandas(chunk), out) return mockfs @pytest.fixture def dataset(mockfs): format = ds.ParquetFileFormat() selector = fs.FileSelector('subdir', recursive=True) options = ds.FileSystemFactoryOptions('subdir') options.partitioning = ds.DirectoryPartitioning( pa.schema([ pa.field('group', pa.int32()), pa.field('key', pa.string()) ]) ) factory = ds.FileSystemDatasetFactory(mockfs, selector, format, options) return factory.finish() def test_filesystem_dataset(mockfs): schema = pa.schema([ pa.field('const', pa.int64()) ]) file_format = ds.ParquetFileFormat() paths = ['subdir/1/xxx/file0.parquet', 'subdir/2/yyy/file1.parquet'] partitions = [ds.field('part') == x for x in range(1, 3)] fragments = [file_format.make_fragment(path, mockfs, part) for path, part in zip(paths, partitions)] root_partition = ds.field('level') == ds.scalar(1337) dataset_from_fragments = ds.FileSystemDataset( fragments, schema=schema, format=file_format, filesystem=mockfs, root_partition=root_partition, ) dataset_from_paths = ds.FileSystemDataset.from_paths( paths, schema=schema, format=file_format, filesystem=mockfs, partitions=partitions, root_partition=root_partition, ) for dataset in [dataset_from_fragments, dataset_from_paths]: assert isinstance(dataset, ds.FileSystemDataset) assert isinstance(dataset.format, ds.ParquetFileFormat) assert dataset.partition_expression.equals(root_partition) assert set(dataset.files) == set(paths) fragments = list(dataset.get_fragments()) for fragment, partition, path in zip(fragments, partitions, paths): assert fragment.partition_expression.equals(partition) assert fragment.path == path assert isinstance(fragment.format, ds.ParquetFileFormat) assert isinstance(fragment, ds.ParquetFileFragment) assert fragment.row_groups == [0] assert fragment.num_row_groups == 1 row_group_fragments = list(fragment.split_by_row_group()) assert fragment.num_row_groups == len(row_group_fragments) == 1 assert isinstance(row_group_fragments[0], ds.ParquetFileFragment) assert row_group_fragments[0].path == path assert row_group_fragments[0].row_groups == [0] assert row_group_fragments[0].num_row_groups == 1 fragments = list(dataset.get_fragments(filter=ds.field("const") == 0)) assert len(fragments) == 2 # the root_partition keyword has a default dataset = ds.FileSystemDataset( fragments, schema=schema, format=file_format, filesystem=mockfs ) assert dataset.partition_expression.equals(ds.scalar(True)) # from_paths partitions have defaults dataset = ds.FileSystemDataset.from_paths( paths, schema=schema, format=file_format, filesystem=mockfs ) assert dataset.partition_expression.equals(ds.scalar(True)) for fragment in dataset.get_fragments(): assert fragment.partition_expression.equals(ds.scalar(True)) # validation of required arguments with pytest.raises(TypeError, match="incorrect type"): ds.FileSystemDataset(fragments, file_format, schema) # validation of root_partition with pytest.raises(TypeError, match="incorrect type"): ds.FileSystemDataset(fragments, schema=schema, format=file_format, root_partition=1) # missing required argument in from_paths with pytest.raises(TypeError, match="incorrect type"): ds.FileSystemDataset.from_paths(fragments, format=file_format) def test_filesystem_dataset_no_filesystem_interaction(): # ARROW-8283 schema = pa.schema([ pa.field('f1', pa.int64()) ]) file_format = ds.IpcFileFormat() paths = ['nonexistingfile.arrow'] # creating the dataset itself doesn't raise dataset = ds.FileSystemDataset.from_paths( paths, schema=schema, format=file_format, filesystem=fs.LocalFileSystem(), ) # getting fragments also doesn't raise dataset.get_fragments() # scanning does raise with pytest.raises(FileNotFoundError): dataset.to_table() def test_dataset(dataset): assert isinstance(dataset, ds.Dataset) assert isinstance(dataset.schema, pa.Schema) # TODO(kszucs): test non-boolean Exprs for filter do raise expected_i64 = pa.array([0, 1, 2, 3, 4], type=pa.int64()) expected_f64 = pa.array([0, 1, 2, 3, 4], type=pa.float64()) for task in dataset.scan(): assert isinstance(task, ds.ScanTask) for batch in task.execute(): assert batch.column(0).equals(expected_i64) assert batch.column(1).equals(expected_f64) batches = dataset.to_batches() assert all(isinstance(batch, pa.RecordBatch) for batch in batches) table = dataset.to_table() assert isinstance(table, pa.Table) assert len(table) == 10 condition = ds.field('i64') == 1 result = dataset.to_table(use_threads=True, filter=condition).to_pydict() # don't rely on the scanning order assert result['i64'] == [1, 1] assert result['f64'] == [1., 1.] assert sorted(result['group']) == [1, 2] assert sorted(result['key']) == ['xxx', 'yyy'] def test_scanner(dataset): scanner = ds.Scanner.from_dataset(dataset, memory_pool=pa.default_memory_pool()) assert isinstance(scanner, ds.Scanner) assert len(list(scanner.scan())) == 2 with pytest.raises(pa.ArrowInvalid): ds.Scanner.from_dataset(dataset, columns=['unknown']) scanner = ds.Scanner.from_dataset(dataset, columns=['i64'], memory_pool=pa.default_memory_pool()) assert isinstance(scanner, ds.Scanner) assert len(list(scanner.scan())) == 2 for task in scanner.scan(): for batch in task.execute(): assert batch.num_columns == 1 def test_abstract_classes(): classes = [ ds.FileFormat, ds.Scanner, ds.Partitioning, ] for klass in classes: with pytest.raises(TypeError): klass() def test_partitioning(): schema = pa.schema([ pa.field('i64', pa.int64()), pa.field('f64', pa.float64()) ]) for klass in [ds.DirectoryPartitioning, ds.HivePartitioning]: partitioning = klass(schema) assert isinstance(partitioning, ds.Partitioning) partitioning = ds.DirectoryPartitioning( pa.schema([ pa.field('group', pa.int64()), pa.field('key', pa.float64()) ]) ) expr = partitioning.parse('/3/3.14') assert isinstance(expr, ds.Expression) expected = (ds.field('group') == 3) & (ds.field('key') == 3.14) assert expr.equals(expected) with pytest.raises(pa.ArrowInvalid): partitioning.parse('/prefix/3/aaa') partitioning = ds.HivePartitioning( pa.schema([ pa.field('alpha', pa.int64()), pa.field('beta', pa.int64()) ]) ) expr = partitioning.parse('/alpha=0/beta=3') expected = ( (ds.field('alpha') == ds.scalar(0)) & (ds.field('beta') == ds.scalar(3)) ) assert expr.equals(expected) for shouldfail in ['/alpha=one/beta=2', '/alpha=one', '/beta=two']: with pytest.raises(pa.ArrowInvalid): partitioning.parse(shouldfail) def test_expression_serialization(): a = ds.scalar(1) b = ds.scalar(1.1) c = ds.scalar(True) d = ds.scalar("string") e = ds.scalar(None) f = ds.scalar({'a': 1}) g = ds.scalar(pa.scalar(1)) condition = ds.field('i64') > 5 schema = pa.schema([ pa.field('i64', pa.int64()), pa.field('f64', pa.float64()) ]) assert condition.validate(schema) == pa.bool_() assert condition.assume(ds.field('i64') == 5).equals( ds.scalar(False)) assert condition.assume(ds.field('i64') == 7).equals( ds.scalar(True)) all_exprs = [a, b, c, d, e, f, g, a == b, a > b, a & b, a | b, ~c, d.is_valid(), a.cast(pa.int32(), safe=False), a.cast(pa.int32(), safe=False), a.isin([1, 2, 3]), ds.field('i64') > 5, ds.field('i64') == 5, ds.field('i64') == 7] for expr in all_exprs: assert isinstance(expr, ds.Expression) restored = pickle.loads(pickle.dumps(expr)) assert expr.equals(restored) def test_expression_construction(): zero = ds.scalar(0) one = ds.scalar(1) true = ds.scalar(True) false = ds.scalar(False) string = ds.scalar("string") field = ds.field("field") zero | one == string ~true == false for typ in ("bool", pa.bool_()): field.cast(typ) == true field.isin([1, 2]) with pytest.raises(TypeError): field.isin(1) with pytest.raises(pa.ArrowInvalid): field != {1} def test_partition_keys(): a, b, c = [ds.field(f) == f for f in 'abc'] assert ds._get_partition_keys(a) == {'a': 'a'} assert ds._get_partition_keys(a & b & c) == {f: f for f in 'abc'} nope = ds.field('d') >= 3 assert ds._get_partition_keys(nope) == {} assert ds._get_partition_keys(a & nope) == {'a': 'a'} def test_parquet_read_options(): opts1 = ds.ParquetReadOptions() opts2 = ds.ParquetReadOptions(buffer_size=4096, dictionary_columns=['a', 'b']) opts3 = ds.ParquetReadOptions(buffer_size=2**13, use_buffered_stream=True, dictionary_columns={'a', 'b'}) assert opts1.use_buffered_stream is False assert opts1.buffer_size == 2**13 assert opts1.dictionary_columns == set() assert opts2.use_buffered_stream is False assert opts2.buffer_size == 2**12 assert opts2.dictionary_columns == {'a', 'b'} assert opts3.use_buffered_stream is True assert opts3.buffer_size == 2**13 assert opts3.dictionary_columns == {'a', 'b'} assert opts1 == opts1 assert opts1 != opts2 assert opts2 != opts3 def test_file_format_pickling(): formats = [ ds.IpcFileFormat(), ds.CsvFileFormat(), ds.CsvFileFormat(pa.csv.ParseOptions(delimiter='\t', ignore_empty_lines=True)), ds.ParquetFileFormat(), ds.ParquetFileFormat( read_options=ds.ParquetReadOptions(use_buffered_stream=True) ), ds.ParquetFileFormat( read_options={ 'use_buffered_stream': True, 'buffer_size': 4096, } ) ] for file_format in formats: assert pickle.loads(pickle.dumps(file_format)) == file_format @pytest.mark.parametrize('paths_or_selector', [ fs.FileSelector('subdir', recursive=True), [ 'subdir/1/xxx/file0.parquet', 'subdir/2/yyy/file1.parquet', ] ]) def test_filesystem_factory(mockfs, paths_or_selector): format = ds.ParquetFileFormat( read_options=ds.ParquetReadOptions(dictionary_columns={"str"}) ) options = ds.FileSystemFactoryOptions('subdir') options.partitioning = ds.DirectoryPartitioning( pa.schema([ pa.field('group', pa.int32()), pa.field('key', pa.string()) ]) ) assert options.partition_base_dir == 'subdir' assert options.selector_ignore_prefixes == ['.', '_'] assert options.exclude_invalid_files is False factory = ds.FileSystemDatasetFactory( mockfs, paths_or_selector, format, options ) inspected_schema = factory.inspect() assert factory.inspect().equals(pa.schema([ pa.field('i64', pa.int64()), pa.field('f64', pa.float64()), pa.field('str', pa.dictionary(pa.int32(), pa.string())), pa.field('const', pa.int64()), pa.field('group', pa.int32()), pa.field('key', pa.string()), ]), check_metadata=False) assert isinstance(factory.inspect_schemas(), list) assert isinstance(factory.finish(inspected_schema), ds.FileSystemDataset) assert factory.root_partition.equals(ds.scalar(True)) dataset = factory.finish() assert isinstance(dataset, ds.FileSystemDataset) assert len(list(dataset.scan())) == 2 scanner = ds.Scanner.from_dataset(dataset) expected_i64 = pa.array([0, 1, 2, 3, 4], type=pa.int64()) expected_f64 = pa.array([0, 1, 2, 3, 4], type=pa.float64()) expected_str = pa.DictionaryArray.from_arrays( pa.array([0, 1, 2, 3, 4], type=pa.int32()), pa.array("0 1 2 3 4".split(), type=pa.string()) ) for task, group, key in zip(scanner.scan(), [1, 2], ['xxx', 'yyy']): expected_group = pa.array([group] * 5, type=pa.int32()) expected_key = pa.array([key] * 5, type=pa.string()) expected_const = pa.array([group - 1] * 5, type=pa.int64()) for batch in task.execute(): assert batch.num_columns == 6 assert batch[0].equals(expected_i64) assert batch[1].equals(expected_f64) assert batch[2].equals(expected_str) assert batch[3].equals(expected_const) assert batch[4].equals(expected_group) assert batch[5].equals(expected_key) table = dataset.to_table() assert isinstance(table, pa.Table) assert len(table) == 10 assert table.num_columns == 6 def test_make_fragment(multisourcefs): parquet_format = ds.ParquetFileFormat() dataset = ds.dataset('/plain', filesystem=multisourcefs, format=parquet_format) for path in dataset.files: fragment = parquet_format.make_fragment(path, multisourcefs) assert fragment.row_groups == [0] row_group_fragment = parquet_format.make_fragment(path, multisourcefs, row_groups=[0]) for f in [fragment, row_group_fragment]: assert isinstance(f, ds.ParquetFileFragment) assert f.path == path assert isinstance(f.filesystem, type(multisourcefs)) assert row_group_fragment.row_groups == [0] def test_make_csv_fragment_from_buffer(): content = textwrap.dedent(""" alpha,num,animal a,12,dog b,11,cat c,10,rabbit """) buffer = pa.py_buffer(content.encode('utf-8')) csv_format = ds.CsvFileFormat() fragment = csv_format.make_fragment(buffer) expected = pa.table([['a', 'b', 'c'], [12, 11, 10], ['dog', 'cat', 'rabbit']], names=['alpha', 'num', 'animal']) assert fragment.to_table().equals(expected) pickled = pickle.loads(pickle.dumps(fragment)) assert pickled.to_table().equals(fragment.to_table()) @pytest.mark.parquet def test_make_parquet_fragment_from_buffer(): import pyarrow.parquet as pq arrays = [ pa.array(['a', 'b', 'c']), pa.array([12, 11, 10]), pa.array(['dog', 'cat', 'rabbit']) ] dictionary_arrays = [ arrays[0].dictionary_encode(), arrays[1], arrays[2].dictionary_encode() ] dictionary_format = ds.ParquetFileFormat( read_options=ds.ParquetReadOptions( use_buffered_stream=True, buffer_size=4096, dictionary_columns=['alpha', 'animal'] ) ) cases = [ (arrays, ds.ParquetFileFormat()), (dictionary_arrays, dictionary_format) ] for arrays, format_ in cases: table = pa.table(arrays, names=['alpha', 'num', 'animal']) out = pa.BufferOutputStream() pq.write_table(table, out) buffer = out.getvalue() fragment = format_.make_fragment(buffer) assert fragment.to_table().equals(table) pickled = pickle.loads(pickle.dumps(fragment)) assert pickled.to_table().equals(table) def _create_dataset_for_fragments(tempdir, chunk_size=None, filesystem=None): import pyarrow.parquet as pq table = pa.table( [range(8), [1] * 8, ['a'] * 4 + ['b'] * 4], names=['f1', 'f2', 'part'] ) path = str(tempdir / "test_parquet_dataset") # write_to_dataset currently requires pandas pq.write_to_dataset(table, path, partition_cols=["part"], chunk_size=chunk_size) dataset = ds.dataset( path, format="parquet", partitioning="hive", filesystem=filesystem ) return table, dataset @pytest.mark.pandas @pytest.mark.parquet def test_fragments(tempdir): table, dataset = _create_dataset_for_fragments(tempdir) # list fragments fragments = list(dataset.get_fragments()) assert len(fragments) == 2 f = fragments[0] physical_names = ['f1', 'f2'] # file's schema does not include partition column assert f.physical_schema.names == physical_names assert f.format.inspect(f.path, f.filesystem) == f.physical_schema assert f.partition_expression.equals(ds.field('part') == 'a') # By default, the partition column is not part of the schema. result = f.to_table() assert result.column_names == physical_names assert result.equals(table.remove_column(2).slice(0, 4)) # scanning fragment includes partition columns when given the proper # schema. result = f.to_table(schema=dataset.schema) assert result.column_names == ['f1', 'f2', 'part'] assert result.equals(table.slice(0, 4)) assert f.physical_schema == result.schema.remove(2) # scanning fragments follow filter predicate result = f.to_table(schema=dataset.schema, filter=ds.field('f1') < 2) assert result.column_names == ['f1', 'f2', 'part'] @pytest.mark.pandas @pytest.mark.parquet def test_fragments_implicit_cast(tempdir): # ARROW-8693 import pyarrow.parquet as pq table = pa.table([range(8), [1] * 4 + [2] * 4], names=['col', 'part']) path = str(tempdir / "test_parquet_dataset") pq.write_to_dataset(table, path, partition_cols=["part"]) part = ds.partitioning(pa.schema([('part', 'int8')]), flavor="hive") dataset = ds.dataset(path, format="parquet", partitioning=part) fragments = dataset.get_fragments(filter=ds.field("part") >= 2) assert len(list(fragments)) == 1 @pytest.mark.pandas @pytest.mark.parquet def test_fragments_reconstruct(tempdir): table, dataset = _create_dataset_for_fragments(tempdir) def assert_yields_projected(fragment, row_slice, columns=None, filter=None): actual = fragment.to_table( schema=table.schema, columns=columns, filter=filter) column_names = columns if columns else table.column_names assert actual.column_names == column_names expected = table.slice(*row_slice).select(column_names) assert actual.equals(expected) fragment = list(dataset.get_fragments())[0] parquet_format = fragment.format # test pickle roundtrip pickled_fragment = pickle.loads(pickle.dumps(fragment)) assert pickled_fragment.to_table() == fragment.to_table() # manually re-construct a fragment, with explicit schema new_fragment = parquet_format.make_fragment( fragment.path, fragment.filesystem, partition_expression=fragment.partition_expression) assert new_fragment.to_table().equals(fragment.to_table()) assert_yields_projected(new_fragment, (0, 4)) # filter / column projection, inspected schema new_fragment = parquet_format.make_fragment( fragment.path, fragment.filesystem, partition_expression=fragment.partition_expression) assert_yields_projected(new_fragment, (0, 2), filter=ds.field('f1') < 2) # filter requiring cast / column projection, inspected schema new_fragment = parquet_format.make_fragment( fragment.path, fragment.filesystem, partition_expression=fragment.partition_expression) assert_yields_projected(new_fragment, (0, 2), columns=['f1'], filter=ds.field('f1') < 2.0) # filter on the partition column new_fragment = parquet_format.make_fragment( fragment.path, fragment.filesystem, partition_expression=fragment.partition_expression) assert_yields_projected(new_fragment, (0, 4), filter=ds.field('part') == 'a') # Fragments don't contain the partition's columns if not provided to the # `to_table(schema=...)` method. with pytest.raises(ValueError, match="Field named 'part' not found"): new_fragment = parquet_format.make_fragment( fragment.path, fragment.filesystem, partition_expression=fragment.partition_expression) new_fragment.to_table(filter=ds.field('part') == 'a') @pytest.mark.pandas @pytest.mark.parquet def test_fragments_parquet_row_groups(tempdir): table, dataset = _create_dataset_for_fragments(tempdir, chunk_size=2) fragment = list(dataset.get_fragments())[0] # list and scan row group fragments row_group_fragments = list(fragment.split_by_row_group()) assert len(row_group_fragments) == fragment.num_row_groups == 2 result = row_group_fragments[0].to_table(schema=dataset.schema) assert result.column_names == ['f1', 'f2', 'part'] assert len(result) == 2 assert result.equals(table.slice(0, 2)) assert row_group_fragments[0].row_groups is not None assert row_group_fragments[0].num_row_groups == 1 assert row_group_fragments[0].row_groups[0].statistics == { 'f1': {'min': 0, 'max': 1}, 'f2': {'min': 1, 'max': 1}, } fragment = list(dataset.get_fragments(filter=ds.field('f1') < 1))[0] row_group_fragments = list(fragment.split_by_row_group(ds.field('f1') < 1)) assert len(row_group_fragments) == 1 result = row_group_fragments[0].to_table(filter=ds.field('f1') < 1) assert len(result) == 1 @pytest.mark.parquet def test_fragments_parquet_num_row_groups(tempdir): import pyarrow.parquet as pq table = pa.table({'a': range(8)}) pq.write_table(table, tempdir / "test.parquet", row_group_size=2) dataset = ds.dataset(tempdir / "test.parquet", format="parquet") original_fragment = list(dataset.get_fragments())[0] # create fragment with subset of row groups fragment = original_fragment.format.make_fragment( original_fragment.path, original_fragment.filesystem, row_groups=[1, 3]) assert fragment.num_row_groups == 2 # ensure that parsing metadata preserves correct number of row groups fragment.ensure_complete_metadata() assert fragment.num_row_groups == 2 assert len(fragment.row_groups) == 2 @pytest.mark.pandas @pytest.mark.parquet def test_fragments_parquet_row_groups_dictionary(tempdir): import pandas as pd df = pd.DataFrame(dict(col1=['a', 'b'], col2=[1, 2])) df['col1'] = df['col1'].astype("category") import pyarrow.parquet as pq pq.write_table(pa.table(df), tempdir / "test_filter_dictionary.parquet") import pyarrow.dataset as ds dataset = ds.dataset(tempdir / 'test_filter_dictionary.parquet') result = dataset.to_table(filter=ds.field("col1") == "a") assert (df.iloc[0] == result.to_pandas()).all().all() @pytest.mark.pandas @pytest.mark.parquet def test_fragments_parquet_ensure_metadata(tempdir, open_logging_fs): fs, assert_opens = open_logging_fs _, dataset = _create_dataset_for_fragments( tempdir, chunk_size=2, filesystem=fs ) fragment = list(dataset.get_fragments())[0] # with default discovery, no metadata loaded with assert_opens([fragment.path]): fragment.ensure_complete_metadata() assert fragment.row_groups == [0, 1] # second time -> use cached / no file IO with assert_opens([]): fragment.ensure_complete_metadata() # recreate fragment with row group ids new_fragment = fragment.format.make_fragment( fragment.path, fragment.filesystem, row_groups=[0, 1] ) assert new_fragment.row_groups == fragment.row_groups # collect metadata new_fragment.ensure_complete_metadata() row_group = new_fragment.row_groups[0] assert row_group.id == 0 assert row_group.num_rows == 2 assert row_group.statistics is not None # pickling preserves row group ids pickled_fragment = pickle.loads(pickle.dumps(new_fragment)) with assert_opens([fragment.path]): assert pickled_fragment.row_groups == [0, 1] row_group = pickled_fragment.row_groups[0] assert row_group.id == 0 assert row_group.statistics is not None def _create_dataset_all_types(tempdir, chunk_size=None): import pyarrow.parquet as pq table = pa.table( [ pa.array([True, None, False], pa.bool_()), pa.array([1, 10, 42], pa.int8()), pa.array([1, 10, 42], pa.uint8()), pa.array([1, 10, 42], pa.int16()), pa.array([1, 10, 42], pa.uint16()), pa.array([1, 10, 42], pa.int32()), pa.array([1, 10, 42], pa.uint32()), pa.array([1, 10, 42], pa.int64()), pa.array([1, 10, 42], pa.uint64()), pa.array([1.0, 10.0, 42.0], pa.float32()), pa.array([1.0, 10.0, 42.0], pa.float64()), pa.array(['a', None, 'z'], pa.utf8()), pa.array(['a', None, 'z'], pa.binary()), pa.array([1, 10, 42], pa.timestamp('s')), pa.array([1, 10, 42], pa.timestamp('ms')), pa.array([1, 10, 42], pa.timestamp('us')), pa.array([1, 10, 42], pa.date32()), pa.array([1, 10, 4200000000], pa.date64()), pa.array([1, 10, 42], pa.time32('s')), pa.array([1, 10, 42], pa.time64('us')), ], names=[ 'boolean', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', 'uint64', 'float', 'double', 'utf8', 'binary', 'ts[s]', 'ts[ms]', 'ts[us]', 'date32', 'date64', 'time32', 'time64', ] ) path = str(tempdir / "test_parquet_dataset_all_types") # write_to_dataset currently requires pandas pq.write_to_dataset(table, path, chunk_size=chunk_size) return table, ds.dataset(path, format="parquet", partitioning="hive") @pytest.mark.pandas @pytest.mark.parquet def test_parquet_fragment_statistics(tempdir): table, dataset = _create_dataset_all_types(tempdir) fragment = list(dataset.get_fragments())[0] import datetime def dt_s(x): return datetime.datetime(1970, 1, 1, 0, 0, x) def dt_ms(x): return datetime.datetime(1970, 1, 1, 0, 0, 0, x*1000) def dt_us(x): return datetime.datetime(1970, 1, 1, 0, 0, 0, x) date = datetime.date time = datetime.time # list and scan row group fragments row_group_fragments = list(fragment.split_by_row_group()) assert row_group_fragments[0].row_groups is not None row_group = row_group_fragments[0].row_groups[0] assert row_group.num_rows == 3 assert row_group.total_byte_size > 1000 assert row_group.statistics == { 'boolean': {'min': False, 'max': True}, 'int8': {'min': 1, 'max': 42}, 'uint8': {'min': 1, 'max': 42}, 'int16': {'min': 1, 'max': 42}, 'uint16': {'min': 1, 'max': 42}, 'int32': {'min': 1, 'max': 42}, 'uint32': {'min': 1, 'max': 42}, 'int64': {'min': 1, 'max': 42}, 'uint64': {'min': 1, 'max': 42}, 'float': {'min': 1.0, 'max': 42.0}, 'double': {'min': 1.0, 'max': 42.0}, 'utf8': {'min': 'a', 'max': 'z'}, 'binary': {'min': b'a', 'max': b'z'}, 'ts[s]': {'min': dt_s(1), 'max': dt_s(42)}, 'ts[ms]': {'min': dt_ms(1), 'max': dt_ms(42)}, 'ts[us]': {'min': dt_us(1), 'max': dt_us(42)}, 'date32': {'min': date(1970, 1, 2), 'max': date(1970, 2, 12)}, 'date64': {'min': date(1970, 1, 1), 'max': date(1970, 2, 18)}, 'time32': {'min': time(0, 0, 1), 'max': time(0, 0, 42)}, 'time64': {'min': time(0, 0, 0, 1), 'max': time(0, 0, 0, 42)}, } @pytest.mark.parquet def test_parquet_fragment_statistics_nulls(tempdir): import pyarrow.parquet as pq table = pa.table({'a': [0, 1, None, None], 'b': ['a', 'b', None, None]}) pq.write_table(table, tempdir / "test.parquet", row_group_size=2) dataset = ds.dataset(tempdir / "test.parquet", format="parquet") fragments = list(dataset.get_fragments())[0].split_by_row_group() # second row group has all nulls -> no statistics assert fragments[1].row_groups[0].statistics == {} @pytest.mark.pandas @pytest.mark.parquet def test_fragments_parquet_row_groups_predicate(tempdir): table, dataset = _create_dataset_for_fragments(tempdir, chunk_size=2) fragment = list(dataset.get_fragments())[0] assert fragment.partition_expression.equals(ds.field('part') == 'a') # predicate may reference a partition field not present in the # physical_schema if an explicit schema is provided to split_by_row_group # filter matches partition_expression: all row groups row_group_fragments = list( fragment.split_by_row_group(filter=ds.field('part') == 'a', schema=dataset.schema)) assert len(row_group_fragments) == 2 # filter contradicts partition_expression: no row groups row_group_fragments = list( fragment.split_by_row_group(filter=ds.field('part') == 'b', schema=dataset.schema)) assert len(row_group_fragments) == 0 @pytest.mark.pandas @pytest.mark.parquet def test_fragments_parquet_row_groups_reconstruct(tempdir): table, dataset = _create_dataset_for_fragments(tempdir, chunk_size=2) fragment = list(dataset.get_fragments())[0] parquet_format = fragment.format row_group_fragments = list(fragment.split_by_row_group()) # test pickle roundtrip pickled_fragment = pickle.loads(pickle.dumps(fragment)) assert pickled_fragment.to_table() == fragment.to_table() # manually re-construct row group fragments new_fragment = parquet_format.make_fragment( fragment.path, fragment.filesystem, partition_expression=fragment.partition_expression, row_groups=[0]) result = new_fragment.to_table() assert result.equals(row_group_fragments[0].to_table()) # manually re-construct a row group fragment with filter/column projection new_fragment = parquet_format.make_fragment( fragment.path, fragment.filesystem, partition_expression=fragment.partition_expression, row_groups={1}) result = new_fragment.to_table(schema=table.schema, columns=['f1', 'part'], filter=ds.field('f1') < 3, ) assert result.column_names == ['f1', 'part'] assert len(result) == 1 # out of bounds row group index new_fragment = parquet_format.make_fragment( fragment.path, fragment.filesystem, partition_expression=fragment.partition_expression, row_groups={2}) with pytest.raises(IndexError, match="references row group 2"): new_fragment.to_table() @pytest.mark.pandas @pytest.mark.parquet def test_fragments_parquet_subset_ids(tempdir, open_logging_fs): fs, assert_opens = open_logging_fs table, dataset = _create_dataset_for_fragments(tempdir, chunk_size=1, filesystem=fs) fragment = list(dataset.get_fragments())[0] # select with row group ids subfrag = fragment.subset(row_group_ids=[0, 3]) with assert_opens([]): assert subfrag.num_row_groups == 2 assert subfrag.row_groups == [0, 3] assert subfrag.row_groups[0].statistics is not None # check correct scan result of subset result = subfrag.to_table() assert result.to_pydict() == {"f1": [0, 3], "f2": [1, 1]} # empty list of ids subfrag = fragment.subset(row_group_ids=[]) assert subfrag.num_row_groups == 0 assert subfrag.row_groups == [] result = subfrag.to_table(schema=dataset.schema) assert result.num_rows == 0 assert result.equals(table[:0]) @pytest.mark.pandas @pytest.mark.parquet def test_fragments_parquet_subset_filter(tempdir, open_logging_fs): fs, assert_opens = open_logging_fs table, dataset = _create_dataset_for_fragments(tempdir, chunk_size=1, filesystem=fs) fragment = list(dataset.get_fragments())[0] # select with filter subfrag = fragment.subset(ds.field("f1") >= 1) with assert_opens([]): assert subfrag.num_row_groups == 3 assert len(subfrag.row_groups) == 3 assert subfrag.row_groups[0].statistics is not None # check correct scan result of subset result = subfrag.to_table() assert result.to_pydict() == {"f1": [1, 2, 3], "f2": [1, 1, 1]} # filter that results in empty selection subfrag = fragment.subset(ds.field("f1") > 5) assert subfrag.num_row_groups == 0 assert subfrag.row_groups == [] result = subfrag.to_table(schema=dataset.schema) assert result.num_rows == 0 assert result.equals(table[:0]) # passing schema to ensure filter on partition expression works subfrag = fragment.subset(ds.field("part") == "a", schema=dataset.schema) assert subfrag.num_row_groups == 4 @pytest.mark.pandas @pytest.mark.parquet def test_fragments_parquet_subset_invalid(tempdir): _, dataset = _create_dataset_for_fragments(tempdir, chunk_size=1) fragment = list(dataset.get_fragments())[0] # passing none or both of filter / row_group_ids with pytest.raises(ValueError): fragment.subset(ds.field("f1") >= 1, row_group_ids=[1, 2]) with pytest.raises(ValueError): fragment.subset() def test_partitioning_factory(mockfs): paths_or_selector = fs.FileSelector('subdir', recursive=True) format = ds.ParquetFileFormat() options = ds.FileSystemFactoryOptions('subdir') partitioning_factory = ds.DirectoryPartitioning.discover(['group', 'key']) assert isinstance(partitioning_factory, ds.PartitioningFactory) options.partitioning_factory = partitioning_factory factory = ds.FileSystemDatasetFactory( mockfs, paths_or_selector, format, options ) inspected_schema = factory.inspect() # i64/f64 from data, group/key from "/1/xxx" and "/2/yyy" paths expected_schema = pa.schema([ ("i64", pa.int64()), ("f64", pa.float64()), ("str", pa.string()), ("const", pa.int64()), ("group", pa.int32()), ("key", pa.string()), ]) assert inspected_schema.equals(expected_schema) hive_partitioning_factory = ds.HivePartitioning.discover() assert isinstance(hive_partitioning_factory, ds.PartitioningFactory) @pytest.mark.parametrize('infer_dictionary', [False, True]) def test_partitioning_factory_dictionary(mockfs, infer_dictionary): paths_or_selector = fs.FileSelector('subdir', recursive=True) format = ds.ParquetFileFormat() options = ds.FileSystemFactoryOptions('subdir') options.partitioning_factory = ds.DirectoryPartitioning.discover( ['group', 'key'], infer_dictionary=infer_dictionary) factory = ds.FileSystemDatasetFactory( mockfs, paths_or_selector, format, options) inferred_schema = factory.inspect() if infer_dictionary: expected_type = pa.dictionary(pa.int32(), pa.string()) assert inferred_schema.field('key').type == expected_type table = factory.finish().to_table().combine_chunks() actual = table.column('key').chunk(0) expected = pa.array(['xxx'] * 5 + ['yyy'] * 5).dictionary_encode() assert actual.equals(expected) # ARROW-9345 ensure filtering on the partition field works table = factory.finish().to_table(filter=ds.field('key') == 'xxx') actual = table.column('key').chunk(0) expected = expected.slice(0, 5) assert actual.equals(expected) else: assert inferred_schema.field('key').type == pa.string() def test_partitioning_function(): schema = pa.schema([("year", pa.int16()), ("month", pa.int8())]) names = ["year", "month"] # default DirectoryPartitioning part = ds.partitioning(schema) assert isinstance(part, ds.DirectoryPartitioning) part = ds.partitioning(field_names=names) assert isinstance(part, ds.PartitioningFactory) # needs schema or list of names with pytest.raises(ValueError): ds.partitioning() with pytest.raises(ValueError, match="Expected list"): ds.partitioning(field_names=schema) with pytest.raises(ValueError, match="Cannot specify both"): ds.partitioning(schema, field_names=schema) # Hive partitioning part = ds.partitioning(schema, flavor="hive") assert isinstance(part, ds.HivePartitioning) part = ds.partitioning(flavor="hive") assert isinstance(part, ds.PartitioningFactory) # cannot pass list of names with pytest.raises(ValueError): ds.partitioning(names, flavor="hive") with pytest.raises(ValueError, match="Cannot specify 'field_names'"): ds.partitioning(field_names=names, flavor="hive") # unsupported flavor with pytest.raises(ValueError): ds.partitioning(schema, flavor="unsupported") def _create_single_file(base_dir, table=None, row_group_size=None): import pyarrow.parquet as pq if table is None: table = pa.table({'a': range(9), 'b': [0.] * 4 + [1.] * 5}) path = base_dir / "test.parquet" pq.write_table(table, path, row_group_size=row_group_size) return table, path def _create_directory_of_files(base_dir): import pyarrow.parquet as pq table1 = pa.table({'a': range(9), 'b': [0.] * 4 + [1.] * 5}) path1 = base_dir / "test1.parquet" pq.write_table(table1, path1) table2 = pa.table({'a': range(9, 18), 'b': [0.] * 4 + [1.] * 5}) path2 = base_dir / "test2.parquet" pq.write_table(table2, path2) return (table1, table2), (path1, path2) def _check_dataset(dataset, table): # also test that pickle roundtrip keeps the functionality for d in [dataset, pickle.loads(pickle.dumps(dataset))]: assert dataset.schema.equals(table.schema) assert dataset.to_table().equals(table) def _check_dataset_from_path(path, table, **kwargs): # pathlib object assert isinstance(path, pathlib.Path) # accept Path, str, List[Path], List[str] for p in [path, str(path), [path], [str(path)]]: dataset = ds.dataset(path, **kwargs) assert isinstance(dataset, ds.FileSystemDataset) _check_dataset(dataset, table) # relative string path with change_cwd(path.parent): dataset = ds.dataset(path.name, **kwargs) assert isinstance(dataset, ds.FileSystemDataset) _check_dataset(dataset, table) @pytest.mark.parquet def test_open_dataset_single_file(tempdir): table, path = _create_single_file(tempdir) _check_dataset_from_path(path, table) @pytest.mark.parquet def test_deterministic_row_order(tempdir): # ARROW-8447 Ensure that dataset.to_table (and Scanner::ToTable) returns a # deterministic row ordering. This is achieved by constructing a single # parquet file with one row per RowGroup. table, path = _create_single_file(tempdir, row_group_size=1) _check_dataset_from_path(path, table) @pytest.mark.parquet def test_open_dataset_directory(tempdir): tables, _ = _create_directory_of_files(tempdir) table = pa.concat_tables(tables) _check_dataset_from_path(tempdir, table) @pytest.mark.parquet def test_open_dataset_list_of_files(tempdir): tables, (path1, path2) = _create_directory_of_files(tempdir) table = pa.concat_tables(tables) datasets = [ ds.dataset([path1, path2]), ds.dataset([str(path1), str(path2)]) ] datasets += [ pickle.loads(pickle.dumps(d)) for d in datasets ] for dataset in datasets: assert dataset.schema.equals(table.schema) result = dataset.to_table() assert result.equals(table) def test_construct_from_single_file(tempdir): directory = tempdir / 'single-file' directory.mkdir() table, path = _create_single_file(directory) relative_path = path.relative_to(directory) # instantiate from a single file d1 = ds.dataset(path) # instantiate from a single file with a filesystem object d2 = ds.dataset(path, filesystem=fs.LocalFileSystem()) # instantiate from a single file with prefixed filesystem URI d3 = ds.dataset(relative_path, filesystem=_filesystem_uri(directory)) # pickle roundtrip d4 = pickle.loads(pickle.dumps(d1)) assert d1.to_table() == d2.to_table() == d3.to_table() == d4.to_table() def test_construct_from_single_directory(tempdir): directory = tempdir / 'single-directory' directory.mkdir() tables, paths = _create_directory_of_files(directory) d1 = ds.dataset(directory) d2 = ds.dataset(directory, filesystem=fs.LocalFileSystem()) d3 = ds.dataset(directory.name, filesystem=_filesystem_uri(tempdir)) t1 = d1.to_table() t2 = d2.to_table() t3 = d3.to_table() assert t1 == t2 == t3 # test pickle roundtrip for d in [d1, d2, d3]: restored = pickle.loads(pickle.dumps(d)) assert restored.to_table() == t1 def test_construct_from_list_of_files(tempdir): # instantiate from a list of files directory = tempdir / 'list-of-files' directory.mkdir() tables, paths = _create_directory_of_files(directory) relative_paths = [p.relative_to(tempdir) for p in paths] with change_cwd(tempdir): d1 = ds.dataset(relative_paths) t1 = d1.to_table() assert len(t1) == sum(map(len, tables)) d2 = ds.dataset(relative_paths, filesystem=_filesystem_uri(tempdir)) t2 = d2.to_table() d3 = ds.dataset(paths) t3 = d3.to_table() d4 = ds.dataset(paths, filesystem=fs.LocalFileSystem()) t4 = d4.to_table() assert t1 == t2 == t3 == t4 def test_construct_from_list_of_mixed_paths_fails(mockfs): # isntantiate from a list of mixed paths files = [ 'subdir/1/xxx/file0.parquet', 'subdir/1/xxx/doesnt-exist.parquet', ] with pytest.raises(FileNotFoundError, match='doesnt-exist'): ds.dataset(files, filesystem=mockfs) def test_construct_from_mixed_child_datasets(mockfs): # isntantiate from a list of mixed paths a = ds.dataset(['subdir/1/xxx/file0.parquet', 'subdir/2/yyy/file1.parquet'], filesystem=mockfs) b = ds.dataset('subdir', filesystem=mockfs) dataset = ds.dataset([a, b]) assert isinstance(dataset, ds.UnionDataset) assert len(list(dataset.get_fragments())) == 4 table = dataset.to_table() assert len(table) == 20 assert table.num_columns == 4 assert len(dataset.children) == 2 for child in dataset.children: assert child.files == ['subdir/1/xxx/file0.parquet', 'subdir/2/yyy/file1.parquet'] def test_construct_empty_dataset(): empty = ds.dataset([]) table = empty.to_table() assert table.num_rows == 0 assert table.num_columns == 0 empty = ds.dataset([], schema=pa.schema([ ('a', pa.int64()), ('a', pa.string()) ])) table = empty.to_table() assert table.num_rows == 0 assert table.num_columns == 2 def test_construct_from_invalid_sources_raise(multisourcefs): child1 = ds.FileSystemDatasetFactory( multisourcefs, fs.FileSelector('/plain'), format=ds.ParquetFileFormat() ) child2 = ds.FileSystemDatasetFactory( multisourcefs, fs.FileSelector('/schema'), format=ds.ParquetFileFormat() ) with pytest.raises(TypeError, match='Expected.*FileSystemDatasetFactory'): ds.dataset([child1, child2]) expected = ( "Expected a list of path-like or dataset objects. The given list " "contains the following types: int" ) with pytest.raises(TypeError, match=expected): ds.dataset([1, 2, 3]) expected = ( "Expected a path-like, list of path-likes or a list of Datasets " "instead of the given type: NoneType" ) with pytest.raises(TypeError, match=expected): ds.dataset(None) @pytest.mark.parquet def test_open_dataset_partitioned_directory(tempdir): import pyarrow.parquet as pq table = pa.table({'a': range(9), 'b': [0.] * 4 + [1.] * 5}) path = tempdir / "dataset" path.mkdir() for part in range(3): part = path / "part={}".format(part) part.mkdir() pq.write_table(table, part / "test.parquet") # no partitioning specified, just read all individual files full_table = pa.concat_tables([table] * 3) _check_dataset_from_path(path, full_table) # specify partition scheme with discovery dataset = ds.dataset( str(path), partitioning=ds.partitioning(flavor="hive")) expected_schema = table.schema.append(pa.field("part", pa.int32())) assert dataset.schema.equals(expected_schema) # specify partition scheme with discovery and relative path with change_cwd(tempdir): dataset = ds.dataset( "dataset/", partitioning=ds.partitioning(flavor="hive")) expected_schema = table.schema.append(pa.field("part", pa.int32())) assert dataset.schema.equals(expected_schema) # specify partition scheme with string short-cut dataset = ds.dataset(str(path), partitioning="hive") assert dataset.schema.equals(expected_schema) # specify partition scheme with explicit scheme dataset = ds.dataset( str(path), partitioning=ds.partitioning( pa.schema([("part", pa.int8())]), flavor="hive")) expected_schema = table.schema.append(pa.field("part", pa.int8())) assert dataset.schema.equals(expected_schema) result = dataset.to_table() expected = full_table.append_column( "part", pa.array(np.repeat([0, 1, 2], 9), type=pa.int8())) assert result.equals(expected) @pytest.mark.parquet def test_open_dataset_filesystem(tempdir): # single file table, path = _create_single_file(tempdir) # filesystem inferred from path dataset1 = ds.dataset(str(path)) assert dataset1.schema.equals(table.schema) # filesystem specified dataset2 = ds.dataset(str(path), filesystem=fs.LocalFileSystem()) assert dataset2.schema.equals(table.schema) # local filesystem specified with relative path with change_cwd(tempdir): dataset3 = ds.dataset("test.parquet", filesystem=fs.LocalFileSystem()) assert dataset3.schema.equals(table.schema) # passing different filesystem with pytest.raises(FileNotFoundError): ds.dataset(str(path), filesystem=fs._MockFileSystem()) @pytest.mark.parquet def test_open_dataset_unsupported_format(tempdir): _, path = _create_single_file(tempdir) with pytest.raises(ValueError, match="format 'blabla' is not supported"): ds.dataset([path], format="blabla") @pytest.mark.parquet def test_open_union_dataset(tempdir): _, path = _create_single_file(tempdir) dataset = ds.dataset(path) union = ds.dataset([dataset, dataset]) assert isinstance(union, ds.UnionDataset) pickled = pickle.loads(pickle.dumps(union)) assert pickled.to_table() == union.to_table() def test_open_union_dataset_with_additional_kwargs(multisourcefs): child = ds.dataset('/plain', filesystem=multisourcefs, format='parquet') with pytest.raises(ValueError, match="cannot pass any additional"): ds.dataset([child], format="parquet") def test_open_dataset_non_existing_file(): # ARROW-8213: Opening a dataset with a local incorrect path gives confusing # error message with pytest.raises(FileNotFoundError): ds.dataset('i-am-not-existing.parquet', format='parquet') with pytest.raises(pa.ArrowInvalid, match='cannot be relative'): ds.dataset('file:i-am-not-existing.parquet', format='parquet') @pytest.mark.parquet @pytest.mark.parametrize('partitioning', ["directory", "hive"]) @pytest.mark.parametrize('partition_keys', [ (["A", "B", "C"], [1, 2, 3]), ([1, 2, 3], ["A", "B", "C"]), (["A", "B", "C"], ["D", "E", "F"]), ([1, 2, 3], [4, 5, 6]), ]) def test_open_dataset_partitioned_dictionary_type(tempdir, partitioning, partition_keys): # ARROW-9288 / ARROW-9476 import pyarrow.parquet as pq table = pa.table({'a': range(9), 'b': [0.] * 4 + [1.] * 5}) if partitioning == "directory": partitioning = ds.DirectoryPartitioning.discover( ["part1", "part2"], infer_dictionary=True) fmt = "{0}/{1}" else: partitioning = ds.HivePartitioning.discover(infer_dictionary=True) fmt = "part1={0}/part2={1}" basepath = tempdir / "dataset" basepath.mkdir() part_keys1, part_keys2 = partition_keys for part1 in part_keys1: for part2 in part_keys2: path = basepath / fmt.format(part1, part2) path.mkdir(parents=True) pq.write_table(table, path / "test.parquet") dataset = ds.dataset(str(basepath), partitioning=partitioning) def dict_type(key): value_type = pa.string() if isinstance(key, str) else pa.int32() return pa.dictionary(pa.int32(), value_type) expected_schema = table.schema.append( pa.field("part1", dict_type(part_keys1[0])) ).append( pa.field("part2", dict_type(part_keys2[0])) ) assert dataset.schema.equals(expected_schema) @pytest.fixture def s3_example_simple(s3_connection, s3_server): from pyarrow.fs import FileSystem import pyarrow.parquet as pq host, port, access_key, secret_key = s3_connection uri = ( "s3://{}:{}@mybucket/data.parquet?scheme=http&endpoint_override={}:{}" .format(access_key, secret_key, host, port) ) fs, path = FileSystem.from_uri(uri) fs.create_dir("mybucket") table = pa.table({'a': [1, 2, 3]}) with fs.open_output_stream("mybucket/data.parquet") as out: pq.write_table(table, out) return table, path, fs, uri, host, port, access_key, secret_key @pytest.mark.parquet @pytest.mark.s3 def test_open_dataset_from_uri_s3(s3_example_simple): # open dataset from non-localfs string path table, path, fs, uri, _, _, _, _ = s3_example_simple # full string URI dataset = ds.dataset(uri, format="parquet") assert dataset.to_table().equals(table) # passing filesystem object dataset = ds.dataset(path, format="parquet", filesystem=fs) assert dataset.to_table().equals(table) @pytest.mark.parquet @pytest.mark.s3 # still needed to create the data def test_open_dataset_from_uri_s3_fsspec(s3_example_simple): table, path, _, _, host, port, access_key, secret_key = s3_example_simple s3fs = pytest.importorskip("s3fs") from pyarrow.fs import PyFileSystem, FSSpecHandler fs = s3fs.S3FileSystem( key=access_key, secret=secret_key, client_kwargs={ 'endpoint_url': 'http://{}:{}'.format(host, port) } ) # passing as fsspec filesystem dataset = ds.dataset(path, format="parquet", filesystem=fs) assert dataset.to_table().equals(table) # directly passing the fsspec-handler fs = PyFileSystem(FSSpecHandler(fs)) dataset = ds.dataset(path, format="parquet", filesystem=fs) assert dataset.to_table().equals(table) @pytest.mark.parquet @pytest.mark.s3 def test_open_dataset_from_s3_with_filesystem_uri(s3_connection, s3_server): from pyarrow.fs import FileSystem import pyarrow.parquet as pq host, port, access_key, secret_key = s3_connection bucket = 'theirbucket' path = 'nested/folder/data.parquet' uri = "s3://{}:{}@{}/{}?scheme=http&endpoint_override={}:{}".format( access_key, secret_key, bucket, path, host, port ) fs, path = FileSystem.from_uri(uri) assert path == 'theirbucket/nested/folder/data.parquet' fs.create_dir(bucket) table = pa.table({'a': [1, 2, 3]}) with fs.open_output_stream(path) as out: pq.write_table(table, out) # full string URI dataset = ds.dataset(uri, format="parquet") assert dataset.to_table().equals(table) # passing filesystem as an uri template = ( "s3://{}:{}@{{}}?scheme=http&endpoint_override={}:{}".format( access_key, secret_key, host, port ) ) cases = [ ('theirbucket/nested/folder/', '/data.parquet'), ('theirbucket/nested/folder', 'data.parquet'), ('theirbucket/nested/', 'folder/data.parquet'), ('theirbucket/nested', 'folder/data.parquet'), ('theirbucket', '/nested/folder/data.parquet'), ('theirbucket', 'nested/folder/data.parquet'), ] for prefix, path in cases: uri = template.format(prefix) dataset = ds.dataset(path, filesystem=uri, format="parquet") assert dataset.to_table().equals(table) with pytest.raises(pa.ArrowInvalid, match='Missing bucket name'): uri = template.format('/') ds.dataset('/theirbucket/nested/folder/data.parquet', filesystem=uri) error = ( "The path component of the filesystem URI must point to a directory " "but it has a type: `{}`. The path component is `{}` and the given " "filesystem URI is `{}`" ) path = 'theirbucket/doesnt/exist' uri = template.format(path) with pytest.raises(ValueError) as exc: ds.dataset('data.parquet', filesystem=uri) assert str(exc.value) == error.format('NotFound', path, uri) path = 'theirbucket/nested/folder/data.parquet' uri = template.format(path) with pytest.raises(ValueError) as exc: ds.dataset('data.parquet', filesystem=uri) assert str(exc.value) == error.format('File', path, uri) @pytest.mark.parquet def test_open_dataset_from_fsspec(tempdir): table, path = _create_single_file(tempdir) fsspec = pytest.importorskip("fsspec") localfs = fsspec.filesystem("file") dataset = ds.dataset(path, filesystem=localfs) assert dataset.schema.equals(table.schema) @pytest.mark.parquet def test_filter_implicit_cast(tempdir): # ARROW-7652 table = pa.table({'a': pa.array([0, 1, 2, 3, 4, 5], type=pa.int8())}) _, path = _create_single_file(tempdir, table) dataset = ds.dataset(str(path)) filter_ = ds.field('a') > 2 assert len(dataset.to_table(filter=filter_)) == 3 def test_dataset_union(multisourcefs): child = ds.FileSystemDatasetFactory( multisourcefs, fs.FileSelector('/plain'), format=ds.ParquetFileFormat() ) factory = ds.UnionDatasetFactory([child]) # TODO(bkietz) reintroduce factory.children property assert len(factory.inspect_schemas()) == 1 assert all(isinstance(s, pa.Schema) for s in factory.inspect_schemas()) assert factory.inspect_schemas()[0].equals(child.inspect()) assert factory.inspect().equals(child.inspect()) assert isinstance(factory.finish(), ds.Dataset) def test_union_dataset_from_other_datasets(tempdir, multisourcefs): child1 = ds.dataset('/plain', filesystem=multisourcefs, format='parquet') child2 = ds.dataset('/schema', filesystem=multisourcefs, format='parquet', partitioning=['week', 'color']) child3 = ds.dataset('/hive', filesystem=multisourcefs, format='parquet', partitioning='hive') assert child1.schema != child2.schema != child3.schema assembled = ds.dataset([child1, child2, child3]) assert isinstance(assembled, ds.UnionDataset) msg = 'cannot pass any additional arguments' with pytest.raises(ValueError, match=msg): ds.dataset([child1, child2], filesystem=multisourcefs) expected_schema = pa.schema([ ('date', pa.date32()), ('index', pa.int64()), ('value', pa.float64()), ('color', pa.string()), ('week', pa.int32()), ('year', pa.int32()), ('month', pa.int32()), ]) assert assembled.schema.equals(expected_schema) assert assembled.to_table().schema.equals(expected_schema) assembled = ds.dataset([child1, child3]) expected_schema = pa.schema([ ('date', pa.date32()), ('index', pa.int64()), ('value', pa.float64()), ('color', pa.string()), ('year', pa.int32()), ('month', pa.int32()), ]) assert assembled.schema.equals(expected_schema) assert assembled.to_table().schema.equals(expected_schema) expected_schema = pa.schema([ ('month', pa.int32()), ('color', pa.string()), ('date', pa.date32()), ]) assembled = ds.dataset([child1, child3], schema=expected_schema) assert assembled.to_table().schema.equals(expected_schema) expected_schema = pa.schema([ ('month', pa.int32()), ('color', pa.string()), ('unknown', pa.string()) # fill with nulls ]) assembled = ds.dataset([child1, child3], schema=expected_schema) assert assembled.to_table().schema.equals(expected_schema) # incompatible schemas, date and index columns have conflicting types table = pa.table([range(9), [0.] * 4 + [1.] * 5, 'abcdefghj'], names=['date', 'value', 'index']) _, path = _create_single_file(tempdir, table=table) child4 = ds.dataset(path) with pytest.raises(pa.ArrowInvalid, match='Unable to merge'): ds.dataset([child1, child4]) def test_dataset_from_a_list_of_local_directories_raises(multisourcefs): msg = 'points to a directory, but only file paths are supported' with pytest.raises(IsADirectoryError, match=msg): ds.dataset(['/plain', '/schema', '/hive'], filesystem=multisourcefs) def test_union_dataset_filesystem_datasets(multisourcefs): # without partitioning dataset = ds.dataset([ ds.dataset('/plain', filesystem=multisourcefs), ds.dataset('/schema', filesystem=multisourcefs), ds.dataset('/hive', filesystem=multisourcefs), ]) expected_schema = pa.schema([ ('date', pa.date32()), ('index', pa.int64()), ('value', pa.float64()), ('color', pa.string()), ]) assert dataset.schema.equals(expected_schema) # with hive partitioning for two hive sources dataset = ds.dataset([ ds.dataset('/plain', filesystem=multisourcefs), ds.dataset('/schema', filesystem=multisourcefs), ds.dataset('/hive', filesystem=multisourcefs, partitioning='hive') ]) expected_schema = pa.schema([ ('date', pa.date32()), ('index', pa.int64()), ('value', pa.float64()), ('color', pa.string()), ('year', pa.int32()), ('month', pa.int32()), ]) assert dataset.schema.equals(expected_schema) @pytest.mark.parquet def test_specified_schema(tempdir): import pyarrow.parquet as pq table = pa.table({'a': [1, 2, 3], 'b': [.1, .2, .3]}) pq.write_table(table, tempdir / "data.parquet") def _check_dataset(schema, expected, expected_schema=None): dataset = ds.dataset(str(tempdir / "data.parquet"), schema=schema) if expected_schema is not None: assert dataset.schema.equals(expected_schema) else: assert dataset.schema.equals(schema) result = dataset.to_table() assert result.equals(expected) # no schema specified schema = None expected = table _check_dataset(schema, expected, expected_schema=table.schema) # identical schema specified schema = table.schema expected = table _check_dataset(schema, expected) # Specifying schema with change column order schema = pa.schema([('b', 'float64'), ('a', 'int64')]) expected = pa.table([[.1, .2, .3], [1, 2, 3]], names=['b', 'a']) _check_dataset(schema, expected) # Specifying schema with missing column schema = pa.schema([('a', 'int64')]) expected = pa.table([[1, 2, 3]], names=['a']) _check_dataset(schema, expected) # Specifying schema with additional column schema = pa.schema([('a', 'int64'), ('c', 'int32')]) expected = pa.table([[1, 2, 3], pa.array([None, None, None], type='int32')], names=['a', 'c']) _check_dataset(schema, expected) # Specifying with incompatible schema schema = pa.schema([('a', 'int32'), ('b', 'float64')]) dataset = ds.dataset(str(tempdir / "data.parquet"), schema=schema) assert dataset.schema.equals(schema) with pytest.raises(TypeError): dataset.to_table() def test_ipc_format(tempdir): table = pa.table({'a': pa.array([1, 2, 3], type="int8"), 'b': pa.array([.1, .2, .3], type="float64")}) path = str(tempdir / 'test.arrow') with pa.output_stream(path) as sink: writer = pa.RecordBatchFileWriter(sink, table.schema) writer.write_batch(table.to_batches()[0]) writer.close() dataset = ds.dataset(path, format=ds.IpcFileFormat()) result = dataset.to_table() assert result.equals(table) for format_str in ["ipc", "arrow"]: dataset = ds.dataset(path, format=format_str) result = dataset.to_table() assert result.equals(table) @pytest.mark.pandas def test_csv_format(tempdir): table = pa.table({'a': pa.array([1, 2, 3], type="int64"), 'b': pa.array([.1, .2, .3], type="float64")}) path = str(tempdir / 'test.csv') table.to_pandas().to_csv(path, index=False) dataset = ds.dataset(path, format=ds.CsvFileFormat()) result = dataset.to_table() assert result.equals(table) dataset = ds.dataset(path, format='csv') result = dataset.to_table() assert result.equals(table) def test_feather_format(tempdir): from pyarrow.feather import write_feather table = pa.table({'a': pa.array([1, 2, 3], type="int8"), 'b': pa.array([.1, .2, .3], type="float64")}) basedir = tempdir / "feather_dataset" basedir.mkdir() write_feather(table, str(basedir / "data.feather")) dataset = ds.dataset(basedir, format=ds.IpcFileFormat()) result = dataset.to_table() assert result.equals(table) dataset = ds.dataset(basedir, format="feather") result = dataset.to_table() assert result.equals(table) # ARROW-8641 - column selection order result = dataset.to_table(columns=["b", "a"]) assert result.column_names == ["b", "a"] result = dataset.to_table(columns=["a", "a"]) assert result.column_names == ["a", "a"] # error with Feather v1 files write_feather(table, str(basedir / "data1.feather"), version=1) with pytest.raises(ValueError): ds.dataset(basedir, format="feather").to_table() def _create_parquet_dataset_simple(root_path): import pyarrow.parquet as pq metadata_collector = [] for i in range(4): table = pa.table({'f1': [i] * 10, 'f2': np.random.randn(10)}) pq.write_to_dataset( table, str(root_path), metadata_collector=metadata_collector ) metadata_path = str(root_path / '_metadata') # write _metadata file pq.write_metadata( table.schema, metadata_path, metadata_collector=metadata_collector ) return metadata_path, table @pytest.mark.parquet @pytest.mark.pandas # write_to_dataset currently requires pandas def test_parquet_dataset_factory(tempdir): root_path = tempdir / "test_parquet_dataset" metadata_path, table = _create_parquet_dataset_simple(root_path) dataset = ds.parquet_dataset(metadata_path) assert dataset.schema.equals(table.schema) assert len(dataset.files) == 4 result = dataset.to_table() assert result.num_rows == 40 @pytest.mark.parquet @pytest.mark.pandas def test_parquet_dataset_factory_invalid(tempdir): root_path = tempdir / "test_parquet_dataset_invalid" metadata_path, table = _create_parquet_dataset_simple(root_path) # remove one of the files list(root_path.glob("*.parquet"))[0].unlink() dataset = ds.parquet_dataset(metadata_path) assert dataset.schema.equals(table.schema) assert len(dataset.files) == 4 with pytest.raises(FileNotFoundError): dataset.to_table() def _create_metadata_file(root_path): # create _metadata file from existing parquet dataset import pyarrow.parquet as pq parquet_paths = list(sorted(root_path.rglob("*.parquet"))) schema = pq.ParquetFile(parquet_paths[0]).schema.to_arrow_schema() metadata_collector = [] for path in parquet_paths: metadata = pq.ParquetFile(path).metadata metadata.set_file_path(str(path.relative_to(root_path))) metadata_collector.append(metadata) metadata_path = root_path / "_metadata" pq.write_metadata( schema, metadata_path, metadata_collector=metadata_collector ) return metadata_path def _create_parquet_dataset_partitioned(root_path): import pyarrow.parquet as pq table = pa.table([ pa.array(range(20)), pa.array(np.random.randn(20)), pa.array(np.repeat(['a', 'b'], 10))], names=["f1", "f2", "part"] ) table = table.replace_schema_metadata({"key": "value"}) pq.write_to_dataset(table, str(root_path), partition_cols=['part']) return _create_metadata_file(root_path), table @pytest.mark.parquet @pytest.mark.pandas def test_parquet_dataset_factory_partitioned(tempdir): root_path = tempdir / "test_parquet_dataset_factory_partitioned" metadata_path, table = _create_parquet_dataset_partitioned(root_path) partitioning = ds.partitioning(flavor="hive") dataset = ds.parquet_dataset(metadata_path, partitioning=partitioning) assert dataset.schema.equals(table.schema) assert len(dataset.files) == 2 result = dataset.to_table() assert result.num_rows == 20 # the partitioned dataset does not preserve order result = result.to_pandas().sort_values("f1").reset_index(drop=True) expected = table.to_pandas() pd.testing.assert_frame_equal(result, expected) @pytest.mark.parquet @pytest.mark.pandas def test_parquet_dataset_factory_metadata(tempdir): # ensure ParquetDatasetFactory preserves metadata (ARROW-9363) root_path = tempdir / "test_parquet_dataset_factory_metadata" metadata_path, table = _create_parquet_dataset_partitioned(root_path) dataset = ds.parquet_dataset(metadata_path, partitioning="hive") assert dataset.schema.equals(table.schema) assert b"key" in dataset.schema.metadata fragments = list(dataset.get_fragments()) assert b"key" in fragments[0].physical_schema.metadata @pytest.mark.parquet @pytest.mark.pandas def test_parquet_dataset_lazy_filtering(tempdir, open_logging_fs): fs, assert_opens = open_logging_fs # Test to ensure that no IO happens when filtering a dataset # created with ParquetDatasetFactory from a _metadata file root_path = tempdir / "test_parquet_dataset_lazy_filtering" metadata_path, _ = _create_parquet_dataset_simple(root_path) # creating the dataset should only open the metadata file with assert_opens([metadata_path]): dataset = ds.parquet_dataset( metadata_path, partitioning=ds.partitioning(flavor="hive"), filesystem=fs) # materializing fragments should not open any file with assert_opens([]): fragments = list(dataset.get_fragments()) # filtering fragments should not open any file with assert_opens([]): list(dataset.get_fragments(ds.field("f1") > 15)) # splitting by row group should still not open any file with assert_opens([]): fragments[0].split_by_row_group(ds.field("f1") > 15) # ensuring metadata of splitted fragment should also not open any file with assert_opens([]): rg_fragments = fragments[0].split_by_row_group() rg_fragments[0].ensure_complete_metadata() # FIXME(bkietz) on Windows this results in FileNotFoundErrors. # but actually scanning does open files # with assert_opens([f.path for f in fragments]): # dataset.to_table() @pytest.mark.parquet @pytest.mark.pandas def test_dataset_schema_metadata(tempdir): # ARROW-8802 df = pd.DataFrame({'a': [1, 2, 3]}) path = tempdir / "test.parquet" df.to_parquet(path) dataset = ds.dataset(path) schema = dataset.to_table().schema projected_schema = dataset.to_table(columns=["a"]).schema # ensure the pandas metadata is included in the schema assert b"pandas" in schema.metadata # ensure it is still there in a projected schema (with column selection) assert schema.equals(projected_schema, check_metadata=True) @pytest.mark.parquet def test_filter_mismatching_schema(tempdir): # ARROW-9146 import pyarrow.parquet as pq table = pa.table({"col": pa.array([1, 2, 3, 4], type='int32')}) pq.write_table(table, str(tempdir / "data.parquet")) # specifying explicit schema, but that mismatches the schema of the data schema = pa.schema([("col", pa.int64())]) dataset = ds.dataset( tempdir / "data.parquet", format="parquet", schema=schema) # filtering on a column with such type mismatch should give a proper error with pytest.raises(TypeError): dataset.to_table(filter=ds.field("col") > 2) fragment = list(dataset.get_fragments())[0] with pytest.raises(TypeError): fragment.to_table(filter=ds.field("col") > 2, schema=schema) @pytest.mark.parquet @pytest.mark.pandas def test_dataset_project_only_partition_columns(tempdir): # ARROW-8729 import pyarrow.parquet as pq table = pa.table({'part': 'a a b b'.split(), 'col': list(range(4))}) path = str(tempdir / 'test_dataset') pq.write_to_dataset(table, path, partition_cols=['part']) dataset = ds.dataset(path, partitioning='hive') all_cols = dataset.to_table(use_threads=False) part_only = dataset.to_table(columns=['part'], use_threads=False) assert all_cols.column('part').equals(part_only.column('part')) @pytest.mark.parquet @pytest.mark.pandas def test_dataset_project_null_column(tempdir): import pandas as pd df = pd.DataFrame({"col": np.array([None, None, None], dtype='object')}) f = tempdir / "test_dataset_project_null_column.parquet" df.to_parquet(f, engine="pyarrow") dataset = ds.dataset(f, format="parquet", schema=pa.schema([("col", pa.int64())])) expected = pa.table({'col': pa.array([None, None, None], pa.int64())}) assert dataset.to_table().equals(expected) def _check_dataset_roundtrip(dataset, base_dir, expected_files, base_dir_path=None, partitioning=None): base_dir_path = base_dir_path or base_dir ds.write_dataset(dataset, base_dir, format="feather", partitioning=partitioning, use_threads=False) # check that all files are present file_paths = list(base_dir_path.rglob("*")) assert set(file_paths) == set(expected_files) # check that reading back in as dataset gives the same result dataset2 = ds.dataset( base_dir_path, format="feather", partitioning=partitioning) assert dataset2.to_table().equals(dataset.to_table()) @pytest.mark.parquet def test_write_dataset(tempdir): # manually create a written dataset and read as dataset object directory = tempdir / 'single-file' directory.mkdir() _ = _create_single_file(directory) dataset = ds.dataset(directory) # full string path target = tempdir / 'single-file-target' expected_files = [target / "part-0.feather"] _check_dataset_roundtrip(dataset, str(target), expected_files, target) # pathlib path object target = tempdir / 'single-file-target2' expected_files = [target / "part-0.feather"] _check_dataset_roundtrip(dataset, target, expected_files, target) # TODO # # relative path # target = tempdir / 'single-file-target3' # expected_files = [target / "part-0.ipc"] # _check_dataset_roundtrip( # dataset, './single-file-target3', expected_files, target) # Directory of files directory = tempdir / 'single-directory' directory.mkdir() _ = _create_directory_of_files(directory) dataset = ds.dataset(directory) target = tempdir / 'single-directory-target' expected_files = [target / "part-0.feather"] _check_dataset_roundtrip(dataset, str(target), expected_files, target) @pytest.mark.parquet @pytest.mark.pandas def test_write_dataset_partitioned(tempdir): directory = tempdir / "partitioned" _ = _create_parquet_dataset_partitioned(directory) partitioning = ds.partitioning(flavor="hive") dataset = ds.dataset(directory, partitioning=partitioning) # hive partitioning target = tempdir / 'partitioned-hive-target' expected_paths = [ target / "part=a", target / "part=a" / "part-0.feather", target / "part=b", target / "part=b" / "part-1.feather" ] partitioning_schema = ds.partitioning( pa.schema([("part", pa.string())]), flavor="hive") _check_dataset_roundtrip( dataset, str(target), expected_paths, target, partitioning=partitioning_schema) # directory partitioning target = tempdir / 'partitioned-dir-target' expected_paths = [ target / "a", target / "a" / "part-0.feather", target / "b", target / "b" / "part-1.feather" ] partitioning_schema = ds.partitioning( pa.schema([("part", pa.string())])) _check_dataset_roundtrip( dataset, str(target), expected_paths, target, partitioning=partitioning_schema) @pytest.mark.parquet @pytest.mark.pandas def test_write_dataset_use_threads(tempdir): directory = tempdir / "partitioned" _ = _create_parquet_dataset_partitioned(directory) dataset = ds.dataset(directory, partitioning="hive") partitioning = ds.partitioning( pa.schema([("part", pa.string())]), flavor="hive") target1 = tempdir / 'partitioned1' ds.write_dataset( dataset, target1, format="feather", partitioning=partitioning, use_threads=True ) target2 = tempdir / 'partitioned2' ds.write_dataset( dataset, target2, format="feather", partitioning=partitioning, use_threads=False ) # check that reading in gives same result result1 = ds.dataset(target1, format="feather", partitioning=partitioning) result2 = ds.dataset(target2, format="feather", partitioning=partitioning) assert result1.to_table().equals(result2.to_table()) def test_write_table(tempdir): table = pa.table([ pa.array(range(20)), pa.array(np.random.randn(20)), pa.array(np.repeat(['a', 'b'], 10)) ], names=["f1", "f2", "part"]) base_dir = tempdir / 'single' ds.write_dataset(table, base_dir, basename_template='dat_{i}.arrow', format="feather") # check that all files are present file_paths = list(base_dir.rglob("*")) expected_paths = [base_dir / "dat_0.arrow"] assert set(file_paths) == set(expected_paths) # check Table roundtrip result = ds.dataset(base_dir, format="ipc").to_table() assert result.equals(table) # with partitioning base_dir = tempdir / 'partitioned' partitioning = ds.partitioning( pa.schema([("part", pa.string())]), flavor="hive") ds.write_dataset(table, base_dir, format="feather", basename_template='dat_{i}.arrow', partitioning=partitioning) file_paths = list(base_dir.rglob("*")) expected_paths = [ base_dir / "part=a", base_dir / "part=a" / "dat_0.arrow", base_dir / "part=b", base_dir / "part=b" / "dat_1.arrow" ] assert set(file_paths) == set(expected_paths) result = ds.dataset(base_dir, format="ipc", partitioning=partitioning) assert result.to_table().equals(table) def test_write_table_multiple_fragments(tempdir): table = pa.table([ pa.array(range(10)), pa.array(np.random.randn(10)), pa.array(np.repeat(['a', 'b'], 5)) ], names=["f1", "f2", "part"]) table = pa.concat_tables([table]*2) # Table with multiple batches written as single Fragment by default base_dir = tempdir / 'single' ds.write_dataset(table, base_dir, format="feather") assert set(base_dir.rglob("*")) == set([base_dir / "part-0.feather"]) assert ds.dataset(base_dir, format="ipc").to_table().equals(table) # Same for single-element list of Table base_dir = tempdir / 'single-list' ds.write_dataset([table], base_dir, format="feather") assert set(base_dir.rglob("*")) == set([base_dir / "part-0.feather"]) assert ds.dataset(base_dir, format="ipc").to_table().equals(table) # Provide list of batches to write multiple fragments base_dir = tempdir / 'multiple' ds.write_dataset(table.to_batches(), base_dir, format="feather") assert set(base_dir.rglob("*")) == set( [base_dir / "part-0.feather"]) assert ds.dataset(base_dir, format="ipc").to_table().equals(table) # Provide list of tables to write multiple fragments base_dir = tempdir / 'multiple-table' ds.write_dataset([table, table], base_dir, format="feather") assert set(base_dir.rglob("*")) == set( [base_dir / "part-0.feather"]) assert ds.dataset(base_dir, format="ipc").to_table().equals( pa.concat_tables([table]*2) ) @pytest.mark.parquet def test_write_dataset_parquet(tempdir): import pyarrow.parquet as pq table = pa.table([ pa.array(range(20)), pa.array(np.random.randn(20)), pa.array(np.repeat(['a', 'b'], 10)) ], names=["f1", "f2", "part"]) # using default "parquet" format string base_dir = tempdir / 'parquet_dataset' ds.write_dataset(table, base_dir, format="parquet") # check that all files are present file_paths = list(base_dir.rglob("*")) expected_paths = [base_dir / "part-0.parquet"] assert set(file_paths) == set(expected_paths) # check Table roundtrip result = ds.dataset(base_dir, format="parquet").to_table() assert result.equals(table) # using custom options for version in ["1.0", "2.0"]: format = ds.ParquetFileFormat() opts = format.make_write_options(version=version) base_dir = tempdir / 'parquet_dataset_version{0}'.format(version) ds.write_dataset(table, base_dir, format=format, file_options=opts) meta = pq.read_metadata(base_dir / "part-0.parquet") assert meta.format_version == version @pytest.mark.parquet @pytest.mark.pandas def test_write_dataset_arrow_schema_metadata(tempdir): # ensure we serialize ARROW schema in the parquet metadata, to have a # correct roundtrip (e.g. preserve non-UTC timezone) import pyarrow.parquet as pq table = pa.table({"a": [pd.Timestamp("2012-01-01", tz="Europe/Brussels")]}) assert table["a"].type.tz == "Europe/Brussels" ds.write_dataset(table, tempdir, format="parquet") result = pq.read_table(tempdir / "part-0.parquet") assert result["a"].type.tz == "Europe/Brussels" def test_write_dataset_schema_metadata(tempdir): # ensure that schema metadata gets written from pyarrow import feather table = pa.table({'a': [1, 2, 3]}) table = table.replace_schema_metadata({b'key': b'value'}) ds.write_dataset(table, tempdir, format="feather") schema = feather.read_table(tempdir / "part-0.feather").schema assert schema.metadata == {b'key': b'value'} @pytest.mark.parquet def test_write_dataset_schema_metadata_parquet(tempdir): # ensure that schema metadata gets written import pyarrow.parquet as pq table = pa.table({'a': [1, 2, 3]}) table = table.replace_schema_metadata({b'key': b'value'}) ds.write_dataset(table, tempdir, format="parquet") schema = pq.read_table(tempdir / "part-0.parquet").schema assert schema.metadata == {b'key': b'value'}
apache-2.0
hugobowne/scikit-learn
examples/tree/plot_tree_regression.py
95
1516
""" =================================================================== Decision Tree Regression =================================================================== A 1D regression with decision tree. The :ref:`decision trees <tree>` is used to fit a sine curve with addition noisy observation. As a result, it learns local linear regressions approximating the sine curve. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) # Import the necessary modules and libraries import numpy as np from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt # Create a random dataset rng = np.random.RandomState(1) X = np.sort(5 * rng.rand(80, 1), axis=0) y = np.sin(X).ravel() y[::5] += 3 * (0.5 - rng.rand(16)) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_1.fit(X, y) regr_2.fit(X, y) # Predict X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) # Plot the results plt.figure() plt.scatter(X, y, c="darkorange", label="data") plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2) plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
rudhir-upretee/Sumo17_With_Netsim
tools/net/netstats.py
1
1983
#!/usr/bin/env python """ @file netstats.py @author Daniel Krajzewicz @author Michael Behrisch @date 2008-08-13 @version $Id: netstats.py 13811 2013-05-01 20:31:43Z behrisch $ Prints some information about a given network SUMO, Simulation of Urban MObility; see http://sumo.sourceforge.net/ Copyright (C) 2009-2013 DLR (http://www.dlr.de/) and contributors All rights reserved """ import os, string, sys, StringIO sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import sumolib.net def renderHTML(values): print "<html><body>" print "<h1>" + values["netname"] + "</h1></br>" # network print "<h2>Network</h2></br>" # edges print "<h2>Edges</h2></br>" print "Edge number: " + str(values["edgeNumber"]) + "</br>" print "Edgelength sum: " + str(values["edgeLengthSum"]) + "</br>" print "Lanelength sum: " + str(values["laneLengthSum"]) + "</br>" # nodes print "<h2>Nodes</h2></br>" print "Node number: " + str(values["nodeNumber"]) + "</br>" print "</body></html>" def renderPNG(values): from matplotlib import rcParams from pylab import * bar([0], [values["edgeNumber"]], 1, color='r') show() if len(sys.argv) < 2: print "Usage: " + sys.argv[0] + " <net>" sys.exit() print "Reading net..." net = sumolib.net.readNet(sys.argv[1]) values = {} values["netname"] = "hallo" values["edgesPerLaneNumber"] = {} values["edgeLengthSum"] = 0 values["laneLengthSum"] = 0 values["edgeNumber"] = len(net._edges) values["nodeNumber"] = len(net._nodes) for e in net._edges: values["edgeLengthSum"] = values["edgeLengthSum"] + e._length values["laneLengthSum"] = values["laneLengthSum"] + (e._length * float(len(e._lanes))) if len(e._lanes) not in values["edgesPerLaneNumber"]: values["edgesPerLaneNumber"][len(e._lanes)] = 0 values["edgesPerLaneNumber"][len(e._lanes)] = values["edgesPerLaneNumber"][len(e._lanes)] + 1 renderHTML(values) renderPNG(values)
gpl-3.0
grocsvs/grocsvs
src/grocsvs/utilities.py
1
6754
import collections import errno import h5py import os import numpy import pandas as pandas import pyfaidx import re import string import sys try: import cPickle as pickle except ImportError: import pickle assert pickle.HIGHEST_PROTOCOL >= 2, \ "A relatively recent version of pickle is required" class BinaryNotFoundError(Exception): pass def ensure_dir(directory): try: os.makedirs(directory) except OSError as err: if err.errno != errno.EEXIST: raise class cd: def __init__(self, newPath): self.newPath = newPath def __enter__(self): self.savedPath = os.getcwd() os.chdir(self.newPath) def __exit__(self, etype, value, traceback): os.chdir(self.savedPath) def check_memory(logger, min_memory=16): try: import psutil physical_mem_gb = psutil.virtual_memory().total / (1000.**3) if physical_mem_gb < min_memory: logger.log("WARNING: GROC-SVs typically requires ~16 GB of memory to run; " "you appear to have only {:.1f}GB".format(physical_mem_gb)) except: pass def which(program): import os def is_exe(fpath): return os.path.isfile(fpath) and os.access(fpath, os.X_OK) fpath, fname = os.path.split(program) if fpath: if is_exe(program): return program else: for path in os.environ["PATH"].split(os.pathsep): path = path.strip('"') exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file return None def natural_sort_key(s, _nsre=re.compile('([0-9]+)')): return [int(text) if text.isdigit() else text.lower() for text in re.split(_nsre, s)] def get_key(options_dict, key, type_=basestring, default="error", error_msg="configuration"): if default == "error" and key not in options_dict: print "CONFIG ERROR: {} key '{}' is missing".format(error_msg, key) sys.exit(1) value = options_dict.get(key, default) if type_ is not None and not isinstance(value, type_): print "CONFIG ERROR: {} key '{}' should be type '{}', not '{}'".format( error_msg, key, type_.__name__, type(value).__name__) sys.exit(1) return value comp = string.maketrans('ATCGatcg','TAGCtagc') def revcomp(seq): return seq[::-1].translate(comp) ############################################################################### ############################################################################### # based on hdf5.py from 10X Genomics LEVEL_GROUP = "_levels" def has_levels(ds): """ Determine if a data column is leveled """ if "levels" in ds.attrs.keys(): return True level_grp = ds.file.get(LEVEL_GROUP) if level_grp: ds_name = ds.name.split("/")[-1] level_ds = level_grp.get(ds_name) if level_ds: return True return False def get_levels(ds): """ Get the level index for a dataset """ if "levels" in ds.attrs.keys(): return ds.attrs["levels"][:] level_grp = ds.file.get(LEVEL_GROUP) if level_grp: ds_name = ds.name.split("/")[-1] level_ds = level_grp.get(ds_name) if level_ds: return level_ds[:] return None def get_column_intersection(column_names, columns): if len(columns) > 0: column_names = sorted(list(set(columns) & set(column_names))) if len(column_names) == 0: raise Exception("No valid column specifications.") return column_names def read_data_frame(fn, query_cols=[]): """ Load a pandas DataFrame from an HDF5 file. If a column list is specified, only load the matching columns """ with h5py.File(fn, "r") as f: column_names = f.attrs.get("column_names") column_names = get_column_intersection(column_names, query_cols) df = pandas.DataFrame() # Add the columns progressively to save memory for name in column_names: ds = f[name] if has_levels(ds): indices = ds[:] uniques = get_levels(ds) # This method of constructing of Categorical avoids copying the # indices array which saves memory for big datasets df[name] = pandas.Categorical(indices, categories=uniques, ordered=False, fastpath=True) else: df[name] = pandas.Series(ds[:]) return df ############################################################################### ############################################################################### def get_good_barcodes(fragments, proportion=0.90): """ return the top barcodes which together comprise 90% of reads """ read_counts = fragments.groupby("bc").sum()["num_reads"].copy() read_counts.sort_values(inplace=True, ascending=False) cutoff = proportion * read_counts.sum() cutoff = numpy.where(read_counts.cumsum() >= cutoff)[0][0] return sorted(read_counts.index[:cutoff]) def get_good_bc_count(step): sample_info = step.options.sample_info(step.sample.name) dataset_info = sample_info[step.dataset.id] good_bc_count = dataset_info["good_bc_count"] return good_bc_count def cpu_count_physical(): """ tries to get the number of physical (ie not virtual) cores """ try: import psutil return psutil.cpu_count(logical=False) except: import multiprocessing return multiprocessing.cpu_count() def frags_overlap_same_chrom(frags, start, end): """ get the fragments overlapping the interval [start, end], assuming all fragments in the input table are already on the correct chromosome """ f = frags.loc[((frags["start_pos"] < start) & (frags["end_pos"] > start)) | ((frags["start_pos"] < end) & (frags["end_pos"] > end))] return f ############################################################################### ############################################################################### def plot_matrix_as_image(mat, x1=None, y1=None, x2=None, y2=None, maxval=None, main="", xlab="", ylab=""): """ adds the image to the current plot if x1, x2, y1 and y2 are defined; otherwise, create a new image with the dimensions of the matrix """ from rpy2.robjects import r r.plot(numpy.array([0]), xlim=numpy.array([x1,x2]), ylim=numpy.array([y1,y2]), type="n", bty="n", main=main, xlab=xlab, ylab=ylab) if maxval is None: maxval = mat.max() r.rasterImage(r["as.raster"](mat, max=maxval), x1, y1, x2, y2)
mit
Nyker510/scikit-learn
sklearn/cluster/birch.py
207
22706
# Authors: Manoj Kumar <[email protected]> # Alexandre Gramfort <[email protected]> # Joel Nothman <[email protected]> # License: BSD 3 clause from __future__ import division import warnings import numpy as np from scipy import sparse from math import sqrt from ..metrics.pairwise import euclidean_distances from ..base import TransformerMixin, ClusterMixin, BaseEstimator from ..externals.six.moves import xrange from ..utils import check_array from ..utils.extmath import row_norms, safe_sparse_dot from ..utils.validation import NotFittedError, check_is_fitted from .hierarchical import AgglomerativeClustering def _iterate_sparse_X(X): """This little hack returns a densified row when iterating over a sparse matrix, insted of constructing a sparse matrix for every row that is expensive. """ n_samples = X.shape[0] X_indices = X.indices X_data = X.data X_indptr = X.indptr for i in xrange(n_samples): row = np.zeros(X.shape[1]) startptr, endptr = X_indptr[i], X_indptr[i + 1] nonzero_indices = X_indices[startptr:endptr] row[nonzero_indices] = X_data[startptr:endptr] yield row def _split_node(node, threshold, branching_factor): """The node has to be split if there is no place for a new subcluster in the node. 1. Two empty nodes and two empty subclusters are initialized. 2. The pair of distant subclusters are found. 3. The properties of the empty subclusters and nodes are updated according to the nearest distance between the subclusters to the pair of distant subclusters. 4. The two nodes are set as children to the two subclusters. """ new_subcluster1 = _CFSubcluster() new_subcluster2 = _CFSubcluster() new_node1 = _CFNode( threshold, branching_factor, is_leaf=node.is_leaf, n_features=node.n_features) new_node2 = _CFNode( threshold, branching_factor, is_leaf=node.is_leaf, n_features=node.n_features) new_subcluster1.child_ = new_node1 new_subcluster2.child_ = new_node2 if node.is_leaf: if node.prev_leaf_ is not None: node.prev_leaf_.next_leaf_ = new_node1 new_node1.prev_leaf_ = node.prev_leaf_ new_node1.next_leaf_ = new_node2 new_node2.prev_leaf_ = new_node1 new_node2.next_leaf_ = node.next_leaf_ if node.next_leaf_ is not None: node.next_leaf_.prev_leaf_ = new_node2 dist = euclidean_distances( node.centroids_, Y_norm_squared=node.squared_norm_, squared=True) n_clusters = dist.shape[0] farthest_idx = np.unravel_index( dist.argmax(), (n_clusters, n_clusters)) node1_dist, node2_dist = dist[[farthest_idx]] node1_closer = node1_dist < node2_dist for idx, subcluster in enumerate(node.subclusters_): if node1_closer[idx]: new_node1.append_subcluster(subcluster) new_subcluster1.update(subcluster) else: new_node2.append_subcluster(subcluster) new_subcluster2.update(subcluster) return new_subcluster1, new_subcluster2 class _CFNode(object): """Each node in a CFTree is called a CFNode. The CFNode can have a maximum of branching_factor number of CFSubclusters. Parameters ---------- threshold : float Threshold needed for a new subcluster to enter a CFSubcluster. branching_factor : int Maximum number of CF subclusters in each node. is_leaf : bool We need to know if the CFNode is a leaf or not, in order to retrieve the final subclusters. n_features : int The number of features. Attributes ---------- subclusters_ : array-like list of subclusters for a particular CFNode. prev_leaf_ : _CFNode prev_leaf. Useful only if is_leaf is True. next_leaf_ : _CFNode next_leaf. Useful only if is_leaf is True. the final subclusters. init_centroids_ : ndarray, shape (branching_factor + 1, n_features) manipulate ``init_centroids_`` throughout rather than centroids_ since the centroids are just a view of the ``init_centroids_`` . init_sq_norm_ : ndarray, shape (branching_factor + 1,) manipulate init_sq_norm_ throughout. similar to ``init_centroids_``. centroids_ : ndarray view of ``init_centroids_``. squared_norm_ : ndarray view of ``init_sq_norm_``. """ def __init__(self, threshold, branching_factor, is_leaf, n_features): self.threshold = threshold self.branching_factor = branching_factor self.is_leaf = is_leaf self.n_features = n_features # The list of subclusters, centroids and squared norms # to manipulate throughout. self.subclusters_ = [] self.init_centroids_ = np.zeros((branching_factor + 1, n_features)) self.init_sq_norm_ = np.zeros((branching_factor + 1)) self.squared_norm_ = [] self.prev_leaf_ = None self.next_leaf_ = None def append_subcluster(self, subcluster): n_samples = len(self.subclusters_) self.subclusters_.append(subcluster) self.init_centroids_[n_samples] = subcluster.centroid_ self.init_sq_norm_[n_samples] = subcluster.sq_norm_ # Keep centroids and squared norm as views. In this way # if we change init_centroids and init_sq_norm_, it is # sufficient, self.centroids_ = self.init_centroids_[:n_samples + 1, :] self.squared_norm_ = self.init_sq_norm_[:n_samples + 1] def update_split_subclusters(self, subcluster, new_subcluster1, new_subcluster2): """Remove a subcluster from a node and update it with the split subclusters. """ ind = self.subclusters_.index(subcluster) self.subclusters_[ind] = new_subcluster1 self.init_centroids_[ind] = new_subcluster1.centroid_ self.init_sq_norm_[ind] = new_subcluster1.sq_norm_ self.append_subcluster(new_subcluster2) def insert_cf_subcluster(self, subcluster): """Insert a new subcluster into the node.""" if not self.subclusters_: self.append_subcluster(subcluster) return False threshold = self.threshold branching_factor = self.branching_factor # We need to find the closest subcluster among all the # subclusters so that we can insert our new subcluster. dist_matrix = np.dot(self.centroids_, subcluster.centroid_) dist_matrix *= -2. dist_matrix += self.squared_norm_ closest_index = np.argmin(dist_matrix) closest_subcluster = self.subclusters_[closest_index] # If the subcluster has a child, we need a recursive strategy. if closest_subcluster.child_ is not None: split_child = closest_subcluster.child_.insert_cf_subcluster( subcluster) if not split_child: # If it is determined that the child need not be split, we # can just update the closest_subcluster closest_subcluster.update(subcluster) self.init_centroids_[closest_index] = \ self.subclusters_[closest_index].centroid_ self.init_sq_norm_[closest_index] = \ self.subclusters_[closest_index].sq_norm_ return False # things not too good. we need to redistribute the subclusters in # our child node, and add a new subcluster in the parent # subcluster to accomodate the new child. else: new_subcluster1, new_subcluster2 = _split_node( closest_subcluster.child_, threshold, branching_factor) self.update_split_subclusters( closest_subcluster, new_subcluster1, new_subcluster2) if len(self.subclusters_) > self.branching_factor: return True return False # good to go! else: merged = closest_subcluster.merge_subcluster( subcluster, self.threshold) if merged: self.init_centroids_[closest_index] = \ closest_subcluster.centroid_ self.init_sq_norm_[closest_index] = \ closest_subcluster.sq_norm_ return False # not close to any other subclusters, and we still # have space, so add. elif len(self.subclusters_) < self.branching_factor: self.append_subcluster(subcluster) return False # We do not have enough space nor is it closer to an # other subcluster. We need to split. else: self.append_subcluster(subcluster) return True class _CFSubcluster(object): """Each subcluster in a CFNode is called a CFSubcluster. A CFSubcluster can have a CFNode has its child. Parameters ---------- linear_sum : ndarray, shape (n_features,), optional Sample. This is kept optional to allow initialization of empty subclusters. Attributes ---------- n_samples_ : int Number of samples that belong to each subcluster. linear_sum_ : ndarray Linear sum of all the samples in a subcluster. Prevents holding all sample data in memory. squared_sum_ : float Sum of the squared l2 norms of all samples belonging to a subcluster. centroid_ : ndarray Centroid of the subcluster. Prevent recomputing of centroids when ``CFNode.centroids_`` is called. child_ : _CFNode Child Node of the subcluster. Once a given _CFNode is set as the child of the _CFNode, it is set to ``self.child_``. sq_norm_ : ndarray Squared norm of the subcluster. Used to prevent recomputing when pairwise minimum distances are computed. """ def __init__(self, linear_sum=None): if linear_sum is None: self.n_samples_ = 0 self.squared_sum_ = 0.0 self.linear_sum_ = 0 else: self.n_samples_ = 1 self.centroid_ = self.linear_sum_ = linear_sum self.squared_sum_ = self.sq_norm_ = np.dot( self.linear_sum_, self.linear_sum_) self.child_ = None def update(self, subcluster): self.n_samples_ += subcluster.n_samples_ self.linear_sum_ += subcluster.linear_sum_ self.squared_sum_ += subcluster.squared_sum_ self.centroid_ = self.linear_sum_ / self.n_samples_ self.sq_norm_ = np.dot(self.centroid_, self.centroid_) def merge_subcluster(self, nominee_cluster, threshold): """Check if a cluster is worthy enough to be merged. If yes then merge. """ new_ss = self.squared_sum_ + nominee_cluster.squared_sum_ new_ls = self.linear_sum_ + nominee_cluster.linear_sum_ new_n = self.n_samples_ + nominee_cluster.n_samples_ new_centroid = (1 / new_n) * new_ls new_norm = np.dot(new_centroid, new_centroid) dot_product = (-2 * new_n) * new_norm sq_radius = (new_ss + dot_product) / new_n + new_norm if sq_radius <= threshold ** 2: (self.n_samples_, self.linear_sum_, self.squared_sum_, self.centroid_, self.sq_norm_) = \ new_n, new_ls, new_ss, new_centroid, new_norm return True return False @property def radius(self): """Return radius of the subcluster""" dot_product = -2 * np.dot(self.linear_sum_, self.centroid_) return sqrt( ((self.squared_sum_ + dot_product) / self.n_samples_) + self.sq_norm_) class Birch(BaseEstimator, TransformerMixin, ClusterMixin): """Implements the Birch clustering algorithm. Every new sample is inserted into the root of the Clustering Feature Tree. It is then clubbed together with the subcluster that has the centroid closest to the new sample. This is done recursively till it ends up at the subcluster of the leaf of the tree has the closest centroid. Read more in the :ref:`User Guide <birch>`. Parameters ---------- threshold : float, default 0.5 The radius of the subcluster obtained by merging a new sample and the closest subcluster should be lesser than the threshold. Otherwise a new subcluster is started. branching_factor : int, default 50 Maximum number of CF subclusters in each node. If a new samples enters such that the number of subclusters exceed the branching_factor then the node has to be split. The corresponding parent also has to be split and if the number of subclusters in the parent is greater than the branching factor, then it has to be split recursively. n_clusters : int, instance of sklearn.cluster model, default None Number of clusters after the final clustering step, which treats the subclusters from the leaves as new samples. By default, this final clustering step is not performed and the subclusters are returned as they are. If a model is provided, the model is fit treating the subclusters as new samples and the initial data is mapped to the label of the closest subcluster. If an int is provided, the model fit is AgglomerativeClustering with n_clusters set to the int. compute_labels : bool, default True Whether or not to compute labels for each fit. copy : bool, default True Whether or not to make a copy of the given data. If set to False, the initial data will be overwritten. Attributes ---------- root_ : _CFNode Root of the CFTree. dummy_leaf_ : _CFNode Start pointer to all the leaves. subcluster_centers_ : ndarray, Centroids of all subclusters read directly from the leaves. subcluster_labels_ : ndarray, Labels assigned to the centroids of the subclusters after they are clustered globally. labels_ : ndarray, shape (n_samples,) Array of labels assigned to the input data. if partial_fit is used instead of fit, they are assigned to the last batch of data. Examples -------- >>> from sklearn.cluster import Birch >>> X = [[0, 1], [0.3, 1], [-0.3, 1], [0, -1], [0.3, -1], [-0.3, -1]] >>> brc = Birch(branching_factor=50, n_clusters=None, threshold=0.5, ... compute_labels=True) >>> brc.fit(X) Birch(branching_factor=50, compute_labels=True, copy=True, n_clusters=None, threshold=0.5) >>> brc.predict(X) array([0, 0, 0, 1, 1, 1]) References ---------- * Tian Zhang, Raghu Ramakrishnan, Maron Livny BIRCH: An efficient data clustering method for large databases. http://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf * Roberto Perdisci JBirch - Java implementation of BIRCH clustering algorithm https://code.google.com/p/jbirch/ """ def __init__(self, threshold=0.5, branching_factor=50, n_clusters=3, compute_labels=True, copy=True): self.threshold = threshold self.branching_factor = branching_factor self.n_clusters = n_clusters self.compute_labels = compute_labels self.copy = copy def fit(self, X, y=None): """ Build a CF Tree for the input data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. """ self.fit_, self.partial_fit_ = True, False return self._fit(X) def _fit(self, X): X = check_array(X, accept_sparse='csr', copy=self.copy) threshold = self.threshold branching_factor = self.branching_factor if branching_factor <= 1: raise ValueError("Branching_factor should be greater than one.") n_samples, n_features = X.shape # If partial_fit is called for the first time or fit is called, we # start a new tree. partial_fit = getattr(self, 'partial_fit_') has_root = getattr(self, 'root_', None) if getattr(self, 'fit_') or (partial_fit and not has_root): # The first root is the leaf. Manipulate this object throughout. self.root_ = _CFNode(threshold, branching_factor, is_leaf=True, n_features=n_features) # To enable getting back subclusters. self.dummy_leaf_ = _CFNode(threshold, branching_factor, is_leaf=True, n_features=n_features) self.dummy_leaf_.next_leaf_ = self.root_ self.root_.prev_leaf_ = self.dummy_leaf_ # Cannot vectorize. Enough to convince to use cython. if not sparse.issparse(X): iter_func = iter else: iter_func = _iterate_sparse_X for sample in iter_func(X): subcluster = _CFSubcluster(linear_sum=sample) split = self.root_.insert_cf_subcluster(subcluster) if split: new_subcluster1, new_subcluster2 = _split_node( self.root_, threshold, branching_factor) del self.root_ self.root_ = _CFNode(threshold, branching_factor, is_leaf=False, n_features=n_features) self.root_.append_subcluster(new_subcluster1) self.root_.append_subcluster(new_subcluster2) centroids = np.concatenate([ leaf.centroids_ for leaf in self._get_leaves()]) self.subcluster_centers_ = centroids self._global_clustering(X) return self def _get_leaves(self): """ Retrieve the leaves of the CF Node. Returns ------- leaves: array-like List of the leaf nodes. """ leaf_ptr = self.dummy_leaf_.next_leaf_ leaves = [] while leaf_ptr is not None: leaves.append(leaf_ptr) leaf_ptr = leaf_ptr.next_leaf_ return leaves def partial_fit(self, X=None, y=None): """ Online learning. Prevents rebuilding of CFTree from scratch. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features), None Input data. If X is not provided, only the global clustering step is done. """ self.partial_fit_, self.fit_ = True, False if X is None: # Perform just the final global clustering step. self._global_clustering() return self else: self._check_fit(X) return self._fit(X) def _check_fit(self, X): is_fitted = hasattr(self, 'subcluster_centers_') # Called by partial_fit, before fitting. has_partial_fit = hasattr(self, 'partial_fit_') # Should raise an error if one does not fit before predicting. if not (is_fitted or has_partial_fit): raise NotFittedError("Fit training data before predicting") if is_fitted and X.shape[1] != self.subcluster_centers_.shape[1]: raise ValueError( "Training data and predicted data do " "not have same number of features.") def predict(self, X): """ Predict data using the ``centroids_`` of subclusters. Avoid computation of the row norms of X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. Returns ------- labels: ndarray, shape(n_samples) Labelled data. """ X = check_array(X, accept_sparse='csr') self._check_fit(X) reduced_distance = safe_sparse_dot(X, self.subcluster_centers_.T) reduced_distance *= -2 reduced_distance += self._subcluster_norms return self.subcluster_labels_[np.argmin(reduced_distance, axis=1)] def transform(self, X, y=None): """ Transform X into subcluster centroids dimension. Each dimension represents the distance from the sample point to each cluster centroid. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. Returns ------- X_trans : {array-like, sparse matrix}, shape (n_samples, n_clusters) Transformed data. """ check_is_fitted(self, 'subcluster_centers_') return euclidean_distances(X, self.subcluster_centers_) def _global_clustering(self, X=None): """ Global clustering for the subclusters obtained after fitting """ clusterer = self.n_clusters centroids = self.subcluster_centers_ compute_labels = (X is not None) and self.compute_labels # Preprocessing for the global clustering. not_enough_centroids = False if isinstance(clusterer, int): clusterer = AgglomerativeClustering( n_clusters=self.n_clusters) # There is no need to perform the global clustering step. if len(centroids) < self.n_clusters: not_enough_centroids = True elif (clusterer is not None and not hasattr(clusterer, 'fit_predict')): raise ValueError("n_clusters should be an instance of " "ClusterMixin or an int") # To use in predict to avoid recalculation. self._subcluster_norms = row_norms( self.subcluster_centers_, squared=True) if clusterer is None or not_enough_centroids: self.subcluster_labels_ = np.arange(len(centroids)) if not_enough_centroids: warnings.warn( "Number of subclusters found (%d) by Birch is less " "than (%d). Decrease the threshold." % (len(centroids), self.n_clusters)) else: # The global clustering step that clusters the subclusters of # the leaves. It assumes the centroids of the subclusters as # samples and finds the final centroids. self.subcluster_labels_ = clusterer.fit_predict( self.subcluster_centers_) if compute_labels: self.labels_ = self.predict(X)
bsd-3-clause
nikitasingh981/scikit-learn
sklearn/decomposition/base.py
23
5656
"""Principal Component Analysis Base Classes""" # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Kyle Kastner <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import linalg from ..base import BaseEstimator, TransformerMixin from ..utils import check_array from ..utils.extmath import fast_dot from ..utils.validation import check_is_fitted from ..externals import six from abc import ABCMeta, abstractmethod class _BasePCA(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class for PCA methods. Warning: This class should not be used directly. Use derived classes instead. """ def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances, and sigma2 contains the noise variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision @abstractmethod def fit(X, y=None): """Placeholder for fit. Subclasses should implement this method! Fit the model with X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ def transform(self, X, y=None): """Apply dimensionality reduction to X. X is projected on the first principal components previously extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) Examples -------- >>> import numpy as np >>> from sklearn.decomposition import IncrementalPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> ipca = IncrementalPCA(n_components=2, batch_size=3) >>> ipca.fit(X) IncrementalPCA(batch_size=3, copy=True, n_components=2, whiten=False) >>> ipca.transform(X) # doctest: +SKIP """ check_is_fitted(self, ['mean_', 'components_'], all_or_any=all) X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = fast_dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X, y=None): """Transform data back to its original space. In other words, return an input X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes reversing whitening. """ if self.whiten: return fast_dot(X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return fast_dot(X, self.components_) + self.mean_
bsd-3-clause
altairpearl/scikit-learn
sklearn/metrics/classification.py
2
73028
"""Metrics to assess performance on classification task given class prediction Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # Jatin Shah <[email protected]> # Saurabh Jha <[email protected]> # Bernardo Stein <[email protected]> # License: BSD 3 clause from __future__ import division import warnings import numpy as np from scipy.sparse import coo_matrix from scipy.sparse import csr_matrix from ..preprocessing import LabelBinarizer, label_binarize from ..preprocessing import LabelEncoder from ..utils import assert_all_finite from ..utils import check_array from ..utils import check_consistent_length from ..utils import column_or_1d from ..utils.multiclass import unique_labels from ..utils.multiclass import type_of_target from ..utils.validation import _num_samples from ..utils.sparsefuncs import count_nonzero from ..utils.fixes import bincount from ..exceptions import UndefinedMetricWarning def _check_targets(y_true, y_pred): """Check that y_true and y_pred belong to the same classification task This converts multiclass or binary types to a common shape, and raises a ValueError for a mix of multilabel and multiclass targets, a mix of multilabel formats, for the presence of continuous-valued or multioutput targets, or for targets of different lengths. Column vectors are squeezed to 1d, while multilabel formats are returned as CSR sparse label indicators. Parameters ---------- y_true : array-like y_pred : array-like Returns ------- type_true : one of {'multilabel-indicator', 'multiclass', 'binary'} The type of the true target data, as output by ``utils.multiclass.type_of_target`` y_true : array or indicator matrix y_pred : array or indicator matrix """ check_consistent_length(y_true, y_pred) type_true = type_of_target(y_true) type_pred = type_of_target(y_pred) y_type = set([type_true, type_pred]) if y_type == set(["binary", "multiclass"]): y_type = set(["multiclass"]) if len(y_type) > 1: raise ValueError("Can't handle mix of {0} and {1}" "".format(type_true, type_pred)) # We can't have more than one value on y_type => The set is no more needed y_type = y_type.pop() # No metrics support "multiclass-multioutput" format if (y_type not in ["binary", "multiclass", "multilabel-indicator"]): raise ValueError("{0} is not supported".format(y_type)) if y_type in ["binary", "multiclass"]: y_true = column_or_1d(y_true) y_pred = column_or_1d(y_pred) if y_type.startswith('multilabel'): y_true = csr_matrix(y_true) y_pred = csr_matrix(y_pred) y_type = 'multilabel-indicator' return y_type, y_true, y_pred def _weighted_sum(sample_score, sample_weight, normalize=False): if normalize: return np.average(sample_score, weights=sample_weight) elif sample_weight is not None: return np.dot(sample_score, sample_weight) else: return sample_score.sum() def accuracy_score(y_true, y_pred, normalize=True, sample_weight=None): """Accuracy classification score. In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must *exactly* match the corresponding set of labels in y_true. Read more in the :ref:`User Guide <accuracy_score>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If ``False``, return the number of correctly classified samples. Otherwise, return the fraction of correctly classified samples. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- score : float If ``normalize == True``, return the correctly classified samples (float), else it returns the number of correctly classified samples (int). The best performance is 1 with ``normalize == True`` and the number of samples with ``normalize == False``. See also -------- jaccard_similarity_score, hamming_loss, zero_one_loss Notes ----- In binary and multiclass classification, this function is equal to the ``jaccard_similarity_score`` function. Examples -------- >>> import numpy as np >>> from sklearn.metrics import accuracy_score >>> y_pred = [0, 2, 1, 3] >>> y_true = [0, 1, 2, 3] >>> accuracy_score(y_true, y_pred) 0.5 >>> accuracy_score(y_true, y_pred, normalize=False) 2 In the multilabel case with binary label indicators: >>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2))) 0.5 """ # Compute accuracy for each possible representation y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type.startswith('multilabel'): differing_labels = count_nonzero(y_true - y_pred, axis=1) score = differing_labels == 0 else: score = y_true == y_pred return _weighted_sum(score, sample_weight, normalize) def confusion_matrix(y_true, y_pred, labels=None, sample_weight=None): """Compute confusion matrix to evaluate the accuracy of a classification By definition a confusion matrix :math:`C` is such that :math:`C_{i, j}` is equal to the number of observations known to be in group :math:`i` but predicted to be in group :math:`j`. Read more in the :ref:`User Guide <confusion_matrix>`. Parameters ---------- y_true : array, shape = [n_samples] Ground truth (correct) target values. y_pred : array, shape = [n_samples] Estimated targets as returned by a classifier. labels : array, shape = [n_classes], optional List of labels to index the matrix. This may be used to reorder or select a subset of labels. If none is given, those that appear at least once in ``y_true`` or ``y_pred`` are used in sorted order. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- C : array, shape = [n_classes, n_classes] Confusion matrix References ---------- .. [1] `Wikipedia entry for the Confusion matrix <https://en.wikipedia.org/wiki/Confusion_matrix>`_ Examples -------- >>> from sklearn.metrics import confusion_matrix >>> y_true = [2, 0, 2, 2, 0, 1] >>> y_pred = [0, 0, 2, 2, 0, 2] >>> confusion_matrix(y_true, y_pred) array([[2, 0, 0], [0, 0, 1], [1, 0, 2]]) >>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"] >>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"] >>> confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"]) array([[2, 0, 0], [0, 0, 1], [1, 0, 2]]) """ y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type not in ("binary", "multiclass"): raise ValueError("%s is not supported" % y_type) if labels is None: labels = unique_labels(y_true, y_pred) else: labels = np.asarray(labels) if np.all([l not in y_true for l in labels]): raise ValueError("At least one label specified must be in y_true") if sample_weight is None: sample_weight = np.ones(y_true.shape[0], dtype=np.int) else: sample_weight = np.asarray(sample_weight) check_consistent_length(sample_weight, y_true, y_pred) n_labels = labels.size label_to_ind = dict((y, x) for x, y in enumerate(labels)) # convert yt, yp into index y_pred = np.array([label_to_ind.get(x, n_labels + 1) for x in y_pred]) y_true = np.array([label_to_ind.get(x, n_labels + 1) for x in y_true]) # intersect y_pred, y_true with labels, eliminate items not in labels ind = np.logical_and(y_pred < n_labels, y_true < n_labels) y_pred = y_pred[ind] y_true = y_true[ind] # also eliminate weights of eliminated items sample_weight = sample_weight[ind] CM = coo_matrix((sample_weight, (y_true, y_pred)), shape=(n_labels, n_labels) ).toarray() return CM def cohen_kappa_score(y1, y2, labels=None, weights=None): """Cohen's kappa: a statistic that measures inter-annotator agreement. This function computes Cohen's kappa [1]_, a score that expresses the level of agreement between two annotators on a classification problem. It is defined as .. math:: \kappa = (p_o - p_e) / (1 - p_e) where :math:`p_o` is the empirical probability of agreement on the label assigned to any sample (the observed agreement ratio), and :math:`p_e` is the expected agreement when both annotators assign labels randomly. :math:`p_e` is estimated using a per-annotator empirical prior over the class labels [2]_. Read more in the :ref:`User Guide <cohen_kappa>`. Parameters ---------- y1 : array, shape = [n_samples] Labels assigned by the first annotator. y2 : array, shape = [n_samples] Labels assigned by the second annotator. The kappa statistic is symmetric, so swapping ``y1`` and ``y2`` doesn't change the value. labels : array, shape = [n_classes], optional List of labels to index the matrix. This may be used to select a subset of labels. If None, all labels that appear at least once in ``y1`` or ``y2`` are used. weights : str, optional List of weighting type to calculate the score. None means no weighted; "linear" means linear weighted; "quadratic" means quadratic weighted. Returns ------- kappa : float The kappa statistic, which is a number between -1 and 1. The maximum value means complete agreement; zero or lower means chance agreement. References ---------- .. [1] J. Cohen (1960). "A coefficient of agreement for nominal scales". Educational and Psychological Measurement 20(1):37-46. doi:10.1177/001316446002000104. .. [2] `R. Artstein and M. Poesio (2008). "Inter-coder agreement for computational linguistics". Computational Linguistics 34(4):555-596. <http://www.mitpressjournals.org/doi/abs/10.1162/coli.07-034-R2#.V0J1MJMrIWo>`_ .. [3] `Wikipedia entry for the Cohen's kappa. <https://en.wikipedia.org/wiki/Cohen%27s_kappa>`_ """ confusion = confusion_matrix(y1, y2, labels=labels) n_classes = confusion.shape[0] sum0 = np.sum(confusion, axis=0) sum1 = np.sum(confusion, axis=1) expected = np.outer(sum0, sum1) / np.sum(sum0) if weights is None: w_mat = np.ones([n_classes, n_classes], dtype=np.int) w_mat.flat[:: n_classes + 1] = 0 elif weights == "linear" or weights == "quadratic": w_mat = np.zeros([n_classes, n_classes], dtype=np.int) w_mat += np.arange(n_classes) if weights == "linear": w_mat = np.abs(w_mat - w_mat.T) else: w_mat = (w_mat - w_mat.T) ** 2 else: raise ValueError("Unknown kappa weighting type.") k = np.sum(w_mat * confusion) / np.sum(w_mat * expected) return 1 - k def jaccard_similarity_score(y_true, y_pred, normalize=True, sample_weight=None): """Jaccard similarity coefficient score The Jaccard index [1], or Jaccard similarity coefficient, defined as the size of the intersection divided by the size of the union of two label sets, is used to compare set of predicted labels for a sample to the corresponding set of labels in ``y_true``. Read more in the :ref:`User Guide <jaccard_similarity_score>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If ``False``, return the sum of the Jaccard similarity coefficient over the sample set. Otherwise, return the average of Jaccard similarity coefficient. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- score : float If ``normalize == True``, return the average Jaccard similarity coefficient, else it returns the sum of the Jaccard similarity coefficient over the sample set. The best performance is 1 with ``normalize == True`` and the number of samples with ``normalize == False``. See also -------- accuracy_score, hamming_loss, zero_one_loss Notes ----- In binary and multiclass classification, this function is equivalent to the ``accuracy_score``. It differs in the multilabel classification problem. References ---------- .. [1] `Wikipedia entry for the Jaccard index <https://en.wikipedia.org/wiki/Jaccard_index>`_ Examples -------- >>> import numpy as np >>> from sklearn.metrics import jaccard_similarity_score >>> y_pred = [0, 2, 1, 3] >>> y_true = [0, 1, 2, 3] >>> jaccard_similarity_score(y_true, y_pred) 0.5 >>> jaccard_similarity_score(y_true, y_pred, normalize=False) 2 In the multilabel case with binary label indicators: >>> jaccard_similarity_score(np.array([[0, 1], [1, 1]]),\ np.ones((2, 2))) 0.75 """ # Compute accuracy for each possible representation y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type.startswith('multilabel'): with np.errstate(divide='ignore', invalid='ignore'): # oddly, we may get an "invalid" rather than a "divide" error here pred_or_true = count_nonzero(y_true + y_pred, axis=1) pred_and_true = count_nonzero(y_true.multiply(y_pred), axis=1) score = pred_and_true / pred_or_true # If there is no label, it results in a Nan instead, we set # the jaccard to 1: lim_{x->0} x/x = 1 # Note with py2.6 and np 1.3: we can't check safely for nan. score[pred_or_true == 0.0] = 1.0 else: score = y_true == y_pred return _weighted_sum(score, sample_weight, normalize) def matthews_corrcoef(y_true, y_pred, sample_weight=None): """Compute the Matthews correlation coefficient (MCC) for binary classes The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary (two-class) classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] Only in the binary case does this relate to information about true and false positives and negatives. See references below. Read more in the :ref:`User Guide <matthews_corrcoef>`. Parameters ---------- y_true : array, shape = [n_samples] Ground truth (correct) target values. y_pred : array, shape = [n_samples] Estimated targets as returned by a classifier. sample_weight : array-like of shape = [n_samples], default None Sample weights. Returns ------- mcc : float The Matthews correlation coefficient (+1 represents a perfect prediction, 0 an average random prediction and -1 and inverse prediction). References ---------- .. [1] `Baldi, Brunak, Chauvin, Andersen and Nielsen, (2000). Assessing the accuracy of prediction algorithms for classification: an overview <http://dx.doi.org/10.1093/bioinformatics/16.5.412>`_ .. [2] `Wikipedia entry for the Matthews Correlation Coefficient <https://en.wikipedia.org/wiki/Matthews_correlation_coefficient>`_ Examples -------- >>> from sklearn.metrics import matthews_corrcoef >>> y_true = [+1, +1, +1, -1] >>> y_pred = [+1, -1, +1, +1] >>> matthews_corrcoef(y_true, y_pred) # doctest: +ELLIPSIS -0.33... """ y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type != "binary": raise ValueError("%s is not supported" % y_type) lb = LabelEncoder() lb.fit(np.hstack([y_true, y_pred])) y_true = lb.transform(y_true) y_pred = lb.transform(y_pred) mean_yt = np.average(y_true, weights=sample_weight) mean_yp = np.average(y_pred, weights=sample_weight) y_true_u_cent = y_true - mean_yt y_pred_u_cent = y_pred - mean_yp cov_ytyp = np.average(y_true_u_cent * y_pred_u_cent, weights=sample_weight) var_yt = np.average(y_true_u_cent ** 2, weights=sample_weight) var_yp = np.average(y_pred_u_cent ** 2, weights=sample_weight) mcc = cov_ytyp / np.sqrt(var_yt * var_yp) if np.isnan(mcc): return 0. else: return mcc def zero_one_loss(y_true, y_pred, normalize=True, sample_weight=None): """Zero-one classification loss. If normalize is ``True``, return the fraction of misclassifications (float), else it returns the number of misclassifications (int). The best performance is 0. Read more in the :ref:`User Guide <zero_one_loss>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If ``False``, return the number of misclassifications. Otherwise, return the fraction of misclassifications. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float or int, If ``normalize == True``, return the fraction of misclassifications (float), else it returns the number of misclassifications (int). Notes ----- In multilabel classification, the zero_one_loss function corresponds to the subset zero-one loss: for each sample, the entire set of labels must be correctly predicted, otherwise the loss for that sample is equal to one. See also -------- accuracy_score, hamming_loss, jaccard_similarity_score Examples -------- >>> from sklearn.metrics import zero_one_loss >>> y_pred = [1, 2, 3, 4] >>> y_true = [2, 2, 3, 4] >>> zero_one_loss(y_true, y_pred) 0.25 >>> zero_one_loss(y_true, y_pred, normalize=False) 1 In the multilabel case with binary label indicators: >>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2))) 0.5 """ score = accuracy_score(y_true, y_pred, normalize=normalize, sample_weight=sample_weight) if normalize: return 1 - score else: if sample_weight is not None: n_samples = np.sum(sample_weight) else: n_samples = _num_samples(y_true) return n_samples - score def f1_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the F1 score, also known as balanced F-score or F-measure The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is:: F1 = 2 * (precision * recall) / (precision + recall) In the multi-class and multi-label case, this is the weighted average of the F1 score of each class. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- f1_score : float or array of float, shape = [n_unique_labels] F1 score of the positive class in binary classification or weighted average of the F1 scores of each class for the multiclass task. References ---------- .. [1] `Wikipedia entry for the F1-score <https://en.wikipedia.org/wiki/F1_score>`_ Examples -------- >>> from sklearn.metrics import f1_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> f1_score(y_true, y_pred, average='macro') # doctest: +ELLIPSIS 0.26... >>> f1_score(y_true, y_pred, average='micro') # doctest: +ELLIPSIS 0.33... >>> f1_score(y_true, y_pred, average='weighted') # doctest: +ELLIPSIS 0.26... >>> f1_score(y_true, y_pred, average=None) array([ 0.8, 0. , 0. ]) """ return fbeta_score(y_true, y_pred, 1, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) def fbeta_score(y_true, y_pred, beta, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the F-beta score The F-beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its worst value at 0. The `beta` parameter determines the weight of precision in the combined score. ``beta < 1`` lends more weight to precision, while ``beta > 1`` favors recall (``beta -> 0`` considers only precision, ``beta -> inf`` only recall). Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. beta: float Weight of precision in harmonic mean. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- fbeta_score : float (if average is not None) or array of float, shape =\ [n_unique_labels] F-beta score of the positive class in binary classification or weighted average of the F-beta score of each class for the multiclass task. References ---------- .. [1] R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 327-328. .. [2] `Wikipedia entry for the F1-score <https://en.wikipedia.org/wiki/F1_score>`_ Examples -------- >>> from sklearn.metrics import fbeta_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> fbeta_score(y_true, y_pred, average='macro', beta=0.5) ... # doctest: +ELLIPSIS 0.23... >>> fbeta_score(y_true, y_pred, average='micro', beta=0.5) ... # doctest: +ELLIPSIS 0.33... >>> fbeta_score(y_true, y_pred, average='weighted', beta=0.5) ... # doctest: +ELLIPSIS 0.23... >>> fbeta_score(y_true, y_pred, average=None, beta=0.5) ... # doctest: +ELLIPSIS array([ 0.71..., 0. , 0. ]) """ _, _, f, _ = precision_recall_fscore_support(y_true, y_pred, beta=beta, labels=labels, pos_label=pos_label, average=average, warn_for=('f-score',), sample_weight=sample_weight) return f def _prf_divide(numerator, denominator, metric, modifier, average, warn_for): """Performs division and handles divide-by-zero. On zero-division, sets the corresponding result elements to zero and raises a warning. The metric, modifier and average arguments are used only for determining an appropriate warning. """ result = numerator / denominator mask = denominator == 0.0 if not np.any(mask): return result # remove infs result[mask] = 0.0 # build appropriate warning # E.g. "Precision and F-score are ill-defined and being set to 0.0 in # labels with no predicted samples" axis0 = 'sample' axis1 = 'label' if average == 'samples': axis0, axis1 = axis1, axis0 if metric in warn_for and 'f-score' in warn_for: msg_start = '{0} and F-score are'.format(metric.title()) elif metric in warn_for: msg_start = '{0} is'.format(metric.title()) elif 'f-score' in warn_for: msg_start = 'F-score is' else: return result msg = ('{0} ill-defined and being set to 0.0 {{0}} ' 'no {1} {2}s.'.format(msg_start, modifier, axis0)) if len(mask) == 1: msg = msg.format('due to') else: msg = msg.format('in {0}s with'.format(axis1)) warnings.warn(msg, UndefinedMetricWarning, stacklevel=2) return result def precision_recall_fscore_support(y_true, y_pred, beta=1.0, labels=None, pos_label=1, average=None, warn_for=('precision', 'recall', 'f-score'), sample_weight=None): """Compute precision, recall, F-measure and support for each class The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The F-beta score can be interpreted as a weighted harmonic mean of the precision and recall, where an F-beta score reaches its best value at 1 and worst score at 0. The F-beta score weights recall more than precision by a factor of ``beta``. ``beta == 1.0`` means recall and precision are equally important. The support is the number of occurrences of each class in ``y_true``. If ``pos_label is None`` and in binary classification, this function returns the average precision, recall and F-measure if ``average`` is one of ``'micro'``, ``'macro'``, ``'weighted'`` or ``'samples'``. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. beta : float, 1.0 by default The strength of recall versus precision in the F-score. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None (default), 'binary', 'micro', 'macro', 'samples', \ 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. warn_for : tuple or set, for internal use This determines which warnings will be made in the case that this function is being used to return only one of its metrics. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision: float (if average is not None) or array of float, shape =\ [n_unique_labels] recall: float (if average is not None) or array of float, , shape =\ [n_unique_labels] fbeta_score: float (if average is not None) or array of float, shape =\ [n_unique_labels] support: int (if average is not None) or array of int, shape =\ [n_unique_labels] The number of occurrences of each label in ``y_true``. References ---------- .. [1] `Wikipedia entry for the Precision and recall <https://en.wikipedia.org/wiki/Precision_and_recall>`_ .. [2] `Wikipedia entry for the F1-score <https://en.wikipedia.org/wiki/F1_score>`_ .. [3] `Discriminative Methods for Multi-labeled Classification Advances in Knowledge Discovery and Data Mining (2004), pp. 22-30 by Shantanu Godbole, Sunita Sarawagi <http://www.godbole.net/shantanu/pubs/multilabelsvm-pakdd04.pdf>` Examples -------- >>> from sklearn.metrics import precision_recall_fscore_support >>> y_true = np.array(['cat', 'dog', 'pig', 'cat', 'dog', 'pig']) >>> y_pred = np.array(['cat', 'pig', 'dog', 'cat', 'cat', 'dog']) >>> precision_recall_fscore_support(y_true, y_pred, average='macro') ... # doctest: +ELLIPSIS (0.22..., 0.33..., 0.26..., None) >>> precision_recall_fscore_support(y_true, y_pred, average='micro') ... # doctest: +ELLIPSIS (0.33..., 0.33..., 0.33..., None) >>> precision_recall_fscore_support(y_true, y_pred, average='weighted') ... # doctest: +ELLIPSIS (0.22..., 0.33..., 0.26..., None) It is possible to compute per-label precisions, recalls, F1-scores and supports instead of averaging: >>> precision_recall_fscore_support(y_true, y_pred, average=None, ... labels=['pig', 'dog', 'cat']) ... # doctest: +ELLIPSIS,+NORMALIZE_WHITESPACE (array([ 0. , 0. , 0.66...]), array([ 0., 0., 1.]), array([ 0. , 0. , 0.8]), array([2, 2, 2])) """ average_options = (None, 'micro', 'macro', 'weighted', 'samples') if average not in average_options and average != 'binary': raise ValueError('average has to be one of ' + str(average_options)) if beta <= 0: raise ValueError("beta should be >0 in the F-beta score") y_type, y_true, y_pred = _check_targets(y_true, y_pred) present_labels = unique_labels(y_true, y_pred) if average == 'binary' and (y_type != 'binary' or pos_label is None): warnings.warn('The default `weighted` averaging is deprecated, ' 'and from version 0.18, use of precision, recall or ' 'F-score with multiclass or multilabel data or ' 'pos_label=None will result in an exception. ' 'Please set an explicit value for `average`, one of ' '%s. In cross validation use, for instance, ' 'scoring="f1_weighted" instead of scoring="f1".' % str(average_options), DeprecationWarning, stacklevel=2) average = 'weighted' if y_type == 'binary' and pos_label is not None and average is not None: if average != 'binary': warnings.warn('From version 0.18, binary input will not be ' 'handled specially when using averaged ' 'precision/recall/F-score. ' 'Please use average=\'binary\' to report only the ' 'positive class performance.', DeprecationWarning) if labels is None or len(labels) <= 2: if pos_label not in present_labels: if len(present_labels) < 2: # Only negative labels return (0., 0., 0., 0) else: raise ValueError("pos_label=%r is not a valid label: %r" % (pos_label, present_labels)) labels = [pos_label] if labels is None: labels = present_labels n_labels = None else: n_labels = len(labels) labels = np.hstack([labels, np.setdiff1d(present_labels, labels, assume_unique=True)]) # Calculate tp_sum, pred_sum, true_sum ### if y_type.startswith('multilabel'): sum_axis = 1 if average == 'samples' else 0 # All labels are index integers for multilabel. # Select labels: if not np.all(labels == present_labels): if np.max(labels) > np.max(present_labels): raise ValueError('All labels must be in [0, n labels). ' 'Got %d > %d' % (np.max(labels), np.max(present_labels))) if np.min(labels) < 0: raise ValueError('All labels must be in [0, n labels). ' 'Got %d < 0' % np.min(labels)) y_true = y_true[:, labels[:n_labels]] y_pred = y_pred[:, labels[:n_labels]] # calculate weighted counts true_and_pred = y_true.multiply(y_pred) tp_sum = count_nonzero(true_and_pred, axis=sum_axis, sample_weight=sample_weight) pred_sum = count_nonzero(y_pred, axis=sum_axis, sample_weight=sample_weight) true_sum = count_nonzero(y_true, axis=sum_axis, sample_weight=sample_weight) elif average == 'samples': raise ValueError("Sample-based precision, recall, fscore is " "not meaningful outside multilabel " "classification. See the accuracy_score instead.") else: le = LabelEncoder() le.fit(labels) y_true = le.transform(y_true) y_pred = le.transform(y_pred) sorted_labels = le.classes_ # labels are now from 0 to len(labels) - 1 -> use bincount tp = y_true == y_pred tp_bins = y_true[tp] if sample_weight is not None: tp_bins_weights = np.asarray(sample_weight)[tp] else: tp_bins_weights = None if len(tp_bins): tp_sum = bincount(tp_bins, weights=tp_bins_weights, minlength=len(labels)) else: # Pathological case true_sum = pred_sum = tp_sum = np.zeros(len(labels)) if len(y_pred): pred_sum = bincount(y_pred, weights=sample_weight, minlength=len(labels)) if len(y_true): true_sum = bincount(y_true, weights=sample_weight, minlength=len(labels)) # Retain only selected labels indices = np.searchsorted(sorted_labels, labels[:n_labels]) tp_sum = tp_sum[indices] true_sum = true_sum[indices] pred_sum = pred_sum[indices] if average == 'micro': tp_sum = np.array([tp_sum.sum()]) pred_sum = np.array([pred_sum.sum()]) true_sum = np.array([true_sum.sum()]) # Finally, we have all our sufficient statistics. Divide! # beta2 = beta ** 2 with np.errstate(divide='ignore', invalid='ignore'): # Divide, and on zero-division, set scores to 0 and warn: # Oddly, we may get an "invalid" rather than a "divide" error # here. precision = _prf_divide(tp_sum, pred_sum, 'precision', 'predicted', average, warn_for) recall = _prf_divide(tp_sum, true_sum, 'recall', 'true', average, warn_for) # Don't need to warn for F: either P or R warned, or tp == 0 where pos # and true are nonzero, in which case, F is well-defined and zero f_score = ((1 + beta2) * precision * recall / (beta2 * precision + recall)) f_score[tp_sum == 0] = 0.0 # Average the results if average == 'weighted': weights = true_sum if weights.sum() == 0: return 0, 0, 0, None elif average == 'samples': weights = sample_weight else: weights = None if average is not None: assert average != 'binary' or len(precision) == 1 precision = np.average(precision, weights=weights) recall = np.average(recall, weights=weights) f_score = np.average(f_score, weights=weights) true_sum = None # return no support return precision, recall, f_score, true_sum def precision_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the precision The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The best value is 1 and the worst value is 0. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision : float (if average is not None) or array of float, shape =\ [n_unique_labels] Precision of the positive class in binary classification or weighted average of the precision of each class for the multiclass task. Examples -------- >>> from sklearn.metrics import precision_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> precision_score(y_true, y_pred, average='macro') # doctest: +ELLIPSIS 0.22... >>> precision_score(y_true, y_pred, average='micro') # doctest: +ELLIPSIS 0.33... >>> precision_score(y_true, y_pred, average='weighted') ... # doctest: +ELLIPSIS 0.22... >>> precision_score(y_true, y_pred, average=None) # doctest: +ELLIPSIS array([ 0.66..., 0. , 0. ]) """ p, _, _, _ = precision_recall_fscore_support(y_true, y_pred, labels=labels, pos_label=pos_label, average=average, warn_for=('precision',), sample_weight=sample_weight) return p def recall_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the recall The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The best value is 1 and the worst value is 0. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- recall : float (if average is not None) or array of float, shape =\ [n_unique_labels] Recall of the positive class in binary classification or weighted average of the recall of each class for the multiclass task. Examples -------- >>> from sklearn.metrics import recall_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> recall_score(y_true, y_pred, average='macro') # doctest: +ELLIPSIS 0.33... >>> recall_score(y_true, y_pred, average='micro') # doctest: +ELLIPSIS 0.33... >>> recall_score(y_true, y_pred, average='weighted') # doctest: +ELLIPSIS 0.33... >>> recall_score(y_true, y_pred, average=None) array([ 1., 0., 0.]) """ _, r, _, _ = precision_recall_fscore_support(y_true, y_pred, labels=labels, pos_label=pos_label, average=average, warn_for=('recall',), sample_weight=sample_weight) return r def classification_report(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2): """Build a text report showing the main classification metrics Read more in the :ref:`User Guide <classification_report>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : array, shape = [n_labels] Optional list of label indices to include in the report. target_names : list of strings Optional display names matching the labels (same order). sample_weight : array-like of shape = [n_samples], optional Sample weights. digits : int Number of digits for formatting output floating point values Returns ------- report : string Text summary of the precision, recall, F1 score for each class. Examples -------- >>> from sklearn.metrics import classification_report >>> y_true = [0, 1, 2, 2, 2] >>> y_pred = [0, 0, 2, 2, 1] >>> target_names = ['class 0', 'class 1', 'class 2'] >>> print(classification_report(y_true, y_pred, target_names=target_names)) precision recall f1-score support <BLANKLINE> class 0 0.50 1.00 0.67 1 class 1 0.00 0.00 0.00 1 class 2 1.00 0.67 0.80 3 <BLANKLINE> avg / total 0.70 0.60 0.61 5 <BLANKLINE> """ if labels is None: labels = unique_labels(y_true, y_pred) else: labels = np.asarray(labels) last_line_heading = 'avg / total' if target_names is None: target_names = ['%s' % l for l in labels] name_width = max(len(cn) for cn in target_names) width = max(name_width, len(last_line_heading), digits) headers = ["precision", "recall", "f1-score", "support"] fmt = '%% %ds' % width # first column: class name fmt += ' ' fmt += ' '.join(['% 9s' for _ in headers]) fmt += '\n' headers = [""] + headers report = fmt % tuple(headers) report += '\n' p, r, f1, s = precision_recall_fscore_support(y_true, y_pred, labels=labels, average=None, sample_weight=sample_weight) for i, label in enumerate(labels): values = [target_names[i]] for v in (p[i], r[i], f1[i]): values += ["{0:0.{1}f}".format(v, digits)] values += ["{0}".format(s[i])] report += fmt % tuple(values) report += '\n' # compute averages values = [last_line_heading] for v in (np.average(p, weights=s), np.average(r, weights=s), np.average(f1, weights=s)): values += ["{0:0.{1}f}".format(v, digits)] values += ['{0}'.format(np.sum(s))] report += fmt % tuple(values) return report def hamming_loss(y_true, y_pred, labels=None, sample_weight=None, classes=None): """Compute the average Hamming loss. The Hamming loss is the fraction of labels that are incorrectly predicted. Read more in the :ref:`User Guide <hamming_loss>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. labels : array, shape = [n_labels], optional (default=None) Integer array of labels. If not provided, labels will be inferred from y_true and y_pred. .. versionadded:: 0.18 sample_weight : array-like of shape = [n_samples], optional Sample weights. classes : array, shape = [n_labels], optional (deprecated) Integer array of labels. This parameter has been renamed to ``labels`` in version 0.18 and will be removed in 0.20. Returns ------- loss : float or int, Return the average Hamming loss between element of ``y_true`` and ``y_pred``. See Also -------- accuracy_score, jaccard_similarity_score, zero_one_loss Notes ----- In multiclass classification, the Hamming loss correspond to the Hamming distance between ``y_true`` and ``y_pred`` which is equivalent to the subset ``zero_one_loss`` function. In multilabel classification, the Hamming loss is different from the subset zero-one loss. The zero-one loss considers the entire set of labels for a given sample incorrect if it does entirely match the true set of labels. Hamming loss is more forgiving in that it penalizes the individual labels. The Hamming loss is upperbounded by the subset zero-one loss. When normalized over samples, the Hamming loss is always between 0 and 1. References ---------- .. [1] Grigorios Tsoumakas, Ioannis Katakis. Multi-Label Classification: An Overview. International Journal of Data Warehousing & Mining, 3(3), 1-13, July-September 2007. .. [2] `Wikipedia entry on the Hamming distance <https://en.wikipedia.org/wiki/Hamming_distance>`_ Examples -------- >>> from sklearn.metrics import hamming_loss >>> y_pred = [1, 2, 3, 4] >>> y_true = [2, 2, 3, 4] >>> hamming_loss(y_true, y_pred) 0.25 In the multilabel case with binary label indicators: >>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2))) 0.75 """ if classes is not None: warnings.warn("'classes' was renamed to 'labels' in version 0.18 and " "will be removed in 0.20.", DeprecationWarning) labels = classes y_type, y_true, y_pred = _check_targets(y_true, y_pred) if labels is None: labels = unique_labels(y_true, y_pred) else: labels = np.asarray(labels) if sample_weight is None: weight_average = 1. else: weight_average = np.mean(sample_weight) if y_type.startswith('multilabel'): n_differences = count_nonzero(y_true - y_pred, sample_weight=sample_weight) return (n_differences / (y_true.shape[0] * len(labels) * weight_average)) elif y_type in ["binary", "multiclass"]: return _weighted_sum(y_true != y_pred, sample_weight, normalize=True) else: raise ValueError("{0} is not supported".format(y_type)) def log_loss(y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None, labels=None): """Log loss, aka logistic loss or cross-entropy loss. This is the loss function used in (multinomial) logistic regression and extensions of it such as neural networks, defined as the negative log-likelihood of the true labels given a probabilistic classifier's predictions. The log loss is only defined for two or more labels. For a single sample with true label yt in {0,1} and estimated probability yp that yt = 1, the log loss is -log P(yt|yp) = -(yt log(yp) + (1 - yt) log(1 - yp)) Read more in the :ref:`User Guide <log_loss>`. Parameters ---------- y_true : array-like or label indicator matrix Ground truth (correct) labels for n_samples samples. y_pred : array-like of float, shape = (n_samples, n_classes) or (n_samples,) Predicted probabilities, as returned by a classifier's predict_proba method. If ``y_pred.shape = (n_samples,)`` the probabilities provided are assumed to be that of the positive class. The labels in ``y_pred`` are assumed to be ordered alphabetically, as done by :class:`preprocessing.LabelBinarizer`. eps : float Log loss is undefined for p=0 or p=1, so probabilities are clipped to max(eps, min(1 - eps, p)). normalize : bool, optional (default=True) If true, return the mean loss per sample. Otherwise, return the sum of the per-sample losses. sample_weight : array-like of shape = [n_samples], optional Sample weights. labels : array-like, optional (default=None) If not provided, labels will be inferred from y_true. If ``labels`` is ``None`` and ``y_pred`` has shape (n_samples,) the labels are assumed to be binary and are inferred from ``y_true``. .. versionadded:: 0.18 Returns ------- loss : float Examples -------- >>> log_loss(["spam", "ham", "ham", "spam"], # doctest: +ELLIPSIS ... [[.1, .9], [.9, .1], [.8, .2], [.35, .65]]) 0.21616... References ---------- C.M. Bishop (2006). Pattern Recognition and Machine Learning. Springer, p. 209. Notes ----- The logarithm used is the natural logarithm (base-e). """ y_pred = check_array(y_pred, ensure_2d=False) check_consistent_length(y_pred, y_true) lb = LabelBinarizer() if labels is not None: lb.fit(labels) else: lb.fit(y_true) if len(lb.classes_) == 1: if labels is None: raise ValueError('y_true contains only one label ({0}). Please ' 'provide the true labels explicitly through the ' 'labels argument.'.format(lb.classes_[0])) else: raise ValueError('The labels array needs to contain at least two ' 'labels for log_loss, ' 'got {0}.'.format(lb.classes_)) transformed_labels = lb.transform(y_true) if transformed_labels.shape[1] == 1: transformed_labels = np.append(1 - transformed_labels, transformed_labels, axis=1) # Clipping y_pred = np.clip(y_pred, eps, 1 - eps) # If y_pred is of single dimension, assume y_true to be binary # and then check. if y_pred.ndim == 1: y_pred = y_pred[:, np.newaxis] if y_pred.shape[1] == 1: y_pred = np.append(1 - y_pred, y_pred, axis=1) # Check if dimensions are consistent. transformed_labels = check_array(transformed_labels) if len(lb.classes_) != y_pred.shape[1]: if labels is None: raise ValueError("y_true and y_pred contain different number of " "classes {0}, {1}. Please provide the true " "labels explicitly through the labels argument. " "Classes found in " "y_true: {2}".format(transformed_labels.shape[1], y_pred.shape[1], lb.classes_)) else: raise ValueError('The number of classes in labels is different ' 'from that in y_pred. Classes found in ' 'labels: {0}'.format(lb.classes_)) # Renormalize y_pred /= y_pred.sum(axis=1)[:, np.newaxis] loss = -(transformed_labels * np.log(y_pred)).sum(axis=1) return _weighted_sum(loss, sample_weight, normalize) def hinge_loss(y_true, pred_decision, labels=None, sample_weight=None): """Average hinge loss (non-regularized) In binary class case, assuming labels in y_true are encoded with +1 and -1, when a prediction mistake is made, ``margin = y_true * pred_decision`` is always negative (since the signs disagree), implying ``1 - margin`` is always greater than 1. The cumulated hinge loss is therefore an upper bound of the number of mistakes made by the classifier. In multiclass case, the function expects that either all the labels are included in y_true or an optional labels argument is provided which contains all the labels. The multilabel margin is calculated according to Crammer-Singer's method. As in the binary case, the cumulated hinge loss is an upper bound of the number of mistakes made by the classifier. Read more in the :ref:`User Guide <hinge_loss>`. Parameters ---------- y_true : array, shape = [n_samples] True target, consisting of integers of two values. The positive label must be greater than the negative label. pred_decision : array, shape = [n_samples] or [n_samples, n_classes] Predicted decisions, as output by decision_function (floats). labels : array, optional, default None Contains all the labels for the problem. Used in multiclass hinge loss. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float References ---------- .. [1] `Wikipedia entry on the Hinge loss <https://en.wikipedia.org/wiki/Hinge_loss>`_ .. [2] Koby Crammer, Yoram Singer. On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines. Journal of Machine Learning Research 2, (2001), 265-292 .. [3] `L1 AND L2 Regularization for Multiclass Hinge Loss Models by Robert C. Moore, John DeNero. <http://www.ttic.edu/sigml/symposium2011/papers/ Moore+DeNero_Regularization.pdf>`_ Examples -------- >>> from sklearn import svm >>> from sklearn.metrics import hinge_loss >>> X = [[0], [1]] >>> y = [-1, 1] >>> est = svm.LinearSVC(random_state=0) >>> est.fit(X, y) LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=0, tol=0.0001, verbose=0) >>> pred_decision = est.decision_function([[-2], [3], [0.5]]) >>> pred_decision # doctest: +ELLIPSIS array([-2.18..., 2.36..., 0.09...]) >>> hinge_loss([-1, 1, 1], pred_decision) # doctest: +ELLIPSIS 0.30... In the multiclass case: >>> X = np.array([[0], [1], [2], [3]]) >>> Y = np.array([0, 1, 2, 3]) >>> labels = np.array([0, 1, 2, 3]) >>> est = svm.LinearSVC() >>> est.fit(X, Y) LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, verbose=0) >>> pred_decision = est.decision_function([[-1], [2], [3]]) >>> y_true = [0, 2, 3] >>> hinge_loss(y_true, pred_decision, labels) #doctest: +ELLIPSIS 0.56... """ check_consistent_length(y_true, pred_decision, sample_weight) pred_decision = check_array(pred_decision, ensure_2d=False) y_true = column_or_1d(y_true) y_true_unique = np.unique(y_true) if y_true_unique.size > 2: if (labels is None and pred_decision.ndim > 1 and (np.size(y_true_unique) != pred_decision.shape[1])): raise ValueError("Please include all labels in y_true " "or pass labels as third argument") if labels is None: labels = y_true_unique le = LabelEncoder() le.fit(labels) y_true = le.transform(y_true) mask = np.ones_like(pred_decision, dtype=bool) mask[np.arange(y_true.shape[0]), y_true] = False margin = pred_decision[~mask] margin -= np.max(pred_decision[mask].reshape(y_true.shape[0], -1), axis=1) else: # Handles binary class case # this code assumes that positive and negative labels # are encoded as +1 and -1 respectively pred_decision = column_or_1d(pred_decision) pred_decision = np.ravel(pred_decision) lbin = LabelBinarizer(neg_label=-1) y_true = lbin.fit_transform(y_true)[:, 0] try: margin = y_true * pred_decision except TypeError: raise TypeError("pred_decision should be an array of floats.") losses = 1 - margin # The hinge_loss doesn't penalize good enough predictions. losses[losses <= 0] = 0 return np.average(losses, weights=sample_weight) def _check_binary_probabilistic_predictions(y_true, y_prob): """Check that y_true is binary and y_prob contains valid probabilities""" check_consistent_length(y_true, y_prob) labels = np.unique(y_true) if len(labels) > 2: raise ValueError("Only binary classification is supported. " "Provided labels %s." % labels) if y_prob.max() > 1: raise ValueError("y_prob contains values greater than 1.") if y_prob.min() < 0: raise ValueError("y_prob contains values less than 0.") return label_binarize(y_true, labels)[:, 0] def brier_score_loss(y_true, y_prob, sample_weight=None, pos_label=None): """Compute the Brier score. The smaller the Brier score, the better, hence the naming with "loss". Across all items in a set N predictions, the Brier score measures the mean squared difference between (1) the predicted probability assigned to the possible outcomes for item i, and (2) the actual outcome. Therefore, the lower the Brier score is for a set of predictions, the better the predictions are calibrated. Note that the Brier score always takes on a value between zero and one, since this is the largest possible difference between a predicted probability (which must be between zero and one) and the actual outcome (which can take on values of only 0 and 1). The Brier score is appropriate for binary and categorical outcomes that can be structured as true or false, but is inappropriate for ordinal variables which can take on three or more values (this is because the Brier score assumes that all possible outcomes are equivalently "distant" from one another). Which label is considered to be the positive label is controlled via the parameter pos_label, which defaults to 1. Read more in the :ref:`User Guide <calibration>`. Parameters ---------- y_true : array, shape (n_samples,) True targets. y_prob : array, shape (n_samples,) Probabilities of the positive class. sample_weight : array-like of shape = [n_samples], optional Sample weights. pos_label : int (default: None) Label of the positive class. If None, the maximum label is used as positive class Returns ------- score : float Brier score Examples -------- >>> import numpy as np >>> from sklearn.metrics import brier_score_loss >>> y_true = np.array([0, 1, 1, 0]) >>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"]) >>> y_prob = np.array([0.1, 0.9, 0.8, 0.3]) >>> brier_score_loss(y_true, y_prob) # doctest: +ELLIPSIS 0.037... >>> brier_score_loss(y_true, 1-y_prob, pos_label=0) # doctest: +ELLIPSIS 0.037... >>> brier_score_loss(y_true_categorical, y_prob, \ pos_label="ham") # doctest: +ELLIPSIS 0.037... >>> brier_score_loss(y_true, np.array(y_prob) > 0.5) 0.0 References ---------- .. [1] `Wikipedia entry for the Brier score. <https://en.wikipedia.org/wiki/Brier_score>`_ """ y_true = column_or_1d(y_true) y_prob = column_or_1d(y_prob) assert_all_finite(y_true) assert_all_finite(y_prob) if pos_label is None: pos_label = y_true.max() y_true = np.array(y_true == pos_label, int) y_true = _check_binary_probabilistic_predictions(y_true, y_prob) return np.average((y_true - y_prob) ** 2, weights=sample_weight)
bsd-3-clause
jgowans/correlation_plotter
impulse_field_test_results_generator_from_raw.py
1
5519
#!/usr/bin/env python import argparse import logging from colorlog import ColoredFormatter import time import os import csv import datetime import numpy as np from directionFinder_backend.antenna_array import AntennaArray from directionFinder_backend.direction_finder import DirectionFinder from directionFinder_backend.correlator import Correlator from directionFinder_backend.correlation import Correlation import itertools import matplotlib.pyplot as plt class FakeCorrelation(): def add_cable_length_calibration(self, length_a, velocity_factor_a, length_b, velocity_factor_b): pass class FakeCorrelator(Correlator): def __init__(self, ip_addr='192.168.14.30', num_channels=4, fs=800e6, logger=logging.getLogger(__name__), signals = None): self.logger = logger self.num_channels = num_channels self.fs = np.float64(fs) self.cross_combinations = list(itertools.combinations(range(num_channels), 2)) self.auto_combinations = [(0, 0)] self.time_domain_calibration_values = None self.time_domain_calibration_cable_values = None self.frequency_correlations = {} for a, b in self.cross_combinations: self.frequency_correlations[(a, b)] = FakeCorrelation() self.time_domain_signals = None self.upsample_factor = 100 self.subsignal_length_max = 2**17 self.time_domain_padding = 100 def notch_filter(signal, fs, start, stop): """ Sets bins from and including start throgh stop to 0 """ fft = np.fft.rfft(signal) axis = np.linspace(0, fs/2.0, len(fft)) for idx, freq in enumerate(axis): if freq >= start and freq <= stop: fft[idx] = 0 signal = np.fft.irfft(fft) return signal def time_domain_filter(signal, filter_len, filter_level): signal_filtered = np.copy(signal) for centre_idx in range(len(signal)): accumulation = 0 for offset in range(-int(round(filter_len/2.0)), int(round(filter_len/2))): idx = centre_idx + offset if idx >= 0 and idx < len(signal): accumulation += np.abs(signal[idx]) else: accumulation += 0 # expcit: don't add anything if accumulation < filter_level * filter_len: signal_filtered[centre_idx] = 0 return signal_filtered if __name__ == '__main__': # setup root logger. Shouldn't be used much but will catch unexpected messages colored_formatter = ColoredFormatter("%(log_color)s%(asctime)s:%(levelname)s:%(name)s:%(message)s") handler = logging.StreamHandler() handler.setFormatter(colored_formatter) handler.setLevel(logging.DEBUG) root = logging.getLogger() root.addHandler(handler) root.setLevel(logging.INFO) logger = logging.getLogger('main') logger.propagate = False logger.addHandler(handler) logger.setLevel(logging.INFO) parser = argparse.ArgumentParser() parser.add_argument('--d', type=str) parser.add_argument('--f_start', default=200e6, type=float) parser.add_argument('--f_stop', default=300e6, type=float) parser.add_argument('--array_geometry_file', default=None) args = parser.parse_args() directory = args.d correlator = FakeCorrelator() correlator.add_cable_length_calibrations('/home/jgowans/workspace/directionFinder_backend/config/cable_length_calibration_actual_array.json') correlator.add_time_domain_calibration('/home/jgowans/workspace/directionFinder_backend/config/time_domain_calibration_through_rf_chain.json') fs = correlator.fs array = AntennaArray.mk_from_config(args.array_geometry_file) df = DirectionFinder(correlator, array, args.f_start, logger.getChild('df')) df.set_time() contents = os.listdir(directory) contents.sort() for timestamp_str in contents: try: timestamp = float(timestamp_str) except ValueError: continue #fig = plt.figure() correlator.time_domain_signals = None num_channels = 4 for channel in range(num_channels): filename = "{c}.npy".format(c = channel) with open("{d}/{t}/{f}".format(d = directory, t = timestamp, f = filename)) as f: signal = np.load(f) #subplot_sig = fig.add_subplot(4, 2, (2*channel) + 1) #subplot_fft = fig.add_subplot(4, 2, (2*channel) + 2) #subplot_sig.plot(signal) #fft = np.abs(np.fft.rfft(signal)) #subplot_fft.plot(np.linspace(0, 400, len(fft)), fft) signal = notch_filter(signal, fs, 0, args.f_start) signal = notch_filter(signal, fs, args.f_stop, 400e6) signal = time_domain_filter(signal, 10, 10) if correlator.time_domain_signals == None: correlator.time_domain_signals = np.ndarray((num_channels, len(signal))) correlator.time_domain_signals[channel] = signal #subplot_sig.plot(signal) #fft = np.abs(np.fft.rfft(signal)) #subplot_fft.plot(np.linspace(0, 400, len(fft)), fft) correlator.time_domain_axis = np.linspace(0, len(correlator.time_domain_signals[0])/fs, len(correlator.time_domain_signals[0]), endpoint = False) #plt.show() df.df_impulse(args.d, t = timestamp) exit()
mit
ilyes14/scikit-learn
examples/linear_model/plot_ols.py
220
1940
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Linear Regression Example ========================================================= This example uses the only the first feature of the `diabetes` dataset, in order to illustrate a two-dimensional plot of this regression technique. The straight line can be seen in the plot, showing how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. The coefficients, the residual sum of squares and the variance score are also calculated. """ print(__doc__) # Code source: Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model # Load the diabetes dataset diabetes = datasets.load_diabetes() # Use only one feature diabetes_X = diabetes.data[:, np.newaxis, 2] # Split the data into training/testing sets diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # The coefficients print('Coefficients: \n', regr.coef_) # The mean square error print("Residual sum of squares: %.2f" % np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test)) # Plot outputs plt.scatter(diabetes_X_test, diabetes_y_test, color='black') plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue', linewidth=3) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
CVML/scikit-learn
examples/plot_isotonic_regression.py
303
1767
""" =================== Isotonic Regression =================== An illustration of the isotonic regression on generated data. The isotonic regression finds a non-decreasing approximation of a function while minimizing the mean squared error on the training data. The benefit of such a model is that it does not assume any form for the target function such as linearity. For comparison a linear regression is also presented. """ print(__doc__) # Author: Nelle Varoquaux <[email protected]> # Alexandre Gramfort <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from sklearn.linear_model import LinearRegression from sklearn.isotonic import IsotonicRegression from sklearn.utils import check_random_state n = 100 x = np.arange(n) rs = check_random_state(0) y = rs.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n)) ############################################################################### # Fit IsotonicRegression and LinearRegression models ir = IsotonicRegression() y_ = ir.fit_transform(x, y) lr = LinearRegression() lr.fit(x[:, np.newaxis], y) # x needs to be 2d for LinearRegression ############################################################################### # plot result segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)] lc = LineCollection(segments, zorder=0) lc.set_array(np.ones(len(y))) lc.set_linewidths(0.5 * np.ones(n)) fig = plt.figure() plt.plot(x, y, 'r.', markersize=12) plt.plot(x, y_, 'g.-', markersize=12) plt.plot(x, lr.predict(x[:, np.newaxis]), 'b-') plt.gca().add_collection(lc) plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right') plt.title('Isotonic regression') plt.show()
bsd-3-clause
kedaio/tushare
tushare/stock/trading.py
1
29297
# -*- coding:utf-8 -*- """ 交易数据接口 Created on 2014/07/31 @author: Jimmy Liu @group : waditu @contact: [email protected] """ from __future__ import division import time import json import lxml.html from lxml import etree import pandas as pd import numpy as np from tushare.stock import cons as ct import re from pandas.compat import StringIO from tushare.util import dateu as du from tushare.stock.reference import new_stocks try: from urllib.request import urlopen, Request except ImportError: from urllib2 import urlopen, Request def get_hist_data(code=None, start=None, end=None, ktype='D', retry_count=3, pause=0.001): """ 获取个股历史交易记录 Parameters ------ code:string 股票代码 e.g. 600848 start:string 开始日期 format:YYYY-MM-DD 为空时取到API所提供的最早日期数据 end:string 结束日期 format:YYYY-MM-DD 为空时取到最近一个交易日数据 ktype:string 数据类型,D=日k线 W=周 M=月 5=5分钟 15=15分钟 30=30分钟 60=60分钟,默认为D retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 return ------- DataFrame 属性:日期 ,开盘价, 最高价, 收盘价, 最低价, 成交量, 价格变动 ,涨跌幅,5日均价,10日均价,20日均价,5日均量,10日均量,20日均量,换手率 """ symbol = _code_to_symbol(code) url = '' if ktype.upper() in ct.K_LABELS: url = ct.DAY_PRICE_URL%(ct.P_TYPE['http'], ct.DOMAINS['ifeng'], ct.K_TYPE[ktype.upper()], symbol) elif ktype in ct.K_MIN_LABELS: url = ct.DAY_PRICE_MIN_URL%(ct.P_TYPE['http'], ct.DOMAINS['ifeng'], symbol, ktype) else: raise TypeError('ktype input error.') for _ in range(retry_count): time.sleep(pause) try: request = Request(url) lines = urlopen(request, timeout = 10).read() if len(lines) < 15: #no data return None except Exception as e: print(e) else: js = json.loads(lines.decode('utf-8') if ct.PY3 else lines) cols = [] if (code in ct.INDEX_LABELS) & (ktype.upper() in ct.K_LABELS): cols = ct.INX_DAY_PRICE_COLUMNS else: cols = ct.DAY_PRICE_COLUMNS if len(js['record'][0]) == 14: cols = ct.INX_DAY_PRICE_COLUMNS df = pd.DataFrame(js['record'], columns=cols) if ktype.upper() in ['D', 'W', 'M']: df = df.applymap(lambda x: x.replace(u',', u'')) df[df==''] = 0 for col in cols[1:]: df[col] = df[col].astype(float) if start is not None: df = df[df.date >= start] if end is not None: df = df[df.date <= end] if (code in ct.INDEX_LABELS) & (ktype in ct.K_MIN_LABELS): df = df.drop('turnover', axis=1) df = df.set_index('date') df = df.sort_index(ascending = False) return df raise IOError(ct.NETWORK_URL_ERROR_MSG) def _parsing_dayprice_json(pageNum=1): """ 处理当日行情分页数据,格式为json Parameters ------ pageNum:页码 return ------- DataFrame 当日所有股票交易数据(DataFrame) """ ct._write_console() request = Request(ct.SINA_DAY_PRICE_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], ct.PAGES['jv'], pageNum)) text = urlopen(request, timeout=10).read() if text == 'null': return None reg = re.compile(r'\,(.*?)\:') text = reg.sub(r',"\1":', text.decode('gbk') if ct.PY3 else text) text = text.replace('"{symbol', '{"symbol') text = text.replace('{symbol', '{"symbol"') if ct.PY3: jstr = json.dumps(text) else: jstr = json.dumps(text, encoding='GBK') js = json.loads(jstr) df = pd.DataFrame(pd.read_json(js, dtype={'code':object}), columns=ct.DAY_TRADING_COLUMNS) df = df.drop('symbol', axis=1) # df = df.ix[df.volume > 0] return df def get_tick_data(code=None, date=None, retry_count=3, pause=0.001): """ 获取分笔数据 Parameters ------ code:string 股票代码 e.g. 600848 date:string 日期 format:YYYY-MM-DD retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 return ------- DataFrame 当日所有股票交易数据(DataFrame) 属性:成交时间、成交价格、价格变动,成交手、成交金额(元),买卖类型 """ if code is None or len(code)!=6 or date is None: return None symbol = _code_to_symbol(code) for _ in range(retry_count): time.sleep(pause) try: re = Request(ct.TICK_PRICE_URL % (ct.P_TYPE['http'], ct.DOMAINS['sf'], ct.PAGES['dl'], date, symbol)) lines = urlopen(re, timeout=10).read() lines = lines.decode('GBK') if len(lines) < 20: return None df = pd.read_table(StringIO(lines), names=ct.TICK_COLUMNS, skiprows=[0]) except Exception as e: print(e) else: return df raise IOError(ct.NETWORK_URL_ERROR_MSG) def get_sina_dd(code=None, date=None, vol=400, retry_count=3, pause=0.001): """ 获取sina大单数据 Parameters ------ code:string 股票代码 e.g. 600848 date:string 日期 format:YYYY-MM-DD retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 return ------- DataFrame 当日所有股票交易数据(DataFrame) 属性:股票代码 股票名称 交易时间 价格 成交量 前一笔价格 类型(买、卖、中性盘) """ if code is None or len(code)!=6 or date is None: return None symbol = _code_to_symbol(code) vol = vol*100 for _ in range(retry_count): time.sleep(pause) try: re = Request(ct.SINA_DD % (ct.P_TYPE['http'], ct.DOMAINS['vsf'], ct.PAGES['sinadd'], symbol, vol, date)) lines = urlopen(re, timeout=10).read() lines = lines.decode('GBK') if len(lines) < 100: return None df = pd.read_csv(StringIO(lines), names=ct.SINA_DD_COLS, skiprows=[0]) if df is not None: df['code'] = df['code'].map(lambda x: x[2:]) except Exception as e: print(e) else: return df raise IOError(ct.NETWORK_URL_ERROR_MSG) def get_today_ticks(code=None, retry_count=3, pause=0.001): """ 获取当日分笔明细数据 Parameters ------ code:string 股票代码 e.g. 600848 retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 return ------- DataFrame 当日所有股票交易数据(DataFrame) 属性:成交时间、成交价格、价格变动,成交手、成交金额(元),买卖类型 """ if code is None or len(code)!=6 : return None symbol = _code_to_symbol(code) date = du.today() for _ in range(retry_count): time.sleep(pause) try: request = Request(ct.TODAY_TICKS_PAGE_URL % (ct.P_TYPE['http'], ct.DOMAINS['vsf'], ct.PAGES['jv'], date, symbol)) data_str = urlopen(request, timeout=10).read() data_str = data_str.decode('GBK') data_str = data_str[1:-1] data_str = eval(data_str, type('Dummy', (dict,), dict(__getitem__ = lambda s, n:n))()) data_str = json.dumps(data_str) data_str = json.loads(data_str) pages = len(data_str['detailPages']) data = pd.DataFrame() ct._write_head() for pNo in range(1, pages+1): data = data.append(_today_ticks(symbol, date, pNo, retry_count, pause), ignore_index=True) except Exception as er: print(str(er)) else: return data raise IOError(ct.NETWORK_URL_ERROR_MSG) def _today_ticks(symbol, tdate, pageNo, retry_count, pause): ct._write_console() for _ in range(retry_count): time.sleep(pause) try: html = lxml.html.parse(ct.TODAY_TICKS_URL % (ct.P_TYPE['http'], ct.DOMAINS['vsf'], ct.PAGES['t_ticks'], symbol, tdate, pageNo )) res = html.xpath('//table[@id=\"datatbl\"]/tbody/tr') if ct.PY3: sarr = [etree.tostring(node).decode('utf-8') for node in res] else: sarr = [etree.tostring(node) for node in res] sarr = ''.join(sarr) sarr = '<table>%s</table>'%sarr sarr = sarr.replace('--', '0') df = pd.read_html(StringIO(sarr), parse_dates=False)[0] df.columns = ct.TODAY_TICK_COLUMNS df['pchange'] = df['pchange'].map(lambda x : x.replace('%', '')) except Exception as e: print(e) else: return df raise IOError(ct.NETWORK_URL_ERROR_MSG) def get_today_all(): """ 一次性获取最近一个日交易日所有股票的交易数据 return ------- DataFrame 属性:代码,名称,涨跌幅,现价,开盘价,最高价,最低价,最日收盘价,成交量,换手率,成交额,市盈率,市净率,总市值,流通市值 """ ct._write_head() df = _parsing_dayprice_json(1) if df is not None: for i in range(2, ct.PAGE_NUM[0]): newdf = _parsing_dayprice_json(i) df = df.append(newdf, ignore_index=True) return df def get_realtime_quotes(symbols=None): """ 获取实时交易数据 getting real time quotes data 用于跟踪交易情况(本次执行的结果-上一次执行的数据) Parameters ------ symbols : string, array-like object (list, tuple, Series). return ------- DataFrame 实时交易数据 属性:0:name,股票名字 1:open,今日开盘价 2:pre_close,昨日收盘价 3:price,当前价格 4:high,今日最高价 5:low,今日最低价 6:bid,竞买价,即“买一”报价 7:ask,竞卖价,即“卖一”报价 8:volumn,成交量 maybe you need do volumn/100 9:amount,成交金额(元 CNY) 10:b1_v,委买一(笔数 bid volume) 11:b1_p,委买一(价格 bid price) 12:b2_v,“买二” 13:b2_p,“买二” 14:b3_v,“买三” 15:b3_p,“买三” 16:b4_v,“买四” 17:b4_p,“买四” 18:b5_v,“买五” 19:b5_p,“买五” 20:a1_v,委卖一(笔数 ask volume) 21:a1_p,委卖一(价格 ask price) ... 30:date,日期; 31:time,时间; """ symbols_list = '' if isinstance(symbols, list) or isinstance(symbols, set) or isinstance(symbols, tuple) or isinstance(symbols, pd.Series): for code in symbols: symbols_list += _code_to_symbol(code) + ',' else: symbols_list = _code_to_symbol(symbols) symbols_list = symbols_list[:-1] if len(symbols_list) > 8 else symbols_list request = Request(ct.LIVE_DATA_URL%(ct.P_TYPE['http'], ct.DOMAINS['sinahq'], _random(), symbols_list)) text = urlopen(request,timeout=10).read() text = text.decode('GBK') reg = re.compile(r'\="(.*?)\";') data = reg.findall(text) regSym = re.compile(r'(?:sh|sz)(.*?)\=') syms = regSym.findall(text) data_list = [] syms_list = [] for index, row in enumerate(data): if len(row)>1: data_list.append([astr for astr in row.split(',')]) syms_list.append(syms[index]) if len(syms_list) == 0: return None df = pd.DataFrame(data_list, columns=ct.LIVE_DATA_COLS) df = df.drop('s', axis=1) df['code'] = syms_list ls = [cls for cls in df.columns if '_v' in cls] for txt in ls: df[txt] = df[txt].map(lambda x : x[:-2]) return df def get_h_data(code, start=None, end=None, autype='qfq', index=False, retry_count=3, pause=0.001, drop_factor=True): ''' 获取历史复权数据 Parameters ------ code:string 股票代码 e.g. 600848 start:string 开始日期 format:YYYY-MM-DD 为空时取当前日期 end:string 结束日期 format:YYYY-MM-DD 为空时取去年今日 autype:string 复权类型,qfq-前复权 hfq-后复权 None-不复权,默认为qfq retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 drop_factor : bool, 默认 True 是否移除复权因子,在分析过程中可能复权因子意义不大,但是如需要先储存到数据库之后再分析的话,有该项目会更加灵活 return ------- DataFrame date 交易日期 (index) open 开盘价 high 最高价 close 收盘价 low 最低价 volume 成交量 amount 成交金额 ''' start = du.today_last_year() if start is None else start end = du.today() if end is None else end qs = du.get_quarts(start, end) qt = qs[0] ct._write_head() data = _parse_fq_data(_get_index_url(index, code, qt), index, retry_count, pause) if data is None: data = pd.DataFrame() if len(qs)>1: for d in range(1, len(qs)): qt = qs[d] ct._write_console() df = _parse_fq_data(_get_index_url(index, code, qt), index, retry_count, pause) if df is None: # 可能df为空,退出循环 break else: data = data.append(df, ignore_index=True) if len(data) == 0 or len(data[(data.date>=start)&(data.date<=end)]) == 0: return None data = data.drop_duplicates('date') if index: data = data[(data.date>=start) & (data.date<=end)] data = data.set_index('date') data = data.sort_index(ascending=False) return data if autype == 'hfq': if drop_factor: data = data.drop('factor', axis=1) data = data[(data.date>=start) & (data.date<=end)] for label in ['open', 'high', 'close', 'low']: data[label] = data[label].map(ct.FORMAT) data[label] = data[label].astype(float) data = data.set_index('date') data = data.sort_index(ascending = False) return data else: if autype == 'qfq': if drop_factor: data = data.drop('factor', axis=1) df = _parase_fq_factor(code, start, end) df = df.drop_duplicates('date') df = df.sort('date', ascending=False) firstDate = data.head(1)['date'] frow = df[df.date == firstDate[0]] rt = get_realtime_quotes(code) if rt is None: return None if ((float(rt['high']) == 0) & (float(rt['low']) == 0)): preClose = float(rt['pre_close']) else: if du.is_holiday(du.today()): preClose = float(rt['price']) else: if (du.get_hour() > 9) & (du.get_hour() < 18): preClose = float(rt['pre_close']) else: preClose = float(rt['price']) rate = float(frow['factor']) / preClose data = data[(data.date >= start) & (data.date <= end)] for label in ['open', 'high', 'low', 'close']: data[label] = data[label] / rate data[label] = data[label].map(ct.FORMAT) data[label] = data[label].astype(float) data = data.set_index('date') data = data.sort_index(ascending = False) return data else: for label in ['open', 'high', 'close', 'low']: data[label] = data[label] / data['factor'] if drop_factor: data = data.drop('factor', axis=1) data = data[(data.date>=start) & (data.date<=end)] for label in ['open', 'high', 'close', 'low']: data[label] = data[label].map(ct.FORMAT) data = data.set_index('date') data = data.sort_index(ascending = False) data = data.astype(float) return data def _parase_fq_factor(code, start, end): symbol = _code_to_symbol(code) request = Request(ct.HIST_FQ_FACTOR_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], symbol)) text = urlopen(request, timeout=10).read() text = text[1:len(text)-1] text = text.decode('utf-8') if ct.PY3 else text text = text.replace('{_', '{"') text = text.replace('total', '"total"') text = text.replace('data', '"data"') text = text.replace(':"', '":"') text = text.replace('",_', '","') text = text.replace('_', '-') text = json.loads(text) df = pd.DataFrame({'date':list(text['data'].keys()), 'factor':list(text['data'].values())}) df['date'] = df['date'].map(_fun_except) # for null case if df['date'].dtypes == np.object: df['date'] = df['date'].astype(np.datetime64) df = df.drop_duplicates('date') df['factor'] = df['factor'].astype(float) return df def _fun_except(x): if len(x) > 10: return x[-10:] else: return x def _parse_fq_data(url, index, retry_count, pause): for _ in range(retry_count): time.sleep(pause) try: request = Request(url) text = urlopen(request, timeout=10).read() text = text.decode('GBK') html = lxml.html.parse(StringIO(text)) res = html.xpath('//table[@id=\"FundHoldSharesTable\"]') if ct.PY3: sarr = [etree.tostring(node).decode('utf-8') for node in res] else: sarr = [etree.tostring(node) for node in res] sarr = ''.join(sarr) if sarr == '': return None df = pd.read_html(sarr, skiprows = [0, 1])[0] if len(df) == 0: return pd.DataFrame() if index: df.columns = ct.HIST_FQ_COLS[0:7] else: df.columns = ct.HIST_FQ_COLS if df['date'].dtypes == np.object: df['date'] = df['date'].astype(np.datetime64) df = df.drop_duplicates('date') except ValueError as e: # 时间较早,已经读不到数据 return None except Exception as e: print(e) else: return df raise IOError(ct.NETWORK_URL_ERROR_MSG) def get_index(): """ 获取大盘指数行情 return ------- DataFrame code:指数代码 name:指数名称 change:涨跌幅 open:开盘价 preclose:昨日收盘价 close:收盘价 high:最高价 low:最低价 volume:成交量(手) amount:成交金额(亿元) """ request = Request(ct.INDEX_HQ_URL%(ct.P_TYPE['http'], ct.DOMAINS['sinahq'])) text = urlopen(request, timeout=10).read() text = text.decode('GBK') text = text.replace('var hq_str_sh', '').replace('var hq_str_sz', '') text = text.replace('";', '').replace('"', '').replace('=', ',') text = '%s%s'%(ct.INDEX_HEADER, text) df = pd.read_csv(StringIO(text), sep=',', thousands=',') df['change'] = (df['close'] / df['preclose'] - 1 ) * 100 df['amount'] = df['amount'] / 100000000 df['change'] = df['change'].map(ct.FORMAT) df['amount'] = df['amount'].map(ct.FORMAT4) df = df[ct.INDEX_COLS] df['code'] = df['code'].map(lambda x:str(x).zfill(6)) df['change'] = df['change'].astype(float) df['amount'] = df['amount'].astype(float) return df def _get_index_url(index, code, qt): if index: url = ct.HIST_INDEX_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], code, qt[0], qt[1]) else: url = ct.HIST_FQ_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], code, qt[0], qt[1]) return url def get_k_data(code=None, start='', end='', ktype='D', autype='qfq', index=False, retry_count=3, pause=0.001): """ 获取k线数据 --------- Parameters: code:string 股票代码 e.g. 600848 start:string 开始日期 format:YYYY-MM-DD 为空时取上市首日 end:string 结束日期 format:YYYY-MM-DD 为空时取最近一个交易日 autype:string 复权类型,qfq-前复权 hfq-后复权 None-不复权,默认为qfq ktype:string 数据类型,D=日k线 W=周 M=月 5=5分钟 15=15分钟 30=30分钟 60=60分钟,默认为D retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 return ------- DataFrame date 交易日期 (index) open 开盘价 high 最高价 close 收盘价 low 最低价 volume 成交量 code 股票代码 """ symbol = ct.INDEX_SYMBOL[code] if index else _code_to_symbol(code) url = '' dataflag = '' autype = '' if autype is None else autype if (start is not None) & (start != ''): end = du.today() if end is None or end == '' else end if ktype.upper() in ct.K_LABELS: fq = autype if autype is not None else '' if code[:1] in ('1', '5') or index: fq = '' kline = '' if autype is None else 'fq' if (start is None or start == '') & (end is None or end == ''): urls = [ct.KLINE_TT_URL%(ct.P_TYPE['http'], ct.DOMAINS['tt'], kline, fq, symbol, ct.TT_K_TYPE[ktype.upper()], start, end, fq, _random(17))] else: years = du.tt_dates(start, end) urls = [] for year in years: startdate = str(year) + '-01-01' enddate = str(year+1) + '-12-31' url = ct.KLINE_TT_URL%(ct.P_TYPE['http'], ct.DOMAINS['tt'], kline, fq+str(year), symbol, ct.TT_K_TYPE[ktype.upper()], startdate, enddate, fq, _random(17)) urls.append(url) dataflag = '%s%s'%(fq, ct.TT_K_TYPE[ktype.upper()]) elif ktype in ct.K_MIN_LABELS: urls = [ct.KLINE_TT_MIN_URL%(ct.P_TYPE['http'], ct.DOMAINS['tt'], symbol, ktype, ktype, _random(16))] dataflag = 'm%s'%ktype else: raise TypeError('ktype input error.') data = pd.DataFrame() for url in urls: data = data.append(_get_k_data(url, dataflag, symbol, code, index, ktype, retry_count, pause), ignore_index=True) if ktype not in ct.K_MIN_LABELS: if ((start is not None) & (start != '')) & ((end is not None) & (end != '')): data = data[(data.date >= start) & (data.date <= end)] return data raise IOError(ct.NETWORK_URL_ERROR_MSG) def _get_k_data(url, dataflag='', symbol='', code = '', index = False, ktype = '', retry_count=3, pause=0.001): for _ in range(retry_count): time.sleep(pause) try: request = Request(url) lines = urlopen(request, timeout = 10).read() if len(lines) < 100: #no data return None except Exception as e: print(e) else: lines = lines.decode('utf-8') if ct.PY3 else lines lines = lines.split('=')[1] reg = re.compile(r',{"nd.*?}') lines = re.subn(reg, '', lines) js = json.loads(lines[0]) dataflag = dataflag if dataflag in list(js['data'][symbol].keys()) else ct.TT_K_TYPE[ktype.upper()] df = pd.DataFrame(js['data'][symbol][dataflag], columns=ct.KLINE_TT_COLS) df['code'] = symbol if index else code if ktype in ct.K_MIN_LABELS: df['date'] = df['date'].map(lambda x: '%s-%s-%s %s:%s'%(x[0:4], x[4:6], x[6:8], x[8:10], x[10:12])) for col in df.columns[1:6]: df[col] = df[col].astype(float) return df def get_hists(symbols, start=None, end=None, ktype='D', retry_count=3, pause=0.001): """ 批量获取历史行情数据,具体参数和返回数据类型请参考get_hist_data接口 """ df = pd.DataFrame() if isinstance(symbols, list) or isinstance(symbols, set) or isinstance(symbols, tuple) or isinstance(symbols, pd.Series): for symbol in symbols: data = get_hist_data(symbol, start=start, end=end, ktype=ktype, retry_count=retry_count, pause=pause) data['code'] = symbol df = df.append(data, ignore_index=True) return df else: return None def _random(n=13): from random import randint start = 10**(n-1) end = (10**n)-1 return str(randint(start, end)) def _code_to_symbol(code): """ 生成symbol代码标志 """ if code in ct.INDEX_LABELS: return ct.INDEX_LIST[code] else: if len(code) != 6 : return '' else: return 'sh%s'%code if code[:1] in ['5', '6', '9'] else 'sz%s'%code
bsd-3-clause
Midafi/scikit-image
skimage/util/colormap.py
25
12423
from matplotlib.colors import LinearSegmentedColormap viridis_data = [[ 0.26700401, 0.00487433, 0.32941519], [ 0.26851048, 0.00960483, 0.33542652], [ 0.26994384, 0.01462494, 0.34137895], [ 0.27130489, 0.01994186, 0.34726862], [ 0.27259384, 0.02556309, 0.35309303], [ 0.27380934, 0.03149748, 0.35885256], [ 0.27495242, 0.03775181, 0.36454323], [ 0.27602238, 0.04416723, 0.37016418], [ 0.2770184 , 0.05034437, 0.37571452], [ 0.27794143, 0.05632444, 0.38119074], [ 0.27879067, 0.06214536, 0.38659204], [ 0.2795655 , 0.06783587, 0.39191723], [ 0.28026658, 0.07341724, 0.39716349], [ 0.28089358, 0.07890703, 0.40232944], [ 0.28144581, 0.0843197 , 0.40741404], [ 0.28192358, 0.08966622, 0.41241521], [ 0.28232739, 0.09495545, 0.41733086], [ 0.28265633, 0.10019576, 0.42216032], [ 0.28291049, 0.10539345, 0.42690202], [ 0.28309095, 0.11055307, 0.43155375], [ 0.28319704, 0.11567966, 0.43611482], [ 0.28322882, 0.12077701, 0.44058404], [ 0.28318684, 0.12584799, 0.44496 ], [ 0.283072 , 0.13089477, 0.44924127], [ 0.28288389, 0.13592005, 0.45342734], [ 0.28262297, 0.14092556, 0.45751726], [ 0.28229037, 0.14591233, 0.46150995], [ 0.28188676, 0.15088147, 0.46540474], [ 0.28141228, 0.15583425, 0.46920128], [ 0.28086773, 0.16077132, 0.47289909], [ 0.28025468, 0.16569272, 0.47649762], [ 0.27957399, 0.17059884, 0.47999675], [ 0.27882618, 0.1754902 , 0.48339654], [ 0.27801236, 0.18036684, 0.48669702], [ 0.27713437, 0.18522836, 0.48989831], [ 0.27619376, 0.19007447, 0.49300074], [ 0.27519116, 0.1949054 , 0.49600488], [ 0.27412802, 0.19972086, 0.49891131], [ 0.27300596, 0.20452049, 0.50172076], [ 0.27182812, 0.20930306, 0.50443413], [ 0.27059473, 0.21406899, 0.50705243], [ 0.26930756, 0.21881782, 0.50957678], [ 0.26796846, 0.22354911, 0.5120084 ], [ 0.26657984, 0.2282621 , 0.5143487 ], [ 0.2651445 , 0.23295593, 0.5165993 ], [ 0.2636632 , 0.23763078, 0.51876163], [ 0.26213801, 0.24228619, 0.52083736], [ 0.26057103, 0.2469217 , 0.52282822], [ 0.25896451, 0.25153685, 0.52473609], [ 0.25732244, 0.2561304 , 0.52656332], [ 0.25564519, 0.26070284, 0.52831152], [ 0.25393498, 0.26525384, 0.52998273], [ 0.25219404, 0.26978306, 0.53157905], [ 0.25042462, 0.27429024, 0.53310261], [ 0.24862899, 0.27877509, 0.53455561], [ 0.2468114 , 0.28323662, 0.53594093], [ 0.24497208, 0.28767547, 0.53726018], [ 0.24311324, 0.29209154, 0.53851561], [ 0.24123708, 0.29648471, 0.53970946], [ 0.23934575, 0.30085494, 0.54084398], [ 0.23744138, 0.30520222, 0.5419214 ], [ 0.23552606, 0.30952657, 0.54294396], [ 0.23360277, 0.31382773, 0.54391424], [ 0.2316735 , 0.3181058 , 0.54483444], [ 0.22973926, 0.32236127, 0.54570633], [ 0.22780192, 0.32659432, 0.546532 ], [ 0.2258633 , 0.33080515, 0.54731353], [ 0.22392515, 0.334994 , 0.54805291], [ 0.22198915, 0.33916114, 0.54875211], [ 0.22005691, 0.34330688, 0.54941304], [ 0.21812995, 0.34743154, 0.55003755], [ 0.21620971, 0.35153548, 0.55062743], [ 0.21429757, 0.35561907, 0.5511844 ], [ 0.21239477, 0.35968273, 0.55171011], [ 0.2105031 , 0.36372671, 0.55220646], [ 0.20862342, 0.36775151, 0.55267486], [ 0.20675628, 0.37175775, 0.55311653], [ 0.20490257, 0.37574589, 0.55353282], [ 0.20306309, 0.37971644, 0.55392505], [ 0.20123854, 0.38366989, 0.55429441], [ 0.1994295 , 0.38760678, 0.55464205], [ 0.1976365 , 0.39152762, 0.55496905], [ 0.19585993, 0.39543297, 0.55527637], [ 0.19410009, 0.39932336, 0.55556494], [ 0.19235719, 0.40319934, 0.55583559], [ 0.19063135, 0.40706148, 0.55608907], [ 0.18892259, 0.41091033, 0.55632606], [ 0.18723083, 0.41474645, 0.55654717], [ 0.18555593, 0.4185704 , 0.55675292], [ 0.18389763, 0.42238275, 0.55694377], [ 0.18225561, 0.42618405, 0.5571201 ], [ 0.18062949, 0.42997486, 0.55728221], [ 0.17901879, 0.43375572, 0.55743035], [ 0.17742298, 0.4375272 , 0.55756466], [ 0.17584148, 0.44128981, 0.55768526], [ 0.17427363, 0.4450441 , 0.55779216], [ 0.17271876, 0.4487906 , 0.55788532], [ 0.17117615, 0.4525298 , 0.55796464], [ 0.16964573, 0.45626209, 0.55803034], [ 0.16812641, 0.45998802, 0.55808199], [ 0.1666171 , 0.46370813, 0.55811913], [ 0.16511703, 0.4674229 , 0.55814141], [ 0.16362543, 0.47113278, 0.55814842], [ 0.16214155, 0.47483821, 0.55813967], [ 0.16066467, 0.47853961, 0.55811466], [ 0.15919413, 0.4822374 , 0.5580728 ], [ 0.15772933, 0.48593197, 0.55801347], [ 0.15626973, 0.4896237 , 0.557936 ], [ 0.15481488, 0.49331293, 0.55783967], [ 0.15336445, 0.49700003, 0.55772371], [ 0.1519182 , 0.50068529, 0.55758733], [ 0.15047605, 0.50436904, 0.55742968], [ 0.14903918, 0.50805136, 0.5572505 ], [ 0.14760731, 0.51173263, 0.55704861], [ 0.14618026, 0.51541316, 0.55682271], [ 0.14475863, 0.51909319, 0.55657181], [ 0.14334327, 0.52277292, 0.55629491], [ 0.14193527, 0.52645254, 0.55599097], [ 0.14053599, 0.53013219, 0.55565893], [ 0.13914708, 0.53381201, 0.55529773], [ 0.13777048, 0.53749213, 0.55490625], [ 0.1364085 , 0.54117264, 0.55448339], [ 0.13506561, 0.54485335, 0.55402906], [ 0.13374299, 0.54853458, 0.55354108], [ 0.13244401, 0.55221637, 0.55301828], [ 0.13117249, 0.55589872, 0.55245948], [ 0.1299327 , 0.55958162, 0.55186354], [ 0.12872938, 0.56326503, 0.55122927], [ 0.12756771, 0.56694891, 0.55055551], [ 0.12645338, 0.57063316, 0.5498411 ], [ 0.12539383, 0.57431754, 0.54908564], [ 0.12439474, 0.57800205, 0.5482874 ], [ 0.12346281, 0.58168661, 0.54744498], [ 0.12260562, 0.58537105, 0.54655722], [ 0.12183122, 0.58905521, 0.54562298], [ 0.12114807, 0.59273889, 0.54464114], [ 0.12056501, 0.59642187, 0.54361058], [ 0.12009154, 0.60010387, 0.54253043], [ 0.11973756, 0.60378459, 0.54139999], [ 0.11951163, 0.60746388, 0.54021751], [ 0.11942341, 0.61114146, 0.53898192], [ 0.11948255, 0.61481702, 0.53769219], [ 0.11969858, 0.61849025, 0.53634733], [ 0.12008079, 0.62216081, 0.53494633], [ 0.12063824, 0.62582833, 0.53348834], [ 0.12137972, 0.62949242, 0.53197275], [ 0.12231244, 0.63315277, 0.53039808], [ 0.12344358, 0.63680899, 0.52876343], [ 0.12477953, 0.64046069, 0.52706792], [ 0.12632581, 0.64410744, 0.52531069], [ 0.12808703, 0.64774881, 0.52349092], [ 0.13006688, 0.65138436, 0.52160791], [ 0.13226797, 0.65501363, 0.51966086], [ 0.13469183, 0.65863619, 0.5176488 ], [ 0.13733921, 0.66225157, 0.51557101], [ 0.14020991, 0.66585927, 0.5134268 ], [ 0.14330291, 0.66945881, 0.51121549], [ 0.1466164 , 0.67304968, 0.50893644], [ 0.15014782, 0.67663139, 0.5065889 ], [ 0.15389405, 0.68020343, 0.50417217], [ 0.15785146, 0.68376525, 0.50168574], [ 0.16201598, 0.68731632, 0.49912906], [ 0.1663832 , 0.69085611, 0.49650163], [ 0.1709484 , 0.69438405, 0.49380294], [ 0.17570671, 0.6978996 , 0.49103252], [ 0.18065314, 0.70140222, 0.48818938], [ 0.18578266, 0.70489133, 0.48527326], [ 0.19109018, 0.70836635, 0.48228395], [ 0.19657063, 0.71182668, 0.47922108], [ 0.20221902, 0.71527175, 0.47608431], [ 0.20803045, 0.71870095, 0.4728733 ], [ 0.21400015, 0.72211371, 0.46958774], [ 0.22012381, 0.72550945, 0.46622638], [ 0.2263969 , 0.72888753, 0.46278934], [ 0.23281498, 0.73224735, 0.45927675], [ 0.2393739 , 0.73558828, 0.45568838], [ 0.24606968, 0.73890972, 0.45202405], [ 0.25289851, 0.74221104, 0.44828355], [ 0.25985676, 0.74549162, 0.44446673], [ 0.26694127, 0.74875084, 0.44057284], [ 0.27414922, 0.75198807, 0.4366009 ], [ 0.28147681, 0.75520266, 0.43255207], [ 0.28892102, 0.75839399, 0.42842626], [ 0.29647899, 0.76156142, 0.42422341], [ 0.30414796, 0.76470433, 0.41994346], [ 0.31192534, 0.76782207, 0.41558638], [ 0.3198086 , 0.77091403, 0.41115215], [ 0.3277958 , 0.77397953, 0.40664011], [ 0.33588539, 0.7770179 , 0.40204917], [ 0.34407411, 0.78002855, 0.39738103], [ 0.35235985, 0.78301086, 0.39263579], [ 0.36074053, 0.78596419, 0.38781353], [ 0.3692142 , 0.78888793, 0.38291438], [ 0.37777892, 0.79178146, 0.3779385 ], [ 0.38643282, 0.79464415, 0.37288606], [ 0.39517408, 0.79747541, 0.36775726], [ 0.40400101, 0.80027461, 0.36255223], [ 0.4129135 , 0.80304099, 0.35726893], [ 0.42190813, 0.80577412, 0.35191009], [ 0.43098317, 0.80847343, 0.34647607], [ 0.44013691, 0.81113836, 0.3409673 ], [ 0.44936763, 0.81376835, 0.33538426], [ 0.45867362, 0.81636288, 0.32972749], [ 0.46805314, 0.81892143, 0.32399761], [ 0.47750446, 0.82144351, 0.31819529], [ 0.4870258 , 0.82392862, 0.31232133], [ 0.49661536, 0.82637633, 0.30637661], [ 0.5062713 , 0.82878621, 0.30036211], [ 0.51599182, 0.83115784, 0.29427888], [ 0.52577622, 0.83349064, 0.2881265 ], [ 0.5356211 , 0.83578452, 0.28190832], [ 0.5455244 , 0.83803918, 0.27562602], [ 0.55548397, 0.84025437, 0.26928147], [ 0.5654976 , 0.8424299 , 0.26287683], [ 0.57556297, 0.84456561, 0.25641457], [ 0.58567772, 0.84666139, 0.24989748], [ 0.59583934, 0.84871722, 0.24332878], [ 0.60604528, 0.8507331 , 0.23671214], [ 0.61629283, 0.85270912, 0.23005179], [ 0.62657923, 0.85464543, 0.22335258], [ 0.63690157, 0.85654226, 0.21662012], [ 0.64725685, 0.85839991, 0.20986086], [ 0.65764197, 0.86021878, 0.20308229], [ 0.66805369, 0.86199932, 0.19629307], [ 0.67848868, 0.86374211, 0.18950326], [ 0.68894351, 0.86544779, 0.18272455], [ 0.69941463, 0.86711711, 0.17597055], [ 0.70989842, 0.86875092, 0.16925712], [ 0.72039115, 0.87035015, 0.16260273], [ 0.73088902, 0.87191584, 0.15602894], [ 0.74138803, 0.87344918, 0.14956101], [ 0.75188414, 0.87495143, 0.14322828], [ 0.76237342, 0.87642392, 0.13706449], [ 0.77285183, 0.87786808, 0.13110864], [ 0.78331535, 0.87928545, 0.12540538], [ 0.79375994, 0.88067763, 0.12000532], [ 0.80418159, 0.88204632, 0.11496505], [ 0.81457634, 0.88339329, 0.11034678], [ 0.82494028, 0.88472036, 0.10621724], [ 0.83526959, 0.88602943, 0.1026459 ], [ 0.84556056, 0.88732243, 0.09970219], [ 0.8558096 , 0.88860134, 0.09745186], [ 0.86601325, 0.88986815, 0.09595277], [ 0.87616824, 0.89112487, 0.09525046], [ 0.88627146, 0.89237353, 0.09537439], [ 0.89632002, 0.89361614, 0.09633538], [ 0.90631121, 0.89485467, 0.09812496], [ 0.91624212, 0.89609127, 0.1007168 ], [ 0.92610579, 0.89732977, 0.10407067], [ 0.93590444, 0.8985704 , 0.10813094], [ 0.94563626, 0.899815 , 0.11283773], [ 0.95529972, 0.90106534, 0.11812832], [ 0.96489353, 0.90232311, 0.12394051], [ 0.97441665, 0.90358991, 0.13021494], [ 0.98386829, 0.90486726, 0.13689671], [ 0.99324789, 0.90615657, 0.1439362 ]] viridis = LinearSegmentedColormap.from_list('viridis', viridis_data)
bsd-3-clause
valexandersaulys/airbnb_kaggle_contest
prototype_alpha/xgboost_take13.py
1
2290
""" Take 1 on the RandomForest, predicting for country_destinations. """ import pandas as pd import numpy as np from sklearn.cross_validation import train_test_split training = pd.read_csv("protoAlpha_training.csv") testing = pd.read_csv("protoAlpha_testing.csv") X = training.iloc[:,1:-1].values y = training['country_destination'].values x_train,x_valid,y_train,y_valid = train_test_split(X,y,test_size=0.3,random_state=None) # LabelEncoder from sklearn.preprocessing import LabelEncoder le = LabelEncoder() le.fit(y_train); y_train = le.transform(y_train); y_valid = le.transform(y_valid); # Train classifier import xgboost as xgb xg_train = xgb.DMatrix(x_train,label=y_train); xg_valid = xgb.DMatrix(x_valid,label=y_valid); # setup parameters for xgboost param = {} # use softmax multi-class classification param['objective'] = 'multi:softmax' # can be 'multi:softmax' or 'multi:softprob' # scale weight of positive examples param['eta'] = 0.9 param['max_depth'] = 1000 param['gamma'] = 0.1 param['silent'] = 0 # 1 means silent mode param['nthread'] = 8 param['min_child_weight'] = 0.01 # 1 is the default; the larger, the more conservative param['num_class'] = len(np.unique(y_train).tolist()); param['booster'] = 'gbtree' # default is 'gbtree' param['subsample'] = 1.0 # default is 1.0 param['base_score'] = 0.5 # default is 0.5 # Train & Get validation data num_round = 10000 clf = xgb.train(param, xg_train, num_round); #clf = xgb.cv(param, xg_train, num_round); # get predictions y_preds = clf.predict( xg_valid ); # Run Predictions from sklearn.metrics import confusion_matrix, accuracy_score print( confusion_matrix(y_valid,y_preds) ); print( "Accuracy: %f" % (accuracy_score(y_valid,y_preds)) ); f = open('xgboost_take13.txt', 'w') f.write( str(confusion_matrix(y_valid,y_preds)) ); f.write( "\nAccuracy: %f" % (accuracy_score(y_valid,y_preds)) ); f.write( str(param) ); # Now on to final submission xg_test = xgb.DMatrix(testing.iloc[:,1:].values); y_final = le.inverse_transform( clf.predict(xg_test).reshape([62096,]).astype(int) ); y_final = pd.DataFrame(y_final); numbahs = testing['id'] df = pd.concat([numbahs,y_final],axis=1) df.columns = ['id','country'] df.to_csv("xgboost_take13.csv",index=False) # Save model clf.save_model('xgb_take13.model');
gpl-2.0
mayblue9/scikit-learn
doc/conf.py
210
8446
# -*- coding: utf-8 -*- # # scikit-learn documentation build configuration file, created by # sphinx-quickstart on Fri Jan 8 09:13:42 2010. # # This file is execfile()d with the current directory set to its containing # dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. from __future__ import print_function import sys import os from sklearn.externals.six import u # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. sys.path.insert(0, os.path.abspath('sphinxext')) from github_link import make_linkcode_resolve # -- General configuration --------------------------------------------------- # Try to override the matplotlib configuration as early as possible try: import gen_rst except: pass # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['gen_rst', 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.pngmath', 'numpy_ext.numpydoc', 'sphinx.ext.linkcode', ] autosummary_generate = True autodoc_default_flags = ['members', 'inherited-members'] # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # generate autosummary even if no references autosummary_generate = True # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # Generate the plots for the gallery plot_gallery = True # The master toctree document. master_doc = 'index' # General information about the project. project = u('scikit-learn') copyright = u('2010 - 2014, scikit-learn developers (BSD License)') # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. import sklearn version = sklearn.__version__ # The full version, including alpha/beta/rc tags. release = sklearn.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be # searched for source files. exclude_trees = ['_build', 'templates', 'includes'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'scikit-learn' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = {'oldversion': False, 'collapsiblesidebar': True, 'google_analytics': True, 'surveybanner': False, 'sprintbanner': True} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = 'scikit-learn' # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = 'logos/scikit-learn-logo-small.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = 'logos/favicon.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['images'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_domain_indices = False # If false, no index is generated. html_use_index = False # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'scikit-learndoc' # -- Options for LaTeX output ------------------------------------------------ # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [('index', 'user_guide.tex', u('scikit-learn user guide'), u('scikit-learn developers'), 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = "logos/scikit-learn-logo.png" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. latex_preamble = r""" \usepackage{amsmath}\usepackage{amsfonts}\usepackage{bm}\usepackage{morefloats} \usepackage{enumitem} \setlistdepth{10} """ # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. latex_domain_indices = False trim_doctests_flags = True def generate_example_rst(app, what, name, obj, options, lines): # generate empty examples files, so that we don't get # inclusion errors if there are no examples for a class / module examples_path = os.path.join(app.srcdir, "modules", "generated", "%s.examples" % name) if not os.path.exists(examples_path): # touch file open(examples_path, 'w').close() def setup(app): # to hide/show the prompt in code examples: app.add_javascript('js/copybutton.js') app.connect('autodoc-process-docstring', generate_example_rst) # The following is used by sphinx.ext.linkcode to provide links to github linkcode_resolve = make_linkcode_resolve('sklearn', u'https://github.com/scikit-learn/' 'scikit-learn/blob/{revision}/' '{package}/{path}#L{lineno}')
bsd-3-clause
ishanic/scikit-learn
benchmarks/bench_plot_neighbors.py
287
6433
""" Plot the scaling of the nearest neighbors algorithms with k, D, and N """ from time import time import numpy as np import pylab as pl from matplotlib import ticker from sklearn import neighbors, datasets def get_data(N, D, dataset='dense'): if dataset == 'dense': np.random.seed(0) return np.random.random((N, D)) elif dataset == 'digits': X = datasets.load_digits().data i = np.argsort(X[0])[::-1] X = X[:, i] return X[:N, :D] else: raise ValueError("invalid dataset: %s" % dataset) def barplot_neighbors(Nrange=2 ** np.arange(1, 11), Drange=2 ** np.arange(7), krange=2 ** np.arange(10), N=1000, D=64, k=5, leaf_size=30, dataset='digits'): algorithms = ('kd_tree', 'brute', 'ball_tree') fiducial_values = {'N': N, 'D': D, 'k': k} #------------------------------------------------------------ # varying N N_results_build = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) N_results_query = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) for i, NN in enumerate(Nrange): print("N = %i (%i out of %i)" % (NN, i + 1, len(Nrange))) X = get_data(NN, D, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=min(NN, k), algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() N_results_build[algorithm][i] = (t1 - t0) N_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying D D_results_build = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) D_results_query = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) for i, DD in enumerate(Drange): print("D = %i (%i out of %i)" % (DD, i + 1, len(Drange))) X = get_data(N, DD, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=k, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() D_results_build[algorithm][i] = (t1 - t0) D_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying k k_results_build = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) k_results_query = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) X = get_data(N, DD, dataset) for i, kk in enumerate(krange): print("k = %i (%i out of %i)" % (kk, i + 1, len(krange))) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=kk, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() k_results_build[algorithm][i] = (t1 - t0) k_results_query[algorithm][i] = (t2 - t1) pl.figure(figsize=(8, 11)) for (sbplt, vals, quantity, build_time, query_time) in [(311, Nrange, 'N', N_results_build, N_results_query), (312, Drange, 'D', D_results_build, D_results_query), (313, krange, 'k', k_results_build, k_results_query)]: ax = pl.subplot(sbplt, yscale='log') pl.grid(True) tick_vals = [] tick_labels = [] bottom = 10 ** np.min([min(np.floor(np.log10(build_time[alg]))) for alg in algorithms]) for i, alg in enumerate(algorithms): xvals = 0.1 + i * (1 + len(vals)) + np.arange(len(vals)) width = 0.8 c_bar = pl.bar(xvals, build_time[alg] - bottom, width, bottom, color='r') q_bar = pl.bar(xvals, query_time[alg], width, build_time[alg], color='b') tick_vals += list(xvals + 0.5 * width) tick_labels += ['%i' % val for val in vals] pl.text((i + 0.02) / len(algorithms), 0.98, alg, transform=ax.transAxes, ha='left', va='top', bbox=dict(facecolor='w', edgecolor='w', alpha=0.5)) pl.ylabel('Time (s)') ax.xaxis.set_major_locator(ticker.FixedLocator(tick_vals)) ax.xaxis.set_major_formatter(ticker.FixedFormatter(tick_labels)) for label in ax.get_xticklabels(): label.set_rotation(-90) label.set_fontsize(10) title_string = 'Varying %s' % quantity descr_string = '' for s in 'NDk': if s == quantity: pass else: descr_string += '%s = %i, ' % (s, fiducial_values[s]) descr_string = descr_string[:-2] pl.text(1.01, 0.5, title_string, transform=ax.transAxes, rotation=-90, ha='left', va='center', fontsize=20) pl.text(0.99, 0.5, descr_string, transform=ax.transAxes, rotation=-90, ha='right', va='center') pl.gcf().suptitle("%s data set" % dataset.capitalize(), fontsize=16) pl.figlegend((c_bar, q_bar), ('construction', 'N-point query'), 'upper right') if __name__ == '__main__': barplot_neighbors(dataset='digits') barplot_neighbors(dataset='dense') pl.show()
bsd-3-clause
csgxy123/Dato-Core
src/unity/python/graphlab/deps/__init__.py
13
1294
''' Copyright (C) 2015 Dato, Inc. All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the DATO-PYTHON-LICENSE file for details. ''' from distutils.version import StrictVersion import logging def __get_version(version): if 'dev' in str(version): version = version[:version.find('.dev')] return StrictVersion(version) HAS_PANDAS = True PANDAS_MIN_VERSION = '0.13.0' try: import pandas if __get_version(pandas.__version__) < StrictVersion(PANDAS_MIN_VERSION): HAS_PANDAS = False logging.warn(('Pandas version %s is not supported. Minimum required version: %s. ' 'Pandas support will be disabled.') % (pandas.__version__, PANDAS_MIN_VERSION) ) except: HAS_PANDAS = False import pandas_mock as pandas HAS_NUMPY = True NUMPY_MIN_VERSION = '1.8.0' try: import numpy if __get_version(numpy.__version__) < StrictVersion(NUMPY_MIN_VERSION): HAS_NUMPY = False logging.warn(('Numpy version %s is not supported. Minimum required version: %s. ' 'Numpy support will be disabled.') % (numpy.__version__, NUMPY_MIN_VERSION) ) except: HAS_NUMPY = False import numpy_mock as numpy
agpl-3.0
benjaminpope/whisky
pymask/__init__.py
2
1629
''' -------------------------------------------------------------------- PYMASK: Python aperture masking analysis pipeline -------------------------------------------------------------------- --- pymask is a python module for fitting models to aperture masking data reduced to oifits format by the IDL masking pipeline. It consists of a class, cpo, which stores all the relevant information from the oifits file, and a set of functions, cp_tools, for manipulating these data and fitting models. Fitting is based on the MCMC Hammer algorithm (aka ensemble affine invariant MCMC) or the MultiNest algorithm (aka multimodal nested sampling). Both of these must be installed correctly or else pymask won't work! See readme.txt for more details. - Ben --- -------------------------------------------------------------------- ''' #!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import pyfits as pf import copy import pickle import os import sys import pdb import oifits shift = np.fft.fftshift fft = np.fft.fft2 ifft = np.fft.ifft2 dtor = np.pi/180.0 import cp_tools from cp_tools import * import cpo from cpo import * # ------------------------------------------------- # set some defaults to display images that will # look more like the DS9 display.... # ------------------------------------------------- #plt.set_cmap(cm.gray) (plt.rcParams)['image.origin'] = 'lower' (plt.rcParams)['image.interpolation'] = 'nearest' # ------------------------------------------------- plt.close()
gpl-3.0
ky822/scikit-learn
sklearn/datasets/tests/test_20news.py
280
3045
"""Test the 20news downloader, if the data is available.""" import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest from sklearn import datasets def test_20news(): try: data = datasets.fetch_20newsgroups( subset='all', download_if_missing=False, shuffle=False) except IOError: raise SkipTest("Download 20 newsgroups to run this test") # Extract a reduced dataset data2cats = datasets.fetch_20newsgroups( subset='all', categories=data.target_names[-1:-3:-1], shuffle=False) # Check that the ordering of the target_names is the same # as the ordering in the full dataset assert_equal(data2cats.target_names, data.target_names[-2:]) # Assert that we have only 0 and 1 as labels assert_equal(np.unique(data2cats.target).tolist(), [0, 1]) # Check that the number of filenames is consistent with data/target assert_equal(len(data2cats.filenames), len(data2cats.target)) assert_equal(len(data2cats.filenames), len(data2cats.data)) # Check that the first entry of the reduced dataset corresponds to # the first entry of the corresponding category in the full dataset entry1 = data2cats.data[0] category = data2cats.target_names[data2cats.target[0]] label = data.target_names.index(category) entry2 = data.data[np.where(data.target == label)[0][0]] assert_equal(entry1, entry2) def test_20news_length_consistency(): """Checks the length consistencies within the bunch This is a non-regression test for a bug present in 0.16.1. """ try: data = datasets.fetch_20newsgroups( subset='all', download_if_missing=False, shuffle=False) except IOError: raise SkipTest("Download 20 newsgroups to run this test") # Extract the full dataset data = datasets.fetch_20newsgroups(subset='all') assert_equal(len(data['data']), len(data.data)) assert_equal(len(data['target']), len(data.target)) assert_equal(len(data['filenames']), len(data.filenames)) def test_20news_vectorized(): # This test is slow. raise SkipTest("Test too slow.") bunch = datasets.fetch_20newsgroups_vectorized(subset="train") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (11314, 107428)) assert_equal(bunch.target.shape[0], 11314) assert_equal(bunch.data.dtype, np.float64) bunch = datasets.fetch_20newsgroups_vectorized(subset="test") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (7532, 107428)) assert_equal(bunch.target.shape[0], 7532) assert_equal(bunch.data.dtype, np.float64) bunch = datasets.fetch_20newsgroups_vectorized(subset="all") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (11314 + 7532, 107428)) assert_equal(bunch.target.shape[0], 11314 + 7532) assert_equal(bunch.data.dtype, np.float64)
bsd-3-clause
cainiaocome/scikit-learn
examples/neighbors/plot_digits_kde_sampling.py
251
2022
""" ========================= Kernel Density Estimation ========================= This example shows how kernel density estimation (KDE), a powerful non-parametric density estimation technique, can be used to learn a generative model for a dataset. With this generative model in place, new samples can be drawn. These new samples reflect the underlying model of the data. """ import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_digits from sklearn.neighbors import KernelDensity from sklearn.decomposition import PCA from sklearn.grid_search import GridSearchCV # load the data digits = load_digits() data = digits.data # project the 64-dimensional data to a lower dimension pca = PCA(n_components=15, whiten=False) data = pca.fit_transform(digits.data) # use grid search cross-validation to optimize the bandwidth params = {'bandwidth': np.logspace(-1, 1, 20)} grid = GridSearchCV(KernelDensity(), params) grid.fit(data) print("best bandwidth: {0}".format(grid.best_estimator_.bandwidth)) # use the best estimator to compute the kernel density estimate kde = grid.best_estimator_ # sample 44 new points from the data new_data = kde.sample(44, random_state=0) new_data = pca.inverse_transform(new_data) # turn data into a 4x11 grid new_data = new_data.reshape((4, 11, -1)) real_data = digits.data[:44].reshape((4, 11, -1)) # plot real digits and resampled digits fig, ax = plt.subplots(9, 11, subplot_kw=dict(xticks=[], yticks=[])) for j in range(11): ax[4, j].set_visible(False) for i in range(4): im = ax[i, j].imshow(real_data[i, j].reshape((8, 8)), cmap=plt.cm.binary, interpolation='nearest') im.set_clim(0, 16) im = ax[i + 5, j].imshow(new_data[i, j].reshape((8, 8)), cmap=plt.cm.binary, interpolation='nearest') im.set_clim(0, 16) ax[0, 5].set_title('Selection from the input data') ax[5, 5].set_title('"New" digits drawn from the kernel density model') plt.show()
bsd-3-clause
sarahgrogan/scikit-learn
doc/sphinxext/gen_rst.py
106
40198
""" Example generation for the scikit learn Generate the rst files for the examples by iterating over the python example files. Files that generate images should start with 'plot' """ from __future__ import division, print_function from time import time import ast import os import re import shutil import traceback import glob import sys import gzip import posixpath import subprocess import warnings from sklearn.externals import six # Try Python 2 first, otherwise load from Python 3 try: from StringIO import StringIO import cPickle as pickle import urllib2 as urllib from urllib2 import HTTPError, URLError except ImportError: from io import StringIO import pickle import urllib.request import urllib.error import urllib.parse from urllib.error import HTTPError, URLError try: # Python 2 built-in execfile except NameError: def execfile(filename, global_vars=None, local_vars=None): with open(filename, encoding='utf-8') as f: code = compile(f.read(), filename, 'exec') exec(code, global_vars, local_vars) try: basestring except NameError: basestring = str import token import tokenize import numpy as np try: # make sure that the Agg backend is set before importing any # matplotlib import matplotlib matplotlib.use('Agg') except ImportError: # this script can be imported by nosetest to find tests to run: we should not # impose the matplotlib requirement in that case. pass from sklearn.externals import joblib ############################################################################### # A tee object to redict streams to multiple outputs class Tee(object): def __init__(self, file1, file2): self.file1 = file1 self.file2 = file2 def write(self, data): self.file1.write(data) self.file2.write(data) def flush(self): self.file1.flush() self.file2.flush() ############################################################################### # Documentation link resolver objects def _get_data(url): """Helper function to get data over http or from a local file""" if url.startswith('http://'): # Try Python 2, use Python 3 on exception try: resp = urllib.urlopen(url) encoding = resp.headers.dict.get('content-encoding', 'plain') except AttributeError: resp = urllib.request.urlopen(url) encoding = resp.headers.get('content-encoding', 'plain') data = resp.read() if encoding == 'plain': pass elif encoding == 'gzip': data = StringIO(data) data = gzip.GzipFile(fileobj=data).read() else: raise RuntimeError('unknown encoding') else: with open(url, 'r') as fid: data = fid.read() fid.close() return data mem = joblib.Memory(cachedir='_build') get_data = mem.cache(_get_data) def parse_sphinx_searchindex(searchindex): """Parse a Sphinx search index Parameters ---------- searchindex : str The Sphinx search index (contents of searchindex.js) Returns ------- filenames : list of str The file names parsed from the search index. objects : dict The objects parsed from the search index. """ def _select_block(str_in, start_tag, end_tag): """Select first block delimited by start_tag and end_tag""" start_pos = str_in.find(start_tag) if start_pos < 0: raise ValueError('start_tag not found') depth = 0 for pos in range(start_pos, len(str_in)): if str_in[pos] == start_tag: depth += 1 elif str_in[pos] == end_tag: depth -= 1 if depth == 0: break sel = str_in[start_pos + 1:pos] return sel def _parse_dict_recursive(dict_str): """Parse a dictionary from the search index""" dict_out = dict() pos_last = 0 pos = dict_str.find(':') while pos >= 0: key = dict_str[pos_last:pos] if dict_str[pos + 1] == '[': # value is a list pos_tmp = dict_str.find(']', pos + 1) if pos_tmp < 0: raise RuntimeError('error when parsing dict') value = dict_str[pos + 2: pos_tmp].split(',') # try to convert elements to int for i in range(len(value)): try: value[i] = int(value[i]) except ValueError: pass elif dict_str[pos + 1] == '{': # value is another dictionary subdict_str = _select_block(dict_str[pos:], '{', '}') value = _parse_dict_recursive(subdict_str) pos_tmp = pos + len(subdict_str) else: raise ValueError('error when parsing dict: unknown elem') key = key.strip('"') if len(key) > 0: dict_out[key] = value pos_last = dict_str.find(',', pos_tmp) if pos_last < 0: break pos_last += 1 pos = dict_str.find(':', pos_last) return dict_out # Make sure searchindex uses UTF-8 encoding if hasattr(searchindex, 'decode'): searchindex = searchindex.decode('UTF-8') # parse objects query = 'objects:' pos = searchindex.find(query) if pos < 0: raise ValueError('"objects:" not found in search index') sel = _select_block(searchindex[pos:], '{', '}') objects = _parse_dict_recursive(sel) # parse filenames query = 'filenames:' pos = searchindex.find(query) if pos < 0: raise ValueError('"filenames:" not found in search index') filenames = searchindex[pos + len(query) + 1:] filenames = filenames[:filenames.find(']')] filenames = [f.strip('"') for f in filenames.split(',')] return filenames, objects class SphinxDocLinkResolver(object): """ Resolve documentation links using searchindex.js generated by Sphinx Parameters ---------- doc_url : str The base URL of the project website. searchindex : str Filename of searchindex, relative to doc_url. extra_modules_test : list of str List of extra module names to test. relative : bool Return relative links (only useful for links to documentation of this package). """ def __init__(self, doc_url, searchindex='searchindex.js', extra_modules_test=None, relative=False): self.doc_url = doc_url self.relative = relative self._link_cache = {} self.extra_modules_test = extra_modules_test self._page_cache = {} if doc_url.startswith('http://'): if relative: raise ValueError('Relative links are only supported for local ' 'URLs (doc_url cannot start with "http://)"') searchindex_url = doc_url + '/' + searchindex else: searchindex_url = os.path.join(doc_url, searchindex) # detect if we are using relative links on a Windows system if os.name.lower() == 'nt' and not doc_url.startswith('http://'): if not relative: raise ValueError('You have to use relative=True for the local' ' package on a Windows system.') self._is_windows = True else: self._is_windows = False # download and initialize the search index sindex = get_data(searchindex_url) filenames, objects = parse_sphinx_searchindex(sindex) self._searchindex = dict(filenames=filenames, objects=objects) def _get_link(self, cobj): """Get a valid link, False if not found""" fname_idx = None full_name = cobj['module_short'] + '.' + cobj['name'] if full_name in self._searchindex['objects']: value = self._searchindex['objects'][full_name] if isinstance(value, dict): value = value[next(iter(value.keys()))] fname_idx = value[0] elif cobj['module_short'] in self._searchindex['objects']: value = self._searchindex['objects'][cobj['module_short']] if cobj['name'] in value.keys(): fname_idx = value[cobj['name']][0] if fname_idx is not None: fname = self._searchindex['filenames'][fname_idx] + '.html' if self._is_windows: fname = fname.replace('/', '\\') link = os.path.join(self.doc_url, fname) else: link = posixpath.join(self.doc_url, fname) if hasattr(link, 'decode'): link = link.decode('utf-8', 'replace') if link in self._page_cache: html = self._page_cache[link] else: html = get_data(link) self._page_cache[link] = html # test if cobj appears in page comb_names = [cobj['module_short'] + '.' + cobj['name']] if self.extra_modules_test is not None: for mod in self.extra_modules_test: comb_names.append(mod + '.' + cobj['name']) url = False if hasattr(html, 'decode'): # Decode bytes under Python 3 html = html.decode('utf-8', 'replace') for comb_name in comb_names: if hasattr(comb_name, 'decode'): # Decode bytes under Python 3 comb_name = comb_name.decode('utf-8', 'replace') if comb_name in html: url = link + u'#' + comb_name link = url else: link = False return link def resolve(self, cobj, this_url): """Resolve the link to the documentation, returns None if not found Parameters ---------- cobj : dict Dict with information about the "code object" for which we are resolving a link. cobi['name'] : function or class name (str) cobj['module_short'] : shortened module name (str) cobj['module'] : module name (str) this_url: str URL of the current page. Needed to construct relative URLs (only used if relative=True in constructor). Returns ------- link : str | None The link (URL) to the documentation. """ full_name = cobj['module_short'] + '.' + cobj['name'] link = self._link_cache.get(full_name, None) if link is None: # we don't have it cached link = self._get_link(cobj) # cache it for the future self._link_cache[full_name] = link if link is False or link is None: # failed to resolve return None if self.relative: link = os.path.relpath(link, start=this_url) if self._is_windows: # replace '\' with '/' so it on the web link = link.replace('\\', '/') # for some reason, the relative link goes one directory too high up link = link[3:] return link ############################################################################### rst_template = """ .. _example_%(short_fname)s: %(docstring)s **Python source code:** :download:`%(fname)s <%(fname)s>` .. literalinclude:: %(fname)s :lines: %(end_row)s- """ plot_rst_template = """ .. _example_%(short_fname)s: %(docstring)s %(image_list)s %(stdout)s **Python source code:** :download:`%(fname)s <%(fname)s>` .. literalinclude:: %(fname)s :lines: %(end_row)s- **Total running time of the example:** %(time_elapsed) .2f seconds (%(time_m) .0f minutes %(time_s) .2f seconds) """ # The following strings are used when we have several pictures: we use # an html div tag that our CSS uses to turn the lists into horizontal # lists. HLIST_HEADER = """ .. rst-class:: horizontal """ HLIST_IMAGE_TEMPLATE = """ * .. image:: images/%s :scale: 47 """ SINGLE_IMAGE = """ .. image:: images/%s :align: center """ # The following dictionary contains the information used to create the # thumbnails for the front page of the scikit-learn home page. # key: first image in set # values: (number of plot in set, height of thumbnail) carousel_thumbs = {'plot_classifier_comparison_001.png': (1, 600), 'plot_outlier_detection_001.png': (3, 372), 'plot_gp_regression_001.png': (2, 250), 'plot_adaboost_twoclass_001.png': (1, 372), 'plot_compare_methods_001.png': (1, 349)} def extract_docstring(filename, ignore_heading=False): """ Extract a module-level docstring, if any """ if six.PY2: lines = open(filename).readlines() else: lines = open(filename, encoding='utf-8').readlines() start_row = 0 if lines[0].startswith('#!'): lines.pop(0) start_row = 1 docstring = '' first_par = '' line_iterator = iter(lines) tokens = tokenize.generate_tokens(lambda: next(line_iterator)) for tok_type, tok_content, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif tok_type == 'STRING': docstring = eval(tok_content) # If the docstring is formatted with several paragraphs, extract # the first one: paragraphs = '\n'.join( line.rstrip() for line in docstring.split('\n')).split('\n\n') if paragraphs: if ignore_heading: if len(paragraphs) > 1: first_par = re.sub('\n', ' ', paragraphs[1]) first_par = ((first_par[:95] + '...') if len(first_par) > 95 else first_par) else: raise ValueError("Docstring not found by gallery.\n" "Please check the layout of your" " example file:\n {}\n and make sure" " it's correct".format(filename)) else: first_par = paragraphs[0] break return docstring, first_par, erow + 1 + start_row def generate_example_rst(app): """ Generate the list of examples, as well as the contents of examples. """ root_dir = os.path.join(app.builder.srcdir, 'auto_examples') example_dir = os.path.abspath(os.path.join(app.builder.srcdir, '..', 'examples')) generated_dir = os.path.abspath(os.path.join(app.builder.srcdir, 'modules', 'generated')) try: plot_gallery = eval(app.builder.config.plot_gallery) except TypeError: plot_gallery = bool(app.builder.config.plot_gallery) if not os.path.exists(example_dir): os.makedirs(example_dir) if not os.path.exists(root_dir): os.makedirs(root_dir) if not os.path.exists(generated_dir): os.makedirs(generated_dir) # we create an index.rst with all examples fhindex = open(os.path.join(root_dir, 'index.rst'), 'w') # Note: The sidebar button has been removed from the examples page for now # due to how it messes up the layout. Will be fixed at a later point fhindex.write("""\ .. raw:: html <style type="text/css"> div#sidebarbutton { /* hide the sidebar collapser, while ensuring vertical arrangement */ display: none; } </style> .. _examples-index: Examples ======== """) # Here we don't use an os.walk, but we recurse only twice: flat is # better than nested. seen_backrefs = set() generate_dir_rst('.', fhindex, example_dir, root_dir, plot_gallery, seen_backrefs) for directory in sorted(os.listdir(example_dir)): if os.path.isdir(os.path.join(example_dir, directory)): generate_dir_rst(directory, fhindex, example_dir, root_dir, plot_gallery, seen_backrefs) fhindex.flush() def extract_line_count(filename, target_dir): # Extract the line count of a file example_file = os.path.join(target_dir, filename) if six.PY2: lines = open(example_file).readlines() else: lines = open(example_file, encoding='utf-8').readlines() start_row = 0 if lines and lines[0].startswith('#!'): lines.pop(0) start_row = 1 line_iterator = iter(lines) tokens = tokenize.generate_tokens(lambda: next(line_iterator)) check_docstring = True erow_docstring = 0 for tok_type, _, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif (tok_type == 'STRING') and check_docstring: erow_docstring = erow check_docstring = False return erow_docstring+1+start_row, erow+1+start_row def line_count_sort(file_list, target_dir): # Sort the list of examples by line-count new_list = [x for x in file_list if x.endswith('.py')] unsorted = np.zeros(shape=(len(new_list), 2)) unsorted = unsorted.astype(np.object) for count, exmpl in enumerate(new_list): docstr_lines, total_lines = extract_line_count(exmpl, target_dir) unsorted[count][1] = total_lines - docstr_lines unsorted[count][0] = exmpl index = np.lexsort((unsorted[:, 0].astype(np.str), unsorted[:, 1].astype(np.float))) if not len(unsorted): return [] return np.array(unsorted[index][:, 0]).tolist() def _thumbnail_div(subdir, full_dir, fname, snippet, is_backref=False): """Generates RST to place a thumbnail in a gallery""" thumb = os.path.join(full_dir, 'images', 'thumb', fname[:-3] + '.png') link_name = os.path.join(full_dir, fname).replace(os.path.sep, '_') ref_name = os.path.join(subdir, fname).replace(os.path.sep, '_') if ref_name.startswith('._'): ref_name = ref_name[2:] out = [] out.append(""" .. raw:: html <div class="thumbnailContainer" tooltip="{}"> """.format(snippet)) out.append('.. only:: html\n\n') out.append(' .. figure:: %s\n' % thumb) if link_name.startswith('._'): link_name = link_name[2:] if full_dir != '.': out.append(' :target: ./%s/%s.html\n\n' % (full_dir, fname[:-3])) else: out.append(' :target: ./%s.html\n\n' % link_name[:-3]) out.append(""" :ref:`example_%s` .. raw:: html </div> """ % (ref_name)) if is_backref: out.append('.. only:: not html\n\n * :ref:`example_%s`' % ref_name) return ''.join(out) def generate_dir_rst(directory, fhindex, example_dir, root_dir, plot_gallery, seen_backrefs): """ Generate the rst file for an example directory. """ if not directory == '.': target_dir = os.path.join(root_dir, directory) src_dir = os.path.join(example_dir, directory) else: target_dir = root_dir src_dir = example_dir if not os.path.exists(os.path.join(src_dir, 'README.txt')): raise ValueError('Example directory %s does not have a README.txt' % src_dir) fhindex.write(""" %s """ % open(os.path.join(src_dir, 'README.txt')).read()) if not os.path.exists(target_dir): os.makedirs(target_dir) sorted_listdir = line_count_sort(os.listdir(src_dir), src_dir) if not os.path.exists(os.path.join(directory, 'images', 'thumb')): os.makedirs(os.path.join(directory, 'images', 'thumb')) for fname in sorted_listdir: if fname.endswith('py'): backrefs = generate_file_rst(fname, target_dir, src_dir, root_dir, plot_gallery) new_fname = os.path.join(src_dir, fname) _, snippet, _ = extract_docstring(new_fname, True) fhindex.write(_thumbnail_div(directory, directory, fname, snippet)) fhindex.write(""" .. toctree:: :hidden: %s/%s """ % (directory, fname[:-3])) for backref in backrefs: include_path = os.path.join(root_dir, '../modules/generated/%s.examples' % backref) seen = backref in seen_backrefs with open(include_path, 'a' if seen else 'w') as ex_file: if not seen: # heading print(file=ex_file) print('Examples using ``%s``' % backref, file=ex_file) print('-----------------%s--' % ('-' * len(backref)), file=ex_file) print(file=ex_file) rel_dir = os.path.join('../../auto_examples', directory) ex_file.write(_thumbnail_div(directory, rel_dir, fname, snippet, is_backref=True)) seen_backrefs.add(backref) fhindex.write(""" .. raw:: html <div class="clearer"></div> """) # clear at the end of the section # modules for which we embed links into example code DOCMODULES = ['sklearn', 'matplotlib', 'numpy', 'scipy'] def make_thumbnail(in_fname, out_fname, width, height): """Make a thumbnail with the same aspect ratio centered in an image with a given width and height """ # local import to avoid testing dependency on PIL: try: from PIL import Image except ImportError: import Image img = Image.open(in_fname) width_in, height_in = img.size scale_w = width / float(width_in) scale_h = height / float(height_in) if height_in * scale_w <= height: scale = scale_w else: scale = scale_h width_sc = int(round(scale * width_in)) height_sc = int(round(scale * height_in)) # resize the image img.thumbnail((width_sc, height_sc), Image.ANTIALIAS) # insert centered thumb = Image.new('RGB', (width, height), (255, 255, 255)) pos_insert = ((width - width_sc) // 2, (height - height_sc) // 2) thumb.paste(img, pos_insert) thumb.save(out_fname) # Use optipng to perform lossless compression on the resized image if # software is installed if os.environ.get('SKLEARN_DOC_OPTIPNG', False): try: subprocess.call(["optipng", "-quiet", "-o", "9", out_fname]) except Exception: warnings.warn('Install optipng to reduce the size of the generated images') def get_short_module_name(module_name, obj_name): """ Get the shortest possible module name """ parts = module_name.split('.') short_name = module_name for i in range(len(parts) - 1, 0, -1): short_name = '.'.join(parts[:i]) try: exec('from %s import %s' % (short_name, obj_name)) except ImportError: # get the last working module name short_name = '.'.join(parts[:(i + 1)]) break return short_name class NameFinder(ast.NodeVisitor): """Finds the longest form of variable names and their imports in code Only retains names from imported modules. """ def __init__(self): super(NameFinder, self).__init__() self.imported_names = {} self.accessed_names = set() def visit_Import(self, node, prefix=''): for alias in node.names: local_name = alias.asname or alias.name self.imported_names[local_name] = prefix + alias.name def visit_ImportFrom(self, node): self.visit_Import(node, node.module + '.') def visit_Name(self, node): self.accessed_names.add(node.id) def visit_Attribute(self, node): attrs = [] while isinstance(node, ast.Attribute): attrs.append(node.attr) node = node.value if isinstance(node, ast.Name): # This is a.b, not e.g. a().b attrs.append(node.id) self.accessed_names.add('.'.join(reversed(attrs))) else: # need to get a in a().b self.visit(node) def get_mapping(self): for name in self.accessed_names: local_name = name.split('.', 1)[0] remainder = name[len(local_name):] if local_name in self.imported_names: # Join import path to relative path full_name = self.imported_names[local_name] + remainder yield name, full_name def identify_names(code): """Builds a codeobj summary by identifying and resovles used names >>> code = ''' ... from a.b import c ... import d as e ... print(c) ... e.HelloWorld().f.g ... ''' >>> for name, o in sorted(identify_names(code).items()): ... print(name, o['name'], o['module'], o['module_short']) c c a.b a.b e.HelloWorld HelloWorld d d """ finder = NameFinder() finder.visit(ast.parse(code)) example_code_obj = {} for name, full_name in finder.get_mapping(): # name is as written in file (e.g. np.asarray) # full_name includes resolved import path (e.g. numpy.asarray) module, attribute = full_name.rsplit('.', 1) # get shortened module name module_short = get_short_module_name(module, attribute) cobj = {'name': attribute, 'module': module, 'module_short': module_short} example_code_obj[name] = cobj return example_code_obj def generate_file_rst(fname, target_dir, src_dir, root_dir, plot_gallery): """ Generate the rst file for a given example. Returns the set of sklearn functions/classes imported in the example. """ base_image_name = os.path.splitext(fname)[0] image_fname = '%s_%%03d.png' % base_image_name this_template = rst_template last_dir = os.path.split(src_dir)[-1] # to avoid leading . in file names, and wrong names in links if last_dir == '.' or last_dir == 'examples': last_dir = '' else: last_dir += '_' short_fname = last_dir + fname src_file = os.path.join(src_dir, fname) example_file = os.path.join(target_dir, fname) shutil.copyfile(src_file, example_file) # The following is a list containing all the figure names figure_list = [] image_dir = os.path.join(target_dir, 'images') thumb_dir = os.path.join(image_dir, 'thumb') if not os.path.exists(image_dir): os.makedirs(image_dir) if not os.path.exists(thumb_dir): os.makedirs(thumb_dir) image_path = os.path.join(image_dir, image_fname) stdout_path = os.path.join(image_dir, 'stdout_%s.txt' % base_image_name) time_path = os.path.join(image_dir, 'time_%s.txt' % base_image_name) thumb_file = os.path.join(thumb_dir, base_image_name + '.png') time_elapsed = 0 if plot_gallery and fname.startswith('plot'): # generate the plot as png image if file name # starts with plot and if it is more recent than an # existing image. first_image_file = image_path % 1 if os.path.exists(stdout_path): stdout = open(stdout_path).read() else: stdout = '' if os.path.exists(time_path): time_elapsed = float(open(time_path).read()) if not os.path.exists(first_image_file) or \ os.stat(first_image_file).st_mtime <= os.stat(src_file).st_mtime: # We need to execute the code print('plotting %s' % fname) t0 = time() import matplotlib.pyplot as plt plt.close('all') cwd = os.getcwd() try: # First CD in the original example dir, so that any file # created by the example get created in this directory orig_stdout = sys.stdout os.chdir(os.path.dirname(src_file)) my_buffer = StringIO() my_stdout = Tee(sys.stdout, my_buffer) sys.stdout = my_stdout my_globals = {'pl': plt} execfile(os.path.basename(src_file), my_globals) time_elapsed = time() - t0 sys.stdout = orig_stdout my_stdout = my_buffer.getvalue() if '__doc__' in my_globals: # The __doc__ is often printed in the example, we # don't with to echo it my_stdout = my_stdout.replace( my_globals['__doc__'], '') my_stdout = my_stdout.strip().expandtabs() if my_stdout: stdout = '**Script output**::\n\n %s\n\n' % ( '\n '.join(my_stdout.split('\n'))) open(stdout_path, 'w').write(stdout) open(time_path, 'w').write('%f' % time_elapsed) os.chdir(cwd) # In order to save every figure we have two solutions : # * iterate from 1 to infinity and call plt.fignum_exists(n) # (this requires the figures to be numbered # incrementally: 1, 2, 3 and not 1, 2, 5) # * iterate over [fig_mngr.num for fig_mngr in # matplotlib._pylab_helpers.Gcf.get_all_fig_managers()] fig_managers = matplotlib._pylab_helpers.Gcf.get_all_fig_managers() for fig_mngr in fig_managers: # Set the fig_num figure as the current figure as we can't # save a figure that's not the current figure. fig = plt.figure(fig_mngr.num) kwargs = {} to_rgba = matplotlib.colors.colorConverter.to_rgba for attr in ['facecolor', 'edgecolor']: fig_attr = getattr(fig, 'get_' + attr)() default_attr = matplotlib.rcParams['figure.' + attr] if to_rgba(fig_attr) != to_rgba(default_attr): kwargs[attr] = fig_attr fig.savefig(image_path % fig_mngr.num, **kwargs) figure_list.append(image_fname % fig_mngr.num) except: print(80 * '_') print('%s is not compiling:' % fname) traceback.print_exc() print(80 * '_') finally: os.chdir(cwd) sys.stdout = orig_stdout print(" - time elapsed : %.2g sec" % time_elapsed) else: figure_list = [f[len(image_dir):] for f in glob.glob(image_path.replace("%03d", '[0-9][0-9][0-9]'))] figure_list.sort() # generate thumb file this_template = plot_rst_template car_thumb_path = os.path.join(os.path.split(root_dir)[0], '_build/html/stable/_images/') # Note: normaly, make_thumbnail is used to write to the path contained in `thumb_file` # which is within `auto_examples/../images/thumbs` depending on the example. # Because the carousel has different dimensions than those of the examples gallery, # I did not simply reuse them all as some contained whitespace due to their default gallery # thumbnail size. Below, for a few cases, seperate thumbnails are created (the originals can't # just be overwritten with the carousel dimensions as it messes up the examples gallery layout). # The special carousel thumbnails are written directly to _build/html/stable/_images/, # as for some reason unknown to me, Sphinx refuses to copy my 'extra' thumbnails from the # auto examples gallery to the _build folder. This works fine as is, but it would be cleaner to # have it happen with the rest. Ideally the should be written to 'thumb_file' as well, and then # copied to the _images folder during the `Copying Downloadable Files` step like the rest. if not os.path.exists(car_thumb_path): os.makedirs(car_thumb_path) if os.path.exists(first_image_file): # We generate extra special thumbnails for the carousel carousel_tfile = os.path.join(car_thumb_path, base_image_name + '_carousel.png') first_img = image_fname % 1 if first_img in carousel_thumbs: make_thumbnail((image_path % carousel_thumbs[first_img][0]), carousel_tfile, carousel_thumbs[first_img][1], 190) make_thumbnail(first_image_file, thumb_file, 400, 280) if not os.path.exists(thumb_file): # create something to replace the thumbnail make_thumbnail('images/no_image.png', thumb_file, 200, 140) docstring, short_desc, end_row = extract_docstring(example_file) # Depending on whether we have one or more figures, we're using a # horizontal list or a single rst call to 'image'. if len(figure_list) == 1: figure_name = figure_list[0] image_list = SINGLE_IMAGE % figure_name.lstrip('/') else: image_list = HLIST_HEADER for figure_name in figure_list: image_list += HLIST_IMAGE_TEMPLATE % figure_name.lstrip('/') time_m, time_s = divmod(time_elapsed, 60) f = open(os.path.join(target_dir, base_image_name + '.rst'), 'w') f.write(this_template % locals()) f.flush() # save variables so we can later add links to the documentation if six.PY2: example_code_obj = identify_names(open(example_file).read()) else: example_code_obj = \ identify_names(open(example_file, encoding='utf-8').read()) if example_code_obj: codeobj_fname = example_file[:-3] + '_codeobj.pickle' with open(codeobj_fname, 'wb') as fid: pickle.dump(example_code_obj, fid, pickle.HIGHEST_PROTOCOL) backrefs = set('{module_short}.{name}'.format(**entry) for entry in example_code_obj.values() if entry['module'].startswith('sklearn')) return backrefs def embed_code_links(app, exception): """Embed hyperlinks to documentation into example code""" if exception is not None: return print('Embedding documentation hyperlinks in examples..') if app.builder.name == 'latex': # Don't embed hyperlinks when a latex builder is used. return # Add resolvers for the packages for which we want to show links doc_resolvers = {} doc_resolvers['sklearn'] = SphinxDocLinkResolver(app.builder.outdir, relative=True) resolver_urls = { 'matplotlib': 'http://matplotlib.org', 'numpy': 'http://docs.scipy.org/doc/numpy-1.6.0', 'scipy': 'http://docs.scipy.org/doc/scipy-0.11.0/reference', } for this_module, url in resolver_urls.items(): try: doc_resolvers[this_module] = SphinxDocLinkResolver(url) except HTTPError as e: print("The following HTTP Error has occurred:\n") print(e.code) except URLError as e: print("\n...\n" "Warning: Embedding the documentation hyperlinks requires " "internet access.\nPlease check your network connection.\n" "Unable to continue embedding `{0}` links due to a URL " "Error:\n".format(this_module)) print(e.args) example_dir = os.path.join(app.builder.srcdir, 'auto_examples') html_example_dir = os.path.abspath(os.path.join(app.builder.outdir, 'auto_examples')) # patterns for replacement link_pattern = '<a href="%s">%s</a>' orig_pattern = '<span class="n">%s</span>' period = '<span class="o">.</span>' for dirpath, _, filenames in os.walk(html_example_dir): for fname in filenames: print('\tprocessing: %s' % fname) full_fname = os.path.join(html_example_dir, dirpath, fname) subpath = dirpath[len(html_example_dir) + 1:] pickle_fname = os.path.join(example_dir, subpath, fname[:-5] + '_codeobj.pickle') if os.path.exists(pickle_fname): # we have a pickle file with the objects to embed links for with open(pickle_fname, 'rb') as fid: example_code_obj = pickle.load(fid) fid.close() str_repl = {} # generate replacement strings with the links for name, cobj in example_code_obj.items(): this_module = cobj['module'].split('.')[0] if this_module not in doc_resolvers: continue try: link = doc_resolvers[this_module].resolve(cobj, full_fname) except (HTTPError, URLError) as e: print("The following error has occurred:\n") print(repr(e)) continue if link is not None: parts = name.split('.') name_html = period.join(orig_pattern % part for part in parts) str_repl[name_html] = link_pattern % (link, name_html) # do the replacement in the html file # ensure greediness names = sorted(str_repl, key=len, reverse=True) expr = re.compile(r'(?<!\.)\b' + # don't follow . or word '|'.join(re.escape(name) for name in names)) def substitute_link(match): return str_repl[match.group()] if len(str_repl) > 0: with open(full_fname, 'rb') as fid: lines_in = fid.readlines() with open(full_fname, 'wb') as fid: for line in lines_in: line = line.decode('utf-8') line = expr.sub(substitute_link, line) fid.write(line.encode('utf-8')) print('[done]') def setup(app): app.connect('builder-inited', generate_example_rst) app.add_config_value('plot_gallery', True, 'html') # embed links after build is finished app.connect('build-finished', embed_code_links) # Sphinx hack: sphinx copies generated images to the build directory # each time the docs are made. If the desired image name already # exists, it appends a digit to prevent overwrites. The problem is, # the directory is never cleared. This means that each time you build # the docs, the number of images in the directory grows. # # This question has been asked on the sphinx development list, but there # was no response: http://osdir.com/ml/sphinx-dev/2011-02/msg00123.html # # The following is a hack that prevents this behavior by clearing the # image build directory each time the docs are built. If sphinx # changes their layout between versions, this will not work (though # it should probably not cause a crash). Tested successfully # on Sphinx 1.0.7 build_image_dir = '_build/html/_images' if os.path.exists(build_image_dir): filelist = os.listdir(build_image_dir) for filename in filelist: if filename.endswith('png'): os.remove(os.path.join(build_image_dir, filename)) def setup_module(): # HACK: Stop nosetests running setup() above pass
bsd-3-clause
da1z/intellij-community
python/helpers/pydev/pydev_ipython/inputhook.py
11
19160
# coding: utf-8 """ Inputhook management for GUI event loop integration. """ #----------------------------------------------------------------------------- # Copyright (C) 2008-2011 The IPython Development Team # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- import sys import select #----------------------------------------------------------------------------- # Constants #----------------------------------------------------------------------------- # Constants for identifying the GUI toolkits. GUI_WX = 'wx' GUI_QT = 'qt' GUI_QT4 = 'qt4' GUI_QT5 = 'qt5' GUI_GTK = 'gtk' GUI_TK = 'tk' GUI_OSX = 'osx' GUI_GLUT = 'glut' GUI_PYGLET = 'pyglet' GUI_GTK3 = 'gtk3' GUI_NONE = 'none' # i.e. disable #----------------------------------------------------------------------------- # Utilities #----------------------------------------------------------------------------- def ignore_CTRL_C(): """Ignore CTRL+C (not implemented).""" pass def allow_CTRL_C(): """Take CTRL+C into account (not implemented).""" pass #----------------------------------------------------------------------------- # Main InputHookManager class #----------------------------------------------------------------------------- class InputHookManager(object): """Manage PyOS_InputHook for different GUI toolkits. This class installs various hooks under ``PyOSInputHook`` to handle GUI event loop integration. """ def __init__(self): self._return_control_callback = None self._apps = {} self._reset() self.pyplot_imported = False def _reset(self): self._callback_pyfunctype = None self._callback = None self._current_gui = None def set_return_control_callback(self, return_control_callback): self._return_control_callback = return_control_callback def get_return_control_callback(self): return self._return_control_callback def return_control(self): return self._return_control_callback() def get_inputhook(self): return self._callback def set_inputhook(self, callback): """Set inputhook to callback.""" # We don't (in the context of PyDev console) actually set PyOS_InputHook, but rather # while waiting for input on xmlrpc we run this code self._callback = callback def clear_inputhook(self, app=None): """Clear input hook. Parameters ---------- app : optional, ignored This parameter is allowed only so that clear_inputhook() can be called with a similar interface as all the ``enable_*`` methods. But the actual value of the parameter is ignored. This uniform interface makes it easier to have user-level entry points in the main IPython app like :meth:`enable_gui`.""" self._reset() def clear_app_refs(self, gui=None): """Clear IPython's internal reference to an application instance. Whenever we create an app for a user on qt4 or wx, we hold a reference to the app. This is needed because in some cases bad things can happen if a user doesn't hold a reference themselves. This method is provided to clear the references we are holding. Parameters ---------- gui : None or str If None, clear all app references. If ('wx', 'qt4') clear the app for that toolkit. References are not held for gtk or tk as those toolkits don't have the notion of an app. """ if gui is None: self._apps = {} elif gui in self._apps: del self._apps[gui] def enable_wx(self, app=None): """Enable event loop integration with wxPython. Parameters ---------- app : WX Application, optional. Running application to use. If not given, we probe WX for an existing application object, and create a new one if none is found. Notes ----- This methods sets the ``PyOS_InputHook`` for wxPython, which allows the wxPython to integrate with terminal based applications like IPython. If ``app`` is not given we probe for an existing one, and return it if found. If no existing app is found, we create an :class:`wx.App` as follows:: import wx app = wx.App(redirect=False, clearSigInt=False) """ import wx from distutils.version import LooseVersion as V wx_version = V(wx.__version__).version # @UndefinedVariable if wx_version < [2, 8]: raise ValueError("requires wxPython >= 2.8, but you have %s" % wx.__version__) # @UndefinedVariable from pydev_ipython.inputhookwx import inputhook_wx self.set_inputhook(inputhook_wx) self._current_gui = GUI_WX if app is None: app = wx.GetApp() # @UndefinedVariable if app is None: app = wx.App(redirect=False, clearSigInt=False) # @UndefinedVariable app._in_event_loop = True self._apps[GUI_WX] = app return app def disable_wx(self): """Disable event loop integration with wxPython. This merely sets PyOS_InputHook to NULL. """ if GUI_WX in self._apps: self._apps[GUI_WX]._in_event_loop = False self.clear_inputhook() def enable_qt4(self, app=None): """Enable event loop integration with PyQt4. Parameters ---------- app : Qt Application, optional. Running application to use. If not given, we probe Qt for an existing application object, and create a new one if none is found. Notes ----- This methods sets the PyOS_InputHook for PyQt4, which allows the PyQt4 to integrate with terminal based applications like IPython. If ``app`` is not given we probe for an existing one, and return it if found. If no existing app is found, we create an :class:`QApplication` as follows:: from PyQt4 import QtCore app = QtGui.QApplication(sys.argv) """ from pydev_ipython.inputhookqt4 import create_inputhook_qt4 app, inputhook_qt4 = create_inputhook_qt4(self, app) self.set_inputhook(inputhook_qt4) self._current_gui = GUI_QT4 app._in_event_loop = True self._apps[GUI_QT4] = app return app def disable_qt4(self): """Disable event loop integration with PyQt4. This merely sets PyOS_InputHook to NULL. """ if GUI_QT4 in self._apps: self._apps[GUI_QT4]._in_event_loop = False self.clear_inputhook() def enable_qt5(self, app=None): from pydev_ipython.inputhookqt5 import create_inputhook_qt5 app, inputhook_qt5 = create_inputhook_qt5(self, app) self.set_inputhook(inputhook_qt5) self._current_gui = GUI_QT5 app._in_event_loop = True self._apps[GUI_QT5] = app return app def disable_qt5(self): if GUI_QT5 in self._apps: self._apps[GUI_QT5]._in_event_loop = False self.clear_inputhook() def enable_gtk(self, app=None): """Enable event loop integration with PyGTK. Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the PyOS_InputHook for PyGTK, which allows the PyGTK to integrate with terminal based applications like IPython. """ from pydev_ipython.inputhookgtk import create_inputhook_gtk self.set_inputhook(create_inputhook_gtk(self._stdin_file)) self._current_gui = GUI_GTK def disable_gtk(self): """Disable event loop integration with PyGTK. This merely sets PyOS_InputHook to NULL. """ self.clear_inputhook() def enable_tk(self, app=None): """Enable event loop integration with Tk. Parameters ---------- app : toplevel :class:`Tkinter.Tk` widget, optional. Running toplevel widget to use. If not given, we probe Tk for an existing one, and create a new one if none is found. Notes ----- If you have already created a :class:`Tkinter.Tk` object, the only thing done by this method is to register with the :class:`InputHookManager`, since creating that object automatically sets ``PyOS_InputHook``. """ self._current_gui = GUI_TK if app is None: try: import Tkinter as _TK except: # Python 3 import tkinter as _TK # @UnresolvedImport app = _TK.Tk() app.withdraw() self._apps[GUI_TK] = app from pydev_ipython.inputhooktk import create_inputhook_tk self.set_inputhook(create_inputhook_tk(app)) return app def disable_tk(self): """Disable event loop integration with Tkinter. This merely sets PyOS_InputHook to NULL. """ self.clear_inputhook() def enable_glut(self, app=None): """ Enable event loop integration with GLUT. Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the PyOS_InputHook for GLUT, which allows the GLUT to integrate with terminal based applications like IPython. Due to GLUT limitations, it is currently not possible to start the event loop without first creating a window. You should thus not create another window but use instead the created one. See 'gui-glut.py' in the docs/examples/lib directory. The default screen mode is set to: glut.GLUT_DOUBLE | glut.GLUT_RGBA | glut.GLUT_DEPTH """ import OpenGL.GLUT as glut # @UnresolvedImport from pydev_ipython.inputhookglut import glut_display_mode, \ glut_close, glut_display, \ glut_idle, inputhook_glut if GUI_GLUT not in self._apps: glut.glutInit(sys.argv) glut.glutInitDisplayMode(glut_display_mode) # This is specific to freeglut if bool(glut.glutSetOption): glut.glutSetOption(glut.GLUT_ACTION_ON_WINDOW_CLOSE, glut.GLUT_ACTION_GLUTMAINLOOP_RETURNS) glut.glutCreateWindow(sys.argv[0]) glut.glutReshapeWindow(1, 1) glut.glutHideWindow() glut.glutWMCloseFunc(glut_close) glut.glutDisplayFunc(glut_display) glut.glutIdleFunc(glut_idle) else: glut.glutWMCloseFunc(glut_close) glut.glutDisplayFunc(glut_display) glut.glutIdleFunc(glut_idle) self.set_inputhook(inputhook_glut) self._current_gui = GUI_GLUT self._apps[GUI_GLUT] = True def disable_glut(self): """Disable event loop integration with glut. This sets PyOS_InputHook to NULL and set the display function to a dummy one and set the timer to a dummy timer that will be triggered very far in the future. """ import OpenGL.GLUT as glut # @UnresolvedImport from glut_support import glutMainLoopEvent # @UnresolvedImport glut.glutHideWindow() # This is an event to be processed below glutMainLoopEvent() self.clear_inputhook() def enable_pyglet(self, app=None): """Enable event loop integration with pyglet. Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the ``PyOS_InputHook`` for pyglet, which allows pyglet to integrate with terminal based applications like IPython. """ from pydev_ipython.inputhookpyglet import inputhook_pyglet self.set_inputhook(inputhook_pyglet) self._current_gui = GUI_PYGLET return app def disable_pyglet(self): """Disable event loop integration with pyglet. This merely sets PyOS_InputHook to NULL. """ self.clear_inputhook() def enable_gtk3(self, app=None): """Enable event loop integration with Gtk3 (gir bindings). Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the PyOS_InputHook for Gtk3, which allows the Gtk3 to integrate with terminal based applications like IPython. """ from pydev_ipython.inputhookgtk3 import create_inputhook_gtk3 self.set_inputhook(create_inputhook_gtk3(self._stdin_file)) self._current_gui = GUI_GTK def disable_gtk3(self): """Disable event loop integration with PyGTK. This merely sets PyOS_InputHook to NULL. """ self.clear_inputhook() def enable_mac(self, app=None): """ Enable event loop integration with MacOSX. We call function pyplot.pause, which updates and displays active figure during pause. It's not MacOSX-specific, but it enables to avoid inputhooks in native MacOSX backend. Also we shouldn't import pyplot, until user does it. Cause it's possible to choose backend before importing pyplot for the first time only. """ def inputhook_mac(app=None): if self.pyplot_imported: pyplot = sys.modules['matplotlib.pyplot'] try: pyplot.pause(0.01) except: pass else: if 'matplotlib.pyplot' in sys.modules: self.pyplot_imported = True self.set_inputhook(inputhook_mac) self._current_gui = GUI_OSX def disable_mac(self): self.clear_inputhook() def current_gui(self): """Return a string indicating the currently active GUI or None.""" return self._current_gui inputhook_manager = InputHookManager() enable_wx = inputhook_manager.enable_wx disable_wx = inputhook_manager.disable_wx enable_qt4 = inputhook_manager.enable_qt4 disable_qt4 = inputhook_manager.disable_qt4 enable_qt5 = inputhook_manager.enable_qt5 disable_qt5 = inputhook_manager.disable_qt5 enable_gtk = inputhook_manager.enable_gtk disable_gtk = inputhook_manager.disable_gtk enable_tk = inputhook_manager.enable_tk disable_tk = inputhook_manager.disable_tk enable_glut = inputhook_manager.enable_glut disable_glut = inputhook_manager.disable_glut enable_pyglet = inputhook_manager.enable_pyglet disable_pyglet = inputhook_manager.disable_pyglet enable_gtk3 = inputhook_manager.enable_gtk3 disable_gtk3 = inputhook_manager.disable_gtk3 enable_mac = inputhook_manager.enable_mac disable_mac = inputhook_manager.disable_mac clear_inputhook = inputhook_manager.clear_inputhook set_inputhook = inputhook_manager.set_inputhook current_gui = inputhook_manager.current_gui clear_app_refs = inputhook_manager.clear_app_refs # We maintain this as stdin_ready so that the individual inputhooks # can diverge as little as possible from their IPython sources stdin_ready = inputhook_manager.return_control set_return_control_callback = inputhook_manager.set_return_control_callback get_return_control_callback = inputhook_manager.get_return_control_callback get_inputhook = inputhook_manager.get_inputhook # Convenience function to switch amongst them def enable_gui(gui=None, app=None): """Switch amongst GUI input hooks by name. This is just a utility wrapper around the methods of the InputHookManager object. Parameters ---------- gui : optional, string or None If None (or 'none'), clears input hook, otherwise it must be one of the recognized GUI names (see ``GUI_*`` constants in module). app : optional, existing application object. For toolkits that have the concept of a global app, you can supply an existing one. If not given, the toolkit will be probed for one, and if none is found, a new one will be created. Note that GTK does not have this concept, and passing an app if ``gui=="GTK"`` will raise an error. Returns ------- The output of the underlying gui switch routine, typically the actual PyOS_InputHook wrapper object or the GUI toolkit app created, if there was one. """ if get_return_control_callback() is None: raise ValueError("A return_control_callback must be supplied as a reference before a gui can be enabled") guis = {GUI_NONE: clear_inputhook, GUI_OSX: enable_mac, GUI_TK: enable_tk, GUI_GTK: enable_gtk, GUI_WX: enable_wx, GUI_QT: enable_qt4, # qt3 not supported GUI_QT4: enable_qt4, GUI_QT5: enable_qt5, GUI_GLUT: enable_glut, GUI_PYGLET: enable_pyglet, GUI_GTK3: enable_gtk3, } try: gui_hook = guis[gui] except KeyError: if gui is None or gui == '': gui_hook = clear_inputhook else: e = "Invalid GUI request %r, valid ones are:%s" % (gui, guis.keys()) raise ValueError(e) return gui_hook(app) __all__ = [ "GUI_WX", "GUI_QT", "GUI_QT4", "GUI_QT5", "GUI_GTK", "GUI_TK", "GUI_OSX", "GUI_GLUT", "GUI_PYGLET", "GUI_GTK3", "GUI_NONE", "ignore_CTRL_C", "allow_CTRL_C", "InputHookManager", "inputhook_manager", "enable_wx", "disable_wx", "enable_qt4", "disable_qt4", "enable_qt5", "disable_qt5", "enable_gtk", "disable_gtk", "enable_tk", "disable_tk", "enable_glut", "disable_glut", "enable_pyglet", "disable_pyglet", "enable_gtk3", "disable_gtk3", "enable_mac", "disable_mac", "clear_inputhook", "set_inputhook", "current_gui", "clear_app_refs", "stdin_ready", "set_return_control_callback", "get_return_control_callback", "get_inputhook", "enable_gui"]
apache-2.0
Srisai85/scikit-learn
sklearn/decomposition/tests/test_nmf.py
130
6059
import numpy as np from scipy import linalg from sklearn.decomposition import nmf from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import raises from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less random_state = np.random.mtrand.RandomState(0) @raises(ValueError) def test_initialize_nn_input(): # Test NNDSVD behaviour on negative input nmf._initialize_nmf(-np.ones((2, 2)), 2) def test_initialize_nn_output(): # Test that NNDSVD does not return negative values data = np.abs(random_state.randn(10, 10)) for var in (None, 'a', 'ar'): W, H = nmf._initialize_nmf(data, 10, random_state=0) assert_false((W < 0).any() or (H < 0).any()) def test_initialize_close(): # Test NNDSVD error # Test that _initialize_nmf error is less than the standard deviation of # the entries in the matrix. A = np.abs(random_state.randn(10, 10)) W, H = nmf._initialize_nmf(A, 10) error = linalg.norm(np.dot(W, H) - A) sdev = linalg.norm(A - A.mean()) assert_true(error <= sdev) def test_initialize_variants(): # Test NNDSVD variants correctness # Test that the variants 'a' and 'ar' differ from basic NNDSVD only where # the basic version has zeros. data = np.abs(random_state.randn(10, 10)) W0, H0 = nmf._initialize_nmf(data, 10, variant=None) Wa, Ha = nmf._initialize_nmf(data, 10, variant='a') War, Har = nmf._initialize_nmf(data, 10, variant='ar', random_state=0) for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)): assert_true(np.allclose(evl[ref != 0], ref[ref != 0])) @raises(ValueError) def test_projgrad_nmf_fit_nn_input(): # Test model fit behaviour on negative input A = -np.ones((2, 2)) m = nmf.ProjectedGradientNMF(n_components=2, init=None, random_state=0) m.fit(A) def test_projgrad_nmf_fit_nn_output(): # Test that the decomposition does not contain negative values A = np.c_[5 * np.ones(5) - np.arange(1, 6), 5 * np.ones(5) + np.arange(1, 6)] for init in (None, 'nndsvd', 'nndsvda', 'nndsvdar'): model = nmf.ProjectedGradientNMF(n_components=2, init=init, random_state=0) transf = model.fit_transform(A) assert_false((model.components_ < 0).any() or (transf < 0).any()) def test_projgrad_nmf_fit_close(): # Test that the fit is not too far away pnmf = nmf.ProjectedGradientNMF(5, init='nndsvda', random_state=0) X = np.abs(random_state.randn(6, 5)) assert_less(pnmf.fit(X).reconstruction_err_, 0.05) def test_nls_nn_output(): # Test that NLS solver doesn't return negative values A = np.arange(1, 5).reshape(1, -1) Ap, _, _ = nmf._nls_subproblem(np.dot(A.T, -A), A.T, A, 0.001, 100) assert_false((Ap < 0).any()) def test_nls_close(): # Test that the NLS results should be close A = np.arange(1, 5).reshape(1, -1) Ap, _, _ = nmf._nls_subproblem(np.dot(A.T, A), A.T, np.zeros_like(A), 0.001, 100) assert_true((np.abs(Ap - A) < 0.01).all()) def test_projgrad_nmf_transform(): # Test that NMF.transform returns close values # (transform uses scipy.optimize.nnls for now) A = np.abs(random_state.randn(6, 5)) m = nmf.ProjectedGradientNMF(n_components=5, init='nndsvd', random_state=0) transf = m.fit_transform(A) assert_true(np.allclose(transf, m.transform(A), atol=1e-2, rtol=0)) def test_n_components_greater_n_features(): # Smoke test for the case of more components than features. A = np.abs(random_state.randn(30, 10)) nmf.ProjectedGradientNMF(n_components=15, sparseness='data', random_state=0).fit(A) def test_projgrad_nmf_sparseness(): # Test sparseness # Test that sparsity constraints actually increase sparseness in the # part where they are applied. A = np.abs(random_state.randn(10, 10)) m = nmf.ProjectedGradientNMF(n_components=5, random_state=0).fit(A) data_sp = nmf.ProjectedGradientNMF(n_components=5, sparseness='data', random_state=0).fit(A).data_sparseness_ comp_sp = nmf.ProjectedGradientNMF(n_components=5, sparseness='components', random_state=0).fit(A).comp_sparseness_ assert_greater(data_sp, m.data_sparseness_) assert_greater(comp_sp, m.comp_sparseness_) def test_sparse_input(): # Test that sparse matrices are accepted as input from scipy.sparse import csc_matrix A = np.abs(random_state.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 T1 = nmf.ProjectedGradientNMF(n_components=5, init='random', random_state=999).fit_transform(A) A_sparse = csc_matrix(A) pg_nmf = nmf.ProjectedGradientNMF(n_components=5, init='random', random_state=999) T2 = pg_nmf.fit_transform(A_sparse) assert_array_almost_equal(pg_nmf.reconstruction_err_, linalg.norm(A - np.dot(T2, pg_nmf.components_), 'fro')) assert_array_almost_equal(T1, T2) # same with sparseness T2 = nmf.ProjectedGradientNMF( n_components=5, init='random', sparseness='data', random_state=999).fit_transform(A_sparse) T1 = nmf.ProjectedGradientNMF( n_components=5, init='random', sparseness='data', random_state=999).fit_transform(A) def test_sparse_transform(): # Test that transform works on sparse data. Issue #2124 from scipy.sparse import csc_matrix A = np.abs(random_state.randn(5, 4)) A[A > 1.0] = 0 A = csc_matrix(A) model = nmf.NMF(random_state=42) A_fit_tr = model.fit_transform(A) A_tr = model.transform(A) # This solver seems pretty inconsistent assert_array_almost_equal(A_fit_tr, A_tr, decimal=2)
bsd-3-clause
pnedunuri/scikit-learn
benchmarks/bench_tree.py
297
3617
""" To run this, you'll need to have installed. * scikit-learn Does two benchmarks First, we fix a training set, increase the number of samples to classify and plot number of classified samples as a function of time. In the second benchmark, we increase the number of dimensions of the training set, classify a sample and plot the time taken as a function of the number of dimensions. """ import numpy as np import pylab as pl import gc from datetime import datetime # to store the results scikit_classifier_results = [] scikit_regressor_results = [] mu_second = 0.0 + 10 ** 6 # number of microseconds in a second def bench_scikit_tree_classifier(X, Y): """Benchmark with scikit-learn decision tree classifier""" from sklearn.tree import DecisionTreeClassifier gc.collect() # start time tstart = datetime.now() clf = DecisionTreeClassifier() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_classifier_results.append( delta.seconds + delta.microseconds / mu_second) def bench_scikit_tree_regressor(X, Y): """Benchmark with scikit-learn decision tree regressor""" from sklearn.tree import DecisionTreeRegressor gc.collect() # start time tstart = datetime.now() clf = DecisionTreeRegressor() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_regressor_results.append( delta.seconds + delta.microseconds / mu_second) if __name__ == '__main__': print('============================================') print('Warning: this is going to take a looong time') print('============================================') n = 10 step = 10000 n_samples = 10000 dim = 10 n_classes = 10 for i in range(n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') n_samples += step X = np.random.randn(n_samples, dim) Y = np.random.randint(0, n_classes, (n_samples,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(n_samples) bench_scikit_tree_regressor(X, Y) xx = range(0, n * step, step) pl.figure('scikit-learn tree benchmark results') pl.subplot(211) pl.title('Learning with varying number of samples') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') scikit_classifier_results = [] scikit_regressor_results = [] n = 10 step = 500 start_dim = 500 n_classes = 10 dim = start_dim for i in range(0, n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') dim += step X = np.random.randn(100, dim) Y = np.random.randint(0, n_classes, (100,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(100) bench_scikit_tree_regressor(X, Y) xx = np.arange(start_dim, start_dim + n * step, step) pl.subplot(212) pl.title('Learning in high dimensional spaces') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of dimensions') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
julienmalard/Tikon
pruebas/test_central/rcrs/modelo_calib_mód.py
1
2555
import numpy as np import pandas as pd import xarray as xr from tikon.central import Módulo, SimulMódulo, Modelo, Exper, Parcela, Coso from tikon.central.res import Resultado from tikon.datos.datos import Datos from tikon.ecs import ÁrbolEcs, CategEc, EcuaciónVacía, SubcategEc, Ecuación, Parám from tikon.ecs.aprioris import APrioriDens from tikon.datos import Obs from tikon.utils import EJE_TIEMPO, EJE_PARC, EJE_ESTOC f_inic = '2000-01-01' class A(Parám): nombre = 'a' unids = None líms = (None, None) apriori = APrioriDens((0, 3), .90) eje_cosos = 'coso' class EcuaciónParám(Ecuación): nombre = 'ec' eje_cosos = 'coso' cls_ramas = [A] _nombre_res = 'res' def eval(símismo, paso, sim): ant = símismo.obt_valor_res(sim) n_estoc = len(ant.coords[EJE_ESTOC]) return ant + símismo.cf['a'] + Datos( (np.random.random(n_estoc) - 0.5) * 0.1, coords={EJE_ESTOC: np.arange(n_estoc)}, dims=[EJE_ESTOC] ) class SubCategParám(SubcategEc): nombre = 'subcateg' cls_ramas = [EcuaciónParám, EcuaciónVacía] eje_cosos = 'coso' _nombre_res = 'res' class CategParám(CategEc): nombre = 'categ' cls_ramas = [SubCategParám] eje_cosos = 'coso' class EcsParám(ÁrbolEcs): nombre = 'árbol' cls_ramas = [CategParám] class CosoParám(Coso): def __init__(símismo, nombre): super().__init__(nombre, EcsParám) class Res(Resultado): nombre = 'res' unids = None def __init__(símismo, sim, coords, vars_interés): coords = {'coso': sim.ecs.cosos, **coords} super().__init__(sim, coords, vars_interés) class SimulMóduloValid(SimulMódulo): resultados = [Res] def incrementar(símismo, paso, f): super().incrementar(paso, f) class Módulo1(Módulo): nombre = 'módulo' cls_simul = SimulMóduloValid cls_ecs = EcsParám eje_coso = 'coso' class Módulo2(Módulo): nombre = 'módulo 2' cls_simul = SimulMóduloValid cls_ecs = EcsParám eje_coso = 'coso' coso1 = CosoParám('hola') coso2 = CosoParám('salut') class MiObs(Obs): mód = 'módulo' var = 'res' obs = MiObs( datos=xr.DataArray( np.arange(10), coords={EJE_TIEMPO: pd.date_range(f_inic, periods=10, freq='D')}, dims=[EJE_TIEMPO] ).expand_dims({EJE_PARC: ['parcela'], 'coso': [coso1]}) ) exper = Exper('exper', Parcela('parcela'), obs=obs) módulo1 = Módulo1(coso1) módulo2 = Módulo2(coso2) modelo = Modelo([módulo1, módulo2])
agpl-3.0
r-mart/scikit-learn
sklearn/mixture/gmm.py
68
31091
""" Gaussian Mixture Models. This implementation corresponds to frequentist (non-Bayesian) formulation of Gaussian Mixture Models. """ # Author: Ron Weiss <[email protected]> # Fabian Pedregosa <[email protected]> # Bertrand Thirion <[email protected]> import warnings import numpy as np from scipy import linalg from time import time from ..base import BaseEstimator from ..utils import check_random_state, check_array from ..utils.extmath import logsumexp from ..utils.validation import check_is_fitted from .. import cluster from sklearn.externals.six.moves import zip EPS = np.finfo(float).eps def log_multivariate_normal_density(X, means, covars, covariance_type='diag'): """Compute the log probability under a multivariate Gaussian distribution. Parameters ---------- X : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. means : array_like, shape (n_components, n_features) List of n_features-dimensional mean vectors for n_components Gaussians. Each row corresponds to a single mean vector. covars : array_like List of n_components covariance parameters for each Gaussian. The shape depends on `covariance_type`: (n_components, n_features) if 'spherical', (n_features, n_features) if 'tied', (n_components, n_features) if 'diag', (n_components, n_features, n_features) if 'full' covariance_type : string Type of the covariance parameters. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. Returns ------- lpr : array_like, shape (n_samples, n_components) Array containing the log probabilities of each data point in X under each of the n_components multivariate Gaussian distributions. """ log_multivariate_normal_density_dict = { 'spherical': _log_multivariate_normal_density_spherical, 'tied': _log_multivariate_normal_density_tied, 'diag': _log_multivariate_normal_density_diag, 'full': _log_multivariate_normal_density_full} return log_multivariate_normal_density_dict[covariance_type]( X, means, covars) def sample_gaussian(mean, covar, covariance_type='diag', n_samples=1, random_state=None): """Generate random samples from a Gaussian distribution. Parameters ---------- mean : array_like, shape (n_features,) Mean of the distribution. covar : array_like, optional Covariance of the distribution. The shape depends on `covariance_type`: scalar if 'spherical', (n_features) if 'diag', (n_features, n_features) if 'tied', or 'full' covariance_type : string, optional Type of the covariance parameters. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. n_samples : int, optional Number of samples to generate. Defaults to 1. Returns ------- X : array, shape (n_features, n_samples) Randomly generated sample """ rng = check_random_state(random_state) n_dim = len(mean) rand = rng.randn(n_dim, n_samples) if n_samples == 1: rand.shape = (n_dim,) if covariance_type == 'spherical': rand *= np.sqrt(covar) elif covariance_type == 'diag': rand = np.dot(np.diag(np.sqrt(covar)), rand) else: s, U = linalg.eigh(covar) s.clip(0, out=s) # get rid of tiny negatives np.sqrt(s, out=s) U *= s rand = np.dot(U, rand) return (rand.T + mean).T class GMM(BaseEstimator): """Gaussian Mixture Model Representation of a Gaussian mixture model probability distribution. This class allows for easy evaluation of, sampling from, and maximum-likelihood estimation of the parameters of a GMM distribution. Initializes parameters such that every mixture component has zero mean and identity covariance. Read more in the :ref:`User Guide <gmm>`. Parameters ---------- n_components : int, optional Number of mixture components. Defaults to 1. covariance_type : string, optional String describing the type of covariance parameters to use. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. random_state: RandomState or an int seed (None by default) A random number generator instance min_covar : float, optional Floor on the diagonal of the covariance matrix to prevent overfitting. Defaults to 1e-3. tol : float, optional Convergence threshold. EM iterations will stop when average gain in log-likelihood is below this threshold. Defaults to 1e-3. n_iter : int, optional Number of EM iterations to perform. n_init : int, optional Number of initializations to perform. the best results is kept params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 'w' for weights, 'm' for means, and 'c' for covars. Defaults to 'wmc'. init_params : string, optional Controls which parameters are updated in the initialization process. Can contain any combination of 'w' for weights, 'm' for means, and 'c' for covars. Defaults to 'wmc'. verbose : int, default: 0 Enable verbose output. If 1 then it always prints the current initialization and iteration step. If greater than 1 then it prints additionally the change and time needed for each step. Attributes ---------- weights_ : array, shape (`n_components`,) This attribute stores the mixing weights for each mixture component. means_ : array, shape (`n_components`, `n_features`) Mean parameters for each mixture component. covars_ : array Covariance parameters for each mixture component. The shape depends on `covariance_type`:: (n_components, n_features) if 'spherical', (n_features, n_features) if 'tied', (n_components, n_features) if 'diag', (n_components, n_features, n_features) if 'full' converged_ : bool True when convergence was reached in fit(), False otherwise. See Also -------- DPGMM : Infinite gaussian mixture model, using the dirichlet process, fit with a variational algorithm VBGMM : Finite gaussian mixture model fit with a variational algorithm, better for situations where there might be too little data to get a good estimate of the covariance matrix. Examples -------- >>> import numpy as np >>> from sklearn import mixture >>> np.random.seed(1) >>> g = mixture.GMM(n_components=2) >>> # Generate random observations with two modes centered on 0 >>> # and 10 to use for training. >>> obs = np.concatenate((np.random.randn(100, 1), ... 10 + np.random.randn(300, 1))) >>> g.fit(obs) # doctest: +NORMALIZE_WHITESPACE GMM(covariance_type='diag', init_params='wmc', min_covar=0.001, n_components=2, n_init=1, n_iter=100, params='wmc', random_state=None, thresh=None, tol=0.001, verbose=0) >>> np.round(g.weights_, 2) array([ 0.75, 0.25]) >>> np.round(g.means_, 2) array([[ 10.05], [ 0.06]]) >>> np.round(g.covars_, 2) #doctest: +SKIP array([[[ 1.02]], [[ 0.96]]]) >>> g.predict([[0], [2], [9], [10]]) #doctest: +ELLIPSIS array([1, 1, 0, 0]...) >>> np.round(g.score([[0], [2], [9], [10]]), 2) array([-2.19, -4.58, -1.75, -1.21]) >>> # Refit the model on new data (initial parameters remain the >>> # same), this time with an even split between the two modes. >>> g.fit(20 * [[0]] + 20 * [[10]]) # doctest: +NORMALIZE_WHITESPACE GMM(covariance_type='diag', init_params='wmc', min_covar=0.001, n_components=2, n_init=1, n_iter=100, params='wmc', random_state=None, thresh=None, tol=0.001, verbose=0) >>> np.round(g.weights_, 2) array([ 0.5, 0.5]) """ def __init__(self, n_components=1, covariance_type='diag', random_state=None, thresh=None, tol=1e-3, min_covar=1e-3, n_iter=100, n_init=1, params='wmc', init_params='wmc', verbose=0): if thresh is not None: warnings.warn("'thresh' has been replaced by 'tol' in 0.16 " " and will be removed in 0.18.", DeprecationWarning) self.n_components = n_components self.covariance_type = covariance_type self.thresh = thresh self.tol = tol self.min_covar = min_covar self.random_state = random_state self.n_iter = n_iter self.n_init = n_init self.params = params self.init_params = init_params self.verbose = verbose if covariance_type not in ['spherical', 'tied', 'diag', 'full']: raise ValueError('Invalid value for covariance_type: %s' % covariance_type) if n_init < 1: raise ValueError('GMM estimation requires at least one run') self.weights_ = np.ones(self.n_components) / self.n_components # flag to indicate exit status of fit() method: converged (True) or # n_iter reached (False) self.converged_ = False def _get_covars(self): """Covariance parameters for each mixture component. The shape depends on ``cvtype``:: (n_states, n_features) if 'spherical', (n_features, n_features) if 'tied', (n_states, n_features) if 'diag', (n_states, n_features, n_features) if 'full' """ if self.covariance_type == 'full': return self.covars_ elif self.covariance_type == 'diag': return [np.diag(cov) for cov in self.covars_] elif self.covariance_type == 'tied': return [self.covars_] * self.n_components elif self.covariance_type == 'spherical': return [np.diag(cov) for cov in self.covars_] def _set_covars(self, covars): """Provide values for covariance""" covars = np.asarray(covars) _validate_covars(covars, self.covariance_type, self.n_components) self.covars_ = covars def score_samples(self, X): """Return the per-sample likelihood of the data under the model. Compute the log probability of X under the model and return the posterior distribution (responsibilities) of each mixture component for each element of X. Parameters ---------- X: array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : array_like, shape (n_samples,) Log probabilities of each data point in X. responsibilities : array_like, shape (n_samples, n_components) Posterior probabilities of each mixture component for each observation """ check_is_fitted(self, 'means_') X = check_array(X) if X.ndim == 1: X = X[:, np.newaxis] if X.size == 0: return np.array([]), np.empty((0, self.n_components)) if X.shape[1] != self.means_.shape[1]: raise ValueError('The shape of X is not compatible with self') lpr = (log_multivariate_normal_density(X, self.means_, self.covars_, self.covariance_type) + np.log(self.weights_)) logprob = logsumexp(lpr, axis=1) responsibilities = np.exp(lpr - logprob[:, np.newaxis]) return logprob, responsibilities def score(self, X, y=None): """Compute the log probability under the model. Parameters ---------- X : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : array_like, shape (n_samples,) Log probabilities of each data point in X """ logprob, _ = self.score_samples(X) return logprob def predict(self, X): """Predict label for data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = (n_samples,) component memberships """ logprob, responsibilities = self.score_samples(X) return responsibilities.argmax(axis=1) def predict_proba(self, X): """Predict posterior probability of data under each Gaussian in the model. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- responsibilities : array-like, shape = (n_samples, n_components) Returns the probability of the sample for each Gaussian (state) in the model. """ logprob, responsibilities = self.score_samples(X) return responsibilities def sample(self, n_samples=1, random_state=None): """Generate random samples from the model. Parameters ---------- n_samples : int, optional Number of samples to generate. Defaults to 1. Returns ------- X : array_like, shape (n_samples, n_features) List of samples """ check_is_fitted(self, 'means_') if random_state is None: random_state = self.random_state random_state = check_random_state(random_state) weight_cdf = np.cumsum(self.weights_) X = np.empty((n_samples, self.means_.shape[1])) rand = random_state.rand(n_samples) # decide which component to use for each sample comps = weight_cdf.searchsorted(rand) # for each component, generate all needed samples for comp in range(self.n_components): # occurrences of current component in X comp_in_X = (comp == comps) # number of those occurrences num_comp_in_X = comp_in_X.sum() if num_comp_in_X > 0: if self.covariance_type == 'tied': cv = self.covars_ elif self.covariance_type == 'spherical': cv = self.covars_[comp][0] else: cv = self.covars_[comp] X[comp_in_X] = sample_gaussian( self.means_[comp], cv, self.covariance_type, num_comp_in_X, random_state=random_state).T return X def fit_predict(self, X, y=None): """Fit and then predict labels for data. Warning: due to the final maximization step in the EM algorithm, with low iterations the prediction may not be 100% accurate Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = (n_samples,) component memberships """ return self._fit(X, y).argmax(axis=1) def _fit(self, X, y=None, do_prediction=False): """Estimate model parameters with the EM algorithm. A initialization step is performed before entering the expectation-maximization (EM) algorithm. If you want to avoid this step, set the keyword argument init_params to the empty string '' when creating the GMM object. Likewise, if you would like just to do an initialization, set n_iter=0. Parameters ---------- X : array_like, shape (n, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- responsibilities : array, shape (n_samples, n_components) Posterior probabilities of each mixture component for each observation. """ # initialization step X = check_array(X, dtype=np.float64, ensure_min_samples=2) if X.shape[0] < self.n_components: raise ValueError( 'GMM estimation with %s components, but got only %s samples' % (self.n_components, X.shape[0])) max_log_prob = -np.infty if self.verbose > 0: print('Expectation-maximization algorithm started.') for init in range(self.n_init): if self.verbose > 0: print('Initialization ' + str(init + 1)) start_init_time = time() if 'm' in self.init_params or not hasattr(self, 'means_'): self.means_ = cluster.KMeans( n_clusters=self.n_components, random_state=self.random_state).fit(X).cluster_centers_ if self.verbose > 1: print('\tMeans have been initialized.') if 'w' in self.init_params or not hasattr(self, 'weights_'): self.weights_ = np.tile(1.0 / self.n_components, self.n_components) if self.verbose > 1: print('\tWeights have been initialized.') if 'c' in self.init_params or not hasattr(self, 'covars_'): cv = np.cov(X.T) + self.min_covar * np.eye(X.shape[1]) if not cv.shape: cv.shape = (1, 1) self.covars_ = \ distribute_covar_matrix_to_match_covariance_type( cv, self.covariance_type, self.n_components) if self.verbose > 1: print('\tCovariance matrices have been initialized.') # EM algorithms current_log_likelihood = None # reset self.converged_ to False self.converged_ = False # this line should be removed when 'thresh' is removed in v0.18 tol = (self.tol if self.thresh is None else self.thresh / float(X.shape[0])) for i in range(self.n_iter): if self.verbose > 0: print('\tEM iteration ' + str(i + 1)) start_iter_time = time() prev_log_likelihood = current_log_likelihood # Expectation step log_likelihoods, responsibilities = self.score_samples(X) current_log_likelihood = log_likelihoods.mean() # Check for convergence. # (should compare to self.tol when deprecated 'thresh' is # removed in v0.18) if prev_log_likelihood is not None: change = abs(current_log_likelihood - prev_log_likelihood) if self.verbose > 1: print('\t\tChange: ' + str(change)) if change < tol: self.converged_ = True if self.verbose > 0: print('\t\tEM algorithm converged.') break # Maximization step self._do_mstep(X, responsibilities, self.params, self.min_covar) if self.verbose > 1: print('\t\tEM iteration ' + str(i + 1) + ' took {0:.5f}s'.format( time() - start_iter_time)) # if the results are better, keep it if self.n_iter: if current_log_likelihood > max_log_prob: max_log_prob = current_log_likelihood best_params = {'weights': self.weights_, 'means': self.means_, 'covars': self.covars_} if self.verbose > 1: print('\tBetter parameters were found.') if self.verbose > 1: print('\tInitialization ' + str(init + 1) + ' took {0:.5f}s'.format( time() - start_init_time)) # check the existence of an init param that was not subject to # likelihood computation issue. if np.isneginf(max_log_prob) and self.n_iter: raise RuntimeError( "EM algorithm was never able to compute a valid likelihood " + "given initial parameters. Try different init parameters " + "(or increasing n_init) or check for degenerate data.") if self.n_iter: self.covars_ = best_params['covars'] self.means_ = best_params['means'] self.weights_ = best_params['weights'] else: # self.n_iter == 0 occurs when using GMM within HMM # Need to make sure that there are responsibilities to output # Output zeros because it was just a quick initialization responsibilities = np.zeros((X.shape[0], self.n_components)) return responsibilities def fit(self, X, y=None): """Estimate model parameters with the EM algorithm. A initialization step is performed before entering the expectation-maximization (EM) algorithm. If you want to avoid this step, set the keyword argument init_params to the empty string '' when creating the GMM object. Likewise, if you would like just to do an initialization, set n_iter=0. Parameters ---------- X : array_like, shape (n, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- self """ self._fit(X, y) return self def _do_mstep(self, X, responsibilities, params, min_covar=0): """ Perform the Mstep of the EM algorithm and return the class weights """ weights = responsibilities.sum(axis=0) weighted_X_sum = np.dot(responsibilities.T, X) inverse_weights = 1.0 / (weights[:, np.newaxis] + 10 * EPS) if 'w' in params: self.weights_ = (weights / (weights.sum() + 10 * EPS) + EPS) if 'm' in params: self.means_ = weighted_X_sum * inverse_weights if 'c' in params: covar_mstep_func = _covar_mstep_funcs[self.covariance_type] self.covars_ = covar_mstep_func( self, X, responsibilities, weighted_X_sum, inverse_weights, min_covar) return weights def _n_parameters(self): """Return the number of free parameters in the model.""" ndim = self.means_.shape[1] if self.covariance_type == 'full': cov_params = self.n_components * ndim * (ndim + 1) / 2. elif self.covariance_type == 'diag': cov_params = self.n_components * ndim elif self.covariance_type == 'tied': cov_params = ndim * (ndim + 1) / 2. elif self.covariance_type == 'spherical': cov_params = self.n_components mean_params = ndim * self.n_components return int(cov_params + mean_params + self.n_components - 1) def bic(self, X): """Bayesian information criterion for the current model fit and the proposed data Parameters ---------- X : array of shape(n_samples, n_dimensions) Returns ------- bic: float (the lower the better) """ return (-2 * self.score(X).sum() + self._n_parameters() * np.log(X.shape[0])) def aic(self, X): """Akaike information criterion for the current model fit and the proposed data Parameters ---------- X : array of shape(n_samples, n_dimensions) Returns ------- aic: float (the lower the better) """ return - 2 * self.score(X).sum() + 2 * self._n_parameters() ######################################################################### # some helper routines ######################################################################### def _log_multivariate_normal_density_diag(X, means, covars): """Compute Gaussian log-density at X for a diagonal model""" n_samples, n_dim = X.shape lpr = -0.5 * (n_dim * np.log(2 * np.pi) + np.sum(np.log(covars), 1) + np.sum((means ** 2) / covars, 1) - 2 * np.dot(X, (means / covars).T) + np.dot(X ** 2, (1.0 / covars).T)) return lpr def _log_multivariate_normal_density_spherical(X, means, covars): """Compute Gaussian log-density at X for a spherical model""" cv = covars.copy() if covars.ndim == 1: cv = cv[:, np.newaxis] if covars.shape[1] == 1: cv = np.tile(cv, (1, X.shape[-1])) return _log_multivariate_normal_density_diag(X, means, cv) def _log_multivariate_normal_density_tied(X, means, covars): """Compute Gaussian log-density at X for a tied model""" cv = np.tile(covars, (means.shape[0], 1, 1)) return _log_multivariate_normal_density_full(X, means, cv) def _log_multivariate_normal_density_full(X, means, covars, min_covar=1.e-7): """Log probability for full covariance matrices.""" n_samples, n_dim = X.shape nmix = len(means) log_prob = np.empty((n_samples, nmix)) for c, (mu, cv) in enumerate(zip(means, covars)): try: cv_chol = linalg.cholesky(cv, lower=True) except linalg.LinAlgError: # The model is most probably stuck in a component with too # few observations, we need to reinitialize this components try: cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dim), lower=True) except linalg.LinAlgError: raise ValueError("'covars' must be symmetric, " "positive-definite") cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol))) cv_sol = linalg.solve_triangular(cv_chol, (X - mu).T, lower=True).T log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) + n_dim * np.log(2 * np.pi) + cv_log_det) return log_prob def _validate_covars(covars, covariance_type, n_components): """Do basic checks on matrix covariance sizes and values """ from scipy import linalg if covariance_type == 'spherical': if len(covars) != n_components: raise ValueError("'spherical' covars have length n_components") elif np.any(covars <= 0): raise ValueError("'spherical' covars must be non-negative") elif covariance_type == 'tied': if covars.shape[0] != covars.shape[1]: raise ValueError("'tied' covars must have shape (n_dim, n_dim)") elif (not np.allclose(covars, covars.T) or np.any(linalg.eigvalsh(covars) <= 0)): raise ValueError("'tied' covars must be symmetric, " "positive-definite") elif covariance_type == 'diag': if len(covars.shape) != 2: raise ValueError("'diag' covars must have shape " "(n_components, n_dim)") elif np.any(covars <= 0): raise ValueError("'diag' covars must be non-negative") elif covariance_type == 'full': if len(covars.shape) != 3: raise ValueError("'full' covars must have shape " "(n_components, n_dim, n_dim)") elif covars.shape[1] != covars.shape[2]: raise ValueError("'full' covars must have shape " "(n_components, n_dim, n_dim)") for n, cv in enumerate(covars): if (not np.allclose(cv, cv.T) or np.any(linalg.eigvalsh(cv) <= 0)): raise ValueError("component %d of 'full' covars must be " "symmetric, positive-definite" % n) else: raise ValueError("covariance_type must be one of " + "'spherical', 'tied', 'diag', 'full'") def distribute_covar_matrix_to_match_covariance_type( tied_cv, covariance_type, n_components): """Create all the covariance matrices from a given template""" if covariance_type == 'spherical': cv = np.tile(tied_cv.mean() * np.ones(tied_cv.shape[1]), (n_components, 1)) elif covariance_type == 'tied': cv = tied_cv elif covariance_type == 'diag': cv = np.tile(np.diag(tied_cv), (n_components, 1)) elif covariance_type == 'full': cv = np.tile(tied_cv, (n_components, 1, 1)) else: raise ValueError("covariance_type must be one of " + "'spherical', 'tied', 'diag', 'full'") return cv def _covar_mstep_diag(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): """Performing the covariance M step for diagonal cases""" avg_X2 = np.dot(responsibilities.T, X * X) * norm avg_means2 = gmm.means_ ** 2 avg_X_means = gmm.means_ * weighted_X_sum * norm return avg_X2 - 2 * avg_X_means + avg_means2 + min_covar def _covar_mstep_spherical(*args): """Performing the covariance M step for spherical cases""" cv = _covar_mstep_diag(*args) return np.tile(cv.mean(axis=1)[:, np.newaxis], (1, cv.shape[1])) def _covar_mstep_full(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): """Performing the covariance M step for full cases""" # Eq. 12 from K. Murphy, "Fitting a Conditional Linear Gaussian # Distribution" n_features = X.shape[1] cv = np.empty((gmm.n_components, n_features, n_features)) for c in range(gmm.n_components): post = responsibilities[:, c] mu = gmm.means_[c] diff = X - mu with np.errstate(under='ignore'): # Underflow Errors in doing post * X.T are not important avg_cv = np.dot(post * diff.T, diff) / (post.sum() + 10 * EPS) cv[c] = avg_cv + min_covar * np.eye(n_features) return cv def _covar_mstep_tied(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): # Eq. 15 from K. Murphy, "Fitting a Conditional Linear Gaussian # Distribution" avg_X2 = np.dot(X.T, X) avg_means2 = np.dot(gmm.means_.T, weighted_X_sum) out = avg_X2 - avg_means2 out *= 1. / X.shape[0] out.flat[::len(out) + 1] += min_covar return out _covar_mstep_funcs = {'spherical': _covar_mstep_spherical, 'diag': _covar_mstep_diag, 'tied': _covar_mstep_tied, 'full': _covar_mstep_full, }
bsd-3-clause
alistairlow/tensorflow
tensorflow/python/estimator/inputs/queues/feeding_functions.py
10
18978
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper functions for enqueuing data from arrays and pandas `DataFrame`s.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import random import types as tp import numpy as np import six from tensorflow.python.estimator.inputs.queues import feeding_queue_runner as fqr from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.summary import summary from tensorflow.python.training import queue_runner try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False def _fill_array(arr, seq, fillvalue=0): """ Recursively fills padded arr with elements from seq. If length of seq is less than arr padded length, fillvalue used. Args: arr: Padded tensor of shape [batch_size, ..., max_padded_dim_len]. seq: Non-padded list of data sampels of shape [batch_size, ..., padded_dim(None)] fillvalue: Default fillvalue to use. """ if arr.ndim == 1: try: len_ = len(seq) except TypeError: len_ = 0 arr[:len_] = seq arr[len_:] = fillvalue else: for subarr, subseq in six.moves.zip_longest(arr, seq, fillvalue=()): _fill_array(subarr, subseq, fillvalue) def _pad_if_needed(batch_key_item, fillvalue=0): """ Returns padded batch. Args: batch_key_item: List of data samples of any type with shape [batch_size, ..., padded_dim(None)]. fillvalue: Default fillvalue to use. Returns: Padded with zeros tensor of same type and shape [batch_size, ..., max_padded_dim_len]. Raises: ValueError if data samples have different shapes (except last padded dim). """ shapes = [seq.shape[:-1] if len(seq.shape) > 0 else -1 for seq in batch_key_item] if not all(shapes[0] == x for x in shapes): raise ValueError("Array shapes must match.") last_length = [seq.shape[-1] if len(seq.shape) > 0 else 0 for seq in batch_key_item] if all([x == last_length[0] for x in last_length]): return batch_key_item batch_size = len(batch_key_item) max_sequence_length = max(last_length) result_batch = np.zeros( shape=[batch_size] + list(shapes[0]) + [max_sequence_length], dtype=batch_key_item[0].dtype) _fill_array(result_batch, batch_key_item, fillvalue) return result_batch def _get_integer_indices_for_next_batch( batch_indices_start, batch_size, epoch_end, array_length, current_epoch, total_epochs): """Returns the integer indices for next batch. If total epochs is not None and current epoch is the final epoch, the end index of the next batch should not exceed the `epoch_end` (i.e., the final batch might not have size `batch_size` to avoid overshooting the last epoch). Args: batch_indices_start: Integer, the index to start next batch. batch_size: Integer, size of batches to return. epoch_end: Integer, the end index of the epoch. The epoch could start from a random position, so `epoch_end` provides the end index for that. array_length: Integer, the length of the array. current_epoch: Integer, the epoch number has been emitted. total_epochs: Integer or `None`, the total number of epochs to emit. If `None` will run forever. Returns: A tuple of a list with integer indices for next batch and `current_epoch` value after the next batch. Raises: OutOfRangeError if `current_epoch` is not less than `total_epochs`. """ if total_epochs is not None and current_epoch >= total_epochs: raise errors.OutOfRangeError(None, None, "Already emitted %s epochs." % current_epoch) batch_indices_end = batch_indices_start + batch_size batch_indices = [j % array_length for j in range(batch_indices_start, batch_indices_end)] epoch_end_indices = [i for i, x in enumerate(batch_indices) if x == epoch_end] current_epoch += len(epoch_end_indices) if total_epochs is None or current_epoch < total_epochs: return (batch_indices, current_epoch) # Now we might have emitted more data for expected epochs. Need to trim. final_epoch_end_inclusive = epoch_end_indices[ -(current_epoch - total_epochs + 1)] batch_indices = batch_indices[:final_epoch_end_inclusive + 1] return (batch_indices, total_epochs) class _ArrayFeedFn(object): """Creates feed dictionaries from numpy arrays.""" def __init__(self, placeholders, array, batch_size, random_start=False, seed=None, num_epochs=None): if len(placeholders) != 2: raise ValueError("_array_feed_fn expects 2 placeholders; got {}.".format( len(placeholders))) self._placeholders = placeholders self._array = array self._max = len(array) self._batch_size = batch_size self._num_epochs = num_epochs self._epoch = 0 random.seed(seed) self._trav = random.randrange(self._max) if random_start else 0 self._epoch_end = (self._trav - 1) % self._max def __call__(self): integer_indexes, self._epoch = _get_integer_indices_for_next_batch( batch_indices_start=self._trav, batch_size=self._batch_size, epoch_end=self._epoch_end, array_length=self._max, current_epoch=self._epoch, total_epochs=self._num_epochs) self._trav = (integer_indexes[-1] + 1) % self._max return { self._placeholders[0]: integer_indexes, self._placeholders[1]: self._array[integer_indexes] } class _OrderedDictNumpyFeedFn(object): """Creates feed dictionaries from `OrderedDict`s of numpy arrays.""" def __init__(self, placeholders, ordered_dict_of_arrays, batch_size, random_start=False, seed=None, num_epochs=None): if len(placeholders) != len(ordered_dict_of_arrays) + 1: raise ValueError("Expected {} placeholders; got {}.".format( len(ordered_dict_of_arrays), len(placeholders))) self._index_placeholder = placeholders[0] self._col_placeholders = placeholders[1:] self._ordered_dict_of_arrays = ordered_dict_of_arrays self._max = len(next(iter(ordered_dict_of_arrays.values()))) for _, v in ordered_dict_of_arrays.items(): if len(v) != self._max: raise ValueError("Array lengths must match.") self._batch_size = batch_size self._num_epochs = num_epochs self._epoch = 0 random.seed(seed) self._trav = random.randrange(self._max) if random_start else 0 self._epoch_end = (self._trav - 1) % self._max def __call__(self): integer_indexes, self._epoch = _get_integer_indices_for_next_batch( batch_indices_start=self._trav, batch_size=self._batch_size, epoch_end=self._epoch_end, array_length=self._max, current_epoch=self._epoch, total_epochs=self._num_epochs) self._trav = (integer_indexes[-1] + 1) % self._max feed_dict = {self._index_placeholder: integer_indexes} cols = [ column[integer_indexes] for column in self._ordered_dict_of_arrays.values() ] feed_dict.update(dict(zip(self._col_placeholders, cols))) return feed_dict class _PandasFeedFn(object): """Creates feed dictionaries from pandas `DataFrames`.""" def __init__(self, placeholders, dataframe, batch_size, random_start=False, seed=None, num_epochs=None): if len(placeholders) != len(dataframe.columns) + 1: raise ValueError("Expected {} placeholders; got {}.".format( len(dataframe.columns), len(placeholders))) self._index_placeholder = placeholders[0] self._col_placeholders = placeholders[1:] self._dataframe = dataframe self._max = len(dataframe) self._batch_size = batch_size self._num_epochs = num_epochs self._epoch = 0 random.seed(seed) self._trav = random.randrange(self._max) if random_start else 0 self._epoch_end = (self._trav - 1) % self._max def __call__(self): integer_indexes, self._epoch = _get_integer_indices_for_next_batch( batch_indices_start=self._trav, batch_size=self._batch_size, epoch_end=self._epoch_end, array_length=self._max, current_epoch=self._epoch, total_epochs=self._num_epochs) self._trav = (integer_indexes[-1] + 1) % self._max result = self._dataframe.iloc[integer_indexes] cols = [result[col].values for col in result.columns] feed_dict = dict(zip(self._col_placeholders, cols)) feed_dict[self._index_placeholder] = result.index.values return feed_dict class _GeneratorFeedFn(object): """Creates feed dictionaries from `Generator` of `dicts` of numpy arrays.""" def __init__(self, placeholders, generator, batch_size, random_start=False, seed=None, num_epochs=None, pad_value=None): first_sample = next(generator()) if len(placeholders) != len(first_sample): raise ValueError("Expected {} placeholders; got {}.".format( len(first_sample), len(placeholders))) self._keys = sorted(list(first_sample.keys())) self._col_placeholders = placeholders self._generator_function = generator self._iterator = generator() self._batch_size = batch_size self._num_epochs = num_epochs self._epoch = 0 self._pad_value = pad_value random.seed(seed) def __call__(self): if self._num_epochs and self._epoch >= self._num_epochs: raise errors.OutOfRangeError(None, None, "Already emitted %s epochs." % self._epoch) list_dict = {} list_dict_size = 0 while list_dict_size < self._batch_size: try: data_row = next(self._iterator) except StopIteration: self._epoch += 1 self._iterator = self._generator_function() data_row = next(self._iterator) for index, key in enumerate(self._keys): if key not in data_row.keys(): raise KeyError("key mismatch between dicts emitted by GenFun " "Expected {} keys; got {}".format( self._keys, data_row.keys())) list_dict.setdefault(self._col_placeholders[index], list()).append(data_row[key]) list_dict_size += 1 if self._pad_value is not None: feed_dict = {key: np.asarray(_pad_if_needed(item, self._pad_value)) for key, item in list(list_dict.items())} else: feed_dict = {key: np.asarray(item) for key, item in list(list_dict.items())} return feed_dict def _enqueue_data(data, capacity, shuffle=False, min_after_dequeue=None, num_threads=1, seed=None, name="enqueue_input", enqueue_size=1, num_epochs=None, pad_value=None): """Creates a queue filled from a numpy array or pandas `DataFrame`. Returns a queue filled with the rows of the given (`OrderedDict` of) array or `DataFrame`. In the case of a pandas `DataFrame`, the first enqueued `Tensor` corresponds to the index of the `DataFrame`. For (`OrderedDict` of) numpy arrays, the first enqueued `Tensor` contains the row number. Args: data: a numpy `ndarray`, `OrderedDict` of numpy arrays, or a generator yielding `dict`s of numpy arrays or pandas `DataFrame` that will be read into the queue. capacity: the capacity of the queue. shuffle: whether or not to shuffle the rows of the array. min_after_dequeue: minimum number of elements that can remain in the queue after a dequeue operation. Only used when `shuffle` is true. If not set, defaults to `capacity` / 4. num_threads: number of threads used for reading and enqueueing. seed: used to seed shuffling and reader starting points. name: a scope name identifying the data. enqueue_size: the number of rows to enqueue per step. num_epochs: limit enqueuing to a specified number of epochs, if provided. pad_value: default value for dynamic padding of data samples, if provided. Returns: A queue filled with the rows of the given (`OrderedDict` of) array or `DataFrame`. Raises: TypeError: `data` is not a Pandas `DataFrame`, an `OrderedDict` of numpy arrays, a numpy `ndarray`, or a generator producing these. NotImplementedError: padding and shuffling data at the same time. NotImplementedError: padding usage with non generator data type. """ with ops.name_scope(name): if isinstance(data, np.ndarray): types = [dtypes.int64, dtypes.as_dtype(data.dtype)] queue_shapes = [(), data.shape[1:]] get_feed_fn = _ArrayFeedFn elif isinstance(data, collections.OrderedDict): types = [dtypes.int64] + [ dtypes.as_dtype(col.dtype) for col in data.values() ] queue_shapes = [()] + [col.shape[1:] for col in data.values()] get_feed_fn = _OrderedDictNumpyFeedFn elif isinstance(data, tp.FunctionType): x_first_el = six.next(data()) x_first_keys = sorted(x_first_el.keys()) x_first_values = [x_first_el[key] for key in x_first_keys] types = [dtypes.as_dtype(col.dtype) for col in x_first_values] queue_shapes = [col.shape for col in x_first_values] get_feed_fn = _GeneratorFeedFn elif HAS_PANDAS and isinstance(data, pd.DataFrame): types = [ dtypes.as_dtype(dt) for dt in [data.index.dtype] + list(data.dtypes) ] queue_shapes = [() for _ in types] get_feed_fn = _PandasFeedFn else: raise TypeError( "data must be either a numpy array or pandas DataFrame if pandas is " "installed; got {}".format(type(data).__name__)) pad_data = pad_value is not None if pad_data and get_feed_fn is not _GeneratorFeedFn: raise NotImplementedError( "padding is only available with generator usage") if shuffle and pad_data: raise NotImplementedError( "padding and shuffling data at the same time is not implemented") # TODO(jamieas): TensorBoard warnings for all warnings below once available. if num_threads > 1 and num_epochs is not None: logging.warning( "enqueue_data was called with num_epochs and num_threads > 1. " "num_epochs is applied per thread, so this will produce more " "epochs than you probably intend. " "If you want to limit epochs, use one thread.") if shuffle and num_threads > 1 and num_epochs is not None: logging.warning( "enqueue_data was called with shuffle=True, num_threads > 1, and " "num_epochs. This will create multiple threads, all reading the " "array/dataframe in order adding to the same shuffling queue; the " "results will likely not be sufficiently shuffled.") if not shuffle and num_threads > 1: logging.warning( "enqueue_data was called with shuffle=False and num_threads > 1. " "This will create multiple threads, all reading the " "array/dataframe in order. If you want examples read in order, use" " one thread; if you want multiple threads, enable shuffling.") if shuffle: min_after_dequeue = int(capacity / 4 if min_after_dequeue is None else min_after_dequeue) queue = data_flow_ops.RandomShuffleQueue( capacity, min_after_dequeue, dtypes=types, shapes=queue_shapes, seed=seed) elif pad_data: min_after_dequeue = 0 # just for the summary text queue_shapes = list(map( lambda x: tuple(list(x[:-1]) + [None]) if len(x) > 0 else x, queue_shapes)) queue = data_flow_ops.PaddingFIFOQueue( capacity, dtypes=types, shapes=queue_shapes) else: min_after_dequeue = 0 # just for the summary text queue = data_flow_ops.FIFOQueue( capacity, dtypes=types, shapes=queue_shapes) enqueue_ops = [] feed_fns = [] for i in range(num_threads): # Note the placeholders have no shapes, so they will accept any # enqueue_size. enqueue_many below will break them up. placeholders = [array_ops.placeholder(t) for t in types] enqueue_ops.append(queue.enqueue_many(placeholders)) seed_i = None if seed is None else (i + 1) * seed if not pad_data: feed_fns.append( get_feed_fn( placeholders, data, enqueue_size, random_start=shuffle, seed=seed_i, num_epochs=num_epochs)) else: feed_fns.append( get_feed_fn( placeholders, data, enqueue_size, random_start=shuffle, seed=seed_i, num_epochs=num_epochs, pad_value=pad_value)) runner = fqr._FeedingQueueRunner( # pylint: disable=protected-access queue=queue, enqueue_ops=enqueue_ops, feed_fns=feed_fns) queue_runner.add_queue_runner(runner) full = (math_ops.cast( math_ops.maximum(0, queue.size() - min_after_dequeue), dtypes.float32) * (1. / (capacity - min_after_dequeue))) # Note that name contains a '/' at the end so we intentionally do not place # a '/' after %s below. summary_name = ("queue/%sfraction_over_%d_of_%d_full" % (queue.name, min_after_dequeue, capacity - min_after_dequeue)) summary.scalar(summary_name, full) return queue
apache-2.0
sangwook236/general-development-and-testing
sw_dev/python/rnd/test/probabilistic_graphical_model/gpflow/gpflow_basic.py
2
3080
#!/usr/bin/env python # -*- coding: UTF-8 -*- import numpy as np import tensorflow as tf from matplotlib import pyplot as plt import matplotlib import gpflow # REF [site] >> https://gpflow.readthedocs.io/en/latest/notebooks/models.html def handle_model_example(): with gpflow.defer_build(): X = np.random.rand(20, 1) Y = np.sin(12 * X) + 0.66 * np.cos(25 * X) + np.random.randn(20,1) * 0.01 model = gpflow.models.GPR(X, Y, kern=gpflow.kernels.Matern32(1) + gpflow.kernels.Linear(1)) # View, get and set parameters. print(model) print(model.as_pandas_table()) print(model.likelihood.as_pandas_table()) model.kern.kernels[0].lengthscales = 0.5 model.likelihood.variance = 0.01 print(model.as_pandas_table()) # Constraints and trainable variables. print(model.read_trainables()) model.kern.kernels[0].lengthscales.transform = gpflow.transforms.Exp() print(model.read_trainables()) #model.kern.kernels[1].variance.trainable = False #print(model.as_pandas_table()) #print(model.read_trainables()) # Priors. model.kern.kernels[0].variance.prior = gpflow.priors.Gamma(2, 3) print(model.as_pandas_table()) # Optimization. model.compile() opt = gpflow.train.ScipyOptimizer() opt.minimize(model) class LinearMulticlass(gpflow.models.Model): def __init__(self, X, Y, name=None): super().__init__(name=name) self.X = X.copy() # X is a numpy array of inputs. self.Y = Y.copy() # Y is a 1-of-K representation of the labels. self.num_data, self.input_dim = X.shape _, self.num_classes = Y.shape # Make some parameters. self.W = gpflow.Param(np.random.randn(self.input_dim, self.num_classes)) self.b = gpflow.Param(np.random.randn(self.num_classes)) @gpflow.params_as_tensors def _build_likelihood(self): # Param variables are used as Tensorflow arrays. p = tf.nn.softmax(tf.matmul(self.X, self.W) + self.b) return tf.reduce_sum(tf.log(p) * self.Y) # REF [site] >> https://gpflow.readthedocs.io/en/latest/notebooks/models.html def build_new_model_example(): #%matplotlib inline plt.style.use('ggplot') X = np.vstack([ np.random.randn(10, 2) + [2, 2], np.random.randn(10, 2) +[-2, 2], np.random.randn(10, 2) +[2, -2] ]) Y = np.repeat(np.eye(3), 10, 0) matplotlib.rcParams['figure.figsize'] = (12, 6) plt.scatter(X[:,0], X[:,1], 100, np.argmax(Y, 1), lw=2, cmap=plt.cm.viridis) model = LinearMulticlass(X, Y) print(model.as_pandas_table()) opt = gpflow.train.ScipyOptimizer() opt.minimize(model) print(model.as_pandas_table()) xx, yy = np.mgrid[-4:4:200j, -4:4:200j] X_test = np.vstack([xx.flatten(), yy.flatten()]).T f_test = np.dot(X_test, model.W.read_value()) + model.b.read_value() p_test = np.exp(f_test) p_test /= p_test.sum(1)[:,None] for i in range(3): plt.contour(xx, yy, p_test[:,i].reshape(200, 200), [0.5], colors='k', linewidths=1) plt.scatter(X[:,0], X[:,1], 100, np.argmax(Y, 1), lw=2, cmap=plt.cm.viridis) def main(): #handle_model_example() build_new_model_example() #-------------------------------------------------------------------- if '__main__' == __name__: main()
gpl-2.0
Manewing/orbs
scripts/plotstats.py
1
1595
#!/usr/bin/python3 import argparse import matplotlib.pyplot as plt def plotOrbsStats(stats_dir): f = open(stats_dir + "/orbs.stats", "rb") try: data = f.read(4) x = [] while data: i = int.from_bytes(data, byteorder="little") x.append(i) data = f.read(4) finally: f.close() plt.plot(x) plt.title("Number of orbs") plt.show() def plotAvgLifeTimeStats(stats_dir): f = open(stats_dir + "/avg_life_time.stats", "rb") try: data = f.read(4) x = [] while data: i = int.from_bytes(data, byteorder="little") x.append(i) data = f.read(4) finally: f.close() plt.plot(x) plt.title("Average life time") plt.show() def plotAvgInstrUsageStats(stats_dir): f = open(stats_dir + "/avg_instr_usage.stats", "rb") try: data = f.read(4) x = [] while data: i = int.from_bytes(data, byteorder="little") / 1000.0 x.append(i) data = f.read(4) finally: f.close() plt.plot(x) plt.title("Average instruction usage") plt.show() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--stats", required=True, help="Directory with statistics files") args = parser.parse_args() # plot statistics plotOrbsStats(args.stats) plt.show() plotAvgLifeTimeStats(args.stats) plt.show() plotAvgInstrUsageStats(args.stats) plt.show() # show plots plt.show()
mit
ibis-project/ibis
ibis/backends/parquet/tests/test_schema.py
1
2910
import tempfile import numpy as np import pandas as pd import pytest import ibis import ibis.expr.datatypes as dt pa = pytest.importorskip('pyarrow') pq = pytest.importorskip('pyarrow.parquet') @pytest.fixture def parquet_schema(): np.random.seed(0) size = 100 df = pd.DataFrame( { 'uint8': np.arange(size, dtype=np.uint8), 'uint16': np.arange(size, dtype=np.uint16), 'uint32': np.arange(size, dtype=np.uint32), 'uint64': np.arange(size, dtype=np.uint64), 'int8': np.arange(size, dtype=np.int16), 'int16': np.arange(size, dtype=np.int16), 'int32': np.arange(size, dtype=np.int32), 'int64': np.arange(size, dtype=np.int64), 'float32': np.arange(size, dtype=np.float32), 'float64': np.arange(size, dtype=np.float64), 'bool': np.random.randn(size) > 0, # TODO(wesm): Test other timestamp resolutions now that arrow # supports them 'datetime': np.arange( "2016-01-01T00:00:00.001", size, dtype='datetime64[ms]' ), 'str': [str(x) for x in range(size)], 'str_with_nulls': [None] + [str(x) for x in range(size - 2)] + [None], 'empty_str': [''] * size, 'bytes': [b'foo'] * size, }, columns=[ 'uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64', 'bool', 'datetime', 'str', 'str_with_nulls', 'empty_str', 'bytes', ], ) with tempfile.TemporaryFile() as path: table = pa.Table.from_pandas(df) pq.write_table(table, path) parquet_file = pq.ParquetFile(path) return parquet_file.schema def test_convert_parquet(parquet_schema): strings = [dt.string, dt.string, dt.string] # uint32, int8, int16 stored as upcasted types types = ( [ dt.uint8, dt.uint16, dt.int64, dt.uint64, dt.int16, dt.int16, dt.int32, dt.int64, dt.float32, dt.float64, dt.boolean, dt.timestamp, ] + strings + [dt.binary, dt.int64] ) names = [ 'uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64', 'bool', 'datetime', 'str', 'str_with_nulls', 'empty_str', 'bytes', ] expected = ibis.schema(zip(names, types)) result = ibis.infer_schema(parquet_schema) assert result == expected
apache-2.0
bmazin/ARCONS-pipeline
util/pixelExplorer.py
1
35902
from PyQt4.QtCore import * from PyQt4.QtGui import * from PyQt4 import QtGui import matplotlib.pyplot as plt import matplotlib import matplotlib.cm as cm import numpy as np import sys import os import tables from scipy.stats import chi2 from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4agg import NavigationToolbar2QTAgg as NavigationToolbar from matplotlib.figure import Figure from mpl_toolkits.mplot3d import Axes3D from matplotlib.backends.backend_pdf import PdfPages from functools import partial from util.ObsFile import ObsFile from util.FileName import FileName from util.readDict import readDict from util.popup import PopUp,onscroll_cbar,onclick_cbar #from hotpix import hotPixelsMatt as hotPixels from hotpix import hotPixels class AppForm(QMainWindow): def __init__(self, parent=None): QMainWindow.__init__(self, parent) self.setWindowTitle('Pixel Explorer') paramFile = sys.argv[1] self.params = readDict() self.params.read_from_file(paramFile) self.createMainFrame() self.createStatusBar() def __del__(self): for stackLabel in self.stackObsFileLists: for obs in self.stackObsFileLists[stackLabel]: try: obs.close() except: pass def createMainFrame(self): self.main_frame = QWidget() # Create the mpl Figure and FigCanvas objects. self.dpi = 100 self.fig = Figure((7.0, 7.0), dpi=self.dpi) self.canvas = FigureCanvas(self.fig) self.canvas.setParent(self.main_frame) self.axes0 = self.fig.add_subplot(111) cid=self.canvas.mpl_connect('button_press_event', self.clickCanvas) # Create the navigation toolbar, tied to the canvas self.mpl_toolbar = NavigationToolbar(self.canvas, self.main_frame) vbox = QVBoxLayout() vbox.addWidget(self.canvas) vbox.addWidget(self.mpl_toolbar) self.main_frame.setLayout(vbox) self.setCentralWidget(self.main_frame) def createStatusBar(self): self.status_text = QLabel("Awaiting orders.") self.statusBar().addWidget(self.status_text, 1) def loadStacks(self): #make a dictionary to put lists of ObsFile objects into self.stackObsFileLists = dict() self.stackWvlCals = dict() for stackLabel in ['obs','sky','twilight']: self.loadObs(stackLabel) #Unload the lists of ObsFile objects into individual lists self.obList = self.stackObsFileLists['obs'] self.skyObList = self.stackObsFileLists['sky'] self.twilightObList = self.stackObsFileLists['twilight'] self.cal = self.stackWvlCals['obs'] #If there isn't already an npz holding the obs stack spectra #or if the params say to remake the npz regardless, then make the stack npz file if os.path.exists(self.params['obsStackFileName'])==False or self.params['makeObsStackFile'] == True: self.createStack('obs') if os.path.exists(self.params['rawStackFileName'])==False or self.params['makeRawObsStackFile'] == True: self.createStack('raw') if os.path.exists(self.params['skyStackFileName'])==False or self.params['makeSkyStackFile'] == True: self.createStack('sky') if os.path.exists(self.params['twilightStackFileName'])==False or self.params['makeTwilightStackFile'] == True: self.createStack('twilight') #Now load all the info from the files, whether made previously or just now stackFileName = self.params['obsStackFileName'] data = np.load(stackFileName) self.spectra = data['spectra'] self.frame = data['frame'] #self.obsTotalIntTime = data['totalIntTime'] self.wvlBinEdges = data['wvlBinEdges'] self.wvlBinWidths = np.diff(self.wvlBinEdges) self.nRow,self.nCol,self.nWvlBins = np.shape(self.spectra) self.intTime = self.params['obsIntTime'] stackFileName = self.params['rawStackFileName'] data = np.load(stackFileName) self.rawSpectra = data['spectra'] self.rawFrame = data['frame'] #self.rawTotalIntTime = data['totalIntTime'] stackFileName = self.params['skyStackFileName'] data = np.load(stackFileName) self.skySpectra = data['spectra'] self.skyFrame = data['frame'] #self.skyTotalIntTime = data['totalIntTime'] self.skyIntTime = self.params['skyIntTime'] stackFileName = self.params['twilightStackFileName'] data = np.load(stackFileName) self.twilightSpectra = data['spectra'] self.twilightFrame = data['frame'] #self.twilightTotalIntTime = data['totalIntTime'] self.twilightIntTime = self.params['twilightIntTime'] #Load flat info for the current obs stack flatSolnFileName = FileName(run=self.params['run'],date=self.params['obsFlatCalSunsetDate'],tstamp=self.params['obsFlatCalTimestamp']).flatSoln() flatInfoFileName = os.path.splitext(flatSolnFileName)[0]+'.npz' self.flatInfo= np.load(flatInfoFileName) #Load flat info for all flats specified in params file flats = self.params['flatInfoFiles'] self.flatInfos = [] for flat in flats: flatSolnFileName = FileName(run=self.params['run'],date=flat,tstamp='').flatSoln() flatInfoFileName = os.path.splitext(flatSolnFileName)[0]+'.npz' self.flatInfos.append(np.load(flatInfoFileName)) def prepareForClickPlots(self): matplotlib.rcParams['font.size'] = 10 #create wavelength array more coarsely binned for use in showPixelWvlLightCurves and similar self.rebinSpecBins = self.params['nWvlBands'] self.firstAfterConvolve = self.rebinSpecBins//2 self.rebinnedWvlEdges = self.wvlBinEdges[::self.rebinSpecBins] self.averageTwilightSpectrum = np.zeros(self.nWvlBins) spectra2d = np.reshape(self.twilightSpectra,[self.nRow*self.nCol,self.nWvlBins ]) fractionOfPixelsToTrim = .1 for iWvl in xrange(self.nWvlBins): spectrum = spectra2d[:,iWvl] goodSpectrum = spectrum[spectrum != 0]#dead pixels need to be taken out before calculating medians goodSpectrum = np.sort(goodSpectrum) nGoodPixels = len(goodSpectrum) trimmedSpectrum = goodSpectrum[fractionOfPixelsToTrim*nGoodPixels:(1-fractionOfPixelsToTrim)*nGoodPixels] self.averageTwilightSpectrum[iWvl] = np.mean(trimmedSpectrum) def loadObs(self,stackLabel): timestampList = self.params[stackLabel+'Sequence'] run = self.params['run'] sunsetDate = self.params[stackLabel+'SunsetDate'] utcDate = self.params[stackLabel+'UtcDate'] intTime = self.params[stackLabel+'IntTime'] wvlLowerCutoff = self.params[stackLabel+'WvlLowerCutoff'] wvlUpperCutoff = self.params[stackLabel+'WvlUpperCutoff'] calTimestamp = self.params[stackLabel+'WvlTimestamp'] print stackLabel,calTimestamp wvlSolnFileName = FileName(run=run,date=sunsetDate,tstamp=calTimestamp).calSoln() wvlCalFileName = FileName(run=run,date=self.params[stackLabel+'WvlSunsetDate'],tstamp=calTimestamp).cal() flatSolnFileName = FileName(run=run,date=self.params[stackLabel+'FlatCalSunsetDate'],tstamp=self.params[stackLabel+'FlatCalTimestamp']).flatSoln() obsFileNames = [FileName(run=run,date=sunsetDate,tstamp=timestamp).obs() for timestamp in timestampList] obList = [ObsFile(obsFn) for obsFn in obsFileNames] for ob in obList: ob.loadWvlCalFile(wvlSolnFileName) ob.loadFlatCalFile(flatSolnFileName) self.stackObsFileLists[stackLabel] = obList cal = ObsFile(wvlCalFileName) cal.loadWvlCalFile(wvlSolnFileName) cal.loadFlatCalFile(flatSolnFileName) self.stackWvlCals[stackLabel] = cal def createStack(self,stackLabel): paramsLabel = stackLabel weighted = True if stackLabel == 'raw': paramsLabel = 'obs' weighted = False getRawCounts = True x = self.stackObsFileLists[paramsLabel][0].getSpectralCube(weighted=weighted) spectra = x['cube'] wvlBinEdges = x['wvlBinEdges'] totalIntTime = 0 for ob in self.stackObsFileLists[paramsLabel][1:]: print ob.fileName x = ob.getSpectralCube(weighted=weighted) cube = x['cube'] wvlBinEdges = x['wvlBinEdges'] spectra += cube totalIntTime += ob.getFromHeader('exptime') spectra = np.array(spectra,dtype=np.float64) frame = np.sum(spectra,axis=2) hotPixMask = hotPixels.checkInterval(image=frame)['mask'] frame[hotPixMask != 0] = np.nan frame[frame == 0] = np.nan stackFileName = self.params[stackLabel+'StackFileName'] np.savez(stackFileName,spectra=spectra,frame=frame,wvlBinEdges=wvlBinEdges,totalIntTime=totalIntTime) def plotWeightedImage(self): self.showFrame = np.array(self.frame) self.showFrame[np.isnan(self.frame)] = 0 handleMatshow = self.axes0.matshow(self.showFrame,cmap=matplotlib.cm.gnuplot2,origin='lower',vmax=np.mean(self.showFrame)+3*np.std(self.showFrame)) self.fig.cbar = self.fig.colorbar(handleMatshow) cid = self.fig.canvas.mpl_connect('scroll_event', partial(onscroll_cbar, self.fig)) cid = self.fig.canvas.mpl_connect('button_press_event', partial(onclick_cbar, self.fig)) def arrayPlots(self): if self.params['showArrayRawImage']: self.showArrayRawImage() if self.params['showArrayStdVsIntTime']: self.showArrayStdVsIntTime() if self.params['showArrayWvlCalRange']: self.showArrayWvlCalRange() if self.params['showTwilightArrayImage']: self.showTwilightArrayImage() if self.params['showTwilightArrayStdVsFlux']: self.showTwilightArrayStdVsFlux() if self.params['showTwilightArrayReducedChisqImage']: self.showTwilightArrayReducedChisqImage() if self.params['showSkyArrayImage']: self.showSkyArrayImage() if self.params['showArrayLaserImage']: self.showArrayLaserImage() def clickCanvas(self,event): if event.inaxes is self.axes0: col = round(event.xdata) row = round(event.ydata) print '(%d,%d)'%(row,col) if self.params['showPixelSpectrum'] or self.params['showPixelRawSpectrum']: self.showPixelSpectrum(row,col) if self.params['showPixelLightCurve']: self.showPixelLightCurve(row,col) if self.params['showPixelWvlLightCurves']: self.showPixelWvlLightCurves(row,col) if self.params['showPixelRawPhaseHist']: self.showPixelRawPhaseHist(row,col) if self.params['showPixelRawBaselineHist']: self.showPixelRawBaselineHist(row,col) if self.params['showPixelRawPeakHist']: self.showPixelRawPeakHist(row,col) if self.params['showPixelFlatWeights']: self.showPixelFlatWeights(row,col) if self.params['showPixelLaserSpectrum']: self.showPixelLaserSpectrum(row,col) if self.params['showTwilightPixelSpectrum']: self.showTwilightPixelSpectrum(row,col) if self.params['showTwilightPixelStdVsFlux']: self.showTwilightPixelStdVsFlux(row,col) if self.params['showTwilightPixelDeviationFromMedian']: self.showTwilightPixelDeviationFromMedian(row,col) if self.params['showPixelStdVsIntTime']: self.showPixelStdVsIntTime(row,col) def showArrayRawImage(self): output = self.obList[0].getPixelCountImage(getRawCount=True,weighted=False) frame = output['image'] for ob in self.obList[1:]: output = ob.getPixelCountImage(getRawCount=True,weighted=False) frame += output['image'] PopUp(parent=self,title='showArrayRawImage').plotArray(image=frame,title='raw image') def showArrayStdVsIntTime(self): intTimes = [1,2,3,5,10,15,30] sdevVsIntTime = [] madVsIntTime = [] medVsIntTime = [] for intTime in intTimes: image = np.zeros((self.nRow,self.nCol)) for iOb,ob in enumerate(self.skyObList): x = ob.getPixelCountImage(firstSec=0,integrationTime=intTime) image+=x['image'] hotPixMask = hotPixels.checkInterval(image=image)['mask'] image[hotPixMask!=0]=0 countList = image[image!=0] sdevVsIntTime.append(np.std(countList)) madVsIntTime.append(np.median(np.abs(countList-np.median(countList)))) medVsIntTime.append(np.median(countList)) PopUp(parent=self).plotArray(image,title=r'%d std=%f mad=%f med=%f'%(intTime,sdevVsIntTime[-1],madVsIntTime[-1],medVsIntTime[-1])) medVsIntTime = np.array(medVsIntTime) sqrtNVsIntTime = np.sqrt(medVsIntTime) pop = PopUp(parent=self,title='showArrayStdVsIntTime') pop.axes.set_xlabel('integration time (s)') pop.axes.set_ylabel('$\sigma$') pop.axes.plot(intTimes,sqrtNVsIntTime,'k--',label=r'$\sqrt(med(N))$') pop.axes.plot(intTimes,sdevVsIntTime,'k') pop.axes.plot(intTimes,madVsIntTime,'r') pop.draw() def showTwilightArrayImage(self): image = self.twilightFrame image[np.isnan(image)] = 0 #self.popUpArray(image=image,title='twilight image') PopUp(parent=self,title='showTwilightArrayImage').plotArray(image=image,title='Twilight Image') def showTwilightArrayStdVsFlux(self): pass def showTwilightArrayReducedChisqImage(self): chisqImage = np.zeros((self.nRow,self.nCol)) nDeltaFromZero = np.zeros((self.nRow,self.nCol,self.nWvlBins)) for iRow in range(self.nRow): for iCol in range(self.nCol): x = self.getChisq(iRow,iCol) chisqImage[iRow,iCol] = x['reducedChisq'] nDeltaFromZero[iRow,iCol,:] = x['nDeltaFromZero'] chisqImage[np.isnan(chisqImage)]=0 chisqImage[chisqImage == np.inf]=0 nDeltaFromZero = np.ma.array(nDeltaFromZero,mask=np.logical_and(np.isnan(nDeltaFromZero),nDeltaFromZero==np.inf)) hotPixMask = hotPixels.checkInterval(image=chisqImage)['mask'] chisqImage[hotPixMask != 0] = 0 #self.popUpArray(image=chisqImage,title='Flat Cal $\chi^{2}_{red}$',normNSigma=1.) PopUp(parent=self,title='showTwilightArrayReducedChisqImage').plotArray(image=chisqImage,title='Flat Cal $\chi^{2}_{red}$',normNSigma=1.) #PopUp(parent=self,title='showTwilightArrayNDeltaFromZero').plotArray(image=nDeltaFromZero,title='Flat Cal n$\sigma$ from 0',normNSigma=3.) # verbose = True # pdfFullPath='/Scratch/flatCalSolnFiles2/nDeltaWvlSlicesTwiAppliedToSky.pdf' # pp = PdfPages(pdfFullPath) # nPlotsPerRow = 3 # nPlotsPerCol = 4 # nPlotsPerPage = nPlotsPerRow*nPlotsPerCol # iPlot = 0 # if verbose: # print 'plotting weights in wavelength sliced images' # # #matplotlib.rcParams['font.size'] = 4 # wvls = self.wvlBinEdges[0:-1] # # for iWvl,wvl in enumerate(wvls): # if verbose: # print 'wvl ',iWvl # if iPlot % nPlotsPerPage == 0: # fig = plt.figure(figsize=(10,10),dpi=100) # # ax = fig.add_subplot(nPlotsPerCol,nPlotsPerRow,iPlot%nPlotsPerPage+1) # ax.set_title(r'%.0f $\AA$'%wvl) # image = nDeltaFromZero[:,:,iWvl] # # cmap = matplotlib.cm.gnuplot2 # cmap.set_bad('.1') # # handleMatshow = ax.matshow(image,cmap=cmap,origin='lower',vmin=-10.,vmax=10.) # cbar = fig.colorbar(handleMatshow) # # if iPlot%nPlotsPerPage == nPlotsPerPage-1: # pp.savefig(fig) # iPlot += 1 # pp.savefig(fig) # pp.close() def showSkyArrayImage(self): image = self.skyFrame image[np.isnan(image)] = 0 #self.popUpArray(image,title='sky image') PopUp(parent=self,title='showSkyArrayImage').plotArray(image=image,title='Sky Image') def showArrayWvlCalRange(self): rangeTable = self.cal.wvlRangeTable[:,:,1]#Get upper limit from valid wvl ranges #self.popUpArray(image=rangeTable,title=r'Upper Wavecal Limits ($\AA$)') PopUp(parent=self,title='showArrayWvlCalRange').plotArray(image=rangeTable,title=r'Upper Wavecal Limits ($\AA$)') def showPixelSpectrum(self,row,col): spectrum = self.spectra[row,col] binWidths = np.diff(self.wvlBinEdges) if self.params['showPixelRawSpectrum']: weights = self.flatInfo['weights'][row,col] rawSpectrum = self.spectra[row,col]/weights rawSpectrum/=binWidths spectrum/=binWidths pop = PopUp(parent=self,title='showPixelSpectrum') pop.axes.step(self.wvlBinEdges[:-1],spectrum,label='calibrated',color='b',where='post') if self.params['showPixelRawSpectrum']: pop.axes.step(self.wvlBinEdges[:-1],rawSpectrum,label='raw',color='r',where='post') pop.axes.set_xlabel(r'$\lambda$ ($\AA$)') pop.axes.set_ylabel(r'counts/$\AA$') pop.axes.legend(loc='lower right') pop.axes.set_title('spectrum (%d,%d)'%(row,col)) pop.draw() def showPixelWvlLightCurves(self,row,col): spectrumInTime = [] for iOb,ob in enumerate(self.obList): for sec in range(0,ob.getFromHeader('exptime'),self.intTime): x = ob.getPixelSpectrum(pixelRow=row,pixelCol=col,firstSec=sec,integrationTime=self.intTime,weighted=True) spectrum = x['spectrum'] spectrum = np.convolve(spectrum,np.ones(self.rebinSpecBins),'same')[self.firstAfterConvolve::self.rebinSpecBins] spectrumInTime.append(spectrum) spectrumInTime = np.array(spectrumInTime) nBins = np.shape(spectrumInTime)[1] pop = PopUp(parent=self,title='showPixelWvlLightCurves') #plot counts vs time for each wavelength bin times=np.arange(len(spectrumInTime[:,0]))*self.intTime for iBin in xrange(nBins): pop.axes.plot(times,1.0*spectrumInTime[:,iBin]/self.intTime, c=cm.jet((iBin+1.)/nBins), label=r'%d-%d $\AA$'%(self.rebinnedWvlEdges[iBin], self.rebinnedWvlEdges[iBin+1])) pop.axes.set_xlabel('time (s)') pop.axes.set_ylabel('cps') #plot counts vs time summed over all wavelengths pop.axes.legend(loc='upper right') pop.axes.set_title('Light Curve by Band (%d,%d)'%(row,col)) pop.draw() def showPixelLightCurve(self,row,col): lightCurve = [] for iOb,ob in enumerate(self.obList): for sec in range(0,ob.getFromHeader('exptime'),self.intTime): x = ob.getPixelCount(iRow=row,iCol=col,firstSec=sec,integrationTime=self.intTime,weighted=True) counts = x['counts']/self.intTime lightCurve.append(counts) pop = PopUp(parent=self,title='showPixelLightCurve') times=np.arange(0,len(lightCurve)*self.intTime,self.intTime) pop.axes.set_xlabel('time (s)') pop.axes.set_ylabel('cps') pop.axes.plot(times,lightCurve,c='k') pop.axes.set_title('Light Curve (%d,%d)'%(row,col)) pop.draw() def showArrayLaserImage(self): getImageOutput = self.cal.getPixelCountImage(getRawCount=True,weighted=False) frame = getImageOutput['image'] #self.popUpArray(image=self.rawFrame,title='raw image') pop = PopUp(parent=self,title='showArrayLaserImage') pop.plotArray(image=frame,title='laser cal raw image') def showPixelLaserSpectrum(self,row,col): #First plot the laser cal spectrum for this pixel to see if it's good x = self.cal.getTimedPacketList(row,col) phases=np.array(x['peakHeights'],dtype=np.double)-np.array(x['baselines'],dtype=np.double) pop = PopUp(parent=self,title='showPixelLaserSpectrum') nBins=np.max(phases)-np.min(phases) histPhases,binEdges = np.histogram(phases,bins=nBins) lambdaBinEdges = self.cal.convertToWvl(binEdges,row,col,excludeBad=True) pop.axes.set_xlabel(r'$\lambda$ ($\AA$)') if len(lambdaBinEdges)==0: #no wavecal for this pixel, so lambdaBinEdges came back empty lambdaBinEdges = binEdges pop.axes.set_xlabel('phase (ADU)') pop.axes.step(lambdaBinEdges[:-1],histPhases,where='post',color='k') pop.axes.set_ylabel('counts') pop.axes.set_title('Raw Laser Cal Spectrum (%d,%d)'%(row,col)) wvlCalSigma = self.cal.wvlErrorTable[row,col] xOffset = self.cal.wvlCalTable[row,col,0] yOffset = self.cal.wvlCalTable[row,col,1] amplitude = self.cal.wvlCalTable[row,col,2] #energy(eV) = amplitude*(pulseHeight-xOffset)**2+yOffset stackLabel = 'obs' run = self.params['run'] sunsetDate = self.params[stackLabel+'SunsetDate'] calTimestamp = self.params[stackLabel+'WvlTimestamp'] wvlDriftFileName = FileName(run=run,date=sunsetDate,tstamp=calTimestamp).calDriftInfo() wvlDriftFile = tables.openFile(wvlDriftFileName,mode='r') wvlDriftInfo = wvlDriftFile.root.params_drift.driftparams.read() wvlDriftFile.close() driftEntry = wvlDriftInfo[np.logical_and(wvlDriftInfo['pixelrow']==row ,wvlDriftInfo['pixelcol']==col)][0] #extract gaussianparams in first column of selected row bluePhaseSigma=driftEntry[0][2] bluePhaseAmp = driftEntry[0][1] bluePhaseOffset = driftEntry[0][0] redPhaseSigma=driftEntry[0][5] redPhaseAmp = driftEntry[0][4] redPhaseOffset = driftEntry[0][3] phases = np.linspace(np.min(phases),np.max(phases),(nBins+1)*100.) blueGaussFit = bluePhaseAmp*np.exp(-1/2*((phases-bluePhaseOffset)/bluePhaseSigma)**2) redGaussFit = redPhaseAmp*np.exp(-1/2*((phases-redPhaseOffset)/redPhaseSigma)**2) wavelengths = self.cal.convertToWvl(phases,row,col) if len(wavelengths)==0: #no wavecal for this pixel, so lambdaBinEdges came back empty wavelengths=phases pop.axes.plot(wavelengths,blueGaussFit,'b') pop.axes.plot(wavelengths,redGaussFit,'r') pop.draw() def showPixelStdVsIntTime(self,row,col): intTimes = [1,2,3,5,10,15,30] spectrumVsIntTimeVsTime = [] for intTime in intTimes: spectrumInTime = [] for iOb,ob in enumerate(self.skyObList): for sec in range(0,ob.getFromHeader('exptime'),intTime): x = ob.getPixelSpectrum(pixelRow=row,pixelCol=col,firstSec=sec,integrationTime=intTime,weighted=True) spectrum = x['spectrum'] spectrum = np.convolve(spectrum,np.ones(self.rebinSpecBins),'same')[self.firstAfterConvolve::self.rebinSpecBins] spectrumInTime.append(spectrum) spectrumInTime = np.array(spectrumInTime) spectrumVsIntTimeVsTime.append(spectrumInTime) #resulting array indexed as #spectrumVsIntTimeVsTime[iIntTime][iTimeChunk][iWvlBin] #sum over wavelength for total counts countsVsIntTimeVsTime = [np.sum(spectrumInTime,axis=1) for spectrumInTime in spectrumVsIntTimeVsTime] #countsVsIntTimeVsTime[iIntTime][iTimeChunk] countStds = [np.std(countsVsTime) for countsVsTime in countsVsIntTimeVsTime] countStds = np.array(countStds) countSqrts = [np.sqrt(np.median(countsVsTime)) for countsVsTime in countsVsIntTimeVsTime] countSqrts = np.array(countSqrts) spectrumStds = [np.std(spectrumVsTime,axis=0) for spectrumVsTime in spectrumVsIntTimeVsTime] spectrumSqrts = [np.sqrt(np.median(spectrumVsTime,axis=0)) for spectrumVsTime in spectrumVsIntTimeVsTime] spectrumStds = np.array(spectrumStds) spectrumSqrts = np.array(spectrumSqrts) pop = PopUp(parent=self,title='showPixelStdVsIntTime') pop.axes.set_xlabel('integration time (s)') pop.axes.set_ylabel('normalized $\sigma$') pop.axes.plot(intTimes,countSqrts/np.max(countSqrts),'k--', label=r'$\sqrt{N}$') pop.axes.plot(intTimes,countStds/np.max(countSqrts),'k', label=r'%d-%d $\AA$'%(self.rebinnedWvlEdges[0],self.rebinnedWvlEdges[-1])) nBins = np.shape(spectrumStds)[1] for iBin in xrange(nBins): pop.axes.plot(intTimes, spectrumStds[:,iBin]/np.max(spectrumSqrts[:,iBin]), c=cm.jet((iBin+1.0)/nBins), label=r'%d-%d $\AA$'%(self.rebinnedWvlEdges[iBin], self.rebinnedWvlEdges[iBin+1])) pop.axes.legend(loc='upper left') pop.axes.set_title('Sky Pixel StdDev vs Int Time (%d,%d)'%(row,col)) pop.draw() def showPixelRawPhaseHist(self,row,col): phases = np.array([],dtype=np.double) for iOb,ob in enumerate(self.obList): x = ob.getTimedPacketList(row,col) phases=np.append(phases,(np.array(x['peakHeights'],dtype=np.double)-np.array(x['baselines'],dtype=np.double))) pop = PopUp(parent=self,title='showPixelRawPhaseHist') nBins=np.max(phases)-np.min(phases) histPhases,binEdges = np.histogram(phases,bins=nBins) pop.axes.step(binEdges[:-1],histPhases,where='post') pop.axes.set_xlabel('peak-baseline') pop.axes.set_title('Peaks-Baselines') pop.draw() def showPixelRawBaselineHist(self,row,col): baselines = np.array([],dtype=np.double) for iOb,ob in enumerate(self.obList): x = ob.getTimedPacketList(row,col) baselines=np.append(baselines,np.array(x['baselines'],dtype=np.double)) pop = PopUp(parent=self,title='showPixelRawBaselineHist') nBins=np.max(baselines)-np.min(baselines) histBaselines,binEdges = np.histogram(baselines,bins=nBins) pop.axes.step(binEdges[:-1],histBaselines,where='post') pop.axes.set_xlabel('baseline') pop.axes.set_title('Baselines') pop.draw() def showPixelRawPeakHist(self,row,col): peaks = np.array([],dtype=np.double) for iOb,ob in enumerate(self.obList): x = ob.getTimedPacketList(row,col) peaks = np.append(peaks,np.array(x['peakHeights'],dtype=np.double)) pop = PopUp(parent=self,title='showPixelRawPeakHist') nBins=np.max(peaks)-np.min(peaks) histPeaks,binEdges = np.histogram(peaks,bins=nBins) pop.axes.step(binEdges[:-1],histPeaks,where='post') pop.axes.set_xlabel('peak') pop.axes.set_title('Packet Peaks (No Baseline Subtracted)') pop.draw() def showPixelFlatWeights(self,row,col): pop = PopUp(parent=self,title='showPixelFlatWeights') for iFlat,flatInfo in enumerate(self.flatInfos): weights = flatInfo['weights'][row,col] flatSpectra = flatInfo['spectra'][row,col] flatMedians = flatInfo['median'] deltaFlatSpectra = np.sqrt(flatSpectra) deltaWeights = weights*deltaFlatSpectra/flatSpectra color=cm.jet((iFlat+1.)/len(self.flatInfos)) wvlBinCenters = self.wvlBinEdges[:-1]+np.diff(self.wvlBinEdges)/2. pop.axes.plot(self.wvlBinEdges[:-1],weights,linestyle='-',label=self.params['flatInfoFiles'][iFlat],color=color,) pop.axes.errorbar(wvlBinCenters,weights,linestyle=',',yerr=deltaWeights,color=color) pop.axes.set_xlabel(r'$\lambda$ ($\AA$)') pop.axes.set_ylabel(r'Weights') pop.axes.set_title('Flat Weights') pop.axes.legend(loc='lower right') pop.draw() def showTwilightPixelSpectrum(self,row,col): spectrum = self.twilightSpectra[row,col] pop = PopUp(parent=self,title='showTwilightPixelSpectrum') pop.axes.step(self.wvlBinEdges[:-1],spectrum,where='post') pop.axes.set_xlabel(r'$\lambda$ ($\AA$)') pop.axes.set_ylabel(r'total counts') pop.axes.set_title('twilight spectrum (%d,%d) '%(row,col)) pop.draw() def showTwilightPixelStdVsFlux(self,row,col): spectrumVsFluxVsTime = [] for iOb,ob in enumerate(self.twilightObList): spectrumInTime = [] for sec in range(0,ob.getFromHeader('exptime'),self.twilightIntTime): x = ob.getPixelSpectrum(pixelRow=row,pixelCol=col,firstSec=sec,integrationTime=self.twilightIntTime,weighted=True) spectrum = x['spectrum'] binEdges = x['wvlBinEdges'] spectrum = np.convolve(spectrum,np.ones(self.rebinSpecBins),'same')[self.firstAfterConvolve::self.rebinSpecBins] spectrumInTime.append(spectrum) spectrumInTime = np.array(spectrumInTime) spectrumVsFluxVsTime.append(spectrumInTime) spectrumVsFluxVsTime = np.array(spectrumVsFluxVsTime) #resulting array indexed as #spectrumVsFluxVsTime[iOb][iTimeChunk][iWvlBin] #sum over wavelength for total counts countsVsFluxVsTime = [np.sum(spectrumInTime,axis=1) for spectrumInTime in spectrumVsFluxVsTime] #countsVsFluxVsTime[iFlux][iTimeChunk] countStds = [np.std(countsVsTime) for countsVsTime in countsVsFluxVsTime] fluxes = [np.median(countsVsTime) for countsVsTime in countsVsFluxVsTime] fluxes = np.array(fluxes) countStds = np.array(countStds) countSqrts = [np.sqrt(np.median(countsVsTime)) for countsVsTime in countsVsFluxVsTime] countSqrts = np.array(countSqrts) spectrumStds = [np.std(spectrumVsTime,axis=0) for spectrumVsTime in spectrumVsFluxVsTime] spectrumSqrts = [np.sqrt(np.median(spectrumVsTime,axis=0)) for spectrumVsTime in spectrumVsFluxVsTime] spectrumStds = np.array(spectrumStds) spectrumSqrts = np.array(spectrumSqrts) pop = PopUp(parent=self,title='showTwilightPixelStdVsFlux') pop.axes.set_xlabel('median counts') pop.axes.set_ylabel('normalized $\sigma$') pop.axes.plot(fluxes,countSqrts/np.max(countSqrts),'k--', label=r'$\sqrt{N}$') pop.axes.plot(fluxes,countStds/np.max(countSqrts),'k', label=r'%d-%d $\AA$'%(self.rebinnedWvlEdges[0],self.rebinnedWvlEdges[-1])) nBins = np.shape(spectrumStds)[1] for iBin in xrange(nBins): pop.axes.plot(fluxes, spectrumStds[:,iBin]/np.max(spectrumSqrts[:,iBin]), c=cm.jet((iBin+1.0)/nBins), label=r'%d-%d $\AA$'%(self.rebinnedWvlEdges[iBin], self.rebinnedWvlEdges[iBin+1])) pop.axes.legend(loc='upper left') pop.axes.set_title('Normalized Standard Deviation vs Twilight Flux, (%d,%d)'%(row,col)) pop.draw() def getChisq(self,row,col): spectrum = self.twilightSpectra[row,col] weights = self.flatInfo['weights'][row,col] flatSpectra = self.flatInfo['spectra'][row,col] flatMedians = self.flatInfo['median'] deltaFlatSpectra = np.sqrt(flatSpectra) deltaWeights = self.flatInfo['deltaWeights'][row,col]#weights*deltaFlatSpectra/flatSpectra poissonDeltaSpectra = np.sqrt(spectrum) rawSpectrum = spectrum/weights deltaRawSpectrum = np.sqrt(rawSpectrum) deltaSpectra = spectrum*np.sqrt((deltaWeights/weights)**2+(deltaRawSpectrum/rawSpectrum)**2) diffSpectrum = (spectrum-self.averageTwilightSpectrum) percentDiffSpectrum = 100.* diffSpectrum/self.averageTwilightSpectrum #deltaDiffSpectrum = np.sqrt(deltaSpectra**2+deltaSpectra2**2) deltaDiffSpectrum = np.array(deltaSpectra) #deltaDiffSpectrum[np.isnan(deltaDiffSpectrum)] = 0 deltaPercentDiffSpectrum = 100.*deltaDiffSpectrum/self.averageTwilightSpectrum nDeltaFromZero = diffSpectrum/deltaDiffSpectrum chisqSumTerms =diffSpectrum**2/deltaDiffSpectrum**2 chisqSumTerms = chisqSumTerms[~np.isnan(chisqSumTerms)] chisq = np.sum(chisqSumTerms) degreesOfFreedom=sum(~np.isnan(chisqSumTerms))-1 reducedChisq = chisq/degreesOfFreedom return {'reducedChisq':reducedChisq, 'percentDiffSpectrum':percentDiffSpectrum, 'deltaPercentDiffSpectrum':deltaPercentDiffSpectrum, 'nDeltaFromZero':nDeltaFromZero, 'degreesOfFreedom':degreesOfFreedom, 'chisq':chisq} def showTwilightPixelDeviationFromMedian(self,row,col): x = self.getChisq(row,col) reducedChisq = x['reducedChisq'] chisq = x['chisq'] percentDiffSpectrum = x['percentDiffSpectrum'] deltaPercentDiffSpectrum = x['deltaPercentDiffSpectrum'] nDeltaFromZero = x['nDeltaFromZero'] degreesOfFreedom = x['degreesOfFreedom'] print 'reduced chisq =',reducedChisq print 'P-value =',1-chi2.cdf(chisq,degreesOfFreedom) pop = PopUp(parent=self,title='showTwilightPixelDeviationFromMedian') pop.axes.errorbar(self.wvlBinEdges[:-1],percentDiffSpectrum,linestyle='-',color='k',yerr=deltaPercentDiffSpectrum) pop.axes.set_xlabel(r'$\lambda$ ($\AA$)') pop.axes.set_ylabel(r'percent difference') pop.axes.plot(self.wvlBinEdges[:-1],len(self.wvlBinEdges[:-1])*[0],'gray') axes2 = pop.axes.twinx() axes2.plot(self.wvlBinEdges[:-1],nDeltaFromZero,'m',alpha=.7) align_yaxis(pop.axes,0,axes2,0) axes2.set_ylabel(r'(pixelSpectrum-avgSpectrum)/$\sigma$',color='m') pop.axes.set_title('Deviation from Avg Spectrum (%d,%d)'%(row,col)) pop.draw() weights = self.flatInfo['weights'][row,col] pop = PopUp(parent=self,title='showTwilightPixelDeviationFromMedian') pop.axes.step(self.wvlBinEdges[:-1],self.averageTwilightSpectrum/self.wvlBinWidths,'k',label='avg') pop.axes.step(self.wvlBinEdges[:-1],self.twilightSpectra[row,col]/self.wvlBinWidths,'b',label='weighted') pop.axes.step(self.wvlBinEdges[:-1],(self.twilightSpectra[row,col]/weights)/self.wvlBinWidths,'r',label='raw') pop.axes.set_xlabel(r'$\lambda$ ($\AA$)') pop.axes.set_ylabel(r'counts per $\AA$') pop.axes.set_title('Twilight Spectrum (%d,%d)'%(row,col)) pop.axes.legend(loc='lower right') pop.draw() def align_yaxis(ax1, v1, ax2, v2): """ adjust ax2 ylimit so that v2 in ax2 is aligned to v1 in ax1 Taken from http://stackoverflow.com/questions/10481990/matplotlib-axis-with-two-scales-shared-origin """ _, y1 = ax1.transData.transform((0, v1)) _, y2 = ax2.transData.transform((0, v2)) inv = ax2.transData.inverted() _, dy = inv.transform((0, 0)) - inv.transform((0, y1-y2)) miny, maxy = ax2.get_ylim() ax2.set_ylim(miny+dy, maxy+dy) def main(): np.seterr(divide='ignore',invalid='ignore') app = QApplication(sys.argv) form = AppForm() form.loadStacks() form.prepareForClickPlots() form.arrayPlots() form.plotWeightedImage() form.show() app.exec_() if __name__ == "__main__": main()
gpl-2.0
lituan/tools
pairwise_align_parameters.py
1
7324
#!/usr/bin/env python # -*- coding: utf-8 -*- """ try different combinations of gap_open and gap_extend to see the changes of score and identity input seqs in fasta format, output sequence similarity matrix usuage example python pairwise_align_parameter example.fasta """ import os import sys import numpy as np from Bio import pairwise2 from Bio.SubsMat import MatrixInfo as matlist from Bio.SubsMat.MatrixInfo import * from multiprocessing import Pool # import matplotlib.pyplot as plt # from mpl_toolkits.mplot3d import Axes3D # from matplotlib import cm def align(seq1, seq2, matrix,matrix_name): # matrix = matlist.blosum62 # gap_open = -10 # usual value # gap_extend = -0.5 # usual value OPEN_BEGIN,OPEN_END,OPEN_STEP = -20.5,-2.0,0.1 EXTEND_BEGIN,EXTEND_END,EXTEND_STEP = -2.0,-0.1,0.1 opens = np.arange(OPEN_BEGIN,OPEN_END,OPEN_STEP) extends = np.arange(EXTEND_BEGIN,EXTEND_END,EXTEND_STEP) gx = [[opens[i] for j in range(len(extends))] for i in range(len(opens))] gy = [extends for i in range(len(opens))] scores = [] identities = [] best_score = 0 best_score_c = '' best_identity = 0 best_identity_c = '' para = [] for gap_open in opens: score_i = [] identity_i = [] for gap_extend in extends: if gap_open > gap_extend: score_i.append(0) identity_i.append(0) para.append([gap_open,gap_extend,0,0]) else: alns = pairwise2.align.globalds(seq1, seq2, matrix, gap_open, gap_extend) seqq1 = alns[0][0] seqq2 = alns[0][1] identity = [1 for i, s in enumerate(seqq1) if s == seqq2[i]] identity = 1.0 * len(identity)/ len(seqq1) score_i.append(alns[0][2]) identity_i.append(identity) if alns[0][2] > best_score: best_score = alns[0][2] best_score_c = (gap_open,gap_extend) if identity > best_identity: best_identity = identity best_identity_c = (gap_open,gap_extend) para.append([gap_open,gap_extend,alns[0][2],identity]) scores.append(score_i) identities.append(identity_i) # plot scores # X_OFFSET,Y_OFFSET,Z_OFFSET = 0.5,0.1,20 z_max = max([max([si for si in s ]) for s in scores]) z_min = min([min([si for si in s ]) for s in scores]) # if z_max > 0: # fig = plt.figure() # ax = fig.add_subplot(111,projection='3d') # ax.plot_surface(gx,gy,scores,alpha=0.3) # ax.contour(gx,gy,scores,zdir='z',offset=z_min-Z_OFFSET,cmap=cm.coolwarm) # ax.contour(gx,gy,scores,zdir='x',offset=OPEN_BEGIN-X_OFFSET,cmap=cm.coolwarm) # ax.contour(gx,gy,scores,zdir='y',offset=EXTEND_END+Y_OFFSET,cmap=cm.coolwarm) # ax.set_xlim(OPEN_BEGIN-X_OFFSET,OPEN_END+X_OFFSET) # ax.set_ylim(EXTEND_BEGIN-Y_OFFSET,EXTEND_END+Y_OFFSET) # ax.set_zlim(z_min-Z_OFFSET,z_max+Z_OFFSET) # # ax.plot_wireframe(gx,gy,scores) # ax.set_xlabel('gap_open',labelpad=10) # ax.set_ylabel('gap_extend',labelpad=10) # ax.set_zlabel('score',labelpad=10) # ax.set_title('Pairwise Alignment Score') # fig.savefig(str(matrix_name)+'_align_score.png') # plt.close() # # plot identities # X_OFFSET,Y_OFFSET,Z_OFFSET = 0.5,0.1,0.02 # z_max = max([max([si for si in s ]) for s in identities]) # z_min = min([min([si for si in s ]) for s in identities]) # if z_max > 0: # fig = plt.figure() # ax = fig.add_subplot(111,projection='3d') # ax.plot_surface(gx,gy,identities,alpha=0.3) # ax.contour(gx,gy,identities,zdir='z',offset=z_min-Z_OFFSET,cmap=cm.coolwarm) # ax.contour(gx,gy,identities,zdir='x',offset=OPEN_BEGIN-X_OFFSET,cmap=cm.coolwarm) # ax.contour(gx,gy,identities,zdir='y',offset=EXTEND_END+Y_OFFSET,cmap=cm.coolwarm) # ax.set_xlim(OPEN_BEGIN-X_OFFSET,OPEN_END+X_OFFSET) # ax.set_ylim(EXTEND_BEGIN-Y_OFFSET,EXTEND_END+Y_OFFSET) # ax.set_zlim(z_min-Z_OFFSET,z_max+Z_OFFSET) # # ax.plot_wireframe(gx,gy,scores) # ax.set_xlabel('gap_open',labelpad=10) # ax.set_ylabel('gap_extend',labelpad=10) # ax.set_zlabel('identity',labelpad=10) # ax.set_title('Pairwise Alignment Identity') # fig.savefig(str(matrix_name)+'_align_identity.png') # plt.close() # if z_max > 0: # fig = plt.figure() # ax = fig.add_subplot(111) # ax.scatter(scores,identities) # ax.set_xlabel('Score',labelpad=10) # ax.set_ylabel('Identity',labelpad=10) # ax.set_title('Pairwise Alignment Identity and Score') # fig.savefig(str(matrix_name)+'_align_score_identity.png') # plt.close() return [best_score,best_score_c,best_identity,best_identity_c,para] def readfa(fa_f): # readin seqs in fasta format # seqs foramt:[(pro,seq),...] lines = fa_f.readlines() lines = [line.rstrip('\r\n') for line in lines] pro_line_num = [i for i, line in enumerate( lines) if '>' in line] + [len(lines)] seqs = [lines[n:pro_line_num[i + 1]] for i, n in enumerate(pro_line_num[:-1])] seqs = [(seq[0][1:], ''.join(seq[1:])) for seq in seqs] return seqs def single_align(p): seq1,seq2,m = p matrix = eval(m) matrix_name = str(m) try: result = align(seq1,seq2,matrix,matrix_name) + [matrix_name] return result except: return '' # pa.append(result) def main(): with open(sys.argv[-1]) as fa_f: seqs = readfa(fa_f) seqlen = len(seqs) for i in range(0,len(seqs),2): print seqs[i][1] print seqs[i+1][1] pa = [] # for m in matlist.available_matrices: matrix_num = len(matlist.available_matrices) parameters = [[seqs[i][1],seqs[i+1][1],m] for m in matlist.available_matrices] p = Pool(16) pa = p.map(single_align,parameters) p.close() # for m in matlist.available_matrices: # matrix = eval(m) # matrix_name = str(m) # print i # result = align(seqs[i][1],seqs[i+1][1],matrix,matrix_name) + [matrix_name] # pa.append(result) with open(str(i)+'_pa.txt','w') as w_f: print >> w_f,'{0:<12}{1:<12}{2:<15}{3:<15}{4:<12}{5:<12}{6:<}'.format('best_score','gap_open','gap_extend','best_identity','gap_open','gap_extend','matrix') for p in pa: if p: bs,bsc,bi,bic,para,mn = p print >> w_f,'{0:<12}{1:<12.2f}{2:<15.2f}{3:<15.2f}{4:<12.2f}{5:<12.2f}{6:<}'.format(bs,bsc[0],bsc[1],bi,bic[0],bic[1],mn) with open(str(i)+'_'+mn+'_para.txt','w') as para_f: print >> para_f,'{0:<12}{1:<12}{2:<12}{3:<12}'.format('gap_open','gap_extend','score','identity') for go,ge,sc,ie in para: print >> para_f,'{0:<12.2f}{1:<12.2f}{2:<12}{3:<12}'.format(go,ge,sc,ie) if __name__ == "__main__": main()
cc0-1.0
dstndstn/unwise-coadds
plot-tile.py
1
1272
import matplotlib if __name__ == '__main__': matplotlib.use('Agg') import numpy as np import pylab as plt import os from astrometry.util.fits import * from astrometry.util.plotutils import * from unwise_coadd import * if __name__ == '__main__': tile = '1336p666' T = fits_table('unwise-%s-w3-frames.fits' % tile) ps = PlotSequence('tile') # approx ra,dec = tile_to_radec(tile) wcs = get_coadd_tile_wcs(ra, dec) W,H = wcs.imagew, wcs.imageh rr,dd = wcs.pixelxy2radec(np.array([1,W,W,1,1]), np.array([1,1,H,H,1])) print 'included:', np.sum(T.included) T.use = (T.use == 1) T.included = (T.included == 1) print 'included:', len(np.flatnonzero(T.included)) plt.clf() plt.plot(T.ra, T.dec, 'r.') I = (T.qual_frame == 0) p1 = plt.plot(T.ra[I], T.dec[I], 'mx') p2 = plt.plot(T.ra[T.use], T.dec[T.use], 'b.') I = (T.npixrchi > (T.npixoverlap * 0.01)) p3 = plt.plot(T.ra[I], T.dec[I], 'r+') I = T.included p4 = plt.plot(T.ra[I], T.dec[I], 'go') plt.plot(rr, dd, 'k-') plt.figlegend((p[0] for p in (p1,p2,p3,p4)), ('Bad qual_frame', 'Used', 'Bad rchi', 'Included'), loc='upper right') ps.savefig()
gpl-2.0
kyleabeauchamp/DBayes
dbayes/water_lib.py
1
4943
import os import tempfile import sys import pymbar import numpy as np import pandas as pd import simtk.openmm.app as app import simtk.openmm as mm import simtk.unit as u import mdtraj as md import repex ff = app.ForceField("tip3p.xml") def build_top(box_edge=2.1 * u.nanometers, nonbondedMethod=app.CutoffPeriodic): box = repex.testsystems.WaterBox(box_edge=box_edge, nonbondedMethod=nonbondedMethod) system = box.system positions = box.positions n_atoms = len(box.positions) top = [] bonds = [] for i in range(n_atoms / 3): j = 3 * i top.append(dict(serial=(j + 1), name="O", element="O", resSeq=(i+1), resName="HOH", chainID=(i+1))) top.append(dict(serial=(j + 2), name="H", element="H", resSeq=(i+1), resName="HOH", chainID=(i+1))) top.append(dict(serial=(j + 3), name="H", element="H", resSeq=(i+1), resName="HOH", chainID=(i+1))) bonds.append([j + 0, j + 1]) bonds.append([j + 0, j + 2]) top = pd.DataFrame(top) bonds = np.array(bonds, dtype='int') top = md.Topology.from_dataframe(top, bonds) xyz = positions / u.nanometers boxes = box.system.getDefaultPeriodicBoxVectors() lengths = boxes[0][0] / u.nanometers * np.ones((1, 3)) angles = 90.0 * np.ones((1, 3)) traj = md.Trajectory(xyz, top, unitcell_lengths=lengths, unitcell_angles=angles) mmtop = traj.top.to_openmm(traj=traj) return traj, mmtop, system, box, positions def find_forces(system): for force in system.getForces(): if type(force) == mm.NonbondedForce: nonbonded_force = force if type(force) == mm.HarmonicBondForce: bond_force = force if type(force) == mm.HarmonicAngleForce: angle_force = force return bond_force, angle_force, nonbonded_force def set_constraints(system, r0, theta): r1 = 2 * r0 * np.sin(theta / 2.) n_constraints = system.getNumConstraints() n_water = n_constraints / 3 for i in range(n_water * 2): a0, a1, d = system.getConstraintParameters(i) system.setConstraintParameters(i, a0, a1, r0 * u.nanometers) for i in range(n_water * 2, n_water * 3): a0, a1, d = system.getConstraintParameters(i) system.setConstraintParameters(i, a0, a1, r1 * u.nanometers) def set_nonbonded(f_nonbonded, qH, sigma, epsilon, sigmaH, epsilonH): qO = -2.0 * qH for k in range(f_nonbonded.getNumParticles()): if k % 3 == 0: f_nonbonded.setParticleParameters(k, qO * u.elementary_charge, sigma * u.nanometer, epsilon * u.kilojoule_per_mole) else: f_nonbonded.setParticleParameters(k, qH * u.elementary_charge, sigmaH * u.nanometer, epsilonH * u.kilojoule_per_mole) def set_parms(system, qH, sigma, epsilon, sigmaH, epsilonH, r0, theta): print("\nqH=%f, sigma=%f, epsilon=%f sigmaH=%f, epsilonH=%f, r0=%f, theta=%f\n" % (qH, sigma, epsilon, sigmaH, epsilonH, r0, theta)) f_bond, f_angle, f_nonbonded = find_forces(system) set_constraints(system, r0, theta) set_nonbonded(f_nonbonded, qH, sigma, epsilon, sigmaH, epsilonH) def build(system, positions, mmtop, temperature, pressure, qH, sigma, epsilon, sigmaH, epsilonH, r0, theta, stderr_tolerance=0.05, n_steps=250000, nonbondedCutoff=1.1 * u.nanometer, output_frequency=250, print_frequency=None): if print_frequency is None: print_frequency = int(n_steps / 3.) set_parms(system, qH, sigma, epsilon, sigmaH, epsilonH, r0, theta) friction = 1.0 / u.picoseconds timestep = 3.0 * u.femtoseconds barostat_frequency = 25 path = tempfile.mkdtemp() csv_filename = os.path.join(path, "density.csv") integrator = mm.LangevinIntegrator(temperature, friction, timestep) system.addForce(mm.MonteCarloBarostat(pressure, temperature, barostat_frequency)) simulation = app.Simulation(mmtop, system, integrator) simulation.reporters.append(app.StateDataReporter(sys.stdout, print_frequency, step=True, density=True)) simulation.reporters.append(app.StateDataReporter(csv_filename, output_frequency, density=True)) simulation.context.setPositions(positions) print("minimizing") simulation.minimizeEnergy() simulation.context.setVelocitiesToTemperature(temperature) print("done minimizing") converged = False while not converged: simulation.step(n_steps) d = pd.read_csv(csv_filename, names=["Density"], skiprows=1) density_ts = np.array(d.Density) [t0, g, Neff] = pymbar.timeseries.detectEquilibration_fft(density_ts) density_ts = density_ts[t0:] density_mean_stderr = density_ts.std() / np.sqrt(Neff) if density_mean_stderr < stderr_tolerance: converged = True print("temperature, density mean, stderr = %f, %f, %f" % (temperature / u.kelvin, density_ts.mean(), density_mean_stderr)) return d.Density.values
gpl-2.0
postvakje/sympy
sympy/external/tests/test_importtools.py
91
1215
from sympy.external import import_module # fixes issue that arose in addressing issue 6533 def test_no_stdlib_collections(): ''' make sure we get the right collections when it is not part of a larger list ''' import collections matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['cm', 'collections']}, min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: assert collections != matplotlib.collections def test_no_stdlib_collections2(): ''' make sure we get the right collections when it is not part of a larger list ''' import collections matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['collections']}, min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: assert collections != matplotlib.collections def test_no_stdlib_collections3(): '''make sure we get the right collections with no catch''' import collections matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['cm', 'collections']}, min_module_version='1.1.0') if matplotlib: assert collections != matplotlib.collections
bsd-3-clause
zfrenchee/pandas
asv_bench/benchmarks/strings.py
2
3088
from .pandas_vb_common import * import string import itertools as IT import pandas.util.testing as testing class StringMethods(object): goal_time = 0.2 def make_series(self, letters, strlen, size): return Series([str(x) for x in np.fromiter(IT.cycle(letters), count=(size * strlen), dtype='|S1').view('|S{}'.format(strlen))]) def setup(self): self.many = self.make_series(('matchthis' + string.ascii_uppercase), strlen=19, size=10000) self.few = self.make_series(('matchthis' + (string.ascii_uppercase * 42)), strlen=19, size=10000) self.s = self.make_series(string.ascii_uppercase, strlen=10, size=10000).str.join('|') def time_cat(self): self.many.str.cat(sep=',') def time_center(self): self.many.str.center(100) def time_contains_few(self): self.few.str.contains('matchthis') def time_contains_few_noregex(self): self.few.str.contains('matchthis', regex=False) def time_contains_many(self): self.many.str.contains('matchthis') def time_contains_many_noregex(self): self.many.str.contains('matchthis', regex=False) def time_count(self): self.many.str.count('matchthis') def time_endswith(self): self.many.str.endswith('matchthis') def time_extract(self): self.many.str.extract('(\\w*)matchthis(\\w*)') def time_findall(self): self.many.str.findall('[A-Z]+') def time_get(self): self.many.str.get(0) def time_join_split(self): self.many.str.join('--').str.split('--') def time_join_split_expand(self): self.many.str.join('--').str.split('--', expand=True) def time_len(self): self.many.str.len() def time_match(self): self.many.str.match('mat..this') def time_pad(self): self.many.str.pad(100, side='both') def time_repeat(self): self.many.str.repeat(list(IT.islice(IT.cycle(range(1, 4)), len(self.many)))) def time_replace(self): self.many.str.replace('(matchthis)', '\x01\x01') def time_slice(self): self.many.str.slice(5, 15, 2) def time_startswith(self): self.many.str.startswith('matchthis') def time_strip(self): self.many.str.strip('matchthis') def time_rstrip(self): self.many.str.rstrip('matchthis') def time_lstrip(self): self.many.str.lstrip('matchthis') def time_title(self): self.many.str.title() def time_upper(self): self.many.str.upper() def time_lower(self): self.many.str.lower() def time_get_dummies(self): self.s.str.get_dummies('|') class StringEncode(object): goal_time = 0.2 def setup(self): self.ser = Series(testing.makeUnicodeIndex()) def time_encode_decode(self): self.ser.str.encode('utf-8').str.decode('utf-8') class StringSlice(object): goal_time = 0.2 def setup(self): self.s = Series(['abcdefg', np.nan] * 500000) def time_series_string_vector_slice(self): # GH 2602 self.s.str[:5]
bsd-3-clause
heli522/scikit-learn
sklearn/feature_extraction/image.py
263
17600
""" The :mod:`sklearn.feature_extraction.image` submodule gathers utilities to extract features from images. """ # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # Olivier Grisel # Vlad Niculae # License: BSD 3 clause from itertools import product import numbers import numpy as np from scipy import sparse from numpy.lib.stride_tricks import as_strided from ..utils import check_array, check_random_state from ..utils.fixes import astype from ..base import BaseEstimator __all__ = ['PatchExtractor', 'extract_patches_2d', 'grid_to_graph', 'img_to_graph', 'reconstruct_from_patches_2d'] ############################################################################### # From an image to a graph def _make_edges_3d(n_x, n_y, n_z=1): """Returns a list of edges for a 3D image. Parameters =========== n_x: integer The size of the grid in the x direction. n_y: integer The size of the grid in the y direction. n_z: integer, optional The size of the grid in the z direction, defaults to 1 """ vertices = np.arange(n_x * n_y * n_z).reshape((n_x, n_y, n_z)) edges_deep = np.vstack((vertices[:, :, :-1].ravel(), vertices[:, :, 1:].ravel())) edges_right = np.vstack((vertices[:, :-1].ravel(), vertices[:, 1:].ravel())) edges_down = np.vstack((vertices[:-1].ravel(), vertices[1:].ravel())) edges = np.hstack((edges_deep, edges_right, edges_down)) return edges def _compute_gradient_3d(edges, img): n_x, n_y, n_z = img.shape gradient = np.abs(img[edges[0] // (n_y * n_z), (edges[0] % (n_y * n_z)) // n_z, (edges[0] % (n_y * n_z)) % n_z] - img[edges[1] // (n_y * n_z), (edges[1] % (n_y * n_z)) // n_z, (edges[1] % (n_y * n_z)) % n_z]) return gradient # XXX: Why mask the image after computing the weights? def _mask_edges_weights(mask, edges, weights=None): """Apply a mask to edges (weighted or not)""" inds = np.arange(mask.size) inds = inds[mask.ravel()] ind_mask = np.logical_and(np.in1d(edges[0], inds), np.in1d(edges[1], inds)) edges = edges[:, ind_mask] if weights is not None: weights = weights[ind_mask] if len(edges.ravel()): maxval = edges.max() else: maxval = 0 order = np.searchsorted(np.unique(edges.ravel()), np.arange(maxval + 1)) edges = order[edges] if weights is None: return edges else: return edges, weights def _to_graph(n_x, n_y, n_z, mask=None, img=None, return_as=sparse.coo_matrix, dtype=None): """Auxiliary function for img_to_graph and grid_to_graph """ edges = _make_edges_3d(n_x, n_y, n_z) if dtype is None: if img is None: dtype = np.int else: dtype = img.dtype if img is not None: img = np.atleast_3d(img) weights = _compute_gradient_3d(edges, img) if mask is not None: edges, weights = _mask_edges_weights(mask, edges, weights) diag = img.squeeze()[mask] else: diag = img.ravel() n_voxels = diag.size else: if mask is not None: mask = astype(mask, dtype=np.bool, copy=False) mask = np.asarray(mask, dtype=np.bool) edges = _mask_edges_weights(mask, edges) n_voxels = np.sum(mask) else: n_voxels = n_x * n_y * n_z weights = np.ones(edges.shape[1], dtype=dtype) diag = np.ones(n_voxels, dtype=dtype) diag_idx = np.arange(n_voxels) i_idx = np.hstack((edges[0], edges[1])) j_idx = np.hstack((edges[1], edges[0])) graph = sparse.coo_matrix((np.hstack((weights, weights, diag)), (np.hstack((i_idx, diag_idx)), np.hstack((j_idx, diag_idx)))), (n_voxels, n_voxels), dtype=dtype) if return_as is np.ndarray: return graph.toarray() return return_as(graph) def img_to_graph(img, mask=None, return_as=sparse.coo_matrix, dtype=None): """Graph of the pixel-to-pixel gradient connections Edges are weighted with the gradient values. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- img : ndarray, 2D or 3D 2D or 3D image mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype : None or dtype, optional The data of the returned sparse matrix. By default it is the dtype of img Notes ----- For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ img = np.atleast_3d(img) n_x, n_y, n_z = img.shape return _to_graph(n_x, n_y, n_z, mask, img, return_as, dtype) def grid_to_graph(n_x, n_y, n_z=1, mask=None, return_as=sparse.coo_matrix, dtype=np.int): """Graph of the pixel-to-pixel connections Edges exist if 2 voxels are connected. Parameters ---------- n_x : int Dimension in x axis n_y : int Dimension in y axis n_z : int, optional, default 1 Dimension in z axis mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype : dtype, optional, default int The data of the returned sparse matrix. By default it is int Notes ----- For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ return _to_graph(n_x, n_y, n_z, mask=mask, return_as=return_as, dtype=dtype) ############################################################################### # From an image to a set of small image patches def _compute_n_patches(i_h, i_w, p_h, p_w, max_patches=None): """Compute the number of patches that will be extracted in an image. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- i_h : int The image height i_w : int The image with p_h : int The height of a patch p_w : int The width of a patch max_patches : integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. """ n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 all_patches = n_h * n_w if max_patches: if (isinstance(max_patches, (numbers.Integral)) and max_patches < all_patches): return max_patches elif (isinstance(max_patches, (numbers.Real)) and 0 < max_patches < 1): return int(max_patches * all_patches) else: raise ValueError("Invalid value for max_patches: %r" % max_patches) else: return all_patches def extract_patches(arr, patch_shape=8, extraction_step=1): """Extracts patches of any n-dimensional array in place using strides. Given an n-dimensional array it will return a 2n-dimensional array with the first n dimensions indexing patch position and the last n indexing the patch content. This operation is immediate (O(1)). A reshape performed on the first n dimensions will cause numpy to copy data, leading to a list of extracted patches. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- arr : ndarray n-dimensional array of which patches are to be extracted patch_shape : integer or tuple of length arr.ndim Indicates the shape of the patches to be extracted. If an integer is given, the shape will be a hypercube of sidelength given by its value. extraction_step : integer or tuple of length arr.ndim Indicates step size at which extraction shall be performed. If integer is given, then the step is uniform in all dimensions. Returns ------- patches : strided ndarray 2n-dimensional array indexing patches on first n dimensions and containing patches on the last n dimensions. These dimensions are fake, but this way no data is copied. A simple reshape invokes a copying operation to obtain a list of patches: result.reshape([-1] + list(patch_shape)) """ arr_ndim = arr.ndim if isinstance(patch_shape, numbers.Number): patch_shape = tuple([patch_shape] * arr_ndim) if isinstance(extraction_step, numbers.Number): extraction_step = tuple([extraction_step] * arr_ndim) patch_strides = arr.strides slices = [slice(None, None, st) for st in extraction_step] indexing_strides = arr[slices].strides patch_indices_shape = ((np.array(arr.shape) - np.array(patch_shape)) // np.array(extraction_step)) + 1 shape = tuple(list(patch_indices_shape) + list(patch_shape)) strides = tuple(list(indexing_strides) + list(patch_strides)) patches = as_strided(arr, shape=shape, strides=strides) return patches def extract_patches_2d(image, patch_size, max_patches=None, random_state=None): """Reshape a 2D image into a collection of patches The resulting patches are allocated in a dedicated array. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- image : array, shape = (image_height, image_width) or (image_height, image_width, n_channels) The original image data. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. patch_size : tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches : integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. random_state : int or RandomState Pseudo number generator state used for random sampling to use if `max_patches` is not None. Returns ------- patches : array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the image, where `n_patches` is either `max_patches` or the total number of patches that can be extracted. Examples -------- >>> from sklearn.feature_extraction import image >>> one_image = np.arange(16).reshape((4, 4)) >>> one_image array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) >>> patches = image.extract_patches_2d(one_image, (2, 2)) >>> print(patches.shape) (9, 2, 2) >>> patches[0] array([[0, 1], [4, 5]]) >>> patches[1] array([[1, 2], [5, 6]]) >>> patches[8] array([[10, 11], [14, 15]]) """ i_h, i_w = image.shape[:2] p_h, p_w = patch_size if p_h > i_h: raise ValueError("Height of the patch should be less than the height" " of the image.") if p_w > i_w: raise ValueError("Width of the patch should be less than the width" " of the image.") image = check_array(image, allow_nd=True) image = image.reshape((i_h, i_w, -1)) n_colors = image.shape[-1] extracted_patches = extract_patches(image, patch_shape=(p_h, p_w, n_colors), extraction_step=1) n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, max_patches) if max_patches: rng = check_random_state(random_state) i_s = rng.randint(i_h - p_h + 1, size=n_patches) j_s = rng.randint(i_w - p_w + 1, size=n_patches) patches = extracted_patches[i_s, j_s, 0] else: patches = extracted_patches patches = patches.reshape(-1, p_h, p_w, n_colors) # remove the color dimension if useless if patches.shape[-1] == 1: return patches.reshape((n_patches, p_h, p_w)) else: return patches def reconstruct_from_patches_2d(patches, image_size): """Reconstruct the image from all of its patches. Patches are assumed to overlap and the image is constructed by filling in the patches from left to right, top to bottom, averaging the overlapping regions. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patches : array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The complete set of patches. If the patches contain colour information, channels are indexed along the last dimension: RGB patches would have `n_channels=3`. image_size : tuple of ints (image_height, image_width) or (image_height, image_width, n_channels) the size of the image that will be reconstructed Returns ------- image : array, shape = image_size the reconstructed image """ i_h, i_w = image_size[:2] p_h, p_w = patches.shape[1:3] img = np.zeros(image_size) # compute the dimensions of the patches array n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 for p, (i, j) in zip(patches, product(range(n_h), range(n_w))): img[i:i + p_h, j:j + p_w] += p for i in range(i_h): for j in range(i_w): # divide by the amount of overlap # XXX: is this the most efficient way? memory-wise yes, cpu wise? img[i, j] /= float(min(i + 1, p_h, i_h - i) * min(j + 1, p_w, i_w - j)) return img class PatchExtractor(BaseEstimator): """Extracts patches from a collection of images Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patch_size : tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches : integer or float, optional default is None The maximum number of patches per image to extract. If max_patches is a float in (0, 1), it is taken to mean a proportion of the total number of patches. random_state : int or RandomState Pseudo number generator state used for random sampling. """ def __init__(self, patch_size=None, max_patches=None, random_state=None): self.patch_size = patch_size self.max_patches = max_patches self.random_state = random_state def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ return self def transform(self, X): """Transforms the image samples in X into a matrix of patch data. Parameters ---------- X : array, shape = (n_samples, image_height, image_width) or (n_samples, image_height, image_width, n_channels) Array of images from which to extract patches. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. Returns ------- patches: array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the images, where `n_patches` is either `n_samples * max_patches` or the total number of patches that can be extracted. """ self.random_state = check_random_state(self.random_state) n_images, i_h, i_w = X.shape[:3] X = np.reshape(X, (n_images, i_h, i_w, -1)) n_channels = X.shape[-1] if self.patch_size is None: patch_size = i_h // 10, i_w // 10 else: patch_size = self.patch_size # compute the dimensions of the patches array p_h, p_w = patch_size n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, self.max_patches) patches_shape = (n_images * n_patches,) + patch_size if n_channels > 1: patches_shape += (n_channels,) # extract the patches patches = np.empty(patches_shape) for ii, image in enumerate(X): patches[ii * n_patches:(ii + 1) * n_patches] = extract_patches_2d( image, patch_size, self.max_patches, self.random_state) return patches
bsd-3-clause
michaelaye/scikit-image
doc/examples/plot_holes_and_peaks.py
15
2623
""" =============================== Filling holes and finding peaks =============================== In this example, we fill holes (i.e. isolated, dark spots) in an image using morphological reconstruction by erosion. Erosion expands the minimal values of the seed image until it encounters a mask image. Thus, the seed image and mask image represent the maximum and minimum possible values of the reconstructed image. We start with an image containing both peaks and holes: """ import matplotlib.pyplot as plt from skimage import data from skimage.exposure import rescale_intensity image = data.moon() # Rescale image intensity so that we can see dim features. image = rescale_intensity(image, in_range=(50, 200)) # convenience function for plotting images def imshow(image, title, **kwargs): fig, ax = plt.subplots(figsize=(5, 4)) ax.imshow(image, **kwargs) ax.axis('off') ax.set_title(title) imshow(image, 'Original image') """ .. image:: PLOT2RST.current_figure Now we need to create the seed image, where the minima represent the starting points for erosion. To fill holes, we initialize the seed image to the maximum value of the original image. Along the borders, however, we use the original values of the image. These border pixels will be the starting points for the erosion process. We then limit the erosion by setting the mask to the values of the original image. """ import numpy as np from skimage.morphology import reconstruction seed = np.copy(image) seed[1:-1, 1:-1] = image.max() mask = image filled = reconstruction(seed, mask, method='erosion') imshow(filled, 'after filling holes',vmin=image.min(), vmax=image.max()) """ .. image:: PLOT2RST.current_figure As shown above, eroding inward from the edges removes holes, since (by definition) holes are surrounded by pixels of brighter value. Finally, we can isolate the dark regions by subtracting the reconstructed image from the original image. """ imshow(image - filled, 'holes') # plt.title('holes') """ .. image:: PLOT2RST.current_figure Alternatively, we can find bright spots in an image using morphological reconstruction by dilation. Dilation is the inverse of erosion and expands the *maximal* values of the seed image until it encounters a mask image. Since this is an inverse operation, we initialize the seed image to the minimum image intensity instead of the maximum. The remainder of the process is the same. """ seed = np.copy(image) seed[1:-1, 1:-1] = image.min() rec = reconstruction(seed, mask, method='dilation') imshow(image - rec, 'peaks') plt.show() """ .. image:: PLOT2RST.current_figure """
bsd-3-clause
MechCoder/scikit-garden
skgarden/tests/test_forest.py
1
2169
import numpy as np from functools import partial from sklearn.utils import check_random_state from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from skgarden import RandomForestRegressor from skgarden import ExtraTreesRegressor def check_variance_toy_data(Regressor): # Split into [2, 3, 4] and [100, 103, 106] X = [[2.0, 1.], [3.0, 1.0], [4., 1.0], [109.0, 1.0], [110.0, 1.0], [111., 1.]] y = [2, 3, 4, 100, 103, 106] reg = Regressor(max_depth=1, random_state=1) reg.fit(X, y) pred, var = reg.predict(X, return_std=True) assert_array_equal(pred, [3, 3, 3, 103, 103, 103]) assert_array_almost_equal( var, np.sqrt([0.666667, 0.666667, 0.666667, 6.0, 6.0, 6.0])) def test_variance_toy_data(): """Test that `return_std` behaves expected on toy data.""" for Regressor in [partial(RandomForestRegressor, bootstrap=False), ExtraTreesRegressor]: yield check_variance_toy_data, Regressor def check_variance_no_split(Regressor): rng = check_random_state(0) X = np.ones((1000, 1)) y = rng.normal(size=(1000,)) reg = Regressor(random_state=0, max_depth=3) reg.fit(X, y) pred, std = reg.predict(X, return_std=True) assert_array_almost_equal([np.std(y)] * 1000, std) assert_array_almost_equal([np.mean(y)] * 1000, pred) def test_variance_no_split(): """ Test that `return_std` behaves expected on a tree with one node. The decision tree should not produce a split, because there is no information gain which enables us to verify the mean and standard deviation. """ for Regressor in [partial(RandomForestRegressor, bootstrap=False), ExtraTreesRegressor]: yield check_variance_no_split, Regressor def test_min_variance(): rng = check_random_state(0) X = rng.normal(size=(1000, 1)) y = np.ones(1000) rf = RandomForestRegressor(min_variance=0.1) rf.fit(X, y) mean, std = rf.predict(X, return_std=True) assert_array_almost_equal(mean, y) assert_array_almost_equal(std, np.sqrt(0.1*np.ones(1000)))
bsd-3-clause
lenovor/scikit-learn
examples/tree/plot_iris.py
271
2186
""" ================================================================ Plot the decision surface of a decision tree on the iris dataset ================================================================ Plot the decision surface of a decision tree trained on pairs of features of the iris dataset. See :ref:`decision tree <tree>` for more information on the estimator. For each pair of iris features, the decision tree learns decision boundaries made of combinations of simple thresholding rules inferred from the training samples. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 plot_colors = "bry" plot_step = 0.02 # Load data iris = load_iris() for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]): # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Shuffle idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # Standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std # Train clf = DecisionTreeClassifier().fit(X, y) # Plot the decision boundary plt.subplot(2, 3, pairidx + 1) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.xlabel(iris.feature_names[pair[0]]) plt.ylabel(iris.feature_names[pair[1]]) plt.axis("tight") # Plot the training points for i, color in zip(range(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.Paired) plt.axis("tight") plt.suptitle("Decision surface of a decision tree using paired features") plt.legend() plt.show()
bsd-3-clause
tkarna/cofs
examples/columbia_plume/plot_elevation_ts.py
2
3162
""" Plots elevation time series """ import h5py from netCDF4 import Dataset from thetis.timezone import * import numpy as np import matplotlib.pyplot as plt from collections import OrderedDict timezone = FixedTimeZone(-8, 'PST') init_date = datetime.datetime(2006, 5, 10, tzinfo=timezone) epoch = datetime.datetime(1970, 1, 1, tzinfo=pytz.utc) def simtime_to_datetime(simtime, init_date): return np.array([init_date + datetime.timedelta(seconds=float(t)) for t in simtime]) def simtime_to_epoch(simtime, init_date): offset = (init_date - epoch).total_seconds() return simtime + offset def epoch_to_datetime(time): if isinstance(time, np.ndarray): return np.array([epoch + datetime.timedelta(seconds=float(t)) for t in time]) return epoch + datetime.timedelta(seconds=float(time)) def read_netcdf(fn): d = Dataset(fn) assert 'time' in d.variables.keys(), 'netCDF file does not contain time variable' out = OrderedDict() # assuming epoch time out['time'] = d['time'][:] for k in d.variables.keys(): if k == 'time': continue out[k] = d[k][:] return out def read_hdf5(fn): d = h5py.File(fn) assert 'time' in d, 'hdf5 file does not contain time variable' out = OrderedDict() # assuming simulation time time = simtime_to_epoch(d['time'][:], init_date) out['time'] = time for k in d.keys(): if k == 'time': continue out[k] = d[k][:] return out def make_plot(data): fig = plt.figure(figsize=(12, 5)) ax = fig.add_subplot(111) t_min = np.finfo('d').max t_max = np.finfo('d').min for tag in data: d = data[tag] time = d['time'] vals = d[list(d.keys())[1]] datetime_arr = epoch_to_datetime(time) t_min = min(t_min, time[0]) t_max = max(t_max, time[-1]) ax.plot(datetime_arr, vals, label=tag, alpha=0.8) ax.set_ylabel('Elevation [m]') fig.autofmt_xdate() ax.legend(loc='upper left', bbox_to_anchor=(1.01, 1.)) date_str = '_'.join([epoch_to_datetime(t).strftime('%Y-%m-%d') for t in [t_min, t_max]]) imgfn = 'ts_cmop_elev_tpoin_{:}.png'.format(date_str) print('Saving {:}'.format(imgfn)) fig.savefig(imgfn, dpi=200, bbox_inches='tight') def process(file_list): files = [f for f in file_list if f[-1] != ':'] tags = [f[:-1] for f in file_list if f[-1] == ':'] if len(tags) == 0: tags = files assert len(tags) == len(files) data = OrderedDict() for f, t in zip(files, tags): if f.endswith('.hdf5'): d = read_hdf5(f) elif f.endswith('.nc'): d = read_netcdf(f) else: raise IOError('Unknown file format {:}'.format(f)) data[t] = d make_plot(data) def get_argparser(): return parser def parse_options(): import argparse parser = argparse.ArgumentParser() parser.add_argument(dest='file_list', type=str, nargs='+', help='hdf5 or netcdf file to plot') args = parser.parse_args() process(args.file_list) if __name__ == '__main__': parse_options()
mit
maanitm/MadMobile
testing/distanceDetection.py
1
1062
# import the necessary packages import numpy as np import argparse import glob import cv2 import imutils from matplotlib import pyplot as plt cameraL = cv2.VideoCapture(1) cameraR = cv2.VideoCapture(2) print(cameraL.get(3)) print(cameraL.get(4)) print(cameraR.get(3)) print(cameraR.get(4)) while True: (grabbedL, camL) = cameraL.read() (grabbedR, camR) = cameraR.read() # camL = imutils.resize(camL, width=1280, height=960) # camR = imutils.resize(camR, width=1280, height=960) imgL = cv2.cvtColor(camL, cv2.COLOR_BGR2GRAY) # camR = camR[120:840, 0:1280] imgR = cv2.cvtColor(camR, cv2.COLOR_BGR2GRAY) # # height, width = imgL.shape[:2] # print(width) # print(height) # height, width = imgR.shape[:2] # print(width) # print(height) stereo = cv2.StereoBM_create(numDisparities=16, blockSize=15) disparity = stereo.compute(imgL,imgR) plt.imshow(disparity,'gray') plt.show() key = cv2.waitKey(1) & 0xFF if key == ord("q"): break camera.release() cv2.destroyAllWindows()
apache-2.0
BorisJeremic/Real-ESSI-Examples
analytic_solution/test_cases/Contact/Stress_Based_Contact_Verification/HardContact_NonLinHardSoftShear/Shear_Zone_Length/SZ_h_1e-3/Normalized_Shear_Stress_Plot.py
24
3505
#!/usr/bin/python import h5py import matplotlib.pylab as plt import matplotlib as mpl import sys import numpy as np; plt.rcParams.update({'font.size': 28}) # set tick width mpl.rcParams['xtick.major.size'] = 10 mpl.rcParams['xtick.major.width'] = 5 mpl.rcParams['xtick.minor.size'] = 10 mpl.rcParams['xtick.minor.width'] = 5 plt.rcParams['xtick.labelsize']=24 mpl.rcParams['ytick.major.size'] = 10 mpl.rcParams['ytick.major.width'] = 5 mpl.rcParams['ytick.minor.size'] = 10 mpl.rcParams['ytick.minor.width'] = 5 plt.rcParams['ytick.labelsize']=24 ############################################################### ## Analytical Solution ############################################################### # Go over each feioutput and plot each one. thefile = "Analytical_Solution_Shear.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] shear_strain_x = finput["/Model/Elements/Element_Outputs"][4,:] shear_strain_y = finput["/Model/Elements/Element_Outputs"][5,:] shear_stress_x = finput["/Model/Elements/Element_Outputs"][7,:] shear_stress_y = finput["/Model/Elements/Element_Outputs"][8,:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; shear_strain = np.sqrt(shear_strain_x*shear_strain_x + shear_strain_y*shear_strain_y) ; shear_stress = np.sqrt(shear_stress_x*shear_stress_x + shear_stress_y*shear_stress_y ); shear_stress = shear_stress_x; shear_strain = shear_strain_x; # Configure the figure filename, according to the input filename. outfig=thefile.replace("_","-") outfigname=outfig.replace("h5.feioutput","pdf") # Plot the figure. Add labels and titles. plt.figure(figsize=(12,10)) plt.plot(shear_strain,shear_stress/normal_stress,'-r',label='Analytical Solution', Linewidth=4) plt.xlabel(r"Shear Strain $\gamma $") plt.ylabel(r"Normalized Shear Stress $\tau/\sigma_n$") ############################################################### ## Numerical Solution ############################################################### # Go over each feioutput and plot each one. thefile = "Monotonic_Contact_Behaviour_Adding_Tangential_Load.h5.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] shear_strain_x = finput["/Model/Elements/Element_Outputs"][4,:] shear_strain_y = finput["/Model/Elements/Element_Outputs"][5,:] shear_stress_x = finput["/Model/Elements/Element_Outputs"][7,:] shear_stress_y = finput["/Model/Elements/Element_Outputs"][8,:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; shear_strain = np.sqrt(shear_strain_x*shear_strain_x + shear_strain_y*shear_strain_y) ; shear_stress = np.sqrt(shear_stress_x*shear_stress_x + shear_stress_y*shear_stress_y ); shear_stress = shear_stress_x; shear_strain = shear_strain_x; # Configure the figure filename, according to the input filename. outfig=thefile.replace("_","-") outfigname=outfig.replace("h5.feioutput","pdf") # Plot the figure. Add labels and titles. plt.plot(shear_strain,shear_stress/normal_stress,'-k',label='Numerical Solution', Linewidth=4) plt.xlabel(r"Shear Strain $\gamma $") plt.ylabel(r"Normalized Shear Stress $\tau/\sigma_n$") ######################################################## # # axes = plt.gca() # # axes.set_xlim([-7,7]) # # axes.set_ylim([-1,1]) outfigname = "Normalized_Shear_Stress.pdf"; legend = plt.legend() legend.get_frame().set_linewidth(0.0) legend.get_frame().set_facecolor('none') plt.savefig(outfigname, bbox_inches='tight') # plt.show()
cc0-1.0